*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1
DJ
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
a77053c2 48
9f976b41 49#include "gdb_assert.h"
034dad6f 50#include "mi/mi-common.h"
4f8d22e3 51#include "event-top.h"
c906108c
SS
52
53/* Prototypes for local functions */
54
96baa820 55static void signals_info (char *, int);
c906108c 56
96baa820 57static void handle_command (char *, int);
c906108c 58
96baa820 59static void sig_print_info (enum target_signal);
c906108c 60
96baa820 61static void sig_print_header (void);
c906108c 62
74b7792f 63static void resume_cleanups (void *);
c906108c 64
96baa820 65static int hook_stop_stub (void *);
c906108c 66
96baa820
JM
67static int restore_selected_frame (void *);
68
69static void build_infrun (void);
70
4ef3f3be 71static int follow_fork (void);
96baa820
JM
72
73static void set_schedlock_func (char *args, int from_tty,
488f131b 74 struct cmd_list_element *c);
96baa820 75
4e1c45ea 76static int currently_stepping (struct thread_info *tp);
96baa820
JM
77
78static void xdb_handle_command (char *args, int from_tty);
79
6a6b96b9 80static int prepare_to_proceed (int);
ea67f13b 81
96baa820 82void _initialize_infrun (void);
43ff13b4 83
5fbbeb29
CF
84/* When set, stop the 'step' command if we enter a function which has
85 no line number information. The normal behavior is that we step
86 over such function. */
87int step_stop_if_no_debug = 0;
920d2a44
AC
88static void
89show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
90 struct cmd_list_element *c, const char *value)
91{
92 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
93}
5fbbeb29 94
43ff13b4 95/* In asynchronous mode, but simulating synchronous execution. */
96baa820 96
43ff13b4
JM
97int sync_execution = 0;
98
c906108c
SS
99/* wait_for_inferior and normal_stop use this to notify the user
100 when the inferior stopped in a different thread than it had been
96baa820
JM
101 running in. */
102
39f77062 103static ptid_t previous_inferior_ptid;
7a292a7a 104
237fc4c9
PA
105int debug_displaced = 0;
106static void
107show_debug_displaced (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109{
110 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
111}
112
527159b7 113static int debug_infrun = 0;
920d2a44
AC
114static void
115show_debug_infrun (struct ui_file *file, int from_tty,
116 struct cmd_list_element *c, const char *value)
117{
118 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
119}
527159b7 120
d4f3574e
SS
121/* If the program uses ELF-style shared libraries, then calls to
122 functions in shared libraries go through stubs, which live in a
123 table called the PLT (Procedure Linkage Table). The first time the
124 function is called, the stub sends control to the dynamic linker,
125 which looks up the function's real address, patches the stub so
126 that future calls will go directly to the function, and then passes
127 control to the function.
128
129 If we are stepping at the source level, we don't want to see any of
130 this --- we just want to skip over the stub and the dynamic linker.
131 The simple approach is to single-step until control leaves the
132 dynamic linker.
133
ca557f44
AC
134 However, on some systems (e.g., Red Hat's 5.2 distribution) the
135 dynamic linker calls functions in the shared C library, so you
136 can't tell from the PC alone whether the dynamic linker is still
137 running. In this case, we use a step-resume breakpoint to get us
138 past the dynamic linker, as if we were using "next" to step over a
139 function call.
d4f3574e 140
cfd8ab24 141 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
142 linker code or not. Normally, this means we single-step. However,
143 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
144 address where we can place a step-resume breakpoint to get past the
145 linker's symbol resolution function.
146
cfd8ab24 147 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
148 pretty portable way, by comparing the PC against the address ranges
149 of the dynamic linker's sections.
150
151 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
152 it depends on internal details of the dynamic linker. It's usually
153 not too hard to figure out where to put a breakpoint, but it
154 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
155 sanity checking. If it can't figure things out, returning zero and
156 getting the (possibly confusing) stepping behavior is better than
157 signalling an error, which will obscure the change in the
158 inferior's state. */
c906108c 159
c906108c
SS
160/* This function returns TRUE if pc is the address of an instruction
161 that lies within the dynamic linker (such as the event hook, or the
162 dld itself).
163
164 This function must be used only when a dynamic linker event has
165 been caught, and the inferior is being stepped out of the hook, or
166 undefined results are guaranteed. */
167
168#ifndef SOLIB_IN_DYNAMIC_LINKER
169#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
170#endif
171
c2c6d25f 172
7a292a7a
SS
173/* Convert the #defines into values. This is temporary until wfi control
174 flow is completely sorted out. */
175
692590c1
MS
176#ifndef CANNOT_STEP_HW_WATCHPOINTS
177#define CANNOT_STEP_HW_WATCHPOINTS 0
178#else
179#undef CANNOT_STEP_HW_WATCHPOINTS
180#define CANNOT_STEP_HW_WATCHPOINTS 1
181#endif
182
c906108c
SS
183/* Tables of how to react to signals; the user sets them. */
184
185static unsigned char *signal_stop;
186static unsigned char *signal_print;
187static unsigned char *signal_program;
188
189#define SET_SIGS(nsigs,sigs,flags) \
190 do { \
191 int signum = (nsigs); \
192 while (signum-- > 0) \
193 if ((sigs)[signum]) \
194 (flags)[signum] = 1; \
195 } while (0)
196
197#define UNSET_SIGS(nsigs,sigs,flags) \
198 do { \
199 int signum = (nsigs); \
200 while (signum-- > 0) \
201 if ((sigs)[signum]) \
202 (flags)[signum] = 0; \
203 } while (0)
204
39f77062
KB
205/* Value to pass to target_resume() to cause all threads to resume */
206
207#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
208
209/* Command list pointer for the "stop" placeholder. */
210
211static struct cmd_list_element *stop_command;
212
c906108c
SS
213/* Function inferior was in as of last step command. */
214
215static struct symbol *step_start_function;
216
c906108c
SS
217/* Nonzero if we want to give control to the user when we're notified
218 of shared library events by the dynamic linker. */
219static int stop_on_solib_events;
920d2a44
AC
220static void
221show_stop_on_solib_events (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223{
224 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
225 value);
226}
c906108c 227
c906108c
SS
228/* Nonzero means expecting a trace trap
229 and should stop the inferior and return silently when it happens. */
230
231int stop_after_trap;
232
c906108c
SS
233/* Save register contents here when about to pop a stack dummy frame,
234 if-and-only-if proceed_to_finish is set.
235 Thus this contains the return value from the called function (assuming
236 values are returned in a register). */
237
72cec141 238struct regcache *stop_registers;
c906108c 239
c906108c
SS
240/* Nonzero after stop if current stack frame should be printed. */
241
242static int stop_print_frame;
243
e02bc4cc 244/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
245 returned by target_wait()/deprecated_target_wait_hook(). This
246 information is returned by get_last_target_status(). */
39f77062 247static ptid_t target_last_wait_ptid;
e02bc4cc
DS
248static struct target_waitstatus target_last_waitstatus;
249
0d1e5fa7
PA
250static void context_switch (ptid_t ptid);
251
4e1c45ea 252void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
253
254void init_infwait_state (void);
a474d7c2 255
c906108c
SS
256/* This is used to remember when a fork, vfork or exec event
257 was caught by a catchpoint, and thus the event is to be
258 followed at the next resume of the inferior, and not
259 immediately. */
260static struct
488f131b
JB
261{
262 enum target_waitkind kind;
263 struct
c906108c 264 {
3a3e9ee3
PA
265 ptid_t parent_pid;
266 ptid_t child_pid;
c906108c 267 }
488f131b
JB
268 fork_event;
269 char *execd_pathname;
270}
c906108c
SS
271pending_follow;
272
53904c9e
AC
273static const char follow_fork_mode_child[] = "child";
274static const char follow_fork_mode_parent[] = "parent";
275
488f131b 276static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
277 follow_fork_mode_child,
278 follow_fork_mode_parent,
279 NULL
ef346e04 280};
c906108c 281
53904c9e 282static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
283static void
284show_follow_fork_mode_string (struct ui_file *file, int from_tty,
285 struct cmd_list_element *c, const char *value)
286{
287 fprintf_filtered (file, _("\
288Debugger response to a program call of fork or vfork is \"%s\".\n"),
289 value);
290}
c906108c
SS
291\f
292
6604731b 293static int
4ef3f3be 294follow_fork (void)
c906108c 295{
ea1dd7bc 296 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 297
6604731b 298 return target_follow_fork (follow_child);
c906108c
SS
299}
300
6604731b
DJ
301void
302follow_inferior_reset_breakpoints (void)
c906108c 303{
4e1c45ea
PA
304 struct thread_info *tp = inferior_thread ();
305
6604731b
DJ
306 /* Was there a step_resume breakpoint? (There was if the user
307 did a "next" at the fork() call.) If so, explicitly reset its
308 thread number.
309
310 step_resumes are a form of bp that are made to be per-thread.
311 Since we created the step_resume bp when the parent process
312 was being debugged, and now are switching to the child process,
313 from the breakpoint package's viewpoint, that's a switch of
314 "threads". We must update the bp's notion of which thread
315 it is for, or it'll be ignored when it triggers. */
316
4e1c45ea
PA
317 if (tp->step_resume_breakpoint)
318 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
319
320 /* Reinsert all breakpoints in the child. The user may have set
321 breakpoints after catching the fork, in which case those
322 were never set in the child, but only in the parent. This makes
323 sure the inserted breakpoints match the breakpoint list. */
324
325 breakpoint_re_set ();
326 insert_breakpoints ();
c906108c 327}
c906108c 328
1adeb98a
FN
329/* EXECD_PATHNAME is assumed to be non-NULL. */
330
c906108c 331static void
3a3e9ee3 332follow_exec (ptid_t pid, char *execd_pathname)
c906108c 333{
7a292a7a 334 struct target_ops *tgt;
4e1c45ea 335 struct thread_info *th = inferior_thread ();
7a292a7a 336
c906108c
SS
337 /* This is an exec event that we actually wish to pay attention to.
338 Refresh our symbol table to the newly exec'd program, remove any
339 momentary bp's, etc.
340
341 If there are breakpoints, they aren't really inserted now,
342 since the exec() transformed our inferior into a fresh set
343 of instructions.
344
345 We want to preserve symbolic breakpoints on the list, since
346 we have hopes that they can be reset after the new a.out's
347 symbol table is read.
348
349 However, any "raw" breakpoints must be removed from the list
350 (e.g., the solib bp's), since their address is probably invalid
351 now.
352
353 And, we DON'T want to call delete_breakpoints() here, since
354 that may write the bp's "shadow contents" (the instruction
355 value that was overwritten witha TRAP instruction). Since
356 we now have a new a.out, those shadow contents aren't valid. */
357 update_breakpoints_after_exec ();
358
359 /* If there was one, it's gone now. We cannot truly step-to-next
360 statement through an exec(). */
4e1c45ea
PA
361 th->step_resume_breakpoint = NULL;
362 th->step_range_start = 0;
363 th->step_range_end = 0;
c906108c 364
c906108c 365 /* What is this a.out's name? */
a3f17187 366 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
367
368 /* We've followed the inferior through an exec. Therefore, the
369 inferior has essentially been killed & reborn. */
7a292a7a 370
c906108c 371 gdb_flush (gdb_stdout);
6ca15a4b
PA
372
373 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
374
375 if (gdb_sysroot && *gdb_sysroot)
376 {
377 char *name = alloca (strlen (gdb_sysroot)
378 + strlen (execd_pathname)
379 + 1);
380 strcpy (name, gdb_sysroot);
381 strcat (name, execd_pathname);
382 execd_pathname = name;
383 }
c906108c
SS
384
385 /* That a.out is now the one to use. */
386 exec_file_attach (execd_pathname, 0);
387
cce9b6bf
PA
388 /* Reset the shared library package. This ensures that we get a
389 shlib event when the child reaches "_start", at which point the
390 dld will have had a chance to initialize the child. */
391 /* Also, loading a symbol file below may trigger symbol lookups, and
392 we don't want those to be satisfied by the libraries of the
393 previous incarnation of this process. */
394 no_shared_libraries (NULL, 0);
395
396 /* Load the main file's symbols. */
1adeb98a 397 symbol_file_add_main (execd_pathname, 0);
c906108c 398
7a292a7a 399#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 400 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
401#else
402 solib_create_inferior_hook ();
7a292a7a 403#endif
c906108c
SS
404
405 /* Reinsert all breakpoints. (Those which were symbolic have
406 been reset to the proper address in the new a.out, thanks
407 to symbol_file_command...) */
408 insert_breakpoints ();
409
410 /* The next resume of this inferior should bring it to the shlib
411 startup breakpoints. (If the user had also set bp's on
412 "main" from the old (parent) process, then they'll auto-
413 matically get reset there in the new process.) */
c906108c
SS
414}
415
416/* Non-zero if we just simulating a single-step. This is needed
417 because we cannot remove the breakpoints in the inferior process
418 until after the `wait' in `wait_for_inferior'. */
419static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
420
421/* The thread we inserted single-step breakpoints for. */
422static ptid_t singlestep_ptid;
423
fd48f117
DJ
424/* PC when we started this single-step. */
425static CORE_ADDR singlestep_pc;
426
9f976b41
DJ
427/* If another thread hit the singlestep breakpoint, we save the original
428 thread here so that we can resume single-stepping it later. */
429static ptid_t saved_singlestep_ptid;
430static int stepping_past_singlestep_breakpoint;
6a6b96b9 431
ca67fcb8
VP
432/* If not equal to null_ptid, this means that after stepping over breakpoint
433 is finished, we need to switch to deferred_step_ptid, and step it.
434
435 The use case is when one thread has hit a breakpoint, and then the user
436 has switched to another thread and issued 'step'. We need to step over
437 breakpoint in the thread which hit the breakpoint, but then continue
438 stepping the thread user has selected. */
439static ptid_t deferred_step_ptid;
c906108c 440\f
237fc4c9
PA
441/* Displaced stepping. */
442
443/* In non-stop debugging mode, we must take special care to manage
444 breakpoints properly; in particular, the traditional strategy for
445 stepping a thread past a breakpoint it has hit is unsuitable.
446 'Displaced stepping' is a tactic for stepping one thread past a
447 breakpoint it has hit while ensuring that other threads running
448 concurrently will hit the breakpoint as they should.
449
450 The traditional way to step a thread T off a breakpoint in a
451 multi-threaded program in all-stop mode is as follows:
452
453 a0) Initially, all threads are stopped, and breakpoints are not
454 inserted.
455 a1) We single-step T, leaving breakpoints uninserted.
456 a2) We insert breakpoints, and resume all threads.
457
458 In non-stop debugging, however, this strategy is unsuitable: we
459 don't want to have to stop all threads in the system in order to
460 continue or step T past a breakpoint. Instead, we use displaced
461 stepping:
462
463 n0) Initially, T is stopped, other threads are running, and
464 breakpoints are inserted.
465 n1) We copy the instruction "under" the breakpoint to a separate
466 location, outside the main code stream, making any adjustments
467 to the instruction, register, and memory state as directed by
468 T's architecture.
469 n2) We single-step T over the instruction at its new location.
470 n3) We adjust the resulting register and memory state as directed
471 by T's architecture. This includes resetting T's PC to point
472 back into the main instruction stream.
473 n4) We resume T.
474
475 This approach depends on the following gdbarch methods:
476
477 - gdbarch_max_insn_length and gdbarch_displaced_step_location
478 indicate where to copy the instruction, and how much space must
479 be reserved there. We use these in step n1.
480
481 - gdbarch_displaced_step_copy_insn copies a instruction to a new
482 address, and makes any necessary adjustments to the instruction,
483 register contents, and memory. We use this in step n1.
484
485 - gdbarch_displaced_step_fixup adjusts registers and memory after
486 we have successfuly single-stepped the instruction, to yield the
487 same effect the instruction would have had if we had executed it
488 at its original address. We use this in step n3.
489
490 - gdbarch_displaced_step_free_closure provides cleanup.
491
492 The gdbarch_displaced_step_copy_insn and
493 gdbarch_displaced_step_fixup functions must be written so that
494 copying an instruction with gdbarch_displaced_step_copy_insn,
495 single-stepping across the copied instruction, and then applying
496 gdbarch_displaced_insn_fixup should have the same effects on the
497 thread's memory and registers as stepping the instruction in place
498 would have. Exactly which responsibilities fall to the copy and
499 which fall to the fixup is up to the author of those functions.
500
501 See the comments in gdbarch.sh for details.
502
503 Note that displaced stepping and software single-step cannot
504 currently be used in combination, although with some care I think
505 they could be made to. Software single-step works by placing
506 breakpoints on all possible subsequent instructions; if the
507 displaced instruction is a PC-relative jump, those breakpoints
508 could fall in very strange places --- on pages that aren't
509 executable, or at addresses that are not proper instruction
510 boundaries. (We do generally let other threads run while we wait
511 to hit the software single-step breakpoint, and they might
512 encounter such a corrupted instruction.) One way to work around
513 this would be to have gdbarch_displaced_step_copy_insn fully
514 simulate the effect of PC-relative instructions (and return NULL)
515 on architectures that use software single-stepping.
516
517 In non-stop mode, we can have independent and simultaneous step
518 requests, so more than one thread may need to simultaneously step
519 over a breakpoint. The current implementation assumes there is
520 only one scratch space per process. In this case, we have to
521 serialize access to the scratch space. If thread A wants to step
522 over a breakpoint, but we are currently waiting for some other
523 thread to complete a displaced step, we leave thread A stopped and
524 place it in the displaced_step_request_queue. Whenever a displaced
525 step finishes, we pick the next thread in the queue and start a new
526 displaced step operation on it. See displaced_step_prepare and
527 displaced_step_fixup for details. */
528
529/* If this is not null_ptid, this is the thread carrying out a
530 displaced single-step. This thread's state will require fixing up
531 once it has completed its step. */
532static ptid_t displaced_step_ptid;
533
534struct displaced_step_request
535{
536 ptid_t ptid;
537 struct displaced_step_request *next;
538};
539
540/* A queue of pending displaced stepping requests. */
541struct displaced_step_request *displaced_step_request_queue;
542
543/* The architecture the thread had when we stepped it. */
544static struct gdbarch *displaced_step_gdbarch;
545
546/* The closure provided gdbarch_displaced_step_copy_insn, to be used
547 for post-step cleanup. */
548static struct displaced_step_closure *displaced_step_closure;
549
550/* The address of the original instruction, and the copy we made. */
551static CORE_ADDR displaced_step_original, displaced_step_copy;
552
553/* Saved contents of copy area. */
554static gdb_byte *displaced_step_saved_copy;
555
fff08868
HZ
556/* Enum strings for "set|show displaced-stepping". */
557
558static const char can_use_displaced_stepping_auto[] = "auto";
559static const char can_use_displaced_stepping_on[] = "on";
560static const char can_use_displaced_stepping_off[] = "off";
561static const char *can_use_displaced_stepping_enum[] =
562{
563 can_use_displaced_stepping_auto,
564 can_use_displaced_stepping_on,
565 can_use_displaced_stepping_off,
566 NULL,
567};
568
569/* If ON, and the architecture supports it, GDB will use displaced
570 stepping to step over breakpoints. If OFF, or if the architecture
571 doesn't support it, GDB will instead use the traditional
572 hold-and-step approach. If AUTO (which is the default), GDB will
573 decide which technique to use to step over breakpoints depending on
574 which of all-stop or non-stop mode is active --- displaced stepping
575 in non-stop mode; hold-and-step in all-stop mode. */
576
577static const char *can_use_displaced_stepping =
578 can_use_displaced_stepping_auto;
579
237fc4c9
PA
580static void
581show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
582 struct cmd_list_element *c,
583 const char *value)
584{
fff08868
HZ
585 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
586 fprintf_filtered (file, _("\
587Debugger's willingness to use displaced stepping to step over \
588breakpoints is %s (currently %s).\n"),
589 value, non_stop ? "on" : "off");
590 else
591 fprintf_filtered (file, _("\
592Debugger's willingness to use displaced stepping to step over \
593breakpoints is %s.\n"), value);
237fc4c9
PA
594}
595
fff08868
HZ
596/* Return non-zero if displaced stepping can/should be used to step
597 over breakpoints. */
598
237fc4c9
PA
599static int
600use_displaced_stepping (struct gdbarch *gdbarch)
601{
fff08868
HZ
602 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
603 && non_stop)
604 || can_use_displaced_stepping == can_use_displaced_stepping_on)
237fc4c9
PA
605 && gdbarch_displaced_step_copy_insn_p (gdbarch));
606}
607
608/* Clean out any stray displaced stepping state. */
609static void
610displaced_step_clear (void)
611{
612 /* Indicate that there is no cleanup pending. */
613 displaced_step_ptid = null_ptid;
614
615 if (displaced_step_closure)
616 {
617 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
618 displaced_step_closure);
619 displaced_step_closure = NULL;
620 }
621}
622
623static void
624cleanup_displaced_step_closure (void *ptr)
625{
626 struct displaced_step_closure *closure = ptr;
627
628 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
629}
630
631/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
632void
633displaced_step_dump_bytes (struct ui_file *file,
634 const gdb_byte *buf,
635 size_t len)
636{
637 int i;
638
639 for (i = 0; i < len; i++)
640 fprintf_unfiltered (file, "%02x ", buf[i]);
641 fputs_unfiltered ("\n", file);
642}
643
644/* Prepare to single-step, using displaced stepping.
645
646 Note that we cannot use displaced stepping when we have a signal to
647 deliver. If we have a signal to deliver and an instruction to step
648 over, then after the step, there will be no indication from the
649 target whether the thread entered a signal handler or ignored the
650 signal and stepped over the instruction successfully --- both cases
651 result in a simple SIGTRAP. In the first case we mustn't do a
652 fixup, and in the second case we must --- but we can't tell which.
653 Comments in the code for 'random signals' in handle_inferior_event
654 explain how we handle this case instead.
