Use @defvar to document gdb.pretty_printers
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
42a4f53d 4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
0747795c 28#include "common/gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
76727919 41#include "observable.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
4c41382a 70#include "common/scope-exit.h"
9799571e 71#include "common/forward-scope-exit.h"
c906108c
SS
72
73/* Prototypes for local functions */
74
2ea28649 75static void sig_print_info (enum gdb_signal);
c906108c 76
96baa820 77static void sig_print_header (void);
c906108c 78
4ef3f3be 79static int follow_fork (void);
96baa820 80
d83ad864
DB
81static int follow_fork_inferior (int follow_child, int detach_fork);
82
83static void follow_inferior_reset_breakpoints (void);
84
a289b8f6
JK
85static int currently_stepping (struct thread_info *tp);
86
e58b0e63
PA
87void nullify_last_target_wait_ptid (void);
88
2c03e5be 89static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
90
91static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
92
2484c66b
UW
93static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
94
8550d3b3
YQ
95static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
96
aff4e175
AB
97static void resume (gdb_signal sig);
98
372316f1
PA
99/* Asynchronous signal handler registered as event loop source for
100 when we have pending events ready to be passed to the core. */
101static struct async_event_handler *infrun_async_inferior_event_token;
102
103/* Stores whether infrun_async was previously enabled or disabled.
104 Starts off as -1, indicating "never enabled/disabled". */
105static int infrun_is_async = -1;
106
107/* See infrun.h. */
108
109void
110infrun_async (int enable)
111{
112 if (infrun_is_async != enable)
113 {
114 infrun_is_async = enable;
115
116 if (debug_infrun)
117 fprintf_unfiltered (gdb_stdlog,
118 "infrun: infrun_async(%d)\n",
119 enable);
120
121 if (enable)
122 mark_async_event_handler (infrun_async_inferior_event_token);
123 else
124 clear_async_event_handler (infrun_async_inferior_event_token);
125 }
126}
127
0b333c5e
PA
128/* See infrun.h. */
129
130void
131mark_infrun_async_event_handler (void)
132{
133 mark_async_event_handler (infrun_async_inferior_event_token);
134}
135
5fbbeb29
CF
136/* When set, stop the 'step' command if we enter a function which has
137 no line number information. The normal behavior is that we step
138 over such function. */
139int step_stop_if_no_debug = 0;
920d2a44
AC
140static void
141show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143{
144 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
145}
5fbbeb29 146
b9f437de
PA
147/* proceed and normal_stop use this to notify the user when the
148 inferior stopped in a different thread than it had been running
149 in. */
96baa820 150
39f77062 151static ptid_t previous_inferior_ptid;
7a292a7a 152
07107ca6
LM
153/* If set (default for legacy reasons), when following a fork, GDB
154 will detach from one of the fork branches, child or parent.
155 Exactly which branch is detached depends on 'set follow-fork-mode'
156 setting. */
157
158static int detach_fork = 1;
6c95b8df 159
237fc4c9
PA
160int debug_displaced = 0;
161static void
162show_debug_displaced (struct ui_file *file, int from_tty,
163 struct cmd_list_element *c, const char *value)
164{
165 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
166}
167
ccce17b0 168unsigned int debug_infrun = 0;
920d2a44
AC
169static void
170show_debug_infrun (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172{
173 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
174}
527159b7 175
03583c20
UW
176
177/* Support for disabling address space randomization. */
178
179int disable_randomization = 1;
180
181static void
182show_disable_randomization (struct ui_file *file, int from_tty,
183 struct cmd_list_element *c, const char *value)
184{
185 if (target_supports_disable_randomization ())
186 fprintf_filtered (file,
187 _("Disabling randomization of debuggee's "
188 "virtual address space is %s.\n"),
189 value);
190 else
191 fputs_filtered (_("Disabling randomization of debuggee's "
192 "virtual address space is unsupported on\n"
193 "this platform.\n"), file);
194}
195
196static void
eb4c3f4a 197set_disable_randomization (const char *args, int from_tty,
03583c20
UW
198 struct cmd_list_element *c)
199{
200 if (!target_supports_disable_randomization ())
201 error (_("Disabling randomization of debuggee's "
202 "virtual address space is unsupported on\n"
203 "this platform."));
204}
205
d32dc48e
PA
206/* User interface for non-stop mode. */
207
208int non_stop = 0;
209static int non_stop_1 = 0;
210
211static void
eb4c3f4a 212set_non_stop (const char *args, int from_tty,
d32dc48e
PA
213 struct cmd_list_element *c)
214{
215 if (target_has_execution)
216 {
217 non_stop_1 = non_stop;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 non_stop = non_stop_1;
222}
223
224static void
225show_non_stop (struct ui_file *file, int from_tty,
226 struct cmd_list_element *c, const char *value)
227{
228 fprintf_filtered (file,
229 _("Controlling the inferior in non-stop mode is %s.\n"),
230 value);
231}
232
d914c394
SS
233/* "Observer mode" is somewhat like a more extreme version of
234 non-stop, in which all GDB operations that might affect the
235 target's execution have been disabled. */
236
d914c394
SS
237int observer_mode = 0;
238static int observer_mode_1 = 0;
239
240static void
eb4c3f4a 241set_observer_mode (const char *args, int from_tty,
d914c394
SS
242 struct cmd_list_element *c)
243{
d914c394
SS
244 if (target_has_execution)
245 {
246 observer_mode_1 = observer_mode;
247 error (_("Cannot change this setting while the inferior is running."));
248 }
249
250 observer_mode = observer_mode_1;
251
252 may_write_registers = !observer_mode;
253 may_write_memory = !observer_mode;
254 may_insert_breakpoints = !observer_mode;
255 may_insert_tracepoints = !observer_mode;
256 /* We can insert fast tracepoints in or out of observer mode,
257 but enable them if we're going into this mode. */
258 if (observer_mode)
259 may_insert_fast_tracepoints = 1;
260 may_stop = !observer_mode;
261 update_target_permissions ();
262
263 /* Going *into* observer mode we must force non-stop, then
264 going out we leave it that way. */
265 if (observer_mode)
266 {
d914c394
SS
267 pagination_enabled = 0;
268 non_stop = non_stop_1 = 1;
269 }
270
271 if (from_tty)
272 printf_filtered (_("Observer mode is now %s.\n"),
273 (observer_mode ? "on" : "off"));
274}
275
276static void
277show_observer_mode (struct ui_file *file, int from_tty,
278 struct cmd_list_element *c, const char *value)
279{
280 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
281}
282
283/* This updates the value of observer mode based on changes in
284 permissions. Note that we are deliberately ignoring the values of
285 may-write-registers and may-write-memory, since the user may have
286 reason to enable these during a session, for instance to turn on a
287 debugging-related global. */
288
289void
290update_observer_mode (void)
291{
292 int newval;
293
294 newval = (!may_insert_breakpoints
295 && !may_insert_tracepoints
296 && may_insert_fast_tracepoints
297 && !may_stop
298 && non_stop);
299
300 /* Let the user know if things change. */
301 if (newval != observer_mode)
302 printf_filtered (_("Observer mode is now %s.\n"),
303 (newval ? "on" : "off"));
304
305 observer_mode = observer_mode_1 = newval;
306}
c2c6d25f 307
c906108c
SS
308/* Tables of how to react to signals; the user sets them. */
309
adc6a863
PA
310static unsigned char signal_stop[GDB_SIGNAL_LAST];
311static unsigned char signal_print[GDB_SIGNAL_LAST];
312static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 313
ab04a2af
TT
314/* Table of signals that are registered with "catch signal". A
315 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
316 signal" command. */
317static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 318
2455069d
UW
319/* Table of signals that the target may silently handle.
320 This is automatically determined from the flags above,
321 and simply cached here. */
adc6a863 322static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 323
c906108c
SS
324#define SET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 1; \
330 } while (0)
331
332#define UNSET_SIGS(nsigs,sigs,flags) \
333 do { \
334 int signum = (nsigs); \
335 while (signum-- > 0) \
336 if ((sigs)[signum]) \
337 (flags)[signum] = 0; \
338 } while (0)
339
9b224c5e
PA
340/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
341 this function is to avoid exporting `signal_program'. */
342
343void
344update_signals_program_target (void)
345{
adc6a863 346 target_program_signals (signal_program);
9b224c5e
PA
347}
348
1777feb0 349/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 350
edb3359d 351#define RESUME_ALL minus_one_ptid
c906108c
SS
352
353/* Command list pointer for the "stop" placeholder. */
354
355static struct cmd_list_element *stop_command;
356
c906108c
SS
357/* Nonzero if we want to give control to the user when we're notified
358 of shared library events by the dynamic linker. */
628fe4e4 359int stop_on_solib_events;
f9e14852
GB
360
361/* Enable or disable optional shared library event breakpoints
362 as appropriate when the above flag is changed. */
363
364static void
eb4c3f4a
TT
365set_stop_on_solib_events (const char *args,
366 int from_tty, struct cmd_list_element *c)
f9e14852
GB
367{
368 update_solib_breakpoints ();
369}
370
920d2a44
AC
371static void
372show_stop_on_solib_events (struct ui_file *file, int from_tty,
373 struct cmd_list_element *c, const char *value)
374{
375 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
376 value);
377}
c906108c 378
c906108c
SS
379/* Nonzero after stop if current stack frame should be printed. */
380
381static int stop_print_frame;
382
e02bc4cc 383/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
384 returned by target_wait()/deprecated_target_wait_hook(). This
385 information is returned by get_last_target_status(). */
39f77062 386static ptid_t target_last_wait_ptid;
e02bc4cc
DS
387static struct target_waitstatus target_last_waitstatus;
388
4e1c45ea 389void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 390
53904c9e
AC
391static const char follow_fork_mode_child[] = "child";
392static const char follow_fork_mode_parent[] = "parent";
393
40478521 394static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
395 follow_fork_mode_child,
396 follow_fork_mode_parent,
397 NULL
ef346e04 398};
c906108c 399
53904c9e 400static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
401static void
402show_follow_fork_mode_string (struct ui_file *file, int from_tty,
403 struct cmd_list_element *c, const char *value)
404{
3e43a32a
MS
405 fprintf_filtered (file,
406 _("Debugger response to a program "
407 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
408 value);
409}
c906108c
SS
410\f
411
d83ad864
DB
412/* Handle changes to the inferior list based on the type of fork,
413 which process is being followed, and whether the other process
414 should be detached. On entry inferior_ptid must be the ptid of
415 the fork parent. At return inferior_ptid is the ptid of the
416 followed inferior. */
417
418static int
419follow_fork_inferior (int follow_child, int detach_fork)
420{
421 int has_vforked;
79639e11 422 ptid_t parent_ptid, child_ptid;
d83ad864
DB
423
424 has_vforked = (inferior_thread ()->pending_follow.kind
425 == TARGET_WAITKIND_VFORKED);
79639e11
PA
426 parent_ptid = inferior_ptid;
427 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
428
429 if (has_vforked
430 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 431 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
432 && !(follow_child || detach_fork || sched_multi))
433 {
434 /* The parent stays blocked inside the vfork syscall until the
435 child execs or exits. If we don't let the child run, then
436 the parent stays blocked. If we're telling the parent to run
437 in the foreground, the user will not be able to ctrl-c to get
438 back the terminal, effectively hanging the debug session. */
439 fprintf_filtered (gdb_stderr, _("\
440Can not resume the parent process over vfork in the foreground while\n\
441holding the child stopped. Try \"set detach-on-fork\" or \
442\"set schedule-multiple\".\n"));
443 /* FIXME output string > 80 columns. */
444 return 1;
445 }
446
447 if (!follow_child)
448 {
449 /* Detach new forked process? */
450 if (detach_fork)
451 {
d83ad864
DB
452 /* Before detaching from the child, remove all breakpoints
453 from it. If we forked, then this has already been taken
454 care of by infrun.c. If we vforked however, any
455 breakpoint inserted in the parent is visible in the
456 child, even those added while stopped in a vfork
457 catchpoint. This will remove the breakpoints from the
458 parent also, but they'll be reinserted below. */
459 if (has_vforked)
460 {
461 /* Keep breakpoints list in sync. */
00431a78 462 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
463 }
464
f67c0c91 465 if (print_inferior_events)
d83ad864 466 {
8dd06f7a 467 /* Ensure that we have a process ptid. */
e99b03dc 468 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 469
223ffa71 470 target_terminal::ours_for_output ();
d83ad864 471 fprintf_filtered (gdb_stdlog,
f67c0c91 472 _("[Detaching after %s from child %s]\n"),
6f259a23 473 has_vforked ? "vfork" : "fork",
a068643d 474 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
475 }
476 }
477 else
478 {
479 struct inferior *parent_inf, *child_inf;
d83ad864
DB
480
481 /* Add process to GDB's tables. */
e99b03dc 482 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
483
484 parent_inf = current_inferior ();
485 child_inf->attach_flag = parent_inf->attach_flag;
486 copy_terminal_info (child_inf, parent_inf);
487 child_inf->gdbarch = parent_inf->gdbarch;
488 copy_inferior_target_desc_info (child_inf, parent_inf);
489
5ed8105e 490 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 491
79639e11 492 inferior_ptid = child_ptid;
f67c0c91 493 add_thread_silent (inferior_ptid);
2a00d7ce 494 set_current_inferior (child_inf);
d83ad864
DB
495 child_inf->symfile_flags = SYMFILE_NO_READ;
496
497 /* If this is a vfork child, then the address-space is
498 shared with the parent. */
499 if (has_vforked)
500 {
501 child_inf->pspace = parent_inf->pspace;
502 child_inf->aspace = parent_inf->aspace;
503
504 /* The parent will be frozen until the child is done
505 with the shared region. Keep track of the
506 parent. */
507 child_inf->vfork_parent = parent_inf;
508 child_inf->pending_detach = 0;
509 parent_inf->vfork_child = child_inf;
510 parent_inf->pending_detach = 0;
511 }
512 else
513 {
514 child_inf->aspace = new_address_space ();
564b1e3f 515 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
516 child_inf->removable = 1;
517 set_current_program_space (child_inf->pspace);
518 clone_program_space (child_inf->pspace, parent_inf->pspace);
519
520 /* Let the shared library layer (e.g., solib-svr4) learn
521 about this new process, relocate the cloned exec, pull
522 in shared libraries, and install the solib event
523 breakpoint. If a "cloned-VM" event was propagated
524 better throughout the core, this wouldn't be
525 required. */
526 solib_create_inferior_hook (0);
527 }
d83ad864
DB
528 }
529
530 if (has_vforked)
531 {
532 struct inferior *parent_inf;
533
534 parent_inf = current_inferior ();
535
536 /* If we detached from the child, then we have to be careful
537 to not insert breakpoints in the parent until the child
538 is done with the shared memory region. However, if we're
539 staying attached to the child, then we can and should
540 insert breakpoints, so that we can debug it. A
541 subsequent child exec or exit is enough to know when does
542 the child stops using the parent's address space. */
543 parent_inf->waiting_for_vfork_done = detach_fork;
544 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
545 }
546 }
547 else
548 {
549 /* Follow the child. */
550 struct inferior *parent_inf, *child_inf;
551 struct program_space *parent_pspace;
552
f67c0c91 553 if (print_inferior_events)
d83ad864 554 {
f67c0c91
SDJ
555 std::string parent_pid = target_pid_to_str (parent_ptid);
556 std::string child_pid = target_pid_to_str (child_ptid);
557
223ffa71 558 target_terminal::ours_for_output ();
6f259a23 559 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
560 _("[Attaching after %s %s to child %s]\n"),
561 parent_pid.c_str (),
6f259a23 562 has_vforked ? "vfork" : "fork",
f67c0c91 563 child_pid.c_str ());
d83ad864
DB
564 }
565
566 /* Add the new inferior first, so that the target_detach below
567 doesn't unpush the target. */
568
e99b03dc 569 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
570
571 parent_inf = current_inferior ();
572 child_inf->attach_flag = parent_inf->attach_flag;
573 copy_terminal_info (child_inf, parent_inf);
574 child_inf->gdbarch = parent_inf->gdbarch;
575 copy_inferior_target_desc_info (child_inf, parent_inf);
576
577 parent_pspace = parent_inf->pspace;
578
579 /* If we're vforking, we want to hold on to the parent until the
580 child exits or execs. At child exec or exit time we can
581 remove the old breakpoints from the parent and detach or
582 resume debugging it. Otherwise, detach the parent now; we'll
583 want to reuse it's program/address spaces, but we can't set
584 them to the child before removing breakpoints from the
585 parent, otherwise, the breakpoints module could decide to
586 remove breakpoints from the wrong process (since they'd be
587 assigned to the same address space). */
588
589 if (has_vforked)
590 {
591 gdb_assert (child_inf->vfork_parent == NULL);
592 gdb_assert (parent_inf->vfork_child == NULL);
593 child_inf->vfork_parent = parent_inf;
594 child_inf->pending_detach = 0;
595 parent_inf->vfork_child = child_inf;
596 parent_inf->pending_detach = detach_fork;
597 parent_inf->waiting_for_vfork_done = 0;
598 }
599 else if (detach_fork)
6f259a23 600 {
f67c0c91 601 if (print_inferior_events)
6f259a23 602 {
8dd06f7a 603 /* Ensure that we have a process ptid. */
e99b03dc 604 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 605
223ffa71 606 target_terminal::ours_for_output ();
6f259a23 607 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
608 _("[Detaching after fork from "
609 "parent %s]\n"),
a068643d 610 target_pid_to_str (process_ptid).c_str ());
6f259a23
DB
611 }
612
6e1e1966 613 target_detach (parent_inf, 0);
6f259a23 614 }
d83ad864
DB
615
616 /* Note that the detach above makes PARENT_INF dangling. */
617
618 /* Add the child thread to the appropriate lists, and switch to
619 this new thread, before cloning the program space, and
620 informing the solib layer about this new process. */
621
79639e11 622 inferior_ptid = child_ptid;
f67c0c91 623 add_thread_silent (inferior_ptid);
2a00d7ce 624 set_current_inferior (child_inf);
d83ad864
DB
625
626 /* If this is a vfork child, then the address-space is shared
627 with the parent. If we detached from the parent, then we can
628 reuse the parent's program/address spaces. */
629 if (has_vforked || detach_fork)
630 {
631 child_inf->pspace = parent_pspace;
632 child_inf->aspace = child_inf->pspace->aspace;
633 }
634 else
635 {
636 child_inf->aspace = new_address_space ();
564b1e3f 637 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
638 child_inf->removable = 1;
639 child_inf->symfile_flags = SYMFILE_NO_READ;
640 set_current_program_space (child_inf->pspace);
641 clone_program_space (child_inf->pspace, parent_pspace);
642
643 /* Let the shared library layer (e.g., solib-svr4) learn
644 about this new process, relocate the cloned exec, pull in
645 shared libraries, and install the solib event breakpoint.
646 If a "cloned-VM" event was propagated better throughout
647 the core, this wouldn't be required. */
648 solib_create_inferior_hook (0);
649 }
650 }
651
652 return target_follow_fork (follow_child, detach_fork);
653}
654
e58b0e63
PA
655/* Tell the target to follow the fork we're stopped at. Returns true
656 if the inferior should be resumed; false, if the target for some
657 reason decided it's best not to resume. */
658
6604731b 659static int
4ef3f3be 660follow_fork (void)
c906108c 661{
ea1dd7bc 662 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
663 int should_resume = 1;
664 struct thread_info *tp;
665
666 /* Copy user stepping state to the new inferior thread. FIXME: the
667 followed fork child thread should have a copy of most of the
4e3990f4
DE
668 parent thread structure's run control related fields, not just these.
669 Initialized to avoid "may be used uninitialized" warnings from gcc. */
670 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 671 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
672 CORE_ADDR step_range_start = 0;
673 CORE_ADDR step_range_end = 0;
674 struct frame_id step_frame_id = { 0 };
8980e177 675 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
676
677 if (!non_stop)
678 {
679 ptid_t wait_ptid;
680 struct target_waitstatus wait_status;
681
682 /* Get the last target status returned by target_wait(). */
683 get_last_target_status (&wait_ptid, &wait_status);
684
685 /* If not stopped at a fork event, then there's nothing else to
686 do. */
687 if (wait_status.kind != TARGET_WAITKIND_FORKED
688 && wait_status.kind != TARGET_WAITKIND_VFORKED)
689 return 1;
690
691 /* Check if we switched over from WAIT_PTID, since the event was
692 reported. */
00431a78
PA
693 if (wait_ptid != minus_one_ptid
694 && inferior_ptid != wait_ptid)
e58b0e63
PA
695 {
696 /* We did. Switch back to WAIT_PTID thread, to tell the
697 target to follow it (in either direction). We'll
698 afterwards refuse to resume, and inform the user what
699 happened. */
00431a78
PA
700 thread_info *wait_thread
701 = find_thread_ptid (wait_ptid);
702 switch_to_thread (wait_thread);
e58b0e63
PA
703 should_resume = 0;
704 }
705 }
706
707 tp = inferior_thread ();
708
709 /* If there were any forks/vforks that were caught and are now to be
710 followed, then do so now. */
711 switch (tp->pending_follow.kind)
712 {
713 case TARGET_WAITKIND_FORKED:
714 case TARGET_WAITKIND_VFORKED:
715 {
716 ptid_t parent, child;
717
718 /* If the user did a next/step, etc, over a fork call,
719 preserve the stepping state in the fork child. */
720 if (follow_child && should_resume)
721 {
8358c15c
JK
722 step_resume_breakpoint = clone_momentary_breakpoint
723 (tp->control.step_resume_breakpoint);
16c381f0
JK
724 step_range_start = tp->control.step_range_start;
725 step_range_end = tp->control.step_range_end;
726 step_frame_id = tp->control.step_frame_id;
186c406b
TT
727 exception_resume_breakpoint
728 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 729 thread_fsm = tp->thread_fsm;
e58b0e63
PA
730
731 /* For now, delete the parent's sr breakpoint, otherwise,
732 parent/child sr breakpoints are considered duplicates,
733 and the child version will not be installed. Remove
734 this when the breakpoints module becomes aware of
735 inferiors and address spaces. */
736 delete_step_resume_breakpoint (tp);
16c381f0
JK
737 tp->control.step_range_start = 0;
738 tp->control.step_range_end = 0;
739 tp->control.step_frame_id = null_frame_id;
186c406b 740 delete_exception_resume_breakpoint (tp);
8980e177 741 tp->thread_fsm = NULL;
e58b0e63
PA
742 }
743
744 parent = inferior_ptid;
745 child = tp->pending_follow.value.related_pid;
746
d83ad864
DB
747 /* Set up inferior(s) as specified by the caller, and tell the
748 target to do whatever is necessary to follow either parent
749 or child. */
750 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
751 {
752 /* Target refused to follow, or there's some other reason
753 we shouldn't resume. */
754 should_resume = 0;
755 }
756 else
757 {
758 /* This pending follow fork event is now handled, one way
759 or another. The previous selected thread may be gone
760 from the lists by now, but if it is still around, need
761 to clear the pending follow request. */
e09875d4 762 tp = find_thread_ptid (parent);
e58b0e63
PA
763 if (tp)
764 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
765
766 /* This makes sure we don't try to apply the "Switched
767 over from WAIT_PID" logic above. */
768 nullify_last_target_wait_ptid ();
769
1777feb0 770 /* If we followed the child, switch to it... */
e58b0e63
PA
771 if (follow_child)
772 {
00431a78
PA
773 thread_info *child_thr = find_thread_ptid (child);
774 switch_to_thread (child_thr);
e58b0e63
PA
775
776 /* ... and preserve the stepping state, in case the
777 user was stepping over the fork call. */
778 if (should_resume)
779 {
780 tp = inferior_thread ();
8358c15c
JK
781 tp->control.step_resume_breakpoint
782 = step_resume_breakpoint;
16c381f0
JK
783 tp->control.step_range_start = step_range_start;
784 tp->control.step_range_end = step_range_end;
785 tp->control.step_frame_id = step_frame_id;
186c406b
TT
786 tp->control.exception_resume_breakpoint
787 = exception_resume_breakpoint;
8980e177 788 tp->thread_fsm = thread_fsm;
e58b0e63
PA
789 }
790 else
791 {
792 /* If we get here, it was because we're trying to
793 resume from a fork catchpoint, but, the user
794 has switched threads away from the thread that
795 forked. In that case, the resume command
796 issued is most likely not applicable to the
797 child, so just warn, and refuse to resume. */
3e43a32a 798 warning (_("Not resuming: switched threads "
fd7dcb94 799 "before following fork child."));
e58b0e63
PA
800 }
801
802 /* Reset breakpoints in the child as appropriate. */
803 follow_inferior_reset_breakpoints ();
804 }
e58b0e63
PA
805 }
806 }
807 break;
808 case TARGET_WAITKIND_SPURIOUS:
809 /* Nothing to follow. */
810 break;
811 default:
812 internal_error (__FILE__, __LINE__,
813 "Unexpected pending_follow.kind %d\n",
814 tp->pending_follow.kind);
815 break;
816 }
c906108c 817
e58b0e63 818 return should_resume;
c906108c
SS
819}
820
d83ad864 821static void
6604731b 822follow_inferior_reset_breakpoints (void)
c906108c 823{
4e1c45ea
PA
824 struct thread_info *tp = inferior_thread ();
825
6604731b
DJ
826 /* Was there a step_resume breakpoint? (There was if the user
827 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
828 thread number. Cloned step_resume breakpoints are disabled on
829 creation, so enable it here now that it is associated with the
830 correct thread.
6604731b
DJ
831
832 step_resumes are a form of bp that are made to be per-thread.
833 Since we created the step_resume bp when the parent process
834 was being debugged, and now are switching to the child process,
835 from the breakpoint package's viewpoint, that's a switch of
836 "threads". We must update the bp's notion of which thread
837 it is for, or it'll be ignored when it triggers. */
838
8358c15c 839 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
840 {
841 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
842 tp->control.step_resume_breakpoint->loc->enabled = 1;
843 }
6604731b 844
a1aa2221 845 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 846 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
847 {
848 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
849 tp->control.exception_resume_breakpoint->loc->enabled = 1;
850 }
186c406b 851
6604731b
DJ
852 /* Reinsert all breakpoints in the child. The user may have set
853 breakpoints after catching the fork, in which case those
854 were never set in the child, but only in the parent. This makes
855 sure the inserted breakpoints match the breakpoint list. */
856
857 breakpoint_re_set ();
858 insert_breakpoints ();
c906108c 859}
c906108c 860
6c95b8df
PA
861/* The child has exited or execed: resume threads of the parent the
862 user wanted to be executing. */
863
864static int
865proceed_after_vfork_done (struct thread_info *thread,
866 void *arg)
867{
868 int pid = * (int *) arg;
869
00431a78
PA
870 if (thread->ptid.pid () == pid
871 && thread->state == THREAD_RUNNING
872 && !thread->executing
6c95b8df 873 && !thread->stop_requested
a493e3e2 874 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
875 {
876 if (debug_infrun)
877 fprintf_unfiltered (gdb_stdlog,
878 "infrun: resuming vfork parent thread %s\n",
a068643d 879 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 880
00431a78 881 switch_to_thread (thread);
70509625 882 clear_proceed_status (0);
64ce06e4 883 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
884 }
885
886 return 0;
887}
888
5ed8105e
PA
889/* Save/restore inferior_ptid, current program space and current
890 inferior. Only use this if the current context points at an exited
891 inferior (and therefore there's no current thread to save). */
892class scoped_restore_exited_inferior
893{
894public:
895 scoped_restore_exited_inferior ()
896 : m_saved_ptid (&inferior_ptid)
897 {}
898
899private:
900 scoped_restore_tmpl<ptid_t> m_saved_ptid;
901 scoped_restore_current_program_space m_pspace;
902 scoped_restore_current_inferior m_inferior;
903};
904
6c95b8df
PA
905/* Called whenever we notice an exec or exit event, to handle
906 detaching or resuming a vfork parent. */
907
908static void
909handle_vfork_child_exec_or_exit (int exec)
910{
911 struct inferior *inf = current_inferior ();
912
913 if (inf->vfork_parent)
914 {
915 int resume_parent = -1;
916
917 /* This exec or exit marks the end of the shared memory region
918 between the parent and the child. If the user wanted to
919 detach from the parent, now is the time. */
920
921 if (inf->vfork_parent->pending_detach)
922 {
923 struct thread_info *tp;
6c95b8df
PA
924 struct program_space *pspace;
925 struct address_space *aspace;
926
1777feb0 927 /* follow-fork child, detach-on-fork on. */
6c95b8df 928
68c9da30
PA
929 inf->vfork_parent->pending_detach = 0;
930
5ed8105e
PA
931 gdb::optional<scoped_restore_exited_inferior>
932 maybe_restore_inferior;
933 gdb::optional<scoped_restore_current_pspace_and_thread>
934 maybe_restore_thread;
935
936 /* If we're handling a child exit, then inferior_ptid points
937 at the inferior's pid, not to a thread. */
f50f4e56 938 if (!exec)
5ed8105e 939 maybe_restore_inferior.emplace ();
f50f4e56 940 else
5ed8105e 941 maybe_restore_thread.emplace ();
6c95b8df
PA
942
943 /* We're letting loose of the parent. */
00431a78
PA
944 tp = any_live_thread_of_inferior (inf->vfork_parent);
945 switch_to_thread (tp);
6c95b8df
PA
946
947 /* We're about to detach from the parent, which implicitly
948 removes breakpoints from its address space. There's a
949 catch here: we want to reuse the spaces for the child,
950 but, parent/child are still sharing the pspace at this
951 point, although the exec in reality makes the kernel give
952 the child a fresh set of new pages. The problem here is
953 that the breakpoints module being unaware of this, would
954 likely chose the child process to write to the parent
955 address space. Swapping the child temporarily away from
956 the spaces has the desired effect. Yes, this is "sort
957 of" a hack. */
958
959 pspace = inf->pspace;
960 aspace = inf->aspace;
961 inf->aspace = NULL;
962 inf->pspace = NULL;
963
f67c0c91 964 if (print_inferior_events)
6c95b8df 965 {
a068643d 966 std::string pidstr
f2907e49 967 = target_pid_to_str (ptid_t (inf->vfork_parent->pid));
f67c0c91 968
223ffa71 969 target_terminal::ours_for_output ();
6c95b8df
PA
970
971 if (exec)
6f259a23
DB
972 {
973 fprintf_filtered (gdb_stdlog,
f67c0c91 974 _("[Detaching vfork parent %s "
a068643d 975 "after child exec]\n"), pidstr.c_str ());
6f259a23 976 }
6c95b8df 977 else
6f259a23
DB
978 {
979 fprintf_filtered (gdb_stdlog,
f67c0c91 980 _("[Detaching vfork parent %s "
a068643d 981 "after child exit]\n"), pidstr.c_str ());
6f259a23 982 }
6c95b8df
PA
983 }
984
6e1e1966 985 target_detach (inf->vfork_parent, 0);
6c95b8df
PA
986
987 /* Put it back. */
988 inf->pspace = pspace;
989 inf->aspace = aspace;
6c95b8df
PA
990 }
991 else if (exec)
992 {
993 /* We're staying attached to the parent, so, really give the
994 child a new address space. */
564b1e3f 995 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
996 inf->aspace = inf->pspace->aspace;
997 inf->removable = 1;
998 set_current_program_space (inf->pspace);
999
1000 resume_parent = inf->vfork_parent->pid;
1001
1002 /* Break the bonds. */
1003 inf->vfork_parent->vfork_child = NULL;
1004 }
1005 else
1006 {
6c95b8df
PA
1007 struct program_space *pspace;
1008
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
5ed8105e
PA
1018 /* Switch to null_ptid while running clone_program_space, so
1019 that clone_program_space doesn't want to read the
1020 selected frame of a dead process. */
1021 scoped_restore restore_ptid
1022 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1023
1024 /* This inferior is dead, so avoid giving the breakpoints
1025 module the option to write through to it (cloning a
1026 program space resets breakpoints). */
1027 inf->aspace = NULL;
1028 inf->pspace = NULL;
564b1e3f 1029 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1030 set_current_program_space (pspace);
1031 inf->removable = 1;
7dcd53a0 1032 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1033 clone_program_space (pspace, inf->vfork_parent->pspace);
1034 inf->pspace = pspace;
1035 inf->aspace = pspace->aspace;
1036
6c95b8df
PA
1037 resume_parent = inf->vfork_parent->pid;
1038 /* Break the bonds. */
1039 inf->vfork_parent->vfork_child = NULL;
1040 }
1041
1042 inf->vfork_parent = NULL;
1043
1044 gdb_assert (current_program_space == inf->pspace);
1045
1046 if (non_stop && resume_parent != -1)
1047 {
1048 /* If the user wanted the parent to be running, let it go
1049 free now. */
5ed8105e 1050 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1051
1052 if (debug_infrun)
3e43a32a
MS
1053 fprintf_unfiltered (gdb_stdlog,
1054 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1055 resume_parent);
1056
1057 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1058 }
1059 }
1060}
1061
eb6c553b 1062/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1063
1064static const char follow_exec_mode_new[] = "new";
1065static const char follow_exec_mode_same[] = "same";
40478521 1066static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1067{
1068 follow_exec_mode_new,
1069 follow_exec_mode_same,
1070 NULL,
1071};
1072
1073static const char *follow_exec_mode_string = follow_exec_mode_same;
1074static void
1075show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1076 struct cmd_list_element *c, const char *value)
1077{
1078 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1079}
1080
ecf45d2c 1081/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1082
c906108c 1083static void
ecf45d2c 1084follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1085{
6c95b8df 1086 struct inferior *inf = current_inferior ();
e99b03dc 1087 int pid = ptid.pid ();
94585166 1088 ptid_t process_ptid;
7a292a7a 1089
c906108c
SS
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1777feb0 1109 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1110
1111 mark_breakpoints_out ();
1112
95e50b27
PA
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
08036331 1132 for (thread_info *th : all_threads_safe ())
d7e15655 1133 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1134 delete_thread (th);
95e50b27
PA
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
08036331 1140 thread_info *th = inferior_thread ();
8358c15c 1141 th->control.step_resume_breakpoint = NULL;
186c406b 1142 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1143 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
c906108c 1146
95e50b27
PA
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
a75724bc
PA
1150 th->stop_requested = 0;
1151
95e50b27
PA
1152 update_breakpoints_after_exec ();
1153
1777feb0 1154 /* What is this a.out's name? */
f2907e49 1155 process_ptid = ptid_t (pid);
6c95b8df 1156 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1157 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1158 exec_file_target);
c906108c
SS
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1161 inferior has essentially been killed & reborn. */
7a292a7a 1162
6ca15a4b 1163 breakpoint_init_inferior (inf_execd);
e85a822c 1164
797bc1cb
TT
1165 gdb::unique_xmalloc_ptr<char> exec_file_host
1166 = exec_file_find (exec_file_target, NULL);
ff862be4 1167
ecf45d2c
SL
1168 /* If we were unable to map the executable target pathname onto a host
1169 pathname, tell the user that. Otherwise GDB's subsequent behavior
1170 is confusing. Maybe it would even be better to stop at this point
1171 so that the user can specify a file manually before continuing. */
1172 if (exec_file_host == NULL)
1173 warning (_("Could not load symbols for executable %s.\n"
1174 "Do you need \"set sysroot\"?"),
1175 exec_file_target);
c906108c 1176
cce9b6bf
PA
1177 /* Reset the shared library package. This ensures that we get a
1178 shlib event when the child reaches "_start", at which point the
1179 dld will have had a chance to initialize the child. */
1180 /* Also, loading a symbol file below may trigger symbol lookups, and
1181 we don't want those to be satisfied by the libraries of the
1182 previous incarnation of this process. */
1183 no_shared_libraries (NULL, 0);
1184
6c95b8df
PA
1185 if (follow_exec_mode_string == follow_exec_mode_new)
1186 {
6c95b8df
PA
1187 /* The user wants to keep the old inferior and program spaces
1188 around. Create a new fresh one, and switch to it. */
1189
35ed81d4
SM
1190 /* Do exit processing for the original inferior before setting the new
1191 inferior's pid. Having two inferiors with the same pid would confuse
1192 find_inferior_p(t)id. Transfer the terminal state and info from the
1193 old to the new inferior. */
1194 inf = add_inferior_with_spaces ();
1195 swap_terminal_info (inf, current_inferior ());
057302ce 1196 exit_inferior_silent (current_inferior ());
17d8546e 1197
94585166 1198 inf->pid = pid;
ecf45d2c 1199 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1200
1201 set_current_inferior (inf);
94585166 1202 set_current_program_space (inf->pspace);
c4c17fb0 1203 add_thread (ptid);
6c95b8df 1204 }
9107fc8d
PA
1205 else
1206 {
1207 /* The old description may no longer be fit for the new image.
1208 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1209 old description; we'll read a new one below. No need to do
1210 this on "follow-exec-mode new", as the old inferior stays
1211 around (its description is later cleared/refetched on
1212 restart). */
1213 target_clear_description ();
1214 }
6c95b8df
PA
1215
1216 gdb_assert (current_program_space == inf->pspace);
1217
ecf45d2c
SL
1218 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1219 because the proper displacement for a PIE (Position Independent
1220 Executable) main symbol file will only be computed by
1221 solib_create_inferior_hook below. breakpoint_re_set would fail
1222 to insert the breakpoints with the zero displacement. */
797bc1cb 1223 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1224
9107fc8d
PA
1225 /* If the target can specify a description, read it. Must do this
1226 after flipping to the new executable (because the target supplied
1227 description must be compatible with the executable's
1228 architecture, and the old executable may e.g., be 32-bit, while
1229 the new one 64-bit), and before anything involving memory or
1230 registers. */
1231 target_find_description ();
1232
268a4a75 1233 solib_create_inferior_hook (0);
c906108c 1234
4efc6507
DE
1235 jit_inferior_created_hook ();
1236
c1e56572
JK
1237 breakpoint_re_set ();
1238
c906108c
SS
1239 /* Reinsert all breakpoints. (Those which were symbolic have
1240 been reset to the proper address in the new a.out, thanks
1777feb0 1241 to symbol_file_command...). */
c906108c
SS
1242 insert_breakpoints ();
1243
1244 /* The next resume of this inferior should bring it to the shlib
1245 startup breakpoints. (If the user had also set bp's on
1246 "main" from the old (parent) process, then they'll auto-
1777feb0 1247 matically get reset there in the new process.). */
c906108c
SS
1248}
1249
c2829269
PA
1250/* The queue of threads that need to do a step-over operation to get
1251 past e.g., a breakpoint. What technique is used to step over the
1252 breakpoint/watchpoint does not matter -- all threads end up in the
1253 same queue, to maintain rough temporal order of execution, in order
1254 to avoid starvation, otherwise, we could e.g., find ourselves
1255 constantly stepping the same couple threads past their breakpoints
1256 over and over, if the single-step finish fast enough. */
1257struct thread_info *step_over_queue_head;
1258
6c4cfb24
PA
1259/* Bit flags indicating what the thread needs to step over. */
1260
8d297bbf 1261enum step_over_what_flag
6c4cfb24
PA
1262 {
1263 /* Step over a breakpoint. */
1264 STEP_OVER_BREAKPOINT = 1,
1265
1266 /* Step past a non-continuable watchpoint, in order to let the
1267 instruction execute so we can evaluate the watchpoint
1268 expression. */
1269 STEP_OVER_WATCHPOINT = 2
1270 };
8d297bbf 1271DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1272
963f9c80 1273/* Info about an instruction that is being stepped over. */
31e77af2
PA
1274
1275struct step_over_info
1276{
963f9c80
PA
1277 /* If we're stepping past a breakpoint, this is the address space
1278 and address of the instruction the breakpoint is set at. We'll
1279 skip inserting all breakpoints here. Valid iff ASPACE is
1280 non-NULL. */
8b86c959 1281 const address_space *aspace;
31e77af2 1282 CORE_ADDR address;
963f9c80
PA
1283
1284 /* The instruction being stepped over triggers a nonsteppable
1285 watchpoint. If true, we'll skip inserting watchpoints. */
1286 int nonsteppable_watchpoint_p;
21edc42f
YQ
1287
1288 /* The thread's global number. */
1289 int thread;
31e77af2
PA
1290};
1291
1292/* The step-over info of the location that is being stepped over.
