Remove IRIX 5 <sys/proc.h> _KMEMUSER workaround
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
618f726f 4 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
c906108c
SS
67
68/* Prototypes for local functions */
69
96baa820 70static void signals_info (char *, int);
c906108c 71
96baa820 72static void handle_command (char *, int);
c906108c 73
2ea28649 74static void sig_print_info (enum gdb_signal);
c906108c 75
96baa820 76static void sig_print_header (void);
c906108c 77
74b7792f 78static void resume_cleanups (void *);
c906108c 79
96baa820 80static int hook_stop_stub (void *);
c906108c 81
96baa820
JM
82static int restore_selected_frame (void *);
83
4ef3f3be 84static int follow_fork (void);
96baa820 85
d83ad864
DB
86static int follow_fork_inferior (int follow_child, int detach_fork);
87
88static void follow_inferior_reset_breakpoints (void);
89
96baa820 90static void set_schedlock_func (char *args, int from_tty,
488f131b 91 struct cmd_list_element *c);
96baa820 92
a289b8f6
JK
93static int currently_stepping (struct thread_info *tp);
94
96baa820 95void _initialize_infrun (void);
43ff13b4 96
e58b0e63
PA
97void nullify_last_target_wait_ptid (void);
98
2c03e5be 99static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
100
101static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
2484c66b
UW
103static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
8550d3b3
YQ
105static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
372316f1
PA
107/* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109static struct async_event_handler *infrun_async_inferior_event_token;
110
111/* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113static int infrun_is_async = -1;
114
115/* See infrun.h. */
116
117void
118infrun_async (int enable)
119{
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134}
135
0b333c5e
PA
136/* See infrun.h. */
137
138void
139mark_infrun_async_event_handler (void)
140{
141 mark_async_event_handler (infrun_async_inferior_event_token);
142}
143
5fbbeb29
CF
144/* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147int step_stop_if_no_debug = 0;
920d2a44
AC
148static void
149show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151{
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153}
5fbbeb29 154
b9f437de
PA
155/* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
96baa820 158
39f77062 159static ptid_t previous_inferior_ptid;
7a292a7a 160
07107ca6
LM
161/* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166static int detach_fork = 1;
6c95b8df 167
237fc4c9
PA
168int debug_displaced = 0;
169static void
170show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172{
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174}
175
ccce17b0 176unsigned int debug_infrun = 0;
920d2a44
AC
177static void
178show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182}
527159b7 183
03583c20
UW
184
185/* Support for disabling address space randomization. */
186
187int disable_randomization = 1;
188
189static void
190show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192{
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202}
203
204static void
205set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207{
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212}
213
d32dc48e
PA
214/* User interface for non-stop mode. */
215
216int non_stop = 0;
217static int non_stop_1 = 0;
218
219static void
220set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222{
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230}
231
232static void
233show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235{
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239}
240
d914c394
SS
241/* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
d914c394
SS
245int observer_mode = 0;
246static int observer_mode_1 = 0;
247
248static void
249set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251{
d914c394
SS
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
d914c394
SS
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282}
283
284static void
285show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287{
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289}
290
291/* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297void
298update_observer_mode (void)
299{
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314}
c2c6d25f 315
c906108c
SS
316/* Tables of how to react to signals; the user sets them. */
317
318static unsigned char *signal_stop;
319static unsigned char *signal_print;
320static unsigned char *signal_program;
321
ab04a2af
TT
322/* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326static unsigned char *signal_catch;
327
2455069d
UW
328/* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331static unsigned char *signal_pass;
332
c906108c
SS
333#define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341#define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
9b224c5e
PA
349/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352void
353update_signals_program_target (void)
354{
a493e3e2 355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
356}
357
1777feb0 358/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 359
edb3359d 360#define RESUME_ALL minus_one_ptid
c906108c
SS
361
362/* Command list pointer for the "stop" placeholder. */
363
364static struct cmd_list_element *stop_command;
365
c906108c
SS
366/* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
628fe4e4 368int stop_on_solib_events;
f9e14852
GB
369
370/* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373static void
374set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375{
376 update_solib_breakpoints ();
377}
378
920d2a44
AC
379static void
380show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382{
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385}
c906108c 386
c906108c
SS
387/* Nonzero after stop if current stack frame should be printed. */
388
389static int stop_print_frame;
390
e02bc4cc 391/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
39f77062 394static ptid_t target_last_wait_ptid;
e02bc4cc
DS
395static struct target_waitstatus target_last_waitstatus;
396
0d1e5fa7
PA
397static void context_switch (ptid_t ptid);
398
4e1c45ea 399void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 400
53904c9e
AC
401static const char follow_fork_mode_child[] = "child";
402static const char follow_fork_mode_parent[] = "parent";
403
40478521 404static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
ef346e04 408};
c906108c 409
53904c9e 410static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
411static void
412show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414{
3e43a32a
MS
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
418 value);
419}
c906108c
SS
420\f
421
d83ad864
DB
422/* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428static int
429follow_fork_inferior (int follow_child, int detach_fork)
430{
431 int has_vforked;
79639e11 432 ptid_t parent_ptid, child_ptid;
d83ad864
DB
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
79639e11
PA
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 441 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450Can not resume the parent process over vfork in the foreground while\n\
451holding the child stopped. Try \"set detach-on-fork\" or \
452\"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
d83ad864
DB
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
8dd06f7a
DB
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
6f259a23 480 target_terminal_ours_for_output ();
d83ad864 481 fprintf_filtered (gdb_stdlog,
79639e11 482 _("Detaching after %s from child %s.\n"),
6f259a23 483 has_vforked ? "vfork" : "fork",
8dd06f7a 484 target_pid_to_str (process_ptid));
d83ad864
DB
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
79639e11 493 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_inferior_ptid ();
502 save_current_program_space ();
503
79639e11 504 inferior_ptid = child_ptid;
d83ad864
DB
505 add_thread (inferior_ptid);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
6f259a23
DB
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
79639e11
PA
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
6f259a23 572 has_vforked ? "vfork" : "fork",
79639e11 573 target_pid_to_str (child_ptid));
d83ad864
DB
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
79639e11 579 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
6f259a23
DB
610 {
611 if (info_verbose || debug_infrun)
612 {
8dd06f7a
DB
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
6f259a23
DB
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
79639e11 619 "child %s.\n"),
8dd06f7a 620 target_pid_to_str (process_ptid));
6f259a23
DB
621 }
622
623 target_detach (NULL, 0);
624 }
d83ad864
DB
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
79639e11 632 inferior_ptid = child_ptid;
d83ad864
DB
633 add_thread (inferior_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662}
663
e58b0e63
PA
664/* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
6604731b 668static int
4ef3f3be 669follow_fork (void)
c906108c 670{
ea1dd7bc 671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
4e3990f4
DE
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 680 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
8980e177 684 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
8358c15c
JK
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
16c381f0
JK
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
186c406b
TT
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 736 thread_fsm = tp->thread_fsm;
e58b0e63
PA
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
16c381f0
JK
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
186c406b 747 delete_exception_resume_breakpoint (tp);
8980e177 748 tp->thread_fsm = NULL;
e58b0e63
PA
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
d83ad864
DB
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
e09875d4 769 tp = find_thread_ptid (parent);
e58b0e63
PA
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
1777feb0 777 /* If we followed the child, switch to it... */
e58b0e63
PA
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
8358c15c
JK
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
16c381f0
JK
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
186c406b
TT
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
8980e177 794 tp->thread_fsm = thread_fsm;
e58b0e63
PA
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
3e43a32a 804 warning (_("Not resuming: switched threads "
fd7dcb94 805 "before following fork child."));
e58b0e63
PA
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
c906108c 825
e58b0e63 826 return should_resume;
c906108c
SS
827}
828
d83ad864 829static void
6604731b 830follow_inferior_reset_breakpoints (void)
c906108c 831{
4e1c45ea
PA
832 struct thread_info *tp = inferior_thread ();
833
6604731b
DJ
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
6604731b
DJ
