gdbserver/proc-service.c: Change CORE_ADDR cast to uintptr_t
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
32d0add0 4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
c906108c
SS
66
67/* Prototypes for local functions */
68
96baa820 69static void signals_info (char *, int);
c906108c 70
96baa820 71static void handle_command (char *, int);
c906108c 72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
74b7792f 77static void resume_cleanups (void *);
c906108c 78
96baa820 79static int hook_stop_stub (void *);
c906108c 80
96baa820
JM
81static int restore_selected_frame (void *);
82
4ef3f3be 83static int follow_fork (void);
96baa820 84
d83ad864
DB
85static int follow_fork_inferior (int follow_child, int detach_fork);
86
87static void follow_inferior_reset_breakpoints (void);
88
96baa820 89static void set_schedlock_func (char *args, int from_tty,
488f131b 90 struct cmd_list_element *c);
96baa820 91
a289b8f6
JK
92static int currently_stepping (struct thread_info *tp);
93
96baa820 94void _initialize_infrun (void);
43ff13b4 95
e58b0e63
PA
96void nullify_last_target_wait_ptid (void);
97
2c03e5be 98static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
99
100static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
101
2484c66b
UW
102static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
103
8550d3b3
YQ
104static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
105
372316f1
PA
106/* Asynchronous signal handler registered as event loop source for
107 when we have pending events ready to be passed to the core. */
108static struct async_event_handler *infrun_async_inferior_event_token;
109
110/* Stores whether infrun_async was previously enabled or disabled.
111 Starts off as -1, indicating "never enabled/disabled". */
112static int infrun_is_async = -1;
113
114/* See infrun.h. */
115
116void
117infrun_async (int enable)
118{
119 if (infrun_is_async != enable)
120 {
121 infrun_is_async = enable;
122
123 if (debug_infrun)
124 fprintf_unfiltered (gdb_stdlog,
125 "infrun: infrun_async(%d)\n",
126 enable);
127
128 if (enable)
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 else
131 clear_async_event_handler (infrun_async_inferior_event_token);
132 }
133}
134
0b333c5e
PA
135/* See infrun.h. */
136
137void
138mark_infrun_async_event_handler (void)
139{
140 mark_async_event_handler (infrun_async_inferior_event_token);
141}
142
5fbbeb29
CF
143/* When set, stop the 'step' command if we enter a function which has
144 no line number information. The normal behavior is that we step
145 over such function. */
146int step_stop_if_no_debug = 0;
920d2a44
AC
147static void
148show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150{
151 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
152}
5fbbeb29 153
1777feb0 154/* In asynchronous mode, but simulating synchronous execution. */
96baa820 155
43ff13b4
JM
156int sync_execution = 0;
157
b9f437de
PA
158/* proceed and normal_stop use this to notify the user when the
159 inferior stopped in a different thread than it had been running
160 in. */
96baa820 161
39f77062 162static ptid_t previous_inferior_ptid;
7a292a7a 163
07107ca6
LM
164/* If set (default for legacy reasons), when following a fork, GDB
165 will detach from one of the fork branches, child or parent.
166 Exactly which branch is detached depends on 'set follow-fork-mode'
167 setting. */
168
169static int detach_fork = 1;
6c95b8df 170
237fc4c9
PA
171int debug_displaced = 0;
172static void
173show_debug_displaced (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175{
176 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
177}
178
ccce17b0 179unsigned int debug_infrun = 0;
920d2a44
AC
180static void
181show_debug_infrun (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183{
184 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
185}
527159b7 186
03583c20
UW
187
188/* Support for disabling address space randomization. */
189
190int disable_randomization = 1;
191
192static void
193show_disable_randomization (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195{
196 if (target_supports_disable_randomization ())
197 fprintf_filtered (file,
198 _("Disabling randomization of debuggee's "
199 "virtual address space is %s.\n"),
200 value);
201 else
202 fputs_filtered (_("Disabling randomization of debuggee's "
203 "virtual address space is unsupported on\n"
204 "this platform.\n"), file);
205}
206
207static void
208set_disable_randomization (char *args, int from_tty,
209 struct cmd_list_element *c)
210{
211 if (!target_supports_disable_randomization ())
212 error (_("Disabling randomization of debuggee's "
213 "virtual address space is unsupported on\n"
214 "this platform."));
215}
216
d32dc48e
PA
217/* User interface for non-stop mode. */
218
219int non_stop = 0;
220static int non_stop_1 = 0;
221
222static void
223set_non_stop (char *args, int from_tty,
224 struct cmd_list_element *c)
225{
226 if (target_has_execution)
227 {
228 non_stop_1 = non_stop;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 non_stop = non_stop_1;
233}
234
235static void
236show_non_stop (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238{
239 fprintf_filtered (file,
240 _("Controlling the inferior in non-stop mode is %s.\n"),
241 value);
242}
243
d914c394
SS
244/* "Observer mode" is somewhat like a more extreme version of
245 non-stop, in which all GDB operations that might affect the
246 target's execution have been disabled. */
247
d914c394
SS
248int observer_mode = 0;
249static int observer_mode_1 = 0;
250
251static void
252set_observer_mode (char *args, int from_tty,
253 struct cmd_list_element *c)
254{
d914c394
SS
255 if (target_has_execution)
256 {
257 observer_mode_1 = observer_mode;
258 error (_("Cannot change this setting while the inferior is running."));
259 }
260
261 observer_mode = observer_mode_1;
262
263 may_write_registers = !observer_mode;
264 may_write_memory = !observer_mode;
265 may_insert_breakpoints = !observer_mode;
266 may_insert_tracepoints = !observer_mode;
267 /* We can insert fast tracepoints in or out of observer mode,
268 but enable them if we're going into this mode. */
269 if (observer_mode)
270 may_insert_fast_tracepoints = 1;
271 may_stop = !observer_mode;
272 update_target_permissions ();
273
274 /* Going *into* observer mode we must force non-stop, then
275 going out we leave it that way. */
276 if (observer_mode)
277 {
d914c394
SS
278 pagination_enabled = 0;
279 non_stop = non_stop_1 = 1;
280 }
281
282 if (from_tty)
283 printf_filtered (_("Observer mode is now %s.\n"),
284 (observer_mode ? "on" : "off"));
285}
286
287static void
288show_observer_mode (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290{
291 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
292}
293
294/* This updates the value of observer mode based on changes in
295 permissions. Note that we are deliberately ignoring the values of
296 may-write-registers and may-write-memory, since the user may have
297 reason to enable these during a session, for instance to turn on a
298 debugging-related global. */
299
300void
301update_observer_mode (void)
302{
303 int newval;
304
305 newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317}
c2c6d25f 318
c906108c
SS
319/* Tables of how to react to signals; the user sets them. */
320
321static unsigned char *signal_stop;
322static unsigned char *signal_print;
323static unsigned char *signal_program;
324
ab04a2af
TT
325/* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
328 signals. */
329static unsigned char *signal_catch;
330
2455069d
UW
331/* Table of signals that the target may silently handle.
332 This is automatically determined from the flags above,
333 and simply cached here. */
334static unsigned char *signal_pass;
335
c906108c
SS
336#define SET_SIGS(nsigs,sigs,flags) \
337 do { \
338 int signum = (nsigs); \
339 while (signum-- > 0) \
340 if ((sigs)[signum]) \
341 (flags)[signum] = 1; \
342 } while (0)
343
344#define UNSET_SIGS(nsigs,sigs,flags) \
345 do { \
346 int signum = (nsigs); \
347 while (signum-- > 0) \
348 if ((sigs)[signum]) \
349 (flags)[signum] = 0; \
350 } while (0)
351
9b224c5e
PA
352/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
353 this function is to avoid exporting `signal_program'. */
354
355void
356update_signals_program_target (void)
357{
a493e3e2 358 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
359}
360
1777feb0 361/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 362
edb3359d 363#define RESUME_ALL minus_one_ptid
c906108c
SS
364
365/* Command list pointer for the "stop" placeholder. */
366
367static struct cmd_list_element *stop_command;
368
c906108c
SS
369/* Nonzero if we want to give control to the user when we're notified
370 of shared library events by the dynamic linker. */
628fe4e4 371int stop_on_solib_events;
f9e14852
GB
372
373/* Enable or disable optional shared library event breakpoints
374 as appropriate when the above flag is changed. */
375
376static void
377set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
378{
379 update_solib_breakpoints ();
380}
381
920d2a44
AC
382static void
383show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385{
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388}
c906108c 389
c906108c
SS
390/* Nonzero after stop if current stack frame should be printed. */
391
392static int stop_print_frame;
393
e02bc4cc 394/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
395 returned by target_wait()/deprecated_target_wait_hook(). This
396 information is returned by get_last_target_status(). */
39f77062 397static ptid_t target_last_wait_ptid;
e02bc4cc
DS
398static struct target_waitstatus target_last_waitstatus;
399
0d1e5fa7
PA
400static void context_switch (ptid_t ptid);
401
4e1c45ea 402void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 403
53904c9e
AC
404static const char follow_fork_mode_child[] = "child";
405static const char follow_fork_mode_parent[] = "parent";
406
40478521 407static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
408 follow_fork_mode_child,
409 follow_fork_mode_parent,
410 NULL
ef346e04 411};
c906108c 412
53904c9e 413static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
414static void
415show_follow_fork_mode_string (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c, const char *value)
417{
3e43a32a
MS
418 fprintf_filtered (file,
419 _("Debugger response to a program "
420 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
421 value);
422}
c906108c
SS
423\f
424
d83ad864
DB
425/* Handle changes to the inferior list based on the type of fork,
426 which process is being followed, and whether the other process
427 should be detached. On entry inferior_ptid must be the ptid of
428 the fork parent. At return inferior_ptid is the ptid of the
429 followed inferior. */
430
431static int
432follow_fork_inferior (int follow_child, int detach_fork)
433{
434 int has_vforked;
79639e11 435 ptid_t parent_ptid, child_ptid;
d83ad864
DB
436
437 has_vforked = (inferior_thread ()->pending_follow.kind
438 == TARGET_WAITKIND_VFORKED);
79639e11
PA
439 parent_ptid = inferior_ptid;
440 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
441
442 if (has_vforked
443 && !non_stop /* Non-stop always resumes both branches. */
444 && (!target_is_async_p () || sync_execution)
445 && !(follow_child || detach_fork || sched_multi))
446 {
447 /* The parent stays blocked inside the vfork syscall until the
448 child execs or exits. If we don't let the child run, then
449 the parent stays blocked. If we're telling the parent to run
450 in the foreground, the user will not be able to ctrl-c to get
451 back the terminal, effectively hanging the debug session. */
452 fprintf_filtered (gdb_stderr, _("\
453Can not resume the parent process over vfork in the foreground while\n\
454holding the child stopped. Try \"set detach-on-fork\" or \
455\"set schedule-multiple\".\n"));
456 /* FIXME output string > 80 columns. */
457 return 1;
458 }
459
460 if (!follow_child)
461 {
462 /* Detach new forked process? */
463 if (detach_fork)
464 {
465 struct cleanup *old_chain;
466
467 /* Before detaching from the child, remove all breakpoints
468 from it. If we forked, then this has already been taken
469 care of by infrun.c. If we vforked however, any
470 breakpoint inserted in the parent is visible in the
471 child, even those added while stopped in a vfork
472 catchpoint. This will remove the breakpoints from the
473 parent also, but they'll be reinserted below. */
474 if (has_vforked)
475 {
476 /* Keep breakpoints list in sync. */
477 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
478 }
479
480 if (info_verbose || debug_infrun)
481 {
8dd06f7a
DB
482 /* Ensure that we have a process ptid. */
483 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
484
6f259a23 485 target_terminal_ours_for_output ();
d83ad864 486 fprintf_filtered (gdb_stdlog,
79639e11 487 _("Detaching after %s from child %s.\n"),
6f259a23 488 has_vforked ? "vfork" : "fork",
8dd06f7a 489 target_pid_to_str (process_ptid));
d83ad864
DB
490 }
491 }
492 else
493 {
494 struct inferior *parent_inf, *child_inf;
495 struct cleanup *old_chain;
496
497 /* Add process to GDB's tables. */
79639e11 498 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
499
500 parent_inf = current_inferior ();
501 child_inf->attach_flag = parent_inf->attach_flag;
502 copy_terminal_info (child_inf, parent_inf);
503 child_inf->gdbarch = parent_inf->gdbarch;
504 copy_inferior_target_desc_info (child_inf, parent_inf);
505
506 old_chain = save_inferior_ptid ();
507 save_current_program_space ();
508
79639e11 509 inferior_ptid = child_ptid;
d83ad864
DB
510 add_thread (inferior_ptid);
511 child_inf->symfile_flags = SYMFILE_NO_READ;
512
513 /* If this is a vfork child, then the address-space is
514 shared with the parent. */
515 if (has_vforked)
516 {
517 child_inf->pspace = parent_inf->pspace;
518 child_inf->aspace = parent_inf->aspace;
519
520 /* The parent will be frozen until the child is done
521 with the shared region. Keep track of the
522 parent. */
523 child_inf->vfork_parent = parent_inf;
524 child_inf->pending_detach = 0;
525 parent_inf->vfork_child = child_inf;
526 parent_inf->pending_detach = 0;
527 }
528 else
529 {
530 child_inf->aspace = new_address_space ();
531 child_inf->pspace = add_program_space (child_inf->aspace);
532 child_inf->removable = 1;
533 set_current_program_space (child_inf->pspace);
534 clone_program_space (child_inf->pspace, parent_inf->pspace);
535
536 /* Let the shared library layer (e.g., solib-svr4) learn
537 about this new process, relocate the cloned exec, pull
538 in shared libraries, and install the solib event
539 breakpoint. If a "cloned-VM" event was propagated
540 better throughout the core, this wouldn't be
541 required. */
542 solib_create_inferior_hook (0);
543 }
544
545 do_cleanups (old_chain);
546 }
547
548 if (has_vforked)
549 {
550 struct inferior *parent_inf;
551
552 parent_inf = current_inferior ();
553
554 /* If we detached from the child, then we have to be careful
555 to not insert breakpoints in the parent until the child
556 is done with the shared memory region. However, if we're
557 staying attached to the child, then we can and should
558 insert breakpoints, so that we can debug it. A
559 subsequent child exec or exit is enough to know when does
560 the child stops using the parent's address space. */
561 parent_inf->waiting_for_vfork_done = detach_fork;
562 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
563 }
564 }
565 else
566 {
567 /* Follow the child. */
568 struct inferior *parent_inf, *child_inf;
569 struct program_space *parent_pspace;
570
571 if (info_verbose || debug_infrun)
572 {
6f259a23
DB
573 target_terminal_ours_for_output ();
574 fprintf_filtered (gdb_stdlog,
79639e11
PA
575 _("Attaching after %s %s to child %s.\n"),
576 target_pid_to_str (parent_ptid),
6f259a23 577 has_vforked ? "vfork" : "fork",
79639e11 578 target_pid_to_str (child_ptid));
d83ad864
DB
579 }
580
581 /* Add the new inferior first, so that the target_detach below
582 doesn't unpush the target. */
583
79639e11 584 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
585
586 parent_inf = current_inferior ();
587 child_inf->attach_flag = parent_inf->attach_flag;
588 copy_terminal_info (child_inf, parent_inf);
589 child_inf->gdbarch = parent_inf->gdbarch;
590 copy_inferior_target_desc_info (child_inf, parent_inf);
591
592 parent_pspace = parent_inf->pspace;
593
594 /* If we're vforking, we want to hold on to the parent until the
595 child exits or execs. At child exec or exit time we can
596 remove the old breakpoints from the parent and detach or
597 resume debugging it. Otherwise, detach the parent now; we'll
598 want to reuse it's program/address spaces, but we can't set
599 them to the child before removing breakpoints from the
600 parent, otherwise, the breakpoints module could decide to
601 remove breakpoints from the wrong process (since they'd be
602 assigned to the same address space). */
603
604 if (has_vforked)
605 {
606 gdb_assert (child_inf->vfork_parent == NULL);
607 gdb_assert (parent_inf->vfork_child == NULL);
608 child_inf->vfork_parent = parent_inf;
609 child_inf->pending_detach = 0;
610 parent_inf->vfork_child = child_inf;
611 parent_inf->pending_detach = detach_fork;
612 parent_inf->waiting_for_vfork_done = 0;
613 }
614 else if (detach_fork)
6f259a23
DB
615 {
616 if (info_verbose || debug_infrun)
617 {
8dd06f7a
DB
618 /* Ensure that we have a process ptid. */
619 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
620
6f259a23
DB
621 target_terminal_ours_for_output ();
622 fprintf_filtered (gdb_stdlog,
623 _("Detaching after fork from "
79639e11 624 "child %s.\n"),
8dd06f7a 625 target_pid_to_str (process_ptid));
6f259a23
DB
626 }
627
628 target_detach (NULL, 0);
629 }
d83ad864
DB
630
631 /* Note that the detach above makes PARENT_INF dangling. */
632
633 /* Add the child thread to the appropriate lists, and switch to
634 this new thread, before cloning the program space, and
635 informing the solib layer about this new process. */
636
79639e11 637 inferior_ptid = child_ptid;
d83ad864
DB
638 add_thread (inferior_ptid);
639
640 /* If this is a vfork child, then the address-space is shared
641 with the parent. If we detached from the parent, then we can
642 reuse the parent's program/address spaces. */
643 if (has_vforked || detach_fork)
644 {
645 child_inf->pspace = parent_pspace;
646 child_inf->aspace = child_inf->pspace->aspace;
647 }
648 else
649 {
650 child_inf->aspace = new_address_space ();
651 child_inf->pspace = add_program_space (child_inf->aspace);
652 child_inf->removable = 1;
653 child_inf->symfile_flags = SYMFILE_NO_READ;
654 set_current_program_space (child_inf->pspace);
655 clone_program_space (child_inf->pspace, parent_pspace);
656
657 /* Let the shared library layer (e.g., solib-svr4) learn
658 about this new process, relocate the cloned exec, pull in
659 shared libraries, and install the solib event breakpoint.
660 If a "cloned-VM" event was propagated better throughout
661 the core, this wouldn't be required. */
662 solib_create_inferior_hook (0);
663 }
664 }
665
666 return target_follow_fork (follow_child, detach_fork);
667}
668
e58b0e63
PA
669/* Tell the target to follow the fork we're stopped at. Returns true
670 if the inferior should be resumed; false, if the target for some
671 reason decided it's best not to resume. */
672
6604731b 673static int
4ef3f3be 674follow_fork (void)
c906108c 675{
ea1dd7bc 676 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
677 int should_resume = 1;
678 struct thread_info *tp;
679
680 /* Copy user stepping state to the new inferior thread. FIXME: the
681 followed fork child thread should have a copy of most of the
4e3990f4
DE
682 parent thread structure's run control related fields, not just these.
683 Initialized to avoid "may be used uninitialized" warnings from gcc. */
684 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 685 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
686 CORE_ADDR step_range_start = 0;
687 CORE_ADDR step_range_end = 0;
688 struct frame_id step_frame_id = { 0 };
17b2616c 689 struct interp *command_interp = NULL;
e58b0e63
PA
690
691 if (!non_stop)
692 {
693 ptid_t wait_ptid;
694 struct target_waitstatus wait_status;
695
696 /* Get the last target status returned by target_wait(). */
697 get_last_target_status (&wait_ptid, &wait_status);
698
699 /* If not stopped at a fork event, then there's nothing else to
700 do. */
701 if (wait_status.kind != TARGET_WAITKIND_FORKED
702 && wait_status.kind != TARGET_WAITKIND_VFORKED)
703 return 1;
704
705 /* Check if we switched over from WAIT_PTID, since the event was
706 reported. */
707 if (!ptid_equal (wait_ptid, minus_one_ptid)
708 && !ptid_equal (inferior_ptid, wait_ptid))
709 {
710 /* We did. Switch back to WAIT_PTID thread, to tell the
711 target to follow it (in either direction). We'll
712 afterwards refuse to resume, and inform the user what
713 happened. */
714 switch_to_thread (wait_ptid);
715 should_resume = 0;
716 }
717 }
718
719 tp = inferior_thread ();
720
721 /* If there were any forks/vforks that were caught and are now to be
722 followed, then do so now. */
723 switch (tp->pending_follow.kind)
724 {
725 case TARGET_WAITKIND_FORKED:
726 case TARGET_WAITKIND_VFORKED:
727 {
728 ptid_t parent, child;
729
730 /* If the user did a next/step, etc, over a fork call,
731 preserve the stepping state in the fork child. */
732 if (follow_child && should_resume)
733 {
8358c15c
JK
734 step_resume_breakpoint = clone_momentary_breakpoint
735 (tp->control.step_resume_breakpoint);
16c381f0
JK
736 step_range_start = tp->control.step_range_start;
737 step_range_end = tp->control.step_range_end;
738 step_frame_id = tp->control.step_frame_id;
186c406b
TT
739 exception_resume_breakpoint
740 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 741 command_interp = tp->control.command_interp;
e58b0e63
PA
742
743 /* For now, delete the parent's sr breakpoint, otherwise,
744 parent/child sr breakpoints are considered duplicates,
745 and the child version will not be installed. Remove
746 this when the breakpoints module becomes aware of
747 inferiors and address spaces. */
748 delete_step_resume_breakpoint (tp);
16c381f0
JK
749 tp->control.step_range_start = 0;
750 tp->control.step_range_end = 0;
751 tp->control.step_frame_id = null_frame_id;
186c406b 752 delete_exception_resume_breakpoint (tp);
17b2616c 753 tp->control.command_interp = NULL;
e58b0e63
PA
754 }
755
756 parent = inferior_ptid;
757 child = tp->pending_follow.value.related_pid;
758
d83ad864
DB
759 /* Set up inferior(s) as specified by the caller, and tell the
760 target to do whatever is necessary to follow either parent
761 or child. */
762 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
763 {
764 /* Target refused to follow, or there's some other reason
765 we shouldn't resume. */
766 should_resume = 0;
767 }
768 else
769 {
770 /* This pending follow fork event is now handled, one way
771 or another. The previous selected thread may be gone
772 from the lists by now, but if it is still around, need
773 to clear the pending follow request. */
e09875d4 774 tp = find_thread_ptid (parent);
e58b0e63
PA
775 if (tp)
776 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
777
778 /* This makes sure we don't try to apply the "Switched
779 over from WAIT_PID" logic above. */
780 nullify_last_target_wait_ptid ();
781
1777feb0 782 /* If we followed the child, switch to it... */
e58b0e63
PA
783 if (follow_child)
784 {
785 switch_to_thread (child);
786
787 /* ... and preserve the stepping state, in case the
788 user was stepping over the fork call. */
789 if (should_resume)
790 {
791 tp = inferior_thread ();
8358c15c
JK
792 tp->control.step_resume_breakpoint
793 = step_resume_breakpoint;
16c381f0
JK
794 tp->control.step_range_start = step_range_start;
795 tp->control.step_range_end = step_range_end;
796 tp->control.step_frame_id = step_frame_id;
186c406b
TT
797 tp->control.exception_resume_breakpoint
798 = exception_resume_breakpoint;
17b2616c 799 tp->control.command_interp = command_interp;
e58b0e63
PA
800 }
801 else
802 {
803 /* If we get here, it was because we're trying to
804 resume from a fork catchpoint, but, the user
805 has switched threads away from the thread that
806 forked. In that case, the resume command
807 issued is most likely not applicable to the
808 child, so just warn, and refuse to resume. */
3e43a32a 809 warning (_("Not resuming: switched threads "
fd7dcb94 810 "before following fork child."));
e58b0e63
PA
811 }
812
813 /* Reset breakpoints in the child as appropriate. */
814 follow_inferior_reset_breakpoints ();
815 }
816 else
817 switch_to_thread (parent);
818 }
819 }
820 break;
821 case TARGET_WAITKIND_SPURIOUS:
822 /* Nothing to follow. */
823 break;
824 default:
825 internal_error (__FILE__, __LINE__,
826 "Unexpected pending_follow.kind %d\n",
827 tp->pending_follow.kind);
828 break;
829 }
c906108c 830
e58b0e63 831 return should_resume;
c906108c
SS
832}
833
d83ad864 834static void
6604731b 835follow_inferior_reset_breakpoints (void)
c906108c 836{
4e1c45ea
PA
837 struct thread_info *tp = inferior_thread ();
838
6604731b
DJ
839 /* Was there a step_resume breakpoint? (There was if the user
840 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
841 thread number. Cloned step_resume breakpoints are disabled on
842 creation, so enable it here now that it is associated with the
843 correct thread.
6604731b
DJ
844
845 step_resumes are a form of bp that are made to be per-thread.
846 Since we created the step_resume bp when the parent process
847 was being debugged, and now are switching to the child process,
848 from the breakpoint package's viewpoint, that's a switch of
849 "threads". We must update the bp's notion of which thread
850 it is for, or it'll be ignored when it triggers. */
851
8358c15c 852 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
853 {
854 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
855 tp->control.step_resume_breakpoint->loc->enabled = 1;
856 }
6604731b 857
a1aa2221 858 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 859 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
860 {
861 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
862 tp->control.exception_resume_breakpoint->loc->enabled = 1;
863 }
186c406b 864
6604731b
DJ
865 /* Reinsert all breakpoints in the child. The user may have set
866 breakpoints after catching the fork, in which case those
867 were never set in the child, but only in the parent. This makes
868 sure the inserted breakpoints match the breakpoint list. */
869
870 breakpoint_re_set ();
871 insert_breakpoints ();
c906108c 872}
c906108c 873
6c95b8df
PA
874/* The child has exited or execed: resume threads of the parent the
875 user wanted to be executing. */
876
877static int
878proceed_after_vfork_done (struct thread_info *thread,
879 void *arg)
880{
881 int pid = * (int *) arg;
882
883 if (ptid_get_pid (thread->ptid) == pid
884 && is_running (thread->ptid)
885 && !is_executing (thread->ptid)
886 && !thread->stop_requested
a493e3e2 887 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
888 {
889 if (debug_infrun)
890 fprintf_unfiltered (gdb_stdlog,
891 "infrun: resuming vfork parent thread %s\n",
892 target_pid_to_str (thread->ptid));
893
894 switch_to_thread (thread->ptid);
70509625 895 clear_proceed_status (0);
64ce06e4 896 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
897 }
898
899 return 0;
900}
901
902/* Called whenever we notice an exec or exit event, to handle
903 detaching or resuming a vfork parent. */
904
905static void
906handle_vfork_child_exec_or_exit (int exec)
907{
908 struct inferior *inf = current_inferior ();
909
910 if (inf->vfork_parent)
911 {
912 int resume_parent = -1;
913
914 /* This exec or exit marks the end of the shared memory region
915 between the parent and the child. If the user wanted to
916 detach from the parent, now is the time. */
917
918 if (inf->vfork_parent->pending_detach)
919 {
920 struct thread_info *tp;
921 struct cleanup *old_chain;
922 struct program_space *pspace;
923 struct address_space *aspace;
924
1777feb0 925 /* follow-fork child, detach-on-fork on. */
6c95b8df 926
68c9da30
PA
927 inf->vfork_parent->pending_detach = 0;
928
f50f4e56
PA
929 if (!exec)
930 {
931 /* If we're handling a child exit, then inferior_ptid
932 points at the inferior's pid, not to a thread. */
933 old_chain = save_inferior_ptid ();
934 save_current_program_space ();
935 save_current_inferior ();
936 }
937 else
938 old_chain = save_current_space_and_thread ();
6c95b8df
PA
939
940 /* We're letting loose of the parent. */
941 tp = any_live_thread_of_process (inf->vfork_parent->pid);
942 switch_to_thread (tp->ptid);
943
944 /* We're about to detach from the parent, which implicitly
945 removes breakpoints from its address space. There's a
946 catch here: we want to reuse the spaces for the child,
947 but, parent/child are still sharing the pspace at this
948 point, although the exec in reality makes the kernel give
949 the child a fresh set of new pages. The problem here is
950 that the breakpoints module being unaware of this, would
951 likely chose the child process to write to the parent
952 address space. Swapping the child temporarily away from
953 the spaces has the desired effect. Yes, this is "sort
954 of" a hack. */
955
956 pspace = inf->pspace;
957 aspace = inf->aspace;
958 inf->aspace = NULL;
959 inf->pspace = NULL;
960
961 if (debug_infrun || info_verbose)
962 {
6f259a23 963 target_terminal_ours_for_output ();
6c95b8df
PA
964
965 if (exec)
6f259a23
DB
966 {
967 fprintf_filtered (gdb_stdlog,
968 _("Detaching vfork parent process "
969 "%d after child exec.\n"),
970 inf->vfork_parent->pid);
971 }
6c95b8df 972 else
6f259a23
DB
973 {
974 fprintf_filtered (gdb_stdlog,
975 _("Detaching vfork parent process "
976 "%d after child exit.\n"),
977 inf->vfork_parent->pid);
978 }
6c95b8df
PA
979 }
980
981 target_detach (NULL, 0);
982
983 /* Put it back. */
984 inf->pspace = pspace;
985 inf->aspace = aspace;
986
987 do_cleanups (old_chain);
988 }
989 else if (exec)
990 {
991 /* We're staying attached to the parent, so, really give the
992 child a new address space. */
993 inf->pspace = add_program_space (maybe_new_address_space ());
994 inf->aspace = inf->pspace->aspace;
995 inf->removable = 1;
996 set_current_program_space (inf->pspace);
997
998 resume_parent = inf->vfork_parent->pid;
999
1000 /* Break the bonds. */
1001 inf->vfork_parent->vfork_child = NULL;
1002 }
1003 else
1004 {
1005 struct cleanup *old_chain;
1006 struct program_space *pspace;
1007
1008 /* If this is a vfork child exiting, then the pspace and
1009 aspaces were shared with the parent. Since we're
1010 reporting the process exit, we'll be mourning all that is
1011 found in the address space, and switching to null_ptid,
1012 preparing to start a new inferior. But, since we don't
1013 want to clobber the parent's address/program spaces, we
1014 go ahead and create a new one for this exiting
1015 inferior. */
1016
1017 /* Switch to null_ptid, so that clone_program_space doesn't want
1018 to read the selected frame of a dead process. */
1019 old_chain = save_inferior_ptid ();
1020 inferior_ptid = null_ptid;
1021
1022 /* This inferior is dead, so avoid giving the breakpoints
1023 module the option to write through to it (cloning a
1024 program space resets breakpoints). */
1025 inf->aspace = NULL;
1026 inf->pspace = NULL;
1027 pspace = add_program_space (maybe_new_address_space ());
1028 set_current_program_space (pspace);
1029 inf->removable = 1;
7dcd53a0 1030 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1031 clone_program_space (pspace, inf->vfork_parent->pspace);
1032 inf->pspace = pspace;
1033 inf->aspace = pspace->aspace;
1034
1035 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1036 inferior. */
6c95b8df
PA
1037 do_cleanups (old_chain);
1038
1039 resume_parent = inf->vfork_parent->pid;
1040 /* Break the bonds. */
1041 inf->vfork_parent->vfork_child = NULL;
1042 }
1043
1044 inf->vfork_parent = NULL;
1045
1046 gdb_assert (current_program_space == inf->pspace);
1047
1048 if (non_stop && resume_parent != -1)
1049 {
1050 /* If the user wanted the parent to be running, let it go
1051 free now. */
1052 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1053
1054 if (debug_infrun)
3e43a32a
MS
1055 fprintf_unfiltered (gdb_stdlog,
1056 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1057 resume_parent);
1058
1059 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1060
1061 do_cleanups (old_chain);
1062 }
1063 }
1064}
1065
eb6c553b 1066/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1067
1068static const char follow_exec_mode_new[] = "new";
1069static const char follow_exec_mode_same[] = "same";
40478521 1070static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1071{
1072 follow_exec_mode_new,
1073 follow_exec_mode_same,
1074 NULL,
1075};
1076
1077static const char *follow_exec_mode_string = follow_exec_mode_same;
1078static void
1079show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1080 struct cmd_list_element *c, const char *value)
1081{
1082 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1083}
1084
1777feb0 1085/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1086
c906108c 1087static void
95e50b27 1088follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1089{
95e50b27 1090 struct thread_info *th, *tmp;
6c95b8df 1091 struct inferior *inf = current_inferior ();
95e50b27 1092 int pid = ptid_get_pid (ptid);
94585166 1093 ptid_t process_ptid;
7a292a7a 1094
c906108c
SS
1095 /* This is an exec event that we actually wish to pay attention to.
1096 Refresh our symbol table to the newly exec'd program, remove any
1097 momentary bp's, etc.
1098
1099 If there are breakpoints, they aren't really inserted now,
1100 since the exec() transformed our inferior into a fresh set
1101 of instructions.
1102
1103 We want to preserve symbolic breakpoints on the list, since
1104 we have hopes that they can be reset after the new a.out's
1105 symbol table is read.
1106
1107 However, any "raw" breakpoints must be removed from the list
1108 (e.g., the solib bp's), since their address is probably invalid
1109 now.
1110
1111 And, we DON'T want to call delete_breakpoints() here, since
1112 that may write the bp's "shadow contents" (the instruction
1113 value that was overwritten witha TRAP instruction). Since
1777feb0 1114 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1115
1116 mark_breakpoints_out ();
1117
95e50b27
PA
1118 /* The target reports the exec event to the main thread, even if
1119 some other thread does the exec, and even if the main thread was
1120 stopped or already gone. We may still have non-leader threads of
1121 the process on our list. E.g., on targets that don't have thread
1122 exit events (like remote); or on native Linux in non-stop mode if
1123 there were only two threads in the inferior and the non-leader
1124 one is the one that execs (and nothing forces an update of the
1125 thread list up to here). When debugging remotely, it's best to
1126 avoid extra traffic, when possible, so avoid syncing the thread
1127 list with the target, and instead go ahead and delete all threads
1128 of the process but one that reported the event. Note this must
1129 be done before calling update_breakpoints_after_exec, as
1130 otherwise clearing the threads' resources would reference stale
1131 thread breakpoints -- it may have been one of these threads that
1132 stepped across the exec. We could just clear their stepping
1133 states, but as long as we're iterating, might as well delete
1134 them. Deleting them now rather than at the next user-visible
1135 stop provides a nicer sequence of events for user and MI
1136 notifications. */
8a06aea7 1137 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1138 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1139 delete_thread (th->ptid);
1140
1141 /* We also need to clear any left over stale state for the
1142 leader/event thread. E.g., if there was any step-resume
1143 breakpoint or similar, it's gone now. We cannot truly
1144 step-to-next statement through an exec(). */
1145 th = inferior_thread ();
8358c15c 1146 th->control.step_resume_breakpoint = NULL;
186c406b 1147 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1148 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1149 th->control.step_range_start = 0;
1150 th->control.step_range_end = 0;
c906108c 1151
95e50b27
PA
1152 /* The user may have had the main thread held stopped in the
1153 previous image (e.g., schedlock on, or non-stop). Release
1154 it now. */
a75724bc
PA
1155 th->stop_requested = 0;
1156
95e50b27
PA
1157 update_breakpoints_after_exec ();
1158
1777feb0 1159 /* What is this a.out's name? */
94585166 1160 process_ptid = pid_to_ptid (pid);
6c95b8df 1161 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1162 target_pid_to_str (process_ptid),
6c95b8df 1163 execd_pathname);
c906108c
SS
1164
1165 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1166 inferior has essentially been killed & reborn. */
7a292a7a 1167
c906108c 1168 gdb_flush (gdb_stdout);
6ca15a4b
PA
1169
1170 breakpoint_init_inferior (inf_execd);
e85a822c 1171
a3be80c3 1172 if (*gdb_sysroot != '\0')
e85a822c 1173 {
998d2a3e 1174 char *name = exec_file_find (execd_pathname, NULL);
ff862be4 1175
224c3ddb 1176 execd_pathname = (char *) alloca (strlen (name) + 1);
ff862be4
GB
1177 strcpy (execd_pathname, name);
1178 xfree (name);
e85a822c 1179 }
c906108c 1180
cce9b6bf
PA
1181 /* Reset the shared library package. This ensures that we get a
1182 shlib event when the child reaches "_start", at which point the
1183 dld will have had a chance to initialize the child. */
1184 /* Also, loading a symbol file below may trigger symbol lookups, and
1185 we don't want those to be satisfied by the libraries of the
1186 previous incarnation of this process. */
1187 no_shared_libraries (NULL, 0);
1188
6c95b8df
PA
1189 if (follow_exec_mode_string == follow_exec_mode_new)
1190 {
6c95b8df
PA
1191 /* The user wants to keep the old inferior and program spaces
1192 around. Create a new fresh one, and switch to it. */
1193
17d8546e
DB
1194 /* Do exit processing for the original inferior before adding
1195 the new inferior so we don't have two active inferiors with
1196 the same ptid, which can confuse find_inferior_ptid. */
1197 exit_inferior_num_silent (current_inferior ()->num);
1198
94585166
DB
1199 inf = add_inferior_with_spaces ();
1200 inf->pid = pid;
1201 target_follow_exec (inf, execd_pathname);
6c95b8df
PA
1202
1203 set_current_inferior (inf);
94585166
DB
1204 set_current_program_space (inf->pspace);
1205 add_thread (ptid);
6c95b8df 1206 }
9107fc8d
PA
1207 else
1208 {
1209 /* The old description may no longer be fit for the new image.
1210 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1211 old description; we'll read a new one below. No need to do
1212 this on "follow-exec-mode new", as the old inferior stays
1213 around (its description is later cleared/refetched on
1214 restart). */
1215 target_clear_description ();
1216 }
6c95b8df
PA
1217
1218 gdb_assert (current_program_space == inf->pspace);
1219
1777feb0 1220 /* That a.out is now the one to use. */
6c95b8df
PA
1221 exec_file_attach (execd_pathname, 0);
1222
c1e56572
JK
1223 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1224 (Position Independent Executable) main symbol file will get applied by
1225 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1226 the breakpoints with the zero displacement. */
1227
7dcd53a0
TT
1228 symbol_file_add (execd_pathname,
1229 (inf->symfile_flags
1230 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1231 NULL, 0);
1232
7dcd53a0
TT
1233 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1234 set_initial_language ();
c906108c 1235
9107fc8d
PA
1236 /* If the target can specify a description, read it. Must do this
1237 after flipping to the new executable (because the target supplied
1238 description must be compatible with the executable's
1239 architecture, and the old executable may e.g., be 32-bit, while
1240 the new one 64-bit), and before anything involving memory or
1241 registers. */
1242 target_find_description ();
1243
268a4a75 1244 solib_create_inferior_hook (0);
c906108c 1245
4efc6507
DE
1246 jit_inferior_created_hook ();
1247
c1e56572
JK
1248 breakpoint_re_set ();
1249
c906108c
SS
1250 /* Reinsert all breakpoints. (Those which were symbolic have
1251 been reset to the proper address in the new a.out, thanks
1777feb0 1252 to symbol_file_command...). */
c906108c
SS
1253 insert_breakpoints ();
1254
1255 /* The next resume of this inferior should bring it to the shlib
1256 startup breakpoints. (If the user had also set bp's on
1257 "main" from the old (parent) process, then they'll auto-
1777feb0 1258 matically get reset there in the new process.). */
c906108c
SS
1259}
1260
c2829269
PA
1261/* The queue of threads that need to do a step-over operation to get
1262 past e.g., a breakpoint. What technique is used to step over the
1263 breakpoint/watchpoint does not matter -- all threads end up in the
1264 same queue, to maintain rough temporal order of execution, in order
1265 to avoid starvation, otherwise, we could e.g., find ourselves
1266 constantly stepping the same couple threads past their breakpoints
1267 over and over, if the single-step finish fast enough. */
1268struct thread_info *step_over_queue_head;
1269
6c4cfb24
PA
1270/* Bit flags indicating what the thread needs to step over. */
1271
1272enum step_over_what
1273 {
1274 /* Step over a breakpoint. */
1275 STEP_OVER_BREAKPOINT = 1,
1276
1277 /* Step past a non-continuable watchpoint, in order to let the
1278 instruction execute so we can evaluate the watchpoint
1279 expression. */
1280 STEP_OVER_WATCHPOINT = 2
1281 };
1282
963f9c80 1283/* Info about an instruction that is being stepped over. */
31e77af2
PA
1284
1285struct step_over_info
1286{
963f9c80
PA
1287 /* If we're stepping past a breakpoint, this is the address space
1288 and address of the instruction the breakpoint is set at. We'll
1289 skip inserting all breakpoints here. Valid iff ASPACE is
1290 non-NULL. */
31e77af2 1291 struct address_space *aspace;
31e77af2 1292 CORE_ADDR address;
963f9c80
PA
1293
1294 /* The instruction being stepped over triggers a nonsteppable
1295 watchpoint. If true, we'll skip inserting watchpoints. */
1296 int nonsteppable_watchpoint_p;
31e77af2
PA
1297};
1298
1299/* The step-over info of the location that is being stepped over.
