gdb/
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0fb0cc75 6 2008, 2009 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
c906108c
SS
53
54/* Prototypes for local functions */
55
96baa820 56static void signals_info (char *, int);
c906108c 57
96baa820 58static void handle_command (char *, int);
c906108c 59
96baa820 60static void sig_print_info (enum target_signal);
c906108c 61
96baa820 62static void sig_print_header (void);
c906108c 63
74b7792f 64static void resume_cleanups (void *);
c906108c 65
96baa820 66static int hook_stop_stub (void *);
c906108c 67
96baa820
JM
68static int restore_selected_frame (void *);
69
70static void build_infrun (void);
71
4ef3f3be 72static int follow_fork (void);
96baa820
JM
73
74static void set_schedlock_func (char *args, int from_tty,
488f131b 75 struct cmd_list_element *c);
96baa820 76
4e1c45ea 77static int currently_stepping (struct thread_info *tp);
96baa820 78
b3444185
PA
79static int currently_stepping_or_nexting_callback (struct thread_info *tp,
80 void *data);
a7212384 81
96baa820
JM
82static void xdb_handle_command (char *args, int from_tty);
83
6a6b96b9 84static int prepare_to_proceed (int);
ea67f13b 85
96baa820 86void _initialize_infrun (void);
43ff13b4 87
e58b0e63
PA
88void nullify_last_target_wait_ptid (void);
89
5fbbeb29
CF
90/* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93int step_stop_if_no_debug = 0;
920d2a44
AC
94static void
95show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97{
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99}
5fbbeb29 100
43ff13b4 101/* In asynchronous mode, but simulating synchronous execution. */
96baa820 102
43ff13b4
JM
103int sync_execution = 0;
104
c906108c
SS
105/* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
96baa820
JM
107 running in. */
108
39f77062 109static ptid_t previous_inferior_ptid;
7a292a7a 110
237fc4c9
PA
111int debug_displaced = 0;
112static void
113show_debug_displaced (struct ui_file *file, int from_tty,
114 struct cmd_list_element *c, const char *value)
115{
116 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
117}
118
527159b7 119static int debug_infrun = 0;
920d2a44
AC
120static void
121show_debug_infrun (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c, const char *value)
123{
124 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
125}
527159b7 126
d4f3574e
SS
127/* If the program uses ELF-style shared libraries, then calls to
128 functions in shared libraries go through stubs, which live in a
129 table called the PLT (Procedure Linkage Table). The first time the
130 function is called, the stub sends control to the dynamic linker,
131 which looks up the function's real address, patches the stub so
132 that future calls will go directly to the function, and then passes
133 control to the function.
134
135 If we are stepping at the source level, we don't want to see any of
136 this --- we just want to skip over the stub and the dynamic linker.
137 The simple approach is to single-step until control leaves the
138 dynamic linker.
139
ca557f44
AC
140 However, on some systems (e.g., Red Hat's 5.2 distribution) the
141 dynamic linker calls functions in the shared C library, so you
142 can't tell from the PC alone whether the dynamic linker is still
143 running. In this case, we use a step-resume breakpoint to get us
144 past the dynamic linker, as if we were using "next" to step over a
145 function call.
d4f3574e 146
cfd8ab24 147 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
148 linker code or not. Normally, this means we single-step. However,
149 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
150 address where we can place a step-resume breakpoint to get past the
151 linker's symbol resolution function.
152
cfd8ab24 153 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
154 pretty portable way, by comparing the PC against the address ranges
155 of the dynamic linker's sections.
156
157 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
158 it depends on internal details of the dynamic linker. It's usually
159 not too hard to figure out where to put a breakpoint, but it
160 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
161 sanity checking. If it can't figure things out, returning zero and
162 getting the (possibly confusing) stepping behavior is better than
163 signalling an error, which will obscure the change in the
164 inferior's state. */
c906108c 165
c906108c
SS
166/* This function returns TRUE if pc is the address of an instruction
167 that lies within the dynamic linker (such as the event hook, or the
168 dld itself).
169
170 This function must be used only when a dynamic linker event has
171 been caught, and the inferior is being stepped out of the hook, or
172 undefined results are guaranteed. */
173
174#ifndef SOLIB_IN_DYNAMIC_LINKER
175#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
176#endif
177
c2c6d25f 178
7a292a7a
SS
179/* Convert the #defines into values. This is temporary until wfi control
180 flow is completely sorted out. */
181
692590c1
MS
182#ifndef CANNOT_STEP_HW_WATCHPOINTS
183#define CANNOT_STEP_HW_WATCHPOINTS 0
184#else
185#undef CANNOT_STEP_HW_WATCHPOINTS
186#define CANNOT_STEP_HW_WATCHPOINTS 1
187#endif
188
c906108c
SS
189/* Tables of how to react to signals; the user sets them. */
190
191static unsigned char *signal_stop;
192static unsigned char *signal_print;
193static unsigned char *signal_program;
194
195#define SET_SIGS(nsigs,sigs,flags) \
196 do { \
197 int signum = (nsigs); \
198 while (signum-- > 0) \
199 if ((sigs)[signum]) \
200 (flags)[signum] = 1; \
201 } while (0)
202
203#define UNSET_SIGS(nsigs,sigs,flags) \
204 do { \
205 int signum = (nsigs); \
206 while (signum-- > 0) \
207 if ((sigs)[signum]) \
208 (flags)[signum] = 0; \
209 } while (0)
210
39f77062
KB
211/* Value to pass to target_resume() to cause all threads to resume */
212
edb3359d 213#define RESUME_ALL minus_one_ptid
c906108c
SS
214
215/* Command list pointer for the "stop" placeholder. */
216
217static struct cmd_list_element *stop_command;
218
c906108c
SS
219/* Function inferior was in as of last step command. */
220
221static struct symbol *step_start_function;
222
c906108c
SS
223/* Nonzero if we want to give control to the user when we're notified
224 of shared library events by the dynamic linker. */
225static int stop_on_solib_events;
920d2a44
AC
226static void
227show_stop_on_solib_events (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229{
230 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
231 value);
232}
c906108c 233
c906108c
SS
234/* Nonzero means expecting a trace trap
235 and should stop the inferior and return silently when it happens. */
236
237int stop_after_trap;
238
642fd101
DE
239/* Save register contents here when executing a "finish" command or are
240 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
241 Thus this contains the return value from the called function (assuming
242 values are returned in a register). */
243
72cec141 244struct regcache *stop_registers;
c906108c 245
c906108c
SS
246/* Nonzero after stop if current stack frame should be printed. */
247
248static int stop_print_frame;
249
e02bc4cc 250/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
251 returned by target_wait()/deprecated_target_wait_hook(). This
252 information is returned by get_last_target_status(). */
39f77062 253static ptid_t target_last_wait_ptid;
e02bc4cc
DS
254static struct target_waitstatus target_last_waitstatus;
255
0d1e5fa7
PA
256static void context_switch (ptid_t ptid);
257
4e1c45ea 258void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
259
260void init_infwait_state (void);
a474d7c2 261
53904c9e
AC
262static const char follow_fork_mode_child[] = "child";
263static const char follow_fork_mode_parent[] = "parent";
264
488f131b 265static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
266 follow_fork_mode_child,
267 follow_fork_mode_parent,
268 NULL
ef346e04 269};
c906108c 270
53904c9e 271static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
272static void
273show_follow_fork_mode_string (struct ui_file *file, int from_tty,
274 struct cmd_list_element *c, const char *value)
275{
276 fprintf_filtered (file, _("\
277Debugger response to a program call of fork or vfork is \"%s\".\n"),
278 value);
279}
c906108c
SS
280\f
281
e58b0e63
PA
282/* Tell the target to follow the fork we're stopped at. Returns true
283 if the inferior should be resumed; false, if the target for some
284 reason decided it's best not to resume. */
285
6604731b 286static int
4ef3f3be 287follow_fork (void)
c906108c 288{
ea1dd7bc 289 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
290 int should_resume = 1;
291 struct thread_info *tp;
292
293 /* Copy user stepping state to the new inferior thread. FIXME: the
294 followed fork child thread should have a copy of most of the
4e3990f4
DE
295 parent thread structure's run control related fields, not just these.
296 Initialized to avoid "may be used uninitialized" warnings from gcc. */
297 struct breakpoint *step_resume_breakpoint = NULL;
298 CORE_ADDR step_range_start = 0;
299 CORE_ADDR step_range_end = 0;
300 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
301
302 if (!non_stop)
303 {
304 ptid_t wait_ptid;
305 struct target_waitstatus wait_status;
306
307 /* Get the last target status returned by target_wait(). */
308 get_last_target_status (&wait_ptid, &wait_status);
309
310 /* If not stopped at a fork event, then there's nothing else to
311 do. */
312 if (wait_status.kind != TARGET_WAITKIND_FORKED
313 && wait_status.kind != TARGET_WAITKIND_VFORKED)
314 return 1;
315
316 /* Check if we switched over from WAIT_PTID, since the event was
317 reported. */
318 if (!ptid_equal (wait_ptid, minus_one_ptid)
319 && !ptid_equal (inferior_ptid, wait_ptid))
320 {
321 /* We did. Switch back to WAIT_PTID thread, to tell the
322 target to follow it (in either direction). We'll
323 afterwards refuse to resume, and inform the user what
324 happened. */
325 switch_to_thread (wait_ptid);
326 should_resume = 0;
327 }
328 }
329
330 tp = inferior_thread ();
331
332 /* If there were any forks/vforks that were caught and are now to be
333 followed, then do so now. */
334 switch (tp->pending_follow.kind)
335 {
336 case TARGET_WAITKIND_FORKED:
337 case TARGET_WAITKIND_VFORKED:
338 {
339 ptid_t parent, child;
340
341 /* If the user did a next/step, etc, over a fork call,
342 preserve the stepping state in the fork child. */
343 if (follow_child && should_resume)
344 {
345 step_resume_breakpoint
346 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
347 step_range_start = tp->step_range_start;
348 step_range_end = tp->step_range_end;
349 step_frame_id = tp->step_frame_id;
350
351 /* For now, delete the parent's sr breakpoint, otherwise,
352 parent/child sr breakpoints are considered duplicates,
353 and the child version will not be installed. Remove
354 this when the breakpoints module becomes aware of
355 inferiors and address spaces. */
356 delete_step_resume_breakpoint (tp);
357 tp->step_range_start = 0;
358 tp->step_range_end = 0;
359 tp->step_frame_id = null_frame_id;
360 }
361
362 parent = inferior_ptid;
363 child = tp->pending_follow.value.related_pid;
364
365 /* Tell the target to do whatever is necessary to follow
366 either parent or child. */
367 if (target_follow_fork (follow_child))
368 {
369 /* Target refused to follow, or there's some other reason
370 we shouldn't resume. */
371 should_resume = 0;
372 }
373 else
374 {
375 /* This pending follow fork event is now handled, one way
376 or another. The previous selected thread may be gone
377 from the lists by now, but if it is still around, need
378 to clear the pending follow request. */
e09875d4 379 tp = find_thread_ptid (parent);
e58b0e63
PA
380 if (tp)
381 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
382
383 /* This makes sure we don't try to apply the "Switched
384 over from WAIT_PID" logic above. */
385 nullify_last_target_wait_ptid ();
386
387 /* If we followed the child, switch to it... */
388 if (follow_child)
389 {
390 switch_to_thread (child);
391
392 /* ... and preserve the stepping state, in case the
393 user was stepping over the fork call. */
394 if (should_resume)
395 {
396 tp = inferior_thread ();
397 tp->step_resume_breakpoint = step_resume_breakpoint;
398 tp->step_range_start = step_range_start;
399 tp->step_range_end = step_range_end;
400 tp->step_frame_id = step_frame_id;
401 }
402 else
403 {
404 /* If we get here, it was because we're trying to
405 resume from a fork catchpoint, but, the user
406 has switched threads away from the thread that
407 forked. In that case, the resume command
408 issued is most likely not applicable to the
409 child, so just warn, and refuse to resume. */
410 warning (_("\
411Not resuming: switched threads before following fork child.\n"));
412 }
413
414 /* Reset breakpoints in the child as appropriate. */
415 follow_inferior_reset_breakpoints ();
416 }
417 else
418 switch_to_thread (parent);
419 }
420 }
421 break;
422 case TARGET_WAITKIND_SPURIOUS:
423 /* Nothing to follow. */
424 break;
425 default:
426 internal_error (__FILE__, __LINE__,
427 "Unexpected pending_follow.kind %d\n",
428 tp->pending_follow.kind);
429 break;
430 }
c906108c 431
e58b0e63 432 return should_resume;
c906108c
SS
433}
434
6604731b
DJ
435void
436follow_inferior_reset_breakpoints (void)
c906108c 437{
4e1c45ea
PA
438 struct thread_info *tp = inferior_thread ();
439
6604731b
DJ
440 /* Was there a step_resume breakpoint? (There was if the user
441 did a "next" at the fork() call.) If so, explicitly reset its
442 thread number.
443
444 step_resumes are a form of bp that are made to be per-thread.
445 Since we created the step_resume bp when the parent process
446 was being debugged, and now are switching to the child process,
447 from the breakpoint package's viewpoint, that's a switch of
448 "threads". We must update the bp's notion of which thread
449 it is for, or it'll be ignored when it triggers. */
450
4e1c45ea
PA
451 if (tp->step_resume_breakpoint)
452 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
453
454 /* Reinsert all breakpoints in the child. The user may have set
455 breakpoints after catching the fork, in which case those
456 were never set in the child, but only in the parent. This makes
457 sure the inserted breakpoints match the breakpoint list. */
458
459 breakpoint_re_set ();
460 insert_breakpoints ();
c906108c 461}
c906108c 462
1adeb98a
FN
463/* EXECD_PATHNAME is assumed to be non-NULL. */
464
c906108c 465static void
3a3e9ee3 466follow_exec (ptid_t pid, char *execd_pathname)
c906108c 467{
7a292a7a 468 struct target_ops *tgt;
4e1c45ea 469 struct thread_info *th = inferior_thread ();
7a292a7a 470
c906108c
SS
471 /* This is an exec event that we actually wish to pay attention to.
472 Refresh our symbol table to the newly exec'd program, remove any
473 momentary bp's, etc.
474
475 If there are breakpoints, they aren't really inserted now,
476 since the exec() transformed our inferior into a fresh set
477 of instructions.
478
479 We want to preserve symbolic breakpoints on the list, since
480 we have hopes that they can be reset after the new a.out's
481 symbol table is read.
482
483 However, any "raw" breakpoints must be removed from the list
484 (e.g., the solib bp's), since their address is probably invalid
485 now.
486
487 And, we DON'T want to call delete_breakpoints() here, since
488 that may write the bp's "shadow contents" (the instruction
489 value that was overwritten witha TRAP instruction). Since
490 we now have a new a.out, those shadow contents aren't valid. */
491 update_breakpoints_after_exec ();
492
493 /* If there was one, it's gone now. We cannot truly step-to-next
494 statement through an exec(). */
4e1c45ea
PA
495 th->step_resume_breakpoint = NULL;
496 th->step_range_start = 0;
497 th->step_range_end = 0;
c906108c 498
a75724bc
PA
499 /* The target reports the exec event to the main thread, even if
500 some other thread does the exec, and even if the main thread was
501 already stopped --- if debugging in non-stop mode, it's possible
502 the user had the main thread held stopped in the previous image
503 --- release it now. This is the same behavior as step-over-exec
504 with scheduler-locking on in all-stop mode. */
505 th->stop_requested = 0;
506
c906108c 507 /* What is this a.out's name? */
a3f17187 508 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
509
510 /* We've followed the inferior through an exec. Therefore, the
511 inferior has essentially been killed & reborn. */
7a292a7a 512
c906108c 513 gdb_flush (gdb_stdout);
6ca15a4b
PA
514
515 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
516
517 if (gdb_sysroot && *gdb_sysroot)
518 {
519 char *name = alloca (strlen (gdb_sysroot)
520 + strlen (execd_pathname)
521 + 1);
522 strcpy (name, gdb_sysroot);
523 strcat (name, execd_pathname);
524 execd_pathname = name;
525 }
c906108c
SS
526
527 /* That a.out is now the one to use. */
528 exec_file_attach (execd_pathname, 0);
529
cce9b6bf
PA
530 /* Reset the shared library package. This ensures that we get a
531 shlib event when the child reaches "_start", at which point the
532 dld will have had a chance to initialize the child. */
533 /* Also, loading a symbol file below may trigger symbol lookups, and
534 we don't want those to be satisfied by the libraries of the
535 previous incarnation of this process. */
536 no_shared_libraries (NULL, 0);
537
538 /* Load the main file's symbols. */
1adeb98a 539 symbol_file_add_main (execd_pathname, 0);
c906108c 540
7a292a7a 541#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 542 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
543#else
544 solib_create_inferior_hook ();
7a292a7a 545#endif
c906108c
SS
546
547 /* Reinsert all breakpoints. (Those which were symbolic have
548 been reset to the proper address in the new a.out, thanks
549 to symbol_file_command...) */
550 insert_breakpoints ();
551
552 /* The next resume of this inferior should bring it to the shlib
553 startup breakpoints. (If the user had also set bp's on
554 "main" from the old (parent) process, then they'll auto-
555 matically get reset there in the new process.) */
c906108c
SS
556}
557
558/* Non-zero if we just simulating a single-step. This is needed
559 because we cannot remove the breakpoints in the inferior process
560 until after the `wait' in `wait_for_inferior'. */
561static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
562
563/* The thread we inserted single-step breakpoints for. */
564static ptid_t singlestep_ptid;
565
fd48f117
DJ
566/* PC when we started this single-step. */
567static CORE_ADDR singlestep_pc;
568
9f976b41
DJ
569/* If another thread hit the singlestep breakpoint, we save the original
570 thread here so that we can resume single-stepping it later. */
571static ptid_t saved_singlestep_ptid;
572static int stepping_past_singlestep_breakpoint;
6a6b96b9 573
ca67fcb8
VP
574/* If not equal to null_ptid, this means that after stepping over breakpoint
575 is finished, we need to switch to deferred_step_ptid, and step it.
576
577 The use case is when one thread has hit a breakpoint, and then the user
578 has switched to another thread and issued 'step'. We need to step over
579 breakpoint in the thread which hit the breakpoint, but then continue
580 stepping the thread user has selected. */
581static ptid_t deferred_step_ptid;
c906108c 582\f
237fc4c9
PA
583/* Displaced stepping. */
584
585/* In non-stop debugging mode, we must take special care to manage
586 breakpoints properly; in particular, the traditional strategy for
587 stepping a thread past a breakpoint it has hit is unsuitable.
588 'Displaced stepping' is a tactic for stepping one thread past a
589 breakpoint it has hit while ensuring that other threads running
590 concurrently will hit the breakpoint as they should.
591
592 The traditional way to step a thread T off a breakpoint in a
593 multi-threaded program in all-stop mode is as follows:
594
595 a0) Initially, all threads are stopped, and breakpoints are not
596 inserted.
597 a1) We single-step T, leaving breakpoints uninserted.
598 a2) We insert breakpoints, and resume all threads.
599
600 In non-stop debugging, however, this strategy is unsuitable: we
601 don't want to have to stop all threads in the system in order to
602 continue or step T past a breakpoint. Instead, we use displaced
603 stepping:
604
605 n0) Initially, T is stopped, other threads are running, and
606 breakpoints are inserted.
607 n1) We copy the instruction "under" the breakpoint to a separate
608 location, outside the main code stream, making any adjustments
609 to the instruction, register, and memory state as directed by
610 T's architecture.
611 n2) We single-step T over the instruction at its new location.
612 n3) We adjust the resulting register and memory state as directed
613 by T's architecture. This includes resetting T's PC to point
614 back into the main instruction stream.
615 n4) We resume T.
616
617 This approach depends on the following gdbarch methods:
618
619 - gdbarch_max_insn_length and gdbarch_displaced_step_location
620 indicate where to copy the instruction, and how much space must
621 be reserved there. We use these in step n1.
622
623 - gdbarch_displaced_step_copy_insn copies a instruction to a new
624 address, and makes any necessary adjustments to the instruction,
625 register contents, and memory. We use this in step n1.
626
627 - gdbarch_displaced_step_fixup adjusts registers and memory after
628 we have successfuly single-stepped the instruction, to yield the
629 same effect the instruction would have had if we had executed it
630 at its original address. We use this in step n3.
631
632 - gdbarch_displaced_step_free_closure provides cleanup.
633
634 The gdbarch_displaced_step_copy_insn and
635 gdbarch_displaced_step_fixup functions must be written so that
636 copying an instruction with gdbarch_displaced_step_copy_insn,
637 single-stepping across the copied instruction, and then applying
638 gdbarch_displaced_insn_fixup should have the same effects on the
639 thread's memory and registers as stepping the instruction in place
640 would have. Exactly which responsibilities fall to the copy and
641 which fall to the fixup is up to the author of those functions.
642
643 See the comments in gdbarch.sh for details.
644
645 Note that displaced stepping and software single-step cannot
646 currently be used in combination, although with some care I think
647 they could be made to. Software single-step works by placing
648 breakpoints on all possible subsequent instructions; if the
649 displaced instruction is a PC-relative jump, those breakpoints
650 could fall in very strange places --- on pages that aren't
651 executable, or at addresses that are not proper instruction
652 boundaries. (We do generally let other threads run while we wait
653 to hit the software single-step breakpoint, and they might
654 encounter such a corrupted instruction.) One way to work around
655 this would be to have gdbarch_displaced_step_copy_insn fully
656 simulate the effect of PC-relative instructions (and return NULL)
657 on architectures that use software single-stepping.
658
659 In non-stop mode, we can have independent and simultaneous step
660 requests, so more than one thread may need to simultaneously step
661 over a breakpoint. The current implementation assumes there is
662 only one scratch space per process. In this case, we have to
663 serialize access to the scratch space. If thread A wants to step
664 over a breakpoint, but we are currently waiting for some other
665 thread to complete a displaced step, we leave thread A stopped and
666 place it in the displaced_step_request_queue. Whenever a displaced
667 step finishes, we pick the next thread in the queue and start a new
668 displaced step operation on it. See displaced_step_prepare and
669 displaced_step_fixup for details. */
670
671/* If this is not null_ptid, this is the thread carrying out a
672 displaced single-step. This thread's state will require fixing up
673 once it has completed its step. */
674static ptid_t displaced_step_ptid;
675
676struct displaced_step_request
677{
678 ptid_t ptid;
679 struct displaced_step_request *next;
680};
681
682/* A queue of pending displaced stepping requests. */
683struct displaced_step_request *displaced_step_request_queue;
684
685/* The architecture the thread had when we stepped it. */
686static struct gdbarch *displaced_step_gdbarch;
687
688/* The closure provided gdbarch_displaced_step_copy_insn, to be used
689 for post-step cleanup. */
690static struct displaced_step_closure *displaced_step_closure;
691
692/* The address of the original instruction, and the copy we made. */
693static CORE_ADDR displaced_step_original, displaced_step_copy;
694
695/* Saved contents of copy area. */
696static gdb_byte *displaced_step_saved_copy;
697
fff08868
HZ
698/* Enum strings for "set|show displaced-stepping". */
699
700static const char can_use_displaced_stepping_auto[] = "auto";
701static const char can_use_displaced_stepping_on[] = "on";
702static const char can_use_displaced_stepping_off[] = "off";
703static const char *can_use_displaced_stepping_enum[] =
704{
705 can_use_displaced_stepping_auto,
706 can_use_displaced_stepping_on,
707 can_use_displaced_stepping_off,
708 NULL,
709};
710
711/* If ON, and the architecture supports it, GDB will use displaced
712 stepping to step over breakpoints. If OFF, or if the architecture
713 doesn't support it, GDB will instead use the traditional
714 hold-and-step approach. If AUTO (which is the default), GDB will
715 decide which technique to use to step over breakpoints depending on
716 which of all-stop or non-stop mode is active --- displaced stepping
717 in non-stop mode; hold-and-step in all-stop mode. */
718
719static const char *can_use_displaced_stepping =
720 can_use_displaced_stepping_auto;
721
237fc4c9
PA
722static void
723show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
724 struct cmd_list_element *c,
725 const char *value)
726{
fff08868
HZ
727 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
728 fprintf_filtered (file, _("\
729Debugger's willingness to use displaced stepping to step over \
730breakpoints is %s (currently %s).\n"),
731 value, non_stop ? "on" : "off");
732 else
733 fprintf_filtered (file, _("\
734Debugger's willingness to use displaced stepping to step over \
735breakpoints is %s.\n"), value);
237fc4c9
PA
736}
737
fff08868
HZ
738/* Return non-zero if displaced stepping can/should be used to step
739 over breakpoints. */
740
237fc4c9
PA
741static int
742use_displaced_stepping (struct gdbarch *gdbarch)
743{
fff08868
HZ
744 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
745 && non_stop)
746 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
747 && gdbarch_displaced_step_copy_insn_p (gdbarch)
748 && !RECORD_IS_USED);
237fc4c9
PA
749}
750
751/* Clean out any stray displaced stepping state. */
752static void
753displaced_step_clear (void)
754{
755 /* Indicate that there is no cleanup pending. */
756 displaced_step_ptid = null_ptid;
757
758 if (displaced_step_closure)
759 {
760 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
761 displaced_step_closure);
762 displaced_step_closure = NULL;
763 }
764}
765
766static void
9f5a595d 767displaced_step_clear_cleanup (void *ignore)
237fc4c9 768{
9f5a595d 769 displaced_step_clear ();
237fc4c9
PA
770}
771
772/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
773void
774displaced_step_dump_bytes (struct ui_file *file,
775 const gdb_byte *buf,
776 size_t len)
777{
778 int i;
779
780 for (i = 0; i < len; i++)
781 fprintf_unfiltered (file, "%02x ", buf[i]);
782 fputs_unfiltered ("\n", file);
783}
784
785/* Prepare to single-step, using displaced stepping.
786
787 Note that we cannot use displaced stepping when we have a signal to
788 deliver. If we have a signal to deliver and an instruction to step
789 over, then after the step, there will be no indication from the
790 target whether the thread entered a signal handler or ignored the
791 signal and stepped over the instruction successfully --- both cases
792 result in a simple SIGTRAP. In the first case we mustn't do a
793 fixup, and in the second case we must --- but we can't tell which.
794 Comments in the code for 'random signals' in handle_inferior_event
795 explain how we handle this case instead.