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
8358c15c 847 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
6604731b 852
a1aa2221 853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 854 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
186c406b 859
6604731b
DJ
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
c906108c 867}
c906108c 868
6c95b8df
PA
869/* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872static int
873proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875{
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
a493e3e2 882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
70509625 890 clear_proceed_status (0);
64ce06e4 891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
892 }
893
894 return 0;
895}
896
897/* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900static void
901handle_vfork_child_exec_or_exit (int exec)
902{
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. If the user wanted to
911 detach from the parent, now is the time. */
912
913 if (inf->vfork_parent->pending_detach)
914 {
915 struct thread_info *tp;
916 struct cleanup *old_chain;
917 struct program_space *pspace;
918 struct address_space *aspace;
919
1777feb0 920 /* follow-fork child, detach-on-fork on. */
6c95b8df 921
68c9da30
PA
922 inf->vfork_parent->pending_detach = 0;
923
f50f4e56
PA
924 if (!exec)
925 {
926 /* If we're handling a child exit, then inferior_ptid
927 points at the inferior's pid, not to a thread. */
928 old_chain = save_inferior_ptid ();
929 save_current_program_space ();
930 save_current_inferior ();
931 }
932 else
933 old_chain = save_current_space_and_thread ();
6c95b8df
PA
934
935 /* We're letting loose of the parent. */
936 tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 switch_to_thread (tp->ptid);
938
939 /* We're about to detach from the parent, which implicitly
940 removes breakpoints from its address space. There's a
941 catch here: we want to reuse the spaces for the child,
942 but, parent/child are still sharing the pspace at this
943 point, although the exec in reality makes the kernel give
944 the child a fresh set of new pages. The problem here is
945 that the breakpoints module being unaware of this, would
946 likely chose the child process to write to the parent
947 address space. Swapping the child temporarily away from
948 the spaces has the desired effect. Yes, this is "sort
949 of" a hack. */
950
951 pspace = inf->pspace;
952 aspace = inf->aspace;
953 inf->aspace = NULL;
954 inf->pspace = NULL;
955
956 if (debug_infrun || info_verbose)
957 {
6f259a23 958 target_terminal_ours_for_output ();
6c95b8df
PA
959
960 if (exec)
6f259a23
DB
961 {
962 fprintf_filtered (gdb_stdlog,
963 _("Detaching vfork parent process "
964 "%d after child exec.\n"),
965 inf->vfork_parent->pid);
966 }
6c95b8df 967 else
6f259a23
DB
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("Detaching vfork parent process "
971 "%d after child exit.\n"),
972 inf->vfork_parent->pid);
973 }
6c95b8df
PA
974 }
975
976 target_detach (NULL, 0);
977
978 /* Put it back. */
979 inf->pspace = pspace;
980 inf->aspace = aspace;
981
982 do_cleanups (old_chain);
983 }
984 else if (exec)
985 {
986 /* We're staying attached to the parent, so, really give the
987 child a new address space. */
988 inf->pspace = add_program_space (maybe_new_address_space ());
989 inf->aspace = inf->pspace->aspace;
990 inf->removable = 1;
991 set_current_program_space (inf->pspace);
992
993 resume_parent = inf->vfork_parent->pid;
994
995 /* Break the bonds. */
996 inf->vfork_parent->vfork_child = NULL;
997 }
998 else
999 {
1000 struct cleanup *old_chain;
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid, so that clone_program_space doesn't want
1013 to read the selected frame of a dead process. */
1014 old_chain = save_inferior_ptid ();
1015 inferior_ptid = null_ptid;
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = add_program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
7dcd53a0 1025 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1026 clone_program_space (pspace, inf->vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1031 inferior. */
6c95b8df
PA
1032 do_cleanups (old_chain);
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048
1049 if (debug_infrun)
3e43a32a
MS
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055
1056 do_cleanups (old_chain);
1057 }
1058 }
1059}
1060
eb6c553b 1061/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1062
1063static const char follow_exec_mode_new[] = "new";
1064static const char follow_exec_mode_same[] = "same";
40478521 1065static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1066{
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070};
1071
1072static const char *follow_exec_mode_string = follow_exec_mode_same;
1073static void
1074show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076{
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078}
1079
ecf45d2c 1080/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1081
c906108c 1082static void
ecf45d2c 1083follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1084{
95e50b27 1085 struct thread_info *th, *tmp;
6c95b8df 1086 struct inferior *inf = current_inferior ();
95e50b27 1087 int pid = ptid_get_pid (ptid);
94585166 1088 ptid_t process_ptid;
ecf45d2c
SL
1089 char *exec_file_host;
1090 struct cleanup *old_chain;
7a292a7a 1091
c906108c
SS
1092 /* This is an exec event that we actually wish to pay attention to.
1093 Refresh our symbol table to the newly exec'd program, remove any
1094 momentary bp's, etc.
1095
1096 If there are breakpoints, they aren't really inserted now,
1097 since the exec() transformed our inferior into a fresh set
1098 of instructions.
1099
1100 We want to preserve symbolic breakpoints on the list, since
1101 we have hopes that they can be reset after the new a.out's
1102 symbol table is read.
1103
1104 However, any "raw" breakpoints must be removed from the list
1105 (e.g., the solib bp's), since their address is probably invalid
1106 now.
1107
1108 And, we DON'T want to call delete_breakpoints() here, since
1109 that may write the bp's "shadow contents" (the instruction
1110 value that was overwritten witha TRAP instruction). Since
1777feb0 1111 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1112
1113 mark_breakpoints_out ();
1114
95e50b27
PA
1115 /* The target reports the exec event to the main thread, even if
1116 some other thread does the exec, and even if the main thread was
1117 stopped or already gone. We may still have non-leader threads of
1118 the process on our list. E.g., on targets that don't have thread
1119 exit events (like remote); or on native Linux in non-stop mode if
1120 there were only two threads in the inferior and the non-leader
1121 one is the one that execs (and nothing forces an update of the
1122 thread list up to here). When debugging remotely, it's best to
1123 avoid extra traffic, when possible, so avoid syncing the thread
1124 list with the target, and instead go ahead and delete all threads
1125 of the process but one that reported the event. Note this must
1126 be done before calling update_breakpoints_after_exec, as
1127 otherwise clearing the threads' resources would reference stale
1128 thread breakpoints -- it may have been one of these threads that
1129 stepped across the exec. We could just clear their stepping
1130 states, but as long as we're iterating, might as well delete
1131 them. Deleting them now rather than at the next user-visible
1132 stop provides a nicer sequence of events for user and MI
1133 notifications. */
8a06aea7 1134 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1135 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1136 delete_thread (th->ptid);
1137
1138 /* We also need to clear any left over stale state for the
1139 leader/event thread. E.g., if there was any step-resume
1140 breakpoint or similar, it's gone now. We cannot truly
1141 step-to-next statement through an exec(). */
1142 th = inferior_thread ();
8358c15c 1143 th->control.step_resume_breakpoint = NULL;
186c406b 1144 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1145 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1146 th->control.step_range_start = 0;
1147 th->control.step_range_end = 0;
c906108c 1148
95e50b27
PA
1149 /* The user may have had the main thread held stopped in the
1150 previous image (e.g., schedlock on, or non-stop). Release
1151 it now. */
a75724bc
PA
1152 th->stop_requested = 0;
1153
95e50b27
PA
1154 update_breakpoints_after_exec ();
1155
1777feb0 1156 /* What is this a.out's name? */
94585166 1157 process_ptid = pid_to_ptid (pid);
6c95b8df 1158 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1159 target_pid_to_str (process_ptid),
ecf45d2c 1160 exec_file_target);
c906108c
SS
1161
1162 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1163 inferior has essentially been killed & reborn. */
7a292a7a 1164
c906108c 1165 gdb_flush (gdb_stdout);
6ca15a4b
PA
1166
1167 breakpoint_init_inferior (inf_execd);
e85a822c 1168
ecf45d2c
SL
1169 exec_file_host = exec_file_find (exec_file_target, NULL);
1170 old_chain = make_cleanup (xfree, exec_file_host);
ff862be4 1171
ecf45d2c
SL
1172 /* If we were unable to map the executable target pathname onto a host
1173 pathname, tell the user that. Otherwise GDB's subsequent behavior
1174 is confusing. Maybe it would even be better to stop at this point
1175 so that the user can specify a file manually before continuing. */
1176 if (exec_file_host == NULL)
1177 warning (_("Could not load symbols for executable %s.\n"
1178 "Do you need \"set sysroot\"?"),
1179 exec_file_target);
c906108c 1180
cce9b6bf
PA
1181 /* Reset the shared library package. This ensures that we get a
1182 shlib event when the child reaches "_start", at which point the
1183 dld will have had a chance to initialize the child. */
1184 /* Also, loading a symbol file below may trigger symbol lookups, and
1185 we don't want those to be satisfied by the libraries of the
1186 previous incarnation of this process. */
1187 no_shared_libraries (NULL, 0);
1188
6c95b8df
PA
1189 if (follow_exec_mode_string == follow_exec_mode_new)
1190 {
6c95b8df
PA
1191 /* The user wants to keep the old inferior and program spaces
1192 around. Create a new fresh one, and switch to it. */
1193
17d8546e
DB
1194 /* Do exit processing for the original inferior before adding
1195 the new inferior so we don't have two active inferiors with
1196 the same ptid, which can confuse find_inferior_ptid. */
1197 exit_inferior_num_silent (current_inferior ()->num);
1198
94585166
DB
1199 inf = add_inferior_with_spaces ();
1200 inf->pid = pid;
ecf45d2c 1201 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1202
1203 set_current_inferior (inf);
94585166
DB
1204 set_current_program_space (inf->pspace);
1205 add_thread (ptid);
6c95b8df 1206 }
9107fc8d
PA
1207 else
1208 {
1209 /* The old description may no longer be fit for the new image.
