*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca
DJ
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
8621d6a9 6 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
197e01b6
EZ
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
60250e8b 31#include "exceptions.h"
c906108c 32#include "breakpoint.h"
03f2053f 33#include "gdb_wait.h"
c906108c
SS
34#include "gdbcore.h"
35#include "gdbcmd.h"
210661e7 36#include "cli/cli-script.h"
c906108c
SS
37#include "target.h"
38#include "gdbthread.h"
39#include "annotate.h"
1adeb98a 40#include "symfile.h"
7a292a7a 41#include "top.h"
c906108c 42#include <signal.h>
2acceee2 43#include "inf-loop.h"
4e052eda 44#include "regcache.h"
fd0407d6 45#include "value.h"
06600e06 46#include "observer.h"
f636b87d 47#include "language.h"
a77053c2 48#include "solib.h"
f17517ea 49#include "main.h"
a77053c2 50
9f976b41 51#include "gdb_assert.h"
034dad6f 52#include "mi/mi-common.h"
c906108c
SS
53
54/* Prototypes for local functions */
55
96baa820 56static void signals_info (char *, int);
c906108c 57
96baa820 58static void handle_command (char *, int);
c906108c 59
96baa820 60static void sig_print_info (enum target_signal);
c906108c 61
96baa820 62static void sig_print_header (void);
c906108c 63
74b7792f 64static void resume_cleanups (void *);
c906108c 65
96baa820 66static int hook_stop_stub (void *);
c906108c 67
96baa820
JM
68static int restore_selected_frame (void *);
69
70static void build_infrun (void);
71
4ef3f3be 72static int follow_fork (void);
96baa820
JM
73
74static void set_schedlock_func (char *args, int from_tty,
488f131b 75 struct cmd_list_element *c);
96baa820 76
96baa820
JM
77struct execution_control_state;
78
79static int currently_stepping (struct execution_control_state *ecs);
80
81static void xdb_handle_command (char *args, int from_tty);
82
ea67f13b
DJ
83static int prepare_to_proceed (void);
84
96baa820 85void _initialize_infrun (void);
43ff13b4 86
c906108c
SS
87int inferior_ignoring_startup_exec_events = 0;
88int inferior_ignoring_leading_exec_events = 0;
89
5fbbeb29
CF
90/* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93int step_stop_if_no_debug = 0;
920d2a44
AC
94static void
95show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97{
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99}
5fbbeb29 100
43ff13b4 101/* In asynchronous mode, but simulating synchronous execution. */
96baa820 102
43ff13b4
JM
103int sync_execution = 0;
104
c906108c
SS
105/* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
96baa820
JM
107 running in. */
108
39f77062 109static ptid_t previous_inferior_ptid;
7a292a7a
SS
110
111/* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114#ifndef MAY_FOLLOW_EXEC
115#define MAY_FOLLOW_EXEC (0)
c906108c
SS
116#endif
117
7a292a7a
SS
118static int may_follow_exec = MAY_FOLLOW_EXEC;
119
527159b7 120static int debug_infrun = 0;
920d2a44
AC
121static void
122show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124{
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126}
527159b7 127
d4f3574e
SS
128/* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
ca557f44
AC
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
d4f3574e
SS
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
c906108c 166
c906108c
SS
167/* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175#ifndef SOLIB_IN_DYNAMIC_LINKER
176#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177#endif
178
c2c6d25f
JM
179/* We can't step off a permanent breakpoint in the ordinary way, because we
180 can't remove it. Instead, we have to advance the PC to the next
181 instruction. This macro should expand to a pointer to a function that
182 does that, or zero if we have no such function. If we don't have a
183 definition for it, we have to report an error. */
488f131b 184#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
185#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
186static void
c2d11a7d 187default_skip_permanent_breakpoint (void)
c2c6d25f 188{
8a3fe4f8 189 error (_("\
c2c6d25f
JM
190The program is stopped at a permanent breakpoint, but GDB does not know\n\
191how to step past a permanent breakpoint on this architecture. Try using\n\
8a3fe4f8 192a command like `return' or `jump' to continue execution."));
c2c6d25f
JM
193}
194#endif
488f131b 195
c2c6d25f 196
7a292a7a
SS
197/* Convert the #defines into values. This is temporary until wfi control
198 flow is completely sorted out. */
199
200#ifndef HAVE_STEPPABLE_WATCHPOINT
201#define HAVE_STEPPABLE_WATCHPOINT 0
202#else
203#undef HAVE_STEPPABLE_WATCHPOINT
204#define HAVE_STEPPABLE_WATCHPOINT 1
205#endif
206
692590c1
MS
207#ifndef CANNOT_STEP_HW_WATCHPOINTS
208#define CANNOT_STEP_HW_WATCHPOINTS 0
209#else
210#undef CANNOT_STEP_HW_WATCHPOINTS
211#define CANNOT_STEP_HW_WATCHPOINTS 1
212#endif
213
c906108c
SS
214/* Tables of how to react to signals; the user sets them. */
215
216static unsigned char *signal_stop;
217static unsigned char *signal_print;
218static unsigned char *signal_program;
219
220#define SET_SIGS(nsigs,sigs,flags) \
221 do { \
222 int signum = (nsigs); \
223 while (signum-- > 0) \
224 if ((sigs)[signum]) \
225 (flags)[signum] = 1; \
226 } while (0)
227
228#define UNSET_SIGS(nsigs,sigs,flags) \
229 do { \
230 int signum = (nsigs); \
231 while (signum-- > 0) \
232 if ((sigs)[signum]) \
233 (flags)[signum] = 0; \
234 } while (0)
235
39f77062
KB
236/* Value to pass to target_resume() to cause all threads to resume */
237
238#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
239
240/* Command list pointer for the "stop" placeholder. */
241
242static struct cmd_list_element *stop_command;
243
244/* Nonzero if breakpoints are now inserted in the inferior. */
245
246static int breakpoints_inserted;
247
248/* Function inferior was in as of last step command. */
249
250static struct symbol *step_start_function;
251
252/* Nonzero if we are expecting a trace trap and should proceed from it. */
253
254static int trap_expected;
255
c906108c
SS
256/* Nonzero if we want to give control to the user when we're notified
257 of shared library events by the dynamic linker. */
258static int stop_on_solib_events;
920d2a44
AC
259static void
260show_stop_on_solib_events (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262{
263 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
264 value);
265}
c906108c 266
c906108c
SS
267/* Nonzero means expecting a trace trap
268 and should stop the inferior and return silently when it happens. */
269
270int stop_after_trap;
271
272/* Nonzero means expecting a trap and caller will handle it themselves.
273 It is used after attach, due to attaching to a process;
274 when running in the shell before the child program has been exec'd;
275 and when running some kinds of remote stuff (FIXME?). */
276
c0236d92 277enum stop_kind stop_soon;
c906108c
SS
278
279/* Nonzero if proceed is being used for a "finish" command or a similar
280 situation when stop_registers should be saved. */
281
282int proceed_to_finish;
283
284/* Save register contents here when about to pop a stack dummy frame,
285 if-and-only-if proceed_to_finish is set.
286 Thus this contains the return value from the called function (assuming
287 values are returned in a register). */
288
72cec141 289struct regcache *stop_registers;
c906108c
SS
290
291/* Nonzero if program stopped due to error trying to insert breakpoints. */
292
293static int breakpoints_failed;
294
295/* Nonzero after stop if current stack frame should be printed. */
296
297static int stop_print_frame;
298
299static struct breakpoint *step_resume_breakpoint = NULL;
c906108c 300
e02bc4cc 301/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
302 returned by target_wait()/deprecated_target_wait_hook(). This
303 information is returned by get_last_target_status(). */
39f77062 304static ptid_t target_last_wait_ptid;
e02bc4cc
DS
305static struct target_waitstatus target_last_waitstatus;
306
c906108c
SS
307/* This is used to remember when a fork, vfork or exec event
308 was caught by a catchpoint, and thus the event is to be
309 followed at the next resume of the inferior, and not
310 immediately. */
311static struct
488f131b
JB
312{
313 enum target_waitkind kind;
314 struct
c906108c 315 {
488f131b 316 int parent_pid;
488f131b 317 int child_pid;
c906108c 318 }
488f131b
JB
319 fork_event;
320 char *execd_pathname;
321}
c906108c
SS
322pending_follow;
323
53904c9e
AC
324static const char follow_fork_mode_child[] = "child";
325static const char follow_fork_mode_parent[] = "parent";
326
488f131b 327static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
328 follow_fork_mode_child,
329 follow_fork_mode_parent,
330 NULL
ef346e04 331};
c906108c 332
53904c9e 333static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
334static void
335show_follow_fork_mode_string (struct ui_file *file, int from_tty,
336 struct cmd_list_element *c, const char *value)
337{
338 fprintf_filtered (file, _("\
339Debugger response to a program call of fork or vfork is \"%s\".\n"),
340 value);
341}
c906108c
SS
342\f
343
6604731b 344static int
4ef3f3be 345follow_fork (void)
c906108c 346{
ea1dd7bc 347 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 348
6604731b 349 return target_follow_fork (follow_child);
c906108c
SS
350}
351
6604731b
DJ
352void
353follow_inferior_reset_breakpoints (void)
c906108c 354{
6604731b
DJ
355 /* Was there a step_resume breakpoint? (There was if the user
356 did a "next" at the fork() call.) If so, explicitly reset its
357 thread number.
358
359 step_resumes are a form of bp that are made to be per-thread.
360 Since we created the step_resume bp when the parent process
361 was being debugged, and now are switching to the child process,
362 from the breakpoint package's viewpoint, that's a switch of
363 "threads". We must update the bp's notion of which thread
364 it is for, or it'll be ignored when it triggers. */
365
366 if (step_resume_breakpoint)
367 breakpoint_re_set_thread (step_resume_breakpoint);
368
369 /* Reinsert all breakpoints in the child. The user may have set
370 breakpoints after catching the fork, in which case those
371 were never set in the child, but only in the parent. This makes
372 sure the inserted breakpoints match the breakpoint list. */
373
374 breakpoint_re_set ();
375 insert_breakpoints ();
c906108c 376}
c906108c 377
1adeb98a
FN
378/* EXECD_PATHNAME is assumed to be non-NULL. */
379
c906108c 380static void
96baa820 381follow_exec (int pid, char *execd_pathname)
c906108c 382{
c906108c 383 int saved_pid = pid;
7a292a7a
SS
384 struct target_ops *tgt;
385
386 if (!may_follow_exec)
387 return;
c906108c 388
c906108c
SS
389 /* This is an exec event that we actually wish to pay attention to.
390 Refresh our symbol table to the newly exec'd program, remove any
391 momentary bp's, etc.
392
393 If there are breakpoints, they aren't really inserted now,
394 since the exec() transformed our inferior into a fresh set
395 of instructions.
396
397 We want to preserve symbolic breakpoints on the list, since
398 we have hopes that they can be reset after the new a.out's
399 symbol table is read.
400
401 However, any "raw" breakpoints must be removed from the list
402 (e.g., the solib bp's), since their address is probably invalid
403 now.
404
405 And, we DON'T want to call delete_breakpoints() here, since
406 that may write the bp's "shadow contents" (the instruction
407 value that was overwritten witha TRAP instruction). Since
408 we now have a new a.out, those shadow contents aren't valid. */
409 update_breakpoints_after_exec ();
410
411 /* If there was one, it's gone now. We cannot truly step-to-next
412 statement through an exec(). */
413 step_resume_breakpoint = NULL;
414 step_range_start = 0;
415 step_range_end = 0;
416
c906108c 417 /* What is this a.out's name? */
a3f17187 418 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
419
420 /* We've followed the inferior through an exec. Therefore, the
421 inferior has essentially been killed & reborn. */
7a292a7a
SS
422
423 /* First collect the run target in effect. */
424 tgt = find_run_target ();
425 /* If we can't find one, things are in a very strange state... */
426 if (tgt == NULL)
8a3fe4f8 427 error (_("Could find run target to save before following exec"));
7a292a7a 428
c906108c
SS
429 gdb_flush (gdb_stdout);
430 target_mourn_inferior ();
39f77062 431 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 432 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 433 push_target (tgt);
c906108c
SS
434
435 /* That a.out is now the one to use. */
436 exec_file_attach (execd_pathname, 0);
437
438 /* And also is where symbols can be found. */
1adeb98a 439 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
440
441 /* Reset the shared library package. This ensures that we get
442 a shlib event when the child reaches "_start", at which point
443 the dld will have had a chance to initialize the child. */
7a292a7a 444#if defined(SOLIB_RESTART)
c906108c 445 SOLIB_RESTART ();
7a292a7a
SS
446#endif
447#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 448 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
449#else
450 solib_create_inferior_hook ();
7a292a7a 451#endif
c906108c
SS
452
453 /* Reinsert all breakpoints. (Those which were symbolic have
454 been reset to the proper address in the new a.out, thanks
455 to symbol_file_command...) */
456 insert_breakpoints ();
457
458 /* The next resume of this inferior should bring it to the shlib
459 startup breakpoints. (If the user had also set bp's on
460 "main" from the old (parent) process, then they'll auto-
461 matically get reset there in the new process.) */
c906108c
SS
462}
463
464/* Non-zero if we just simulating a single-step. This is needed
465 because we cannot remove the breakpoints in the inferior process
466 until after the `wait' in `wait_for_inferior'. */
467static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
468
469/* The thread we inserted single-step breakpoints for. */
470static ptid_t singlestep_ptid;
471
fd48f117
DJ
472/* PC when we started this single-step. */
473static CORE_ADDR singlestep_pc;
474
9f976b41
DJ
475/* If another thread hit the singlestep breakpoint, we save the original
476 thread here so that we can resume single-stepping it later. */
477static ptid_t saved_singlestep_ptid;
478static int stepping_past_singlestep_breakpoint;
c906108c
SS
479\f
480
481/* Things to clean up if we QUIT out of resume (). */
c906108c 482static void
74b7792f 483resume_cleanups (void *ignore)
c906108c
SS
484{
485 normal_stop ();
486}
487
53904c9e
AC
488static const char schedlock_off[] = "off";
489static const char schedlock_on[] = "on";
490static const char schedlock_step[] = "step";
488f131b 491static const char *scheduler_enums[] = {
ef346e04
AC
492 schedlock_off,
493 schedlock_on,
494 schedlock_step,
495 NULL
496};
920d2a44
AC
497static const char *scheduler_mode = schedlock_off;
498static void
499show_scheduler_mode (struct ui_file *file, int from_tty,
500 struct cmd_list_element *c, const char *value)
501{
502 fprintf_filtered (file, _("\
503Mode for locking scheduler during execution is \"%s\".\n"),
504 value);
505}
c906108c
SS
506
507static void
96baa820 508set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 509{
eefe576e
AC
510 if (!target_can_lock_scheduler)
511 {
512 scheduler_mode = schedlock_off;
513 error (_("Target '%s' cannot support this command."), target_shortname);
514 }
c906108c
SS
515}
516
517
518/* Resume the inferior, but allow a QUIT. This is useful if the user
519 wants to interrupt some lengthy single-stepping operation
520 (for child processes, the SIGINT goes to the inferior, and so
521 we get a SIGINT random_signal, but for remote debugging and perhaps
522 other targets, that's not true).
523
524 STEP nonzero if we should step (zero to continue instead).
525 SIG is the signal to give the inferior (zero for none). */
526void
96baa820 527resume (int step, enum target_signal sig)
c906108c
SS
528{
529 int should_resume = 1;
74b7792f 530 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
531 QUIT;
532
527159b7 533 if (debug_infrun)
8a9de0e4
AC
534 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
535 step, sig);
527159b7 536
ef5cf84e
MS
537 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
538
c906108c 539
692590c1
MS
540 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
541 over an instruction that causes a page fault without triggering
542 a hardware watchpoint. The kernel properly notices that it shouldn't
543 stop, because the hardware watchpoint is not triggered, but it forgets
544 the step request and continues the program normally.
545 Work around the problem by removing hardware watchpoints if a step is
546 requested, GDB will check for a hardware watchpoint trigger after the
547 step anyway. */
548 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
549 remove_hw_watchpoints ();
488f131b 550
692590c1 551
c2c6d25f
JM
552 /* Normally, by the time we reach `resume', the breakpoints are either
553 removed or inserted, as appropriate. The exception is if we're sitting
554 at a permanent breakpoint; we need to step over it, but permanent
555 breakpoints can't be removed. So we have to test for it here. */
556 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
557 SKIP_PERMANENT_BREAKPOINT ();
558
b0ed3589 559 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
560 {
561 /* Do it the hard way, w/temp breakpoints */
c5aa993b 562 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
563 /* ...and don't ask hardware to do it. */
564 step = 0;
565 /* and do not pull these breakpoints until after a `wait' in
566 `wait_for_inferior' */
567 singlestep_breakpoints_inserted_p = 1;
9f976b41 568 singlestep_ptid = inferior_ptid;
fd48f117 569 singlestep_pc = read_pc ();
c906108c
SS
570 }
571
c906108c 572 /* If there were any forks/vforks/execs that were caught and are
6604731b 573 now to be followed, then do so. */
c906108c
SS
574 switch (pending_follow.kind)
575 {
6604731b
DJ
576 case TARGET_WAITKIND_FORKED:
577 case TARGET_WAITKIND_VFORKED:
c906108c 578 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
579 if (follow_fork ())
580 should_resume = 0;
c906108c
SS
581 break;
582
6604731b 583 case TARGET_WAITKIND_EXECD:
c906108c 584 /* follow_exec is called as soon as the exec event is seen. */
6604731b 585 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
586 break;
587
588 default:
589 break;
590 }
c906108c
SS
591
592 /* Install inferior's terminal modes. */
593 target_terminal_inferior ();
594
595 if (should_resume)
596 {
39f77062 597 ptid_t resume_ptid;
dfcd3bfb 598
488f131b 599 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 600
8fb3e588
AC
601 if ((step || singlestep_breakpoints_inserted_p)
602 && (stepping_past_singlestep_breakpoint
603 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 604 {
ef5cf84e
MS
605 /* Stepping past a breakpoint without inserting breakpoints.