796
797 Returns 1 if preparing was successful -- this thread is going to be
798 stepped now; or 0 if displaced stepping this thread got queued. */
799static int
800displaced_step_prepare (ptid_t ptid)
801{
ad53cd71 802 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
803 struct regcache *regcache = get_thread_regcache (ptid);
804 struct gdbarch *gdbarch = get_regcache_arch (regcache);
805 CORE_ADDR original, copy;
806 ULONGEST len;
807 struct displaced_step_closure *closure;
808
809 /* We should never reach this function if the architecture does not
810 support displaced stepping. */
811 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
812
813 /* For the first cut, we're displaced stepping one thread at a
814 time. */
815
816 if (!ptid_equal (displaced_step_ptid, null_ptid))
817 {
818 /* Already waiting for a displaced step to finish. Defer this
819 request and place in queue. */
820 struct displaced_step_request *req, *new_req;
821
822 if (debug_displaced)
823 fprintf_unfiltered (gdb_stdlog,
824 "displaced: defering step of %s\n",
825 target_pid_to_str (ptid));
826
827 new_req = xmalloc (sizeof (*new_req));
828 new_req->ptid = ptid;
829 new_req->next = NULL;
830
831 if (displaced_step_request_queue)
832 {
833 for (req = displaced_step_request_queue;
834 req && req->next;
835 req = req->next)
836 ;
837 req->next = new_req;
838 }
839 else
840 displaced_step_request_queue = new_req;
841
842 return 0;
843 }
844 else
845 {
846 if (debug_displaced)
847 fprintf_unfiltered (gdb_stdlog,
848 "displaced: stepping %s now\n",
849 target_pid_to_str (ptid));
850 }
851
852 displaced_step_clear ();
853
ad53cd71
PA
854 old_cleanups = save_inferior_ptid ();
855 inferior_ptid = ptid;
856
515630c5 857 original = regcache_read_pc (regcache);
237fc4c9
PA
858
859 copy = gdbarch_displaced_step_location (gdbarch);
860 len = gdbarch_max_insn_length (gdbarch);
861
862 /* Save the original contents of the copy area. */
863 displaced_step_saved_copy = xmalloc (len);
ad53cd71
PA
864 ignore_cleanups = make_cleanup (free_current_contents,
865 &displaced_step_saved_copy);
237fc4c9
PA
866 read_memory (copy, displaced_step_saved_copy, len);
867 if (debug_displaced)
868 {
5af949e3
UW
869 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
870 paddress (gdbarch, copy));
237fc4c9
PA
871 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
872 };
873
874 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 875 original, copy, regcache);
237fc4c9
PA
876
877 /* We don't support the fully-simulated case at present. */
878 gdb_assert (closure);
879
9f5a595d
UW
880 /* Save the information we need to fix things up if the step
881 succeeds. */
882 displaced_step_ptid = ptid;
883 displaced_step_gdbarch = gdbarch;
884 displaced_step_closure = closure;
885 displaced_step_original = original;
886 displaced_step_copy = copy;
887
888 make_cleanup (displaced_step_clear_cleanup, 0);
237fc4c9
PA
889
890 /* Resume execution at the copy. */
515630c5 891 regcache_write_pc (regcache, copy);
237fc4c9 892
ad53cd71
PA
893 discard_cleanups (ignore_cleanups);
894
895 do_cleanups (old_cleanups);
237fc4c9
PA
896
897 if (debug_displaced)
5af949e3
UW
898 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
899 paddress (gdbarch, copy));
237fc4c9 900
237fc4c9
PA
901 return 1;
902}
903
237fc4c9
PA
904static void
905write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
906{
907 struct cleanup *ptid_cleanup = save_inferior_ptid ();
908 inferior_ptid = ptid;
909 write_memory (memaddr, myaddr, len);
910 do_cleanups (ptid_cleanup);
911}
912
913static void
914displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
915{
916 struct cleanup *old_cleanups;
917
918 /* Was this event for the pid we displaced? */
919 if (ptid_equal (displaced_step_ptid, null_ptid)
920 || ! ptid_equal (displaced_step_ptid, event_ptid))
921 return;
922
923 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
924
925 /* Restore the contents of the copy area. */
926 {
927 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
928 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
929 displaced_step_saved_copy, len);
930 if (debug_displaced)
5af949e3
UW
931 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
932 paddress (displaced_step_gdbarch,
933 displaced_step_copy));
237fc4c9
PA
934 }
935
936 /* Did the instruction complete successfully? */
937 if (signal == TARGET_SIGNAL_TRAP)
938 {
939 /* Fix up the resulting state. */
940 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
941 displaced_step_closure,
942 displaced_step_original,
943 displaced_step_copy,
944 get_thread_regcache (displaced_step_ptid));
945 }
946 else
947 {
948 /* Since the instruction didn't complete, all we can do is
949 relocate the PC. */
515630c5
UW
950 struct regcache *regcache = get_thread_regcache (event_ptid);
951 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 952 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 953 regcache_write_pc (regcache, pc);
237fc4c9
PA
954 }
955
956 do_cleanups (old_cleanups);
957
1c5cfe86
PA
958 displaced_step_ptid = null_ptid;
959
237fc4c9
PA
960 /* Are there any pending displaced stepping requests? If so, run
961 one now. */
1c5cfe86 962 while (displaced_step_request_queue)
237fc4c9
PA
963 {
964 struct displaced_step_request *head;
965 ptid_t ptid;
5af949e3 966 struct regcache *regcache;
1c5cfe86 967 CORE_ADDR actual_pc;
237fc4c9
PA
968
969 head = displaced_step_request_queue;
970 ptid = head->ptid;
971 displaced_step_request_queue = head->next;
972 xfree (head);
973
ad53cd71
PA
974 context_switch (ptid);
975
5af949e3
UW
976 regcache = get_thread_regcache (ptid);
977 actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
978
979 if (breakpoint_here_p (actual_pc))
ad53cd71 980 {
1c5cfe86
PA
981 if (debug_displaced)
982 fprintf_unfiltered (gdb_stdlog,
983 "displaced: stepping queued %s now\n",
984 target_pid_to_str (ptid));
985
986 displaced_step_prepare (ptid);
987
988 if (debug_displaced)
989 {
5af949e3 990 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1c5cfe86
PA
991 gdb_byte buf[4];
992
5af949e3
UW
993 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
994 paddress (gdbarch, actual_pc));
1c5cfe86
PA
995 read_memory (actual_pc, buf, sizeof (buf));
996 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
997 }
998
999 target_resume (ptid, 1, TARGET_SIGNAL_0);
1000
1001 /* Done, we're stepping a thread. */
1002 break;
ad53cd71 1003 }
1c5cfe86
PA
1004 else
1005 {
1006 int step;
1007 struct thread_info *tp = inferior_thread ();
1008
1009 /* The breakpoint we were sitting under has since been
1010 removed. */
1011 tp->trap_expected = 0;
1012
1013 /* Go back to what we were trying to do. */
1014 step = currently_stepping (tp);
ad53cd71 1015
1c5cfe86
PA
1016 if (debug_displaced)
1017 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1018 target_pid_to_str (tp->ptid), step);
1019
1020 target_resume (ptid, step, TARGET_SIGNAL_0);
1021 tp->stop_signal = TARGET_SIGNAL_0;
1022
1023 /* This request was discarded. See if there's any other
1024 thread waiting for its turn. */
1025 }
237fc4c9
PA
1026 }
1027}
1028
5231c1fd
PA
1029/* Update global variables holding ptids to hold NEW_PTID if they were
1030 holding OLD_PTID. */
1031static void
1032infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1033{
1034 struct displaced_step_request *it;
1035
1036 if (ptid_equal (inferior_ptid, old_ptid))
1037 inferior_ptid = new_ptid;
1038
1039 if (ptid_equal (singlestep_ptid, old_ptid))
1040 singlestep_ptid = new_ptid;
1041
1042 if (ptid_equal (displaced_step_ptid, old_ptid))
1043 displaced_step_ptid = new_ptid;
1044
1045 if (ptid_equal (deferred_step_ptid, old_ptid))
1046 deferred_step_ptid = new_ptid;
1047
1048 for (it = displaced_step_request_queue; it; it = it->next)
1049 if (ptid_equal (it->ptid, old_ptid))
1050 it->ptid = new_ptid;
1051}
1052
237fc4c9
PA
1053\f
1054/* Resuming. */
c906108c
SS
1055
1056/* Things to clean up if we QUIT out of resume (). */
c906108c 1057static void
74b7792f 1058resume_cleanups (void *ignore)
c906108c
SS
1059{
1060 normal_stop ();
1061}
1062
53904c9e
AC
1063static const char schedlock_off[] = "off";
1064static const char schedlock_on[] = "on";
1065static const char schedlock_step[] = "step";
488f131b 1066static const char *scheduler_enums[] = {
ef346e04
AC
1067 schedlock_off,
1068 schedlock_on,
1069 schedlock_step,
1070 NULL
1071};
920d2a44
AC
1072static const char *scheduler_mode = schedlock_off;
1073static void
1074show_scheduler_mode (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076{
1077 fprintf_filtered (file, _("\
1078Mode for locking scheduler during execution is \"%s\".\n"),
1079 value);
1080}
c906108c
SS
1081
1082static void
96baa820 1083set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1084{
eefe576e
AC
1085 if (!target_can_lock_scheduler)
1086 {
1087 scheduler_mode = schedlock_off;
1088 error (_("Target '%s' cannot support this command."), target_shortname);
1089 }
c906108c
SS
1090}
1091
d4db2f36
PA
1092/* True if execution commands resume all threads of all processes by
1093 default; otherwise, resume only threads of the current inferior
1094 process. */
1095int sched_multi = 0;
1096
2facfe5c
DD
1097/* Try to setup for software single stepping over the specified location.
1098 Return 1 if target_resume() should use hardware single step.
1099
1100 GDBARCH the current gdbarch.
1101 PC the location to step over. */
1102
1103static int
1104maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1105{
1106 int hw_step = 1;
1107
1108 if (gdbarch_software_single_step_p (gdbarch)
1109 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1110 {
1111 hw_step = 0;
1112 /* Do not pull these breakpoints until after a `wait' in
1113 `wait_for_inferior' */
1114 singlestep_breakpoints_inserted_p = 1;
1115 singlestep_ptid = inferior_ptid;
1116 singlestep_pc = pc;
1117 }
1118 return hw_step;
1119}
c906108c
SS
1120
1121/* Resume the inferior, but allow a QUIT. This is useful if the user
1122 wants to interrupt some lengthy single-stepping operation
1123 (for child processes, the SIGINT goes to the inferior, and so
1124 we get a SIGINT random_signal, but for remote debugging and perhaps
1125 other targets, that's not true).
1126
1127 STEP nonzero if we should step (zero to continue instead).
1128 SIG is the signal to give the inferior (zero for none). */
1129void
96baa820 1130resume (int step, enum target_signal sig)
c906108c
SS
1131{
1132 int should_resume = 1;
74b7792f 1133 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1134 struct regcache *regcache = get_current_regcache ();
1135 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1136 struct thread_info *tp = inferior_thread ();
515630c5 1137 CORE_ADDR pc = regcache_read_pc (regcache);
c7e8a53c 1138
c906108c
SS
1139 QUIT;
1140
527159b7 1141 if (debug_infrun)
237fc4c9
PA
1142 fprintf_unfiltered (gdb_stdlog,
1143 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
1144 "trap_expected=%d\n",
1145 step, sig, tp->trap_expected);
c906108c 1146
692590c1
MS
1147 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1148 over an instruction that causes a page fault without triggering
1149 a hardware watchpoint. The kernel properly notices that it shouldn't
1150 stop, because the hardware watchpoint is not triggered, but it forgets
1151 the step request and continues the program normally.
1152 Work around the problem by removing hardware watchpoints if a step is
1153 requested, GDB will check for a hardware watchpoint trigger after the
1154 step anyway. */
c36b740a 1155 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 1156 remove_hw_watchpoints ();
488f131b 1157
692590c1 1158
c2c6d25f
JM
1159 /* Normally, by the time we reach `resume', the breakpoints are either
1160 removed or inserted, as appropriate. The exception is if we're sitting
1161 at a permanent breakpoint; we need to step over it, but permanent
1162 breakpoints can't be removed. So we have to test for it here. */
237fc4c9 1163 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
6d350bb5 1164 {
515630c5
UW
1165 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1166 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
1167 else
1168 error (_("\
1169The program is stopped at a permanent breakpoint, but GDB does not know\n\
1170how to step past a permanent breakpoint on this architecture. Try using\n\
1171a command like `return' or `jump' to continue execution."));
1172 }
c2c6d25f 1173
237fc4c9
PA
1174 /* If enabled, step over breakpoints by executing a copy of the
1175 instruction at a different address.
1176
1177 We can't use displaced stepping when we have a signal to deliver;
1178 the comments for displaced_step_prepare explain why. The
1179 comments in the handle_inferior event for dealing with 'random
1180 signals' explain what we do instead. */
515630c5 1181 if (use_displaced_stepping (gdbarch)
4e1c45ea 1182 && tp->trap_expected
237fc4c9
PA
1183 && sig == TARGET_SIGNAL_0)
1184 {
1185 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1186 {
1187 /* Got placed in displaced stepping queue. Will be resumed
1188 later when all the currently queued displaced stepping
7f7efbd9
VP
1189 requests finish. The thread is not executing at this point,
1190 and the call to set_executing will be made later. But we
1191 need to call set_running here, since from frontend point of view,
1192 the thread is running. */
1193 set_running (inferior_ptid, 1);
d56b7306
VP
1194 discard_cleanups (old_cleanups);
1195 return;
1196 }
237fc4c9
PA
1197 }
1198
2facfe5c
DD
1199 /* Do we need to do it the hard way, w/temp breakpoints? */
1200 if (step)
1201 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1202
c906108c
SS
1203 if (should_resume)
1204 {
39f77062 1205 ptid_t resume_ptid;
dfcd3bfb 1206
cd76b0b7
VP
1207 /* If STEP is set, it's a request to use hardware stepping
1208 facilities. But in that case, we should never
1209 use singlestep breakpoint. */
1210 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1211
d4db2f36
PA
1212 /* Decide the set of threads to ask the target to resume. Start
1213 by assuming everything will be resumed, than narrow the set
1214 by applying increasingly restricting conditions. */
1215
1216 /* By default, resume all threads of all processes. */
1217 resume_ptid = RESUME_ALL;
1218
1219 /* Maybe resume only all threads of the current process. */
1220 if (!sched_multi && target_supports_multi_process ())
1221 {
1222 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1223 }
1224
1225 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1226 if (singlestep_breakpoints_inserted_p
1227 && stepping_past_singlestep_breakpoint)
c906108c 1228 {
cd76b0b7
VP
1229 /* The situation here is as follows. In thread T1 we wanted to
1230 single-step. Lacking hardware single-stepping we've
1231 set breakpoint at the PC of the next instruction -- call it
1232 P. After resuming, we've hit that breakpoint in thread T2.
1233 Now we've removed original breakpoint, inserted breakpoint
1234 at P+1, and try to step to advance T2 past breakpoint.
1235 We need to step only T2, as if T1 is allowed to freely run,
1236 it can run past P, and if other threads are allowed to run,
1237 they can hit breakpoint at P+1, and nested hits of single-step
1238 breakpoints is not something we'd want -- that's complicated
1239 to support, and has no value. */
1240 resume_ptid = inferior_ptid;
1241 }
d4db2f36
PA
1242 else if ((step || singlestep_breakpoints_inserted_p)
1243 && tp->trap_expected)
cd76b0b7 1244 {
74960c60
VP
1245 /* We're allowing a thread to run past a breakpoint it has
1246 hit, by single-stepping the thread with the breakpoint
1247 removed. In which case, we need to single-step only this
1248 thread, and keep others stopped, as they can miss this
1249 breakpoint if allowed to run.
1250
1251 The current code actually removes all breakpoints when
1252 doing this, not just the one being stepped over, so if we
1253 let other threads run, we can actually miss any
1254 breakpoint, not just the one at PC. */
ef5cf84e 1255 resume_ptid = inferior_ptid;
c906108c 1256 }
d4db2f36 1257 else if (non_stop)
94cc34af
PA
1258 {
1259 /* With non-stop mode on, threads are always handled
1260 individually. */
1261 resume_ptid = inferior_ptid;
1262 }
1263 else if ((scheduler_mode == schedlock_on)
1264 || (scheduler_mode == schedlock_step
1265 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1266 {
ef5cf84e 1267 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1268 resume_ptid = inferior_ptid;
c906108c 1269 }
ef5cf84e 1270
515630c5 1271 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1272 {
1273 /* Most targets can step a breakpoint instruction, thus
1274 executing it normally. But if this one cannot, just
1275 continue and we will hit it anyway. */
237fc4c9 1276 if (step && breakpoint_inserted_here_p (pc))
c4ed33b9
AC
1277 step = 0;
1278 }
237fc4c9
PA
1279
1280 if (debug_displaced
515630c5 1281 && use_displaced_stepping (gdbarch)
4e1c45ea 1282 && tp->trap_expected)
237fc4c9 1283 {
515630c5 1284 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1285 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1286 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1287 gdb_byte buf[4];
1288
5af949e3
UW
1289 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1290 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1291 read_memory (actual_pc, buf, sizeof (buf));
1292 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1293 }
1294
e58b0e63
PA
1295 /* Install inferior's terminal modes. */
1296 target_terminal_inferior ();
1297
2020b7ab
PA
1298 /* Avoid confusing the next resume, if the next stop/resume
1299 happens to apply to another thread. */
1300 tp->stop_signal = TARGET_SIGNAL_0;
607cecd2
PA
1301
1302 target_resume (resume_ptid, step, sig);
c906108c
SS
1303 }
1304
1305 discard_cleanups (old_cleanups);
1306}
1307\f
237fc4c9 1308/* Proceeding. */
c906108c
SS
1309
1310/* Clear out all variables saying what to do when inferior is continued.
1311 First do this, then set the ones you want, then call `proceed'. */
1312
a7212384
UW
1313static void
1314clear_proceed_status_thread (struct thread_info *tp)
c906108c 1315{
a7212384
UW
1316 if (debug_infrun)
1317 fprintf_unfiltered (gdb_stdlog,
1318 "infrun: clear_proceed_status_thread (%s)\n",
1319 target_pid_to_str (tp->ptid));
d6b48e9c 1320
a7212384
UW
1321 tp->trap_expected = 0;
1322 tp->step_range_start = 0;
1323 tp->step_range_end = 0;
1324 tp->step_frame_id = null_frame_id;
edb3359d 1325 tp->step_stack_frame_id = null_frame_id;
a7212384
UW
1326 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1327 tp->stop_requested = 0;
4e1c45ea 1328
a7212384 1329 tp->stop_step = 0;
32400beb 1330
a7212384 1331 tp->proceed_to_finish = 0;
414c69f7 1332
a7212384
UW
1333 /* Discard any remaining commands or status from previous stop. */
1334 bpstat_clear (&tp->stop_bpstat);
1335}
32400beb 1336
a7212384
UW
1337static int
1338clear_proceed_status_callback (struct thread_info *tp, void *data)
1339{
1340 if (is_exited (tp->ptid))
1341 return 0;
d6b48e9c 1342
a7212384
UW
1343 clear_proceed_status_thread (tp);
1344 return 0;
1345}
1346
1347void
1348clear_proceed_status (void)
1349{
1350 if (!ptid_equal (inferior_ptid, null_ptid))
1351 {
1352 struct inferior *inferior;
1353
1354 if (non_stop)
1355 {
1356 /* If in non-stop mode, only delete the per-thread status
1357 of the current thread. */
1358 clear_proceed_status_thread (inferior_thread ());
1359 }
1360 else
1361 {
1362 /* In all-stop mode, delete the per-thread status of
1363 *all* threads. */
1364 iterate_over_threads (clear_proceed_status_callback, NULL);
1365 }
1366
d6b48e9c
PA
1367 inferior = current_inferior ();
1368 inferior->stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1369 }
1370
c906108c 1371 stop_after_trap = 0;
f3b1572e
PA
1372
1373 observer_notify_about_to_proceed ();
c906108c 1374
d5c31457
UW
1375 if (stop_registers)
1376 {
1377 regcache_xfree (stop_registers);
1378 stop_registers = NULL;
1379 }
c906108c
SS
1380}
1381
5a437975
DE
1382/* Check the current thread against the thread that reported the most recent
1383 event. If a step-over is required return TRUE and set the current thread
1384 to the old thread. Otherwise return FALSE.
1385
1386 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1387
1388static int
6a6b96b9 1389prepare_to_proceed (int step)
ea67f13b
DJ
1390{
1391 ptid_t wait_ptid;
1392 struct target_waitstatus wait_status;
5a437975
DE
1393 int schedlock_enabled;
1394
1395 /* With non-stop mode on, threads are always handled individually. */
1396 gdb_assert (! non_stop);
ea67f13b
DJ
1397
1398 /* Get the last target status returned by target_wait(). */
1399 get_last_target_status (&wait_ptid, &wait_status);
1400
6a6b96b9 1401 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1402 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 1403 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
1404 {
1405 return 0;
1406 }
1407
5a437975
DE
1408 schedlock_enabled = (scheduler_mode == schedlock_on
1409 || (scheduler_mode == schedlock_step
1410 && step));
1411
d4db2f36
PA
1412 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1413 if (schedlock_enabled)
1414 return 0;
1415
1416 /* Don't switch over if we're about to resume some other process
1417 other than WAIT_PTID's, and schedule-multiple is off. */
1418 if (!sched_multi
1419 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1420 return 0;
1421
6a6b96b9 1422 /* Switched over from WAIT_PID. */
ea67f13b 1423 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 1424 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1425 {
515630c5
UW
1426 struct regcache *regcache = get_thread_regcache (wait_ptid);
1427
1428 if (breakpoint_here_p (regcache_read_pc (regcache)))
ea67f13b 1429 {
515630c5
UW
1430 /* If stepping, remember current thread to switch back to. */
1431 if (step)
1432 deferred_step_ptid = inferior_ptid;
ea67f13b 1433
515630c5
UW
1434 /* Switch back to WAIT_PID thread. */
1435 switch_to_thread (wait_ptid);
6a6b96b9 1436
515630c5
UW
1437 /* We return 1 to indicate that there is a breakpoint here,
1438 so we need to step over it before continuing to avoid
1439 hitting it straight away. */
1440 return 1;
1441 }
ea67f13b
DJ
1442 }
1443
1444 return 0;
ea67f13b 1445}
e4846b08 1446
c906108c
SS
1447/* Basic routine for continuing the program in various fashions.
1448
1449 ADDR is the address to resume at, or -1 for resume where stopped.
1450 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1451 or -1 for act according to how it stopped.
c906108c 1452 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1453 -1 means return after that and print nothing.
1454 You should probably set various step_... variables
1455 before calling here, if you are stepping.
c906108c
SS
1456
1457 You should call clear_proceed_status before calling proceed. */
1458
1459void
96baa820 1460proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1461{
e58b0e63
PA
1462 struct regcache *regcache;
1463 struct gdbarch *gdbarch;
4e1c45ea 1464 struct thread_info *tp;
e58b0e63 1465 CORE_ADDR pc;
c906108c
SS
1466 int oneproc = 0;
1467
e58b0e63
PA
1468 /* If we're stopped at a fork/vfork, follow the branch set by the
1469 "set follow-fork-mode" command; otherwise, we'll just proceed
1470 resuming the current thread. */
1471 if (!follow_fork ())
1472 {
1473 /* The target for some reason decided not to resume. */
1474 normal_stop ();
1475 return;
1476 }
1477
1478 regcache = get_current_regcache ();
1479 gdbarch = get_regcache_arch (regcache);
1480 pc = regcache_read_pc (regcache);
1481
c906108c 1482 if (step > 0)
515630c5 1483 step_start_function = find_pc_function (pc);
c906108c
SS
1484 if (step < 0)
1485 stop_after_trap = 1;
1486
2acceee2 1487 if (addr == (CORE_ADDR) -1)
c906108c 1488 {
b2175913
MS
1489 if (pc == stop_pc && breakpoint_here_p (pc)
1490 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1491 /* There is a breakpoint at the address we will resume at,
1492 step one instruction before inserting breakpoints so that
1493 we do not stop right away (and report a second hit at this
b2175913
MS
1494 breakpoint).
1495
1496 Note, we don't do this in reverse, because we won't
1497 actually be executing the breakpoint insn anyway.
1498 We'll be (un-)executing the previous instruction. */
1499
c906108c 1500 oneproc = 1;
515630c5
UW
1501 else if (gdbarch_single_step_through_delay_p (gdbarch)
1502 && gdbarch_single_step_through_delay (gdbarch,
1503 get_current_frame ()))
3352ef37
AC
1504 /* We stepped onto an instruction that needs to be stepped
1505 again before re-inserting the breakpoint, do so. */
c906108c
SS
1506 oneproc = 1;
1507 }
1508 else
1509 {
515630c5 1510 regcache_write_pc (regcache, addr);
c906108c
SS
1511 }
1512
527159b7 1513 if (debug_infrun)
8a9de0e4 1514 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1515 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
1516 paddress (gdbarch, addr), siggnal, step);
527159b7 1517
94cc34af
PA
1518 if (non_stop)
1519 /* In non-stop, each thread is handled individually. The context
1520 must already be set to the right thread here. */
1521 ;
1522 else
1523 {
1524 /* In a multi-threaded task we may select another thread and
1525 then continue or step.
c906108c 1526
94cc34af
PA
1527 But if the old thread was stopped at a breakpoint, it will
1528 immediately cause another breakpoint stop without any
1529 execution (i.e. it will report a breakpoint hit incorrectly).