1210 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1211 old description; we'll read a new one below. No need to do
1212 this on "follow-exec-mode new", as the old inferior stays
1213 around (its description is later cleared/refetched on
1214 restart). */
1215 target_clear_description ();
1216 }
6c95b8df
PA
1217
1218 gdb_assert (current_program_space == inf->pspace);
1219
ecf45d2c
SL
1220 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1221 because the proper displacement for a PIE (Position Independent
1222 Executable) main symbol file will only be computed by
1223 solib_create_inferior_hook below. breakpoint_re_set would fail
1224 to insert the breakpoints with the zero displacement. */
1225 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
c1e56572 1226
ecf45d2c 1227 do_cleanups (old_chain);
c906108c 1228
9107fc8d
PA
1229 /* If the target can specify a description, read it. Must do this
1230 after flipping to the new executable (because the target supplied
1231 description must be compatible with the executable's
1232 architecture, and the old executable may e.g., be 32-bit, while
1233 the new one 64-bit), and before anything involving memory or
1234 registers. */
1235 target_find_description ();
1236
268a4a75 1237 solib_create_inferior_hook (0);
c906108c 1238
4efc6507
DE
1239 jit_inferior_created_hook ();
1240
c1e56572
JK
1241 breakpoint_re_set ();
1242
c906108c
SS
1243 /* Reinsert all breakpoints. (Those which were symbolic have
1244 been reset to the proper address in the new a.out, thanks
1777feb0 1245 to symbol_file_command...). */
c906108c
SS
1246 insert_breakpoints ();
1247
1248 /* The next resume of this inferior should bring it to the shlib
1249 startup breakpoints. (If the user had also set bp's on
1250 "main" from the old (parent) process, then they'll auto-
1777feb0 1251 matically get reset there in the new process.). */
c906108c
SS
1252}
1253
c2829269
PA
1254/* The queue of threads that need to do a step-over operation to get
1255 past e.g., a breakpoint. What technique is used to step over the
1256 breakpoint/watchpoint does not matter -- all threads end up in the
1257 same queue, to maintain rough temporal order of execution, in order
1258 to avoid starvation, otherwise, we could e.g., find ourselves
1259 constantly stepping the same couple threads past their breakpoints
1260 over and over, if the single-step finish fast enough. */
1261struct thread_info *step_over_queue_head;
1262
6c4cfb24
PA
1263/* Bit flags indicating what the thread needs to step over. */
1264
8d297bbf 1265enum step_over_what_flag
6c4cfb24
PA
1266 {
1267 /* Step over a breakpoint. */
1268 STEP_OVER_BREAKPOINT = 1,
1269
1270 /* Step past a non-continuable watchpoint, in order to let the
1271 instruction execute so we can evaluate the watchpoint
1272 expression. */
1273 STEP_OVER_WATCHPOINT = 2
1274 };
8d297bbf 1275DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1276
963f9c80 1277/* Info about an instruction that is being stepped over. */
31e77af2
PA
1278
1279struct step_over_info
1280{
963f9c80
PA
1281 /* If we're stepping past a breakpoint, this is the address space
1282 and address of the instruction the breakpoint is set at. We'll
1283 skip inserting all breakpoints here. Valid iff ASPACE is
1284 non-NULL. */
31e77af2 1285 struct address_space *aspace;
31e77af2 1286 CORE_ADDR address;
963f9c80
PA
1287
1288 /* The instruction being stepped over triggers a nonsteppable
1289 watchpoint. If true, we'll skip inserting watchpoints. */
1290 int nonsteppable_watchpoint_p;
21edc42f
YQ
1291
1292 /* The thread's global number. */
1293 int thread;
31e77af2
PA
1294};
1295
1296/* The step-over info of the location that is being stepped over.
1297
1298 Note that with async/breakpoint always-inserted mode, a user might
1299 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1300 being stepped over. As setting a new breakpoint inserts all
1301 breakpoints, we need to make sure the breakpoint being stepped over
1302 isn't inserted then. We do that by only clearing the step-over
1303 info when the step-over is actually finished (or aborted).
1304
1305 Presently GDB can only step over one breakpoint at any given time.
1306 Given threads that can't run code in the same address space as the
1307 breakpoint's can't really miss the breakpoint, GDB could be taught
1308 to step-over at most one breakpoint per address space (so this info
1309 could move to the address space object if/when GDB is extended).
1310 The set of breakpoints being stepped over will normally be much
1311 smaller than the set of all breakpoints, so a flag in the
1312 breakpoint location structure would be wasteful. A separate list
1313 also saves complexity and run-time, as otherwise we'd have to go
1314 through all breakpoint locations clearing their flag whenever we
1315 start a new sequence. Similar considerations weigh against storing
1316 this info in the thread object. Plus, not all step overs actually
1317 have breakpoint locations -- e.g., stepping past a single-step
1318 breakpoint, or stepping to complete a non-continuable
1319 watchpoint. */
1320static struct step_over_info step_over_info;
1321
1322/* Record the address of the breakpoint/instruction we're currently
1323 stepping over. */
1324
1325static void
963f9c80 1326set_step_over_info (struct address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1327 int nonsteppable_watchpoint_p,
1328 int thread)
31e77af2
PA
1329{
1330 step_over_info.aspace = aspace;
1331 step_over_info.address = address;
963f9c80 1332 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1333 step_over_info.thread = thread;
31e77af2
PA
1334}
1335
1336/* Called when we're not longer stepping over a breakpoint / an
1337 instruction, so all breakpoints are free to be (re)inserted. */
1338
1339static void
1340clear_step_over_info (void)
1341{
372316f1
PA
1342 if (debug_infrun)
1343 fprintf_unfiltered (gdb_stdlog,
1344 "infrun: clear_step_over_info\n");
31e77af2
PA
1345 step_over_info.aspace = NULL;
1346 step_over_info.address = 0;
963f9c80 1347 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1348 step_over_info.thread = -1;
31e77af2
PA
1349}
1350
7f89fd65 1351/* See infrun.h. */
31e77af2
PA
1352
1353int
1354stepping_past_instruction_at (struct address_space *aspace,
1355 CORE_ADDR address)
1356{
1357 return (step_over_info.aspace != NULL
1358 && breakpoint_address_match (aspace, address,
1359 step_over_info.aspace,
1360 step_over_info.address));
1361}
1362
963f9c80
PA
1363/* See infrun.h. */
1364
21edc42f
YQ
1365int
1366thread_is_stepping_over_breakpoint (int thread)
1367{
1368 return (step_over_info.thread != -1
1369 && thread == step_over_info.thread);
1370}
1371
1372/* See infrun.h. */
1373
963f9c80
PA
1374int
1375stepping_past_nonsteppable_watchpoint (void)
1376{
1377 return step_over_info.nonsteppable_watchpoint_p;
1378}
1379
6cc83d2a
PA
1380/* Returns true if step-over info is valid. */
1381
1382static int
1383step_over_info_valid_p (void)
1384{
963f9c80
PA
1385 return (step_over_info.aspace != NULL
1386 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1387}
1388
c906108c 1389\f
237fc4c9
PA
1390/* Displaced stepping. */
1391
1392/* In non-stop debugging mode, we must take special care to manage
1393 breakpoints properly; in particular, the traditional strategy for
1394 stepping a thread past a breakpoint it has hit is unsuitable.
1395 'Displaced stepping' is a tactic for stepping one thread past a
1396 breakpoint it has hit while ensuring that other threads running
1397 concurrently will hit the breakpoint as they should.
1398
1399 The traditional way to step a thread T off a breakpoint in a
1400 multi-threaded program in all-stop mode is as follows:
1401
1402 a0) Initially, all threads are stopped, and breakpoints are not
1403 inserted.
1404 a1) We single-step T, leaving breakpoints uninserted.
1405 a2) We insert breakpoints, and resume all threads.
1406
1407 In non-stop debugging, however, this strategy is unsuitable: we
1408 don't want to have to stop all threads in the system in order to
1409 continue or step T past a breakpoint. Instead, we use displaced
1410 stepping:
1411
1412 n0) Initially, T is stopped, other threads are running, and
1413 breakpoints are inserted.
1414 n1) We copy the instruction "under" the breakpoint to a separate
1415 location, outside the main code stream, making any adjustments
1416 to the instruction, register, and memory state as directed by
1417 T's architecture.
1418 n2) We single-step T over the instruction at its new location.
1419 n3) We adjust the resulting register and memory state as directed
1420 by T's architecture. This includes resetting T's PC to point
1421 back into the main instruction stream.
1422 n4) We resume T.
1423
1424 This approach depends on the following gdbarch methods:
1425
1426 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1427 indicate where to copy the instruction, and how much space must
1428 be reserved there. We use these in step n1.
1429
1430 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1431 address, and makes any necessary adjustments to the instruction,
1432 register contents, and memory. We use this in step n1.
1433
1434 - gdbarch_displaced_step_fixup adjusts registers and memory after
1435 we have successfuly single-stepped the instruction, to yield the
1436 same effect the instruction would have had if we had executed it
1437 at its original address. We use this in step n3.
1438
1439 - gdbarch_displaced_step_free_closure provides cleanup.
1440
1441 The gdbarch_displaced_step_copy_insn and
1442 gdbarch_displaced_step_fixup functions must be written so that
1443 copying an instruction with gdbarch_displaced_step_copy_insn,
1444 single-stepping across the copied instruction, and then applying
1445 gdbarch_displaced_insn_fixup should have the same effects on the
1446 thread's memory and registers as stepping the instruction in place
1447 would have. Exactly which responsibilities fall to the copy and
1448 which fall to the fixup is up to the author of those functions.