655
656 Returns 1 if preparing was successful -- this thread is going to be
657 stepped now; or 0 if displaced stepping this thread got queued. */
658static int
659displaced_step_prepare (ptid_t ptid)
660{
ad53cd71 661 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
662 struct regcache *regcache = get_thread_regcache (ptid);
663 struct gdbarch *gdbarch = get_regcache_arch (regcache);
664 CORE_ADDR original, copy;
665 ULONGEST len;
666 struct displaced_step_closure *closure;
667
668 /* We should never reach this function if the architecture does not
669 support displaced stepping. */
670 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
671
672 /* For the first cut, we're displaced stepping one thread at a
673 time. */
674
675 if (!ptid_equal (displaced_step_ptid, null_ptid))
676 {
677 /* Already waiting for a displaced step to finish. Defer this
678 request and place in queue. */
679 struct displaced_step_request *req, *new_req;
680
681 if (debug_displaced)
682 fprintf_unfiltered (gdb_stdlog,
683 "displaced: defering step of %s\n",
684 target_pid_to_str (ptid));
685
686 new_req = xmalloc (sizeof (*new_req));
687 new_req->ptid = ptid;
688 new_req->next = NULL;
689
690 if (displaced_step_request_queue)
691 {
692 for (req = displaced_step_request_queue;
693 req && req->next;
694 req = req->next)
695 ;
696 req->next = new_req;
697 }
698 else
699 displaced_step_request_queue = new_req;
700
701 return 0;
702 }
703 else
704 {
705 if (debug_displaced)
706 fprintf_unfiltered (gdb_stdlog,
707 "displaced: stepping %s now\n",
708 target_pid_to_str (ptid));
709 }
710
711 displaced_step_clear ();
712
ad53cd71
PA
713 old_cleanups = save_inferior_ptid ();
714 inferior_ptid = ptid;
715
515630c5 716 original = regcache_read_pc (regcache);
237fc4c9
PA
717
718 copy = gdbarch_displaced_step_location (gdbarch);
719 len = gdbarch_max_insn_length (gdbarch);
720
721 /* Save the original contents of the copy area. */
722 displaced_step_saved_copy = xmalloc (len);
ad53cd71
PA
723 ignore_cleanups = make_cleanup (free_current_contents,
724 &displaced_step_saved_copy);
237fc4c9
PA
725 read_memory (copy, displaced_step_saved_copy, len);
726 if (debug_displaced)
727 {
728 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
729 paddr_nz (copy));
730 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
731 };
732
733 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 734 original, copy, regcache);
237fc4c9
PA
735
736 /* We don't support the fully-simulated case at present. */
737 gdb_assert (closure);
738
739 make_cleanup (cleanup_displaced_step_closure, closure);
740
741 /* Resume execution at the copy. */
515630c5 742 regcache_write_pc (regcache, copy);
237fc4c9 743
ad53cd71
PA
744 discard_cleanups (ignore_cleanups);
745
746 do_cleanups (old_cleanups);
237fc4c9
PA
747
748 if (debug_displaced)
749 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
ad53cd71 750 paddr_nz (copy));
237fc4c9
PA
751
752 /* Save the information we need to fix things up if the step
753 succeeds. */
754 displaced_step_ptid = ptid;
755 displaced_step_gdbarch = gdbarch;
756 displaced_step_closure = closure;
757 displaced_step_original = original;
758 displaced_step_copy = copy;
759 return 1;
760}
761
762static void
763displaced_step_clear_cleanup (void *ignore)
764{
765 displaced_step_clear ();
766}
767
768static void
769write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
770{
771 struct cleanup *ptid_cleanup = save_inferior_ptid ();
772 inferior_ptid = ptid;
773 write_memory (memaddr, myaddr, len);
774 do_cleanups (ptid_cleanup);
775}
776
777static void
778displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
779{
780 struct cleanup *old_cleanups;
781
782 /* Was this event for the pid we displaced? */
783 if (ptid_equal (displaced_step_ptid, null_ptid)
784 || ! ptid_equal (displaced_step_ptid, event_ptid))
785 return;
786
787 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
788
789 /* Restore the contents of the copy area. */
790 {
791 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
792 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
793 displaced_step_saved_copy, len);
794 if (debug_displaced)
795 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
796 paddr_nz (displaced_step_copy));
797 }
798
799 /* Did the instruction complete successfully? */
800 if (signal == TARGET_SIGNAL_TRAP)
801 {
802 /* Fix up the resulting state. */
803 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
804 displaced_step_closure,
805 displaced_step_original,
806 displaced_step_copy,
807 get_thread_regcache (displaced_step_ptid));
808 }
809 else
810 {
811 /* Since the instruction didn't complete, all we can do is
812 relocate the PC. */
515630c5
UW
813 struct regcache *regcache = get_thread_regcache (event_ptid);
814 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 815 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 816 regcache_write_pc (regcache, pc);
237fc4c9
PA
817 }
818
819 do_cleanups (old_cleanups);
820
1c5cfe86
PA
821 displaced_step_ptid = null_ptid;
822
237fc4c9
PA
823 /* Are there any pending displaced stepping requests? If so, run
824 one now. */
1c5cfe86 825 while (displaced_step_request_queue)
237fc4c9
PA
826 {
827 struct displaced_step_request *head;
828 ptid_t ptid;
1c5cfe86 829 CORE_ADDR actual_pc;
237fc4c9
PA
830
831 head = displaced_step_request_queue;
832 ptid = head->ptid;
833 displaced_step_request_queue = head->next;
834 xfree (head);
835
ad53cd71
PA
836 context_switch (ptid);
837
1c5cfe86
PA
838 actual_pc = read_pc ();
839
840 if (breakpoint_here_p (actual_pc))
ad53cd71 841 {
1c5cfe86
PA
842 if (debug_displaced)
843 fprintf_unfiltered (gdb_stdlog,
844 "displaced: stepping queued %s now\n",
845 target_pid_to_str (ptid));
846
847 displaced_step_prepare (ptid);
848
849 if (debug_displaced)
850 {
851 gdb_byte buf[4];
852
853 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
854 paddr_nz (actual_pc));
855 read_memory (actual_pc, buf, sizeof (buf));
856 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
857 }
858
859 target_resume (ptid, 1, TARGET_SIGNAL_0);
860
861 /* Done, we're stepping a thread. */
862 break;
ad53cd71 863 }
1c5cfe86
PA
864 else
865 {
866 int step;
867 struct thread_info *tp = inferior_thread ();
868
869 /* The breakpoint we were sitting under has since been
870 removed. */
871 tp->trap_expected = 0;
872
873 /* Go back to what we were trying to do. */
874 step = currently_stepping (tp);
ad53cd71 875
1c5cfe86
PA
876 if (debug_displaced)
877 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
878 target_pid_to_str (tp->ptid), step);
879
880 target_resume (ptid, step, TARGET_SIGNAL_0);
881 tp->stop_signal = TARGET_SIGNAL_0;
882
883 /* This request was discarded. See if there's any other
884 thread waiting for its turn. */
885 }
237fc4c9
PA
886 }
887}
888
5231c1fd
PA
889/* Update global variables holding ptids to hold NEW_PTID if they were
890 holding OLD_PTID. */
891static void
892infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
893{
894 struct displaced_step_request *it;
895
896 if (ptid_equal (inferior_ptid, old_ptid))
897 inferior_ptid = new_ptid;
898
899 if (ptid_equal (singlestep_ptid, old_ptid))
900 singlestep_ptid = new_ptid;
901
902 if (ptid_equal (displaced_step_ptid, old_ptid))
903 displaced_step_ptid = new_ptid;
904
905 if (ptid_equal (deferred_step_ptid, old_ptid))
906 deferred_step_ptid = new_ptid;
907
908 for (it = displaced_step_request_queue; it; it = it->next)
909 if (ptid_equal (it->ptid, old_ptid))
910 it->ptid = new_ptid;
911}
912
237fc4c9
PA
913\f
914/* Resuming. */
c906108c
SS
915
916/* Things to clean up if we QUIT out of resume (). */
c906108c 917static void
74b7792f 918resume_cleanups (void *ignore)
c906108c
SS
919{
920 normal_stop ();
921}
922
53904c9e
AC
923static const char schedlock_off[] = "off";
924static const char schedlock_on[] = "on";
925static const char schedlock_step[] = "step";
488f131b 926static const char *scheduler_enums[] = {
ef346e04
AC
927 schedlock_off,
928 schedlock_on,
929 schedlock_step,
930 NULL
931};
920d2a44
AC
932static const char *scheduler_mode = schedlock_off;
933static void
934show_scheduler_mode (struct ui_file *file, int from_tty,
935 struct cmd_list_element *c, const char *value)
936{
937 fprintf_filtered (file, _("\
938Mode for locking scheduler during execution is \"%s\".\n"),
939 value);
940}
c906108c
SS
941
942static void
96baa820 943set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 944{
eefe576e
AC
945 if (!target_can_lock_scheduler)
946 {
947 scheduler_mode = schedlock_off;
948 error (_("Target '%s' cannot support this command."), target_shortname);
949 }
c906108c
SS
950}
951
952
953/* Resume the inferior, but allow a QUIT. This is useful if the user
954 wants to interrupt some lengthy single-stepping operation
955 (for child processes, the SIGINT goes to the inferior, and so
956 we get a SIGINT random_signal, but for remote debugging and perhaps
957 other targets, that's not true).
958
959 STEP nonzero if we should step (zero to continue instead).
960 SIG is the signal to give the inferior (zero for none). */
961void
96baa820 962resume (int step, enum target_signal sig)
c906108c
SS
963{
964 int should_resume = 1;
74b7792f 965 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
966 struct regcache *regcache = get_current_regcache ();
967 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 968 struct thread_info *tp = inferior_thread ();
515630c5 969 CORE_ADDR pc = regcache_read_pc (regcache);
c906108c
SS
970 QUIT;
971
527159b7 972 if (debug_infrun)
237fc4c9
PA
973 fprintf_unfiltered (gdb_stdlog,
974 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
975 "trap_expected=%d\n",
976 step, sig, tp->trap_expected);
c906108c 977
692590c1
MS
978 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
979 over an instruction that causes a page fault without triggering
980 a hardware watchpoint. The kernel properly notices that it shouldn't
981 stop, because the hardware watchpoint is not triggered, but it forgets
982 the step request and continues the program normally.
983 Work around the problem by removing hardware watchpoints if a step is
984 requested, GDB will check for a hardware watchpoint trigger after the
985 step anyway. */
c36b740a 986 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 987 remove_hw_watchpoints ();
488f131b 988
692590c1 989
c2c6d25f
JM
990 /* Normally, by the time we reach `resume', the breakpoints are either
991 removed or inserted, as appropriate. The exception is if we're sitting
992 at a permanent breakpoint; we need to step over it, but permanent
993 breakpoints can't be removed. So we have to test for it here. */
237fc4c9 994 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
6d350bb5 995 {
515630c5
UW
996 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
997 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
998 else
999 error (_("\
1000The program is stopped at a permanent breakpoint, but GDB does not know\n\
1001how to step past a permanent breakpoint on this architecture. Try using\n\
1002a command like `return' or `jump' to continue execution."));
1003 }
c2c6d25f 1004
237fc4c9
PA
1005 /* If enabled, step over breakpoints by executing a copy of the
1006 instruction at a different address.
1007
1008 We can't use displaced stepping when we have a signal to deliver;
1009 the comments for displaced_step_prepare explain why. The
1010 comments in the handle_inferior event for dealing with 'random
1011 signals' explain what we do instead. */
515630c5 1012 if (use_displaced_stepping (gdbarch)
4e1c45ea 1013 && tp->trap_expected
237fc4c9
PA
1014 && sig == TARGET_SIGNAL_0)
1015 {
1016 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1017 {
1018 /* Got placed in displaced stepping queue. Will be resumed
1019 later when all the currently queued displaced stepping
7f7efbd9
VP
1020 requests finish. The thread is not executing at this point,
1021 and the call to set_executing will be made later. But we
1022 need to call set_running here, since from frontend point of view,
1023 the thread is running. */
1024 set_running (inferior_ptid, 1);
d56b7306
VP
1025 discard_cleanups (old_cleanups);
1026 return;
1027 }
237fc4c9
PA
1028 }
1029
515630c5 1030 if (step && gdbarch_software_single_step_p (gdbarch))
c906108c
SS
1031 {
1032 /* Do it the hard way, w/temp breakpoints */
515630c5 1033 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
e6590a1b
UW
1034 {
1035 /* ...and don't ask hardware to do it. */
1036 step = 0;
1037 /* and do not pull these breakpoints until after a `wait' in
1038 `wait_for_inferior' */
1039 singlestep_breakpoints_inserted_p = 1;
1040 singlestep_ptid = inferior_ptid;
237fc4c9 1041 singlestep_pc = pc;
e6590a1b 1042 }
c906108c
SS
1043 }
1044
c906108c 1045 /* If there were any forks/vforks/execs that were caught and are
6604731b 1046 now to be followed, then do so. */
c906108c
SS
1047 switch (pending_follow.kind)
1048 {
6604731b
DJ
1049 case TARGET_WAITKIND_FORKED:
1050 case TARGET_WAITKIND_VFORKED:
c906108c 1051 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
1052 if (follow_fork ())
1053 should_resume = 0;
c906108c
SS
1054 break;
1055
6604731b 1056 case TARGET_WAITKIND_EXECD:
c906108c 1057 /* follow_exec is called as soon as the exec event is seen. */
6604731b 1058 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
1059 break;
1060
1061 default:
1062 break;
1063 }
c906108c
SS
1064
1065 /* Install inferior's terminal modes. */
1066 target_terminal_inferior ();
1067
1068 if (should_resume)
1069 {
39f77062 1070 ptid_t resume_ptid;
dfcd3bfb 1071
488f131b 1072 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 1073
cd76b0b7
VP
1074 /* If STEP is set, it's a request to use hardware stepping
1075 facilities. But in that case, we should never
1076 use singlestep breakpoint. */
1077 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1078
1079 if (singlestep_breakpoints_inserted_p
1080 && stepping_past_singlestep_breakpoint)
c906108c 1081 {
cd76b0b7
VP
1082 /* The situation here is as follows. In thread T1 we wanted to
1083 single-step. Lacking hardware single-stepping we've
1084 set breakpoint at the PC of the next instruction -- call it
1085 P. After resuming, we've hit that breakpoint in thread T2.
1086 Now we've removed original breakpoint, inserted breakpoint
1087 at P+1, and try to step to advance T2 past breakpoint.
1088 We need to step only T2, as if T1 is allowed to freely run,
1089 it can run past P, and if other threads are allowed to run,
1090 they can hit breakpoint at P+1, and nested hits of single-step
1091 breakpoints is not something we'd want -- that's complicated
1092 to support, and has no value. */
1093 resume_ptid = inferior_ptid;
1094 }
c906108c 1095
e842223a 1096 if ((step || singlestep_breakpoints_inserted_p)
4e1c45ea 1097 && tp->trap_expected)
cd76b0b7 1098 {
74960c60
VP
1099 /* We're allowing a thread to run past a breakpoint it has
1100 hit, by single-stepping the thread with the breakpoint
1101 removed. In which case, we need to single-step only this
1102 thread, and keep others stopped, as they can miss this
1103 breakpoint if allowed to run.
1104
1105 The current code actually removes all breakpoints when
1106 doing this, not just the one being stepped over, so if we
1107 let other threads run, we can actually miss any
1108 breakpoint, not just the one at PC. */
ef5cf84e 1109 resume_ptid = inferior_ptid;
c906108c 1110 }
ef5cf84e 1111
94cc34af
PA
1112 if (non_stop)
1113 {
1114 /* With non-stop mode on, threads are always handled
1115 individually. */
1116 resume_ptid = inferior_ptid;
1117 }
1118 else if ((scheduler_mode == schedlock_on)
1119 || (scheduler_mode == schedlock_step
1120 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1121 {
ef5cf84e 1122 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1123 resume_ptid = inferior_ptid;
c906108c 1124 }
ef5cf84e 1125
515630c5 1126 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1127 {
1128 /* Most targets can step a breakpoint instruction, thus
1129 executing it normally. But if this one cannot, just
1130 continue and we will hit it anyway. */
237fc4c9 1131 if (step && breakpoint_inserted_here_p (pc))
c4ed33b9
AC
1132 step = 0;
1133 }
237fc4c9
PA
1134
1135 if (debug_displaced
515630c5 1136 && use_displaced_stepping (gdbarch)
4e1c45ea 1137 && tp->trap_expected)
237fc4c9 1138 {
515630c5
UW
1139 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1140 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1141 gdb_byte buf[4];
1142
1143 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1144 paddr_nz (actual_pc));
1145 read_memory (actual_pc, buf, sizeof (buf));
1146 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1147 }
1148
39f77062 1149 target_resume (resume_ptid, step, sig);
2020b7ab
PA
1150
1151 /* Avoid confusing the next resume, if the next stop/resume
1152 happens to apply to another thread. */
1153 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1154 }
1155
1156 discard_cleanups (old_cleanups);
1157}
1158\f
237fc4c9 1159/* Proceeding. */
c906108c
SS
1160
1161/* Clear out all variables saying what to do when inferior is continued.
1162 First do this, then set the ones you want, then call `proceed'. */
1163
1164void
96baa820 1165clear_proceed_status (void)
c906108c 1166{
4e1c45ea
PA
1167 if (!ptid_equal (inferior_ptid, null_ptid))
1168 {
d6b48e9c
PA
1169 struct thread_info *tp;
1170 struct inferior *inferior;
1171
1172 tp = inferior_thread ();
4e1c45ea
PA
1173
1174 tp->trap_expected = 0;
1175 tp->step_range_start = 0;
1176 tp->step_range_end = 0;
1177 tp->step_frame_id = null_frame_id;
078130d0 1178 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
252fbfc8 1179 tp->stop_requested = 0;
32400beb 1180
414c69f7
PA
1181 tp->stop_step = 0;
1182
32400beb
PA
1183 tp->proceed_to_finish = 0;
1184
347bddb7
PA
1185 /* Discard any remaining commands or status from previous
1186 stop. */
1187 bpstat_clear (&tp->stop_bpstat);
d6b48e9c
PA
1188
1189 inferior = current_inferior ();
1190 inferior->stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1191 }
1192
c906108c 1193 stop_after_trap = 0;
c906108c
SS
1194 breakpoint_proceeded = 1; /* We're about to proceed... */
1195
d5c31457
UW
1196 if (stop_registers)
1197 {
1198 regcache_xfree (stop_registers);
1199 stop_registers = NULL;
1200 }
c906108c
SS
1201}
1202
ea67f13b
DJ
1203/* This should be suitable for any targets that support threads. */
1204
1205static int
6a6b96b9 1206prepare_to_proceed (int step)
ea67f13b
DJ
1207{
1208 ptid_t wait_ptid;
1209 struct target_waitstatus wait_status;
1210
1211 /* Get the last target status returned by target_wait(). */
1212 get_last_target_status (&wait_ptid, &wait_status);
1213
6a6b96b9 1214 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1215 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 1216 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
1217 {
1218 return 0;
1219 }
1220
6a6b96b9 1221 /* Switched over from WAIT_PID. */
ea67f13b 1222 if (!ptid_equal (wait_ptid, minus_one_ptid)
515630c5 1223 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1224 {
515630c5
UW
1225 struct regcache *regcache = get_thread_regcache (wait_ptid);
1226
1227 if (breakpoint_here_p (regcache_read_pc (regcache)))
ea67f13b 1228 {
515630c5
UW
1229 /* If stepping, remember current thread to switch back to. */
1230 if (step)
1231 deferred_step_ptid = inferior_ptid;
ea67f13b 1232
515630c5
UW
1233 /* Switch back to WAIT_PID thread. */
1234 switch_to_thread (wait_ptid);
6a6b96b9 1235
515630c5
UW
1236 /* We return 1 to indicate that there is a breakpoint here,
1237 so we need to step over it before continuing to avoid
1238 hitting it straight away. */
1239 return 1;
1240 }
ea67f13b
DJ
1241 }
1242
1243 return 0;
ea67f13b 1244}
e4846b08 1245
c906108c
SS
1246/* Basic routine for continuing the program in various fashions.
1247
1248 ADDR is the address to resume at, or -1 for resume where stopped.
1249 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1250 or -1 for act according to how it stopped.
c906108c 1251 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1252 -1 means return after that and print nothing.
1253 You should probably set various step_... variables
1254 before calling here, if you are stepping.
c906108c
SS
1255
1256 You should call clear_proceed_status before calling proceed. */
1257
1258void
96baa820 1259proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1260{
515630c5
UW
1261 struct regcache *regcache = get_current_regcache ();
1262 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1263 struct thread_info *tp;
515630c5 1264 CORE_ADDR pc = regcache_read_pc (regcache);
c906108c 1265 int oneproc = 0;
2020b7ab 1266 enum target_signal stop_signal;
c906108c
SS
1267
1268 if (step > 0)
515630c5 1269 step_start_function = find_pc_function (pc);
c906108c
SS
1270 if (step < 0)
1271 stop_after_trap = 1;
1272
2acceee2 1273 if (addr == (CORE_ADDR) -1)
c906108c 1274 {
b2175913
MS
1275 if (pc == stop_pc && breakpoint_here_p (pc)
1276 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1277 /* There is a breakpoint at the address we will resume at,
1278 step one instruction before inserting breakpoints so that
1279 we do not stop right away (and report a second hit at this
b2175913
MS
1280 breakpoint).
1281
1282 Note, we don't do this in reverse, because we won't
1283 actually be executing the breakpoint insn anyway.
1284 We'll be (un-)executing the previous instruction. */
1285
c906108c 1286 oneproc = 1;
515630c5
UW
1287 else if (gdbarch_single_step_through_delay_p (gdbarch)
1288 && gdbarch_single_step_through_delay (gdbarch,
1289 get_current_frame ()))
3352ef37
AC
1290 /* We stepped onto an instruction that needs to be stepped
1291 again before re-inserting the breakpoint, do so. */
c906108c
SS
1292 oneproc = 1;
1293 }
1294 else
1295 {
515630c5 1296 regcache_write_pc (regcache, addr);
c906108c
SS
1297 }
1298
527159b7 1299 if (debug_infrun)
8a9de0e4
AC
1300 fprintf_unfiltered (gdb_stdlog,
1301 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1302 paddr_nz (addr), siggnal, step);
527159b7 1303
94cc34af
PA
1304 if (non_stop)
1305 /* In non-stop, each thread is handled individually. The context
1306 must already be set to the right thread here. */
1307 ;
1308 else
1309 {
1310 /* In a multi-threaded task we may select another thread and
1311 then continue or step.
c906108c 1312
94cc34af
PA
1313 But if the old thread was stopped at a breakpoint, it will
1314 immediately cause another breakpoint stop without any
1315 execution (i.e. it will report a breakpoint hit incorrectly).
1316 So we must step over it first.
c906108c 1317
94cc34af
PA
1318 prepare_to_proceed checks the current thread against the
1319 thread that reported the most recent event. If a step-over
1320 is required it returns TRUE and sets the current thread to
1321 the old thread. */
1322 if (prepare_to_proceed (step))
1323 oneproc = 1;
1324 }
c906108c 1325
4e1c45ea
PA
1326 /* prepare_to_proceed may change the current thread. */
1327 tp = inferior_thread ();
1328
c906108c 1329 if (oneproc)
74960c60 1330 {
4e1c45ea 1331 tp->trap_expected = 1;
237fc4c9
PA
1332 /* If displaced stepping is enabled, we can step over the
1333 breakpoint without hitting it, so leave all breakpoints
1334 inserted. Otherwise we need to disable all breakpoints, step
1335 one instruction, and then re-add them when that step is
1336 finished. */
515630c5 1337 if (!use_displaced_stepping (gdbarch))
237fc4c9 1338 remove_breakpoints ();
74960c60 1339 }
237fc4c9
PA
1340
1341 /* We can insert breakpoints if we're not trying to step over one,
1342 or if we are stepping over one but we're using displaced stepping
1343 to do so. */
4e1c45ea 1344 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1345 insert_breakpoints ();
c906108c 1346
2020b7ab
PA
1347 if (!non_stop)
1348 {
1349 /* Pass the last stop signal to the thread we're resuming,
1350 irrespective of whether the current thread is the thread that
1351 got the last event or not. This was historically GDB's
1352 behaviour before keeping a stop_signal per thread. */
1353
1354 struct thread_info *last_thread;
1355 ptid_t last_ptid;
1356 struct target_waitstatus last_status;
1357
1358 get_last_target_status (&last_ptid, &last_status);
1359 if (!ptid_equal (inferior_ptid, last_ptid)
1360 && !ptid_equal (last_ptid, null_ptid)
1361 && !ptid_equal (last_ptid, minus_one_ptid))
1362 {
1363 last_thread = find_thread_pid (last_ptid);
1364 if (last_thread)
1365 {
1366 tp->stop_signal = last_thread->stop_signal;
1367 last_thread->stop_signal = TARGET_SIGNAL_0;
1368 }
1369 }
1370 }
1371
c906108c 1372 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 1373 tp->stop_signal = siggnal;
c906108c
SS
1374 /* If this signal should not be seen by program,
1375 give it zero. Used for debugging signals. */
2020b7ab
PA
1376 else if (!signal_program[tp->stop_signal])
1377 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1378
1379 annotate_starting ();
1380
1381 /* Make sure that output from GDB appears before output from the
1382 inferior. */
1383 gdb_flush (gdb_stdout);
1384
e4846b08
JJ
1385 /* Refresh prev_pc value just prior to resuming. This used to be
1386 done in stop_stepping, however, setting prev_pc there did not handle
1387 scenarios such as inferior function calls or returning from
1388 a function via the return command. In those cases, the prev_pc
1389 value was not set properly for subsequent commands. The prev_pc value
1390 is used to initialize the starting line number in the ecs. With an
1391 invalid value, the gdb next command ends up stopping at the position
1392 represented by the next line table entry past our start position.