1530 So we must step over it first.
c906108c 1531
94cc34af
PA
1532 prepare_to_proceed checks the current thread against the
1533 thread that reported the most recent event. If a step-over
1534 is required it returns TRUE and sets the current thread to
1535 the old thread. */
1536 if (prepare_to_proceed (step))
1537 oneproc = 1;
1538 }
c906108c 1539
4e1c45ea
PA
1540 /* prepare_to_proceed may change the current thread. */
1541 tp = inferior_thread ();
1542
c906108c 1543 if (oneproc)
74960c60 1544 {
4e1c45ea 1545 tp->trap_expected = 1;
237fc4c9
PA
1546 /* If displaced stepping is enabled, we can step over the
1547 breakpoint without hitting it, so leave all breakpoints
1548 inserted. Otherwise we need to disable all breakpoints, step
1549 one instruction, and then re-add them when that step is
1550 finished. */
515630c5 1551 if (!use_displaced_stepping (gdbarch))
237fc4c9 1552 remove_breakpoints ();
74960c60 1553 }
237fc4c9
PA
1554
1555 /* We can insert breakpoints if we're not trying to step over one,
1556 or if we are stepping over one but we're using displaced stepping
1557 to do so. */
4e1c45ea 1558 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1559 insert_breakpoints ();
c906108c 1560
2020b7ab
PA
1561 if (!non_stop)
1562 {
1563 /* Pass the last stop signal to the thread we're resuming,
1564 irrespective of whether the current thread is the thread that
1565 got the last event or not. This was historically GDB's
1566 behaviour before keeping a stop_signal per thread. */
1567
1568 struct thread_info *last_thread;
1569 ptid_t last_ptid;
1570 struct target_waitstatus last_status;
1571
1572 get_last_target_status (&last_ptid, &last_status);
1573 if (!ptid_equal (inferior_ptid, last_ptid)
1574 && !ptid_equal (last_ptid, null_ptid)
1575 && !ptid_equal (last_ptid, minus_one_ptid))
1576 {
e09875d4 1577 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
1578 if (last_thread)
1579 {
1580 tp->stop_signal = last_thread->stop_signal;
1581 last_thread->stop_signal = TARGET_SIGNAL_0;
1582 }
1583 }
1584 }
1585
c906108c 1586 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 1587 tp->stop_signal = siggnal;
c906108c
SS
1588 /* If this signal should not be seen by program,
1589 give it zero. Used for debugging signals. */
2020b7ab
PA
1590 else if (!signal_program[tp->stop_signal])
1591 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1592
1593 annotate_starting ();
1594
1595 /* Make sure that output from GDB appears before output from the
1596 inferior. */
1597 gdb_flush (gdb_stdout);
1598
e4846b08
JJ
1599 /* Refresh prev_pc value just prior to resuming. This used to be
1600 done in stop_stepping, however, setting prev_pc there did not handle
1601 scenarios such as inferior function calls or returning from
1602 a function via the return command. In those cases, the prev_pc
1603 value was not set properly for subsequent commands. The prev_pc value
1604 is used to initialize the starting line number in the ecs. With an
1605 invalid value, the gdb next command ends up stopping at the position
1606 represented by the next line table entry past our start position.
1607 On platforms that generate one line table entry per line, this
1608 is not a problem. However, on the ia64, the compiler generates
1609 extraneous line table entries that do not increase the line number.
1610 When we issue the gdb next command on the ia64 after an inferior call
1611 or a return command, we often end up a few instructions forward, still
1612 within the original line we started.
1613
1614 An attempt was made to have init_execution_control_state () refresh
1615 the prev_pc value before calculating the line number. This approach
1616 did not work because on platforms that use ptrace, the pc register
1617 cannot be read unless the inferior is stopped. At that point, we
515630c5 1618 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
e4846b08 1619 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 1620 updated correctly when the inferior is stopped. */
4e1c45ea 1621 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1622
59f0d5d9 1623 /* Fill in with reasonable starting values. */
4e1c45ea 1624 init_thread_stepping_state (tp);
59f0d5d9 1625
59f0d5d9
PA
1626 /* Reset to normal state. */
1627 init_infwait_state ();
1628
c906108c 1629 /* Resume inferior. */
2020b7ab 1630 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
1631
1632 /* Wait for it to stop (if not standalone)
1633 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1634 /* Do this only if we are not using the event loop, or if the target
1635 does not support asynchronous execution. */
362646f5 1636 if (!target_can_async_p ())
43ff13b4 1637 {
ae123ec6 1638 wait_for_inferior (0);
43ff13b4
JM
1639 normal_stop ();
1640 }
c906108c 1641}
c906108c
SS
1642\f
1643
1644/* Start remote-debugging of a machine over a serial link. */
96baa820 1645
c906108c 1646void
8621d6a9 1647start_remote (int from_tty)
c906108c 1648{
d6b48e9c 1649 struct inferior *inferior;
c906108c 1650 init_wait_for_inferior ();
d6b48e9c
PA
1651
1652 inferior = current_inferior ();
1653 inferior->stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 1654
6426a772
JM
1655 /* Always go on waiting for the target, regardless of the mode. */
1656 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1657 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1658 nothing is returned (instead of just blocking). Because of this,
1659 targets expecting an immediate response need to, internally, set
1660 things up so that the target_wait() is forced to eventually
1661 timeout. */
1662 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1663 differentiate to its caller what the state of the target is after
1664 the initial open has been performed. Here we're assuming that
1665 the target has stopped. It should be possible to eventually have
1666 target_open() return to the caller an indication that the target
1667 is currently running and GDB state should be set to the same as
1668 for an async run. */
ae123ec6 1669 wait_for_inferior (0);
8621d6a9
DJ
1670
1671 /* Now that the inferior has stopped, do any bookkeeping like
1672 loading shared libraries. We want to do this before normal_stop,
1673 so that the displayed frame is up to date. */
1674 post_create_inferior (&current_target, from_tty);
1675
6426a772 1676 normal_stop ();
c906108c
SS
1677}
1678
1679/* Initialize static vars when a new inferior begins. */
1680
1681void
96baa820 1682init_wait_for_inferior (void)
c906108c
SS
1683{
1684 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 1685
c906108c
SS
1686 breakpoint_init_inferior (inf_starting);
1687
c906108c 1688 clear_proceed_status ();
9f976b41
DJ
1689
1690 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1691 deferred_step_ptid = null_ptid;
ca005067
DJ
1692
1693 target_last_wait_ptid = minus_one_ptid;
237fc4c9 1694
0d1e5fa7
PA
1695 previous_inferior_ptid = null_ptid;
1696 init_infwait_state ();
1697
237fc4c9 1698 displaced_step_clear ();
edb3359d
DJ
1699
1700 /* Discard any skipped inlined frames. */
1701 clear_inline_frame_state (minus_one_ptid);
c906108c 1702}
237fc4c9 1703
c906108c 1704\f
b83266a0
SS
1705/* This enum encodes possible reasons for doing a target_wait, so that
1706 wfi can call target_wait in one place. (Ultimately the call will be
1707 moved out of the infinite loop entirely.) */
1708
c5aa993b
JM
1709enum infwait_states
1710{
cd0fc7c3
SS
1711 infwait_normal_state,
1712 infwait_thread_hop_state,
d983da9c 1713 infwait_step_watch_state,
cd0fc7c3 1714 infwait_nonstep_watch_state
b83266a0
SS
1715};
1716
11cf8741
JM
1717/* Why did the inferior stop? Used to print the appropriate messages
1718 to the interface from within handle_inferior_event(). */
1719enum inferior_stop_reason
1720{
11cf8741
JM
1721 /* Step, next, nexti, stepi finished. */
1722 END_STEPPING_RANGE,
11cf8741
JM
1723 /* Inferior terminated by signal. */
1724 SIGNAL_EXITED,
1725 /* Inferior exited. */
1726 EXITED,
1727 /* Inferior received signal, and user asked to be notified. */
b2175913
MS
1728 SIGNAL_RECEIVED,
1729 /* Reverse execution -- target ran out of history info. */
1730 NO_HISTORY
11cf8741
JM
1731};
1732
0d1e5fa7
PA
1733/* The PTID we'll do a target_wait on.*/
1734ptid_t waiton_ptid;
1735
1736/* Current inferior wait state. */
1737enum infwait_states infwait_state;
cd0fc7c3 1738
0d1e5fa7
PA
1739/* Data to be passed around while handling an event. This data is
1740 discarded between events. */
c5aa993b 1741struct execution_control_state
488f131b 1742{
0d1e5fa7 1743 ptid_t ptid;
4e1c45ea
PA
1744 /* The thread that got the event, if this was a thread event; NULL
1745 otherwise. */
1746 struct thread_info *event_thread;
1747
488f131b 1748 struct target_waitstatus ws;
488f131b
JB
1749 int random_signal;
1750 CORE_ADDR stop_func_start;
1751 CORE_ADDR stop_func_end;
1752 char *stop_func_name;
488f131b 1753 int new_thread_event;
488f131b
JB
1754 int wait_some_more;
1755};
1756
edb3359d 1757static void init_execution_control_state (struct execution_control_state *ecs);
488f131b
JB
1758
1759void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1760
568d6575
UW
1761static void handle_step_into_function (struct gdbarch *gdbarch,
1762 struct execution_control_state *ecs);
1763static void handle_step_into_function_backward (struct gdbarch *gdbarch,
1764 struct execution_control_state *ecs);
44cbf7b5 1765static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 1766static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
a6d9a66e
UW
1767static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
1768 struct symtab_and_line sr_sal,
44cbf7b5 1769 struct frame_id sr_id);
a6d9a66e 1770static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
611c83ae 1771
104c1213
JM
1772static void stop_stepping (struct execution_control_state *ecs);
1773static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1774static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1775static void print_stop_reason (enum inferior_stop_reason stop_reason,
1776 int stop_info);
104c1213 1777
252fbfc8
PA
1778/* Callback for iterate over threads. If the thread is stopped, but
1779 the user/frontend doesn't know about that yet, go through
1780 normal_stop, as if the thread had just stopped now. ARG points at
1781 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1782 ptid_is_pid(PTID) is true, applies to all threads of the process
1783 pointed at by PTID. Otherwise, apply only to the thread pointed by
1784 PTID. */
1785
1786static int
1787infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1788{
1789 ptid_t ptid = * (ptid_t *) arg;
1790
1791 if ((ptid_equal (info->ptid, ptid)
1792 || ptid_equal (minus_one_ptid, ptid)
1793 || (ptid_is_pid (ptid)
1794 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1795 && is_running (info->ptid)
1796 && !is_executing (info->ptid))
1797 {
1798 struct cleanup *old_chain;
1799 struct execution_control_state ecss;
1800 struct execution_control_state *ecs = &ecss;
1801
1802 memset (ecs, 0, sizeof (*ecs));
1803
1804 old_chain = make_cleanup_restore_current_thread ();
1805
1806 switch_to_thread (info->ptid);
1807
1808 /* Go through handle_inferior_event/normal_stop, so we always
1809 have consistent output as if the stop event had been
1810 reported. */
1811 ecs->ptid = info->ptid;
e09875d4 1812 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
1813 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1814 ecs->ws.value.sig = TARGET_SIGNAL_0;
1815
1816 handle_inferior_event (ecs);
1817
1818 if (!ecs->wait_some_more)
1819 {
1820 struct thread_info *tp;
1821
1822 normal_stop ();
1823
1824 /* Finish off the continuations. The continations
1825 themselves are responsible for realising the thread
1826 didn't finish what it was supposed to do. */
1827 tp = inferior_thread ();
1828 do_all_intermediate_continuations_thread (tp);
1829 do_all_continuations_thread (tp);
1830 }
1831
1832 do_cleanups (old_chain);
1833 }
1834
1835 return 0;
1836}
1837
1838/* This function is attached as a "thread_stop_requested" observer.
1839 Cleanup local state that assumed the PTID was to be resumed, and
1840 report the stop to the frontend. */
1841
2c0b251b 1842static void
252fbfc8
PA
1843infrun_thread_stop_requested (ptid_t ptid)
1844{
1845 struct displaced_step_request *it, *next, *prev = NULL;
1846
1847 /* PTID was requested to stop. Remove it from the displaced
1848 stepping queue, so we don't try to resume it automatically. */
1849 for (it = displaced_step_request_queue; it; it = next)
1850 {
1851 next = it->next;
1852
1853 if (ptid_equal (it->ptid, ptid)
1854 || ptid_equal (minus_one_ptid, ptid)
1855 || (ptid_is_pid (ptid)
1856 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1857 {
1858 if (displaced_step_request_queue == it)
1859 displaced_step_request_queue = it->next;
1860 else
1861 prev->next = it->next;
1862
1863 xfree (it);
1864 }
1865 else
1866 prev = it;
1867 }
1868
1869 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1870}
1871
a07daef3
PA
1872static void
1873infrun_thread_thread_exit (struct thread_info *tp, int silent)
1874{
1875 if (ptid_equal (target_last_wait_ptid, tp->ptid))
1876 nullify_last_target_wait_ptid ();
1877}
1878
4e1c45ea
PA
1879/* Callback for iterate_over_threads. */
1880
1881static int
1882delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1883{
1884 if (is_exited (info->ptid))
1885 return 0;
1886
1887 delete_step_resume_breakpoint (info);
1888 return 0;
1889}
1890
1891/* In all-stop, delete the step resume breakpoint of any thread that
1892 had one. In non-stop, delete the step resume breakpoint of the
1893 thread that just stopped. */
1894
1895static void
1896delete_step_thread_step_resume_breakpoint (void)
1897{
1898 if (!target_has_execution
1899 || ptid_equal (inferior_ptid, null_ptid))
1900 /* If the inferior has exited, we have already deleted the step
1901 resume breakpoints out of GDB's lists. */
1902 return;
1903
1904 if (non_stop)
1905 {
1906 /* If in non-stop mode, only delete the step-resume or
1907 longjmp-resume breakpoint of the thread that just stopped
1908 stepping. */
1909 struct thread_info *tp = inferior_thread ();
1910 delete_step_resume_breakpoint (tp);
1911 }
1912 else
1913 /* In all-stop mode, delete all step-resume and longjmp-resume
1914 breakpoints of any thread that had them. */
1915 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1916}
1917
1918/* A cleanup wrapper. */
1919
1920static void
1921delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1922{
1923 delete_step_thread_step_resume_breakpoint ();
1924}
1925
223698f8
DE
1926/* Pretty print the results of target_wait, for debugging purposes. */
1927
1928static void
1929print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
1930 const struct target_waitstatus *ws)
1931{
1932 char *status_string = target_waitstatus_to_string (ws);
1933 struct ui_file *tmp_stream = mem_fileopen ();
1934 char *text;
1935 long len;
1936
1937 /* The text is split over several lines because it was getting too long.
1938 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
1939 output as a unit; we want only one timestamp printed if debug_timestamp
1940 is set. */
1941
1942 fprintf_unfiltered (tmp_stream,
1943 "infrun: target_wait (%d", PIDGET (waiton_ptid));
1944 if (PIDGET (waiton_ptid) != -1)
1945 fprintf_unfiltered (tmp_stream,
1946 " [%s]", target_pid_to_str (waiton_ptid));
1947 fprintf_unfiltered (tmp_stream, ", status) =\n");
1948 fprintf_unfiltered (tmp_stream,
1949 "infrun: %d [%s],\n",
1950 PIDGET (result_ptid), target_pid_to_str (result_ptid));
1951 fprintf_unfiltered (tmp_stream,
1952 "infrun: %s\n",
1953 status_string);
1954
1955 text = ui_file_xstrdup (tmp_stream, &len);
1956
1957 /* This uses %s in part to handle %'s in the text, but also to avoid
1958 a gcc error: the format attribute requires a string literal. */
1959 fprintf_unfiltered (gdb_stdlog, "%s", text);
1960
1961 xfree (status_string);
1962 xfree (text);
1963 ui_file_delete (tmp_stream);
1964}
1965
cd0fc7c3 1966/* Wait for control to return from inferior to debugger.
ae123ec6
JB
1967
1968 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1969 as if they were SIGTRAP signals. This can be useful during
1970 the startup sequence on some targets such as HP/UX, where
1971 we receive an EXEC event instead of the expected SIGTRAP.
1972
cd0fc7c3
SS
1973 If inferior gets a signal, we may decide to start it up again
1974 instead of returning. That is why there is a loop in this function.
1975 When this function actually returns it means the inferior
1976 should be left stopped and GDB should read more commands. */
1977
1978void
ae123ec6 1979wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
1980{
1981 struct cleanup *old_cleanups;
0d1e5fa7 1982 struct execution_control_state ecss;
cd0fc7c3 1983 struct execution_control_state *ecs;
c906108c 1984
527159b7 1985 if (debug_infrun)
ae123ec6
JB
1986 fprintf_unfiltered
1987 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1988 treat_exec_as_sigtrap);
527159b7 1989
4e1c45ea
PA
1990 old_cleanups =
1991 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 1992
cd0fc7c3 1993 ecs = &ecss;
0d1e5fa7
PA
1994 memset (ecs, 0, sizeof (*ecs));
1995
cd0fc7c3
SS
1996 overlay_cache_invalid = 1;
1997
e0bb1c1c
PA
1998 /* We'll update this if & when we switch to a new thread. */
1999 previous_inferior_ptid = inferior_ptid;
2000
cd0fc7c3
SS
2001 /* We have to invalidate the registers BEFORE calling target_wait
2002 because they can be loaded from the target while in target_wait.
2003 This makes remote debugging a bit more efficient for those
2004 targets that provide critical registers as part of their normal
2005 status mechanism. */
2006
2007 registers_changed ();
b83266a0 2008
c906108c
SS
2009 while (1)
2010 {
29f49a6a
PA
2011 struct cleanup *old_chain;
2012
9a4105ab 2013 if (deprecated_target_wait_hook)
47608cb1 2014 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2015 else
47608cb1 2016 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2017
f00150c9 2018 if (debug_infrun)
223698f8 2019 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2020
ae123ec6
JB
2021 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2022 {
2023 xfree (ecs->ws.value.execd_pathname);
2024 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2025 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2026 }
2027
29f49a6a
PA
2028 /* If an error happens while handling the event, propagate GDB's
2029 knowledge of the executing state to the frontend/user running
2030 state. */
2031 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2032
cd0fc7c3
SS
2033 /* Now figure out what to do with the result of the result. */
2034 handle_inferior_event (ecs);
c906108c 2035
29f49a6a
PA
2036 /* No error, don't finish the state yet. */
2037 discard_cleanups (old_chain);
2038
cd0fc7c3
SS
2039 if (!ecs->wait_some_more)
2040 break;
2041 }
4e1c45ea 2042
cd0fc7c3
SS
2043 do_cleanups (old_cleanups);
2044}
c906108c 2045
43ff13b4
JM
2046/* Asynchronous version of wait_for_inferior. It is called by the
2047 event loop whenever a change of state is detected on the file
2048 descriptor corresponding to the target. It can be called more than
2049 once to complete a single execution command. In such cases we need
a474d7c2
PA
2050 to keep the state in a global variable ECSS. If it is the last time
2051 that this function is called for a single execution command, then
2052 report to the user that the inferior has stopped, and do the
2053 necessary cleanups. */
43ff13b4
JM
2054
2055void
fba45db2 2056fetch_inferior_event (void *client_data)
43ff13b4 2057{
0d1e5fa7 2058 struct execution_control_state ecss;
a474d7c2 2059 struct execution_control_state *ecs = &ecss;
4f8d22e3 2060 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2061 struct cleanup *ts_old_chain;
4f8d22e3 2062 int was_sync = sync_execution;
43ff13b4 2063
0d1e5fa7
PA
2064 memset (ecs, 0, sizeof (*ecs));
2065
59f0d5d9 2066 overlay_cache_invalid = 1;
43ff13b4 2067
e0bb1c1c
PA
2068 /* We can only rely on wait_for_more being correct before handling
2069 the event in all-stop, but previous_inferior_ptid isn't used in
2070 non-stop. */
2071 if (!ecs->wait_some_more)
2072 /* We'll update this if & when we switch to a new thread. */
2073 previous_inferior_ptid = inferior_ptid;
2074
4f8d22e3
PA
2075 if (non_stop)
2076 /* In non-stop mode, the user/frontend should not notice a thread
2077 switch due to internal events. Make sure we reverse to the
2078 user selected thread and frame after handling the event and
2079 running any breakpoint commands. */
2080 make_cleanup_restore_current_thread ();
2081
59f0d5d9
PA
2082 /* We have to invalidate the registers BEFORE calling target_wait
2083 because they can be loaded from the target while in target_wait.
2084 This makes remote debugging a bit more efficient for those
2085 targets that provide critical registers as part of their normal
2086 status mechanism. */
43ff13b4 2087
59f0d5d9 2088 registers_changed ();
43ff13b4 2089
9a4105ab 2090 if (deprecated_target_wait_hook)
a474d7c2 2091 ecs->ptid =
47608cb1 2092 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2093 else
47608cb1 2094 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2095
f00150c9 2096 if (debug_infrun)
223698f8 2097 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2098
94cc34af
PA
2099 if (non_stop
2100 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2101 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2102 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2103 /* In non-stop mode, each thread is handled individually. Switch
2104 early, so the global state is set correctly for this
2105 thread. */
2106 context_switch (ecs->ptid);
2107
29f49a6a
PA
2108 /* If an error happens while handling the event, propagate GDB's
2109 knowledge of the executing state to the frontend/user running
2110 state. */
2111 if (!non_stop)
2112 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2113 else
2114 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2115
43ff13b4 2116 /* Now figure out what to do with the result of the result. */
a474d7c2 2117 handle_inferior_event (ecs);
43ff13b4 2118
a474d7c2 2119 if (!ecs->wait_some_more)
43ff13b4 2120 {
d6b48e9c
PA
2121 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2122
4e1c45ea 2123 delete_step_thread_step_resume_breakpoint ();
f107f563 2124
d6b48e9c
PA
2125 /* We may not find an inferior if this was a process exit. */
2126 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2127 normal_stop ();
2128
af679fd0
PA
2129 if (target_has_execution
2130 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2131 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2132 && ecs->event_thread->step_multi
414c69f7 2133 && ecs->event_thread->stop_step)
c2d11a7d
JM
2134 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2135 else
2136 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2137 }
4f8d22e3 2138
29f49a6a
PA
2139 /* No error, don't finish the thread states yet. */
2140 discard_cleanups (ts_old_chain);
2141
4f8d22e3
PA
2142 /* Revert thread and frame. */
2143 do_cleanups (old_chain);
2144
2145 /* If the inferior was in sync execution mode, and now isn't,
2146 restore the prompt. */
2147 if (was_sync && !sync_execution)
2148 display_gdb_prompt (0);
43ff13b4
JM
2149}
2150
edb3359d
DJ
2151/* Record the frame and location we're currently stepping through. */
2152void
2153set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2154{
2155 struct thread_info *tp = inferior_thread ();
2156
2157 tp->step_frame_id = get_frame_id (frame);
2158 tp->step_stack_frame_id = get_stack_frame_id (frame);
2159
2160 tp->current_symtab = sal.symtab;
2161 tp->current_line = sal.line;
2162}
2163
cd0fc7c3
SS
2164/* Prepare an execution control state for looping through a
2165 wait_for_inferior-type loop. */
2166
edb3359d 2167static void
96baa820 2168init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3
SS
2169{
2170 ecs->random_signal = 0;
0d1e5fa7
PA
2171}
2172
2173/* Clear context switchable stepping state. */
2174
2175void
4e1c45ea 2176init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2177{
2178 tss->stepping_over_breakpoint = 0;
2179 tss->step_after_step_resume_breakpoint = 0;
2180 tss->stepping_through_solib_after_catch = 0;
2181 tss->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
2182}
2183
e02bc4cc 2184/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2185 target_wait()/deprecated_target_wait_hook(). The data is actually
2186 cached by handle_inferior_event(), which gets called immediately
2187 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2188
2189void
488f131b 2190get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2191{
39f77062 2192 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2193 *status = target_last_waitstatus;
2194}
2195
ac264b3b
MS
2196void
2197nullify_last_target_wait_ptid (void)
2198{
2199 target_last_wait_ptid = minus_one_ptid;
2200}
2201
dcf4fbde 2202/* Switch thread contexts. */
dd80620e
MS
2203
2204static void
0d1e5fa7 2205context_switch (ptid_t ptid)
dd80620e 2206{
fd48f117
DJ
2207 if (debug_infrun)
2208 {
2209 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2210 target_pid_to_str (inferior_ptid));
2211 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2212 target_pid_to_str (ptid));
fd48f117
DJ
2213 }
2214
0d1e5fa7 2215 switch_to_thread (ptid);
dd80620e
MS
2216}
2217
4fa8626c
DJ
2218static void
2219adjust_pc_after_break (struct execution_control_state *ecs)
2220{
24a73cce
UW
2221 struct regcache *regcache;
2222 struct gdbarch *gdbarch;
8aad930b 2223 CORE_ADDR breakpoint_pc;
4fa8626c 2224
4fa8626c
DJ
2225 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2226 we aren't, just return.
9709f61c
DJ
2227
2228 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2229 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2230 implemented by software breakpoints should be handled through the normal
2231 breakpoint layer.
8fb3e588 2232
4fa8626c
DJ
2233 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2234 different signals (SIGILL or SIGEMT for instance), but it is less
2235 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2236 gdbarch_decr_pc_after_break. I don't know any specific target that
2237 generates these signals at breakpoints (the code has been in GDB since at
2238 least 1992) so I can not guess how to handle them here.
8fb3e588 2239
e6cf7916
UW
2240 In earlier versions of GDB, a target with
2241 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2242 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2243 target with both of these set in GDB history, and it seems unlikely to be
2244 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2245
2246 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2247 return;
2248
2249 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2250 return;
2251
4058b839
PA
2252 /* In reverse execution, when a breakpoint is hit, the instruction
2253 under it has already been de-executed. The reported PC always
2254 points at the breakpoint address, so adjusting it further would
2255 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2256 architecture:
2257
2258 B1 0x08000000 : INSN1
2259 B2 0x08000001 : INSN2
2260 0x08000002 : INSN3
2261 PC -> 0x08000003 : INSN4
2262
2263 Say you're stopped at 0x08000003 as above. Reverse continuing
2264 from that point should hit B2 as below. Reading the PC when the
2265 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2266 been de-executed already.
2267
2268 B1 0x08000000 : INSN1
2269 B2 PC -> 0x08000001 : INSN2
2270 0x08000002 : INSN3
2271 0x08000003 : INSN4
2272
2273 We can't apply the same logic as for forward execution, because
2274 we would wrongly adjust the PC to 0x08000000, since there's a
2275 breakpoint at PC - 1. We'd then report a hit on B1, although
2276 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2277 behaviour. */
2278 if (execution_direction == EXEC_REVERSE)
2279 return;
2280
24a73cce
UW
2281 /* If this target does not decrement the PC after breakpoints, then
2282 we have nothing to do. */
2283 regcache = get_thread_regcache (ecs->ptid);
2284 gdbarch = get_regcache_arch (regcache);
2285 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2286 return;
2287
8aad930b
AC
2288 /* Find the location where (if we've hit a breakpoint) the
2289 breakpoint would be. */
515630c5
UW
2290 breakpoint_pc = regcache_read_pc (regcache)
2291 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2292
1c5cfe86
PA
2293 /* Check whether there actually is a software breakpoint inserted at
2294 that location.