1449
1450 See the comments in gdbarch.sh for details.
1451
1452 Note that displaced stepping and software single-step cannot
1453 currently be used in combination, although with some care I think
1454 they could be made to. Software single-step works by placing
1455 breakpoints on all possible subsequent instructions; if the
1456 displaced instruction is a PC-relative jump, those breakpoints
1457 could fall in very strange places --- on pages that aren't
1458 executable, or at addresses that are not proper instruction
1459 boundaries. (We do generally let other threads run while we wait
1460 to hit the software single-step breakpoint, and they might
1461 encounter such a corrupted instruction.) One way to work around
1462 this would be to have gdbarch_displaced_step_copy_insn fully
1463 simulate the effect of PC-relative instructions (and return NULL)
1464 on architectures that use software single-stepping.
1465
1466 In non-stop mode, we can have independent and simultaneous step
1467 requests, so more than one thread may need to simultaneously step
1468 over a breakpoint. The current implementation assumes there is
1469 only one scratch space per process. In this case, we have to
1470 serialize access to the scratch space. If thread A wants to step
1471 over a breakpoint, but we are currently waiting for some other
1472 thread to complete a displaced step, we leave thread A stopped and
1473 place it in the displaced_step_request_queue. Whenever a displaced
1474 step finishes, we pick the next thread in the queue and start a new
1475 displaced step operation on it. See displaced_step_prepare and
1476 displaced_step_fixup for details. */
1477
fc1cf338
PA
1478/* Per-inferior displaced stepping state. */
1479struct displaced_step_inferior_state
1480{
1481 /* Pointer to next in linked list. */
1482 struct displaced_step_inferior_state *next;
1483
1484 /* The process this displaced step state refers to. */
1485 int pid;
1486
3fc8eb30
PA
1487 /* True if preparing a displaced step ever failed. If so, we won't
1488 try displaced stepping for this inferior again. */
1489 int failed_before;
1490
fc1cf338
PA
1491 /* If this is not null_ptid, this is the thread carrying out a
1492 displaced single-step in process PID. This thread's state will
1493 require fixing up once it has completed its step. */
1494 ptid_t step_ptid;
1495
1496 /* The architecture the thread had when we stepped it. */
1497 struct gdbarch *step_gdbarch;
1498
1499 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1500 for post-step cleanup. */
1501 struct displaced_step_closure *step_closure;
1502
1503 /* The address of the original instruction, and the copy we
1504 made. */
1505 CORE_ADDR step_original, step_copy;
1506
1507 /* Saved contents of copy area. */
1508 gdb_byte *step_saved_copy;
1509};
1510
1511/* The list of states of processes involved in displaced stepping
1512 presently. */
1513static struct displaced_step_inferior_state *displaced_step_inferior_states;
1514
1515/* Get the displaced stepping state of process PID. */
1516
1517static struct displaced_step_inferior_state *
1518get_displaced_stepping_state (int pid)
1519{
1520 struct displaced_step_inferior_state *state;
1521
1522 for (state = displaced_step_inferior_states;
1523 state != NULL;
1524 state = state->next)
1525 if (state->pid == pid)
1526 return state;
1527
1528 return NULL;
1529}
1530
372316f1
PA
1531/* Returns true if any inferior has a thread doing a displaced
1532 step. */
1533
1534static int
1535displaced_step_in_progress_any_inferior (void)
1536{
1537 struct displaced_step_inferior_state *state;
1538
1539 for (state = displaced_step_inferior_states;
1540 state != NULL;
1541 state = state->next)
1542 if (!ptid_equal (state->step_ptid, null_ptid))
1543 return 1;
1544
1545 return 0;
1546}
1547
c0987663
YQ
1548/* Return true if thread represented by PTID is doing a displaced
1549 step. */
1550
1551static int
1552displaced_step_in_progress_thread (ptid_t ptid)
1553{
1554 struct displaced_step_inferior_state *displaced;
1555
1556 gdb_assert (!ptid_equal (ptid, null_ptid));
1557
1558 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1559
1560 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1561}
1562
8f572e5c
PA
1563/* Return true if process PID has a thread doing a displaced step. */
1564
1565static int
1566displaced_step_in_progress (int pid)
1567{
1568 struct displaced_step_inferior_state *displaced;
1569
1570 displaced = get_displaced_stepping_state (pid);
1571 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1572 return 1;
1573
1574 return 0;
1575}
1576
fc1cf338
PA
1577/* Add a new displaced stepping state for process PID to the displaced
1578 stepping state list, or return a pointer to an already existing
1579 entry, if it already exists. Never returns NULL. */
1580
1581static struct displaced_step_inferior_state *
1582add_displaced_stepping_state (int pid)
1583{
1584 struct displaced_step_inferior_state *state;
1585
1586 for (state = displaced_step_inferior_states;
1587 state != NULL;
1588 state = state->next)
1589 if (state->pid == pid)
1590 return state;
237fc4c9 1591
8d749320 1592 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1593 state->pid = pid;
1594 state->next = displaced_step_inferior_states;
1595 displaced_step_inferior_states = state;
237fc4c9 1596
fc1cf338
PA
1597 return state;
1598}
1599
a42244db
YQ
1600/* If inferior is in displaced stepping, and ADDR equals to starting address
1601 of copy area, return corresponding displaced_step_closure. Otherwise,
1602 return NULL. */
1603
1604struct displaced_step_closure*
1605get_displaced_step_closure_by_addr (CORE_ADDR addr)
1606{
1607 struct displaced_step_inferior_state *displaced
1608 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1609
1610 /* If checking the mode of displaced instruction in copy area. */
1611 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1612 && (displaced->step_copy == addr))
1613 return displaced->step_closure;
1614
1615 return NULL;
1616}
1617
fc1cf338 1618/* Remove the displaced stepping state of process PID. */
237fc4c9 1619
fc1cf338
PA
1620static void
1621remove_displaced_stepping_state (int pid)
1622{
1623 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1624
fc1cf338
PA
1625 gdb_assert (pid != 0);
1626
1627 it = displaced_step_inferior_states;
1628 prev_next_p = &displaced_step_inferior_states;
1629 while (it)
1630 {
1631 if (it->pid == pid)
1632 {
1633 *prev_next_p = it->next;
1634 xfree (it);
1635 return;
1636 }
1637
1638 prev_next_p = &it->next;
1639 it = *prev_next_p;
1640 }
1641}
1642
1643static void
1644infrun_inferior_exit (struct inferior *inf)
1645{
1646 remove_displaced_stepping_state (inf->pid);
1647}
237fc4c9 1648
fff08868
HZ
1649/* If ON, and the architecture supports it, GDB will use displaced
1650 stepping to step over breakpoints. If OFF, or if the architecture
1651 doesn't support it, GDB will instead use the traditional
1652 hold-and-step approach. If AUTO (which is the default), GDB will
1653 decide which technique to use to step over breakpoints depending on
1654 which of all-stop or non-stop mode is active --- displaced stepping
1655 in non-stop mode; hold-and-step in all-stop mode. */
1656
72d0e2c5 1657static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1658
237fc4c9
PA
1659static void
1660show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1661 struct cmd_list_element *c,
1662 const char *value)
1663{
72d0e2c5 1664 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1665 fprintf_filtered (file,
1666 _("Debugger's willingness to use displaced stepping "
1667 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1668 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1669 else
3e43a32a
MS
1670 fprintf_filtered (file,
1671 _("Debugger's willingness to use displaced stepping "
1672 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1673}
1674
fff08868 1675/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1676 over breakpoints of thread TP. */
fff08868 1677
237fc4c9 1678static int
3fc8eb30 1679use_displaced_stepping (struct thread_info *tp)
237fc4c9 1680{
3fc8eb30
PA
1681 struct regcache *regcache = get_thread_regcache (tp->ptid);
1682 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1683 struct displaced_step_inferior_state *displaced_state;
1684
1685 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1686
fbea99ea
PA
1687 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1688 && target_is_non_stop_p ())
72d0e2c5 1689 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1690 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1691 && find_record_target () == NULL
1692 && (displaced_state == NULL
1693 || !displaced_state->failed_before));
237fc4c9
PA
1694}
1695
1696/* Clean out any stray displaced stepping state. */
1697static void
fc1cf338 1698displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1699{
1700 /* Indicate that there is no cleanup pending. */
fc1cf338 1701 displaced->step_ptid = null_ptid;
237fc4c9 1702
fc1cf338 1703 if (displaced->step_closure)
237fc4c9 1704 {
fc1cf338
PA
1705 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1706 displaced->step_closure);
1707 displaced->step_closure = NULL;
237fc4c9
PA
1708 }
1709}
1710
1711static void
fc1cf338 1712displaced_step_clear_cleanup (void *arg)
237fc4c9 1713{
9a3c8263
SM
1714 struct displaced_step_inferior_state *state
1715 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1716
1717 displaced_step_clear (state);
237fc4c9
PA
1718}
1719
1720/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1721void
1722displaced_step_dump_bytes (struct ui_file *file,
1723 const gdb_byte *buf,
1724 size_t len)
1725{
1726 int i;
1727
1728 for (i = 0; i < len; i++)
1729 fprintf_unfiltered (file, "%02x ", buf[i]);
1730 fputs_unfiltered ("\n", file);
1731}
1732
1733/* Prepare to single-step, using displaced stepping.