1393 On platforms that generate one line table entry per line, this
1394 is not a problem. However, on the ia64, the compiler generates
1395 extraneous line table entries that do not increase the line number.
1396 When we issue the gdb next command on the ia64 after an inferior call
1397 or a return command, we often end up a few instructions forward, still
1398 within the original line we started.
1399
1400 An attempt was made to have init_execution_control_state () refresh
1401 the prev_pc value before calculating the line number. This approach
1402 did not work because on platforms that use ptrace, the pc register
1403 cannot be read unless the inferior is stopped. At that point, we
515630c5 1404 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
e4846b08 1405 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 1406 updated correctly when the inferior is stopped. */
4e1c45ea 1407 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1408
59f0d5d9 1409 /* Fill in with reasonable starting values. */
4e1c45ea 1410 init_thread_stepping_state (tp);
59f0d5d9 1411
59f0d5d9
PA
1412 /* Reset to normal state. */
1413 init_infwait_state ();
1414
c906108c 1415 /* Resume inferior. */
2020b7ab 1416 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
1417
1418 /* Wait for it to stop (if not standalone)
1419 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1420 /* Do this only if we are not using the event loop, or if the target
1421 does not support asynchronous execution. */
362646f5 1422 if (!target_can_async_p ())
43ff13b4 1423 {
ae123ec6 1424 wait_for_inferior (0);
43ff13b4
JM
1425 normal_stop ();
1426 }
c906108c 1427}
c906108c
SS
1428\f
1429
1430/* Start remote-debugging of a machine over a serial link. */
96baa820 1431
c906108c 1432void
8621d6a9 1433start_remote (int from_tty)
c906108c 1434{
d6b48e9c 1435 struct inferior *inferior;
c906108c 1436 init_wait_for_inferior ();
d6b48e9c
PA
1437
1438 inferior = current_inferior ();
1439 inferior->stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 1440
6426a772
JM
1441 /* Always go on waiting for the target, regardless of the mode. */
1442 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1443 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1444 nothing is returned (instead of just blocking). Because of this,
1445 targets expecting an immediate response need to, internally, set
1446 things up so that the target_wait() is forced to eventually
1447 timeout. */
1448 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1449 differentiate to its caller what the state of the target is after
1450 the initial open has been performed. Here we're assuming that
1451 the target has stopped. It should be possible to eventually have
1452 target_open() return to the caller an indication that the target
1453 is currently running and GDB state should be set to the same as
1454 for an async run. */
ae123ec6 1455 wait_for_inferior (0);
8621d6a9
DJ
1456
1457 /* Now that the inferior has stopped, do any bookkeeping like
1458 loading shared libraries. We want to do this before normal_stop,
1459 so that the displayed frame is up to date. */
1460 post_create_inferior (&current_target, from_tty);
1461
6426a772 1462 normal_stop ();
c906108c
SS
1463}
1464
1465/* Initialize static vars when a new inferior begins. */
1466
1467void
96baa820 1468init_wait_for_inferior (void)
c906108c
SS
1469{
1470 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 1471
c906108c
SS
1472 breakpoint_init_inferior (inf_starting);
1473
c906108c
SS
1474 /* The first resume is not following a fork/vfork/exec. */
1475 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 1476
c906108c 1477 clear_proceed_status ();
9f976b41
DJ
1478
1479 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1480 deferred_step_ptid = null_ptid;
ca005067
DJ
1481
1482 target_last_wait_ptid = minus_one_ptid;
237fc4c9 1483
0d1e5fa7
PA
1484 previous_inferior_ptid = null_ptid;
1485 init_infwait_state ();
1486
237fc4c9 1487 displaced_step_clear ();
c906108c 1488}
237fc4c9 1489
c906108c 1490\f
b83266a0
SS
1491/* This enum encodes possible reasons for doing a target_wait, so that
1492 wfi can call target_wait in one place. (Ultimately the call will be
1493 moved out of the infinite loop entirely.) */
1494
c5aa993b
JM
1495enum infwait_states
1496{
cd0fc7c3
SS
1497 infwait_normal_state,
1498 infwait_thread_hop_state,
d983da9c 1499 infwait_step_watch_state,
cd0fc7c3 1500 infwait_nonstep_watch_state
b83266a0
SS
1501};
1502
11cf8741
JM
1503/* Why did the inferior stop? Used to print the appropriate messages
1504 to the interface from within handle_inferior_event(). */
1505enum inferior_stop_reason
1506{
11cf8741
JM
1507 /* Step, next, nexti, stepi finished. */
1508 END_STEPPING_RANGE,
11cf8741
JM
1509 /* Inferior terminated by signal. */
1510 SIGNAL_EXITED,
1511 /* Inferior exited. */
1512 EXITED,
1513 /* Inferior received signal, and user asked to be notified. */
b2175913
MS
1514 SIGNAL_RECEIVED,
1515 /* Reverse execution -- target ran out of history info. */
1516 NO_HISTORY
11cf8741
JM
1517};
1518
0d1e5fa7
PA
1519/* The PTID we'll do a target_wait on.*/
1520ptid_t waiton_ptid;
1521
1522/* Current inferior wait state. */
1523enum infwait_states infwait_state;
cd0fc7c3 1524
0d1e5fa7
PA
1525/* Data to be passed around while handling an event. This data is
1526 discarded between events. */
c5aa993b 1527struct execution_control_state
488f131b 1528{
0d1e5fa7 1529 ptid_t ptid;
4e1c45ea
PA
1530 /* The thread that got the event, if this was a thread event; NULL
1531 otherwise. */
1532 struct thread_info *event_thread;
1533
488f131b 1534 struct target_waitstatus ws;
488f131b
JB
1535 int random_signal;
1536 CORE_ADDR stop_func_start;
1537 CORE_ADDR stop_func_end;
1538 char *stop_func_name;
488f131b 1539 int new_thread_event;
488f131b
JB
1540 int wait_some_more;
1541};
1542
1543void init_execution_control_state (struct execution_control_state *ecs);
1544
1545void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1546
b2175913
MS
1547static void handle_step_into_function (struct execution_control_state *ecs);
1548static void handle_step_into_function_backward (struct execution_control_state *ecs);
44cbf7b5 1549static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 1550static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
1551static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1552 struct frame_id sr_id);
611c83ae
PA
1553static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1554
104c1213
JM
1555static void stop_stepping (struct execution_control_state *ecs);
1556static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1557static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1558static void print_stop_reason (enum inferior_stop_reason stop_reason,
1559 int stop_info);
104c1213 1560
252fbfc8
PA
1561/* Callback for iterate over threads. If the thread is stopped, but
1562 the user/frontend doesn't know about that yet, go through
1563 normal_stop, as if the thread had just stopped now. ARG points at
1564 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1565 ptid_is_pid(PTID) is true, applies to all threads of the process
1566 pointed at by PTID. Otherwise, apply only to the thread pointed by
1567 PTID. */
1568
1569static int
1570infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1571{
1572 ptid_t ptid = * (ptid_t *) arg;
1573
1574 if ((ptid_equal (info->ptid, ptid)
1575 || ptid_equal (minus_one_ptid, ptid)
1576 || (ptid_is_pid (ptid)
1577 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1578 && is_running (info->ptid)
1579 && !is_executing (info->ptid))
1580 {
1581 struct cleanup *old_chain;
1582 struct execution_control_state ecss;
1583 struct execution_control_state *ecs = &ecss;
1584
1585 memset (ecs, 0, sizeof (*ecs));
1586
1587 old_chain = make_cleanup_restore_current_thread ();
1588
1589 switch_to_thread (info->ptid);
1590
1591 /* Go through handle_inferior_event/normal_stop, so we always
1592 have consistent output as if the stop event had been
1593 reported. */
1594 ecs->ptid = info->ptid;
1595 ecs->event_thread = find_thread_pid (info->ptid);
1596 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1597 ecs->ws.value.sig = TARGET_SIGNAL_0;
1598
1599 handle_inferior_event (ecs);
1600
1601 if (!ecs->wait_some_more)
1602 {
1603 struct thread_info *tp;
1604
1605 normal_stop ();
1606
1607 /* Finish off the continuations. The continations
1608 themselves are responsible for realising the thread
1609 didn't finish what it was supposed to do. */
1610 tp = inferior_thread ();
1611 do_all_intermediate_continuations_thread (tp);
1612 do_all_continuations_thread (tp);
1613 }
1614
1615 do_cleanups (old_chain);
1616 }
1617
1618 return 0;
1619}
1620
1621/* This function is attached as a "thread_stop_requested" observer.
1622 Cleanup local state that assumed the PTID was to be resumed, and
1623 report the stop to the frontend. */
1624
1625void
1626infrun_thread_stop_requested (ptid_t ptid)
1627{
1628 struct displaced_step_request *it, *next, *prev = NULL;
1629
1630 /* PTID was requested to stop. Remove it from the displaced
1631 stepping queue, so we don't try to resume it automatically. */
1632 for (it = displaced_step_request_queue; it; it = next)
1633 {
1634 next = it->next;
1635
1636 if (ptid_equal (it->ptid, ptid)
1637 || ptid_equal (minus_one_ptid, ptid)
1638 || (ptid_is_pid (ptid)
1639 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1640 {
1641 if (displaced_step_request_queue == it)
1642 displaced_step_request_queue = it->next;
1643 else
1644 prev->next = it->next;
1645
1646 xfree (it);
1647 }
1648 else
1649 prev = it;
1650 }
1651
1652 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1653}
1654
4e1c45ea
PA
1655/* Callback for iterate_over_threads. */
1656
1657static int
1658delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1659{
1660 if (is_exited (info->ptid))
1661 return 0;
1662
1663 delete_step_resume_breakpoint (info);
1664 return 0;
1665}
1666
1667/* In all-stop, delete the step resume breakpoint of any thread that
1668 had one. In non-stop, delete the step resume breakpoint of the
1669 thread that just stopped. */
1670
1671static void
1672delete_step_thread_step_resume_breakpoint (void)
1673{
1674 if (!target_has_execution
1675 || ptid_equal (inferior_ptid, null_ptid))
1676 /* If the inferior has exited, we have already deleted the step
1677 resume breakpoints out of GDB's lists. */
1678 return;
1679
1680 if (non_stop)
1681 {
1682 /* If in non-stop mode, only delete the step-resume or
1683 longjmp-resume breakpoint of the thread that just stopped
1684 stepping. */
1685 struct thread_info *tp = inferior_thread ();
1686 delete_step_resume_breakpoint (tp);
1687 }
1688 else
1689 /* In all-stop mode, delete all step-resume and longjmp-resume
1690 breakpoints of any thread that had them. */
1691 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1692}
1693
1694/* A cleanup wrapper. */
1695
1696static void
1697delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1698{
1699 delete_step_thread_step_resume_breakpoint ();
1700}
1701
cd0fc7c3 1702/* Wait for control to return from inferior to debugger.
ae123ec6
JB
1703
1704 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1705 as if they were SIGTRAP signals. This can be useful during
1706 the startup sequence on some targets such as HP/UX, where
1707 we receive an EXEC event instead of the expected SIGTRAP.
1708
cd0fc7c3
SS
1709 If inferior gets a signal, we may decide to start it up again
1710 instead of returning. That is why there is a loop in this function.
1711 When this function actually returns it means the inferior
1712 should be left stopped and GDB should read more commands. */
1713
1714void
ae123ec6 1715wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
1716{
1717 struct cleanup *old_cleanups;
0d1e5fa7 1718 struct execution_control_state ecss;
cd0fc7c3 1719 struct execution_control_state *ecs;
c906108c 1720
527159b7 1721 if (debug_infrun)
ae123ec6
JB
1722 fprintf_unfiltered
1723 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1724 treat_exec_as_sigtrap);
527159b7 1725
4e1c45ea
PA
1726 old_cleanups =
1727 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 1728
cd0fc7c3 1729 ecs = &ecss;
0d1e5fa7
PA
1730 memset (ecs, 0, sizeof (*ecs));
1731
cd0fc7c3
SS
1732 overlay_cache_invalid = 1;
1733
e0bb1c1c
PA
1734 /* We'll update this if & when we switch to a new thread. */
1735 previous_inferior_ptid = inferior_ptid;
1736
cd0fc7c3
SS
1737 /* We have to invalidate the registers BEFORE calling target_wait
1738 because they can be loaded from the target while in target_wait.
1739 This makes remote debugging a bit more efficient for those
1740 targets that provide critical registers as part of their normal
1741 status mechanism. */
1742
1743 registers_changed ();
b83266a0 1744
c906108c
SS
1745 while (1)
1746 {
9a4105ab 1747 if (deprecated_target_wait_hook)
0d1e5fa7 1748 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
cd0fc7c3 1749 else
0d1e5fa7 1750 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
c906108c 1751
ae123ec6
JB
1752 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1753 {
1754 xfree (ecs->ws.value.execd_pathname);
1755 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1756 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1757 }
1758
cd0fc7c3
SS
1759 /* Now figure out what to do with the result of the result. */
1760 handle_inferior_event (ecs);
c906108c 1761
cd0fc7c3
SS
1762 if (!ecs->wait_some_more)
1763 break;
1764 }
4e1c45ea 1765
cd0fc7c3
SS
1766 do_cleanups (old_cleanups);
1767}
c906108c 1768
43ff13b4
JM
1769/* Asynchronous version of wait_for_inferior. It is called by the
1770 event loop whenever a change of state is detected on the file
1771 descriptor corresponding to the target. It can be called more than
1772 once to complete a single execution command. In such cases we need
a474d7c2
PA
1773 to keep the state in a global variable ECSS. If it is the last time
1774 that this function is called for a single execution command, then
1775 report to the user that the inferior has stopped, and do the
1776 necessary cleanups. */
43ff13b4
JM
1777
1778void
fba45db2 1779fetch_inferior_event (void *client_data)
43ff13b4 1780{
0d1e5fa7 1781 struct execution_control_state ecss;
a474d7c2 1782 struct execution_control_state *ecs = &ecss;
4f8d22e3
PA
1783 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1784 int was_sync = sync_execution;
43ff13b4 1785
0d1e5fa7
PA
1786 memset (ecs, 0, sizeof (*ecs));
1787
59f0d5d9 1788 overlay_cache_invalid = 1;
43ff13b4 1789
e0bb1c1c
PA
1790 /* We can only rely on wait_for_more being correct before handling
1791 the event in all-stop, but previous_inferior_ptid isn't used in
1792 non-stop. */
1793 if (!ecs->wait_some_more)
1794 /* We'll update this if & when we switch to a new thread. */
1795 previous_inferior_ptid = inferior_ptid;
1796
4f8d22e3
PA
1797 if (non_stop)
1798 /* In non-stop mode, the user/frontend should not notice a thread
1799 switch due to internal events. Make sure we reverse to the
1800 user selected thread and frame after handling the event and
1801 running any breakpoint commands. */
1802 make_cleanup_restore_current_thread ();
1803
59f0d5d9
PA
1804 /* We have to invalidate the registers BEFORE calling target_wait
1805 because they can be loaded from the target while in target_wait.
1806 This makes remote debugging a bit more efficient for those
1807 targets that provide critical registers as part of their normal
1808 status mechanism. */
43ff13b4 1809
59f0d5d9 1810 registers_changed ();
43ff13b4 1811
9a4105ab 1812 if (deprecated_target_wait_hook)
a474d7c2 1813 ecs->ptid =
0d1e5fa7 1814 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
43ff13b4 1815 else
0d1e5fa7 1816 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
43ff13b4 1817
94cc34af
PA
1818 if (non_stop
1819 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1820 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1821 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1822 /* In non-stop mode, each thread is handled individually. Switch
1823 early, so the global state is set correctly for this
1824 thread. */
1825 context_switch (ecs->ptid);
1826
43ff13b4 1827 /* Now figure out what to do with the result of the result. */
a474d7c2 1828 handle_inferior_event (ecs);
43ff13b4 1829
a474d7c2 1830 if (!ecs->wait_some_more)
43ff13b4 1831 {
d6b48e9c
PA
1832 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
1833
4e1c45ea 1834 delete_step_thread_step_resume_breakpoint ();
f107f563 1835
d6b48e9c
PA
1836 /* We may not find an inferior if this was a process exit. */
1837 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
1838 normal_stop ();
1839
af679fd0
PA
1840 if (target_has_execution
1841 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1842 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1843 && ecs->event_thread->step_multi
414c69f7 1844 && ecs->event_thread->stop_step)
c2d11a7d
JM
1845 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1846 else
1847 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 1848 }
4f8d22e3
PA
1849
1850 /* Revert thread and frame. */
1851 do_cleanups (old_chain);
1852
1853 /* If the inferior was in sync execution mode, and now isn't,
1854 restore the prompt. */
1855 if (was_sync && !sync_execution)
1856 display_gdb_prompt (0);
43ff13b4
JM
1857}
1858
cd0fc7c3
SS
1859/* Prepare an execution control state for looping through a
1860 wait_for_inferior-type loop. */
1861
1862void
96baa820 1863init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3
SS
1864{
1865 ecs->random_signal = 0;
0d1e5fa7
PA
1866}
1867
1868/* Clear context switchable stepping state. */
1869
1870void
4e1c45ea 1871init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 1872{
2afb61aa
PA
1873 struct symtab_and_line sal;
1874
0d1e5fa7
PA
1875 tss->stepping_over_breakpoint = 0;
1876 tss->step_after_step_resume_breakpoint = 0;
1877 tss->stepping_through_solib_after_catch = 0;
1878 tss->stepping_through_solib_catchpoints = NULL;
2afb61aa 1879
4e1c45ea 1880 sal = find_pc_line (tss->prev_pc, 0);
2afb61aa
PA
1881 tss->current_line = sal.line;
1882 tss->current_symtab = sal.symtab;
cd0fc7c3
SS
1883}
1884
e02bc4cc 1885/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1886 target_wait()/deprecated_target_wait_hook(). The data is actually
1887 cached by handle_inferior_event(), which gets called immediately
1888 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1889
1890void
488f131b 1891get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1892{
39f77062 1893 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1894 *status = target_last_waitstatus;
1895}
1896
ac264b3b
MS
1897void
1898nullify_last_target_wait_ptid (void)
1899{
1900 target_last_wait_ptid = minus_one_ptid;
1901}
1902
dcf4fbde 1903/* Switch thread contexts. */
dd80620e
MS
1904
1905static void
0d1e5fa7 1906context_switch (ptid_t ptid)
dd80620e 1907{
fd48f117
DJ
1908 if (debug_infrun)
1909 {
1910 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1911 target_pid_to_str (inferior_ptid));
1912 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 1913 target_pid_to_str (ptid));
fd48f117
DJ
1914 }
1915
0d1e5fa7 1916 switch_to_thread (ptid);
dd80620e
MS
1917}
1918
4fa8626c
DJ
1919static void
1920adjust_pc_after_break (struct execution_control_state *ecs)
1921{
24a73cce
UW
1922 struct regcache *regcache;
1923 struct gdbarch *gdbarch;
8aad930b 1924 CORE_ADDR breakpoint_pc;
4fa8626c 1925
4fa8626c
DJ
1926 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1927 we aren't, just return.
9709f61c
DJ
1928
1929 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
1930 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1931 implemented by software breakpoints should be handled through the normal
1932 breakpoint layer.
8fb3e588 1933
4fa8626c
DJ
1934 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1935 different signals (SIGILL or SIGEMT for instance), but it is less
1936 clear where the PC is pointing afterwards. It may not match
b798847d
UW
1937 gdbarch_decr_pc_after_break. I don't know any specific target that
1938 generates these signals at breakpoints (the code has been in GDB since at
1939 least 1992) so I can not guess how to handle them here.
8fb3e588 1940
e6cf7916
UW
1941 In earlier versions of GDB, a target with
1942 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
1943 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1944 target with both of these set in GDB history, and it seems unlikely to be
1945 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
1946
1947 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1948 return;
1949
1950 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1951 return;
1952
4058b839
PA
1953 /* In reverse execution, when a breakpoint is hit, the instruction
1954 under it has already been de-executed. The reported PC always
1955 points at the breakpoint address, so adjusting it further would
1956 be wrong. E.g., consider this case on a decr_pc_after_break == 1
1957 architecture:
1958
1959 B1 0x08000000 : INSN1
1960 B2 0x08000001 : INSN2
1961 0x08000002 : INSN3
1962 PC -> 0x08000003 : INSN4
1963
1964 Say you're stopped at 0x08000003 as above. Reverse continuing
1965 from that point should hit B2 as below. Reading the PC when the
1966 SIGTRAP is reported should read 0x08000001 and INSN2 should have
1967 been de-executed already.
1968
1969 B1 0x08000000 : INSN1
1970 B2 PC -> 0x08000001 : INSN2
1971 0x08000002 : INSN3
1972 0x08000003 : INSN4
1973
1974 We can't apply the same logic as for forward execution, because
1975 we would wrongly adjust the PC to 0x08000000, since there's a
1976 breakpoint at PC - 1. We'd then report a hit on B1, although
1977 INSN1 hadn't been de-executed yet. Doing nothing is the correct
1978 behaviour. */
1979 if (execution_direction == EXEC_REVERSE)
1980 return;
1981
24a73cce
UW
1982 /* If this target does not decrement the PC after breakpoints, then
1983 we have nothing to do. */
1984 regcache = get_thread_regcache (ecs->ptid);
1985 gdbarch = get_regcache_arch (regcache);
1986 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
1987 return;
1988
8aad930b
AC
1989 /* Find the location where (if we've hit a breakpoint) the
1990 breakpoint would be. */
515630c5
UW
1991 breakpoint_pc = regcache_read_pc (regcache)
1992 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 1993
1c5cfe86
PA
1994 /* Check whether there actually is a software breakpoint inserted at
1995 that location.
1996
1997 If in non-stop mode, a race condition is possible where we've
1998 removed a breakpoint, but stop events for that breakpoint were
1999 already queued and arrive later. To suppress those spurious
2000 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2001 and retire them after a number of stop events are reported. */
2002 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2003 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
8aad930b 2004 {
1c0fdd0e
UW
2005 /* When using hardware single-step, a SIGTRAP is reported for both
2006 a completed single-step and a software breakpoint. Need to
2007 differentiate between the two, as the latter needs adjusting
2008 but the former does not.
2009
2010 The SIGTRAP can be due to a completed hardware single-step only if
2011 - we didn't insert software single-step breakpoints
2012 - the thread to be examined is still the current thread
2013 - this thread is currently being stepped
2014
2015 If any of these events did not occur, we must have stopped due
2016 to hitting a software breakpoint, and have to back up to the
2017 breakpoint address.