2295
2296 If in non-stop mode, a race condition is possible where we've
2297 removed a breakpoint, but stop events for that breakpoint were
2298 already queued and arrive later. To suppress those spurious
2299 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2300 and retire them after a number of stop events are reported. */
2301 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2302 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
8aad930b 2303 {
96429cc8
HZ
2304 struct cleanup *old_cleanups = NULL;
2305 if (RECORD_IS_USED)
2306 old_cleanups = record_gdb_operation_disable_set ();
2307
1c0fdd0e
UW
2308 /* When using hardware single-step, a SIGTRAP is reported for both
2309 a completed single-step and a software breakpoint. Need to
2310 differentiate between the two, as the latter needs adjusting
2311 but the former does not.
2312
2313 The SIGTRAP can be due to a completed hardware single-step only if
2314 - we didn't insert software single-step breakpoints
2315 - the thread to be examined is still the current thread
2316 - this thread is currently being stepped
2317
2318 If any of these events did not occur, we must have stopped due
2319 to hitting a software breakpoint, and have to back up to the
2320 breakpoint address.
2321
2322 As a special case, we could have hardware single-stepped a
2323 software breakpoint. In this case (prev_pc == breakpoint_pc),
2324 we also need to back up to the breakpoint address. */
2325
2326 if (singlestep_breakpoints_inserted_p
2327 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2328 || !currently_stepping (ecs->event_thread)
2329 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2330 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2331
2332 if (RECORD_IS_USED)
2333 do_cleanups (old_cleanups);
8aad930b 2334 }
4fa8626c
DJ
2335}
2336
0d1e5fa7
PA
2337void
2338init_infwait_state (void)
2339{
2340 waiton_ptid = pid_to_ptid (-1);
2341 infwait_state = infwait_normal_state;
2342}
2343
94cc34af
PA
2344void
2345error_is_running (void)
2346{
2347 error (_("\
2348Cannot execute this command while the selected thread is running."));
2349}
2350
2351void
2352ensure_not_running (void)
2353{
2354 if (is_running (inferior_ptid))
2355 error_is_running ();
2356}
2357
edb3359d
DJ
2358static int
2359stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2360{
2361 for (frame = get_prev_frame (frame);
2362 frame != NULL;
2363 frame = get_prev_frame (frame))
2364 {
2365 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2366 return 1;
2367 if (get_frame_type (frame) != INLINE_FRAME)
2368 break;
2369 }
2370
2371 return 0;
2372}
2373
cd0fc7c3
SS
2374/* Given an execution control state that has been freshly filled in
2375 by an event from the inferior, figure out what it means and take
2376 appropriate action. */
c906108c 2377
cd0fc7c3 2378void
96baa820 2379handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 2380{
568d6575
UW
2381 struct frame_info *frame;
2382 struct gdbarch *gdbarch;
c8edd8b4 2383 int sw_single_step_trap_p = 0;
d983da9c
DJ
2384 int stopped_by_watchpoint;
2385 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 2386 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
2387 enum stop_kind stop_soon;
2388
2389 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2390 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2391 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2392 {
2393 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2394 gdb_assert (inf);
2395 stop_soon = inf->stop_soon;
2396 }
2397 else
2398 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 2399
e02bc4cc 2400 /* Cache the last pid/waitstatus. */
39f77062 2401 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 2402 target_last_waitstatus = ecs->ws;
e02bc4cc 2403
ca005067
DJ
2404 /* Always clear state belonging to the previous time we stopped. */
2405 stop_stack_dummy = 0;
2406
8c90c137
LM
2407 /* If it's a new process, add it to the thread database */
2408
2409 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2410 && !ptid_equal (ecs->ptid, minus_one_ptid)
2411 && !in_thread_list (ecs->ptid));
2412
2413 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2414 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2415 add_thread (ecs->ptid);
2416
e09875d4 2417 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
2418
2419 /* Dependent on valid ECS->EVENT_THREAD. */
2420 adjust_pc_after_break (ecs);
2421
2422 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2423 reinit_frame_cache ();
2424
8c90c137
LM
2425 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2426 {
1c5cfe86
PA
2427 breakpoint_retire_moribund ();
2428
48844aa6
PA
2429 /* Mark the non-executing threads accordingly. In all-stop, all
2430 threads of all processes are stopped when we get any event
2431 reported. In non-stop mode, only the event thread stops. If
2432 we're handling a process exit in non-stop mode, there's
2433 nothing to do, as threads of the dead process are gone, and
2434 threads of any other process were left running. */
2435 if (!non_stop)
2436 set_executing (minus_one_ptid, 0);
2437 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2438 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2439 set_executing (inferior_ptid, 0);
8c90c137
LM
2440 }
2441
0d1e5fa7 2442 switch (infwait_state)
488f131b
JB
2443 {
2444 case infwait_thread_hop_state:
527159b7 2445 if (debug_infrun)
8a9de0e4 2446 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b 2447 /* Cancel the waiton_ptid. */
0d1e5fa7 2448 waiton_ptid = pid_to_ptid (-1);
65e82032 2449 break;
b83266a0 2450
488f131b 2451 case infwait_normal_state:
527159b7 2452 if (debug_infrun)
8a9de0e4 2453 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
2454 break;
2455
2456 case infwait_step_watch_state:
2457 if (debug_infrun)
2458 fprintf_unfiltered (gdb_stdlog,
2459 "infrun: infwait_step_watch_state\n");
2460
2461 stepped_after_stopped_by_watchpoint = 1;
488f131b 2462 break;
b83266a0 2463
488f131b 2464 case infwait_nonstep_watch_state:
527159b7 2465 if (debug_infrun)
8a9de0e4
AC
2466 fprintf_unfiltered (gdb_stdlog,
2467 "infrun: infwait_nonstep_watch_state\n");
488f131b 2468 insert_breakpoints ();
c906108c 2469
488f131b
JB
2470 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2471 handle things like signals arriving and other things happening
2472 in combination correctly? */
2473 stepped_after_stopped_by_watchpoint = 1;
2474 break;
65e82032
AC
2475
2476 default:
e2e0b3e5 2477 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 2478 }
0d1e5fa7 2479 infwait_state = infwait_normal_state;
c906108c 2480
488f131b
JB
2481 switch (ecs->ws.kind)
2482 {
2483 case TARGET_WAITKIND_LOADED:
527159b7 2484 if (debug_infrun)
8a9de0e4 2485 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
2486 /* Ignore gracefully during startup of the inferior, as it might
2487 be the shell which has just loaded some objects, otherwise
2488 add the symbols for the newly loaded objects. Also ignore at
2489 the beginning of an attach or remote session; we will query
2490 the full list of libraries once the connection is
2491 established. */
c0236d92 2492 if (stop_soon == NO_STOP_QUIETLY)
488f131b 2493 {
488f131b
JB
2494 /* Check for any newly added shared libraries if we're
2495 supposed to be adding them automatically. Switch
2496 terminal for any messages produced by
2497 breakpoint_re_set. */
2498 target_terminal_ours_for_output ();
aff6338a 2499 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2500 stack's section table is kept up-to-date. Architectures,
2501 (e.g., PPC64), use the section table to perform
2502 operations such as address => section name and hence
2503 require the table to contain all sections (including
2504 those found in shared libraries). */
b0f4b84b 2505#ifdef SOLIB_ADD
aff6338a 2506 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
2507#else
2508 solib_add (NULL, 0, &current_target, auto_solib_add);
2509#endif
488f131b
JB
2510 target_terminal_inferior ();
2511
b0f4b84b
DJ
2512 /* If requested, stop when the dynamic linker notifies
2513 gdb of events. This allows the user to get control
2514 and place breakpoints in initializer routines for
2515 dynamically loaded objects (among other things). */
2516 if (stop_on_solib_events)
2517 {
2518 stop_stepping (ecs);
2519 return;
2520 }
2521
2522 /* NOTE drow/2007-05-11: This might be a good place to check
2523 for "catch load". */
488f131b 2524 }
b0f4b84b
DJ
2525
2526 /* If we are skipping through a shell, or through shared library
2527 loading that we aren't interested in, resume the program. If
2528 we're running the program normally, also resume. But stop if
2529 we're attaching or setting up a remote connection. */
2530 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2531 {
74960c60
VP
2532 /* Loading of shared libraries might have changed breakpoint
2533 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
2534 if (stop_soon == NO_STOP_QUIETLY
2535 && !breakpoints_always_inserted_mode ())
74960c60 2536 insert_breakpoints ();
b0f4b84b
DJ
2537 resume (0, TARGET_SIGNAL_0);
2538 prepare_to_wait (ecs);
2539 return;
2540 }
2541
2542 break;
c5aa993b 2543
488f131b 2544 case TARGET_WAITKIND_SPURIOUS:
527159b7 2545 if (debug_infrun)
8a9de0e4 2546 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
2547 resume (0, TARGET_SIGNAL_0);
2548 prepare_to_wait (ecs);
2549 return;
c5aa993b 2550
488f131b 2551 case TARGET_WAITKIND_EXITED:
527159b7 2552 if (debug_infrun)
8a9de0e4 2553 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 2554 inferior_ptid = ecs->ptid;
488f131b
JB
2555 target_terminal_ours (); /* Must do this before mourn anyway */
2556 print_stop_reason (EXITED, ecs->ws.value.integer);
2557
2558 /* Record the exit code in the convenience variable $_exitcode, so
2559 that the user can inspect this again later. */
4fa62494
UW
2560 set_internalvar_integer (lookup_internalvar ("_exitcode"),
2561 (LONGEST) ecs->ws.value.integer);
488f131b
JB
2562 gdb_flush (gdb_stdout);
2563 target_mourn_inferior ();
1c0fdd0e 2564 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2565 stop_print_frame = 0;
2566 stop_stepping (ecs);
2567 return;
c5aa993b 2568
488f131b 2569 case TARGET_WAITKIND_SIGNALLED:
527159b7 2570 if (debug_infrun)
8a9de0e4 2571 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 2572 inferior_ptid = ecs->ptid;
488f131b 2573 stop_print_frame = 0;
488f131b 2574 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 2575
488f131b
JB
2576 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2577 reach here unless the inferior is dead. However, for years
2578 target_kill() was called here, which hints that fatal signals aren't
2579 really fatal on some systems. If that's true, then some changes
2580 may be needed. */
2581 target_mourn_inferior ();
c906108c 2582
2020b7ab 2583 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 2584 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2585 stop_stepping (ecs);
2586 return;
c906108c 2587
488f131b
JB
2588 /* The following are the only cases in which we keep going;
2589 the above cases end in a continue or goto. */
2590 case TARGET_WAITKIND_FORKED:
deb3b17b 2591 case TARGET_WAITKIND_VFORKED:
527159b7 2592 if (debug_infrun)
8a9de0e4 2593 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 2594
5a2901d9
DJ
2595 if (!ptid_equal (ecs->ptid, inferior_ptid))
2596 {
0d1e5fa7 2597 context_switch (ecs->ptid);
35f196d9 2598 reinit_frame_cache ();
5a2901d9
DJ
2599 }
2600
b242c3c2
PA
2601 /* Immediately detach breakpoints from the child before there's
2602 any chance of letting the user delete breakpoints from the
2603 breakpoint lists. If we don't do this early, it's easy to
2604 leave left over traps in the child, vis: "break foo; catch
2605 fork; c; <fork>; del; c; <child calls foo>". We only follow
2606 the fork on the last `continue', and by that time the
2607 breakpoint at "foo" is long gone from the breakpoint table.
2608 If we vforked, then we don't need to unpatch here, since both
2609 parent and child are sharing the same memory pages; we'll
2610 need to unpatch at follow/detach time instead to be certain
2611 that new breakpoints added between catchpoint hit time and
2612 vfork follow are detached. */
2613 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2614 {
2615 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2616
2617 /* This won't actually modify the breakpoint list, but will
2618 physically remove the breakpoints from the child. */
2619 detach_breakpoints (child_pid);
2620 }
2621
e58b0e63
PA
2622 /* In case the event is caught by a catchpoint, remember that
2623 the event is to be followed at the next resume of the thread,
2624 and not immediately. */
2625 ecs->event_thread->pending_follow = ecs->ws;
2626
fb14de7b 2627 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 2628
347bddb7 2629 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 2630
347bddb7 2631 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
04e68871
DJ
2632
2633 /* If no catchpoint triggered for this, then keep going. */
2634 if (ecs->random_signal)
2635 {
e58b0e63
PA
2636 int should_resume;
2637
2020b7ab 2638 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
2639
2640 should_resume = follow_fork ();
2641
2642 ecs->event_thread = inferior_thread ();
2643 ecs->ptid = inferior_ptid;
2644
2645 if (should_resume)
2646 keep_going (ecs);
2647 else
2648 stop_stepping (ecs);
04e68871
DJ
2649 return;
2650 }
2020b7ab 2651 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2652 goto process_event_stop_test;
2653
2654 case TARGET_WAITKIND_EXECD:
527159b7 2655 if (debug_infrun)
fc5261f2 2656 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 2657
5a2901d9
DJ
2658 if (!ptid_equal (ecs->ptid, inferior_ptid))
2659 {
0d1e5fa7 2660 context_switch (ecs->ptid);
35f196d9 2661 reinit_frame_cache ();
5a2901d9
DJ
2662 }
2663
fb14de7b 2664 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f
PA
2665
2666 /* This causes the eventpoints and symbol table to be reset.
2667 Must do this now, before trying to determine whether to
2668 stop. */
71b43ef8 2669 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f
PA
2670
2671 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2672 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2673
71b43ef8
PA
2674 /* Note that this may be referenced from inside
2675 bpstat_stop_status above, through inferior_has_execd. */
2676 xfree (ecs->ws.value.execd_pathname);
2677 ecs->ws.value.execd_pathname = NULL;
2678
04e68871
DJ
2679 /* If no catchpoint triggered for this, then keep going. */
2680 if (ecs->random_signal)
2681 {
2020b7ab 2682 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2683 keep_going (ecs);
2684 return;
2685 }
2020b7ab 2686 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2687 goto process_event_stop_test;
2688
b4dc5ffa
MK
2689 /* Be careful not to try to gather much state about a thread
2690 that's in a syscall. It's frequently a losing proposition. */
488f131b 2691 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 2692 if (debug_infrun)
8a9de0e4 2693 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
2694 resume (0, TARGET_SIGNAL_0);
2695 prepare_to_wait (ecs);
2696 return;
c906108c 2697
488f131b
JB
2698 /* Before examining the threads further, step this thread to
2699 get it entirely out of the syscall. (We get notice of the
2700 event when the thread is just on the verge of exiting a
2701 syscall. Stepping one instruction seems to get it back
b4dc5ffa 2702 into user code.) */
488f131b 2703 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 2704 if (debug_infrun)
8a9de0e4 2705 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 2706 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
2707 prepare_to_wait (ecs);
2708 return;
c906108c 2709
488f131b 2710 case TARGET_WAITKIND_STOPPED:
527159b7 2711 if (debug_infrun)
8a9de0e4 2712 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 2713 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 2714 break;
c906108c 2715
b2175913
MS
2716 case TARGET_WAITKIND_NO_HISTORY:
2717 /* Reverse execution: target ran out of history info. */
fb14de7b 2718 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
b2175913
MS
2719 print_stop_reason (NO_HISTORY, 0);
2720 stop_stepping (ecs);
2721 return;
2722
488f131b
JB
2723 /* We had an event in the inferior, but we are not interested
2724 in handling it at this level. The lower layers have already
8e7d2c16 2725 done what needs to be done, if anything.
8fb3e588
AC
2726
2727 One of the possible circumstances for this is when the
2728 inferior produces output for the console. The inferior has
2729 not stopped, and we are ignoring the event. Another possible
2730 circumstance is any event which the lower level knows will be
2731 reported multiple times without an intervening resume. */
488f131b 2732 case TARGET_WAITKIND_IGNORE:
527159b7 2733 if (debug_infrun)
8a9de0e4 2734 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 2735 prepare_to_wait (ecs);
488f131b
JB
2736 return;
2737 }
c906108c 2738
488f131b
JB
2739 if (ecs->new_thread_event)
2740 {
94cc34af
PA
2741 if (non_stop)
2742 /* Non-stop assumes that the target handles adding new threads
2743 to the thread list. */
2744 internal_error (__FILE__, __LINE__, "\
2745targets should add new threads to the thread list themselves in non-stop mode.");
2746
2747 /* We may want to consider not doing a resume here in order to
2748 give the user a chance to play with the new thread. It might
2749 be good to make that a user-settable option. */
2750
2751 /* At this point, all threads are stopped (happens automatically
2752 in either the OS or the native code). Therefore we need to
2753 continue all threads in order to make progress. */
2754
173853dc
PA
2755 if (!ptid_equal (ecs->ptid, inferior_ptid))
2756 context_switch (ecs->ptid);
488f131b
JB
2757 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2758 prepare_to_wait (ecs);
2759 return;
2760 }
c906108c 2761
2020b7ab 2762 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
2763 {
2764 /* Do we need to clean up the state of a thread that has
2765 completed a displaced single-step? (Doing so usually affects
2766 the PC, so do it here, before we set stop_pc.) */
2767 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2768
2769 /* If we either finished a single-step or hit a breakpoint, but
2770 the user wanted this thread to be stopped, pretend we got a
2771 SIG0 (generic unsignaled stop). */
2772
2773 if (ecs->event_thread->stop_requested
2774 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2775 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2776 }
237fc4c9 2777
515630c5 2778 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 2779
527159b7 2780 if (debug_infrun)
237fc4c9 2781 {
5af949e3
UW
2782 struct regcache *regcache = get_thread_regcache (ecs->ptid);
2783 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2784
2785 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
2786 paddress (gdbarch, stop_pc));
d92524f1 2787 if (target_stopped_by_watchpoint ())
237fc4c9
PA
2788 {
2789 CORE_ADDR addr;
2790 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2791
2792 if (target_stopped_data_address (&current_target, &addr))
2793 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2794 "infrun: stopped data address = %s\n",
2795 paddress (gdbarch, addr));
237fc4c9
PA
2796 else
2797 fprintf_unfiltered (gdb_stdlog,
2798 "infrun: (no data address available)\n");
2799 }
2800 }
527159b7 2801
9f976b41
DJ
2802 if (stepping_past_singlestep_breakpoint)
2803 {
1c0fdd0e 2804 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
2805 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2806 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2807
2808 stepping_past_singlestep_breakpoint = 0;
2809
2810 /* We've either finished single-stepping past the single-step
8fb3e588
AC
2811 breakpoint, or stopped for some other reason. It would be nice if
2812 we could tell, but we can't reliably. */
2020b7ab 2813 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 2814 {
527159b7 2815 if (debug_infrun)
8a9de0e4 2816 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 2817 /* Pull the single step breakpoints out of the target. */
e0cd558a 2818 remove_single_step_breakpoints ();
9f976b41
DJ
2819 singlestep_breakpoints_inserted_p = 0;
2820
2821 ecs->random_signal = 0;
2822
0d1e5fa7 2823 context_switch (saved_singlestep_ptid);
9a4105ab
AC
2824 if (deprecated_context_hook)
2825 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
2826
2827 resume (1, TARGET_SIGNAL_0);
2828 prepare_to_wait (ecs);
2829 return;
2830 }
2831 }
2832
ca67fcb8 2833 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 2834 {
94cc34af
PA
2835 /* In non-stop mode, there's never a deferred_step_ptid set. */
2836 gdb_assert (!non_stop);
2837
6a6b96b9
UW
2838 /* If we stopped for some other reason than single-stepping, ignore
2839 the fact that we were supposed to switch back. */
2020b7ab 2840 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
2841 {
2842 if (debug_infrun)
2843 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 2844 "infrun: handling deferred step\n");
6a6b96b9
UW
2845
2846 /* Pull the single step breakpoints out of the target. */
2847 if (singlestep_breakpoints_inserted_p)
2848 {
2849 remove_single_step_breakpoints ();
2850 singlestep_breakpoints_inserted_p = 0;
2851 }
2852
2853 /* Note: We do not call context_switch at this point, as the
2854 context is already set up for stepping the original thread. */
ca67fcb8
VP
2855 switch_to_thread (deferred_step_ptid);
2856 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2857 /* Suppress spurious "Switching to ..." message. */
2858 previous_inferior_ptid = inferior_ptid;
2859
2860 resume (1, TARGET_SIGNAL_0);
2861 prepare_to_wait (ecs);
2862 return;
2863 }
ca67fcb8
VP
2864
2865 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2866 }
2867
488f131b
JB
2868 /* See if a thread hit a thread-specific breakpoint that was meant for
2869 another thread. If so, then step that thread past the breakpoint,
2870 and continue it. */
2871
2020b7ab 2872 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2873 {
9f976b41
DJ
2874 int thread_hop_needed = 0;
2875
f8d40ec8
JB
2876 /* Check if a regular breakpoint has been hit before checking
2877 for a potential single step breakpoint. Otherwise, GDB will
2878 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 2879 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 2880 {
c5aa993b 2881 ecs->random_signal = 0;
4fa8626c 2882 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
2883 thread_hop_needed = 1;
2884 }
1c0fdd0e 2885 else if (singlestep_breakpoints_inserted_p)
9f976b41 2886 {
fd48f117
DJ
2887 /* We have not context switched yet, so this should be true
2888 no matter which thread hit the singlestep breakpoint. */
2889 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2890 if (debug_infrun)
2891 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2892 "trap for %s\n",
2893 target_pid_to_str (ecs->ptid));
2894
9f976b41
DJ
2895 ecs->random_signal = 0;
2896 /* The call to in_thread_list is necessary because PTIDs sometimes
2897 change when we go from single-threaded to multi-threaded. If
2898 the singlestep_ptid is still in the list, assume that it is
2899 really different from ecs->ptid. */
2900 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2901 && in_thread_list (singlestep_ptid))
2902 {
fd48f117
DJ
2903 /* If the PC of the thread we were trying to single-step
2904 has changed, discard this event (which we were going
2905 to ignore anyway), and pretend we saw that thread
2906 trap. This prevents us continuously moving the
2907 single-step breakpoint forward, one instruction at a
2908 time. If the PC has changed, then the thread we were
2909 trying to single-step has trapped or been signalled,
2910 but the event has not been reported to GDB yet.
2911
2912 There might be some cases where this loses signal
2913 information, if a signal has arrived at exactly the
2914 same time that the PC changed, but this is the best
2915 we can do with the information available. Perhaps we
2916 should arrange to report all events for all threads
2917 when they stop, or to re-poll the remote looking for
2918 this particular thread (i.e. temporarily enable
2919 schedlock). */
515630c5
UW
2920
2921 CORE_ADDR new_singlestep_pc
2922 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2923
2924 if (new_singlestep_pc != singlestep_pc)
fd48f117 2925 {
2020b7ab
PA
2926 enum target_signal stop_signal;
2927
fd48f117
DJ
2928 if (debug_infrun)
2929 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2930 " but expected thread advanced also\n");
2931
2932 /* The current context still belongs to
2933 singlestep_ptid. Don't swap here, since that's
2934 the context we want to use. Just fudge our
2935 state and continue. */
2020b7ab
PA
2936 stop_signal = ecs->event_thread->stop_signal;
2937 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 2938 ecs->ptid = singlestep_ptid;
e09875d4 2939 ecs->event_thread = find_thread_ptid (ecs->ptid);
2020b7ab 2940 ecs->event_thread->stop_signal = stop_signal;
515630c5 2941 stop_pc = new_singlestep_pc;
fd48f117
DJ
2942 }
2943 else
2944 {
2945 if (debug_infrun)
2946 fprintf_unfiltered (gdb_stdlog,
2947 "infrun: unexpected thread\n");
2948
2949 thread_hop_needed = 1;
2950 stepping_past_singlestep_breakpoint = 1;
2951 saved_singlestep_ptid = singlestep_ptid;
2952 }
9f976b41
DJ
2953 }
2954 }
2955
2956 if (thread_hop_needed)
8fb3e588 2957 {
9f5a595d 2958 struct regcache *thread_regcache;
237fc4c9 2959 int remove_status = 0;
8fb3e588 2960
527159b7 2961 if (debug_infrun)
8a9de0e4 2962 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 2963
b3444185
PA
2964 /* Switch context before touching inferior memory, the
2965 previous thread may have exited. */
2966 if (!ptid_equal (inferior_ptid, ecs->ptid))
2967 context_switch (ecs->ptid);
2968
8fb3e588
AC
2969 /* Saw a breakpoint, but it was hit by the wrong thread.
2970 Just continue. */
2971
1c0fdd0e 2972 if (singlestep_breakpoints_inserted_p)
488f131b 2973 {
8fb3e588 2974 /* Pull the single step breakpoints out of the target. */
e0cd558a 2975 remove_single_step_breakpoints ();
8fb3e588
AC
2976 singlestep_breakpoints_inserted_p = 0;
2977 }
2978
237fc4c9
PA
2979 /* If the arch can displace step, don't remove the
2980 breakpoints. */
9f5a595d
UW
2981 thread_regcache = get_thread_regcache (ecs->ptid);
2982 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
2983 remove_status = remove_breakpoints ();
2984
8fb3e588
AC
2985 /* Did we fail to remove breakpoints? If so, try
2986 to set the PC past the bp. (There's at least
2987 one situation in which we can fail to remove
2988 the bp's: On HP-UX's that use ttrace, we can't
2989 change the address space of a vforking child
2990 process until the child exits (well, okay, not
2991 then either :-) or execs. */
2992 if (remove_status != 0)
9d9cd7ac 2993 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
2994 else
2995 { /* Single step */
94cc34af
PA
2996 if (!non_stop)
2997 {
2998 /* Only need to require the next event from this
2999 thread in all-stop mode. */
3000 waiton_ptid = ecs->ptid;
3001 infwait_state = infwait_thread_hop_state;
3002 }
8fb3e588 3003
4e1c45ea 3004 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588
AC
3005 keep_going (ecs);
3006 registers_changed ();
3007 return;
3008 }
488f131b 3009 }
1c0fdd0e 3010 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
3011 {
3012 sw_single_step_trap_p = 1;
3013 ecs->random_signal = 0;
3014 }
488f131b
JB
3015 }
3016 else
3017 ecs->random_signal = 1;
c906108c 3018
488f131b 3019 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3020 so, then switch to that thread. */
3021 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3022 {
527159b7 3023 if (debug_infrun)
8a9de0e4 3024 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3025
0d1e5fa7 3026 context_switch (ecs->ptid);
c5aa993b 3027
9a4105ab
AC
3028 if (deprecated_context_hook)
3029 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3030 }
c906108c 3031
568d6575
UW
3032 /* At this point, get hold of the now-current thread's frame. */
3033 frame = get_current_frame ();
3034 gdbarch = get_frame_arch (frame);
3035
1c0fdd0e 3036 if (singlestep_breakpoints_inserted_p)
488f131b
JB
3037 {
3038 /* Pull the single step breakpoints out of the target. */
e0cd558a 3039 remove_single_step_breakpoints ();
488f131b
JB
3040 singlestep_breakpoints_inserted_p = 0;
3041 }
c906108c 3042
d983da9c
DJ
3043 if (stepped_after_stopped_by_watchpoint)
3044 stopped_by_watchpoint = 0;
3045 else
3046 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3047
3048 /* If necessary, step over this watchpoint. We'll be back to display
3049 it in a moment. */
3050 if (stopped_by_watchpoint
d92524f1 3051 && (target_have_steppable_watchpoint
568d6575 3052 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3053 {
488f131b
JB
3054 /* At this point, we are stopped at an instruction which has
3055 attempted to write to a piece of memory under control of
3056 a watchpoint. The instruction hasn't actually executed
3057 yet. If we were to evaluate the watchpoint expression
3058 now, we would get the old value, and therefore no change
3059 would seem to have occurred.