1293
1294 Note that with async/breakpoint always-inserted mode, a user might
1295 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1296 being stepped over. As setting a new breakpoint inserts all
1297 breakpoints, we need to make sure the breakpoint being stepped over
1298 isn't inserted then. We do that by only clearing the step-over
1299 info when the step-over is actually finished (or aborted).
1300
1301 Presently GDB can only step over one breakpoint at any given time.
1302 Given threads that can't run code in the same address space as the
1303 breakpoint's can't really miss the breakpoint, GDB could be taught
1304 to step-over at most one breakpoint per address space (so this info
1305 could move to the address space object if/when GDB is extended).
1306 The set of breakpoints being stepped over will normally be much
1307 smaller than the set of all breakpoints, so a flag in the
1308 breakpoint location structure would be wasteful. A separate list
1309 also saves complexity and run-time, as otherwise we'd have to go
1310 through all breakpoint locations clearing their flag whenever we
1311 start a new sequence. Similar considerations weigh against storing
1312 this info in the thread object. Plus, not all step overs actually
1313 have breakpoint locations -- e.g., stepping past a single-step
1314 breakpoint, or stepping to complete a non-continuable
1315 watchpoint. */
1316static struct step_over_info step_over_info;
1317
1318/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1319 stepping over.
1320 N.B. We record the aspace and address now, instead of say just the thread,
1321 because when we need the info later the thread may be running. */
31e77af2
PA
1322
1323static void
8b86c959 1324set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1325 int nonsteppable_watchpoint_p,
1326 int thread)
31e77af2
PA
1327{
1328 step_over_info.aspace = aspace;
1329 step_over_info.address = address;
963f9c80 1330 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1331 step_over_info.thread = thread;
31e77af2
PA
1332}
1333
1334/* Called when we're not longer stepping over a breakpoint / an
1335 instruction, so all breakpoints are free to be (re)inserted. */
1336
1337static void
1338clear_step_over_info (void)
1339{
372316f1
PA
1340 if (debug_infrun)
1341 fprintf_unfiltered (gdb_stdlog,
1342 "infrun: clear_step_over_info\n");
31e77af2
PA
1343 step_over_info.aspace = NULL;
1344 step_over_info.address = 0;
963f9c80 1345 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1346 step_over_info.thread = -1;
31e77af2
PA
1347}
1348
7f89fd65 1349/* See infrun.h. */
31e77af2
PA
1350
1351int
1352stepping_past_instruction_at (struct address_space *aspace,
1353 CORE_ADDR address)
1354{
1355 return (step_over_info.aspace != NULL
1356 && breakpoint_address_match (aspace, address,
1357 step_over_info.aspace,
1358 step_over_info.address));
1359}
1360
963f9c80
PA
1361/* See infrun.h. */
1362
21edc42f
YQ
1363int
1364thread_is_stepping_over_breakpoint (int thread)
1365{
1366 return (step_over_info.thread != -1
1367 && thread == step_over_info.thread);
1368}
1369
1370/* See infrun.h. */
1371
963f9c80
PA
1372int
1373stepping_past_nonsteppable_watchpoint (void)
1374{
1375 return step_over_info.nonsteppable_watchpoint_p;
1376}
1377
6cc83d2a
PA
1378/* Returns true if step-over info is valid. */
1379
1380static int
1381step_over_info_valid_p (void)
1382{
963f9c80
PA
1383 return (step_over_info.aspace != NULL
1384 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1385}
1386
c906108c 1387\f
237fc4c9
PA
1388/* Displaced stepping. */
1389
1390/* In non-stop debugging mode, we must take special care to manage
1391 breakpoints properly; in particular, the traditional strategy for
1392 stepping a thread past a breakpoint it has hit is unsuitable.
1393 'Displaced stepping' is a tactic for stepping one thread past a
1394 breakpoint it has hit while ensuring that other threads running
1395 concurrently will hit the breakpoint as they should.
1396
1397 The traditional way to step a thread T off a breakpoint in a
1398 multi-threaded program in all-stop mode is as follows:
1399
1400 a0) Initially, all threads are stopped, and breakpoints are not
1401 inserted.
1402 a1) We single-step T, leaving breakpoints uninserted.
1403 a2) We insert breakpoints, and resume all threads.
1404
1405 In non-stop debugging, however, this strategy is unsuitable: we
1406 don't want to have to stop all threads in the system in order to
1407 continue or step T past a breakpoint. Instead, we use displaced
1408 stepping:
1409
1410 n0) Initially, T is stopped, other threads are running, and
1411 breakpoints are inserted.
1412 n1) We copy the instruction "under" the breakpoint to a separate
1413 location, outside the main code stream, making any adjustments
1414 to the instruction, register, and memory state as directed by
1415 T's architecture.
1416 n2) We single-step T over the instruction at its new location.
1417 n3) We adjust the resulting register and memory state as directed
1418 by T's architecture. This includes resetting T's PC to point
1419 back into the main instruction stream.
1420 n4) We resume T.
1421
1422 This approach depends on the following gdbarch methods:
1423
1424 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1425 indicate where to copy the instruction, and how much space must
1426 be reserved there. We use these in step n1.
1427
1428 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1429 address, and makes any necessary adjustments to the instruction,
1430 register contents, and memory. We use this in step n1.
1431
1432 - gdbarch_displaced_step_fixup adjusts registers and memory after
1433 we have successfuly single-stepped the instruction, to yield the
1434 same effect the instruction would have had if we had executed it
1435 at its original address. We use this in step n3.
1436
237fc4c9
PA
1437 The gdbarch_displaced_step_copy_insn and
1438 gdbarch_displaced_step_fixup functions must be written so that
1439 copying an instruction with gdbarch_displaced_step_copy_insn,
1440 single-stepping across the copied instruction, and then applying
1441 gdbarch_displaced_insn_fixup should have the same effects on the
1442 thread's memory and registers as stepping the instruction in place
1443 would have. Exactly which responsibilities fall to the copy and
1444 which fall to the fixup is up to the author of those functions.
1445
1446 See the comments in gdbarch.sh for details.
1447
1448 Note that displaced stepping and software single-step cannot
1449 currently be used in combination, although with some care I think
1450 they could be made to. Software single-step works by placing
1451 breakpoints on all possible subsequent instructions; if the
1452 displaced instruction is a PC-relative jump, those breakpoints
1453 could fall in very strange places --- on pages that aren't
1454 executable, or at addresses that are not proper instruction
1455 boundaries. (We do generally let other threads run while we wait
1456 to hit the software single-step breakpoint, and they might
1457 encounter such a corrupted instruction.) One way to work around
1458 this would be to have gdbarch_displaced_step_copy_insn fully
1459 simulate the effect of PC-relative instructions (and return NULL)
1460 on architectures that use software single-stepping.
1461
1462 In non-stop mode, we can have independent and simultaneous step
1463 requests, so more than one thread may need to simultaneously step
1464 over a breakpoint. The current implementation assumes there is
1465 only one scratch space per process. In this case, we have to
1466 serialize access to the scratch space. If thread A wants to step
1467 over a breakpoint, but we are currently waiting for some other
1468 thread to complete a displaced step, we leave thread A stopped and
1469 place it in the displaced_step_request_queue. Whenever a displaced
1470 step finishes, we pick the next thread in the queue and start a new
1471 displaced step operation on it. See displaced_step_prepare and
1472 displaced_step_fixup for details. */
1473
cfba9872
SM
1474/* Default destructor for displaced_step_closure. */
1475
1476displaced_step_closure::~displaced_step_closure () = default;
1477
fc1cf338
PA
1478/* Get the displaced stepping state of process PID. */
1479
39a36629 1480static displaced_step_inferior_state *
00431a78 1481get_displaced_stepping_state (inferior *inf)
fc1cf338 1482{
d20172fc 1483 return &inf->displaced_step_state;
fc1cf338
PA
1484}
1485
372316f1
PA
1486/* Returns true if any inferior has a thread doing a displaced
1487 step. */
1488
39a36629
SM
1489static bool
1490displaced_step_in_progress_any_inferior ()
372316f1 1491{
d20172fc 1492 for (inferior *i : all_inferiors ())
39a36629 1493 {
d20172fc 1494 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1495 return true;
1496 }
372316f1 1497
39a36629 1498 return false;
372316f1
PA
1499}
1500
c0987663
YQ
1501/* Return true if thread represented by PTID is doing a displaced
1502 step. */
1503
1504static int
00431a78 1505displaced_step_in_progress_thread (thread_info *thread)
c0987663 1506{
00431a78 1507 gdb_assert (thread != NULL);
c0987663 1508
d20172fc 1509 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1510}
1511
8f572e5c
PA
1512/* Return true if process PID has a thread doing a displaced step. */
1513
1514static int
00431a78 1515displaced_step_in_progress (inferior *inf)
8f572e5c 1516{
d20172fc 1517 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1518}
1519
a42244db
YQ
1520/* If inferior is in displaced stepping, and ADDR equals to starting address
1521 of copy area, return corresponding displaced_step_closure. Otherwise,
1522 return NULL. */
1523
1524struct displaced_step_closure*
1525get_displaced_step_closure_by_addr (CORE_ADDR addr)
1526{
d20172fc 1527 displaced_step_inferior_state *displaced
00431a78 1528 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1529
1530 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1531 if (displaced->step_thread != nullptr
00431a78 1532 && displaced->step_copy == addr)
a42244db
YQ
1533 return displaced->step_closure;
1534
1535 return NULL;
1536}
1537
fc1cf338
PA
1538static void
1539infrun_inferior_exit (struct inferior *inf)
1540{
d20172fc 1541 inf->displaced_step_state.reset ();
fc1cf338 1542}
237fc4c9 1543
fff08868
HZ
1544/* If ON, and the architecture supports it, GDB will use displaced
1545 stepping to step over breakpoints. If OFF, or if the architecture
1546 doesn't support it, GDB will instead use the traditional
1547 hold-and-step approach. If AUTO (which is the default), GDB will
1548 decide which technique to use to step over breakpoints depending on
1549 which of all-stop or non-stop mode is active --- displaced stepping
1550 in non-stop mode; hold-and-step in all-stop mode. */
1551
72d0e2c5 1552static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1553
237fc4c9
PA
1554static void
1555show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1556 struct cmd_list_element *c,
1557 const char *value)
1558{
72d0e2c5 1559 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1560 fprintf_filtered (file,
1561 _("Debugger's willingness to use displaced stepping "
1562 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1563 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1564 else
3e43a32a
MS
1565 fprintf_filtered (file,
1566 _("Debugger's willingness to use displaced stepping "
1567 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1568}
1569
fff08868 1570/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1571 over breakpoints of thread TP. */
fff08868 1572
237fc4c9 1573static int
3fc8eb30 1574use_displaced_stepping (struct thread_info *tp)
237fc4c9 1575{
00431a78 1576 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1577 struct gdbarch *gdbarch = regcache->arch ();
d20172fc
SM
1578 displaced_step_inferior_state *displaced_state
1579 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1580
fbea99ea
PA
1581 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1582 && target_is_non_stop_p ())
72d0e2c5 1583 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1584 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30 1585 && find_record_target () == NULL
d20172fc 1586 && !displaced_state->failed_before);
237fc4c9
PA
1587}
1588
1589/* Clean out any stray displaced stepping state. */
1590static void
fc1cf338 1591displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1592{
1593 /* Indicate that there is no cleanup pending. */
00431a78 1594 displaced->step_thread = nullptr;
237fc4c9 1595
cfba9872 1596 delete displaced->step_closure;
6d45d4b4 1597 displaced->step_closure = NULL;
237fc4c9
PA
1598}
1599
9799571e
TT
1600/* A cleanup that wraps displaced_step_clear. */
1601using displaced_step_clear_cleanup
1602 = FORWARD_SCOPE_EXIT (displaced_step_clear);
237fc4c9
PA
1603
1604/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1605void
1606displaced_step_dump_bytes (struct ui_file *file,
1607 const gdb_byte *buf,
1608 size_t len)
1609{
1610 int i;
1611
1612 for (i = 0; i < len; i++)
1613 fprintf_unfiltered (file, "%02x ", buf[i]);
1614 fputs_unfiltered ("\n", file);
1615}
1616
1617/* Prepare to single-step, using displaced stepping.
1618
1619 Note that we cannot use displaced stepping when we have a signal to
1620 deliver. If we have a signal to deliver and an instruction to step
1621 over, then after the step, there will be no indication from the
1622 target whether the thread entered a signal handler or ignored the
1623 signal and stepped over the instruction successfully --- both cases
1624 result in a simple SIGTRAP. In the first case we mustn't do a
1625 fixup, and in the second case we must --- but we can't tell which.
1626 Comments in the code for 'random signals' in handle_inferior_event
1627 explain how we handle this case instead.
1628
1629 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1630 stepped now; 0 if displaced stepping this thread got queued; or -1
1631 if this instruction can't be displaced stepped. */
1632
237fc4c9 1633static int
00431a78 1634displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1635{
00431a78 1636 regcache *regcache = get_thread_regcache (tp);
ac7936df 1637 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1638 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1639 CORE_ADDR original, copy;
1640 ULONGEST len;
1641 struct displaced_step_closure *closure;
9e529e1d 1642 int status;
237fc4c9
PA
1643
1644 /* We should never reach this function if the architecture does not
1645 support displaced stepping. */
1646 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1647
c2829269
PA
1648 /* Nor if the thread isn't meant to step over a breakpoint. */
1649 gdb_assert (tp->control.trap_expected);
1650
c1e36e3e
PA
1651 /* Disable range stepping while executing in the scratch pad. We
1652 want a single-step even if executing the displaced instruction in
1653 the scratch buffer lands within the stepping range (e.g., a
1654 jump/branch). */
1655 tp->control.may_range_step = 0;
1656
fc1cf338
PA
1657 /* We have to displaced step one thread at a time, as we only have
1658 access to a single scratch space per inferior. */
237fc4c9 1659
d20172fc
SM
1660 displaced_step_inferior_state *displaced
1661 = get_displaced_stepping_state (tp->inf);
fc1cf338 1662
00431a78 1663 if (displaced->step_thread != nullptr)
237fc4c9
PA
1664 {
1665 /* Already waiting for a displaced step to finish. Defer this
1666 request and place in queue. */
237fc4c9
PA
1667
1668 if (debug_displaced)
1669 fprintf_unfiltered (gdb_stdlog,
c2829269 1670 "displaced: deferring step of %s\n",
a068643d 1671 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1672
c2829269 1673 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1674 return 0;
1675 }
1676 else
1677 {
1678 if (debug_displaced)
1679 fprintf_unfiltered (gdb_stdlog,
1680 "displaced: stepping %s now\n",
a068643d 1681 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1682 }
1683
fc1cf338 1684 displaced_step_clear (displaced);
237fc4c9 1685
00431a78
PA
1686 scoped_restore_current_thread restore_thread;
1687
1688 switch_to_thread (tp);
ad53cd71 1689
515630c5 1690 original = regcache_read_pc (regcache);
237fc4c9
PA
1691
1692 copy = gdbarch_displaced_step_location (gdbarch);
1693 len = gdbarch_max_insn_length (gdbarch);
1694
d35ae833
PA
1695 if (breakpoint_in_range_p (aspace, copy, len))
1696 {
1697 /* There's a breakpoint set in the scratch pad location range
1698 (which is usually around the entry point). We'd either
1699 install it before resuming, which would overwrite/corrupt the
1700 scratch pad, or if it was already inserted, this displaced
1701 step would overwrite it. The latter is OK in the sense that
1702 we already assume that no thread is going to execute the code
1703 in the scratch pad range (after initial startup) anyway, but
1704 the former is unacceptable. Simply punt and fallback to
1705 stepping over this breakpoint in-line. */
1706 if (debug_displaced)
1707 {
1708 fprintf_unfiltered (gdb_stdlog,
1709 "displaced: breakpoint set in scratch pad. "
1710 "Stepping over breakpoint in-line instead.\n");
1711 }
1712
d35ae833
PA
1713 return -1;
1714 }
1715
237fc4c9 1716 /* Save the original contents of the copy area. */
d20172fc
SM
1717 displaced->step_saved_copy.resize (len);
1718 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1719 if (status != 0)
1720 throw_error (MEMORY_ERROR,
1721 _("Error accessing memory address %s (%s) for "
1722 "displaced-stepping scratch space."),
1723 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1724 if (debug_displaced)
1725 {
5af949e3
UW
1726 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1727 paddress (gdbarch, copy));
fc1cf338 1728 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1729 displaced->step_saved_copy.data (),
fc1cf338 1730 len);
237fc4c9
PA
1731 };
1732
1733 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1734 original, copy, regcache);
7f03bd92
PA
1735 if (closure == NULL)
1736 {
1737 /* The architecture doesn't know how or want to displaced step
1738 this instruction or instruction sequence. Fallback to
1739 stepping over the breakpoint in-line. */
7f03bd92
PA
1740 return -1;
1741 }
237fc4c9 1742
9f5a595d
UW
1743 /* Save the information we need to fix things up if the step
1744 succeeds. */
00431a78 1745 displaced->step_thread = tp;
fc1cf338
PA
1746 displaced->step_gdbarch = gdbarch;
1747 displaced->step_closure = closure;
1748 displaced->step_original = original;
1749 displaced->step_copy = copy;
9f5a595d 1750
9799571e
TT
1751 {
1752 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1753
9799571e
TT
1754 /* Resume execution at the copy. */
1755 regcache_write_pc (regcache, copy);
237fc4c9 1756
9799571e
TT
1757 cleanup.release ();
1758 }
ad53cd71 1759
237fc4c9 1760 if (debug_displaced)
5af949e3
UW
1761 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1762 paddress (gdbarch, copy));
237fc4c9 1763
237fc4c9
PA
1764 return 1;
1765}
1766
3fc8eb30
PA
1767/* Wrapper for displaced_step_prepare_throw that disabled further
1768 attempts at displaced stepping if we get a memory error. */
1769
1770static int
00431a78 1771displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1772{
1773 int prepared = -1;
1774
1775 TRY
1776 {
00431a78 1777 prepared = displaced_step_prepare_throw (thread);
3fc8eb30
PA
1778 }
1779 CATCH (ex, RETURN_MASK_ERROR)
1780 {
1781 struct displaced_step_inferior_state *displaced_state;
1782
16b41842
PA
1783 if (ex.error != MEMORY_ERROR
1784 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1785 throw_exception (ex);
1786
1787 if (debug_infrun)
1788 {
1789 fprintf_unfiltered (gdb_stdlog,
1790 "infrun: disabling displaced stepping: %s\n",
1791 ex.message);
1792 }
1793
1794 /* Be verbose if "set displaced-stepping" is "on", silent if
1795 "auto". */
1796 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1797 {
fd7dcb94 1798 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1799 ex.message);
1800 }
1801
1802 /* Disable further displaced stepping attempts. */
1803 displaced_state
00431a78 1804 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1805 displaced_state->failed_before = 1;
1806 }
1807 END_CATCH
1808
1809 return prepared;
1810}
1811
237fc4c9 1812static void
3e43a32a
MS
1813write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1814 const gdb_byte *myaddr, int len)
237fc4c9 1815{
2989a365 1816 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1817
237fc4c9
PA
1818 inferior_ptid = ptid;
1819 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1820}
1821
e2d96639
YQ
1822/* Restore the contents of the copy area for thread PTID. */
1823
1824static void
1825displaced_step_restore (struct displaced_step_inferior_state *displaced,
1826 ptid_t ptid)
1827{
1828 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1829
1830 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1831 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1832 if (debug_displaced)
1833 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1834 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1835 paddress (displaced->step_gdbarch,
1836 displaced->step_copy));
1837}
1838
372316f1
PA
1839/* If we displaced stepped an instruction successfully, adjust
1840 registers and memory to yield the same effect the instruction would
1841 have had if we had executed it at its original address, and return
1842 1. If the instruction didn't complete, relocate the PC and return
1843 -1. If the thread wasn't displaced stepping, return 0. */
1844
1845static int
00431a78 1846displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1847{
fc1cf338 1848 struct displaced_step_inferior_state *displaced
00431a78 1849 = get_displaced_stepping_state (event_thread->inf);
372316f1 1850 int ret;
fc1cf338 1851
00431a78
PA
1852 /* Was this event for the thread we displaced? */
1853 if (displaced->step_thread != event_thread)
372316f1 1854 return 0;
237fc4c9 1855
9799571e 1856 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1857
00431a78 1858 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1859
cb71640d
PA
1860 /* Fixup may need to read memory/registers. Switch to the thread
1861 that we're fixing up. Also, target_stopped_by_watchpoint checks
1862 the current thread. */
00431a78 1863 switch_to_thread (event_thread);
cb71640d 1864
237fc4c9 1865 /* Did the instruction complete successfully? */
cb71640d
PA
1866 if (signal == GDB_SIGNAL_TRAP
1867 && !(target_stopped_by_watchpoint ()
1868 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1869 || target_have_steppable_watchpoint)))
237fc4c9
PA
1870 {
1871 /* Fix up the resulting state. */
fc1cf338
PA
1872 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1873 displaced->step_closure,
1874 displaced->step_original,
1875 displaced->step_copy,
00431a78 1876 get_thread_regcache (displaced->step_thread));
372316f1 1877 ret = 1;
237fc4c9
PA
1878 }
1879 else
1880 {
1881 /* Since the instruction didn't complete, all we can do is
1882 relocate the PC. */
00431a78 1883 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1884 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1885
fc1cf338 1886 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1887 regcache_write_pc (regcache, pc);
372316f1 1888 ret = -1;
237fc4c9
PA
1889 }
1890
372316f1 1891 return ret;
c2829269 1892}
1c5cfe86 1893
4d9d9d04
PA
1894/* Data to be passed around while handling an event. This data is
1895 discarded between events. */
1896struct execution_control_state
1897{
1898 ptid_t ptid;
1899 /* The thread that got the event, if this was a thread event; NULL
1900 otherwise. */
1901 struct thread_info *event_thread;
1902
1903 struct target_waitstatus ws;
1904 int stop_func_filled_in;
1905 CORE_ADDR stop_func_start;
1906 CORE_ADDR stop_func_end;
1907 const char *stop_func_name;
1908 int wait_some_more;
1909
1910 /* True if the event thread hit the single-step breakpoint of
1911 another thread. Thus the event doesn't cause a stop, the thread
1912 needs to be single-stepped past the single-step breakpoint before
1913 we can switch back to the original stepping thread. */
1914 int hit_singlestep_breakpoint;
1915};
1916
1917/* Clear ECS and set it to point at TP. */
c2829269
PA
1918
1919static void
4d9d9d04
PA
1920reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1921{
1922 memset (ecs, 0, sizeof (*ecs));
1923 ecs->event_thread = tp;
1924 ecs->ptid = tp->ptid;
1925}
1926
1927static void keep_going_pass_signal (struct execution_control_state *ecs);
1928static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1929static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1930static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1931
1932/* Are there any pending step-over requests? If so, run all we can
1933 now and return true. Otherwise, return false. */
1934
1935static int
c2829269
PA
1936start_step_over (void)
1937{
1938 struct thread_info *tp, *next;
1939
372316f1
PA
1940 /* Don't start a new step-over if we already have an in-line
1941 step-over operation ongoing. */
1942 if (step_over_info_valid_p ())
1943 return 0;
1944
c2829269 1945 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1946 {
4d9d9d04
PA
1947 struct execution_control_state ecss;
1948 struct execution_control_state *ecs = &ecss;
8d297bbf 1949 step_over_what step_what;
372316f1 1950 int must_be_in_line;
c2829269 1951
c65d6b55
PA
1952 gdb_assert (!tp->stop_requested);
1953
c2829269 1954 next = thread_step_over_chain_next (tp);
237fc4c9 1955
c2829269
PA
1956 /* If this inferior already has a displaced step in process,
1957 don't start a new one. */
00431a78 1958 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1959 continue;
1960
372316f1
PA
1961 step_what = thread_still_needs_step_over (tp);
1962 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1963 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1964 && !use_displaced_stepping (tp)));
372316f1
PA
1965
1966 /* We currently stop all threads of all processes to step-over
1967 in-line. If we need to start a new in-line step-over, let
1968 any pending displaced steps finish first. */
1969 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1970 return 0;
1971
c2829269
PA
1972 thread_step_over_chain_remove (tp);
1973
1974 if (step_over_queue_head == NULL)
1975 {
1976 if (debug_infrun)
1977 fprintf_unfiltered (gdb_stdlog,
1978 "infrun: step-over queue now empty\n");
1979 }
1980
372316f1
PA
1981 if (tp->control.trap_expected
1982 || tp->resumed
1983 || tp->executing)
ad53cd71 1984 {
4d9d9d04
PA
1985 internal_error (__FILE__, __LINE__,
1986 "[%s] has inconsistent state: "
372316f1 1987 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 1988 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 1989 tp->control.trap_expected,
372316f1 1990 tp->resumed,
4d9d9d04 1991 tp->executing);
ad53cd71 1992 }
1c5cfe86 1993
4d9d9d04
PA
1994 if (debug_infrun)
1995 fprintf_unfiltered (gdb_stdlog,
1996 "infrun: resuming [%s] for step-over\n",
a068643d 1997 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
1998
1999 /* keep_going_pass_signal skips the step-over if the breakpoint
2000 is no longer inserted. In all-stop, we want to keep looking
2001 for a thread that needs a step-over instead of resuming TP,
2002 because we wouldn't be able to resume anything else until the
2003 target stops again. In non-stop, the resume always resumes
2004 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2005 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2006 continue;
8550d3b3 2007
00431a78 2008 switch_to_thread (tp);
4d9d9d04
PA
2009 reset_ecs (ecs, tp);
2010 keep_going_pass_signal (ecs);
1c5cfe86 2011
4d9d9d04
PA
2012 if (!ecs->wait_some_more)
2013 error (_("Command aborted."));
1c5cfe86 2014
372316f1
PA
2015 gdb_assert (tp->resumed);
2016
2017 /* If we started a new in-line step-over, we're done. */
2018 if (step_over_info_valid_p ())
2019 {
2020 gdb_assert (tp->control.trap_expected);
2021 return 1;
2022 }
2023
fbea99ea 2024 if (!target_is_non_stop_p ())
4d9d9d04
PA
2025 {
2026 /* On all-stop, shouldn't have resumed unless we needed a
2027 step over. */
2028 gdb_assert (tp->control.trap_expected
2029 || tp->step_after_step_resume_breakpoint);
2030
2031 /* With remote targets (at least), in all-stop, we can't
2032 issue any further remote commands until the program stops
2033 again. */
2034 return 1;
1c5cfe86 2035 }
c2829269 2036
4d9d9d04
PA
2037 /* Either the thread no longer needed a step-over, or a new
2038 displaced stepping sequence started. Even in the latter
2039 case, continue looking. Maybe we can also start another
2040 displaced step on a thread of other process. */
237fc4c9 2041 }
4d9d9d04
PA
2042
2043 return 0;
237fc4c9
PA
2044}
2045
5231c1fd
PA
2046/* Update global variables holding ptids to hold NEW_PTID if they were
2047 holding OLD_PTID. */
2048static void
2049infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2050{
d7e15655 2051 if (inferior_ptid == old_ptid)
5231c1fd 2052 inferior_ptid = new_ptid;
5231c1fd
PA
2053}
2054
237fc4c9 2055\f
c906108c 2056
53904c9e
AC
2057static const char schedlock_off[] = "off";
2058static const char schedlock_on[] = "on";
2059static const char schedlock_step[] = "step";
f2665db5 2060static const char schedlock_replay[] = "replay";
40478521 2061static const char *const scheduler_enums[] = {
ef346e04
AC
2062 schedlock_off,
2063 schedlock_on,
2064 schedlock_step,
f2665db5 2065 schedlock_replay,
ef346e04
AC
2066 NULL
2067};
f2665db5 2068static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2069static void
2070show_scheduler_mode (struct ui_file *file, int from_tty,
2071 struct cmd_list_element *c, const char *value)
2072{
3e43a32a
MS
2073 fprintf_filtered (file,
2074 _("Mode for locking scheduler "
2075 "during execution is \"%s\".\n"),
920d2a44
AC
2076 value);
2077}
c906108c
SS
2078
2079static void
eb4c3f4a 2080set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2081{
eefe576e
AC
2082 if (!target_can_lock_scheduler)
2083 {
2084 scheduler_mode = schedlock_off;
2085 error (_("Target '%s' cannot support this command."), target_shortname);
2086 }
c906108c
SS
2087}
2088
d4db2f36
PA
2089/* True if execution commands resume all threads of all processes by
2090 default; otherwise, resume only threads of the current inferior
2091 process. */
2092int sched_multi = 0;
2093
2facfe5c
DD
2094/* Try to setup for software single stepping over the specified location.
2095 Return 1 if target_resume() should use hardware single step.
2096
2097 GDBARCH the current gdbarch.
2098 PC the location to step over. */
2099
2100static int
2101maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2102{
2103 int hw_step = 1;
2104
f02253f1 2105 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2106 && gdbarch_software_single_step_p (gdbarch))
2107 hw_step = !insert_single_step_breakpoints (gdbarch);
2108
2facfe5c
DD
2109 return hw_step;
2110}
c906108c 2111
f3263aa4
PA
2112/* See infrun.h. */
2113
09cee04b
PA
2114ptid_t
2115user_visible_resume_ptid (int step)
2116{
f3263aa4 2117 ptid_t resume_ptid;
09cee04b 2118
09cee04b
PA
2119 if (non_stop)
2120 {
2121 /* With non-stop mode on, threads are always handled
2122 individually. */
2123 resume_ptid = inferior_ptid;
2124 }
2125 else if ((scheduler_mode == schedlock_on)
03d46957 2126 || (scheduler_mode == schedlock_step && step))
09cee04b 2127 {
f3263aa4
PA
2128 /* User-settable 'scheduler' mode requires solo thread
2129 resume. */
09cee04b
PA
2130 resume_ptid = inferior_ptid;
2131 }
f2665db5
MM
2132 else if ((scheduler_mode == schedlock_replay)
2133 && target_record_will_replay (minus_one_ptid, execution_direction))
2134 {
2135 /* User-settable 'scheduler' mode requires solo thread resume in replay
2136 mode. */
2137 resume_ptid = inferior_ptid;
2138 }
f3263aa4
PA
2139 else if (!sched_multi && target_supports_multi_process ())
2140 {
2141 /* Resume all threads of the current process (and none of other
2142 processes). */
e99b03dc 2143 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2144 }
2145 else
2146 {
2147 /* Resume all threads of all processes. */
2148 resume_ptid = RESUME_ALL;
2149 }
09cee04b
PA
2150
2151 return resume_ptid;
2152}
2153
fbea99ea
PA
2154/* Return a ptid representing the set of threads that we will resume,
2155 in the perspective of the target, assuming run control handling
2156 does not require leaving some threads stopped (e.g., stepping past
2157 breakpoint). USER_STEP indicates whether we're about to start the
2158 target for a stepping command. */
2159
2160static ptid_t
2161internal_resume_ptid (int user_step)
2162{
2163 /* In non-stop, we always control threads individually. Note that
2164 the target may always work in non-stop mode even with "set
2165 non-stop off", in which case user_visible_resume_ptid could
2166 return a wildcard ptid. */
2167 if (target_is_non_stop_p ())
2168 return inferior_ptid;
2169 else
2170 return user_visible_resume_ptid (user_step);
2171}
2172
64ce06e4
PA
2173/* Wrapper for target_resume, that handles infrun-specific
2174 bookkeeping. */
2175
2176static void
2177do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2178{
2179 struct thread_info *tp = inferior_thread ();
2180
c65d6b55
PA
2181 gdb_assert (!tp->stop_requested);
2182
64ce06e4 2183 /* Install inferior's terminal modes. */
223ffa71 2184 target_terminal::inferior ();
64ce06e4
PA
2185
2186 /* Avoid confusing the next resume, if the next stop/resume
2187 happens to apply to another thread. */
2188 tp->suspend.stop_signal = GDB_SIGNAL_0;
2189
8f572e5c
PA
2190 /* Advise target which signals may be handled silently.
2191
2192 If we have removed breakpoints because we are stepping over one
2193 in-line (in any thread), we need to receive all signals to avoid
2194 accidentally skipping a breakpoint during execution of a signal
2195 handler.
2196
2197 Likewise if we're displaced stepping, otherwise a trap for a
2198 breakpoint in a signal handler might be confused with the
2199 displaced step finishing. We don't make the displaced_step_fixup
2200 step distinguish the cases instead, because:
2201
2202 - a backtrace while stopped in the signal handler would show the
2203 scratch pad as frame older than the signal handler, instead of
2204 the real mainline code.
2205
2206 - when the thread is later resumed, the signal handler would
2207 return to the scratch pad area, which would no longer be
2208 valid. */
2209 if (step_over_info_valid_p ()
00431a78 2210 || displaced_step_in_progress (tp->inf))
adc6a863 2211 target_pass_signals ({});
64ce06e4 2212 else
adc6a863 2213 target_pass_signals (signal_pass);
64ce06e4
PA
2214
2215 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2216
2217 target_commit_resume ();
64ce06e4
PA
2218}
2219
d930703d 2220/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2221 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2222 call 'resume', which handles exceptions. */
c906108c 2223
71d378ae
PA
2224static void
2225resume_1 (enum gdb_signal sig)
c906108c 2226{
515630c5 2227 struct regcache *regcache = get_current_regcache ();
ac7936df 2228 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2229 struct thread_info *tp = inferior_thread ();
515630c5 2230 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2231 const address_space *aspace = regcache->aspace ();
b0f16a3e 2232 ptid_t resume_ptid;
856e7dd6
PA
2233 /* This represents the user's step vs continue request. When
2234 deciding whether "set scheduler-locking step" applies, it's the
2235 user's intention that counts. */
2236 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2237 /* This represents what we'll actually request the target to do.
2238 This can decay from a step to a continue, if e.g., we need to
2239 implement single-stepping with breakpoints (software
2240 single-step). */
6b403daa 2241 int step;
c7e8a53c 2242
c65d6b55 2243 gdb_assert (!tp->stop_requested);
c2829269
PA
2244 gdb_assert (!thread_is_in_step_over_chain (tp));
2245
372316f1
PA
2246 if (tp->suspend.waitstatus_pending_p)
2247 {
2248 if (debug_infrun)
2249 {
23fdd69e
SM
2250 std::string statstr
2251 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2252
372316f1 2253 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2254 "infrun: resume: thread %s has pending wait "
2255 "status %s (currently_stepping=%d).\n",
a068643d
TT
2256 target_pid_to_str (tp->ptid).c_str (),
2257 statstr.c_str (),
372316f1 2258 currently_stepping (tp));
372316f1
PA
2259 }
2260
2261 tp->resumed = 1;
2262
2263 /* FIXME: What should we do if we are supposed to resume this
2264 thread with a signal? Maybe we should maintain a queue of
2265 pending signals to deliver. */
2266 if (sig != GDB_SIGNAL_0)
2267 {
fd7dcb94 2268 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2269 gdb_signal_to_name (sig),
2270 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2271 }
2272
2273 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2274
2275 if (target_can_async_p ())
9516f85a
AB
2276 {
2277 target_async (1);
2278 /* Tell the event loop we have an event to process. */
2279 mark_async_event_handler (infrun_async_inferior_event_token);
2280 }
372316f1
PA
2281 return;
2282 }
2283
2284 tp->stepped_breakpoint = 0;
2285
6b403daa
PA
2286 /* Depends on stepped_breakpoint. */
2287 step = currently_stepping (tp);
2288
74609e71
YQ
2289 if (current_inferior ()->waiting_for_vfork_done)
2290 {
48f9886d
PA
2291 /* Don't try to single-step a vfork parent that is waiting for
2292 the child to get out of the shared memory region (by exec'ing
2293 or exiting). This is particularly important on software
2294 single-step archs, as the child process would trip on the
2295 software single step breakpoint inserted for the parent
2296 process. Since the parent will not actually execute any
2297 instruction until the child is out of the shared region (such
2298 are vfork's semantics), it is safe to simply continue it.
2299 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2300 the parent, and tell it to `keep_going', which automatically
2301 re-sets it stepping. */
74609e71
YQ
2302 if (debug_infrun)
2303 fprintf_unfiltered (gdb_stdlog,
2304 "infrun: resume : clear step\n");
a09dd441 2305 step = 0;
74609e71
YQ
2306 }
2307
527159b7 2308 if (debug_infrun)
237fc4c9 2309 fprintf_unfiltered (gdb_stdlog,
c9737c08 2310 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2311 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2312 step, gdb_signal_to_symbol_string (sig),
2313 tp->control.trap_expected,
a068643d 2314 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2315 paddress (gdbarch, pc));
c906108c 2316
c2c6d25f
JM
2317 /* Normally, by the time we reach `resume', the breakpoints are either
2318 removed or inserted, as appropriate. The exception is if we're sitting
2319 at a permanent breakpoint; we need to step over it, but permanent
2320 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2321 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2322 {
af48d08f
PA
2323 if (sig != GDB_SIGNAL_0)
2324 {
2325 /* We have a signal to pass to the inferior. The resume
2326 may, or may not take us to the signal handler. If this
2327 is a step, we'll need to stop in the signal handler, if
2328 there's one, (if the target supports stepping into
2329 handlers), or in the next mainline instruction, if
2330 there's no handler. If this is a continue, we need to be
2331 sure to run the handler with all breakpoints inserted.