2018
2019 As a special case, we could have hardware single-stepped a
2020 software breakpoint. In this case (prev_pc == breakpoint_pc),
2021 we also need to back up to the breakpoint address. */
2022
2023 if (singlestep_breakpoints_inserted_p
2024 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2025 || !currently_stepping (ecs->event_thread)
2026 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2027 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 2028 }
4fa8626c
DJ
2029}
2030
0d1e5fa7
PA
2031void
2032init_infwait_state (void)
2033{
2034 waiton_ptid = pid_to_ptid (-1);
2035 infwait_state = infwait_normal_state;
2036}
2037
94cc34af
PA
2038void
2039error_is_running (void)
2040{
2041 error (_("\
2042Cannot execute this command while the selected thread is running."));
2043}
2044
2045void
2046ensure_not_running (void)
2047{
2048 if (is_running (inferior_ptid))
2049 error_is_running ();
2050}
2051
cd0fc7c3
SS
2052/* Given an execution control state that has been freshly filled in
2053 by an event from the inferior, figure out what it means and take
2054 appropriate action. */
c906108c 2055
cd0fc7c3 2056void
96baa820 2057handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 2058{
c8edd8b4 2059 int sw_single_step_trap_p = 0;
d983da9c
DJ
2060 int stopped_by_watchpoint;
2061 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 2062 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
2063 enum stop_kind stop_soon;
2064
2065 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2066 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2067 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2068 {
2069 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2070 gdb_assert (inf);
2071 stop_soon = inf->stop_soon;
2072 }
2073 else
2074 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 2075
e02bc4cc 2076 /* Cache the last pid/waitstatus. */
39f77062 2077 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 2078 target_last_waitstatus = ecs->ws;
e02bc4cc 2079
ca005067
DJ
2080 /* Always clear state belonging to the previous time we stopped. */
2081 stop_stack_dummy = 0;
2082
8c90c137
LM
2083 /* If it's a new process, add it to the thread database */
2084
2085 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2086 && !ptid_equal (ecs->ptid, minus_one_ptid)
2087 && !in_thread_list (ecs->ptid));
2088
2089 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2090 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2091 add_thread (ecs->ptid);
2092
88ed393a
JK
2093 ecs->event_thread = find_thread_pid (ecs->ptid);
2094
2095 /* Dependent on valid ECS->EVENT_THREAD. */
2096 adjust_pc_after_break (ecs);
2097
2098 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2099 reinit_frame_cache ();
2100
8c90c137
LM
2101 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2102 {
1c5cfe86
PA
2103 breakpoint_retire_moribund ();
2104
8c90c137
LM
2105 /* Mark the non-executing threads accordingly. */
2106 if (!non_stop
2107 || ecs->ws.kind == TARGET_WAITKIND_EXITED
2108 || ecs->ws.kind == TARGET_WAITKIND_SIGNALLED)
2109 set_executing (pid_to_ptid (-1), 0);
2110 else
2111 set_executing (ecs->ptid, 0);
2112 }
2113
0d1e5fa7 2114 switch (infwait_state)
488f131b
JB
2115 {
2116 case infwait_thread_hop_state:
527159b7 2117 if (debug_infrun)
8a9de0e4 2118 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b 2119 /* Cancel the waiton_ptid. */
0d1e5fa7 2120 waiton_ptid = pid_to_ptid (-1);
65e82032 2121 break;
b83266a0 2122
488f131b 2123 case infwait_normal_state:
527159b7 2124 if (debug_infrun)
8a9de0e4 2125 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
2126 break;
2127
2128 case infwait_step_watch_state:
2129 if (debug_infrun)
2130 fprintf_unfiltered (gdb_stdlog,
2131 "infrun: infwait_step_watch_state\n");
2132
2133 stepped_after_stopped_by_watchpoint = 1;
488f131b 2134 break;
b83266a0 2135
488f131b 2136 case infwait_nonstep_watch_state:
527159b7 2137 if (debug_infrun)
8a9de0e4
AC
2138 fprintf_unfiltered (gdb_stdlog,
2139 "infrun: infwait_nonstep_watch_state\n");
488f131b 2140 insert_breakpoints ();
c906108c 2141
488f131b
JB
2142 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2143 handle things like signals arriving and other things happening
2144 in combination correctly? */
2145 stepped_after_stopped_by_watchpoint = 1;
2146 break;
65e82032
AC
2147
2148 default:
e2e0b3e5 2149 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 2150 }
0d1e5fa7 2151 infwait_state = infwait_normal_state;
c906108c 2152
488f131b
JB
2153 switch (ecs->ws.kind)
2154 {
2155 case TARGET_WAITKIND_LOADED:
527159b7 2156 if (debug_infrun)
8a9de0e4 2157 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
2158 /* Ignore gracefully during startup of the inferior, as it might
2159 be the shell which has just loaded some objects, otherwise
2160 add the symbols for the newly loaded objects. Also ignore at
2161 the beginning of an attach or remote session; we will query
2162 the full list of libraries once the connection is
2163 established. */
c0236d92 2164 if (stop_soon == NO_STOP_QUIETLY)
488f131b 2165 {
488f131b
JB
2166 /* Check for any newly added shared libraries if we're
2167 supposed to be adding them automatically. Switch
2168 terminal for any messages produced by
2169 breakpoint_re_set. */
2170 target_terminal_ours_for_output ();
aff6338a 2171 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2172 stack's section table is kept up-to-date. Architectures,
2173 (e.g., PPC64), use the section table to perform
2174 operations such as address => section name and hence
2175 require the table to contain all sections (including
2176 those found in shared libraries). */
aff6338a 2177 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2178 exec_ops to SOLIB_ADD. This is because current GDB is
2179 only tooled to propagate section_table changes out from
2180 the "current_target" (see target_resize_to_sections), and
2181 not up from the exec stratum. This, of course, isn't
2182 right. "infrun.c" should only interact with the
2183 exec/process stratum, instead relying on the target stack
2184 to propagate relevant changes (stop, section table
2185 changed, ...) up to other layers. */
b0f4b84b 2186#ifdef SOLIB_ADD
aff6338a 2187 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
2188#else
2189 solib_add (NULL, 0, &current_target, auto_solib_add);
2190#endif
488f131b
JB
2191 target_terminal_inferior ();
2192
b0f4b84b
DJ
2193 /* If requested, stop when the dynamic linker notifies
2194 gdb of events. This allows the user to get control
2195 and place breakpoints in initializer routines for
2196 dynamically loaded objects (among other things). */
2197 if (stop_on_solib_events)
2198 {
2199 stop_stepping (ecs);
2200 return;
2201 }
2202
2203 /* NOTE drow/2007-05-11: This might be a good place to check
2204 for "catch load". */
488f131b 2205 }
b0f4b84b
DJ
2206
2207 /* If we are skipping through a shell, or through shared library
2208 loading that we aren't interested in, resume the program. If
2209 we're running the program normally, also resume. But stop if
2210 we're attaching or setting up a remote connection. */
2211 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2212 {
74960c60
VP
2213 /* Loading of shared libraries might have changed breakpoint
2214 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
2215 if (stop_soon == NO_STOP_QUIETLY
2216 && !breakpoints_always_inserted_mode ())
74960c60 2217 insert_breakpoints ();
b0f4b84b
DJ
2218 resume (0, TARGET_SIGNAL_0);
2219 prepare_to_wait (ecs);
2220 return;
2221 }
2222
2223 break;
c5aa993b 2224
488f131b 2225 case TARGET_WAITKIND_SPURIOUS:
527159b7 2226 if (debug_infrun)
8a9de0e4 2227 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
2228 resume (0, TARGET_SIGNAL_0);
2229 prepare_to_wait (ecs);
2230 return;
c5aa993b 2231
488f131b 2232 case TARGET_WAITKIND_EXITED:
527159b7 2233 if (debug_infrun)
8a9de0e4 2234 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
2235 target_terminal_ours (); /* Must do this before mourn anyway */
2236 print_stop_reason (EXITED, ecs->ws.value.integer);
2237
2238 /* Record the exit code in the convenience variable $_exitcode, so
2239 that the user can inspect this again later. */
2240 set_internalvar (lookup_internalvar ("_exitcode"),
8b9b9e1a 2241 value_from_longest (builtin_type_int32,
488f131b
JB
2242 (LONGEST) ecs->ws.value.integer));
2243 gdb_flush (gdb_stdout);
2244 target_mourn_inferior ();
1c0fdd0e 2245 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2246 stop_print_frame = 0;
2247 stop_stepping (ecs);
2248 return;
c5aa993b 2249
488f131b 2250 case TARGET_WAITKIND_SIGNALLED:
527159b7 2251 if (debug_infrun)
8a9de0e4 2252 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b 2253 stop_print_frame = 0;
488f131b 2254 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 2255
488f131b
JB
2256 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2257 reach here unless the inferior is dead. However, for years
2258 target_kill() was called here, which hints that fatal signals aren't
2259 really fatal on some systems. If that's true, then some changes
2260 may be needed. */
2261 target_mourn_inferior ();
c906108c 2262
2020b7ab 2263 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 2264 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2265 stop_stepping (ecs);
2266 return;
c906108c 2267
488f131b
JB
2268 /* The following are the only cases in which we keep going;
2269 the above cases end in a continue or goto. */
2270 case TARGET_WAITKIND_FORKED:
deb3b17b 2271 case TARGET_WAITKIND_VFORKED:
527159b7 2272 if (debug_infrun)
8a9de0e4 2273 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
2274 pending_follow.kind = ecs->ws.kind;
2275
3a3e9ee3 2276 pending_follow.fork_event.parent_pid = ecs->ptid;
8e7d2c16 2277 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 2278
5a2901d9
DJ
2279 if (!ptid_equal (ecs->ptid, inferior_ptid))
2280 {
0d1e5fa7 2281 context_switch (ecs->ptid);
35f196d9 2282 reinit_frame_cache ();
5a2901d9
DJ
2283 }
2284
488f131b 2285 stop_pc = read_pc ();
675bf4cb 2286
347bddb7 2287 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 2288
347bddb7 2289 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
04e68871
DJ
2290
2291 /* If no catchpoint triggered for this, then keep going. */
2292 if (ecs->random_signal)
2293 {
2020b7ab 2294 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2295 keep_going (ecs);
2296 return;
2297 }
2020b7ab 2298 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2299 goto process_event_stop_test;
2300
2301 case TARGET_WAITKIND_EXECD:
527159b7 2302 if (debug_infrun)
fc5261f2 2303 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
2304 pending_follow.execd_pathname =
2305 savestring (ecs->ws.value.execd_pathname,
2306 strlen (ecs->ws.value.execd_pathname));
2307
5a2901d9
DJ
2308 if (!ptid_equal (ecs->ptid, inferior_ptid))
2309 {
0d1e5fa7 2310 context_switch (ecs->ptid);
35f196d9 2311 reinit_frame_cache ();
5a2901d9
DJ
2312 }
2313
795e548f
PA
2314 stop_pc = read_pc ();
2315
2316 /* This causes the eventpoints and symbol table to be reset.
2317 Must do this now, before trying to determine whether to
2318 stop. */
2319 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2320 xfree (pending_follow.execd_pathname);
2321
2322 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2323 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2324
04e68871
DJ
2325 /* If no catchpoint triggered for this, then keep going. */
2326 if (ecs->random_signal)
2327 {
2020b7ab 2328 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2329 keep_going (ecs);
2330 return;
2331 }
2020b7ab 2332 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2333 goto process_event_stop_test;
2334
b4dc5ffa
MK
2335 /* Be careful not to try to gather much state about a thread
2336 that's in a syscall. It's frequently a losing proposition. */
488f131b 2337 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 2338 if (debug_infrun)
8a9de0e4 2339 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
2340 resume (0, TARGET_SIGNAL_0);
2341 prepare_to_wait (ecs);
2342 return;
c906108c 2343
488f131b
JB
2344 /* Before examining the threads further, step this thread to
2345 get it entirely out of the syscall. (We get notice of the
2346 event when the thread is just on the verge of exiting a
2347 syscall. Stepping one instruction seems to get it back
b4dc5ffa 2348 into user code.) */
488f131b 2349 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 2350 if (debug_infrun)
8a9de0e4 2351 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 2352 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
2353 prepare_to_wait (ecs);
2354 return;
c906108c 2355
488f131b 2356 case TARGET_WAITKIND_STOPPED:
527159b7 2357 if (debug_infrun)
8a9de0e4 2358 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 2359 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 2360 break;
c906108c 2361
b2175913
MS
2362 case TARGET_WAITKIND_NO_HISTORY:
2363 /* Reverse execution: target ran out of history info. */
40e12b06 2364 stop_pc = read_pc ();
b2175913
MS
2365 print_stop_reason (NO_HISTORY, 0);
2366 stop_stepping (ecs);
2367 return;
2368
488f131b
JB
2369 /* We had an event in the inferior, but we are not interested
2370 in handling it at this level. The lower layers have already
8e7d2c16 2371 done what needs to be done, if anything.
8fb3e588
AC
2372
2373 One of the possible circumstances for this is when the
2374 inferior produces output for the console. The inferior has
2375 not stopped, and we are ignoring the event. Another possible
2376 circumstance is any event which the lower level knows will be
2377 reported multiple times without an intervening resume. */
488f131b 2378 case TARGET_WAITKIND_IGNORE:
527159b7 2379 if (debug_infrun)
8a9de0e4 2380 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 2381 prepare_to_wait (ecs);
488f131b
JB
2382 return;
2383 }
c906108c 2384
488f131b
JB
2385 if (ecs->new_thread_event)
2386 {
94cc34af
PA
2387 if (non_stop)
2388 /* Non-stop assumes that the target handles adding new threads
2389 to the thread list. */
2390 internal_error (__FILE__, __LINE__, "\
2391targets should add new threads to the thread list themselves in non-stop mode.");
2392
2393 /* We may want to consider not doing a resume here in order to
2394 give the user a chance to play with the new thread. It might
2395 be good to make that a user-settable option. */
2396
2397 /* At this point, all threads are stopped (happens automatically
2398 in either the OS or the native code). Therefore we need to
2399 continue all threads in order to make progress. */
2400
488f131b
JB
2401 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2402 prepare_to_wait (ecs);
2403 return;
2404 }
c906108c 2405
2020b7ab 2406 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
2407 {
2408 /* Do we need to clean up the state of a thread that has
2409 completed a displaced single-step? (Doing so usually affects
2410 the PC, so do it here, before we set stop_pc.) */
2411 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2412
2413 /* If we either finished a single-step or hit a breakpoint, but
2414 the user wanted this thread to be stopped, pretend we got a
2415 SIG0 (generic unsignaled stop). */
2416
2417 if (ecs->event_thread->stop_requested
2418 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2419 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2420 }
237fc4c9 2421
515630c5 2422 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 2423
527159b7 2424 if (debug_infrun)
237fc4c9
PA
2425 {
2426 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2427 paddr_nz (stop_pc));
2428 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2429 {
2430 CORE_ADDR addr;
2431 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2432
2433 if (target_stopped_data_address (&current_target, &addr))
2434 fprintf_unfiltered (gdb_stdlog,
2435 "infrun: stopped data address = 0x%s\n",
2436 paddr_nz (addr));
2437 else
2438 fprintf_unfiltered (gdb_stdlog,
2439 "infrun: (no data address available)\n");
2440 }
2441 }
527159b7 2442
9f976b41
DJ
2443 if (stepping_past_singlestep_breakpoint)
2444 {
1c0fdd0e 2445 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
2446 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2447 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2448
2449 stepping_past_singlestep_breakpoint = 0;
2450
2451 /* We've either finished single-stepping past the single-step
8fb3e588
AC
2452 breakpoint, or stopped for some other reason. It would be nice if
2453 we could tell, but we can't reliably. */
2020b7ab 2454 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 2455 {
527159b7 2456 if (debug_infrun)
8a9de0e4 2457 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 2458 /* Pull the single step breakpoints out of the target. */
e0cd558a 2459 remove_single_step_breakpoints ();
9f976b41
DJ
2460 singlestep_breakpoints_inserted_p = 0;
2461
2462 ecs->random_signal = 0;
2463
0d1e5fa7 2464 context_switch (saved_singlestep_ptid);
9a4105ab
AC
2465 if (deprecated_context_hook)
2466 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
2467
2468 resume (1, TARGET_SIGNAL_0);
2469 prepare_to_wait (ecs);
2470 return;
2471 }
2472 }
2473
2474 stepping_past_singlestep_breakpoint = 0;
2475
ca67fcb8 2476 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 2477 {
94cc34af
PA
2478 /* In non-stop mode, there's never a deferred_step_ptid set. */
2479 gdb_assert (!non_stop);
2480
6a6b96b9
UW
2481 /* If we stopped for some other reason than single-stepping, ignore
2482 the fact that we were supposed to switch back. */
2020b7ab 2483 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9 2484 {
4e1c45ea
PA
2485 struct thread_info *tp;
2486
6a6b96b9
UW
2487 if (debug_infrun)
2488 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 2489 "infrun: handling deferred step\n");
6a6b96b9
UW
2490
2491 /* Pull the single step breakpoints out of the target. */
2492 if (singlestep_breakpoints_inserted_p)
2493 {
2494 remove_single_step_breakpoints ();
2495 singlestep_breakpoints_inserted_p = 0;
2496 }
2497
2498 /* Note: We do not call context_switch at this point, as the
2499 context is already set up for stepping the original thread. */
ca67fcb8
VP
2500 switch_to_thread (deferred_step_ptid);
2501 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2502 /* Suppress spurious "Switching to ..." message. */
2503 previous_inferior_ptid = inferior_ptid;
2504
2505 resume (1, TARGET_SIGNAL_0);
2506 prepare_to_wait (ecs);
2507 return;
2508 }
ca67fcb8
VP
2509
2510 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2511 }
2512
488f131b
JB
2513 /* See if a thread hit a thread-specific breakpoint that was meant for
2514 another thread. If so, then step that thread past the breakpoint,
2515 and continue it. */
2516
2020b7ab 2517 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2518 {
9f976b41
DJ
2519 int thread_hop_needed = 0;
2520
f8d40ec8
JB
2521 /* Check if a regular breakpoint has been hit before checking
2522 for a potential single step breakpoint. Otherwise, GDB will
2523 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 2524 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 2525 {
c5aa993b 2526 ecs->random_signal = 0;
4fa8626c 2527 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
2528 thread_hop_needed = 1;
2529 }
1c0fdd0e 2530 else if (singlestep_breakpoints_inserted_p)
9f976b41 2531 {
fd48f117
DJ
2532 /* We have not context switched yet, so this should be true
2533 no matter which thread hit the singlestep breakpoint. */
2534 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2535 if (debug_infrun)
2536 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2537 "trap for %s\n",
2538 target_pid_to_str (ecs->ptid));
2539
9f976b41
DJ
2540 ecs->random_signal = 0;
2541 /* The call to in_thread_list is necessary because PTIDs sometimes
2542 change when we go from single-threaded to multi-threaded. If
2543 the singlestep_ptid is still in the list, assume that it is
2544 really different from ecs->ptid. */
2545 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2546 && in_thread_list (singlestep_ptid))
2547 {
fd48f117
DJ
2548 /* If the PC of the thread we were trying to single-step
2549 has changed, discard this event (which we were going
2550 to ignore anyway), and pretend we saw that thread
2551 trap. This prevents us continuously moving the
2552 single-step breakpoint forward, one instruction at a
2553 time. If the PC has changed, then the thread we were
2554 trying to single-step has trapped or been signalled,
2555 but the event has not been reported to GDB yet.
2556
2557 There might be some cases where this loses signal
2558 information, if a signal has arrived at exactly the
2559 same time that the PC changed, but this is the best
2560 we can do with the information available. Perhaps we
2561 should arrange to report all events for all threads
2562 when they stop, or to re-poll the remote looking for
2563 this particular thread (i.e. temporarily enable
2564 schedlock). */
515630c5
UW
2565
2566 CORE_ADDR new_singlestep_pc
2567 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2568
2569 if (new_singlestep_pc != singlestep_pc)
fd48f117 2570 {
2020b7ab
PA
2571 enum target_signal stop_signal;
2572
fd48f117
DJ
2573 if (debug_infrun)
2574 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2575 " but expected thread advanced also\n");
2576
2577 /* The current context still belongs to
2578 singlestep_ptid. Don't swap here, since that's
2579 the context we want to use. Just fudge our
2580 state and continue. */
2020b7ab
PA
2581 stop_signal = ecs->event_thread->stop_signal;
2582 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 2583 ecs->ptid = singlestep_ptid;
4e1c45ea 2584 ecs->event_thread = find_thread_pid (ecs->ptid);
2020b7ab 2585 ecs->event_thread->stop_signal = stop_signal;
515630c5 2586 stop_pc = new_singlestep_pc;
fd48f117
DJ
2587 }
2588 else
2589 {
2590 if (debug_infrun)
2591 fprintf_unfiltered (gdb_stdlog,
2592 "infrun: unexpected thread\n");
2593
2594 thread_hop_needed = 1;
2595 stepping_past_singlestep_breakpoint = 1;
2596 saved_singlestep_ptid = singlestep_ptid;
2597 }
9f976b41
DJ
2598 }
2599 }
2600
2601 if (thread_hop_needed)
8fb3e588 2602 {
237fc4c9 2603 int remove_status = 0;
8fb3e588 2604
527159b7 2605 if (debug_infrun)
8a9de0e4 2606 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 2607
8fb3e588
AC
2608 /* Saw a breakpoint, but it was hit by the wrong thread.
2609 Just continue. */
2610
1c0fdd0e 2611 if (singlestep_breakpoints_inserted_p)
488f131b 2612 {
8fb3e588 2613 /* Pull the single step breakpoints out of the target. */
e0cd558a 2614 remove_single_step_breakpoints ();
8fb3e588
AC
2615 singlestep_breakpoints_inserted_p = 0;
2616 }
2617
237fc4c9
PA
2618 /* If the arch can displace step, don't remove the
2619 breakpoints. */
2620 if (!use_displaced_stepping (current_gdbarch))
2621 remove_status = remove_breakpoints ();
2622
8fb3e588
AC
2623 /* Did we fail to remove breakpoints? If so, try
2624 to set the PC past the bp. (There's at least
2625 one situation in which we can fail to remove
2626 the bp's: On HP-UX's that use ttrace, we can't
2627 change the address space of a vforking child
2628 process until the child exits (well, okay, not
2629 then either :-) or execs. */
2630 if (remove_status != 0)
9d9cd7ac 2631 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
2632 else
2633 { /* Single step */
8fb3e588 2634 if (!ptid_equal (inferior_ptid, ecs->ptid))
0d1e5fa7
PA
2635 context_switch (ecs->ptid);
2636
94cc34af
PA
2637 if (!non_stop)
2638 {
2639 /* Only need to require the next event from this
2640 thread in all-stop mode. */
2641 waiton_ptid = ecs->ptid;
2642 infwait_state = infwait_thread_hop_state;
2643 }
8fb3e588 2644
4e1c45ea 2645 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588
AC
2646 keep_going (ecs);
2647 registers_changed ();
2648 return;
2649 }
488f131b 2650 }
1c0fdd0e 2651 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
2652 {
2653 sw_single_step_trap_p = 1;
2654 ecs->random_signal = 0;
2655 }
488f131b
JB
2656 }
2657 else
2658 ecs->random_signal = 1;
c906108c 2659
488f131b 2660 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
2661 so, then switch to that thread. */
2662 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 2663 {
527159b7 2664 if (debug_infrun)
8a9de0e4 2665 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 2666
0d1e5fa7 2667 context_switch (ecs->ptid);
c5aa993b 2668
9a4105ab
AC
2669 if (deprecated_context_hook)
2670 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 2671 }
c906108c 2672
1c0fdd0e 2673 if (singlestep_breakpoints_inserted_p)
488f131b
JB
2674 {
2675 /* Pull the single step breakpoints out of the target. */
e0cd558a 2676 remove_single_step_breakpoints ();
488f131b
JB
2677 singlestep_breakpoints_inserted_p = 0;
2678 }
c906108c 2679
d983da9c
DJ
2680 if (stepped_after_stopped_by_watchpoint)
2681 stopped_by_watchpoint = 0;
2682 else
2683 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2684
2685 /* If necessary, step over this watchpoint. We'll be back to display
2686 it in a moment. */
2687 if (stopped_by_watchpoint
2688 && (HAVE_STEPPABLE_WATCHPOINT
2689 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
488f131b 2690 {
488f131b
JB
2691 /* At this point, we are stopped at an instruction which has
2692 attempted to write to a piece of memory under control of
2693 a watchpoint. The instruction hasn't actually executed
2694 yet. If we were to evaluate the watchpoint expression
2695 now, we would get the old value, and therefore no change
2696 would seem to have occurred.