3060
3061 In order to make watchpoints work `right', we really need
3062 to complete the memory write, and then evaluate the
d983da9c
DJ
3063 watchpoint expression. We do this by single-stepping the
3064 target.
3065
3066 It may not be necessary to disable the watchpoint to stop over
3067 it. For example, the PA can (with some kernel cooperation)
3068 single step over a watchpoint without disabling the watchpoint.
3069
3070 It is far more common to need to disable a watchpoint to step
3071 the inferior over it. If we have non-steppable watchpoints,
3072 we must disable the current watchpoint; it's simplest to
3073 disable all watchpoints and breakpoints. */
2facfe5c
DD
3074 int hw_step = 1;
3075
d92524f1 3076 if (!target_have_steppable_watchpoint)
d983da9c 3077 remove_breakpoints ();
2facfe5c 3078 /* Single step */
568d6575 3079 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 3080 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
b9412953 3081 registers_changed ();
0d1e5fa7 3082 waiton_ptid = ecs->ptid;
d92524f1 3083 if (target_have_steppable_watchpoint)
0d1e5fa7 3084 infwait_state = infwait_step_watch_state;
d983da9c 3085 else
0d1e5fa7 3086 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3087 prepare_to_wait (ecs);
3088 return;
3089 }
3090
488f131b
JB
3091 ecs->stop_func_start = 0;
3092 ecs->stop_func_end = 0;
3093 ecs->stop_func_name = 0;
3094 /* Don't care about return value; stop_func_start and stop_func_name
3095 will both be 0 if it doesn't work. */
3096 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3097 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a 3098 ecs->stop_func_start
568d6575 3099 += gdbarch_deprecated_function_start_offset (gdbarch);
4e1c45ea 3100 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 3101 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 3102 ecs->event_thread->stop_step = 0;
488f131b
JB
3103 stop_print_frame = 1;
3104 ecs->random_signal = 0;
3105 stopped_by_random_signal = 0;
488f131b 3106
edb3359d
DJ
3107 /* Hide inlined functions starting here, unless we just performed stepi or
3108 nexti. After stepi and nexti, always show the innermost frame (not any
3109 inline function call sites). */
3110 if (ecs->event_thread->step_range_end != 1)
3111 skip_inline_frames (ecs->ptid);
3112
2020b7ab 3113 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3114 && ecs->event_thread->trap_expected
568d6575 3115 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 3116 && currently_stepping (ecs->event_thread))
3352ef37 3117 {
b50d7442 3118 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
3119 also on an instruction that needs to be stepped multiple
3120 times before it's been fully executing. E.g., architectures
3121 with a delay slot. It needs to be stepped twice, once for
3122 the instruction and once for the delay slot. */
3123 int step_through_delay
568d6575 3124 = gdbarch_single_step_through_delay (gdbarch, frame);
527159b7 3125 if (debug_infrun && step_through_delay)
8a9de0e4 3126 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 3127 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
3128 {
3129 /* The user issued a continue when stopped at a breakpoint.
3130 Set up for another trap and get out of here. */
4e1c45ea 3131 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3132 keep_going (ecs);
3133 return;
3134 }
3135 else if (step_through_delay)
3136 {
3137 /* The user issued a step when stopped at a breakpoint.
3138 Maybe we should stop, maybe we should not - the delay
3139 slot *might* correspond to a line of source. In any
ca67fcb8
VP
3140 case, don't decide that here, just set
3141 ecs->stepping_over_breakpoint, making sure we
3142 single-step again before breakpoints are re-inserted. */
4e1c45ea 3143 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3144 }
3145 }
3146
488f131b
JB
3147 /* Look at the cause of the stop, and decide what to do.
3148 The alternatives are:
0d1e5fa7
PA
3149 1) stop_stepping and return; to really stop and return to the debugger,
3150 2) keep_going and return to start up again
4e1c45ea 3151 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
3152 3) set ecs->random_signal to 1, and the decision between 1 and 2
3153 will be made according to the signal handling tables. */
3154
3155 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
3156 that have to do with the program's own actions. Note that
3157 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3158 on the operating system version. Here we detect when a SIGILL or
3159 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3160 something similar for SIGSEGV, since a SIGSEGV will be generated
3161 when we're trying to execute a breakpoint instruction on a
3162 non-executable stack. This happens for call dummy breakpoints
3163 for architectures like SPARC that place call dummies on the
237fc4c9 3164 stack.
488f131b 3165
237fc4c9
PA
3166 If we're doing a displaced step past a breakpoint, then the
3167 breakpoint is always inserted at the original instruction;
3168 non-standard signals can't be explained by the breakpoint. */
2020b7ab 3169 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3170 || (! ecs->event_thread->trap_expected
237fc4c9 3171 && breakpoint_inserted_here_p (stop_pc)
2020b7ab
PA
3172 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
3173 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
3174 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
3175 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3176 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3177 {
2020b7ab 3178 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 3179 {
527159b7 3180 if (debug_infrun)
8a9de0e4 3181 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
3182 stop_print_frame = 0;
3183 stop_stepping (ecs);
3184 return;
3185 }
c54cfec8
EZ
3186
3187 /* This is originated from start_remote(), start_inferior() and
3188 shared libraries hook functions. */
b0f4b84b 3189 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3190 {
527159b7 3191 if (debug_infrun)
8a9de0e4 3192 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
3193 stop_stepping (ecs);
3194 return;
3195 }
3196
c54cfec8 3197 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
3198 the stop_signal here, because some kernels don't ignore a
3199 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3200 See more comments in inferior.h. On the other hand, if we
a0ef4274 3201 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
3202 will handle the SIGSTOP if it should show up later.
3203
3204 Also consider that the attach is complete when we see a
3205 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3206 target extended-remote report it instead of a SIGSTOP
3207 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
3208 signal, so this is no exception.
3209
3210 Also consider that the attach is complete when we see a
3211 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3212 the target to stop all threads of the inferior, in case the
3213 low level attach operation doesn't stop them implicitly. If
3214 they weren't stopped implicitly, then the stub will report a
3215 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3216 other than GDB's request. */
a0ef4274 3217 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab 3218 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
e0ba6746
PA
3219 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3220 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
3221 {
3222 stop_stepping (ecs);
2020b7ab 3223 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
3224 return;
3225 }
3226
fba57f8f 3227 /* See if there is a breakpoint at the current PC. */
347bddb7 3228 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
fba57f8f
VP
3229
3230 /* Following in case break condition called a
3231 function. */
3232 stop_print_frame = 1;
488f131b 3233
73dd234f 3234 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
3235 at one stage in the past included checks for an inferior
3236 function call's call dummy's return breakpoint. The original
3237 comment, that went with the test, read:
73dd234f 3238
8fb3e588
AC
3239 ``End of a stack dummy. Some systems (e.g. Sony news) give
3240 another signal besides SIGTRAP, so check here as well as
3241 above.''
73dd234f 3242
8002d778 3243 If someone ever tries to get call dummys on a
73dd234f 3244 non-executable stack to work (where the target would stop
03cebad2
MK
3245 with something like a SIGSEGV), then those tests might need
3246 to be re-instated. Given, however, that the tests were only
73dd234f 3247 enabled when momentary breakpoints were not being used, I
03cebad2
MK
3248 suspect that it won't be the case.
3249
8fb3e588
AC
3250 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3251 be necessary for call dummies on a non-executable stack on
3252 SPARC. */
73dd234f 3253
2020b7ab 3254 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3255 ecs->random_signal
347bddb7 3256 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
4e1c45ea
PA
3257 || ecs->event_thread->trap_expected
3258 || (ecs->event_thread->step_range_end
3259 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
3260 else
3261 {
347bddb7 3262 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 3263 if (!ecs->random_signal)
2020b7ab 3264 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3265 }
3266 }
3267
3268 /* When we reach this point, we've pretty much decided
3269 that the reason for stopping must've been a random
3270 (unexpected) signal. */
3271
3272 else
3273 ecs->random_signal = 1;
488f131b 3274
04e68871 3275process_event_stop_test:
568d6575
UW
3276
3277 /* Re-fetch current thread's frame in case we did a
3278 "goto process_event_stop_test" above. */
3279 frame = get_current_frame ();
3280 gdbarch = get_frame_arch (frame);
3281
488f131b
JB
3282 /* For the program's own signals, act according to
3283 the signal handling tables. */
3284
3285 if (ecs->random_signal)
3286 {
3287 /* Signal not for debugging purposes. */
3288 int printed = 0;
3289
527159b7 3290 if (debug_infrun)
2020b7ab
PA
3291 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3292 ecs->event_thread->stop_signal);
527159b7 3293
488f131b
JB
3294 stopped_by_random_signal = 1;
3295
2020b7ab 3296 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
3297 {
3298 printed = 1;
3299 target_terminal_ours_for_output ();
2020b7ab 3300 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 3301 }
252fbfc8
PA
3302 /* Always stop on signals if we're either just gaining control
3303 of the program, or the user explicitly requested this thread
3304 to remain stopped. */
d6b48e9c 3305 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 3306 || ecs->event_thread->stop_requested
d6b48e9c 3307 || signal_stop_state (ecs->event_thread->stop_signal))
488f131b
JB
3308 {
3309 stop_stepping (ecs);
3310 return;
3311 }
3312 /* If not going to stop, give terminal back
3313 if we took it away. */
3314 else if (printed)
3315 target_terminal_inferior ();
3316
3317 /* Clear the signal if it should not be passed. */
2020b7ab
PA
3318 if (signal_program[ecs->event_thread->stop_signal] == 0)
3319 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 3320
fb14de7b 3321 if (ecs->event_thread->prev_pc == stop_pc
4e1c45ea
PA
3322 && ecs->event_thread->trap_expected
3323 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
3324 {
3325 /* We were just starting a new sequence, attempting to
3326 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 3327 Instead this signal arrives. This signal will take us out
68f53502
AC
3328 of the stepping range so GDB needs to remember to, when
3329 the signal handler returns, resume stepping off that
3330 breakpoint. */
3331 /* To simplify things, "continue" is forced to use the same
3332 code paths as single-step - set a breakpoint at the
3333 signal return address and then, once hit, step off that
3334 breakpoint. */
237fc4c9
PA
3335 if (debug_infrun)
3336 fprintf_unfiltered (gdb_stdlog,
3337 "infrun: signal arrived while stepping over "
3338 "breakpoint\n");
d3169d93 3339
568d6575 3340 insert_step_resume_breakpoint_at_frame (frame);
4e1c45ea 3341 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
3342 keep_going (ecs);
3343 return;
68f53502 3344 }
9d799f85 3345
4e1c45ea 3346 if (ecs->event_thread->step_range_end != 0
2020b7ab 3347 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
3348 && (ecs->event_thread->step_range_start <= stop_pc
3349 && stop_pc < ecs->event_thread->step_range_end)
edb3359d
DJ
3350 && frame_id_eq (get_stack_frame_id (frame),
3351 ecs->event_thread->step_stack_frame_id)
4e1c45ea 3352 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
3353 {
3354 /* The inferior is about to take a signal that will take it
3355 out of the single step range. Set a breakpoint at the
3356 current PC (which is presumably where the signal handler
3357 will eventually return) and then allow the inferior to
3358 run free.
3359
3360 Note that this is only needed for a signal delivered
3361 while in the single-step range. Nested signals aren't a
3362 problem as they eventually all return. */
237fc4c9
PA
3363 if (debug_infrun)
3364 fprintf_unfiltered (gdb_stdlog,
3365 "infrun: signal may take us out of "
3366 "single-step range\n");
3367
568d6575 3368 insert_step_resume_breakpoint_at_frame (frame);
9d799f85
AC
3369 keep_going (ecs);
3370 return;
d303a6c7 3371 }
9d799f85
AC
3372
3373 /* Note: step_resume_breakpoint may be non-NULL. This occures
3374 when either there's a nested signal, or when there's a
3375 pending signal enabled just as the signal handler returns
3376 (leaving the inferior at the step-resume-breakpoint without
3377 actually executing it). Either way continue until the
3378 breakpoint is really hit. */
488f131b
JB
3379 keep_going (ecs);
3380 return;
3381 }
3382
3383 /* Handle cases caused by hitting a breakpoint. */
3384 {
3385 CORE_ADDR jmp_buf_pc;
3386 struct bpstat_what what;
3387
347bddb7 3388 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
3389
3390 if (what.call_dummy)
3391 {
3392 stop_stack_dummy = 1;
c5aa993b 3393 }
c906108c 3394
488f131b 3395 switch (what.main_action)
c5aa993b 3396 {
488f131b 3397 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
3398 /* If we hit the breakpoint at longjmp while stepping, we
3399 install a momentary breakpoint at the target of the
3400 jmp_buf. */
3401
3402 if (debug_infrun)
3403 fprintf_unfiltered (gdb_stdlog,
3404 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3405
4e1c45ea 3406 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 3407
568d6575
UW
3408 if (!gdbarch_get_longjmp_target_p (gdbarch)
3409 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
c5aa993b 3410 {
611c83ae
PA
3411 if (debug_infrun)
3412 fprintf_unfiltered (gdb_stdlog, "\
3413infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 3414 keep_going (ecs);
104c1213 3415 return;
c5aa993b 3416 }
488f131b 3417
611c83ae
PA
3418 /* We're going to replace the current step-resume breakpoint
3419 with a longjmp-resume breakpoint. */
4e1c45ea 3420 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
3421
3422 /* Insert a breakpoint at resume address. */
a6d9a66e 3423 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
c906108c 3424
488f131b
JB
3425 keep_going (ecs);
3426 return;
c906108c 3427
488f131b 3428 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 3429 if (debug_infrun)
611c83ae
PA
3430 fprintf_unfiltered (gdb_stdlog,
3431 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3432
4e1c45ea
PA
3433 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3434 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 3435
414c69f7 3436 ecs->event_thread->stop_step = 1;
611c83ae
PA
3437 print_stop_reason (END_STEPPING_RANGE, 0);
3438 stop_stepping (ecs);
3439 return;
488f131b
JB
3440
3441 case BPSTAT_WHAT_SINGLE:
527159b7 3442 if (debug_infrun)
8802d8ed 3443 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 3444 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
3445 /* Still need to check other stuff, at least the case
3446 where we are stepping and step out of the right range. */
3447 break;
c906108c 3448
488f131b 3449 case BPSTAT_WHAT_STOP_NOISY:
527159b7 3450 if (debug_infrun)
8802d8ed 3451 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 3452 stop_print_frame = 1;
c906108c 3453
d303a6c7
AC
3454 /* We are about to nuke the step_resume_breakpointt via the
3455 cleanup chain, so no need to worry about it here. */
c5aa993b 3456
488f131b
JB
3457 stop_stepping (ecs);
3458 return;
c5aa993b 3459
488f131b 3460 case BPSTAT_WHAT_STOP_SILENT:
527159b7 3461 if (debug_infrun)
8802d8ed 3462 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 3463 stop_print_frame = 0;
c5aa993b 3464
d303a6c7
AC
3465 /* We are about to nuke the step_resume_breakpoin via the
3466 cleanup chain, so no need to worry about it here. */
c5aa993b 3467
488f131b 3468 stop_stepping (ecs);
e441088d 3469 return;
c5aa993b 3470
488f131b 3471 case BPSTAT_WHAT_STEP_RESUME:
527159b7 3472 if (debug_infrun)
8802d8ed 3473 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 3474
4e1c45ea
PA
3475 delete_step_resume_breakpoint (ecs->event_thread);
3476 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
3477 {
3478 /* Back when the step-resume breakpoint was inserted, we
3479 were trying to single-step off a breakpoint. Go back
3480 to doing that. */
4e1c45ea
PA
3481 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3482 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
3483 keep_going (ecs);
3484 return;
3485 }
b2175913
MS
3486 if (stop_pc == ecs->stop_func_start
3487 && execution_direction == EXEC_REVERSE)
3488 {
3489 /* We are stepping over a function call in reverse, and
3490 just hit the step-resume breakpoint at the start
3491 address of the function. Go back to single-stepping,
3492 which should take us back to the function call. */
3493 ecs->event_thread->stepping_over_breakpoint = 1;
3494 keep_going (ecs);
3495 return;
3496 }
488f131b
JB
3497 break;
3498
488f131b 3499 case BPSTAT_WHAT_CHECK_SHLIBS:
c906108c 3500 {
527159b7 3501 if (debug_infrun)
8802d8ed 3502 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
3503
3504 /* Check for any newly added shared libraries if we're
3505 supposed to be adding them automatically. Switch
3506 terminal for any messages produced by
3507 breakpoint_re_set. */
3508 target_terminal_ours_for_output ();
aff6338a 3509 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3510 stack's section table is kept up-to-date. Architectures,
3511 (e.g., PPC64), use the section table to perform
3512 operations such as address => section name and hence
3513 require the table to contain all sections (including
3514 those found in shared libraries). */
a77053c2 3515#ifdef SOLIB_ADD
aff6338a 3516 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
3517#else
3518 solib_add (NULL, 0, &current_target, auto_solib_add);
3519#endif
488f131b
JB
3520 target_terminal_inferior ();
3521
488f131b
JB
3522 /* If requested, stop when the dynamic linker notifies
3523 gdb of events. This allows the user to get control
3524 and place breakpoints in initializer routines for
3525 dynamically loaded objects (among other things). */
877522db 3526 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 3527 {
488f131b 3528 stop_stepping (ecs);
d4f3574e
SS
3529 return;
3530 }
c5aa993b 3531 else
c5aa993b 3532 {
488f131b 3533 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 3534 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3535 break;
c5aa993b 3536 }
488f131b 3537 }
488f131b 3538 break;
c906108c 3539
488f131b
JB
3540 case BPSTAT_WHAT_LAST:
3541 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 3542
488f131b
JB
3543 case BPSTAT_WHAT_KEEP_CHECKING:
3544 break;
3545 }
3546 }
c906108c 3547
488f131b
JB
3548 /* We come here if we hit a breakpoint but should not
3549 stop for it. Possibly we also were stepping
3550 and should stop for that. So fall through and
3551 test for stepping. But, if not stepping,
3552 do not stop. */
c906108c 3553
a7212384
UW
3554 /* In all-stop mode, if we're currently stepping but have stopped in
3555 some other thread, we need to switch back to the stepped thread. */
3556 if (!non_stop)
3557 {
3558 struct thread_info *tp;
b3444185 3559 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
3560 ecs->event_thread);
3561 if (tp)
3562 {
3563 /* However, if the current thread is blocked on some internal
3564 breakpoint, and we simply need to step over that breakpoint
3565 to get it going again, do that first. */
3566 if ((ecs->event_thread->trap_expected
3567 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3568 || ecs->event_thread->stepping_over_breakpoint)
3569 {
3570 keep_going (ecs);
3571 return;
3572 }
3573
66852e9c
PA
3574 /* If the stepping thread exited, then don't try to switch
3575 back and resume it, which could fail in several different
3576 ways depending on the target. Instead, just keep going.
3577
3578 We can find a stepping dead thread in the thread list in
3579 two cases:
3580
3581 - The target supports thread exit events, and when the
3582 target tries to delete the thread from the thread list,
3583 inferior_ptid pointed at the exiting thread. In such
3584 case, calling delete_thread does not really remove the
3585 thread from the list; instead, the thread is left listed,
3586 with 'exited' state.
3587
3588 - The target's debug interface does not support thread
3589 exit events, and so we have no idea whatsoever if the
3590 previously stepping thread is still alive. For that
3591 reason, we need to synchronously query the target
3592 now. */
b3444185
PA
3593 if (is_exited (tp->ptid)
3594 || !target_thread_alive (tp->ptid))
3595 {
3596 if (debug_infrun)
3597 fprintf_unfiltered (gdb_stdlog, "\
3598infrun: not switching back to stepped thread, it has vanished\n");
3599
3600 delete_thread (tp->ptid);
3601 keep_going (ecs);
3602 return;
3603 }
3604
a7212384
UW
3605 /* Otherwise, we no longer expect a trap in the current thread.
3606 Clear the trap_expected flag before switching back -- this is
3607 what keep_going would do as well, if we called it. */
3608 ecs->event_thread->trap_expected = 0;
3609
3610 if (debug_infrun)
3611 fprintf_unfiltered (gdb_stdlog,
3612 "infrun: switching back to stepped thread\n");
3613
3614 ecs->event_thread = tp;
3615 ecs->ptid = tp->ptid;
3616 context_switch (ecs->ptid);
3617 keep_going (ecs);
3618 return;
3619 }
3620 }
3621
9d1ff73f
MS
3622 /* Are we stepping to get the inferior out of the dynamic linker's
3623 hook (and possibly the dld itself) after catching a shlib
3624 event? */
4e1c45ea 3625 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
3626 {
3627#if defined(SOLIB_ADD)
3628 /* Have we reached our destination? If not, keep going. */
3629 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3630 {
527159b7 3631 if (debug_infrun)
8a9de0e4 3632 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 3633 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3634 keep_going (ecs);
104c1213 3635 return;
488f131b
JB
3636 }
3637#endif
527159b7 3638 if (debug_infrun)
8a9de0e4 3639 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
3640 /* Else, stop and report the catchpoint(s) whose triggering
3641 caused us to begin stepping. */
4e1c45ea 3642 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
3643 bpstat_clear (&ecs->event_thread->stop_bpstat);
3644 ecs->event_thread->stop_bpstat
3645 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 3646 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
3647 stop_print_frame = 1;
3648 stop_stepping (ecs);
3649 return;
3650 }
c906108c 3651
4e1c45ea 3652 if (ecs->event_thread->step_resume_breakpoint)
488f131b 3653 {
527159b7 3654 if (debug_infrun)
d3169d93
DJ
3655 fprintf_unfiltered (gdb_stdlog,
3656 "infrun: step-resume breakpoint is inserted\n");
527159b7 3657
488f131b
JB
3658 /* Having a step-resume breakpoint overrides anything
3659 else having to do with stepping commands until
3660 that breakpoint is reached. */
488f131b
JB
3661 keep_going (ecs);
3662 return;
3663 }
c5aa993b 3664
4e1c45ea 3665 if (ecs->event_thread->step_range_end == 0)
488f131b 3666 {
527159b7 3667 if (debug_infrun)
8a9de0e4 3668 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 3669 /* Likewise if we aren't even stepping. */
488f131b
JB
3670 keep_going (ecs);
3671 return;
3672 }
c5aa993b 3673
488f131b 3674 /* If stepping through a line, keep going if still within it.
c906108c 3675
488f131b
JB
3676 Note that step_range_end is the address of the first instruction
3677 beyond the step range, and NOT the address of the last instruction
31410e84
MS
3678 within it!
3679
3680 Note also that during reverse execution, we may be stepping
3681 through a function epilogue and therefore must detect when
3682 the current-frame changes in the middle of a line. */
3683
4e1c45ea 3684 if (stop_pc >= ecs->event_thread->step_range_start
31410e84
MS
3685 && stop_pc < ecs->event_thread->step_range_end
3686 && (execution_direction != EXEC_REVERSE
388a8562 3687 || frame_id_eq (get_frame_id (frame),
31410e84 3688 ecs->event_thread->step_frame_id)))
488f131b 3689 {
527159b7 3690 if (debug_infrun)
5af949e3
UW
3691 fprintf_unfiltered
3692 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
3693 paddress (gdbarch, ecs->event_thread->step_range_start),
3694 paddress (gdbarch, ecs->event_thread->step_range_end));
b2175913
MS
3695
3696 /* When stepping backward, stop at beginning of line range
3697 (unless it's the function entry point, in which case
3698 keep going back to the call point). */
3699 if (stop_pc == ecs->event_thread->step_range_start
3700 && stop_pc != ecs->stop_func_start
3701 && execution_direction == EXEC_REVERSE)
3702 {
3703 ecs->event_thread->stop_step = 1;
3704 print_stop_reason (END_STEPPING_RANGE, 0);
3705 stop_stepping (ecs);
3706 }
3707 else
3708 keep_going (ecs);
3709
488f131b
JB
3710 return;
3711 }
c5aa993b 3712
488f131b 3713 /* We stepped out of the stepping range. */
c906108c 3714
488f131b 3715 /* If we are stepping at the source level and entered the runtime
388a8562
MS
3716 loader dynamic symbol resolution code...
3717
3718 EXEC_FORWARD: we keep on single stepping until we exit the run
3719 time loader code and reach the callee's address.
3720
3721 EXEC_REVERSE: we've already executed the callee (backward), and
3722 the runtime loader code is handled just like any other
3723 undebuggable function call. Now we need only keep stepping
3724 backward through the trampoline code, and that's handled further
3725 down, so there is nothing for us to do here. */
3726
3727 if (execution_direction != EXEC_REVERSE
3728 && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 3729 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 3730 {
4c8c40e6 3731 CORE_ADDR pc_after_resolver =
568d6575 3732 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 3733
527159b7 3734 if (debug_infrun)
8a9de0e4 3735 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 3736
488f131b
JB
3737 if (pc_after_resolver)
3738 {
3739 /* Set up a step-resume breakpoint at the address
3740 indicated by SKIP_SOLIB_RESOLVER. */
3741 struct symtab_and_line sr_sal;
fe39c653 3742 init_sal (&sr_sal);
488f131b
JB
3743 sr_sal.pc = pc_after_resolver;
3744
a6d9a66e
UW
3745 insert_step_resume_breakpoint_at_sal (gdbarch,
3746 sr_sal, null_frame_id);
c5aa993b 3747 }
c906108c 3748
488f131b
JB
3749 keep_going (ecs);
3750 return;
3751 }
c906108c 3752
4e1c45ea 3753 if (ecs->event_thread->step_range_end != 1
078130d0
PA
3754 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3755 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
568d6575 3756 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 3757 {
527159b7 3758 if (debug_infrun)
8a9de0e4 3759 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 3760 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
3761 a signal trampoline (either by a signal being delivered or by
3762 the signal handler returning). Just single-step until the
3763 inferior leaves the trampoline (either by calling the handler
3764 or returning). */
488f131b
JB
3765 keep_going (ecs);
3766 return;
3767 }
c906108c 3768
c17eaafe
DJ
3769 /* Check for subroutine calls. The check for the current frame
3770 equalling the step ID is not necessary - the check of the
3771 previous frame's ID is sufficient - but it is a common case and
3772 cheaper than checking the previous frame's ID.