1734
1735 Note that we cannot use displaced stepping when we have a signal to
1736 deliver. If we have a signal to deliver and an instruction to step
1737 over, then after the step, there will be no indication from the
1738 target whether the thread entered a signal handler or ignored the
1739 signal and stepped over the instruction successfully --- both cases
1740 result in a simple SIGTRAP. In the first case we mustn't do a
1741 fixup, and in the second case we must --- but we can't tell which.
1742 Comments in the code for 'random signals' in handle_inferior_event
1743 explain how we handle this case instead.
1744
1745 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1746 stepped now; 0 if displaced stepping this thread got queued; or -1
1747 if this instruction can't be displaced stepped. */
1748
237fc4c9 1749static int
3fc8eb30 1750displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1751{
ad53cd71 1752 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1753 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1754 struct regcache *regcache = get_thread_regcache (ptid);
1755 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d35ae833 1756 struct address_space *aspace = get_regcache_aspace (regcache);
237fc4c9
PA
1757 CORE_ADDR original, copy;
1758 ULONGEST len;
1759 struct displaced_step_closure *closure;
fc1cf338 1760 struct displaced_step_inferior_state *displaced;
9e529e1d 1761 int status;
237fc4c9
PA
1762
1763 /* We should never reach this function if the architecture does not
1764 support displaced stepping. */
1765 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1766
c2829269
PA
1767 /* Nor if the thread isn't meant to step over a breakpoint. */
1768 gdb_assert (tp->control.trap_expected);
1769
c1e36e3e
PA
1770 /* Disable range stepping while executing in the scratch pad. We
1771 want a single-step even if executing the displaced instruction in
1772 the scratch buffer lands within the stepping range (e.g., a
1773 jump/branch). */
1774 tp->control.may_range_step = 0;
1775
fc1cf338
PA
1776 /* We have to displaced step one thread at a time, as we only have
1777 access to a single scratch space per inferior. */
237fc4c9 1778
fc1cf338
PA
1779 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1780
1781 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1782 {
1783 /* Already waiting for a displaced step to finish. Defer this
1784 request and place in queue. */
237fc4c9
PA
1785
1786 if (debug_displaced)
1787 fprintf_unfiltered (gdb_stdlog,
c2829269 1788 "displaced: deferring step of %s\n",
237fc4c9
PA
1789 target_pid_to_str (ptid));
1790
c2829269 1791 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1792 return 0;
1793 }
1794 else
1795 {
1796 if (debug_displaced)
1797 fprintf_unfiltered (gdb_stdlog,
1798 "displaced: stepping %s now\n",
1799 target_pid_to_str (ptid));
1800 }
1801
fc1cf338 1802 displaced_step_clear (displaced);
237fc4c9 1803
ad53cd71
PA
1804 old_cleanups = save_inferior_ptid ();
1805 inferior_ptid = ptid;
1806
515630c5 1807 original = regcache_read_pc (regcache);
237fc4c9
PA
1808
1809 copy = gdbarch_displaced_step_location (gdbarch);
1810 len = gdbarch_max_insn_length (gdbarch);
1811
d35ae833
PA
1812 if (breakpoint_in_range_p (aspace, copy, len))
1813 {
1814 /* There's a breakpoint set in the scratch pad location range
1815 (which is usually around the entry point). We'd either
1816 install it before resuming, which would overwrite/corrupt the
1817 scratch pad, or if it was already inserted, this displaced
1818 step would overwrite it. The latter is OK in the sense that
1819 we already assume that no thread is going to execute the code
1820 in the scratch pad range (after initial startup) anyway, but
1821 the former is unacceptable. Simply punt and fallback to
1822 stepping over this breakpoint in-line. */
1823 if (debug_displaced)
1824 {
1825 fprintf_unfiltered (gdb_stdlog,
1826 "displaced: breakpoint set in scratch pad. "
1827 "Stepping over breakpoint in-line instead.\n");
1828 }
1829
1830 do_cleanups (old_cleanups);
1831 return -1;
1832 }
1833
237fc4c9 1834 /* Save the original contents of the copy area. */
224c3ddb 1835 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1836 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1837 &displaced->step_saved_copy);
9e529e1d
JK
1838 status = target_read_memory (copy, displaced->step_saved_copy, len);
1839 if (status != 0)
1840 throw_error (MEMORY_ERROR,
1841 _("Error accessing memory address %s (%s) for "
1842 "displaced-stepping scratch space."),
1843 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1844 if (debug_displaced)
1845 {
5af949e3
UW
1846 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1847 paddress (gdbarch, copy));
fc1cf338
PA
1848 displaced_step_dump_bytes (gdb_stdlog,
1849 displaced->step_saved_copy,
1850 len);
237fc4c9
PA
1851 };
1852
1853 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1854 original, copy, regcache);
7f03bd92
PA
1855 if (closure == NULL)
1856 {
1857 /* The architecture doesn't know how or want to displaced step
1858 this instruction or instruction sequence. Fallback to
1859 stepping over the breakpoint in-line. */
1860 do_cleanups (old_cleanups);
1861 return -1;
1862 }
237fc4c9 1863
9f5a595d
UW
1864 /* Save the information we need to fix things up if the step
1865 succeeds. */
fc1cf338
PA
1866 displaced->step_ptid = ptid;
1867 displaced->step_gdbarch = gdbarch;
1868 displaced->step_closure = closure;
1869 displaced->step_original = original;
1870 displaced->step_copy = copy;
9f5a595d 1871
fc1cf338 1872 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1873
1874 /* Resume execution at the copy. */
515630c5 1875 regcache_write_pc (regcache, copy);
237fc4c9 1876
ad53cd71
PA
1877 discard_cleanups (ignore_cleanups);
1878
1879 do_cleanups (old_cleanups);
237fc4c9
PA
1880
1881 if (debug_displaced)
5af949e3
UW
1882 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1883 paddress (gdbarch, copy));
237fc4c9 1884
237fc4c9
PA
1885 return 1;
1886}
1887
3fc8eb30
PA
1888/* Wrapper for displaced_step_prepare_throw that disabled further
1889 attempts at displaced stepping if we get a memory error. */
1890
1891static int
1892displaced_step_prepare (ptid_t ptid)
1893{
1894 int prepared = -1;
1895
1896 TRY
1897 {
1898 prepared = displaced_step_prepare_throw (ptid);
1899 }
1900 CATCH (ex, RETURN_MASK_ERROR)
1901 {
1902 struct displaced_step_inferior_state *displaced_state;
1903
16b41842
PA
1904 if (ex.error != MEMORY_ERROR
1905 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1906 throw_exception (ex);
1907
1908 if (debug_infrun)
1909 {
1910 fprintf_unfiltered (gdb_stdlog,
1911 "infrun: disabling displaced stepping: %s\n",
1912 ex.message);
1913 }
1914
1915 /* Be verbose if "set displaced-stepping" is "on", silent if
1916 "auto". */
1917 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1918 {
fd7dcb94 1919 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1920 ex.message);
1921 }
1922
1923 /* Disable further displaced stepping attempts. */
1924 displaced_state
1925 = get_displaced_stepping_state (ptid_get_pid (ptid));
1926 displaced_state->failed_before = 1;
1927 }
1928 END_CATCH
1929
1930 return prepared;
1931}
1932
237fc4c9 1933static void
3e43a32a
MS
1934write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1935 const gdb_byte *myaddr, int len)
237fc4c9
PA
1936{
1937 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1938
237fc4c9
PA
1939 inferior_ptid = ptid;
1940 write_memory (memaddr, myaddr, len);
1941 do_cleanups (ptid_cleanup);
1942}
1943
e2d96639
YQ
1944/* Restore the contents of the copy area for thread PTID. */
1945
1946static void
1947displaced_step_restore (struct displaced_step_inferior_state *displaced,
1948 ptid_t ptid)
1949{
1950 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1951
1952 write_memory_ptid (ptid, displaced->step_copy,
1953 displaced->step_saved_copy, len);
1954 if (debug_displaced)
1955 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1956 target_pid_to_str (ptid),
1957 paddress (displaced->step_gdbarch,
1958 displaced->step_copy));
1959}
1960
372316f1
PA
1961/* If we displaced stepped an instruction successfully, adjust
1962 registers and memory to yield the same effect the instruction would
1963 have had if we had executed it at its original address, and return
1964 1. If the instruction didn't complete, relocate the PC and return
1965 -1. If the thread wasn't displaced stepping, return 0. */
1966
1967static int
2ea28649 1968displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1969{
1970 struct cleanup *old_cleanups;
fc1cf338
PA
1971 struct displaced_step_inferior_state *displaced
1972 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1973 int ret;
fc1cf338
PA
1974
1975 /* Was any thread of this process doing a displaced step? */
1976 if (displaced == NULL)
372316f1 1977 return 0;
237fc4c9
PA
1978
1979 /* Was this event for the pid we displaced? */
fc1cf338
PA
1980 if (ptid_equal (displaced->step_ptid, null_ptid)
1981 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1982 return 0;