1300
1301 Note that with async/breakpoint always-inserted mode, a user might
1302 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1303 being stepped over. As setting a new breakpoint inserts all
1304 breakpoints, we need to make sure the breakpoint being stepped over
1305 isn't inserted then. We do that by only clearing the step-over
1306 info when the step-over is actually finished (or aborted).
1307
1308 Presently GDB can only step over one breakpoint at any given time.
1309 Given threads that can't run code in the same address space as the
1310 breakpoint's can't really miss the breakpoint, GDB could be taught
1311 to step-over at most one breakpoint per address space (so this info
1312 could move to the address space object if/when GDB is extended).
1313 The set of breakpoints being stepped over will normally be much
1314 smaller than the set of all breakpoints, so a flag in the
1315 breakpoint location structure would be wasteful. A separate list
1316 also saves complexity and run-time, as otherwise we'd have to go
1317 through all breakpoint locations clearing their flag whenever we
1318 start a new sequence. Similar considerations weigh against storing
1319 this info in the thread object. Plus, not all step overs actually
1320 have breakpoint locations -- e.g., stepping past a single-step
1321 breakpoint, or stepping to complete a non-continuable
1322 watchpoint. */
1323static struct step_over_info step_over_info;
1324
1325/* Record the address of the breakpoint/instruction we're currently
1326 stepping over. */
1327
1328static void
963f9c80
PA
1329set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1330 int nonsteppable_watchpoint_p)
31e77af2
PA
1331{
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
963f9c80 1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1335}
1336
1337/* Called when we're not longer stepping over a breakpoint / an
1338 instruction, so all breakpoints are free to be (re)inserted. */
1339
1340static void
1341clear_step_over_info (void)
1342{
372316f1
PA
1343 if (debug_infrun)
1344 fprintf_unfiltered (gdb_stdlog,
1345 "infrun: clear_step_over_info\n");
31e77af2
PA
1346 step_over_info.aspace = NULL;
1347 step_over_info.address = 0;
963f9c80 1348 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1349}
1350
7f89fd65 1351/* See infrun.h. */
31e77af2
PA
1352
1353int
1354stepping_past_instruction_at (struct address_space *aspace,
1355 CORE_ADDR address)
1356{
1357 return (step_over_info.aspace != NULL
1358 && breakpoint_address_match (aspace, address,
1359 step_over_info.aspace,
1360 step_over_info.address));
1361}
1362
963f9c80
PA
1363/* See infrun.h. */
1364
1365int
1366stepping_past_nonsteppable_watchpoint (void)
1367{
1368 return step_over_info.nonsteppable_watchpoint_p;
1369}
1370
6cc83d2a
PA
1371/* Returns true if step-over info is valid. */
1372
1373static int
1374step_over_info_valid_p (void)
1375{
963f9c80
PA
1376 return (step_over_info.aspace != NULL
1377 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1378}
1379
c906108c 1380\f
237fc4c9
PA
1381/* Displaced stepping. */
1382
1383/* In non-stop debugging mode, we must take special care to manage
1384 breakpoints properly; in particular, the traditional strategy for
1385 stepping a thread past a breakpoint it has hit is unsuitable.
1386 'Displaced stepping' is a tactic for stepping one thread past a
1387 breakpoint it has hit while ensuring that other threads running
1388 concurrently will hit the breakpoint as they should.
1389
1390 The traditional way to step a thread T off a breakpoint in a
1391 multi-threaded program in all-stop mode is as follows:
1392
1393 a0) Initially, all threads are stopped, and breakpoints are not
1394 inserted.
1395 a1) We single-step T, leaving breakpoints uninserted.
1396 a2) We insert breakpoints, and resume all threads.
1397
1398 In non-stop debugging, however, this strategy is unsuitable: we
1399 don't want to have to stop all threads in the system in order to
1400 continue or step T past a breakpoint. Instead, we use displaced
1401 stepping:
1402
1403 n0) Initially, T is stopped, other threads are running, and
1404 breakpoints are inserted.
1405 n1) We copy the instruction "under" the breakpoint to a separate
1406 location, outside the main code stream, making any adjustments
1407 to the instruction, register, and memory state as directed by
1408 T's architecture.
1409 n2) We single-step T over the instruction at its new location.
1410 n3) We adjust the resulting register and memory state as directed
1411 by T's architecture. This includes resetting T's PC to point
1412 back into the main instruction stream.
1413 n4) We resume T.
1414
1415 This approach depends on the following gdbarch methods:
1416
1417 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1418 indicate where to copy the instruction, and how much space must
1419 be reserved there. We use these in step n1.
1420
1421 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1422 address, and makes any necessary adjustments to the instruction,
1423 register contents, and memory. We use this in step n1.
1424
1425 - gdbarch_displaced_step_fixup adjusts registers and memory after
1426 we have successfuly single-stepped the instruction, to yield the
1427 same effect the instruction would have had if we had executed it
1428 at its original address. We use this in step n3.
1429
1430 - gdbarch_displaced_step_free_closure provides cleanup.
1431
1432 The gdbarch_displaced_step_copy_insn and
1433 gdbarch_displaced_step_fixup functions must be written so that
1434 copying an instruction with gdbarch_displaced_step_copy_insn,
1435 single-stepping across the copied instruction, and then applying
1436 gdbarch_displaced_insn_fixup should have the same effects on the
1437 thread's memory and registers as stepping the instruction in place
1438 would have. Exactly which responsibilities fall to the copy and
1439 which fall to the fixup is up to the author of those functions.
1440
1441 See the comments in gdbarch.sh for details.
1442
1443 Note that displaced stepping and software single-step cannot
1444 currently be used in combination, although with some care I think
1445 they could be made to. Software single-step works by placing
1446 breakpoints on all possible subsequent instructions; if the
1447 displaced instruction is a PC-relative jump, those breakpoints
1448 could fall in very strange places --- on pages that aren't
1449 executable, or at addresses that are not proper instruction
1450 boundaries. (We do generally let other threads run while we wait
1451 to hit the software single-step breakpoint, and they might
1452 encounter such a corrupted instruction.) One way to work around
1453 this would be to have gdbarch_displaced_step_copy_insn fully
1454 simulate the effect of PC-relative instructions (and return NULL)
1455 on architectures that use software single-stepping.
1456
1457 In non-stop mode, we can have independent and simultaneous step
1458 requests, so more than one thread may need to simultaneously step
1459 over a breakpoint. The current implementation assumes there is
1460 only one scratch space per process. In this case, we have to
1461 serialize access to the scratch space. If thread A wants to step
1462 over a breakpoint, but we are currently waiting for some other
1463 thread to complete a displaced step, we leave thread A stopped and
1464 place it in the displaced_step_request_queue. Whenever a displaced
1465 step finishes, we pick the next thread in the queue and start a new
1466 displaced step operation on it. See displaced_step_prepare and
1467 displaced_step_fixup for details. */
1468
fc1cf338
PA
1469/* Per-inferior displaced stepping state. */
1470struct displaced_step_inferior_state
1471{
1472 /* Pointer to next in linked list. */
1473 struct displaced_step_inferior_state *next;
1474
1475 /* The process this displaced step state refers to. */
1476 int pid;
1477
3fc8eb30
PA
1478 /* True if preparing a displaced step ever failed. If so, we won't
1479 try displaced stepping for this inferior again. */
1480 int failed_before;
1481
fc1cf338
PA
1482 /* If this is not null_ptid, this is the thread carrying out a
1483 displaced single-step in process PID. This thread's state will
1484 require fixing up once it has completed its step. */
1485 ptid_t step_ptid;
1486
1487 /* The architecture the thread had when we stepped it. */
1488 struct gdbarch *step_gdbarch;
1489
1490 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1491 for post-step cleanup. */
1492 struct displaced_step_closure *step_closure;
1493
1494 /* The address of the original instruction, and the copy we
1495 made. */
1496 CORE_ADDR step_original, step_copy;
1497
1498 /* Saved contents of copy area. */
1499 gdb_byte *step_saved_copy;
1500};
1501
1502/* The list of states of processes involved in displaced stepping
1503 presently. */
1504static struct displaced_step_inferior_state *displaced_step_inferior_states;
1505
1506/* Get the displaced stepping state of process PID. */
1507
1508static struct displaced_step_inferior_state *
1509get_displaced_stepping_state (int pid)
1510{
1511 struct displaced_step_inferior_state *state;
1512
1513 for (state = displaced_step_inferior_states;
1514 state != NULL;
1515 state = state->next)
1516 if (state->pid == pid)
1517 return state;
1518
1519 return NULL;
1520}
1521
372316f1
PA
1522/* Returns true if any inferior has a thread doing a displaced
1523 step. */
1524
1525static int
1526displaced_step_in_progress_any_inferior (void)
1527{
1528 struct displaced_step_inferior_state *state;
1529
1530 for (state = displaced_step_inferior_states;
1531 state != NULL;
1532 state = state->next)
1533 if (!ptid_equal (state->step_ptid, null_ptid))
1534 return 1;
1535
1536 return 0;
1537}
1538
8f572e5c
PA
1539/* Return true if process PID has a thread doing a displaced step. */
1540
1541static int
1542displaced_step_in_progress (int pid)
1543{
1544 struct displaced_step_inferior_state *displaced;
1545
1546 displaced = get_displaced_stepping_state (pid);
1547 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1548 return 1;
1549
1550 return 0;
1551}
1552
fc1cf338
PA
1553/* Add a new displaced stepping state for process PID to the displaced
1554 stepping state list, or return a pointer to an already existing
1555 entry, if it already exists. Never returns NULL. */
1556
1557static struct displaced_step_inferior_state *
1558add_displaced_stepping_state (int pid)
1559{
1560 struct displaced_step_inferior_state *state;
1561
1562 for (state = displaced_step_inferior_states;
1563 state != NULL;
1564 state = state->next)
1565 if (state->pid == pid)
1566 return state;
237fc4c9 1567
8d749320 1568 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1569 state->pid = pid;
1570 state->next = displaced_step_inferior_states;
1571 displaced_step_inferior_states = state;
237fc4c9 1572
fc1cf338
PA
1573 return state;
1574}
1575
a42244db
YQ
1576/* If inferior is in displaced stepping, and ADDR equals to starting address
1577 of copy area, return corresponding displaced_step_closure. Otherwise,
1578 return NULL. */
1579
1580struct displaced_step_closure*
1581get_displaced_step_closure_by_addr (CORE_ADDR addr)
1582{
1583 struct displaced_step_inferior_state *displaced
1584 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1585
1586 /* If checking the mode of displaced instruction in copy area. */
1587 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1588 && (displaced->step_copy == addr))
1589 return displaced->step_closure;
1590
1591 return NULL;
1592}
1593
fc1cf338 1594/* Remove the displaced stepping state of process PID. */
237fc4c9 1595
fc1cf338
PA
1596static void
1597remove_displaced_stepping_state (int pid)
1598{
1599 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1600
fc1cf338
PA
1601 gdb_assert (pid != 0);
1602
1603 it = displaced_step_inferior_states;
1604 prev_next_p = &displaced_step_inferior_states;
1605 while (it)
1606 {
1607 if (it->pid == pid)
1608 {
1609 *prev_next_p = it->next;
1610 xfree (it);
1611 return;
1612 }
1613
1614 prev_next_p = &it->next;
1615 it = *prev_next_p;
1616 }
1617}
1618
1619static void
1620infrun_inferior_exit (struct inferior *inf)
1621{
1622 remove_displaced_stepping_state (inf->pid);
1623}
237fc4c9 1624
fff08868
HZ
1625/* If ON, and the architecture supports it, GDB will use displaced
1626 stepping to step over breakpoints. If OFF, or if the architecture
1627 doesn't support it, GDB will instead use the traditional
1628 hold-and-step approach. If AUTO (which is the default), GDB will
1629 decide which technique to use to step over breakpoints depending on
1630 which of all-stop or non-stop mode is active --- displaced stepping
1631 in non-stop mode; hold-and-step in all-stop mode. */
1632
72d0e2c5 1633static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1634
237fc4c9
PA
1635static void
1636show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1637 struct cmd_list_element *c,
1638 const char *value)
1639{
72d0e2c5 1640 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1641 fprintf_filtered (file,
1642 _("Debugger's willingness to use displaced stepping "
1643 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1644 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1645 else
3e43a32a
MS
1646 fprintf_filtered (file,
1647 _("Debugger's willingness to use displaced stepping "
1648 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1649}
1650
fff08868 1651/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1652 over breakpoints of thread TP. */
fff08868 1653
237fc4c9 1654static int
3fc8eb30 1655use_displaced_stepping (struct thread_info *tp)
237fc4c9 1656{
3fc8eb30
PA
1657 struct regcache *regcache = get_thread_regcache (tp->ptid);
1658 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1659 struct displaced_step_inferior_state *displaced_state;
1660
1661 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1662
fbea99ea
PA
1663 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1664 && target_is_non_stop_p ())
72d0e2c5 1665 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1666 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1667 && find_record_target () == NULL
1668 && (displaced_state == NULL
1669 || !displaced_state->failed_before));
237fc4c9
PA
1670}
1671
1672/* Clean out any stray displaced stepping state. */
1673static void
fc1cf338 1674displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1675{
1676 /* Indicate that there is no cleanup pending. */
fc1cf338 1677 displaced->step_ptid = null_ptid;
237fc4c9 1678
fc1cf338 1679 if (displaced->step_closure)
237fc4c9 1680 {
fc1cf338
PA
1681 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1682 displaced->step_closure);
1683 displaced->step_closure = NULL;
237fc4c9
PA
1684 }
1685}
1686
1687static void
fc1cf338 1688displaced_step_clear_cleanup (void *arg)
237fc4c9 1689{
9a3c8263
SM
1690 struct displaced_step_inferior_state *state
1691 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1692
1693 displaced_step_clear (state);
237fc4c9
PA
1694}
1695
1696/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1697void
1698displaced_step_dump_bytes (struct ui_file *file,
1699 const gdb_byte *buf,
1700 size_t len)
1701{
1702 int i;
1703
1704 for (i = 0; i < len; i++)
1705 fprintf_unfiltered (file, "%02x ", buf[i]);
1706 fputs_unfiltered ("\n", file);
1707}
1708
1709/* Prepare to single-step, using displaced stepping.
1710
1711 Note that we cannot use displaced stepping when we have a signal to
1712 deliver. If we have a signal to deliver and an instruction to step
1713 over, then after the step, there will be no indication from the
1714 target whether the thread entered a signal handler or ignored the
1715 signal and stepped over the instruction successfully --- both cases
1716 result in a simple SIGTRAP. In the first case we mustn't do a
1717 fixup, and in the second case we must --- but we can't tell which.
1718 Comments in the code for 'random signals' in handle_inferior_event
1719 explain how we handle this case instead.
1720
1721 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1722 stepped now; 0 if displaced stepping this thread got queued; or -1
1723 if this instruction can't be displaced stepped. */
1724
237fc4c9 1725static int
3fc8eb30 1726displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1727{
ad53cd71 1728 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1729 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1730 struct regcache *regcache = get_thread_regcache (ptid);
1731 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1732 CORE_ADDR original, copy;
1733 ULONGEST len;
1734 struct displaced_step_closure *closure;
fc1cf338 1735 struct displaced_step_inferior_state *displaced;
9e529e1d 1736 int status;
237fc4c9
PA
1737
1738 /* We should never reach this function if the architecture does not
1739 support displaced stepping. */
1740 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1741
c2829269
PA
1742 /* Nor if the thread isn't meant to step over a breakpoint. */
1743 gdb_assert (tp->control.trap_expected);
1744
c1e36e3e
PA
1745 /* Disable range stepping while executing in the scratch pad. We
1746 want a single-step even if executing the displaced instruction in
1747 the scratch buffer lands within the stepping range (e.g., a
1748 jump/branch). */
1749 tp->control.may_range_step = 0;
1750
fc1cf338
PA
1751 /* We have to displaced step one thread at a time, as we only have
1752 access to a single scratch space per inferior. */
237fc4c9 1753
fc1cf338
PA
1754 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1755
1756 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1757 {
1758 /* Already waiting for a displaced step to finish. Defer this
1759 request and place in queue. */
237fc4c9
PA
1760
1761 if (debug_displaced)
1762 fprintf_unfiltered (gdb_stdlog,
c2829269 1763 "displaced: deferring step of %s\n",
237fc4c9
PA
1764 target_pid_to_str (ptid));
1765
c2829269 1766 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1767 return 0;
1768 }
1769 else
1770 {
1771 if (debug_displaced)
1772 fprintf_unfiltered (gdb_stdlog,
1773 "displaced: stepping %s now\n",
1774 target_pid_to_str (ptid));
1775 }
1776
fc1cf338 1777 displaced_step_clear (displaced);
237fc4c9 1778
ad53cd71
PA
1779 old_cleanups = save_inferior_ptid ();
1780 inferior_ptid = ptid;
1781
515630c5 1782 original = regcache_read_pc (regcache);
237fc4c9
PA
1783
1784 copy = gdbarch_displaced_step_location (gdbarch);
1785 len = gdbarch_max_insn_length (gdbarch);
1786
1787 /* Save the original contents of the copy area. */
224c3ddb 1788 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1789 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1790 &displaced->step_saved_copy);
9e529e1d
JK
1791 status = target_read_memory (copy, displaced->step_saved_copy, len);
1792 if (status != 0)
1793 throw_error (MEMORY_ERROR,
1794 _("Error accessing memory address %s (%s) for "
1795 "displaced-stepping scratch space."),
1796 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1797 if (debug_displaced)
1798 {
5af949e3
UW
1799 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1800 paddress (gdbarch, copy));
fc1cf338
PA
1801 displaced_step_dump_bytes (gdb_stdlog,
1802 displaced->step_saved_copy,
1803 len);
237fc4c9
PA
1804 };
1805
1806 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1807 original, copy, regcache);
7f03bd92
PA
1808 if (closure == NULL)
1809 {
1810 /* The architecture doesn't know how or want to displaced step
1811 this instruction or instruction sequence. Fallback to
1812 stepping over the breakpoint in-line. */
1813 do_cleanups (old_cleanups);
1814 return -1;
1815 }
237fc4c9 1816
9f5a595d
UW
1817 /* Save the information we need to fix things up if the step
1818 succeeds. */
fc1cf338
PA
1819 displaced->step_ptid = ptid;
1820 displaced->step_gdbarch = gdbarch;
1821 displaced->step_closure = closure;
1822 displaced->step_original = original;
1823 displaced->step_copy = copy;
9f5a595d 1824
fc1cf338 1825 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1826
1827 /* Resume execution at the copy. */
515630c5 1828 regcache_write_pc (regcache, copy);
237fc4c9 1829
ad53cd71
PA
1830 discard_cleanups (ignore_cleanups);
1831
1832 do_cleanups (old_cleanups);
237fc4c9
PA
1833
1834 if (debug_displaced)
5af949e3
UW
1835 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1836 paddress (gdbarch, copy));
237fc4c9 1837
237fc4c9
PA
1838 return 1;
1839}
1840
3fc8eb30
PA
1841/* Wrapper for displaced_step_prepare_throw that disabled further
1842 attempts at displaced stepping if we get a memory error. */
1843
1844static int
1845displaced_step_prepare (ptid_t ptid)
1846{
1847 int prepared = -1;
1848
1849 TRY
1850 {
1851 prepared = displaced_step_prepare_throw (ptid);
1852 }
1853 CATCH (ex, RETURN_MASK_ERROR)
1854 {
1855 struct displaced_step_inferior_state *displaced_state;
1856
1857 if (ex.error != MEMORY_ERROR)
1858 throw_exception (ex);
1859
1860 if (debug_infrun)
1861 {
1862 fprintf_unfiltered (gdb_stdlog,
1863 "infrun: disabling displaced stepping: %s\n",
1864 ex.message);
1865 }
1866
1867 /* Be verbose if "set displaced-stepping" is "on", silent if
1868 "auto". */
1869 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1870 {
fd7dcb94 1871 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1872 ex.message);
1873 }
1874
1875 /* Disable further displaced stepping attempts. */
1876 displaced_state
1877 = get_displaced_stepping_state (ptid_get_pid (ptid));
1878 displaced_state->failed_before = 1;
1879 }
1880 END_CATCH
1881
1882 return prepared;
1883}
1884
237fc4c9 1885static void
3e43a32a
MS
1886write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1887 const gdb_byte *myaddr, int len)
237fc4c9
PA
1888{
1889 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1890
237fc4c9
PA
1891 inferior_ptid = ptid;
1892 write_memory (memaddr, myaddr, len);
1893 do_cleanups (ptid_cleanup);
1894}
1895
e2d96639
YQ
1896/* Restore the contents of the copy area for thread PTID. */
1897
1898static void
1899displaced_step_restore (struct displaced_step_inferior_state *displaced,
1900 ptid_t ptid)
1901{
1902 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1903
1904 write_memory_ptid (ptid, displaced->step_copy,
1905 displaced->step_saved_copy, len);
1906 if (debug_displaced)
1907 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1908 target_pid_to_str (ptid),
1909 paddress (displaced->step_gdbarch,
1910 displaced->step_copy));
1911}
1912
372316f1
PA
1913/* If we displaced stepped an instruction successfully, adjust
1914 registers and memory to yield the same effect the instruction would
1915 have had if we had executed it at its original address, and return
1916 1. If the instruction didn't complete, relocate the PC and return
1917 -1. If the thread wasn't displaced stepping, return 0. */
1918
1919static int
2ea28649 1920displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1921{
1922 struct cleanup *old_cleanups;
fc1cf338
PA
1923 struct displaced_step_inferior_state *displaced
1924 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1925 int ret;
fc1cf338
PA
1926
1927 /* Was any thread of this process doing a displaced step? */
1928 if (displaced == NULL)
372316f1 1929 return 0;
237fc4c9
PA
1930
1931 /* Was this event for the pid we displaced? */
fc1cf338
PA
1932 if (ptid_equal (displaced->step_ptid, null_ptid)
1933 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1934 return 0;
237fc4c9 1935
fc1cf338 1936 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1937
e2d96639 1938 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1939
cb71640d
PA
1940 /* Fixup may need to read memory/registers. Switch to the thread
1941 that we're fixing up. Also, target_stopped_by_watchpoint checks
1942 the current thread. */
1943 switch_to_thread (event_ptid);
1944
237fc4c9 1945 /* Did the instruction complete successfully? */
cb71640d
PA
1946 if (signal == GDB_SIGNAL_TRAP
1947 && !(target_stopped_by_watchpoint ()
1948 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1949 || target_have_steppable_watchpoint)))
237fc4c9
PA
1950 {
1951 /* Fix up the resulting state. */
fc1cf338
PA
1952 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1953 displaced->step_closure,
1954 displaced->step_original,
1955 displaced->step_copy,
1956 get_thread_regcache (displaced->step_ptid));
372316f1 1957 ret = 1;
237fc4c9
PA
1958 }
1959 else
1960 {
1961 /* Since the instruction didn't complete, all we can do is
1962 relocate the PC. */
515630c5
UW
1963 struct regcache *regcache = get_thread_regcache (event_ptid);
1964 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1965
fc1cf338 1966 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1967 regcache_write_pc (regcache, pc);
372316f1 1968 ret = -1;
237fc4c9
PA
1969 }
1970
1971 do_cleanups (old_cleanups);
1972
fc1cf338 1973 displaced->step_ptid = null_ptid;
372316f1
PA
1974
1975 return ret;
c2829269 1976}
1c5cfe86 1977
4d9d9d04
PA
1978/* Data to be passed around while handling an event. This data is
1979 discarded between events. */
1980struct execution_control_state
1981{
1982 ptid_t ptid;
1983 /* The thread that got the event, if this was a thread event; NULL
1984 otherwise. */
1985 struct thread_info *event_thread;
1986
1987 struct target_waitstatus ws;
1988 int stop_func_filled_in;
1989 CORE_ADDR stop_func_start;
1990 CORE_ADDR stop_func_end;
1991 const char *stop_func_name;
1992 int wait_some_more;
1993
1994 /* True if the event thread hit the single-step breakpoint of
1995 another thread. Thus the event doesn't cause a stop, the thread
1996 needs to be single-stepped past the single-step breakpoint before
1997 we can switch back to the original stepping thread. */
1998 int hit_singlestep_breakpoint;
1999};
2000
2001/* Clear ECS and set it to point at TP. */
c2829269
PA
2002
2003static void
4d9d9d04
PA
2004reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2005{
2006 memset (ecs, 0, sizeof (*ecs));
2007 ecs->event_thread = tp;
2008 ecs->ptid = tp->ptid;
2009}
2010
2011static void keep_going_pass_signal (struct execution_control_state *ecs);
2012static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2013static int keep_going_stepped_thread (struct thread_info *tp);
4d9d9d04 2014static int thread_still_needs_step_over (struct thread_info *tp);
3fc8eb30 2015static void stop_all_threads (void);
4d9d9d04
PA
2016
2017/* Are there any pending step-over requests? If so, run all we can
2018 now and return true. Otherwise, return false. */
2019
2020static int
c2829269
PA
2021start_step_over (void)
2022{
2023 struct thread_info *tp, *next;
2024
372316f1
PA
2025 /* Don't start a new step-over if we already have an in-line
2026 step-over operation ongoing. */
2027 if (step_over_info_valid_p ())
2028 return 0;
2029
c2829269 2030 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2031 {
4d9d9d04
PA
2032 struct execution_control_state ecss;
2033 struct execution_control_state *ecs = &ecss;
372316f1
PA
2034 enum step_over_what step_what;
2035 int must_be_in_line;
c2829269
PA
2036
2037 next = thread_step_over_chain_next (tp);
237fc4c9 2038
c2829269
PA
2039 /* If this inferior already has a displaced step in process,
2040 don't start a new one. */
4d9d9d04 2041 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2042 continue;
2043
372316f1
PA
2044 step_what = thread_still_needs_step_over (tp);
2045 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2046 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2047 && !use_displaced_stepping (tp)));
372316f1
PA
2048
2049 /* We currently stop all threads of all processes to step-over
2050 in-line. If we need to start a new in-line step-over, let
2051 any pending displaced steps finish first. */
2052 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2053 return 0;
2054
c2829269
PA
2055 thread_step_over_chain_remove (tp);
2056
2057 if (step_over_queue_head == NULL)
2058 {
2059 if (debug_infrun)
2060 fprintf_unfiltered (gdb_stdlog,
2061 "infrun: step-over queue now empty\n");
2062 }
2063
372316f1
PA
2064 if (tp->control.trap_expected
2065 || tp->resumed
2066 || tp->executing)
ad53cd71 2067 {
4d9d9d04
PA
2068 internal_error (__FILE__, __LINE__,
2069 "[%s] has inconsistent state: "
372316f1 2070 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2071 target_pid_to_str (tp->ptid),
2072 tp->control.trap_expected,
372316f1 2073 tp->resumed,
4d9d9d04 2074 tp->executing);
ad53cd71 2075 }
1c5cfe86 2076
4d9d9d04
PA
2077 if (debug_infrun)
2078 fprintf_unfiltered (gdb_stdlog,
2079 "infrun: resuming [%s] for step-over\n",
2080 target_pid_to_str (tp->ptid));
2081
2082 /* keep_going_pass_signal skips the step-over if the breakpoint
2083 is no longer inserted. In all-stop, we want to keep looking
2084 for a thread that needs a step-over instead of resuming TP,
2085 because we wouldn't be able to resume anything else until the
2086 target stops again. In non-stop, the resume always resumes
2087 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2088 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2089 continue;
8550d3b3 2090
4d9d9d04
PA
2091 switch_to_thread (tp->ptid);
2092 reset_ecs (ecs, tp);
2093 keep_going_pass_signal (ecs);
1c5cfe86 2094
4d9d9d04
PA
2095 if (!ecs->wait_some_more)
2096 error (_("Command aborted."));
1c5cfe86 2097
372316f1
PA
2098 gdb_assert (tp->resumed);
2099
2100 /* If we started a new in-line step-over, we're done. */
2101 if (step_over_info_valid_p ())
2102 {
2103 gdb_assert (tp->control.trap_expected);
2104 return 1;
2105 }
2106
fbea99ea 2107 if (!target_is_non_stop_p ())
4d9d9d04
PA
2108 {
2109 /* On all-stop, shouldn't have resumed unless we needed a
2110 step over. */
2111 gdb_assert (tp->control.trap_expected
2112 || tp->step_after_step_resume_breakpoint);
2113
2114 /* With remote targets (at least), in all-stop, we can't
2115 issue any further remote commands until the program stops
2116 again. */
2117 return 1;
1c5cfe86 2118 }
c2829269 2119
4d9d9d04
PA
2120 /* Either the thread no longer needed a step-over, or a new
2121 displaced stepping sequence started. Even in the latter
2122 case, continue looking. Maybe we can also start another
2123 displaced step on a thread of other process. */
237fc4c9 2124 }
4d9d9d04
PA
2125
2126 return 0;
237fc4c9
PA
2127}
2128
5231c1fd
PA
2129/* Update global variables holding ptids to hold NEW_PTID if they were
2130 holding OLD_PTID. */
2131static void
2132infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2133{
2134 struct displaced_step_request *it;
fc1cf338 2135 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2136
2137 if (ptid_equal (inferior_ptid, old_ptid))
2138 inferior_ptid = new_ptid;
2139
fc1cf338
PA
2140 for (displaced = displaced_step_inferior_states;
2141 displaced;
2142 displaced = displaced->next)
2143 {
2144 if (ptid_equal (displaced->step_ptid, old_ptid))
2145 displaced->step_ptid = new_ptid;
fc1cf338 2146 }
5231c1fd
PA
2147}
2148
237fc4c9
PA
2149\f
2150/* Resuming. */
c906108c
SS
2151
2152/* Things to clean up if we QUIT out of resume (). */
c906108c 2153static void
74b7792f 2154resume_cleanups (void *ignore)
c906108c 2155{
34b7e8a6
PA
2156 if (!ptid_equal (inferior_ptid, null_ptid))
2157 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2158
c906108c
SS
2159 normal_stop ();
2160}
2161
53904c9e
AC
2162static const char schedlock_off[] = "off";
2163static const char schedlock_on[] = "on";
2164static const char schedlock_step[] = "step";
f2665db5 2165static const char schedlock_replay[] = "replay";
40478521 2166static const char *const scheduler_enums[] = {
ef346e04
AC
2167 schedlock_off,
2168 schedlock_on,
2169 schedlock_step,
f2665db5 2170 schedlock_replay,
ef346e04
AC
2171 NULL
2172};
f2665db5 2173static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2174static void
2175show_scheduler_mode (struct ui_file *file, int from_tty,
2176 struct cmd_list_element *c, const char *value)
2177{
3e43a32a
MS
2178 fprintf_filtered (file,
2179 _("Mode for locking scheduler "
2180 "during execution is \"%s\".\n"),
920d2a44
AC
2181 value);
2182}
c906108c
SS
2183
2184static void
96baa820 2185set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2186{
eefe576e
AC
2187 if (!target_can_lock_scheduler)
2188 {
2189 scheduler_mode = schedlock_off;
2190 error (_("Target '%s' cannot support this command."), target_shortname);
2191 }
c906108c
SS
2192}
2193
d4db2f36
PA
2194/* True if execution commands resume all threads of all processes by
2195 default; otherwise, resume only threads of the current inferior
2196 process. */
2197int sched_multi = 0;
2198
2facfe5c
DD
2199/* Try to setup for software single stepping over the specified location.
2200 Return 1 if target_resume() should use hardware single step.
2201
2202 GDBARCH the current gdbarch.
2203 PC the location to step over. */
2204
2205static int
2206maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2207{
2208 int hw_step = 1;
2209
f02253f1
HZ
2210 if (execution_direction == EXEC_FORWARD
2211 && gdbarch_software_single_step_p (gdbarch)
99e40580 2212 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2213 {
99e40580 2214 hw_step = 0;
2facfe5c
DD
2215 }
2216 return hw_step;
2217}
c906108c 2218
f3263aa4
PA
2219/* See infrun.h. */
2220
09cee04b
PA
2221ptid_t
2222user_visible_resume_ptid (int step)
2223{
f3263aa4 2224 ptid_t resume_ptid;
09cee04b 2225
09cee04b
PA
2226 if (non_stop)
2227 {
2228 /* With non-stop mode on, threads are always handled
2229 individually. */
2230 resume_ptid = inferior_ptid;
2231 }
2232 else if ((scheduler_mode == schedlock_on)
03d46957 2233 || (scheduler_mode == schedlock_step && step))
09cee04b 2234 {
f3263aa4
PA
2235 /* User-settable 'scheduler' mode requires solo thread
2236 resume. */
09cee04b
PA
2237 resume_ptid = inferior_ptid;
2238 }
f2665db5
MM
2239 else if ((scheduler_mode == schedlock_replay)
2240 && target_record_will_replay (minus_one_ptid, execution_direction))
2241 {
2242 /* User-settable 'scheduler' mode requires solo thread resume in replay
2243 mode. */
2244 resume_ptid = inferior_ptid;
2245 }
f3263aa4
PA
2246 else if (!sched_multi && target_supports_multi_process ())
2247 {
2248 /* Resume all threads of the current process (and none of other
2249 processes). */
2250 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2251 }
2252 else
2253 {
2254 /* Resume all threads of all processes. */
2255 resume_ptid = RESUME_ALL;
2256 }
09cee04b
PA
2257
2258 return resume_ptid;
2259}
2260
fbea99ea
PA
2261/* Return a ptid representing the set of threads that we will resume,
2262 in the perspective of the target, assuming run control handling
2263 does not require leaving some threads stopped (e.g., stepping past
2264 breakpoint). USER_STEP indicates whether we're about to start the
2265 target for a stepping command. */
2266
2267static ptid_t
2268internal_resume_ptid (int user_step)
2269{
2270 /* In non-stop, we always control threads individually. Note that
2271 the target may always work in non-stop mode even with "set
2272 non-stop off", in which case user_visible_resume_ptid could
2273 return a wildcard ptid. */
2274 if (target_is_non_stop_p ())
2275 return inferior_ptid;
2276 else
2277 return user_visible_resume_ptid (user_step);
2278}
2279
64ce06e4
PA
2280/* Wrapper for target_resume, that handles infrun-specific
2281 bookkeeping. */
2282
2283static void
2284do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2285{
2286 struct thread_info *tp = inferior_thread ();
2287
2288 /* Install inferior's terminal modes. */
2289 target_terminal_inferior ();
2290
2291 /* Avoid confusing the next resume, if the next stop/resume
2292 happens to apply to another thread. */
2293 tp->suspend.stop_signal = GDB_SIGNAL_0;
2294
8f572e5c
PA
2295 /* Advise target which signals may be handled silently.
2296
2297 If we have removed breakpoints because we are stepping over one
2298 in-line (in any thread), we need to receive all signals to avoid
2299 accidentally skipping a breakpoint during execution of a signal
2300 handler.
2301
2302 Likewise if we're displaced stepping, otherwise a trap for a
2303 breakpoint in a signal handler might be confused with the
2304 displaced step finishing. We don't make the displaced_step_fixup
2305 step distinguish the cases instead, because:
2306
2307 - a backtrace while stopped in the signal handler would show the
2308 scratch pad as frame older than the signal handler, instead of
2309 the real mainline code.
2310
2311 - when the thread is later resumed, the signal handler would
2312 return to the scratch pad area, which would no longer be
2313 valid. */
2314 if (step_over_info_valid_p ()
2315 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2316 target_pass_signals (0, NULL);
2317 else
2318 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2319
2320 target_resume (resume_ptid, step, sig);
2321}
2322
c906108c
SS
2323/* Resume the inferior, but allow a QUIT. This is useful if the user
2324 wants to interrupt some lengthy single-stepping operation
2325 (for child processes, the SIGINT goes to the inferior, and so
2326 we get a SIGINT random_signal, but for remote debugging and perhaps
2327 other targets, that's not true).
2328
c906108c
SS
2329 SIG is the signal to give the inferior (zero for none). */
2330void
64ce06e4 2331resume (enum gdb_signal sig)
c906108c 2332{
74b7792f 2333 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2334 struct regcache *regcache = get_current_regcache ();
2335 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2336 struct thread_info *tp = inferior_thread ();
515630c5 2337 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2338 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2339 ptid_t resume_ptid;
856e7dd6
PA
2340 /* This represents the user's step vs continue request. When
2341 deciding whether "set scheduler-locking step" applies, it's the
2342 user's intention that counts. */
2343 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2344 /* This represents what we'll actually request the target to do.
2345 This can decay from a step to a continue, if e.g., we need to
2346 implement single-stepping with breakpoints (software
2347 single-step). */
6b403daa 2348 int step;
c7e8a53c 2349
c2829269
PA
2350 gdb_assert (!thread_is_in_step_over_chain (tp));
2351
c906108c
SS
2352 QUIT;
2353
372316f1
PA
2354 if (tp->suspend.waitstatus_pending_p)
2355 {
2356 if (debug_infrun)
2357 {
2358 char *statstr;
2359
2360 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2361 fprintf_unfiltered (gdb_stdlog,
2362 "infrun: resume: thread %s has pending wait status %s "
2363 "(currently_stepping=%d).\n",
2364 target_pid_to_str (tp->ptid), statstr,
2365 currently_stepping (tp));
2366 xfree (statstr);
2367 }
2368
2369 tp->resumed = 1;
2370
2371 /* FIXME: What should we do if we are supposed to resume this
2372 thread with a signal? Maybe we should maintain a queue of
2373 pending signals to deliver. */
2374 if (sig != GDB_SIGNAL_0)
2375 {
fd7dcb94 2376 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2377 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2378 }
2379
2380 tp->suspend.stop_signal = GDB_SIGNAL_0;
2381 discard_cleanups (old_cleanups);
2382
2383 if (target_can_async_p ())
2384 target_async (1);
2385 return;
2386 }
2387
2388 tp->stepped_breakpoint = 0;
2389
6b403daa
PA
2390 /* Depends on stepped_breakpoint. */
2391 step = currently_stepping (tp);
2392
74609e71
YQ
2393 if (current_inferior ()->waiting_for_vfork_done)
2394 {
48f9886d
PA
2395 /* Don't try to single-step a vfork parent that is waiting for
2396 the child to get out of the shared memory region (by exec'ing
2397 or exiting). This is particularly important on software
2398 single-step archs, as the child process would trip on the
2399 software single step breakpoint inserted for the parent
2400 process. Since the parent will not actually execute any
2401 instruction until the child is out of the shared region (such
2402 are vfork's semantics), it is safe to simply continue it.