14e60db5
DJ
3773
3774 NOTE: frame_id_eq will never report two invalid frame IDs as
3775 being equal, so to get into this block, both the current and
3776 previous frame must have valid frame IDs. */
edb3359d
DJ
3777 if (!frame_id_eq (get_stack_frame_id (frame),
3778 ecs->event_thread->step_stack_frame_id)
c7ce8faa 3779 && (frame_id_eq (frame_unwind_caller_id (frame),
edb3359d 3780 ecs->event_thread->step_stack_frame_id)
b2175913 3781 || execution_direction == EXEC_REVERSE))
488f131b 3782 {
95918acb 3783 CORE_ADDR real_stop_pc;
8fb3e588 3784
527159b7 3785 if (debug_infrun)
8a9de0e4 3786 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 3787
078130d0 3788 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea 3789 || ((ecs->event_thread->step_range_end == 1)
d80b854b 3790 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 3791 ecs->stop_func_start)))
95918acb
AC
3792 {
3793 /* I presume that step_over_calls is only 0 when we're
3794 supposed to be stepping at the assembly language level
3795 ("stepi"). Just stop. */
3796 /* Also, maybe we just did a "nexti" inside a prolog, so we
3797 thought it was a subroutine call but it was not. Stop as
3798 well. FENN */
388a8562 3799 /* And this works the same backward as frontward. MVS */
414c69f7 3800 ecs->event_thread->stop_step = 1;
95918acb
AC
3801 print_stop_reason (END_STEPPING_RANGE, 0);
3802 stop_stepping (ecs);
3803 return;
3804 }
8fb3e588 3805
388a8562
MS
3806 /* Reverse stepping through solib trampolines. */
3807
3808 if (execution_direction == EXEC_REVERSE
3809 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
3810 || (ecs->stop_func_start == 0
3811 && in_solib_dynsym_resolve_code (stop_pc))))
3812 {
3813 /* Any solib trampoline code can be handled in reverse
3814 by simply continuing to single-step. We have already
3815 executed the solib function (backwards), and a few
3816 steps will take us back through the trampoline to the
3817 caller. */
3818 keep_going (ecs);
3819 return;
3820 }
3821
078130d0 3822 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f 3823 {
b2175913
MS
3824 /* We're doing a "next".
3825
3826 Normal (forward) execution: set a breakpoint at the
3827 callee's return address (the address at which the caller
3828 will resume).
3829
3830 Reverse (backward) execution. set the step-resume
3831 breakpoint at the start of the function that we just
3832 stepped into (backwards), and continue to there. When we
6130d0b7 3833 get there, we'll need to single-step back to the caller. */
b2175913
MS
3834
3835 if (execution_direction == EXEC_REVERSE)
3836 {
3837 struct symtab_and_line sr_sal;
3067f6e5 3838
388a8562
MS
3839 /* Normal function call return (static or dynamic). */
3840 init_sal (&sr_sal);
3841 sr_sal.pc = ecs->stop_func_start;
a6d9a66e
UW
3842 insert_step_resume_breakpoint_at_sal (gdbarch,
3843 sr_sal, null_frame_id);
b2175913
MS
3844 }
3845 else
568d6575 3846 insert_step_resume_breakpoint_at_caller (frame);
b2175913 3847
8567c30f
AC
3848 keep_going (ecs);
3849 return;
3850 }
a53c66de 3851
95918acb 3852 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
3853 calling routine and the real function), locate the real
3854 function. That's what tells us (a) whether we want to step
3855 into it at all, and (b) what prologue we want to run to the
3856 end of, if we do step into it. */
568d6575 3857 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 3858 if (real_stop_pc == 0)
568d6575 3859 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
3860 if (real_stop_pc != 0)
3861 ecs->stop_func_start = real_stop_pc;
8fb3e588 3862
db5f024e 3863 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
3864 {
3865 struct symtab_and_line sr_sal;
3866 init_sal (&sr_sal);
3867 sr_sal.pc = ecs->stop_func_start;
3868
a6d9a66e
UW
3869 insert_step_resume_breakpoint_at_sal (gdbarch,
3870 sr_sal, null_frame_id);
8fb3e588
AC
3871 keep_going (ecs);
3872 return;
1b2bfbb9
RC
3873 }
3874
95918acb 3875 /* If we have line number information for the function we are
8fb3e588 3876 thinking of stepping into, step into it.
95918acb 3877
8fb3e588
AC
3878 If there are several symtabs at that PC (e.g. with include
3879 files), just want to know whether *any* of them have line
3880 numbers. find_pc_line handles this. */
95918acb
AC
3881 {
3882 struct symtab_and_line tmp_sal;
8fb3e588 3883
95918acb
AC
3884 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3885 if (tmp_sal.line != 0)
3886 {
b2175913 3887 if (execution_direction == EXEC_REVERSE)
568d6575 3888 handle_step_into_function_backward (gdbarch, ecs);
b2175913 3889 else
568d6575 3890 handle_step_into_function (gdbarch, ecs);
95918acb
AC
3891 return;
3892 }
3893 }
3894
3895 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
3896 set, we stop the step so that the user has a chance to switch
3897 in assembly mode. */
078130d0
PA
3898 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3899 && step_stop_if_no_debug)
95918acb 3900 {
414c69f7 3901 ecs->event_thread->stop_step = 1;
95918acb
AC
3902 print_stop_reason (END_STEPPING_RANGE, 0);
3903 stop_stepping (ecs);
3904 return;
3905 }
3906
b2175913
MS
3907 if (execution_direction == EXEC_REVERSE)
3908 {
3909 /* Set a breakpoint at callee's start address.
3910 From there we can step once and be back in the caller. */
3911 struct symtab_and_line sr_sal;
3912 init_sal (&sr_sal);
3913 sr_sal.pc = ecs->stop_func_start;
a6d9a66e
UW
3914 insert_step_resume_breakpoint_at_sal (gdbarch,
3915 sr_sal, null_frame_id);
b2175913
MS
3916 }
3917 else
3918 /* Set a breakpoint at callee's return address (the address
3919 at which the caller will resume). */
568d6575 3920 insert_step_resume_breakpoint_at_caller (frame);
b2175913 3921
95918acb 3922 keep_going (ecs);
488f131b 3923 return;
488f131b 3924 }
c906108c 3925
488f131b
JB
3926 /* If we're in the return path from a shared library trampoline,
3927 we want to proceed through the trampoline when stepping. */
568d6575 3928 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 3929 stop_pc, ecs->stop_func_name))
488f131b 3930 {
488f131b 3931 /* Determine where this trampoline returns. */
52f729a7 3932 CORE_ADDR real_stop_pc;
568d6575 3933 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 3934
527159b7 3935 if (debug_infrun)
8a9de0e4 3936 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 3937
488f131b 3938 /* Only proceed through if we know where it's going. */
d764a824 3939 if (real_stop_pc)
488f131b
JB
3940 {
3941 /* And put the step-breakpoint there and go until there. */
3942 struct symtab_and_line sr_sal;
3943
fe39c653 3944 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 3945 sr_sal.pc = real_stop_pc;
488f131b 3946 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
3947
3948 /* Do not specify what the fp should be when we stop since
3949 on some machines the prologue is where the new fp value
3950 is established. */
a6d9a66e
UW
3951 insert_step_resume_breakpoint_at_sal (gdbarch,
3952 sr_sal, null_frame_id);
c906108c 3953
488f131b
JB
3954 /* Restart without fiddling with the step ranges or
3955 other state. */
3956 keep_going (ecs);
3957 return;
3958 }
3959 }
c906108c 3960
2afb61aa 3961 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 3962
1b2bfbb9
RC
3963 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3964 the trampoline processing logic, however, there are some trampolines
3965 that have no names, so we should do trampoline handling first. */
078130d0 3966 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 3967 && ecs->stop_func_name == NULL
2afb61aa 3968 && stop_pc_sal.line == 0)
1b2bfbb9 3969 {
527159b7 3970 if (debug_infrun)
8a9de0e4 3971 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 3972
1b2bfbb9 3973 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
3974 undebuggable function (where there is no debugging information
3975 and no line number corresponding to the address where the
1b2bfbb9
RC
3976 inferior stopped). Since we want to skip this kind of code,
3977 we keep going until the inferior returns from this
14e60db5
DJ
3978 function - unless the user has asked us not to (via
3979 set step-mode) or we no longer know how to get back
3980 to the call site. */
3981 if (step_stop_if_no_debug
c7ce8faa 3982 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
3983 {
3984 /* If we have no line number and the step-stop-if-no-debug
3985 is set, we stop the step so that the user has a chance to
3986 switch in assembly mode. */
414c69f7 3987 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3988 print_stop_reason (END_STEPPING_RANGE, 0);
3989 stop_stepping (ecs);
3990 return;
3991 }
3992 else
3993 {
3994 /* Set a breakpoint at callee's return address (the address
3995 at which the caller will resume). */
568d6575 3996 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
3997 keep_going (ecs);
3998 return;
3999 }
4000 }
4001
4e1c45ea 4002 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
4003 {
4004 /* It is stepi or nexti. We always want to stop stepping after
4005 one instruction. */
527159b7 4006 if (debug_infrun)
8a9de0e4 4007 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 4008 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
4009 print_stop_reason (END_STEPPING_RANGE, 0);
4010 stop_stepping (ecs);
4011 return;
4012 }
4013
2afb61aa 4014 if (stop_pc_sal.line == 0)
488f131b
JB
4015 {
4016 /* We have no line number information. That means to stop
4017 stepping (does this always happen right after one instruction,
4018 when we do "s" in a function with no line numbers,
4019 or can this happen as a result of a return or longjmp?). */
527159b7 4020 if (debug_infrun)
8a9de0e4 4021 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 4022 ecs->event_thread->stop_step = 1;
488f131b
JB
4023 print_stop_reason (END_STEPPING_RANGE, 0);
4024 stop_stepping (ecs);
4025 return;
4026 }
c906108c 4027
edb3359d
DJ
4028 /* Look for "calls" to inlined functions, part one. If the inline
4029 frame machinery detected some skipped call sites, we have entered
4030 a new inline function. */
4031
4032 if (frame_id_eq (get_frame_id (get_current_frame ()),
4033 ecs->event_thread->step_frame_id)
4034 && inline_skipped_frames (ecs->ptid))
4035 {
4036 struct symtab_and_line call_sal;
4037
4038 if (debug_infrun)
4039 fprintf_unfiltered (gdb_stdlog,
4040 "infrun: stepped into inlined function\n");
4041
4042 find_frame_sal (get_current_frame (), &call_sal);
4043
4044 if (ecs->event_thread->step_over_calls != STEP_OVER_ALL)
4045 {
4046 /* For "step", we're going to stop. But if the call site
4047 for this inlined function is on the same source line as
4048 we were previously stepping, go down into the function
4049 first. Otherwise stop at the call site. */
4050
4051 if (call_sal.line == ecs->event_thread->current_line
4052 && call_sal.symtab == ecs->event_thread->current_symtab)
4053 step_into_inline_frame (ecs->ptid);
4054
4055 ecs->event_thread->stop_step = 1;
4056 print_stop_reason (END_STEPPING_RANGE, 0);
4057 stop_stepping (ecs);
4058 return;
4059 }
4060 else
4061 {
4062 /* For "next", we should stop at the call site if it is on a
4063 different source line. Otherwise continue through the
4064 inlined function. */
4065 if (call_sal.line == ecs->event_thread->current_line
4066 && call_sal.symtab == ecs->event_thread->current_symtab)
4067 keep_going (ecs);
4068 else
4069 {
4070 ecs->event_thread->stop_step = 1;
4071 print_stop_reason (END_STEPPING_RANGE, 0);
4072 stop_stepping (ecs);
4073 }
4074 return;
4075 }
4076 }
4077
4078 /* Look for "calls" to inlined functions, part two. If we are still
4079 in the same real function we were stepping through, but we have
4080 to go further up to find the exact frame ID, we are stepping
4081 through a more inlined call beyond its call site. */
4082
4083 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4084 && !frame_id_eq (get_frame_id (get_current_frame ()),
4085 ecs->event_thread->step_frame_id)
4086 && stepped_in_from (get_current_frame (),
4087 ecs->event_thread->step_frame_id))
4088 {
4089 if (debug_infrun)
4090 fprintf_unfiltered (gdb_stdlog,
4091 "infrun: stepping through inlined function\n");
4092
4093 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4094 keep_going (ecs);
4095 else
4096 {
4097 ecs->event_thread->stop_step = 1;
4098 print_stop_reason (END_STEPPING_RANGE, 0);
4099 stop_stepping (ecs);
4100 }
4101 return;
4102 }
4103
2afb61aa 4104 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
4105 && (ecs->event_thread->current_line != stop_pc_sal.line
4106 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
4107 {
4108 /* We are at the start of a different line. So stop. Note that
4109 we don't stop if we step into the middle of a different line.
4110 That is said to make things like for (;;) statements work
4111 better. */
527159b7 4112 if (debug_infrun)
8a9de0e4 4113 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 4114 ecs->event_thread->stop_step = 1;
488f131b
JB
4115 print_stop_reason (END_STEPPING_RANGE, 0);
4116 stop_stepping (ecs);
4117 return;
4118 }
c906108c 4119
488f131b 4120 /* We aren't done stepping.
c906108c 4121
488f131b
JB
4122 Optimize by setting the stepping range to the line.
4123 (We might not be in the original line, but if we entered a
4124 new line in mid-statement, we continue stepping. This makes
4125 things like for(;;) statements work better.) */
c906108c 4126
4e1c45ea
PA
4127 ecs->event_thread->step_range_start = stop_pc_sal.pc;
4128 ecs->event_thread->step_range_end = stop_pc_sal.end;
edb3359d 4129 set_step_info (frame, stop_pc_sal);
488f131b 4130
527159b7 4131 if (debug_infrun)
8a9de0e4 4132 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 4133 keep_going (ecs);
104c1213
JM
4134}
4135
b3444185 4136/* Is thread TP in the middle of single-stepping? */
104c1213 4137
a7212384 4138static int
b3444185 4139currently_stepping (struct thread_info *tp)
a7212384 4140{
b3444185
PA
4141 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
4142 || tp->trap_expected
4143 || tp->stepping_through_solib_after_catch
4144 || bpstat_should_step ());
a7212384
UW
4145}
4146
b3444185
PA
4147/* Returns true if any thread *but* the one passed in "data" is in the
4148 middle of stepping or of handling a "next". */
a7212384 4149
104c1213 4150static int
b3444185 4151currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 4152{
b3444185
PA
4153 if (tp == data)
4154 return 0;
4155
4156 return (tp->step_range_end
4157 || tp->trap_expected
4158 || tp->stepping_through_solib_after_catch);
104c1213 4159}
c906108c 4160
b2175913
MS
4161/* Inferior has stepped into a subroutine call with source code that
4162 we should not step over. Do step to the first line of code in
4163 it. */
c2c6d25f
JM
4164
4165static void
568d6575
UW
4166handle_step_into_function (struct gdbarch *gdbarch,
4167 struct execution_control_state *ecs)
c2c6d25f
JM
4168{
4169 struct symtab *s;
2afb61aa 4170 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
4171
4172 s = find_pc_symtab (stop_pc);
4173 if (s && s->language != language_asm)
568d6575 4174 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 4175 ecs->stop_func_start);
c2c6d25f 4176
2afb61aa 4177 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
4178 /* Use the step_resume_break to step until the end of the prologue,
4179 even if that involves jumps (as it seems to on the vax under
4180 4.2). */
4181 /* If the prologue ends in the middle of a source line, continue to
4182 the end of that source line (if it is still within the function).
4183 Otherwise, just go to end of prologue. */
2afb61aa
PA
4184 if (stop_func_sal.end
4185 && stop_func_sal.pc != ecs->stop_func_start
4186 && stop_func_sal.end < ecs->stop_func_end)
4187 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 4188
2dbd5e30
KB
4189 /* Architectures which require breakpoint adjustment might not be able
4190 to place a breakpoint at the computed address. If so, the test
4191 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4192 ecs->stop_func_start to an address at which a breakpoint may be
4193 legitimately placed.
8fb3e588 4194
2dbd5e30
KB
4195 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4196 made, GDB will enter an infinite loop when stepping through
4197 optimized code consisting of VLIW instructions which contain
4198 subinstructions corresponding to different source lines. On
4199 FR-V, it's not permitted to place a breakpoint on any but the
4200 first subinstruction of a VLIW instruction. When a breakpoint is
4201 set, GDB will adjust the breakpoint address to the beginning of
4202 the VLIW instruction. Thus, we need to make the corresponding
4203 adjustment here when computing the stop address. */
8fb3e588 4204
568d6575 4205 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
4206 {
4207 ecs->stop_func_start
568d6575 4208 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 4209 ecs->stop_func_start);
2dbd5e30
KB
4210 }
4211
c2c6d25f
JM
4212 if (ecs->stop_func_start == stop_pc)
4213 {
4214 /* We are already there: stop now. */
414c69f7 4215 ecs->event_thread->stop_step = 1;
488f131b 4216 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
4217 stop_stepping (ecs);
4218 return;
4219 }
4220 else
4221 {
4222 /* Put the step-breakpoint there and go until there. */
fe39c653 4223 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
4224 sr_sal.pc = ecs->stop_func_start;
4225 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 4226
c2c6d25f 4227 /* Do not specify what the fp should be when we stop since on
488f131b
JB
4228 some machines the prologue is where the new fp value is
4229 established. */
a6d9a66e 4230 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
4231
4232 /* And make sure stepping stops right away then. */
4e1c45ea 4233 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
4234 }
4235 keep_going (ecs);
4236}
d4f3574e 4237
b2175913
MS
4238/* Inferior has stepped backward into a subroutine call with source
4239 code that we should not step over. Do step to the beginning of the
4240 last line of code in it. */
4241
4242static void
568d6575
UW
4243handle_step_into_function_backward (struct gdbarch *gdbarch,
4244 struct execution_control_state *ecs)
b2175913
MS
4245{
4246 struct symtab *s;
4247 struct symtab_and_line stop_func_sal, sr_sal;
4248
4249 s = find_pc_symtab (stop_pc);
4250 if (s && s->language != language_asm)
568d6575 4251 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
4252 ecs->stop_func_start);
4253
4254 stop_func_sal = find_pc_line (stop_pc, 0);
4255
4256 /* OK, we're just going to keep stepping here. */
4257 if (stop_func_sal.pc == stop_pc)
4258 {
4259 /* We're there already. Just stop stepping now. */
4260 ecs->event_thread->stop_step = 1;
4261 print_stop_reason (END_STEPPING_RANGE, 0);
4262 stop_stepping (ecs);
4263 }
4264 else
4265 {
4266 /* Else just reset the step range and keep going.
4267 No step-resume breakpoint, they don't work for
4268 epilogues, which can have multiple entry paths. */
4269 ecs->event_thread->step_range_start = stop_func_sal.pc;
4270 ecs->event_thread->step_range_end = stop_func_sal.end;
4271 keep_going (ecs);
4272 }
4273 return;
4274}
4275
d3169d93 4276/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
4277 This is used to both functions and to skip over code. */
4278
4279static void
a6d9a66e
UW
4280insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
4281 struct symtab_and_line sr_sal,
44cbf7b5
AC
4282 struct frame_id sr_id)
4283{
611c83ae
PA
4284 /* There should never be more than one step-resume or longjmp-resume
4285 breakpoint per thread, so we should never be setting a new
44cbf7b5 4286 step_resume_breakpoint when one is already active. */
4e1c45ea 4287 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
4288
4289 if (debug_infrun)
4290 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4291 "infrun: inserting step-resume breakpoint at %s\n",
4292 paddress (gdbarch, sr_sal.pc));
d3169d93 4293
4e1c45ea 4294 inferior_thread ()->step_resume_breakpoint
a6d9a66e 4295 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
44cbf7b5 4296}
7ce450bd 4297
d3169d93 4298/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 4299 to skip a potential signal handler.
7ce450bd 4300
14e60db5
DJ
4301 This is called with the interrupted function's frame. The signal
4302 handler, when it returns, will resume the interrupted function at
4303 RETURN_FRAME.pc. */
d303a6c7
AC
4304
4305static void
44cbf7b5 4306insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
4307{
4308 struct symtab_and_line sr_sal;
a6d9a66e 4309 struct gdbarch *gdbarch;
d303a6c7 4310
f4c1edd8 4311 gdb_assert (return_frame != NULL);
d303a6c7
AC
4312 init_sal (&sr_sal); /* initialize to zeros */
4313
a6d9a66e 4314 gdbarch = get_frame_arch (return_frame);
568d6575 4315 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
4316 sr_sal.section = find_pc_overlay (sr_sal.pc);
4317
a6d9a66e
UW
4318 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
4319 get_stack_frame_id (return_frame));
d303a6c7
AC
4320}
4321
14e60db5
DJ
4322/* Similar to insert_step_resume_breakpoint_at_frame, except
4323 but a breakpoint at the previous frame's PC. This is used to
4324 skip a function after stepping into it (for "next" or if the called
4325 function has no debugging information).
4326
4327 The current function has almost always been reached by single
4328 stepping a call or return instruction. NEXT_FRAME belongs to the
4329 current function, and the breakpoint will be set at the caller's
4330 resume address.
4331
4332 This is a separate function rather than reusing
4333 insert_step_resume_breakpoint_at_frame in order to avoid
4334 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 4335 of frame_unwind_caller_id for an example). */
14e60db5
DJ
4336
4337static void
4338insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4339{
4340 struct symtab_and_line sr_sal;
a6d9a66e 4341 struct gdbarch *gdbarch;
14e60db5
DJ
4342
4343 /* We shouldn't have gotten here if we don't know where the call site
4344 is. */
c7ce8faa 4345 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
4346
4347 init_sal (&sr_sal); /* initialize to zeros */
4348
a6d9a66e 4349 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
4350 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
4351 frame_unwind_caller_pc (next_frame));
14e60db5
DJ
4352 sr_sal.section = find_pc_overlay (sr_sal.pc);
4353
a6d9a66e 4354 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 4355 frame_unwind_caller_id (next_frame));
14e60db5
DJ
4356}
4357
611c83ae
PA
4358/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4359 new breakpoint at the target of a jmp_buf. The handling of
4360 longjmp-resume uses the same mechanisms used for handling
4361 "step-resume" breakpoints. */
4362
4363static void
a6d9a66e 4364insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
4365{
4366 /* There should never be more than one step-resume or longjmp-resume
4367 breakpoint per thread, so we should never be setting a new
4368 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 4369 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
4370
4371 if (debug_infrun)
4372 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4373 "infrun: inserting longjmp-resume breakpoint at %s\n",
4374 paddress (gdbarch, pc));
611c83ae 4375
4e1c45ea 4376 inferior_thread ()->step_resume_breakpoint =
a6d9a66e 4377 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
4378}
4379
104c1213
JM
4380static void
4381stop_stepping (struct execution_control_state *ecs)
4382{
527159b7 4383 if (debug_infrun)
8a9de0e4 4384 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 4385
cd0fc7c3
SS
4386 /* Let callers know we don't want to wait for the inferior anymore. */
4387 ecs->wait_some_more = 0;
4388}
4389
d4f3574e
SS
4390/* This function handles various cases where we need to continue
4391 waiting for the inferior. */
4392/* (Used to be the keep_going: label in the old wait_for_inferior) */
4393
4394static void
4395keep_going (struct execution_control_state *ecs)
4396{
d4f3574e 4397 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
4398 ecs->event_thread->prev_pc
4399 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 4400
d4f3574e
SS
4401 /* If we did not do break;, it means we should keep running the
4402 inferior and not return to debugger. */
4403
2020b7ab
PA
4404 if (ecs->event_thread->trap_expected
4405 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
4406 {
4407 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
4408 the inferior, else we'd not get here) and we haven't yet
4409 gotten our trap. Simply continue. */
2020b7ab
PA
4410 resume (currently_stepping (ecs->event_thread),
4411 ecs->event_thread->stop_signal);
d4f3574e
SS
4412 }
4413 else
4414 {
4415 /* Either the trap was not expected, but we are continuing
488f131b
JB
4416 anyway (the user asked that this signal be passed to the
4417 child)
4418 -- or --
4419 The signal was SIGTRAP, e.g. it was our signal, but we
4420 decided we should resume from it.
d4f3574e 4421
c36b740a 4422 We're going to run this baby now!
d4f3574e 4423
c36b740a
VP
4424 Note that insert_breakpoints won't try to re-insert
4425 already inserted breakpoints. Therefore, we don't
4426 care if breakpoints were already inserted, or not. */
4427
4e1c45ea 4428 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 4429 {
9f5a595d
UW
4430 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
4431 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
4432 /* Since we can't do a displaced step, we have to remove
4433 the breakpoint while we step it. To keep things
4434 simple, we remove them all. */
4435 remove_breakpoints ();
45e8c884
VP
4436 }
4437 else
d4f3574e 4438 {
e236ba44 4439 struct gdb_exception e;
569631c6
UW
4440 /* Stop stepping when inserting breakpoints
4441 has failed. */
e236ba44
VP
4442 TRY_CATCH (e, RETURN_MASK_ERROR)
4443 {
4444 insert_breakpoints ();
4445 }
4446 if (e.reason < 0)
d4f3574e
SS
4447 {
4448 stop_stepping (ecs);
4449 return;
4450 }
d4f3574e
SS
4451 }
4452
4e1c45ea 4453 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
4454
4455 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
4456 specifies that such a signal should be delivered to the
4457 target program).