237fc4c9 1983
fc1cf338 1984 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1985
e2d96639 1986 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1987
cb71640d
PA
1988 /* Fixup may need to read memory/registers. Switch to the thread
1989 that we're fixing up. Also, target_stopped_by_watchpoint checks
1990 the current thread. */
1991 switch_to_thread (event_ptid);
1992
237fc4c9 1993 /* Did the instruction complete successfully? */
cb71640d
PA
1994 if (signal == GDB_SIGNAL_TRAP
1995 && !(target_stopped_by_watchpoint ()
1996 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1997 || target_have_steppable_watchpoint)))
237fc4c9
PA
1998 {
1999 /* Fix up the resulting state. */
fc1cf338
PA
2000 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2001 displaced->step_closure,
2002 displaced->step_original,
2003 displaced->step_copy,
2004 get_thread_regcache (displaced->step_ptid));
372316f1 2005 ret = 1;
237fc4c9
PA
2006 }
2007 else
2008 {
2009 /* Since the instruction didn't complete, all we can do is
2010 relocate the PC. */
515630c5
UW
2011 struct regcache *regcache = get_thread_regcache (event_ptid);
2012 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2013
fc1cf338 2014 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2015 regcache_write_pc (regcache, pc);
372316f1 2016 ret = -1;
237fc4c9
PA
2017 }
2018
2019 do_cleanups (old_cleanups);
2020
fc1cf338 2021 displaced->step_ptid = null_ptid;
372316f1
PA
2022
2023 return ret;
c2829269 2024}
1c5cfe86 2025
4d9d9d04
PA
2026/* Data to be passed around while handling an event. This data is
2027 discarded between events. */
2028struct execution_control_state
2029{
2030 ptid_t ptid;
2031 /* The thread that got the event, if this was a thread event; NULL
2032 otherwise. */
2033 struct thread_info *event_thread;
2034
2035 struct target_waitstatus ws;
2036 int stop_func_filled_in;
2037 CORE_ADDR stop_func_start;
2038 CORE_ADDR stop_func_end;
2039 const char *stop_func_name;
2040 int wait_some_more;
2041
2042 /* True if the event thread hit the single-step breakpoint of
2043 another thread. Thus the event doesn't cause a stop, the thread
2044 needs to be single-stepped past the single-step breakpoint before
2045 we can switch back to the original stepping thread. */
2046 int hit_singlestep_breakpoint;
2047};
2048
2049/* Clear ECS and set it to point at TP. */
c2829269
PA
2050
2051static void
4d9d9d04
PA
2052reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2053{
2054 memset (ecs, 0, sizeof (*ecs));
2055 ecs->event_thread = tp;
2056 ecs->ptid = tp->ptid;
2057}
2058
2059static void keep_going_pass_signal (struct execution_control_state *ecs);
2060static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2061static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2062static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2063
2064/* Are there any pending step-over requests? If so, run all we can
2065 now and return true. Otherwise, return false. */
2066
2067static int
c2829269
PA
2068start_step_over (void)
2069{
2070 struct thread_info *tp, *next;
2071
372316f1
PA
2072 /* Don't start a new step-over if we already have an in-line
2073 step-over operation ongoing. */
2074 if (step_over_info_valid_p ())
2075 return 0;
2076
c2829269 2077 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2078 {
4d9d9d04
PA
2079 struct execution_control_state ecss;
2080 struct execution_control_state *ecs = &ecss;
8d297bbf 2081 step_over_what step_what;
372316f1 2082 int must_be_in_line;
c2829269
PA
2083
2084 next = thread_step_over_chain_next (tp);
237fc4c9 2085
c2829269
PA
2086 /* If this inferior already has a displaced step in process,
2087 don't start a new one. */
4d9d9d04 2088 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2089 continue;
2090
372316f1
PA
2091 step_what = thread_still_needs_step_over (tp);
2092 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2093 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2094 && !use_displaced_stepping (tp)));
372316f1
PA
2095
2096 /* We currently stop all threads of all processes to step-over
2097 in-line. If we need to start a new in-line step-over, let
2098 any pending displaced steps finish first. */
2099 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2100 return 0;
2101
c2829269
PA
2102 thread_step_over_chain_remove (tp);
2103
2104 if (step_over_queue_head == NULL)
2105 {
2106 if (debug_infrun)
2107 fprintf_unfiltered (gdb_stdlog,
2108 "infrun: step-over queue now empty\n");
2109 }
2110
372316f1
PA
2111 if (tp->control.trap_expected
2112 || tp->resumed
2113 || tp->executing)
ad53cd71 2114 {
4d9d9d04
PA
2115 internal_error (__FILE__, __LINE__,
2116 "[%s] has inconsistent state: "
372316f1 2117 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2118 target_pid_to_str (tp->ptid),
2119 tp->control.trap_expected,
372316f1 2120 tp->resumed,
4d9d9d04 2121 tp->executing);
ad53cd71 2122 }
1c5cfe86 2123
4d9d9d04
PA
2124 if (debug_infrun)
2125 fprintf_unfiltered (gdb_stdlog,
2126 "infrun: resuming [%s] for step-over\n",
2127 target_pid_to_str (tp->ptid));
2128
2129 /* keep_going_pass_signal skips the step-over if the breakpoint
2130 is no longer inserted. In all-stop, we want to keep looking
2131 for a thread that needs a step-over instead of resuming TP,
2132 because we wouldn't be able to resume anything else until the
2133 target stops again. In non-stop, the resume always resumes
2134 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2135 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2136 continue;
8550d3b3 2137
4d9d9d04
PA
2138 switch_to_thread (tp->ptid);
2139 reset_ecs (ecs, tp);
2140 keep_going_pass_signal (ecs);
1c5cfe86 2141
4d9d9d04
PA
2142 if (!ecs->wait_some_more)
2143 error (_("Command aborted."));
1c5cfe86 2144
372316f1
PA
2145 gdb_assert (tp->resumed);
2146
2147 /* If we started a new in-line step-over, we're done. */
2148 if (step_over_info_valid_p ())
2149 {
2150 gdb_assert (tp->control.trap_expected);
2151 return 1;
2152 }
2153
fbea99ea 2154 if (!target_is_non_stop_p ())
4d9d9d04
PA
2155 {
2156 /* On all-stop, shouldn't have resumed unless we needed a
2157 step over. */
2158 gdb_assert (tp->control.trap_expected
2159 || tp->step_after_step_resume_breakpoint);
2160
2161 /* With remote targets (at least), in all-stop, we can't
2162 issue any further remote commands until the program stops
2163 again. */
2164 return 1;
1c5cfe86 2165 }
c2829269 2166
4d9d9d04
PA
2167 /* Either the thread no longer needed a step-over, or a new
2168 displaced stepping sequence started. Even in the latter
2169 case, continue looking. Maybe we can also start another
2170 displaced step on a thread of other process. */
237fc4c9 2171 }
4d9d9d04
PA
2172
2173 return 0;
237fc4c9
PA
2174}
2175
5231c1fd
PA
2176/* Update global variables holding ptids to hold NEW_PTID if they were
2177 holding OLD_PTID. */
2178static void
2179infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2180{
fc1cf338 2181 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2182
2183 if (ptid_equal (inferior_ptid, old_ptid))
2184 inferior_ptid = new_ptid;
2185
fc1cf338
PA
2186 for (displaced = displaced_step_inferior_states;
2187 displaced;
2188 displaced = displaced->next)
2189 {
2190 if (ptid_equal (displaced->step_ptid, old_ptid))
2191 displaced->step_ptid = new_ptid;
fc1cf338 2192 }
5231c1fd
PA
2193}
2194
237fc4c9
PA
2195\f
2196/* Resuming. */
c906108c
SS
2197
2198/* Things to clean up if we QUIT out of resume (). */
c906108c 2199static void
74b7792f 2200resume_cleanups (void *ignore)
c906108c 2201{
34b7e8a6
PA
2202 if (!ptid_equal (inferior_ptid, null_ptid))
2203 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2204
c906108c
SS
2205 normal_stop ();
2206}
2207
53904c9e
AC
2208static const char schedlock_off[] = "off";
2209static const char schedlock_on[] = "on";
2210static const char schedlock_step[] = "step";
f2665db5 2211static const char schedlock_replay[] = "replay";
40478521 2212static const char *const scheduler_enums[] = {
ef346e04
AC
2213 schedlock_off,
2214 schedlock_on,
2215 schedlock_step,
f2665db5 2216 schedlock_replay,
ef346e04
AC
2217 NULL
2218};
f2665db5 2219static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2220static void
2221show_scheduler_mode (struct ui_file *file, int from_tty,
2222 struct cmd_list_element *c, const char *value)
2223{
3e43a32a
MS
2224 fprintf_filtered (file,
2225 _("Mode for locking scheduler "
2226 "during execution is \"%s\".\n"),
920d2a44
AC
2227 value);
2228}
c906108c
SS
2229
2230static void
96baa820 2231set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2232{
eefe576e
AC
2233 if (!target_can_lock_scheduler)
2234 {
2235 scheduler_mode = schedlock_off;
2236 error (_("Target '%s' cannot support this command."), target_shortname);
2237 }
c906108c
SS
2238}
2239
d4db2f36
PA
2240/* True if execution commands resume all threads of all processes by
2241 default; otherwise, resume only threads of the current inferior
2242 process. */
2243int sched_multi = 0;
2244
2facfe5c
DD
2245/* Try to setup for software single stepping over the specified location.