606 Make sure only the current thread gets to step, so that
607 other threads don't sneak past breakpoints while they are
608 not inserted. */
c906108c 609
ef5cf84e 610 resume_ptid = inferior_ptid;
c906108c 611 }
ef5cf84e 612
8fb3e588
AC
613 if ((scheduler_mode == schedlock_on)
614 || (scheduler_mode == schedlock_step
615 && (step || singlestep_breakpoints_inserted_p)))
c906108c 616 {
ef5cf84e 617 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 618 resume_ptid = inferior_ptid;
c906108c 619 }
ef5cf84e 620
c4ed33b9
AC
621 if (CANNOT_STEP_BREAKPOINT)
622 {
623 /* Most targets can step a breakpoint instruction, thus
624 executing it normally. But if this one cannot, just
625 continue and we will hit it anyway. */
626 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
627 step = 0;
628 }
39f77062 629 target_resume (resume_ptid, step, sig);
c906108c
SS
630 }
631
632 discard_cleanups (old_cleanups);
633}
634\f
635
636/* Clear out all variables saying what to do when inferior is continued.
637 First do this, then set the ones you want, then call `proceed'. */
638
639void
96baa820 640clear_proceed_status (void)
c906108c
SS
641{
642 trap_expected = 0;
643 step_range_start = 0;
644 step_range_end = 0;
aa0cd9c1 645 step_frame_id = null_frame_id;
5fbbeb29 646 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 647 stop_after_trap = 0;
c0236d92 648 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
649 proceed_to_finish = 0;
650 breakpoint_proceeded = 1; /* We're about to proceed... */
651
652 /* Discard any remaining commands or status from previous stop. */
653 bpstat_clear (&stop_bpstat);
654}
655
ea67f13b
DJ
656/* This should be suitable for any targets that support threads. */
657
658static int
659prepare_to_proceed (void)
660{
661 ptid_t wait_ptid;
662 struct target_waitstatus wait_status;
663
664 /* Get the last target status returned by target_wait(). */
665 get_last_target_status (&wait_ptid, &wait_status);
666
667 /* Make sure we were stopped either at a breakpoint, or because
668 of a Ctrl-C. */
669 if (wait_status.kind != TARGET_WAITKIND_STOPPED
8fb3e588
AC
670 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
671 && wait_status.value.sig != TARGET_SIGNAL_INT))
ea67f13b
DJ
672 {
673 return 0;
674 }
675
676 if (!ptid_equal (wait_ptid, minus_one_ptid)
677 && !ptid_equal (inferior_ptid, wait_ptid))
678 {
679 /* Switched over from WAIT_PID. */
680 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
681
682 if (wait_pc != read_pc ())
683 {
684 /* Switch back to WAIT_PID thread. */
685 inferior_ptid = wait_ptid;
686
687 /* FIXME: This stuff came from switch_to_thread() in
688 thread.c (which should probably be a public function). */
689 flush_cached_frames ();
690 registers_changed ();
691 stop_pc = wait_pc;
692 select_frame (get_current_frame ());
693 }
694
8fb3e588
AC
695 /* We return 1 to indicate that there is a breakpoint here,
696 so we need to step over it before continuing to avoid
697 hitting it straight away. */
698 if (breakpoint_here_p (wait_pc))
699 return 1;
ea67f13b
DJ
700 }
701
702 return 0;
8fb3e588 703
ea67f13b 704}
e4846b08
JJ
705
706/* Record the pc of the program the last time it stopped. This is
707 just used internally by wait_for_inferior, but need to be preserved
708 over calls to it and cleared when the inferior is started. */
709static CORE_ADDR prev_pc;
710
c906108c
SS
711/* Basic routine for continuing the program in various fashions.
712
713 ADDR is the address to resume at, or -1 for resume where stopped.
714 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 715 or -1 for act according to how it stopped.
c906108c 716 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
717 -1 means return after that and print nothing.
718 You should probably set various step_... variables
719 before calling here, if you are stepping.
c906108c
SS
720
721 You should call clear_proceed_status before calling proceed. */
722
723void
96baa820 724proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
725{
726 int oneproc = 0;
727
728 if (step > 0)
729 step_start_function = find_pc_function (read_pc ());
730 if (step < 0)
731 stop_after_trap = 1;
732
2acceee2 733 if (addr == (CORE_ADDR) -1)
c906108c 734 {
c906108c 735 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
3352ef37
AC
736 /* There is a breakpoint at the address we will resume at,
737 step one instruction before inserting breakpoints so that
738 we do not stop right away (and report a second hit at this
739 breakpoint). */
c906108c 740 oneproc = 1;
3352ef37
AC
741 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
742 && gdbarch_single_step_through_delay (current_gdbarch,
743 get_current_frame ()))
744 /* We stepped onto an instruction that needs to be stepped
745 again before re-inserting the breakpoint, do so. */
c906108c
SS
746 oneproc = 1;
747 }
748 else
749 {
750 write_pc (addr);
c906108c
SS
751 }
752
527159b7 753 if (debug_infrun)
8a9de0e4
AC
754 fprintf_unfiltered (gdb_stdlog,
755 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
756 paddr_nz (addr), siggnal, step);
527159b7 757
c906108c
SS
758 /* In a multi-threaded task we may select another thread
759 and then continue or step.
760
761 But if the old thread was stopped at a breakpoint, it
762 will immediately cause another breakpoint stop without
763 any execution (i.e. it will report a breakpoint hit
764 incorrectly). So we must step over it first.
765
ea67f13b 766 prepare_to_proceed checks the current thread against the thread
c906108c
SS
767 that reported the most recent event. If a step-over is required
768 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
769 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
770 oneproc = 1;
c906108c 771
c906108c
SS
772 if (oneproc)
773 /* We will get a trace trap after one instruction.
774 Continue it automatically and insert breakpoints then. */
775 trap_expected = 1;
776 else
777 {
81d0cc19
GS
778 insert_breakpoints ();
779 /* If we get here there was no call to error() in
8fb3e588 780 insert breakpoints -- so they were inserted. */
c906108c
SS
781 breakpoints_inserted = 1;
782 }
783
784 if (siggnal != TARGET_SIGNAL_DEFAULT)
785 stop_signal = siggnal;
786 /* If this signal should not be seen by program,
787 give it zero. Used for debugging signals. */
788 else if (!signal_program[stop_signal])
789 stop_signal = TARGET_SIGNAL_0;
790
791 annotate_starting ();
792
793 /* Make sure that output from GDB appears before output from the
794 inferior. */
795 gdb_flush (gdb_stdout);
796
e4846b08
JJ
797 /* Refresh prev_pc value just prior to resuming. This used to be
798 done in stop_stepping, however, setting prev_pc there did not handle
799 scenarios such as inferior function calls or returning from
800 a function via the return command. In those cases, the prev_pc
801 value was not set properly for subsequent commands. The prev_pc value
802 is used to initialize the starting line number in the ecs. With an
803 invalid value, the gdb next command ends up stopping at the position
804 represented by the next line table entry past our start position.
805 On platforms that generate one line table entry per line, this
806 is not a problem. However, on the ia64, the compiler generates
807 extraneous line table entries that do not increase the line number.
808 When we issue the gdb next command on the ia64 after an inferior call
809 or a return command, we often end up a few instructions forward, still
810 within the original line we started.
811
812 An attempt was made to have init_execution_control_state () refresh
813 the prev_pc value before calculating the line number. This approach
814 did not work because on platforms that use ptrace, the pc register
815 cannot be read unless the inferior is stopped. At that point, we
816 are not guaranteed the inferior is stopped and so the read_pc ()
817 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 818 updated correctly when the inferior is stopped. */
e4846b08
JJ
819 prev_pc = read_pc ();
820
c906108c
SS
821 /* Resume inferior. */
822 resume (oneproc || step || bpstat_should_step (), stop_signal);
823
824 /* Wait for it to stop (if not standalone)
825 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
826 /* Do this only if we are not using the event loop, or if the target
827 does not support asynchronous execution. */
362646f5 828 if (!target_can_async_p ())
43ff13b4
JM
829 {
830 wait_for_inferior ();
831 normal_stop ();
832 }
c906108c 833}
c906108c
SS
834\f
835
836/* Start remote-debugging of a machine over a serial link. */
96baa820 837
c906108c 838void
8621d6a9 839start_remote (int from_tty)
c906108c
SS
840{
841 init_thread_list ();
842 init_wait_for_inferior ();
c0236d92 843 stop_soon = STOP_QUIETLY;
c906108c 844 trap_expected = 0;
43ff13b4 845
6426a772
JM
846 /* Always go on waiting for the target, regardless of the mode. */
847 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 848 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
849 nothing is returned (instead of just blocking). Because of this,
850 targets expecting an immediate response need to, internally, set
851 things up so that the target_wait() is forced to eventually
852 timeout. */
853 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
854 differentiate to its caller what the state of the target is after
855 the initial open has been performed. Here we're assuming that
856 the target has stopped. It should be possible to eventually have
857 target_open() return to the caller an indication that the target
858 is currently running and GDB state should be set to the same as
859 for an async run. */
860 wait_for_inferior ();
8621d6a9
DJ
861
862 /* Now that the inferior has stopped, do any bookkeeping like
863 loading shared libraries. We want to do this before normal_stop,
864 so that the displayed frame is up to date. */
865 post_create_inferior (&current_target, from_tty);
866
6426a772 867 normal_stop ();
c906108c
SS
868}
869
870/* Initialize static vars when a new inferior begins. */
871
872void
96baa820 873init_wait_for_inferior (void)
c906108c
SS
874{
875 /* These are meaningless until the first time through wait_for_inferior. */
876 prev_pc = 0;
c906108c 877
c906108c
SS
878 breakpoints_inserted = 0;
879 breakpoint_init_inferior (inf_starting);
880
881 /* Don't confuse first call to proceed(). */
882 stop_signal = TARGET_SIGNAL_0;
883
884 /* The first resume is not following a fork/vfork/exec. */
885 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 886
c906108c 887 clear_proceed_status ();
9f976b41
DJ
888
889 stepping_past_singlestep_breakpoint = 0;
c906108c 890}
c906108c 891\f
b83266a0
SS
892/* This enum encodes possible reasons for doing a target_wait, so that
893 wfi can call target_wait in one place. (Ultimately the call will be
894 moved out of the infinite loop entirely.) */
895
c5aa993b
JM
896enum infwait_states
897{
cd0fc7c3
SS
898 infwait_normal_state,
899 infwait_thread_hop_state,
cd0fc7c3 900 infwait_nonstep_watch_state
b83266a0
SS
901};
902
11cf8741
JM
903/* Why did the inferior stop? Used to print the appropriate messages
904 to the interface from within handle_inferior_event(). */
905enum inferior_stop_reason
906{
907 /* We don't know why. */
908 STOP_UNKNOWN,
909 /* Step, next, nexti, stepi finished. */
910 END_STEPPING_RANGE,
911 /* Found breakpoint. */
912 BREAKPOINT_HIT,
913 /* Inferior terminated by signal. */
914 SIGNAL_EXITED,
915 /* Inferior exited. */
916 EXITED,
917 /* Inferior received signal, and user asked to be notified. */
918 SIGNAL_RECEIVED
919};
920
cd0fc7c3
SS
921/* This structure contains what used to be local variables in
922 wait_for_inferior. Probably many of them can return to being
923 locals in handle_inferior_event. */
924
c5aa993b 925struct execution_control_state
488f131b
JB
926{
927 struct target_waitstatus ws;
928 struct target_waitstatus *wp;
929 int another_trap;
930 int random_signal;
931 CORE_ADDR stop_func_start;
932 CORE_ADDR stop_func_end;
933 char *stop_func_name;
934 struct symtab_and_line sal;
488f131b
JB
935 int current_line;
936 struct symtab *current_symtab;
937 int handling_longjmp; /* FIXME */
938 ptid_t ptid;
939 ptid_t saved_inferior_ptid;
68f53502 940 int step_after_step_resume_breakpoint;
488f131b
JB
941 int stepping_through_solib_after_catch;
942 bpstat stepping_through_solib_catchpoints;
488f131b
JB
943 int new_thread_event;
944 struct target_waitstatus tmpstatus;
945 enum infwait_states infwait_state;
946 ptid_t waiton_ptid;
947 int wait_some_more;
948};
949
950void init_execution_control_state (struct execution_control_state *ecs);
951
952void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 953
c2c6d25f 954static void step_into_function (struct execution_control_state *ecs);
44cbf7b5 955static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 956static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
957static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
958 struct frame_id sr_id);
104c1213
JM
959static void stop_stepping (struct execution_control_state *ecs);
960static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 961static void keep_going (struct execution_control_state *ecs);
488f131b
JB
962static void print_stop_reason (enum inferior_stop_reason stop_reason,
963 int stop_info);
104c1213 964
cd0fc7c3
SS
965/* Wait for control to return from inferior to debugger.
966 If inferior gets a signal, we may decide to start it up again
967 instead of returning. That is why there is a loop in this function.
968 When this function actually returns it means the inferior
969 should be left stopped and GDB should read more commands. */
970
971void
96baa820 972wait_for_inferior (void)
cd0fc7c3
SS
973{
974 struct cleanup *old_cleanups;
975 struct execution_control_state ecss;
976 struct execution_control_state *ecs;
c906108c 977
527159b7 978 if (debug_infrun)
8a9de0e4 979 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
527159b7 980
8601f500 981 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 982 &step_resume_breakpoint);
cd0fc7c3
SS
983
984 /* wfi still stays in a loop, so it's OK just to take the address of
985 a local to get the ecs pointer. */
986 ecs = &ecss;
987
988 /* Fill in with reasonable starting values. */
989 init_execution_control_state (ecs);
990
c906108c 991 /* We'll update this if & when we switch to a new thread. */
39f77062 992 previous_inferior_ptid = inferior_ptid;
c906108c 993
cd0fc7c3
SS
994 overlay_cache_invalid = 1;
995
996 /* We have to invalidate the registers BEFORE calling target_wait
997 because they can be loaded from the target while in target_wait.
998 This makes remote debugging a bit more efficient for those
999 targets that provide critical registers as part of their normal
1000 status mechanism. */
1001
1002 registers_changed ();
b83266a0 1003
c906108c
SS
1004 while (1)
1005 {
9a4105ab
AC
1006 if (deprecated_target_wait_hook)
1007 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 1008 else
39f77062 1009 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1010
cd0fc7c3
SS
1011 /* Now figure out what to do with the result of the result. */
1012 handle_inferior_event (ecs);
c906108c 1013
cd0fc7c3
SS
1014 if (!ecs->wait_some_more)
1015 break;
1016 }
1017 do_cleanups (old_cleanups);
1018}
c906108c 1019
43ff13b4
JM
1020/* Asynchronous version of wait_for_inferior. It is called by the
1021 event loop whenever a change of state is detected on the file
1022 descriptor corresponding to the target. It can be called more than
1023 once to complete a single execution command. In such cases we need
1024 to keep the state in a global variable ASYNC_ECSS. If it is the
1025 last time that this function is called for a single execution
1026 command, then report to the user that the inferior has stopped, and
1027 do the necessary cleanups. */
1028
1029struct execution_control_state async_ecss;
1030struct execution_control_state *async_ecs;
1031
1032void
fba45db2 1033fetch_inferior_event (void *client_data)
43ff13b4
JM
1034{
1035 static struct cleanup *old_cleanups;
1036
c5aa993b 1037 async_ecs = &async_ecss;
43ff13b4
JM
1038
1039 if (!async_ecs->wait_some_more)
1040 {
488f131b 1041 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1042 &step_resume_breakpoint);
43ff13b4
JM
1043
1044 /* Fill in with reasonable starting values. */
1045 init_execution_control_state (async_ecs);
1046
43ff13b4 1047 /* We'll update this if & when we switch to a new thread. */
39f77062 1048 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1049
1050 overlay_cache_invalid = 1;
1051
1052 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1053 because they can be loaded from the target while in target_wait.
1054 This makes remote debugging a bit more efficient for those
1055 targets that provide critical registers as part of their normal
1056 status mechanism. */
43ff13b4
JM
1057
1058 registers_changed ();
1059 }
1060
9a4105ab 1061 if (deprecated_target_wait_hook)
488f131b 1062 async_ecs->ptid =
9a4105ab 1063 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1064 else
39f77062 1065 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1066
1067 /* Now figure out what to do with the result of the result. */
1068 handle_inferior_event (async_ecs);
1069
1070 if (!async_ecs->wait_some_more)
1071 {
adf40b2e 1072 /* Do only the cleanups that have been added by this
488f131b
JB
1073 function. Let the continuations for the commands do the rest,
1074 if there are any. */
43ff13b4
JM
1075 do_exec_cleanups (old_cleanups);
1076 normal_stop ();
c2d11a7d
JM
1077 if (step_multi && stop_step)
1078 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1079 else
1080 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1081 }
1082}
1083
cd0fc7c3
SS
1084/* Prepare an execution control state for looping through a
1085 wait_for_inferior-type loop. */
1086
1087void
96baa820 1088init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1089{
6ad80df0 1090 ecs->another_trap = 0;
cd0fc7c3 1091 ecs->random_signal = 0;
68f53502 1092 ecs->step_after_step_resume_breakpoint = 0;
cd0fc7c3 1093 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1094 ecs->stepping_through_solib_after_catch = 0;
1095 ecs->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
1096 ecs->sal = find_pc_line (prev_pc, 0);
1097 ecs->current_line = ecs->sal.line;
1098 ecs->current_symtab = ecs->sal.symtab;
1099 ecs->infwait_state = infwait_normal_state;
39f77062 1100 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1101 ecs->wp = &(ecs->ws);
1102}
1103
e02bc4cc 1104/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1105 target_wait()/deprecated_target_wait_hook(). The data is actually
1106 cached by handle_inferior_event(), which gets called immediately
1107 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1108
1109void
488f131b 1110get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1111{
39f77062 1112 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1113 *status = target_last_waitstatus;
1114}
1115
ac264b3b
MS
1116void
1117nullify_last_target_wait_ptid (void)
1118{
1119 target_last_wait_ptid = minus_one_ptid;
1120}
1121
dd80620e
MS
1122/* Switch thread contexts, maintaining "infrun state". */
1123
1124static void
1125context_switch (struct execution_control_state *ecs)
1126{
1127 /* Caution: it may happen that the new thread (or the old one!)