2403 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2404 the parent, and tell it to `keep_going', which automatically
2405 re-sets it stepping. */
74609e71
YQ
2406 if (debug_infrun)
2407 fprintf_unfiltered (gdb_stdlog,
2408 "infrun: resume : clear step\n");
a09dd441 2409 step = 0;
74609e71
YQ
2410 }
2411
527159b7 2412 if (debug_infrun)
237fc4c9 2413 fprintf_unfiltered (gdb_stdlog,
c9737c08 2414 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2415 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2416 step, gdb_signal_to_symbol_string (sig),
2417 tp->control.trap_expected,
0d9a9a5f
PA
2418 target_pid_to_str (inferior_ptid),
2419 paddress (gdbarch, pc));
c906108c 2420
c2c6d25f
JM
2421 /* Normally, by the time we reach `resume', the breakpoints are either
2422 removed or inserted, as appropriate. The exception is if we're sitting
2423 at a permanent breakpoint; we need to step over it, but permanent
2424 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2425 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2426 {
af48d08f
PA
2427 if (sig != GDB_SIGNAL_0)
2428 {
2429 /* We have a signal to pass to the inferior. The resume
2430 may, or may not take us to the signal handler. If this
2431 is a step, we'll need to stop in the signal handler, if
2432 there's one, (if the target supports stepping into
2433 handlers), or in the next mainline instruction, if
2434 there's no handler. If this is a continue, we need to be
2435 sure to run the handler with all breakpoints inserted.
2436 In all cases, set a breakpoint at the current address
2437 (where the handler returns to), and once that breakpoint
2438 is hit, resume skipping the permanent breakpoint. If
2439 that breakpoint isn't hit, then we've stepped into the
2440 signal handler (or hit some other event). We'll delete
2441 the step-resume breakpoint then. */
2442
2443 if (debug_infrun)
2444 fprintf_unfiltered (gdb_stdlog,
2445 "infrun: resume: skipping permanent breakpoint, "
2446 "deliver signal first\n");
2447
2448 clear_step_over_info ();
2449 tp->control.trap_expected = 0;
2450
2451 if (tp->control.step_resume_breakpoint == NULL)
2452 {
2453 /* Set a "high-priority" step-resume, as we don't want
2454 user breakpoints at PC to trigger (again) when this
2455 hits. */
2456 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2457 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2458
2459 tp->step_after_step_resume_breakpoint = step;
2460 }
2461
2462 insert_breakpoints ();
2463 }
2464 else
2465 {
2466 /* There's no signal to pass, we can go ahead and skip the
2467 permanent breakpoint manually. */
2468 if (debug_infrun)
2469 fprintf_unfiltered (gdb_stdlog,
2470 "infrun: resume: skipping permanent breakpoint\n");
2471 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2472 /* Update pc to reflect the new address from which we will
2473 execute instructions. */
2474 pc = regcache_read_pc (regcache);
2475
2476 if (step)
2477 {
2478 /* We've already advanced the PC, so the stepping part
2479 is done. Now we need to arrange for a trap to be
2480 reported to handle_inferior_event. Set a breakpoint
2481 at the current PC, and run to it. Don't update
2482 prev_pc, because if we end in
44a1ee51
PA
2483 switch_back_to_stepped_thread, we want the "expected
2484 thread advanced also" branch to be taken. IOW, we
2485 don't want this thread to step further from PC
af48d08f 2486 (overstep). */
1ac806b8 2487 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2488 insert_single_step_breakpoint (gdbarch, aspace, pc);
2489 insert_breakpoints ();
2490
fbea99ea 2491 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2492 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2493 discard_cleanups (old_cleanups);
372316f1 2494 tp->resumed = 1;
af48d08f
PA
2495 return;
2496 }
2497 }
6d350bb5 2498 }
c2c6d25f 2499
c1e36e3e
PA
2500 /* If we have a breakpoint to step over, make sure to do a single
2501 step only. Same if we have software watchpoints. */
2502 if (tp->control.trap_expected || bpstat_should_step ())
2503 tp->control.may_range_step = 0;
2504
237fc4c9
PA
2505 /* If enabled, step over breakpoints by executing a copy of the
2506 instruction at a different address.
2507
2508 We can't use displaced stepping when we have a signal to deliver;
2509 the comments for displaced_step_prepare explain why. The
2510 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2511 signals' explain what we do instead.
2512
2513 We can't use displaced stepping when we are waiting for vfork_done
2514 event, displaced stepping breaks the vfork child similarly as single
2515 step software breakpoint. */
3fc8eb30
PA
2516 if (tp->control.trap_expected
2517 && use_displaced_stepping (tp)
cb71640d 2518 && !step_over_info_valid_p ()
a493e3e2 2519 && sig == GDB_SIGNAL_0
74609e71 2520 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2521 {
3fc8eb30 2522 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2523
3fc8eb30 2524 if (prepared == 0)
d56b7306 2525 {
4d9d9d04
PA
2526 if (debug_infrun)
2527 fprintf_unfiltered (gdb_stdlog,
2528 "Got placed in step-over queue\n");
2529
2530 tp->control.trap_expected = 0;
d56b7306
VP
2531 discard_cleanups (old_cleanups);
2532 return;
2533 }
3fc8eb30
PA
2534 else if (prepared < 0)
2535 {
2536 /* Fallback to stepping over the breakpoint in-line. */
2537
2538 if (target_is_non_stop_p ())
2539 stop_all_threads ();
2540
2541 set_step_over_info (get_regcache_aspace (regcache),
2542 regcache_read_pc (regcache), 0);
2543
2544 step = maybe_software_singlestep (gdbarch, pc);
2545
2546 insert_breakpoints ();
2547 }
2548 else if (prepared > 0)
2549 {
2550 struct displaced_step_inferior_state *displaced;
99e40580 2551
3fc8eb30
PA
2552 /* Update pc to reflect the new address from which we will
2553 execute instructions due to displaced stepping. */
2554 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2555
3fc8eb30
PA
2556 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2557 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2558 displaced->step_closure);
2559 }
237fc4c9
PA
2560 }
2561
2facfe5c 2562 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2563 else if (step)
2facfe5c 2564 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2565
30852783
UW
2566 /* Currently, our software single-step implementation leads to different
2567 results than hardware single-stepping in one situation: when stepping
2568 into delivering a signal which has an associated signal handler,
2569 hardware single-step will stop at the first instruction of the handler,
2570 while software single-step will simply skip execution of the handler.
2571
2572 For now, this difference in behavior is accepted since there is no
2573 easy way to actually implement single-stepping into a signal handler
2574 without kernel support.
2575
2576 However, there is one scenario where this difference leads to follow-on
2577 problems: if we're stepping off a breakpoint by removing all breakpoints
2578 and then single-stepping. In this case, the software single-step
2579 behavior means that even if there is a *breakpoint* in the signal
2580 handler, GDB still would not stop.
2581
2582 Fortunately, we can at least fix this particular issue. We detect
2583 here the case where we are about to deliver a signal while software
2584 single-stepping with breakpoints removed. In this situation, we
2585 revert the decisions to remove all breakpoints and insert single-
2586 step breakpoints, and instead we install a step-resume breakpoint
2587 at the current address, deliver the signal without stepping, and
2588 once we arrive back at the step-resume breakpoint, actually step
2589 over the breakpoint we originally wanted to step over. */
34b7e8a6 2590 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2591 && sig != GDB_SIGNAL_0
2592 && step_over_info_valid_p ())
30852783
UW
2593 {
2594 /* If we have nested signals or a pending signal is delivered
2595 immediately after a handler returns, might might already have
2596 a step-resume breakpoint set on the earlier handler. We cannot
2597 set another step-resume breakpoint; just continue on until the
2598 original breakpoint is hit. */
2599 if (tp->control.step_resume_breakpoint == NULL)
2600 {
2c03e5be 2601 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2602 tp->step_after_step_resume_breakpoint = 1;
2603 }
2604
34b7e8a6 2605 delete_single_step_breakpoints (tp);
30852783 2606
31e77af2 2607 clear_step_over_info ();
30852783 2608 tp->control.trap_expected = 0;
31e77af2
PA
2609
2610 insert_breakpoints ();
30852783
UW
2611 }
2612
b0f16a3e
SM
2613 /* If STEP is set, it's a request to use hardware stepping
2614 facilities. But in that case, we should never
2615 use singlestep breakpoint. */
34b7e8a6 2616 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2617
fbea99ea 2618 /* Decide the set of threads to ask the target to resume. */
34b7e8a6 2619 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2620 && tp->control.trap_expected)
2621 {
2622 /* We're allowing a thread to run past a breakpoint it has
2623 hit, by single-stepping the thread with the breakpoint
2624 removed. In which case, we need to single-step only this
2625 thread, and keep others stopped, as they can miss this
2626 breakpoint if allowed to run. */
2627 resume_ptid = inferior_ptid;
2628 }
fbea99ea
PA
2629 else
2630 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2631
7f5ef605
PA
2632 if (execution_direction != EXEC_REVERSE
2633 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2634 {
372316f1
PA
2635 /* There are two cases where we currently need to step a
2636 breakpoint instruction when we have a signal to deliver:
2637
2638 - See handle_signal_stop where we handle random signals that
2639 could take out us out of the stepping range. Normally, in
2640 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2641 signal handler with a breakpoint at PC, but there are cases
2642 where we should _always_ single-step, even if we have a
2643 step-resume breakpoint, like when a software watchpoint is
2644 set. Assuming single-stepping and delivering a signal at the
2645 same time would takes us to the signal handler, then we could
2646 have removed the breakpoint at PC to step over it. However,
2647 some hardware step targets (like e.g., Mac OS) can't step
2648 into signal handlers, and for those, we need to leave the
2649 breakpoint at PC inserted, as otherwise if the handler
2650 recurses and executes PC again, it'll miss the breakpoint.
2651 So we leave the breakpoint inserted anyway, but we need to
2652 record that we tried to step a breakpoint instruction, so
372316f1
PA
2653 that adjust_pc_after_break doesn't end up confused.
2654
2655 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2656 in one thread after another thread that was stepping had been
2657 momentarily paused for a step-over. When we re-resume the
2658 stepping thread, it may be resumed from that address with a
2659 breakpoint that hasn't trapped yet. Seen with
2660 gdb.threads/non-stop-fair-events.exp, on targets that don't
2661 do displaced stepping. */
2662
2663 if (debug_infrun)
2664 fprintf_unfiltered (gdb_stdlog,
2665 "infrun: resume: [%s] stepped breakpoint\n",
2666 target_pid_to_str (tp->ptid));
7f5ef605
PA
2667
2668 tp->stepped_breakpoint = 1;
2669
b0f16a3e
SM
2670 /* Most targets can step a breakpoint instruction, thus
2671 executing it normally. But if this one cannot, just
2672 continue and we will hit it anyway. */
7f5ef605 2673 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2674 step = 0;
2675 }
ef5cf84e 2676
b0f16a3e 2677 if (debug_displaced
cb71640d 2678 && tp->control.trap_expected
3fc8eb30 2679 && use_displaced_stepping (tp)
cb71640d 2680 && !step_over_info_valid_p ())
b0f16a3e 2681 {
d9b67d9f 2682 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2683 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2684 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2685 gdb_byte buf[4];
2686
2687 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2688 paddress (resume_gdbarch, actual_pc));
2689 read_memory (actual_pc, buf, sizeof (buf));
2690 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2691 }
237fc4c9 2692
b0f16a3e
SM
2693 if (tp->control.may_range_step)
2694 {
2695 /* If we're resuming a thread with the PC out of the step
2696 range, then we're doing some nested/finer run control
2697 operation, like stepping the thread out of the dynamic
2698 linker or the displaced stepping scratch pad. We
2699 shouldn't have allowed a range step then. */
2700 gdb_assert (pc_in_thread_step_range (pc, tp));
2701 }
c1e36e3e 2702
64ce06e4 2703 do_target_resume (resume_ptid, step, sig);
372316f1 2704 tp->resumed = 1;
c906108c
SS
2705 discard_cleanups (old_cleanups);
2706}
2707\f
237fc4c9 2708/* Proceeding. */
c906108c 2709
4c2f2a79
PA
2710/* See infrun.h. */
2711
2712/* Counter that tracks number of user visible stops. This can be used
2713 to tell whether a command has proceeded the inferior past the
2714 current location. This allows e.g., inferior function calls in
2715 breakpoint commands to not interrupt the command list. When the
2716 call finishes successfully, the inferior is standing at the same
2717 breakpoint as if nothing happened (and so we don't call
2718 normal_stop). */
2719static ULONGEST current_stop_id;
2720
2721/* See infrun.h. */
2722
2723ULONGEST
2724get_stop_id (void)
2725{
2726 return current_stop_id;
2727}
2728
2729/* Called when we report a user visible stop. */
2730
2731static void
2732new_stop_id (void)
2733{
2734 current_stop_id++;
2735}
2736
c906108c
SS
2737/* Clear out all variables saying what to do when inferior is continued.
2738 First do this, then set the ones you want, then call `proceed'. */
2739
a7212384
UW
2740static void
2741clear_proceed_status_thread (struct thread_info *tp)
c906108c 2742{
a7212384
UW
2743 if (debug_infrun)
2744 fprintf_unfiltered (gdb_stdlog,
2745 "infrun: clear_proceed_status_thread (%s)\n",
2746 target_pid_to_str (tp->ptid));
d6b48e9c 2747
372316f1
PA
2748 /* If we're starting a new sequence, then the previous finished
2749 single-step is no longer relevant. */
2750 if (tp->suspend.waitstatus_pending_p)
2751 {
2752 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2753 {
2754 if (debug_infrun)
2755 fprintf_unfiltered (gdb_stdlog,
2756 "infrun: clear_proceed_status: pending "
2757 "event of %s was a finished step. "
2758 "Discarding.\n",
2759 target_pid_to_str (tp->ptid));
2760
2761 tp->suspend.waitstatus_pending_p = 0;
2762 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2763 }
2764 else if (debug_infrun)
2765 {
2766 char *statstr;
2767
2768 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2769 fprintf_unfiltered (gdb_stdlog,
2770 "infrun: clear_proceed_status_thread: thread %s "
2771 "has pending wait status %s "
2772 "(currently_stepping=%d).\n",
2773 target_pid_to_str (tp->ptid), statstr,
2774 currently_stepping (tp));
2775 xfree (statstr);
2776 }
2777 }
2778
70509625
PA
2779 /* If this signal should not be seen by program, give it zero.
2780 Used for debugging signals. */
2781 if (!signal_pass_state (tp->suspend.stop_signal))
2782 tp->suspend.stop_signal = GDB_SIGNAL_0;
2783
243a9253
PA
2784 thread_fsm_delete (tp->thread_fsm);
2785 tp->thread_fsm = NULL;
2786
16c381f0
JK
2787 tp->control.trap_expected = 0;
2788 tp->control.step_range_start = 0;
2789 tp->control.step_range_end = 0;
c1e36e3e 2790 tp->control.may_range_step = 0;
16c381f0
JK
2791 tp->control.step_frame_id = null_frame_id;
2792 tp->control.step_stack_frame_id = null_frame_id;
2793 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2794 tp->control.step_start_function = NULL;
a7212384 2795 tp->stop_requested = 0;
4e1c45ea 2796
16c381f0 2797 tp->control.stop_step = 0;
32400beb 2798
16c381f0 2799 tp->control.proceed_to_finish = 0;
414c69f7 2800
17b2616c 2801 tp->control.command_interp = NULL;
856e7dd6 2802 tp->control.stepping_command = 0;
17b2616c 2803
a7212384 2804 /* Discard any remaining commands or status from previous stop. */
16c381f0 2805 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2806}
32400beb 2807
a7212384 2808void
70509625 2809clear_proceed_status (int step)
a7212384 2810{
f2665db5
MM
2811 /* With scheduler-locking replay, stop replaying other threads if we're
2812 not replaying the user-visible resume ptid.
2813
2814 This is a convenience feature to not require the user to explicitly
2815 stop replaying the other threads. We're assuming that the user's
2816 intent is to resume tracing the recorded process. */
2817 if (!non_stop && scheduler_mode == schedlock_replay
2818 && target_record_is_replaying (minus_one_ptid)
2819 && !target_record_will_replay (user_visible_resume_ptid (step),
2820 execution_direction))
2821 target_record_stop_replaying ();
2822
6c95b8df
PA
2823 if (!non_stop)
2824 {
70509625
PA
2825 struct thread_info *tp;
2826 ptid_t resume_ptid;
2827
2828 resume_ptid = user_visible_resume_ptid (step);
2829
2830 /* In all-stop mode, delete the per-thread status of all threads
2831 we're about to resume, implicitly and explicitly. */
2832 ALL_NON_EXITED_THREADS (tp)
2833 {
2834 if (!ptid_match (tp->ptid, resume_ptid))
2835 continue;
2836 clear_proceed_status_thread (tp);
2837 }
6c95b8df
PA
2838 }
2839
a7212384
UW
2840 if (!ptid_equal (inferior_ptid, null_ptid))
2841 {
2842 struct inferior *inferior;
2843
2844 if (non_stop)
2845 {
6c95b8df
PA
2846 /* If in non-stop mode, only delete the per-thread status of
2847 the current thread. */
a7212384
UW
2848 clear_proceed_status_thread (inferior_thread ());
2849 }
6c95b8df 2850
d6b48e9c 2851 inferior = current_inferior ();
16c381f0 2852 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2853 }
2854
f3b1572e 2855 observer_notify_about_to_proceed ();
c906108c
SS
2856}
2857
99619bea
PA
2858/* Returns true if TP is still stopped at a breakpoint that needs
2859 stepping-over in order to make progress. If the breakpoint is gone
2860 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2861
2862static int
6c4cfb24 2863thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2864{
2865 if (tp->stepping_over_breakpoint)
2866 {
2867 struct regcache *regcache = get_thread_regcache (tp->ptid);
2868
2869 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2870 regcache_read_pc (regcache))
2871 == ordinary_breakpoint_here)
99619bea
PA
2872 return 1;
2873
2874 tp->stepping_over_breakpoint = 0;
2875 }
2876
2877 return 0;
2878}
2879
6c4cfb24
PA
2880/* Check whether thread TP still needs to start a step-over in order
2881 to make progress when resumed. Returns an bitwise or of enum
2882 step_over_what bits, indicating what needs to be stepped over. */
2883
2884static int
2885thread_still_needs_step_over (struct thread_info *tp)
2886{
2887 struct inferior *inf = find_inferior_ptid (tp->ptid);
2888 int what = 0;
2889
2890 if (thread_still_needs_step_over_bp (tp))
2891 what |= STEP_OVER_BREAKPOINT;
2892
2893 if (tp->stepping_over_watchpoint
2894 && !target_have_steppable_watchpoint)
2895 what |= STEP_OVER_WATCHPOINT;
2896
2897 return what;
2898}
2899
483805cf
PA
2900/* Returns true if scheduler locking applies. STEP indicates whether
2901 we're about to do a step/next-like command to a thread. */
2902
2903static int
856e7dd6 2904schedlock_applies (struct thread_info *tp)
483805cf
PA
2905{
2906 return (scheduler_mode == schedlock_on
2907 || (scheduler_mode == schedlock_step
f2665db5
MM
2908 && tp->control.stepping_command)
2909 || (scheduler_mode == schedlock_replay
2910 && target_record_will_replay (minus_one_ptid,
2911 execution_direction)));
483805cf
PA
2912}
2913
c906108c
SS
2914/* Basic routine for continuing the program in various fashions.
2915
2916 ADDR is the address to resume at, or -1 for resume where stopped.
2917 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2918 or -1 for act according to how it stopped.
c906108c 2919 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2920 -1 means return after that and print nothing.
2921 You should probably set various step_... variables
2922 before calling here, if you are stepping.
c906108c
SS
2923
2924 You should call clear_proceed_status before calling proceed. */
2925
2926void
64ce06e4 2927proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2928{
e58b0e63
PA
2929 struct regcache *regcache;
2930 struct gdbarch *gdbarch;
4e1c45ea 2931 struct thread_info *tp;
e58b0e63 2932 CORE_ADDR pc;
6c95b8df 2933 struct address_space *aspace;
4d9d9d04
PA
2934 ptid_t resume_ptid;
2935 struct execution_control_state ecss;
2936 struct execution_control_state *ecs = &ecss;
2937 struct cleanup *old_chain;
2938 int started;
c906108c 2939
e58b0e63
PA
2940 /* If we're stopped at a fork/vfork, follow the branch set by the
2941 "set follow-fork-mode" command; otherwise, we'll just proceed
2942 resuming the current thread. */
2943 if (!follow_fork ())
2944 {
2945 /* The target for some reason decided not to resume. */
2946 normal_stop ();
f148b27e
PA
2947 if (target_can_async_p ())
2948 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2949 return;
2950 }
2951
842951eb
PA
2952 /* We'll update this if & when we switch to a new thread. */
2953 previous_inferior_ptid = inferior_ptid;
2954
e58b0e63
PA
2955 regcache = get_current_regcache ();
2956 gdbarch = get_regcache_arch (regcache);
6c95b8df 2957 aspace = get_regcache_aspace (regcache);
e58b0e63 2958 pc = regcache_read_pc (regcache);
2adfaa28 2959 tp = inferior_thread ();
e58b0e63 2960
99619bea
PA
2961 /* Fill in with reasonable starting values. */
2962 init_thread_stepping_state (tp);
2963
c2829269
PA
2964 gdb_assert (!thread_is_in_step_over_chain (tp));
2965
2acceee2 2966 if (addr == (CORE_ADDR) -1)
c906108c 2967 {
af48d08f
PA
2968 if (pc == stop_pc
2969 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2970 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2971 /* There is a breakpoint at the address we will resume at,
2972 step one instruction before inserting breakpoints so that
2973 we do not stop right away (and report a second hit at this
b2175913
MS
2974 breakpoint).
2975
2976 Note, we don't do this in reverse, because we won't
2977 actually be executing the breakpoint insn anyway.
2978 We'll be (un-)executing the previous instruction. */
99619bea 2979 tp->stepping_over_breakpoint = 1;
515630c5
UW
2980 else if (gdbarch_single_step_through_delay_p (gdbarch)
2981 && gdbarch_single_step_through_delay (gdbarch,
2982 get_current_frame ()))
3352ef37
AC
2983 /* We stepped onto an instruction that needs to be stepped
2984 again before re-inserting the breakpoint, do so. */
99619bea 2985 tp->stepping_over_breakpoint = 1;
c906108c
SS
2986 }
2987 else
2988 {
515630c5 2989 regcache_write_pc (regcache, addr);
c906108c
SS
2990 }
2991
70509625
PA
2992 if (siggnal != GDB_SIGNAL_DEFAULT)
2993 tp->suspend.stop_signal = siggnal;
2994
17b2616c
PA
2995 /* Record the interpreter that issued the execution command that
2996 caused this thread to resume. If the top level interpreter is
2997 MI/async, and the execution command was a CLI command
2998 (next/step/etc.), we'll want to print stop event output to the MI
2999 console channel (the stepped-to line, etc.), as if the user
3000 entered the execution command on a real GDB console. */
4d9d9d04
PA
3001 tp->control.command_interp = command_interp ();
3002
3003 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3004
3005 /* If an exception is thrown from this point on, make sure to
3006 propagate GDB's knowledge of the executing state to the
3007 frontend/user running state. */
3008 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3009
3010 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3011 threads (e.g., we might need to set threads stepping over
3012 breakpoints first), from the user/frontend's point of view, all
3013 threads in RESUME_PTID are now running. Unless we're calling an
3014 inferior function, as in that case we pretend the inferior
3015 doesn't run at all. */
3016 if (!tp->control.in_infcall)
3017 set_running (resume_ptid, 1);
17b2616c 3018
527159b7 3019 if (debug_infrun)
8a9de0e4 3020 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3021 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3022 paddress (gdbarch, addr),
64ce06e4 3023 gdb_signal_to_symbol_string (siggnal));
527159b7 3024
4d9d9d04
PA
3025 annotate_starting ();
3026
3027 /* Make sure that output from GDB appears before output from the
3028 inferior. */
3029 gdb_flush (gdb_stdout);
3030
3031 /* In a multi-threaded task we may select another thread and
3032 then continue or step.
3033
3034 But if a thread that we're resuming had stopped at a breakpoint,
3035 it will immediately cause another breakpoint stop without any
3036 execution (i.e. it will report a breakpoint hit incorrectly). So
3037 we must step over it first.
3038
3039 Look for threads other than the current (TP) that reported a
3040 breakpoint hit and haven't been resumed yet since. */
3041
3042 /* If scheduler locking applies, we can avoid iterating over all
3043 threads. */
3044 if (!non_stop && !schedlock_applies (tp))
94cc34af 3045 {
4d9d9d04
PA
3046 struct thread_info *current = tp;
3047
3048 ALL_NON_EXITED_THREADS (tp)
3049 {
3050 /* Ignore the current thread here. It's handled
3051 afterwards. */
3052 if (tp == current)
3053 continue;
99619bea 3054
4d9d9d04
PA
3055 /* Ignore threads of processes we're not resuming. */
3056 if (!ptid_match (tp->ptid, resume_ptid))
3057 continue;
c906108c 3058
4d9d9d04
PA
3059 if (!thread_still_needs_step_over (tp))
3060 continue;
3061
3062 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3063
99619bea
PA
3064 if (debug_infrun)
3065 fprintf_unfiltered (gdb_stdlog,
3066 "infrun: need to step-over [%s] first\n",
4d9d9d04 3067 target_pid_to_str (tp->ptid));
99619bea 3068
4d9d9d04 3069 thread_step_over_chain_enqueue (tp);
2adfaa28 3070 }
31e77af2 3071
4d9d9d04 3072 tp = current;
30852783
UW
3073 }
3074
4d9d9d04
PA
3075 /* Enqueue the current thread last, so that we move all other
3076 threads over their breakpoints first. */
3077 if (tp->stepping_over_breakpoint)
3078 thread_step_over_chain_enqueue (tp);
30852783 3079
4d9d9d04
PA
3080 /* If the thread isn't started, we'll still need to set its prev_pc,
3081 so that switch_back_to_stepped_thread knows the thread hasn't
3082 advanced. Must do this before resuming any thread, as in
3083 all-stop/remote, once we resume we can't send any other packet
3084 until the target stops again. */
3085 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3086
4d9d9d04 3087 started = start_step_over ();
c906108c 3088
4d9d9d04
PA
3089 if (step_over_info_valid_p ())
3090 {
3091 /* Either this thread started a new in-line step over, or some
3092 other thread was already doing one. In either case, don't
3093 resume anything else until the step-over is finished. */
3094 }
fbea99ea 3095 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3096 {
3097 /* A new displaced stepping sequence was started. In all-stop,
3098 we can't talk to the target anymore until it next stops. */
3099 }
fbea99ea
PA
3100 else if (!non_stop && target_is_non_stop_p ())
3101 {
3102 /* In all-stop, but the target is always in non-stop mode.
3103 Start all other threads that are implicitly resumed too. */
3104 ALL_NON_EXITED_THREADS (tp)
3105 {
3106 /* Ignore threads of processes we're not resuming. */
3107 if (!ptid_match (tp->ptid, resume_ptid))
3108 continue;
3109
3110 if (tp->resumed)
3111 {
3112 if (debug_infrun)
3113 fprintf_unfiltered (gdb_stdlog,
3114 "infrun: proceed: [%s] resumed\n",
3115 target_pid_to_str (tp->ptid));
3116 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3117 continue;
3118 }
3119
3120 if (thread_is_in_step_over_chain (tp))
3121 {
3122 if (debug_infrun)
3123 fprintf_unfiltered (gdb_stdlog,
3124 "infrun: proceed: [%s] needs step-over\n",
3125 target_pid_to_str (tp->ptid));
3126 continue;
3127 }
3128
3129 if (debug_infrun)
3130 fprintf_unfiltered (gdb_stdlog,
3131 "infrun: proceed: resuming %s\n",
3132 target_pid_to_str (tp->ptid));
3133
3134 reset_ecs (ecs, tp);
3135 switch_to_thread (tp->ptid);
3136 keep_going_pass_signal (ecs);
3137 if (!ecs->wait_some_more)
fd7dcb94 3138 error (_("Command aborted."));
fbea99ea
PA
3139 }
3140 }
372316f1 3141 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3142 {
3143 /* The thread wasn't started, and isn't queued, run it now. */
3144 reset_ecs (ecs, tp);
3145 switch_to_thread (tp->ptid);
3146 keep_going_pass_signal (ecs);
3147 if (!ecs->wait_some_more)
fd7dcb94 3148 error (_("Command aborted."));
4d9d9d04 3149 }
c906108c 3150
4d9d9d04 3151 discard_cleanups (old_chain);
c906108c 3152
0b333c5e
PA
3153 /* Tell the event loop to wait for it to stop. If the target
3154 supports asynchronous execution, it'll do this from within
3155 target_resume. */
362646f5 3156 if (!target_can_async_p ())
0b333c5e 3157 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3158}
c906108c
SS
3159\f
3160
3161/* Start remote-debugging of a machine over a serial link. */
96baa820 3162
c906108c 3163void
8621d6a9 3164start_remote (int from_tty)
c906108c 3165{
d6b48e9c 3166 struct inferior *inferior;
d6b48e9c
PA
3167
3168 inferior = current_inferior ();
16c381f0 3169 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3170
1777feb0 3171 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3172 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3173 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3174 nothing is returned (instead of just blocking). Because of this,
3175 targets expecting an immediate response need to, internally, set
3176 things up so that the target_wait() is forced to eventually
1777feb0 3177 timeout. */
6426a772
JM
3178 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3179 differentiate to its caller what the state of the target is after
3180 the initial open has been performed. Here we're assuming that
3181 the target has stopped. It should be possible to eventually have
3182 target_open() return to the caller an indication that the target
3183 is currently running and GDB state should be set to the same as
1777feb0 3184 for an async run. */
e4c8541f 3185 wait_for_inferior ();
8621d6a9
DJ
3186
3187 /* Now that the inferior has stopped, do any bookkeeping like
3188 loading shared libraries. We want to do this before normal_stop,
3189 so that the displayed frame is up to date. */
3190 post_create_inferior (&current_target, from_tty);
3191
6426a772 3192 normal_stop ();
c906108c
SS
3193}
3194
3195/* Initialize static vars when a new inferior begins. */
3196
3197void
96baa820 3198init_wait_for_inferior (void)
c906108c
SS
3199{
3200 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3201
c906108c
SS
3202 breakpoint_init_inferior (inf_starting);
3203
70509625 3204 clear_proceed_status (0);
9f976b41 3205
ca005067 3206 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3207
842951eb 3208 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3209
edb3359d
DJ
3210 /* Discard any skipped inlined frames. */
3211 clear_inline_frame_state (minus_one_ptid);
c906108c 3212}
237fc4c9 3213
c906108c 3214\f
488f131b 3215
ec9499be 3216static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3217
568d6575
UW
3218static void handle_step_into_function (struct gdbarch *gdbarch,
3219 struct execution_control_state *ecs);
3220static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3221 struct execution_control_state *ecs);
4f5d7f63 3222static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3223static void check_exception_resume (struct execution_control_state *,
28106bc2 3224 struct frame_info *);
611c83ae 3225
bdc36728 3226static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3227static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3228static void keep_going (struct execution_control_state *ecs);
94c57d6a 3229static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3230static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3231
252fbfc8
PA
3232/* Callback for iterate over threads. If the thread is stopped, but
3233 the user/frontend doesn't know about that yet, go through
3234 normal_stop, as if the thread had just stopped now. ARG points at
3235 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3236 ptid_is_pid(PTID) is true, applies to all threads of the process
3237 pointed at by PTID. Otherwise, apply only to the thread pointed by
3238 PTID. */
3239
3240static int
3241infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3242{
3243 ptid_t ptid = * (ptid_t *) arg;
3244
3245 if ((ptid_equal (info->ptid, ptid)
3246 || ptid_equal (minus_one_ptid, ptid)
3247 || (ptid_is_pid (ptid)
3248 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3249 && is_running (info->ptid)
3250 && !is_executing (info->ptid))
3251 {
3252 struct cleanup *old_chain;
3253 struct execution_control_state ecss;
3254 struct execution_control_state *ecs = &ecss;
3255
3256 memset (ecs, 0, sizeof (*ecs));
3257
3258 old_chain = make_cleanup_restore_current_thread ();
3259
f15cb84a
YQ
3260 overlay_cache_invalid = 1;
3261 /* Flush target cache before starting to handle each event.
3262 Target was running and cache could be stale. This is just a
3263 heuristic. Running threads may modify target memory, but we
3264 don't get any event. */
3265 target_dcache_invalidate ();
3266
252fbfc8
PA
3267 /* Go through handle_inferior_event/normal_stop, so we always
3268 have consistent output as if the stop event had been
3269 reported. */
3270 ecs->ptid = info->ptid;
243a9253 3271 ecs->event_thread = info;
252fbfc8 3272 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3273 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3274
3275 handle_inferior_event (ecs);
3276
3277 if (!ecs->wait_some_more)
3278 {
243a9253
PA
3279 /* Cancel any running execution command. */
3280 thread_cancel_execution_command (info);
3281
252fbfc8 3282 normal_stop ();
252fbfc8
PA
3283 }
3284
3285 do_cleanups (old_chain);
3286 }
3287
3288 return 0;
3289}
3290
3291/* This function is attached as a "thread_stop_requested" observer.
3292 Cleanup local state that assumed the PTID was to be resumed, and
3293 report the stop to the frontend. */
3294
2c0b251b 3295static void
252fbfc8
PA
3296infrun_thread_stop_requested (ptid_t ptid)
3297{
c2829269 3298 struct thread_info *tp;
252fbfc8 3299
c2829269
PA
3300 /* PTID was requested to stop. Remove matching threads from the
3301 step-over queue, so we don't try to resume them
3302 automatically. */
3303 ALL_NON_EXITED_THREADS (tp)
3304 if (ptid_match (tp->ptid, ptid))
3305 {
3306 if (thread_is_in_step_over_chain (tp))
3307 thread_step_over_chain_remove (tp);
3308 }
252fbfc8
PA
3309
3310 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3311}
3312
a07daef3
PA
3313static void
3314infrun_thread_thread_exit (struct thread_info *tp, int silent)
3315{
3316 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3317 nullify_last_target_wait_ptid ();
3318}
3319
0cbcdb96
PA
3320/* Delete the step resume, single-step and longjmp/exception resume
3321 breakpoints of TP. */
4e1c45ea 3322
0cbcdb96
PA
3323static void
3324delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3325{
0cbcdb96
PA
3326 delete_step_resume_breakpoint (tp);
3327 delete_exception_resume_breakpoint (tp);
34b7e8a6 3328 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3329}
3330
0cbcdb96
PA
3331/* If the target still has execution, call FUNC for each thread that
3332 just stopped. In all-stop, that's all the non-exited threads; in
3333 non-stop, that's the current thread, only. */
3334
3335typedef void (*for_each_just_stopped_thread_callback_func)
3336 (struct thread_info *tp);
4e1c45ea
PA
3337
3338static void
0cbcdb96 3339for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3340{
0cbcdb96 3341 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3342 return;
3343
fbea99ea 3344 if (target_is_non_stop_p ())
4e1c45ea 3345 {
0cbcdb96
PA
3346 /* If in non-stop mode, only the current thread stopped. */
3347 func (inferior_thread ());
4e1c45ea
PA
3348 }
3349 else
0cbcdb96
PA
3350 {
3351 struct thread_info *tp;
3352
3353 /* In all-stop mode, all threads have stopped. */
3354 ALL_NON_EXITED_THREADS (tp)
3355 {
3356 func (tp);
3357 }
3358 }
3359}
3360
3361/* Delete the step resume and longjmp/exception resume breakpoints of
3362 the threads that just stopped. */
3363
3364static void
3365delete_just_stopped_threads_infrun_breakpoints (void)
3366{
3367 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3368}
3369
3370/* Delete the single-step breakpoints of the threads that just
3371 stopped. */
7c16b83e 3372
34b7e8a6
PA
3373static void
3374delete_just_stopped_threads_single_step_breakpoints (void)
3375{
3376 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3377}
3378
1777feb0 3379/* A cleanup wrapper. */
4e1c45ea
PA
3380
3381static void
0cbcdb96 3382delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3383{
0cbcdb96 3384 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3385}
3386
221e1a37 3387/* See infrun.h. */
223698f8 3388
221e1a37 3389void
223698f8
DE
3390print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3391 const struct target_waitstatus *ws)
3392{
3393 char *status_string = target_waitstatus_to_string (ws);
3394 struct ui_file *tmp_stream = mem_fileopen ();
3395 char *text;
223698f8
DE
3396
3397 /* The text is split over several lines because it was getting too long.