4458
4459 Typically, this would occure when a user is debugging a
4460 target monitor on a simulator: the target monitor sets a
4461 breakpoint; the simulator encounters this break-point and
4462 halts the simulation handing control to GDB; GDB, noteing
4463 that the break-point isn't valid, returns control back to the
4464 simulator; the simulator then delivers the hardware
4465 equivalent of a SIGNAL_TRAP to the program being debugged. */
4466
2020b7ab
PA
4467 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4468 && !signal_program[ecs->event_thread->stop_signal])
4469 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 4470
2020b7ab
PA
4471 resume (currently_stepping (ecs->event_thread),
4472 ecs->event_thread->stop_signal);
d4f3574e
SS
4473 }
4474
488f131b 4475 prepare_to_wait (ecs);
d4f3574e
SS
4476}
4477
104c1213
JM
4478/* This function normally comes after a resume, before
4479 handle_inferior_event exits. It takes care of any last bits of
4480 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 4481
104c1213
JM
4482static void
4483prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 4484{
527159b7 4485 if (debug_infrun)
8a9de0e4 4486 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
0d1e5fa7 4487 if (infwait_state == infwait_normal_state)
104c1213
JM
4488 {
4489 overlay_cache_invalid = 1;
4490
4491 /* We have to invalidate the registers BEFORE calling
488f131b
JB
4492 target_wait because they can be loaded from the target while
4493 in target_wait. This makes remote debugging a bit more
4494 efficient for those targets that provide critical registers
4495 as part of their normal status mechanism. */
104c1213
JM
4496
4497 registers_changed ();
0d1e5fa7 4498 waiton_ptid = pid_to_ptid (-1);
104c1213
JM
4499 }
4500 /* This is the old end of the while loop. Let everybody know we
4501 want to wait for the inferior some more and get called again
4502 soon. */
4503 ecs->wait_some_more = 1;
c906108c 4504}
11cf8741
JM
4505
4506/* Print why the inferior has stopped. We always print something when
4507 the inferior exits, or receives a signal. The rest of the cases are
4508 dealt with later on in normal_stop() and print_it_typical(). Ideally
4509 there should be a call to this function from handle_inferior_event()
4510 each time stop_stepping() is called.*/
4511static void
4512print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4513{
4514 switch (stop_reason)
4515 {
11cf8741
JM
4516 case END_STEPPING_RANGE:
4517 /* We are done with a step/next/si/ni command. */
4518 /* For now print nothing. */
fb40c209 4519 /* Print a message only if not in the middle of doing a "step n"
488f131b 4520 operation for n > 1 */
414c69f7
PA
4521 if (!inferior_thread ()->step_multi
4522 || !inferior_thread ()->stop_step)
9dc5e2a9 4523 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4524 ui_out_field_string
4525 (uiout, "reason",
4526 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 4527 break;
11cf8741
JM
4528 case SIGNAL_EXITED:
4529 /* The inferior was terminated by a signal. */
8b93c638 4530 annotate_signalled ();
9dc5e2a9 4531 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4532 ui_out_field_string
4533 (uiout, "reason",
4534 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
4535 ui_out_text (uiout, "\nProgram terminated with signal ");
4536 annotate_signal_name ();
488f131b
JB
4537 ui_out_field_string (uiout, "signal-name",
4538 target_signal_to_name (stop_info));
8b93c638
JM
4539 annotate_signal_name_end ();
4540 ui_out_text (uiout, ", ");
4541 annotate_signal_string ();
488f131b
JB
4542 ui_out_field_string (uiout, "signal-meaning",
4543 target_signal_to_string (stop_info));
8b93c638
JM
4544 annotate_signal_string_end ();
4545 ui_out_text (uiout, ".\n");
4546 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
4547 break;
4548 case EXITED:
4549 /* The inferior program is finished. */
8b93c638
JM
4550 annotate_exited (stop_info);
4551 if (stop_info)
4552 {
9dc5e2a9 4553 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4554 ui_out_field_string (uiout, "reason",
4555 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 4556 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
4557 ui_out_field_fmt (uiout, "exit-code", "0%o",
4558 (unsigned int) stop_info);
8b93c638
JM
4559 ui_out_text (uiout, ".\n");
4560 }
4561 else
4562 {
9dc5e2a9 4563 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4564 ui_out_field_string
4565 (uiout, "reason",
4566 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
4567 ui_out_text (uiout, "\nProgram exited normally.\n");
4568 }
f17517ea
AS
4569 /* Support the --return-child-result option. */
4570 return_child_result_value = stop_info;
11cf8741
JM
4571 break;
4572 case SIGNAL_RECEIVED:
252fbfc8
PA
4573 /* Signal received. The signal table tells us to print about
4574 it. */
8b93c638 4575 annotate_signal ();
252fbfc8
PA
4576
4577 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4578 {
4579 struct thread_info *t = inferior_thread ();
4580
4581 ui_out_text (uiout, "\n[");
4582 ui_out_field_string (uiout, "thread-name",
4583 target_pid_to_str (t->ptid));
4584 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4585 ui_out_text (uiout, " stopped");
4586 }
4587 else
4588 {
4589 ui_out_text (uiout, "\nProgram received signal ");
4590 annotate_signal_name ();
4591 if (ui_out_is_mi_like_p (uiout))
4592 ui_out_field_string
4593 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4594 ui_out_field_string (uiout, "signal-name",
4595 target_signal_to_name (stop_info));
4596 annotate_signal_name_end ();
4597 ui_out_text (uiout, ", ");
4598 annotate_signal_string ();
4599 ui_out_field_string (uiout, "signal-meaning",
4600 target_signal_to_string (stop_info));
4601 annotate_signal_string_end ();
4602 }
8b93c638 4603 ui_out_text (uiout, ".\n");
11cf8741 4604 break;
b2175913
MS
4605 case NO_HISTORY:
4606 /* Reverse execution: target ran out of history info. */
4607 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4608 break;
11cf8741 4609 default:
8e65ff28 4610 internal_error (__FILE__, __LINE__,
e2e0b3e5 4611 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
4612 break;
4613 }
4614}
c906108c 4615\f
43ff13b4 4616
c906108c
SS
4617/* Here to return control to GDB when the inferior stops for real.
4618 Print appropriate messages, remove breakpoints, give terminal our modes.
4619
4620 STOP_PRINT_FRAME nonzero means print the executing frame
4621 (pc, function, args, file, line number and line text).
4622 BREAKPOINTS_FAILED nonzero means stop was due to error
4623 attempting to insert breakpoints. */
4624
4625void
96baa820 4626normal_stop (void)
c906108c 4627{
73b65bb0
DJ
4628 struct target_waitstatus last;
4629 ptid_t last_ptid;
29f49a6a 4630 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
4631
4632 get_last_target_status (&last_ptid, &last);
4633
29f49a6a
PA
4634 /* If an exception is thrown from this point on, make sure to
4635 propagate GDB's knowledge of the executing state to the
4636 frontend/user running state. A QUIT is an easy exception to see
4637 here, so do this before any filtered output. */
c35b1492
PA
4638 if (!non_stop)
4639 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
4640 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4641 && last.kind != TARGET_WAITKIND_EXITED)
4642 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 4643
4f8d22e3
PA
4644 /* In non-stop mode, we don't want GDB to switch threads behind the
4645 user's back, to avoid races where the user is typing a command to
4646 apply to thread x, but GDB switches to thread y before the user
4647 finishes entering the command. */
4648
c906108c
SS
4649 /* As with the notification of thread events, we want to delay
4650 notifying the user that we've switched thread context until
4651 the inferior actually stops.
4652
73b65bb0
DJ
4653 There's no point in saying anything if the inferior has exited.
4654 Note that SIGNALLED here means "exited with a signal", not
4655 "received a signal". */
4f8d22e3
PA
4656 if (!non_stop
4657 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
4658 && target_has_execution
4659 && last.kind != TARGET_WAITKIND_SIGNALLED
4660 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
4661 {
4662 target_terminal_ours_for_output ();
a3f17187 4663 printf_filtered (_("[Switching to %s]\n"),
c95310c6 4664 target_pid_to_str (inferior_ptid));
b8fa951a 4665 annotate_thread_changed ();
39f77062 4666 previous_inferior_ptid = inferior_ptid;
c906108c 4667 }
c906108c 4668
74960c60 4669 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
4670 {
4671 if (remove_breakpoints ())
4672 {
4673 target_terminal_ours_for_output ();
a3f17187
AC
4674 printf_filtered (_("\
4675Cannot remove breakpoints because program is no longer writable.\n\
a3f17187 4676Further execution is probably impossible.\n"));
c906108c
SS
4677 }
4678 }
c906108c 4679
c906108c
SS
4680 /* If an auto-display called a function and that got a signal,
4681 delete that auto-display to avoid an infinite recursion. */
4682
4683 if (stopped_by_random_signal)
4684 disable_current_display ();
4685
4686 /* Don't print a message if in the middle of doing a "step n"
4687 operation for n > 1 */
af679fd0
PA
4688 if (target_has_execution
4689 && last.kind != TARGET_WAITKIND_SIGNALLED
4690 && last.kind != TARGET_WAITKIND_EXITED
4691 && inferior_thread ()->step_multi
414c69f7 4692 && inferior_thread ()->stop_step)
c906108c
SS
4693 goto done;
4694
4695 target_terminal_ours ();
4696
7abfe014
DJ
4697 /* Set the current source location. This will also happen if we
4698 display the frame below, but the current SAL will be incorrect
4699 during a user hook-stop function. */
d729566a 4700 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
4701 set_current_sal_from_frame (get_current_frame (), 1);
4702
dd7e2d2b
PA
4703 /* Let the user/frontend see the threads as stopped. */
4704 do_cleanups (old_chain);
4705
4706 /* Look up the hook_stop and run it (CLI internally handles problem
4707 of stop_command's pre-hook not existing). */
4708 if (stop_command)
4709 catch_errors (hook_stop_stub, stop_command,
4710 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4711
d729566a 4712 if (!has_stack_frames ())
d51fd4c8 4713 goto done;
c906108c 4714
32400beb
PA
4715 if (last.kind == TARGET_WAITKIND_SIGNALLED
4716 || last.kind == TARGET_WAITKIND_EXITED)
4717 goto done;
4718
c906108c
SS
4719 /* Select innermost stack frame - i.e., current frame is frame 0,
4720 and current location is based on that.
4721 Don't do this on return from a stack dummy routine,
4722 or if the program has exited. */
4723
4724 if (!stop_stack_dummy)
4725 {
0f7d239c 4726 select_frame (get_current_frame ());
c906108c
SS
4727
4728 /* Print current location without a level number, if
c5aa993b
JM
4729 we have changed functions or hit a breakpoint.
4730 Print source line if we have one.
4731 bpstat_print() contains the logic deciding in detail
4732 what to print, based on the event(s) that just occurred. */
c906108c 4733
d01a8610
AS
4734 /* If --batch-silent is enabled then there's no need to print the current
4735 source location, and to try risks causing an error message about
4736 missing source files. */
4737 if (stop_print_frame && !batch_silent)
c906108c
SS
4738 {
4739 int bpstat_ret;
4740 int source_flag;
917317f4 4741 int do_frame_printing = 1;
347bddb7 4742 struct thread_info *tp = inferior_thread ();
c906108c 4743
347bddb7 4744 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
4745 switch (bpstat_ret)
4746 {
4747 case PRINT_UNKNOWN:
b0f4b84b
DJ
4748 /* If we had hit a shared library event breakpoint,
4749 bpstat_print would print out this message. If we hit
4750 an OS-level shared library event, do the same
4751 thing. */
4752 if (last.kind == TARGET_WAITKIND_LOADED)
4753 {
4754 printf_filtered (_("Stopped due to shared library event\n"));
4755 source_flag = SRC_LINE; /* something bogus */
4756 do_frame_printing = 0;
4757 break;
4758 }
4759
aa0cd9c1 4760 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
4761 (or should) carry around the function and does (or
4762 should) use that when doing a frame comparison. */
414c69f7 4763 if (tp->stop_step
347bddb7 4764 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 4765 get_frame_id (get_current_frame ()))
917317f4 4766 && step_start_function == find_pc_function (stop_pc))
488f131b 4767 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 4768 else
488f131b 4769 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4770 break;
4771 case PRINT_SRC_AND_LOC:
488f131b 4772 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4773 break;
4774 case PRINT_SRC_ONLY:
c5394b80 4775 source_flag = SRC_LINE;
917317f4
JM
4776 break;
4777 case PRINT_NOTHING:
488f131b 4778 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
4779 do_frame_printing = 0;
4780 break;
4781 default:
e2e0b3e5 4782 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 4783 }
c906108c
SS
4784
4785 /* The behavior of this routine with respect to the source
4786 flag is:
c5394b80
JM
4787 SRC_LINE: Print only source line
4788 LOCATION: Print only location
4789 SRC_AND_LOC: Print location and source line */
917317f4 4790 if (do_frame_printing)
b04f3ab4 4791 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
4792
4793 /* Display the auto-display expressions. */
4794 do_displays ();
4795 }
4796 }
4797
4798 /* Save the function value return registers, if we care.
4799 We might be about to restore their previous contents. */
32400beb 4800 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
4801 {
4802 /* This should not be necessary. */
4803 if (stop_registers)
4804 regcache_xfree (stop_registers);
4805
4806 /* NB: The copy goes through to the target picking up the value of
4807 all the registers. */
4808 stop_registers = regcache_dup (get_current_regcache ());
4809 }
c906108c
SS
4810
4811 if (stop_stack_dummy)
4812 {
b89667eb
DE
4813 /* Pop the empty frame that contains the stack dummy.
4814 This also restores inferior state prior to the call
4815 (struct inferior_thread_state). */
4816 struct frame_info *frame = get_current_frame ();
4817 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4818 frame_pop (frame);
4819 /* frame_pop() calls reinit_frame_cache as the last thing it does
4820 which means there's currently no selected frame. We don't need
4821 to re-establish a selected frame if the dummy call returns normally,
4822 that will be done by restore_inferior_status. However, we do have
4823 to handle the case where the dummy call is returning after being
4824 stopped (e.g. the dummy call previously hit a breakpoint). We
4825 can't know which case we have so just always re-establish a
4826 selected frame here. */
0f7d239c 4827 select_frame (get_current_frame ());
c906108c
SS
4828 }
4829
c906108c
SS
4830done:
4831 annotate_stopped ();
41d2bdb4
PA
4832
4833 /* Suppress the stop observer if we're in the middle of:
4834
4835 - a step n (n > 1), as there still more steps to be done.
4836
4837 - a "finish" command, as the observer will be called in
4838 finish_command_continuation, so it can include the inferior
4839 function's return value.
4840
4841 - calling an inferior function, as we pretend we inferior didn't
4842 run at all. The return value of the call is handled by the
4843 expression evaluator, through call_function_by_hand. */
4844
4845 if (!target_has_execution
4846 || last.kind == TARGET_WAITKIND_SIGNALLED
4847 || last.kind == TARGET_WAITKIND_EXITED
4848 || (!inferior_thread ()->step_multi
4849 && !(inferior_thread ()->stop_bpstat
c5a4d20b
PA
4850 && inferior_thread ()->proceed_to_finish)
4851 && !inferior_thread ()->in_infcall))
347bddb7
PA
4852 {
4853 if (!ptid_equal (inferior_ptid, null_ptid))
1d33d6ba
VP
4854 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
4855 stop_print_frame);
347bddb7 4856 else
1d33d6ba 4857 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 4858 }
347bddb7 4859
48844aa6
PA
4860 if (target_has_execution)
4861 {
4862 if (last.kind != TARGET_WAITKIND_SIGNALLED
4863 && last.kind != TARGET_WAITKIND_EXITED)
4864 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4865 Delete any breakpoint that is to be deleted at the next stop. */
4866 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
94cc34af 4867 }
c906108c
SS
4868}
4869
4870static int
96baa820 4871hook_stop_stub (void *cmd)
c906108c 4872{
5913bcb0 4873 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
4874 return (0);
4875}
4876\f
c5aa993b 4877int
96baa820 4878signal_stop_state (int signo)
c906108c 4879{
d6b48e9c 4880 return signal_stop[signo];
c906108c
SS
4881}
4882
c5aa993b 4883int
96baa820 4884signal_print_state (int signo)
c906108c
SS
4885{
4886 return signal_print[signo];
4887}
4888
c5aa993b 4889int
96baa820 4890signal_pass_state (int signo)
c906108c
SS
4891{
4892 return signal_program[signo];
4893}
4894
488f131b 4895int
7bda5e4a 4896signal_stop_update (int signo, int state)
d4f3574e
SS
4897{
4898 int ret = signal_stop[signo];
4899 signal_stop[signo] = state;
4900 return ret;
4901}
4902
488f131b 4903int
7bda5e4a 4904signal_print_update (int signo, int state)
d4f3574e
SS
4905{
4906 int ret = signal_print[signo];
4907 signal_print[signo] = state;
4908 return ret;
4909}
4910
488f131b 4911int
7bda5e4a 4912signal_pass_update (int signo, int state)
d4f3574e
SS
4913{
4914 int ret = signal_program[signo];
4915 signal_program[signo] = state;
4916 return ret;
4917}
4918
c906108c 4919static void
96baa820 4920sig_print_header (void)
c906108c 4921{
a3f17187
AC
4922 printf_filtered (_("\
4923Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
4924}
4925
4926static void
96baa820 4927sig_print_info (enum target_signal oursig)
c906108c 4928{
54363045 4929 const char *name = target_signal_to_name (oursig);
c906108c 4930 int name_padding = 13 - strlen (name);
96baa820 4931
c906108c
SS
4932 if (name_padding <= 0)
4933 name_padding = 0;
4934
4935 printf_filtered ("%s", name);
488f131b 4936 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
4937 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4938 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4939 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4940 printf_filtered ("%s\n", target_signal_to_string (oursig));
4941}
4942
4943/* Specify how various signals in the inferior should be handled. */
4944
4945static void
96baa820 4946handle_command (char *args, int from_tty)
c906108c
SS
4947{
4948 char **argv;
4949 int digits, wordlen;
4950 int sigfirst, signum, siglast;
4951 enum target_signal oursig;
4952 int allsigs;
4953 int nsigs;
4954 unsigned char *sigs;
4955 struct cleanup *old_chain;
4956
4957 if (args == NULL)
4958 {
e2e0b3e5 4959 error_no_arg (_("signal to handle"));
c906108c
SS
4960 }
4961
4962 /* Allocate and zero an array of flags for which signals to handle. */
4963
4964 nsigs = (int) TARGET_SIGNAL_LAST;
4965 sigs = (unsigned char *) alloca (nsigs);
4966 memset (sigs, 0, nsigs);
4967
4968 /* Break the command line up into args. */
4969
d1a41061 4970 argv = gdb_buildargv (args);
7a292a7a 4971 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4972
4973 /* Walk through the args, looking for signal oursigs, signal names, and
4974 actions. Signal numbers and signal names may be interspersed with
4975 actions, with the actions being performed for all signals cumulatively
4976 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4977
4978 while (*argv != NULL)
4979 {
4980 wordlen = strlen (*argv);
4981 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4982 {;
4983 }
4984 allsigs = 0;
4985 sigfirst = siglast = -1;
4986
4987 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4988 {
4989 /* Apply action to all signals except those used by the
4990 debugger. Silently skip those. */
4991 allsigs = 1;
4992 sigfirst = 0;
4993 siglast = nsigs - 1;
4994 }
4995 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4996 {
4997 SET_SIGS (nsigs, sigs, signal_stop);
4998 SET_SIGS (nsigs, sigs, signal_print);
4999 }
5000 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5001 {
5002 UNSET_SIGS (nsigs, sigs, signal_program);
5003 }
5004 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5005 {
5006 SET_SIGS (nsigs, sigs, signal_print);
5007 }
5008 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5009 {
5010 SET_SIGS (nsigs, sigs, signal_program);
5011 }
5012 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5013 {
5014 UNSET_SIGS (nsigs, sigs, signal_stop);
5015 }
5016 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5017 {
5018 SET_SIGS (nsigs, sigs, signal_program);
5019 }
5020 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5021 {
5022 UNSET_SIGS (nsigs, sigs, signal_print);
5023 UNSET_SIGS (nsigs, sigs, signal_stop);
5024 }
5025 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5026 {
5027 UNSET_SIGS (nsigs, sigs, signal_program);
5028 }
5029 else if (digits > 0)
5030 {
5031 /* It is numeric. The numeric signal refers to our own
5032 internal signal numbering from target.h, not to host/target
5033 signal number. This is a feature; users really should be
5034 using symbolic names anyway, and the common ones like
5035 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5036
5037 sigfirst = siglast = (int)
5038 target_signal_from_command (atoi (*argv));
5039 if ((*argv)[digits] == '-')
5040 {
5041 siglast = (int)
5042 target_signal_from_command (atoi ((*argv) + digits + 1));
5043 }
5044 if (sigfirst > siglast)
5045 {
5046 /* Bet he didn't figure we'd think of this case... */
5047 signum = sigfirst;
5048 sigfirst = siglast;
5049 siglast = signum;
5050 }
5051 }
5052 else
5053 {
5054 oursig = target_signal_from_name (*argv);
5055 if (oursig != TARGET_SIGNAL_UNKNOWN)
5056 {
5057 sigfirst = siglast = (int) oursig;
5058 }
5059 else
5060 {
5061 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 5062 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
5063 }
5064 }
5065
5066 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 5067 which signals to apply actions to. */
c906108c
SS
5068
5069 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
5070 {
5071 switch ((enum target_signal) signum)
5072 {
5073 case TARGET_SIGNAL_TRAP:
5074 case TARGET_SIGNAL_INT:
5075 if (!allsigs && !sigs[signum])
5076 {
9e2f0ad4
HZ
5077 if (query (_("%s is used by the debugger.\n\
5078Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
5079 {
5080 sigs[signum] = 1;
5081 }
5082 else
5083 {
a3f17187 5084 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
5085 gdb_flush (gdb_stdout);
5086 }
5087 }
5088 break;
5089 case TARGET_SIGNAL_0:
5090 case TARGET_SIGNAL_DEFAULT:
5091 case TARGET_SIGNAL_UNKNOWN:
5092 /* Make sure that "all" doesn't print these. */
5093 break;
5094 default:
5095 sigs[signum] = 1;
5096 break;
5097 }
5098 }
5099
5100 argv++;
5101 }
5102
3a031f65
PA
5103 for (signum = 0; signum < nsigs; signum++)
5104 if (sigs[signum])
5105 {
5106 target_notice_signals (inferior_ptid);
c906108c 5107
3a031f65
PA
5108 if (from_tty)
5109 {
5110 /* Show the results. */
5111 sig_print_header ();
5112 for (; signum < nsigs; signum++)
5113 if (sigs[signum])
5114 sig_print_info (signum);
5115 }
5116
5117 break;
5118 }
c906108c
SS
5119
5120 do_cleanups (old_chain);
5121}
5122
5123static void
96baa820 5124xdb_handle_command (char *args, int from_tty)
c906108c
SS
5125{
5126 char **argv;
5127 struct cleanup *old_chain;
5128
d1a41061
PP
5129 if (args == NULL)
5130 error_no_arg (_("xdb command"));
5131
c906108c
SS
5132 /* Break the command line up into args. */
5133
d1a41061 5134 argv = gdb_buildargv (args);
7a292a7a 5135 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5136 if (argv[1] != (char *) NULL)
5137 {
5138 char *argBuf;
5139 int bufLen;
5140
5141 bufLen = strlen (argv[0]) + 20;
5142 argBuf = (char *) xmalloc (bufLen);
5143 if (argBuf)
5144 {
5145 int validFlag = 1;
5146 enum target_signal oursig;
5147
5148 oursig = target_signal_from_name (argv[0]);
5149 memset (argBuf, 0, bufLen);
5150 if (strcmp (argv[1], "Q") == 0)
5151 sprintf (argBuf, "%s %s", argv[0], "noprint");
5152 else
5153 {
5154 if (strcmp (argv[1], "s") == 0)
5155 {
5156 if (!signal_stop[oursig])
5157 sprintf (argBuf, "%s %s", argv[0], "stop");
5158 else
5159 sprintf (argBuf, "%s %s", argv[0], "nostop");
5160 }
5161 else if (strcmp (argv[1], "i") == 0)
5162 {
5163 if (!signal_program[oursig])
5164 sprintf (argBuf, "%s %s", argv[0], "pass");
5165 else
5166 sprintf (argBuf, "%s %s", argv[0], "nopass");
5167 }
5168 else if (strcmp (argv[1], "r") == 0)
5169 {
5170 if (!signal_print[oursig])
5171 sprintf (argBuf, "%s %s", argv[0], "print");
5172 else
5173 sprintf (argBuf, "%s %s", argv[0], "noprint");
5174 }
5175 else
5176 validFlag = 0;
5177 }
5178 if (validFlag)
5179 handle_command (argBuf, from_tty);
5180 else
a3f17187 5181 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 5182 if (argBuf)
b8c9b27d 5183 xfree (argBuf);
c906108c
SS
5184 }
5185 }
5186 do_cleanups (old_chain);
5187}
5188
5189/* Print current contents of the tables set by the handle command.
5190 It is possible we should just be printing signals actually used
5191 by the current target (but for things to work right when switching
5192 targets, all signals should be in the signal tables). */
5193
5194static void
96baa820 5195signals_info (char *signum_exp, int from_tty)
c906108c
SS
5196{
5197 enum target_signal oursig;
5198 sig_print_header ();
5199
5200 if (signum_exp)
5201 {
5202 /* First see if this is a symbol name. */
5203 oursig = target_signal_from_name (signum_exp);
5204 if (oursig == TARGET_SIGNAL_UNKNOWN)
5205 {
5206 /* No, try numeric. */
5207 oursig =
bb518678 5208 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
5209 }
5210 sig_print_info (oursig);
5211 return;
5212 }
5213
5214 printf_filtered ("\n");
5215 /* These ugly casts brought to you by the native VAX compiler. */
5216 for (oursig = TARGET_SIGNAL_FIRST;
5217 (int) oursig < (int) TARGET_SIGNAL_LAST;
5218 oursig = (enum target_signal) ((int) oursig + 1))
5219 {
5220 QUIT;
5221
5222 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 5223 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
5224 sig_print_info (oursig);
5225 }
5226
a3f17187 5227 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c 5228}
4aa995e1
PA
5229
5230/* The $_siginfo convenience variable is a bit special. We don't know
5231 for sure the type of the value until we actually have a chance to
5232 fetch the data. The type can change depending on gdbarch, so it it
5233 also dependent on which thread you have selected.
5234
5235 1. making $_siginfo be an internalvar that creates a new value on
5236 access.