1128 is not in the thread list. In this case we must not attempt
1129 to "switch context", or we run the risk that our context may
1130 be lost. This may happen as a result of the target module
1131 mishandling thread creation. */
1132
fd48f117
DJ
1133 if (debug_infrun)
1134 {
1135 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1136 target_pid_to_str (inferior_ptid));
1137 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1138 target_pid_to_str (ecs->ptid));
1139 }
1140
dd80620e 1141 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1142 { /* Perform infrun state context switch: */
dd80620e 1143 /* Save infrun state for the old thread. */
0ce3d317 1144 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1145 trap_expected, step_resume_breakpoint,
15960608 1146 step_range_start,
aa0cd9c1 1147 step_range_end, &step_frame_id,
dd80620e
MS
1148 ecs->handling_longjmp, ecs->another_trap,
1149 ecs->stepping_through_solib_after_catch,
1150 ecs->stepping_through_solib_catchpoints,
f2c9ca08 1151 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1152
1153 /* Load infrun state for the new thread. */
0ce3d317 1154 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1155 &trap_expected, &step_resume_breakpoint,
15960608 1156 &step_range_start,
aa0cd9c1 1157 &step_range_end, &step_frame_id,
dd80620e
MS
1158 &ecs->handling_longjmp, &ecs->another_trap,
1159 &ecs->stepping_through_solib_after_catch,
1160 &ecs->stepping_through_solib_catchpoints,
f2c9ca08 1161 &ecs->current_line, &ecs->current_symtab);
dd80620e
MS
1162 }
1163 inferior_ptid = ecs->ptid;
fd48f117 1164 flush_cached_frames ();
dd80620e
MS
1165}
1166
4fa8626c
DJ
1167static void
1168adjust_pc_after_break (struct execution_control_state *ecs)
1169{
8aad930b 1170 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1171
1172 /* If this target does not decrement the PC after breakpoints, then
1173 we have nothing to do. */
1174 if (DECR_PC_AFTER_BREAK == 0)
1175 return;
1176
1177 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1178 we aren't, just return.
9709f61c
DJ
1179
1180 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1181 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1182 by software breakpoints should be handled through the normal breakpoint
1183 layer.
8fb3e588 1184
4fa8626c
DJ
1185 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1186 different signals (SIGILL or SIGEMT for instance), but it is less
1187 clear where the PC is pointing afterwards. It may not match
1188 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1189 these signals at breakpoints (the code has been in GDB since at least
1190 1992) so I can not guess how to handle them here.
8fb3e588 1191
4fa8626c
DJ
1192 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1193 would have the PC after hitting a watchpoint affected by
1194 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1195 in GDB history, and it seems unlikely to be correct, so
1196 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1197
1198 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1199 return;
1200
1201 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1202 return;
1203
8aad930b
AC
1204 /* Find the location where (if we've hit a breakpoint) the
1205 breakpoint would be. */
1206 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1207
1208 if (SOFTWARE_SINGLE_STEP_P ())
1209 {
1210 /* When using software single-step, a SIGTRAP can only indicate
8fb3e588
AC
1211 an inserted breakpoint. This actually makes things
1212 easier. */
8aad930b
AC
1213 if (singlestep_breakpoints_inserted_p)
1214 /* When software single stepping, the instruction at [prev_pc]
1215 is never a breakpoint, but the instruction following
1216 [prev_pc] (in program execution order) always is. Assume
1217 that following instruction was reached and hence a software
1218 breakpoint was hit. */
1219 write_pc_pid (breakpoint_pc, ecs->ptid);
1220 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1221 /* The inferior was free running (i.e., no single-step
1222 breakpoints inserted) and it hit a software breakpoint. */
1223 write_pc_pid (breakpoint_pc, ecs->ptid);
1224 }
1225 else
1226 {
1227 /* When using hardware single-step, a SIGTRAP is reported for
8fb3e588
AC
1228 both a completed single-step and a software breakpoint. Need
1229 to differentiate between the two as the latter needs
90225438
AS
1230 adjusting but the former does not.
1231
1232 When the thread to be examined does not match the current thread
1233 context we can't use currently_stepping, so assume no
1234 single-stepping in this case. */
1235 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
8aad930b
AC
1236 {
1237 if (prev_pc == breakpoint_pc
1238 && software_breakpoint_inserted_here_p (breakpoint_pc))
1239 /* Hardware single-stepped a software breakpoint (as
1240 occures when the inferior is resumed with PC pointing
1241 at not-yet-hit software breakpoint). Since the
1242 breakpoint really is executed, the inferior needs to be
1243 backed up to the breakpoint address. */
1244 write_pc_pid (breakpoint_pc, ecs->ptid);
1245 }
1246 else
1247 {
1248 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1249 /* The inferior was free running (i.e., no hardware
1250 single-step and no possibility of a false SIGTRAP) and
1251 hit a software breakpoint. */
1252 write_pc_pid (breakpoint_pc, ecs->ptid);
1253 }
1254 }
4fa8626c
DJ
1255}
1256
cd0fc7c3
SS
1257/* Given an execution control state that has been freshly filled in
1258 by an event from the inferior, figure out what it means and take
1259 appropriate action. */
c906108c 1260
7270d8f2
OF
1261int stepped_after_stopped_by_watchpoint;
1262
cd0fc7c3 1263void
96baa820 1264handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1265{
8bbde302
BE
1266 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1267 that the variable stepped_after_stopped_by_watchpoint isn't used,
1268 then you're wrong! See remote.c:remote_stopped_data_address. */
1269
c8edd8b4 1270 int sw_single_step_trap_p = 0;
8fb3e588 1271 int stopped_by_watchpoint = -1; /* Mark as unknown. */
cd0fc7c3 1272
e02bc4cc 1273 /* Cache the last pid/waitstatus. */
39f77062 1274 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1275 target_last_waitstatus = *ecs->wp;
1276
4fa8626c
DJ
1277 adjust_pc_after_break (ecs);
1278
488f131b
JB
1279 switch (ecs->infwait_state)
1280 {
1281 case infwait_thread_hop_state:
527159b7 1282 if (debug_infrun)
8a9de0e4 1283 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b
JB
1284 /* Cancel the waiton_ptid. */
1285 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032 1286 break;
b83266a0 1287
488f131b 1288 case infwait_normal_state:
527159b7 1289 if (debug_infrun)
8a9de0e4 1290 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
488f131b
JB
1291 stepped_after_stopped_by_watchpoint = 0;
1292 break;
b83266a0 1293
488f131b 1294 case infwait_nonstep_watch_state:
527159b7 1295 if (debug_infrun)
8a9de0e4
AC
1296 fprintf_unfiltered (gdb_stdlog,
1297 "infrun: infwait_nonstep_watch_state\n");
488f131b 1298 insert_breakpoints ();
c906108c 1299
488f131b
JB
1300 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1301 handle things like signals arriving and other things happening
1302 in combination correctly? */
1303 stepped_after_stopped_by_watchpoint = 1;
1304 break;
65e82032
AC
1305
1306 default:
e2e0b3e5 1307 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b
JB
1308 }
1309 ecs->infwait_state = infwait_normal_state;
c906108c 1310
488f131b 1311 flush_cached_frames ();
c906108c 1312
488f131b 1313 /* If it's a new process, add it to the thread database */
c906108c 1314
488f131b 1315 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
b9b5d7ea 1316 && !ptid_equal (ecs->ptid, minus_one_ptid)
488f131b
JB
1317 && !in_thread_list (ecs->ptid));
1318
1319 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1320 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1321 {
1322 add_thread (ecs->ptid);
c906108c 1323
488f131b
JB
1324 ui_out_text (uiout, "[New ");
1325 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1326 ui_out_text (uiout, "]\n");
488f131b 1327 }
c906108c 1328
488f131b
JB
1329 switch (ecs->ws.kind)
1330 {
1331 case TARGET_WAITKIND_LOADED:
527159b7 1332 if (debug_infrun)
8a9de0e4 1333 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
488f131b
JB
1334 /* Ignore gracefully during startup of the inferior, as it
1335 might be the shell which has just loaded some objects,
1336 otherwise add the symbols for the newly loaded objects. */
c906108c 1337#ifdef SOLIB_ADD
c0236d92 1338 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1339 {
1340 /* Remove breakpoints, SOLIB_ADD might adjust
1341 breakpoint addresses via breakpoint_re_set. */
1342 if (breakpoints_inserted)
1343 remove_breakpoints ();
c906108c 1344
488f131b
JB
1345 /* Check for any newly added shared libraries if we're
1346 supposed to be adding them automatically. Switch
1347 terminal for any messages produced by
1348 breakpoint_re_set. */
1349 target_terminal_ours_for_output ();
aff6338a 1350 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1351 stack's section table is kept up-to-date. Architectures,
1352 (e.g., PPC64), use the section table to perform
1353 operations such as address => section name and hence
1354 require the table to contain all sections (including
1355 those found in shared libraries). */
aff6338a 1356 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1357 exec_ops to SOLIB_ADD. This is because current GDB is
1358 only tooled to propagate section_table changes out from
1359 the "current_target" (see target_resize_to_sections), and
1360 not up from the exec stratum. This, of course, isn't
1361 right. "infrun.c" should only interact with the
1362 exec/process stratum, instead relying on the target stack
1363 to propagate relevant changes (stop, section table
1364 changed, ...) up to other layers. */
aff6338a 1365 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
1366 target_terminal_inferior ();
1367
1368 /* Reinsert breakpoints and continue. */
1369 if (breakpoints_inserted)
1370 insert_breakpoints ();
1371 }
c906108c 1372#endif
488f131b
JB
1373 resume (0, TARGET_SIGNAL_0);
1374 prepare_to_wait (ecs);
1375 return;
c5aa993b 1376
488f131b 1377 case TARGET_WAITKIND_SPURIOUS:
527159b7 1378 if (debug_infrun)
8a9de0e4 1379 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1380 resume (0, TARGET_SIGNAL_0);
1381 prepare_to_wait (ecs);
1382 return;
c5aa993b 1383
488f131b 1384 case TARGET_WAITKIND_EXITED:
527159b7 1385 if (debug_infrun)
8a9de0e4 1386 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
1387 target_terminal_ours (); /* Must do this before mourn anyway */
1388 print_stop_reason (EXITED, ecs->ws.value.integer);
1389
1390 /* Record the exit code in the convenience variable $_exitcode, so
1391 that the user can inspect this again later. */
1392 set_internalvar (lookup_internalvar ("_exitcode"),
1393 value_from_longest (builtin_type_int,
1394 (LONGEST) ecs->ws.value.integer));
1395 gdb_flush (gdb_stdout);
1396 target_mourn_inferior ();
1397 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1398 stop_print_frame = 0;
1399 stop_stepping (ecs);
1400 return;
c5aa993b 1401
488f131b 1402 case TARGET_WAITKIND_SIGNALLED:
527159b7 1403 if (debug_infrun)
8a9de0e4 1404 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
1405 stop_print_frame = 0;
1406 stop_signal = ecs->ws.value.sig;
1407 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1408
488f131b
JB
1409 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1410 reach here unless the inferior is dead. However, for years
1411 target_kill() was called here, which hints that fatal signals aren't
1412 really fatal on some systems. If that's true, then some changes
1413 may be needed. */
1414 target_mourn_inferior ();
c906108c 1415
488f131b
JB
1416 print_stop_reason (SIGNAL_EXITED, stop_signal);
1417 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1418 stop_stepping (ecs);
1419 return;
c906108c 1420
488f131b
JB
1421 /* The following are the only cases in which we keep going;
1422 the above cases end in a continue or goto. */
1423 case TARGET_WAITKIND_FORKED:
deb3b17b 1424 case TARGET_WAITKIND_VFORKED:
527159b7 1425 if (debug_infrun)
8a9de0e4 1426 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
1427 stop_signal = TARGET_SIGNAL_TRAP;
1428 pending_follow.kind = ecs->ws.kind;
1429
8e7d2c16
DJ
1430 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1431 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1432
5a2901d9
DJ
1433 if (!ptid_equal (ecs->ptid, inferior_ptid))
1434 {
1435 context_switch (ecs);
1436 flush_cached_frames ();
1437 }
1438
488f131b 1439 stop_pc = read_pc ();
675bf4cb 1440
00d4360e 1441 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1442
488f131b 1443 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1444
1445 /* If no catchpoint triggered for this, then keep going. */
1446 if (ecs->random_signal)
1447 {
1448 stop_signal = TARGET_SIGNAL_0;
1449 keep_going (ecs);
1450 return;
1451 }
488f131b
JB
1452 goto process_event_stop_test;
1453
1454 case TARGET_WAITKIND_EXECD:
527159b7 1455 if (debug_infrun)
fc5261f2 1456 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
1457 stop_signal = TARGET_SIGNAL_TRAP;
1458
7d2830a3 1459 /* NOTE drow/2002-12-05: This code should be pushed down into the
8fb3e588
AC
1460 target_wait function. Until then following vfork on HP/UX 10.20
1461 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1462 /* Is this a target which reports multiple exec events per actual
1463 call to exec()? (HP-UX using ptrace does, for example.) If so,
1464 ignore all but the last one. Just resume the exec'r, and wait
1465 for the next exec event. */
1466 if (inferior_ignoring_leading_exec_events)
1467 {
1468 inferior_ignoring_leading_exec_events--;
488f131b
JB
1469 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1470 prepare_to_wait (ecs);
1471 return;
1472 }
1473 inferior_ignoring_leading_exec_events =
1474 target_reported_exec_events_per_exec_call () - 1;
1475
1476 pending_follow.execd_pathname =
1477 savestring (ecs->ws.value.execd_pathname,
1478 strlen (ecs->ws.value.execd_pathname));
1479
488f131b
JB
1480 /* This causes the eventpoints and symbol table to be reset. Must
1481 do this now, before trying to determine whether to stop. */
1482 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1483 xfree (pending_follow.execd_pathname);
c906108c 1484
488f131b
JB
1485 stop_pc = read_pc_pid (ecs->ptid);
1486 ecs->saved_inferior_ptid = inferior_ptid;
1487 inferior_ptid = ecs->ptid;
675bf4cb 1488
00d4360e 1489 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1490
488f131b
JB
1491 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1492 inferior_ptid = ecs->saved_inferior_ptid;
04e68871 1493
5a2901d9
DJ
1494 if (!ptid_equal (ecs->ptid, inferior_ptid))
1495 {
1496 context_switch (ecs);
1497 flush_cached_frames ();
1498 }
1499
04e68871
DJ
1500 /* If no catchpoint triggered for this, then keep going. */
1501 if (ecs->random_signal)
1502 {
1503 stop_signal = TARGET_SIGNAL_0;
1504 keep_going (ecs);
1505 return;
1506 }
488f131b
JB
1507 goto process_event_stop_test;
1508
b4dc5ffa
MK
1509 /* Be careful not to try to gather much state about a thread
1510 that's in a syscall. It's frequently a losing proposition. */
488f131b 1511 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 1512 if (debug_infrun)
8a9de0e4 1513 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
1514 resume (0, TARGET_SIGNAL_0);
1515 prepare_to_wait (ecs);
1516 return;
c906108c 1517
488f131b
JB
1518 /* Before examining the threads further, step this thread to
1519 get it entirely out of the syscall. (We get notice of the
1520 event when the thread is just on the verge of exiting a
1521 syscall. Stepping one instruction seems to get it back
b4dc5ffa 1522 into user code.) */
488f131b 1523 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 1524 if (debug_infrun)
8a9de0e4 1525 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 1526 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
1527 prepare_to_wait (ecs);
1528 return;
c906108c 1529
488f131b 1530 case TARGET_WAITKIND_STOPPED:
527159b7 1531 if (debug_infrun)
8a9de0e4 1532 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
1533 stop_signal = ecs->ws.value.sig;
1534 break;
c906108c 1535
488f131b
JB
1536 /* We had an event in the inferior, but we are not interested
1537 in handling it at this level. The lower layers have already
8e7d2c16 1538 done what needs to be done, if anything.