3398 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3399 output as a unit; we want only one timestamp printed if debug_timestamp
3400 is set. */
3401
3402 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3403 "infrun: target_wait (%d.%ld.%ld",
3404 ptid_get_pid (waiton_ptid),
3405 ptid_get_lwp (waiton_ptid),
3406 ptid_get_tid (waiton_ptid));
dfd4cc63 3407 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3408 fprintf_unfiltered (tmp_stream,
3409 " [%s]", target_pid_to_str (waiton_ptid));
3410 fprintf_unfiltered (tmp_stream, ", status) =\n");
3411 fprintf_unfiltered (tmp_stream,
1176ecec 3412 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3413 ptid_get_pid (result_ptid),
1176ecec
PA
3414 ptid_get_lwp (result_ptid),
3415 ptid_get_tid (result_ptid),
dfd4cc63 3416 target_pid_to_str (result_ptid));
223698f8
DE
3417 fprintf_unfiltered (tmp_stream,
3418 "infrun: %s\n",
3419 status_string);
3420
759ef836 3421 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3422
3423 /* This uses %s in part to handle %'s in the text, but also to avoid
3424 a gcc error: the format attribute requires a string literal. */
3425 fprintf_unfiltered (gdb_stdlog, "%s", text);
3426
3427 xfree (status_string);
3428 xfree (text);
3429 ui_file_delete (tmp_stream);
3430}
3431
372316f1
PA
3432/* Select a thread at random, out of those which are resumed and have
3433 had events. */
3434
3435static struct thread_info *
3436random_pending_event_thread (ptid_t waiton_ptid)
3437{
3438 struct thread_info *event_tp;
3439 int num_events = 0;
3440 int random_selector;
3441
3442 /* First see how many events we have. Count only resumed threads
3443 that have an event pending. */
3444 ALL_NON_EXITED_THREADS (event_tp)
3445 if (ptid_match (event_tp->ptid, waiton_ptid)
3446 && event_tp->resumed
3447 && event_tp->suspend.waitstatus_pending_p)
3448 num_events++;
3449
3450 if (num_events == 0)
3451 return NULL;
3452
3453 /* Now randomly pick a thread out of those that have had events. */
3454 random_selector = (int)
3455 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3456
3457 if (debug_infrun && num_events > 1)
3458 fprintf_unfiltered (gdb_stdlog,
3459 "infrun: Found %d events, selecting #%d\n",
3460 num_events, random_selector);
3461
3462 /* Select the Nth thread that has had an event. */
3463 ALL_NON_EXITED_THREADS (event_tp)
3464 if (ptid_match (event_tp->ptid, waiton_ptid)
3465 && event_tp->resumed
3466 && event_tp->suspend.waitstatus_pending_p)
3467 if (random_selector-- == 0)
3468 break;
3469
3470 return event_tp;
3471}
3472
3473/* Wrapper for target_wait that first checks whether threads have
3474 pending statuses to report before actually asking the target for
3475 more events. */
3476
3477static ptid_t
3478do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3479{
3480 ptid_t event_ptid;
3481 struct thread_info *tp;
3482
3483 /* First check if there is a resumed thread with a wait status
3484 pending. */
3485 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3486 {
3487 tp = random_pending_event_thread (ptid);
3488 }
3489 else
3490 {
3491 if (debug_infrun)
3492 fprintf_unfiltered (gdb_stdlog,
3493 "infrun: Waiting for specific thread %s.\n",
3494 target_pid_to_str (ptid));
3495
3496 /* We have a specific thread to check. */
3497 tp = find_thread_ptid (ptid);
3498 gdb_assert (tp != NULL);
3499 if (!tp->suspend.waitstatus_pending_p)
3500 tp = NULL;
3501 }
3502
3503 if (tp != NULL
3504 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3505 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3506 {
3507 struct regcache *regcache = get_thread_regcache (tp->ptid);
3508 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3509 CORE_ADDR pc;
3510 int discard = 0;
3511
3512 pc = regcache_read_pc (regcache);
3513
3514 if (pc != tp->suspend.stop_pc)
3515 {
3516 if (debug_infrun)
3517 fprintf_unfiltered (gdb_stdlog,
3518 "infrun: PC of %s changed. was=%s, now=%s\n",
3519 target_pid_to_str (tp->ptid),
3520 paddress (gdbarch, tp->prev_pc),
3521 paddress (gdbarch, pc));
3522 discard = 1;
3523 }
3524 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3525 {
3526 if (debug_infrun)
3527 fprintf_unfiltered (gdb_stdlog,
3528 "infrun: previous breakpoint of %s, at %s gone\n",
3529 target_pid_to_str (tp->ptid),
3530 paddress (gdbarch, pc));
3531
3532 discard = 1;
3533 }
3534
3535 if (discard)
3536 {
3537 if (debug_infrun)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "infrun: pending event of %s cancelled.\n",
3540 target_pid_to_str (tp->ptid));
3541
3542 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3543 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3544 }
3545 }
3546
3547 if (tp != NULL)
3548 {
3549 if (debug_infrun)
3550 {
3551 char *statstr;
3552
3553 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3554 fprintf_unfiltered (gdb_stdlog,
3555 "infrun: Using pending wait status %s for %s.\n",
3556 statstr,
3557 target_pid_to_str (tp->ptid));
3558 xfree (statstr);
3559 }
3560
3561 /* Now that we've selected our final event LWP, un-adjust its PC
3562 if it was a software breakpoint (and the target doesn't
3563 always adjust the PC itself). */
3564 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3565 && !target_supports_stopped_by_sw_breakpoint ())
3566 {
3567 struct regcache *regcache;
3568 struct gdbarch *gdbarch;
3569 int decr_pc;
3570
3571 regcache = get_thread_regcache (tp->ptid);
3572 gdbarch = get_regcache_arch (regcache);
3573
3574 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3575 if (decr_pc != 0)
3576 {
3577 CORE_ADDR pc;
3578
3579 pc = regcache_read_pc (regcache);
3580 regcache_write_pc (regcache, pc + decr_pc);
3581 }
3582 }
3583
3584 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3585 *status = tp->suspend.waitstatus;
3586 tp->suspend.waitstatus_pending_p = 0;
3587
3588 /* Wake up the event loop again, until all pending events are
3589 processed. */
3590 if (target_is_async_p ())
3591 mark_async_event_handler (infrun_async_inferior_event_token);
3592 return tp->ptid;
3593 }
3594
3595 /* But if we don't find one, we'll have to wait. */
3596
3597 if (deprecated_target_wait_hook)
3598 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3599 else
3600 event_ptid = target_wait (ptid, status, options);
3601
3602 return event_ptid;
3603}
3604
24291992
PA
3605/* Prepare and stabilize the inferior for detaching it. E.g.,
3606 detaching while a thread is displaced stepping is a recipe for
3607 crashing it, as nothing would readjust the PC out of the scratch
3608 pad. */
3609
3610void
3611prepare_for_detach (void)
3612{
3613 struct inferior *inf = current_inferior ();
3614 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3615 struct cleanup *old_chain_1;
3616 struct displaced_step_inferior_state *displaced;
3617
3618 displaced = get_displaced_stepping_state (inf->pid);
3619
3620 /* Is any thread of this process displaced stepping? If not,
3621 there's nothing else to do. */
3622 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3623 return;
3624
3625 if (debug_infrun)
3626 fprintf_unfiltered (gdb_stdlog,
3627 "displaced-stepping in-process while detaching");
3628
3629 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3630 inf->detaching = 1;
3631
3632 while (!ptid_equal (displaced->step_ptid, null_ptid))
3633 {
3634 struct cleanup *old_chain_2;
3635 struct execution_control_state ecss;
3636 struct execution_control_state *ecs;
3637
3638 ecs = &ecss;
3639 memset (ecs, 0, sizeof (*ecs));
3640
3641 overlay_cache_invalid = 1;
f15cb84a
YQ
3642 /* Flush target cache before starting to handle each event.
3643 Target was running and cache could be stale. This is just a
3644 heuristic. Running threads may modify target memory, but we
3645 don't get any event. */
3646 target_dcache_invalidate ();
24291992 3647
372316f1 3648 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3649
3650 if (debug_infrun)
3651 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3652
3653 /* If an error happens while handling the event, propagate GDB's
3654 knowledge of the executing state to the frontend/user running
3655 state. */
3e43a32a
MS
3656 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3657 &minus_one_ptid);
24291992
PA
3658
3659 /* Now figure out what to do with the result of the result. */
3660 handle_inferior_event (ecs);
3661
3662 /* No error, don't finish the state yet. */
3663 discard_cleanups (old_chain_2);
3664
3665 /* Breakpoints and watchpoints are not installed on the target
3666 at this point, and signals are passed directly to the
3667 inferior, so this must mean the process is gone. */
3668 if (!ecs->wait_some_more)
3669 {
3670 discard_cleanups (old_chain_1);
3671 error (_("Program exited while detaching"));
3672 }
3673 }
3674
3675 discard_cleanups (old_chain_1);
3676}
3677
cd0fc7c3 3678/* Wait for control to return from inferior to debugger.
ae123ec6 3679
cd0fc7c3
SS
3680 If inferior gets a signal, we may decide to start it up again
3681 instead of returning. That is why there is a loop in this function.
3682 When this function actually returns it means the inferior
3683 should be left stopped and GDB should read more commands. */
3684
3685void
e4c8541f 3686wait_for_inferior (void)
cd0fc7c3
SS
3687{
3688 struct cleanup *old_cleanups;
e6f5c25b 3689 struct cleanup *thread_state_chain;
c906108c 3690
527159b7 3691 if (debug_infrun)
ae123ec6 3692 fprintf_unfiltered
e4c8541f 3693 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3694
0cbcdb96
PA
3695 old_cleanups
3696 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3697 NULL);
cd0fc7c3 3698
e6f5c25b
PA
3699 /* If an error happens while handling the event, propagate GDB's
3700 knowledge of the executing state to the frontend/user running
3701 state. */
3702 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3703
c906108c
SS
3704 while (1)
3705 {
ae25568b
PA
3706 struct execution_control_state ecss;
3707 struct execution_control_state *ecs = &ecss;
963f9c80 3708 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3709
ae25568b
PA
3710 memset (ecs, 0, sizeof (*ecs));
3711
ec9499be 3712 overlay_cache_invalid = 1;
ec9499be 3713
f15cb84a
YQ
3714 /* Flush target cache before starting to handle each event.
3715 Target was running and cache could be stale. This is just a
3716 heuristic. Running threads may modify target memory, but we
3717 don't get any event. */
3718 target_dcache_invalidate ();
3719
372316f1 3720 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3721
f00150c9 3722 if (debug_infrun)
223698f8 3723 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3724
cd0fc7c3
SS
3725 /* Now figure out what to do with the result of the result. */
3726 handle_inferior_event (ecs);
c906108c 3727
cd0fc7c3
SS
3728 if (!ecs->wait_some_more)
3729 break;
3730 }
4e1c45ea 3731
e6f5c25b
PA
3732 /* No error, don't finish the state yet. */
3733 discard_cleanups (thread_state_chain);
3734
cd0fc7c3
SS
3735 do_cleanups (old_cleanups);
3736}
c906108c 3737
d3d4baed
PA
3738/* Cleanup that reinstalls the readline callback handler, if the
3739 target is running in the background. If while handling the target
3740 event something triggered a secondary prompt, like e.g., a
3741 pagination prompt, we'll have removed the callback handler (see
3742 gdb_readline_wrapper_line). Need to do this as we go back to the
3743 event loop, ready to process further input. Note this has no
3744 effect if the handler hasn't actually been removed, because calling
3745 rl_callback_handler_install resets the line buffer, thus losing
3746 input. */
3747
3748static void
3749reinstall_readline_callback_handler_cleanup (void *arg)
3750{
6c400b59
PA
3751 if (!interpreter_async)
3752 {
3753 /* We're not going back to the top level event loop yet. Don't
3754 install the readline callback, as it'd prep the terminal,
3755 readline-style (raw, noecho) (e.g., --batch). We'll install
3756 it the next time the prompt is displayed, when we're ready
3757 for input. */
3758 return;
3759 }
3760
d3d4baed
PA
3761 if (async_command_editing_p && !sync_execution)
3762 gdb_rl_callback_handler_reinstall ();
3763}
3764
243a9253
PA
3765/* Clean up the FSMs of threads that are now stopped. In non-stop,
3766 that's just the event thread. In all-stop, that's all threads. */
3767
3768static void
3769clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3770{
3771 struct thread_info *thr = ecs->event_thread;
3772
3773 if (thr != NULL && thr->thread_fsm != NULL)
3774 thread_fsm_clean_up (thr->thread_fsm);
3775
3776 if (!non_stop)
3777 {
3778 ALL_NON_EXITED_THREADS (thr)
3779 {
3780 if (thr->thread_fsm == NULL)
3781 continue;
3782 if (thr == ecs->event_thread)
3783 continue;
3784
3785 switch_to_thread (thr->ptid);
3786 thread_fsm_clean_up (thr->thread_fsm);
3787 }
3788
3789 if (ecs->event_thread != NULL)
3790 switch_to_thread (ecs->event_thread->ptid);
3791 }
3792}
3793
170742de
PA
3794/* A cleanup that restores the execution direction to the value saved
3795 in *ARG. */
3796
3797static void
3798restore_execution_direction (void *arg)
3799{
3800 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3801
3802 execution_direction = *save_exec_dir;
3803}
3804
1777feb0 3805/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3806 event loop whenever a change of state is detected on the file
1777feb0
MS
3807 descriptor corresponding to the target. It can be called more than
3808 once to complete a single execution command. In such cases we need
3809 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3810 that this function is called for a single execution command, then
3811 report to the user that the inferior has stopped, and do the
1777feb0 3812 necessary cleanups. */
43ff13b4
JM
3813
3814void
fba45db2 3815fetch_inferior_event (void *client_data)
43ff13b4 3816{
0d1e5fa7 3817 struct execution_control_state ecss;
a474d7c2 3818 struct execution_control_state *ecs = &ecss;
4f8d22e3 3819 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3820 struct cleanup *ts_old_chain;
4f8d22e3 3821 int was_sync = sync_execution;
170742de 3822 enum exec_direction_kind save_exec_dir = execution_direction;
0f641c01 3823 int cmd_done = 0;
963f9c80 3824 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3825
0d1e5fa7
PA
3826 memset (ecs, 0, sizeof (*ecs));
3827
d3d4baed
PA
3828 /* End up with readline processing input, if necessary. */
3829 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3830
c5187ac6
PA
3831 /* We're handling a live event, so make sure we're doing live
3832 debugging. If we're looking at traceframes while the target is
3833 running, we're going to need to get back to that mode after
3834 handling the event. */
3835 if (non_stop)
3836 {
3837 make_cleanup_restore_current_traceframe ();
e6e4e701 3838 set_current_traceframe (-1);
c5187ac6
PA
3839 }
3840
4f8d22e3
PA
3841 if (non_stop)
3842 /* In non-stop mode, the user/frontend should not notice a thread
3843 switch due to internal events. Make sure we reverse to the
3844 user selected thread and frame after handling the event and
3845 running any breakpoint commands. */
3846 make_cleanup_restore_current_thread ();
3847
ec9499be 3848 overlay_cache_invalid = 1;
f15cb84a
YQ
3849 /* Flush target cache before starting to handle each event. Target
3850 was running and cache could be stale. This is just a heuristic.
3851 Running threads may modify target memory, but we don't get any
3852 event. */
3853 target_dcache_invalidate ();
3dd5b83d 3854
170742de 3855 make_cleanup (restore_execution_direction, &save_exec_dir);
32231432
PA
3856 execution_direction = target_execution_direction ();
3857
0b333c5e
PA
3858 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3859 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3860
f00150c9 3861 if (debug_infrun)
223698f8 3862 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3863
29f49a6a
PA
3864 /* If an error happens while handling the event, propagate GDB's
3865 knowledge of the executing state to the frontend/user running
3866 state. */
fbea99ea 3867 if (!target_is_non_stop_p ())
29f49a6a
PA
3868 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3869 else
3870 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3871
353d1d73
JK
3872 /* Get executed before make_cleanup_restore_current_thread above to apply
3873 still for the thread which has thrown the exception. */
3874 make_bpstat_clear_actions_cleanup ();
3875
7c16b83e
PA
3876 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3877
43ff13b4 3878 /* Now figure out what to do with the result of the result. */
a474d7c2 3879 handle_inferior_event (ecs);
43ff13b4 3880
a474d7c2 3881 if (!ecs->wait_some_more)
43ff13b4 3882 {
c9657e70 3883 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3884 int should_stop = 1;
3885 struct thread_info *thr = ecs->event_thread;
388a7084 3886 int should_notify_stop = 1;
d6b48e9c 3887
0cbcdb96 3888 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3889
243a9253
PA
3890 if (thr != NULL)
3891 {
3892 struct thread_fsm *thread_fsm = thr->thread_fsm;
3893
3894 if (thread_fsm != NULL)
3895 should_stop = thread_fsm_should_stop (thread_fsm);
3896 }
3897
3898 if (!should_stop)
3899 {
3900 keep_going (ecs);
3901 }
c2d11a7d 3902 else
0f641c01 3903 {
243a9253
PA
3904 clean_up_just_stopped_threads_fsms (ecs);
3905
388a7084
PA
3906 if (thr != NULL && thr->thread_fsm != NULL)
3907 {
3908 should_notify_stop
3909 = thread_fsm_should_notify_stop (thr->thread_fsm);
3910 }
3911
3912 if (should_notify_stop)
3913 {
4c2f2a79
PA
3914 int proceeded = 0;
3915
388a7084
PA
3916 /* We may not find an inferior if this was a process exit. */
3917 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3918 proceeded = normal_stop ();
243a9253 3919
4c2f2a79
PA
3920 if (!proceeded)
3921 {
3922 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3923 cmd_done = 1;
3924 }
388a7084 3925 }
0f641c01 3926 }
43ff13b4 3927 }
4f8d22e3 3928
29f49a6a
PA
3929 /* No error, don't finish the thread states yet. */
3930 discard_cleanups (ts_old_chain);
3931
4f8d22e3
PA
3932 /* Revert thread and frame. */
3933 do_cleanups (old_chain);
3934
3935 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3936 restore the prompt (a synchronous execution command has finished,
3937 and we're ready for input). */
b4a14fd0 3938 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3939 observer_notify_sync_execution_done ();
0f641c01
PA
3940
3941 if (cmd_done
3942 && !was_sync
3943 && exec_done_display_p
3944 && (ptid_equal (inferior_ptid, null_ptid)
3945 || !is_running (inferior_ptid)))
3946 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3947}
3948
edb3359d
DJ
3949/* Record the frame and location we're currently stepping through. */
3950void
3951set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3952{
3953 struct thread_info *tp = inferior_thread ();
3954
16c381f0
JK
3955 tp->control.step_frame_id = get_frame_id (frame);
3956 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3957
3958 tp->current_symtab = sal.symtab;
3959 tp->current_line = sal.line;
3960}
3961
0d1e5fa7
PA
3962/* Clear context switchable stepping state. */
3963
3964void
4e1c45ea 3965init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3966{
7f5ef605 3967 tss->stepped_breakpoint = 0;
0d1e5fa7 3968 tss->stepping_over_breakpoint = 0;
963f9c80 3969 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3970 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3971}
3972
c32c64b7
DE
3973/* Set the cached copy of the last ptid/waitstatus. */
3974
3975static void
3976set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3977{
3978 target_last_wait_ptid = ptid;
3979 target_last_waitstatus = status;
3980}
3981
e02bc4cc 3982/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3983 target_wait()/deprecated_target_wait_hook(). The data is actually
3984 cached by handle_inferior_event(), which gets called immediately
3985 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3986
3987void
488f131b 3988get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3989{
39f77062 3990 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3991 *status = target_last_waitstatus;
3992}
3993
ac264b3b
MS
3994void
3995nullify_last_target_wait_ptid (void)
3996{
3997 target_last_wait_ptid = minus_one_ptid;
3998}
3999
dcf4fbde 4000/* Switch thread contexts. */
dd80620e
MS
4001
4002static void
0d1e5fa7 4003context_switch (ptid_t ptid)
dd80620e 4004{
4b51d87b 4005 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4006 {
4007 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4008 target_pid_to_str (inferior_ptid));
4009 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4010 target_pid_to_str (ptid));
fd48f117
DJ
4011 }
4012
0d1e5fa7 4013 switch_to_thread (ptid);
dd80620e
MS
4014}
4015
d8dd4d5f
PA
4016/* If the target can't tell whether we've hit breakpoints
4017 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4018 check whether that could have been caused by a breakpoint. If so,
4019 adjust the PC, per gdbarch_decr_pc_after_break. */
4020
4fa8626c 4021static void
d8dd4d5f
PA
4022adjust_pc_after_break (struct thread_info *thread,
4023 struct target_waitstatus *ws)
4fa8626c 4024{
24a73cce
UW
4025 struct regcache *regcache;
4026 struct gdbarch *gdbarch;
6c95b8df 4027 struct address_space *aspace;
118e6252 4028 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4029
4fa8626c
DJ
4030 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4031 we aren't, just return.
9709f61c
DJ
4032
4033 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4034 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4035 implemented by software breakpoints should be handled through the normal
4036 breakpoint layer.
8fb3e588 4037
4fa8626c
DJ
4038 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4039 different signals (SIGILL or SIGEMT for instance), but it is less
4040 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4041 gdbarch_decr_pc_after_break. I don't know any specific target that
4042 generates these signals at breakpoints (the code has been in GDB since at
4043 least 1992) so I can not guess how to handle them here.
8fb3e588 4044
e6cf7916
UW
4045 In earlier versions of GDB, a target with
4046 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4047 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4048 target with both of these set in GDB history, and it seems unlikely to be
4049 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4050
d8dd4d5f 4051 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4052 return;
4053
d8dd4d5f 4054 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4055 return;
4056
4058b839
PA
4057 /* In reverse execution, when a breakpoint is hit, the instruction
4058 under it has already been de-executed. The reported PC always
4059 points at the breakpoint address, so adjusting it further would
4060 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4061 architecture:
4062
4063 B1 0x08000000 : INSN1
4064 B2 0x08000001 : INSN2
4065 0x08000002 : INSN3
4066 PC -> 0x08000003 : INSN4
4067
4068 Say you're stopped at 0x08000003 as above. Reverse continuing
4069 from that point should hit B2 as below. Reading the PC when the
4070 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4071 been de-executed already.
4072
4073 B1 0x08000000 : INSN1
4074 B2 PC -> 0x08000001 : INSN2
4075 0x08000002 : INSN3
4076 0x08000003 : INSN4
4077
4078 We can't apply the same logic as for forward execution, because
4079 we would wrongly adjust the PC to 0x08000000, since there's a
4080 breakpoint at PC - 1. We'd then report a hit on B1, although
4081 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4082 behaviour. */
4083 if (execution_direction == EXEC_REVERSE)
4084 return;
4085
1cf4d951
PA
4086 /* If the target can tell whether the thread hit a SW breakpoint,
4087 trust it. Targets that can tell also adjust the PC
4088 themselves. */
4089 if (target_supports_stopped_by_sw_breakpoint ())
4090 return;
4091
4092 /* Note that relying on whether a breakpoint is planted in memory to
4093 determine this can fail. E.g,. the breakpoint could have been
4094 removed since. Or the thread could have been told to step an
4095 instruction the size of a breakpoint instruction, and only
4096 _after_ was a breakpoint inserted at its address. */
4097
24a73cce
UW
4098 /* If this target does not decrement the PC after breakpoints, then
4099 we have nothing to do. */
d8dd4d5f 4100 regcache = get_thread_regcache (thread->ptid);
24a73cce 4101 gdbarch = get_regcache_arch (regcache);
118e6252 4102
527a273a 4103 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4104 if (decr_pc == 0)
24a73cce
UW
4105 return;
4106
6c95b8df
PA
4107 aspace = get_regcache_aspace (regcache);
4108
8aad930b
AC
4109 /* Find the location where (if we've hit a breakpoint) the
4110 breakpoint would be. */
118e6252 4111 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4112
1cf4d951
PA
4113 /* If the target can't tell whether a software breakpoint triggered,
4114 fallback to figuring it out based on breakpoints we think were
4115 inserted in the target, and on whether the thread was stepped or
4116 continued. */
4117
1c5cfe86
PA
4118 /* Check whether there actually is a software breakpoint inserted at
4119 that location.
4120
4121 If in non-stop mode, a race condition is possible where we've
4122 removed a breakpoint, but stop events for that breakpoint were
4123 already queued and arrive later. To suppress those spurious
4124 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4125 and retire them after a number of stop events are reported. Note
4126 this is an heuristic and can thus get confused. The real fix is
4127 to get the "stopped by SW BP and needs adjustment" info out of
4128 the target/kernel (and thus never reach here; see above). */
6c95b8df 4129 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4130 || (target_is_non_stop_p ()
4131 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4132 {
77f9e713 4133 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4134
8213266a 4135 if (record_full_is_used ())
77f9e713 4136 record_full_gdb_operation_disable_set ();
96429cc8 4137
1c0fdd0e
UW
4138 /* When using hardware single-step, a SIGTRAP is reported for both
4139 a completed single-step and a software breakpoint. Need to
4140 differentiate between the two, as the latter needs adjusting
4141 but the former does not.
4142
4143 The SIGTRAP can be due to a completed hardware single-step only if
4144 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4145 - this thread is currently being stepped
4146
4147 If any of these events did not occur, we must have stopped due
4148 to hitting a software breakpoint, and have to back up to the
4149 breakpoint address.
4150
4151 As a special case, we could have hardware single-stepped a
4152 software breakpoint. In this case (prev_pc == breakpoint_pc),
4153 we also need to back up to the breakpoint address. */
4154
d8dd4d5f
PA
4155 if (thread_has_single_step_breakpoints_set (thread)
4156 || !currently_stepping (thread)
4157 || (thread->stepped_breakpoint
4158 && thread->prev_pc == breakpoint_pc))
515630c5 4159 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4160
77f9e713 4161 do_cleanups (old_cleanups);
8aad930b 4162 }
4fa8626c
DJ
4163}
4164
edb3359d
DJ
4165static int
4166stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4167{
4168 for (frame = get_prev_frame (frame);
4169 frame != NULL;
4170 frame = get_prev_frame (frame))
4171 {
4172 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4173 return 1;
4174 if (get_frame_type (frame) != INLINE_FRAME)
4175 break;
4176 }
4177
4178 return 0;
4179}
4180
a96d9b2e
SDJ
4181/* Auxiliary function that handles syscall entry/return events.
4182 It returns 1 if the inferior should keep going (and GDB
4183 should ignore the event), or 0 if the event deserves to be
4184 processed. */
ca2163eb 4185
a96d9b2e 4186static int
ca2163eb 4187handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4188{
ca2163eb 4189 struct regcache *regcache;
ca2163eb
PA
4190 int syscall_number;
4191
4192 if (!ptid_equal (ecs->ptid, inferior_ptid))
4193 context_switch (ecs->ptid);
4194
4195 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4196 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4197 stop_pc = regcache_read_pc (regcache);
4198
a96d9b2e
SDJ
4199 if (catch_syscall_enabled () > 0
4200 && catching_syscall_number (syscall_number) > 0)
4201 {
4202 if (debug_infrun)
4203 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4204 syscall_number);
a96d9b2e 4205
16c381f0 4206 ecs->event_thread->control.stop_bpstat
6c95b8df 4207 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4208 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4209
ce12b012 4210 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4211 {
4212 /* Catchpoint hit. */
ca2163eb
PA
4213 return 0;
4214 }
a96d9b2e 4215 }
ca2163eb
PA
4216
4217 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4218 keep_going (ecs);
4219 return 1;
a96d9b2e
SDJ
4220}
4221
7e324e48
GB
4222/* Lazily fill in the execution_control_state's stop_func_* fields. */
4223
4224static void
4225fill_in_stop_func (struct gdbarch *gdbarch,
4226 struct execution_control_state *ecs)
4227{
4228 if (!ecs->stop_func_filled_in)
4229 {
4230 /* Don't care about return value; stop_func_start and stop_func_name
4231 will both be 0 if it doesn't work. */
4232 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4233 &ecs->stop_func_start, &ecs->stop_func_end);
4234 ecs->stop_func_start
4235 += gdbarch_deprecated_function_start_offset (gdbarch);
4236
591a12a1
UW
4237 if (gdbarch_skip_entrypoint_p (gdbarch))
4238 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4239 ecs->stop_func_start);
4240
7e324e48
GB
4241 ecs->stop_func_filled_in = 1;
4242 }
4243}
4244
4f5d7f63
PA
4245
4246/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4247
4248static enum stop_kind
4249get_inferior_stop_soon (ptid_t ptid)
4250{
c9657e70 4251 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4252
4253 gdb_assert (inf != NULL);
4254 return inf->control.stop_soon;
4255}
4256
372316f1
PA
4257/* Wait for one event. Store the resulting waitstatus in WS, and
4258 return the event ptid. */
4259
4260static ptid_t
4261wait_one (struct target_waitstatus *ws)
4262{
4263 ptid_t event_ptid;
4264 ptid_t wait_ptid = minus_one_ptid;
4265
4266 overlay_cache_invalid = 1;
4267
4268 /* Flush target cache before starting to handle each event.
4269 Target was running and cache could be stale. This is just a
4270 heuristic. Running threads may modify target memory, but we
4271 don't get any event. */
4272 target_dcache_invalidate ();
4273
4274 if (deprecated_target_wait_hook)
4275 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4276 else
4277 event_ptid = target_wait (wait_ptid, ws, 0);
4278
4279 if (debug_infrun)
4280 print_target_wait_results (wait_ptid, event_ptid, ws);
4281
4282 return event_ptid;
4283}
4284
4285/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4286 instead of the current thread. */
4287#define THREAD_STOPPED_BY(REASON) \
4288static int \
4289thread_stopped_by_ ## REASON (ptid_t ptid) \
4290{ \
4291 struct cleanup *old_chain; \
4292 int res; \
4293 \
4294 old_chain = save_inferior_ptid (); \
4295 inferior_ptid = ptid; \
4296 \
4297 res = target_stopped_by_ ## REASON (); \
4298 \
4299 do_cleanups (old_chain); \
4300 \
4301 return res; \
4302}
4303
4304/* Generate thread_stopped_by_watchpoint. */
4305THREAD_STOPPED_BY (watchpoint)
4306/* Generate thread_stopped_by_sw_breakpoint. */
4307THREAD_STOPPED_BY (sw_breakpoint)
4308/* Generate thread_stopped_by_hw_breakpoint. */
4309THREAD_STOPPED_BY (hw_breakpoint)
4310
4311/* Cleanups that switches to the PTID pointed at by PTID_P. */
4312
4313static void
4314switch_to_thread_cleanup (void *ptid_p)
4315{
4316 ptid_t ptid = *(ptid_t *) ptid_p;
4317
4318 switch_to_thread (ptid);
4319}
4320
4321/* Save the thread's event and stop reason to process it later. */
4322
4323static void
4324save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4325{
4326 struct regcache *regcache;
4327 struct address_space *aspace;
4328
4329 if (debug_infrun)
4330 {
4331 char *statstr;
4332
4333 statstr = target_waitstatus_to_string (ws);
4334 fprintf_unfiltered (gdb_stdlog,
4335 "infrun: saving status %s for %d.%ld.%ld\n",
4336 statstr,
4337 ptid_get_pid (tp->ptid),
4338 ptid_get_lwp (tp->ptid),
4339 ptid_get_tid (tp->ptid));
4340 xfree (statstr);
4341 }
4342
4343 /* Record for later. */
4344 tp->suspend.waitstatus = *ws;
4345 tp->suspend.waitstatus_pending_p = 1;
4346
4347 regcache = get_thread_regcache (tp->ptid);
4348 aspace = get_regcache_aspace (regcache);
4349
4350 if (ws->kind == TARGET_WAITKIND_STOPPED
4351 && ws->value.sig == GDB_SIGNAL_TRAP)
4352 {
4353 CORE_ADDR pc = regcache_read_pc (regcache);
4354
4355 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4356
4357 if (thread_stopped_by_watchpoint (tp->ptid))
4358 {
4359 tp->suspend.stop_reason
4360 = TARGET_STOPPED_BY_WATCHPOINT;
4361 }
4362 else if (target_supports_stopped_by_sw_breakpoint ()
4363 && thread_stopped_by_sw_breakpoint (tp->ptid))
4364 {
4365 tp->suspend.stop_reason
4366 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4367 }
4368 else if (target_supports_stopped_by_hw_breakpoint ()
4369 && thread_stopped_by_hw_breakpoint (tp->ptid))
4370 {
4371 tp->suspend.stop_reason
4372 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4373 }
4374 else if (!target_supports_stopped_by_hw_breakpoint ()
4375 && hardware_breakpoint_inserted_here_p (aspace,
4376 pc))
4377 {
4378 tp->suspend.stop_reason
4379 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4380 }
4381 else if (!target_supports_stopped_by_sw_breakpoint ()
4382 && software_breakpoint_inserted_here_p (aspace,
4383 pc))
4384 {
4385 tp->suspend.stop_reason
4386 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4387 }
4388 else if (!thread_has_single_step_breakpoints_set (tp)
4389 && currently_stepping (tp))
4390 {
4391 tp->suspend.stop_reason
4392 = TARGET_STOPPED_BY_SINGLE_STEP;
4393 }
4394 }
4395}
4396
4397/* Stop all threads. */
4398
4399static void
4400stop_all_threads (void)
4401{
4402 /* We may need multiple passes to discover all threads. */
4403 int pass;
4404 int iterations = 0;
4405 ptid_t entry_ptid;
4406 struct cleanup *old_chain;
4407
fbea99ea 4408 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4409
4410 if (debug_infrun)
4411 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4412
4413 entry_ptid = inferior_ptid;
4414 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4415
4416 /* Request threads to stop, and then wait for the stops. Because
4417 threads we already know about can spawn more threads while we're
4418 trying to stop them, and we only learn about new threads when we
4419 update the thread list, do this in a loop, and keep iterating
4420 until two passes find no threads that need to be stopped. */
4421 for (pass = 0; pass < 2; pass++, iterations++)
4422 {
4423 if (debug_infrun)
4424 fprintf_unfiltered (gdb_stdlog,
4425 "infrun: stop_all_threads, pass=%d, "
4426 "iterations=%d\n", pass, iterations);
4427 while (1)
4428 {
4429 ptid_t event_ptid;
4430 struct target_waitstatus ws;
4431 int need_wait = 0;
4432 struct thread_info *t;
4433
4434 update_thread_list ();
4435
4436 /* Go through all threads looking for threads that we need
4437 to tell the target to stop. */
4438 ALL_NON_EXITED_THREADS (t)
4439 {
4440 if (t->executing)
4441 {
4442 /* If already stopping, don't request a stop again.
4443 We just haven't seen the notification yet. */
4444 if (!t->stop_requested)
4445 {
4446 if (debug_infrun)
4447 fprintf_unfiltered (gdb_stdlog,
4448 "infrun: %s executing, "
4449 "need stop\n",
4450 target_pid_to_str (t->ptid));
4451 target_stop (t->ptid);
4452 t->stop_requested = 1;
4453 }
4454 else
4455 {
4456 if (debug_infrun)
4457 fprintf_unfiltered (gdb_stdlog,
4458 "infrun: %s executing, "
4459 "already stopping\n",
4460 target_pid_to_str (t->ptid));
4461 }
4462
4463 if (t->stop_requested)
4464 need_wait = 1;
4465 }
4466 else
4467 {
4468 if (debug_infrun)
4469 fprintf_unfiltered (gdb_stdlog,
4470 "infrun: %s not executing\n",
4471 target_pid_to_str (t->ptid));
4472
4473 /* The thread may be not executing, but still be
4474 resumed with a pending status to process. */
4475 t->resumed = 0;
4476 }
4477 }
4478
4479 if (!need_wait)
4480 break;
4481
4482 /* If we find new threads on the second iteration, restart
4483 over. We want to see two iterations in a row with all
4484 threads stopped. */
4485 if (pass > 0)
4486 pass = -1;
4487
4488 event_ptid = wait_one (&ws);
4489 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4490 {
4491 /* All resumed threads exited. */
4492 }
4493 else if (ws.kind == TARGET_WAITKIND_EXITED
4494 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4495 {
4496 if (debug_infrun)
4497 {
4498 ptid_t ptid = pid_to_ptid (ws.value.integer);
4499
4500 fprintf_unfiltered (gdb_stdlog,
4501 "infrun: %s exited while "
4502 "stopping threads\n",
4503 target_pid_to_str (ptid));
4504 }
4505 }
4506 else
4507 {
4508 t = find_thread_ptid (event_ptid);
4509 if (t == NULL)
4510 t = add_thread (event_ptid);
4511
4512 t->stop_requested = 0;
4513 t->executing = 0;
4514 t->resumed = 0;
4515 t->control.may_range_step = 0;
4516
4517 if (ws.kind == TARGET_WAITKIND_STOPPED
4518 && ws.value.sig == GDB_SIGNAL_0)
4519 {
4520 /* We caught the event that we intended to catch, so
4521 there's no event pending. */
4522 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4523 t->suspend.waitstatus_pending_p = 0;
4524
4525 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4526 {
4527 /* Add it back to the step-over queue. */
4528 if (debug_infrun)
4529 {
4530 fprintf_unfiltered (gdb_stdlog,
4531 "infrun: displaced-step of %s "
4532 "canceled: adding back to the "
4533 "step-over queue\n",
4534 target_pid_to_str (t->ptid));
4535 }
4536 t->control.trap_expected = 0;
4537 thread_step_over_chain_enqueue (t);
4538 }
4539 }
4540 else
4541 {
4542 enum gdb_signal sig;
4543 struct regcache *regcache;
4544 struct address_space *aspace;
4545
4546 if (debug_infrun)
4547 {
4548 char *statstr;
4549
4550 statstr = target_waitstatus_to_string (&ws);
4551 fprintf_unfiltered (gdb_stdlog,
4552 "infrun: target_wait %s, saving "
4553 "status for %d.%ld.%ld\n",
4554 statstr,
4555 ptid_get_pid (t->ptid),
4556 ptid_get_lwp (t->ptid),
4557 ptid_get_tid (t->ptid));
4558 xfree (statstr);
4559 }
4560
4561 /* Record for later. */
4562 save_waitstatus (t, &ws);
4563
4564 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4565 ? ws.value.sig : GDB_SIGNAL_0);
4566
4567 if (displaced_step_fixup (t->ptid, sig) < 0)
4568 {
4569 /* Add it back to the step-over queue. */
4570 t->control.trap_expected = 0;
4571 thread_step_over_chain_enqueue (t);
4572 }
4573
4574 regcache = get_thread_regcache (t->ptid);
4575 t->suspend.stop_pc = regcache_read_pc (regcache);
4576
4577 if (debug_infrun)
4578 {
4579 fprintf_unfiltered (gdb_stdlog,
4580 "infrun: saved stop_pc=%s for %s "
4581 "(currently_stepping=%d)\n",
4582 paddress (target_gdbarch (),
4583 t->suspend.stop_pc),
4584 target_pid_to_str (t->ptid),
4585 currently_stepping (t));
4586 }
4587 }
4588 }
4589 }
4590 }
4591
4592 do_cleanups (old_chain);
4593
4594 if (debug_infrun)
4595 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4596}
4597
05ba8510
PA
4598/* Given an execution control state that has been freshly filled in by
4599 an event from the inferior, figure out what it means and take
4600 appropriate action.
4601
4602 The alternatives are:
4603
22bcd14b 4604 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4605 debugger.
4606
4607 2) keep_going and return; to wait for the next event (set
4608 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4609 once). */
c906108c 4610
ec9499be 4611static void
0b6e5e10 4612handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4613{
d6b48e9c
PA
4614 enum stop_kind stop_soon;
4615
28736962
PA
4616 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4617 {
4618 /* We had an event in the inferior, but we are not interested in
4619 handling it at this level. The lower layers have already
4620 done what needs to be done, if anything.