2697
2698 In order to make watchpoints work `right', we really need
2699 to complete the memory write, and then evaluate the
d983da9c
DJ
2700 watchpoint expression. We do this by single-stepping the
2701 target.
2702
2703 It may not be necessary to disable the watchpoint to stop over
2704 it. For example, the PA can (with some kernel cooperation)
2705 single step over a watchpoint without disabling the watchpoint.
2706
2707 It is far more common to need to disable a watchpoint to step
2708 the inferior over it. If we have non-steppable watchpoints,
2709 we must disable the current watchpoint; it's simplest to
2710 disable all watchpoints and breakpoints. */
2711
2712 if (!HAVE_STEPPABLE_WATCHPOINT)
2713 remove_breakpoints ();
488f131b
JB
2714 registers_changed ();
2715 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
0d1e5fa7 2716 waiton_ptid = ecs->ptid;
d983da9c 2717 if (HAVE_STEPPABLE_WATCHPOINT)
0d1e5fa7 2718 infwait_state = infwait_step_watch_state;
d983da9c 2719 else
0d1e5fa7 2720 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
2721 prepare_to_wait (ecs);
2722 return;
2723 }
2724
488f131b
JB
2725 ecs->stop_func_start = 0;
2726 ecs->stop_func_end = 0;
2727 ecs->stop_func_name = 0;
2728 /* Don't care about return value; stop_func_start and stop_func_name
2729 will both be 0 if it doesn't work. */
2730 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2731 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a
UW
2732 ecs->stop_func_start
2733 += gdbarch_deprecated_function_start_offset (current_gdbarch);
4e1c45ea 2734 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 2735 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 2736 ecs->event_thread->stop_step = 0;
488f131b
JB
2737 stop_print_frame = 1;
2738 ecs->random_signal = 0;
2739 stopped_by_random_signal = 0;
488f131b 2740
2020b7ab 2741 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 2742 && ecs->event_thread->trap_expected
3352ef37 2743 && gdbarch_single_step_through_delay_p (current_gdbarch)
4e1c45ea 2744 && currently_stepping (ecs->event_thread))
3352ef37 2745 {
b50d7442 2746 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
2747 also on an instruction that needs to be stepped multiple
2748 times before it's been fully executing. E.g., architectures
2749 with a delay slot. It needs to be stepped twice, once for
2750 the instruction and once for the delay slot. */
2751 int step_through_delay
2752 = gdbarch_single_step_through_delay (current_gdbarch,
2753 get_current_frame ());
527159b7 2754 if (debug_infrun && step_through_delay)
8a9de0e4 2755 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 2756 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
2757 {
2758 /* The user issued a continue when stopped at a breakpoint.
2759 Set up for another trap and get out of here. */
4e1c45ea 2760 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
2761 keep_going (ecs);
2762 return;
2763 }
2764 else if (step_through_delay)
2765 {
2766 /* The user issued a step when stopped at a breakpoint.
2767 Maybe we should stop, maybe we should not - the delay
2768 slot *might* correspond to a line of source. In any
ca67fcb8
VP
2769 case, don't decide that here, just set
2770 ecs->stepping_over_breakpoint, making sure we
2771 single-step again before breakpoints are re-inserted. */
4e1c45ea 2772 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
2773 }
2774 }
2775
488f131b
JB
2776 /* Look at the cause of the stop, and decide what to do.
2777 The alternatives are:
0d1e5fa7
PA
2778 1) stop_stepping and return; to really stop and return to the debugger,
2779 2) keep_going and return to start up again
4e1c45ea 2780 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
2781 3) set ecs->random_signal to 1, and the decision between 1 and 2
2782 will be made according to the signal handling tables. */
2783
2784 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
2785 that have to do with the program's own actions. Note that
2786 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2787 on the operating system version. Here we detect when a SIGILL or
2788 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2789 something similar for SIGSEGV, since a SIGSEGV will be generated
2790 when we're trying to execute a breakpoint instruction on a
2791 non-executable stack. This happens for call dummy breakpoints
2792 for architectures like SPARC that place call dummies on the
237fc4c9 2793 stack.
488f131b 2794
237fc4c9
PA
2795 If we're doing a displaced step past a breakpoint, then the
2796 breakpoint is always inserted at the original instruction;
2797 non-standard signals can't be explained by the breakpoint. */
2020b7ab 2798 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 2799 || (! ecs->event_thread->trap_expected
237fc4c9 2800 && breakpoint_inserted_here_p (stop_pc)
2020b7ab
PA
2801 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
2802 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
2803 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
2804 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2805 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 2806 {
2020b7ab 2807 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 2808 {
527159b7 2809 if (debug_infrun)
8a9de0e4 2810 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
2811 stop_print_frame = 0;
2812 stop_stepping (ecs);
2813 return;
2814 }
c54cfec8
EZ
2815
2816 /* This is originated from start_remote(), start_inferior() and
2817 shared libraries hook functions. */
b0f4b84b 2818 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 2819 {
527159b7 2820 if (debug_infrun)
8a9de0e4 2821 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
2822 stop_stepping (ecs);
2823 return;
2824 }
2825
c54cfec8 2826 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
2827 the stop_signal here, because some kernels don't ignore a
2828 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2829 See more comments in inferior.h. On the other hand, if we
a0ef4274 2830 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
2831 will handle the SIGSTOP if it should show up later.
2832
2833 Also consider that the attach is complete when we see a
2834 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2835 target extended-remote report it instead of a SIGSTOP
2836 (e.g. gdbserver). We already rely on SIGTRAP being our
2837 signal, so this is no exception. */
a0ef4274 2838 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab
PA
2839 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
2840 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP))
c54cfec8
EZ
2841 {
2842 stop_stepping (ecs);
2020b7ab 2843 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
2844 return;
2845 }
2846
fba57f8f 2847 /* See if there is a breakpoint at the current PC. */
347bddb7 2848 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
fba57f8f
VP
2849
2850 /* Following in case break condition called a
2851 function. */
2852 stop_print_frame = 1;
488f131b 2853
73dd234f 2854 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
2855 at one stage in the past included checks for an inferior
2856 function call's call dummy's return breakpoint. The original
2857 comment, that went with the test, read:
73dd234f 2858
8fb3e588
AC
2859 ``End of a stack dummy. Some systems (e.g. Sony news) give
2860 another signal besides SIGTRAP, so check here as well as
2861 above.''
73dd234f 2862
8002d778 2863 If someone ever tries to get call dummys on a
73dd234f 2864 non-executable stack to work (where the target would stop
03cebad2
MK
2865 with something like a SIGSEGV), then those tests might need
2866 to be re-instated. Given, however, that the tests were only
73dd234f 2867 enabled when momentary breakpoints were not being used, I
03cebad2
MK
2868 suspect that it won't be the case.
2869
8fb3e588
AC
2870 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2871 be necessary for call dummies on a non-executable stack on
2872 SPARC. */
73dd234f 2873
2020b7ab 2874 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2875 ecs->random_signal
347bddb7 2876 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
4e1c45ea
PA
2877 || ecs->event_thread->trap_expected
2878 || (ecs->event_thread->step_range_end
2879 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
2880 else
2881 {
347bddb7 2882 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 2883 if (!ecs->random_signal)
2020b7ab 2884 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2885 }
2886 }
2887
2888 /* When we reach this point, we've pretty much decided
2889 that the reason for stopping must've been a random
2890 (unexpected) signal. */
2891
2892 else
2893 ecs->random_signal = 1;
488f131b 2894
04e68871 2895process_event_stop_test:
488f131b
JB
2896 /* For the program's own signals, act according to
2897 the signal handling tables. */
2898
2899 if (ecs->random_signal)
2900 {
2901 /* Signal not for debugging purposes. */
2902 int printed = 0;
2903
527159b7 2904 if (debug_infrun)
2020b7ab
PA
2905 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
2906 ecs->event_thread->stop_signal);
527159b7 2907
488f131b
JB
2908 stopped_by_random_signal = 1;
2909
2020b7ab 2910 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
2911 {
2912 printed = 1;
2913 target_terminal_ours_for_output ();
2020b7ab 2914 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 2915 }
252fbfc8
PA
2916 /* Always stop on signals if we're either just gaining control
2917 of the program, or the user explicitly requested this thread
2918 to remain stopped. */
d6b48e9c 2919 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 2920 || ecs->event_thread->stop_requested
d6b48e9c 2921 || signal_stop_state (ecs->event_thread->stop_signal))
488f131b
JB
2922 {
2923 stop_stepping (ecs);
2924 return;
2925 }
2926 /* If not going to stop, give terminal back
2927 if we took it away. */
2928 else if (printed)
2929 target_terminal_inferior ();
2930
2931 /* Clear the signal if it should not be passed. */
2020b7ab
PA
2932 if (signal_program[ecs->event_thread->stop_signal] == 0)
2933 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 2934
4e1c45ea
PA
2935 if (ecs->event_thread->prev_pc == read_pc ()
2936 && ecs->event_thread->trap_expected
2937 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
2938 {
2939 /* We were just starting a new sequence, attempting to
2940 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 2941 Instead this signal arrives. This signal will take us out
68f53502
AC
2942 of the stepping range so GDB needs to remember to, when
2943 the signal handler returns, resume stepping off that
2944 breakpoint. */
2945 /* To simplify things, "continue" is forced to use the same
2946 code paths as single-step - set a breakpoint at the
2947 signal return address and then, once hit, step off that
2948 breakpoint. */
237fc4c9
PA
2949 if (debug_infrun)
2950 fprintf_unfiltered (gdb_stdlog,
2951 "infrun: signal arrived while stepping over "
2952 "breakpoint\n");
d3169d93 2953
44cbf7b5 2954 insert_step_resume_breakpoint_at_frame (get_current_frame ());
4e1c45ea 2955 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
2956 keep_going (ecs);
2957 return;
68f53502 2958 }
9d799f85 2959
4e1c45ea 2960 if (ecs->event_thread->step_range_end != 0
2020b7ab 2961 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
2962 && (ecs->event_thread->step_range_start <= stop_pc
2963 && stop_pc < ecs->event_thread->step_range_end)
9d799f85 2964 && frame_id_eq (get_frame_id (get_current_frame ()),
4e1c45ea
PA
2965 ecs->event_thread->step_frame_id)
2966 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
2967 {
2968 /* The inferior is about to take a signal that will take it
2969 out of the single step range. Set a breakpoint at the
2970 current PC (which is presumably where the signal handler
2971 will eventually return) and then allow the inferior to
2972 run free.
2973
2974 Note that this is only needed for a signal delivered
2975 while in the single-step range. Nested signals aren't a
2976 problem as they eventually all return. */
237fc4c9
PA
2977 if (debug_infrun)
2978 fprintf_unfiltered (gdb_stdlog,
2979 "infrun: signal may take us out of "
2980 "single-step range\n");
2981
44cbf7b5 2982 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
2983 keep_going (ecs);
2984 return;
d303a6c7 2985 }
9d799f85
AC
2986
2987 /* Note: step_resume_breakpoint may be non-NULL. This occures
2988 when either there's a nested signal, or when there's a
2989 pending signal enabled just as the signal handler returns
2990 (leaving the inferior at the step-resume-breakpoint without
2991 actually executing it). Either way continue until the
2992 breakpoint is really hit. */
488f131b
JB
2993 keep_going (ecs);
2994 return;
2995 }
2996
2997 /* Handle cases caused by hitting a breakpoint. */
2998 {
2999 CORE_ADDR jmp_buf_pc;
3000 struct bpstat_what what;
3001
347bddb7 3002 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
3003
3004 if (what.call_dummy)
3005 {
3006 stop_stack_dummy = 1;
c5aa993b 3007 }
c906108c 3008
488f131b 3009 switch (what.main_action)
c5aa993b 3010 {
488f131b 3011 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
3012 /* If we hit the breakpoint at longjmp while stepping, we
3013 install a momentary breakpoint at the target of the
3014 jmp_buf. */
3015
3016 if (debug_infrun)
3017 fprintf_unfiltered (gdb_stdlog,
3018 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3019
4e1c45ea 3020 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 3021
91104499 3022 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
60ade65d
UW
3023 || !gdbarch_get_longjmp_target (current_gdbarch,
3024 get_current_frame (), &jmp_buf_pc))
c5aa993b 3025 {
611c83ae
PA
3026 if (debug_infrun)
3027 fprintf_unfiltered (gdb_stdlog, "\
3028infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 3029 keep_going (ecs);
104c1213 3030 return;
c5aa993b 3031 }
488f131b 3032
611c83ae
PA
3033 /* We're going to replace the current step-resume breakpoint
3034 with a longjmp-resume breakpoint. */
4e1c45ea 3035 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
3036
3037 /* Insert a breakpoint at resume address. */
3038 insert_longjmp_resume_breakpoint (jmp_buf_pc);
c906108c 3039
488f131b
JB
3040 keep_going (ecs);
3041 return;
c906108c 3042
488f131b 3043 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 3044 if (debug_infrun)
611c83ae
PA
3045 fprintf_unfiltered (gdb_stdlog,
3046 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3047
4e1c45ea
PA
3048 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3049 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 3050
414c69f7 3051 ecs->event_thread->stop_step = 1;
611c83ae
PA
3052 print_stop_reason (END_STEPPING_RANGE, 0);
3053 stop_stepping (ecs);
3054 return;
488f131b
JB
3055
3056 case BPSTAT_WHAT_SINGLE:
527159b7 3057 if (debug_infrun)
8802d8ed 3058 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 3059 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
3060 /* Still need to check other stuff, at least the case
3061 where we are stepping and step out of the right range. */
3062 break;
c906108c 3063
488f131b 3064 case BPSTAT_WHAT_STOP_NOISY:
527159b7 3065 if (debug_infrun)
8802d8ed 3066 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 3067 stop_print_frame = 1;
c906108c 3068
d303a6c7
AC
3069 /* We are about to nuke the step_resume_breakpointt via the
3070 cleanup chain, so no need to worry about it here. */
c5aa993b 3071
488f131b
JB
3072 stop_stepping (ecs);
3073 return;
c5aa993b 3074
488f131b 3075 case BPSTAT_WHAT_STOP_SILENT:
527159b7 3076 if (debug_infrun)
8802d8ed 3077 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 3078 stop_print_frame = 0;
c5aa993b 3079
d303a6c7
AC
3080 /* We are about to nuke the step_resume_breakpoin via the
3081 cleanup chain, so no need to worry about it here. */
c5aa993b 3082
488f131b 3083 stop_stepping (ecs);
e441088d 3084 return;
c5aa993b 3085
488f131b 3086 case BPSTAT_WHAT_STEP_RESUME:
527159b7 3087 if (debug_infrun)
8802d8ed 3088 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 3089
4e1c45ea
PA
3090 delete_step_resume_breakpoint (ecs->event_thread);
3091 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
3092 {
3093 /* Back when the step-resume breakpoint was inserted, we
3094 were trying to single-step off a breakpoint. Go back
3095 to doing that. */
4e1c45ea
PA
3096 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3097 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
3098 keep_going (ecs);
3099 return;
3100 }
b2175913
MS
3101 if (stop_pc == ecs->stop_func_start
3102 && execution_direction == EXEC_REVERSE)
3103 {
3104 /* We are stepping over a function call in reverse, and
3105 just hit the step-resume breakpoint at the start
3106 address of the function. Go back to single-stepping,
3107 which should take us back to the function call. */
3108 ecs->event_thread->stepping_over_breakpoint = 1;
3109 keep_going (ecs);
3110 return;
3111 }
488f131b
JB
3112 break;
3113
488f131b
JB
3114 case BPSTAT_WHAT_CHECK_SHLIBS:
3115 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 3116 {
527159b7 3117 if (debug_infrun)
8802d8ed 3118 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
3119
3120 /* Check for any newly added shared libraries if we're
3121 supposed to be adding them automatically. Switch
3122 terminal for any messages produced by
3123 breakpoint_re_set. */
3124 target_terminal_ours_for_output ();
aff6338a 3125 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3126 stack's section table is kept up-to-date. Architectures,
3127 (e.g., PPC64), use the section table to perform
3128 operations such as address => section name and hence
3129 require the table to contain all sections (including
3130 those found in shared libraries). */
aff6338a 3131 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
3132 exec_ops to SOLIB_ADD. This is because current GDB is
3133 only tooled to propagate section_table changes out from
3134 the "current_target" (see target_resize_to_sections), and
3135 not up from the exec stratum. This, of course, isn't
3136 right. "infrun.c" should only interact with the
3137 exec/process stratum, instead relying on the target stack
3138 to propagate relevant changes (stop, section table
3139 changed, ...) up to other layers. */
a77053c2 3140#ifdef SOLIB_ADD
aff6338a 3141 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
3142#else
3143 solib_add (NULL, 0, &current_target, auto_solib_add);
3144#endif
488f131b
JB
3145 target_terminal_inferior ();
3146
488f131b
JB
3147 /* If requested, stop when the dynamic linker notifies
3148 gdb of events. This allows the user to get control
3149 and place breakpoints in initializer routines for
3150 dynamically loaded objects (among other things). */
877522db 3151 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 3152 {
488f131b 3153 stop_stepping (ecs);
d4f3574e
SS
3154 return;
3155 }
c5aa993b 3156
488f131b
JB
3157 /* If we stopped due to an explicit catchpoint, then the
3158 (see above) call to SOLIB_ADD pulled in any symbols
3159 from a newly-loaded library, if appropriate.
3160
3161 We do want the inferior to stop, but not where it is
3162 now, which is in the dynamic linker callback. Rather,
3163 we would like it stop in the user's program, just after
3164 the call that caused this catchpoint to trigger. That
3165 gives the user a more useful vantage from which to
3166 examine their program's state. */
8fb3e588
AC
3167 else if (what.main_action
3168 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 3169 {
488f131b
JB
3170 /* ??rehrauer: If I could figure out how to get the
3171 right return PC from here, we could just set a temp
3172 breakpoint and resume. I'm not sure we can without
3173 cracking open the dld's shared libraries and sniffing
3174 their unwind tables and text/data ranges, and that's
3175 not a terribly portable notion.
3176
3177 Until that time, we must step the inferior out of the
3178 dld callback, and also out of the dld itself (and any
3179 code or stubs in libdld.sl, such as "shl_load" and
3180 friends) until we reach non-dld code. At that point,
3181 we can stop stepping. */
347bddb7 3182 bpstat_get_triggered_catchpoints (ecs->event_thread->stop_bpstat,
4e1c45ea
PA
3183 &ecs->
3184 event_thread->
488f131b 3185 stepping_through_solib_catchpoints);
4e1c45ea 3186 ecs->event_thread->stepping_through_solib_after_catch = 1;
488f131b
JB
3187
3188 /* Be sure to lift all breakpoints, so the inferior does
3189 actually step past this point... */
4e1c45ea 3190 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3191 break;
c906108c 3192 }
c5aa993b 3193 else
c5aa993b 3194 {
488f131b 3195 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 3196 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3197 break;
c5aa993b 3198 }
488f131b 3199 }
488f131b 3200 break;
c906108c 3201
488f131b
JB
3202 case BPSTAT_WHAT_LAST:
3203 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 3204
488f131b
JB
3205 case BPSTAT_WHAT_KEEP_CHECKING:
3206 break;
3207 }
3208 }
c906108c 3209
488f131b
JB
3210 /* We come here if we hit a breakpoint but should not
3211 stop for it. Possibly we also were stepping
3212 and should stop for that. So fall through and
3213 test for stepping. But, if not stepping,
3214 do not stop. */
c906108c 3215
9d1ff73f
MS
3216 /* Are we stepping to get the inferior out of the dynamic linker's
3217 hook (and possibly the dld itself) after catching a shlib
3218 event? */
4e1c45ea 3219 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
3220 {
3221#if defined(SOLIB_ADD)
3222 /* Have we reached our destination? If not, keep going. */
3223 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3224 {
527159b7 3225 if (debug_infrun)
8a9de0e4 3226 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 3227 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3228 keep_going (ecs);
104c1213 3229 return;
488f131b
JB
3230 }
3231#endif
527159b7 3232 if (debug_infrun)
8a9de0e4 3233 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
3234 /* Else, stop and report the catchpoint(s) whose triggering
3235 caused us to begin stepping. */
4e1c45ea 3236 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
3237 bpstat_clear (&ecs->event_thread->stop_bpstat);
3238 ecs->event_thread->stop_bpstat
3239 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 3240 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
3241 stop_print_frame = 1;
3242 stop_stepping (ecs);
3243 return;
3244 }
c906108c 3245
4e1c45ea 3246 if (ecs->event_thread->step_resume_breakpoint)
488f131b 3247 {
527159b7 3248 if (debug_infrun)
d3169d93
DJ
3249 fprintf_unfiltered (gdb_stdlog,
3250 "infrun: step-resume breakpoint is inserted\n");
527159b7 3251
488f131b
JB
3252 /* Having a step-resume breakpoint overrides anything
3253 else having to do with stepping commands until
3254 that breakpoint is reached. */
488f131b
JB
3255 keep_going (ecs);
3256 return;
3257 }
c5aa993b 3258
4e1c45ea 3259 if (ecs->event_thread->step_range_end == 0)
488f131b 3260 {
527159b7 3261 if (debug_infrun)
8a9de0e4 3262 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 3263 /* Likewise if we aren't even stepping. */
488f131b
JB
3264 keep_going (ecs);
3265 return;
3266 }
c5aa993b 3267
488f131b 3268 /* If stepping through a line, keep going if still within it.
c906108c 3269
488f131b
JB
3270 Note that step_range_end is the address of the first instruction
3271 beyond the step range, and NOT the address of the last instruction
3272 within it! */
4e1c45ea
PA
3273 if (stop_pc >= ecs->event_thread->step_range_start
3274 && stop_pc < ecs->event_thread->step_range_end)
488f131b 3275 {
527159b7 3276 if (debug_infrun)
b2175913 3277 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
4e1c45ea
PA
3278 paddr_nz (ecs->event_thread->step_range_start),
3279 paddr_nz (ecs->event_thread->step_range_end));
b2175913
MS
3280
3281 /* When stepping backward, stop at beginning of line range
3282 (unless it's the function entry point, in which case
3283 keep going back to the call point). */
3284 if (stop_pc == ecs->event_thread->step_range_start
3285 && stop_pc != ecs->stop_func_start
3286 && execution_direction == EXEC_REVERSE)
3287 {
3288 ecs->event_thread->stop_step = 1;
3289 print_stop_reason (END_STEPPING_RANGE, 0);
3290 stop_stepping (ecs);
3291 }
3292 else
3293 keep_going (ecs);
3294
488f131b
JB
3295 return;
3296 }
c5aa993b 3297
488f131b 3298 /* We stepped out of the stepping range. */
c906108c 3299
488f131b
JB
3300 /* If we are stepping at the source level and entered the runtime
3301 loader dynamic symbol resolution code, we keep on single stepping
3302 until we exit the run time loader code and reach the callee's
3303 address. */
078130d0 3304 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 3305 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 3306 {
4c8c40e6
MK
3307 CORE_ADDR pc_after_resolver =
3308 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 3309
527159b7 3310 if (debug_infrun)
8a9de0e4 3311 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 3312
488f131b
JB
3313 if (pc_after_resolver)
3314 {
3315 /* Set up a step-resume breakpoint at the address
3316 indicated by SKIP_SOLIB_RESOLVER. */
3317 struct symtab_and_line sr_sal;
fe39c653 3318 init_sal (&sr_sal);
488f131b
JB
3319 sr_sal.pc = pc_after_resolver;
3320
44cbf7b5 3321 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 3322 }
c906108c 3323
488f131b
JB
3324 keep_going (ecs);
3325 return;
3326 }
c906108c 3327
4e1c45ea 3328 if (ecs->event_thread->step_range_end != 1
078130d0
PA
3329 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3330 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
42edda50 3331 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 3332 {
527159b7 3333 if (debug_infrun)
8a9de0e4 3334 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 3335 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
3336 a signal trampoline (either by a signal being delivered or by
3337 the signal handler returning). Just single-step until the
3338 inferior leaves the trampoline (either by calling the handler
3339 or returning). */
488f131b
JB
3340 keep_going (ecs);
3341 return;
3342 }
c906108c 3343
c17eaafe
DJ
3344 /* Check for subroutine calls. The check for the current frame
3345 equalling the step ID is not necessary - the check of the
3346 previous frame's ID is sufficient - but it is a common case and
3347 cheaper than checking the previous frame's ID.