8fb3e588
AC
1539
1540 One of the possible circumstances for this is when the
1541 inferior produces output for the console. The inferior has
1542 not stopped, and we are ignoring the event. Another possible
1543 circumstance is any event which the lower level knows will be
1544 reported multiple times without an intervening resume. */
488f131b 1545 case TARGET_WAITKIND_IGNORE:
527159b7 1546 if (debug_infrun)
8a9de0e4 1547 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 1548 prepare_to_wait (ecs);
488f131b
JB
1549 return;
1550 }
c906108c 1551
488f131b
JB
1552 /* We may want to consider not doing a resume here in order to give
1553 the user a chance to play with the new thread. It might be good
1554 to make that a user-settable option. */
c906108c 1555
488f131b
JB
1556 /* At this point, all threads are stopped (happens automatically in
1557 either the OS or the native code). Therefore we need to continue
1558 all threads in order to make progress. */
1559 if (ecs->new_thread_event)
1560 {
1561 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1562 prepare_to_wait (ecs);
1563 return;
1564 }
c906108c 1565
488f131b
JB
1566 stop_pc = read_pc_pid (ecs->ptid);
1567
527159b7 1568 if (debug_infrun)
8a9de0e4 1569 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
527159b7 1570
9f976b41
DJ
1571 if (stepping_past_singlestep_breakpoint)
1572 {
8fb3e588
AC
1573 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1574 && singlestep_breakpoints_inserted_p);
9f976b41
DJ
1575 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1576 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1577
1578 stepping_past_singlestep_breakpoint = 0;
1579
1580 /* We've either finished single-stepping past the single-step
8fb3e588
AC
1581 breakpoint, or stopped for some other reason. It would be nice if
1582 we could tell, but we can't reliably. */
9f976b41 1583 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 1584 {
527159b7 1585 if (debug_infrun)
8a9de0e4 1586 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41
DJ
1587 /* Pull the single step breakpoints out of the target. */
1588 SOFTWARE_SINGLE_STEP (0, 0);
1589 singlestep_breakpoints_inserted_p = 0;
1590
1591 ecs->random_signal = 0;
1592
1593 ecs->ptid = saved_singlestep_ptid;
1594 context_switch (ecs);
9a4105ab
AC
1595 if (deprecated_context_hook)
1596 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1597
1598 resume (1, TARGET_SIGNAL_0);
1599 prepare_to_wait (ecs);
1600 return;
1601 }
1602 }
1603
1604 stepping_past_singlestep_breakpoint = 0;
1605
488f131b
JB
1606 /* See if a thread hit a thread-specific breakpoint that was meant for
1607 another thread. If so, then step that thread past the breakpoint,
1608 and continue it. */
1609
1610 if (stop_signal == TARGET_SIGNAL_TRAP)
1611 {
9f976b41
DJ
1612 int thread_hop_needed = 0;
1613
f8d40ec8
JB
1614 /* Check if a regular breakpoint has been hit before checking
1615 for a potential single step breakpoint. Otherwise, GDB will
1616 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1617 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1618 {
c5aa993b 1619 ecs->random_signal = 0;
4fa8626c 1620 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1621 thread_hop_needed = 1;
1622 }
1623 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1624 {
fd48f117
DJ
1625 /* We have not context switched yet, so this should be true
1626 no matter which thread hit the singlestep breakpoint. */
1627 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1628 if (debug_infrun)
1629 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1630 "trap for %s\n",
1631 target_pid_to_str (ecs->ptid));
1632
9f976b41
DJ
1633 ecs->random_signal = 0;
1634 /* The call to in_thread_list is necessary because PTIDs sometimes
1635 change when we go from single-threaded to multi-threaded. If
1636 the singlestep_ptid is still in the list, assume that it is
1637 really different from ecs->ptid. */
1638 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1639 && in_thread_list (singlestep_ptid))
1640 {
fd48f117
DJ
1641 /* If the PC of the thread we were trying to single-step
1642 has changed, discard this event (which we were going
1643 to ignore anyway), and pretend we saw that thread
1644 trap. This prevents us continuously moving the
1645 single-step breakpoint forward, one instruction at a
1646 time. If the PC has changed, then the thread we were
1647 trying to single-step has trapped or been signalled,
1648 but the event has not been reported to GDB yet.
1649
1650 There might be some cases where this loses signal
1651 information, if a signal has arrived at exactly the
1652 same time that the PC changed, but this is the best
1653 we can do with the information available. Perhaps we
1654 should arrange to report all events for all threads
1655 when they stop, or to re-poll the remote looking for
1656 this particular thread (i.e. temporarily enable
1657 schedlock). */
1658 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1659 {
1660 if (debug_infrun)
1661 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1662 " but expected thread advanced also\n");
1663
1664 /* The current context still belongs to
1665 singlestep_ptid. Don't swap here, since that's
1666 the context we want to use. Just fudge our
1667 state and continue. */
1668 ecs->ptid = singlestep_ptid;
1669 stop_pc = read_pc_pid (ecs->ptid);
1670 }
1671 else
1672 {
1673 if (debug_infrun)
1674 fprintf_unfiltered (gdb_stdlog,
1675 "infrun: unexpected thread\n");
1676
1677 thread_hop_needed = 1;
1678 stepping_past_singlestep_breakpoint = 1;
1679 saved_singlestep_ptid = singlestep_ptid;
1680 }
9f976b41
DJ
1681 }
1682 }
1683
1684 if (thread_hop_needed)
8fb3e588
AC
1685 {
1686 int remove_status;
1687
527159b7 1688 if (debug_infrun)
8a9de0e4 1689 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 1690
8fb3e588
AC
1691 /* Saw a breakpoint, but it was hit by the wrong thread.
1692 Just continue. */
1693
1694 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
488f131b 1695 {
8fb3e588
AC
1696 /* Pull the single step breakpoints out of the target. */
1697 SOFTWARE_SINGLE_STEP (0, 0);
1698 singlestep_breakpoints_inserted_p = 0;
1699 }
1700
1701 remove_status = remove_breakpoints ();
1702 /* Did we fail to remove breakpoints? If so, try
1703 to set the PC past the bp. (There's at least
1704 one situation in which we can fail to remove
1705 the bp's: On HP-UX's that use ttrace, we can't
1706 change the address space of a vforking child
1707 process until the child exits (well, okay, not
1708 then either :-) or execs. */
1709 if (remove_status != 0)
1710 {
1711 /* FIXME! This is obviously non-portable! */
1712 write_pc_pid (stop_pc + 4, ecs->ptid);
1713 /* We need to restart all the threads now,
1714 * unles we're running in scheduler-locked mode.
1715 * Use currently_stepping to determine whether to
1716 * step or continue.
1717 */
1718 /* FIXME MVS: is there any reason not to call resume()? */
1719 if (scheduler_mode == schedlock_on)
1720 target_resume (ecs->ptid,
1721 currently_stepping (ecs), TARGET_SIGNAL_0);
488f131b 1722 else
8fb3e588
AC
1723 target_resume (RESUME_ALL,
1724 currently_stepping (ecs), TARGET_SIGNAL_0);
1725 prepare_to_wait (ecs);
1726 return;
1727 }
1728 else
1729 { /* Single step */
1730 breakpoints_inserted = 0;
1731 if (!ptid_equal (inferior_ptid, ecs->ptid))
1732 context_switch (ecs);
1733 ecs->waiton_ptid = ecs->ptid;
1734 ecs->wp = &(ecs->ws);
1735 ecs->another_trap = 1;
1736
1737 ecs->infwait_state = infwait_thread_hop_state;
1738 keep_going (ecs);
1739 registers_changed ();
1740 return;
1741 }
488f131b 1742 }
f8d40ec8 1743 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
8fb3e588
AC
1744 {
1745 sw_single_step_trap_p = 1;
1746 ecs->random_signal = 0;
1747 }
488f131b
JB
1748 }
1749 else
1750 ecs->random_signal = 1;
c906108c 1751
488f131b 1752 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1753 so, then switch to that thread. */
1754 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1755 {
527159b7 1756 if (debug_infrun)
8a9de0e4 1757 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 1758
488f131b 1759 context_switch (ecs);
c5aa993b 1760
9a4105ab
AC
1761 if (deprecated_context_hook)
1762 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 1763 }
c906108c 1764
488f131b
JB
1765 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1766 {
1767 /* Pull the single step breakpoints out of the target. */
1768 SOFTWARE_SINGLE_STEP (0, 0);
1769 singlestep_breakpoints_inserted_p = 0;
1770 }
c906108c 1771
488f131b
JB
1772 /* It may not be necessary to disable the watchpoint to stop over
1773 it. For example, the PA can (with some kernel cooperation)
1774 single step over a watchpoint without disabling the watchpoint. */
1775 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1776 {
527159b7 1777 if (debug_infrun)
8a9de0e4 1778 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1779 resume (1, 0);
1780 prepare_to_wait (ecs);
1781 return;
1782 }
c906108c 1783
488f131b
JB
1784 /* It is far more common to need to disable a watchpoint to step
1785 the inferior over it. FIXME. What else might a debug
1786 register or page protection watchpoint scheme need here? */
1787 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1788 {
1789 /* At this point, we are stopped at an instruction which has
1790 attempted to write to a piece of memory under control of
1791 a watchpoint. The instruction hasn't actually executed
1792 yet. If we were to evaluate the watchpoint expression
1793 now, we would get the old value, and therefore no change
1794 would seem to have occurred.
1795
1796 In order to make watchpoints work `right', we really need
1797 to complete the memory write, and then evaluate the
1798 watchpoint expression. The following code does that by
1799 removing the watchpoint (actually, all watchpoints and
1800 breakpoints), single-stepping the target, re-inserting
1801 watchpoints, and then falling through to let normal
1802 single-step processing handle proceed. Since this
1803 includes evaluating watchpoints, things will come to a
1804 stop in the correct manner. */
1805
527159b7 1806 if (debug_infrun)
8a9de0e4 1807 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1808 remove_breakpoints ();
1809 registers_changed ();
1810 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1811
488f131b
JB
1812 ecs->waiton_ptid = ecs->ptid;
1813 ecs->wp = &(ecs->ws);
1814 ecs->infwait_state = infwait_nonstep_watch_state;
1815 prepare_to_wait (ecs);
1816 return;
1817 }
1818
1819 /* It may be possible to simply continue after a watchpoint. */
1820 if (HAVE_CONTINUABLE_WATCHPOINT)
00d4360e 1821 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
488f131b
JB
1822
1823 ecs->stop_func_start = 0;
1824 ecs->stop_func_end = 0;
1825 ecs->stop_func_name = 0;
1826 /* Don't care about return value; stop_func_start and stop_func_name
1827 will both be 0 if it doesn't work. */
1828 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1829 &ecs->stop_func_start, &ecs->stop_func_end);
782263ab 1830 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
488f131b
JB
1831 ecs->another_trap = 0;
1832 bpstat_clear (&stop_bpstat);
1833 stop_step = 0;
1834 stop_stack_dummy = 0;
1835 stop_print_frame = 1;
1836 ecs->random_signal = 0;
1837 stopped_by_random_signal = 0;
1838 breakpoints_failed = 0;
1839
3352ef37
AC
1840 if (stop_signal == TARGET_SIGNAL_TRAP
1841 && trap_expected
1842 && gdbarch_single_step_through_delay_p (current_gdbarch)
1843 && currently_stepping (ecs))
1844 {
1845 /* We're trying to step of a breakpoint. Turns out that we're
1846 also on an instruction that needs to be stepped multiple
1847 times before it's been fully executing. E.g., architectures
1848 with a delay slot. It needs to be stepped twice, once for
1849 the instruction and once for the delay slot. */
1850 int step_through_delay
1851 = gdbarch_single_step_through_delay (current_gdbarch,
1852 get_current_frame ());
527159b7 1853 if (debug_infrun && step_through_delay)
8a9de0e4 1854 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3352ef37
AC
1855 if (step_range_end == 0 && step_through_delay)
1856 {
1857 /* The user issued a continue when stopped at a breakpoint.
1858 Set up for another trap and get out of here. */
1859 ecs->another_trap = 1;
1860 keep_going (ecs);
1861 return;
1862 }
1863 else if (step_through_delay)
1864 {
1865 /* The user issued a step when stopped at a breakpoint.
1866 Maybe we should stop, maybe we should not - the delay
1867 slot *might* correspond to a line of source. In any
1868 case, don't decide that here, just set ecs->another_trap,
1869 making sure we single-step again before breakpoints are
1870 re-inserted. */
1871 ecs->another_trap = 1;
1872 }
1873 }
1874
488f131b
JB
1875 /* Look at the cause of the stop, and decide what to do.
1876 The alternatives are:
1877 1) break; to really stop and return to the debugger,
1878 2) drop through to start up again
1879 (set ecs->another_trap to 1 to single step once)
1880 3) set ecs->random_signal to 1, and the decision between 1 and 2
1881 will be made according to the signal handling tables. */
1882
1883 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1884 that have to do with the program's own actions. Note that
1885 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1886 on the operating system version. Here we detect when a SIGILL or
1887 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1888 something similar for SIGSEGV, since a SIGSEGV will be generated
1889 when we're trying to execute a breakpoint instruction on a
1890 non-executable stack. This happens for call dummy breakpoints
1891 for architectures like SPARC that place call dummies on the
1892 stack. */
488f131b
JB
1893
1894 if (stop_signal == TARGET_SIGNAL_TRAP
8fb3e588
AC
1895 || (breakpoints_inserted
1896 && (stop_signal == TARGET_SIGNAL_ILL
1897 || stop_signal == TARGET_SIGNAL_SEGV
1898 || stop_signal == TARGET_SIGNAL_EMT))
1899 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1900 {
1901 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1902 {
527159b7 1903 if (debug_infrun)
8a9de0e4 1904 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
1905 stop_print_frame = 0;
1906 stop_stepping (ecs);
1907 return;
1908 }
c54cfec8
EZ
1909
1910 /* This is originated from start_remote(), start_inferior() and
1911 shared libraries hook functions. */
c0236d92 1912 if (stop_soon == STOP_QUIETLY)
488f131b 1913 {
527159b7 1914 if (debug_infrun)
8a9de0e4 1915 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
1916 stop_stepping (ecs);
1917 return;
1918 }
1919
c54cfec8
EZ
1920 /* This originates from attach_command(). We need to overwrite
1921 the stop_signal here, because some kernels don't ignore a
1922 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1923 See more comments in inferior.h. */
c0236d92 1924 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1925 {
1926 stop_stepping (ecs);
1927 if (stop_signal == TARGET_SIGNAL_STOP)
1928 stop_signal = TARGET_SIGNAL_0;
1929 return;
1930 }
1931
d303a6c7
AC
1932 /* Don't even think about breakpoints if just proceeded over a
1933 breakpoint. */
1934 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
527159b7
RC
1935 {
1936 if (debug_infrun)
8a9de0e4 1937 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
527159b7
RC
1938 bpstat_clear (&stop_bpstat);
1939 }
488f131b
JB
1940 else
1941 {
1942 /* See if there is a breakpoint at the current PC. */
8fb3e588 1943 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
00d4360e 1944 stopped_by_watchpoint);
488f131b 1945
488f131b
JB
1946 /* Following in case break condition called a
1947 function. */
1948 stop_print_frame = 1;
1949 }
1950
73dd234f 1951 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
1952 at one stage in the past included checks for an inferior
1953 function call's call dummy's return breakpoint. The original
1954 comment, that went with the test, read:
73dd234f 1955
8fb3e588
AC
1956 ``End of a stack dummy. Some systems (e.g. Sony news) give
1957 another signal besides SIGTRAP, so check here as well as
1958 above.''
73dd234f
AC
1959
1960 If someone ever tries to get get call dummys on a
1961 non-executable stack to work (where the target would stop
03cebad2
MK
1962 with something like a SIGSEGV), then those tests might need
1963 to be re-instated. Given, however, that the tests were only
73dd234f 1964 enabled when momentary breakpoints were not being used, I
03cebad2
MK
1965 suspect that it won't be the case.
1966
8fb3e588
AC
1967 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1968 be necessary for call dummies on a non-executable stack on
1969 SPARC. */
73dd234f 1970
488f131b
JB
1971 if (stop_signal == TARGET_SIGNAL_TRAP)
1972 ecs->random_signal
1973 = !(bpstat_explains_signal (stop_bpstat)
1974 || trap_expected
488f131b 1975 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
1976 else
1977 {
73dd234f 1978 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
1979 if (!ecs->random_signal)
1980 stop_signal = TARGET_SIGNAL_TRAP;
1981 }
1982 }
1983
1984 /* When we reach this point, we've pretty much decided
1985 that the reason for stopping must've been a random
1986 (unexpected) signal. */
1987
1988 else
1989 ecs->random_signal = 1;
488f131b 1990
04e68871 1991process_event_stop_test:
488f131b
JB
1992 /* For the program's own signals, act according to
1993 the signal handling tables. */
1994
1995 if (ecs->random_signal)
1996 {
1997 /* Signal not for debugging purposes. */
1998 int printed = 0;
1999
527159b7 2000 if (debug_infrun)
8a9de0e4 2001 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
527159b7 2002
488f131b
JB
2003 stopped_by_random_signal = 1;
2004
2005 if (signal_print[stop_signal])
2006 {
2007 printed = 1;
2008 target_terminal_ours_for_output ();
2009 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2010 }
2011 if (signal_stop[stop_signal])
2012 {
2013 stop_stepping (ecs);
2014 return;
2015 }
2016 /* If not going to stop, give terminal back
2017 if we took it away. */
2018 else if (printed)
2019 target_terminal_inferior ();
2020
2021 /* Clear the signal if it should not be passed. */
2022 if (signal_program[stop_signal] == 0)
2023 stop_signal = TARGET_SIGNAL_0;
2024
68f53502
AC
2025 if (prev_pc == read_pc ()
2026 && !breakpoints_inserted
2027 && breakpoint_here_p (read_pc ())
2028 && step_resume_breakpoint == NULL)
2029 {
2030 /* We were just starting a new sequence, attempting to
2031 single-step off of a breakpoint and expecting a SIGTRAP.
2032 Intead this signal arrives. This signal will take us out
2033 of the stepping range so GDB needs to remember to, when
2034 the signal handler returns, resume stepping off that
2035 breakpoint. */
2036 /* To simplify things, "continue" is forced to use the same
2037 code paths as single-step - set a breakpoint at the
2038 signal return address and then, once hit, step off that
2039 breakpoint. */
44cbf7b5 2040 insert_step_resume_breakpoint_at_frame (get_current_frame ());
68f53502 2041 ecs->step_after_step_resume_breakpoint = 1;
9d799f85
AC
2042 keep_going (ecs);
2043 return;
68f53502 2044 }
9d799f85
AC
2045
2046 if (step_range_end != 0
2047 && stop_signal != TARGET_SIGNAL_0
2048 && stop_pc >= step_range_start && stop_pc < step_range_end
2049 && frame_id_eq (get_frame_id (get_current_frame ()),
2050 step_frame_id)
2051 && step_resume_breakpoint == NULL)
d303a6c7
AC
2052 {
2053 /* The inferior is about to take a signal that will take it
2054 out of the single step range. Set a breakpoint at the
2055 current PC (which is presumably where the signal handler
2056 will eventually return) and then allow the inferior to
2057 run free.