4621
4622 One of the possible circumstances for this is when the
4623 inferior produces output for the console. The inferior has
4624 not stopped, and we are ignoring the event. Another possible
4625 circumstance is any event which the lower level knows will be
4626 reported multiple times without an intervening resume. */
4627 if (debug_infrun)
4628 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4629 prepare_to_wait (ecs);
4630 return;
4631 }
4632
0e5bf2a8
PA
4633 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4634 && target_can_async_p () && !sync_execution)
4635 {
4636 /* There were no unwaited-for children left in the target, but,
4637 we're not synchronously waiting for events either. Just
4638 ignore. Otherwise, if we were running a synchronous
4639 execution command, we need to cancel it and give the user
4640 back the terminal. */
4641 if (debug_infrun)
4642 fprintf_unfiltered (gdb_stdlog,
4643 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4644 prepare_to_wait (ecs);
4645 return;
4646 }
4647
1777feb0 4648 /* Cache the last pid/waitstatus. */
c32c64b7 4649 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4650
ca005067 4651 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4652 stop_stack_dummy = STOP_NONE;
ca005067 4653
0e5bf2a8
PA
4654 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4655 {
4656 /* No unwaited-for children left. IOW, all resumed children
4657 have exited. */
4658 if (debug_infrun)
4659 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4660
4661 stop_print_frame = 0;
22bcd14b 4662 stop_waiting (ecs);
0e5bf2a8
PA
4663 return;
4664 }
4665
8c90c137 4666 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4667 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4668 {
4669 ecs->event_thread = find_thread_ptid (ecs->ptid);
4670 /* If it's a new thread, add it to the thread database. */
4671 if (ecs->event_thread == NULL)
4672 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4673
4674 /* Disable range stepping. If the next step request could use a
4675 range, this will be end up re-enabled then. */
4676 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4677 }
88ed393a
JK
4678
4679 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4680 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4681
4682 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4683 reinit_frame_cache ();
4684
28736962
PA
4685 breakpoint_retire_moribund ();
4686
2b009048
DJ
4687 /* First, distinguish signals caused by the debugger from signals
4688 that have to do with the program's own actions. Note that
4689 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4690 on the operating system version. Here we detect when a SIGILL or
4691 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4692 something similar for SIGSEGV, since a SIGSEGV will be generated
4693 when we're trying to execute a breakpoint instruction on a
4694 non-executable stack. This happens for call dummy breakpoints
4695 for architectures like SPARC that place call dummies on the
4696 stack. */
2b009048 4697 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4698 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4699 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4700 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4701 {
de0a0249
UW
4702 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4703
4704 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4705 regcache_read_pc (regcache)))
4706 {
4707 if (debug_infrun)
4708 fprintf_unfiltered (gdb_stdlog,
4709 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4710 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4711 }
2b009048
DJ
4712 }
4713
28736962
PA
4714 /* Mark the non-executing threads accordingly. In all-stop, all
4715 threads of all processes are stopped when we get any event
e1316e60 4716 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4717 {
4718 ptid_t mark_ptid;
4719
fbea99ea 4720 if (!target_is_non_stop_p ())
372316f1
PA
4721 mark_ptid = minus_one_ptid;
4722 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4723 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4724 {
4725 /* If we're handling a process exit in non-stop mode, even
4726 though threads haven't been deleted yet, one would think
4727 that there is nothing to do, as threads of the dead process
4728 will be soon deleted, and threads of any other process were
4729 left running. However, on some targets, threads survive a
4730 process exit event. E.g., for the "checkpoint" command,
4731 when the current checkpoint/fork exits, linux-fork.c
4732 automatically switches to another fork from within
4733 target_mourn_inferior, by associating the same
4734 inferior/thread to another fork. We haven't mourned yet at
4735 this point, but we must mark any threads left in the
4736 process as not-executing so that finish_thread_state marks
4737 them stopped (in the user's perspective) if/when we present
4738 the stop to the user. */
4739 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4740 }
4741 else
4742 mark_ptid = ecs->ptid;
4743
4744 set_executing (mark_ptid, 0);
4745
4746 /* Likewise the resumed flag. */
4747 set_resumed (mark_ptid, 0);
4748 }
8c90c137 4749
488f131b
JB
4750 switch (ecs->ws.kind)
4751 {
4752 case TARGET_WAITKIND_LOADED:
527159b7 4753 if (debug_infrun)
8a9de0e4 4754 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4755 if (!ptid_equal (ecs->ptid, inferior_ptid))
4756 context_switch (ecs->ptid);
b0f4b84b
DJ
4757 /* Ignore gracefully during startup of the inferior, as it might
4758 be the shell which has just loaded some objects, otherwise
4759 add the symbols for the newly loaded objects. Also ignore at
4760 the beginning of an attach or remote session; we will query
4761 the full list of libraries once the connection is
4762 established. */
4f5d7f63
PA
4763
4764 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4765 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4766 {
edcc5120
TT
4767 struct regcache *regcache;
4768
edcc5120
TT
4769 regcache = get_thread_regcache (ecs->ptid);
4770
4771 handle_solib_event ();
4772
4773 ecs->event_thread->control.stop_bpstat
4774 = bpstat_stop_status (get_regcache_aspace (regcache),
4775 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4776
ce12b012 4777 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4778 {
4779 /* A catchpoint triggered. */
94c57d6a
PA
4780 process_event_stop_test (ecs);
4781 return;
edcc5120 4782 }
488f131b 4783
b0f4b84b
DJ
4784 /* If requested, stop when the dynamic linker notifies
4785 gdb of events. This allows the user to get control
4786 and place breakpoints in initializer routines for
4787 dynamically loaded objects (among other things). */
a493e3e2 4788 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4789 if (stop_on_solib_events)
4790 {
55409f9d
DJ
4791 /* Make sure we print "Stopped due to solib-event" in
4792 normal_stop. */
4793 stop_print_frame = 1;
4794
22bcd14b 4795 stop_waiting (ecs);
b0f4b84b
DJ
4796 return;
4797 }
488f131b 4798 }
b0f4b84b
DJ
4799
4800 /* If we are skipping through a shell, or through shared library
4801 loading that we aren't interested in, resume the program. If
5c09a2c5 4802 we're running the program normally, also resume. */
b0f4b84b
DJ
4803 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4804 {
74960c60
VP
4805 /* Loading of shared libraries might have changed breakpoint
4806 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4807 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4808 insert_breakpoints ();
64ce06e4 4809 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4810 prepare_to_wait (ecs);
4811 return;
4812 }
4813
5c09a2c5
PA
4814 /* But stop if we're attaching or setting up a remote
4815 connection. */
4816 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4817 || stop_soon == STOP_QUIETLY_REMOTE)
4818 {
4819 if (debug_infrun)
4820 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4821 stop_waiting (ecs);
5c09a2c5
PA
4822 return;
4823 }
4824
4825 internal_error (__FILE__, __LINE__,
4826 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4827
488f131b 4828 case TARGET_WAITKIND_SPURIOUS:
527159b7 4829 if (debug_infrun)
8a9de0e4 4830 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 4831 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 4832 context_switch (ecs->ptid);
64ce06e4 4833 resume (GDB_SIGNAL_0);
488f131b
JB
4834 prepare_to_wait (ecs);
4835 return;
c5aa993b 4836
488f131b 4837 case TARGET_WAITKIND_EXITED:
940c3c06 4838 case TARGET_WAITKIND_SIGNALLED:
527159b7 4839 if (debug_infrun)
940c3c06
PA
4840 {
4841 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4842 fprintf_unfiltered (gdb_stdlog,
4843 "infrun: TARGET_WAITKIND_EXITED\n");
4844 else
4845 fprintf_unfiltered (gdb_stdlog,
4846 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4847 }
4848
fb66883a 4849 inferior_ptid = ecs->ptid;
c9657e70 4850 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4851 set_current_program_space (current_inferior ()->pspace);
4852 handle_vfork_child_exec_or_exit (0);
1777feb0 4853 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 4854
0c557179
SDJ
4855 /* Clearing any previous state of convenience variables. */
4856 clear_exit_convenience_vars ();
4857
940c3c06
PA
4858 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4859 {
4860 /* Record the exit code in the convenience variable $_exitcode, so
4861 that the user can inspect this again later. */
4862 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4863 (LONGEST) ecs->ws.value.integer);
4864
4865 /* Also record this in the inferior itself. */
4866 current_inferior ()->has_exit_code = 1;
4867 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4868
98eb56a4
PA
4869 /* Support the --return-child-result option. */
4870 return_child_result_value = ecs->ws.value.integer;
4871
fd664c91 4872 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
4873 }
4874 else
0c557179
SDJ
4875 {
4876 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4877 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4878
4879 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4880 {
4881 /* Set the value of the internal variable $_exitsignal,
4882 which holds the signal uncaught by the inferior. */
4883 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4884 gdbarch_gdb_signal_to_target (gdbarch,
4885 ecs->ws.value.sig));
4886 }
4887 else
4888 {
4889 /* We don't have access to the target's method used for
4890 converting between signal numbers (GDB's internal
4891 representation <-> target's representation).
4892 Therefore, we cannot do a good job at displaying this
4893 information to the user. It's better to just warn
4894 her about it (if infrun debugging is enabled), and
4895 give up. */
4896 if (debug_infrun)
4897 fprintf_filtered (gdb_stdlog, _("\
4898Cannot fill $_exitsignal with the correct signal number.\n"));
4899 }
4900
fd664c91 4901 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 4902 }
8cf64490 4903
488f131b
JB
4904 gdb_flush (gdb_stdout);
4905 target_mourn_inferior ();
488f131b 4906 stop_print_frame = 0;
22bcd14b 4907 stop_waiting (ecs);
488f131b 4908 return;
c5aa993b 4909
488f131b 4910 /* The following are the only cases in which we keep going;
1777feb0 4911 the above cases end in a continue or goto. */
488f131b 4912 case TARGET_WAITKIND_FORKED:
deb3b17b 4913 case TARGET_WAITKIND_VFORKED:
527159b7 4914 if (debug_infrun)
fed708ed
PA
4915 {
4916 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4917 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4918 else
4919 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4920 }
c906108c 4921
e2d96639
YQ
4922 /* Check whether the inferior is displaced stepping. */
4923 {
4924 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4925 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4926 struct displaced_step_inferior_state *displaced
4927 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4928
4929 /* If checking displaced stepping is supported, and thread
4930 ecs->ptid is displaced stepping. */
4931 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
4932 {
4933 struct inferior *parent_inf
c9657e70 4934 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4935 struct regcache *child_regcache;
4936 CORE_ADDR parent_pc;
4937
4938 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4939 indicating that the displaced stepping of syscall instruction
4940 has been done. Perform cleanup for parent process here. Note
4941 that this operation also cleans up the child process for vfork,
4942 because their pages are shared. */
a493e3e2 4943 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
4944 /* Start a new step-over in another thread if there's one
4945 that needs it. */
4946 start_step_over ();
e2d96639
YQ
4947
4948 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4949 {
4950 /* Restore scratch pad for child process. */
4951 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4952 }
4953
4954 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4955 the child's PC is also within the scratchpad. Set the child's PC
4956 to the parent's PC value, which has already been fixed up.
4957 FIXME: we use the parent's aspace here, although we're touching
4958 the child, because the child hasn't been added to the inferior
4959 list yet at this point. */
4960
4961 child_regcache
4962 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4963 gdbarch,
4964 parent_inf->aspace);
4965 /* Read PC value of parent process. */
4966 parent_pc = regcache_read_pc (regcache);
4967
4968 if (debug_displaced)
4969 fprintf_unfiltered (gdb_stdlog,
4970 "displaced: write child pc from %s to %s\n",
4971 paddress (gdbarch,
4972 regcache_read_pc (child_regcache)),
4973 paddress (gdbarch, parent_pc));
4974
4975 regcache_write_pc (child_regcache, parent_pc);
4976 }
4977 }
4978
5a2901d9 4979 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 4980 context_switch (ecs->ptid);
5a2901d9 4981
b242c3c2
PA
4982 /* Immediately detach breakpoints from the child before there's
4983 any chance of letting the user delete breakpoints from the
4984 breakpoint lists. If we don't do this early, it's easy to
4985 leave left over traps in the child, vis: "break foo; catch
4986 fork; c; <fork>; del; c; <child calls foo>". We only follow
4987 the fork on the last `continue', and by that time the
4988 breakpoint at "foo" is long gone from the breakpoint table.
4989 If we vforked, then we don't need to unpatch here, since both
4990 parent and child are sharing the same memory pages; we'll
4991 need to unpatch at follow/detach time instead to be certain
4992 that new breakpoints added between catchpoint hit time and
4993 vfork follow are detached. */
4994 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4995 {
b242c3c2
PA
4996 /* This won't actually modify the breakpoint list, but will
4997 physically remove the breakpoints from the child. */
d80ee84f 4998 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4999 }
5000
34b7e8a6 5001 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5002
e58b0e63
PA
5003 /* In case the event is caught by a catchpoint, remember that
5004 the event is to be followed at the next resume of the thread,
5005 and not immediately. */
5006 ecs->event_thread->pending_follow = ecs->ws;
5007
fb14de7b 5008 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5009
16c381f0 5010 ecs->event_thread->control.stop_bpstat
6c95b8df 5011 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5012 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5013
ce12b012
PA
5014 /* If no catchpoint triggered for this, then keep going. Note
5015 that we're interested in knowing the bpstat actually causes a
5016 stop, not just if it may explain the signal. Software
5017 watchpoints, for example, always appear in the bpstat. */
5018 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5019 {
6c95b8df
PA
5020 ptid_t parent;
5021 ptid_t child;
e58b0e63 5022 int should_resume;
3e43a32a
MS
5023 int follow_child
5024 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5025
a493e3e2 5026 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5027
5028 should_resume = follow_fork ();
5029
6c95b8df
PA
5030 parent = ecs->ptid;
5031 child = ecs->ws.value.related_pid;
5032
5033 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5034 if (!detach_fork && (non_stop
5035 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5036 {
5037 if (follow_child)
5038 switch_to_thread (parent);
5039 else
5040 switch_to_thread (child);
5041
5042 ecs->event_thread = inferior_thread ();
5043 ecs->ptid = inferior_ptid;
5044 keep_going (ecs);
5045 }
5046
5047 if (follow_child)
5048 switch_to_thread (child);
5049 else
5050 switch_to_thread (parent);
5051
e58b0e63
PA
5052 ecs->event_thread = inferior_thread ();
5053 ecs->ptid = inferior_ptid;
5054
5055 if (should_resume)
5056 keep_going (ecs);
5057 else
22bcd14b 5058 stop_waiting (ecs);
04e68871
DJ
5059 return;
5060 }
94c57d6a
PA
5061 process_event_stop_test (ecs);
5062 return;
488f131b 5063
6c95b8df
PA
5064 case TARGET_WAITKIND_VFORK_DONE:
5065 /* Done with the shared memory region. Re-insert breakpoints in
5066 the parent, and keep going. */
5067
5068 if (debug_infrun)
3e43a32a
MS
5069 fprintf_unfiltered (gdb_stdlog,
5070 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5071
5072 if (!ptid_equal (ecs->ptid, inferior_ptid))
5073 context_switch (ecs->ptid);
5074
5075 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5076 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5077 /* This also takes care of reinserting breakpoints in the
5078 previously locked inferior. */
5079 keep_going (ecs);
5080 return;
5081
488f131b 5082 case TARGET_WAITKIND_EXECD:
527159b7 5083 if (debug_infrun)
fc5261f2 5084 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5085
5a2901d9 5086 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5087 context_switch (ecs->ptid);
5a2901d9 5088
fb14de7b 5089 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5090
6c95b8df
PA
5091 /* Do whatever is necessary to the parent branch of the vfork. */
5092 handle_vfork_child_exec_or_exit (1);
5093
795e548f
PA
5094 /* This causes the eventpoints and symbol table to be reset.
5095 Must do this now, before trying to determine whether to
5096 stop. */
71b43ef8 5097 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5098
17d8546e
DB
5099 /* In follow_exec we may have deleted the original thread and
5100 created a new one. Make sure that the event thread is the
5101 execd thread for that case (this is a nop otherwise). */
5102 ecs->event_thread = inferior_thread ();
5103
16c381f0 5104 ecs->event_thread->control.stop_bpstat
6c95b8df 5105 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5106 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5107
71b43ef8
PA
5108 /* Note that this may be referenced from inside
5109 bpstat_stop_status above, through inferior_has_execd. */
5110 xfree (ecs->ws.value.execd_pathname);
5111 ecs->ws.value.execd_pathname = NULL;
5112
04e68871 5113 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5114 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5115 {
a493e3e2 5116 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5117 keep_going (ecs);
5118 return;
5119 }
94c57d6a
PA
5120 process_event_stop_test (ecs);
5121 return;
488f131b 5122
b4dc5ffa
MK
5123 /* Be careful not to try to gather much state about a thread
5124 that's in a syscall. It's frequently a losing proposition. */
488f131b 5125 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5126 if (debug_infrun)
3e43a32a
MS
5127 fprintf_unfiltered (gdb_stdlog,
5128 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5129 /* Getting the current syscall number. */
94c57d6a
PA
5130 if (handle_syscall_event (ecs) == 0)
5131 process_event_stop_test (ecs);
5132 return;
c906108c 5133
488f131b
JB
5134 /* Before examining the threads further, step this thread to
5135 get it entirely out of the syscall. (We get notice of the
5136 event when the thread is just on the verge of exiting a
5137 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5138 into user code.) */
488f131b 5139 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5140 if (debug_infrun)
3e43a32a
MS
5141 fprintf_unfiltered (gdb_stdlog,
5142 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5143 if (handle_syscall_event (ecs) == 0)
5144 process_event_stop_test (ecs);
5145 return;
c906108c 5146
488f131b 5147 case TARGET_WAITKIND_STOPPED:
527159b7 5148 if (debug_infrun)
8a9de0e4 5149 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5150 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5151 handle_signal_stop (ecs);
5152 return;
c906108c 5153
b2175913 5154 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5155 if (debug_infrun)
5156 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5157 /* Reverse execution: target ran out of history info. */
eab402df 5158
d1988021
MM
5159 /* Switch to the stopped thread. */
5160 if (!ptid_equal (ecs->ptid, inferior_ptid))
5161 context_switch (ecs->ptid);
5162 if (debug_infrun)
5163 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5164
34b7e8a6 5165 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5166 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
fd664c91 5167 observer_notify_no_history ();
22bcd14b 5168 stop_waiting (ecs);
b2175913 5169 return;
488f131b 5170 }
4f5d7f63
PA
5171}
5172
0b6e5e10
JB
5173/* A wrapper around handle_inferior_event_1, which also makes sure
5174 that all temporary struct value objects that were created during
5175 the handling of the event get deleted at the end. */
5176
5177static void
5178handle_inferior_event (struct execution_control_state *ecs)
5179{
5180 struct value *mark = value_mark ();
5181
5182 handle_inferior_event_1 (ecs);
5183 /* Purge all temporary values created during the event handling,
5184 as it could be a long time before we return to the command level
5185 where such values would otherwise be purged. */
5186 value_free_to_mark (mark);
5187}
5188
372316f1
PA
5189/* Restart threads back to what they were trying to do back when we
5190 paused them for an in-line step-over. The EVENT_THREAD thread is
5191 ignored. */
4d9d9d04
PA
5192
5193static void
372316f1
PA
5194restart_threads (struct thread_info *event_thread)
5195{
5196 struct thread_info *tp;
5197 struct thread_info *step_over = NULL;
5198
5199 /* In case the instruction just stepped spawned a new thread. */
5200 update_thread_list ();
5201
5202 ALL_NON_EXITED_THREADS (tp)
5203 {
5204 if (tp == event_thread)
5205 {
5206 if (debug_infrun)
5207 fprintf_unfiltered (gdb_stdlog,
5208 "infrun: restart threads: "
5209 "[%s] is event thread\n",
5210 target_pid_to_str (tp->ptid));
5211 continue;
5212 }
5213
5214 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5215 {
5216 if (debug_infrun)
5217 fprintf_unfiltered (gdb_stdlog,
5218 "infrun: restart threads: "
5219 "[%s] not meant to be running\n",
5220 target_pid_to_str (tp->ptid));
5221 continue;
5222 }
5223
5224 if (tp->resumed)
5225 {
5226 if (debug_infrun)
5227 fprintf_unfiltered (gdb_stdlog,
5228 "infrun: restart threads: [%s] resumed\n",
5229 target_pid_to_str (tp->ptid));
5230 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5231 continue;
5232 }
5233
5234 if (thread_is_in_step_over_chain (tp))
5235 {
5236 if (debug_infrun)
5237 fprintf_unfiltered (gdb_stdlog,
5238 "infrun: restart threads: "
5239 "[%s] needs step-over\n",
5240 target_pid_to_str (tp->ptid));
5241 gdb_assert (!tp->resumed);
5242 continue;
5243 }
5244
5245
5246 if (tp->suspend.waitstatus_pending_p)
5247 {
5248 if (debug_infrun)
5249 fprintf_unfiltered (gdb_stdlog,
5250 "infrun: restart threads: "
5251 "[%s] has pending status\n",
5252 target_pid_to_str (tp->ptid));
5253 tp->resumed = 1;
5254 continue;
5255 }
5256
5257 /* If some thread needs to start a step-over at this point, it
5258 should still be in the step-over queue, and thus skipped
5259 above. */
5260 if (thread_still_needs_step_over (tp))
5261 {
5262 internal_error (__FILE__, __LINE__,
5263 "thread [%s] needs a step-over, but not in "
5264 "step-over queue\n",
5265 target_pid_to_str (tp->ptid));
5266 }
5267
5268 if (currently_stepping (tp))
5269 {
5270 if (debug_infrun)
5271 fprintf_unfiltered (gdb_stdlog,
5272 "infrun: restart threads: [%s] was stepping\n",
5273 target_pid_to_str (tp->ptid));
5274 keep_going_stepped_thread (tp);
5275 }
5276 else
5277 {
5278 struct execution_control_state ecss;
5279 struct execution_control_state *ecs = &ecss;
5280
5281 if (debug_infrun)
5282 fprintf_unfiltered (gdb_stdlog,
5283 "infrun: restart threads: [%s] continuing\n",
5284 target_pid_to_str (tp->ptid));
5285 reset_ecs (ecs, tp);
5286 switch_to_thread (tp->ptid);
5287 keep_going_pass_signal (ecs);
5288 }
5289 }
5290}
5291
5292/* Callback for iterate_over_threads. Find a resumed thread that has
5293 a pending waitstatus. */
5294
5295static int
5296resumed_thread_with_pending_status (struct thread_info *tp,
5297 void *arg)
5298{
5299 return (tp->resumed
5300 && tp->suspend.waitstatus_pending_p);
5301}
5302
5303/* Called when we get an event that may finish an in-line or
5304 out-of-line (displaced stepping) step-over started previously.
5305 Return true if the event is processed and we should go back to the
5306 event loop; false if the caller should continue processing the
5307 event. */
5308
5309static int
4d9d9d04
PA
5310finish_step_over (struct execution_control_state *ecs)
5311{
372316f1
PA
5312 int had_step_over_info;
5313
4d9d9d04
PA
5314 displaced_step_fixup (ecs->ptid,
5315 ecs->event_thread->suspend.stop_signal);
5316
372316f1
PA
5317 had_step_over_info = step_over_info_valid_p ();
5318
5319 if (had_step_over_info)
4d9d9d04
PA
5320 {
5321 /* If we're stepping over a breakpoint with all threads locked,
5322 then only the thread that was stepped should be reporting
5323 back an event. */
5324 gdb_assert (ecs->event_thread->control.trap_expected);
5325
5326 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5327 clear_step_over_info ();
5328 }
5329
fbea99ea 5330 if (!target_is_non_stop_p ())
372316f1 5331 return 0;
4d9d9d04
PA
5332
5333 /* Start a new step-over in another thread if there's one that
5334 needs it. */
5335 start_step_over ();
372316f1
PA
5336
5337 /* If we were stepping over a breakpoint before, and haven't started
5338 a new in-line step-over sequence, then restart all other threads
5339 (except the event thread). We can't do this in all-stop, as then
5340 e.g., we wouldn't be able to issue any other remote packet until
5341 these other threads stop. */
5342 if (had_step_over_info && !step_over_info_valid_p ())
5343 {
5344 struct thread_info *pending;
5345
5346 /* If we only have threads with pending statuses, the restart
5347 below won't restart any thread and so nothing re-inserts the
5348 breakpoint we just stepped over. But we need it inserted
5349 when we later process the pending events, otherwise if
5350 another thread has a pending event for this breakpoint too,
5351 we'd discard its event (because the breakpoint that
5352 originally caused the event was no longer inserted). */
5353 context_switch (ecs->ptid);
5354 insert_breakpoints ();
5355
5356 restart_threads (ecs->event_thread);
5357
5358 /* If we have events pending, go through handle_inferior_event
5359 again, picking up a pending event at random. This avoids
5360 thread starvation. */
5361
5362 /* But not if we just stepped over a watchpoint in order to let
5363 the instruction execute so we can evaluate its expression.
5364 The set of watchpoints that triggered is recorded in the
5365 breakpoint objects themselves (see bp->watchpoint_triggered).
5366 If we processed another event first, that other event could
5367 clobber this info. */
5368 if (ecs->event_thread->stepping_over_watchpoint)
5369 return 0;
5370
5371 pending = iterate_over_threads (resumed_thread_with_pending_status,
5372 NULL);
5373 if (pending != NULL)
5374 {
5375 struct thread_info *tp = ecs->event_thread;
5376 struct regcache *regcache;
5377
5378 if (debug_infrun)
5379 {
5380 fprintf_unfiltered (gdb_stdlog,
5381 "infrun: found resumed threads with "
5382 "pending events, saving status\n");
5383 }
5384
5385 gdb_assert (pending != tp);
5386
5387 /* Record the event thread's event for later. */
5388 save_waitstatus (tp, &ecs->ws);
5389 /* This was cleared early, by handle_inferior_event. Set it
5390 so this pending event is considered by
5391 do_target_wait. */
5392 tp->resumed = 1;
5393
5394 gdb_assert (!tp->executing);
5395
5396 regcache = get_thread_regcache (tp->ptid);
5397 tp->suspend.stop_pc = regcache_read_pc (regcache);
5398
5399 if (debug_infrun)
5400 {
5401 fprintf_unfiltered (gdb_stdlog,
5402 "infrun: saved stop_pc=%s for %s "
5403 "(currently_stepping=%d)\n",
5404 paddress (target_gdbarch (),
5405 tp->suspend.stop_pc),
5406 target_pid_to_str (tp->ptid),
5407 currently_stepping (tp));
5408 }
5409
5410 /* This in-line step-over finished; clear this so we won't
5411 start a new one. This is what handle_signal_stop would
5412 do, if we returned false. */
5413 tp->stepping_over_breakpoint = 0;
5414
5415 /* Wake up the event loop again. */
5416 mark_async_event_handler (infrun_async_inferior_event_token);
5417
5418 prepare_to_wait (ecs);
5419 return 1;
5420 }
5421 }
5422
5423 return 0;
4d9d9d04
PA
5424}
5425
4f5d7f63
PA
5426/* Come here when the program has stopped with a signal. */
5427
5428static void
5429handle_signal_stop (struct execution_control_state *ecs)
5430{
5431 struct frame_info *frame;
5432 struct gdbarch *gdbarch;
5433 int stopped_by_watchpoint;
5434 enum stop_kind stop_soon;
5435 int random_signal;
c906108c 5436
f0407826
DE
5437 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5438
5439 /* Do we need to clean up the state of a thread that has
5440 completed a displaced single-step? (Doing so usually affects
5441 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5442 if (finish_step_over (ecs))
5443 return;
f0407826
DE
5444
5445 /* If we either finished a single-step or hit a breakpoint, but
5446 the user wanted this thread to be stopped, pretend we got a
5447 SIG0 (generic unsignaled stop). */
5448 if (ecs->event_thread->stop_requested
5449 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5450 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5451
515630c5 5452 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5453
527159b7 5454 if (debug_infrun)
237fc4c9 5455 {
5af949e3
UW
5456 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5457 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5458 struct cleanup *old_chain = save_inferior_ptid ();
5459
5460 inferior_ptid = ecs->ptid;
5af949e3
UW
5461
5462 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5463 paddress (gdbarch, stop_pc));
d92524f1 5464 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5465 {
5466 CORE_ADDR addr;
abbb1732 5467
237fc4c9
PA
5468 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5469
5470 if (target_stopped_data_address (&current_target, &addr))
5471 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5472 "infrun: stopped data address = %s\n",
5473 paddress (gdbarch, addr));
237fc4c9
PA
5474 else
5475 fprintf_unfiltered (gdb_stdlog,
5476 "infrun: (no data address available)\n");
5477 }
7f82dfc7
JK
5478
5479 do_cleanups (old_chain);
237fc4c9 5480 }
527159b7 5481
36fa8042
PA
5482 /* This is originated from start_remote(), start_inferior() and
5483 shared libraries hook functions. */
5484 stop_soon = get_inferior_stop_soon (ecs->ptid);
5485 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5486 {
5487 if (!ptid_equal (ecs->ptid, inferior_ptid))
5488 context_switch (ecs->ptid);
5489 if (debug_infrun)
5490 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5491 stop_print_frame = 1;
22bcd14b 5492 stop_waiting (ecs);
36fa8042
PA
5493 return;
5494 }
5495
36fa8042
PA
5496 /* This originates from attach_command(). We need to overwrite
5497 the stop_signal here, because some kernels don't ignore a
5498 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5499 See more comments in inferior.h. On the other hand, if we
5500 get a non-SIGSTOP, report it to the user - assume the backend
5501 will handle the SIGSTOP if it should show up later.
5502
5503 Also consider that the attach is complete when we see a
5504 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5505 target extended-remote report it instead of a SIGSTOP
5506 (e.g. gdbserver). We already rely on SIGTRAP being our
5507 signal, so this is no exception.
5508
5509 Also consider that the attach is complete when we see a
5510 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5511 the target to stop all threads of the inferior, in case the
5512 low level attach operation doesn't stop them implicitly. If
5513 they weren't stopped implicitly, then the stub will report a
5514 GDB_SIGNAL_0, meaning: stopped for no particular reason
5515 other than GDB's request. */
5516 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5517 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5518 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5519 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5520 {
5521 stop_print_frame = 1;
22bcd14b 5522 stop_waiting (ecs);
36fa8042
PA
5523 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5524 return;
5525 }
5526
488f131b 5527 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5528 so, then switch to that thread. */
5529 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5530 {
527159b7 5531 if (debug_infrun)
8a9de0e4 5532 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5533
0d1e5fa7 5534 context_switch (ecs->ptid);
c5aa993b 5535
9a4105ab
AC
5536 if (deprecated_context_hook)
5537 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 5538 }
c906108c 5539
568d6575
UW
5540 /* At this point, get hold of the now-current thread's frame. */
5541 frame = get_current_frame ();
5542 gdbarch = get_frame_arch (frame);
5543
2adfaa28 5544 /* Pull the single step breakpoints out of the target. */
af48d08f 5545 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5546 {
af48d08f
PA
5547 struct regcache *regcache;
5548 struct address_space *aspace;
5549 CORE_ADDR pc;
2adfaa28 5550
af48d08f
PA
5551 regcache = get_thread_regcache (ecs->ptid);
5552 aspace = get_regcache_aspace (regcache);
5553 pc = regcache_read_pc (regcache);
34b7e8a6 5554
af48d08f
PA
5555 /* However, before doing so, if this single-step breakpoint was
5556 actually for another thread, set this thread up for moving
5557 past it. */
5558 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5559 aspace, pc))
5560 {
5561 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5562 {
5563 if (debug_infrun)
5564 {
5565 fprintf_unfiltered (gdb_stdlog,
af48d08f 5566 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5567 "single-step breakpoint\n",
5568 target_pid_to_str (ecs->ptid));
2adfaa28 5569 }
af48d08f
PA
5570 ecs->hit_singlestep_breakpoint = 1;
5571 }
5572 }
5573 else
5574 {
5575 if (debug_infrun)
5576 {
5577 fprintf_unfiltered (gdb_stdlog,
5578 "infrun: [%s] hit its "
5579 "single-step breakpoint\n",
5580 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5581 }
5582 }
488f131b 5583 }
af48d08f 5584 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5585
963f9c80
PA
5586 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5587 && ecs->event_thread->control.trap_expected
5588 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5589 stopped_by_watchpoint = 0;
5590 else
5591 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5592
5593 /* If necessary, step over this watchpoint. We'll be back to display
5594 it in a moment. */
5595 if (stopped_by_watchpoint
d92524f1 5596 && (target_have_steppable_watchpoint
568d6575 5597 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5598 {
488f131b
JB
5599 /* At this point, we are stopped at an instruction which has
5600 attempted to write to a piece of memory under control of
5601 a watchpoint. The instruction hasn't actually executed
5602 yet. If we were to evaluate the watchpoint expression
5603 now, we would get the old value, and therefore no change
5604 would seem to have occurred.
5605
5606 In order to make watchpoints work `right', we really need
5607 to complete the memory write, and then evaluate the
d983da9c
DJ
5608 watchpoint expression. We do this by single-stepping the
5609 target.
5610
7f89fd65 5611 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5612 it. For example, the PA can (with some kernel cooperation)
5613 single step over a watchpoint without disabling the watchpoint.
5614
5615 It is far more common to need to disable a watchpoint to step
5616 the inferior over it. If we have non-steppable watchpoints,
5617 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5618 disable all watchpoints.
5619
5620 Any breakpoint at PC must also be stepped over -- if there's
5621 one, it will have already triggered before the watchpoint
5622 triggered, and we either already reported it to the user, or
5623 it didn't cause a stop and we called keep_going. In either
5624 case, if there was a breakpoint at PC, we must be trying to
5625 step past it. */
5626 ecs->event_thread->stepping_over_watchpoint = 1;
5627 keep_going (ecs);
488f131b
JB
5628 return;
5629 }
5630
4e1c45ea 5631 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5632 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5633 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5634 ecs->event_thread->control.stop_step = 0;
488f131b 5635 stop_print_frame = 1;
488f131b 5636 stopped_by_random_signal = 0;
488f131b 5637
edb3359d
DJ
5638 /* Hide inlined functions starting here, unless we just performed stepi or
5639 nexti. After stepi and nexti, always show the innermost frame (not any
5640 inline function call sites). */
16c381f0 5641 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5642 {
5643 struct address_space *aspace =
5644 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5645
5646 /* skip_inline_frames is expensive, so we avoid it if we can
5647 determine that the address is one where functions cannot have
5648 been inlined. This improves performance with inferiors that
5649 load a lot of shared libraries, because the solib event
5650 breakpoint is defined as the address of a function (i.e. not
5651 inline). Note that we have to check the previous PC as well
5652 as the current one to catch cases when we have just
5653 single-stepped off a breakpoint prior to reinstating it.
5654 Note that we're assuming that the code we single-step to is
5655 not inline, but that's not definitive: there's nothing
5656 preventing the event breakpoint function from containing
5657 inlined code, and the single-step ending up there. If the
5658 user had set a breakpoint on that inlined code, the missing
5659 skip_inline_frames call would break things. Fortunately
5660 that's an extremely unlikely scenario. */
09ac7c10 5661 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5662 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5663 && ecs->event_thread->control.trap_expected
5664 && pc_at_non_inline_function (aspace,
5665 ecs->event_thread->prev_pc,
09ac7c10 5666 &ecs->ws)))
1c5a993e
MR
5667 {
5668 skip_inline_frames (ecs->ptid);
5669
5670 /* Re-fetch current thread's frame in case that invalidated
5671 the frame cache. */
5672 frame = get_current_frame ();
5673 gdbarch = get_frame_arch (frame);
5674 }
0574c78f 5675 }
edb3359d 5676
a493e3e2 5677 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5678 && ecs->event_thread->control.trap_expected
568d6575 5679 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5680 && currently_stepping (ecs->event_thread))
3352ef37 5681 {
b50d7442 5682 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5683 also on an instruction that needs to be stepped multiple
1777feb0 5684 times before it's been fully executing. E.g., architectures
3352ef37
AC
5685 with a delay slot. It needs to be stepped twice, once for
5686 the instruction and once for the delay slot. */
5687 int step_through_delay
568d6575 5688 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5689
527159b7 5690 if (debug_infrun && step_through_delay)
8a9de0e4 5691 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5692 if (ecs->event_thread->control.step_range_end == 0
5693 && step_through_delay)
3352ef37
AC
5694 {
5695 /* The user issued a continue when stopped at a breakpoint.
5696 Set up for another trap and get out of here. */
4e1c45ea 5697 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5698 keep_going (ecs);
5699 return;
5700 }
5701 else if (step_through_delay)
5702 {
5703 /* The user issued a step when stopped at a breakpoint.
5704 Maybe we should stop, maybe we should not - the delay
5705 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5706 case, don't decide that here, just set
5707 ecs->stepping_over_breakpoint, making sure we
5708 single-step again before breakpoints are re-inserted. */
4e1c45ea 5709 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5710 }
5711 }
5712
ab04a2af
TT
5713 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5714 handles this event. */
5715 ecs->event_thread->control.stop_bpstat
5716 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5717 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5718
ab04a2af
TT
5719 /* Following in case break condition called a
5720 function. */
5721 stop_print_frame = 1;
73dd234f 5722
ab04a2af
TT
5723 /* This is where we handle "moribund" watchpoints. Unlike
5724 software breakpoints traps, hardware watchpoint traps are
5725 always distinguishable from random traps. If no high-level
5726 watchpoint is associated with the reported stop data address
5727 anymore, then the bpstat does not explain the signal ---
5728 simply make sure to ignore it if `stopped_by_watchpoint' is
5729 set. */
5730
5731 if (debug_infrun
5732 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5733 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5734 GDB_SIGNAL_TRAP)
ab04a2af
TT
5735 && stopped_by_watchpoint)
5736 fprintf_unfiltered (gdb_stdlog,
5737 "infrun: no user watchpoint explains "
5738 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5739
bac7d97b 5740 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5741 at one stage in the past included checks for an inferior
5742 function call's call dummy's return breakpoint. The original
5743 comment, that went with the test, read:
03cebad2 5744
ab04a2af
TT
5745 ``End of a stack dummy. Some systems (e.g. Sony news) give
5746 another signal besides SIGTRAP, so check here as well as
5747 above.''
73dd234f 5748
ab04a2af
TT
5749 If someone ever tries to get call dummys on a
5750 non-executable stack to work (where the target would stop
5751 with something like a SIGSEGV), then those tests might need
5752 to be re-instated. Given, however, that the tests were only
5753 enabled when momentary breakpoints were not being used, I
5754 suspect that it won't be the case.
488f131b 5755
ab04a2af
TT
5756 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5757 be necessary for call dummies on a non-executable stack on
5758 SPARC. */
488f131b 5759
bac7d97b 5760 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5761 random_signal
5762 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5763 ecs->event_thread->suspend.stop_signal);
bac7d97b 5764
1cf4d951
PA
5765 /* Maybe this was a trap for a software breakpoint that has since
5766 been removed. */
5767 if (random_signal && target_stopped_by_sw_breakpoint ())
5768 {
5769 if (program_breakpoint_here_p (gdbarch, stop_pc))
5770 {
5771 struct regcache *regcache;
5772 int decr_pc;
5773
5774 /* Re-adjust PC to what the program would see if GDB was not
5775 debugging it. */
5776 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 5777 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5778 if (decr_pc != 0)
5779 {
5780 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5781
5782 if (record_full_is_used ())
5783 record_full_gdb_operation_disable_set ();
5784
5785 regcache_write_pc (regcache, stop_pc + decr_pc);
5786
5787 do_cleanups (old_cleanups);
5788 }
5789 }
5790 else
5791 {
5792 /* A delayed software breakpoint event. Ignore the trap. */
5793 if (debug_infrun)
5794 fprintf_unfiltered (gdb_stdlog,
5795 "infrun: delayed software breakpoint "
5796 "trap, ignoring\n");
5797 random_signal = 0;
5798 }
5799 }
5800
5801 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5802 has since been removed. */
5803 if (random_signal && target_stopped_by_hw_breakpoint ())
5804 {
5805 /* A delayed hardware breakpoint event. Ignore the trap. */
5806 if (debug_infrun)
5807 fprintf_unfiltered (gdb_stdlog,
5808 "infrun: delayed hardware breakpoint/watchpoint "
5809 "trap, ignoring\n");
5810 random_signal = 0;
5811 }
5812
bac7d97b
PA
5813 /* If not, perhaps stepping/nexting can. */
5814 if (random_signal)
5815 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5816 && currently_stepping (ecs->event_thread));
ab04a2af 5817
2adfaa28
PA
5818 /* Perhaps the thread hit a single-step breakpoint of _another_
5819 thread. Single-step breakpoints are transparent to the
5820 breakpoints module. */
5821 if (random_signal)
5822 random_signal = !ecs->hit_singlestep_breakpoint;
5823
bac7d97b
PA
5824 /* No? Perhaps we got a moribund watchpoint. */
5825 if (random_signal)
5826 random_signal = !stopped_by_watchpoint;
ab04a2af 5827
488f131b
JB
5828 /* For the program's own signals, act according to
5829 the signal handling tables. */
5830
ce12b012 5831 if (random_signal)
488f131b
JB
5832 {
5833 /* Signal not for debugging purposes. */
c9657e70 5834 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5835 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5836
527159b7 5837 if (debug_infrun)
c9737c08
PA
5838 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5839 gdb_signal_to_symbol_string (stop_signal));
527159b7 5840
488f131b
JB
5841 stopped_by_random_signal = 1;
5842
252fbfc8
PA
5843 /* Always stop on signals if we're either just gaining control
5844 of the program, or the user explicitly requested this thread
5845 to remain stopped. */
d6b48e9c 5846 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5847 || ecs->event_thread->stop_requested
24291992 5848 || (!inf->detaching
16c381f0 5849 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5850 {
22bcd14b 5851 stop_waiting (ecs);
488f131b
JB
5852 return;
5853 }
b57bacec
PA
5854
5855 /* Notify observers the signal has "handle print" set. Note we
5856 returned early above if stopping; normal_stop handles the
5857 printing in that case. */
5858 if (signal_print[ecs->event_thread->suspend.stop_signal])
5859 {
5860 /* The signal table tells us to print about this signal. */
5861 target_terminal_ours_for_output ();
5862 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5863 target_terminal_inferior ();
5864 }
488f131b
JB
5865
5866 /* Clear the signal if it should not be passed. */
16c381f0 5867 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5868 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5869
fb14de7b 5870 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 5871 && ecs->event_thread->control.trap_expected
8358c15c 5872 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 5873 {
372316f1
PA
5874 int was_in_line;
5875
68f53502
AC
5876 /* We were just starting a new sequence, attempting to
5877 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5878 Instead this signal arrives. This signal will take us out
68f53502
AC
5879 of the stepping range so GDB needs to remember to, when
5880 the signal handler returns, resume stepping off that
5881 breakpoint. */
5882 /* To simplify things, "continue" is forced to use the same
5883 code paths as single-step - set a breakpoint at the
5884 signal return address and then, once hit, step off that
5885 breakpoint. */
237fc4c9
PA
5886 if (debug_infrun)
5887 fprintf_unfiltered (gdb_stdlog,
5888 "infrun: signal arrived while stepping over "
5889 "breakpoint\n");
d3169d93 5890
372316f1
PA
5891 was_in_line = step_over_info_valid_p ();
5892 clear_step_over_info ();
2c03e5be 5893 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5894 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5895 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5896 ecs->event_thread->control.trap_expected = 0;
d137e6dc 5897
fbea99ea 5898 if (target_is_non_stop_p ())
372316f1 5899 {
fbea99ea
PA
5900 /* Either "set non-stop" is "on", or the target is
5901 always in non-stop mode. In this case, we have a bit
5902 more work to do. Resume the current thread, and if
5903 we had paused all threads, restart them while the
5904 signal handler runs. */
372316f1
PA
5905 keep_going (ecs);
5906
372316f1
PA
5907 if (was_in_line)
5908 {
372316f1
PA
5909 restart_threads (ecs->event_thread);
5910 }
5911 else if (debug_infrun)
5912 {
5913 fprintf_unfiltered (gdb_stdlog,
5914 "infrun: no need to restart threads\n");
5915 }
5916 return;
5917 }
5918
d137e6dc
PA
5919 /* If we were nexting/stepping some other thread, switch to
5920 it, so that we don't continue it, losing control. */
5921 if (!switch_back_to_stepped_thread (ecs))
5922 keep_going (ecs);
9d799f85 5923 return;
68f53502 5924 }
9d799f85 5925
e5f8a7cc
PA
5926 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5927 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5928 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5929 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5930 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5931 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5932 {
5933 /* The inferior is about to take a signal that will take it
5934 out of the single step range. Set a breakpoint at the
5935 current PC (which is presumably where the signal handler
5936 will eventually return) and then allow the inferior to
5937 run free.