2332 In all cases, set a breakpoint at the current address
2333 (where the handler returns to), and once that breakpoint
2334 is hit, resume skipping the permanent breakpoint. If
2335 that breakpoint isn't hit, then we've stepped into the
2336 signal handler (or hit some other event). We'll delete
2337 the step-resume breakpoint then. */
2338
2339 if (debug_infrun)
2340 fprintf_unfiltered (gdb_stdlog,
2341 "infrun: resume: skipping permanent breakpoint, "
2342 "deliver signal first\n");
2343
2344 clear_step_over_info ();
2345 tp->control.trap_expected = 0;
2346
2347 if (tp->control.step_resume_breakpoint == NULL)
2348 {
2349 /* Set a "high-priority" step-resume, as we don't want
2350 user breakpoints at PC to trigger (again) when this
2351 hits. */
2352 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2353 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2354
2355 tp->step_after_step_resume_breakpoint = step;
2356 }
2357
2358 insert_breakpoints ();
2359 }
2360 else
2361 {
2362 /* There's no signal to pass, we can go ahead and skip the
2363 permanent breakpoint manually. */
2364 if (debug_infrun)
2365 fprintf_unfiltered (gdb_stdlog,
2366 "infrun: resume: skipping permanent breakpoint\n");
2367 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2368 /* Update pc to reflect the new address from which we will
2369 execute instructions. */
2370 pc = regcache_read_pc (regcache);
2371
2372 if (step)
2373 {
2374 /* We've already advanced the PC, so the stepping part
2375 is done. Now we need to arrange for a trap to be
2376 reported to handle_inferior_event. Set a breakpoint
2377 at the current PC, and run to it. Don't update
2378 prev_pc, because if we end in
44a1ee51
PA
2379 switch_back_to_stepped_thread, we want the "expected
2380 thread advanced also" branch to be taken. IOW, we
2381 don't want this thread to step further from PC
af48d08f 2382 (overstep). */
1ac806b8 2383 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2384 insert_single_step_breakpoint (gdbarch, aspace, pc);
2385 insert_breakpoints ();
2386
fbea99ea 2387 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2388 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2389 tp->resumed = 1;
af48d08f
PA
2390 return;
2391 }
2392 }
6d350bb5 2393 }
c2c6d25f 2394
c1e36e3e
PA
2395 /* If we have a breakpoint to step over, make sure to do a single
2396 step only. Same if we have software watchpoints. */
2397 if (tp->control.trap_expected || bpstat_should_step ())
2398 tp->control.may_range_step = 0;
2399
237fc4c9
PA
2400 /* If enabled, step over breakpoints by executing a copy of the
2401 instruction at a different address.
2402
2403 We can't use displaced stepping when we have a signal to deliver;
2404 the comments for displaced_step_prepare explain why. The
2405 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2406 signals' explain what we do instead.
2407
2408 We can't use displaced stepping when we are waiting for vfork_done
2409 event, displaced stepping breaks the vfork child similarly as single
2410 step software breakpoint. */
3fc8eb30
PA
2411 if (tp->control.trap_expected
2412 && use_displaced_stepping (tp)
cb71640d 2413 && !step_over_info_valid_p ()
a493e3e2 2414 && sig == GDB_SIGNAL_0
74609e71 2415 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2416 {
00431a78 2417 int prepared = displaced_step_prepare (tp);
fc1cf338 2418
3fc8eb30 2419 if (prepared == 0)
d56b7306 2420 {
4d9d9d04
PA
2421 if (debug_infrun)
2422 fprintf_unfiltered (gdb_stdlog,
2423 "Got placed in step-over queue\n");
2424
2425 tp->control.trap_expected = 0;
d56b7306
VP
2426 return;
2427 }
3fc8eb30
PA
2428 else if (prepared < 0)
2429 {
2430 /* Fallback to stepping over the breakpoint in-line. */
2431
2432 if (target_is_non_stop_p ())
2433 stop_all_threads ();
2434
a01bda52 2435 set_step_over_info (regcache->aspace (),
21edc42f 2436 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2437
2438 step = maybe_software_singlestep (gdbarch, pc);
2439
2440 insert_breakpoints ();
2441 }
2442 else if (prepared > 0)
2443 {
2444 struct displaced_step_inferior_state *displaced;
99e40580 2445
3fc8eb30
PA
2446 /* Update pc to reflect the new address from which we will
2447 execute instructions due to displaced stepping. */
00431a78 2448 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2449
00431a78 2450 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2451 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2452 displaced->step_closure);
2453 }
237fc4c9
PA
2454 }
2455
2facfe5c 2456 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2457 else if (step)
2facfe5c 2458 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2459
30852783
UW
2460 /* Currently, our software single-step implementation leads to different
2461 results than hardware single-stepping in one situation: when stepping
2462 into delivering a signal which has an associated signal handler,
2463 hardware single-step will stop at the first instruction of the handler,
2464 while software single-step will simply skip execution of the handler.
2465
2466 For now, this difference in behavior is accepted since there is no
2467 easy way to actually implement single-stepping into a signal handler
2468 without kernel support.
2469
2470 However, there is one scenario where this difference leads to follow-on
2471 problems: if we're stepping off a breakpoint by removing all breakpoints
2472 and then single-stepping. In this case, the software single-step
2473 behavior means that even if there is a *breakpoint* in the signal
2474 handler, GDB still would not stop.
2475
2476 Fortunately, we can at least fix this particular issue. We detect
2477 here the case where we are about to deliver a signal while software
2478 single-stepping with breakpoints removed. In this situation, we
2479 revert the decisions to remove all breakpoints and insert single-
2480 step breakpoints, and instead we install a step-resume breakpoint
2481 at the current address, deliver the signal without stepping, and
2482 once we arrive back at the step-resume breakpoint, actually step
2483 over the breakpoint we originally wanted to step over. */
34b7e8a6 2484 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2485 && sig != GDB_SIGNAL_0
2486 && step_over_info_valid_p ())
30852783
UW
2487 {
2488 /* If we have nested signals or a pending signal is delivered
2489 immediately after a handler returns, might might already have
2490 a step-resume breakpoint set on the earlier handler. We cannot
2491 set another step-resume breakpoint; just continue on until the
2492 original breakpoint is hit. */
2493 if (tp->control.step_resume_breakpoint == NULL)
2494 {
2c03e5be 2495 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2496 tp->step_after_step_resume_breakpoint = 1;
2497 }
2498
34b7e8a6 2499 delete_single_step_breakpoints (tp);
30852783 2500
31e77af2 2501 clear_step_over_info ();
30852783 2502 tp->control.trap_expected = 0;
31e77af2
PA
2503
2504 insert_breakpoints ();
30852783
UW
2505 }
2506
b0f16a3e
SM
2507 /* If STEP is set, it's a request to use hardware stepping
2508 facilities. But in that case, we should never
2509 use singlestep breakpoint. */
34b7e8a6 2510 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2511
fbea99ea 2512 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2513 if (tp->control.trap_expected)
b0f16a3e
SM
2514 {
2515 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2516 hit, either by single-stepping the thread with the breakpoint
2517 removed, or by displaced stepping, with the breakpoint inserted.
2518 In the former case, we need to single-step only this thread,
2519 and keep others stopped, as they can miss this breakpoint if
2520 allowed to run. That's not really a problem for displaced
2521 stepping, but, we still keep other threads stopped, in case
2522 another thread is also stopped for a breakpoint waiting for
2523 its turn in the displaced stepping queue. */
b0f16a3e
SM
2524 resume_ptid = inferior_ptid;
2525 }
fbea99ea
PA
2526 else
2527 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2528
7f5ef605
PA
2529 if (execution_direction != EXEC_REVERSE
2530 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2531 {
372316f1
PA
2532 /* There are two cases where we currently need to step a
2533 breakpoint instruction when we have a signal to deliver:
2534
2535 - See handle_signal_stop where we handle random signals that
2536 could take out us out of the stepping range. Normally, in
2537 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2538 signal handler with a breakpoint at PC, but there are cases
2539 where we should _always_ single-step, even if we have a
2540 step-resume breakpoint, like when a software watchpoint is
2541 set. Assuming single-stepping and delivering a signal at the
2542 same time would takes us to the signal handler, then we could
2543 have removed the breakpoint at PC to step over it. However,
2544 some hardware step targets (like e.g., Mac OS) can't step
2545 into signal handlers, and for those, we need to leave the
2546 breakpoint at PC inserted, as otherwise if the handler
2547 recurses and executes PC again, it'll miss the breakpoint.
2548 So we leave the breakpoint inserted anyway, but we need to
2549 record that we tried to step a breakpoint instruction, so
372316f1
PA
2550 that adjust_pc_after_break doesn't end up confused.
2551
2552 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2553 in one thread after another thread that was stepping had been
2554 momentarily paused for a step-over. When we re-resume the
2555 stepping thread, it may be resumed from that address with a
2556 breakpoint that hasn't trapped yet. Seen with
2557 gdb.threads/non-stop-fair-events.exp, on targets that don't
2558 do displaced stepping. */
2559
2560 if (debug_infrun)
2561 fprintf_unfiltered (gdb_stdlog,
2562 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2563 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2564
2565 tp->stepped_breakpoint = 1;
2566
b0f16a3e
SM
2567 /* Most targets can step a breakpoint instruction, thus
2568 executing it normally. But if this one cannot, just
2569 continue and we will hit it anyway. */
7f5ef605 2570 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2571 step = 0;
2572 }
ef5cf84e 2573
b0f16a3e 2574 if (debug_displaced
cb71640d 2575 && tp->control.trap_expected
3fc8eb30 2576 && use_displaced_stepping (tp)
cb71640d 2577 && !step_over_info_valid_p ())
b0f16a3e 2578 {
00431a78 2579 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2580 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2581 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2582 gdb_byte buf[4];
2583
2584 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2585 paddress (resume_gdbarch, actual_pc));
2586 read_memory (actual_pc, buf, sizeof (buf));
2587 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2588 }
237fc4c9 2589
b0f16a3e
SM
2590 if (tp->control.may_range_step)
2591 {
2592 /* If we're resuming a thread with the PC out of the step
2593 range, then we're doing some nested/finer run control
2594 operation, like stepping the thread out of the dynamic
2595 linker or the displaced stepping scratch pad. We
2596 shouldn't have allowed a range step then. */
2597 gdb_assert (pc_in_thread_step_range (pc, tp));
2598 }
c1e36e3e 2599
64ce06e4 2600 do_target_resume (resume_ptid, step, sig);
372316f1 2601 tp->resumed = 1;
c906108c 2602}
71d378ae
PA
2603
2604/* Resume the inferior. SIG is the signal to give the inferior
2605 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2606 rolls back state on error. */
2607
aff4e175 2608static void
71d378ae
PA
2609resume (gdb_signal sig)
2610{
2611 TRY
2612 {
2613 resume_1 (sig);
2614 }
2615 CATCH (ex, RETURN_MASK_ALL)
2616 {
2617 /* If resuming is being aborted for any reason, delete any
2618 single-step breakpoint resume_1 may have created, to avoid
2619 confusing the following resumption, and to avoid leaving
2620 single-step breakpoints perturbing other threads, in case
2621 we're running in non-stop mode. */
2622 if (inferior_ptid != null_ptid)
2623 delete_single_step_breakpoints (inferior_thread ());
2624 throw_exception (ex);
2625 }
2626 END_CATCH
2627}
2628
c906108c 2629\f
237fc4c9 2630/* Proceeding. */
c906108c 2631
4c2f2a79
PA
2632/* See infrun.h. */
2633
2634/* Counter that tracks number of user visible stops. This can be used
2635 to tell whether a command has proceeded the inferior past the
2636 current location. This allows e.g., inferior function calls in
2637 breakpoint commands to not interrupt the command list. When the
2638 call finishes successfully, the inferior is standing at the same
2639 breakpoint as if nothing happened (and so we don't call
2640 normal_stop). */
2641static ULONGEST current_stop_id;
2642
2643/* See infrun.h. */
2644
2645ULONGEST
2646get_stop_id (void)
2647{
2648 return current_stop_id;
2649}
2650
2651/* Called when we report a user visible stop. */
2652
2653static void
2654new_stop_id (void)
2655{
2656 current_stop_id++;
2657}
2658
c906108c
SS
2659/* Clear out all variables saying what to do when inferior is continued.
2660 First do this, then set the ones you want, then call `proceed'. */
2661
a7212384
UW
2662static void
2663clear_proceed_status_thread (struct thread_info *tp)
c906108c 2664{
a7212384
UW
2665 if (debug_infrun)
2666 fprintf_unfiltered (gdb_stdlog,
2667 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2668 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2669
372316f1
PA
2670 /* If we're starting a new sequence, then the previous finished
2671 single-step is no longer relevant. */
2672 if (tp->suspend.waitstatus_pending_p)
2673 {
2674 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2675 {
2676 if (debug_infrun)
2677 fprintf_unfiltered (gdb_stdlog,
2678 "infrun: clear_proceed_status: pending "
2679 "event of %s was a finished step. "
2680 "Discarding.\n",
a068643d 2681 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2682
2683 tp->suspend.waitstatus_pending_p = 0;
2684 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2685 }
2686 else if (debug_infrun)
2687 {
23fdd69e
SM
2688 std::string statstr
2689 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2690
372316f1
PA
2691 fprintf_unfiltered (gdb_stdlog,
2692 "infrun: clear_proceed_status_thread: thread %s "
2693 "has pending wait status %s "
2694 "(currently_stepping=%d).\n",
a068643d
TT
2695 target_pid_to_str (tp->ptid).c_str (),
2696 statstr.c_str (),
372316f1 2697 currently_stepping (tp));
372316f1
PA
2698 }
2699 }
2700
70509625
PA
2701 /* If this signal should not be seen by program, give it zero.
2702 Used for debugging signals. */
2703 if (!signal_pass_state (tp->suspend.stop_signal))
2704 tp->suspend.stop_signal = GDB_SIGNAL_0;
2705
46e3ed7f 2706 delete tp->thread_fsm;
243a9253
PA
2707 tp->thread_fsm = NULL;
2708
16c381f0
JK
2709 tp->control.trap_expected = 0;
2710 tp->control.step_range_start = 0;
2711 tp->control.step_range_end = 0;
c1e36e3e 2712 tp->control.may_range_step = 0;
16c381f0
JK
2713 tp->control.step_frame_id = null_frame_id;
2714 tp->control.step_stack_frame_id = null_frame_id;
2715 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2716 tp->control.step_start_function = NULL;
a7212384 2717 tp->stop_requested = 0;
4e1c45ea 2718
16c381f0 2719 tp->control.stop_step = 0;
32400beb 2720
16c381f0 2721 tp->control.proceed_to_finish = 0;
414c69f7 2722
856e7dd6 2723 tp->control.stepping_command = 0;
17b2616c 2724
a7212384 2725 /* Discard any remaining commands or status from previous stop. */
16c381f0 2726 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2727}
32400beb 2728
a7212384 2729void
70509625 2730clear_proceed_status (int step)
a7212384 2731{
f2665db5
MM
2732 /* With scheduler-locking replay, stop replaying other threads if we're
2733 not replaying the user-visible resume ptid.
2734
2735 This is a convenience feature to not require the user to explicitly
2736 stop replaying the other threads. We're assuming that the user's
2737 intent is to resume tracing the recorded process. */
2738 if (!non_stop && scheduler_mode == schedlock_replay
2739 && target_record_is_replaying (minus_one_ptid)
2740 && !target_record_will_replay (user_visible_resume_ptid (step),
2741 execution_direction))
2742 target_record_stop_replaying ();
2743
08036331 2744 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2745 {
08036331 2746 ptid_t resume_ptid = user_visible_resume_ptid (step);
70509625
PA
2747
2748 /* In all-stop mode, delete the per-thread status of all threads
2749 we're about to resume, implicitly and explicitly. */
08036331
PA
2750 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2751 clear_proceed_status_thread (tp);
6c95b8df
PA
2752 }
2753
d7e15655 2754 if (inferior_ptid != null_ptid)
a7212384
UW
2755 {
2756 struct inferior *inferior;
2757
2758 if (non_stop)
2759 {
6c95b8df
PA
2760 /* If in non-stop mode, only delete the per-thread status of
2761 the current thread. */
a7212384
UW
2762 clear_proceed_status_thread (inferior_thread ());
2763 }
6c95b8df 2764
d6b48e9c 2765 inferior = current_inferior ();
16c381f0 2766 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2767 }
2768
76727919 2769 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2770}
2771
99619bea
PA
2772/* Returns true if TP is still stopped at a breakpoint that needs
2773 stepping-over in order to make progress. If the breakpoint is gone
2774 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2775
2776static int
6c4cfb24 2777thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2778{
2779 if (tp->stepping_over_breakpoint)
2780 {
00431a78 2781 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2782
a01bda52 2783 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2784 regcache_read_pc (regcache))
2785 == ordinary_breakpoint_here)
99619bea
PA
2786 return 1;
2787
2788 tp->stepping_over_breakpoint = 0;
2789 }
2790
2791 return 0;
2792}
2793
6c4cfb24
PA
2794/* Check whether thread TP still needs to start a step-over in order
2795 to make progress when resumed. Returns an bitwise or of enum
2796 step_over_what bits, indicating what needs to be stepped over. */
2797
8d297bbf 2798static step_over_what
6c4cfb24
PA
2799thread_still_needs_step_over (struct thread_info *tp)
2800{
8d297bbf 2801 step_over_what what = 0;
6c4cfb24
PA
2802
2803 if (thread_still_needs_step_over_bp (tp))
2804 what |= STEP_OVER_BREAKPOINT;
2805
2806 if (tp->stepping_over_watchpoint
2807 && !target_have_steppable_watchpoint)
2808 what |= STEP_OVER_WATCHPOINT;
2809
2810 return what;
2811}
2812
483805cf
PA
2813/* Returns true if scheduler locking applies. STEP indicates whether
2814 we're about to do a step/next-like command to a thread. */
2815
2816static int
856e7dd6 2817schedlock_applies (struct thread_info *tp)
483805cf
PA
2818{
2819 return (scheduler_mode == schedlock_on
2820 || (scheduler_mode == schedlock_step
f2665db5
MM
2821 && tp->control.stepping_command)
2822 || (scheduler_mode == schedlock_replay
2823 && target_record_will_replay (minus_one_ptid,
2824 execution_direction)));
483805cf
PA
2825}
2826
c906108c
SS
2827/* Basic routine for continuing the program in various fashions.
2828
2829 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2830 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2831 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2832
2833 You should call clear_proceed_status before calling proceed. */
2834
2835void
64ce06e4 2836proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2837{
e58b0e63
PA
2838 struct regcache *regcache;
2839 struct gdbarch *gdbarch;
e58b0e63 2840 CORE_ADDR pc;
4d9d9d04
PA
2841 ptid_t resume_ptid;
2842 struct execution_control_state ecss;
2843 struct execution_control_state *ecs = &ecss;
4d9d9d04 2844 int started;
c906108c 2845
e58b0e63
PA
2846 /* If we're stopped at a fork/vfork, follow the branch set by the
2847 "set follow-fork-mode" command; otherwise, we'll just proceed
2848 resuming the current thread. */
2849 if (!follow_fork ())
2850 {
2851 /* The target for some reason decided not to resume. */
2852 normal_stop ();
f148b27e
PA
2853 if (target_can_async_p ())
2854 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2855 return;
2856 }
2857
842951eb
PA
2858 /* We'll update this if & when we switch to a new thread. */
2859 previous_inferior_ptid = inferior_ptid;
2860
e58b0e63 2861 regcache = get_current_regcache ();
ac7936df 2862 gdbarch = regcache->arch ();
8b86c959
YQ
2863 const address_space *aspace = regcache->aspace ();
2864
e58b0e63 2865 pc = regcache_read_pc (regcache);
08036331 2866 thread_info *cur_thr = inferior_thread ();
e58b0e63 2867
99619bea 2868 /* Fill in with reasonable starting values. */
08036331 2869 init_thread_stepping_state (cur_thr);
99619bea 2870
08036331 2871 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2872
2acceee2 2873 if (addr == (CORE_ADDR) -1)
c906108c 2874 {
08036331 2875 if (pc == cur_thr->suspend.stop_pc
af48d08f 2876 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2877 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2878 /* There is a breakpoint at the address we will resume at,
2879 step one instruction before inserting breakpoints so that
2880 we do not stop right away (and report a second hit at this
b2175913
MS
2881 breakpoint).
2882
2883 Note, we don't do this in reverse, because we won't
2884 actually be executing the breakpoint insn anyway.
2885 We'll be (un-)executing the previous instruction. */
08036331 2886 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2887 else if (gdbarch_single_step_through_delay_p (gdbarch)
2888 && gdbarch_single_step_through_delay (gdbarch,
2889 get_current_frame ()))
3352ef37
AC
2890 /* We stepped onto an instruction that needs to be stepped
2891 again before re-inserting the breakpoint, do so. */
08036331 2892 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2893 }
2894 else
2895 {
515630c5 2896 regcache_write_pc (regcache, addr);
c906108c
SS
2897 }
2898
70509625 2899 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2900 cur_thr->suspend.stop_signal = siggnal;
70509625 2901
08036331 2902 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
4d9d9d04
PA
2903
2904 /* If an exception is thrown from this point on, make sure to
2905 propagate GDB's knowledge of the executing state to the
2906 frontend/user running state. */
731f534f 2907 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
2908
2909 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2910 threads (e.g., we might need to set threads stepping over
2911 breakpoints first), from the user/frontend's point of view, all
2912 threads in RESUME_PTID are now running. Unless we're calling an
2913 inferior function, as in that case we pretend the inferior
2914 doesn't run at all. */
08036331 2915 if (!cur_thr->control.in_infcall)
4d9d9d04 2916 set_running (resume_ptid, 1);
17b2616c 2917
527159b7 2918 if (debug_infrun)
8a9de0e4 2919 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2920 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2921 paddress (gdbarch, addr),
64ce06e4 2922 gdb_signal_to_symbol_string (siggnal));
527159b7 2923
4d9d9d04
PA
2924 annotate_starting ();
2925
2926 /* Make sure that output from GDB appears before output from the
2927 inferior. */
2928 gdb_flush (gdb_stdout);
2929
d930703d
PA
2930 /* Since we've marked the inferior running, give it the terminal. A
2931 QUIT/Ctrl-C from here on is forwarded to the target (which can
2932 still detect attempts to unblock a stuck connection with repeated
2933 Ctrl-C from within target_pass_ctrlc). */
2934 target_terminal::inferior ();
2935
4d9d9d04
PA
2936 /* In a multi-threaded task we may select another thread and
2937 then continue or step.
2938
2939 But if a thread that we're resuming had stopped at a breakpoint,
2940 it will immediately cause another breakpoint stop without any
2941 execution (i.e. it will report a breakpoint hit incorrectly). So
2942 we must step over it first.
2943
2944 Look for threads other than the current (TP) that reported a
2945 breakpoint hit and haven't been resumed yet since. */
2946
2947 /* If scheduler locking applies, we can avoid iterating over all
2948 threads. */
08036331 2949 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 2950 {
08036331
PA
2951 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2952 {
4d9d9d04
PA
2953 /* Ignore the current thread here. It's handled
2954 afterwards. */
08036331 2955 if (tp == cur_thr)
4d9d9d04 2956 continue;
c906108c 2957
4d9d9d04
PA
2958 if (!thread_still_needs_step_over (tp))
2959 continue;
2960
2961 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 2962
99619bea
PA
2963 if (debug_infrun)
2964 fprintf_unfiltered (gdb_stdlog,
2965 "infrun: need to step-over [%s] first\n",
a068643d 2966 target_pid_to_str (tp->ptid).c_str ());
99619bea 2967
4d9d9d04 2968 thread_step_over_chain_enqueue (tp);
2adfaa28 2969 }
30852783
UW
2970 }
2971
4d9d9d04
PA
2972 /* Enqueue the current thread last, so that we move all other
2973 threads over their breakpoints first. */
08036331
PA
2974 if (cur_thr->stepping_over_breakpoint)
2975 thread_step_over_chain_enqueue (cur_thr);
30852783 2976
4d9d9d04
PA
2977 /* If the thread isn't started, we'll still need to set its prev_pc,
2978 so that switch_back_to_stepped_thread knows the thread hasn't
2979 advanced. Must do this before resuming any thread, as in
2980 all-stop/remote, once we resume we can't send any other packet
2981 until the target stops again. */
08036331 2982 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 2983
a9bc57b9
TT
2984 {
2985 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 2986
a9bc57b9 2987 started = start_step_over ();
c906108c 2988
a9bc57b9
TT
2989 if (step_over_info_valid_p ())
2990 {
2991 /* Either this thread started a new in-line step over, or some
2992 other thread was already doing one. In either case, don't
2993 resume anything else until the step-over is finished. */
2994 }
2995 else if (started && !target_is_non_stop_p ())
2996 {
2997 /* A new displaced stepping sequence was started. In all-stop,
2998 we can't talk to the target anymore until it next stops. */
2999 }
3000 else if (!non_stop && target_is_non_stop_p ())
3001 {
3002 /* In all-stop, but the target is always in non-stop mode.
3003 Start all other threads that are implicitly resumed too. */
08036331 3004 for (thread_info *tp : all_non_exited_threads (resume_ptid))
fbea99ea 3005 {
fbea99ea
PA
3006 if (tp->resumed)
3007 {
3008 if (debug_infrun)
3009 fprintf_unfiltered (gdb_stdlog,
3010 "infrun: proceed: [%s] resumed\n",
a068643d 3011 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3012 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3013 continue;
3014 }
3015
3016 if (thread_is_in_step_over_chain (tp))
3017 {
3018 if (debug_infrun)
3019 fprintf_unfiltered (gdb_stdlog,
3020 "infrun: proceed: [%s] needs step-over\n",
a068643d 3021 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3022 continue;
3023 }
3024
3025 if (debug_infrun)
3026 fprintf_unfiltered (gdb_stdlog,
3027 "infrun: proceed: resuming %s\n",
a068643d 3028 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3029
3030 reset_ecs (ecs, tp);
00431a78 3031 switch_to_thread (tp);
fbea99ea
PA
3032 keep_going_pass_signal (ecs);
3033 if (!ecs->wait_some_more)
fd7dcb94 3034 error (_("Command aborted."));
fbea99ea 3035 }
a9bc57b9 3036 }
08036331 3037 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3038 {
3039 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3040 reset_ecs (ecs, cur_thr);
3041 switch_to_thread (cur_thr);
a9bc57b9
TT
3042 keep_going_pass_signal (ecs);
3043 if (!ecs->wait_some_more)
3044 error (_("Command aborted."));
3045 }
3046 }
c906108c 3047
85ad3aaf
PA
3048 target_commit_resume ();
3049
731f534f 3050 finish_state.release ();
c906108c 3051
0b333c5e
PA
3052 /* Tell the event loop to wait for it to stop. If the target
3053 supports asynchronous execution, it'll do this from within
3054 target_resume. */
362646f5 3055 if (!target_can_async_p ())
0b333c5e 3056 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3057}
c906108c
SS
3058\f
3059
3060/* Start remote-debugging of a machine over a serial link. */
96baa820 3061
c906108c 3062void
8621d6a9 3063start_remote (int from_tty)
c906108c 3064{
d6b48e9c 3065 struct inferior *inferior;
d6b48e9c
PA
3066
3067 inferior = current_inferior ();
16c381f0 3068 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3069
1777feb0 3070 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3071 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3072 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3073 nothing is returned (instead of just blocking). Because of this,
3074 targets expecting an immediate response need to, internally, set
3075 things up so that the target_wait() is forced to eventually
1777feb0 3076 timeout. */
6426a772
JM
3077 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3078 differentiate to its caller what the state of the target is after
3079 the initial open has been performed. Here we're assuming that
3080 the target has stopped. It should be possible to eventually have
3081 target_open() return to the caller an indication that the target
3082 is currently running and GDB state should be set to the same as
1777feb0 3083 for an async run. */
e4c8541f 3084 wait_for_inferior ();
8621d6a9
DJ
3085
3086 /* Now that the inferior has stopped, do any bookkeeping like
3087 loading shared libraries. We want to do this before normal_stop,
3088 so that the displayed frame is up to date. */
8b88a78e 3089 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3090
6426a772 3091 normal_stop ();
c906108c
SS
3092}
3093
3094/* Initialize static vars when a new inferior begins. */
3095
3096void
96baa820 3097init_wait_for_inferior (void)
c906108c
SS
3098{
3099 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3100
c906108c
SS
3101 breakpoint_init_inferior (inf_starting);
3102
70509625 3103 clear_proceed_status (0);
9f976b41 3104
ca005067 3105 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3106
842951eb 3107 previous_inferior_ptid = inferior_ptid;
c906108c 3108}
237fc4c9 3109
c906108c 3110\f
488f131b 3111
ec9499be 3112static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3113
568d6575
UW
3114static void handle_step_into_function (struct gdbarch *gdbarch,
3115 struct execution_control_state *ecs);
3116static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3117 struct execution_control_state *ecs);
4f5d7f63 3118static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3119static void check_exception_resume (struct execution_control_state *,
28106bc2 3120 struct frame_info *);
611c83ae 3121
bdc36728 3122static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3123static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3124static void keep_going (struct execution_control_state *ecs);
94c57d6a 3125static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3126static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3127
252fbfc8
PA
3128/* This function is attached as a "thread_stop_requested" observer.
3129 Cleanup local state that assumed the PTID was to be resumed, and
3130 report the stop to the frontend. */
3131
2c0b251b 3132static void
252fbfc8
PA
3133infrun_thread_stop_requested (ptid_t ptid)
3134{
c65d6b55
PA
3135 /* PTID was requested to stop. If the thread was already stopped,
3136 but the user/frontend doesn't know about that yet (e.g., the
3137 thread had been temporarily paused for some step-over), set up
3138 for reporting the stop now. */
08036331
PA
3139 for (thread_info *tp : all_threads (ptid))
3140 {
3141 if (tp->state != THREAD_RUNNING)
3142 continue;
3143 if (tp->executing)
3144 continue;
c65d6b55 3145
08036331
PA
3146 /* Remove matching threads from the step-over queue, so
3147 start_step_over doesn't try to resume them
3148 automatically. */
3149 if (thread_is_in_step_over_chain (tp))
3150 thread_step_over_chain_remove (tp);
c65d6b55 3151
08036331
PA
3152 /* If the thread is stopped, but the user/frontend doesn't
3153 know about that yet, queue a pending event, as if the
3154 thread had just stopped now. Unless the thread already had
3155 a pending event. */
3156 if (!tp->suspend.waitstatus_pending_p)
3157 {
3158 tp->suspend.waitstatus_pending_p = 1;
3159 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3160 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3161 }
c65d6b55 3162
08036331
PA
3163 /* Clear the inline-frame state, since we're re-processing the
3164 stop. */
3165 clear_inline_frame_state (tp->ptid);
c65d6b55 3166
08036331
PA
3167 /* If this thread was paused because some other thread was
3168 doing an inline-step over, let that finish first. Once
3169 that happens, we'll restart all threads and consume pending
3170 stop events then. */
3171 if (step_over_info_valid_p ())
3172 continue;
3173
3174 /* Otherwise we can process the (new) pending event now. Set
3175 it so this pending event is considered by
3176 do_target_wait. */
3177 tp->resumed = 1;
3178 }
252fbfc8
PA
3179}
3180
a07daef3
PA
3181static void
3182infrun_thread_thread_exit (struct thread_info *tp, int silent)
3183{
d7e15655 3184 if (target_last_wait_ptid == tp->ptid)
a07daef3
PA
3185 nullify_last_target_wait_ptid ();
3186}
3187
0cbcdb96
PA
3188/* Delete the step resume, single-step and longjmp/exception resume
3189 breakpoints of TP. */
4e1c45ea 3190
0cbcdb96
PA
3191static void
3192delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3193{
0cbcdb96
PA
3194 delete_step_resume_breakpoint (tp);
3195 delete_exception_resume_breakpoint (tp);
34b7e8a6 3196 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3197}
3198
0cbcdb96
PA
3199/* If the target still has execution, call FUNC for each thread that
3200 just stopped. In all-stop, that's all the non-exited threads; in
3201 non-stop, that's the current thread, only. */
3202
3203typedef void (*for_each_just_stopped_thread_callback_func)
3204 (struct thread_info *tp);
4e1c45ea
PA
3205
3206static void
0cbcdb96 3207for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3208{
d7e15655 3209 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3210 return;
3211
fbea99ea 3212 if (target_is_non_stop_p ())
4e1c45ea 3213 {
0cbcdb96
PA
3214 /* If in non-stop mode, only the current thread stopped. */
3215 func (inferior_thread ());
4e1c45ea
PA
3216 }
3217 else
0cbcdb96 3218 {
0cbcdb96 3219 /* In all-stop mode, all threads have stopped. */
08036331
PA
3220 for (thread_info *tp : all_non_exited_threads ())
3221 func (tp);
0cbcdb96
PA
3222 }
3223}
3224
3225/* Delete the step resume and longjmp/exception resume breakpoints of
3226 the threads that just stopped. */
3227
3228static void
3229delete_just_stopped_threads_infrun_breakpoints (void)
3230{
3231 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3232}
3233
3234/* Delete the single-step breakpoints of the threads that just
3235 stopped. */
7c16b83e 3236
34b7e8a6
PA
3237static void
3238delete_just_stopped_threads_single_step_breakpoints (void)
3239{
3240 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3241}
3242
221e1a37 3243/* See infrun.h. */
223698f8 3244
221e1a37 3245void
223698f8
DE
3246print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3247 const struct target_waitstatus *ws)
3248{
23fdd69e 3249 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3250 string_file stb;
223698f8
DE
3251
3252 /* The text is split over several lines because it was getting too long.
3253 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3254 output as a unit; we want only one timestamp printed if debug_timestamp
3255 is set. */
3256
d7e74731 3257 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3258 waiton_ptid.pid (),
e38504b3 3259 waiton_ptid.lwp (),
cc6bcb54 3260 waiton_ptid.tid ());
e99b03dc 3261 if (waiton_ptid.pid () != -1)
a068643d 3262 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3263 stb.printf (", status) =\n");
3264 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3265 result_ptid.pid (),
e38504b3 3266 result_ptid.lwp (),
cc6bcb54 3267 result_ptid.tid (),
a068643d 3268 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3269 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3270
3271 /* This uses %s in part to handle %'s in the text, but also to avoid
3272 a gcc error: the format attribute requires a string literal. */
d7e74731 3273 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3274}
3275
372316f1
PA
3276/* Select a thread at random, out of those which are resumed and have
3277 had events. */
3278
3279static struct thread_info *
3280random_pending_event_thread (ptid_t waiton_ptid)
3281{
372316f1 3282 int num_events = 0;
08036331
PA
3283
3284 auto has_event = [] (thread_info *tp)
3285 {
3286 return (tp->resumed
3287 && tp->suspend.waitstatus_pending_p);
3288 };
372316f1
PA
3289
3290 /* First see how many events we have. Count only resumed threads
3291 that have an event pending. */
08036331
PA
3292 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3293 if (has_event (tp))
372316f1
PA
3294 num_events++;
3295
3296 if (num_events == 0)
3297 return NULL;
3298
3299 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3300 int random_selector = (int) ((num_events * (double) rand ())
3301 / (RAND_MAX + 1.0));
372316f1
PA
3302
3303 if (debug_infrun && num_events > 1)
3304 fprintf_unfiltered (gdb_stdlog,
3305 "infrun: Found %d events, selecting #%d\n",
3306 num_events, random_selector);
3307
3308 /* Select the Nth thread that has had an event. */
08036331
PA
3309 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3310 if (has_event (tp))
372316f1 3311 if (random_selector-- == 0)
08036331 3312 return tp;
372316f1 3313
08036331 3314 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3315}
3316
3317/* Wrapper for target_wait that first checks whether threads have
3318 pending statuses to report before actually asking the target for
3319 more events. */
3320
3321static ptid_t
3322do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3323{
3324 ptid_t event_ptid;
3325 struct thread_info *tp;
3326
3327 /* First check if there is a resumed thread with a wait status
3328 pending. */
d7e15655 3329 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1
PA
3330 {
3331 tp = random_pending_event_thread (ptid);
3332 }
3333 else
3334 {
3335 if (debug_infrun)
3336 fprintf_unfiltered (gdb_stdlog,
3337 "infrun: Waiting for specific thread %s.\n",
a068643d 3338 target_pid_to_str (ptid).c_str ());
372316f1
PA
3339
3340 /* We have a specific thread to check. */
3341 tp = find_thread_ptid (ptid);
3342 gdb_assert (tp != NULL);
3343 if (!tp->suspend.waitstatus_pending_p)
3344 tp = NULL;
3345 }
3346
3347 if (tp != NULL
3348 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3349 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3350 {
00431a78 3351 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3352 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3353 CORE_ADDR pc;
3354 int discard = 0;
3355
3356 pc = regcache_read_pc (regcache);
3357
3358 if (pc != tp->suspend.stop_pc)
3359 {
3360 if (debug_infrun)
3361 fprintf_unfiltered (gdb_stdlog,
3362 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3363 target_pid_to_str (tp->ptid).c_str (),
defd2172 3364 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3365 paddress (gdbarch, pc));
3366 discard = 1;
3367 }
a01bda52 3368 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3369 {
3370 if (debug_infrun)
3371 fprintf_unfiltered (gdb_stdlog,
3372 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3373 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3374 paddress (gdbarch, pc));
3375
3376 discard = 1;
3377 }
3378
3379 if (discard)
3380 {
3381 if (debug_infrun)
3382 fprintf_unfiltered (gdb_stdlog,
3383 "infrun: pending event of %s cancelled.\n",
a068643d 3384 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3385
3386 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3387 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3388 }
3389 }
3390
3391 if (tp != NULL)
3392 {
3393 if (debug_infrun)
3394 {
23fdd69e
SM
3395 std::string statstr
3396 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3397
372316f1
PA
3398 fprintf_unfiltered (gdb_stdlog,
3399 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3400 statstr.c_str (),
a068643d 3401 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3402 }
3403
3404 /* Now that we've selected our final event LWP, un-adjust its PC
3405 if it was a software breakpoint (and the target doesn't
3406 always adjust the PC itself). */
3407 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3408 && !target_supports_stopped_by_sw_breakpoint ())
3409 {
3410 struct regcache *regcache;
3411 struct gdbarch *gdbarch;
3412 int decr_pc;
3413
00431a78 3414 regcache = get_thread_regcache (tp);
ac7936df 3415 gdbarch = regcache->arch ();
372316f1
PA
3416
3417 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3418 if (decr_pc != 0)
3419 {
3420 CORE_ADDR pc;
3421
3422 pc = regcache_read_pc (regcache);
3423 regcache_write_pc (regcache, pc + decr_pc);
3424 }
3425 }
3426
3427 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3428 *status = tp->suspend.waitstatus;
3429 tp->suspend.waitstatus_pending_p = 0;
3430
3431 /* Wake up the event loop again, until all pending events are
3432 processed. */
3433 if (target_is_async_p ())
3434 mark_async_event_handler (infrun_async_inferior_event_token);
3435 return tp->ptid;
3436 }
3437
3438 /* But if we don't find one, we'll have to wait. */
3439
3440 if (deprecated_target_wait_hook)
3441 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3442 else
3443 event_ptid = target_wait (ptid, status, options);
3444
3445 return event_ptid;
3446}
3447
24291992
PA
3448/* Prepare and stabilize the inferior for detaching it. E.g.,
3449 detaching while a thread is displaced stepping is a recipe for
3450 crashing it, as nothing would readjust the PC out of the scratch
3451 pad. */
3452
3453void
3454prepare_for_detach (void)
3455{
3456 struct inferior *inf = current_inferior ();
f2907e49 3457 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3458
00431a78 3459 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3460
3461 /* Is any thread of this process displaced stepping? If not,
3462 there's nothing else to do. */
d20172fc 3463 if (displaced->step_thread == nullptr)
24291992
PA
3464 return;
3465
3466 if (debug_infrun)
3467 fprintf_unfiltered (gdb_stdlog,
3468 "displaced-stepping in-process while detaching");
3469
9bcb1f16 3470 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3471
00431a78 3472 while (displaced->step_thread != nullptr)
24291992 3473 {
24291992
PA
3474 struct execution_control_state ecss;
3475 struct execution_control_state *ecs;
3476
3477 ecs = &ecss;
3478 memset (ecs, 0, sizeof (*ecs));
3479
3480 overlay_cache_invalid = 1;
f15cb84a
YQ
3481 /* Flush target cache before starting to handle each event.