14e60db5
DJ
3348
3349 NOTE: frame_id_eq will never report two invalid frame IDs as
3350 being equal, so to get into this block, both the current and
3351 previous frame must have valid frame IDs. */
4e1c45ea
PA
3352 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3353 ecs->event_thread->step_frame_id)
b2175913
MS
3354 && (frame_id_eq (frame_unwind_id (get_current_frame ()),
3355 ecs->event_thread->step_frame_id)
3356 || execution_direction == EXEC_REVERSE))
488f131b 3357 {
95918acb 3358 CORE_ADDR real_stop_pc;
8fb3e588 3359
527159b7 3360 if (debug_infrun)
8a9de0e4 3361 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 3362
078130d0 3363 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea
PA
3364 || ((ecs->event_thread->step_range_end == 1)
3365 && in_prologue (ecs->event_thread->prev_pc,
3366 ecs->stop_func_start)))
95918acb
AC
3367 {
3368 /* I presume that step_over_calls is only 0 when we're
3369 supposed to be stepping at the assembly language level
3370 ("stepi"). Just stop. */
3371 /* Also, maybe we just did a "nexti" inside a prolog, so we
3372 thought it was a subroutine call but it was not. Stop as
3373 well. FENN */
414c69f7 3374 ecs->event_thread->stop_step = 1;
95918acb
AC
3375 print_stop_reason (END_STEPPING_RANGE, 0);
3376 stop_stepping (ecs);
3377 return;
3378 }
8fb3e588 3379
078130d0 3380 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f 3381 {
b2175913
MS
3382 /* We're doing a "next".
3383
3384 Normal (forward) execution: set a breakpoint at the
3385 callee's return address (the address at which the caller
3386 will resume).
3387
3388 Reverse (backward) execution. set the step-resume
3389 breakpoint at the start of the function that we just
3390 stepped into (backwards), and continue to there. When we
6130d0b7 3391 get there, we'll need to single-step back to the caller. */
b2175913
MS
3392
3393 if (execution_direction == EXEC_REVERSE)
3394 {
3395 struct symtab_and_line sr_sal;
3396 init_sal (&sr_sal);
3397 sr_sal.pc = ecs->stop_func_start;
3398 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3399 }
3400 else
3401 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3402
8567c30f
AC
3403 keep_going (ecs);
3404 return;
3405 }
a53c66de 3406
95918acb 3407 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
3408 calling routine and the real function), locate the real
3409 function. That's what tells us (a) whether we want to step
3410 into it at all, and (b) what prologue we want to run to the
3411 end of, if we do step into it. */
52f729a7 3412 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
95918acb 3413 if (real_stop_pc == 0)
52f729a7
UW
3414 real_stop_pc = gdbarch_skip_trampoline_code
3415 (current_gdbarch, get_current_frame (), stop_pc);
95918acb
AC
3416 if (real_stop_pc != 0)
3417 ecs->stop_func_start = real_stop_pc;
8fb3e588 3418
db5f024e 3419 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
3420 {
3421 struct symtab_and_line sr_sal;
3422 init_sal (&sr_sal);
3423 sr_sal.pc = ecs->stop_func_start;
3424
44cbf7b5 3425 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
3426 keep_going (ecs);
3427 return;
1b2bfbb9
RC
3428 }
3429
95918acb 3430 /* If we have line number information for the function we are
8fb3e588 3431 thinking of stepping into, step into it.
95918acb 3432
8fb3e588
AC
3433 If there are several symtabs at that PC (e.g. with include
3434 files), just want to know whether *any* of them have line
3435 numbers. find_pc_line handles this. */
95918acb
AC
3436 {
3437 struct symtab_and_line tmp_sal;
8fb3e588 3438
95918acb
AC
3439 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3440 if (tmp_sal.line != 0)
3441 {
b2175913
MS
3442 if (execution_direction == EXEC_REVERSE)
3443 handle_step_into_function_backward (ecs);
3444 else
3445 handle_step_into_function (ecs);
95918acb
AC
3446 return;
3447 }
3448 }
3449
3450 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
3451 set, we stop the step so that the user has a chance to switch
3452 in assembly mode. */
078130d0
PA
3453 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3454 && step_stop_if_no_debug)
95918acb 3455 {
414c69f7 3456 ecs->event_thread->stop_step = 1;
95918acb
AC
3457 print_stop_reason (END_STEPPING_RANGE, 0);
3458 stop_stepping (ecs);
3459 return;
3460 }
3461
b2175913
MS
3462 if (execution_direction == EXEC_REVERSE)
3463 {
3464 /* Set a breakpoint at callee's start address.
3465 From there we can step once and be back in the caller. */
3466 struct symtab_and_line sr_sal;
3467 init_sal (&sr_sal);
3468 sr_sal.pc = ecs->stop_func_start;
3469 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3470 }
3471 else
3472 /* Set a breakpoint at callee's return address (the address
3473 at which the caller will resume). */
3474 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3475
95918acb 3476 keep_going (ecs);
488f131b 3477 return;
488f131b 3478 }
c906108c 3479
488f131b
JB
3480 /* If we're in the return path from a shared library trampoline,
3481 we want to proceed through the trampoline when stepping. */
e76f05fa
UW
3482 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3483 stop_pc, ecs->stop_func_name))
488f131b 3484 {
488f131b 3485 /* Determine where this trampoline returns. */
52f729a7
UW
3486 CORE_ADDR real_stop_pc;
3487 real_stop_pc = gdbarch_skip_trampoline_code
3488 (current_gdbarch, get_current_frame (), stop_pc);
c906108c 3489
527159b7 3490 if (debug_infrun)
8a9de0e4 3491 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 3492
488f131b 3493 /* Only proceed through if we know where it's going. */
d764a824 3494 if (real_stop_pc)
488f131b
JB
3495 {
3496 /* And put the step-breakpoint there and go until there. */
3497 struct symtab_and_line sr_sal;
3498
fe39c653 3499 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 3500 sr_sal.pc = real_stop_pc;
488f131b 3501 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
3502
3503 /* Do not specify what the fp should be when we stop since
3504 on some machines the prologue is where the new fp value
3505 is established. */
3506 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 3507
488f131b
JB
3508 /* Restart without fiddling with the step ranges or
3509 other state. */
3510 keep_going (ecs);
3511 return;
3512 }
3513 }
c906108c 3514
2afb61aa 3515 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 3516
1b2bfbb9
RC
3517 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3518 the trampoline processing logic, however, there are some trampolines
3519 that have no names, so we should do trampoline handling first. */
078130d0 3520 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 3521 && ecs->stop_func_name == NULL
2afb61aa 3522 && stop_pc_sal.line == 0)
1b2bfbb9 3523 {
527159b7 3524 if (debug_infrun)
8a9de0e4 3525 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 3526
1b2bfbb9 3527 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
3528 undebuggable function (where there is no debugging information
3529 and no line number corresponding to the address where the
1b2bfbb9
RC
3530 inferior stopped). Since we want to skip this kind of code,
3531 we keep going until the inferior returns from this
14e60db5
DJ
3532 function - unless the user has asked us not to (via
3533 set step-mode) or we no longer know how to get back
3534 to the call site. */
3535 if (step_stop_if_no_debug
eb2f4a08 3536 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
3537 {
3538 /* If we have no line number and the step-stop-if-no-debug
3539 is set, we stop the step so that the user has a chance to
3540 switch in assembly mode. */
414c69f7 3541 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3542 print_stop_reason (END_STEPPING_RANGE, 0);
3543 stop_stepping (ecs);
3544 return;
3545 }
3546 else
3547 {
3548 /* Set a breakpoint at callee's return address (the address
3549 at which the caller will resume). */
14e60db5 3550 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
3551 keep_going (ecs);
3552 return;
3553 }
3554 }
3555
4e1c45ea 3556 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
3557 {
3558 /* It is stepi or nexti. We always want to stop stepping after
3559 one instruction. */
527159b7 3560 if (debug_infrun)
8a9de0e4 3561 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 3562 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3563 print_stop_reason (END_STEPPING_RANGE, 0);
3564 stop_stepping (ecs);
3565 return;
3566 }
3567
2afb61aa 3568 if (stop_pc_sal.line == 0)
488f131b
JB
3569 {
3570 /* We have no line number information. That means to stop
3571 stepping (does this always happen right after one instruction,
3572 when we do "s" in a function with no line numbers,
3573 or can this happen as a result of a return or longjmp?). */
527159b7 3574 if (debug_infrun)
8a9de0e4 3575 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 3576 ecs->event_thread->stop_step = 1;
488f131b
JB
3577 print_stop_reason (END_STEPPING_RANGE, 0);
3578 stop_stepping (ecs);
3579 return;
3580 }
c906108c 3581
2afb61aa 3582 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
3583 && (ecs->event_thread->current_line != stop_pc_sal.line
3584 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
3585 {
3586 /* We are at the start of a different line. So stop. Note that
3587 we don't stop if we step into the middle of a different line.
3588 That is said to make things like for (;;) statements work
3589 better. */
527159b7 3590 if (debug_infrun)
8a9de0e4 3591 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 3592 ecs->event_thread->stop_step = 1;
488f131b
JB
3593 print_stop_reason (END_STEPPING_RANGE, 0);
3594 stop_stepping (ecs);
3595 return;
3596 }
c906108c 3597
488f131b 3598 /* We aren't done stepping.
c906108c 3599
488f131b
JB
3600 Optimize by setting the stepping range to the line.
3601 (We might not be in the original line, but if we entered a
3602 new line in mid-statement, we continue stepping. This makes
3603 things like for(;;) statements work better.) */
c906108c 3604
4e1c45ea
PA
3605 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3606 ecs->event_thread->step_range_end = stop_pc_sal.end;
3607 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3608 ecs->event_thread->current_line = stop_pc_sal.line;
3609 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
488f131b 3610
527159b7 3611 if (debug_infrun)
8a9de0e4 3612 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 3613 keep_going (ecs);
104c1213
JM
3614}
3615
3616/* Are we in the middle of stepping? */
3617
3618static int
4e1c45ea 3619currently_stepping (struct thread_info *tp)
104c1213 3620{
4e1c45ea
PA
3621 return (((tp->step_range_end && tp->step_resume_breakpoint == NULL)
3622 || tp->trap_expected)
3623 || tp->stepping_through_solib_after_catch
104c1213
JM
3624 || bpstat_should_step ());
3625}
c906108c 3626
b2175913
MS
3627/* Inferior has stepped into a subroutine call with source code that
3628 we should not step over. Do step to the first line of code in
3629 it. */
c2c6d25f
JM
3630
3631static void
b2175913 3632handle_step_into_function (struct execution_control_state *ecs)
c2c6d25f
JM
3633{
3634 struct symtab *s;
2afb61aa 3635 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
3636
3637 s = find_pc_symtab (stop_pc);
3638 if (s && s->language != language_asm)
b2175913
MS
3639 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3640 ecs->stop_func_start);
c2c6d25f 3641
2afb61aa 3642 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
3643 /* Use the step_resume_break to step until the end of the prologue,
3644 even if that involves jumps (as it seems to on the vax under
3645 4.2). */
3646 /* If the prologue ends in the middle of a source line, continue to
3647 the end of that source line (if it is still within the function).
3648 Otherwise, just go to end of prologue. */
2afb61aa
PA
3649 if (stop_func_sal.end
3650 && stop_func_sal.pc != ecs->stop_func_start
3651 && stop_func_sal.end < ecs->stop_func_end)
3652 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 3653
2dbd5e30
KB
3654 /* Architectures which require breakpoint adjustment might not be able
3655 to place a breakpoint at the computed address. If so, the test
3656 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3657 ecs->stop_func_start to an address at which a breakpoint may be
3658 legitimately placed.
8fb3e588 3659
2dbd5e30
KB
3660 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3661 made, GDB will enter an infinite loop when stepping through
3662 optimized code consisting of VLIW instructions which contain
3663 subinstructions corresponding to different source lines. On
3664 FR-V, it's not permitted to place a breakpoint on any but the
3665 first subinstruction of a VLIW instruction. When a breakpoint is
3666 set, GDB will adjust the breakpoint address to the beginning of
3667 the VLIW instruction. Thus, we need to make the corresponding
3668 adjustment here when computing the stop address. */
8fb3e588 3669
2dbd5e30
KB
3670 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3671 {
3672 ecs->stop_func_start
3673 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 3674 ecs->stop_func_start);
2dbd5e30
KB
3675 }
3676
c2c6d25f
JM
3677 if (ecs->stop_func_start == stop_pc)
3678 {
3679 /* We are already there: stop now. */
414c69f7 3680 ecs->event_thread->stop_step = 1;
488f131b 3681 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
3682 stop_stepping (ecs);
3683 return;
3684 }
3685 else
3686 {
3687 /* Put the step-breakpoint there and go until there. */
fe39c653 3688 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
3689 sr_sal.pc = ecs->stop_func_start;
3690 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 3691
c2c6d25f 3692 /* Do not specify what the fp should be when we stop since on
488f131b
JB
3693 some machines the prologue is where the new fp value is
3694 established. */
44cbf7b5 3695 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
3696
3697 /* And make sure stepping stops right away then. */
4e1c45ea 3698 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
3699 }
3700 keep_going (ecs);
3701}
d4f3574e 3702
b2175913
MS
3703/* Inferior has stepped backward into a subroutine call with source
3704 code that we should not step over. Do step to the beginning of the
3705 last line of code in it. */
3706
3707static void
3708handle_step_into_function_backward (struct execution_control_state *ecs)
3709{
3710 struct symtab *s;
3711 struct symtab_and_line stop_func_sal, sr_sal;
3712
3713 s = find_pc_symtab (stop_pc);
3714 if (s && s->language != language_asm)
3715 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3716 ecs->stop_func_start);
3717
3718 stop_func_sal = find_pc_line (stop_pc, 0);
3719
3720 /* OK, we're just going to keep stepping here. */
3721 if (stop_func_sal.pc == stop_pc)
3722 {
3723 /* We're there already. Just stop stepping now. */
3724 ecs->event_thread->stop_step = 1;
3725 print_stop_reason (END_STEPPING_RANGE, 0);
3726 stop_stepping (ecs);
3727 }
3728 else
3729 {
3730 /* Else just reset the step range and keep going.
3731 No step-resume breakpoint, they don't work for
3732 epilogues, which can have multiple entry paths. */
3733 ecs->event_thread->step_range_start = stop_func_sal.pc;
3734 ecs->event_thread->step_range_end = stop_func_sal.end;
3735 keep_going (ecs);
3736 }
3737 return;
3738}
3739
d3169d93 3740/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
3741 This is used to both functions and to skip over code. */
3742
3743static void
3744insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3745 struct frame_id sr_id)
3746{
611c83ae
PA
3747 /* There should never be more than one step-resume or longjmp-resume
3748 breakpoint per thread, so we should never be setting a new
44cbf7b5 3749 step_resume_breakpoint when one is already active. */
4e1c45ea 3750 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
3751
3752 if (debug_infrun)
3753 fprintf_unfiltered (gdb_stdlog,
3754 "infrun: inserting step-resume breakpoint at 0x%s\n",
3755 paddr_nz (sr_sal.pc));
3756
4e1c45ea
PA
3757 inferior_thread ()->step_resume_breakpoint
3758 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
44cbf7b5 3759}
7ce450bd 3760
d3169d93 3761/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 3762 to skip a potential signal handler.
7ce450bd 3763
14e60db5
DJ
3764 This is called with the interrupted function's frame. The signal
3765 handler, when it returns, will resume the interrupted function at
3766 RETURN_FRAME.pc. */
d303a6c7
AC
3767
3768static void
44cbf7b5 3769insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
3770{
3771 struct symtab_and_line sr_sal;
3772
f4c1edd8 3773 gdb_assert (return_frame != NULL);
d303a6c7
AC
3774 init_sal (&sr_sal); /* initialize to zeros */
3775
bf6ae464
UW
3776 sr_sal.pc = gdbarch_addr_bits_remove
3777 (current_gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
3778 sr_sal.section = find_pc_overlay (sr_sal.pc);
3779
44cbf7b5 3780 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
3781}
3782
14e60db5
DJ
3783/* Similar to insert_step_resume_breakpoint_at_frame, except
3784 but a breakpoint at the previous frame's PC. This is used to
3785 skip a function after stepping into it (for "next" or if the called
3786 function has no debugging information).
3787
3788 The current function has almost always been reached by single
3789 stepping a call or return instruction. NEXT_FRAME belongs to the
3790 current function, and the breakpoint will be set at the caller's
3791 resume address.
3792
3793 This is a separate function rather than reusing
3794 insert_step_resume_breakpoint_at_frame in order to avoid
3795 get_prev_frame, which may stop prematurely (see the implementation
eb2f4a08 3796 of frame_unwind_id for an example). */
14e60db5
DJ
3797
3798static void
3799insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3800{
3801 struct symtab_and_line sr_sal;
3802
3803 /* We shouldn't have gotten here if we don't know where the call site
3804 is. */
eb2f4a08 3805 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
14e60db5
DJ
3806
3807 init_sal (&sr_sal); /* initialize to zeros */
3808
bf6ae464 3809 sr_sal.pc = gdbarch_addr_bits_remove
eb2f4a08 3810 (current_gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
3811 sr_sal.section = find_pc_overlay (sr_sal.pc);
3812
eb2f4a08 3813 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
14e60db5
DJ
3814}
3815
611c83ae
PA
3816/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3817 new breakpoint at the target of a jmp_buf. The handling of
3818 longjmp-resume uses the same mechanisms used for handling
3819 "step-resume" breakpoints. */
3820
3821static void
3822insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3823{
3824 /* There should never be more than one step-resume or longjmp-resume
3825 breakpoint per thread, so we should never be setting a new
3826 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 3827 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
3828
3829 if (debug_infrun)
3830 fprintf_unfiltered (gdb_stdlog,
3831 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3832 paddr_nz (pc));
3833
4e1c45ea 3834 inferior_thread ()->step_resume_breakpoint =
611c83ae
PA
3835 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3836}
3837
104c1213
JM
3838static void
3839stop_stepping (struct execution_control_state *ecs)
3840{
527159b7 3841 if (debug_infrun)
8a9de0e4 3842 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 3843
cd0fc7c3
SS
3844 /* Let callers know we don't want to wait for the inferior anymore. */
3845 ecs->wait_some_more = 0;
3846}
3847
d4f3574e
SS
3848/* This function handles various cases where we need to continue
3849 waiting for the inferior. */
3850/* (Used to be the keep_going: label in the old wait_for_inferior) */
3851
3852static void
3853keep_going (struct execution_control_state *ecs)
3854{
d4f3574e 3855 /* Save the pc before execution, to compare with pc after stop. */
4e1c45ea 3856 ecs->event_thread->prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 3857
d4f3574e
SS
3858 /* If we did not do break;, it means we should keep running the
3859 inferior and not return to debugger. */
3860
2020b7ab
PA
3861 if (ecs->event_thread->trap_expected
3862 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
3863 {
3864 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
3865 the inferior, else we'd not get here) and we haven't yet
3866 gotten our trap. Simply continue. */
2020b7ab
PA
3867 resume (currently_stepping (ecs->event_thread),
3868 ecs->event_thread->stop_signal);
d4f3574e
SS
3869 }
3870 else
3871 {
3872 /* Either the trap was not expected, but we are continuing
488f131b
JB
3873 anyway (the user asked that this signal be passed to the
3874 child)
3875 -- or --
3876 The signal was SIGTRAP, e.g. it was our signal, but we
3877 decided we should resume from it.
d4f3574e 3878
c36b740a 3879 We're going to run this baby now!
d4f3574e 3880
c36b740a
VP
3881 Note that insert_breakpoints won't try to re-insert
3882 already inserted breakpoints. Therefore, we don't
3883 care if breakpoints were already inserted, or not. */
3884
4e1c45ea 3885 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 3886 {
237fc4c9
PA
3887 if (! use_displaced_stepping (current_gdbarch))
3888 /* Since we can't do a displaced step, we have to remove
3889 the breakpoint while we step it. To keep things
3890 simple, we remove them all. */
3891 remove_breakpoints ();
45e8c884
VP
3892 }
3893 else
d4f3574e 3894 {
e236ba44 3895 struct gdb_exception e;
569631c6
UW
3896 /* Stop stepping when inserting breakpoints
3897 has failed. */
e236ba44
VP
3898 TRY_CATCH (e, RETURN_MASK_ERROR)
3899 {
3900 insert_breakpoints ();
3901 }
3902 if (e.reason < 0)
d4f3574e
SS
3903 {
3904 stop_stepping (ecs);
3905 return;
3906 }
d4f3574e
SS
3907 }
3908
4e1c45ea 3909 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
3910
3911 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
3912 specifies that such a signal should be delivered to the
3913 target program).