5938
5939 Note that this is only needed for a signal delivered
5940 while in the single-step range. Nested signals aren't a
5941 problem as they eventually all return. */
237fc4c9
PA
5942 if (debug_infrun)
5943 fprintf_unfiltered (gdb_stdlog,
5944 "infrun: signal may take us out of "
5945 "single-step range\n");
5946
372316f1 5947 clear_step_over_info ();
2c03e5be 5948 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5949 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5950 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5951 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5952 keep_going (ecs);
5953 return;
d303a6c7 5954 }
9d799f85
AC
5955
5956 /* Note: step_resume_breakpoint may be non-NULL. This occures
5957 when either there's a nested signal, or when there's a
5958 pending signal enabled just as the signal handler returns
5959 (leaving the inferior at the step-resume-breakpoint without
5960 actually executing it). Either way continue until the
5961 breakpoint is really hit. */
c447ac0b
PA
5962
5963 if (!switch_back_to_stepped_thread (ecs))
5964 {
5965 if (debug_infrun)
5966 fprintf_unfiltered (gdb_stdlog,
5967 "infrun: random signal, keep going\n");
5968
5969 keep_going (ecs);
5970 }
5971 return;
488f131b 5972 }
94c57d6a
PA
5973
5974 process_event_stop_test (ecs);
5975}
5976
5977/* Come here when we've got some debug event / signal we can explain
5978 (IOW, not a random signal), and test whether it should cause a
5979 stop, or whether we should resume the inferior (transparently).
5980 E.g., could be a breakpoint whose condition evaluates false; we
5981 could be still stepping within the line; etc. */
5982
5983static void
5984process_event_stop_test (struct execution_control_state *ecs)
5985{
5986 struct symtab_and_line stop_pc_sal;
5987 struct frame_info *frame;
5988 struct gdbarch *gdbarch;
cdaa5b73
PA
5989 CORE_ADDR jmp_buf_pc;
5990 struct bpstat_what what;
94c57d6a 5991
cdaa5b73 5992 /* Handle cases caused by hitting a breakpoint. */
611c83ae 5993
cdaa5b73
PA
5994 frame = get_current_frame ();
5995 gdbarch = get_frame_arch (frame);
fcf3daef 5996
cdaa5b73 5997 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 5998
cdaa5b73
PA
5999 if (what.call_dummy)
6000 {
6001 stop_stack_dummy = what.call_dummy;
6002 }
186c406b 6003
243a9253
PA
6004 /* A few breakpoint types have callbacks associated (e.g.,
6005 bp_jit_event). Run them now. */
6006 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6007
cdaa5b73
PA
6008 /* If we hit an internal event that triggers symbol changes, the
6009 current frame will be invalidated within bpstat_what (e.g., if we
6010 hit an internal solib event). Re-fetch it. */
6011 frame = get_current_frame ();
6012 gdbarch = get_frame_arch (frame);
e2e4d78b 6013
cdaa5b73
PA
6014 switch (what.main_action)
6015 {
6016 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6017 /* If we hit the breakpoint at longjmp while stepping, we
6018 install a momentary breakpoint at the target of the
6019 jmp_buf. */
186c406b 6020
cdaa5b73
PA
6021 if (debug_infrun)
6022 fprintf_unfiltered (gdb_stdlog,
6023 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6024
cdaa5b73 6025 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6026
cdaa5b73
PA
6027 if (what.is_longjmp)
6028 {
6029 struct value *arg_value;
6030
6031 /* If we set the longjmp breakpoint via a SystemTap probe,
6032 then use it to extract the arguments. The destination PC
6033 is the third argument to the probe. */
6034 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6035 if (arg_value)
8fa0c4f8
AA
6036 {
6037 jmp_buf_pc = value_as_address (arg_value);
6038 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6039 }
cdaa5b73
PA
6040 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6041 || !gdbarch_get_longjmp_target (gdbarch,
6042 frame, &jmp_buf_pc))
e2e4d78b 6043 {
cdaa5b73
PA
6044 if (debug_infrun)
6045 fprintf_unfiltered (gdb_stdlog,
6046 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6047 "(!gdbarch_get_longjmp_target)\n");
6048 keep_going (ecs);
6049 return;
e2e4d78b 6050 }
e2e4d78b 6051
cdaa5b73
PA
6052 /* Insert a breakpoint at resume address. */
6053 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6054 }
6055 else
6056 check_exception_resume (ecs, frame);
6057 keep_going (ecs);
6058 return;
e81a37f7 6059
cdaa5b73
PA
6060 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6061 {
6062 struct frame_info *init_frame;
e81a37f7 6063
cdaa5b73 6064 /* There are several cases to consider.
c906108c 6065
cdaa5b73
PA
6066 1. The initiating frame no longer exists. In this case we
6067 must stop, because the exception or longjmp has gone too
6068 far.
2c03e5be 6069
cdaa5b73
PA
6070 2. The initiating frame exists, and is the same as the
6071 current frame. We stop, because the exception or longjmp
6072 has been caught.
2c03e5be 6073
cdaa5b73
PA
6074 3. The initiating frame exists and is different from the
6075 current frame. This means the exception or longjmp has
6076 been caught beneath the initiating frame, so keep going.
c906108c 6077
cdaa5b73
PA
6078 4. longjmp breakpoint has been placed just to protect
6079 against stale dummy frames and user is not interested in
6080 stopping around longjmps. */
c5aa993b 6081
cdaa5b73
PA
6082 if (debug_infrun)
6083 fprintf_unfiltered (gdb_stdlog,
6084 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6085
cdaa5b73
PA
6086 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6087 != NULL);
6088 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6089
cdaa5b73
PA
6090 if (what.is_longjmp)
6091 {
b67a2c6f 6092 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6093
cdaa5b73 6094 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6095 {
cdaa5b73
PA
6096 /* Case 4. */
6097 keep_going (ecs);
6098 return;
e5ef252a 6099 }
cdaa5b73 6100 }
c5aa993b 6101
cdaa5b73 6102 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6103
cdaa5b73
PA
6104 if (init_frame)
6105 {
6106 struct frame_id current_id
6107 = get_frame_id (get_current_frame ());
6108 if (frame_id_eq (current_id,
6109 ecs->event_thread->initiating_frame))
6110 {
6111 /* Case 2. Fall through. */
6112 }
6113 else
6114 {
6115 /* Case 3. */
6116 keep_going (ecs);
6117 return;
6118 }
68f53502 6119 }
488f131b 6120
cdaa5b73
PA
6121 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6122 exists. */
6123 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6124
bdc36728 6125 end_stepping_range (ecs);
cdaa5b73
PA
6126 }
6127 return;
e5ef252a 6128
cdaa5b73
PA
6129 case BPSTAT_WHAT_SINGLE:
6130 if (debug_infrun)
6131 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6132 ecs->event_thread->stepping_over_breakpoint = 1;
6133 /* Still need to check other stuff, at least the case where we
6134 are stepping and step out of the right range. */
6135 break;
e5ef252a 6136
cdaa5b73
PA
6137 case BPSTAT_WHAT_STEP_RESUME:
6138 if (debug_infrun)
6139 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6140
cdaa5b73
PA
6141 delete_step_resume_breakpoint (ecs->event_thread);
6142 if (ecs->event_thread->control.proceed_to_finish
6143 && execution_direction == EXEC_REVERSE)
6144 {
6145 struct thread_info *tp = ecs->event_thread;
6146
6147 /* We are finishing a function in reverse, and just hit the
6148 step-resume breakpoint at the start address of the
6149 function, and we're almost there -- just need to back up
6150 by one more single-step, which should take us back to the
6151 function call. */
6152 tp->control.step_range_start = tp->control.step_range_end = 1;
6153 keep_going (ecs);
e5ef252a 6154 return;
cdaa5b73
PA
6155 }
6156 fill_in_stop_func (gdbarch, ecs);
6157 if (stop_pc == ecs->stop_func_start
6158 && execution_direction == EXEC_REVERSE)
6159 {
6160 /* We are stepping over a function call in reverse, and just
6161 hit the step-resume breakpoint at the start address of
6162 the function. Go back to single-stepping, which should
6163 take us back to the function call. */
6164 ecs->event_thread->stepping_over_breakpoint = 1;
6165 keep_going (ecs);
6166 return;
6167 }
6168 break;
e5ef252a 6169
cdaa5b73
PA
6170 case BPSTAT_WHAT_STOP_NOISY:
6171 if (debug_infrun)
6172 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6173 stop_print_frame = 1;
e5ef252a 6174
99619bea
PA
6175 /* Assume the thread stopped for a breapoint. We'll still check
6176 whether a/the breakpoint is there when the thread is next
6177 resumed. */
6178 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6179
22bcd14b 6180 stop_waiting (ecs);
cdaa5b73 6181 return;
e5ef252a 6182
cdaa5b73
PA
6183 case BPSTAT_WHAT_STOP_SILENT:
6184 if (debug_infrun)
6185 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6186 stop_print_frame = 0;
e5ef252a 6187
99619bea
PA
6188 /* Assume the thread stopped for a breapoint. We'll still check
6189 whether a/the breakpoint is there when the thread is next
6190 resumed. */
6191 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6192 stop_waiting (ecs);
cdaa5b73
PA
6193 return;
6194
6195 case BPSTAT_WHAT_HP_STEP_RESUME:
6196 if (debug_infrun)
6197 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6198
6199 delete_step_resume_breakpoint (ecs->event_thread);
6200 if (ecs->event_thread->step_after_step_resume_breakpoint)
6201 {
6202 /* Back when the step-resume breakpoint was inserted, we
6203 were trying to single-step off a breakpoint. Go back to
6204 doing that. */
6205 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6206 ecs->event_thread->stepping_over_breakpoint = 1;
6207 keep_going (ecs);
6208 return;
e5ef252a 6209 }
cdaa5b73
PA
6210 break;
6211
6212 case BPSTAT_WHAT_KEEP_CHECKING:
6213 break;
e5ef252a 6214 }
c906108c 6215
af48d08f
PA
6216 /* If we stepped a permanent breakpoint and we had a high priority
6217 step-resume breakpoint for the address we stepped, but we didn't
6218 hit it, then we must have stepped into the signal handler. The
6219 step-resume was only necessary to catch the case of _not_
6220 stepping into the handler, so delete it, and fall through to
6221 checking whether the step finished. */
6222 if (ecs->event_thread->stepped_breakpoint)
6223 {
6224 struct breakpoint *sr_bp
6225 = ecs->event_thread->control.step_resume_breakpoint;
6226
8d707a12
PA
6227 if (sr_bp != NULL
6228 && sr_bp->loc->permanent
af48d08f
PA
6229 && sr_bp->type == bp_hp_step_resume
6230 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6231 {
6232 if (debug_infrun)
6233 fprintf_unfiltered (gdb_stdlog,
6234 "infrun: stepped permanent breakpoint, stopped in "
6235 "handler\n");
6236 delete_step_resume_breakpoint (ecs->event_thread);
6237 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6238 }
6239 }
6240
cdaa5b73
PA
6241 /* We come here if we hit a breakpoint but should not stop for it.
6242 Possibly we also were stepping and should stop for that. So fall
6243 through and test for stepping. But, if not stepping, do not
6244 stop. */
c906108c 6245
a7212384
UW
6246 /* In all-stop mode, if we're currently stepping but have stopped in
6247 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6248 if (switch_back_to_stepped_thread (ecs))
6249 return;
776f04fa 6250
8358c15c 6251 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6252 {
527159b7 6253 if (debug_infrun)
d3169d93
DJ
6254 fprintf_unfiltered (gdb_stdlog,
6255 "infrun: step-resume breakpoint is inserted\n");
527159b7 6256
488f131b
JB
6257 /* Having a step-resume breakpoint overrides anything
6258 else having to do with stepping commands until
6259 that breakpoint is reached. */
488f131b
JB
6260 keep_going (ecs);
6261 return;
6262 }
c5aa993b 6263
16c381f0 6264 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6265 {
527159b7 6266 if (debug_infrun)
8a9de0e4 6267 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6268 /* Likewise if we aren't even stepping. */
488f131b
JB
6269 keep_going (ecs);
6270 return;
6271 }
c5aa993b 6272
4b7703ad
JB
6273 /* Re-fetch current thread's frame in case the code above caused
6274 the frame cache to be re-initialized, making our FRAME variable
6275 a dangling pointer. */
6276 frame = get_current_frame ();
628fe4e4 6277 gdbarch = get_frame_arch (frame);
7e324e48 6278 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6279
488f131b 6280 /* If stepping through a line, keep going if still within it.
c906108c 6281
488f131b
JB
6282 Note that step_range_end is the address of the first instruction
6283 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6284 within it!
6285
6286 Note also that during reverse execution, we may be stepping
6287 through a function epilogue and therefore must detect when
6288 the current-frame changes in the middle of a line. */
6289
ce4c476a 6290 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6291 && (execution_direction != EXEC_REVERSE
388a8562 6292 || frame_id_eq (get_frame_id (frame),
16c381f0 6293 ecs->event_thread->control.step_frame_id)))
488f131b 6294 {
527159b7 6295 if (debug_infrun)
5af949e3
UW
6296 fprintf_unfiltered
6297 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6298 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6299 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6300
c1e36e3e
PA
6301 /* Tentatively re-enable range stepping; `resume' disables it if
6302 necessary (e.g., if we're stepping over a breakpoint or we
6303 have software watchpoints). */
6304 ecs->event_thread->control.may_range_step = 1;
6305
b2175913
MS
6306 /* When stepping backward, stop at beginning of line range
6307 (unless it's the function entry point, in which case
6308 keep going back to the call point). */
16c381f0 6309 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6310 && stop_pc != ecs->stop_func_start
6311 && execution_direction == EXEC_REVERSE)
bdc36728 6312 end_stepping_range (ecs);
b2175913
MS
6313 else
6314 keep_going (ecs);
6315
488f131b
JB
6316 return;
6317 }
c5aa993b 6318
488f131b 6319 /* We stepped out of the stepping range. */
c906108c 6320
488f131b 6321 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6322 loader dynamic symbol resolution code...
6323
6324 EXEC_FORWARD: we keep on single stepping until we exit the run
6325 time loader code and reach the callee's address.
6326
6327 EXEC_REVERSE: we've already executed the callee (backward), and
6328 the runtime loader code is handled just like any other
6329 undebuggable function call. Now we need only keep stepping
6330 backward through the trampoline code, and that's handled further
6331 down, so there is nothing for us to do here. */
6332
6333 if (execution_direction != EXEC_REVERSE
16c381f0 6334 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6335 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6336 {
4c8c40e6 6337 CORE_ADDR pc_after_resolver =
568d6575 6338 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6339
527159b7 6340 if (debug_infrun)
3e43a32a
MS
6341 fprintf_unfiltered (gdb_stdlog,
6342 "infrun: stepped into dynsym resolve code\n");
527159b7 6343
488f131b
JB
6344 if (pc_after_resolver)
6345 {
6346 /* Set up a step-resume breakpoint at the address
6347 indicated by SKIP_SOLIB_RESOLVER. */
6348 struct symtab_and_line sr_sal;
abbb1732 6349
fe39c653 6350 init_sal (&sr_sal);
488f131b 6351 sr_sal.pc = pc_after_resolver;
6c95b8df 6352 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6353
a6d9a66e
UW
6354 insert_step_resume_breakpoint_at_sal (gdbarch,
6355 sr_sal, null_frame_id);
c5aa993b 6356 }
c906108c 6357
488f131b
JB
6358 keep_going (ecs);
6359 return;
6360 }
c906108c 6361
16c381f0
JK
6362 if (ecs->event_thread->control.step_range_end != 1
6363 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6364 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6365 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6366 {
527159b7 6367 if (debug_infrun)
3e43a32a
MS
6368 fprintf_unfiltered (gdb_stdlog,
6369 "infrun: stepped into signal trampoline\n");
42edda50 6370 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6371 a signal trampoline (either by a signal being delivered or by
6372 the signal handler returning). Just single-step until the
6373 inferior leaves the trampoline (either by calling the handler
6374 or returning). */
488f131b
JB
6375 keep_going (ecs);
6376 return;
6377 }
c906108c 6378
14132e89
MR
6379 /* If we're in the return path from a shared library trampoline,
6380 we want to proceed through the trampoline when stepping. */
6381 /* macro/2012-04-25: This needs to come before the subroutine
6382 call check below as on some targets return trampolines look
6383 like subroutine calls (MIPS16 return thunks). */
6384 if (gdbarch_in_solib_return_trampoline (gdbarch,
6385 stop_pc, ecs->stop_func_name)
6386 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6387 {
6388 /* Determine where this trampoline returns. */
6389 CORE_ADDR real_stop_pc;
6390
6391 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6392
6393 if (debug_infrun)
6394 fprintf_unfiltered (gdb_stdlog,
6395 "infrun: stepped into solib return tramp\n");
6396
6397 /* Only proceed through if we know where it's going. */
6398 if (real_stop_pc)
6399 {
6400 /* And put the step-breakpoint there and go until there. */
6401 struct symtab_and_line sr_sal;
6402
6403 init_sal (&sr_sal); /* initialize to zeroes */
6404 sr_sal.pc = real_stop_pc;
6405 sr_sal.section = find_pc_overlay (sr_sal.pc);
6406 sr_sal.pspace = get_frame_program_space (frame);
6407
6408 /* Do not specify what the fp should be when we stop since
6409 on some machines the prologue is where the new fp value
6410 is established. */
6411 insert_step_resume_breakpoint_at_sal (gdbarch,
6412 sr_sal, null_frame_id);
6413
6414 /* Restart without fiddling with the step ranges or
6415 other state. */
6416 keep_going (ecs);
6417 return;
6418 }
6419 }
6420
c17eaafe
DJ
6421 /* Check for subroutine calls. The check for the current frame
6422 equalling the step ID is not necessary - the check of the
6423 previous frame's ID is sufficient - but it is a common case and
6424 cheaper than checking the previous frame's ID.
14e60db5
DJ
6425
6426 NOTE: frame_id_eq will never report two invalid frame IDs as
6427 being equal, so to get into this block, both the current and
6428 previous frame must have valid frame IDs. */
005ca36a
JB
6429 /* The outer_frame_id check is a heuristic to detect stepping
6430 through startup code. If we step over an instruction which
6431 sets the stack pointer from an invalid value to a valid value,
6432 we may detect that as a subroutine call from the mythical
6433 "outermost" function. This could be fixed by marking
6434 outermost frames as !stack_p,code_p,special_p. Then the
6435 initial outermost frame, before sp was valid, would
ce6cca6d 6436 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6437 for more. */
edb3359d 6438 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6439 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6440 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6441 ecs->event_thread->control.step_stack_frame_id)
6442 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6443 outer_frame_id)
885eeb5b
PA
6444 || (ecs->event_thread->control.step_start_function
6445 != find_pc_function (stop_pc)))))
488f131b 6446 {
95918acb 6447 CORE_ADDR real_stop_pc;
8fb3e588 6448
527159b7 6449 if (debug_infrun)
8a9de0e4 6450 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6451
b7a084be 6452 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6453 {
6454 /* I presume that step_over_calls is only 0 when we're
6455 supposed to be stepping at the assembly language level
6456 ("stepi"). Just stop. */
388a8562 6457 /* And this works the same backward as frontward. MVS */
bdc36728 6458 end_stepping_range (ecs);
95918acb
AC
6459 return;
6460 }
8fb3e588 6461
388a8562
MS
6462 /* Reverse stepping through solib trampolines. */
6463
6464 if (execution_direction == EXEC_REVERSE
16c381f0 6465 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6466 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6467 || (ecs->stop_func_start == 0
6468 && in_solib_dynsym_resolve_code (stop_pc))))
6469 {
6470 /* Any solib trampoline code can be handled in reverse
6471 by simply continuing to single-step. We have already
6472 executed the solib function (backwards), and a few
6473 steps will take us back through the trampoline to the
6474 caller. */
6475 keep_going (ecs);
6476 return;
6477 }
6478
16c381f0 6479 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6480 {
b2175913
MS
6481 /* We're doing a "next".
6482
6483 Normal (forward) execution: set a breakpoint at the
6484 callee's return address (the address at which the caller
6485 will resume).
6486
6487 Reverse (backward) execution. set the step-resume
6488 breakpoint at the start of the function that we just
6489 stepped into (backwards), and continue to there. When we
6130d0b7 6490 get there, we'll need to single-step back to the caller. */
b2175913
MS
6491
6492 if (execution_direction == EXEC_REVERSE)
6493 {
acf9414f
JK
6494 /* If we're already at the start of the function, we've either
6495 just stepped backward into a single instruction function,
6496 or stepped back out of a signal handler to the first instruction
6497 of the function. Just keep going, which will single-step back
6498 to the caller. */
58c48e72 6499 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6500 {
6501 struct symtab_and_line sr_sal;
6502
6503 /* Normal function call return (static or dynamic). */
6504 init_sal (&sr_sal);
6505 sr_sal.pc = ecs->stop_func_start;
6506 sr_sal.pspace = get_frame_program_space (frame);
6507 insert_step_resume_breakpoint_at_sal (gdbarch,
6508 sr_sal, null_frame_id);
6509 }
b2175913
MS
6510 }
6511 else
568d6575 6512 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6513
8567c30f
AC
6514 keep_going (ecs);
6515 return;
6516 }
a53c66de 6517
95918acb 6518 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6519 calling routine and the real function), locate the real
6520 function. That's what tells us (a) whether we want to step
6521 into it at all, and (b) what prologue we want to run to the
6522 end of, if we do step into it. */
568d6575 6523 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6524 if (real_stop_pc == 0)
568d6575 6525 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6526 if (real_stop_pc != 0)
6527 ecs->stop_func_start = real_stop_pc;
8fb3e588 6528
db5f024e 6529 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6530 {
6531 struct symtab_and_line sr_sal;
abbb1732 6532
1b2bfbb9
RC
6533 init_sal (&sr_sal);
6534 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6535 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6536
a6d9a66e
UW
6537 insert_step_resume_breakpoint_at_sal (gdbarch,
6538 sr_sal, null_frame_id);
8fb3e588
AC
6539 keep_going (ecs);
6540 return;
1b2bfbb9
RC
6541 }
6542
95918acb 6543 /* If we have line number information for the function we are
1bfeeb0f
JL
6544 thinking of stepping into and the function isn't on the skip
6545 list, step into it.
95918acb 6546
8fb3e588
AC
6547 If there are several symtabs at that PC (e.g. with include
6548 files), just want to know whether *any* of them have line
6549 numbers. find_pc_line handles this. */
95918acb
AC
6550 {
6551 struct symtab_and_line tmp_sal;
8fb3e588 6552
95918acb 6553 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6554 if (tmp_sal.line != 0
85817405
JK
6555 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6556 &tmp_sal))
95918acb 6557 {
b2175913 6558 if (execution_direction == EXEC_REVERSE)
568d6575 6559 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6560 else
568d6575 6561 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6562 return;
6563 }
6564 }
6565
6566 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6567 set, we stop the step so that the user has a chance to switch
6568 in assembly mode. */
16c381f0 6569 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6570 && step_stop_if_no_debug)
95918acb 6571 {
bdc36728 6572 end_stepping_range (ecs);
95918acb
AC
6573 return;
6574 }
6575
b2175913
MS
6576 if (execution_direction == EXEC_REVERSE)
6577 {
acf9414f
JK
6578 /* If we're already at the start of the function, we've either just
6579 stepped backward into a single instruction function without line
6580 number info, or stepped back out of a signal handler to the first
6581 instruction of the function without line number info. Just keep
6582 going, which will single-step back to the caller. */
6583 if (ecs->stop_func_start != stop_pc)
6584 {
6585 /* Set a breakpoint at callee's start address.
6586 From there we can step once and be back in the caller. */
6587 struct symtab_and_line sr_sal;
abbb1732 6588
acf9414f
JK
6589 init_sal (&sr_sal);
6590 sr_sal.pc = ecs->stop_func_start;
6591 sr_sal.pspace = get_frame_program_space (frame);
6592 insert_step_resume_breakpoint_at_sal (gdbarch,
6593 sr_sal, null_frame_id);
6594 }
b2175913
MS
6595 }
6596 else
6597 /* Set a breakpoint at callee's return address (the address
6598 at which the caller will resume). */
568d6575 6599 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6600
95918acb 6601 keep_going (ecs);
488f131b 6602 return;
488f131b 6603 }
c906108c 6604
fdd654f3
MS
6605 /* Reverse stepping through solib trampolines. */
6606
6607 if (execution_direction == EXEC_REVERSE
16c381f0 6608 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6609 {
6610 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6611 || (ecs->stop_func_start == 0
6612 && in_solib_dynsym_resolve_code (stop_pc)))
6613 {
6614 /* Any solib trampoline code can be handled in reverse
6615 by simply continuing to single-step. We have already
6616 executed the solib function (backwards), and a few
6617 steps will take us back through the trampoline to the
6618 caller. */
6619 keep_going (ecs);
6620 return;
6621 }
6622 else if (in_solib_dynsym_resolve_code (stop_pc))
6623 {
6624 /* Stepped backward into the solib dynsym resolver.
6625 Set a breakpoint at its start and continue, then
6626 one more step will take us out. */
6627 struct symtab_and_line sr_sal;
abbb1732 6628
fdd654f3
MS
6629 init_sal (&sr_sal);
6630 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6631 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6632 insert_step_resume_breakpoint_at_sal (gdbarch,
6633 sr_sal, null_frame_id);
6634 keep_going (ecs);
6635 return;
6636 }
6637 }
6638
2afb61aa 6639 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6640
1b2bfbb9
RC
6641 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6642 the trampoline processing logic, however, there are some trampolines
6643 that have no names, so we should do trampoline handling first. */
16c381f0 6644 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6645 && ecs->stop_func_name == NULL
2afb61aa 6646 && stop_pc_sal.line == 0)
1b2bfbb9 6647 {
527159b7 6648 if (debug_infrun)
3e43a32a
MS
6649 fprintf_unfiltered (gdb_stdlog,
6650 "infrun: stepped into undebuggable function\n");
527159b7 6651
1b2bfbb9 6652 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6653 undebuggable function (where there is no debugging information
6654 and no line number corresponding to the address where the
1b2bfbb9
RC
6655 inferior stopped). Since we want to skip this kind of code,
6656 we keep going until the inferior returns from this
14e60db5
DJ
6657 function - unless the user has asked us not to (via
6658 set step-mode) or we no longer know how to get back
6659 to the call site. */
6660 if (step_stop_if_no_debug
c7ce8faa 6661 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6662 {
6663 /* If we have no line number and the step-stop-if-no-debug
6664 is set, we stop the step so that the user has a chance to
6665 switch in assembly mode. */
bdc36728 6666 end_stepping_range (ecs);
1b2bfbb9
RC
6667 return;
6668 }
6669 else
6670 {
6671 /* Set a breakpoint at callee's return address (the address
6672 at which the caller will resume). */
568d6575 6673 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6674 keep_going (ecs);
6675 return;
6676 }
6677 }
6678
16c381f0 6679 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6680 {
6681 /* It is stepi or nexti. We always want to stop stepping after
6682 one instruction. */
527159b7 6683 if (debug_infrun)
8a9de0e4 6684 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6685 end_stepping_range (ecs);
1b2bfbb9
RC
6686 return;
6687 }
6688
2afb61aa 6689 if (stop_pc_sal.line == 0)
488f131b
JB
6690 {
6691 /* We have no line number information. That means to stop
6692 stepping (does this always happen right after one instruction,
6693 when we do "s" in a function with no line numbers,
6694 or can this happen as a result of a return or longjmp?). */
527159b7 6695 if (debug_infrun)
8a9de0e4 6696 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6697 end_stepping_range (ecs);
488f131b
JB
6698 return;
6699 }
c906108c 6700
edb3359d
DJ
6701 /* Look for "calls" to inlined functions, part one. If the inline
6702 frame machinery detected some skipped call sites, we have entered
6703 a new inline function. */
6704
6705 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6706 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6707 && inline_skipped_frames (ecs->ptid))
6708 {
6709 struct symtab_and_line call_sal;
6710
6711 if (debug_infrun)
6712 fprintf_unfiltered (gdb_stdlog,
6713 "infrun: stepped into inlined function\n");
6714
6715 find_frame_sal (get_current_frame (), &call_sal);
6716
16c381f0 6717 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6718 {
6719 /* For "step", we're going to stop. But if the call site
6720 for this inlined function is on the same source line as
6721 we were previously stepping, go down into the function
6722 first. Otherwise stop at the call site. */
6723
6724 if (call_sal.line == ecs->event_thread->current_line
6725 && call_sal.symtab == ecs->event_thread->current_symtab)
6726 step_into_inline_frame (ecs->ptid);
6727
bdc36728 6728 end_stepping_range (ecs);
edb3359d
DJ
6729 return;
6730 }
6731 else
6732 {
6733 /* For "next", we should stop at the call site if it is on a
6734 different source line. Otherwise continue through the
6735 inlined function. */
6736 if (call_sal.line == ecs->event_thread->current_line
6737 && call_sal.symtab == ecs->event_thread->current_symtab)
6738 keep_going (ecs);
6739 else
bdc36728 6740 end_stepping_range (ecs);
edb3359d
DJ
6741 return;
6742 }
6743 }
6744
6745 /* Look for "calls" to inlined functions, part two. If we are still
6746 in the same real function we were stepping through, but we have
6747 to go further up to find the exact frame ID, we are stepping
6748 through a more inlined call beyond its call site. */
6749
6750 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6751 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6752 ecs->event_thread->control.step_frame_id)
edb3359d 6753 && stepped_in_from (get_current_frame (),
16c381f0 6754 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6755 {
6756 if (debug_infrun)
6757 fprintf_unfiltered (gdb_stdlog,
6758 "infrun: stepping through inlined function\n");
6759
16c381f0 6760 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6761 keep_going (ecs);
6762 else
bdc36728 6763 end_stepping_range (ecs);
edb3359d
DJ
6764 return;
6765 }
6766
2afb61aa 6767 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6768 && (ecs->event_thread->current_line != stop_pc_sal.line
6769 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6770 {
6771 /* We are at the start of a different line. So stop. Note that
6772 we don't stop if we step into the middle of a different line.
6773 That is said to make things like for (;;) statements work
6774 better. */
527159b7 6775 if (debug_infrun)
3e43a32a
MS
6776 fprintf_unfiltered (gdb_stdlog,
6777 "infrun: stepped to a different line\n");
bdc36728 6778 end_stepping_range (ecs);
488f131b
JB
6779 return;
6780 }
c906108c 6781
488f131b 6782 /* We aren't done stepping.
c906108c 6783
488f131b
JB
6784 Optimize by setting the stepping range to the line.
6785 (We might not be in the original line, but if we entered a
6786 new line in mid-statement, we continue stepping. This makes
6787 things like for(;;) statements work better.) */
c906108c 6788
16c381f0
JK
6789 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6790 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6791 ecs->event_thread->control.may_range_step = 1;
edb3359d 6792 set_step_info (frame, stop_pc_sal);
488f131b 6793
527159b7 6794 if (debug_infrun)
8a9de0e4 6795 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6796 keep_going (ecs);
104c1213
JM
6797}
6798
c447ac0b
PA
6799/* In all-stop mode, if we're currently stepping but have stopped in
6800 some other thread, we may need to switch back to the stepped
6801 thread. Returns true we set the inferior running, false if we left
6802 it stopped (and the event needs further processing). */
6803
6804static int
6805switch_back_to_stepped_thread (struct execution_control_state *ecs)
6806{
fbea99ea 6807 if (!target_is_non_stop_p ())
c447ac0b
PA
6808 {
6809 struct thread_info *tp;
99619bea
PA
6810 struct thread_info *stepping_thread;
6811
6812 /* If any thread is blocked on some internal breakpoint, and we
6813 simply need to step over that breakpoint to get it going
6814 again, do that first. */
6815
6816 /* However, if we see an event for the stepping thread, then we
6817 know all other threads have been moved past their breakpoints
6818 already. Let the caller check whether the step is finished,
6819 etc., before deciding to move it past a breakpoint. */
6820 if (ecs->event_thread->control.step_range_end != 0)
6821 return 0;
6822
6823 /* Check if the current thread is blocked on an incomplete
6824 step-over, interrupted by a random signal. */
6825 if (ecs->event_thread->control.trap_expected
6826 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6827 {
99619bea
PA
6828 if (debug_infrun)
6829 {
6830 fprintf_unfiltered (gdb_stdlog,
6831 "infrun: need to finish step-over of [%s]\n",
6832 target_pid_to_str (ecs->event_thread->ptid));
6833 }
6834 keep_going (ecs);
6835 return 1;
6836 }
2adfaa28 6837
99619bea
PA
6838 /* Check if the current thread is blocked by a single-step
6839 breakpoint of another thread. */
6840 if (ecs->hit_singlestep_breakpoint)
6841 {
6842 if (debug_infrun)
6843 {
6844 fprintf_unfiltered (gdb_stdlog,
6845 "infrun: need to step [%s] over single-step "
6846 "breakpoint\n",
6847 target_pid_to_str (ecs->ptid));
6848 }
6849 keep_going (ecs);
6850 return 1;
6851 }
6852
4d9d9d04
PA
6853 /* If this thread needs yet another step-over (e.g., stepping
6854 through a delay slot), do it first before moving on to
6855 another thread. */
6856 if (thread_still_needs_step_over (ecs->event_thread))
6857 {
6858 if (debug_infrun)
6859 {
6860 fprintf_unfiltered (gdb_stdlog,
6861 "infrun: thread [%s] still needs step-over\n",
6862 target_pid_to_str (ecs->event_thread->ptid));
6863 }
6864 keep_going (ecs);
6865 return 1;
6866 }
70509625 6867
483805cf
PA
6868 /* If scheduler locking applies even if not stepping, there's no
6869 need to walk over threads. Above we've checked whether the
6870 current thread is stepping. If some other thread not the
6871 event thread is stepping, then it must be that scheduler
6872 locking is not in effect. */
856e7dd6 6873 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6874 return 0;
6875
4d9d9d04
PA
6876 /* Otherwise, we no longer expect a trap in the current thread.
6877 Clear the trap_expected flag before switching back -- this is
6878 what keep_going does as well, if we call it. */
6879 ecs->event_thread->control.trap_expected = 0;
6880
6881 /* Likewise, clear the signal if it should not be passed. */
6882 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6883 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6884
6885 /* Do all pending step-overs before actually proceeding with
483805cf 6886 step/next/etc. */
4d9d9d04
PA
6887 if (start_step_over ())
6888 {
6889 prepare_to_wait (ecs);
6890 return 1;
6891 }
6892
6893 /* Look for the stepping/nexting thread. */
483805cf 6894 stepping_thread = NULL;
4d9d9d04 6895
034f788c 6896 ALL_NON_EXITED_THREADS (tp)
483805cf 6897 {
fbea99ea
PA
6898 /* Ignore threads of processes the caller is not
6899 resuming. */
483805cf 6900 if (!sched_multi
1afd5965 6901 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
6902 continue;
6903
6904 /* When stepping over a breakpoint, we lock all threads
6905 except the one that needs to move past the breakpoint.
6906 If a non-event thread has this set, the "incomplete
6907 step-over" check above should have caught it earlier. */
372316f1
PA
6908 if (tp->control.trap_expected)
6909 {
6910 internal_error (__FILE__, __LINE__,
6911 "[%s] has inconsistent state: "
6912 "trap_expected=%d\n",
6913 target_pid_to_str (tp->ptid),
6914 tp->control.trap_expected);
6915 }
483805cf
PA
6916
6917 /* Did we find the stepping thread? */
6918 if (tp->control.step_range_end)
6919 {
6920 /* Yep. There should only one though. */
6921 gdb_assert (stepping_thread == NULL);
6922
6923 /* The event thread is handled at the top, before we
6924 enter this loop. */
6925 gdb_assert (tp != ecs->event_thread);
6926
6927 /* If some thread other than the event thread is
6928 stepping, then scheduler locking can't be in effect,
6929 otherwise we wouldn't have resumed the current event
6930 thread in the first place. */
856e7dd6 6931 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6932
6933 stepping_thread = tp;
6934 }
99619bea
PA
6935 }
6936
483805cf 6937 if (stepping_thread != NULL)
99619bea 6938 {
c447ac0b
PA
6939 if (debug_infrun)
6940 fprintf_unfiltered (gdb_stdlog,
6941 "infrun: switching back to stepped thread\n");
6942
2ac7589c
PA
6943 if (keep_going_stepped_thread (stepping_thread))
6944 {
6945 prepare_to_wait (ecs);
6946 return 1;
6947 }
6948 }
6949 }
2adfaa28 6950
2ac7589c
PA
6951 return 0;
6952}
2adfaa28 6953
2ac7589c
PA
6954/* Set a previously stepped thread back to stepping. Returns true on
6955 success, false if the resume is not possible (e.g., the thread
6956 vanished). */
6957
6958static int
6959keep_going_stepped_thread (struct thread_info *tp)
6960{
6961 struct frame_info *frame;
6962 struct gdbarch *gdbarch;
6963 struct execution_control_state ecss;
6964 struct execution_control_state *ecs = &ecss;
2adfaa28 6965
2ac7589c
PA
6966 /* If the stepping thread exited, then don't try to switch back and
6967 resume it, which could fail in several different ways depending
6968 on the target. Instead, just keep going.