2058
2059 Note that this is only needed for a signal delivered
2060 while in the single-step range. Nested signals aren't a
2061 problem as they eventually all return. */
44cbf7b5 2062 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
2063 keep_going (ecs);
2064 return;
d303a6c7 2065 }
9d799f85
AC
2066
2067 /* Note: step_resume_breakpoint may be non-NULL. This occures
2068 when either there's a nested signal, or when there's a
2069 pending signal enabled just as the signal handler returns
2070 (leaving the inferior at the step-resume-breakpoint without
2071 actually executing it). Either way continue until the
2072 breakpoint is really hit. */
488f131b
JB
2073 keep_going (ecs);
2074 return;
2075 }
2076
2077 /* Handle cases caused by hitting a breakpoint. */
2078 {
2079 CORE_ADDR jmp_buf_pc;
2080 struct bpstat_what what;
2081
2082 what = bpstat_what (stop_bpstat);
2083
2084 if (what.call_dummy)
2085 {
2086 stop_stack_dummy = 1;
c5aa993b 2087 }
c906108c 2088
488f131b 2089 switch (what.main_action)
c5aa993b 2090 {
488f131b
JB
2091 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2092 /* If we hit the breakpoint at longjmp, disable it for the
2093 duration of this command. Then, install a temporary
2094 breakpoint at the target of the jmp_buf. */
527159b7 2095 if (debug_infrun)
8802d8ed 2096 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
488f131b
JB
2097 disable_longjmp_breakpoint ();
2098 remove_breakpoints ();
2099 breakpoints_inserted = 0;
2100 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2101 {
488f131b 2102 keep_going (ecs);
104c1213 2103 return;
c5aa993b 2104 }
488f131b
JB
2105
2106 /* Need to blow away step-resume breakpoint, as it
2107 interferes with us */
2108 if (step_resume_breakpoint != NULL)
104c1213 2109 {
488f131b 2110 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2111 }
c906108c 2112
8fb3e588 2113 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2114 ecs->handling_longjmp = 1; /* FIXME */
2115 keep_going (ecs);
2116 return;
c906108c 2117
488f131b
JB
2118 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2119 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
527159b7 2120 if (debug_infrun)
8802d8ed 2121 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
488f131b
JB
2122 remove_breakpoints ();
2123 breakpoints_inserted = 0;
488f131b
JB
2124 disable_longjmp_breakpoint ();
2125 ecs->handling_longjmp = 0; /* FIXME */
2126 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2127 break;
2128 /* else fallthrough */
2129
2130 case BPSTAT_WHAT_SINGLE:
527159b7 2131 if (debug_infrun)
8802d8ed 2132 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
488f131b 2133 if (breakpoints_inserted)
c5aa993b 2134 {
488f131b 2135 remove_breakpoints ();
c5aa993b 2136 }
488f131b
JB
2137 breakpoints_inserted = 0;
2138 ecs->another_trap = 1;
2139 /* Still need to check other stuff, at least the case
2140 where we are stepping and step out of the right range. */
2141 break;
c906108c 2142
488f131b 2143 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2144 if (debug_infrun)
8802d8ed 2145 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 2146 stop_print_frame = 1;
c906108c 2147
d303a6c7
AC
2148 /* We are about to nuke the step_resume_breakpointt via the
2149 cleanup chain, so no need to worry about it here. */
c5aa993b 2150
488f131b
JB
2151 stop_stepping (ecs);
2152 return;
c5aa993b 2153
488f131b 2154 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2155 if (debug_infrun)
8802d8ed 2156 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 2157 stop_print_frame = 0;
c5aa993b 2158
d303a6c7
AC
2159 /* We are about to nuke the step_resume_breakpoin via the
2160 cleanup chain, so no need to worry about it here. */
c5aa993b 2161
488f131b 2162 stop_stepping (ecs);
e441088d 2163 return;
c5aa993b 2164
488f131b
JB
2165 case BPSTAT_WHAT_STEP_RESUME:
2166 /* This proably demands a more elegant solution, but, yeah
2167 right...
c5aa993b 2168
488f131b
JB
2169 This function's use of the simple variable
2170 step_resume_breakpoint doesn't seem to accomodate
2171 simultaneously active step-resume bp's, although the
2172 breakpoint list certainly can.
c5aa993b 2173
488f131b
JB
2174 If we reach here and step_resume_breakpoint is already
2175 NULL, then apparently we have multiple active
2176 step-resume bp's. We'll just delete the breakpoint we
2177 stopped at, and carry on.
2178
2179 Correction: what the code currently does is delete a
2180 step-resume bp, but it makes no effort to ensure that
2181 the one deleted is the one currently stopped at. MVS */
c5aa993b 2182
527159b7 2183 if (debug_infrun)
8802d8ed 2184 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 2185
488f131b
JB
2186 if (step_resume_breakpoint == NULL)
2187 {
2188 step_resume_breakpoint =
2189 bpstat_find_step_resume_breakpoint (stop_bpstat);
2190 }
2191 delete_step_resume_breakpoint (&step_resume_breakpoint);
68f53502
AC
2192 if (ecs->step_after_step_resume_breakpoint)
2193 {
2194 /* Back when the step-resume breakpoint was inserted, we
2195 were trying to single-step off a breakpoint. Go back
2196 to doing that. */
2197 ecs->step_after_step_resume_breakpoint = 0;
2198 remove_breakpoints ();
2199 breakpoints_inserted = 0;
2200 ecs->another_trap = 1;
2201 keep_going (ecs);
2202 return;
2203 }
488f131b
JB
2204 break;
2205
2206 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
527159b7 2207 if (debug_infrun)
8802d8ed 2208 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_THROUGH_SIGTRAMP\n");
488f131b
JB
2209 /* If were waiting for a trap, hitting the step_resume_break
2210 doesn't count as getting it. */
2211 if (trap_expected)
2212 ecs->another_trap = 1;
2213 break;
2214
2215 case BPSTAT_WHAT_CHECK_SHLIBS:
2216 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 2217 {
527159b7 2218 if (debug_infrun)
8802d8ed 2219 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2220 /* Remove breakpoints, we eventually want to step over the
2221 shlib event breakpoint, and SOLIB_ADD might adjust
2222 breakpoint addresses via breakpoint_re_set. */
2223 if (breakpoints_inserted)
2224 remove_breakpoints ();
c5aa993b 2225 breakpoints_inserted = 0;
488f131b
JB
2226
2227 /* Check for any newly added shared libraries if we're
2228 supposed to be adding them automatically. Switch
2229 terminal for any messages produced by
2230 breakpoint_re_set. */
2231 target_terminal_ours_for_output ();
aff6338a 2232 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2233 stack's section table is kept up-to-date. Architectures,
2234 (e.g., PPC64), use the section table to perform
2235 operations such as address => section name and hence
2236 require the table to contain all sections (including
2237 those found in shared libraries). */
aff6338a 2238 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2239 exec_ops to SOLIB_ADD. This is because current GDB is
2240 only tooled to propagate section_table changes out from
2241 the "current_target" (see target_resize_to_sections), and
2242 not up from the exec stratum. This, of course, isn't
2243 right. "infrun.c" should only interact with the
2244 exec/process stratum, instead relying on the target stack
2245 to propagate relevant changes (stop, section table
2246 changed, ...) up to other layers. */
a77053c2 2247#ifdef SOLIB_ADD
aff6338a 2248 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
2249#else
2250 solib_add (NULL, 0, &current_target, auto_solib_add);
2251#endif
488f131b
JB
2252 target_terminal_inferior ();
2253
2254 /* Try to reenable shared library breakpoints, additional
2255 code segments in shared libraries might be mapped in now. */
2256 re_enable_breakpoints_in_shlibs ();
2257
2258 /* If requested, stop when the dynamic linker notifies
2259 gdb of events. This allows the user to get control
2260 and place breakpoints in initializer routines for
2261 dynamically loaded objects (among other things). */
877522db 2262 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2263 {
488f131b 2264 stop_stepping (ecs);
d4f3574e
SS
2265 return;
2266 }
c5aa993b 2267
488f131b
JB
2268 /* If we stopped due to an explicit catchpoint, then the
2269 (see above) call to SOLIB_ADD pulled in any symbols
2270 from a newly-loaded library, if appropriate.
2271
2272 We do want the inferior to stop, but not where it is
2273 now, which is in the dynamic linker callback. Rather,
2274 we would like it stop in the user's program, just after
2275 the call that caused this catchpoint to trigger. That
2276 gives the user a more useful vantage from which to
2277 examine their program's state. */
8fb3e588
AC
2278 else if (what.main_action
2279 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2280 {
488f131b
JB
2281 /* ??rehrauer: If I could figure out how to get the
2282 right return PC from here, we could just set a temp
2283 breakpoint and resume. I'm not sure we can without
2284 cracking open the dld's shared libraries and sniffing
2285 their unwind tables and text/data ranges, and that's
2286 not a terribly portable notion.
2287
2288 Until that time, we must step the inferior out of the
2289 dld callback, and also out of the dld itself (and any
2290 code or stubs in libdld.sl, such as "shl_load" and
2291 friends) until we reach non-dld code. At that point,
2292 we can stop stepping. */
2293 bpstat_get_triggered_catchpoints (stop_bpstat,
2294 &ecs->
2295 stepping_through_solib_catchpoints);
2296 ecs->stepping_through_solib_after_catch = 1;
2297
2298 /* Be sure to lift all breakpoints, so the inferior does
2299 actually step past this point... */
2300 ecs->another_trap = 1;
2301 break;
c906108c 2302 }
c5aa993b 2303 else
c5aa993b 2304 {
488f131b 2305 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2306 ecs->another_trap = 1;
488f131b 2307 break;
c5aa993b 2308 }
488f131b 2309 }
488f131b 2310 break;
c906108c 2311
488f131b
JB
2312 case BPSTAT_WHAT_LAST:
2313 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2314
488f131b
JB
2315 case BPSTAT_WHAT_KEEP_CHECKING:
2316 break;
2317 }
2318 }
c906108c 2319
488f131b
JB
2320 /* We come here if we hit a breakpoint but should not
2321 stop for it. Possibly we also were stepping
2322 and should stop for that. So fall through and
2323 test for stepping. But, if not stepping,
2324 do not stop. */
c906108c 2325
9d1ff73f
MS
2326 /* Are we stepping to get the inferior out of the dynamic linker's
2327 hook (and possibly the dld itself) after catching a shlib
2328 event? */
488f131b
JB
2329 if (ecs->stepping_through_solib_after_catch)
2330 {
2331#if defined(SOLIB_ADD)
2332 /* Have we reached our destination? If not, keep going. */
2333 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2334 {
527159b7 2335 if (debug_infrun)
8a9de0e4 2336 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
488f131b
JB
2337 ecs->another_trap = 1;
2338 keep_going (ecs);
104c1213 2339 return;
488f131b
JB
2340 }
2341#endif
527159b7 2342 if (debug_infrun)
8a9de0e4 2343 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
2344 /* Else, stop and report the catchpoint(s) whose triggering
2345 caused us to begin stepping. */
2346 ecs->stepping_through_solib_after_catch = 0;
2347 bpstat_clear (&stop_bpstat);
2348 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2349 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2350 stop_print_frame = 1;
2351 stop_stepping (ecs);
2352 return;
2353 }
c906108c 2354
488f131b
JB
2355 if (step_resume_breakpoint)
2356 {
527159b7 2357 if (debug_infrun)
8a9de0e4 2358 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
527159b7 2359
488f131b
JB
2360 /* Having a step-resume breakpoint overrides anything
2361 else having to do with stepping commands until
2362 that breakpoint is reached. */
488f131b
JB
2363 keep_going (ecs);
2364 return;
2365 }
c5aa993b 2366
488f131b
JB
2367 if (step_range_end == 0)
2368 {
527159b7 2369 if (debug_infrun)
8a9de0e4 2370 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 2371 /* Likewise if we aren't even stepping. */
488f131b
JB
2372 keep_going (ecs);
2373 return;
2374 }
c5aa993b 2375
488f131b 2376 /* If stepping through a line, keep going if still within it.
c906108c 2377
488f131b
JB
2378 Note that step_range_end is the address of the first instruction
2379 beyond the step range, and NOT the address of the last instruction
2380 within it! */
2381 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2382 {
527159b7 2383 if (debug_infrun)
8a9de0e4 2384 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
527159b7
RC
2385 paddr_nz (step_range_start),
2386 paddr_nz (step_range_end));
488f131b
JB
2387 keep_going (ecs);
2388 return;
2389 }
c5aa993b 2390
488f131b 2391 /* We stepped out of the stepping range. */
c906108c 2392
488f131b
JB
2393 /* If we are stepping at the source level and entered the runtime
2394 loader dynamic symbol resolution code, we keep on single stepping
2395 until we exit the run time loader code and reach the callee's
2396 address. */
2397 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
a77053c2
MK
2398#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2399 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2400#else
2401 && in_solib_dynsym_resolve_code (stop_pc)
2402#endif
2403 )
488f131b 2404 {
4c8c40e6
MK
2405 CORE_ADDR pc_after_resolver =
2406 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2407
527159b7 2408 if (debug_infrun)
8a9de0e4 2409 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 2410
488f131b
JB
2411 if (pc_after_resolver)
2412 {
2413 /* Set up a step-resume breakpoint at the address
2414 indicated by SKIP_SOLIB_RESOLVER. */
2415 struct symtab_and_line sr_sal;
fe39c653 2416 init_sal (&sr_sal);
488f131b
JB
2417 sr_sal.pc = pc_after_resolver;
2418
44cbf7b5 2419 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 2420 }
c906108c 2421
488f131b
JB
2422 keep_going (ecs);
2423 return;
2424 }
c906108c 2425
42edda50
AC
2426 if (step_range_end != 1
2427 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2428 || step_over_calls == STEP_OVER_ALL)
2429 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2430 {
527159b7 2431 if (debug_infrun)
8a9de0e4 2432 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 2433 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
2434 a signal trampoline (either by a signal being delivered or by
2435 the signal handler returning). Just single-step until the
2436 inferior leaves the trampoline (either by calling the handler
2437 or returning). */
488f131b
JB
2438 keep_going (ecs);
2439 return;
2440 }
c906108c 2441
c17eaafe
DJ
2442 /* Check for subroutine calls. The check for the current frame
2443 equalling the step ID is not necessary - the check of the
2444 previous frame's ID is sufficient - but it is a common case and
2445 cheaper than checking the previous frame's ID.
14e60db5
DJ
2446
2447 NOTE: frame_id_eq will never report two invalid frame IDs as
2448 being equal, so to get into this block, both the current and
2449 previous frame must have valid frame IDs. */
c17eaafe
DJ
2450 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2451 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b 2452 {
95918acb 2453 CORE_ADDR real_stop_pc;
8fb3e588 2454
527159b7 2455 if (debug_infrun)
8a9de0e4 2456 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 2457
95918acb
AC
2458 if ((step_over_calls == STEP_OVER_NONE)
2459 || ((step_range_end == 1)
2460 && in_prologue (prev_pc, ecs->stop_func_start)))
2461 {
2462 /* I presume that step_over_calls is only 0 when we're
2463 supposed to be stepping at the assembly language level
2464 ("stepi"). Just stop. */
2465 /* Also, maybe we just did a "nexti" inside a prolog, so we
2466 thought it was a subroutine call but it was not. Stop as
2467 well. FENN */
2468 stop_step = 1;
2469 print_stop_reason (END_STEPPING_RANGE, 0);
2470 stop_stepping (ecs);
2471 return;
2472 }
8fb3e588 2473
8567c30f
AC
2474 if (step_over_calls == STEP_OVER_ALL)
2475 {
2476 /* We're doing a "next", set a breakpoint at callee's return
2477 address (the address at which the caller will
2478 resume). */
14e60db5 2479 insert_step_resume_breakpoint_at_caller (get_current_frame ());
8567c30f
AC
2480 keep_going (ecs);
2481 return;
2482 }
a53c66de 2483
95918acb 2484 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
2485 calling routine and the real function), locate the real
2486 function. That's what tells us (a) whether we want to step
2487 into it at all, and (b) what prologue we want to run to the
2488 end of, if we do step into it. */
95918acb
AC
2489 real_stop_pc = skip_language_trampoline (stop_pc);
2490 if (real_stop_pc == 0)
2491 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2492 if (real_stop_pc != 0)
2493 ecs->stop_func_start = real_stop_pc;
8fb3e588 2494
a77053c2
MK
2495 if (
2496#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2497 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2498#else
2499 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2500#endif
2501)
1b2bfbb9
RC
2502 {
2503 struct symtab_and_line sr_sal;
2504 init_sal (&sr_sal);
2505 sr_sal.pc = ecs->stop_func_start;
2506
44cbf7b5 2507 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
2508 keep_going (ecs);
2509 return;
1b2bfbb9
RC
2510 }
2511
95918acb 2512 /* If we have line number information for the function we are
8fb3e588 2513 thinking of stepping into, step into it.