3914
3915 Typically, this would occure when a user is debugging a
3916 target monitor on a simulator: the target monitor sets a
3917 breakpoint; the simulator encounters this break-point and
3918 halts the simulation handing control to GDB; GDB, noteing
3919 that the break-point isn't valid, returns control back to the
3920 simulator; the simulator then delivers the hardware
3921 equivalent of a SIGNAL_TRAP to the program being debugged. */
3922
2020b7ab
PA
3923 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3924 && !signal_program[ecs->event_thread->stop_signal])
3925 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 3926
2020b7ab
PA
3927 resume (currently_stepping (ecs->event_thread),
3928 ecs->event_thread->stop_signal);
d4f3574e
SS
3929 }
3930
488f131b 3931 prepare_to_wait (ecs);
d4f3574e
SS
3932}
3933
104c1213
JM
3934/* This function normally comes after a resume, before
3935 handle_inferior_event exits. It takes care of any last bits of
3936 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 3937
104c1213
JM
3938static void
3939prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 3940{
527159b7 3941 if (debug_infrun)
8a9de0e4 3942 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
0d1e5fa7 3943 if (infwait_state == infwait_normal_state)
104c1213
JM
3944 {
3945 overlay_cache_invalid = 1;
3946
3947 /* We have to invalidate the registers BEFORE calling
488f131b
JB
3948 target_wait because they can be loaded from the target while
3949 in target_wait. This makes remote debugging a bit more
3950 efficient for those targets that provide critical registers
3951 as part of their normal status mechanism. */
104c1213
JM
3952
3953 registers_changed ();
0d1e5fa7 3954 waiton_ptid = pid_to_ptid (-1);
104c1213
JM
3955 }
3956 /* This is the old end of the while loop. Let everybody know we
3957 want to wait for the inferior some more and get called again
3958 soon. */
3959 ecs->wait_some_more = 1;
c906108c 3960}
11cf8741
JM
3961
3962/* Print why the inferior has stopped. We always print something when
3963 the inferior exits, or receives a signal. The rest of the cases are
3964 dealt with later on in normal_stop() and print_it_typical(). Ideally
3965 there should be a call to this function from handle_inferior_event()
3966 each time stop_stepping() is called.*/
3967static void
3968print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3969{
3970 switch (stop_reason)
3971 {
11cf8741
JM
3972 case END_STEPPING_RANGE:
3973 /* We are done with a step/next/si/ni command. */
3974 /* For now print nothing. */
fb40c209 3975 /* Print a message only if not in the middle of doing a "step n"
488f131b 3976 operation for n > 1 */
414c69f7
PA
3977 if (!inferior_thread ()->step_multi
3978 || !inferior_thread ()->stop_step)
9dc5e2a9 3979 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3980 ui_out_field_string
3981 (uiout, "reason",
3982 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 3983 break;
11cf8741
JM
3984 case SIGNAL_EXITED:
3985 /* The inferior was terminated by a signal. */
8b93c638 3986 annotate_signalled ();
9dc5e2a9 3987 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3988 ui_out_field_string
3989 (uiout, "reason",
3990 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
3991 ui_out_text (uiout, "\nProgram terminated with signal ");
3992 annotate_signal_name ();
488f131b
JB
3993 ui_out_field_string (uiout, "signal-name",
3994 target_signal_to_name (stop_info));
8b93c638
JM
3995 annotate_signal_name_end ();
3996 ui_out_text (uiout, ", ");
3997 annotate_signal_string ();
488f131b
JB
3998 ui_out_field_string (uiout, "signal-meaning",
3999 target_signal_to_string (stop_info));
8b93c638
JM
4000 annotate_signal_string_end ();
4001 ui_out_text (uiout, ".\n");
4002 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
4003 break;
4004 case EXITED:
4005 /* The inferior program is finished. */
8b93c638
JM
4006 annotate_exited (stop_info);
4007 if (stop_info)
4008 {
9dc5e2a9 4009 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4010 ui_out_field_string (uiout, "reason",
4011 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 4012 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
4013 ui_out_field_fmt (uiout, "exit-code", "0%o",
4014 (unsigned int) stop_info);
8b93c638
JM
4015 ui_out_text (uiout, ".\n");
4016 }
4017 else
4018 {
9dc5e2a9 4019 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4020 ui_out_field_string
4021 (uiout, "reason",
4022 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
4023 ui_out_text (uiout, "\nProgram exited normally.\n");
4024 }
f17517ea
AS
4025 /* Support the --return-child-result option. */
4026 return_child_result_value = stop_info;
11cf8741
JM
4027 break;
4028 case SIGNAL_RECEIVED:
252fbfc8
PA
4029 /* Signal received. The signal table tells us to print about
4030 it. */
8b93c638 4031 annotate_signal ();
252fbfc8
PA
4032
4033 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4034 {
4035 struct thread_info *t = inferior_thread ();
4036
4037 ui_out_text (uiout, "\n[");
4038 ui_out_field_string (uiout, "thread-name",
4039 target_pid_to_str (t->ptid));
4040 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4041 ui_out_text (uiout, " stopped");
4042 }
4043 else
4044 {
4045 ui_out_text (uiout, "\nProgram received signal ");
4046 annotate_signal_name ();
4047 if (ui_out_is_mi_like_p (uiout))
4048 ui_out_field_string
4049 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4050 ui_out_field_string (uiout, "signal-name",
4051 target_signal_to_name (stop_info));
4052 annotate_signal_name_end ();
4053 ui_out_text (uiout, ", ");
4054 annotate_signal_string ();
4055 ui_out_field_string (uiout, "signal-meaning",
4056 target_signal_to_string (stop_info));
4057 annotate_signal_string_end ();
4058 }
8b93c638 4059 ui_out_text (uiout, ".\n");
11cf8741 4060 break;
b2175913
MS
4061 case NO_HISTORY:
4062 /* Reverse execution: target ran out of history info. */
4063 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4064 break;
11cf8741 4065 default:
8e65ff28 4066 internal_error (__FILE__, __LINE__,
e2e0b3e5 4067 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
4068 break;
4069 }
4070}
c906108c 4071\f
43ff13b4 4072
c906108c
SS
4073/* Here to return control to GDB when the inferior stops for real.
4074 Print appropriate messages, remove breakpoints, give terminal our modes.
4075
4076 STOP_PRINT_FRAME nonzero means print the executing frame
4077 (pc, function, args, file, line number and line text).
4078 BREAKPOINTS_FAILED nonzero means stop was due to error
4079 attempting to insert breakpoints. */
4080
4081void
96baa820 4082normal_stop (void)
c906108c 4083{
73b65bb0
DJ
4084 struct target_waitstatus last;
4085 ptid_t last_ptid;
4086
4087 get_last_target_status (&last_ptid, &last);
4088
4f8d22e3
PA
4089 /* In non-stop mode, we don't want GDB to switch threads behind the
4090 user's back, to avoid races where the user is typing a command to
4091 apply to thread x, but GDB switches to thread y before the user
4092 finishes entering the command. */
4093
c906108c
SS
4094 /* As with the notification of thread events, we want to delay
4095 notifying the user that we've switched thread context until
4096 the inferior actually stops.
4097
73b65bb0
DJ
4098 There's no point in saying anything if the inferior has exited.
4099 Note that SIGNALLED here means "exited with a signal", not
4100 "received a signal". */
4f8d22e3
PA
4101 if (!non_stop
4102 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
4103 && target_has_execution
4104 && last.kind != TARGET_WAITKIND_SIGNALLED
4105 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
4106 {
4107 target_terminal_ours_for_output ();
a3f17187 4108 printf_filtered (_("[Switching to %s]\n"),
c95310c6 4109 target_pid_to_str (inferior_ptid));
b8fa951a 4110 annotate_thread_changed ();
39f77062 4111 previous_inferior_ptid = inferior_ptid;
c906108c 4112 }
c906108c 4113
4fa8626c 4114 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
4115 /* Make sure that the current_frame's pc is correct. This
4116 is a correction for setting up the frame info before doing
b798847d 4117 gdbarch_decr_pc_after_break */
b87efeee
AC
4118 if (target_has_execution)
4119 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
b798847d 4120 gdbarch_decr_pc_after_break, the program counter can change. Ask the
b87efeee 4121 frame code to check for this and sort out any resultant mess.
b798847d 4122 gdbarch_decr_pc_after_break needs to just go away. */
2f107107 4123 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 4124
74960c60 4125 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
4126 {
4127 if (remove_breakpoints ())
4128 {
4129 target_terminal_ours_for_output ();
a3f17187
AC
4130 printf_filtered (_("\
4131Cannot remove breakpoints because program is no longer writable.\n\
4132It might be running in another process.\n\
4133Further execution is probably impossible.\n"));
c906108c
SS
4134 }
4135 }
c906108c 4136
c906108c
SS
4137 /* If an auto-display called a function and that got a signal,
4138 delete that auto-display to avoid an infinite recursion. */
4139
4140 if (stopped_by_random_signal)
4141 disable_current_display ();
4142
4143 /* Don't print a message if in the middle of doing a "step n"
4144 operation for n > 1 */
af679fd0
PA
4145 if (target_has_execution
4146 && last.kind != TARGET_WAITKIND_SIGNALLED
4147 && last.kind != TARGET_WAITKIND_EXITED
4148 && inferior_thread ()->step_multi
414c69f7 4149 && inferior_thread ()->stop_step)
c906108c
SS
4150 goto done;
4151
4152 target_terminal_ours ();
4153
7abfe014
DJ
4154 /* Set the current source location. This will also happen if we
4155 display the frame below, but the current SAL will be incorrect
4156 during a user hook-stop function. */
4157 if (target_has_stack && !stop_stack_dummy)
4158 set_current_sal_from_frame (get_current_frame (), 1);
4159
c906108c 4160 if (!target_has_stack)
d51fd4c8 4161 goto done;
c906108c 4162
32400beb
PA
4163 if (last.kind == TARGET_WAITKIND_SIGNALLED
4164 || last.kind == TARGET_WAITKIND_EXITED)
4165 goto done;
4166
c906108c
SS
4167 /* Select innermost stack frame - i.e., current frame is frame 0,
4168 and current location is based on that.
4169 Don't do this on return from a stack dummy routine,
4170 or if the program has exited. */
4171
4172 if (!stop_stack_dummy)
4173 {
0f7d239c 4174 select_frame (get_current_frame ());
c906108c
SS
4175
4176 /* Print current location without a level number, if
c5aa993b
JM
4177 we have changed functions or hit a breakpoint.
4178 Print source line if we have one.
4179 bpstat_print() contains the logic deciding in detail
4180 what to print, based on the event(s) that just occurred. */
c906108c 4181
d01a8610
AS
4182 /* If --batch-silent is enabled then there's no need to print the current
4183 source location, and to try risks causing an error message about
4184 missing source files. */
4185 if (stop_print_frame && !batch_silent)
c906108c
SS
4186 {
4187 int bpstat_ret;
4188 int source_flag;
917317f4 4189 int do_frame_printing = 1;
347bddb7 4190 struct thread_info *tp = inferior_thread ();
c906108c 4191
347bddb7 4192 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
4193 switch (bpstat_ret)
4194 {
4195 case PRINT_UNKNOWN:
b0f4b84b
DJ
4196 /* If we had hit a shared library event breakpoint,
4197 bpstat_print would print out this message. If we hit
4198 an OS-level shared library event, do the same
4199 thing. */
4200 if (last.kind == TARGET_WAITKIND_LOADED)
4201 {
4202 printf_filtered (_("Stopped due to shared library event\n"));
4203 source_flag = SRC_LINE; /* something bogus */
4204 do_frame_printing = 0;
4205 break;
4206 }
4207
aa0cd9c1 4208 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
4209 (or should) carry around the function and does (or
4210 should) use that when doing a frame comparison. */
414c69f7 4211 if (tp->stop_step
347bddb7 4212 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 4213 get_frame_id (get_current_frame ()))
917317f4 4214 && step_start_function == find_pc_function (stop_pc))
488f131b 4215 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 4216 else
488f131b 4217 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4218 break;
4219 case PRINT_SRC_AND_LOC:
488f131b 4220 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4221 break;
4222 case PRINT_SRC_ONLY:
c5394b80 4223 source_flag = SRC_LINE;
917317f4
JM
4224 break;
4225 case PRINT_NOTHING:
488f131b 4226 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
4227 do_frame_printing = 0;
4228 break;
4229 default:
e2e0b3e5 4230 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 4231 }
c906108c 4232
9dc5e2a9 4233 if (ui_out_is_mi_like_p (uiout))
b1a268e5
VP
4234 {
4235
4236 ui_out_field_int (uiout, "thread-id",
4237 pid_to_thread_id (inferior_ptid));
4238 if (non_stop)
4239 {
4240 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
4241 (uiout, "stopped-threads");
4242 ui_out_field_int (uiout, NULL,
4243 pid_to_thread_id (inferior_ptid));
4244 do_cleanups (back_to);
4245 }
4246 else
4247 ui_out_field_string (uiout, "stopped-threads", "all");
4248 }
c906108c
SS
4249 /* The behavior of this routine with respect to the source
4250 flag is:
c5394b80
JM
4251 SRC_LINE: Print only source line
4252 LOCATION: Print only location
4253 SRC_AND_LOC: Print location and source line */
917317f4 4254 if (do_frame_printing)
b04f3ab4 4255 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
4256
4257 /* Display the auto-display expressions. */
4258 do_displays ();
4259 }
4260 }
4261
4262 /* Save the function value return registers, if we care.
4263 We might be about to restore their previous contents. */
32400beb 4264 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
4265 {
4266 /* This should not be necessary. */
4267 if (stop_registers)
4268 regcache_xfree (stop_registers);
4269
4270 /* NB: The copy goes through to the target picking up the value of
4271 all the registers. */
4272 stop_registers = regcache_dup (get_current_regcache ());
4273 }
c906108c
SS
4274
4275 if (stop_stack_dummy)
4276 {
dbe9fe58
AC
4277 /* Pop the empty frame that contains the stack dummy. POP_FRAME
4278 ends with a setting of the current frame, so we can use that
4279 next. */
4280 frame_pop (get_current_frame ());
c906108c 4281 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
4282 Can't rely on restore_inferior_status because that only gets
4283 called if we don't stop in the called function. */
c906108c 4284 stop_pc = read_pc ();
0f7d239c 4285 select_frame (get_current_frame ());
c906108c
SS
4286 }
4287
c906108c
SS
4288done:
4289 annotate_stopped ();
af679fd0
PA
4290 if (!suppress_stop_observer
4291 && !(target_has_execution
4292 && last.kind != TARGET_WAITKIND_SIGNALLED
4293 && last.kind != TARGET_WAITKIND_EXITED
4294 && inferior_thread ()->step_multi))
347bddb7
PA
4295 {
4296 if (!ptid_equal (inferior_ptid, null_ptid))
4297 observer_notify_normal_stop (inferior_thread ()->stop_bpstat);
4298 else
4299 observer_notify_normal_stop (NULL);
4300 }
94cc34af
PA
4301 if (target_has_execution
4302 && last.kind != TARGET_WAITKIND_SIGNALLED
4303 && last.kind != TARGET_WAITKIND_EXITED)
4304 {
347bddb7
PA
4305 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4306 Delete any breakpoint that is to be deleted at the next stop. */
4307 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
4308
94cc34af
PA
4309 if (!non_stop)
4310 set_running (pid_to_ptid (-1), 0);
4311 else
4312 set_running (inferior_ptid, 0);
4313 }
d51fd4c8
PA
4314
4315 /* Look up the hook_stop and run it (CLI internally handles problem
4316 of stop_command's pre-hook not existing). */
4317 if (stop_command)
4318 catch_errors (hook_stop_stub, stop_command,
4319 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4320
c906108c
SS
4321}
4322
4323static int
96baa820 4324hook_stop_stub (void *cmd)
c906108c 4325{
5913bcb0 4326 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
4327 return (0);
4328}
4329\f
c5aa993b 4330int
96baa820 4331signal_stop_state (int signo)
c906108c 4332{
d6b48e9c 4333 return signal_stop[signo];
c906108c
SS
4334}
4335
c5aa993b 4336int
96baa820 4337signal_print_state (int signo)
c906108c
SS
4338{
4339 return signal_print[signo];
4340}
4341
c5aa993b 4342int
96baa820 4343signal_pass_state (int signo)
c906108c
SS
4344{
4345 return signal_program[signo];
4346}
4347
488f131b 4348int
7bda5e4a 4349signal_stop_update (int signo, int state)
d4f3574e
SS
4350{
4351 int ret = signal_stop[signo];
4352 signal_stop[signo] = state;
4353 return ret;
4354}
4355
488f131b 4356int
7bda5e4a 4357signal_print_update (int signo, int state)
d4f3574e
SS
4358{
4359 int ret = signal_print[signo];
4360 signal_print[signo] = state;
4361 return ret;
4362}
4363
488f131b 4364int
7bda5e4a 4365signal_pass_update (int signo, int state)
d4f3574e
SS
4366{
4367 int ret = signal_program[signo];
4368 signal_program[signo] = state;
4369 return ret;
4370}
4371
c906108c 4372static void
96baa820 4373sig_print_header (void)
c906108c 4374{
a3f17187
AC
4375 printf_filtered (_("\
4376Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
4377}
4378
4379static void
96baa820 4380sig_print_info (enum target_signal oursig)
c906108c
SS
4381{
4382 char *name = target_signal_to_name (oursig);
4383 int name_padding = 13 - strlen (name);
96baa820 4384
c906108c
SS
4385 if (name_padding <= 0)
4386 name_padding = 0;
4387
4388 printf_filtered ("%s", name);
488f131b 4389 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
4390 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4391 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4392 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4393 printf_filtered ("%s\n", target_signal_to_string (oursig));
4394}
4395
4396/* Specify how various signals in the inferior should be handled. */
4397
4398static void
96baa820 4399handle_command (char *args, int from_tty)
c906108c
SS
4400{
4401 char **argv;
4402 int digits, wordlen;
4403 int sigfirst, signum, siglast;
4404 enum target_signal oursig;
4405 int allsigs;
4406 int nsigs;
4407 unsigned char *sigs;
4408 struct cleanup *old_chain;
4409
4410 if (args == NULL)
4411 {
e2e0b3e5 4412 error_no_arg (_("signal to handle"));
c906108c
SS
4413 }
4414
4415 /* Allocate and zero an array of flags for which signals to handle. */
4416
4417 nsigs = (int) TARGET_SIGNAL_LAST;
4418 sigs = (unsigned char *) alloca (nsigs);
4419 memset (sigs, 0, nsigs);
4420
4421 /* Break the command line up into args. */
4422
d1a41061 4423 argv = gdb_buildargv (args);
7a292a7a 4424 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4425
4426 /* Walk through the args, looking for signal oursigs, signal names, and
4427 actions. Signal numbers and signal names may be interspersed with
4428 actions, with the actions being performed for all signals cumulatively
4429 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4430
4431 while (*argv != NULL)
4432 {
4433 wordlen = strlen (*argv);
4434 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4435 {;
4436 }
4437 allsigs = 0;
4438 sigfirst = siglast = -1;
4439
4440 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4441 {
4442 /* Apply action to all signals except those used by the
4443 debugger. Silently skip those. */
4444 allsigs = 1;
4445 sigfirst = 0;
4446 siglast = nsigs - 1;
4447 }
4448 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4449 {
4450 SET_SIGS (nsigs, sigs, signal_stop);
4451 SET_SIGS (nsigs, sigs, signal_print);
4452 }
4453 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4454 {
4455 UNSET_SIGS (nsigs, sigs, signal_program);
4456 }
4457 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4458 {
4459 SET_SIGS (nsigs, sigs, signal_print);
4460 }
4461 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4462 {
4463 SET_SIGS (nsigs, sigs, signal_program);
4464 }
4465 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4466 {
4467 UNSET_SIGS (nsigs, sigs, signal_stop);
4468 }
4469 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4470 {
4471 SET_SIGS (nsigs, sigs, signal_program);
4472 }
4473 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4474 {
4475 UNSET_SIGS (nsigs, sigs, signal_print);
4476 UNSET_SIGS (nsigs, sigs, signal_stop);
4477 }
4478 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4479 {
4480 UNSET_SIGS (nsigs, sigs, signal_program);
4481 }
4482 else if (digits > 0)
4483 {
4484 /* It is numeric. The numeric signal refers to our own
4485 internal signal numbering from target.h, not to host/target
4486 signal number. This is a feature; users really should be
4487 using symbolic names anyway, and the common ones like
4488 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4489
4490 sigfirst = siglast = (int)
4491 target_signal_from_command (atoi (*argv));
4492 if ((*argv)[digits] == '-')
4493 {
4494 siglast = (int)
4495 target_signal_from_command (atoi ((*argv) + digits + 1));
4496 }
4497 if (sigfirst > siglast)
4498 {
4499 /* Bet he didn't figure we'd think of this case... */
4500 signum = sigfirst;
4501 sigfirst = siglast;
4502 siglast = signum;
4503 }
4504 }
4505 else
4506 {
4507 oursig = target_signal_from_name (*argv);
4508 if (oursig != TARGET_SIGNAL_UNKNOWN)
4509 {
4510 sigfirst = siglast = (int) oursig;
4511 }
4512 else
4513 {
4514 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 4515 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
4516 }
4517 }
4518
4519 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 4520 which signals to apply actions to. */
c906108c
SS
4521
4522 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4523 {
4524 switch ((enum target_signal) signum)
4525 {
4526 case TARGET_SIGNAL_TRAP:
4527 case TARGET_SIGNAL_INT:
4528 if (!allsigs && !sigs[signum])
4529 {
4530 if (query ("%s is used by the debugger.\n\
488f131b 4531Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
4532 {
4533 sigs[signum] = 1;
4534 }
4535 else
4536 {
a3f17187 4537 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
4538 gdb_flush (gdb_stdout);
4539 }
4540 }
4541 break;
4542 case TARGET_SIGNAL_0:
4543 case TARGET_SIGNAL_DEFAULT:
4544 case TARGET_SIGNAL_UNKNOWN:
4545 /* Make sure that "all" doesn't print these. */
4546 break;
4547 default:
4548 sigs[signum] = 1;
4549 break;
4550 }
4551 }
4552
4553 argv++;
4554 }
4555
39f77062 4556 target_notice_signals (inferior_ptid);
c906108c
SS
4557
4558 if (from_tty)
4559 {
4560 /* Show the results. */
4561 sig_print_header ();
4562 for (signum = 0; signum < nsigs; signum++)
4563 {
4564 if (sigs[signum])
4565 {
4566 sig_print_info (signum);
4567 }
4568 }
4569 }
4570
4571 do_cleanups (old_chain);
4572}
4573
4574static void
96baa820 4575xdb_handle_command (char *args, int from_tty)
c906108c
SS
4576{
4577 char **argv;
4578 struct cleanup *old_chain;
4579
d1a41061
PP
4580 if (args == NULL)
4581 error_no_arg (_("xdb command"));
4582
c906108c
SS
4583 /* Break the command line up into args. */
4584
d1a41061 4585 argv = gdb_buildargv (args);
7a292a7a 4586 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4587 if (argv[1] != (char *) NULL)
4588 {
4589 char *argBuf;
4590 int bufLen;
4591
4592 bufLen = strlen (argv[0]) + 20;
4593 argBuf = (char *) xmalloc (bufLen);
4594 if (argBuf)
4595 {
4596 int validFlag = 1;
4597 enum target_signal oursig;
4598
4599 oursig = target_signal_from_name (argv[0]);
4600 memset (argBuf, 0, bufLen);
4601 if (strcmp (argv[1], "Q") == 0)
4602 sprintf (argBuf, "%s %s", argv[0], "noprint");
4603 else
4604 {
4605 if (strcmp (argv[1], "s") == 0)
4606 {
4607 if (!signal_stop[oursig])
4608 sprintf (argBuf, "%s %s", argv[0], "stop");
4609 else
4610 sprintf (argBuf, "%s %s", argv[0], "nostop");
4611 }
4612 else if (strcmp (argv[1], "i") == 0)
4613 {
4614 if (!signal_program[oursig])
4615 sprintf (argBuf, "%s %s", argv[0], "pass");
4616 else
4617 sprintf (argBuf, "%s %s", argv[0], "nopass");
4618 }
4619 else if (strcmp (argv[1], "r") == 0)
4620 {
4621 if (!signal_print[oursig])
4622 sprintf (argBuf, "%s %s", argv[0], "print");
4623 else
4624 sprintf (argBuf, "%s %s", argv[0], "noprint");
4625 }
4626 else
4627 validFlag = 0;
4628 }
4629 if (validFlag)
4630 handle_command (argBuf, from_tty);
4631 else
a3f17187 4632 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 4633 if (argBuf)
b8c9b27d 4634 xfree (argBuf);
c906108c
SS
4635 }
4636 }
4637 do_cleanups (old_chain);
4638}
4639
4640/* Print current contents of the tables set by the handle command.