2246 Return 1 if target_resume() should use hardware single step.
2247
2248 GDBARCH the current gdbarch.
2249 PC the location to step over. */
2250
2251static int
2252maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2253{
2254 int hw_step = 1;
2255
f02253f1
HZ
2256 if (execution_direction == EXEC_FORWARD
2257 && gdbarch_software_single_step_p (gdbarch)
99e40580 2258 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2259 {
99e40580 2260 hw_step = 0;
2facfe5c
DD
2261 }
2262 return hw_step;
2263}
c906108c 2264
f3263aa4
PA
2265/* See infrun.h. */
2266
09cee04b
PA
2267ptid_t
2268user_visible_resume_ptid (int step)
2269{
f3263aa4 2270 ptid_t resume_ptid;
09cee04b 2271
09cee04b
PA
2272 if (non_stop)
2273 {
2274 /* With non-stop mode on, threads are always handled
2275 individually. */
2276 resume_ptid = inferior_ptid;
2277 }
2278 else if ((scheduler_mode == schedlock_on)
03d46957 2279 || (scheduler_mode == schedlock_step && step))
09cee04b 2280 {
f3263aa4
PA
2281 /* User-settable 'scheduler' mode requires solo thread
2282 resume. */
09cee04b
PA
2283 resume_ptid = inferior_ptid;
2284 }
f2665db5
MM
2285 else if ((scheduler_mode == schedlock_replay)
2286 && target_record_will_replay (minus_one_ptid, execution_direction))
2287 {
2288 /* User-settable 'scheduler' mode requires solo thread resume in replay
2289 mode. */
2290 resume_ptid = inferior_ptid;
2291 }
f3263aa4
PA
2292 else if (!sched_multi && target_supports_multi_process ())
2293 {
2294 /* Resume all threads of the current process (and none of other
2295 processes). */
2296 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2297 }
2298 else
2299 {
2300 /* Resume all threads of all processes. */
2301 resume_ptid = RESUME_ALL;
2302 }
09cee04b
PA
2303
2304 return resume_ptid;
2305}
2306
fbea99ea
PA
2307/* Return a ptid representing the set of threads that we will resume,
2308 in the perspective of the target, assuming run control handling
2309 does not require leaving some threads stopped (e.g., stepping past
2310 breakpoint). USER_STEP indicates whether we're about to start the
2311 target for a stepping command. */
2312
2313static ptid_t
2314internal_resume_ptid (int user_step)
2315{
2316 /* In non-stop, we always control threads individually. Note that
2317 the target may always work in non-stop mode even with "set
2318 non-stop off", in which case user_visible_resume_ptid could
2319 return a wildcard ptid. */
2320 if (target_is_non_stop_p ())
2321 return inferior_ptid;
2322 else
2323 return user_visible_resume_ptid (user_step);
2324}
2325
64ce06e4
PA
2326/* Wrapper for target_resume, that handles infrun-specific
2327 bookkeeping. */
2328
2329static void
2330do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2331{
2332 struct thread_info *tp = inferior_thread ();
2333
2334 /* Install inferior's terminal modes. */
2335 target_terminal_inferior ();
2336
2337 /* Avoid confusing the next resume, if the next stop/resume
2338 happens to apply to another thread. */
2339 tp->suspend.stop_signal = GDB_SIGNAL_0;
2340
8f572e5c
PA
2341 /* Advise target which signals may be handled silently.
2342
2343 If we have removed breakpoints because we are stepping over one
2344 in-line (in any thread), we need to receive all signals to avoid
2345 accidentally skipping a breakpoint during execution of a signal
2346 handler.
2347
2348 Likewise if we're displaced stepping, otherwise a trap for a
2349 breakpoint in a signal handler might be confused with the
2350 displaced step finishing. We don't make the displaced_step_fixup
2351 step distinguish the cases instead, because:
2352
2353 - a backtrace while stopped in the signal handler would show the
2354 scratch pad as frame older than the signal handler, instead of
2355 the real mainline code.
2356
2357 - when the thread is later resumed, the signal handler would
2358 return to the scratch pad area, which would no longer be
2359 valid. */
2360 if (step_over_info_valid_p ()
2361 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2362 target_pass_signals (0, NULL);
2363 else
2364 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2365
2366 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2367
2368 target_commit_resume ();
64ce06e4
PA
2369}
2370
c906108c
SS
2371/* Resume the inferior, but allow a QUIT. This is useful if the user
2372 wants to interrupt some lengthy single-stepping operation
2373 (for child processes, the SIGINT goes to the inferior, and so
2374 we get a SIGINT random_signal, but for remote debugging and perhaps
2375 other targets, that's not true).
2376
c906108c
SS
2377 SIG is the signal to give the inferior (zero for none). */
2378void
64ce06e4 2379resume (enum gdb_signal sig)
c906108c 2380{
74b7792f 2381 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2382 struct regcache *regcache = get_current_regcache ();
2383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2384 struct thread_info *tp = inferior_thread ();
515630c5 2385 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2386 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2387 ptid_t resume_ptid;
856e7dd6
PA
2388 /* This represents the user's step vs continue request. When
2389 deciding whether "set scheduler-locking step" applies, it's the
2390 user's intention that counts. */
2391 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2392 /* This represents what we'll actually request the target to do.
2393 This can decay from a step to a continue, if e.g., we need to
2394 implement single-stepping with breakpoints (software
2395 single-step). */
6b403daa 2396 int step;
c7e8a53c 2397
c2829269
PA
2398 gdb_assert (!thread_is_in_step_over_chain (tp));
2399
c906108c
SS
2400 QUIT;
2401
372316f1
PA
2402 if (tp->suspend.waitstatus_pending_p)
2403 {
2404 if (debug_infrun)
2405 {
2406 char *statstr;
2407
2408 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2409 fprintf_unfiltered (gdb_stdlog,
2410 "infrun: resume: thread %s has pending wait status %s "
2411 "(currently_stepping=%d).\n",
2412 target_pid_to_str (tp->ptid), statstr,
2413 currently_stepping (tp));
2414 xfree (statstr);
2415 }
2416
2417 tp->resumed = 1;
2418
2419 /* FIXME: What should we do if we are supposed to resume this
2420 thread with a signal? Maybe we should maintain a queue of
2421 pending signals to deliver. */
2422 if (sig != GDB_SIGNAL_0)
2423 {
fd7dcb94 2424 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2425 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2426 }
2427
2428 tp->suspend.stop_signal = GDB_SIGNAL_0;
2429 discard_cleanups (old_cleanups);
2430
2431 if (target_can_async_p ())
2432 target_async (1);
2433 return;
2434 }
2435
2436 tp->stepped_breakpoint = 0;
2437
6b403daa
PA
2438 /* Depends on stepped_breakpoint. */
2439 step = currently_stepping (tp);
2440
74609e71
YQ
2441 if (current_inferior ()->waiting_for_vfork_done)
2442 {
48f9886d
PA
2443 /* Don't try to single-step a vfork parent that is waiting for
2444 the child to get out of the shared memory region (by exec'ing
2445 or exiting). This is particularly important on software
2446 single-step archs, as the child process would trip on the
2447 software single step breakpoint inserted for the parent
2448 process. Since the parent will not actually execute any
2449 instruction until the child is out of the shared region (such
2450 are vfork's semantics), it is safe to simply continue it.
2451 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2452 the parent, and tell it to `keep_going', which automatically
2453 re-sets it stepping. */
74609e71
YQ
2454 if (debug_infrun)
2455 fprintf_unfiltered (gdb_stdlog,
2456 "infrun: resume : clear step\n");
a09dd441 2457 step = 0;
74609e71
YQ
2458 }
2459
527159b7 2460 if (debug_infrun)
237fc4c9 2461 fprintf_unfiltered (gdb_stdlog,
c9737c08 2462 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2463 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2464 step, gdb_signal_to_symbol_string (sig),
2465 tp->control.trap_expected,
0d9a9a5f
PA
2466 target_pid_to_str (inferior_ptid),
2467 paddress (gdbarch, pc));
c906108c 2468
c2c6d25f
JM
2469 /* Normally, by the time we reach `resume', the breakpoints are either
2470 removed or inserted, as appropriate. The exception is if we're sitting
2471 at a permanent breakpoint; we need to step over it, but permanent
2472 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2473 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2474 {
af48d08f
PA
2475 if (sig != GDB_SIGNAL_0)
2476 {
2477 /* We have a signal to pass to the inferior. The resume
2478 may, or may not take us to the signal handler. If this
2479 is a step, we'll need to stop in the signal handler, if
2480 there's one, (if the target supports stepping into
2481 handlers), or in the next mainline instruction, if
2482 there's no handler. If this is a continue, we need to be
2483 sure to run the handler with all breakpoints inserted.