95918acb 2514
8fb3e588
AC
2515 If there are several symtabs at that PC (e.g. with include
2516 files), just want to know whether *any* of them have line
2517 numbers. find_pc_line handles this. */
95918acb
AC
2518 {
2519 struct symtab_and_line tmp_sal;
8fb3e588 2520
95918acb
AC
2521 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2522 if (tmp_sal.line != 0)
2523 {
2524 step_into_function (ecs);
2525 return;
2526 }
2527 }
2528
2529 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
2530 set, we stop the step so that the user has a chance to switch
2531 in assembly mode. */
95918acb
AC
2532 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2533 {
2534 stop_step = 1;
2535 print_stop_reason (END_STEPPING_RANGE, 0);
2536 stop_stepping (ecs);
2537 return;
2538 }
2539
2540 /* Set a breakpoint at callee's return address (the address at
8fb3e588 2541 which the caller will resume). */
14e60db5 2542 insert_step_resume_breakpoint_at_caller (get_current_frame ());
95918acb 2543 keep_going (ecs);
488f131b 2544 return;
488f131b 2545 }
c906108c 2546
488f131b
JB
2547 /* If we're in the return path from a shared library trampoline,
2548 we want to proceed through the trampoline when stepping. */
2549 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2550 {
488f131b 2551 /* Determine where this trampoline returns. */
5cf4d23a 2552 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2553
527159b7 2554 if (debug_infrun)
8a9de0e4 2555 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 2556
488f131b 2557 /* Only proceed through if we know where it's going. */
d764a824 2558 if (real_stop_pc)
488f131b
JB
2559 {
2560 /* And put the step-breakpoint there and go until there. */
2561 struct symtab_and_line sr_sal;
2562
fe39c653 2563 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2564 sr_sal.pc = real_stop_pc;
488f131b 2565 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
2566
2567 /* Do not specify what the fp should be when we stop since
2568 on some machines the prologue is where the new fp value
2569 is established. */
2570 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 2571
488f131b
JB
2572 /* Restart without fiddling with the step ranges or
2573 other state. */
2574 keep_going (ecs);
2575 return;
2576 }
2577 }
c906108c 2578
7ed0fe66
DJ
2579 ecs->sal = find_pc_line (stop_pc, 0);
2580
1b2bfbb9
RC
2581 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2582 the trampoline processing logic, however, there are some trampolines
2583 that have no names, so we should do trampoline handling first. */
2584 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66
DJ
2585 && ecs->stop_func_name == NULL
2586 && ecs->sal.line == 0)
1b2bfbb9 2587 {
527159b7 2588 if (debug_infrun)
8a9de0e4 2589 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 2590
1b2bfbb9 2591 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
2592 undebuggable function (where there is no debugging information
2593 and no line number corresponding to the address where the
1b2bfbb9
RC
2594 inferior stopped). Since we want to skip this kind of code,
2595 we keep going until the inferior returns from this
14e60db5
DJ
2596 function - unless the user has asked us not to (via
2597 set step-mode) or we no longer know how to get back
2598 to the call site. */
2599 if (step_stop_if_no_debug
2600 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
2601 {
2602 /* If we have no line number and the step-stop-if-no-debug
2603 is set, we stop the step so that the user has a chance to
2604 switch in assembly mode. */
2605 stop_step = 1;
2606 print_stop_reason (END_STEPPING_RANGE, 0);
2607 stop_stepping (ecs);
2608 return;
2609 }
2610 else
2611 {
2612 /* Set a breakpoint at callee's return address (the address
2613 at which the caller will resume). */
14e60db5 2614 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
2615 keep_going (ecs);
2616 return;
2617 }
2618 }
2619
2620 if (step_range_end == 1)
2621 {
2622 /* It is stepi or nexti. We always want to stop stepping after
2623 one instruction. */
527159b7 2624 if (debug_infrun)
8a9de0e4 2625 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
1b2bfbb9
RC
2626 stop_step = 1;
2627 print_stop_reason (END_STEPPING_RANGE, 0);
2628 stop_stepping (ecs);
2629 return;
2630 }
2631
488f131b
JB
2632 if (ecs->sal.line == 0)
2633 {
2634 /* We have no line number information. That means to stop
2635 stepping (does this always happen right after one instruction,
2636 when we do "s" in a function with no line numbers,
2637 or can this happen as a result of a return or longjmp?). */
527159b7 2638 if (debug_infrun)
8a9de0e4 2639 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
488f131b
JB
2640 stop_step = 1;
2641 print_stop_reason (END_STEPPING_RANGE, 0);
2642 stop_stepping (ecs);
2643 return;
2644 }
c906108c 2645
488f131b
JB
2646 if ((stop_pc == ecs->sal.pc)
2647 && (ecs->current_line != ecs->sal.line
2648 || ecs->current_symtab != ecs->sal.symtab))
2649 {
2650 /* We are at the start of a different line. So stop. Note that
2651 we don't stop if we step into the middle of a different line.
2652 That is said to make things like for (;;) statements work
2653 better. */
527159b7 2654 if (debug_infrun)
8a9de0e4 2655 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
488f131b
JB
2656 stop_step = 1;
2657 print_stop_reason (END_STEPPING_RANGE, 0);
2658 stop_stepping (ecs);
2659 return;
2660 }
c906108c 2661
488f131b 2662 /* We aren't done stepping.
c906108c 2663
488f131b
JB
2664 Optimize by setting the stepping range to the line.
2665 (We might not be in the original line, but if we entered a
2666 new line in mid-statement, we continue stepping. This makes
2667 things like for(;;) statements work better.) */
c906108c 2668
488f131b 2669 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2670 {
488f131b
JB
2671 /* If this is the last line of the function, don't keep stepping
2672 (it would probably step us out of the function).
2673 This is particularly necessary for a one-line function,
2674 in which after skipping the prologue we better stop even though
2675 we will be in mid-line. */
527159b7 2676 if (debug_infrun)
8a9de0e4 2677 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
488f131b
JB
2678 stop_step = 1;
2679 print_stop_reason (END_STEPPING_RANGE, 0);
2680 stop_stepping (ecs);
2681 return;
c5aa993b 2682 }
488f131b
JB
2683 step_range_start = ecs->sal.pc;
2684 step_range_end = ecs->sal.end;
aa0cd9c1 2685 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2686 ecs->current_line = ecs->sal.line;
2687 ecs->current_symtab = ecs->sal.symtab;
2688
aa0cd9c1
AC
2689 /* In the case where we just stepped out of a function into the
2690 middle of a line of the caller, continue stepping, but
2691 step_frame_id must be modified to current frame */
65815ea1
AC
2692#if 0
2693 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2694 generous. It will trigger on things like a step into a frameless
2695 stackless leaf function. I think the logic should instead look
2696 at the unwound frame ID has that should give a more robust
2697 indication of what happened. */
8fb3e588
AC
2698 if (step - ID == current - ID)
2699 still stepping in same function;
2700 else if (step - ID == unwind (current - ID))
2701 stepped into a function;
2702 else
2703 stepped out of a function;
2704 /* Of course this assumes that the frame ID unwind code is robust
2705 and we're willing to introduce frame unwind logic into this
2706 function. Fortunately, those days are nearly upon us. */
65815ea1 2707#endif
488f131b 2708 {
aa0cd9c1
AC
2709 struct frame_id current_frame = get_frame_id (get_current_frame ());
2710 if (!(frame_id_inner (current_frame, step_frame_id)))
2711 step_frame_id = current_frame;
488f131b 2712 }
c906108c 2713
527159b7 2714 if (debug_infrun)
8a9de0e4 2715 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 2716 keep_going (ecs);
104c1213
JM
2717}
2718
2719/* Are we in the middle of stepping? */
2720
2721static int
2722currently_stepping (struct execution_control_state *ecs)
2723{
d303a6c7 2724 return ((!ecs->handling_longjmp
104c1213
JM
2725 && ((step_range_end && step_resume_breakpoint == NULL)
2726 || trap_expected))
2727 || ecs->stepping_through_solib_after_catch
2728 || bpstat_should_step ());
2729}
c906108c 2730
c2c6d25f
JM
2731/* Subroutine call with source code we should not step over. Do step
2732 to the first line of code in it. */
2733
2734static void
2735step_into_function (struct execution_control_state *ecs)
2736{
2737 struct symtab *s;
2738 struct symtab_and_line sr_sal;
2739
2740 s = find_pc_symtab (stop_pc);
2741 if (s && s->language != language_asm)
2742 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2743
2744 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2745 /* Use the step_resume_break to step until the end of the prologue,
2746 even if that involves jumps (as it seems to on the vax under
2747 4.2). */
2748 /* If the prologue ends in the middle of a source line, continue to
2749 the end of that source line (if it is still within the function).
2750 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2751 if (ecs->sal.end
2752 && ecs->sal.pc != ecs->stop_func_start
2753 && ecs->sal.end < ecs->stop_func_end)
2754 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2755
2dbd5e30
KB
2756 /* Architectures which require breakpoint adjustment might not be able
2757 to place a breakpoint at the computed address. If so, the test
2758 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2759 ecs->stop_func_start to an address at which a breakpoint may be
2760 legitimately placed.
8fb3e588 2761
2dbd5e30
KB
2762 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2763 made, GDB will enter an infinite loop when stepping through
2764 optimized code consisting of VLIW instructions which contain
2765 subinstructions corresponding to different source lines. On
2766 FR-V, it's not permitted to place a breakpoint on any but the
2767 first subinstruction of a VLIW instruction. When a breakpoint is
2768 set, GDB will adjust the breakpoint address to the beginning of
2769 the VLIW instruction. Thus, we need to make the corresponding
2770 adjustment here when computing the stop address. */
8fb3e588 2771
2dbd5e30
KB
2772 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2773 {
2774 ecs->stop_func_start
2775 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 2776 ecs->stop_func_start);
2dbd5e30
KB
2777 }
2778
c2c6d25f
JM
2779 if (ecs->stop_func_start == stop_pc)
2780 {
2781 /* We are already there: stop now. */
2782 stop_step = 1;
488f131b 2783 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2784 stop_stepping (ecs);
2785 return;
2786 }
2787 else
2788 {
2789 /* Put the step-breakpoint there and go until there. */
fe39c653 2790 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2791 sr_sal.pc = ecs->stop_func_start;
2792 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 2793
c2c6d25f 2794 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2795 some machines the prologue is where the new fp value is
2796 established. */
44cbf7b5 2797 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
2798
2799 /* And make sure stepping stops right away then. */
2800 step_range_end = step_range_start;
2801 }
2802 keep_going (ecs);
2803}
d4f3574e 2804
44cbf7b5
AC
2805/* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2806 This is used to both functions and to skip over code. */
2807
2808static void
2809insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2810 struct frame_id sr_id)
2811{
2812 /* There should never be more than one step-resume breakpoint per
2813 thread, so we should never be setting a new
2814 step_resume_breakpoint when one is already active. */
2815 gdb_assert (step_resume_breakpoint == NULL);
2816 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2817 bp_step_resume);
2818 if (breakpoints_inserted)
2819 insert_breakpoints ();
2820}
7ce450bd 2821
14e60db5
DJ
2822/* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2823 to skip a potential signal handler.
7ce450bd 2824
14e60db5
DJ
2825 This is called with the interrupted function's frame. The signal
2826 handler, when it returns, will resume the interrupted function at
2827 RETURN_FRAME.pc. */
d303a6c7
AC
2828
2829static void
44cbf7b5 2830insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
2831{
2832 struct symtab_and_line sr_sal;
2833
d303a6c7
AC
2834 init_sal (&sr_sal); /* initialize to zeros */
2835
7ce450bd 2836 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
d303a6c7
AC
2837 sr_sal.section = find_pc_overlay (sr_sal.pc);
2838
44cbf7b5 2839 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
2840}
2841
14e60db5
DJ
2842/* Similar to insert_step_resume_breakpoint_at_frame, except
2843 but a breakpoint at the previous frame's PC. This is used to
2844 skip a function after stepping into it (for "next" or if the called
2845 function has no debugging information).
2846
2847 The current function has almost always been reached by single
2848 stepping a call or return instruction. NEXT_FRAME belongs to the
2849 current function, and the breakpoint will be set at the caller's
2850 resume address.
2851
2852 This is a separate function rather than reusing
2853 insert_step_resume_breakpoint_at_frame in order to avoid
2854 get_prev_frame, which may stop prematurely (see the implementation
2855 of frame_unwind_id for an example). */
2856
2857static void
2858insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2859{
2860 struct symtab_and_line sr_sal;
2861
2862 /* We shouldn't have gotten here if we don't know where the call site
2863 is. */
2864 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2865
2866 init_sal (&sr_sal); /* initialize to zeros */
2867
2868 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (next_frame));
2869 sr_sal.section = find_pc_overlay (sr_sal.pc);
2870
2871 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2872}
2873
104c1213
JM
2874static void
2875stop_stepping (struct execution_control_state *ecs)
2876{
527159b7 2877 if (debug_infrun)
8a9de0e4 2878 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 2879
cd0fc7c3
SS
2880 /* Let callers know we don't want to wait for the inferior anymore. */
2881 ecs->wait_some_more = 0;
2882}
2883
d4f3574e
SS
2884/* This function handles various cases where we need to continue
2885 waiting for the inferior. */
2886/* (Used to be the keep_going: label in the old wait_for_inferior) */
2887
2888static void
2889keep_going (struct execution_control_state *ecs)
2890{
d4f3574e 2891 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2892 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2893
d4f3574e
SS
2894 /* If we did not do break;, it means we should keep running the
2895 inferior and not return to debugger. */
2896
2897 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2898 {
2899 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2900 the inferior, else we'd have done a break above) and we
2901 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2902 resume (currently_stepping (ecs), stop_signal);
2903 }
2904 else
2905 {
2906 /* Either the trap was not expected, but we are continuing
488f131b
JB
2907 anyway (the user asked that this signal be passed to the
2908 child)
2909 -- or --
2910 The signal was SIGTRAP, e.g. it was our signal, but we
2911 decided we should resume from it.
d4f3574e 2912
68f53502 2913 We're going to run this baby now! */
d4f3574e 2914
68f53502 2915 if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e
SS
2916 {
2917 breakpoints_failed = insert_breakpoints ();
2918 if (breakpoints_failed)
2919 {
2920 stop_stepping (ecs);
2921 return;
2922 }
2923 breakpoints_inserted = 1;
2924 }
2925
2926 trap_expected = ecs->another_trap;
2927
2928 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2929 specifies that such a signal should be delivered to the
2930 target program).
2931
2932 Typically, this would occure when a user is debugging a
2933 target monitor on a simulator: the target monitor sets a
2934 breakpoint; the simulator encounters this break-point and
2935 halts the simulation handing control to GDB; GDB, noteing
2936 that the break-point isn't valid, returns control back to the
2937 simulator; the simulator then delivers the hardware
2938 equivalent of a SIGNAL_TRAP to the program being debugged. */
2939
2940 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2941 stop_signal = TARGET_SIGNAL_0;
2942
d4f3574e
SS
2943
2944 resume (currently_stepping (ecs), stop_signal);
2945 }
2946
488f131b 2947 prepare_to_wait (ecs);
d4f3574e
SS
2948}
2949
104c1213
JM
2950/* This function normally comes after a resume, before
2951 handle_inferior_event exits. It takes care of any last bits of
2952 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2953
104c1213
JM
2954static void
2955prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2956{
527159b7 2957 if (debug_infrun)
8a9de0e4 2958 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213
JM
2959 if (ecs->infwait_state == infwait_normal_state)
2960 {
2961 overlay_cache_invalid = 1;
2962
2963 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2964 target_wait because they can be loaded from the target while
2965 in target_wait. This makes remote debugging a bit more
2966 efficient for those targets that provide critical registers
2967 as part of their normal status mechanism. */
104c1213
JM
2968
2969 registers_changed ();
39f77062 2970 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2971 ecs->wp = &(ecs->ws);
2972 }
2973 /* This is the old end of the while loop. Let everybody know we
2974 want to wait for the inferior some more and get called again
2975 soon. */
2976 ecs->wait_some_more = 1;
c906108c 2977}
11cf8741
JM
2978
2979/* Print why the inferior has stopped. We always print something when
2980 the inferior exits, or receives a signal. The rest of the cases are
2981 dealt with later on in normal_stop() and print_it_typical(). Ideally
2982 there should be a call to this function from handle_inferior_event()
2983 each time stop_stepping() is called.*/
2984static void
2985print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2986{
2987 switch (stop_reason)
2988 {
2989 case STOP_UNKNOWN:
2990 /* We don't deal with these cases from handle_inferior_event()
2991 yet. */
2992 break;
2993 case END_STEPPING_RANGE:
2994 /* We are done with a step/next/si/ni command. */
2995 /* For now print nothing. */
fb40c209 2996 /* Print a message only if not in the middle of doing a "step n"
488f131b 2997 operation for n > 1 */
fb40c209 2998 if (!step_multi || !stop_step)
9dc5e2a9 2999 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3000 ui_out_field_string
3001 (uiout, "reason",
3002 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741
JM
3003 break;
3004 case BREAKPOINT_HIT:
3005 /* We found a breakpoint. */
3006 /* For now print nothing. */
3007 break;
3008 case SIGNAL_EXITED:
3009 /* The inferior was terminated by a signal. */
8b93c638 3010 annotate_signalled ();
9dc5e2a9 3011 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3012 ui_out_field_string
3013 (uiout, "reason",
3014 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
3015 ui_out_text (uiout, "\nProgram terminated with signal ");
3016 annotate_signal_name ();
488f131b
JB
3017 ui_out_field_string (uiout, "signal-name",
3018 target_signal_to_name (stop_info));
8b93c638
JM
3019 annotate_signal_name_end ();
3020 ui_out_text (uiout, ", ");
3021 annotate_signal_string ();
488f131b
JB
3022 ui_out_field_string (uiout, "signal-meaning",
3023 target_signal_to_string (stop_info));
8b93c638
JM
3024 annotate_signal_string_end ();
3025 ui_out_text (uiout, ".\n");
3026 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3027 break;
3028 case EXITED:
3029 /* The inferior program is finished. */
8b93c638
JM
3030 annotate_exited (stop_info);
3031 if (stop_info)
3032 {
9dc5e2a9 3033 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3034 ui_out_field_string (uiout, "reason",
3035 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 3036 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3037 ui_out_field_fmt (uiout, "exit-code", "0%o",
3038 (unsigned int) stop_info);
8b93c638
JM
3039 ui_out_text (uiout, ".\n");
3040 }
3041 else
3042 {
9dc5e2a9 3043 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3044 ui_out_field_string
3045 (uiout, "reason",
3046 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
3047 ui_out_text (uiout, "\nProgram exited normally.\n");
3048 }
f17517ea
AS
3049 /* Support the --return-child-result option. */
3050 return_child_result_value = stop_info;
11cf8741
JM
3051 break;
3052 case SIGNAL_RECEIVED:
3053 /* Signal received. The signal table tells us to print about
3054 it. */
8b93c638
JM
3055 annotate_signal ();
3056 ui_out_text (uiout, "\nProgram received signal ");
3057 annotate_signal_name ();
84c6c83c 3058 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3059 ui_out_field_string
3060 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b
JB
3061 ui_out_field_string (uiout, "signal-name",
3062 target_signal_to_name (stop_info));
8b93c638
JM
3063 annotate_signal_name_end ();
3064 ui_out_text (uiout, ", ");
3065 annotate_signal_string ();
488f131b
JB
3066 ui_out_field_string (uiout, "signal-meaning",
3067 target_signal_to_string (stop_info));
8b93c638
JM
3068 annotate_signal_string_end ();
3069 ui_out_text (uiout, ".\n");
11cf8741
JM
3070 break;
3071 default:
8e65ff28 3072 internal_error (__FILE__, __LINE__,
e2e0b3e5 3073 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
3074 break;
3075 }
3076}
c906108c 3077\f
43ff13b4 3078
c906108c
SS
3079/* Here to return control to GDB when the inferior stops for real.