3482 Target was running and cache could be stale. This is just a
3483 heuristic. Running threads may modify target memory, but we
3484 don't get any event. */
3485 target_dcache_invalidate ();
24291992 3486
372316f1 3487 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3488
3489 if (debug_infrun)
3490 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3491
3492 /* If an error happens while handling the event, propagate GDB's
3493 knowledge of the executing state to the frontend/user running
3494 state. */
731f534f 3495 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3496
3497 /* Now figure out what to do with the result of the result. */
3498 handle_inferior_event (ecs);
3499
3500 /* No error, don't finish the state yet. */
731f534f 3501 finish_state.release ();
24291992
PA
3502
3503 /* Breakpoints and watchpoints are not installed on the target
3504 at this point, and signals are passed directly to the
3505 inferior, so this must mean the process is gone. */
3506 if (!ecs->wait_some_more)
3507 {
9bcb1f16 3508 restore_detaching.release ();
24291992
PA
3509 error (_("Program exited while detaching"));
3510 }
3511 }
3512
9bcb1f16 3513 restore_detaching.release ();
24291992
PA
3514}
3515
cd0fc7c3 3516/* Wait for control to return from inferior to debugger.
ae123ec6 3517
cd0fc7c3
SS
3518 If inferior gets a signal, we may decide to start it up again
3519 instead of returning. That is why there is a loop in this function.
3520 When this function actually returns it means the inferior
3521 should be left stopped and GDB should read more commands. */
3522
3523void
e4c8541f 3524wait_for_inferior (void)
cd0fc7c3 3525{
527159b7 3526 if (debug_infrun)
ae123ec6 3527 fprintf_unfiltered
e4c8541f 3528 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3529
4c41382a 3530 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3531
e6f5c25b
PA
3532 /* If an error happens while handling the event, propagate GDB's
3533 knowledge of the executing state to the frontend/user running
3534 state. */
731f534f 3535 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3536
c906108c
SS
3537 while (1)
3538 {
ae25568b
PA
3539 struct execution_control_state ecss;
3540 struct execution_control_state *ecs = &ecss;
963f9c80 3541 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3542
ae25568b
PA
3543 memset (ecs, 0, sizeof (*ecs));
3544
ec9499be 3545 overlay_cache_invalid = 1;
ec9499be 3546
f15cb84a
YQ
3547 /* Flush target cache before starting to handle each event.
3548 Target was running and cache could be stale. This is just a
3549 heuristic. Running threads may modify target memory, but we
3550 don't get any event. */
3551 target_dcache_invalidate ();
3552
372316f1 3553 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3554
f00150c9 3555 if (debug_infrun)
223698f8 3556 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3557
cd0fc7c3
SS
3558 /* Now figure out what to do with the result of the result. */
3559 handle_inferior_event (ecs);
c906108c 3560
cd0fc7c3
SS
3561 if (!ecs->wait_some_more)
3562 break;
3563 }
4e1c45ea 3564
e6f5c25b 3565 /* No error, don't finish the state yet. */
731f534f 3566 finish_state.release ();
cd0fc7c3 3567}
c906108c 3568
d3d4baed
PA
3569/* Cleanup that reinstalls the readline callback handler, if the
3570 target is running in the background. If while handling the target
3571 event something triggered a secondary prompt, like e.g., a
3572 pagination prompt, we'll have removed the callback handler (see
3573 gdb_readline_wrapper_line). Need to do this as we go back to the
3574 event loop, ready to process further input. Note this has no
3575 effect if the handler hasn't actually been removed, because calling
3576 rl_callback_handler_install resets the line buffer, thus losing
3577 input. */
3578
3579static void
d238133d 3580reinstall_readline_callback_handler_cleanup ()
d3d4baed 3581{
3b12939d
PA
3582 struct ui *ui = current_ui;
3583
3584 if (!ui->async)
6c400b59
PA
3585 {
3586 /* We're not going back to the top level event loop yet. Don't
3587 install the readline callback, as it'd prep the terminal,
3588 readline-style (raw, noecho) (e.g., --batch). We'll install
3589 it the next time the prompt is displayed, when we're ready
3590 for input. */
3591 return;
3592 }
3593
3b12939d 3594 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3595 gdb_rl_callback_handler_reinstall ();
3596}
3597
243a9253
PA
3598/* Clean up the FSMs of threads that are now stopped. In non-stop,
3599 that's just the event thread. In all-stop, that's all threads. */
3600
3601static void
3602clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3603{
08036331
PA
3604 if (ecs->event_thread != NULL
3605 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3606 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3607
3608 if (!non_stop)
3609 {
08036331 3610 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3611 {
3612 if (thr->thread_fsm == NULL)
3613 continue;
3614 if (thr == ecs->event_thread)
3615 continue;
3616
00431a78 3617 switch_to_thread (thr);
46e3ed7f 3618 thr->thread_fsm->clean_up (thr);
243a9253
PA
3619 }
3620
3621 if (ecs->event_thread != NULL)
00431a78 3622 switch_to_thread (ecs->event_thread);
243a9253
PA
3623 }
3624}
3625
3b12939d
PA
3626/* Helper for all_uis_check_sync_execution_done that works on the
3627 current UI. */
3628
3629static void
3630check_curr_ui_sync_execution_done (void)
3631{
3632 struct ui *ui = current_ui;
3633
3634 if (ui->prompt_state == PROMPT_NEEDED
3635 && ui->async
3636 && !gdb_in_secondary_prompt_p (ui))
3637 {
223ffa71 3638 target_terminal::ours ();
76727919 3639 gdb::observers::sync_execution_done.notify ();
3eb7562a 3640 ui_register_input_event_handler (ui);
3b12939d
PA
3641 }
3642}
3643
3644/* See infrun.h. */
3645
3646void
3647all_uis_check_sync_execution_done (void)
3648{
0e454242 3649 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3650 {
3651 check_curr_ui_sync_execution_done ();
3652 }
3653}
3654
a8836c93
PA
3655/* See infrun.h. */
3656
3657void
3658all_uis_on_sync_execution_starting (void)
3659{
0e454242 3660 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3661 {
3662 if (current_ui->prompt_state == PROMPT_NEEDED)
3663 async_disable_stdin ();
3664 }
3665}
3666
1777feb0 3667/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3668 event loop whenever a change of state is detected on the file
1777feb0
MS
3669 descriptor corresponding to the target. It can be called more than
3670 once to complete a single execution command. In such cases we need
3671 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3672 that this function is called for a single execution command, then
3673 report to the user that the inferior has stopped, and do the
1777feb0 3674 necessary cleanups. */
43ff13b4
JM
3675
3676void
fba45db2 3677fetch_inferior_event (void *client_data)
43ff13b4 3678{
0d1e5fa7 3679 struct execution_control_state ecss;
a474d7c2 3680 struct execution_control_state *ecs = &ecss;
0f641c01 3681 int cmd_done = 0;
963f9c80 3682 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3683
0d1e5fa7
PA
3684 memset (ecs, 0, sizeof (*ecs));
3685
c61db772
PA
3686 /* Events are always processed with the main UI as current UI. This
3687 way, warnings, debug output, etc. are always consistently sent to
3688 the main console. */
4b6749b9 3689 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3690
d3d4baed 3691 /* End up with readline processing input, if necessary. */
d238133d
TT
3692 {
3693 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3694
3695 /* We're handling a live event, so make sure we're doing live
3696 debugging. If we're looking at traceframes while the target is
3697 running, we're going to need to get back to that mode after
3698 handling the event. */
3699 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3700 if (non_stop)
3701 {
3702 maybe_restore_traceframe.emplace ();
3703 set_current_traceframe (-1);
3704 }
43ff13b4 3705
d238133d
TT
3706 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3707
3708 if (non_stop)
3709 /* In non-stop mode, the user/frontend should not notice a thread
3710 switch due to internal events. Make sure we reverse to the
3711 user selected thread and frame after handling the event and
3712 running any breakpoint commands. */
3713 maybe_restore_thread.emplace ();
3714
3715 overlay_cache_invalid = 1;
3716 /* Flush target cache before starting to handle each event. Target
3717 was running and cache could be stale. This is just a heuristic.
3718 Running threads may modify target memory, but we don't get any
3719 event. */
3720 target_dcache_invalidate ();
3721
3722 scoped_restore save_exec_dir
3723 = make_scoped_restore (&execution_direction,
3724 target_execution_direction ());
3725
3726 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3727 target_can_async_p () ? TARGET_WNOHANG : 0);
3728
3729 if (debug_infrun)
3730 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3731
3732 /* If an error happens while handling the event, propagate GDB's
3733 knowledge of the executing state to the frontend/user running
3734 state. */
3735 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3736 scoped_finish_thread_state finish_state (finish_ptid);
3737
979a0d13 3738 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3739 still for the thread which has thrown the exception. */
3740 auto defer_bpstat_clear
3741 = make_scope_exit (bpstat_clear_actions);
3742 auto defer_delete_threads
3743 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3744
3745 /* Now figure out what to do with the result of the result. */
3746 handle_inferior_event (ecs);
3747
3748 if (!ecs->wait_some_more)
3749 {
3750 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3751 int should_stop = 1;
3752 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3753
d238133d 3754 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3755
d238133d
TT
3756 if (thr != NULL)
3757 {
3758 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3759
d238133d 3760 if (thread_fsm != NULL)
46e3ed7f 3761 should_stop = thread_fsm->should_stop (thr);
d238133d 3762 }
243a9253 3763
d238133d
TT
3764 if (!should_stop)
3765 {
3766 keep_going (ecs);
3767 }
3768 else
3769 {
46e3ed7f 3770 bool should_notify_stop = true;
d238133d 3771 int proceeded = 0;
1840d81a 3772
d238133d 3773 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3774
d238133d 3775 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3776 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3777
d238133d
TT
3778 if (should_notify_stop)
3779 {
3780 /* We may not find an inferior if this was a process exit. */
3781 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3782 proceeded = normal_stop ();
3783 }
243a9253 3784
d238133d
TT
3785 if (!proceeded)
3786 {
3787 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3788 cmd_done = 1;
3789 }
3790 }
3791 }
4f8d22e3 3792
d238133d
TT
3793 defer_delete_threads.release ();
3794 defer_bpstat_clear.release ();
29f49a6a 3795
d238133d
TT
3796 /* No error, don't finish the thread states yet. */
3797 finish_state.release ();
731f534f 3798
d238133d
TT
3799 /* This scope is used to ensure that readline callbacks are
3800 reinstalled here. */
3801 }
4f8d22e3 3802
3b12939d
PA
3803 /* If a UI was in sync execution mode, and now isn't, restore its
3804 prompt (a synchronous execution command has finished, and we're
3805 ready for input). */
3806 all_uis_check_sync_execution_done ();
0f641c01
PA
3807
3808 if (cmd_done
0f641c01 3809 && exec_done_display_p
00431a78
PA
3810 && (inferior_ptid == null_ptid
3811 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3812 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3813}
3814
edb3359d
DJ
3815/* Record the frame and location we're currently stepping through. */
3816void
3817set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3818{
3819 struct thread_info *tp = inferior_thread ();
3820
16c381f0
JK
3821 tp->control.step_frame_id = get_frame_id (frame);
3822 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3823
3824 tp->current_symtab = sal.symtab;
3825 tp->current_line = sal.line;
3826}
3827
0d1e5fa7
PA
3828/* Clear context switchable stepping state. */
3829
3830void
4e1c45ea 3831init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3832{
7f5ef605 3833 tss->stepped_breakpoint = 0;
0d1e5fa7 3834 tss->stepping_over_breakpoint = 0;
963f9c80 3835 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3836 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3837}
3838
c32c64b7
DE
3839/* Set the cached copy of the last ptid/waitstatus. */
3840
6efcd9a8 3841void
c32c64b7
DE
3842set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3843{
3844 target_last_wait_ptid = ptid;
3845 target_last_waitstatus = status;
3846}
3847
e02bc4cc 3848/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3849 target_wait()/deprecated_target_wait_hook(). The data is actually
3850 cached by handle_inferior_event(), which gets called immediately
3851 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3852
3853void
488f131b 3854get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3855{
39f77062 3856 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3857 *status = target_last_waitstatus;
3858}
3859
ac264b3b
MS
3860void
3861nullify_last_target_wait_ptid (void)
3862{
3863 target_last_wait_ptid = minus_one_ptid;
3864}
3865
dcf4fbde 3866/* Switch thread contexts. */
dd80620e
MS
3867
3868static void
00431a78 3869context_switch (execution_control_state *ecs)
dd80620e 3870{
00431a78
PA
3871 if (debug_infrun
3872 && ecs->ptid != inferior_ptid
3873 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
3874 {
3875 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 3876 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 3877 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 3878 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
3879 }
3880
00431a78 3881 switch_to_thread (ecs->event_thread);
dd80620e
MS
3882}
3883
d8dd4d5f
PA
3884/* If the target can't tell whether we've hit breakpoints
3885 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3886 check whether that could have been caused by a breakpoint. If so,
3887 adjust the PC, per gdbarch_decr_pc_after_break. */
3888
4fa8626c 3889static void
d8dd4d5f
PA
3890adjust_pc_after_break (struct thread_info *thread,
3891 struct target_waitstatus *ws)
4fa8626c 3892{
24a73cce
UW
3893 struct regcache *regcache;
3894 struct gdbarch *gdbarch;
118e6252 3895 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3896
4fa8626c
DJ
3897 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3898 we aren't, just return.
9709f61c
DJ
3899
3900 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3901 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3902 implemented by software breakpoints should be handled through the normal
3903 breakpoint layer.
8fb3e588 3904
4fa8626c
DJ
3905 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3906 different signals (SIGILL or SIGEMT for instance), but it is less
3907 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3908 gdbarch_decr_pc_after_break. I don't know any specific target that
3909 generates these signals at breakpoints (the code has been in GDB since at
3910 least 1992) so I can not guess how to handle them here.
8fb3e588 3911
e6cf7916
UW
3912 In earlier versions of GDB, a target with
3913 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3914 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3915 target with both of these set in GDB history, and it seems unlikely to be
3916 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3917
d8dd4d5f 3918 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3919 return;
3920
d8dd4d5f 3921 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3922 return;
3923
4058b839
PA
3924 /* In reverse execution, when a breakpoint is hit, the instruction
3925 under it has already been de-executed. The reported PC always
3926 points at the breakpoint address, so adjusting it further would
3927 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3928 architecture:
3929
3930 B1 0x08000000 : INSN1
3931 B2 0x08000001 : INSN2
3932 0x08000002 : INSN3
3933 PC -> 0x08000003 : INSN4
3934
3935 Say you're stopped at 0x08000003 as above. Reverse continuing
3936 from that point should hit B2 as below. Reading the PC when the
3937 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3938 been de-executed already.
3939
3940 B1 0x08000000 : INSN1
3941 B2 PC -> 0x08000001 : INSN2
3942 0x08000002 : INSN3
3943 0x08000003 : INSN4
3944
3945 We can't apply the same logic as for forward execution, because
3946 we would wrongly adjust the PC to 0x08000000, since there's a
3947 breakpoint at PC - 1. We'd then report a hit on B1, although
3948 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3949 behaviour. */
3950 if (execution_direction == EXEC_REVERSE)
3951 return;
3952
1cf4d951
PA
3953 /* If the target can tell whether the thread hit a SW breakpoint,
3954 trust it. Targets that can tell also adjust the PC
3955 themselves. */
3956 if (target_supports_stopped_by_sw_breakpoint ())
3957 return;
3958
3959 /* Note that relying on whether a breakpoint is planted in memory to
3960 determine this can fail. E.g,. the breakpoint could have been
3961 removed since. Or the thread could have been told to step an
3962 instruction the size of a breakpoint instruction, and only
3963 _after_ was a breakpoint inserted at its address. */
3964
24a73cce
UW
3965 /* If this target does not decrement the PC after breakpoints, then
3966 we have nothing to do. */
00431a78 3967 regcache = get_thread_regcache (thread);
ac7936df 3968 gdbarch = regcache->arch ();
118e6252 3969
527a273a 3970 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3971 if (decr_pc == 0)
24a73cce
UW
3972 return;
3973
8b86c959 3974 const address_space *aspace = regcache->aspace ();
6c95b8df 3975
8aad930b
AC
3976 /* Find the location where (if we've hit a breakpoint) the
3977 breakpoint would be. */
118e6252 3978 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3979
1cf4d951
PA
3980 /* If the target can't tell whether a software breakpoint triggered,
3981 fallback to figuring it out based on breakpoints we think were
3982 inserted in the target, and on whether the thread was stepped or
3983 continued. */
3984
1c5cfe86
PA
3985 /* Check whether there actually is a software breakpoint inserted at
3986 that location.
3987
3988 If in non-stop mode, a race condition is possible where we've
3989 removed a breakpoint, but stop events for that breakpoint were
3990 already queued and arrive later. To suppress those spurious
3991 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
3992 and retire them after a number of stop events are reported. Note
3993 this is an heuristic and can thus get confused. The real fix is
3994 to get the "stopped by SW BP and needs adjustment" info out of
3995 the target/kernel (and thus never reach here; see above). */
6c95b8df 3996 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
3997 || (target_is_non_stop_p ()
3998 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3999 {
07036511 4000 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4001
8213266a 4002 if (record_full_is_used ())
07036511
TT
4003 restore_operation_disable.emplace
4004 (record_full_gdb_operation_disable_set ());
96429cc8 4005
1c0fdd0e
UW
4006 /* When using hardware single-step, a SIGTRAP is reported for both
4007 a completed single-step and a software breakpoint. Need to
4008 differentiate between the two, as the latter needs adjusting
4009 but the former does not.
4010
4011 The SIGTRAP can be due to a completed hardware single-step only if
4012 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4013 - this thread is currently being stepped
4014
4015 If any of these events did not occur, we must have stopped due
4016 to hitting a software breakpoint, and have to back up to the
4017 breakpoint address.
4018
4019 As a special case, we could have hardware single-stepped a
4020 software breakpoint. In this case (prev_pc == breakpoint_pc),
4021 we also need to back up to the breakpoint address. */
4022
d8dd4d5f
PA
4023 if (thread_has_single_step_breakpoints_set (thread)
4024 || !currently_stepping (thread)
4025 || (thread->stepped_breakpoint
4026 && thread->prev_pc == breakpoint_pc))
515630c5 4027 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4028 }
4fa8626c
DJ
4029}
4030
edb3359d
DJ
4031static int
4032stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4033{
4034 for (frame = get_prev_frame (frame);
4035 frame != NULL;
4036 frame = get_prev_frame (frame))
4037 {
4038 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4039 return 1;
4040 if (get_frame_type (frame) != INLINE_FRAME)
4041 break;
4042 }
4043
4044 return 0;
4045}
4046
c65d6b55
PA
4047/* If the event thread has the stop requested flag set, pretend it
4048 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4049 target_stop). */
4050
4051static bool
4052handle_stop_requested (struct execution_control_state *ecs)
4053{
4054 if (ecs->event_thread->stop_requested)
4055 {
4056 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4057 ecs->ws.value.sig = GDB_SIGNAL_0;
4058 handle_signal_stop (ecs);
4059 return true;
4060 }
4061 return false;
4062}
4063
a96d9b2e
SDJ
4064/* Auxiliary function that handles syscall entry/return events.
4065 It returns 1 if the inferior should keep going (and GDB
4066 should ignore the event), or 0 if the event deserves to be
4067 processed. */
ca2163eb 4068
a96d9b2e 4069static int
ca2163eb 4070handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4071{
ca2163eb 4072 struct regcache *regcache;
ca2163eb
PA
4073 int syscall_number;
4074
00431a78 4075 context_switch (ecs);
ca2163eb 4076
00431a78 4077 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4078 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4079 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4080
a96d9b2e
SDJ
4081 if (catch_syscall_enabled () > 0
4082 && catching_syscall_number (syscall_number) > 0)
4083 {
4084 if (debug_infrun)
4085 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4086 syscall_number);
a96d9b2e 4087
16c381f0 4088 ecs->event_thread->control.stop_bpstat
a01bda52 4089 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4090 ecs->event_thread->suspend.stop_pc,
4091 ecs->event_thread, &ecs->ws);
ab04a2af 4092
c65d6b55
PA
4093 if (handle_stop_requested (ecs))
4094 return 0;
4095
ce12b012 4096 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4097 {
4098 /* Catchpoint hit. */
ca2163eb
PA
4099 return 0;
4100 }
a96d9b2e 4101 }
ca2163eb 4102
c65d6b55
PA
4103 if (handle_stop_requested (ecs))
4104 return 0;
4105
ca2163eb 4106 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4107 keep_going (ecs);
4108 return 1;
a96d9b2e
SDJ
4109}
4110
7e324e48
GB
4111/* Lazily fill in the execution_control_state's stop_func_* fields. */
4112
4113static void
4114fill_in_stop_func (struct gdbarch *gdbarch,
4115 struct execution_control_state *ecs)
4116{
4117 if (!ecs->stop_func_filled_in)
4118 {
4119 /* Don't care about return value; stop_func_start and stop_func_name
4120 will both be 0 if it doesn't work. */
59adbf5d
KB
4121 find_function_entry_range_from_pc (ecs->event_thread->suspend.stop_pc,
4122 &ecs->stop_func_name,
4123 &ecs->stop_func_start,
4124 &ecs->stop_func_end);
7e324e48
GB
4125 ecs->stop_func_start
4126 += gdbarch_deprecated_function_start_offset (gdbarch);
4127
591a12a1
UW
4128 if (gdbarch_skip_entrypoint_p (gdbarch))
4129 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4130 ecs->stop_func_start);
4131
7e324e48
GB
4132 ecs->stop_func_filled_in = 1;
4133 }
4134}
4135
4f5d7f63 4136
00431a78 4137/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4138
4139static enum stop_kind
00431a78 4140get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4141{
00431a78 4142 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4143
4144 gdb_assert (inf != NULL);
4145 return inf->control.stop_soon;
4146}
4147
372316f1
PA
4148/* Wait for one event. Store the resulting waitstatus in WS, and
4149 return the event ptid. */
4150
4151static ptid_t
4152wait_one (struct target_waitstatus *ws)
4153{
4154 ptid_t event_ptid;
4155 ptid_t wait_ptid = minus_one_ptid;
4156
4157 overlay_cache_invalid = 1;
4158
4159 /* Flush target cache before starting to handle each event.
4160 Target was running and cache could be stale. This is just a
4161 heuristic. Running threads may modify target memory, but we
4162 don't get any event. */
4163 target_dcache_invalidate ();
4164
4165 if (deprecated_target_wait_hook)
4166 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4167 else
4168 event_ptid = target_wait (wait_ptid, ws, 0);
4169
4170 if (debug_infrun)
4171 print_target_wait_results (wait_ptid, event_ptid, ws);
4172
4173 return event_ptid;
4174}
4175
4176/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4177 instead of the current thread. */
4178#define THREAD_STOPPED_BY(REASON) \
4179static int \
4180thread_stopped_by_ ## REASON (ptid_t ptid) \
4181{ \
2989a365 4182 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4183 inferior_ptid = ptid; \
4184 \
2989a365 4185 return target_stopped_by_ ## REASON (); \
372316f1
PA
4186}
4187
4188/* Generate thread_stopped_by_watchpoint. */
4189THREAD_STOPPED_BY (watchpoint)
4190/* Generate thread_stopped_by_sw_breakpoint. */
4191THREAD_STOPPED_BY (sw_breakpoint)
4192/* Generate thread_stopped_by_hw_breakpoint. */
4193THREAD_STOPPED_BY (hw_breakpoint)
4194
372316f1
PA
4195/* Save the thread's event and stop reason to process it later. */
4196
4197static void
4198save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4199{
372316f1
PA
4200 if (debug_infrun)
4201 {
23fdd69e 4202 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4203
372316f1
PA
4204 fprintf_unfiltered (gdb_stdlog,
4205 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4206 statstr.c_str (),
e99b03dc 4207 tp->ptid.pid (),
e38504b3 4208 tp->ptid.lwp (),
cc6bcb54 4209 tp->ptid.tid ());
372316f1
PA
4210 }
4211
4212 /* Record for later. */
4213 tp->suspend.waitstatus = *ws;
4214 tp->suspend.waitstatus_pending_p = 1;
4215
00431a78 4216 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4217 const address_space *aspace = regcache->aspace ();
372316f1
PA
4218
4219 if (ws->kind == TARGET_WAITKIND_STOPPED
4220 && ws->value.sig == GDB_SIGNAL_TRAP)
4221 {
4222 CORE_ADDR pc = regcache_read_pc (regcache);
4223
4224 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4225
4226 if (thread_stopped_by_watchpoint (tp->ptid))
4227 {
4228 tp->suspend.stop_reason
4229 = TARGET_STOPPED_BY_WATCHPOINT;
4230 }
4231 else if (target_supports_stopped_by_sw_breakpoint ()
4232 && thread_stopped_by_sw_breakpoint (tp->ptid))
4233 {
4234 tp->suspend.stop_reason
4235 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4236 }
4237 else if (target_supports_stopped_by_hw_breakpoint ()
4238 && thread_stopped_by_hw_breakpoint (tp->ptid))
4239 {
4240 tp->suspend.stop_reason
4241 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4242 }
4243 else if (!target_supports_stopped_by_hw_breakpoint ()
4244 && hardware_breakpoint_inserted_here_p (aspace,
4245 pc))
4246 {
4247 tp->suspend.stop_reason
4248 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4249 }
4250 else if (!target_supports_stopped_by_sw_breakpoint ()
4251 && software_breakpoint_inserted_here_p (aspace,
4252 pc))
4253 {
4254 tp->suspend.stop_reason
4255 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4256 }
4257 else if (!thread_has_single_step_breakpoints_set (tp)
4258 && currently_stepping (tp))
4259 {
4260 tp->suspend.stop_reason
4261 = TARGET_STOPPED_BY_SINGLE_STEP;
4262 }
4263 }
4264}
4265
6efcd9a8 4266/* See infrun.h. */
372316f1 4267
6efcd9a8 4268void
372316f1
PA
4269stop_all_threads (void)
4270{
4271 /* We may need multiple passes to discover all threads. */
4272 int pass;
4273 int iterations = 0;
372316f1 4274
fbea99ea 4275 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4276
4277 if (debug_infrun)
4278 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4279
00431a78 4280 scoped_restore_current_thread restore_thread;
372316f1 4281
65706a29 4282 target_thread_events (1);
9885e6bb 4283 SCOPE_EXIT { target_thread_events (0); };
65706a29 4284
372316f1
PA
4285 /* Request threads to stop, and then wait for the stops. Because
4286 threads we already know about can spawn more threads while we're
4287 trying to stop them, and we only learn about new threads when we
4288 update the thread list, do this in a loop, and keep iterating
4289 until two passes find no threads that need to be stopped. */
4290 for (pass = 0; pass < 2; pass++, iterations++)
4291 {
4292 if (debug_infrun)
4293 fprintf_unfiltered (gdb_stdlog,
4294 "infrun: stop_all_threads, pass=%d, "
4295 "iterations=%d\n", pass, iterations);
4296 while (1)
4297 {
4298 ptid_t event_ptid;
4299 struct target_waitstatus ws;
4300 int need_wait = 0;
372316f1
PA
4301
4302 update_thread_list ();
4303
4304 /* Go through all threads looking for threads that we need
4305 to tell the target to stop. */
08036331 4306 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4307 {
4308 if (t->executing)
4309 {
4310 /* If already stopping, don't request a stop again.
4311 We just haven't seen the notification yet. */
4312 if (!t->stop_requested)
4313 {
4314 if (debug_infrun)
4315 fprintf_unfiltered (gdb_stdlog,
4316 "infrun: %s executing, "
4317 "need stop\n",
a068643d 4318 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4319 target_stop (t->ptid);
4320 t->stop_requested = 1;
4321 }
4322 else
4323 {
4324 if (debug_infrun)
4325 fprintf_unfiltered (gdb_stdlog,
4326 "infrun: %s executing, "
4327 "already stopping\n",
a068643d 4328 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4329 }
4330
4331 if (t->stop_requested)
4332 need_wait = 1;
4333 }
4334 else
4335 {
4336 if (debug_infrun)
4337 fprintf_unfiltered (gdb_stdlog,
4338 "infrun: %s not executing\n",
a068643d 4339 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4340
4341 /* The thread may be not executing, but still be
4342 resumed with a pending status to process. */
4343 t->resumed = 0;
4344 }
4345 }
4346
4347 if (!need_wait)
4348 break;
4349
4350 /* If we find new threads on the second iteration, restart
4351 over. We want to see two iterations in a row with all
4352 threads stopped. */
4353 if (pass > 0)
4354 pass = -1;
4355
4356 event_ptid = wait_one (&ws);
00431a78 4357
372316f1
PA
4358 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4359 {
4360 /* All resumed threads exited. */
4361 }
65706a29
PA
4362 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4363 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4364 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4365 {
4366 if (debug_infrun)
4367 {
f2907e49 4368 ptid_t ptid = ptid_t (ws.value.integer);
372316f1
PA
4369
4370 fprintf_unfiltered (gdb_stdlog,
4371 "infrun: %s exited while "
4372 "stopping threads\n",
a068643d 4373 target_pid_to_str (ptid).c_str ());
372316f1
PA
4374 }
4375 }
4376 else
4377 {
08036331 4378 thread_info *t = find_thread_ptid (event_ptid);
372316f1
PA
4379 if (t == NULL)
4380 t = add_thread (event_ptid);
4381
4382 t->stop_requested = 0;
4383 t->executing = 0;
4384 t->resumed = 0;
4385 t->control.may_range_step = 0;
4386
6efcd9a8
PA
4387 /* This may be the first time we see the inferior report
4388 a stop. */
08036331 4389 inferior *inf = find_inferior_ptid (event_ptid);
6efcd9a8
PA
4390 if (inf->needs_setup)
4391 {
4392 switch_to_thread_no_regs (t);
4393 setup_inferior (0);
4394 }
4395
372316f1
PA
4396 if (ws.kind == TARGET_WAITKIND_STOPPED
4397 && ws.value.sig == GDB_SIGNAL_0)
4398 {
4399 /* We caught the event that we intended to catch, so
4400 there's no event pending. */
4401 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4402 t->suspend.waitstatus_pending_p = 0;
4403
00431a78 4404 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4405 {
4406 /* Add it back to the step-over queue. */
4407 if (debug_infrun)
4408 {
4409 fprintf_unfiltered (gdb_stdlog,
4410 "infrun: displaced-step of %s "
4411 "canceled: adding back to the "
4412 "step-over queue\n",
a068643d 4413 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4414 }
4415 t->control.trap_expected = 0;
4416 thread_step_over_chain_enqueue (t);
4417 }
4418 }
4419 else
4420 {
4421 enum gdb_signal sig;
4422 struct regcache *regcache;
372316f1
PA
4423
4424 if (debug_infrun)
4425 {
23fdd69e 4426 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4427
372316f1
PA
4428 fprintf_unfiltered (gdb_stdlog,
4429 "infrun: target_wait %s, saving "
4430 "status for %d.%ld.%ld\n",
23fdd69e 4431 statstr.c_str (),
e99b03dc 4432 t->ptid.pid (),
e38504b3 4433 t->ptid.lwp (),
cc6bcb54 4434 t->ptid.tid ());
372316f1
PA
4435 }
4436
4437 /* Record for later. */
4438 save_waitstatus (t, &ws);
4439
4440 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4441 ? ws.value.sig : GDB_SIGNAL_0);
4442
00431a78 4443 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4444 {
4445 /* Add it back to the step-over queue. */
4446 t->control.trap_expected = 0;
4447 thread_step_over_chain_enqueue (t);
4448 }
4449
00431a78 4450 regcache = get_thread_regcache (t);
372316f1
PA
4451 t->suspend.stop_pc = regcache_read_pc (regcache);
4452
4453 if (debug_infrun)
4454 {
4455 fprintf_unfiltered (gdb_stdlog,
4456 "infrun: saved stop_pc=%s for %s "
4457 "(currently_stepping=%d)\n",
4458 paddress (target_gdbarch (),
4459 t->suspend.stop_pc),
a068643d 4460 target_pid_to_str (t->ptid).c_str (),
372316f1
PA
4461 currently_stepping (t));
4462 }
4463 }
4464 }
4465 }
4466 }
4467
372316f1
PA
4468 if (debug_infrun)
4469 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4470}
4471
f4836ba9
PA
4472/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4473
4474static int
4475handle_no_resumed (struct execution_control_state *ecs)
4476{
3b12939d 4477 if (target_can_async_p ())
f4836ba9 4478 {
3b12939d
PA
4479 struct ui *ui;
4480 int any_sync = 0;
f4836ba9 4481
3b12939d
PA
4482 ALL_UIS (ui)
4483 {
4484 if (ui->prompt_state == PROMPT_BLOCKED)
4485 {
4486 any_sync = 1;
4487 break;
4488 }
4489 }
4490 if (!any_sync)
4491 {
4492 /* There were no unwaited-for children left in the target, but,
4493 we're not synchronously waiting for events either. Just
4494 ignore. */
4495
4496 if (debug_infrun)
4497 fprintf_unfiltered (gdb_stdlog,
4498 "infrun: TARGET_WAITKIND_NO_RESUMED "
4499 "(ignoring: bg)\n");
4500 prepare_to_wait (ecs);
4501 return 1;
4502 }
f4836ba9
PA
4503 }
4504
4505 /* Otherwise, if we were running a synchronous execution command, we
4506 may need to cancel it and give the user back the terminal.
4507
4508 In non-stop mode, the target can't tell whether we've already
4509 consumed previous stop events, so it can end up sending us a
4510 no-resumed event like so:
4511
4512 #0 - thread 1 is left stopped
4513
4514 #1 - thread 2 is resumed and hits breakpoint
4515 -> TARGET_WAITKIND_STOPPED
4516
4517 #2 - thread 3 is resumed and exits
4518 this is the last resumed thread, so
4519 -> TARGET_WAITKIND_NO_RESUMED
4520
4521 #3 - gdb processes stop for thread 2 and decides to re-resume
4522 it.
4523
4524 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4525 thread 2 is now resumed, so the event should be ignored.
4526
4527 IOW, if the stop for thread 2 doesn't end a foreground command,
4528 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4529 event. But it could be that the event meant that thread 2 itself
4530 (or whatever other thread was the last resumed thread) exited.
4531
4532 To address this we refresh the thread list and check whether we
4533 have resumed threads _now_. In the example above, this removes
4534 thread 3 from the thread list. If thread 2 was re-resumed, we
4535 ignore this event. If we find no thread resumed, then we cancel
4536 the synchronous command show "no unwaited-for " to the user. */
4537 update_thread_list ();
4538
08036331 4539 for (thread_info *thread : all_non_exited_threads ())
f4836ba9
PA
4540 {
4541 if (thread->executing
4542 || thread->suspend.waitstatus_pending_p)
4543 {
4544 /* There were no unwaited-for children left in the target at
4545 some point, but there are now. Just ignore. */
4546 if (debug_infrun)
4547 fprintf_unfiltered (gdb_stdlog,
4548 "infrun: TARGET_WAITKIND_NO_RESUMED "
4549 "(ignoring: found resumed)\n");
4550 prepare_to_wait (ecs);
4551 return 1;
4552 }
4553 }
4554
4555 /* Note however that we may find no resumed thread because the whole
4556 process exited meanwhile (thus updating the thread list results
4557 in an empty thread list). In this case we know we'll be getting
4558 a process exit event shortly. */
08036331 4559 for (inferior *inf : all_inferiors ())
f4836ba9
PA
4560 {
4561 if (inf->pid == 0)
4562 continue;
4563
08036331 4564 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4565 if (thread == NULL)
4566 {
4567 if (debug_infrun)
4568 fprintf_unfiltered (gdb_stdlog,
4569 "infrun: TARGET_WAITKIND_NO_RESUMED "
4570 "(expect process exit)\n");
4571 prepare_to_wait (ecs);
4572 return 1;
4573 }
4574 }
4575
4576 /* Go ahead and report the event. */
4577 return 0;
4578}
4579
05ba8510
PA
4580/* Given an execution control state that has been freshly filled in by
4581 an event from the inferior, figure out what it means and take
4582 appropriate action.
4583
4584 The alternatives are:
4585
22bcd14b 4586 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4587 debugger.
4588
4589 2) keep_going and return; to wait for the next event (set
4590 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4591 once). */
c906108c 4592
ec9499be 4593static void
595915c1 4594handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 4595{
595915c1
TT
4596 /* Make sure that all temporary struct value objects that were
4597 created during the handling of the event get deleted at the
4598 end. */
4599 scoped_value_mark free_values;
4600
d6b48e9c
PA
4601 enum stop_kind stop_soon;
4602
28736962
PA
4603 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4604 {
4605 /* We had an event in the inferior, but we are not interested in
4606 handling it at this level. The lower layers have already
4607 done what needs to be done, if anything.