2adfaa28 6969
2ac7589c
PA
6970 We can find a stepping dead thread in the thread list in two
6971 cases:
2adfaa28 6972
2ac7589c
PA
6973 - The target supports thread exit events, and when the target
6974 tries to delete the thread from the thread list, inferior_ptid
6975 pointed at the exiting thread. In such case, calling
6976 delete_thread does not really remove the thread from the list;
6977 instead, the thread is left listed, with 'exited' state.
64ce06e4 6978
2ac7589c
PA
6979 - The target's debug interface does not support thread exit
6980 events, and so we have no idea whatsoever if the previously
6981 stepping thread is still alive. For that reason, we need to
6982 synchronously query the target now. */
2adfaa28 6983
2ac7589c
PA
6984 if (is_exited (tp->ptid)
6985 || !target_thread_alive (tp->ptid))
6986 {
6987 if (debug_infrun)
6988 fprintf_unfiltered (gdb_stdlog,
6989 "infrun: not resuming previously "
6990 "stepped thread, it has vanished\n");
6991
6992 delete_thread (tp->ptid);
6993 return 0;
c447ac0b 6994 }
2ac7589c
PA
6995
6996 if (debug_infrun)
6997 fprintf_unfiltered (gdb_stdlog,
6998 "infrun: resuming previously stepped thread\n");
6999
7000 reset_ecs (ecs, tp);
7001 switch_to_thread (tp->ptid);
7002
7003 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7004 frame = get_current_frame ();
7005 gdbarch = get_frame_arch (frame);
7006
7007 /* If the PC of the thread we were trying to single-step has
7008 changed, then that thread has trapped or been signaled, but the
7009 event has not been reported to GDB yet. Re-poll the target
7010 looking for this particular thread's event (i.e. temporarily
7011 enable schedlock) by:
7012
7013 - setting a break at the current PC
7014 - resuming that particular thread, only (by setting trap
7015 expected)
7016
7017 This prevents us continuously moving the single-step breakpoint
7018 forward, one instruction at a time, overstepping. */
7019
7020 if (stop_pc != tp->prev_pc)
7021 {
7022 ptid_t resume_ptid;
7023
7024 if (debug_infrun)
7025 fprintf_unfiltered (gdb_stdlog,
7026 "infrun: expected thread advanced also (%s -> %s)\n",
7027 paddress (target_gdbarch (), tp->prev_pc),
7028 paddress (target_gdbarch (), stop_pc));
7029
7030 /* Clear the info of the previous step-over, as it's no longer
7031 valid (if the thread was trying to step over a breakpoint, it
7032 has already succeeded). It's what keep_going would do too,
7033 if we called it. Do this before trying to insert the sss
7034 breakpoint, otherwise if we were previously trying to step
7035 over this exact address in another thread, the breakpoint is
7036 skipped. */
7037 clear_step_over_info ();
7038 tp->control.trap_expected = 0;
7039
7040 insert_single_step_breakpoint (get_frame_arch (frame),
7041 get_frame_address_space (frame),
7042 stop_pc);
7043
372316f1 7044 tp->resumed = 1;
fbea99ea 7045 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7046 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7047 }
7048 else
7049 {
7050 if (debug_infrun)
7051 fprintf_unfiltered (gdb_stdlog,
7052 "infrun: expected thread still hasn't advanced\n");
7053
7054 keep_going_pass_signal (ecs);
7055 }
7056 return 1;
c447ac0b
PA
7057}
7058
8b061563
PA
7059/* Is thread TP in the middle of (software or hardware)
7060 single-stepping? (Note the result of this function must never be
7061 passed directly as target_resume's STEP parameter.) */
104c1213 7062
a289b8f6 7063static int
b3444185 7064currently_stepping (struct thread_info *tp)
a7212384 7065{
8358c15c
JK
7066 return ((tp->control.step_range_end
7067 && tp->control.step_resume_breakpoint == NULL)
7068 || tp->control.trap_expected
af48d08f 7069 || tp->stepped_breakpoint
8358c15c 7070 || bpstat_should_step ());
a7212384
UW
7071}
7072
b2175913
MS
7073/* Inferior has stepped into a subroutine call with source code that
7074 we should not step over. Do step to the first line of code in
7075 it. */
c2c6d25f
JM
7076
7077static void
568d6575
UW
7078handle_step_into_function (struct gdbarch *gdbarch,
7079 struct execution_control_state *ecs)
c2c6d25f 7080{
43f3e411 7081 struct compunit_symtab *cust;
2afb61aa 7082 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7083
7e324e48
GB
7084 fill_in_stop_func (gdbarch, ecs);
7085
43f3e411
DE
7086 cust = find_pc_compunit_symtab (stop_pc);
7087 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7088 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7089 ecs->stop_func_start);
c2c6d25f 7090
2afb61aa 7091 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7092 /* Use the step_resume_break to step until the end of the prologue,
7093 even if that involves jumps (as it seems to on the vax under
7094 4.2). */
7095 /* If the prologue ends in the middle of a source line, continue to
7096 the end of that source line (if it is still within the function).
7097 Otherwise, just go to end of prologue. */
2afb61aa
PA
7098 if (stop_func_sal.end
7099 && stop_func_sal.pc != ecs->stop_func_start
7100 && stop_func_sal.end < ecs->stop_func_end)
7101 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7102
2dbd5e30
KB
7103 /* Architectures which require breakpoint adjustment might not be able
7104 to place a breakpoint at the computed address. If so, the test
7105 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7106 ecs->stop_func_start to an address at which a breakpoint may be
7107 legitimately placed.
8fb3e588 7108
2dbd5e30
KB
7109 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7110 made, GDB will enter an infinite loop when stepping through
7111 optimized code consisting of VLIW instructions which contain
7112 subinstructions corresponding to different source lines. On
7113 FR-V, it's not permitted to place a breakpoint on any but the
7114 first subinstruction of a VLIW instruction. When a breakpoint is
7115 set, GDB will adjust the breakpoint address to the beginning of
7116 the VLIW instruction. Thus, we need to make the corresponding
7117 adjustment here when computing the stop address. */
8fb3e588 7118
568d6575 7119 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7120 {
7121 ecs->stop_func_start
568d6575 7122 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7123 ecs->stop_func_start);
2dbd5e30
KB
7124 }
7125
c2c6d25f
JM
7126 if (ecs->stop_func_start == stop_pc)
7127 {
7128 /* We are already there: stop now. */
bdc36728 7129 end_stepping_range (ecs);
c2c6d25f
JM
7130 return;
7131 }
7132 else
7133 {
7134 /* Put the step-breakpoint there and go until there. */
fe39c653 7135 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7136 sr_sal.pc = ecs->stop_func_start;
7137 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7138 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7139
c2c6d25f 7140 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7141 some machines the prologue is where the new fp value is
7142 established. */
a6d9a66e 7143 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7144
7145 /* And make sure stepping stops right away then. */
16c381f0
JK
7146 ecs->event_thread->control.step_range_end
7147 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7148 }
7149 keep_going (ecs);
7150}
d4f3574e 7151
b2175913
MS
7152/* Inferior has stepped backward into a subroutine call with source
7153 code that we should not step over. Do step to the beginning of the
7154 last line of code in it. */
7155
7156static void
568d6575
UW
7157handle_step_into_function_backward (struct gdbarch *gdbarch,
7158 struct execution_control_state *ecs)
b2175913 7159{
43f3e411 7160 struct compunit_symtab *cust;
167e4384 7161 struct symtab_and_line stop_func_sal;
b2175913 7162
7e324e48
GB
7163 fill_in_stop_func (gdbarch, ecs);
7164
43f3e411
DE
7165 cust = find_pc_compunit_symtab (stop_pc);
7166 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7167 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7168 ecs->stop_func_start);
7169
7170 stop_func_sal = find_pc_line (stop_pc, 0);
7171
7172 /* OK, we're just going to keep stepping here. */
7173 if (stop_func_sal.pc == stop_pc)
7174 {
7175 /* We're there already. Just stop stepping now. */
bdc36728 7176 end_stepping_range (ecs);
b2175913
MS
7177 }
7178 else
7179 {
7180 /* Else just reset the step range and keep going.
7181 No step-resume breakpoint, they don't work for
7182 epilogues, which can have multiple entry paths. */
16c381f0
JK
7183 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7184 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7185 keep_going (ecs);
7186 }
7187 return;
7188}
7189
d3169d93 7190/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7191 This is used to both functions and to skip over code. */
7192
7193static void
2c03e5be
PA
7194insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7195 struct symtab_and_line sr_sal,
7196 struct frame_id sr_id,
7197 enum bptype sr_type)
44cbf7b5 7198{
611c83ae
PA
7199 /* There should never be more than one step-resume or longjmp-resume
7200 breakpoint per thread, so we should never be setting a new
44cbf7b5 7201 step_resume_breakpoint when one is already active. */
8358c15c 7202 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7203 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7204
7205 if (debug_infrun)
7206 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7207 "infrun: inserting step-resume breakpoint at %s\n",
7208 paddress (gdbarch, sr_sal.pc));
d3169d93 7209
8358c15c 7210 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7211 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7212}
7213
9da8c2a0 7214void
2c03e5be
PA
7215insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7216 struct symtab_and_line sr_sal,
7217 struct frame_id sr_id)
7218{
7219 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7220 sr_sal, sr_id,
7221 bp_step_resume);
44cbf7b5 7222}
7ce450bd 7223
2c03e5be
PA
7224/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7225 This is used to skip a potential signal handler.
7ce450bd 7226
14e60db5
DJ
7227 This is called with the interrupted function's frame. The signal
7228 handler, when it returns, will resume the interrupted function at
7229 RETURN_FRAME.pc. */
d303a6c7
AC
7230
7231static void
2c03e5be 7232insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7233{
7234 struct symtab_and_line sr_sal;
a6d9a66e 7235 struct gdbarch *gdbarch;
d303a6c7 7236
f4c1edd8 7237 gdb_assert (return_frame != NULL);
d303a6c7
AC
7238 init_sal (&sr_sal); /* initialize to zeros */
7239
a6d9a66e 7240 gdbarch = get_frame_arch (return_frame);
568d6575 7241 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7242 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7243 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7244
2c03e5be
PA
7245 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7246 get_stack_frame_id (return_frame),
7247 bp_hp_step_resume);
d303a6c7
AC
7248}
7249
2c03e5be
PA
7250/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7251 is used to skip a function after stepping into it (for "next" or if
7252 the called function has no debugging information).
14e60db5
DJ
7253
7254 The current function has almost always been reached by single
7255 stepping a call or return instruction. NEXT_FRAME belongs to the
7256 current function, and the breakpoint will be set at the caller's
7257 resume address.
7258
7259 This is a separate function rather than reusing
2c03e5be 7260 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7261 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7262 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7263
7264static void
7265insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7266{
7267 struct symtab_and_line sr_sal;
a6d9a66e 7268 struct gdbarch *gdbarch;
14e60db5
DJ
7269
7270 /* We shouldn't have gotten here if we don't know where the call site
7271 is. */
c7ce8faa 7272 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7273
7274 init_sal (&sr_sal); /* initialize to zeros */
7275
a6d9a66e 7276 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7277 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7278 frame_unwind_caller_pc (next_frame));
14e60db5 7279 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7280 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7281
a6d9a66e 7282 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7283 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7284}
7285
611c83ae
PA
7286/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7287 new breakpoint at the target of a jmp_buf. The handling of
7288 longjmp-resume uses the same mechanisms used for handling
7289 "step-resume" breakpoints. */
7290
7291static void
a6d9a66e 7292insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7293{
e81a37f7
TT
7294 /* There should never be more than one longjmp-resume breakpoint per
7295 thread, so we should never be setting a new
611c83ae 7296 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7297 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7298
7299 if (debug_infrun)
7300 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7301 "infrun: inserting longjmp-resume breakpoint at %s\n",
7302 paddress (gdbarch, pc));
611c83ae 7303
e81a37f7 7304 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7305 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7306}
7307
186c406b
TT
7308/* Insert an exception resume breakpoint. TP is the thread throwing
7309 the exception. The block B is the block of the unwinder debug hook
7310 function. FRAME is the frame corresponding to the call to this
7311 function. SYM is the symbol of the function argument holding the
7312 target PC of the exception. */
7313
7314static void
7315insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7316 const struct block *b,
186c406b
TT
7317 struct frame_info *frame,
7318 struct symbol *sym)
7319{
492d29ea 7320 TRY
186c406b 7321 {
63e43d3a 7322 struct block_symbol vsym;
186c406b
TT
7323 struct value *value;
7324 CORE_ADDR handler;
7325 struct breakpoint *bp;
7326
63e43d3a
PMR
7327 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7328 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7329 /* If the value was optimized out, revert to the old behavior. */
7330 if (! value_optimized_out (value))
7331 {
7332 handler = value_as_address (value);
7333
7334 if (debug_infrun)
7335 fprintf_unfiltered (gdb_stdlog,
7336 "infrun: exception resume at %lx\n",
7337 (unsigned long) handler);
7338
7339 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7340 handler, bp_exception_resume);
c70a6932
JK
7341
7342 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7343 frame = NULL;
7344
186c406b
TT
7345 bp->thread = tp->num;
7346 inferior_thread ()->control.exception_resume_breakpoint = bp;
7347 }
7348 }
492d29ea
PA
7349 CATCH (e, RETURN_MASK_ERROR)
7350 {
7351 /* We want to ignore errors here. */
7352 }
7353 END_CATCH
186c406b
TT
7354}
7355
28106bc2
SDJ
7356/* A helper for check_exception_resume that sets an
7357 exception-breakpoint based on a SystemTap probe. */
7358
7359static void
7360insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7361 const struct bound_probe *probe,
28106bc2
SDJ
7362 struct frame_info *frame)
7363{
7364 struct value *arg_value;
7365 CORE_ADDR handler;
7366 struct breakpoint *bp;
7367
7368 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7369 if (!arg_value)
7370 return;
7371
7372 handler = value_as_address (arg_value);
7373
7374 if (debug_infrun)
7375 fprintf_unfiltered (gdb_stdlog,
7376 "infrun: exception resume at %s\n",
6bac7473 7377 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7378 handler));
7379
7380 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7381 handler, bp_exception_resume);
7382 bp->thread = tp->num;
7383 inferior_thread ()->control.exception_resume_breakpoint = bp;
7384}
7385
186c406b
TT
7386/* This is called when an exception has been intercepted. Check to
7387 see whether the exception's destination is of interest, and if so,
7388 set an exception resume breakpoint there. */
7389
7390static void
7391check_exception_resume (struct execution_control_state *ecs,
28106bc2 7392 struct frame_info *frame)
186c406b 7393{
729662a5 7394 struct bound_probe probe;
28106bc2
SDJ
7395 struct symbol *func;
7396
7397 /* First see if this exception unwinding breakpoint was set via a
7398 SystemTap probe point. If so, the probe has two arguments: the
7399 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7400 set a breakpoint there. */
6bac7473 7401 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7402 if (probe.probe)
28106bc2 7403 {
729662a5 7404 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7405 return;
7406 }
7407
7408 func = get_frame_function (frame);
7409 if (!func)
7410 return;
186c406b 7411
492d29ea 7412 TRY
186c406b 7413 {
3977b71f 7414 const struct block *b;
8157b174 7415 struct block_iterator iter;
186c406b
TT
7416 struct symbol *sym;
7417 int argno = 0;
7418
7419 /* The exception breakpoint is a thread-specific breakpoint on
7420 the unwinder's debug hook, declared as:
7421
7422 void _Unwind_DebugHook (void *cfa, void *handler);
7423
7424 The CFA argument indicates the frame to which control is
7425 about to be transferred. HANDLER is the destination PC.
7426
7427 We ignore the CFA and set a temporary breakpoint at HANDLER.
7428 This is not extremely efficient but it avoids issues in gdb
7429 with computing the DWARF CFA, and it also works even in weird
7430 cases such as throwing an exception from inside a signal
7431 handler. */
7432
7433 b = SYMBOL_BLOCK_VALUE (func);
7434 ALL_BLOCK_SYMBOLS (b, iter, sym)
7435 {
7436 if (!SYMBOL_IS_ARGUMENT (sym))
7437 continue;
7438
7439 if (argno == 0)
7440 ++argno;
7441 else
7442 {
7443 insert_exception_resume_breakpoint (ecs->event_thread,
7444 b, frame, sym);
7445 break;
7446 }
7447 }
7448 }
492d29ea
PA
7449 CATCH (e, RETURN_MASK_ERROR)
7450 {
7451 }
7452 END_CATCH
186c406b
TT
7453}
7454
104c1213 7455static void
22bcd14b 7456stop_waiting (struct execution_control_state *ecs)
104c1213 7457{
527159b7 7458 if (debug_infrun)
22bcd14b 7459 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7460
31e77af2
PA
7461 clear_step_over_info ();
7462
cd0fc7c3
SS
7463 /* Let callers know we don't want to wait for the inferior anymore. */
7464 ecs->wait_some_more = 0;
fbea99ea
PA
7465
7466 /* If all-stop, but the target is always in non-stop mode, stop all
7467 threads now that we're presenting the stop to the user. */
7468 if (!non_stop && target_is_non_stop_p ())
7469 stop_all_threads ();
cd0fc7c3
SS
7470}
7471
4d9d9d04
PA
7472/* Like keep_going, but passes the signal to the inferior, even if the
7473 signal is set to nopass. */
d4f3574e
SS
7474
7475static void
4d9d9d04 7476keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7477{
c4dbc9af
PA
7478 /* Make sure normal_stop is called if we get a QUIT handled before
7479 reaching resume. */
7480 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7481
4d9d9d04 7482 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7483 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7484
d4f3574e 7485 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7486 ecs->event_thread->prev_pc
7487 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7488
4d9d9d04 7489 if (ecs->event_thread->control.trap_expected)
d4f3574e 7490 {
4d9d9d04
PA
7491 struct thread_info *tp = ecs->event_thread;
7492
7493 if (debug_infrun)
7494 fprintf_unfiltered (gdb_stdlog,
7495 "infrun: %s has trap_expected set, "
7496 "resuming to collect trap\n",
7497 target_pid_to_str (tp->ptid));
7498
a9ba6bae
PA
7499 /* We haven't yet gotten our trap, and either: intercepted a
7500 non-signal event (e.g., a fork); or took a signal which we
7501 are supposed to pass through to the inferior. Simply
7502 continue. */
c4dbc9af 7503 discard_cleanups (old_cleanups);
64ce06e4 7504 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7505 }
372316f1
PA
7506 else if (step_over_info_valid_p ())
7507 {
7508 /* Another thread is stepping over a breakpoint in-line. If
7509 this thread needs a step-over too, queue the request. In
7510 either case, this resume must be deferred for later. */
7511 struct thread_info *tp = ecs->event_thread;
7512
7513 if (ecs->hit_singlestep_breakpoint
7514 || thread_still_needs_step_over (tp))
7515 {
7516 if (debug_infrun)
7517 fprintf_unfiltered (gdb_stdlog,
7518 "infrun: step-over already in progress: "
7519 "step-over for %s deferred\n",
7520 target_pid_to_str (tp->ptid));
7521 thread_step_over_chain_enqueue (tp);
7522 }
7523 else
7524 {
7525 if (debug_infrun)
7526 fprintf_unfiltered (gdb_stdlog,
7527 "infrun: step-over in progress: "
7528 "resume of %s deferred\n",
7529 target_pid_to_str (tp->ptid));
7530 }
7531
7532 discard_cleanups (old_cleanups);
7533 }
d4f3574e
SS
7534 else
7535 {
31e77af2 7536 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7537 int remove_bp;
7538 int remove_wps;
6c4cfb24 7539 enum step_over_what step_what;
31e77af2 7540
d4f3574e 7541 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7542 anyway (if we got a signal, the user asked it be passed to
7543 the child)
7544 -- or --
7545 We got our expected trap, but decided we should resume from
7546 it.
d4f3574e 7547
a9ba6bae 7548 We're going to run this baby now!
d4f3574e 7549
c36b740a
VP
7550 Note that insert_breakpoints won't try to re-insert
7551 already inserted breakpoints. Therefore, we don't
7552 care if breakpoints were already inserted, or not. */
a9ba6bae 7553
31e77af2
PA
7554 /* If we need to step over a breakpoint, and we're not using
7555 displaced stepping to do so, insert all breakpoints
7556 (watchpoints, etc.) but the one we're stepping over, step one
7557 instruction, and then re-insert the breakpoint when that step
7558 is finished. */
963f9c80 7559
6c4cfb24
PA
7560 step_what = thread_still_needs_step_over (ecs->event_thread);
7561
963f9c80 7562 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7563 || (step_what & STEP_OVER_BREAKPOINT));
7564 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7565
cb71640d
PA
7566 /* We can't use displaced stepping if we need to step past a
7567 watchpoint. The instruction copied to the scratch pad would
7568 still trigger the watchpoint. */
7569 if (remove_bp
3fc8eb30 7570 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7571 {
31e77af2 7572 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 7573 regcache_read_pc (regcache), remove_wps);
45e8c884 7574 }
963f9c80
PA
7575 else if (remove_wps)
7576 set_step_over_info (NULL, 0, remove_wps);
372316f1
PA
7577
7578 /* If we now need to do an in-line step-over, we need to stop
7579 all other threads. Note this must be done before
7580 insert_breakpoints below, because that removes the breakpoint
7581 we're about to step over, otherwise other threads could miss
7582 it. */
fbea99ea 7583 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7584 stop_all_threads ();
abbb1732 7585
31e77af2 7586 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7587 TRY
31e77af2
PA
7588 {
7589 insert_breakpoints ();
7590 }
492d29ea 7591 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7592 {
7593 exception_print (gdb_stderr, e);
22bcd14b 7594 stop_waiting (ecs);
de1fe8c8 7595 discard_cleanups (old_cleanups);
31e77af2 7596 return;
d4f3574e 7597 }
492d29ea 7598 END_CATCH
d4f3574e 7599
963f9c80 7600 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7601
c4dbc9af 7602 discard_cleanups (old_cleanups);
64ce06e4 7603 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7604 }
7605
488f131b 7606 prepare_to_wait (ecs);
d4f3574e
SS
7607}
7608
4d9d9d04
PA
7609/* Called when we should continue running the inferior, because the
7610 current event doesn't cause a user visible stop. This does the
7611 resuming part; waiting for the next event is done elsewhere. */
7612
7613static void
7614keep_going (struct execution_control_state *ecs)
7615{
7616 if (ecs->event_thread->control.trap_expected
7617 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7618 ecs->event_thread->control.trap_expected = 0;
7619
7620 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7621 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7622 keep_going_pass_signal (ecs);
7623}
7624
104c1213
JM
7625/* This function normally comes after a resume, before
7626 handle_inferior_event exits. It takes care of any last bits of
7627 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7628
104c1213
JM
7629static void
7630prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7631{
527159b7 7632 if (debug_infrun)
8a9de0e4 7633 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7634
104c1213 7635 ecs->wait_some_more = 1;
0b333c5e
PA
7636
7637 if (!target_is_async_p ())
7638 mark_infrun_async_event_handler ();
c906108c 7639}
11cf8741 7640
fd664c91 7641/* We are done with the step range of a step/next/si/ni command.
b57bacec 7642 Called once for each n of a "step n" operation. */
fd664c91
PA
7643
7644static void
bdc36728 7645end_stepping_range (struct execution_control_state *ecs)
fd664c91 7646{
bdc36728 7647 ecs->event_thread->control.stop_step = 1;
bdc36728 7648 stop_waiting (ecs);
fd664c91
PA
7649}
7650
33d62d64
JK
7651/* Several print_*_reason functions to print why the inferior has stopped.
7652 We always print something when the inferior exits, or receives a signal.
7653 The rest of the cases are dealt with later on in normal_stop and
7654 print_it_typical. Ideally there should be a call to one of these
7655 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7656 stop_waiting is called.
33d62d64 7657
fd664c91
PA
7658 Note that we don't call these directly, instead we delegate that to
7659 the interpreters, through observers. Interpreters then call these
7660 with whatever uiout is right. */
33d62d64 7661
fd664c91
PA
7662void
7663print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7664{
fd664c91 7665 /* For CLI-like interpreters, print nothing. */
33d62d64 7666
fd664c91
PA
7667 if (ui_out_is_mi_like_p (uiout))
7668 {
7669 ui_out_field_string (uiout, "reason",
7670 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7671 }
7672}
33d62d64 7673
fd664c91
PA
7674void
7675print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7676{
33d62d64
JK
7677 annotate_signalled ();
7678 if (ui_out_is_mi_like_p (uiout))
7679 ui_out_field_string
7680 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7681 ui_out_text (uiout, "\nProgram terminated with signal ");
7682 annotate_signal_name ();
7683 ui_out_field_string (uiout, "signal-name",
2ea28649 7684 gdb_signal_to_name (siggnal));
33d62d64
JK
7685 annotate_signal_name_end ();
7686 ui_out_text (uiout, ", ");
7687 annotate_signal_string ();
7688 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7689 gdb_signal_to_string (siggnal));
33d62d64
JK
7690 annotate_signal_string_end ();
7691 ui_out_text (uiout, ".\n");
7692 ui_out_text (uiout, "The program no longer exists.\n");
7693}
7694
fd664c91
PA
7695void
7696print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7697{
fda326dd
TT
7698 struct inferior *inf = current_inferior ();
7699 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7700
33d62d64
JK
7701 annotate_exited (exitstatus);
7702 if (exitstatus)
7703 {
7704 if (ui_out_is_mi_like_p (uiout))
7705 ui_out_field_string (uiout, "reason",
7706 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7707 ui_out_text (uiout, "[Inferior ");
7708 ui_out_text (uiout, plongest (inf->num));
7709 ui_out_text (uiout, " (");
7710 ui_out_text (uiout, pidstr);
7711 ui_out_text (uiout, ") exited with code ");
33d62d64 7712 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7713 ui_out_text (uiout, "]\n");
33d62d64
JK
7714 }
7715 else
11cf8741 7716 {
9dc5e2a9 7717 if (ui_out_is_mi_like_p (uiout))
034dad6f 7718 ui_out_field_string
33d62d64 7719 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7720 ui_out_text (uiout, "[Inferior ");
7721 ui_out_text (uiout, plongest (inf->num));
7722 ui_out_text (uiout, " (");
7723 ui_out_text (uiout, pidstr);
7724 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7725 }
33d62d64
JK
7726}
7727
fd664c91
PA
7728void
7729print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
7730{
7731 annotate_signal ();
7732
a493e3e2 7733 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
7734 {
7735 struct thread_info *t = inferior_thread ();
7736
7737 ui_out_text (uiout, "\n[");
7738 ui_out_field_string (uiout, "thread-name",
7739 target_pid_to_str (t->ptid));
7740 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7741 ui_out_text (uiout, " stopped");
7742 }
7743 else
7744 {
7745 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 7746 annotate_signal_name ();
33d62d64
JK
7747 if (ui_out_is_mi_like_p (uiout))
7748 ui_out_field_string
7749 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 7750 ui_out_field_string (uiout, "signal-name",
2ea28649 7751 gdb_signal_to_name (siggnal));
8b93c638
JM
7752 annotate_signal_name_end ();
7753 ui_out_text (uiout, ", ");
7754 annotate_signal_string ();
488f131b 7755 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7756 gdb_signal_to_string (siggnal));
8b93c638 7757 annotate_signal_string_end ();
33d62d64
JK
7758 }
7759 ui_out_text (uiout, ".\n");
7760}
252fbfc8 7761
fd664c91
PA
7762void
7763print_no_history_reason (struct ui_out *uiout)
33d62d64 7764{
fd664c91 7765 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 7766}
43ff13b4 7767
0c7e1a46
PA
7768/* Print current location without a level number, if we have changed
7769 functions or hit a breakpoint. Print source line if we have one.
7770 bpstat_print contains the logic deciding in detail what to print,
7771 based on the event(s) that just occurred. */
7772
243a9253
PA
7773static void
7774print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7775{
7776 int bpstat_ret;
f486487f 7777 enum print_what source_flag;
0c7e1a46
PA
7778 int do_frame_printing = 1;
7779 struct thread_info *tp = inferior_thread ();
7780
7781 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7782 switch (bpstat_ret)
7783 {
7784 case PRINT_UNKNOWN:
7785 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7786 should) carry around the function and does (or should) use
7787 that when doing a frame comparison. */
7788 if (tp->control.stop_step
7789 && frame_id_eq (tp->control.step_frame_id,
7790 get_frame_id (get_current_frame ()))
885eeb5b 7791 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
7792 {
7793 /* Finished step, just print source line. */
7794 source_flag = SRC_LINE;
7795 }
7796 else
7797 {
7798 /* Print location and source line. */
7799 source_flag = SRC_AND_LOC;
7800 }
7801 break;
7802 case PRINT_SRC_AND_LOC:
7803 /* Print location and source line. */
7804 source_flag = SRC_AND_LOC;
7805 break;
7806 case PRINT_SRC_ONLY:
7807 source_flag = SRC_LINE;
7808 break;
7809 case PRINT_NOTHING:
7810 /* Something bogus. */
7811 source_flag = SRC_LINE;
7812 do_frame_printing = 0;
7813 break;
7814 default:
7815 internal_error (__FILE__, __LINE__, _("Unknown value."));
7816 }
7817
7818 /* The behavior of this routine with respect to the source
7819 flag is:
7820 SRC_LINE: Print only source line
7821 LOCATION: Print only location
7822 SRC_AND_LOC: Print location and source line. */
7823 if (do_frame_printing)
7824 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7825}
7826
7827/* Cleanup that restores a previous current uiout. */
7828
7829static void
7830restore_current_uiout_cleanup (void *arg)
7831{
9a3c8263 7832 struct ui_out *saved_uiout = (struct ui_out *) arg;
243a9253
PA
7833
7834 current_uiout = saved_uiout;
7835}
7836
7837/* See infrun.h. */
7838
7839void
7840print_stop_event (struct ui_out *uiout)
7841{
7842 struct cleanup *old_chain;
7843 struct target_waitstatus last;
7844 ptid_t last_ptid;
7845 struct thread_info *tp;
7846
7847 get_last_target_status (&last_ptid, &last);
7848
7849 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
7850 current_uiout = uiout;
7851
7852 print_stop_location (&last);
0c7e1a46
PA
7853
7854 /* Display the auto-display expressions. */
7855 do_displays ();
243a9253
PA
7856
7857 do_cleanups (old_chain);
7858
7859 tp = inferior_thread ();
7860 if (tp->thread_fsm != NULL
7861 && thread_fsm_finished_p (tp->thread_fsm))
7862 {
7863 struct return_value_info *rv;
7864
7865 rv = thread_fsm_return_value (tp->thread_fsm);
7866 if (rv != NULL)
7867 print_return_value (uiout, rv);
7868 }
0c7e1a46
PA
7869}
7870
388a7084
PA
7871/* See infrun.h. */
7872
7873void
7874maybe_remove_breakpoints (void)
7875{
7876 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7877 {
7878 if (remove_breakpoints ())
7879 {
7880 target_terminal_ours_for_output ();
7881 printf_filtered (_("Cannot remove breakpoints because "
7882 "program is no longer writable.\nFurther "
7883 "execution is probably impossible.\n"));
7884 }
7885 }
7886}
7887
4c2f2a79
PA
7888/* The execution context that just caused a normal stop. */
7889
7890struct stop_context
7891{
7892 /* The stop ID. */
7893 ULONGEST stop_id;
c906108c 7894
4c2f2a79 7895 /* The event PTID. */
c906108c 7896
4c2f2a79
PA
7897 ptid_t ptid;
7898
7899 /* If stopp for a thread event, this is the thread that caused the
7900 stop. */
7901 struct thread_info *thread;
7902
7903 /* The inferior that caused the stop. */
7904 int inf_num;
7905};
7906
7907/* Returns a new stop context. If stopped for a thread event, this
7908 takes a strong reference to the thread. */
7909
7910static struct stop_context *
7911save_stop_context (void)
7912{
224c3ddb 7913 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
7914
7915 sc->stop_id = get_stop_id ();
7916 sc->ptid = inferior_ptid;
7917 sc->inf_num = current_inferior ()->num;
7918
7919 if (!ptid_equal (inferior_ptid, null_ptid))
7920 {
7921 /* Take a strong reference so that the thread can't be deleted
7922 yet. */
7923 sc->thread = inferior_thread ();
7924 sc->thread->refcount++;
7925 }
7926 else
7927 sc->thread = NULL;
7928
7929 return sc;
7930}
7931
7932/* Release a stop context previously created with save_stop_context.
7933 Releases the strong reference to the thread as well. */
7934
7935static void
7936release_stop_context_cleanup (void *arg)
7937{
9a3c8263 7938 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
7939
7940 if (sc->thread != NULL)
7941 sc->thread->refcount--;
7942 xfree (sc);
7943}
7944
7945/* Return true if the current context no longer matches the saved stop
7946 context. */
7947
7948static int
7949stop_context_changed (struct stop_context *prev)
7950{
7951 if (!ptid_equal (prev->ptid, inferior_ptid))
7952 return 1;
7953 if (prev->inf_num != current_inferior ()->num)
7954 return 1;
7955 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
7956 return 1;
7957 if (get_stop_id () != prev->stop_id)
7958 return 1;
7959 return 0;
7960}
7961
7962/* See infrun.h. */
7963
7964int
96baa820 7965normal_stop (void)
c906108c 7966{
73b65bb0
DJ
7967 struct target_waitstatus last;
7968 ptid_t last_ptid;
29f49a6a 7969 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 7970 ptid_t pid_ptid;
73b65bb0
DJ
7971
7972 get_last_target_status (&last_ptid, &last);
7973
4c2f2a79
PA
7974 new_stop_id ();
7975
29f49a6a
PA
7976 /* If an exception is thrown from this point on, make sure to
7977 propagate GDB's knowledge of the executing state to the
7978 frontend/user running state. A QUIT is an easy exception to see
7979 here, so do this before any filtered output. */
c35b1492
PA
7980 if (!non_stop)
7981 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
7982 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7983 || last.kind == TARGET_WAITKIND_EXITED)
7984 {
7985 /* On some targets, we may still have live threads in the
7986 inferior when we get a process exit event. E.g., for
7987 "checkpoint", when the current checkpoint/fork exits,
7988 linux-fork.c automatically switches to another fork from
7989 within target_mourn_inferior. */
7990 if (!ptid_equal (inferior_ptid, null_ptid))
7991 {
7992 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
7993 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
7994 }
7995 }
7996 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 7997 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 7998
b57bacec
PA
7999 /* As we're presenting a stop, and potentially removing breakpoints,
8000 update the thread list so we can tell whether there are threads
8001 running on the target. With target remote, for example, we can
8002 only learn about new threads when we explicitly update the thread
8003 list. Do this before notifying the interpreters about signal
8004 stops, end of stepping ranges, etc., so that the "new thread"
8005 output is emitted before e.g., "Program received signal FOO",
8006 instead of after. */
8007 update_thread_list ();
8008
8009 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8010 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8011
c906108c
SS
8012 /* As with the notification of thread events, we want to delay
8013 notifying the user that we've switched thread context until
8014 the inferior actually stops.
8015
73b65bb0
DJ
8016 There's no point in saying anything if the inferior has exited.
8017 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8018 "received a signal".
8019
8020 Also skip saying anything in non-stop mode. In that mode, as we
8021 don't want GDB to switch threads behind the user's back, to avoid
8022 races where the user is typing a command to apply to thread x,
8023 but GDB switches to thread y before the user finishes entering
8024 the command, fetch_inferior_event installs a cleanup to restore
8025 the current thread back to the thread the user had selected right
8026 after this event is handled, so we're not really switching, only
8027 informing of a stop. */
4f8d22e3
PA
8028 if (!non_stop
8029 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8030 && target_has_execution
8031 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8032 && last.kind != TARGET_WAITKIND_EXITED
8033 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
8034 {
8035 target_terminal_ours_for_output ();
a3f17187 8036 printf_filtered (_("[Switching to %s]\n"),
c95310c6 8037 target_pid_to_str (inferior_ptid));
b8fa951a 8038 annotate_thread_changed ();
39f77062 8039 previous_inferior_ptid = inferior_ptid;
c906108c 8040 }
c906108c 8041
0e5bf2a8
PA
8042 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8043 {
8044 gdb_assert (sync_execution || !target_can_async_p ());
8045
8046 target_terminal_ours_for_output ();
8047 printf_filtered (_("No unwaited-for children left.\n"));
8048 }
8049
b57bacec 8050 /* Note: this depends on the update_thread_list call above. */
388a7084 8051 maybe_remove_breakpoints ();
c906108c 8052
c906108c
SS
8053 /* If an auto-display called a function and that got a signal,
8054 delete that auto-display to avoid an infinite recursion. */
8055
8056 if (stopped_by_random_signal)
8057 disable_current_display ();
8058
c906108c 8059 target_terminal_ours ();
0f641c01 8060 async_enable_stdin ();
c906108c 8061
388a7084
PA
8062 /* Let the user/frontend see the threads as stopped. */
8063 do_cleanups (old_chain);
8064
8065 /* Select innermost stack frame - i.e., current frame is frame 0,
8066 and current location is based on that. Handle the case where the
8067 dummy call is returning after being stopped. E.g. the dummy call
8068 previously hit a breakpoint. (If the dummy call returns
8069 normally, we won't reach here.) Do this before the stop hook is
8070 run, so that it doesn't get to see the temporary dummy frame,
8071 which is not where we'll present the stop. */
8072 if (has_stack_frames ())
8073 {
8074 if (stop_stack_dummy == STOP_STACK_DUMMY)
8075 {
8076 /* Pop the empty frame that contains the stack dummy. This
8077 also restores inferior state prior to the call (struct
8078 infcall_suspend_state). */
8079 struct frame_info *frame = get_current_frame ();
8080
8081 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8082 frame_pop (frame);
8083 /* frame_pop calls reinit_frame_cache as the last thing it
8084 does which means there's now no selected frame. */
8085 }
8086
8087 select_frame (get_current_frame ());
8088
8089 /* Set the current source location. */
8090 set_current_sal_from_frame (get_current_frame ());
8091 }
dd7e2d2b
PA
8092
8093 /* Look up the hook_stop and run it (CLI internally handles problem
8094 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8095 if (stop_command != NULL)
8096 {
8097 struct stop_context *saved_context = save_stop_context ();
8098 struct cleanup *old_chain
8099 = make_cleanup (release_stop_context_cleanup, saved_context);
8100
8101 catch_errors (hook_stop_stub, stop_command,
8102 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8103
8104 /* If the stop hook resumes the target, then there's no point in
8105 trying to notify about the previous stop; its context is
8106 gone. Likewise if the command switches thread or inferior --
8107 the observers would print a stop for the wrong
8108 thread/inferior. */
8109 if (stop_context_changed (saved_context))
8110 {
8111 do_cleanups (old_chain);
8112 return 1;
8113 }
8114 do_cleanups (old_chain);
8115 }
dd7e2d2b 8116
388a7084
PA
8117 /* Notify observers about the stop. This is where the interpreters
8118 print the stop event. */
8119 if (!ptid_equal (inferior_ptid, null_ptid))
8120 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8121 stop_print_frame);
8122 else
8123 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8124
243a9253
PA
8125 annotate_stopped ();
8126
48844aa6
PA
8127 if (target_has_execution)
8128 {
8129 if (last.kind != TARGET_WAITKIND_SIGNALLED
8130 && last.kind != TARGET_WAITKIND_EXITED)
8131 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8132 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8133 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8134 }
6c95b8df
PA
8135
8136 /* Try to get rid of automatically added inferiors that are no
8137 longer needed. Keeping those around slows down things linearly.