3080 Print appropriate messages, remove breakpoints, give terminal our modes.
3081
3082 STOP_PRINT_FRAME nonzero means print the executing frame
3083 (pc, function, args, file, line number and line text).
3084 BREAKPOINTS_FAILED nonzero means stop was due to error
3085 attempting to insert breakpoints. */
3086
3087void
96baa820 3088normal_stop (void)
c906108c 3089{
73b65bb0
DJ
3090 struct target_waitstatus last;
3091 ptid_t last_ptid;
3092
3093 get_last_target_status (&last_ptid, &last);
3094
c906108c
SS
3095 /* As with the notification of thread events, we want to delay
3096 notifying the user that we've switched thread context until
3097 the inferior actually stops.
3098
73b65bb0
DJ
3099 There's no point in saying anything if the inferior has exited.
3100 Note that SIGNALLED here means "exited with a signal", not
3101 "received a signal". */
488f131b 3102 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3103 && target_has_execution
3104 && last.kind != TARGET_WAITKIND_SIGNALLED
3105 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3106 {
3107 target_terminal_ours_for_output ();
a3f17187 3108 printf_filtered (_("[Switching to %s]\n"),
39f77062
KB
3109 target_pid_or_tid_to_str (inferior_ptid));
3110 previous_inferior_ptid = inferior_ptid;
c906108c 3111 }
c906108c 3112
4fa8626c 3113 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3114 /* Make sure that the current_frame's pc is correct. This
3115 is a correction for setting up the frame info before doing
3116 DECR_PC_AFTER_BREAK */
b87efeee
AC
3117 if (target_has_execution)
3118 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3119 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3120 frame code to check for this and sort out any resultant mess.
3121 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 3122 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3123
c906108c
SS
3124 if (target_has_execution && breakpoints_inserted)
3125 {
3126 if (remove_breakpoints ())
3127 {
3128 target_terminal_ours_for_output ();
a3f17187
AC
3129 printf_filtered (_("\
3130Cannot remove breakpoints because program is no longer writable.\n\
3131It might be running in another process.\n\
3132Further execution is probably impossible.\n"));
c906108c
SS
3133 }
3134 }
3135 breakpoints_inserted = 0;
3136
3137 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3138 Delete any breakpoint that is to be deleted at the next stop. */
3139
3140 breakpoint_auto_delete (stop_bpstat);
3141
3142 /* If an auto-display called a function and that got a signal,
3143 delete that auto-display to avoid an infinite recursion. */
3144
3145 if (stopped_by_random_signal)
3146 disable_current_display ();
3147
3148 /* Don't print a message if in the middle of doing a "step n"
3149 operation for n > 1 */
3150 if (step_multi && stop_step)
3151 goto done;
3152
3153 target_terminal_ours ();
3154
7abfe014
DJ
3155 /* Set the current source location. This will also happen if we
3156 display the frame below, but the current SAL will be incorrect
3157 during a user hook-stop function. */
3158 if (target_has_stack && !stop_stack_dummy)
3159 set_current_sal_from_frame (get_current_frame (), 1);
3160
5913bcb0
AC
3161 /* Look up the hook_stop and run it (CLI internally handles problem
3162 of stop_command's pre-hook not existing). */
3163 if (stop_command)
3164 catch_errors (hook_stop_stub, stop_command,
3165 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3166
3167 if (!target_has_stack)
3168 {
3169
3170 goto done;
3171 }
3172
3173 /* Select innermost stack frame - i.e., current frame is frame 0,
3174 and current location is based on that.
3175 Don't do this on return from a stack dummy routine,
3176 or if the program has exited. */
3177
3178 if (!stop_stack_dummy)
3179 {
0f7d239c 3180 select_frame (get_current_frame ());
c906108c
SS
3181
3182 /* Print current location without a level number, if
c5aa993b
JM
3183 we have changed functions or hit a breakpoint.
3184 Print source line if we have one.
3185 bpstat_print() contains the logic deciding in detail
3186 what to print, based on the event(s) that just occurred. */
c906108c 3187
6e7f8b9c 3188 if (stop_print_frame && deprecated_selected_frame)
c906108c
SS
3189 {
3190 int bpstat_ret;
3191 int source_flag;
917317f4 3192 int do_frame_printing = 1;
c906108c
SS
3193
3194 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3195 switch (bpstat_ret)
3196 {
3197 case PRINT_UNKNOWN:
aa0cd9c1 3198 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3199 (or should) carry around the function and does (or
3200 should) use that when doing a frame comparison. */
917317f4 3201 if (stop_step
aa0cd9c1
AC
3202 && frame_id_eq (step_frame_id,
3203 get_frame_id (get_current_frame ()))
917317f4 3204 && step_start_function == find_pc_function (stop_pc))
488f131b 3205 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3206 else
488f131b 3207 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3208 break;
3209 case PRINT_SRC_AND_LOC:
488f131b 3210 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3211 break;
3212 case PRINT_SRC_ONLY:
c5394b80 3213 source_flag = SRC_LINE;
917317f4
JM
3214 break;
3215 case PRINT_NOTHING:
488f131b 3216 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3217 do_frame_printing = 0;
3218 break;
3219 default:
e2e0b3e5 3220 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 3221 }
fb40c209 3222 /* For mi, have the same behavior every time we stop:
488f131b 3223 print everything but the source line. */
9dc5e2a9 3224 if (ui_out_is_mi_like_p (uiout))
fb40c209 3225 source_flag = LOC_AND_ADDRESS;
c906108c 3226
9dc5e2a9 3227 if (ui_out_is_mi_like_p (uiout))
39f77062 3228 ui_out_field_int (uiout, "thread-id",
488f131b 3229 pid_to_thread_id (inferior_ptid));
c906108c
SS
3230 /* The behavior of this routine with respect to the source
3231 flag is:
c5394b80
JM
3232 SRC_LINE: Print only source line
3233 LOCATION: Print only location
3234 SRC_AND_LOC: Print location and source line */
917317f4 3235 if (do_frame_printing)
b04f3ab4 3236 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3237
3238 /* Display the auto-display expressions. */
3239 do_displays ();
3240 }
3241 }
3242
3243 /* Save the function value return registers, if we care.
3244 We might be about to restore their previous contents. */
3245 if (proceed_to_finish)
72cec141
AC
3246 /* NB: The copy goes through to the target picking up the value of
3247 all the registers. */
3248 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3249
3250 if (stop_stack_dummy)
3251 {
dbe9fe58
AC
3252 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3253 ends with a setting of the current frame, so we can use that
3254 next. */
3255 frame_pop (get_current_frame ());
c906108c 3256 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3257 Can't rely on restore_inferior_status because that only gets
3258 called if we don't stop in the called function. */
c906108c 3259 stop_pc = read_pc ();
0f7d239c 3260 select_frame (get_current_frame ());
c906108c
SS
3261 }
3262
c906108c
SS
3263done:
3264 annotate_stopped ();
7a464420 3265 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3266}
3267
3268static int
96baa820 3269hook_stop_stub (void *cmd)
c906108c 3270{
5913bcb0 3271 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3272 return (0);
3273}
3274\f
c5aa993b 3275int
96baa820 3276signal_stop_state (int signo)
c906108c
SS
3277{
3278 return signal_stop[signo];
3279}
3280
c5aa993b 3281int
96baa820 3282signal_print_state (int signo)
c906108c
SS
3283{
3284 return signal_print[signo];
3285}
3286
c5aa993b 3287int
96baa820 3288signal_pass_state (int signo)
c906108c
SS
3289{
3290 return signal_program[signo];
3291}
3292
488f131b 3293int
7bda5e4a 3294signal_stop_update (int signo, int state)
d4f3574e
SS
3295{
3296 int ret = signal_stop[signo];
3297 signal_stop[signo] = state;
3298 return ret;
3299}
3300
488f131b 3301int
7bda5e4a 3302signal_print_update (int signo, int state)
d4f3574e
SS
3303{
3304 int ret = signal_print[signo];
3305 signal_print[signo] = state;
3306 return ret;
3307}
3308
488f131b 3309int
7bda5e4a 3310signal_pass_update (int signo, int state)
d4f3574e
SS
3311{
3312 int ret = signal_program[signo];
3313 signal_program[signo] = state;
3314 return ret;
3315}
3316
c906108c 3317static void
96baa820 3318sig_print_header (void)
c906108c 3319{
a3f17187
AC
3320 printf_filtered (_("\
3321Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
3322}
3323
3324static void
96baa820 3325sig_print_info (enum target_signal oursig)
c906108c
SS
3326{
3327 char *name = target_signal_to_name (oursig);
3328 int name_padding = 13 - strlen (name);
96baa820 3329
c906108c
SS
3330 if (name_padding <= 0)
3331 name_padding = 0;
3332
3333 printf_filtered ("%s", name);
488f131b 3334 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3335 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3336 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3337 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3338 printf_filtered ("%s\n", target_signal_to_string (oursig));
3339}
3340
3341/* Specify how various signals in the inferior should be handled. */
3342
3343static void
96baa820 3344handle_command (char *args, int from_tty)
c906108c
SS
3345{
3346 char **argv;
3347 int digits, wordlen;
3348 int sigfirst, signum, siglast;
3349 enum target_signal oursig;
3350 int allsigs;
3351 int nsigs;
3352 unsigned char *sigs;
3353 struct cleanup *old_chain;
3354
3355 if (args == NULL)
3356 {
e2e0b3e5 3357 error_no_arg (_("signal to handle"));
c906108c
SS
3358 }
3359
3360 /* Allocate and zero an array of flags for which signals to handle. */
3361
3362 nsigs = (int) TARGET_SIGNAL_LAST;
3363 sigs = (unsigned char *) alloca (nsigs);
3364 memset (sigs, 0, nsigs);
3365
3366 /* Break the command line up into args. */
3367
3368 argv = buildargv (args);
3369 if (argv == NULL)
3370 {
3371 nomem (0);
3372 }
7a292a7a 3373 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3374
3375 /* Walk through the args, looking for signal oursigs, signal names, and
3376 actions. Signal numbers and signal names may be interspersed with
3377 actions, with the actions being performed for all signals cumulatively
3378 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3379
3380 while (*argv != NULL)
3381 {
3382 wordlen = strlen (*argv);
3383 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3384 {;
3385 }
3386 allsigs = 0;
3387 sigfirst = siglast = -1;
3388
3389 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3390 {
3391 /* Apply action to all signals except those used by the
3392 debugger. Silently skip those. */
3393 allsigs = 1;
3394 sigfirst = 0;
3395 siglast = nsigs - 1;
3396 }
3397 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3398 {
3399 SET_SIGS (nsigs, sigs, signal_stop);
3400 SET_SIGS (nsigs, sigs, signal_print);
3401 }
3402 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3403 {
3404 UNSET_SIGS (nsigs, sigs, signal_program);
3405 }
3406 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3407 {
3408 SET_SIGS (nsigs, sigs, signal_print);
3409 }
3410 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3411 {
3412 SET_SIGS (nsigs, sigs, signal_program);
3413 }
3414 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3415 {
3416 UNSET_SIGS (nsigs, sigs, signal_stop);
3417 }
3418 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3419 {
3420 SET_SIGS (nsigs, sigs, signal_program);
3421 }
3422 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3423 {
3424 UNSET_SIGS (nsigs, sigs, signal_print);
3425 UNSET_SIGS (nsigs, sigs, signal_stop);
3426 }
3427 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3428 {
3429 UNSET_SIGS (nsigs, sigs, signal_program);
3430 }
3431 else if (digits > 0)
3432 {
3433 /* It is numeric. The numeric signal refers to our own
3434 internal signal numbering from target.h, not to host/target
3435 signal number. This is a feature; users really should be
3436 using symbolic names anyway, and the common ones like
3437 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3438
3439 sigfirst = siglast = (int)
3440 target_signal_from_command (atoi (*argv));
3441 if ((*argv)[digits] == '-')
3442 {
3443 siglast = (int)
3444 target_signal_from_command (atoi ((*argv) + digits + 1));
3445 }
3446 if (sigfirst > siglast)
3447 {
3448 /* Bet he didn't figure we'd think of this case... */
3449 signum = sigfirst;
3450 sigfirst = siglast;
3451 siglast = signum;
3452 }
3453 }
3454 else
3455 {
3456 oursig = target_signal_from_name (*argv);
3457 if (oursig != TARGET_SIGNAL_UNKNOWN)
3458 {
3459 sigfirst = siglast = (int) oursig;
3460 }
3461 else
3462 {
3463 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 3464 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
3465 }
3466 }
3467
3468 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3469 which signals to apply actions to. */
c906108c
SS
3470
3471 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3472 {
3473 switch ((enum target_signal) signum)
3474 {
3475 case TARGET_SIGNAL_TRAP:
3476 case TARGET_SIGNAL_INT:
3477 if (!allsigs && !sigs[signum])
3478 {
3479 if (query ("%s is used by the debugger.\n\
488f131b 3480Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3481 {
3482 sigs[signum] = 1;
3483 }
3484 else
3485 {
a3f17187 3486 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
3487 gdb_flush (gdb_stdout);
3488 }
3489 }
3490 break;
3491 case TARGET_SIGNAL_0:
3492 case TARGET_SIGNAL_DEFAULT:
3493 case TARGET_SIGNAL_UNKNOWN:
3494 /* Make sure that "all" doesn't print these. */
3495 break;
3496 default:
3497 sigs[signum] = 1;
3498 break;
3499 }
3500 }
3501
3502 argv++;
3503 }
3504
39f77062 3505 target_notice_signals (inferior_ptid);
c906108c
SS
3506
3507 if (from_tty)
3508 {
3509 /* Show the results. */
3510 sig_print_header ();
3511 for (signum = 0; signum < nsigs; signum++)
3512 {
3513 if (sigs[signum])
3514 {
3515 sig_print_info (signum);
3516 }
3517 }
3518 }
3519
3520 do_cleanups (old_chain);
3521}
3522
3523static void
96baa820 3524xdb_handle_command (char *args, int from_tty)
c906108c
SS
3525{
3526 char **argv;
3527 struct cleanup *old_chain;
3528
3529 /* Break the command line up into args. */
3530
3531 argv = buildargv (args);
3532 if (argv == NULL)
3533 {
3534 nomem (0);
3535 }
7a292a7a 3536 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3537 if (argv[1] != (char *) NULL)
3538 {
3539 char *argBuf;
3540 int bufLen;
3541
3542 bufLen = strlen (argv[0]) + 20;
3543 argBuf = (char *) xmalloc (bufLen);
3544 if (argBuf)
3545 {
3546 int validFlag = 1;
3547 enum target_signal oursig;
3548
3549 oursig = target_signal_from_name (argv[0]);
3550 memset (argBuf, 0, bufLen);
3551 if (strcmp (argv[1], "Q") == 0)
3552 sprintf (argBuf, "%s %s", argv[0], "noprint");
3553 else
3554 {
3555 if (strcmp (argv[1], "s") == 0)
3556 {
3557 if (!signal_stop[oursig])
3558 sprintf (argBuf, "%s %s", argv[0], "stop");
3559 else
3560 sprintf (argBuf, "%s %s", argv[0], "nostop");
3561 }
3562 else if (strcmp (argv[1], "i") == 0)
3563 {
3564 if (!signal_program[oursig])
3565 sprintf (argBuf, "%s %s", argv[0], "pass");
3566 else
3567 sprintf (argBuf, "%s %s", argv[0], "nopass");
3568 }
3569 else if (strcmp (argv[1], "r") == 0)
3570 {
3571 if (!signal_print[oursig])
3572 sprintf (argBuf, "%s %s", argv[0], "print");
3573 else
3574 sprintf (argBuf, "%s %s", argv[0], "noprint");
3575 }
3576 else
3577 validFlag = 0;
3578 }
3579 if (validFlag)
3580 handle_command (argBuf, from_tty);
3581 else
a3f17187 3582 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 3583 if (argBuf)
b8c9b27d 3584 xfree (argBuf);
c906108c
SS
3585 }
3586 }
3587 do_cleanups (old_chain);
3588}
3589
3590/* Print current contents of the tables set by the handle command.