4608
4609 One of the possible circumstances for this is when the
4610 inferior produces output for the console. The inferior has
4611 not stopped, and we are ignoring the event. Another possible
4612 circumstance is any event which the lower level knows will be
4613 reported multiple times without an intervening resume. */
4614 if (debug_infrun)
4615 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4616 prepare_to_wait (ecs);
4617 return;
4618 }
4619
65706a29
PA
4620 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4621 {
4622 if (debug_infrun)
4623 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4624 prepare_to_wait (ecs);
4625 return;
4626 }
4627
0e5bf2a8 4628 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4629 && handle_no_resumed (ecs))
4630 return;
0e5bf2a8 4631
1777feb0 4632 /* Cache the last pid/waitstatus. */
c32c64b7 4633 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4634
ca005067 4635 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4636 stop_stack_dummy = STOP_NONE;
ca005067 4637
0e5bf2a8
PA
4638 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4639 {
4640 /* No unwaited-for children left. IOW, all resumed children
4641 have exited. */
4642 if (debug_infrun)
4643 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4644
4645 stop_print_frame = 0;
22bcd14b 4646 stop_waiting (ecs);
0e5bf2a8
PA
4647 return;
4648 }
4649
8c90c137 4650 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4651 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4652 {
4653 ecs->event_thread = find_thread_ptid (ecs->ptid);
4654 /* If it's a new thread, add it to the thread database. */
4655 if (ecs->event_thread == NULL)
4656 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4657
4658 /* Disable range stepping. If the next step request could use a
4659 range, this will be end up re-enabled then. */
4660 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4661 }
88ed393a
JK
4662
4663 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4664 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4665
4666 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4667 reinit_frame_cache ();
4668
28736962
PA
4669 breakpoint_retire_moribund ();
4670
2b009048
DJ
4671 /* First, distinguish signals caused by the debugger from signals
4672 that have to do with the program's own actions. Note that
4673 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4674 on the operating system version. Here we detect when a SIGILL or
4675 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4676 something similar for SIGSEGV, since a SIGSEGV will be generated
4677 when we're trying to execute a breakpoint instruction on a
4678 non-executable stack. This happens for call dummy breakpoints
4679 for architectures like SPARC that place call dummies on the
4680 stack. */
2b009048 4681 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4682 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4683 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4684 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4685 {
00431a78 4686 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4687
a01bda52 4688 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4689 regcache_read_pc (regcache)))
4690 {
4691 if (debug_infrun)
4692 fprintf_unfiltered (gdb_stdlog,
4693 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4694 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4695 }
2b009048
DJ
4696 }
4697
28736962
PA
4698 /* Mark the non-executing threads accordingly. In all-stop, all
4699 threads of all processes are stopped when we get any event
e1316e60 4700 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4701 {
4702 ptid_t mark_ptid;
4703
fbea99ea 4704 if (!target_is_non_stop_p ())
372316f1
PA
4705 mark_ptid = minus_one_ptid;
4706 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4707 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4708 {
4709 /* If we're handling a process exit in non-stop mode, even
4710 though threads haven't been deleted yet, one would think
4711 that there is nothing to do, as threads of the dead process
4712 will be soon deleted, and threads of any other process were
4713 left running. However, on some targets, threads survive a
4714 process exit event. E.g., for the "checkpoint" command,
4715 when the current checkpoint/fork exits, linux-fork.c
4716 automatically switches to another fork from within
4717 target_mourn_inferior, by associating the same
4718 inferior/thread to another fork. We haven't mourned yet at
4719 this point, but we must mark any threads left in the
4720 process as not-executing so that finish_thread_state marks
4721 them stopped (in the user's perspective) if/when we present
4722 the stop to the user. */
e99b03dc 4723 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4724 }
4725 else
4726 mark_ptid = ecs->ptid;
4727
4728 set_executing (mark_ptid, 0);
4729
4730 /* Likewise the resumed flag. */
4731 set_resumed (mark_ptid, 0);
4732 }
8c90c137 4733
488f131b
JB
4734 switch (ecs->ws.kind)
4735 {
4736 case TARGET_WAITKIND_LOADED:
527159b7 4737 if (debug_infrun)
8a9de0e4 4738 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
00431a78 4739 context_switch (ecs);
b0f4b84b
DJ
4740 /* Ignore gracefully during startup of the inferior, as it might
4741 be the shell which has just loaded some objects, otherwise
4742 add the symbols for the newly loaded objects. Also ignore at
4743 the beginning of an attach or remote session; we will query
4744 the full list of libraries once the connection is
4745 established. */
4f5d7f63 4746
00431a78 4747 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4748 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4749 {
edcc5120
TT
4750 struct regcache *regcache;
4751
00431a78 4752 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4753
4754 handle_solib_event ();
4755
4756 ecs->event_thread->control.stop_bpstat
a01bda52 4757 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4758 ecs->event_thread->suspend.stop_pc,
4759 ecs->event_thread, &ecs->ws);
ab04a2af 4760
c65d6b55
PA
4761 if (handle_stop_requested (ecs))
4762 return;
4763
ce12b012 4764 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4765 {
4766 /* A catchpoint triggered. */
94c57d6a
PA
4767 process_event_stop_test (ecs);
4768 return;
edcc5120 4769 }
488f131b 4770
b0f4b84b
DJ
4771 /* If requested, stop when the dynamic linker notifies
4772 gdb of events. This allows the user to get control
4773 and place breakpoints in initializer routines for
4774 dynamically loaded objects (among other things). */
a493e3e2 4775 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4776 if (stop_on_solib_events)
4777 {
55409f9d
DJ
4778 /* Make sure we print "Stopped due to solib-event" in
4779 normal_stop. */
4780 stop_print_frame = 1;
4781
22bcd14b 4782 stop_waiting (ecs);
b0f4b84b
DJ
4783 return;
4784 }
488f131b 4785 }
b0f4b84b
DJ
4786
4787 /* If we are skipping through a shell, or through shared library
4788 loading that we aren't interested in, resume the program. If
5c09a2c5 4789 we're running the program normally, also resume. */
b0f4b84b
DJ
4790 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4791 {
74960c60
VP
4792 /* Loading of shared libraries might have changed breakpoint
4793 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4794 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4795 insert_breakpoints ();
64ce06e4 4796 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4797 prepare_to_wait (ecs);
4798 return;
4799 }
4800
5c09a2c5
PA
4801 /* But stop if we're attaching or setting up a remote
4802 connection. */
4803 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4804 || stop_soon == STOP_QUIETLY_REMOTE)
4805 {
4806 if (debug_infrun)
4807 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4808 stop_waiting (ecs);
5c09a2c5
PA
4809 return;
4810 }
4811
4812 internal_error (__FILE__, __LINE__,
4813 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4814
488f131b 4815 case TARGET_WAITKIND_SPURIOUS:
527159b7 4816 if (debug_infrun)
8a9de0e4 4817 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
4818 if (handle_stop_requested (ecs))
4819 return;
00431a78 4820 context_switch (ecs);
64ce06e4 4821 resume (GDB_SIGNAL_0);
488f131b
JB
4822 prepare_to_wait (ecs);
4823 return;
c5aa993b 4824
65706a29
PA
4825 case TARGET_WAITKIND_THREAD_CREATED:
4826 if (debug_infrun)
4827 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
4828 if (handle_stop_requested (ecs))
4829 return;
00431a78 4830 context_switch (ecs);
65706a29
PA
4831 if (!switch_back_to_stepped_thread (ecs))
4832 keep_going (ecs);
4833 return;
4834
488f131b 4835 case TARGET_WAITKIND_EXITED:
940c3c06 4836 case TARGET_WAITKIND_SIGNALLED:
527159b7 4837 if (debug_infrun)
940c3c06
PA
4838 {
4839 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4840 fprintf_unfiltered (gdb_stdlog,
4841 "infrun: TARGET_WAITKIND_EXITED\n");
4842 else
4843 fprintf_unfiltered (gdb_stdlog,
4844 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4845 }
4846
fb66883a 4847 inferior_ptid = ecs->ptid;
c9657e70 4848 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4849 set_current_program_space (current_inferior ()->pspace);
4850 handle_vfork_child_exec_or_exit (0);
223ffa71 4851 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 4852
0c557179
SDJ
4853 /* Clearing any previous state of convenience variables. */
4854 clear_exit_convenience_vars ();
4855
940c3c06
PA
4856 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4857 {
4858 /* Record the exit code in the convenience variable $_exitcode, so
4859 that the user can inspect this again later. */
4860 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4861 (LONGEST) ecs->ws.value.integer);
4862
4863 /* Also record this in the inferior itself. */
4864 current_inferior ()->has_exit_code = 1;
4865 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4866
98eb56a4
PA
4867 /* Support the --return-child-result option. */
4868 return_child_result_value = ecs->ws.value.integer;
4869
76727919 4870 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
4871 }
4872 else
0c557179 4873 {
00431a78 4874 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
4875
4876 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4877 {
4878 /* Set the value of the internal variable $_exitsignal,
4879 which holds the signal uncaught by the inferior. */
4880 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4881 gdbarch_gdb_signal_to_target (gdbarch,
4882 ecs->ws.value.sig));
4883 }
4884 else
4885 {
4886 /* We don't have access to the target's method used for
4887 converting between signal numbers (GDB's internal
4888 representation <-> target's representation).
4889 Therefore, we cannot do a good job at displaying this
4890 information to the user. It's better to just warn
4891 her about it (if infrun debugging is enabled), and
4892 give up. */
4893 if (debug_infrun)
4894 fprintf_filtered (gdb_stdlog, _("\
4895Cannot fill $_exitsignal with the correct signal number.\n"));
4896 }
4897
76727919 4898 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 4899 }
8cf64490 4900
488f131b 4901 gdb_flush (gdb_stdout);
bc1e6c81 4902 target_mourn_inferior (inferior_ptid);
488f131b 4903 stop_print_frame = 0;
22bcd14b 4904 stop_waiting (ecs);
488f131b 4905 return;
c5aa993b 4906
488f131b 4907 /* The following are the only cases in which we keep going;
1777feb0 4908 the above cases end in a continue or goto. */
488f131b 4909 case TARGET_WAITKIND_FORKED:
deb3b17b 4910 case TARGET_WAITKIND_VFORKED:
527159b7 4911 if (debug_infrun)
fed708ed
PA
4912 {
4913 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4914 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4915 else
4916 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4917 }
c906108c 4918
e2d96639
YQ
4919 /* Check whether the inferior is displaced stepping. */
4920 {
00431a78 4921 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 4922 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
4923
4924 /* If checking displaced stepping is supported, and thread
4925 ecs->ptid is displaced stepping. */
00431a78 4926 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
4927 {
4928 struct inferior *parent_inf
c9657e70 4929 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4930 struct regcache *child_regcache;
4931 CORE_ADDR parent_pc;
4932
4933 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4934 indicating that the displaced stepping of syscall instruction
4935 has been done. Perform cleanup for parent process here. Note
4936 that this operation also cleans up the child process for vfork,
4937 because their pages are shared. */
00431a78 4938 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
4939 /* Start a new step-over in another thread if there's one
4940 that needs it. */
4941 start_step_over ();
e2d96639
YQ
4942
4943 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4944 {
c0987663 4945 struct displaced_step_inferior_state *displaced
00431a78 4946 = get_displaced_stepping_state (parent_inf);
c0987663 4947
e2d96639
YQ
4948 /* Restore scratch pad for child process. */
4949 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4950 }
4951
4952 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4953 the child's PC is also within the scratchpad. Set the child's PC
4954 to the parent's PC value, which has already been fixed up.
4955 FIXME: we use the parent's aspace here, although we're touching
4956 the child, because the child hasn't been added to the inferior
4957 list yet at this point. */
4958
4959 child_regcache
4960 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4961 gdbarch,
4962 parent_inf->aspace);
4963 /* Read PC value of parent process. */
4964 parent_pc = regcache_read_pc (regcache);
4965
4966 if (debug_displaced)
4967 fprintf_unfiltered (gdb_stdlog,
4968 "displaced: write child pc from %s to %s\n",
4969 paddress (gdbarch,
4970 regcache_read_pc (child_regcache)),
4971 paddress (gdbarch, parent_pc));
4972
4973 regcache_write_pc (child_regcache, parent_pc);
4974 }
4975 }
4976
00431a78 4977 context_switch (ecs);
5a2901d9 4978
b242c3c2
PA
4979 /* Immediately detach breakpoints from the child before there's
4980 any chance of letting the user delete breakpoints from the
4981 breakpoint lists. If we don't do this early, it's easy to
4982 leave left over traps in the child, vis: "break foo; catch
4983 fork; c; <fork>; del; c; <child calls foo>". We only follow
4984 the fork on the last `continue', and by that time the
4985 breakpoint at "foo" is long gone from the breakpoint table.
4986 If we vforked, then we don't need to unpatch here, since both
4987 parent and child are sharing the same memory pages; we'll
4988 need to unpatch at follow/detach time instead to be certain
4989 that new breakpoints added between catchpoint hit time and
4990 vfork follow are detached. */
4991 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4992 {
b242c3c2
PA
4993 /* This won't actually modify the breakpoint list, but will
4994 physically remove the breakpoints from the child. */
d80ee84f 4995 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4996 }
4997
34b7e8a6 4998 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 4999
e58b0e63
PA
5000 /* In case the event is caught by a catchpoint, remember that
5001 the event is to be followed at the next resume of the thread,
5002 and not immediately. */
5003 ecs->event_thread->pending_follow = ecs->ws;
5004
f2ffa92b
PA
5005 ecs->event_thread->suspend.stop_pc
5006 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5007
16c381f0 5008 ecs->event_thread->control.stop_bpstat
a01bda52 5009 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5010 ecs->event_thread->suspend.stop_pc,
5011 ecs->event_thread, &ecs->ws);
675bf4cb 5012
c65d6b55
PA
5013 if (handle_stop_requested (ecs))
5014 return;
5015
ce12b012
PA
5016 /* If no catchpoint triggered for this, then keep going. Note
5017 that we're interested in knowing the bpstat actually causes a
5018 stop, not just if it may explain the signal. Software
5019 watchpoints, for example, always appear in the bpstat. */
5020 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5021 {
e58b0e63 5022 int should_resume;
3e43a32a
MS
5023 int follow_child
5024 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5025
a493e3e2 5026 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5027
5028 should_resume = follow_fork ();
5029
00431a78
PA
5030 thread_info *parent = ecs->event_thread;
5031 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5032
a2077e25
PA
5033 /* At this point, the parent is marked running, and the
5034 child is marked stopped. */
5035
5036 /* If not resuming the parent, mark it stopped. */
5037 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5038 parent->set_running (false);
a2077e25
PA
5039
5040 /* If resuming the child, mark it running. */
5041 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5042 child->set_running (true);
a2077e25 5043
6c95b8df 5044 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5045 if (!detach_fork && (non_stop
5046 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5047 {
5048 if (follow_child)
5049 switch_to_thread (parent);
5050 else
5051 switch_to_thread (child);
5052
5053 ecs->event_thread = inferior_thread ();
5054 ecs->ptid = inferior_ptid;
5055 keep_going (ecs);
5056 }
5057
5058 if (follow_child)
5059 switch_to_thread (child);
5060 else
5061 switch_to_thread (parent);
5062
e58b0e63
PA
5063 ecs->event_thread = inferior_thread ();
5064 ecs->ptid = inferior_ptid;
5065
5066 if (should_resume)
5067 keep_going (ecs);
5068 else
22bcd14b 5069 stop_waiting (ecs);
04e68871
DJ
5070 return;
5071 }
94c57d6a
PA
5072 process_event_stop_test (ecs);
5073 return;
488f131b 5074
6c95b8df
PA
5075 case TARGET_WAITKIND_VFORK_DONE:
5076 /* Done with the shared memory region. Re-insert breakpoints in
5077 the parent, and keep going. */
5078
5079 if (debug_infrun)
3e43a32a
MS
5080 fprintf_unfiltered (gdb_stdlog,
5081 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df 5082
00431a78 5083 context_switch (ecs);
6c95b8df
PA
5084
5085 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5086 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5087
5088 if (handle_stop_requested (ecs))
5089 return;
5090
6c95b8df
PA
5091 /* This also takes care of reinserting breakpoints in the
5092 previously locked inferior. */
5093 keep_going (ecs);
5094 return;
5095
488f131b 5096 case TARGET_WAITKIND_EXECD:
527159b7 5097 if (debug_infrun)
fc5261f2 5098 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5099
cbd2b4e3
PA
5100 /* Note we can't read registers yet (the stop_pc), because we
5101 don't yet know the inferior's post-exec architecture.
5102 'stop_pc' is explicitly read below instead. */
00431a78 5103 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5104
6c95b8df
PA
5105 /* Do whatever is necessary to the parent branch of the vfork. */
5106 handle_vfork_child_exec_or_exit (1);
5107
795e548f
PA
5108 /* This causes the eventpoints and symbol table to be reset.
5109 Must do this now, before trying to determine whether to
5110 stop. */
71b43ef8 5111 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5112
17d8546e
DB
5113 /* In follow_exec we may have deleted the original thread and
5114 created a new one. Make sure that the event thread is the
5115 execd thread for that case (this is a nop otherwise). */
5116 ecs->event_thread = inferior_thread ();
5117
f2ffa92b
PA
5118 ecs->event_thread->suspend.stop_pc
5119 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5120
16c381f0 5121 ecs->event_thread->control.stop_bpstat
a01bda52 5122 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5123 ecs->event_thread->suspend.stop_pc,
5124 ecs->event_thread, &ecs->ws);
795e548f 5125
71b43ef8
PA
5126 /* Note that this may be referenced from inside
5127 bpstat_stop_status above, through inferior_has_execd. */
5128 xfree (ecs->ws.value.execd_pathname);
5129 ecs->ws.value.execd_pathname = NULL;
5130
c65d6b55
PA
5131 if (handle_stop_requested (ecs))
5132 return;
5133
04e68871 5134 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5135 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5136 {
a493e3e2 5137 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5138 keep_going (ecs);
5139 return;
5140 }
94c57d6a
PA
5141 process_event_stop_test (ecs);
5142 return;
488f131b 5143
b4dc5ffa
MK
5144 /* Be careful not to try to gather much state about a thread
5145 that's in a syscall. It's frequently a losing proposition. */
488f131b 5146 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5147 if (debug_infrun)
3e43a32a
MS
5148 fprintf_unfiltered (gdb_stdlog,
5149 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5150 /* Getting the current syscall number. */
94c57d6a
PA
5151 if (handle_syscall_event (ecs) == 0)
5152 process_event_stop_test (ecs);
5153 return;
c906108c 5154
488f131b
JB
5155 /* Before examining the threads further, step this thread to
5156 get it entirely out of the syscall. (We get notice of the
5157 event when the thread is just on the verge of exiting a
5158 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5159 into user code.) */
488f131b 5160 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5161 if (debug_infrun)
3e43a32a
MS
5162 fprintf_unfiltered (gdb_stdlog,
5163 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5164 if (handle_syscall_event (ecs) == 0)
5165 process_event_stop_test (ecs);
5166 return;
c906108c 5167
488f131b 5168 case TARGET_WAITKIND_STOPPED:
527159b7 5169 if (debug_infrun)
8a9de0e4 5170 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5171 handle_signal_stop (ecs);
5172 return;
c906108c 5173
b2175913 5174 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5175 if (debug_infrun)
5176 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5177 /* Reverse execution: target ran out of history info. */
eab402df 5178
d1988021 5179 /* Switch to the stopped thread. */
00431a78 5180 context_switch (ecs);
d1988021
MM
5181 if (debug_infrun)
5182 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5183
34b7e8a6 5184 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5185 ecs->event_thread->suspend.stop_pc
5186 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5187
5188 if (handle_stop_requested (ecs))
5189 return;
5190
76727919 5191 gdb::observers::no_history.notify ();
22bcd14b 5192 stop_waiting (ecs);
b2175913 5193 return;
488f131b 5194 }
4f5d7f63
PA
5195}
5196
372316f1
PA
5197/* Restart threads back to what they were trying to do back when we
5198 paused them for an in-line step-over. The EVENT_THREAD thread is
5199 ignored. */
4d9d9d04
PA
5200
5201static void
372316f1
PA
5202restart_threads (struct thread_info *event_thread)
5203{
372316f1
PA
5204 /* In case the instruction just stepped spawned a new thread. */
5205 update_thread_list ();
5206
08036331 5207 for (thread_info *tp : all_non_exited_threads ())
372316f1
PA
5208 {
5209 if (tp == event_thread)
5210 {
5211 if (debug_infrun)
5212 fprintf_unfiltered (gdb_stdlog,
5213 "infrun: restart threads: "
5214 "[%s] is event thread\n",
a068643d 5215 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5216 continue;
5217 }
5218
5219 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5220 {
5221 if (debug_infrun)
5222 fprintf_unfiltered (gdb_stdlog,
5223 "infrun: restart threads: "
5224 "[%s] not meant to be running\n",
a068643d 5225 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5226 continue;
5227 }
5228
5229 if (tp->resumed)
5230 {
5231 if (debug_infrun)
5232 fprintf_unfiltered (gdb_stdlog,
5233 "infrun: restart threads: [%s] resumed\n",
a068643d 5234 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5235 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5236 continue;
5237 }
5238
5239 if (thread_is_in_step_over_chain (tp))
5240 {
5241 if (debug_infrun)
5242 fprintf_unfiltered (gdb_stdlog,
5243 "infrun: restart threads: "
5244 "[%s] needs step-over\n",
a068643d 5245 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5246 gdb_assert (!tp->resumed);
5247 continue;
5248 }
5249
5250
5251 if (tp->suspend.waitstatus_pending_p)
5252 {
5253 if (debug_infrun)
5254 fprintf_unfiltered (gdb_stdlog,
5255 "infrun: restart threads: "
5256 "[%s] has pending status\n",
a068643d 5257 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5258 tp->resumed = 1;
5259 continue;
5260 }
5261
c65d6b55
PA
5262 gdb_assert (!tp->stop_requested);
5263
372316f1
PA
5264 /* If some thread needs to start a step-over at this point, it
5265 should still be in the step-over queue, and thus skipped
5266 above. */
5267 if (thread_still_needs_step_over (tp))
5268 {
5269 internal_error (__FILE__, __LINE__,
5270 "thread [%s] needs a step-over, but not in "
5271 "step-over queue\n",
a068643d 5272 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5273 }
5274
5275 if (currently_stepping (tp))
5276 {
5277 if (debug_infrun)
5278 fprintf_unfiltered (gdb_stdlog,
5279 "infrun: restart threads: [%s] was stepping\n",
a068643d 5280 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5281 keep_going_stepped_thread (tp);
5282 }
5283 else
5284 {
5285 struct execution_control_state ecss;
5286 struct execution_control_state *ecs = &ecss;
5287
5288 if (debug_infrun)
5289 fprintf_unfiltered (gdb_stdlog,
5290 "infrun: restart threads: [%s] continuing\n",
a068643d 5291 target_pid_to_str (tp->ptid).c_str ());
372316f1 5292 reset_ecs (ecs, tp);
00431a78 5293 switch_to_thread (tp);
372316f1
PA
5294 keep_going_pass_signal (ecs);
5295 }
5296 }
5297}
5298
5299/* Callback for iterate_over_threads. Find a resumed thread that has
5300 a pending waitstatus. */
5301
5302static int
5303resumed_thread_with_pending_status (struct thread_info *tp,
5304 void *arg)
5305{
5306 return (tp->resumed
5307 && tp->suspend.waitstatus_pending_p);
5308}
5309
5310/* Called when we get an event that may finish an in-line or
5311 out-of-line (displaced stepping) step-over started previously.
5312 Return true if the event is processed and we should go back to the
5313 event loop; false if the caller should continue processing the
5314 event. */
5315
5316static int
4d9d9d04
PA
5317finish_step_over (struct execution_control_state *ecs)
5318{
372316f1
PA
5319 int had_step_over_info;
5320
00431a78 5321 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5322 ecs->event_thread->suspend.stop_signal);
5323
372316f1
PA
5324 had_step_over_info = step_over_info_valid_p ();
5325
5326 if (had_step_over_info)
4d9d9d04
PA
5327 {
5328 /* If we're stepping over a breakpoint with all threads locked,
5329 then only the thread that was stepped should be reporting
5330 back an event. */
5331 gdb_assert (ecs->event_thread->control.trap_expected);
5332
c65d6b55 5333 clear_step_over_info ();
4d9d9d04
PA
5334 }
5335
fbea99ea 5336 if (!target_is_non_stop_p ())
372316f1 5337 return 0;
4d9d9d04
PA
5338
5339 /* Start a new step-over in another thread if there's one that
5340 needs it. */
5341 start_step_over ();
372316f1
PA
5342
5343 /* If we were stepping over a breakpoint before, and haven't started
5344 a new in-line step-over sequence, then restart all other threads
5345 (except the event thread). We can't do this in all-stop, as then
5346 e.g., we wouldn't be able to issue any other remote packet until
5347 these other threads stop. */
5348 if (had_step_over_info && !step_over_info_valid_p ())
5349 {
5350 struct thread_info *pending;
5351
5352 /* If we only have threads with pending statuses, the restart
5353 below won't restart any thread and so nothing re-inserts the
5354 breakpoint we just stepped over. But we need it inserted
5355 when we later process the pending events, otherwise if
5356 another thread has a pending event for this breakpoint too,
5357 we'd discard its event (because the breakpoint that
5358 originally caused the event was no longer inserted). */
00431a78 5359 context_switch (ecs);
372316f1
PA
5360 insert_breakpoints ();
5361
5362 restart_threads (ecs->event_thread);
5363
5364 /* If we have events pending, go through handle_inferior_event
5365 again, picking up a pending event at random. This avoids
5366 thread starvation. */
5367
5368 /* But not if we just stepped over a watchpoint in order to let
5369 the instruction execute so we can evaluate its expression.
5370 The set of watchpoints that triggered is recorded in the
5371 breakpoint objects themselves (see bp->watchpoint_triggered).
5372 If we processed another event first, that other event could
5373 clobber this info. */
5374 if (ecs->event_thread->stepping_over_watchpoint)
5375 return 0;
5376
5377 pending = iterate_over_threads (resumed_thread_with_pending_status,
5378 NULL);
5379 if (pending != NULL)
5380 {
5381 struct thread_info *tp = ecs->event_thread;
5382 struct regcache *regcache;
5383
5384 if (debug_infrun)
5385 {
5386 fprintf_unfiltered (gdb_stdlog,
5387 "infrun: found resumed threads with "
5388 "pending events, saving status\n");
5389 }
5390
5391 gdb_assert (pending != tp);
5392
5393 /* Record the event thread's event for later. */
5394 save_waitstatus (tp, &ecs->ws);
5395 /* This was cleared early, by handle_inferior_event. Set it
5396 so this pending event is considered by
5397 do_target_wait. */
5398 tp->resumed = 1;
5399
5400 gdb_assert (!tp->executing);
5401
00431a78 5402 regcache = get_thread_regcache (tp);
372316f1
PA
5403 tp->suspend.stop_pc = regcache_read_pc (regcache);
5404
5405 if (debug_infrun)
5406 {
5407 fprintf_unfiltered (gdb_stdlog,
5408 "infrun: saved stop_pc=%s for %s "
5409 "(currently_stepping=%d)\n",
5410 paddress (target_gdbarch (),
5411 tp->suspend.stop_pc),
a068643d 5412 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5413 currently_stepping (tp));
5414 }
5415
5416 /* This in-line step-over finished; clear this so we won't
5417 start a new one. This is what handle_signal_stop would
5418 do, if we returned false. */
5419 tp->stepping_over_breakpoint = 0;
5420
5421 /* Wake up the event loop again. */
5422 mark_async_event_handler (infrun_async_inferior_event_token);
5423
5424 prepare_to_wait (ecs);
5425 return 1;
5426 }
5427 }
5428
5429 return 0;
4d9d9d04
PA
5430}
5431
4f5d7f63
PA
5432/* Come here when the program has stopped with a signal. */
5433
5434static void
5435handle_signal_stop (struct execution_control_state *ecs)
5436{
5437 struct frame_info *frame;
5438 struct gdbarch *gdbarch;
5439 int stopped_by_watchpoint;
5440 enum stop_kind stop_soon;
5441 int random_signal;
c906108c 5442
f0407826
DE
5443 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5444
c65d6b55
PA
5445 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5446
f0407826
DE
5447 /* Do we need to clean up the state of a thread that has
5448 completed a displaced single-step? (Doing so usually affects
5449 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5450 if (finish_step_over (ecs))
5451 return;
f0407826
DE
5452
5453 /* If we either finished a single-step or hit a breakpoint, but
5454 the user wanted this thread to be stopped, pretend we got a
5455 SIG0 (generic unsignaled stop). */
5456 if (ecs->event_thread->stop_requested
5457 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5458 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5459
f2ffa92b
PA
5460 ecs->event_thread->suspend.stop_pc
5461 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5462
527159b7 5463 if (debug_infrun)
237fc4c9 5464 {
00431a78 5465 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5466 struct gdbarch *reg_gdbarch = regcache->arch ();
2989a365 5467 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5468
5469 inferior_ptid = ecs->ptid;
5af949e3
UW
5470
5471 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5472 paddress (reg_gdbarch,
f2ffa92b 5473 ecs->event_thread->suspend.stop_pc));
d92524f1 5474 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5475 {
5476 CORE_ADDR addr;
abbb1732 5477
237fc4c9
PA
5478 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5479
8b88a78e 5480 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5481 fprintf_unfiltered (gdb_stdlog,
5af949e3 5482 "infrun: stopped data address = %s\n",
b926417a 5483 paddress (reg_gdbarch, addr));
237fc4c9
PA
5484 else
5485 fprintf_unfiltered (gdb_stdlog,
5486 "infrun: (no data address available)\n");
5487 }
5488 }
527159b7 5489
36fa8042
PA
5490 /* This is originated from start_remote(), start_inferior() and
5491 shared libraries hook functions. */
00431a78 5492 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5493 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5494 {
00431a78 5495 context_switch (ecs);
36fa8042
PA
5496 if (debug_infrun)
5497 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5498 stop_print_frame = 1;
22bcd14b 5499 stop_waiting (ecs);
36fa8042
PA
5500 return;
5501 }
5502
36fa8042
PA
5503 /* This originates from attach_command(). We need to overwrite
5504 the stop_signal here, because some kernels don't ignore a
5505 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5506 See more comments in inferior.h. On the other hand, if we
5507 get a non-SIGSTOP, report it to the user - assume the backend
5508 will handle the SIGSTOP if it should show up later.
5509
5510 Also consider that the attach is complete when we see a
5511 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5512 target extended-remote report it instead of a SIGSTOP
5513 (e.g. gdbserver). We already rely on SIGTRAP being our
5514 signal, so this is no exception.
5515
5516 Also consider that the attach is complete when we see a
5517 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5518 the target to stop all threads of the inferior, in case the
5519 low level attach operation doesn't stop them implicitly. If
5520 they weren't stopped implicitly, then the stub will report a
5521 GDB_SIGNAL_0, meaning: stopped for no particular reason
5522 other than GDB's request. */
5523 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5524 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5525 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5526 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5527 {
5528 stop_print_frame = 1;
22bcd14b 5529 stop_waiting (ecs);
36fa8042
PA
5530 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5531 return;
5532 }
5533
488f131b 5534 /* See if something interesting happened to the non-current thread. If
b40c7d58 5535 so, then switch to that thread. */
d7e15655 5536 if (ecs->ptid != inferior_ptid)
488f131b 5537 {
527159b7 5538 if (debug_infrun)
8a9de0e4 5539 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5540
00431a78 5541 context_switch (ecs);
c5aa993b 5542
9a4105ab 5543 if (deprecated_context_hook)
00431a78 5544 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5545 }
c906108c 5546
568d6575
UW
5547 /* At this point, get hold of the now-current thread's frame. */
5548 frame = get_current_frame ();
5549 gdbarch = get_frame_arch (frame);
5550
2adfaa28 5551 /* Pull the single step breakpoints out of the target. */
af48d08f 5552 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5553 {
af48d08f 5554 struct regcache *regcache;
af48d08f 5555 CORE_ADDR pc;
2adfaa28 5556
00431a78 5557 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5558 const address_space *aspace = regcache->aspace ();
5559
af48d08f 5560 pc = regcache_read_pc (regcache);
34b7e8a6 5561
af48d08f
PA
5562 /* However, before doing so, if this single-step breakpoint was
5563 actually for another thread, set this thread up for moving
5564 past it. */
5565 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5566 aspace, pc))
5567 {
5568 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5569 {
5570 if (debug_infrun)
5571 {
5572 fprintf_unfiltered (gdb_stdlog,
af48d08f 5573 "infrun: [%s] hit another thread's "
34b7e8a6 5574 "single-step breakpoint\n",
a068643d 5575 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5576 }
af48d08f
PA
5577 ecs->hit_singlestep_breakpoint = 1;
5578 }
5579 }
5580 else
5581 {
5582 if (debug_infrun)
5583 {
5584 fprintf_unfiltered (gdb_stdlog,
5585 "infrun: [%s] hit its "
5586 "single-step breakpoint\n",
a068643d 5587 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
5588 }
5589 }
488f131b 5590 }
af48d08f 5591 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5592
963f9c80
PA
5593 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5594 && ecs->event_thread->control.trap_expected
5595 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5596 stopped_by_watchpoint = 0;
5597 else
5598 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5599
5600 /* If necessary, step over this watchpoint. We'll be back to display
5601 it in a moment. */
5602 if (stopped_by_watchpoint
d92524f1 5603 && (target_have_steppable_watchpoint
568d6575 5604 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5605 {
488f131b
JB
5606 /* At this point, we are stopped at an instruction which has
5607 attempted to write to a piece of memory under control of
5608 a watchpoint. The instruction hasn't actually executed
5609 yet. If we were to evaluate the watchpoint expression
5610 now, we would get the old value, and therefore no change
5611 would seem to have occurred.
5612
5613 In order to make watchpoints work `right', we really need
5614 to complete the memory write, and then evaluate the
d983da9c
DJ
5615 watchpoint expression. We do this by single-stepping the
5616 target.
5617
7f89fd65 5618 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5619 it. For example, the PA can (with some kernel cooperation)
5620 single step over a watchpoint without disabling the watchpoint.
5621
5622 It is far more common to need to disable a watchpoint to step
5623 the inferior over it. If we have non-steppable watchpoints,
5624 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5625 disable all watchpoints.
5626
5627 Any breakpoint at PC must also be stepped over -- if there's
5628 one, it will have already triggered before the watchpoint
5629 triggered, and we either already reported it to the user, or
5630 it didn't cause a stop and we called keep_going. In either
5631 case, if there was a breakpoint at PC, we must be trying to
5632 step past it. */
5633 ecs->event_thread->stepping_over_watchpoint = 1;
5634 keep_going (ecs);
488f131b
JB
5635 return;
5636 }
5637
4e1c45ea 5638 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5639 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5640 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5641 ecs->event_thread->control.stop_step = 0;
488f131b 5642 stop_print_frame = 1;
488f131b 5643 stopped_by_random_signal = 0;
ddfe970e 5644 bpstat stop_chain = NULL;
488f131b 5645
edb3359d
DJ
5646 /* Hide inlined functions starting here, unless we just performed stepi or
5647 nexti. After stepi and nexti, always show the innermost frame (not any
5648 inline function call sites). */
16c381f0 5649 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5650 {
00431a78
PA
5651 const address_space *aspace
5652 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5653
5654 /* skip_inline_frames is expensive, so we avoid it if we can
5655 determine that the address is one where functions cannot have
5656 been inlined. This improves performance with inferiors that
5657 load a lot of shared libraries, because the solib event
5658 breakpoint is defined as the address of a function (i.e. not
5659 inline). Note that we have to check the previous PC as well
5660 as the current one to catch cases when we have just
5661 single-stepped off a breakpoint prior to reinstating it.
5662 Note that we're assuming that the code we single-step to is
5663 not inline, but that's not definitive: there's nothing
5664 preventing the event breakpoint function from containing
5665 inlined code, and the single-step ending up there. If the
5666 user had set a breakpoint on that inlined code, the missing
5667 skip_inline_frames call would break things. Fortunately
5668 that's an extremely unlikely scenario. */
f2ffa92b
PA
5669 if (!pc_at_non_inline_function (aspace,
5670 ecs->event_thread->suspend.stop_pc,
5671 &ecs->ws)
a210c238
MR
5672 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5673 && ecs->event_thread->control.trap_expected
5674 && pc_at_non_inline_function (aspace,
5675 ecs->event_thread->prev_pc,
09ac7c10 5676 &ecs->ws)))
1c5a993e 5677 {
f2ffa92b
PA
5678 stop_chain = build_bpstat_chain (aspace,
5679 ecs->event_thread->suspend.stop_pc,
5680 &ecs->ws);
00431a78 5681 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5682
5683 /* Re-fetch current thread's frame in case that invalidated
5684 the frame cache. */
5685 frame = get_current_frame ();
5686 gdbarch = get_frame_arch (frame);
5687 }
0574c78f 5688 }
edb3359d 5689
a493e3e2 5690 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5691 && ecs->event_thread->control.trap_expected
568d6575 5692 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5693 && currently_stepping (ecs->event_thread))
3352ef37 5694 {
b50d7442 5695 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5696 also on an instruction that needs to be stepped multiple
1777feb0 5697 times before it's been fully executing. E.g., architectures
3352ef37
AC
5698 with a delay slot. It needs to be stepped twice, once for
5699 the instruction and once for the delay slot. */
5700 int step_through_delay
568d6575 5701 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5702
527159b7 5703 if (debug_infrun && step_through_delay)
8a9de0e4 5704 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5705 if (ecs->event_thread->control.step_range_end == 0
5706 && step_through_delay)
3352ef37
AC
5707 {
5708 /* The user issued a continue when stopped at a breakpoint.
5709 Set up for another trap and get out of here. */
4e1c45ea 5710 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5711 keep_going (ecs);
5712 return;
5713 }
5714 else if (step_through_delay)
5715 {
5716 /* The user issued a step when stopped at a breakpoint.
5717 Maybe we should stop, maybe we should not - the delay
5718 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5719 case, don't decide that here, just set
5720 ecs->stepping_over_breakpoint, making sure we
5721 single-step again before breakpoints are re-inserted. */
4e1c45ea 5722 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5723 }
5724 }
5725
ab04a2af
TT
5726 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5727 handles this event. */
5728 ecs->event_thread->control.stop_bpstat
a01bda52 5729 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5730 ecs->event_thread->suspend.stop_pc,
5731 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5732
ab04a2af
TT
5733 /* Following in case break condition called a
5734 function. */
5735 stop_print_frame = 1;
73dd234f 5736
ab04a2af
TT
5737 /* This is where we handle "moribund" watchpoints. Unlike
5738 software breakpoints traps, hardware watchpoint traps are
5739 always distinguishable from random traps. If no high-level
5740 watchpoint is associated with the reported stop data address
5741 anymore, then the bpstat does not explain the signal ---
5742 simply make sure to ignore it if `stopped_by_watchpoint' is
5743 set. */
5744
5745 if (debug_infrun
5746 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5747 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5748 GDB_SIGNAL_TRAP)
ab04a2af
TT
5749 && stopped_by_watchpoint)
5750 fprintf_unfiltered (gdb_stdlog,
5751 "infrun: no user watchpoint explains "
5752 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5753
bac7d97b 5754 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5755 at one stage in the past included checks for an inferior
5756 function call's call dummy's return breakpoint. The original
5757 comment, that went with the test, read:
03cebad2 5758
ab04a2af
TT
5759 ``End of a stack dummy. Some systems (e.g. Sony news) give
5760 another signal besides SIGTRAP, so check here as well as
5761 above.''
73dd234f 5762
ab04a2af
TT
5763 If someone ever tries to get call dummys on a
5764 non-executable stack to work (where the target would stop
5765 with something like a SIGSEGV), then those tests might need
5766 to be re-instated. Given, however, that the tests were only
5767 enabled when momentary breakpoints were not being used, I
5768 suspect that it won't be the case.