8138 Note that this never removes the current inferior. */
8139 prune_inferiors ();
4c2f2a79
PA
8140
8141 return 0;
c906108c
SS
8142}
8143
8144static int
96baa820 8145hook_stop_stub (void *cmd)
c906108c 8146{
5913bcb0 8147 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8148 return (0);
8149}
8150\f
c5aa993b 8151int
96baa820 8152signal_stop_state (int signo)
c906108c 8153{
d6b48e9c 8154 return signal_stop[signo];
c906108c
SS
8155}
8156
c5aa993b 8157int
96baa820 8158signal_print_state (int signo)
c906108c
SS
8159{
8160 return signal_print[signo];
8161}
8162
c5aa993b 8163int
96baa820 8164signal_pass_state (int signo)
c906108c
SS
8165{
8166 return signal_program[signo];
8167}
8168
2455069d
UW
8169static void
8170signal_cache_update (int signo)
8171{
8172 if (signo == -1)
8173 {
a493e3e2 8174 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8175 signal_cache_update (signo);
8176
8177 return;
8178 }
8179
8180 signal_pass[signo] = (signal_stop[signo] == 0
8181 && signal_print[signo] == 0
ab04a2af
TT
8182 && signal_program[signo] == 1
8183 && signal_catch[signo] == 0);
2455069d
UW
8184}
8185
488f131b 8186int
7bda5e4a 8187signal_stop_update (int signo, int state)
d4f3574e
SS
8188{
8189 int ret = signal_stop[signo];
abbb1732 8190
d4f3574e 8191 signal_stop[signo] = state;
2455069d 8192 signal_cache_update (signo);
d4f3574e
SS
8193 return ret;
8194}
8195
488f131b 8196int
7bda5e4a 8197signal_print_update (int signo, int state)
d4f3574e
SS
8198{
8199 int ret = signal_print[signo];
abbb1732 8200
d4f3574e 8201 signal_print[signo] = state;
2455069d 8202 signal_cache_update (signo);
d4f3574e
SS
8203 return ret;
8204}
8205
488f131b 8206int
7bda5e4a 8207signal_pass_update (int signo, int state)
d4f3574e
SS
8208{
8209 int ret = signal_program[signo];
abbb1732 8210
d4f3574e 8211 signal_program[signo] = state;
2455069d 8212 signal_cache_update (signo);
d4f3574e
SS
8213 return ret;
8214}
8215
ab04a2af
TT
8216/* Update the global 'signal_catch' from INFO and notify the
8217 target. */
8218
8219void
8220signal_catch_update (const unsigned int *info)
8221{
8222 int i;
8223
8224 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8225 signal_catch[i] = info[i] > 0;
8226 signal_cache_update (-1);
8227 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8228}
8229
c906108c 8230static void
96baa820 8231sig_print_header (void)
c906108c 8232{
3e43a32a
MS
8233 printf_filtered (_("Signal Stop\tPrint\tPass "
8234 "to program\tDescription\n"));
c906108c
SS
8235}
8236
8237static void
2ea28649 8238sig_print_info (enum gdb_signal oursig)
c906108c 8239{
2ea28649 8240 const char *name = gdb_signal_to_name (oursig);
c906108c 8241 int name_padding = 13 - strlen (name);
96baa820 8242
c906108c
SS
8243 if (name_padding <= 0)
8244 name_padding = 0;
8245
8246 printf_filtered ("%s", name);
488f131b 8247 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8248 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8249 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8250 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8251 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8252}
8253
8254/* Specify how various signals in the inferior should be handled. */
8255
8256static void
96baa820 8257handle_command (char *args, int from_tty)
c906108c
SS
8258{
8259 char **argv;
8260 int digits, wordlen;
8261 int sigfirst, signum, siglast;
2ea28649 8262 enum gdb_signal oursig;
c906108c
SS
8263 int allsigs;
8264 int nsigs;
8265 unsigned char *sigs;
8266 struct cleanup *old_chain;
8267
8268 if (args == NULL)
8269 {
e2e0b3e5 8270 error_no_arg (_("signal to handle"));
c906108c
SS
8271 }
8272
1777feb0 8273 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8274
a493e3e2 8275 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8276 sigs = (unsigned char *) alloca (nsigs);
8277 memset (sigs, 0, nsigs);
8278
1777feb0 8279 /* Break the command line up into args. */
c906108c 8280
d1a41061 8281 argv = gdb_buildargv (args);
7a292a7a 8282 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8283
8284 /* Walk through the args, looking for signal oursigs, signal names, and
8285 actions. Signal numbers and signal names may be interspersed with
8286 actions, with the actions being performed for all signals cumulatively
1777feb0 8287 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8288
8289 while (*argv != NULL)
8290 {
8291 wordlen = strlen (*argv);
8292 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8293 {;
8294 }
8295 allsigs = 0;
8296 sigfirst = siglast = -1;
8297
8298 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8299 {
8300 /* Apply action to all signals except those used by the
1777feb0 8301 debugger. Silently skip those. */
c906108c
SS
8302 allsigs = 1;
8303 sigfirst = 0;
8304 siglast = nsigs - 1;
8305 }
8306 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8307 {
8308 SET_SIGS (nsigs, sigs, signal_stop);
8309 SET_SIGS (nsigs, sigs, signal_print);
8310 }
8311 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8312 {
8313 UNSET_SIGS (nsigs, sigs, signal_program);
8314 }
8315 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8316 {
8317 SET_SIGS (nsigs, sigs, signal_print);
8318 }
8319 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8320 {
8321 SET_SIGS (nsigs, sigs, signal_program);
8322 }
8323 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8324 {
8325 UNSET_SIGS (nsigs, sigs, signal_stop);
8326 }
8327 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8328 {
8329 SET_SIGS (nsigs, sigs, signal_program);
8330 }
8331 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8332 {
8333 UNSET_SIGS (nsigs, sigs, signal_print);
8334 UNSET_SIGS (nsigs, sigs, signal_stop);
8335 }
8336 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8337 {
8338 UNSET_SIGS (nsigs, sigs, signal_program);
8339 }
8340 else if (digits > 0)
8341 {
8342 /* It is numeric. The numeric signal refers to our own
8343 internal signal numbering from target.h, not to host/target
8344 signal number. This is a feature; users really should be
8345 using symbolic names anyway, and the common ones like
8346 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8347
8348 sigfirst = siglast = (int)
2ea28649 8349 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8350 if ((*argv)[digits] == '-')
8351 {
8352 siglast = (int)
2ea28649 8353 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8354 }
8355 if (sigfirst > siglast)
8356 {
1777feb0 8357 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8358 signum = sigfirst;
8359 sigfirst = siglast;
8360 siglast = signum;
8361 }
8362 }
8363 else
8364 {
2ea28649 8365 oursig = gdb_signal_from_name (*argv);
a493e3e2 8366 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8367 {
8368 sigfirst = siglast = (int) oursig;
8369 }
8370 else
8371 {
8372 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8373 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8374 }
8375 }
8376
8377 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8378 which signals to apply actions to. */
c906108c
SS
8379
8380 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8381 {
2ea28649 8382 switch ((enum gdb_signal) signum)
c906108c 8383 {
a493e3e2
PA
8384 case GDB_SIGNAL_TRAP:
8385 case GDB_SIGNAL_INT:
c906108c
SS
8386 if (!allsigs && !sigs[signum])
8387 {
9e2f0ad4 8388 if (query (_("%s is used by the debugger.\n\
3e43a32a 8389Are you sure you want to change it? "),
2ea28649 8390 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8391 {
8392 sigs[signum] = 1;
8393 }
8394 else
8395 {
a3f17187 8396 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8397 gdb_flush (gdb_stdout);
8398 }
8399 }
8400 break;
a493e3e2
PA
8401 case GDB_SIGNAL_0:
8402 case GDB_SIGNAL_DEFAULT:
8403 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8404 /* Make sure that "all" doesn't print these. */
8405 break;
8406 default:
8407 sigs[signum] = 1;
8408 break;
8409 }
8410 }
8411
8412 argv++;
8413 }
8414
3a031f65
PA
8415 for (signum = 0; signum < nsigs; signum++)
8416 if (sigs[signum])
8417 {
2455069d 8418 signal_cache_update (-1);
a493e3e2
PA
8419 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8420 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8421
3a031f65
PA
8422 if (from_tty)
8423 {
8424 /* Show the results. */
8425 sig_print_header ();
8426 for (; signum < nsigs; signum++)
8427 if (sigs[signum])
aead7601 8428 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8429 }
8430
8431 break;
8432 }
c906108c
SS
8433
8434 do_cleanups (old_chain);
8435}
8436
de0bea00
MF
8437/* Complete the "handle" command. */
8438
8439static VEC (char_ptr) *
8440handle_completer (struct cmd_list_element *ignore,
6f937416 8441 const char *text, const char *word)
de0bea00
MF
8442{
8443 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8444 static const char * const keywords[] =
8445 {
8446 "all",
8447 "stop",
8448 "ignore",
8449 "print",
8450 "pass",
8451 "nostop",
8452 "noignore",
8453 "noprint",
8454 "nopass",
8455 NULL,
8456 };
8457
8458 vec_signals = signal_completer (ignore, text, word);
8459 vec_keywords = complete_on_enum (keywords, word, word);
8460
8461 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8462 VEC_free (char_ptr, vec_signals);
8463 VEC_free (char_ptr, vec_keywords);
8464 return return_val;
8465}
8466
2ea28649
PA
8467enum gdb_signal
8468gdb_signal_from_command (int num)
ed01b82c
PA
8469{
8470 if (num >= 1 && num <= 15)
2ea28649 8471 return (enum gdb_signal) num;
ed01b82c
PA
8472 error (_("Only signals 1-15 are valid as numeric signals.\n\
8473Use \"info signals\" for a list of symbolic signals."));
8474}
8475
c906108c
SS
8476/* Print current contents of the tables set by the handle command.
8477 It is possible we should just be printing signals actually used
8478 by the current target (but for things to work right when switching
8479 targets, all signals should be in the signal tables). */
8480
8481static void
96baa820 8482signals_info (char *signum_exp, int from_tty)
c906108c 8483{
2ea28649 8484 enum gdb_signal oursig;
abbb1732 8485
c906108c
SS
8486 sig_print_header ();
8487
8488 if (signum_exp)
8489 {
8490 /* First see if this is a symbol name. */
2ea28649 8491 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8492 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8493 {
8494 /* No, try numeric. */
8495 oursig =
2ea28649 8496 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8497 }
8498 sig_print_info (oursig);
8499 return;
8500 }
8501
8502 printf_filtered ("\n");
8503 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8504 for (oursig = GDB_SIGNAL_FIRST;
8505 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8506 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8507 {
8508 QUIT;
8509
a493e3e2
PA
8510 if (oursig != GDB_SIGNAL_UNKNOWN
8511 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8512 sig_print_info (oursig);
8513 }
8514
3e43a32a
MS
8515 printf_filtered (_("\nUse the \"handle\" command "
8516 "to change these tables.\n"));
c906108c 8517}
4aa995e1 8518
c709acd1
PA
8519/* Check if it makes sense to read $_siginfo from the current thread
8520 at this point. If not, throw an error. */
8521
8522static void
8523validate_siginfo_access (void)
8524{
8525 /* No current inferior, no siginfo. */
8526 if (ptid_equal (inferior_ptid, null_ptid))
8527 error (_("No thread selected."));
8528
8529 /* Don't try to read from a dead thread. */
8530 if (is_exited (inferior_ptid))
8531 error (_("The current thread has terminated"));
8532
8533 /* ... or from a spinning thread. */
8534 if (is_running (inferior_ptid))
8535 error (_("Selected thread is running."));
8536}
8537
4aa995e1
PA
8538/* The $_siginfo convenience variable is a bit special. We don't know
8539 for sure the type of the value until we actually have a chance to
7a9dd1b2 8540 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8541 also dependent on which thread you have selected.
8542
8543 1. making $_siginfo be an internalvar that creates a new value on
8544 access.
8545
8546 2. making the value of $_siginfo be an lval_computed value. */
8547
8548/* This function implements the lval_computed support for reading a
8549 $_siginfo value. */
8550
8551static void
8552siginfo_value_read (struct value *v)
8553{
8554 LONGEST transferred;
8555
c709acd1
PA
8556 validate_siginfo_access ();
8557
4aa995e1
PA
8558 transferred =
8559 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8560 NULL,
8561 value_contents_all_raw (v),
8562 value_offset (v),
8563 TYPE_LENGTH (value_type (v)));
8564
8565 if (transferred != TYPE_LENGTH (value_type (v)))
8566 error (_("Unable to read siginfo"));
8567}
8568
8569/* This function implements the lval_computed support for writing a
8570 $_siginfo value. */
8571
8572static void
8573siginfo_value_write (struct value *v, struct value *fromval)
8574{
8575 LONGEST transferred;
8576
c709acd1
PA
8577 validate_siginfo_access ();
8578
4aa995e1
PA
8579 transferred = target_write (&current_target,
8580 TARGET_OBJECT_SIGNAL_INFO,
8581 NULL,
8582 value_contents_all_raw (fromval),
8583 value_offset (v),
8584 TYPE_LENGTH (value_type (fromval)));
8585
8586 if (transferred != TYPE_LENGTH (value_type (fromval)))
8587 error (_("Unable to write siginfo"));
8588}
8589
c8f2448a 8590static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8591 {
8592 siginfo_value_read,
8593 siginfo_value_write
8594 };
8595
8596/* Return a new value with the correct type for the siginfo object of
78267919
UW
8597 the current thread using architecture GDBARCH. Return a void value
8598 if there's no object available. */
4aa995e1 8599
2c0b251b 8600static struct value *
22d2b532
SDJ
8601siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8602 void *ignore)
4aa995e1 8603{
4aa995e1 8604 if (target_has_stack
78267919
UW
8605 && !ptid_equal (inferior_ptid, null_ptid)
8606 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8607 {
78267919 8608 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8609
78267919 8610 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8611 }
8612
78267919 8613 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8614}
8615
c906108c 8616\f
16c381f0
JK
8617/* infcall_suspend_state contains state about the program itself like its
8618 registers and any signal it received when it last stopped.
8619 This state must be restored regardless of how the inferior function call
8620 ends (either successfully, or after it hits a breakpoint or signal)
8621 if the program is to properly continue where it left off. */
8622
8623struct infcall_suspend_state
7a292a7a 8624{
16c381f0 8625 struct thread_suspend_state thread_suspend;
16c381f0
JK
8626
8627 /* Other fields: */
7a292a7a 8628 CORE_ADDR stop_pc;
b89667eb 8629 struct regcache *registers;
1736ad11 8630
35515841 8631 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8632 struct gdbarch *siginfo_gdbarch;
8633
8634 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8635 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8636 content would be invalid. */
8637 gdb_byte *siginfo_data;
b89667eb
DE
8638};
8639
16c381f0
JK
8640struct infcall_suspend_state *
8641save_infcall_suspend_state (void)
b89667eb 8642{
16c381f0 8643 struct infcall_suspend_state *inf_state;
b89667eb 8644 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8645 struct regcache *regcache = get_current_regcache ();
8646 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8647 gdb_byte *siginfo_data = NULL;
8648
8649 if (gdbarch_get_siginfo_type_p (gdbarch))
8650 {
8651 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8652 size_t len = TYPE_LENGTH (type);
8653 struct cleanup *back_to;
8654
224c3ddb 8655 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8656 back_to = make_cleanup (xfree, siginfo_data);
8657
8658 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8659 siginfo_data, 0, len) == len)
8660 discard_cleanups (back_to);
8661 else
8662 {
8663 /* Errors ignored. */
8664 do_cleanups (back_to);
8665 siginfo_data = NULL;
8666 }
8667 }
8668
41bf6aca 8669 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8670
8671 if (siginfo_data)
8672 {
8673 inf_state->siginfo_gdbarch = gdbarch;
8674 inf_state->siginfo_data = siginfo_data;
8675 }
b89667eb 8676
16c381f0 8677 inf_state->thread_suspend = tp->suspend;
16c381f0 8678
35515841 8679 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8680 GDB_SIGNAL_0 anyway. */
8681 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8682
b89667eb
DE
8683 inf_state->stop_pc = stop_pc;
8684
1736ad11 8685 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8686
8687 return inf_state;
8688}
8689
8690/* Restore inferior session state to INF_STATE. */
8691
8692void
16c381f0 8693restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8694{
8695 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8696 struct regcache *regcache = get_current_regcache ();
8697 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8698
16c381f0 8699 tp->suspend = inf_state->thread_suspend;
16c381f0 8700
b89667eb
DE
8701 stop_pc = inf_state->stop_pc;
8702
1736ad11
JK
8703 if (inf_state->siginfo_gdbarch == gdbarch)
8704 {
8705 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8706
8707 /* Errors ignored. */
8708 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8709 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8710 }
8711
b89667eb
DE
8712 /* The inferior can be gone if the user types "print exit(0)"
8713 (and perhaps other times). */
8714 if (target_has_execution)
8715 /* NB: The register write goes through to the target. */
1736ad11 8716 regcache_cpy (regcache, inf_state->registers);
803b5f95 8717
16c381f0 8718 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8719}
8720
8721static void
16c381f0 8722do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8723{
9a3c8263 8724 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8725}
8726
8727struct cleanup *
16c381f0
JK
8728make_cleanup_restore_infcall_suspend_state
8729 (struct infcall_suspend_state *inf_state)
b89667eb 8730{
16c381f0 8731 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8732}
8733
8734void
16c381f0 8735discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8736{
8737 regcache_xfree (inf_state->registers);
803b5f95 8738 xfree (inf_state->siginfo_data);
b89667eb
DE
8739 xfree (inf_state);
8740}
8741
8742struct regcache *
16c381f0 8743get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8744{
8745 return inf_state->registers;
8746}
8747
16c381f0
JK
8748/* infcall_control_state contains state regarding gdb's control of the
8749 inferior itself like stepping control. It also contains session state like
8750 the user's currently selected frame. */
b89667eb 8751
16c381f0 8752struct infcall_control_state
b89667eb 8753{
16c381f0
JK
8754 struct thread_control_state thread_control;
8755 struct inferior_control_state inferior_control;
d82142e2
JK
8756
8757 /* Other fields: */
8758 enum stop_stack_kind stop_stack_dummy;
8759 int stopped_by_random_signal;
7a292a7a 8760
b89667eb 8761 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8762 struct frame_id selected_frame_id;
7a292a7a
SS
8763};
8764
c906108c 8765/* Save all of the information associated with the inferior<==>gdb
b89667eb 8766 connection. */
c906108c 8767
16c381f0
JK
8768struct infcall_control_state *
8769save_infcall_control_state (void)
c906108c 8770{
8d749320
SM
8771 struct infcall_control_state *inf_status =
8772 XNEW (struct infcall_control_state);
4e1c45ea 8773 struct thread_info *tp = inferior_thread ();
d6b48e9c 8774 struct inferior *inf = current_inferior ();
7a292a7a 8775
16c381f0
JK
8776 inf_status->thread_control = tp->control;
8777 inf_status->inferior_control = inf->control;
d82142e2 8778
8358c15c 8779 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8780 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8781
16c381f0
JK
8782 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8783 chain. If caller's caller is walking the chain, they'll be happier if we
8784 hand them back the original chain when restore_infcall_control_state is
8785 called. */
8786 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8787
8788 /* Other fields: */
8789 inf_status->stop_stack_dummy = stop_stack_dummy;
8790 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8791
206415a3 8792 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8793
7a292a7a 8794 return inf_status;
c906108c
SS
8795}
8796
c906108c 8797static int
96baa820 8798restore_selected_frame (void *args)
c906108c 8799{
488f131b 8800 struct frame_id *fid = (struct frame_id *) args;
c906108c 8801 struct frame_info *frame;
c906108c 8802
101dcfbe 8803 frame = frame_find_by_id (*fid);
c906108c 8804
aa0cd9c1
AC
8805 /* If inf_status->selected_frame_id is NULL, there was no previously
8806 selected frame. */
101dcfbe 8807 if (frame == NULL)
c906108c 8808 {
8a3fe4f8 8809 warning (_("Unable to restore previously selected frame."));
c906108c
SS
8810 return 0;
8811 }
8812
0f7d239c 8813 select_frame (frame);
c906108c
SS
8814
8815 return (1);
8816}
8817
b89667eb
DE
8818/* Restore inferior session state to INF_STATUS. */
8819
c906108c 8820void
16c381f0 8821restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8822{
4e1c45ea 8823 struct thread_info *tp = inferior_thread ();
d6b48e9c 8824 struct inferior *inf = current_inferior ();
4e1c45ea 8825
8358c15c
JK
8826 if (tp->control.step_resume_breakpoint)
8827 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8828
5b79abe7
TT
8829 if (tp->control.exception_resume_breakpoint)
8830 tp->control.exception_resume_breakpoint->disposition
8831 = disp_del_at_next_stop;
8832
d82142e2 8833 /* Handle the bpstat_copy of the chain. */
16c381f0 8834 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8835
16c381f0
JK
8836 tp->control = inf_status->thread_control;
8837 inf->control = inf_status->inferior_control;
d82142e2
JK
8838
8839 /* Other fields: */
8840 stop_stack_dummy = inf_status->stop_stack_dummy;
8841 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8842
b89667eb 8843 if (target_has_stack)
c906108c 8844 {
c906108c 8845 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
8846 walking the stack might encounter a garbage pointer and
8847 error() trying to dereference it. */
488f131b
JB
8848 if (catch_errors
8849 (restore_selected_frame, &inf_status->selected_frame_id,
8850 "Unable to restore previously selected frame:\n",
8851 RETURN_MASK_ERROR) == 0)
c906108c
SS
8852 /* Error in restoring the selected frame. Select the innermost
8853 frame. */
0f7d239c 8854 select_frame (get_current_frame ());
c906108c 8855 }
c906108c 8856
72cec141 8857 xfree (inf_status);
7a292a7a 8858}
c906108c 8859
74b7792f 8860static void
16c381f0 8861do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 8862{
9a3c8263 8863 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
8864}
8865
8866struct cleanup *
16c381f0
JK
8867make_cleanup_restore_infcall_control_state
8868 (struct infcall_control_state *inf_status)
74b7792f 8869{
16c381f0 8870 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
8871}
8872
c906108c 8873void
16c381f0 8874discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8875{
8358c15c
JK
8876 if (inf_status->thread_control.step_resume_breakpoint)
8877 inf_status->thread_control.step_resume_breakpoint->disposition
8878 = disp_del_at_next_stop;
8879
5b79abe7
TT
8880 if (inf_status->thread_control.exception_resume_breakpoint)
8881 inf_status->thread_control.exception_resume_breakpoint->disposition
8882 = disp_del_at_next_stop;
8883
1777feb0 8884 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8885 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8886
72cec141 8887 xfree (inf_status);
7a292a7a 8888}
b89667eb 8889\f
ca6724c1
KB
8890/* restore_inferior_ptid() will be used by the cleanup machinery
8891 to restore the inferior_ptid value saved in a call to
8892 save_inferior_ptid(). */
ce696e05
KB
8893
8894static void
8895restore_inferior_ptid (void *arg)
8896{
9a3c8263 8897 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
abbb1732 8898
ce696e05
KB
8899 inferior_ptid = *saved_ptid_ptr;
8900 xfree (arg);
8901}
8902
8903/* Save the value of inferior_ptid so that it may be restored by a
8904 later call to do_cleanups(). Returns the struct cleanup pointer
8905 needed for later doing the cleanup. */
8906
8907struct cleanup *
8908save_inferior_ptid (void)
8909{
8d749320 8910 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 8911
ce696e05
KB
8912 *saved_ptid_ptr = inferior_ptid;
8913 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8914}
0c557179 8915
7f89fd65 8916/* See infrun.h. */
0c557179
SDJ
8917
8918void
8919clear_exit_convenience_vars (void)
8920{
8921 clear_internalvar (lookup_internalvar ("_exitsignal"));
8922 clear_internalvar (lookup_internalvar ("_exitcode"));
8923}
c5aa993b 8924\f
488f131b 8925
b2175913
MS
8926/* User interface for reverse debugging:
8927 Set exec-direction / show exec-direction commands
8928 (returns error unless target implements to_set_exec_direction method). */
8929
170742de 8930enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8931static const char exec_forward[] = "forward";
8932static const char exec_reverse[] = "reverse";
8933static const char *exec_direction = exec_forward;
40478521 8934static const char *const exec_direction_names[] = {
b2175913
MS
8935 exec_forward,
8936 exec_reverse,
8937 NULL
8938};
8939
8940static void
8941set_exec_direction_func (char *args, int from_tty,
8942 struct cmd_list_element *cmd)
8943{
8944 if (target_can_execute_reverse)
8945 {
8946 if (!strcmp (exec_direction, exec_forward))
8947 execution_direction = EXEC_FORWARD;
8948 else if (!strcmp (exec_direction, exec_reverse))
8949 execution_direction = EXEC_REVERSE;
8950 }
8bbed405
MS
8951 else
8952 {
8953 exec_direction = exec_forward;
8954 error (_("Target does not support this operation."));
8955 }
b2175913
MS
8956}
8957
8958static void
8959show_exec_direction_func (struct ui_file *out, int from_tty,
8960 struct cmd_list_element *cmd, const char *value)
8961{
8962 switch (execution_direction) {
8963 case EXEC_FORWARD:
8964 fprintf_filtered (out, _("Forward.\n"));
8965 break;
8966 case EXEC_REVERSE:
8967 fprintf_filtered (out, _("Reverse.\n"));
8968 break;
b2175913 8969 default:
d8b34453
PA
8970 internal_error (__FILE__, __LINE__,
8971 _("bogus execution_direction value: %d"),
8972 (int) execution_direction);
b2175913
MS
8973 }
8974}
8975
d4db2f36
PA
8976static void
8977show_schedule_multiple (struct ui_file *file, int from_tty,
8978 struct cmd_list_element *c, const char *value)
8979{
3e43a32a
MS
8980 fprintf_filtered (file, _("Resuming the execution of threads "
8981 "of all processes is %s.\n"), value);
d4db2f36 8982}
ad52ddc6 8983
22d2b532
SDJ
8984/* Implementation of `siginfo' variable. */
8985
8986static const struct internalvar_funcs siginfo_funcs =
8987{
8988 siginfo_make_value,
8989 NULL,
8990 NULL
8991};
8992
372316f1
PA
8993/* Callback for infrun's target events source. This is marked when a
8994 thread has a pending status to process. */
8995
8996static void
8997infrun_async_inferior_event_handler (gdb_client_data data)
8998{
372316f1
PA
8999 inferior_event_handler (INF_REG_EVENT, NULL);
9000}
9001
c906108c 9002void
96baa820 9003_initialize_infrun (void)
c906108c 9004{
52f0bd74
AC
9005 int i;
9006 int numsigs;
de0bea00 9007 struct cmd_list_element *c;
c906108c 9008
372316f1
PA
9009 /* Register extra event sources in the event loop. */
9010 infrun_async_inferior_event_token
9011 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9012
1bedd215
AC
9013 add_info ("signals", signals_info, _("\
9014What debugger does when program gets various signals.\n\
9015Specify a signal as argument to print info on that signal only."));
c906108c
SS
9016 add_info_alias ("handle", "signals", 0);
9017
de0bea00 9018 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9019Specify how to handle signals.\n\
486c7739 9020Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9021Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9022If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9023will be displayed instead.\n\
9024\n\
c906108c
SS
9025Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9026from 1-15 are allowed for compatibility with old versions of GDB.\n\
9027Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9028The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9029used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9030\n\
1bedd215 9031Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9032\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9033Stop means reenter debugger if this signal happens (implies print).\n\
9034Print means print a message if this signal happens.\n\
9035Pass means let program see this signal; otherwise program doesn't know.\n\
9036Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9037Pass and Stop may be combined.\n\
9038\n\
9039Multiple signals may be specified. Signal numbers and signal names\n\
9040may be interspersed with actions, with the actions being performed for\n\
9041all signals cumulatively specified."));
de0bea00 9042 set_cmd_completer (c, handle_completer);
486c7739 9043
c906108c 9044 if (!dbx_commands)
1a966eab
AC
9045 stop_command = add_cmd ("stop", class_obscure,
9046 not_just_help_class_command, _("\
9047There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9048This allows you to set a list of commands to be run each time execution\n\
1a966eab 9049of the program stops."), &cmdlist);
c906108c 9050
ccce17b0 9051 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9052Set inferior debugging."), _("\
9053Show inferior debugging."), _("\
9054When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9055 NULL,
9056 show_debug_infrun,
9057 &setdebuglist, &showdebuglist);
527159b7 9058
3e43a32a
MS
9059 add_setshow_boolean_cmd ("displaced", class_maintenance,
9060 &debug_displaced, _("\
237fc4c9
PA
9061Set displaced stepping debugging."), _("\
9062Show displaced stepping debugging."), _("\
9063When non-zero, displaced stepping specific debugging is enabled."),
9064 NULL,
9065 show_debug_displaced,
9066 &setdebuglist, &showdebuglist);
9067
ad52ddc6
PA
9068 add_setshow_boolean_cmd ("non-stop", no_class,
9069 &non_stop_1, _("\
9070Set whether gdb controls the inferior in non-stop mode."), _("\
9071Show whether gdb controls the inferior in non-stop mode."), _("\
9072When debugging a multi-threaded program and this setting is\n\
9073off (the default, also called all-stop mode), when one thread stops\n\
9074(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9075all other threads in the program while you interact with the thread of\n\
9076interest. When you continue or step a thread, you can allow the other\n\
9077threads to run, or have them remain stopped, but while you inspect any\n\
9078thread's state, all threads stop.\n\
9079\n\
9080In non-stop mode, when one thread stops, other threads can continue\n\
9081to run freely. You'll be able to step each thread independently,\n\
9082leave it stopped or free to run as needed."),
9083 set_non_stop,
9084 show_non_stop,
9085 &setlist,
9086 &showlist);
9087
a493e3e2 9088 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9089 signal_stop = XNEWVEC (unsigned char, numsigs);
9090 signal_print = XNEWVEC (unsigned char, numsigs);
9091 signal_program = XNEWVEC (unsigned char, numsigs);
9092 signal_catch = XNEWVEC (unsigned char, numsigs);
9093 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9094 for (i = 0; i < numsigs; i++)
9095 {
9096 signal_stop[i] = 1;
9097 signal_print[i] = 1;
9098 signal_program[i] = 1;
ab04a2af 9099 signal_catch[i] = 0;
c906108c
SS
9100 }
9101
4d9d9d04
PA
9102 /* Signals caused by debugger's own actions should not be given to
9103 the program afterwards.
9104
9105 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9106 explicitly specifies that it should be delivered to the target
9107 program. Typically, that would occur when a user is debugging a
9108 target monitor on a simulator: the target monitor sets a
9109 breakpoint; the simulator encounters this breakpoint and halts
9110 the simulation handing control to GDB; GDB, noting that the stop
9111 address doesn't map to any known breakpoint, returns control back
9112 to the simulator; the simulator then delivers the hardware
9113 equivalent of a GDB_SIGNAL_TRAP to the program being
9114 debugged. */
a493e3e2
PA
9115 signal_program[GDB_SIGNAL_TRAP] = 0;
9116 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9117
9118 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9119 signal_stop[GDB_SIGNAL_ALRM] = 0;
9120 signal_print[GDB_SIGNAL_ALRM] = 0;
9121 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9122 signal_print[GDB_SIGNAL_VTALRM] = 0;
9123 signal_stop[GDB_SIGNAL_PROF] = 0;
9124 signal_print[GDB_SIGNAL_PROF] = 0;
9125 signal_stop[GDB_SIGNAL_CHLD] = 0;
9126 signal_print[GDB_SIGNAL_CHLD] = 0;
9127 signal_stop[GDB_SIGNAL_IO] = 0;
9128 signal_print[GDB_SIGNAL_IO] = 0;
9129 signal_stop[GDB_SIGNAL_POLL] = 0;
9130 signal_print[GDB_SIGNAL_POLL] = 0;
9131 signal_stop[GDB_SIGNAL_URG] = 0;
9132 signal_print[GDB_SIGNAL_URG] = 0;
9133 signal_stop[GDB_SIGNAL_WINCH] = 0;
9134 signal_print[GDB_SIGNAL_WINCH] = 0;
9135 signal_stop[GDB_SIGNAL_PRIO] = 0;
9136 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9137
cd0fc7c3
SS
9138 /* These signals are used internally by user-level thread
9139 implementations. (See signal(5) on Solaris.) Like the above
9140 signals, a healthy program receives and handles them as part of
9141 its normal operation. */
a493e3e2
PA
9142 signal_stop[GDB_SIGNAL_LWP] = 0;
9143 signal_print[GDB_SIGNAL_LWP] = 0;
9144 signal_stop[GDB_SIGNAL_WAITING] = 0;
9145 signal_print[GDB_SIGNAL_WAITING] = 0;
9146 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9147 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 9148
2455069d
UW
9149 /* Update cached state. */
9150 signal_cache_update (-1);
9151
85c07804
AC
9152 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9153 &stop_on_solib_events, _("\
9154Set stopping for shared library events."), _("\
9155Show stopping for shared library events."), _("\
c906108c
SS
9156If nonzero, gdb will give control to the user when the dynamic linker\n\
9157notifies gdb of shared library events. The most common event of interest\n\
85c07804 9158to the user would be loading/unloading of a new library."),
f9e14852 9159 set_stop_on_solib_events,
920d2a44 9160 show_stop_on_solib_events,
85c07804 9161 &setlist, &showlist);
c906108c 9162
7ab04401
AC
9163 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9164 follow_fork_mode_kind_names,
9165 &follow_fork_mode_string, _("\
9166Set debugger response to a program call of fork or vfork."), _("\
9167Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9168A fork or vfork creates a new process. follow-fork-mode can be:\n\
9169 parent - the original process is debugged after a fork\n\
9170 child - the new process is debugged after a fork\n\
ea1dd7bc 9171The unfollowed process will continue to run.\n\
7ab04401
AC
9172By default, the debugger will follow the parent process."),
9173 NULL,
920d2a44 9174 show_follow_fork_mode_string,
7ab04401
AC
9175 &setlist, &showlist);
9176
6c95b8df
PA
9177 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9178 follow_exec_mode_names,
9179 &follow_exec_mode_string, _("\
9180Set debugger response to a program call of exec."), _("\
9181Show debugger response to a program call of exec."), _("\
9182An exec call replaces the program image of a process.\n\
9183\n\
9184follow-exec-mode can be:\n\
9185\n\
cce7e648 9186 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9187to this new inferior. The program the process was running before\n\
9188the exec call can be restarted afterwards by restarting the original\n\
9189inferior.\n\
9190\n\
9191 same - the debugger keeps the process bound to the same inferior.\n\
9192The new executable image replaces the previous executable loaded in\n\
9193the inferior. Restarting the inferior after the exec call restarts\n\
9194the executable the process was running after the exec call.\n\
9195\n\
9196By default, the debugger will use the same inferior."),
9197 NULL,
9198 show_follow_exec_mode_string,
9199 &setlist, &showlist);
9200
7ab04401
AC
9201 add_setshow_enum_cmd ("scheduler-locking", class_run,
9202 scheduler_enums, &scheduler_mode, _("\
9203Set mode for locking scheduler during execution."), _("\
9204Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9205off == no locking (threads may preempt at any time)\n\
9206on == full locking (no thread except the current thread may run)\n\
9207 This applies to both normal execution and replay mode.\n\
9208step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9209 In this mode, other threads may run during other commands.\n\
9210 This applies to both normal execution and replay mode.\n\
9211replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9212 set_schedlock_func, /* traps on target vector */
920d2a44 9213 show_scheduler_mode,
7ab04401 9214 &setlist, &showlist);
5fbbeb29 9215
d4db2f36
PA
9216 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9217Set mode for resuming threads of all processes."), _("\
9218Show mode for resuming threads of all processes."), _("\
9219When on, execution commands (such as 'continue' or 'next') resume all\n\
9220threads of all processes. When off (which is the default), execution\n\
9221commands only resume the threads of the current process. The set of\n\
9222threads that are resumed is further refined by the scheduler-locking\n\
9223mode (see help set scheduler-locking)."),
9224 NULL,
9225 show_schedule_multiple,
9226 &setlist, &showlist);
9227
5bf193a2
AC
9228 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9229Set mode of the step operation."), _("\
9230Show mode of the step operation."), _("\
9231When set, doing a step over a function without debug line information\n\
9232will stop at the first instruction of that function. Otherwise, the\n\
9233function is skipped and the step command stops at a different source line."),
9234 NULL,
920d2a44 9235 show_step_stop_if_no_debug,
5bf193a2 9236 &setlist, &showlist);
ca6724c1 9237
72d0e2c5
YQ
9238 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9239 &can_use_displaced_stepping, _("\
237fc4c9
PA
9240Set debugger's willingness to use displaced stepping."), _("\
9241Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9242If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9243supported by the target architecture. If off, gdb will not use displaced\n\
9244stepping to step over breakpoints, even if such is supported by the target\n\
9245architecture. If auto (which is the default), gdb will use displaced stepping\n\
9246if the target architecture supports it and non-stop mode is active, but will not\n\
9247use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9248 NULL,
9249 show_can_use_displaced_stepping,
9250 &setlist, &showlist);
237fc4c9 9251
b2175913
MS
9252 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9253 &exec_direction, _("Set direction of execution.\n\
9254Options are 'forward' or 'reverse'."),
9255 _("Show direction of execution (forward/reverse)."),
9256 _("Tells gdb whether to execute forward or backward."),
9257 set_exec_direction_func, show_exec_direction_func,
9258 &setlist, &showlist);
9259
6c95b8df
PA
9260 /* Set/show detach-on-fork: user-settable mode. */
9261
9262 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9263Set whether gdb will detach the child of a fork."), _("\
9264Show whether gdb will detach the child of a fork."), _("\
9265Tells gdb whether to detach the child of a fork."),
9266 NULL, NULL, &setlist, &showlist);
9267
03583c20
UW
9268 /* Set/show disable address space randomization mode. */
9269
9270 add_setshow_boolean_cmd ("disable-randomization", class_support,
9271 &disable_randomization, _("\
9272Set disabling of debuggee's virtual address space randomization."), _("\
9273Show disabling of debuggee's virtual address space randomization."), _("\
9274When this mode is on (which is the default), randomization of the virtual\n\
9275address space is disabled. Standalone programs run with the randomization\n\
9276enabled by default on some platforms."),
9277 &set_disable_randomization,
9278 &show_disable_randomization,
9279 &setlist, &showlist);
9280
ca6724c1 9281 /* ptid initializations */
ca6724c1
KB
9282 inferior_ptid = null_ptid;
9283 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9284
9285 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9286 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9287 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9288 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9289
9290 /* Explicitly create without lookup, since that tries to create a
9291 value with a void typed value, and when we get here, gdbarch
9292 isn't initialized yet. At this point, we're quite sure there
9293 isn't another convenience variable of the same name. */
22d2b532 9294 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9295
9296 add_setshow_boolean_cmd ("observer", no_class,
9297 &observer_mode_1, _("\
9298Set whether gdb controls the inferior in observer mode."), _("\
9299Show whether gdb controls the inferior in observer mode."), _("\
9300In observer mode, GDB can get data from the inferior, but not\n\
9301affect its execution. Registers and memory may not be changed,\n\
9302breakpoints may not be set, and the program cannot be interrupted\n\
9303or signalled."),
9304 set_observer_mode,
9305 show_observer_mode,
9306 &setlist,
9307 &showlist);
c906108c 9308}
This page took 2.956254 seconds and 4 git commands to generate.