3591 It is possible we should just be printing signals actually used
3592 by the current target (but for things to work right when switching
3593 targets, all signals should be in the signal tables). */
3594
3595static void
96baa820 3596signals_info (char *signum_exp, int from_tty)
c906108c
SS
3597{
3598 enum target_signal oursig;
3599 sig_print_header ();
3600
3601 if (signum_exp)
3602 {
3603 /* First see if this is a symbol name. */
3604 oursig = target_signal_from_name (signum_exp);
3605 if (oursig == TARGET_SIGNAL_UNKNOWN)
3606 {
3607 /* No, try numeric. */
3608 oursig =
bb518678 3609 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3610 }
3611 sig_print_info (oursig);
3612 return;
3613 }
3614
3615 printf_filtered ("\n");
3616 /* These ugly casts brought to you by the native VAX compiler. */
3617 for (oursig = TARGET_SIGNAL_FIRST;
3618 (int) oursig < (int) TARGET_SIGNAL_LAST;
3619 oursig = (enum target_signal) ((int) oursig + 1))
3620 {
3621 QUIT;
3622
3623 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3624 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3625 sig_print_info (oursig);
3626 }
3627
a3f17187 3628 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
3629}
3630\f
7a292a7a
SS
3631struct inferior_status
3632{
3633 enum target_signal stop_signal;
3634 CORE_ADDR stop_pc;
3635 bpstat stop_bpstat;
3636 int stop_step;
3637 int stop_stack_dummy;
3638 int stopped_by_random_signal;
3639 int trap_expected;
3640 CORE_ADDR step_range_start;
3641 CORE_ADDR step_range_end;
aa0cd9c1 3642 struct frame_id step_frame_id;
5fbbeb29 3643 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3644 CORE_ADDR step_resume_break_address;
3645 int stop_after_trap;
c0236d92 3646 int stop_soon;
72cec141 3647 struct regcache *stop_registers;
7a292a7a
SS
3648
3649 /* These are here because if call_function_by_hand has written some
3650 registers and then decides to call error(), we better not have changed
3651 any registers. */
72cec141 3652 struct regcache *registers;
7a292a7a 3653
101dcfbe
AC
3654 /* A frame unique identifier. */
3655 struct frame_id selected_frame_id;
3656
7a292a7a
SS
3657 int breakpoint_proceeded;
3658 int restore_stack_info;
3659 int proceed_to_finish;
3660};
3661
7a292a7a 3662void
96baa820
JM
3663write_inferior_status_register (struct inferior_status *inf_status, int regno,
3664 LONGEST val)
7a292a7a 3665{
3acba339 3666 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
3667 void *buf = alloca (size);
3668 store_signed_integer (buf, size, val);
0818c12a 3669 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3670}
3671
c906108c
SS
3672/* Save all of the information associated with the inferior<==>gdb
3673 connection. INF_STATUS is a pointer to a "struct inferior_status"
3674 (defined in inferior.h). */
3675
7a292a7a 3676struct inferior_status *
96baa820 3677save_inferior_status (int restore_stack_info)
c906108c 3678{
72cec141 3679 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3680
c906108c
SS
3681 inf_status->stop_signal = stop_signal;
3682 inf_status->stop_pc = stop_pc;
3683 inf_status->stop_step = stop_step;
3684 inf_status->stop_stack_dummy = stop_stack_dummy;
3685 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3686 inf_status->trap_expected = trap_expected;
3687 inf_status->step_range_start = step_range_start;
3688 inf_status->step_range_end = step_range_end;
aa0cd9c1 3689 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3690 inf_status->step_over_calls = step_over_calls;
3691 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3692 inf_status->stop_soon = stop_soon;
c906108c
SS
3693 /* Save original bpstat chain here; replace it with copy of chain.
3694 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3695 hand them back the original chain when restore_inferior_status is
3696 called. */
c906108c
SS
3697 inf_status->stop_bpstat = stop_bpstat;
3698 stop_bpstat = bpstat_copy (stop_bpstat);
3699 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3700 inf_status->restore_stack_info = restore_stack_info;
3701 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3702
72cec141 3703 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3704
72cec141 3705 inf_status->registers = regcache_dup (current_regcache);
c906108c 3706
7a424e99 3707 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
7a292a7a 3708 return inf_status;
c906108c
SS
3709}
3710
c906108c 3711static int
96baa820 3712restore_selected_frame (void *args)
c906108c 3713{
488f131b 3714 struct frame_id *fid = (struct frame_id *) args;
c906108c 3715 struct frame_info *frame;
c906108c 3716
101dcfbe 3717 frame = frame_find_by_id (*fid);
c906108c 3718
aa0cd9c1
AC
3719 /* If inf_status->selected_frame_id is NULL, there was no previously
3720 selected frame. */
101dcfbe 3721 if (frame == NULL)
c906108c 3722 {
8a3fe4f8 3723 warning (_("Unable to restore previously selected frame."));
c906108c
SS
3724 return 0;
3725 }
3726
0f7d239c 3727 select_frame (frame);
c906108c
SS
3728
3729 return (1);
3730}
3731
3732void
96baa820 3733restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3734{
3735 stop_signal = inf_status->stop_signal;
3736 stop_pc = inf_status->stop_pc;
3737 stop_step = inf_status->stop_step;
3738 stop_stack_dummy = inf_status->stop_stack_dummy;
3739 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3740 trap_expected = inf_status->trap_expected;
3741 step_range_start = inf_status->step_range_start;
3742 step_range_end = inf_status->step_range_end;
aa0cd9c1 3743 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3744 step_over_calls = inf_status->step_over_calls;
3745 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3746 stop_soon = inf_status->stop_soon;
c906108c
SS
3747 bpstat_clear (&stop_bpstat);
3748 stop_bpstat = inf_status->stop_bpstat;
3749 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3750 proceed_to_finish = inf_status->proceed_to_finish;
3751
72cec141
AC
3752 /* FIXME: Is the restore of stop_registers always needed. */
3753 regcache_xfree (stop_registers);
3754 stop_registers = inf_status->stop_registers;
c906108c
SS
3755
3756 /* The inferior can be gone if the user types "print exit(0)"
3757 (and perhaps other times). */
3758 if (target_has_execution)
72cec141
AC
3759 /* NB: The register write goes through to the target. */
3760 regcache_cpy (current_regcache, inf_status->registers);
3761 regcache_xfree (inf_status->registers);
c906108c 3762
c906108c
SS
3763 /* FIXME: If we are being called after stopping in a function which
3764 is called from gdb, we should not be trying to restore the
3765 selected frame; it just prints a spurious error message (The
3766 message is useful, however, in detecting bugs in gdb (like if gdb
3767 clobbers the stack)). In fact, should we be restoring the
3768 inferior status at all in that case? . */
3769
3770 if (target_has_stack && inf_status->restore_stack_info)
3771 {
c906108c 3772 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3773 walking the stack might encounter a garbage pointer and
3774 error() trying to dereference it. */
488f131b
JB
3775 if (catch_errors
3776 (restore_selected_frame, &inf_status->selected_frame_id,
3777 "Unable to restore previously selected frame:\n",
3778 RETURN_MASK_ERROR) == 0)
c906108c
SS
3779 /* Error in restoring the selected frame. Select the innermost
3780 frame. */
0f7d239c 3781 select_frame (get_current_frame ());
c906108c
SS
3782
3783 }
c906108c 3784
72cec141 3785 xfree (inf_status);
7a292a7a 3786}
c906108c 3787
74b7792f
AC
3788static void
3789do_restore_inferior_status_cleanup (void *sts)
3790{
3791 restore_inferior_status (sts);
3792}
3793
3794struct cleanup *
3795make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3796{
3797 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3798}
3799
c906108c 3800void
96baa820 3801discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3802{
3803 /* See save_inferior_status for info on stop_bpstat. */
3804 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3805 regcache_xfree (inf_status->registers);
3806 regcache_xfree (inf_status->stop_registers);
3807 xfree (inf_status);
7a292a7a
SS
3808}
3809
47932f85
DJ
3810int
3811inferior_has_forked (int pid, int *child_pid)
3812{
3813 struct target_waitstatus last;
3814 ptid_t last_ptid;
3815
3816 get_last_target_status (&last_ptid, &last);
3817
3818 if (last.kind != TARGET_WAITKIND_FORKED)
3819 return 0;
3820
3821 if (ptid_get_pid (last_ptid) != pid)
3822 return 0;
3823
3824 *child_pid = last.value.related_pid;
3825 return 1;
3826}
3827
3828int
3829inferior_has_vforked (int pid, int *child_pid)
3830{
3831 struct target_waitstatus last;
3832 ptid_t last_ptid;
3833
3834 get_last_target_status (&last_ptid, &last);
3835
3836 if (last.kind != TARGET_WAITKIND_VFORKED)
3837 return 0;
3838
3839 if (ptid_get_pid (last_ptid) != pid)
3840 return 0;
3841
3842 *child_pid = last.value.related_pid;
3843 return 1;
3844}
3845
3846int
3847inferior_has_execd (int pid, char **execd_pathname)
3848{
3849 struct target_waitstatus last;
3850 ptid_t last_ptid;
3851
3852 get_last_target_status (&last_ptid, &last);
3853
3854 if (last.kind != TARGET_WAITKIND_EXECD)
3855 return 0;
3856
3857 if (ptid_get_pid (last_ptid) != pid)
3858 return 0;
3859
3860 *execd_pathname = xstrdup (last.value.execd_pathname);
3861 return 1;
3862}
3863
ca6724c1
KB
3864/* Oft used ptids */
3865ptid_t null_ptid;
3866ptid_t minus_one_ptid;
3867
3868/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3869
ca6724c1
KB
3870ptid_t
3871ptid_build (int pid, long lwp, long tid)
3872{
3873 ptid_t ptid;
3874
3875 ptid.pid = pid;
3876 ptid.lwp = lwp;
3877 ptid.tid = tid;
3878 return ptid;
3879}
3880
3881/* Create a ptid from just a pid. */
3882
3883ptid_t
3884pid_to_ptid (int pid)
3885{
3886 return ptid_build (pid, 0, 0);
3887}
3888
3889/* Fetch the pid (process id) component from a ptid. */
3890
3891int
3892ptid_get_pid (ptid_t ptid)
3893{
3894 return ptid.pid;
3895}
3896
3897/* Fetch the lwp (lightweight process) component from a ptid. */
3898
3899long
3900ptid_get_lwp (ptid_t ptid)
3901{
3902 return ptid.lwp;
3903}
3904
3905/* Fetch the tid (thread id) component from a ptid. */
3906
3907long
3908ptid_get_tid (ptid_t ptid)
3909{
3910 return ptid.tid;
3911}
3912
3913/* ptid_equal() is used to test equality of two ptids. */
3914
3915int
3916ptid_equal (ptid_t ptid1, ptid_t ptid2)
3917{
3918 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3919 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3920}
3921
3922/* restore_inferior_ptid() will be used by the cleanup machinery
3923 to restore the inferior_ptid value saved in a call to
3924 save_inferior_ptid(). */
ce696e05
KB
3925
3926static void
3927restore_inferior_ptid (void *arg)
3928{
3929 ptid_t *saved_ptid_ptr = arg;
3930 inferior_ptid = *saved_ptid_ptr;
3931 xfree (arg);
3932}
3933
3934/* Save the value of inferior_ptid so that it may be restored by a
3935 later call to do_cleanups(). Returns the struct cleanup pointer
3936 needed for later doing the cleanup. */
3937
3938struct cleanup *
3939save_inferior_ptid (void)
3940{
3941 ptid_t *saved_ptid_ptr;
3942
3943 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3944 *saved_ptid_ptr = inferior_ptid;
3945 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3946}
c5aa993b 3947\f
488f131b 3948
7a292a7a 3949static void
96baa820 3950build_infrun (void)
7a292a7a 3951{
72cec141 3952 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3953}
c906108c 3954
c906108c 3955void
96baa820 3956_initialize_infrun (void)
c906108c 3957{
52f0bd74
AC
3958 int i;
3959 int numsigs;
c906108c
SS
3960 struct cmd_list_element *c;
3961
046a4708
AC
3962 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3963 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
0f71a2f6 3964
1bedd215
AC
3965 add_info ("signals", signals_info, _("\
3966What debugger does when program gets various signals.\n\
3967Specify a signal as argument to print info on that signal only."));
c906108c
SS
3968 add_info_alias ("handle", "signals", 0);
3969
1bedd215
AC
3970 add_com ("handle", class_run, handle_command, _("\
3971Specify how to handle a signal.\n\
c906108c
SS
3972Args are signals and actions to apply to those signals.\n\
3973Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3974from 1-15 are allowed for compatibility with old versions of GDB.\n\
3975Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3976The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3977used by the debugger, typically SIGTRAP and SIGINT.\n\
3978Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3979\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3980Stop means reenter debugger if this signal happens (implies print).\n\
3981Print means print a message if this signal happens.\n\
3982Pass means let program see this signal; otherwise program doesn't know.\n\
3983Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3984Pass and Stop may be combined."));
c906108c
SS
3985 if (xdb_commands)
3986 {
1bedd215
AC
3987 add_com ("lz", class_info, signals_info, _("\
3988What debugger does when program gets various signals.\n\
3989Specify a signal as argument to print info on that signal only."));
3990 add_com ("z", class_run, xdb_handle_command, _("\
3991Specify how to handle a signal.\n\
c906108c
SS
3992Args are signals and actions to apply to those signals.\n\
3993Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3994from 1-15 are allowed for compatibility with old versions of GDB.\n\
3995Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3996The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3997used by the debugger, typically SIGTRAP and SIGINT.\n\
3998Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3999\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4000nopass), \"Q\" (noprint)\n\
4001Stop means reenter debugger if this signal happens (implies print).\n\
4002Print means print a message if this signal happens.\n\
4003Pass means let program see this signal; otherwise program doesn't know.\n\
4004Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4005Pass and Stop may be combined."));
c906108c
SS
4006 }
4007
4008 if (!dbx_commands)
1a966eab
AC
4009 stop_command = add_cmd ("stop", class_obscure,
4010 not_just_help_class_command, _("\
4011There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 4012This allows you to set a list of commands to be run each time execution\n\
1a966eab 4013of the program stops."), &cmdlist);
c906108c 4014
85c07804
AC
4015 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4016Set inferior debugging."), _("\
4017Show inferior debugging."), _("\
4018When non-zero, inferior specific debugging is enabled."),
4019 NULL,
920d2a44 4020 show_debug_infrun,
85c07804 4021 &setdebuglist, &showdebuglist);
527159b7 4022
c906108c 4023 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 4024 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
4025 signal_print = (unsigned char *)
4026 xmalloc (sizeof (signal_print[0]) * numsigs);
4027 signal_program = (unsigned char *)
4028 xmalloc (sizeof (signal_program[0]) * numsigs);
4029 for (i = 0; i < numsigs; i++)
4030 {
4031 signal_stop[i] = 1;
4032 signal_print[i] = 1;
4033 signal_program[i] = 1;
4034 }
4035
4036 /* Signals caused by debugger's own actions
4037 should not be given to the program afterwards. */
4038 signal_program[TARGET_SIGNAL_TRAP] = 0;
4039 signal_program[TARGET_SIGNAL_INT] = 0;
4040
4041 /* Signals that are not errors should not normally enter the debugger. */
4042 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4043 signal_print[TARGET_SIGNAL_ALRM] = 0;
4044 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4045 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4046 signal_stop[TARGET_SIGNAL_PROF] = 0;
4047 signal_print[TARGET_SIGNAL_PROF] = 0;
4048 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4049 signal_print[TARGET_SIGNAL_CHLD] = 0;
4050 signal_stop[TARGET_SIGNAL_IO] = 0;
4051 signal_print[TARGET_SIGNAL_IO] = 0;
4052 signal_stop[TARGET_SIGNAL_POLL] = 0;
4053 signal_print[TARGET_SIGNAL_POLL] = 0;
4054 signal_stop[TARGET_SIGNAL_URG] = 0;
4055 signal_print[TARGET_SIGNAL_URG] = 0;
4056 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4057 signal_print[TARGET_SIGNAL_WINCH] = 0;
4058
cd0fc7c3
SS
4059 /* These signals are used internally by user-level thread
4060 implementations. (See signal(5) on Solaris.) Like the above
4061 signals, a healthy program receives and handles them as part of
4062 its normal operation. */
4063 signal_stop[TARGET_SIGNAL_LWP] = 0;
4064 signal_print[TARGET_SIGNAL_LWP] = 0;
4065 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4066 signal_print[TARGET_SIGNAL_WAITING] = 0;
4067 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4068 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4069
85c07804
AC
4070 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4071 &stop_on_solib_events, _("\
4072Set stopping for shared library events."), _("\
4073Show stopping for shared library events."), _("\
c906108c
SS
4074If nonzero, gdb will give control to the user when the dynamic linker\n\
4075notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
4076to the user would be loading/unloading of a new library."),
4077 NULL,
920d2a44 4078 show_stop_on_solib_events,
85c07804 4079 &setlist, &showlist);
c906108c 4080
7ab04401
AC
4081 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4082 follow_fork_mode_kind_names,
4083 &follow_fork_mode_string, _("\
4084Set debugger response to a program call of fork or vfork."), _("\
4085Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
4086A fork or vfork creates a new process. follow-fork-mode can be:\n\
4087 parent - the original process is debugged after a fork\n\
4088 child - the new process is debugged after a fork\n\
ea1dd7bc 4089The unfollowed process will continue to run.\n\
7ab04401
AC
4090By default, the debugger will follow the parent process."),
4091 NULL,
920d2a44 4092 show_follow_fork_mode_string,
7ab04401
AC
4093 &setlist, &showlist);
4094
4095 add_setshow_enum_cmd ("scheduler-locking", class_run,
4096 scheduler_enums, &scheduler_mode, _("\
4097Set mode for locking scheduler during execution."), _("\
4098Show mode for locking scheduler during execution."), _("\
c906108c
SS
4099off == no locking (threads may preempt at any time)\n\
4100on == full locking (no thread except the current thread may run)\n\
4101step == scheduler locked during every single-step operation.\n\
4102 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
4103 Other threads may run while stepping over a function call ('next')."),
4104 set_schedlock_func, /* traps on target vector */
920d2a44 4105 show_scheduler_mode,
7ab04401 4106 &setlist, &showlist);
5fbbeb29 4107
5bf193a2
AC
4108 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4109Set mode of the step operation."), _("\
4110Show mode of the step operation."), _("\
4111When set, doing a step over a function without debug line information\n\
4112will stop at the first instruction of that function. Otherwise, the\n\
4113function is skipped and the step command stops at a different source line."),
4114 NULL,
920d2a44 4115 show_step_stop_if_no_debug,
5bf193a2 4116 &setlist, &showlist);
ca6724c1
KB
4117
4118 /* ptid initializations */
4119 null_ptid = ptid_build (0, 0, 0);
4120 minus_one_ptid = ptid_build (-1, 0, 0);
4121 inferior_ptid = null_ptid;
4122 target_last_wait_ptid = minus_one_ptid;
c906108c 4123}
This page took 0.862941 seconds and 4 git commands to generate.