488f131b 5769
ab04a2af
TT
5770 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5771 be necessary for call dummies on a non-executable stack on
5772 SPARC. */
488f131b 5773
bac7d97b 5774 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5775 random_signal
5776 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5777 ecs->event_thread->suspend.stop_signal);
bac7d97b 5778
1cf4d951
PA
5779 /* Maybe this was a trap for a software breakpoint that has since
5780 been removed. */
5781 if (random_signal && target_stopped_by_sw_breakpoint ())
5782 {
f2ffa92b
PA
5783 if (program_breakpoint_here_p (gdbarch,
5784 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5785 {
5786 struct regcache *regcache;
5787 int decr_pc;
5788
5789 /* Re-adjust PC to what the program would see if GDB was not
5790 debugging it. */
00431a78 5791 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5792 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5793 if (decr_pc != 0)
5794 {
07036511
TT
5795 gdb::optional<scoped_restore_tmpl<int>>
5796 restore_operation_disable;
1cf4d951
PA
5797
5798 if (record_full_is_used ())
07036511
TT
5799 restore_operation_disable.emplace
5800 (record_full_gdb_operation_disable_set ());
1cf4d951 5801
f2ffa92b
PA
5802 regcache_write_pc (regcache,
5803 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
5804 }
5805 }
5806 else
5807 {
5808 /* A delayed software breakpoint event. Ignore the trap. */
5809 if (debug_infrun)
5810 fprintf_unfiltered (gdb_stdlog,
5811 "infrun: delayed software breakpoint "
5812 "trap, ignoring\n");
5813 random_signal = 0;
5814 }
5815 }
5816
5817 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5818 has since been removed. */
5819 if (random_signal && target_stopped_by_hw_breakpoint ())
5820 {
5821 /* A delayed hardware breakpoint event. Ignore the trap. */
5822 if (debug_infrun)
5823 fprintf_unfiltered (gdb_stdlog,
5824 "infrun: delayed hardware breakpoint/watchpoint "
5825 "trap, ignoring\n");
5826 random_signal = 0;
5827 }
5828
bac7d97b
PA
5829 /* If not, perhaps stepping/nexting can. */
5830 if (random_signal)
5831 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5832 && currently_stepping (ecs->event_thread));
ab04a2af 5833
2adfaa28
PA
5834 /* Perhaps the thread hit a single-step breakpoint of _another_
5835 thread. Single-step breakpoints are transparent to the
5836 breakpoints module. */
5837 if (random_signal)
5838 random_signal = !ecs->hit_singlestep_breakpoint;
5839
bac7d97b
PA
5840 /* No? Perhaps we got a moribund watchpoint. */
5841 if (random_signal)
5842 random_signal = !stopped_by_watchpoint;
ab04a2af 5843
c65d6b55
PA
5844 /* Always stop if the user explicitly requested this thread to
5845 remain stopped. */
5846 if (ecs->event_thread->stop_requested)
5847 {
5848 random_signal = 1;
5849 if (debug_infrun)
5850 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5851 }
5852
488f131b
JB
5853 /* For the program's own signals, act according to
5854 the signal handling tables. */
5855
ce12b012 5856 if (random_signal)
488f131b
JB
5857 {
5858 /* Signal not for debugging purposes. */
c9657e70 5859 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5860 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5861
527159b7 5862 if (debug_infrun)
c9737c08
PA
5863 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5864 gdb_signal_to_symbol_string (stop_signal));
527159b7 5865
488f131b
JB
5866 stopped_by_random_signal = 1;
5867
252fbfc8
PA
5868 /* Always stop on signals if we're either just gaining control
5869 of the program, or the user explicitly requested this thread
5870 to remain stopped. */
d6b48e9c 5871 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5872 || ecs->event_thread->stop_requested
24291992 5873 || (!inf->detaching
16c381f0 5874 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5875 {
22bcd14b 5876 stop_waiting (ecs);
488f131b
JB
5877 return;
5878 }
b57bacec
PA
5879
5880 /* Notify observers the signal has "handle print" set. Note we
5881 returned early above if stopping; normal_stop handles the
5882 printing in that case. */
5883 if (signal_print[ecs->event_thread->suspend.stop_signal])
5884 {
5885 /* The signal table tells us to print about this signal. */
223ffa71 5886 target_terminal::ours_for_output ();
76727919 5887 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 5888 target_terminal::inferior ();
b57bacec 5889 }
488f131b
JB
5890
5891 /* Clear the signal if it should not be passed. */
16c381f0 5892 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5893 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5894
f2ffa92b 5895 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 5896 && ecs->event_thread->control.trap_expected
8358c15c 5897 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
5898 {
5899 /* We were just starting a new sequence, attempting to
5900 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5901 Instead this signal arrives. This signal will take us out
68f53502
AC
5902 of the stepping range so GDB needs to remember to, when
5903 the signal handler returns, resume stepping off that
5904 breakpoint. */
5905 /* To simplify things, "continue" is forced to use the same
5906 code paths as single-step - set a breakpoint at the
5907 signal return address and then, once hit, step off that
5908 breakpoint. */
237fc4c9
PA
5909 if (debug_infrun)
5910 fprintf_unfiltered (gdb_stdlog,
5911 "infrun: signal arrived while stepping over "
5912 "breakpoint\n");
d3169d93 5913
2c03e5be 5914 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5915 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5916 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5917 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
5918
5919 /* If we were nexting/stepping some other thread, switch to
5920 it, so that we don't continue it, losing control. */
5921 if (!switch_back_to_stepped_thread (ecs))
5922 keep_going (ecs);
9d799f85 5923 return;
68f53502 5924 }
9d799f85 5925
e5f8a7cc 5926 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
5927 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5928 ecs->event_thread)
e5f8a7cc 5929 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5930 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5931 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5932 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5933 {
5934 /* The inferior is about to take a signal that will take it
5935 out of the single step range. Set a breakpoint at the
5936 current PC (which is presumably where the signal handler
5937 will eventually return) and then allow the inferior to
5938 run free.
5939
5940 Note that this is only needed for a signal delivered
5941 while in the single-step range. Nested signals aren't a
5942 problem as they eventually all return. */
237fc4c9
PA
5943 if (debug_infrun)
5944 fprintf_unfiltered (gdb_stdlog,
5945 "infrun: signal may take us out of "
5946 "single-step range\n");
5947
372316f1 5948 clear_step_over_info ();
2c03e5be 5949 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5950 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5951 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5952 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5953 keep_going (ecs);
5954 return;
d303a6c7 5955 }
9d799f85
AC
5956
5957 /* Note: step_resume_breakpoint may be non-NULL. This occures
5958 when either there's a nested signal, or when there's a
5959 pending signal enabled just as the signal handler returns
5960 (leaving the inferior at the step-resume-breakpoint without
5961 actually executing it). Either way continue until the
5962 breakpoint is really hit. */
c447ac0b
PA
5963
5964 if (!switch_back_to_stepped_thread (ecs))
5965 {
5966 if (debug_infrun)
5967 fprintf_unfiltered (gdb_stdlog,
5968 "infrun: random signal, keep going\n");
5969
5970 keep_going (ecs);
5971 }
5972 return;
488f131b 5973 }
94c57d6a
PA
5974
5975 process_event_stop_test (ecs);
5976}
5977
5978/* Come here when we've got some debug event / signal we can explain
5979 (IOW, not a random signal), and test whether it should cause a
5980 stop, or whether we should resume the inferior (transparently).
5981 E.g., could be a breakpoint whose condition evaluates false; we
5982 could be still stepping within the line; etc. */
5983
5984static void
5985process_event_stop_test (struct execution_control_state *ecs)
5986{
5987 struct symtab_and_line stop_pc_sal;
5988 struct frame_info *frame;
5989 struct gdbarch *gdbarch;
cdaa5b73
PA
5990 CORE_ADDR jmp_buf_pc;
5991 struct bpstat_what what;
94c57d6a 5992
cdaa5b73 5993 /* Handle cases caused by hitting a breakpoint. */
611c83ae 5994
cdaa5b73
PA
5995 frame = get_current_frame ();
5996 gdbarch = get_frame_arch (frame);
fcf3daef 5997
cdaa5b73 5998 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 5999
cdaa5b73
PA
6000 if (what.call_dummy)
6001 {
6002 stop_stack_dummy = what.call_dummy;
6003 }
186c406b 6004
243a9253
PA
6005 /* A few breakpoint types have callbacks associated (e.g.,
6006 bp_jit_event). Run them now. */
6007 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6008
cdaa5b73
PA
6009 /* If we hit an internal event that triggers symbol changes, the
6010 current frame will be invalidated within bpstat_what (e.g., if we
6011 hit an internal solib event). Re-fetch it. */
6012 frame = get_current_frame ();
6013 gdbarch = get_frame_arch (frame);
e2e4d78b 6014
cdaa5b73
PA
6015 switch (what.main_action)
6016 {
6017 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6018 /* If we hit the breakpoint at longjmp while stepping, we
6019 install a momentary breakpoint at the target of the
6020 jmp_buf. */
186c406b 6021
cdaa5b73
PA
6022 if (debug_infrun)
6023 fprintf_unfiltered (gdb_stdlog,
6024 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6025
cdaa5b73 6026 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6027
cdaa5b73
PA
6028 if (what.is_longjmp)
6029 {
6030 struct value *arg_value;
6031
6032 /* If we set the longjmp breakpoint via a SystemTap probe,
6033 then use it to extract the arguments. The destination PC
6034 is the third argument to the probe. */
6035 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6036 if (arg_value)
8fa0c4f8
AA
6037 {
6038 jmp_buf_pc = value_as_address (arg_value);
6039 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6040 }
cdaa5b73
PA
6041 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6042 || !gdbarch_get_longjmp_target (gdbarch,
6043 frame, &jmp_buf_pc))
e2e4d78b 6044 {
cdaa5b73
PA
6045 if (debug_infrun)
6046 fprintf_unfiltered (gdb_stdlog,
6047 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6048 "(!gdbarch_get_longjmp_target)\n");
6049 keep_going (ecs);
6050 return;
e2e4d78b 6051 }
e2e4d78b 6052
cdaa5b73
PA
6053 /* Insert a breakpoint at resume address. */
6054 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6055 }
6056 else
6057 check_exception_resume (ecs, frame);
6058 keep_going (ecs);
6059 return;
e81a37f7 6060
cdaa5b73
PA
6061 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6062 {
6063 struct frame_info *init_frame;
e81a37f7 6064
cdaa5b73 6065 /* There are several cases to consider.
c906108c 6066
cdaa5b73
PA
6067 1. The initiating frame no longer exists. In this case we
6068 must stop, because the exception or longjmp has gone too
6069 far.
2c03e5be 6070
cdaa5b73
PA
6071 2. The initiating frame exists, and is the same as the
6072 current frame. We stop, because the exception or longjmp
6073 has been caught.
2c03e5be 6074
cdaa5b73
PA
6075 3. The initiating frame exists and is different from the
6076 current frame. This means the exception or longjmp has
6077 been caught beneath the initiating frame, so keep going.
c906108c 6078
cdaa5b73
PA
6079 4. longjmp breakpoint has been placed just to protect
6080 against stale dummy frames and user is not interested in
6081 stopping around longjmps. */
c5aa993b 6082
cdaa5b73
PA
6083 if (debug_infrun)
6084 fprintf_unfiltered (gdb_stdlog,
6085 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6086
cdaa5b73
PA
6087 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6088 != NULL);
6089 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6090
cdaa5b73
PA
6091 if (what.is_longjmp)
6092 {
b67a2c6f 6093 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6094
cdaa5b73 6095 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6096 {
cdaa5b73
PA
6097 /* Case 4. */
6098 keep_going (ecs);
6099 return;
e5ef252a 6100 }
cdaa5b73 6101 }
c5aa993b 6102
cdaa5b73 6103 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6104
cdaa5b73
PA
6105 if (init_frame)
6106 {
6107 struct frame_id current_id
6108 = get_frame_id (get_current_frame ());
6109 if (frame_id_eq (current_id,
6110 ecs->event_thread->initiating_frame))
6111 {
6112 /* Case 2. Fall through. */
6113 }
6114 else
6115 {
6116 /* Case 3. */
6117 keep_going (ecs);
6118 return;
6119 }
68f53502 6120 }
488f131b 6121
cdaa5b73
PA
6122 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6123 exists. */
6124 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6125
bdc36728 6126 end_stepping_range (ecs);
cdaa5b73
PA
6127 }
6128 return;
e5ef252a 6129
cdaa5b73
PA
6130 case BPSTAT_WHAT_SINGLE:
6131 if (debug_infrun)
6132 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6133 ecs->event_thread->stepping_over_breakpoint = 1;
6134 /* Still need to check other stuff, at least the case where we
6135 are stepping and step out of the right range. */
6136 break;
e5ef252a 6137
cdaa5b73
PA
6138 case BPSTAT_WHAT_STEP_RESUME:
6139 if (debug_infrun)
6140 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6141
cdaa5b73
PA
6142 delete_step_resume_breakpoint (ecs->event_thread);
6143 if (ecs->event_thread->control.proceed_to_finish
6144 && execution_direction == EXEC_REVERSE)
6145 {
6146 struct thread_info *tp = ecs->event_thread;
6147
6148 /* We are finishing a function in reverse, and just hit the
6149 step-resume breakpoint at the start address of the
6150 function, and we're almost there -- just need to back up
6151 by one more single-step, which should take us back to the
6152 function call. */
6153 tp->control.step_range_start = tp->control.step_range_end = 1;
6154 keep_going (ecs);
e5ef252a 6155 return;
cdaa5b73
PA
6156 }
6157 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6158 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6159 && execution_direction == EXEC_REVERSE)
6160 {
6161 /* We are stepping over a function call in reverse, and just
6162 hit the step-resume breakpoint at the start address of
6163 the function. Go back to single-stepping, which should
6164 take us back to the function call. */
6165 ecs->event_thread->stepping_over_breakpoint = 1;
6166 keep_going (ecs);
6167 return;
6168 }
6169 break;
e5ef252a 6170
cdaa5b73
PA
6171 case BPSTAT_WHAT_STOP_NOISY:
6172 if (debug_infrun)
6173 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6174 stop_print_frame = 1;
e5ef252a 6175
99619bea
PA
6176 /* Assume the thread stopped for a breapoint. We'll still check
6177 whether a/the breakpoint is there when the thread is next
6178 resumed. */
6179 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6180
22bcd14b 6181 stop_waiting (ecs);
cdaa5b73 6182 return;
e5ef252a 6183
cdaa5b73
PA
6184 case BPSTAT_WHAT_STOP_SILENT:
6185 if (debug_infrun)
6186 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6187 stop_print_frame = 0;
e5ef252a 6188
99619bea
PA
6189 /* Assume the thread stopped for a breapoint. We'll still check
6190 whether a/the breakpoint is there when the thread is next
6191 resumed. */
6192 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6193 stop_waiting (ecs);
cdaa5b73
PA
6194 return;
6195
6196 case BPSTAT_WHAT_HP_STEP_RESUME:
6197 if (debug_infrun)
6198 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6199
6200 delete_step_resume_breakpoint (ecs->event_thread);
6201 if (ecs->event_thread->step_after_step_resume_breakpoint)
6202 {
6203 /* Back when the step-resume breakpoint was inserted, we
6204 were trying to single-step off a breakpoint. Go back to
6205 doing that. */
6206 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6207 ecs->event_thread->stepping_over_breakpoint = 1;
6208 keep_going (ecs);
6209 return;
e5ef252a 6210 }
cdaa5b73
PA
6211 break;
6212
6213 case BPSTAT_WHAT_KEEP_CHECKING:
6214 break;
e5ef252a 6215 }
c906108c 6216
af48d08f
PA
6217 /* If we stepped a permanent breakpoint and we had a high priority
6218 step-resume breakpoint for the address we stepped, but we didn't
6219 hit it, then we must have stepped into the signal handler. The
6220 step-resume was only necessary to catch the case of _not_
6221 stepping into the handler, so delete it, and fall through to
6222 checking whether the step finished. */
6223 if (ecs->event_thread->stepped_breakpoint)
6224 {
6225 struct breakpoint *sr_bp
6226 = ecs->event_thread->control.step_resume_breakpoint;
6227
8d707a12
PA
6228 if (sr_bp != NULL
6229 && sr_bp->loc->permanent
af48d08f
PA
6230 && sr_bp->type == bp_hp_step_resume
6231 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6232 {
6233 if (debug_infrun)
6234 fprintf_unfiltered (gdb_stdlog,
6235 "infrun: stepped permanent breakpoint, stopped in "
6236 "handler\n");
6237 delete_step_resume_breakpoint (ecs->event_thread);
6238 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6239 }
6240 }
6241
cdaa5b73
PA
6242 /* We come here if we hit a breakpoint but should not stop for it.
6243 Possibly we also were stepping and should stop for that. So fall
6244 through and test for stepping. But, if not stepping, do not
6245 stop. */
c906108c 6246
a7212384
UW
6247 /* In all-stop mode, if we're currently stepping but have stopped in
6248 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6249 if (switch_back_to_stepped_thread (ecs))
6250 return;
776f04fa 6251
8358c15c 6252 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6253 {
527159b7 6254 if (debug_infrun)
d3169d93
DJ
6255 fprintf_unfiltered (gdb_stdlog,
6256 "infrun: step-resume breakpoint is inserted\n");
527159b7 6257
488f131b
JB
6258 /* Having a step-resume breakpoint overrides anything
6259 else having to do with stepping commands until
6260 that breakpoint is reached. */
488f131b
JB
6261 keep_going (ecs);
6262 return;
6263 }
c5aa993b 6264
16c381f0 6265 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6266 {
527159b7 6267 if (debug_infrun)
8a9de0e4 6268 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6269 /* Likewise if we aren't even stepping. */
488f131b
JB
6270 keep_going (ecs);
6271 return;
6272 }
c5aa993b 6273
4b7703ad
JB
6274 /* Re-fetch current thread's frame in case the code above caused
6275 the frame cache to be re-initialized, making our FRAME variable
6276 a dangling pointer. */
6277 frame = get_current_frame ();
628fe4e4 6278 gdbarch = get_frame_arch (frame);
7e324e48 6279 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6280
488f131b 6281 /* If stepping through a line, keep going if still within it.
c906108c 6282
488f131b
JB
6283 Note that step_range_end is the address of the first instruction
6284 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6285 within it!
6286
6287 Note also that during reverse execution, we may be stepping
6288 through a function epilogue and therefore must detect when
6289 the current-frame changes in the middle of a line. */
6290
f2ffa92b
PA
6291 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6292 ecs->event_thread)
31410e84 6293 && (execution_direction != EXEC_REVERSE
388a8562 6294 || frame_id_eq (get_frame_id (frame),
16c381f0 6295 ecs->event_thread->control.step_frame_id)))
488f131b 6296 {
527159b7 6297 if (debug_infrun)
5af949e3
UW
6298 fprintf_unfiltered
6299 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6300 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6301 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6302
c1e36e3e
PA
6303 /* Tentatively re-enable range stepping; `resume' disables it if
6304 necessary (e.g., if we're stepping over a breakpoint or we
6305 have software watchpoints). */
6306 ecs->event_thread->control.may_range_step = 1;
6307
b2175913
MS
6308 /* When stepping backward, stop at beginning of line range
6309 (unless it's the function entry point, in which case
6310 keep going back to the call point). */
f2ffa92b 6311 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6312 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6313 && stop_pc != ecs->stop_func_start
6314 && execution_direction == EXEC_REVERSE)
bdc36728 6315 end_stepping_range (ecs);
b2175913
MS
6316 else
6317 keep_going (ecs);
6318
488f131b
JB
6319 return;
6320 }
c5aa993b 6321
488f131b 6322 /* We stepped out of the stepping range. */
c906108c 6323
488f131b 6324 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6325 loader dynamic symbol resolution code...
6326
6327 EXEC_FORWARD: we keep on single stepping until we exit the run
6328 time loader code and reach the callee's address.
6329
6330 EXEC_REVERSE: we've already executed the callee (backward), and
6331 the runtime loader code is handled just like any other
6332 undebuggable function call. Now we need only keep stepping
6333 backward through the trampoline code, and that's handled further
6334 down, so there is nothing for us to do here. */
6335
6336 if (execution_direction != EXEC_REVERSE
16c381f0 6337 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6338 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6339 {
4c8c40e6 6340 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6341 gdbarch_skip_solib_resolver (gdbarch,
6342 ecs->event_thread->suspend.stop_pc);
c906108c 6343
527159b7 6344 if (debug_infrun)
3e43a32a
MS
6345 fprintf_unfiltered (gdb_stdlog,
6346 "infrun: stepped into dynsym resolve code\n");
527159b7 6347
488f131b
JB
6348 if (pc_after_resolver)
6349 {
6350 /* Set up a step-resume breakpoint at the address
6351 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6352 symtab_and_line sr_sal;
488f131b 6353 sr_sal.pc = pc_after_resolver;
6c95b8df 6354 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6355
a6d9a66e
UW
6356 insert_step_resume_breakpoint_at_sal (gdbarch,
6357 sr_sal, null_frame_id);
c5aa993b 6358 }
c906108c 6359
488f131b
JB
6360 keep_going (ecs);
6361 return;
6362 }
c906108c 6363
1d509aa6
MM
6364 /* Step through an indirect branch thunk. */
6365 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6366 && gdbarch_in_indirect_branch_thunk (gdbarch,
6367 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6368 {
6369 if (debug_infrun)
6370 fprintf_unfiltered (gdb_stdlog,
6371 "infrun: stepped into indirect branch thunk\n");
6372 keep_going (ecs);
6373 return;
6374 }
6375
16c381f0
JK
6376 if (ecs->event_thread->control.step_range_end != 1
6377 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6378 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6379 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6380 {
527159b7 6381 if (debug_infrun)
3e43a32a
MS
6382 fprintf_unfiltered (gdb_stdlog,
6383 "infrun: stepped into signal trampoline\n");
42edda50 6384 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6385 a signal trampoline (either by a signal being delivered or by
6386 the signal handler returning). Just single-step until the
6387 inferior leaves the trampoline (either by calling the handler
6388 or returning). */
488f131b
JB
6389 keep_going (ecs);
6390 return;
6391 }
c906108c 6392
14132e89
MR
6393 /* If we're in the return path from a shared library trampoline,
6394 we want to proceed through the trampoline when stepping. */
6395 /* macro/2012-04-25: This needs to come before the subroutine
6396 call check below as on some targets return trampolines look
6397 like subroutine calls (MIPS16 return thunks). */
6398 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6399 ecs->event_thread->suspend.stop_pc,
6400 ecs->stop_func_name)
14132e89
MR
6401 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6402 {
6403 /* Determine where this trampoline returns. */
f2ffa92b
PA
6404 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6405 CORE_ADDR real_stop_pc
6406 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6407
6408 if (debug_infrun)
6409 fprintf_unfiltered (gdb_stdlog,
6410 "infrun: stepped into solib return tramp\n");
6411
6412 /* Only proceed through if we know where it's going. */
6413 if (real_stop_pc)
6414 {
6415 /* And put the step-breakpoint there and go until there. */
51abb421 6416 symtab_and_line sr_sal;
14132e89
MR
6417 sr_sal.pc = real_stop_pc;
6418 sr_sal.section = find_pc_overlay (sr_sal.pc);
6419 sr_sal.pspace = get_frame_program_space (frame);
6420
6421 /* Do not specify what the fp should be when we stop since
6422 on some machines the prologue is where the new fp value
6423 is established. */
6424 insert_step_resume_breakpoint_at_sal (gdbarch,
6425 sr_sal, null_frame_id);
6426
6427 /* Restart without fiddling with the step ranges or
6428 other state. */
6429 keep_going (ecs);
6430 return;
6431 }
6432 }
6433
c17eaafe
DJ
6434 /* Check for subroutine calls. The check for the current frame
6435 equalling the step ID is not necessary - the check of the
6436 previous frame's ID is sufficient - but it is a common case and
6437 cheaper than checking the previous frame's ID.
14e60db5
DJ
6438
6439 NOTE: frame_id_eq will never report two invalid frame IDs as
6440 being equal, so to get into this block, both the current and
6441 previous frame must have valid frame IDs. */
005ca36a
JB
6442 /* The outer_frame_id check is a heuristic to detect stepping
6443 through startup code. If we step over an instruction which
6444 sets the stack pointer from an invalid value to a valid value,
6445 we may detect that as a subroutine call from the mythical
6446 "outermost" function. This could be fixed by marking
6447 outermost frames as !stack_p,code_p,special_p. Then the
6448 initial outermost frame, before sp was valid, would
ce6cca6d 6449 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6450 for more. */
edb3359d 6451 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6452 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6453 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6454 ecs->event_thread->control.step_stack_frame_id)
6455 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6456 outer_frame_id)
885eeb5b 6457 || (ecs->event_thread->control.step_start_function
f2ffa92b 6458 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6459 {
f2ffa92b 6460 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6461 CORE_ADDR real_stop_pc;
8fb3e588 6462
527159b7 6463 if (debug_infrun)
8a9de0e4 6464 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6465
b7a084be 6466 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6467 {
6468 /* I presume that step_over_calls is only 0 when we're
6469 supposed to be stepping at the assembly language level
6470 ("stepi"). Just stop. */
388a8562 6471 /* And this works the same backward as frontward. MVS */
bdc36728 6472 end_stepping_range (ecs);
95918acb
AC
6473 return;
6474 }
8fb3e588 6475
388a8562
MS
6476 /* Reverse stepping through solib trampolines. */
6477
6478 if (execution_direction == EXEC_REVERSE
16c381f0 6479 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6480 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6481 || (ecs->stop_func_start == 0
6482 && in_solib_dynsym_resolve_code (stop_pc))))
6483 {
6484 /* Any solib trampoline code can be handled in reverse
6485 by simply continuing to single-step. We have already
6486 executed the solib function (backwards), and a few
6487 steps will take us back through the trampoline to the
6488 caller. */
6489 keep_going (ecs);
6490 return;
6491 }
6492
16c381f0 6493 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6494 {
b2175913
MS
6495 /* We're doing a "next".
6496
6497 Normal (forward) execution: set a breakpoint at the
6498 callee's return address (the address at which the caller
6499 will resume).
6500
6501 Reverse (backward) execution. set the step-resume
6502 breakpoint at the start of the function that we just
6503 stepped into (backwards), and continue to there. When we
6130d0b7 6504 get there, we'll need to single-step back to the caller. */
b2175913
MS
6505
6506 if (execution_direction == EXEC_REVERSE)
6507 {
acf9414f
JK
6508 /* If we're already at the start of the function, we've either
6509 just stepped backward into a single instruction function,
6510 or stepped back out of a signal handler to the first instruction
6511 of the function. Just keep going, which will single-step back
6512 to the caller. */
58c48e72 6513 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6514 {
acf9414f 6515 /* Normal function call return (static or dynamic). */
51abb421 6516 symtab_and_line sr_sal;
acf9414f
JK
6517 sr_sal.pc = ecs->stop_func_start;
6518 sr_sal.pspace = get_frame_program_space (frame);
6519 insert_step_resume_breakpoint_at_sal (gdbarch,
6520 sr_sal, null_frame_id);
6521 }
b2175913
MS
6522 }
6523 else
568d6575 6524 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6525
8567c30f
AC
6526 keep_going (ecs);
6527 return;
6528 }
a53c66de 6529
95918acb 6530 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6531 calling routine and the real function), locate the real
6532 function. That's what tells us (a) whether we want to step
6533 into it at all, and (b) what prologue we want to run to the
6534 end of, if we do step into it. */
568d6575 6535 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6536 if (real_stop_pc == 0)
568d6575 6537 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6538 if (real_stop_pc != 0)
6539 ecs->stop_func_start = real_stop_pc;
8fb3e588 6540
db5f024e 6541 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6542 {
51abb421 6543 symtab_and_line sr_sal;
1b2bfbb9 6544 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6545 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6546
a6d9a66e
UW
6547 insert_step_resume_breakpoint_at_sal (gdbarch,
6548 sr_sal, null_frame_id);
8fb3e588
AC
6549 keep_going (ecs);
6550 return;
1b2bfbb9
RC
6551 }
6552
95918acb 6553 /* If we have line number information for the function we are
1bfeeb0f
JL
6554 thinking of stepping into and the function isn't on the skip
6555 list, step into it.
95918acb 6556
8fb3e588
AC
6557 If there are several symtabs at that PC (e.g. with include
6558 files), just want to know whether *any* of them have line
6559 numbers. find_pc_line handles this. */
95918acb
AC
6560 {
6561 struct symtab_and_line tmp_sal;
8fb3e588 6562
95918acb 6563 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6564 if (tmp_sal.line != 0
85817405 6565 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6566 tmp_sal))
95918acb 6567 {
b2175913 6568 if (execution_direction == EXEC_REVERSE)
568d6575 6569 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6570 else
568d6575 6571 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6572 return;
6573 }
6574 }
6575
6576 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6577 set, we stop the step so that the user has a chance to switch
6578 in assembly mode. */
16c381f0 6579 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6580 && step_stop_if_no_debug)
95918acb 6581 {
bdc36728 6582 end_stepping_range (ecs);
95918acb
AC
6583 return;
6584 }
6585
b2175913
MS
6586 if (execution_direction == EXEC_REVERSE)
6587 {
acf9414f
JK
6588 /* If we're already at the start of the function, we've either just
6589 stepped backward into a single instruction function without line
6590 number info, or stepped back out of a signal handler to the first
6591 instruction of the function without line number info. Just keep
6592 going, which will single-step back to the caller. */
6593 if (ecs->stop_func_start != stop_pc)
6594 {
6595 /* Set a breakpoint at callee's start address.
6596 From there we can step once and be back in the caller. */
51abb421 6597 symtab_and_line sr_sal;
acf9414f
JK
6598 sr_sal.pc = ecs->stop_func_start;
6599 sr_sal.pspace = get_frame_program_space (frame);
6600 insert_step_resume_breakpoint_at_sal (gdbarch,
6601 sr_sal, null_frame_id);
6602 }
b2175913
MS
6603 }
6604 else
6605 /* Set a breakpoint at callee's return address (the address
6606 at which the caller will resume). */
568d6575 6607 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6608
95918acb 6609 keep_going (ecs);
488f131b 6610 return;
488f131b 6611 }
c906108c 6612
fdd654f3
MS
6613 /* Reverse stepping through solib trampolines. */
6614
6615 if (execution_direction == EXEC_REVERSE
16c381f0 6616 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6617 {
f2ffa92b
PA
6618 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6619
fdd654f3
MS
6620 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6621 || (ecs->stop_func_start == 0
6622 && in_solib_dynsym_resolve_code (stop_pc)))
6623 {
6624 /* Any solib trampoline code can be handled in reverse
6625 by simply continuing to single-step. We have already
6626 executed the solib function (backwards), and a few
6627 steps will take us back through the trampoline to the
6628 caller. */
6629 keep_going (ecs);
6630 return;
6631 }
6632 else if (in_solib_dynsym_resolve_code (stop_pc))
6633 {
6634 /* Stepped backward into the solib dynsym resolver.
6635 Set a breakpoint at its start and continue, then
6636 one more step will take us out. */
51abb421 6637 symtab_and_line sr_sal;
fdd654f3 6638 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6639 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6640 insert_step_resume_breakpoint_at_sal (gdbarch,
6641 sr_sal, null_frame_id);
6642 keep_going (ecs);
6643 return;
6644 }
6645 }
6646
f2ffa92b 6647 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6648
1b2bfbb9
RC
6649 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6650 the trampoline processing logic, however, there are some trampolines
6651 that have no names, so we should do trampoline handling first. */
16c381f0 6652 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6653 && ecs->stop_func_name == NULL
2afb61aa 6654 && stop_pc_sal.line == 0)
1b2bfbb9 6655 {
527159b7 6656 if (debug_infrun)
3e43a32a
MS
6657 fprintf_unfiltered (gdb_stdlog,
6658 "infrun: stepped into undebuggable function\n");
527159b7 6659
1b2bfbb9 6660 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6661 undebuggable function (where there is no debugging information
6662 and no line number corresponding to the address where the
1b2bfbb9
RC
6663 inferior stopped). Since we want to skip this kind of code,
6664 we keep going until the inferior returns from this
14e60db5
DJ
6665 function - unless the user has asked us not to (via
6666 set step-mode) or we no longer know how to get back
6667 to the call site. */
6668 if (step_stop_if_no_debug
c7ce8faa 6669 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6670 {
6671 /* If we have no line number and the step-stop-if-no-debug
6672 is set, we stop the step so that the user has a chance to
6673 switch in assembly mode. */
bdc36728 6674 end_stepping_range (ecs);
1b2bfbb9
RC
6675 return;
6676 }
6677 else
6678 {
6679 /* Set a breakpoint at callee's return address (the address
6680 at which the caller will resume). */
568d6575 6681 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6682 keep_going (ecs);
6683 return;
6684 }
6685 }
6686
16c381f0 6687 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6688 {
6689 /* It is stepi or nexti. We always want to stop stepping after
6690 one instruction. */
527159b7 6691 if (debug_infrun)
8a9de0e4 6692 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6693 end_stepping_range (ecs);
1b2bfbb9
RC
6694 return;
6695 }
6696
2afb61aa 6697 if (stop_pc_sal.line == 0)
488f131b
JB
6698 {
6699 /* We have no line number information. That means to stop
6700 stepping (does this always happen right after one instruction,
6701 when we do "s" in a function with no line numbers,
6702 or can this happen as a result of a return or longjmp?). */
527159b7 6703 if (debug_infrun)
8a9de0e4 6704 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6705 end_stepping_range (ecs);
488f131b
JB
6706 return;
6707 }
c906108c 6708
edb3359d
DJ
6709 /* Look for "calls" to inlined functions, part one. If the inline
6710 frame machinery detected some skipped call sites, we have entered
6711 a new inline function. */
6712
6713 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6714 ecs->event_thread->control.step_frame_id)
00431a78 6715 && inline_skipped_frames (ecs->event_thread))
edb3359d 6716 {
edb3359d
DJ
6717 if (debug_infrun)
6718 fprintf_unfiltered (gdb_stdlog,
6719 "infrun: stepped into inlined function\n");
6720
51abb421 6721 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6722
16c381f0 6723 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6724 {
6725 /* For "step", we're going to stop. But if the call site
6726 for this inlined function is on the same source line as
6727 we were previously stepping, go down into the function
6728 first. Otherwise stop at the call site. */
6729
6730 if (call_sal.line == ecs->event_thread->current_line
6731 && call_sal.symtab == ecs->event_thread->current_symtab)
00431a78 6732 step_into_inline_frame (ecs->event_thread);
edb3359d 6733
bdc36728 6734 end_stepping_range (ecs);
edb3359d
DJ
6735 return;
6736 }
6737 else
6738 {
6739 /* For "next", we should stop at the call site if it is on a
6740 different source line. Otherwise continue through the
6741 inlined function. */
6742 if (call_sal.line == ecs->event_thread->current_line
6743 && call_sal.symtab == ecs->event_thread->current_symtab)
6744 keep_going (ecs);
6745 else
bdc36728 6746 end_stepping_range (ecs);
edb3359d
DJ
6747 return;
6748 }
6749 }
6750
6751 /* Look for "calls" to inlined functions, part two. If we are still
6752 in the same real function we were stepping through, but we have
6753 to go further up to find the exact frame ID, we are stepping
6754 through a more inlined call beyond its call site. */
6755
6756 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6757 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6758 ecs->event_thread->control.step_frame_id)
edb3359d 6759 && stepped_in_from (get_current_frame (),
16c381f0 6760 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6761 {
6762 if (debug_infrun)
6763 fprintf_unfiltered (gdb_stdlog,
6764 "infrun: stepping through inlined function\n");
6765
16c381f0 6766 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6767 keep_going (ecs);
6768 else
bdc36728 6769 end_stepping_range (ecs);
edb3359d
DJ
6770 return;
6771 }
6772
f2ffa92b 6773 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6774 && (ecs->event_thread->current_line != stop_pc_sal.line
6775 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6776 {
6777 /* We are at the start of a different line. So stop. Note that
6778 we don't stop if we step into the middle of a different line.
6779 That is said to make things like for (;;) statements work
6780 better. */
527159b7 6781 if (debug_infrun)
3e43a32a
MS
6782 fprintf_unfiltered (gdb_stdlog,
6783 "infrun: stepped to a different line\n");
bdc36728 6784 end_stepping_range (ecs);
488f131b
JB
6785 return;
6786 }
c906108c 6787
488f131b 6788 /* We aren't done stepping.
c906108c 6789
488f131b
JB
6790 Optimize by setting the stepping range to the line.
6791 (We might not be in the original line, but if we entered a
6792 new line in mid-statement, we continue stepping. This makes
6793 things like for(;;) statements work better.) */
c906108c 6794
16c381f0
JK
6795 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6796 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6797 ecs->event_thread->control.may_range_step = 1;
edb3359d 6798 set_step_info (frame, stop_pc_sal);
488f131b 6799
527159b7 6800 if (debug_infrun)
8a9de0e4 6801 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6802 keep_going (ecs);
104c1213
JM
6803}
6804
c447ac0b
PA
6805/* In all-stop mode, if we're currently stepping but have stopped in
6806 some other thread, we may need to switch back to the stepped
6807 thread. Returns true we set the inferior running, false if we left
6808 it stopped (and the event needs further processing). */
6809
6810static int
6811switch_back_to_stepped_thread (struct execution_control_state *ecs)
6812{
fbea99ea 6813 if (!target_is_non_stop_p ())
c447ac0b 6814 {
99619bea
PA
6815 struct thread_info *stepping_thread;
6816
6817 /* If any thread is blocked on some internal breakpoint, and we
6818 simply need to step over that breakpoint to get it going
6819 again, do that first. */
6820
6821 /* However, if we see an event for the stepping thread, then we
6822 know all other threads have been moved past their breakpoints
6823 already. Let the caller check whether the step is finished,
6824 etc., before deciding to move it past a breakpoint. */
6825 if (ecs->event_thread->control.step_range_end != 0)
6826 return 0;
6827
6828 /* Check if the current thread is blocked on an incomplete
6829 step-over, interrupted by a random signal. */
6830 if (ecs->event_thread->control.trap_expected
6831 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6832 {
99619bea
PA
6833 if (debug_infrun)
6834 {
6835 fprintf_unfiltered (gdb_stdlog,
6836 "infrun: need to finish step-over of [%s]\n",
a068643d 6837 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
6838 }
6839 keep_going (ecs);
6840 return 1;
6841 }
2adfaa28 6842
99619bea
PA
6843 /* Check if the current thread is blocked by a single-step
6844 breakpoint of another thread. */
6845 if (ecs->hit_singlestep_breakpoint)
6846 {
6847 if (debug_infrun)
6848 {
6849 fprintf_unfiltered (gdb_stdlog,
6850 "infrun: need to step [%s] over single-step "
6851 "breakpoint\n",
a068643d 6852 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
6853 }
6854 keep_going (ecs);
6855 return 1;
6856 }
6857
4d9d9d04
PA
6858 /* If this thread needs yet another step-over (e.g., stepping
6859 through a delay slot), do it first before moving on to
6860 another thread. */
6861 if (thread_still_needs_step_over (ecs->event_thread))
6862 {
6863 if (debug_infrun)
6864 {
6865 fprintf_unfiltered (gdb_stdlog,
6866 "infrun: thread [%s] still needs step-over\n",
a068643d 6867 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
6868 }
6869 keep_going (ecs);
6870 return 1;
6871 }
70509625 6872
483805cf
PA
6873 /* If scheduler locking applies even if not stepping, there's no
6874 need to walk over threads. Above we've checked whether the
6875 current thread is stepping. If some other thread not the
6876 event thread is stepping, then it must be that scheduler
6877 locking is not in effect. */
856e7dd6 6878 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6879 return 0;
6880
4d9d9d04
PA
6881 /* Otherwise, we no longer expect a trap in the current thread.
6882 Clear the trap_expected flag before switching back -- this is
6883 what keep_going does as well, if we call it. */
6884 ecs->event_thread->control.trap_expected = 0;
6885
6886 /* Likewise, clear the signal if it should not be passed. */
6887 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6888 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6889
6890 /* Do all pending step-overs before actually proceeding with
483805cf 6891 step/next/etc. */
4d9d9d04
PA
6892 if (start_step_over ())
6893 {
6894 prepare_to_wait (ecs);
6895 return 1;
6896 }
6897
6898 /* Look for the stepping/nexting thread. */
483805cf 6899 stepping_thread = NULL;
4d9d9d04 6900
08036331 6901 for (thread_info *tp : all_non_exited_threads ())
483805cf 6902 {
fbea99ea
PA
6903 /* Ignore threads of processes the caller is not
6904 resuming. */
483805cf 6905 if (!sched_multi
e99b03dc 6906 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
6907 continue;
6908
6909 /* When stepping over a breakpoint, we lock all threads
6910 except the one that needs to move past the breakpoint.