5237
5238 2. making the value of $_siginfo be an lval_computed value. */
5239
5240/* This function implements the lval_computed support for reading a
5241 $_siginfo value. */
5242
5243static void
5244siginfo_value_read (struct value *v)
5245{
5246 LONGEST transferred;
5247
5248 transferred =
5249 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5250 NULL,
5251 value_contents_all_raw (v),
5252 value_offset (v),
5253 TYPE_LENGTH (value_type (v)));
5254
5255 if (transferred != TYPE_LENGTH (value_type (v)))
5256 error (_("Unable to read siginfo"));
5257}
5258
5259/* This function implements the lval_computed support for writing a
5260 $_siginfo value. */
5261
5262static void
5263siginfo_value_write (struct value *v, struct value *fromval)
5264{
5265 LONGEST transferred;
5266
5267 transferred = target_write (&current_target,
5268 TARGET_OBJECT_SIGNAL_INFO,
5269 NULL,
5270 value_contents_all_raw (fromval),
5271 value_offset (v),
5272 TYPE_LENGTH (value_type (fromval)));
5273
5274 if (transferred != TYPE_LENGTH (value_type (fromval)))
5275 error (_("Unable to write siginfo"));
5276}
5277
5278static struct lval_funcs siginfo_value_funcs =
5279 {
5280 siginfo_value_read,
5281 siginfo_value_write
5282 };
5283
5284/* Return a new value with the correct type for the siginfo object of
78267919
UW
5285 the current thread using architecture GDBARCH. Return a void value
5286 if there's no object available. */
4aa995e1 5287
2c0b251b 5288static struct value *
78267919 5289siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 5290{
4aa995e1 5291 if (target_has_stack
78267919
UW
5292 && !ptid_equal (inferior_ptid, null_ptid)
5293 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 5294 {
78267919
UW
5295 struct type *type = gdbarch_get_siginfo_type (gdbarch);
5296 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
5297 }
5298
78267919 5299 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
5300}
5301
c906108c 5302\f
b89667eb
DE
5303/* Inferior thread state.
5304 These are details related to the inferior itself, and don't include
5305 things like what frame the user had selected or what gdb was doing
5306 with the target at the time.
5307 For inferior function calls these are things we want to restore
5308 regardless of whether the function call successfully completes
5309 or the dummy frame has to be manually popped. */
5310
5311struct inferior_thread_state
7a292a7a
SS
5312{
5313 enum target_signal stop_signal;
5314 CORE_ADDR stop_pc;
b89667eb
DE
5315 struct regcache *registers;
5316};
5317
5318struct inferior_thread_state *
5319save_inferior_thread_state (void)
5320{
5321 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5322 struct thread_info *tp = inferior_thread ();
5323
5324 inf_state->stop_signal = tp->stop_signal;
5325 inf_state->stop_pc = stop_pc;
5326
5327 inf_state->registers = regcache_dup (get_current_regcache ());
5328
5329 return inf_state;
5330}
5331
5332/* Restore inferior session state to INF_STATE. */
5333
5334void
5335restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5336{
5337 struct thread_info *tp = inferior_thread ();
5338
5339 tp->stop_signal = inf_state->stop_signal;
5340 stop_pc = inf_state->stop_pc;
5341
5342 /* The inferior can be gone if the user types "print exit(0)"
5343 (and perhaps other times). */
5344 if (target_has_execution)
5345 /* NB: The register write goes through to the target. */
5346 regcache_cpy (get_current_regcache (), inf_state->registers);
5347 regcache_xfree (inf_state->registers);
5348 xfree (inf_state);
5349}
5350
5351static void
5352do_restore_inferior_thread_state_cleanup (void *state)
5353{
5354 restore_inferior_thread_state (state);
5355}
5356
5357struct cleanup *
5358make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5359{
5360 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5361}
5362
5363void
5364discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5365{
5366 regcache_xfree (inf_state->registers);
5367 xfree (inf_state);
5368}
5369
5370struct regcache *
5371get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5372{
5373 return inf_state->registers;
5374}
5375
5376/* Session related state for inferior function calls.
5377 These are the additional bits of state that need to be restored
5378 when an inferior function call successfully completes. */
5379
5380struct inferior_status
5381{
7a292a7a
SS
5382 bpstat stop_bpstat;
5383 int stop_step;
5384 int stop_stack_dummy;
5385 int stopped_by_random_signal;
ca67fcb8 5386 int stepping_over_breakpoint;
7a292a7a
SS
5387 CORE_ADDR step_range_start;
5388 CORE_ADDR step_range_end;
aa0cd9c1 5389 struct frame_id step_frame_id;
edb3359d 5390 struct frame_id step_stack_frame_id;
5fbbeb29 5391 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
5392 CORE_ADDR step_resume_break_address;
5393 int stop_after_trap;
c0236d92 5394 int stop_soon;
7a292a7a 5395
b89667eb 5396 /* ID if the selected frame when the inferior function call was made. */
101dcfbe
AC
5397 struct frame_id selected_frame_id;
5398
7a292a7a 5399 int proceed_to_finish;
c5a4d20b 5400 int in_infcall;
7a292a7a
SS
5401};
5402
c906108c 5403/* Save all of the information associated with the inferior<==>gdb
b89667eb 5404 connection. */
c906108c 5405
7a292a7a 5406struct inferior_status *
b89667eb 5407save_inferior_status (void)
c906108c 5408{
72cec141 5409 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 5410 struct thread_info *tp = inferior_thread ();
d6b48e9c 5411 struct inferior *inf = current_inferior ();
7a292a7a 5412
414c69f7 5413 inf_status->stop_step = tp->stop_step;
c906108c
SS
5414 inf_status->stop_stack_dummy = stop_stack_dummy;
5415 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
5416 inf_status->stepping_over_breakpoint = tp->trap_expected;
5417 inf_status->step_range_start = tp->step_range_start;
5418 inf_status->step_range_end = tp->step_range_end;
5419 inf_status->step_frame_id = tp->step_frame_id;
edb3359d 5420 inf_status->step_stack_frame_id = tp->step_stack_frame_id;
078130d0 5421 inf_status->step_over_calls = tp->step_over_calls;
c906108c 5422 inf_status->stop_after_trap = stop_after_trap;
d6b48e9c 5423 inf_status->stop_soon = inf->stop_soon;
c906108c
SS
5424 /* Save original bpstat chain here; replace it with copy of chain.
5425 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
5426 hand them back the original chain when restore_inferior_status is
5427 called. */
347bddb7
PA
5428 inf_status->stop_bpstat = tp->stop_bpstat;
5429 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
32400beb 5430 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5a4d20b 5431 inf_status->in_infcall = tp->in_infcall;
c5aa993b 5432
206415a3 5433 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 5434
7a292a7a 5435 return inf_status;
c906108c
SS
5436}
5437
c906108c 5438static int
96baa820 5439restore_selected_frame (void *args)
c906108c 5440{
488f131b 5441 struct frame_id *fid = (struct frame_id *) args;
c906108c 5442 struct frame_info *frame;
c906108c 5443
101dcfbe 5444 frame = frame_find_by_id (*fid);
c906108c 5445
aa0cd9c1
AC
5446 /* If inf_status->selected_frame_id is NULL, there was no previously
5447 selected frame. */
101dcfbe 5448 if (frame == NULL)
c906108c 5449 {
8a3fe4f8 5450 warning (_("Unable to restore previously selected frame."));
c906108c
SS
5451 return 0;
5452 }
5453
0f7d239c 5454 select_frame (frame);
c906108c
SS
5455
5456 return (1);
5457}
5458
b89667eb
DE
5459/* Restore inferior session state to INF_STATUS. */
5460
c906108c 5461void
96baa820 5462restore_inferior_status (struct inferior_status *inf_status)
c906108c 5463{
4e1c45ea 5464 struct thread_info *tp = inferior_thread ();
d6b48e9c 5465 struct inferior *inf = current_inferior ();
4e1c45ea 5466
414c69f7 5467 tp->stop_step = inf_status->stop_step;
c906108c
SS
5468 stop_stack_dummy = inf_status->stop_stack_dummy;
5469 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
5470 tp->trap_expected = inf_status->stepping_over_breakpoint;
5471 tp->step_range_start = inf_status->step_range_start;
5472 tp->step_range_end = inf_status->step_range_end;
5473 tp->step_frame_id = inf_status->step_frame_id;
edb3359d 5474 tp->step_stack_frame_id = inf_status->step_stack_frame_id;
078130d0 5475 tp->step_over_calls = inf_status->step_over_calls;
c906108c 5476 stop_after_trap = inf_status->stop_after_trap;
d6b48e9c 5477 inf->stop_soon = inf_status->stop_soon;
347bddb7
PA
5478 bpstat_clear (&tp->stop_bpstat);
5479 tp->stop_bpstat = inf_status->stop_bpstat;
b89667eb 5480 inf_status->stop_bpstat = NULL;
32400beb 5481 tp->proceed_to_finish = inf_status->proceed_to_finish;
c5a4d20b 5482 tp->in_infcall = inf_status->in_infcall;
c906108c 5483
b89667eb 5484 if (target_has_stack)
c906108c 5485 {
c906108c 5486 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
5487 walking the stack might encounter a garbage pointer and
5488 error() trying to dereference it. */
488f131b
JB
5489 if (catch_errors
5490 (restore_selected_frame, &inf_status->selected_frame_id,
5491 "Unable to restore previously selected frame:\n",
5492 RETURN_MASK_ERROR) == 0)
c906108c
SS
5493 /* Error in restoring the selected frame. Select the innermost
5494 frame. */
0f7d239c 5495 select_frame (get_current_frame ());
c906108c 5496 }
c906108c 5497
72cec141 5498 xfree (inf_status);
7a292a7a 5499}
c906108c 5500
74b7792f
AC
5501static void
5502do_restore_inferior_status_cleanup (void *sts)
5503{
5504 restore_inferior_status (sts);
5505}
5506
5507struct cleanup *
5508make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5509{
5510 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5511}
5512
c906108c 5513void
96baa820 5514discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
5515{
5516 /* See save_inferior_status for info on stop_bpstat. */
5517 bpstat_clear (&inf_status->stop_bpstat);
72cec141 5518 xfree (inf_status);
7a292a7a 5519}
b89667eb 5520\f
47932f85 5521int
3a3e9ee3 5522inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5523{
5524 struct target_waitstatus last;
5525 ptid_t last_ptid;
5526
5527 get_last_target_status (&last_ptid, &last);
5528
5529 if (last.kind != TARGET_WAITKIND_FORKED)
5530 return 0;
5531
3a3e9ee3 5532 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5533 return 0;
5534
5535 *child_pid = last.value.related_pid;
5536 return 1;
5537}
5538
5539int
3a3e9ee3 5540inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5541{
5542 struct target_waitstatus last;
5543 ptid_t last_ptid;
5544
5545 get_last_target_status (&last_ptid, &last);
5546
5547 if (last.kind != TARGET_WAITKIND_VFORKED)
5548 return 0;
5549
3a3e9ee3 5550 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5551 return 0;
5552
5553 *child_pid = last.value.related_pid;
5554 return 1;
5555}
5556
5557int
3a3e9ee3 5558inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
5559{
5560 struct target_waitstatus last;
5561 ptid_t last_ptid;
5562
5563 get_last_target_status (&last_ptid, &last);
5564
5565 if (last.kind != TARGET_WAITKIND_EXECD)
5566 return 0;
5567
3a3e9ee3 5568 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5569 return 0;
5570
5571 *execd_pathname = xstrdup (last.value.execd_pathname);
5572 return 1;
5573}
5574
ca6724c1
KB
5575/* Oft used ptids */
5576ptid_t null_ptid;
5577ptid_t minus_one_ptid;
5578
5579/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 5580
ca6724c1
KB
5581ptid_t
5582ptid_build (int pid, long lwp, long tid)
5583{
5584 ptid_t ptid;
5585
5586 ptid.pid = pid;
5587 ptid.lwp = lwp;
5588 ptid.tid = tid;
5589 return ptid;
5590}
5591
5592/* Create a ptid from just a pid. */
5593
5594ptid_t
5595pid_to_ptid (int pid)
5596{
5597 return ptid_build (pid, 0, 0);
5598}
5599
5600/* Fetch the pid (process id) component from a ptid. */
5601
5602int
5603ptid_get_pid (ptid_t ptid)
5604{
5605 return ptid.pid;
5606}
5607
5608/* Fetch the lwp (lightweight process) component from a ptid. */
5609
5610long
5611ptid_get_lwp (ptid_t ptid)
5612{
5613 return ptid.lwp;
5614}
5615
5616/* Fetch the tid (thread id) component from a ptid. */
5617
5618long
5619ptid_get_tid (ptid_t ptid)
5620{
5621 return ptid.tid;
5622}
5623
5624/* ptid_equal() is used to test equality of two ptids. */
5625
5626int
5627ptid_equal (ptid_t ptid1, ptid_t ptid2)
5628{
5629 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 5630 && ptid1.tid == ptid2.tid);
ca6724c1
KB
5631}
5632
252fbfc8
PA
5633/* Returns true if PTID represents a process. */
5634
5635int
5636ptid_is_pid (ptid_t ptid)
5637{
5638 if (ptid_equal (minus_one_ptid, ptid))
5639 return 0;
5640 if (ptid_equal (null_ptid, ptid))
5641 return 0;
5642
5643 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5644}
5645
ca6724c1
KB
5646/* restore_inferior_ptid() will be used by the cleanup machinery
5647 to restore the inferior_ptid value saved in a call to
5648 save_inferior_ptid(). */
ce696e05
KB
5649
5650static void
5651restore_inferior_ptid (void *arg)
5652{
5653 ptid_t *saved_ptid_ptr = arg;
5654 inferior_ptid = *saved_ptid_ptr;
5655 xfree (arg);
5656}
5657
5658/* Save the value of inferior_ptid so that it may be restored by a
5659 later call to do_cleanups(). Returns the struct cleanup pointer
5660 needed for later doing the cleanup. */
5661
5662struct cleanup *
5663save_inferior_ptid (void)
5664{
5665 ptid_t *saved_ptid_ptr;
5666
5667 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5668 *saved_ptid_ptr = inferior_ptid;
5669 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5670}
c5aa993b 5671\f
488f131b 5672
b2175913
MS
5673/* User interface for reverse debugging:
5674 Set exec-direction / show exec-direction commands
5675 (returns error unless target implements to_set_exec_direction method). */
5676
5677enum exec_direction_kind execution_direction = EXEC_FORWARD;
5678static const char exec_forward[] = "forward";
5679static const char exec_reverse[] = "reverse";
5680static const char *exec_direction = exec_forward;
5681static const char *exec_direction_names[] = {
5682 exec_forward,
5683 exec_reverse,
5684 NULL
5685};
5686
5687static void
5688set_exec_direction_func (char *args, int from_tty,
5689 struct cmd_list_element *cmd)
5690{
5691 if (target_can_execute_reverse)
5692 {
5693 if (!strcmp (exec_direction, exec_forward))
5694 execution_direction = EXEC_FORWARD;
5695 else if (!strcmp (exec_direction, exec_reverse))
5696 execution_direction = EXEC_REVERSE;
5697 }
5698}
5699
5700static void
5701show_exec_direction_func (struct ui_file *out, int from_tty,
5702 struct cmd_list_element *cmd, const char *value)
5703{
5704 switch (execution_direction) {
5705 case EXEC_FORWARD:
5706 fprintf_filtered (out, _("Forward.\n"));
5707 break;
5708 case EXEC_REVERSE:
5709 fprintf_filtered (out, _("Reverse.\n"));
5710 break;
5711 case EXEC_ERROR:
5712 default:
5713 fprintf_filtered (out,
5714 _("Forward (target `%s' does not support exec-direction).\n"),
5715 target_shortname);
5716 break;
5717 }
5718}
5719
5720/* User interface for non-stop mode. */
5721
ad52ddc6
PA
5722int non_stop = 0;
5723static int non_stop_1 = 0;
5724
5725static void
5726set_non_stop (char *args, int from_tty,
5727 struct cmd_list_element *c)
5728{
5729 if (target_has_execution)
5730 {
5731 non_stop_1 = non_stop;
5732 error (_("Cannot change this setting while the inferior is running."));
5733 }
5734
5735 non_stop = non_stop_1;
5736}
5737
5738static void
5739show_non_stop (struct ui_file *file, int from_tty,
5740 struct cmd_list_element *c, const char *value)
5741{
5742 fprintf_filtered (file,
5743 _("Controlling the inferior in non-stop mode is %s.\n"),
5744 value);
5745}
5746
d4db2f36
PA
5747static void
5748show_schedule_multiple (struct ui_file *file, int from_tty,
5749 struct cmd_list_element *c, const char *value)
5750{
5751 fprintf_filtered (file, _("\
5752Resuming the execution of threads of all processes is %s.\n"), value);
5753}
ad52ddc6 5754
c906108c 5755void
96baa820 5756_initialize_infrun (void)
c906108c 5757{
52f0bd74
AC
5758 int i;
5759 int numsigs;
c906108c
SS
5760 struct cmd_list_element *c;
5761
1bedd215
AC
5762 add_info ("signals", signals_info, _("\
5763What debugger does when program gets various signals.\n\
5764Specify a signal as argument to print info on that signal only."));
c906108c
SS
5765 add_info_alias ("handle", "signals", 0);
5766
1bedd215
AC
5767 add_com ("handle", class_run, handle_command, _("\
5768Specify how to handle a signal.\n\
c906108c
SS
5769Args are signals and actions to apply to those signals.\n\
5770Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5771from 1-15 are allowed for compatibility with old versions of GDB.\n\
5772Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5773The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5774used by the debugger, typically SIGTRAP and SIGINT.\n\
5775Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
5776\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5777Stop means reenter debugger if this signal happens (implies print).\n\
5778Print means print a message if this signal happens.\n\
5779Pass means let program see this signal; otherwise program doesn't know.\n\
5780Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5781Pass and Stop may be combined."));
c906108c
SS
5782 if (xdb_commands)
5783 {
1bedd215
AC
5784 add_com ("lz", class_info, signals_info, _("\
5785What debugger does when program gets various signals.\n\
5786Specify a signal as argument to print info on that signal only."));
5787 add_com ("z", class_run, xdb_handle_command, _("\
5788Specify how to handle a signal.\n\
c906108c
SS
5789Args are signals and actions to apply to those signals.\n\
5790Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5791from 1-15 are allowed for compatibility with old versions of GDB.\n\
5792Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5793The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5794used by the debugger, typically SIGTRAP and SIGINT.\n\
5795Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
5796\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5797nopass), \"Q\" (noprint)\n\
5798Stop means reenter debugger if this signal happens (implies print).\n\
5799Print means print a message if this signal happens.\n\
5800Pass means let program see this signal; otherwise program doesn't know.\n\
5801Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5802Pass and Stop may be combined."));
c906108c
SS
5803 }
5804
5805 if (!dbx_commands)
1a966eab
AC
5806 stop_command = add_cmd ("stop", class_obscure,
5807 not_just_help_class_command, _("\
5808There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 5809This allows you to set a list of commands to be run each time execution\n\
1a966eab 5810of the program stops."), &cmdlist);
c906108c 5811
85c07804
AC
5812 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5813Set inferior debugging."), _("\
5814Show inferior debugging."), _("\
5815When non-zero, inferior specific debugging is enabled."),
5816 NULL,
920d2a44 5817 show_debug_infrun,
85c07804 5818 &setdebuglist, &showdebuglist);
527159b7 5819
237fc4c9
PA
5820 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5821Set displaced stepping debugging."), _("\
5822Show displaced stepping debugging."), _("\
5823When non-zero, displaced stepping specific debugging is enabled."),
5824 NULL,
5825 show_debug_displaced,
5826 &setdebuglist, &showdebuglist);
5827
ad52ddc6
PA
5828 add_setshow_boolean_cmd ("non-stop", no_class,
5829 &non_stop_1, _("\
5830Set whether gdb controls the inferior in non-stop mode."), _("\
5831Show whether gdb controls the inferior in non-stop mode."), _("\
5832When debugging a multi-threaded program and this setting is\n\
5833off (the default, also called all-stop mode), when one thread stops\n\
5834(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5835all other threads in the program while you interact with the thread of\n\
5836interest. When you continue or step a thread, you can allow the other\n\
5837threads to run, or have them remain stopped, but while you inspect any\n\
5838thread's state, all threads stop.\n\
5839\n\
5840In non-stop mode, when one thread stops, other threads can continue\n\
5841to run freely. You'll be able to step each thread independently,\n\
5842leave it stopped or free to run as needed."),
5843 set_non_stop,
5844 show_non_stop,
5845 &setlist,
5846 &showlist);
5847
c906108c 5848 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 5849 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
5850 signal_print = (unsigned char *)
5851 xmalloc (sizeof (signal_print[0]) * numsigs);
5852 signal_program = (unsigned char *)
5853 xmalloc (sizeof (signal_program[0]) * numsigs);
5854 for (i = 0; i < numsigs; i++)
5855 {
5856 signal_stop[i] = 1;
5857 signal_print[i] = 1;
5858 signal_program[i] = 1;
5859 }
5860
5861 /* Signals caused by debugger's own actions
5862 should not be given to the program afterwards. */
5863 signal_program[TARGET_SIGNAL_TRAP] = 0;
5864 signal_program[TARGET_SIGNAL_INT] = 0;
5865
5866 /* Signals that are not errors should not normally enter the debugger. */
5867 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5868 signal_print[TARGET_SIGNAL_ALRM] = 0;
5869 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5870 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5871 signal_stop[TARGET_SIGNAL_PROF] = 0;
5872 signal_print[TARGET_SIGNAL_PROF] = 0;
5873 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5874 signal_print[TARGET_SIGNAL_CHLD] = 0;
5875 signal_stop[TARGET_SIGNAL_IO] = 0;
5876 signal_print[TARGET_SIGNAL_IO] = 0;
5877 signal_stop[TARGET_SIGNAL_POLL] = 0;
5878 signal_print[TARGET_SIGNAL_POLL] = 0;
5879 signal_stop[TARGET_SIGNAL_URG] = 0;
5880 signal_print[TARGET_SIGNAL_URG] = 0;
5881 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5882 signal_print[TARGET_SIGNAL_WINCH] = 0;
5883
cd0fc7c3
SS
5884 /* These signals are used internally by user-level thread
5885 implementations. (See signal(5) on Solaris.) Like the above
5886 signals, a healthy program receives and handles them as part of
5887 its normal operation. */
5888 signal_stop[TARGET_SIGNAL_LWP] = 0;
5889 signal_print[TARGET_SIGNAL_LWP] = 0;
5890 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5891 signal_print[TARGET_SIGNAL_WAITING] = 0;
5892 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5893 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5894
85c07804
AC
5895 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5896 &stop_on_solib_events, _("\
5897Set stopping for shared library events."), _("\
5898Show stopping for shared library events."), _("\
c906108c
SS
5899If nonzero, gdb will give control to the user when the dynamic linker\n\
5900notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
5901to the user would be loading/unloading of a new library."),
5902 NULL,
920d2a44 5903 show_stop_on_solib_events,
85c07804 5904 &setlist, &showlist);
c906108c 5905
7ab04401
AC
5906 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5907 follow_fork_mode_kind_names,
5908 &follow_fork_mode_string, _("\
5909Set debugger response to a program call of fork or vfork."), _("\
5910Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
5911A fork or vfork creates a new process. follow-fork-mode can be:\n\
5912 parent - the original process is debugged after a fork\n\
5913 child - the new process is debugged after a fork\n\
ea1dd7bc 5914The unfollowed process will continue to run.\n\
7ab04401
AC
5915By default, the debugger will follow the parent process."),
5916 NULL,
920d2a44 5917 show_follow_fork_mode_string,
7ab04401
AC
5918 &setlist, &showlist);
5919
5920 add_setshow_enum_cmd ("scheduler-locking", class_run,
5921 scheduler_enums, &scheduler_mode, _("\
5922Set mode for locking scheduler during execution."), _("\
5923Show mode for locking scheduler during execution."), _("\
c906108c
SS
5924off == no locking (threads may preempt at any time)\n\
5925on == full locking (no thread except the current thread may run)\n\
5926step == scheduler locked during every single-step operation.\n\
5927 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
5928 Other threads may run while stepping over a function call ('next')."),
5929 set_schedlock_func, /* traps on target vector */
920d2a44 5930 show_scheduler_mode,
7ab04401 5931 &setlist, &showlist);
5fbbeb29 5932
d4db2f36
PA
5933 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
5934Set mode for resuming threads of all processes."), _("\
5935Show mode for resuming threads of all processes."), _("\
5936When on, execution commands (such as 'continue' or 'next') resume all\n\
5937threads of all processes. When off (which is the default), execution\n\
5938commands only resume the threads of the current process. The set of\n\
5939threads that are resumed is further refined by the scheduler-locking\n\
5940mode (see help set scheduler-locking)."),
5941 NULL,
5942 show_schedule_multiple,
5943 &setlist, &showlist);
5944
5bf193a2
AC
5945 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5946Set mode of the step operation."), _("\
5947Show mode of the step operation."), _("\
5948When set, doing a step over a function without debug line information\n\
5949will stop at the first instruction of that function. Otherwise, the\n\
5950function is skipped and the step command stops at a different source line."),
5951 NULL,
920d2a44 5952 show_step_stop_if_no_debug,
5bf193a2 5953 &setlist, &showlist);
ca6724c1 5954
fff08868
HZ
5955 add_setshow_enum_cmd ("displaced-stepping", class_run,
5956 can_use_displaced_stepping_enum,
5957 &can_use_displaced_stepping, _("\
237fc4c9
PA
5958Set debugger's willingness to use displaced stepping."), _("\
5959Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
5960If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5961supported by the target architecture. If off, gdb will not use displaced\n\
5962stepping to step over breakpoints, even if such is supported by the target\n\
5963architecture. If auto (which is the default), gdb will use displaced stepping\n\
5964if the target architecture supports it and non-stop mode is active, but will not\n\
5965use it in all-stop mode (see help set non-stop)."),
5966 NULL,
5967 show_can_use_displaced_stepping,
5968 &setlist, &showlist);
237fc4c9 5969
b2175913
MS
5970 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5971 &exec_direction, _("Set direction of execution.\n\
5972Options are 'forward' or 'reverse'."),
5973 _("Show direction of execution (forward/reverse)."),
5974 _("Tells gdb whether to execute forward or backward."),
5975 set_exec_direction_func, show_exec_direction_func,
5976 &setlist, &showlist);
5977
ca6724c1
KB
5978 /* ptid initializations */
5979 null_ptid = ptid_build (0, 0, 0);
5980 minus_one_ptid = ptid_build (-1, 0, 0);
5981 inferior_ptid = null_ptid;
5982 target_last_wait_ptid = minus_one_ptid;
237fc4c9 5983 displaced_step_ptid = null_ptid;
5231c1fd
PA
5984
5985 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 5986 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 5987 observer_attach_thread_exit (infrun_thread_thread_exit);
4aa995e1
PA
5988
5989 /* Explicitly create without lookup, since that tries to create a
5990 value with a void typed value, and when we get here, gdbarch
5991 isn't initialized yet. At this point, we're quite sure there
5992 isn't another convenience variable of the same name. */
5993 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
c906108c 5994}
This page took 1.156455 seconds and 4 git commands to generate.