4641 It is possible we should just be printing signals actually used
4642 by the current target (but for things to work right when switching
4643 targets, all signals should be in the signal tables). */
4644
4645static void
96baa820 4646signals_info (char *signum_exp, int from_tty)
c906108c
SS
4647{
4648 enum target_signal oursig;
4649 sig_print_header ();
4650
4651 if (signum_exp)
4652 {
4653 /* First see if this is a symbol name. */
4654 oursig = target_signal_from_name (signum_exp);
4655 if (oursig == TARGET_SIGNAL_UNKNOWN)
4656 {
4657 /* No, try numeric. */
4658 oursig =
bb518678 4659 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
4660 }
4661 sig_print_info (oursig);
4662 return;
4663 }
4664
4665 printf_filtered ("\n");
4666 /* These ugly casts brought to you by the native VAX compiler. */
4667 for (oursig = TARGET_SIGNAL_FIRST;
4668 (int) oursig < (int) TARGET_SIGNAL_LAST;
4669 oursig = (enum target_signal) ((int) oursig + 1))
4670 {
4671 QUIT;
4672
4673 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 4674 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
4675 sig_print_info (oursig);
4676 }
4677
a3f17187 4678 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
4679}
4680\f
7a292a7a
SS
4681struct inferior_status
4682{
4683 enum target_signal stop_signal;
4684 CORE_ADDR stop_pc;
4685 bpstat stop_bpstat;
4686 int stop_step;
4687 int stop_stack_dummy;
4688 int stopped_by_random_signal;
ca67fcb8 4689 int stepping_over_breakpoint;
7a292a7a
SS
4690 CORE_ADDR step_range_start;
4691 CORE_ADDR step_range_end;
aa0cd9c1 4692 struct frame_id step_frame_id;
5fbbeb29 4693 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
4694 CORE_ADDR step_resume_break_address;
4695 int stop_after_trap;
c0236d92 4696 int stop_soon;
7a292a7a
SS
4697
4698 /* These are here because if call_function_by_hand has written some
4699 registers and then decides to call error(), we better not have changed
4700 any registers. */
72cec141 4701 struct regcache *registers;
7a292a7a 4702
101dcfbe
AC
4703 /* A frame unique identifier. */
4704 struct frame_id selected_frame_id;
4705
7a292a7a
SS
4706 int breakpoint_proceeded;
4707 int restore_stack_info;
4708 int proceed_to_finish;
4709};
4710
7a292a7a 4711void
96baa820
JM
4712write_inferior_status_register (struct inferior_status *inf_status, int regno,
4713 LONGEST val)
7a292a7a 4714{
3acba339 4715 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
4716 void *buf = alloca (size);
4717 store_signed_integer (buf, size, val);
0818c12a 4718 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
4719}
4720
c906108c
SS
4721/* Save all of the information associated with the inferior<==>gdb
4722 connection. INF_STATUS is a pointer to a "struct inferior_status"
4723 (defined in inferior.h). */
4724
7a292a7a 4725struct inferior_status *
96baa820 4726save_inferior_status (int restore_stack_info)
c906108c 4727{
72cec141 4728 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 4729 struct thread_info *tp = inferior_thread ();
d6b48e9c 4730 struct inferior *inf = current_inferior ();
7a292a7a 4731
2020b7ab 4732 inf_status->stop_signal = tp->stop_signal;
c906108c 4733 inf_status->stop_pc = stop_pc;
414c69f7 4734 inf_status->stop_step = tp->stop_step;
c906108c
SS
4735 inf_status->stop_stack_dummy = stop_stack_dummy;
4736 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
4737 inf_status->stepping_over_breakpoint = tp->trap_expected;
4738 inf_status->step_range_start = tp->step_range_start;
4739 inf_status->step_range_end = tp->step_range_end;
4740 inf_status->step_frame_id = tp->step_frame_id;
078130d0 4741 inf_status->step_over_calls = tp->step_over_calls;
c906108c 4742 inf_status->stop_after_trap = stop_after_trap;
d6b48e9c 4743 inf_status->stop_soon = inf->stop_soon;
c906108c
SS
4744 /* Save original bpstat chain here; replace it with copy of chain.
4745 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
4746 hand them back the original chain when restore_inferior_status is
4747 called. */
347bddb7
PA
4748 inf_status->stop_bpstat = tp->stop_bpstat;
4749 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
c906108c
SS
4750 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4751 inf_status->restore_stack_info = restore_stack_info;
32400beb 4752 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5aa993b 4753
594f7785 4754 inf_status->registers = regcache_dup (get_current_regcache ());
c906108c 4755
206415a3 4756 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7a292a7a 4757 return inf_status;
c906108c
SS
4758}
4759
c906108c 4760static int
96baa820 4761restore_selected_frame (void *args)
c906108c 4762{
488f131b 4763 struct frame_id *fid = (struct frame_id *) args;
c906108c 4764 struct frame_info *frame;
c906108c 4765
101dcfbe 4766 frame = frame_find_by_id (*fid);
c906108c 4767
aa0cd9c1
AC
4768 /* If inf_status->selected_frame_id is NULL, there was no previously
4769 selected frame. */
101dcfbe 4770 if (frame == NULL)
c906108c 4771 {
8a3fe4f8 4772 warning (_("Unable to restore previously selected frame."));
c906108c
SS
4773 return 0;
4774 }
4775
0f7d239c 4776 select_frame (frame);
c906108c
SS
4777
4778 return (1);
4779}
4780
4781void
96baa820 4782restore_inferior_status (struct inferior_status *inf_status)
c906108c 4783{
4e1c45ea 4784 struct thread_info *tp = inferior_thread ();
d6b48e9c 4785 struct inferior *inf = current_inferior ();
4e1c45ea 4786
2020b7ab 4787 tp->stop_signal = inf_status->stop_signal;
c906108c 4788 stop_pc = inf_status->stop_pc;
414c69f7 4789 tp->stop_step = inf_status->stop_step;
c906108c
SS
4790 stop_stack_dummy = inf_status->stop_stack_dummy;
4791 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
4792 tp->trap_expected = inf_status->stepping_over_breakpoint;
4793 tp->step_range_start = inf_status->step_range_start;
4794 tp->step_range_end = inf_status->step_range_end;
4795 tp->step_frame_id = inf_status->step_frame_id;
078130d0 4796 tp->step_over_calls = inf_status->step_over_calls;
c906108c 4797 stop_after_trap = inf_status->stop_after_trap;
d6b48e9c 4798 inf->stop_soon = inf_status->stop_soon;
347bddb7
PA
4799 bpstat_clear (&tp->stop_bpstat);
4800 tp->stop_bpstat = inf_status->stop_bpstat;
c906108c 4801 breakpoint_proceeded = inf_status->breakpoint_proceeded;
32400beb 4802 tp->proceed_to_finish = inf_status->proceed_to_finish;
c906108c 4803
c906108c
SS
4804 /* The inferior can be gone if the user types "print exit(0)"
4805 (and perhaps other times). */
4806 if (target_has_execution)
72cec141 4807 /* NB: The register write goes through to the target. */
594f7785 4808 regcache_cpy (get_current_regcache (), inf_status->registers);
72cec141 4809 regcache_xfree (inf_status->registers);
c906108c 4810
c906108c
SS
4811 /* FIXME: If we are being called after stopping in a function which
4812 is called from gdb, we should not be trying to restore the
4813 selected frame; it just prints a spurious error message (The
4814 message is useful, however, in detecting bugs in gdb (like if gdb
4815 clobbers the stack)). In fact, should we be restoring the
4816 inferior status at all in that case? . */
4817
4818 if (target_has_stack && inf_status->restore_stack_info)
4819 {
c906108c 4820 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
4821 walking the stack might encounter a garbage pointer and
4822 error() trying to dereference it. */
488f131b
JB
4823 if (catch_errors
4824 (restore_selected_frame, &inf_status->selected_frame_id,
4825 "Unable to restore previously selected frame:\n",
4826 RETURN_MASK_ERROR) == 0)
c906108c
SS
4827 /* Error in restoring the selected frame. Select the innermost
4828 frame. */
0f7d239c 4829 select_frame (get_current_frame ());
c906108c
SS
4830
4831 }
c906108c 4832
72cec141 4833 xfree (inf_status);
7a292a7a 4834}
c906108c 4835
74b7792f
AC
4836static void
4837do_restore_inferior_status_cleanup (void *sts)
4838{
4839 restore_inferior_status (sts);
4840}
4841
4842struct cleanup *
4843make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4844{
4845 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4846}
4847
c906108c 4848void
96baa820 4849discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
4850{
4851 /* See save_inferior_status for info on stop_bpstat. */
4852 bpstat_clear (&inf_status->stop_bpstat);
72cec141 4853 regcache_xfree (inf_status->registers);
72cec141 4854 xfree (inf_status);
7a292a7a
SS
4855}
4856
47932f85 4857int
3a3e9ee3 4858inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
4859{
4860 struct target_waitstatus last;
4861 ptid_t last_ptid;
4862
4863 get_last_target_status (&last_ptid, &last);
4864
4865 if (last.kind != TARGET_WAITKIND_FORKED)
4866 return 0;
4867
3a3e9ee3 4868 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
4869 return 0;
4870
4871 *child_pid = last.value.related_pid;
4872 return 1;
4873}
4874
4875int
3a3e9ee3 4876inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
4877{
4878 struct target_waitstatus last;
4879 ptid_t last_ptid;
4880
4881 get_last_target_status (&last_ptid, &last);
4882
4883 if (last.kind != TARGET_WAITKIND_VFORKED)
4884 return 0;
4885
3a3e9ee3 4886 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
4887 return 0;
4888
4889 *child_pid = last.value.related_pid;
4890 return 1;
4891}
4892
4893int
3a3e9ee3 4894inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
4895{
4896 struct target_waitstatus last;
4897 ptid_t last_ptid;
4898
4899 get_last_target_status (&last_ptid, &last);
4900
4901 if (last.kind != TARGET_WAITKIND_EXECD)
4902 return 0;
4903
3a3e9ee3 4904 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
4905 return 0;
4906
4907 *execd_pathname = xstrdup (last.value.execd_pathname);
4908 return 1;
4909}
4910
ca6724c1
KB
4911/* Oft used ptids */
4912ptid_t null_ptid;
4913ptid_t minus_one_ptid;
4914
4915/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 4916
ca6724c1
KB
4917ptid_t
4918ptid_build (int pid, long lwp, long tid)
4919{
4920 ptid_t ptid;
4921
4922 ptid.pid = pid;
4923 ptid.lwp = lwp;
4924 ptid.tid = tid;
4925 return ptid;
4926}
4927
4928/* Create a ptid from just a pid. */
4929
4930ptid_t
4931pid_to_ptid (int pid)
4932{
4933 return ptid_build (pid, 0, 0);
4934}
4935
4936/* Fetch the pid (process id) component from a ptid. */
4937
4938int
4939ptid_get_pid (ptid_t ptid)
4940{
4941 return ptid.pid;
4942}
4943
4944/* Fetch the lwp (lightweight process) component from a ptid. */
4945
4946long
4947ptid_get_lwp (ptid_t ptid)
4948{
4949 return ptid.lwp;
4950}
4951
4952/* Fetch the tid (thread id) component from a ptid. */
4953
4954long
4955ptid_get_tid (ptid_t ptid)
4956{
4957 return ptid.tid;
4958}
4959
4960/* ptid_equal() is used to test equality of two ptids. */
4961
4962int
4963ptid_equal (ptid_t ptid1, ptid_t ptid2)
4964{
4965 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 4966 && ptid1.tid == ptid2.tid);
ca6724c1
KB
4967}
4968
252fbfc8
PA
4969/* Returns true if PTID represents a process. */
4970
4971int
4972ptid_is_pid (ptid_t ptid)
4973{
4974 if (ptid_equal (minus_one_ptid, ptid))
4975 return 0;
4976 if (ptid_equal (null_ptid, ptid))
4977 return 0;
4978
4979 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
4980}
4981
ca6724c1
KB
4982/* restore_inferior_ptid() will be used by the cleanup machinery
4983 to restore the inferior_ptid value saved in a call to
4984 save_inferior_ptid(). */
ce696e05
KB
4985
4986static void
4987restore_inferior_ptid (void *arg)
4988{
4989 ptid_t *saved_ptid_ptr = arg;
4990 inferior_ptid = *saved_ptid_ptr;
4991 xfree (arg);
4992}
4993
4994/* Save the value of inferior_ptid so that it may be restored by a
4995 later call to do_cleanups(). Returns the struct cleanup pointer
4996 needed for later doing the cleanup. */
4997
4998struct cleanup *
4999save_inferior_ptid (void)
5000{
5001 ptid_t *saved_ptid_ptr;
5002
5003 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5004 *saved_ptid_ptr = inferior_ptid;
5005 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5006}
c5aa993b 5007\f
488f131b 5008
b2175913
MS
5009/* User interface for reverse debugging:
5010 Set exec-direction / show exec-direction commands
5011 (returns error unless target implements to_set_exec_direction method). */
5012
5013enum exec_direction_kind execution_direction = EXEC_FORWARD;
5014static const char exec_forward[] = "forward";
5015static const char exec_reverse[] = "reverse";
5016static const char *exec_direction = exec_forward;
5017static const char *exec_direction_names[] = {
5018 exec_forward,
5019 exec_reverse,
5020 NULL
5021};
5022
5023static void
5024set_exec_direction_func (char *args, int from_tty,
5025 struct cmd_list_element *cmd)
5026{
5027 if (target_can_execute_reverse)
5028 {
5029 if (!strcmp (exec_direction, exec_forward))
5030 execution_direction = EXEC_FORWARD;
5031 else if (!strcmp (exec_direction, exec_reverse))
5032 execution_direction = EXEC_REVERSE;
5033 }
5034}
5035
5036static void
5037show_exec_direction_func (struct ui_file *out, int from_tty,
5038 struct cmd_list_element *cmd, const char *value)
5039{
5040 switch (execution_direction) {
5041 case EXEC_FORWARD:
5042 fprintf_filtered (out, _("Forward.\n"));
5043 break;
5044 case EXEC_REVERSE:
5045 fprintf_filtered (out, _("Reverse.\n"));
5046 break;
5047 case EXEC_ERROR:
5048 default:
5049 fprintf_filtered (out,
5050 _("Forward (target `%s' does not support exec-direction).\n"),
5051 target_shortname);
5052 break;
5053 }
5054}
5055
5056/* User interface for non-stop mode. */
5057
ad52ddc6
PA
5058int non_stop = 0;
5059static int non_stop_1 = 0;
5060
5061static void
5062set_non_stop (char *args, int from_tty,
5063 struct cmd_list_element *c)
5064{
5065 if (target_has_execution)
5066 {
5067 non_stop_1 = non_stop;
5068 error (_("Cannot change this setting while the inferior is running."));
5069 }
5070
5071 non_stop = non_stop_1;
5072}
5073
5074static void
5075show_non_stop (struct ui_file *file, int from_tty,
5076 struct cmd_list_element *c, const char *value)
5077{
5078 fprintf_filtered (file,
5079 _("Controlling the inferior in non-stop mode is %s.\n"),
5080 value);
5081}
5082
5083
c906108c 5084void
96baa820 5085_initialize_infrun (void)
c906108c 5086{
52f0bd74
AC
5087 int i;
5088 int numsigs;
c906108c
SS
5089 struct cmd_list_element *c;
5090
1bedd215
AC
5091 add_info ("signals", signals_info, _("\
5092What debugger does when program gets various signals.\n\
5093Specify a signal as argument to print info on that signal only."));
c906108c
SS
5094 add_info_alias ("handle", "signals", 0);
5095
1bedd215
AC
5096 add_com ("handle", class_run, handle_command, _("\
5097Specify how to handle a signal.\n\
c906108c
SS
5098Args are signals and actions to apply to those signals.\n\
5099Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5100from 1-15 are allowed for compatibility with old versions of GDB.\n\
5101Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5102The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5103used by the debugger, typically SIGTRAP and SIGINT.\n\
5104Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
5105\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5106Stop means reenter debugger if this signal happens (implies print).\n\
5107Print means print a message if this signal happens.\n\
5108Pass means let program see this signal; otherwise program doesn't know.\n\
5109Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5110Pass and Stop may be combined."));
c906108c
SS
5111 if (xdb_commands)
5112 {
1bedd215
AC
5113 add_com ("lz", class_info, signals_info, _("\
5114What debugger does when program gets various signals.\n\
5115Specify a signal as argument to print info on that signal only."));
5116 add_com ("z", class_run, xdb_handle_command, _("\
5117Specify how to handle a signal.\n\
c906108c
SS
5118Args are signals and actions to apply to those signals.\n\
5119Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5120from 1-15 are allowed for compatibility with old versions of GDB.\n\
5121Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5122The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5123used by the debugger, typically SIGTRAP and SIGINT.\n\
5124Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
5125\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5126nopass), \"Q\" (noprint)\n\
5127Stop means reenter debugger if this signal happens (implies print).\n\
5128Print means print a message if this signal happens.\n\
5129Pass means let program see this signal; otherwise program doesn't know.\n\
5130Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5131Pass and Stop may be combined."));
c906108c
SS
5132 }
5133
5134 if (!dbx_commands)
1a966eab
AC
5135 stop_command = add_cmd ("stop", class_obscure,
5136 not_just_help_class_command, _("\
5137There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 5138This allows you to set a list of commands to be run each time execution\n\
1a966eab 5139of the program stops."), &cmdlist);
c906108c 5140
85c07804
AC
5141 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5142Set inferior debugging."), _("\
5143Show inferior debugging."), _("\
5144When non-zero, inferior specific debugging is enabled."),
5145 NULL,
920d2a44 5146 show_debug_infrun,
85c07804 5147 &setdebuglist, &showdebuglist);
527159b7 5148
237fc4c9
PA
5149 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5150Set displaced stepping debugging."), _("\
5151Show displaced stepping debugging."), _("\
5152When non-zero, displaced stepping specific debugging is enabled."),
5153 NULL,
5154 show_debug_displaced,
5155 &setdebuglist, &showdebuglist);
5156
ad52ddc6
PA
5157 add_setshow_boolean_cmd ("non-stop", no_class,
5158 &non_stop_1, _("\
5159Set whether gdb controls the inferior in non-stop mode."), _("\
5160Show whether gdb controls the inferior in non-stop mode."), _("\
5161When debugging a multi-threaded program and this setting is\n\
5162off (the default, also called all-stop mode), when one thread stops\n\
5163(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5164all other threads in the program while you interact with the thread of\n\
5165interest. When you continue or step a thread, you can allow the other\n\
5166threads to run, or have them remain stopped, but while you inspect any\n\
5167thread's state, all threads stop.\n\
5168\n\
5169In non-stop mode, when one thread stops, other threads can continue\n\
5170to run freely. You'll be able to step each thread independently,\n\
5171leave it stopped or free to run as needed."),
5172 set_non_stop,
5173 show_non_stop,
5174 &setlist,
5175 &showlist);
5176
c906108c 5177 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 5178 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
5179 signal_print = (unsigned char *)
5180 xmalloc (sizeof (signal_print[0]) * numsigs);
5181 signal_program = (unsigned char *)
5182 xmalloc (sizeof (signal_program[0]) * numsigs);
5183 for (i = 0; i < numsigs; i++)
5184 {
5185 signal_stop[i] = 1;
5186 signal_print[i] = 1;
5187 signal_program[i] = 1;
5188 }
5189
5190 /* Signals caused by debugger's own actions
5191 should not be given to the program afterwards. */
5192 signal_program[TARGET_SIGNAL_TRAP] = 0;
5193 signal_program[TARGET_SIGNAL_INT] = 0;
5194
5195 /* Signals that are not errors should not normally enter the debugger. */
5196 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5197 signal_print[TARGET_SIGNAL_ALRM] = 0;
5198 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5199 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5200 signal_stop[TARGET_SIGNAL_PROF] = 0;
5201 signal_print[TARGET_SIGNAL_PROF] = 0;
5202 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5203 signal_print[TARGET_SIGNAL_CHLD] = 0;
5204 signal_stop[TARGET_SIGNAL_IO] = 0;
5205 signal_print[TARGET_SIGNAL_IO] = 0;
5206 signal_stop[TARGET_SIGNAL_POLL] = 0;
5207 signal_print[TARGET_SIGNAL_POLL] = 0;
5208 signal_stop[TARGET_SIGNAL_URG] = 0;
5209 signal_print[TARGET_SIGNAL_URG] = 0;
5210 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5211 signal_print[TARGET_SIGNAL_WINCH] = 0;
5212
cd0fc7c3
SS
5213 /* These signals are used internally by user-level thread
5214 implementations. (See signal(5) on Solaris.) Like the above
5215 signals, a healthy program receives and handles them as part of
5216 its normal operation. */
5217 signal_stop[TARGET_SIGNAL_LWP] = 0;
5218 signal_print[TARGET_SIGNAL_LWP] = 0;
5219 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5220 signal_print[TARGET_SIGNAL_WAITING] = 0;
5221 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5222 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5223
85c07804
AC
5224 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5225 &stop_on_solib_events, _("\
5226Set stopping for shared library events."), _("\
5227Show stopping for shared library events."), _("\
c906108c
SS
5228If nonzero, gdb will give control to the user when the dynamic linker\n\
5229notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
5230to the user would be loading/unloading of a new library."),
5231 NULL,
920d2a44 5232 show_stop_on_solib_events,
85c07804 5233 &setlist, &showlist);
c906108c 5234
7ab04401
AC
5235 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5236 follow_fork_mode_kind_names,
5237 &follow_fork_mode_string, _("\
5238Set debugger response to a program call of fork or vfork."), _("\
5239Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
5240A fork or vfork creates a new process. follow-fork-mode can be:\n\
5241 parent - the original process is debugged after a fork\n\
5242 child - the new process is debugged after a fork\n\
ea1dd7bc 5243The unfollowed process will continue to run.\n\
7ab04401
AC
5244By default, the debugger will follow the parent process."),
5245 NULL,
920d2a44 5246 show_follow_fork_mode_string,
7ab04401
AC
5247 &setlist, &showlist);
5248
5249 add_setshow_enum_cmd ("scheduler-locking", class_run,
5250 scheduler_enums, &scheduler_mode, _("\
5251Set mode for locking scheduler during execution."), _("\
5252Show mode for locking scheduler during execution."), _("\
c906108c
SS
5253off == no locking (threads may preempt at any time)\n\
5254on == full locking (no thread except the current thread may run)\n\
5255step == scheduler locked during every single-step operation.\n\
5256 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
5257 Other threads may run while stepping over a function call ('next')."),
5258 set_schedlock_func, /* traps on target vector */
920d2a44 5259 show_scheduler_mode,
7ab04401 5260 &setlist, &showlist);
5fbbeb29 5261
5bf193a2
AC
5262 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5263Set mode of the step operation."), _("\
5264Show mode of the step operation."), _("\
5265When set, doing a step over a function without debug line information\n\
5266will stop at the first instruction of that function. Otherwise, the\n\
5267function is skipped and the step command stops at a different source line."),
5268 NULL,
920d2a44 5269 show_step_stop_if_no_debug,
5bf193a2 5270 &setlist, &showlist);
ca6724c1 5271
fff08868
HZ
5272 add_setshow_enum_cmd ("displaced-stepping", class_run,
5273 can_use_displaced_stepping_enum,
5274 &can_use_displaced_stepping, _("\
237fc4c9
PA
5275Set debugger's willingness to use displaced stepping."), _("\
5276Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
5277If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5278supported by the target architecture. If off, gdb will not use displaced\n\
5279stepping to step over breakpoints, even if such is supported by the target\n\
5280architecture. If auto (which is the default), gdb will use displaced stepping\n\
5281if the target architecture supports it and non-stop mode is active, but will not\n\
5282use it in all-stop mode (see help set non-stop)."),
5283 NULL,
5284 show_can_use_displaced_stepping,
5285 &setlist, &showlist);
237fc4c9 5286
b2175913
MS
5287 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5288 &exec_direction, _("Set direction of execution.\n\
5289Options are 'forward' or 'reverse'."),
5290 _("Show direction of execution (forward/reverse)."),
5291 _("Tells gdb whether to execute forward or backward."),
5292 set_exec_direction_func, show_exec_direction_func,
5293 &setlist, &showlist);
5294
ca6724c1
KB
5295 /* ptid initializations */
5296 null_ptid = ptid_build (0, 0, 0);
5297 minus_one_ptid = ptid_build (-1, 0, 0);
5298 inferior_ptid = null_ptid;
5299 target_last_wait_ptid = minus_one_ptid;
237fc4c9 5300 displaced_step_ptid = null_ptid;
5231c1fd
PA
5301
5302 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 5303 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
c906108c 5304}
This page took 1.062465 seconds and 4 git commands to generate.