6911 If a non-event thread has this set, the "incomplete
6912 step-over" check above should have caught it earlier. */
372316f1
PA
6913 if (tp->control.trap_expected)
6914 {
6915 internal_error (__FILE__, __LINE__,
6916 "[%s] has inconsistent state: "
6917 "trap_expected=%d\n",
a068643d 6918 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
6919 tp->control.trap_expected);
6920 }
483805cf
PA
6921
6922 /* Did we find the stepping thread? */
6923 if (tp->control.step_range_end)
6924 {
6925 /* Yep. There should only one though. */
6926 gdb_assert (stepping_thread == NULL);
6927
6928 /* The event thread is handled at the top, before we
6929 enter this loop. */
6930 gdb_assert (tp != ecs->event_thread);
6931
6932 /* If some thread other than the event thread is
6933 stepping, then scheduler locking can't be in effect,
6934 otherwise we wouldn't have resumed the current event
6935 thread in the first place. */
856e7dd6 6936 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6937
6938 stepping_thread = tp;
6939 }
99619bea
PA
6940 }
6941
483805cf 6942 if (stepping_thread != NULL)
99619bea 6943 {
c447ac0b
PA
6944 if (debug_infrun)
6945 fprintf_unfiltered (gdb_stdlog,
6946 "infrun: switching back to stepped thread\n");
6947
2ac7589c
PA
6948 if (keep_going_stepped_thread (stepping_thread))
6949 {
6950 prepare_to_wait (ecs);
6951 return 1;
6952 }
6953 }
6954 }
2adfaa28 6955
2ac7589c
PA
6956 return 0;
6957}
2adfaa28 6958
2ac7589c
PA
6959/* Set a previously stepped thread back to stepping. Returns true on
6960 success, false if the resume is not possible (e.g., the thread
6961 vanished). */
6962
6963static int
6964keep_going_stepped_thread (struct thread_info *tp)
6965{
6966 struct frame_info *frame;
2ac7589c
PA
6967 struct execution_control_state ecss;
6968 struct execution_control_state *ecs = &ecss;
2adfaa28 6969
2ac7589c
PA
6970 /* If the stepping thread exited, then don't try to switch back and
6971 resume it, which could fail in several different ways depending
6972 on the target. Instead, just keep going.
2adfaa28 6973
2ac7589c
PA
6974 We can find a stepping dead thread in the thread list in two
6975 cases:
2adfaa28 6976
2ac7589c
PA
6977 - The target supports thread exit events, and when the target
6978 tries to delete the thread from the thread list, inferior_ptid
6979 pointed at the exiting thread. In such case, calling
6980 delete_thread does not really remove the thread from the list;
6981 instead, the thread is left listed, with 'exited' state.
64ce06e4 6982
2ac7589c
PA
6983 - The target's debug interface does not support thread exit
6984 events, and so we have no idea whatsoever if the previously
6985 stepping thread is still alive. For that reason, we need to
6986 synchronously query the target now. */
2adfaa28 6987
00431a78 6988 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
6989 {
6990 if (debug_infrun)
6991 fprintf_unfiltered (gdb_stdlog,
6992 "infrun: not resuming previously "
6993 "stepped thread, it has vanished\n");
6994
00431a78 6995 delete_thread (tp);
2ac7589c 6996 return 0;
c447ac0b 6997 }
2ac7589c
PA
6998
6999 if (debug_infrun)
7000 fprintf_unfiltered (gdb_stdlog,
7001 "infrun: resuming previously stepped thread\n");
7002
7003 reset_ecs (ecs, tp);
00431a78 7004 switch_to_thread (tp);
2ac7589c 7005
f2ffa92b 7006 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7007 frame = get_current_frame ();
2ac7589c
PA
7008
7009 /* If the PC of the thread we were trying to single-step has
7010 changed, then that thread has trapped or been signaled, but the
7011 event has not been reported to GDB yet. Re-poll the target
7012 looking for this particular thread's event (i.e. temporarily
7013 enable schedlock) by:
7014
7015 - setting a break at the current PC
7016 - resuming that particular thread, only (by setting trap
7017 expected)
7018
7019 This prevents us continuously moving the single-step breakpoint
7020 forward, one instruction at a time, overstepping. */
7021
f2ffa92b 7022 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7023 {
7024 ptid_t resume_ptid;
7025
7026 if (debug_infrun)
7027 fprintf_unfiltered (gdb_stdlog,
7028 "infrun: expected thread advanced also (%s -> %s)\n",
7029 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7030 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7031
7032 /* Clear the info of the previous step-over, as it's no longer
7033 valid (if the thread was trying to step over a breakpoint, it
7034 has already succeeded). It's what keep_going would do too,
7035 if we called it. Do this before trying to insert the sss
7036 breakpoint, otherwise if we were previously trying to step
7037 over this exact address in another thread, the breakpoint is
7038 skipped. */
7039 clear_step_over_info ();
7040 tp->control.trap_expected = 0;
7041
7042 insert_single_step_breakpoint (get_frame_arch (frame),
7043 get_frame_address_space (frame),
f2ffa92b 7044 tp->suspend.stop_pc);
2ac7589c 7045
372316f1 7046 tp->resumed = 1;
fbea99ea 7047 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7048 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7049 }
7050 else
7051 {
7052 if (debug_infrun)
7053 fprintf_unfiltered (gdb_stdlog,
7054 "infrun: expected thread still hasn't advanced\n");
7055
7056 keep_going_pass_signal (ecs);
7057 }
7058 return 1;
c447ac0b
PA
7059}
7060
8b061563
PA
7061/* Is thread TP in the middle of (software or hardware)
7062 single-stepping? (Note the result of this function must never be
7063 passed directly as target_resume's STEP parameter.) */
104c1213 7064
a289b8f6 7065static int
b3444185 7066currently_stepping (struct thread_info *tp)
a7212384 7067{
8358c15c
JK
7068 return ((tp->control.step_range_end
7069 && tp->control.step_resume_breakpoint == NULL)
7070 || tp->control.trap_expected
af48d08f 7071 || tp->stepped_breakpoint
8358c15c 7072 || bpstat_should_step ());
a7212384
UW
7073}
7074
b2175913
MS
7075/* Inferior has stepped into a subroutine call with source code that
7076 we should not step over. Do step to the first line of code in
7077 it. */
c2c6d25f
JM
7078
7079static void
568d6575
UW
7080handle_step_into_function (struct gdbarch *gdbarch,
7081 struct execution_control_state *ecs)
c2c6d25f 7082{
7e324e48
GB
7083 fill_in_stop_func (gdbarch, ecs);
7084
f2ffa92b
PA
7085 compunit_symtab *cust
7086 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7087 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7088 ecs->stop_func_start
7089 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7090
51abb421 7091 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7092 /* Use the step_resume_break to step until the end of the prologue,
7093 even if that involves jumps (as it seems to on the vax under
7094 4.2). */
7095 /* If the prologue ends in the middle of a source line, continue to
7096 the end of that source line (if it is still within the function).
7097 Otherwise, just go to end of prologue. */
2afb61aa
PA
7098 if (stop_func_sal.end
7099 && stop_func_sal.pc != ecs->stop_func_start
7100 && stop_func_sal.end < ecs->stop_func_end)
7101 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7102
2dbd5e30
KB
7103 /* Architectures which require breakpoint adjustment might not be able
7104 to place a breakpoint at the computed address. If so, the test
7105 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7106 ecs->stop_func_start to an address at which a breakpoint may be
7107 legitimately placed.
8fb3e588 7108
2dbd5e30
KB
7109 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7110 made, GDB will enter an infinite loop when stepping through
7111 optimized code consisting of VLIW instructions which contain
7112 subinstructions corresponding to different source lines. On
7113 FR-V, it's not permitted to place a breakpoint on any but the
7114 first subinstruction of a VLIW instruction. When a breakpoint is
7115 set, GDB will adjust the breakpoint address to the beginning of
7116 the VLIW instruction. Thus, we need to make the corresponding
7117 adjustment here when computing the stop address. */
8fb3e588 7118
568d6575 7119 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7120 {
7121 ecs->stop_func_start
568d6575 7122 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7123 ecs->stop_func_start);
2dbd5e30
KB
7124 }
7125
f2ffa92b 7126 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7127 {
7128 /* We are already there: stop now. */
bdc36728 7129 end_stepping_range (ecs);
c2c6d25f
JM
7130 return;
7131 }
7132 else
7133 {
7134 /* Put the step-breakpoint there and go until there. */
51abb421 7135 symtab_and_line sr_sal;
c2c6d25f
JM
7136 sr_sal.pc = ecs->stop_func_start;
7137 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7138 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7139
c2c6d25f 7140 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7141 some machines the prologue is where the new fp value is
7142 established. */
a6d9a66e 7143 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7144
7145 /* And make sure stepping stops right away then. */
16c381f0
JK
7146 ecs->event_thread->control.step_range_end
7147 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7148 }
7149 keep_going (ecs);
7150}
d4f3574e 7151
b2175913
MS
7152/* Inferior has stepped backward into a subroutine call with source
7153 code that we should not step over. Do step to the beginning of the
7154 last line of code in it. */
7155
7156static void
568d6575
UW
7157handle_step_into_function_backward (struct gdbarch *gdbarch,
7158 struct execution_control_state *ecs)
b2175913 7159{
43f3e411 7160 struct compunit_symtab *cust;
167e4384 7161 struct symtab_and_line stop_func_sal;
b2175913 7162
7e324e48
GB
7163 fill_in_stop_func (gdbarch, ecs);
7164
f2ffa92b 7165 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7166 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7167 ecs->stop_func_start
7168 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7169
f2ffa92b 7170 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7171
7172 /* OK, we're just going to keep stepping here. */
f2ffa92b 7173 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7174 {
7175 /* We're there already. Just stop stepping now. */
bdc36728 7176 end_stepping_range (ecs);
b2175913
MS
7177 }
7178 else
7179 {
7180 /* Else just reset the step range and keep going.
7181 No step-resume breakpoint, they don't work for
7182 epilogues, which can have multiple entry paths. */
16c381f0
JK
7183 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7184 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7185 keep_going (ecs);
7186 }
7187 return;
7188}
7189
d3169d93 7190/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7191 This is used to both functions and to skip over code. */
7192
7193static void
2c03e5be
PA
7194insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7195 struct symtab_and_line sr_sal,
7196 struct frame_id sr_id,
7197 enum bptype sr_type)
44cbf7b5 7198{
611c83ae
PA
7199 /* There should never be more than one step-resume or longjmp-resume
7200 breakpoint per thread, so we should never be setting a new
44cbf7b5 7201 step_resume_breakpoint when one is already active. */
8358c15c 7202 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7203 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7204
7205 if (debug_infrun)
7206 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7207 "infrun: inserting step-resume breakpoint at %s\n",
7208 paddress (gdbarch, sr_sal.pc));
d3169d93 7209
8358c15c 7210 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7211 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7212}
7213
9da8c2a0 7214void
2c03e5be
PA
7215insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7216 struct symtab_and_line sr_sal,
7217 struct frame_id sr_id)
7218{
7219 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7220 sr_sal, sr_id,
7221 bp_step_resume);
44cbf7b5 7222}
7ce450bd 7223
2c03e5be
PA
7224/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7225 This is used to skip a potential signal handler.
7ce450bd 7226
14e60db5
DJ
7227 This is called with the interrupted function's frame. The signal
7228 handler, when it returns, will resume the interrupted function at
7229 RETURN_FRAME.pc. */
d303a6c7
AC
7230
7231static void
2c03e5be 7232insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7233{
f4c1edd8 7234 gdb_assert (return_frame != NULL);
d303a6c7 7235
51abb421
PA
7236 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7237
7238 symtab_and_line sr_sal;
568d6575 7239 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7240 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7241 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7242
2c03e5be
PA
7243 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7244 get_stack_frame_id (return_frame),
7245 bp_hp_step_resume);
d303a6c7
AC
7246}
7247
2c03e5be
PA
7248/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7249 is used to skip a function after stepping into it (for "next" or if
7250 the called function has no debugging information).
14e60db5
DJ
7251
7252 The current function has almost always been reached by single
7253 stepping a call or return instruction. NEXT_FRAME belongs to the
7254 current function, and the breakpoint will be set at the caller's
7255 resume address.
7256
7257 This is a separate function rather than reusing
2c03e5be 7258 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7259 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7260 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7261
7262static void
7263insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7264{
14e60db5
DJ
7265 /* We shouldn't have gotten here if we don't know where the call site
7266 is. */
c7ce8faa 7267 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7268
51abb421 7269 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7270
51abb421 7271 symtab_and_line sr_sal;
c7ce8faa
DJ
7272 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7273 frame_unwind_caller_pc (next_frame));
14e60db5 7274 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7275 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7276
a6d9a66e 7277 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7278 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7279}
7280
611c83ae
PA
7281/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7282 new breakpoint at the target of a jmp_buf. The handling of
7283 longjmp-resume uses the same mechanisms used for handling
7284 "step-resume" breakpoints. */
7285
7286static void
a6d9a66e 7287insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7288{
e81a37f7
TT
7289 /* There should never be more than one longjmp-resume breakpoint per
7290 thread, so we should never be setting a new
611c83ae 7291 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7292 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7293
7294 if (debug_infrun)
7295 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7296 "infrun: inserting longjmp-resume breakpoint at %s\n",
7297 paddress (gdbarch, pc));
611c83ae 7298
e81a37f7 7299 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7300 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7301}
7302
186c406b
TT
7303/* Insert an exception resume breakpoint. TP is the thread throwing
7304 the exception. The block B is the block of the unwinder debug hook
7305 function. FRAME is the frame corresponding to the call to this
7306 function. SYM is the symbol of the function argument holding the
7307 target PC of the exception. */
7308
7309static void
7310insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7311 const struct block *b,
186c406b
TT
7312 struct frame_info *frame,
7313 struct symbol *sym)
7314{
492d29ea 7315 TRY
186c406b 7316 {
63e43d3a 7317 struct block_symbol vsym;
186c406b
TT
7318 struct value *value;
7319 CORE_ADDR handler;
7320 struct breakpoint *bp;
7321
de63c46b
PA
7322 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7323 b, VAR_DOMAIN);
63e43d3a 7324 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7325 /* If the value was optimized out, revert to the old behavior. */
7326 if (! value_optimized_out (value))
7327 {
7328 handler = value_as_address (value);
7329
7330 if (debug_infrun)
7331 fprintf_unfiltered (gdb_stdlog,
7332 "infrun: exception resume at %lx\n",
7333 (unsigned long) handler);
7334
7335 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7336 handler,
7337 bp_exception_resume).release ();
c70a6932
JK
7338
7339 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7340 frame = NULL;
7341
5d5658a1 7342 bp->thread = tp->global_num;
186c406b
TT
7343 inferior_thread ()->control.exception_resume_breakpoint = bp;
7344 }
7345 }
492d29ea
PA
7346 CATCH (e, RETURN_MASK_ERROR)
7347 {
7348 /* We want to ignore errors here. */
7349 }
7350 END_CATCH
186c406b
TT
7351}
7352
28106bc2
SDJ
7353/* A helper for check_exception_resume that sets an
7354 exception-breakpoint based on a SystemTap probe. */
7355
7356static void
7357insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7358 const struct bound_probe *probe,
28106bc2
SDJ
7359 struct frame_info *frame)
7360{
7361 struct value *arg_value;
7362 CORE_ADDR handler;
7363 struct breakpoint *bp;
7364
7365 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7366 if (!arg_value)
7367 return;
7368
7369 handler = value_as_address (arg_value);
7370
7371 if (debug_infrun)
7372 fprintf_unfiltered (gdb_stdlog,
7373 "infrun: exception resume at %s\n",
6bac7473 7374 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7375 handler));
7376
7377 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7378 handler, bp_exception_resume).release ();
5d5658a1 7379 bp->thread = tp->global_num;
28106bc2
SDJ
7380 inferior_thread ()->control.exception_resume_breakpoint = bp;
7381}
7382
186c406b
TT
7383/* This is called when an exception has been intercepted. Check to
7384 see whether the exception's destination is of interest, and if so,
7385 set an exception resume breakpoint there. */
7386
7387static void
7388check_exception_resume (struct execution_control_state *ecs,
28106bc2 7389 struct frame_info *frame)
186c406b 7390{
729662a5 7391 struct bound_probe probe;
28106bc2
SDJ
7392 struct symbol *func;
7393
7394 /* First see if this exception unwinding breakpoint was set via a
7395 SystemTap probe point. If so, the probe has two arguments: the
7396 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7397 set a breakpoint there. */
6bac7473 7398 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7399 if (probe.prob)
28106bc2 7400 {
729662a5 7401 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7402 return;
7403 }
7404
7405 func = get_frame_function (frame);
7406 if (!func)
7407 return;
186c406b 7408
492d29ea 7409 TRY
186c406b 7410 {
3977b71f 7411 const struct block *b;
8157b174 7412 struct block_iterator iter;
186c406b
TT
7413 struct symbol *sym;
7414 int argno = 0;
7415
7416 /* The exception breakpoint is a thread-specific breakpoint on
7417 the unwinder's debug hook, declared as:
7418
7419 void _Unwind_DebugHook (void *cfa, void *handler);
7420
7421 The CFA argument indicates the frame to which control is
7422 about to be transferred. HANDLER is the destination PC.
7423
7424 We ignore the CFA and set a temporary breakpoint at HANDLER.
7425 This is not extremely efficient but it avoids issues in gdb
7426 with computing the DWARF CFA, and it also works even in weird
7427 cases such as throwing an exception from inside a signal
7428 handler. */
7429
7430 b = SYMBOL_BLOCK_VALUE (func);
7431 ALL_BLOCK_SYMBOLS (b, iter, sym)
7432 {
7433 if (!SYMBOL_IS_ARGUMENT (sym))
7434 continue;
7435
7436 if (argno == 0)
7437 ++argno;
7438 else
7439 {
7440 insert_exception_resume_breakpoint (ecs->event_thread,
7441 b, frame, sym);
7442 break;
7443 }
7444 }
7445 }
492d29ea
PA
7446 CATCH (e, RETURN_MASK_ERROR)
7447 {
7448 }
7449 END_CATCH
186c406b
TT
7450}
7451
104c1213 7452static void
22bcd14b 7453stop_waiting (struct execution_control_state *ecs)
104c1213 7454{
527159b7 7455 if (debug_infrun)
22bcd14b 7456 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7457
cd0fc7c3
SS
7458 /* Let callers know we don't want to wait for the inferior anymore. */
7459 ecs->wait_some_more = 0;
fbea99ea
PA
7460
7461 /* If all-stop, but the target is always in non-stop mode, stop all
7462 threads now that we're presenting the stop to the user. */
7463 if (!non_stop && target_is_non_stop_p ())
7464 stop_all_threads ();
cd0fc7c3
SS
7465}
7466
4d9d9d04
PA
7467/* Like keep_going, but passes the signal to the inferior, even if the
7468 signal is set to nopass. */
d4f3574e
SS
7469
7470static void
4d9d9d04 7471keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7472{
d7e15655 7473 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7474 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7475
d4f3574e 7476 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7477 ecs->event_thread->prev_pc
00431a78 7478 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7479
4d9d9d04 7480 if (ecs->event_thread->control.trap_expected)
d4f3574e 7481 {
4d9d9d04
PA
7482 struct thread_info *tp = ecs->event_thread;
7483
7484 if (debug_infrun)
7485 fprintf_unfiltered (gdb_stdlog,
7486 "infrun: %s has trap_expected set, "
7487 "resuming to collect trap\n",
a068643d 7488 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7489
a9ba6bae
PA
7490 /* We haven't yet gotten our trap, and either: intercepted a
7491 non-signal event (e.g., a fork); or took a signal which we
7492 are supposed to pass through to the inferior. Simply
7493 continue. */
64ce06e4 7494 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7495 }
372316f1
PA
7496 else if (step_over_info_valid_p ())
7497 {
7498 /* Another thread is stepping over a breakpoint in-line. If
7499 this thread needs a step-over too, queue the request. In
7500 either case, this resume must be deferred for later. */
7501 struct thread_info *tp = ecs->event_thread;
7502
7503 if (ecs->hit_singlestep_breakpoint
7504 || thread_still_needs_step_over (tp))
7505 {
7506 if (debug_infrun)
7507 fprintf_unfiltered (gdb_stdlog,
7508 "infrun: step-over already in progress: "
7509 "step-over for %s deferred\n",
a068643d 7510 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
7511 thread_step_over_chain_enqueue (tp);
7512 }
7513 else
7514 {
7515 if (debug_infrun)
7516 fprintf_unfiltered (gdb_stdlog,
7517 "infrun: step-over in progress: "
7518 "resume of %s deferred\n",
a068643d 7519 target_pid_to_str (tp->ptid).c_str ());
372316f1 7520 }
372316f1 7521 }
d4f3574e
SS
7522 else
7523 {
31e77af2 7524 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7525 int remove_bp;
7526 int remove_wps;
8d297bbf 7527 step_over_what step_what;
31e77af2 7528
d4f3574e 7529 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7530 anyway (if we got a signal, the user asked it be passed to
7531 the child)
7532 -- or --
7533 We got our expected trap, but decided we should resume from
7534 it.
d4f3574e 7535
a9ba6bae 7536 We're going to run this baby now!
d4f3574e 7537
c36b740a
VP
7538 Note that insert_breakpoints won't try to re-insert
7539 already inserted breakpoints. Therefore, we don't
7540 care if breakpoints were already inserted, or not. */
a9ba6bae 7541
31e77af2
PA
7542 /* If we need to step over a breakpoint, and we're not using
7543 displaced stepping to do so, insert all breakpoints
7544 (watchpoints, etc.) but the one we're stepping over, step one
7545 instruction, and then re-insert the breakpoint when that step
7546 is finished. */
963f9c80 7547
6c4cfb24
PA
7548 step_what = thread_still_needs_step_over (ecs->event_thread);
7549
963f9c80 7550 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7551 || (step_what & STEP_OVER_BREAKPOINT));
7552 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7553
cb71640d
PA
7554 /* We can't use displaced stepping if we need to step past a
7555 watchpoint. The instruction copied to the scratch pad would
7556 still trigger the watchpoint. */
7557 if (remove_bp
3fc8eb30 7558 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7559 {
a01bda52 7560 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7561 regcache_read_pc (regcache), remove_wps,
7562 ecs->event_thread->global_num);
45e8c884 7563 }
963f9c80 7564 else if (remove_wps)
21edc42f 7565 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7566
7567 /* If we now need to do an in-line step-over, we need to stop
7568 all other threads. Note this must be done before
7569 insert_breakpoints below, because that removes the breakpoint
7570 we're about to step over, otherwise other threads could miss
7571 it. */
fbea99ea 7572 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7573 stop_all_threads ();
abbb1732 7574
31e77af2 7575 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7576 TRY
31e77af2
PA
7577 {
7578 insert_breakpoints ();
7579 }
492d29ea 7580 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7581 {
7582 exception_print (gdb_stderr, e);
22bcd14b 7583 stop_waiting (ecs);
bdf2a94a 7584 clear_step_over_info ();
31e77af2 7585 return;
d4f3574e 7586 }
492d29ea 7587 END_CATCH
d4f3574e 7588
963f9c80 7589 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7590
64ce06e4 7591 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7592 }
7593
488f131b 7594 prepare_to_wait (ecs);
d4f3574e
SS
7595}
7596
4d9d9d04
PA
7597/* Called when we should continue running the inferior, because the
7598 current event doesn't cause a user visible stop. This does the
7599 resuming part; waiting for the next event is done elsewhere. */
7600
7601static void
7602keep_going (struct execution_control_state *ecs)
7603{
7604 if (ecs->event_thread->control.trap_expected
7605 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7606 ecs->event_thread->control.trap_expected = 0;
7607
7608 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7609 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7610 keep_going_pass_signal (ecs);
7611}
7612
104c1213
JM
7613/* This function normally comes after a resume, before
7614 handle_inferior_event exits. It takes care of any last bits of
7615 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7616
104c1213
JM
7617static void
7618prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7619{
527159b7 7620 if (debug_infrun)
8a9de0e4 7621 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7622
104c1213 7623 ecs->wait_some_more = 1;
0b333c5e
PA
7624
7625 if (!target_is_async_p ())
7626 mark_infrun_async_event_handler ();
c906108c 7627}
11cf8741 7628
fd664c91 7629/* We are done with the step range of a step/next/si/ni command.
b57bacec 7630 Called once for each n of a "step n" operation. */
fd664c91
PA
7631
7632static void
bdc36728 7633end_stepping_range (struct execution_control_state *ecs)
fd664c91 7634{
bdc36728 7635 ecs->event_thread->control.stop_step = 1;
bdc36728 7636 stop_waiting (ecs);
fd664c91
PA
7637}
7638
33d62d64
JK
7639/* Several print_*_reason functions to print why the inferior has stopped.
7640 We always print something when the inferior exits, or receives a signal.
7641 The rest of the cases are dealt with later on in normal_stop and
7642 print_it_typical. Ideally there should be a call to one of these
7643 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7644 stop_waiting is called.
33d62d64 7645
fd664c91
PA
7646 Note that we don't call these directly, instead we delegate that to
7647 the interpreters, through observers. Interpreters then call these
7648 with whatever uiout is right. */
33d62d64 7649
fd664c91
PA
7650void
7651print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7652{
fd664c91 7653 /* For CLI-like interpreters, print nothing. */
33d62d64 7654
112e8700 7655 if (uiout->is_mi_like_p ())
fd664c91 7656 {
112e8700 7657 uiout->field_string ("reason",
fd664c91
PA
7658 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7659 }
7660}
33d62d64 7661
fd664c91
PA
7662void
7663print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7664{
33d62d64 7665 annotate_signalled ();
112e8700
SM
7666 if (uiout->is_mi_like_p ())
7667 uiout->field_string
7668 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7669 uiout->text ("\nProgram terminated with signal ");
33d62d64 7670 annotate_signal_name ();
112e8700 7671 uiout->field_string ("signal-name",
2ea28649 7672 gdb_signal_to_name (siggnal));
33d62d64 7673 annotate_signal_name_end ();
112e8700 7674 uiout->text (", ");
33d62d64 7675 annotate_signal_string ();
112e8700 7676 uiout->field_string ("signal-meaning",
2ea28649 7677 gdb_signal_to_string (siggnal));
33d62d64 7678 annotate_signal_string_end ();
112e8700
SM
7679 uiout->text (".\n");
7680 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7681}
7682
fd664c91
PA
7683void
7684print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7685{
fda326dd 7686 struct inferior *inf = current_inferior ();
a068643d 7687 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7688
33d62d64
JK
7689 annotate_exited (exitstatus);
7690 if (exitstatus)
7691 {
112e8700
SM
7692 if (uiout->is_mi_like_p ())
7693 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7694 uiout->text ("[Inferior ");
7695 uiout->text (plongest (inf->num));
7696 uiout->text (" (");
a068643d 7697 uiout->text (pidstr.c_str ());
112e8700
SM
7698 uiout->text (") exited with code ");
7699 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7700 uiout->text ("]\n");
33d62d64
JK
7701 }
7702 else
11cf8741 7703 {
112e8700
SM
7704 if (uiout->is_mi_like_p ())
7705 uiout->field_string
7706 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7707 uiout->text ("[Inferior ");
7708 uiout->text (plongest (inf->num));
7709 uiout->text (" (");
a068643d 7710 uiout->text (pidstr.c_str ());
112e8700 7711 uiout->text (") exited normally]\n");
33d62d64 7712 }
33d62d64
JK
7713}
7714
012b3a21
WT
7715/* Some targets/architectures can do extra processing/display of
7716 segmentation faults. E.g., Intel MPX boundary faults.
7717 Call the architecture dependent function to handle the fault. */
7718
7719static void
7720handle_segmentation_fault (struct ui_out *uiout)
7721{
7722 struct regcache *regcache = get_current_regcache ();
ac7936df 7723 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7724
7725 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7726 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7727}
7728
fd664c91
PA
7729void
7730print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7731{
f303dbd6
PA
7732 struct thread_info *thr = inferior_thread ();
7733
33d62d64
JK
7734 annotate_signal ();
7735
112e8700 7736 if (uiout->is_mi_like_p ())
f303dbd6
PA
7737 ;
7738 else if (show_thread_that_caused_stop ())
33d62d64 7739 {
f303dbd6 7740 const char *name;
33d62d64 7741
112e8700
SM
7742 uiout->text ("\nThread ");
7743 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7744
7745 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7746 if (name != NULL)
7747 {
112e8700
SM
7748 uiout->text (" \"");
7749 uiout->field_fmt ("name", "%s", name);
7750 uiout->text ("\"");
f303dbd6 7751 }
33d62d64 7752 }
f303dbd6 7753 else
112e8700 7754 uiout->text ("\nProgram");
f303dbd6 7755
112e8700
SM
7756 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7757 uiout->text (" stopped");
33d62d64
JK
7758 else
7759 {
112e8700 7760 uiout->text (" received signal ");
8b93c638 7761 annotate_signal_name ();
112e8700
SM
7762 if (uiout->is_mi_like_p ())
7763 uiout->field_string
7764 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7765 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7766 annotate_signal_name_end ();
112e8700 7767 uiout->text (", ");
8b93c638 7768 annotate_signal_string ();
112e8700 7769 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7770
7771 if (siggnal == GDB_SIGNAL_SEGV)
7772 handle_segmentation_fault (uiout);
7773
8b93c638 7774 annotate_signal_string_end ();
33d62d64 7775 }
112e8700 7776 uiout->text (".\n");
33d62d64 7777}
252fbfc8 7778
fd664c91
PA
7779void
7780print_no_history_reason (struct ui_out *uiout)
33d62d64 7781{
112e8700 7782 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7783}
43ff13b4 7784
0c7e1a46
PA
7785/* Print current location without a level number, if we have changed
7786 functions or hit a breakpoint. Print source line if we have one.
7787 bpstat_print contains the logic deciding in detail what to print,
7788 based on the event(s) that just occurred. */
7789
243a9253
PA
7790static void
7791print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7792{
7793 int bpstat_ret;
f486487f 7794 enum print_what source_flag;
0c7e1a46
PA
7795 int do_frame_printing = 1;
7796 struct thread_info *tp = inferior_thread ();
7797
7798 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7799 switch (bpstat_ret)
7800 {
7801 case PRINT_UNKNOWN:
7802 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7803 should) carry around the function and does (or should) use
7804 that when doing a frame comparison. */
7805 if (tp->control.stop_step
7806 && frame_id_eq (tp->control.step_frame_id,
7807 get_frame_id (get_current_frame ()))
f2ffa92b
PA
7808 && (tp->control.step_start_function
7809 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
7810 {
7811 /* Finished step, just print source line. */
7812 source_flag = SRC_LINE;
7813 }
7814 else
7815 {
7816 /* Print location and source line. */
7817 source_flag = SRC_AND_LOC;
7818 }
7819 break;
7820 case PRINT_SRC_AND_LOC:
7821 /* Print location and source line. */
7822 source_flag = SRC_AND_LOC;
7823 break;
7824 case PRINT_SRC_ONLY:
7825 source_flag = SRC_LINE;
7826 break;
7827 case PRINT_NOTHING:
7828 /* Something bogus. */
7829 source_flag = SRC_LINE;
7830 do_frame_printing = 0;
7831 break;
7832 default:
7833 internal_error (__FILE__, __LINE__, _("Unknown value."));
7834 }
7835
7836 /* The behavior of this routine with respect to the source
7837 flag is:
7838 SRC_LINE: Print only source line
7839 LOCATION: Print only location
7840 SRC_AND_LOC: Print location and source line. */
7841 if (do_frame_printing)
7842 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7843}
7844
243a9253
PA
7845/* See infrun.h. */
7846
7847void
4c7d57e7 7848print_stop_event (struct ui_out *uiout, bool displays)
243a9253 7849{
243a9253
PA
7850 struct target_waitstatus last;
7851 ptid_t last_ptid;
7852 struct thread_info *tp;
7853
7854 get_last_target_status (&last_ptid, &last);
7855
67ad9399
TT
7856 {
7857 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 7858
67ad9399 7859 print_stop_location (&last);
243a9253 7860
67ad9399 7861 /* Display the auto-display expressions. */
4c7d57e7
TT
7862 if (displays)
7863 do_displays ();
67ad9399 7864 }
243a9253
PA
7865
7866 tp = inferior_thread ();
7867 if (tp->thread_fsm != NULL
46e3ed7f 7868 && tp->thread_fsm->finished_p ())
243a9253
PA
7869 {
7870 struct return_value_info *rv;
7871
46e3ed7f 7872 rv = tp->thread_fsm->return_value ();
243a9253
PA
7873 if (rv != NULL)
7874 print_return_value (uiout, rv);
7875 }
0c7e1a46
PA
7876}
7877
388a7084
PA
7878/* See infrun.h. */
7879
7880void
7881maybe_remove_breakpoints (void)
7882{
7883 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7884 {
7885 if (remove_breakpoints ())
7886 {
223ffa71 7887 target_terminal::ours_for_output ();
388a7084
PA
7888 printf_filtered (_("Cannot remove breakpoints because "
7889 "program is no longer writable.\nFurther "
7890 "execution is probably impossible.\n"));
7891 }
7892 }
7893}
7894
4c2f2a79
PA
7895/* The execution context that just caused a normal stop. */
7896
7897struct stop_context
7898{
2d844eaf
TT
7899 stop_context ();
7900 ~stop_context ();
7901
7902 DISABLE_COPY_AND_ASSIGN (stop_context);
7903
7904 bool changed () const;
7905
4c2f2a79
PA
7906 /* The stop ID. */
7907 ULONGEST stop_id;
c906108c 7908
4c2f2a79 7909 /* The event PTID. */
c906108c 7910
4c2f2a79
PA
7911 ptid_t ptid;
7912
7913 /* If stopp for a thread event, this is the thread that caused the
7914 stop. */
7915 struct thread_info *thread;
7916
7917 /* The inferior that caused the stop. */
7918 int inf_num;
7919};
7920
2d844eaf 7921/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
7922 takes a strong reference to the thread. */
7923
2d844eaf 7924stop_context::stop_context ()
4c2f2a79 7925{
2d844eaf
TT
7926 stop_id = get_stop_id ();
7927 ptid = inferior_ptid;
7928 inf_num = current_inferior ()->num;
4c2f2a79 7929
d7e15655 7930 if (inferior_ptid != null_ptid)
4c2f2a79
PA
7931 {
7932 /* Take a strong reference so that the thread can't be deleted
7933 yet. */
2d844eaf
TT
7934 thread = inferior_thread ();
7935 thread->incref ();
4c2f2a79
PA
7936 }
7937 else
2d844eaf 7938 thread = NULL;
4c2f2a79
PA
7939}
7940
7941/* Release a stop context previously created with save_stop_context.
7942 Releases the strong reference to the thread as well. */
7943
2d844eaf 7944stop_context::~stop_context ()
4c2f2a79 7945{
2d844eaf
TT
7946 if (thread != NULL)
7947 thread->decref ();
4c2f2a79
PA
7948}
7949
7950/* Return true if the current context no longer matches the saved stop
7951 context. */
7952
2d844eaf
TT
7953bool
7954stop_context::changed () const
7955{
7956 if (ptid != inferior_ptid)
7957 return true;
7958 if (inf_num != current_inferior ()->num)
7959 return true;
7960 if (thread != NULL && thread->state != THREAD_STOPPED)
7961 return true;
7962 if (get_stop_id () != stop_id)
7963 return true;
7964 return false;
4c2f2a79
PA
7965}
7966
7967/* See infrun.h. */
7968
7969int
96baa820 7970normal_stop (void)
c906108c 7971{
73b65bb0
DJ
7972 struct target_waitstatus last;
7973 ptid_t last_ptid;
7974
7975 get_last_target_status (&last_ptid, &last);
7976
4c2f2a79
PA
7977 new_stop_id ();
7978
29f49a6a
PA
7979 /* If an exception is thrown from this point on, make sure to
7980 propagate GDB's knowledge of the executing state to the
7981 frontend/user running state. A QUIT is an easy exception to see
7982 here, so do this before any filtered output. */
731f534f
PA
7983
7984 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
7985
c35b1492 7986 if (!non_stop)
731f534f 7987 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
7988 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7989 || last.kind == TARGET_WAITKIND_EXITED)
7990 {
7991 /* On some targets, we may still have live threads in the
7992 inferior when we get a process exit event. E.g., for
7993 "checkpoint", when the current checkpoint/fork exits,
7994 linux-fork.c automatically switches to another fork from
7995 within target_mourn_inferior. */
731f534f
PA
7996 if (inferior_ptid != null_ptid)
7997 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
7998 }
7999 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 8000 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 8001
b57bacec
PA
8002 /* As we're presenting a stop, and potentially removing breakpoints,
8003 update the thread list so we can tell whether there are threads
8004 running on the target. With target remote, for example, we can
8005 only learn about new threads when we explicitly update the thread
8006 list. Do this before notifying the interpreters about signal
8007 stops, end of stepping ranges, etc., so that the "new thread"
8008 output is emitted before e.g., "Program received signal FOO",
8009 instead of after. */
8010 update_thread_list ();
8011
8012 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8013 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8014
c906108c
SS
8015 /* As with the notification of thread events, we want to delay
8016 notifying the user that we've switched thread context until
8017 the inferior actually stops.
8018
73b65bb0
DJ
8019 There's no point in saying anything if the inferior has exited.
8020 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8021 "received a signal".
8022
8023 Also skip saying anything in non-stop mode. In that mode, as we
8024 don't want GDB to switch threads behind the user's back, to avoid
8025 races where the user is typing a command to apply to thread x,
8026 but GDB switches to thread y before the user finishes entering
8027 the command, fetch_inferior_event installs a cleanup to restore
8028 the current thread back to the thread the user had selected right
8029 after this event is handled, so we're not really switching, only
8030 informing of a stop. */
4f8d22e3 8031 if (!non_stop
731f534f 8032 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8033 && target_has_execution
8034 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8035 && last.kind != TARGET_WAITKIND_EXITED
8036 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8037 {
0e454242 8038 SWITCH_THRU_ALL_UIS ()
3b12939d 8039 {
223ffa71 8040 target_terminal::ours_for_output ();
3b12939d 8041 printf_filtered (_("[Switching to %s]\n"),
a068643d 8042 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8043 annotate_thread_changed ();
8044 }
39f77062 8045 previous_inferior_ptid = inferior_ptid;
c906108c 8046 }
c906108c 8047
0e5bf2a8
PA
8048 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8049 {
0e454242 8050 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8051 if (current_ui->prompt_state == PROMPT_BLOCKED)
8052 {
223ffa71 8053 target_terminal::ours_for_output ();
3b12939d
PA
8054 printf_filtered (_("No unwaited-for children left.\n"));
8055 }
0e5bf2a8
PA
8056 }
8057
b57bacec 8058 /* Note: this depends on the update_thread_list call above. */
388a7084 8059 maybe_remove_breakpoints ();
c906108c 8060
c906108c
SS
8061 /* If an auto-display called a function and that got a signal,
8062 delete that auto-display to avoid an infinite recursion. */
8063
8064 if (stopped_by_random_signal)
8065 disable_current_display ();
8066
0e454242 8067 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8068 {
8069 async_enable_stdin ();
8070 }
c906108c 8071
388a7084 8072 /* Let the user/frontend see the threads as stopped. */
731f534f 8073 maybe_finish_thread_state.reset ();
388a7084
PA
8074
8075 /* Select innermost stack frame - i.e., current frame is frame 0,
8076 and current location is based on that. Handle the case where the
8077 dummy call is returning after being stopped. E.g. the dummy call
8078 previously hit a breakpoint. (If the dummy call returns
8079 normally, we won't reach here.) Do this before the stop hook is
8080 run, so that it doesn't get to see the temporary dummy frame,
8081 which is not where we'll present the stop. */
8082 if (has_stack_frames ())
8083 {
8084 if (stop_stack_dummy == STOP_STACK_DUMMY)
8085 {
8086 /* Pop the empty frame that contains the stack dummy. This
8087 also restores inferior state prior to the call (struct
8088 infcall_suspend_state). */
8089 struct frame_info *frame = get_current_frame ();
8090
8091 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8092 frame_pop (frame);
8093 /* frame_pop calls reinit_frame_cache as the last thing it
8094 does which means there's now no selected frame. */
8095 }
8096
8097 select_frame (get_current_frame ());
8098
8099 /* Set the current source location. */
8100 set_current_sal_from_frame (get_current_frame ());
8101 }
dd7e2d2b
PA
8102
8103 /* Look up the hook_stop and run it (CLI internally handles problem
8104 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8105 if (stop_command != NULL)
8106 {
2d844eaf 8107 stop_context saved_context;
4c2f2a79 8108
bf469271
PA
8109 TRY
8110 {
8111 execute_cmd_pre_hook (stop_command);
8112 }
8113 CATCH (ex, RETURN_MASK_ALL)
8114 {
8115 exception_fprintf (gdb_stderr, ex,
8116 "Error while running hook_stop:\n");
8117 }
8118 END_CATCH
4c2f2a79
PA
8119
8120 /* If the stop hook resumes the target, then there's no point in
8121 trying to notify about the previous stop; its context is
8122 gone. Likewise if the command switches thread or inferior --
8123 the observers would print a stop for the wrong
8124 thread/inferior. */
2d844eaf
TT
8125 if (saved_context.changed ())
8126 return 1;
4c2f2a79 8127 }
dd7e2d2b 8128
388a7084
PA
8129 /* Notify observers about the stop. This is where the interpreters
8130 print the stop event. */
d7e15655 8131 if (inferior_ptid != null_ptid)
76727919 8132 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8133 stop_print_frame);
8134 else
76727919 8135 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8136
243a9253
PA
8137 annotate_stopped ();
8138
48844aa6
PA
8139 if (target_has_execution)
8140 {
8141 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8142 && last.kind != TARGET_WAITKIND_EXITED
8143 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8144 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8145 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8146 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8147 }
6c95b8df
PA
8148
8149 /* Try to get rid of automatically added inferiors that are no
8150 longer needed. Keeping those around slows down things linearly.
8151 Note that this never removes the current inferior. */
8152 prune_inferiors ();
4c2f2a79
PA
8153
8154 return 0;
c906108c 8155}
c906108c 8156\f
c5aa993b 8157int
96baa820 8158signal_stop_state (int signo)
c906108c 8159{
d6b48e9c 8160 return signal_stop[signo];
c906108c
SS
8161}
8162
c5aa993b 8163int
96baa820 8164signal_print_state (int signo)
c906108c
SS
8165{
8166 return signal_print[signo];
8167}
8168
c5aa993b 8169int
96baa820 8170signal_pass_state (int signo)
c906108c
SS
8171{
8172 return signal_program[signo];
8173}
8174
2455069d
UW
8175static void
8176signal_cache_update (int signo)
8177{
8178 if (signo == -1)
8179 {
a493e3e2 8180 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8181 signal_cache_update (signo);
8182
8183 return;
8184 }
8185
8186 signal_pass[signo] = (signal_stop[signo] == 0
8187 && signal_print[signo] == 0
ab04a2af
TT
8188 && signal_program[signo] == 1
8189 && signal_catch[signo] == 0);
2455069d
UW
8190}
8191
488f131b 8192int
7bda5e4a 8193signal_stop_update (int signo, int state)
d4f3574e
SS
8194{
8195 int ret = signal_stop[signo];
abbb1732 8196
d4f3574e 8197 signal_stop[signo] = state;
2455069d 8198 signal_cache_update (signo);
d4f3574e
SS
8199 return ret;
8200}
8201
488f131b 8202int
7bda5e4a 8203signal_print_update (int signo, int state)
d4f3574e
SS
8204{
8205 int ret = signal_print[signo];
abbb1732 8206
d4f3574e 8207 signal_print[signo] = state;
2455069d 8208 signal_cache_update (signo);
d4f3574e
SS
8209 return ret;
8210}
8211
488f131b 8212int
7bda5e4a 8213signal_pass_update (int signo, int state)
d4f3574e
SS
8214{
8215 int ret = signal_program[signo];
abbb1732 8216
d4f3574e 8217 signal_program[signo] = state;
2455069d 8218 signal_cache_update (signo);
d4f3574e
SS
8219 return ret;
8220}
8221
ab04a2af
TT
8222/* Update the global 'signal_catch' from INFO and notify the
8223 target. */
8224
8225void
8226signal_catch_update (const unsigned int *info)
8227{
8228 int i;
8229
8230 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8231 signal_catch[i] = info[i] > 0;
8232 signal_cache_update (-1);
adc6a863 8233 target_pass_signals (signal_pass);
ab04a2af
TT
8234}
8235
c906108c 8236static void
96baa820 8237sig_print_header (void)
c906108c 8238{
3e43a32a
MS
8239 printf_filtered (_("Signal Stop\tPrint\tPass "
8240 "to program\tDescription\n"));
c906108c
SS
8241}
8242
8243static void
2ea28649 8244sig_print_info (enum gdb_signal oursig)
c906108c 8245{
2ea28649 8246 const char *name = gdb_signal_to_name (oursig);
c906108c 8247 int name_padding = 13 - strlen (name);
96baa820 8248
c906108c
SS
8249 if (name_padding <= 0)
8250 name_padding = 0;
8251
8252 printf_filtered ("%s", name);
488f131b 8253 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8254 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8255 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8256 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8257 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8258}
8259
8260/* Specify how various signals in the inferior should be handled. */
8261
8262static void
0b39b52e 8263handle_command (const char *args, int from_tty)
c906108c 8264{
c906108c 8265 int digits, wordlen;
b926417a 8266 int sigfirst, siglast;
2ea28649 8267 enum gdb_signal oursig;
c906108c 8268 int allsigs;
c906108c
SS
8269
8270 if (args == NULL)
8271 {
e2e0b3e5 8272 error_no_arg (_("signal to handle"));
c906108c
SS
8273 }
8274
1777feb0 8275 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8276
adc6a863
PA
8277 const size_t nsigs = GDB_SIGNAL_LAST;
8278 unsigned char sigs[nsigs] {};
c906108c 8279
1777feb0 8280 /* Break the command line up into args. */
c906108c 8281
773a1edc 8282 gdb_argv built_argv (args);
c906108c
SS
8283
8284 /* Walk through the args, looking for signal oursigs, signal names, and
8285 actions. Signal numbers and signal names may be interspersed with
8286 actions, with the actions being performed for all signals cumulatively
1777feb0 8287 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8288
773a1edc 8289 for (char *arg : built_argv)
c906108c 8290 {
773a1edc
TT
8291 wordlen = strlen (arg);
8292 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8293 {;
8294 }
8295 allsigs = 0;
8296 sigfirst = siglast = -1;
8297
773a1edc 8298 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8299 {
8300 /* Apply action to all signals except those used by the
1777feb0 8301 debugger. Silently skip those. */
c906108c
SS
8302 allsigs = 1;
8303 sigfirst = 0;
8304 siglast = nsigs - 1;
8305 }
773a1edc 8306 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8307 {
8308 SET_SIGS (nsigs, sigs, signal_stop);
8309 SET_SIGS (nsigs, sigs, signal_print);
8310 }
773a1edc 8311 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8312 {
8313 UNSET_SIGS (nsigs, sigs, signal_program);
8314 }
773a1edc 8315 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8316 {
8317 SET_SIGS (nsigs, sigs, signal_print);
8318 }
773a1edc 8319 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8320 {
8321 SET_SIGS (nsigs, sigs, signal_program);
8322 }
773a1edc 8323 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8324 {
8325 UNSET_SIGS (nsigs, sigs, signal_stop);
8326 }
773a1edc 8327 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8328 {
8329 SET_SIGS (nsigs, sigs, signal_program);
8330 }
773a1edc 8331 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8332 {
8333 UNSET_SIGS (nsigs, sigs, signal_print);
8334 UNSET_SIGS (nsigs, sigs, signal_stop);
8335 }
773a1edc 8336 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8337 {
8338 UNSET_SIGS (nsigs, sigs, signal_program);
8339 }
8340 else if (digits > 0)
8341 {
8342 /* It is numeric. The numeric signal refers to our own
8343 internal signal numbering from target.h, not to host/target
8344 signal number. This is a feature; users really should be
8345 using symbolic names anyway, and the common ones like
8346 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8347
8348 sigfirst = siglast = (int)
773a1edc
TT
8349 gdb_signal_from_command (atoi (arg));
8350 if (arg[digits] == '-')
c906108c
SS
8351 {
8352 siglast = (int)
773a1edc 8353 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8354 }
8355 if (sigfirst > siglast)
8356 {
1777feb0 8357 /* Bet he didn't figure we'd think of this case... */
b926417a 8358 std::swap (sigfirst, siglast);
c906108c
SS
8359 }
8360 }
8361 else
8362 {
773a1edc 8363 oursig = gdb_signal_from_name (arg);
a493e3e2 8364 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8365 {
8366 sigfirst = siglast = (int) oursig;
8367 }
8368 else
8369 {
8370 /* Not a number and not a recognized flag word => complain. */
773a1edc 8371 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8372 }
8373 }
8374
8375 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8376 which signals to apply actions to. */
c906108c 8377
b926417a 8378 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8379 {
2ea28649 8380 switch ((enum gdb_signal) signum)
c906108c 8381 {
a493e3e2
PA
8382 case GDB_SIGNAL_TRAP:
8383 case GDB_SIGNAL_INT:
c906108c
SS
8384 if (!allsigs && !sigs[signum])
8385 {
9e2f0ad4 8386 if (query (_("%s is used by the debugger.\n\
3e43a32a 8387Are you sure you want to change it? "),
2ea28649 8388 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8389 {
8390 sigs[signum] = 1;
8391 }
8392 else
c119e040 8393 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8394 }
8395 break;
a493e3e2
PA
8396 case GDB_SIGNAL_0:
8397 case GDB_SIGNAL_DEFAULT:
8398 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8399 /* Make sure that "all" doesn't print these. */
8400 break;
8401 default:
8402 sigs[signum] = 1;
8403 break;
8404 }
8405 }
c906108c
SS
8406 }
8407
b926417a 8408 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8409 if (sigs[signum])
8410 {
2455069d 8411 signal_cache_update (-1);
adc6a863
PA
8412 target_pass_signals (signal_pass);
8413 target_program_signals (signal_program);
c906108c 8414
3a031f65
PA
8415 if (from_tty)
8416 {
8417 /* Show the results. */
8418 sig_print_header ();
8419 for (; signum < nsigs; signum++)
8420 if (sigs[signum])
aead7601 8421 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8422 }
8423
8424 break;
8425 }
c906108c
SS
8426}
8427
de0bea00
MF
8428/* Complete the "handle" command. */
8429
eb3ff9a5 8430static void
de0bea00 8431handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8432 completion_tracker &tracker,
6f937416 8433 const char *text, const char *word)
de0bea00 8434{
de0bea00
MF
8435 static const char * const keywords[] =
8436 {
8437 "all",
8438 "stop",
8439 "ignore",
8440 "print",
8441 "pass",
8442 "nostop",
8443 "noignore",
8444 "noprint",
8445 "nopass",
8446 NULL,
8447 };
8448
eb3ff9a5
PA
8449 signal_completer (ignore, tracker, text, word);
8450 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8451}
8452
2ea28649
PA
8453enum gdb_signal
8454gdb_signal_from_command (int num)
ed01b82c
PA
8455{
8456 if (num >= 1 && num <= 15)
2ea28649 8457 return (enum gdb_signal) num;
ed01b82c
PA
8458 error (_("Only signals 1-15 are valid as numeric signals.\n\
8459Use \"info signals\" for a list of symbolic signals."));
8460}
8461
c906108c
SS
8462/* Print current contents of the tables set by the handle command.
8463 It is possible we should just be printing signals actually used
8464 by the current target (but for things to work right when switching
8465 targets, all signals should be in the signal tables). */
8466
8467static void
1d12d88f 8468info_signals_command (const char *signum_exp, int from_tty)
c906108c 8469{
2ea28649 8470 enum gdb_signal oursig;
abbb1732 8471
c906108c
SS
8472 sig_print_header ();
8473
8474 if (signum_exp)
8475 {
8476 /* First see if this is a symbol name. */
2ea28649 8477 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8478 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8479 {
8480 /* No, try numeric. */
8481 oursig =
2ea28649 8482 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8483 }
8484 sig_print_info (oursig);
8485 return;
8486 }
8487
8488 printf_filtered ("\n");
8489 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8490 for (oursig = GDB_SIGNAL_FIRST;
8491 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8492 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8493 {
8494 QUIT;
8495
a493e3e2
PA
8496 if (oursig != GDB_SIGNAL_UNKNOWN
8497 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8498 sig_print_info (oursig);
8499 }
8500
3e43a32a
MS
8501 printf_filtered (_("\nUse the \"handle\" command "
8502 "to change these tables.\n"));
c906108c 8503}
4aa995e1
PA
8504
8505/* The $_siginfo convenience variable is a bit special. We don't know
8506 for sure the type of the value until we actually have a chance to
7a9dd1b2 8507 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8508 also dependent on which thread you have selected.
8509
8510 1. making $_siginfo be an internalvar that creates a new value on
8511 access.
8512
8513 2. making the value of $_siginfo be an lval_computed value. */
8514
8515/* This function implements the lval_computed support for reading a
8516 $_siginfo value. */
8517
8518static void
8519siginfo_value_read (struct value *v)
8520{
8521 LONGEST transferred;
8522
a911d87a
PA
8523 /* If we can access registers, so can we access $_siginfo. Likewise
8524 vice versa. */
8525 validate_registers_access ();
c709acd1 8526
4aa995e1 8527 transferred =
8b88a78e 8528 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8529 NULL,
8530 value_contents_all_raw (v),
8531 value_offset (v),
8532 TYPE_LENGTH (value_type (v)));
8533
8534 if (transferred != TYPE_LENGTH (value_type (v)))
8535 error (_("Unable to read siginfo"));
8536}
8537
8538/* This function implements the lval_computed support for writing a
8539 $_siginfo value. */
8540
8541static void
8542siginfo_value_write (struct value *v, struct value *fromval)
8543{
8544 LONGEST transferred;
8545
a911d87a
PA
8546 /* If we can access registers, so can we access $_siginfo. Likewise
8547 vice versa. */
8548 validate_registers_access ();
c709acd1 8549
8b88a78e 8550 transferred = target_write (current_top_target (),
4aa995e1
PA
8551 TARGET_OBJECT_SIGNAL_INFO,
8552 NULL,
8553 value_contents_all_raw (fromval),
8554 value_offset (v),
8555 TYPE_LENGTH (value_type (fromval)));
8556
8557 if (transferred != TYPE_LENGTH (value_type (fromval)))
8558 error (_("Unable to write siginfo"));
8559}
8560
c8f2448a 8561static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8562 {
8563 siginfo_value_read,
8564 siginfo_value_write
8565 };
8566
8567/* Return a new value with the correct type for the siginfo object of
78267919
UW
8568 the current thread using architecture GDBARCH. Return a void value
8569 if there's no object available. */
4aa995e1 8570
2c0b251b 8571static struct value *
22d2b532
SDJ
8572siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8573 void *ignore)
4aa995e1 8574{
4aa995e1 8575 if (target_has_stack
d7e15655 8576 && inferior_ptid != null_ptid
78267919 8577 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8578 {
78267919 8579 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8580
78267919 8581 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8582 }
8583
78267919 8584 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8585}
8586
c906108c 8587\f
16c381f0
JK
8588/* infcall_suspend_state contains state about the program itself like its
8589 registers and any signal it received when it last stopped.
8590 This state must be restored regardless of how the inferior function call
8591 ends (either successfully, or after it hits a breakpoint or signal)
8592 if the program is to properly continue where it left off. */
8593
6bf78e29 8594class infcall_suspend_state
7a292a7a 8595{
6bf78e29
AB
8596public:
8597 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8598 once the inferior function call has finished. */
8599 infcall_suspend_state (struct gdbarch *gdbarch,
8600 const struct thread_info *tp,
8601 struct regcache *regcache)
8602 : m_thread_suspend (tp->suspend),
8603 m_registers (new readonly_detached_regcache (*regcache))
8604 {
8605 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8606
8607 if (gdbarch_get_siginfo_type_p (gdbarch))
8608 {
8609 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8610 size_t len = TYPE_LENGTH (type);
8611
8612 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8613
8614 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8615 siginfo_data.get (), 0, len) != len)
8616 {
8617 /* Errors ignored. */
8618 siginfo_data.reset (nullptr);
8619 }
8620 }
8621
8622 if (siginfo_data)
8623 {
8624 m_siginfo_gdbarch = gdbarch;
8625 m_siginfo_data = std::move (siginfo_data);
8626 }
8627 }
8628
8629 /* Return a pointer to the stored register state. */
16c381f0 8630
6bf78e29
AB
8631 readonly_detached_regcache *registers () const
8632 {
8633 return m_registers.get ();
8634 }
8635
8636 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8637
8638 void restore (struct gdbarch *gdbarch,
8639 struct thread_info *tp,
8640 struct regcache *regcache) const
8641 {
8642 tp->suspend = m_thread_suspend;
8643
8644 if (m_siginfo_gdbarch == gdbarch)
8645 {
8646 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8647
8648 /* Errors ignored. */
8649 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8650 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8651 }
8652
8653 /* The inferior can be gone if the user types "print exit(0)"
8654 (and perhaps other times). */
8655 if (target_has_execution)
8656 /* NB: The register write goes through to the target. */
8657 regcache->restore (registers ());
8658 }
8659
8660private:
8661 /* How the current thread stopped before the inferior function call was
8662 executed. */
8663 struct thread_suspend_state m_thread_suspend;
8664
8665 /* The registers before the inferior function call was executed. */
8666 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8667
35515841 8668 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8669 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8670
8671 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8672 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8673 content would be invalid. */
6bf78e29 8674 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8675};
8676
cb524840
TT
8677infcall_suspend_state_up
8678save_infcall_suspend_state ()
b89667eb 8679{
b89667eb 8680 struct thread_info *tp = inferior_thread ();
1736ad11 8681 struct regcache *regcache = get_current_regcache ();
ac7936df 8682 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8683
6bf78e29
AB
8684 infcall_suspend_state_up inf_state
8685 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8686
6bf78e29
AB
8687 /* Having saved the current state, adjust the thread state, discarding
8688 any stop signal information. The stop signal is not useful when
8689 starting an inferior function call, and run_inferior_call will not use
8690 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8691 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8692
b89667eb
DE
8693 return inf_state;
8694}
8695
8696/* Restore inferior session state to INF_STATE. */
8697
8698void
16c381f0 8699restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8700{
8701 struct thread_info *tp = inferior_thread ();
1736ad11 8702 struct regcache *regcache = get_current_regcache ();
ac7936df 8703 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8704
6bf78e29 8705 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8706 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8707}
8708
b89667eb 8709void
16c381f0 8710discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8711{
dd848631 8712 delete inf_state;
b89667eb
DE
8713}
8714
daf6667d 8715readonly_detached_regcache *
16c381f0 8716get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8717{
6bf78e29 8718 return inf_state->registers ();
b89667eb
DE
8719}
8720
16c381f0
JK
8721/* infcall_control_state contains state regarding gdb's control of the
8722 inferior itself like stepping control. It also contains session state like
8723 the user's currently selected frame. */
b89667eb 8724
16c381f0 8725struct infcall_control_state
b89667eb 8726{
16c381f0
JK
8727 struct thread_control_state thread_control;
8728 struct inferior_control_state inferior_control;
d82142e2
JK
8729
8730 /* Other fields: */
ee841dd8
TT
8731 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8732 int stopped_by_random_signal = 0;
7a292a7a 8733
b89667eb 8734 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 8735 struct frame_id selected_frame_id {};
7a292a7a
SS
8736};
8737
c906108c 8738/* Save all of the information associated with the inferior<==>gdb
b89667eb 8739 connection. */
c906108c 8740
cb524840
TT
8741infcall_control_state_up
8742save_infcall_control_state ()
c906108c 8743{
cb524840 8744 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 8745 struct thread_info *tp = inferior_thread ();
d6b48e9c 8746 struct inferior *inf = current_inferior ();
7a292a7a 8747
16c381f0
JK
8748 inf_status->thread_control = tp->control;
8749 inf_status->inferior_control = inf->control;
d82142e2 8750
8358c15c 8751 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8752 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8753
16c381f0
JK
8754 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8755 chain. If caller's caller is walking the chain, they'll be happier if we
8756 hand them back the original chain when restore_infcall_control_state is
8757 called. */
8758 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8759
8760 /* Other fields: */
8761 inf_status->stop_stack_dummy = stop_stack_dummy;
8762 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8763
206415a3 8764 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8765
7a292a7a 8766 return inf_status;
c906108c
SS
8767}
8768
bf469271
PA
8769static void
8770restore_selected_frame (const frame_id &fid)
c906108c 8771{
bf469271 8772 frame_info *frame = frame_find_by_id (fid);
c906108c 8773
aa0cd9c1
AC
8774 /* If inf_status->selected_frame_id is NULL, there was no previously
8775 selected frame. */
101dcfbe 8776 if (frame == NULL)
c906108c 8777 {
8a3fe4f8 8778 warning (_("Unable to restore previously selected frame."));
bf469271 8779 return;
c906108c
SS
8780 }
8781
0f7d239c 8782 select_frame (frame);
c906108c
SS
8783}
8784
b89667eb
DE
8785/* Restore inferior session state to INF_STATUS. */
8786
c906108c 8787void
16c381f0 8788restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8789{
4e1c45ea 8790 struct thread_info *tp = inferior_thread ();
d6b48e9c 8791 struct inferior *inf = current_inferior ();
4e1c45ea 8792
8358c15c
JK
8793 if (tp->control.step_resume_breakpoint)
8794 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8795
5b79abe7
TT
8796 if (tp->control.exception_resume_breakpoint)
8797 tp->control.exception_resume_breakpoint->disposition
8798 = disp_del_at_next_stop;
8799
d82142e2 8800 /* Handle the bpstat_copy of the chain. */
16c381f0 8801 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8802
16c381f0
JK
8803 tp->control = inf_status->thread_control;
8804 inf->control = inf_status->inferior_control;
d82142e2
JK
8805
8806 /* Other fields: */
8807 stop_stack_dummy = inf_status->stop_stack_dummy;
8808 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8809
b89667eb 8810 if (target_has_stack)
c906108c 8811 {
bf469271 8812 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
8813 walking the stack might encounter a garbage pointer and
8814 error() trying to dereference it. */
bf469271
PA
8815 TRY
8816 {
8817 restore_selected_frame (inf_status->selected_frame_id);
8818 }
8819 CATCH (ex, RETURN_MASK_ERROR)
8820 {
8821 exception_fprintf (gdb_stderr, ex,
8822 "Unable to restore previously selected frame:\n");
8823 /* Error in restoring the selected frame. Select the
8824 innermost frame. */
8825 select_frame (get_current_frame ());
8826 }
8827 END_CATCH
c906108c 8828 }
c906108c 8829
ee841dd8 8830 delete inf_status;
7a292a7a 8831}
c906108c
SS
8832
8833void
16c381f0 8834discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8835{
8358c15c
JK
8836 if (inf_status->thread_control.step_resume_breakpoint)
8837 inf_status->thread_control.step_resume_breakpoint->disposition
8838 = disp_del_at_next_stop;
8839
5b79abe7
TT
8840 if (inf_status->thread_control.exception_resume_breakpoint)
8841 inf_status->thread_control.exception_resume_breakpoint->disposition
8842 = disp_del_at_next_stop;
8843
1777feb0 8844 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8845 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8846
ee841dd8 8847 delete inf_status;
7a292a7a 8848}
b89667eb 8849\f
7f89fd65 8850/* See infrun.h. */
0c557179
SDJ
8851
8852void
8853clear_exit_convenience_vars (void)
8854{
8855 clear_internalvar (lookup_internalvar ("_exitsignal"));
8856 clear_internalvar (lookup_internalvar ("_exitcode"));
8857}
c5aa993b 8858\f
488f131b 8859
b2175913
MS
8860/* User interface for reverse debugging:
8861 Set exec-direction / show exec-direction commands
8862 (returns error unless target implements to_set_exec_direction method). */
8863
170742de 8864enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8865static const char exec_forward[] = "forward";
8866static const char exec_reverse[] = "reverse";
8867static const char *exec_direction = exec_forward;
40478521 8868static const char *const exec_direction_names[] = {
b2175913
MS
8869 exec_forward,
8870 exec_reverse,
8871 NULL
8872};
8873
8874static void
eb4c3f4a 8875set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
8876 struct cmd_list_element *cmd)
8877{
8878 if (target_can_execute_reverse)
8879 {
8880 if (!strcmp (exec_direction, exec_forward))
8881 execution_direction = EXEC_FORWARD;
8882 else if (!strcmp (exec_direction, exec_reverse))
8883 execution_direction = EXEC_REVERSE;
8884 }
8bbed405
MS
8885 else
8886 {
8887 exec_direction = exec_forward;
8888 error (_("Target does not support this operation."));
8889 }
b2175913
MS
8890}
8891
8892static void
8893show_exec_direction_func (struct ui_file *out, int from_tty,
8894 struct cmd_list_element *cmd, const char *value)
8895{
8896 switch (execution_direction) {
8897 case EXEC_FORWARD:
8898 fprintf_filtered (out, _("Forward.\n"));
8899 break;
8900 case EXEC_REVERSE:
8901 fprintf_filtered (out, _("Reverse.\n"));
8902 break;
b2175913 8903 default:
d8b34453
PA
8904 internal_error (__FILE__, __LINE__,
8905 _("bogus execution_direction value: %d"),
8906 (int) execution_direction);
b2175913
MS
8907 }
8908}
8909
d4db2f36
PA
8910static void
8911show_schedule_multiple (struct ui_file *file, int from_tty,
8912 struct cmd_list_element *c, const char *value)
8913{
3e43a32a
MS
8914 fprintf_filtered (file, _("Resuming the execution of threads "
8915 "of all processes is %s.\n"), value);
d4db2f36 8916}
ad52ddc6 8917
22d2b532
SDJ
8918/* Implementation of `siginfo' variable. */
8919
8920static const struct internalvar_funcs siginfo_funcs =
8921{
8922 siginfo_make_value,
8923 NULL,
8924 NULL
8925};
8926
372316f1
PA
8927/* Callback for infrun's target events source. This is marked when a
8928 thread has a pending status to process. */
8929
8930static void
8931infrun_async_inferior_event_handler (gdb_client_data data)
8932{
372316f1
PA
8933 inferior_event_handler (INF_REG_EVENT, NULL);
8934}
8935
c906108c 8936void
96baa820 8937_initialize_infrun (void)
c906108c 8938{
de0bea00 8939 struct cmd_list_element *c;
c906108c 8940
372316f1
PA
8941 /* Register extra event sources in the event loop. */
8942 infrun_async_inferior_event_token
8943 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8944
11db9430 8945 add_info ("signals", info_signals_command, _("\
1bedd215
AC
8946What debugger does when program gets various signals.\n\
8947Specify a signal as argument to print info on that signal only."));
c906108c
SS
8948 add_info_alias ("handle", "signals", 0);
8949
de0bea00 8950 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 8951Specify how to handle signals.\n\
486c7739 8952Usage: handle SIGNAL [ACTIONS]\n\
c906108c 8953Args are signals and actions to apply to those signals.\n\
dfbd5e7b 8954If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
8955will be displayed instead.\n\
8956\n\
c906108c
SS
8957Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8958from 1-15 are allowed for compatibility with old versions of GDB.\n\
8959Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8960The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 8961used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 8962\n\
1bedd215 8963Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
8964\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8965Stop means reenter debugger if this signal happens (implies print).\n\
8966Print means print a message if this signal happens.\n\
8967Pass means let program see this signal; otherwise program doesn't know.\n\
8968Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
8969Pass and Stop may be combined.\n\
8970\n\
8971Multiple signals may be specified. Signal numbers and signal names\n\
8972may be interspersed with actions, with the actions being performed for\n\
8973all signals cumulatively specified."));
de0bea00 8974 set_cmd_completer (c, handle_completer);
486c7739 8975
c906108c 8976 if (!dbx_commands)
1a966eab
AC
8977 stop_command = add_cmd ("stop", class_obscure,
8978 not_just_help_class_command, _("\
8979There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 8980This allows you to set a list of commands to be run each time execution\n\
1a966eab 8981of the program stops."), &cmdlist);
c906108c 8982
ccce17b0 8983 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
8984Set inferior debugging."), _("\
8985Show inferior debugging."), _("\
8986When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
8987 NULL,
8988 show_debug_infrun,
8989 &setdebuglist, &showdebuglist);
527159b7 8990
3e43a32a
MS
8991 add_setshow_boolean_cmd ("displaced", class_maintenance,
8992 &debug_displaced, _("\
237fc4c9
PA
8993Set displaced stepping debugging."), _("\
8994Show displaced stepping debugging."), _("\
8995When non-zero, displaced stepping specific debugging is enabled."),
8996 NULL,
8997 show_debug_displaced,
8998 &setdebuglist, &showdebuglist);
8999
ad52ddc6
PA
9000 add_setshow_boolean_cmd ("non-stop", no_class,
9001 &non_stop_1, _("\
9002Set whether gdb controls the inferior in non-stop mode."), _("\
9003Show whether gdb controls the inferior in non-stop mode."), _("\
9004When debugging a multi-threaded program and this setting is\n\
9005off (the default, also called all-stop mode), when one thread stops\n\
9006(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9007all other threads in the program while you interact with the thread of\n\
9008interest. When you continue or step a thread, you can allow the other\n\
9009threads to run, or have them remain stopped, but while you inspect any\n\
9010thread's state, all threads stop.\n\
9011\n\
9012In non-stop mode, when one thread stops, other threads can continue\n\
9013to run freely. You'll be able to step each thread independently,\n\
9014leave it stopped or free to run as needed."),
9015 set_non_stop,
9016 show_non_stop,
9017 &setlist,
9018 &showlist);
9019
adc6a863 9020 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9021 {
9022 signal_stop[i] = 1;
9023 signal_print[i] = 1;
9024 signal_program[i] = 1;
ab04a2af 9025 signal_catch[i] = 0;
c906108c
SS
9026 }
9027
4d9d9d04
PA
9028 /* Signals caused by debugger's own actions should not be given to
9029 the program afterwards.
9030
9031 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9032 explicitly specifies that it should be delivered to the target
9033 program. Typically, that would occur when a user is debugging a
9034 target monitor on a simulator: the target monitor sets a
9035 breakpoint; the simulator encounters this breakpoint and halts
9036 the simulation handing control to GDB; GDB, noting that the stop
9037 address doesn't map to any known breakpoint, returns control back
9038 to the simulator; the simulator then delivers the hardware
9039 equivalent of a GDB_SIGNAL_TRAP to the program being
9040 debugged. */
a493e3e2
PA
9041 signal_program[GDB_SIGNAL_TRAP] = 0;
9042 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9043
9044 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9045 signal_stop[GDB_SIGNAL_ALRM] = 0;
9046 signal_print[GDB_SIGNAL_ALRM] = 0;
9047 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9048 signal_print[GDB_SIGNAL_VTALRM] = 0;
9049 signal_stop[GDB_SIGNAL_PROF] = 0;
9050 signal_print[GDB_SIGNAL_PROF] = 0;
9051 signal_stop[GDB_SIGNAL_CHLD] = 0;
9052 signal_print[GDB_SIGNAL_CHLD] = 0;
9053 signal_stop[GDB_SIGNAL_IO] = 0;
9054 signal_print[GDB_SIGNAL_IO] = 0;
9055 signal_stop[GDB_SIGNAL_POLL] = 0;
9056 signal_print[GDB_SIGNAL_POLL] = 0;
9057 signal_stop[GDB_SIGNAL_URG] = 0;
9058 signal_print[GDB_SIGNAL_URG] = 0;
9059 signal_stop[GDB_SIGNAL_WINCH] = 0;
9060 signal_print[GDB_SIGNAL_WINCH] = 0;
9061 signal_stop[GDB_SIGNAL_PRIO] = 0;
9062 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9063
cd0fc7c3
SS
9064 /* These signals are used internally by user-level thread
9065 implementations. (See signal(5) on Solaris.) Like the above
9066 signals, a healthy program receives and handles them as part of
9067 its normal operation. */
a493e3e2
PA
9068 signal_stop[GDB_SIGNAL_LWP] = 0;
9069 signal_print[GDB_SIGNAL_LWP] = 0;
9070 signal_stop[GDB_SIGNAL_WAITING] = 0;
9071 signal_print[GDB_SIGNAL_WAITING] = 0;
9072 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9073 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9074 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9075 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9076
2455069d
UW
9077 /* Update cached state. */
9078 signal_cache_update (-1);
9079
85c07804
AC
9080 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9081 &stop_on_solib_events, _("\
9082Set stopping for shared library events."), _("\
9083Show stopping for shared library events."), _("\
c906108c
SS
9084If nonzero, gdb will give control to the user when the dynamic linker\n\
9085notifies gdb of shared library events. The most common event of interest\n\
85c07804 9086to the user would be loading/unloading of a new library."),
f9e14852 9087 set_stop_on_solib_events,
920d2a44 9088 show_stop_on_solib_events,
85c07804 9089 &setlist, &showlist);
c906108c 9090
7ab04401
AC
9091 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9092 follow_fork_mode_kind_names,
9093 &follow_fork_mode_string, _("\
9094Set debugger response to a program call of fork or vfork."), _("\
9095Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9096A fork or vfork creates a new process. follow-fork-mode can be:\n\
9097 parent - the original process is debugged after a fork\n\
9098 child - the new process is debugged after a fork\n\
ea1dd7bc 9099The unfollowed process will continue to run.\n\
7ab04401
AC
9100By default, the debugger will follow the parent process."),
9101 NULL,
920d2a44 9102 show_follow_fork_mode_string,
7ab04401
AC
9103 &setlist, &showlist);
9104
6c95b8df
PA
9105 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9106 follow_exec_mode_names,
9107 &follow_exec_mode_string, _("\
9108Set debugger response to a program call of exec."), _("\
9109Show debugger response to a program call of exec."), _("\
9110An exec call replaces the program image of a process.\n\
9111\n\
9112follow-exec-mode can be:\n\
9113\n\
cce7e648 9114 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9115to this new inferior. The program the process was running before\n\
9116the exec call can be restarted afterwards by restarting the original\n\
9117inferior.\n\
9118\n\
9119 same - the debugger keeps the process bound to the same inferior.\n\
9120The new executable image replaces the previous executable loaded in\n\
9121the inferior. Restarting the inferior after the exec call restarts\n\
9122the executable the process was running after the exec call.\n\
9123\n\
9124By default, the debugger will use the same inferior."),
9125 NULL,
9126 show_follow_exec_mode_string,
9127 &setlist, &showlist);
9128
7ab04401
AC
9129 add_setshow_enum_cmd ("scheduler-locking", class_run,
9130 scheduler_enums, &scheduler_mode, _("\
9131Set mode for locking scheduler during execution."), _("\
9132Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9133off == no locking (threads may preempt at any time)\n\
9134on == full locking (no thread except the current thread may run)\n\
9135 This applies to both normal execution and replay mode.\n\
9136step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9137 In this mode, other threads may run during other commands.\n\
9138 This applies to both normal execution and replay mode.\n\
9139replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9140 set_schedlock_func, /* traps on target vector */
920d2a44 9141 show_scheduler_mode,
7ab04401 9142 &setlist, &showlist);
5fbbeb29 9143
d4db2f36
PA
9144 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9145Set mode for resuming threads of all processes."), _("\
9146Show mode for resuming threads of all processes."), _("\
9147When on, execution commands (such as 'continue' or 'next') resume all\n\
9148threads of all processes. When off (which is the default), execution\n\
9149commands only resume the threads of the current process. The set of\n\
9150threads that are resumed is further refined by the scheduler-locking\n\
9151mode (see help set scheduler-locking)."),
9152 NULL,
9153 show_schedule_multiple,
9154 &setlist, &showlist);
9155
5bf193a2
AC
9156 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9157Set mode of the step operation."), _("\
9158Show mode of the step operation."), _("\
9159When set, doing a step over a function without debug line information\n\
9160will stop at the first instruction of that function. Otherwise, the\n\
9161function is skipped and the step command stops at a different source line."),
9162 NULL,
920d2a44 9163 show_step_stop_if_no_debug,
5bf193a2 9164 &setlist, &showlist);
ca6724c1 9165
72d0e2c5
YQ
9166 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9167 &can_use_displaced_stepping, _("\
237fc4c9
PA
9168Set debugger's willingness to use displaced stepping."), _("\
9169Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9170If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9171supported by the target architecture. If off, gdb will not use displaced\n\
9172stepping to step over breakpoints, even if such is supported by the target\n\
9173architecture. If auto (which is the default), gdb will use displaced stepping\n\
9174if the target architecture supports it and non-stop mode is active, but will not\n\
9175use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9176 NULL,
9177 show_can_use_displaced_stepping,
9178 &setlist, &showlist);
237fc4c9 9179
b2175913
MS
9180 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9181 &exec_direction, _("Set direction of execution.\n\
9182Options are 'forward' or 'reverse'."),
9183 _("Show direction of execution (forward/reverse)."),
9184 _("Tells gdb whether to execute forward or backward."),
9185 set_exec_direction_func, show_exec_direction_func,
9186 &setlist, &showlist);
9187
6c95b8df
PA
9188 /* Set/show detach-on-fork: user-settable mode. */
9189
9190 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9191Set whether gdb will detach the child of a fork."), _("\
9192Show whether gdb will detach the child of a fork."), _("\
9193Tells gdb whether to detach the child of a fork."),
9194 NULL, NULL, &setlist, &showlist);
9195
03583c20
UW
9196 /* Set/show disable address space randomization mode. */
9197
9198 add_setshow_boolean_cmd ("disable-randomization", class_support,
9199 &disable_randomization, _("\
9200Set disabling of debuggee's virtual address space randomization."), _("\
9201Show disabling of debuggee's virtual address space randomization."), _("\
9202When this mode is on (which is the default), randomization of the virtual\n\
9203address space is disabled. Standalone programs run with the randomization\n\
9204enabled by default on some platforms."),
9205 &set_disable_randomization,
9206 &show_disable_randomization,
9207 &setlist, &showlist);
9208
ca6724c1 9209 /* ptid initializations */
ca6724c1
KB
9210 inferior_ptid = null_ptid;
9211 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9212
76727919
TT
9213 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9214 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9215 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9216 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9217
9218 /* Explicitly create without lookup, since that tries to create a
9219 value with a void typed value, and when we get here, gdbarch
9220 isn't initialized yet. At this point, we're quite sure there
9221 isn't another convenience variable of the same name. */
22d2b532 9222 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9223
9224 add_setshow_boolean_cmd ("observer", no_class,
9225 &observer_mode_1, _("\
9226Set whether gdb controls the inferior in observer mode."), _("\
9227Show whether gdb controls the inferior in observer mode."), _("\
9228In observer mode, GDB can get data from the inferior, but not\n\
9229affect its execution. Registers and memory may not be changed,\n\
9230breakpoints may not be set, and the program cannot be interrupted\n\
9231or signalled."),
9232 set_observer_mode,
9233 show_observer_mode,
9234 &setlist,
9235 &showlist);
c906108c 9236}
This page took 2.523332 seconds and 4 git commands to generate.