2484 In all cases, set a breakpoint at the current address
2485 (where the handler returns to), and once that breakpoint
2486 is hit, resume skipping the permanent breakpoint. If
2487 that breakpoint isn't hit, then we've stepped into the
2488 signal handler (or hit some other event). We'll delete
2489 the step-resume breakpoint then. */
2490
2491 if (debug_infrun)
2492 fprintf_unfiltered (gdb_stdlog,
2493 "infrun: resume: skipping permanent breakpoint, "
2494 "deliver signal first\n");
2495
2496 clear_step_over_info ();
2497 tp->control.trap_expected = 0;
2498
2499 if (tp->control.step_resume_breakpoint == NULL)
2500 {
2501 /* Set a "high-priority" step-resume, as we don't want
2502 user breakpoints at PC to trigger (again) when this
2503 hits. */
2504 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2505 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2506
2507 tp->step_after_step_resume_breakpoint = step;
2508 }
2509
2510 insert_breakpoints ();
2511 }
2512 else
2513 {
2514 /* There's no signal to pass, we can go ahead and skip the
2515 permanent breakpoint manually. */
2516 if (debug_infrun)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "infrun: resume: skipping permanent breakpoint\n");
2519 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2520 /* Update pc to reflect the new address from which we will
2521 execute instructions. */
2522 pc = regcache_read_pc (regcache);
2523
2524 if (step)
2525 {
2526 /* We've already advanced the PC, so the stepping part
2527 is done. Now we need to arrange for a trap to be
2528 reported to handle_inferior_event. Set a breakpoint
2529 at the current PC, and run to it. Don't update
2530 prev_pc, because if we end in
44a1ee51
PA
2531 switch_back_to_stepped_thread, we want the "expected
2532 thread advanced also" branch to be taken. IOW, we
2533 don't want this thread to step further from PC
af48d08f 2534 (overstep). */
1ac806b8 2535 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2536 insert_single_step_breakpoint (gdbarch, aspace, pc);
2537 insert_breakpoints ();
2538
fbea99ea 2539 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2540 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2541 discard_cleanups (old_cleanups);
372316f1 2542 tp->resumed = 1;
af48d08f
PA
2543 return;
2544 }
2545 }
6d350bb5 2546 }
c2c6d25f 2547
c1e36e3e
PA
2548 /* If we have a breakpoint to step over, make sure to do a single
2549 step only. Same if we have software watchpoints. */
2550 if (tp->control.trap_expected || bpstat_should_step ())
2551 tp->control.may_range_step = 0;
2552
237fc4c9
PA
2553 /* If enabled, step over breakpoints by executing a copy of the
2554 instruction at a different address.
2555
2556 We can't use displaced stepping when we have a signal to deliver;
2557 the comments for displaced_step_prepare explain why. The
2558 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2559 signals' explain what we do instead.
2560
2561 We can't use displaced stepping when we are waiting for vfork_done
2562 event, displaced stepping breaks the vfork child similarly as single
2563 step software breakpoint. */
3fc8eb30
PA
2564 if (tp->control.trap_expected
2565 && use_displaced_stepping (tp)
cb71640d 2566 && !step_over_info_valid_p ()
a493e3e2 2567 && sig == GDB_SIGNAL_0
74609e71 2568 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2569 {
3fc8eb30 2570 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2571
3fc8eb30 2572 if (prepared == 0)
d56b7306 2573 {
4d9d9d04
PA
2574 if (debug_infrun)
2575 fprintf_unfiltered (gdb_stdlog,
2576 "Got placed in step-over queue\n");
2577
2578 tp->control.trap_expected = 0;
d56b7306
VP
2579 discard_cleanups (old_cleanups);
2580 return;
2581 }
3fc8eb30
PA
2582 else if (prepared < 0)
2583 {
2584 /* Fallback to stepping over the breakpoint in-line. */
2585
2586 if (target_is_non_stop_p ())
2587 stop_all_threads ();
2588
2589 set_step_over_info (get_regcache_aspace (regcache),
21edc42f 2590 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2591
2592 step = maybe_software_singlestep (gdbarch, pc);
2593
2594 insert_breakpoints ();
2595 }
2596 else if (prepared > 0)
2597 {
2598 struct displaced_step_inferior_state *displaced;
99e40580 2599
3fc8eb30
PA
2600 /* Update pc to reflect the new address from which we will
2601 execute instructions due to displaced stepping. */
2602 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2603
3fc8eb30
PA
2604 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2605 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2606 displaced->step_closure);
2607 }
237fc4c9
PA
2608 }
2609
2facfe5c 2610 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2611 else if (step)
2facfe5c 2612 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2613
30852783
UW
2614 /* Currently, our software single-step implementation leads to different
2615 results than hardware single-stepping in one situation: when stepping
2616 into delivering a signal which has an associated signal handler,
2617 hardware single-step will stop at the first instruction of the handler,
2618 while software single-step will simply skip execution of the handler.
2619
2620 For now, this difference in behavior is accepted since there is no
2621 easy way to actually implement single-stepping into a signal handler
2622 without kernel support.
2623
2624 However, there is one scenario where this difference leads to follow-on
2625 problems: if we're stepping off a breakpoint by removing all breakpoints
2626 and then single-stepping. In this case, the software single-step
2627 behavior means that even if there is a *breakpoint* in the signal
2628 handler, GDB still would not stop.
2629
2630 Fortunately, we can at least fix this particular issue. We detect
2631 here the case where we are about to deliver a signal while software
2632 single-stepping with breakpoints removed. In this situation, we
2633 revert the decisions to remove all breakpoints and insert single-
2634 step breakpoints, and instead we install a step-resume breakpoint
2635 at the current address, deliver the signal without stepping, and
2636 once we arrive back at the step-resume breakpoint, actually step
2637 over the breakpoint we originally wanted to step over. */
34b7e8a6 2638 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2639 && sig != GDB_SIGNAL_0
2640 && step_over_info_valid_p ())
30852783
UW
2641 {
2642 /* If we have nested signals or a pending signal is delivered
2643 immediately after a handler returns, might might already have
2644 a step-resume breakpoint set on the earlier handler. We cannot
2645 set another step-resume breakpoint; just continue on until the
2646 original breakpoint is hit. */
2647 if (tp->control.step_resume_breakpoint == NULL)
2648 {
2c03e5be 2649 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2650 tp->step_after_step_resume_breakpoint = 1;
2651 }
2652
34b7e8a6 2653 delete_single_step_breakpoints (tp);
30852783 2654
31e77af2 2655 clear_step_over_info ();
30852783 2656 tp->control.trap_expected = 0;
31e77af2
PA
2657
2658 insert_breakpoints ();
30852783
UW
2659 }
2660
b0f16a3e
SM
2661 /* If STEP is set, it's a request to use hardware stepping
2662 facilities. But in that case, we should never
2663 use singlestep breakpoint. */
34b7e8a6 2664 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2665
fbea99ea 2666 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2667 if (tp->control.trap_expected)
b0f16a3e
SM
2668 {
2669 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2670 hit, either by single-stepping the thread with the breakpoint
2671 removed, or by displaced stepping, with the breakpoint inserted.
2672 In the former case, we need to single-step only this thread,
2673 and keep others stopped, as they can miss this breakpoint if
2674 allowed to run. That's not really a problem for displaced
2675 stepping, but, we still keep other threads stopped, in case
2676 another thread is also stopped for a breakpoint waiting for
2677 its turn in the displaced stepping queue. */
b0f16a3e
SM
2678 resume_ptid = inferior_ptid;
2679 }
fbea99ea
PA
2680 else
2681 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2682
7f5ef605
PA
2683 if (execution_direction != EXEC_REVERSE
2684 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2685 {
372316f1
PA
2686 /* There are two cases where we currently need to step a
2687 breakpoint instruction when we have a signal to deliver:
2688
2689 - See handle_signal_stop where we handle random signals that
2690 could take out us out of the stepping range. Normally, in
2691 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2692 signal handler with a breakpoint at PC, but there are cases
2693 where we should _always_ single-step, even if we have a
2694 step-resume breakpoint, like when a software watchpoint is
2695 set. Assuming single-stepping and delivering a signal at the
2696 same time would takes us to the signal handler, then we could
2697 have removed the breakpoint at PC to step over it. However,
2698 some hardware step targets (like e.g., Mac OS) can't step
2699 into signal handlers, and for those, we need to leave the
2700 breakpoint at PC inserted, as otherwise if the handler
2701 recurses and executes PC again, it'll miss the breakpoint.
2702 So we leave the breakpoint inserted anyway, but we need to
2703 record that we tried to step a breakpoint instruction, so
372316f1
PA
2704 that adjust_pc_after_break doesn't end up confused.
2705
2706 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2707 in one thread after another thread that was stepping had been
2708 momentarily paused for a step-over. When we re-resume the
2709 stepping thread, it may be resumed from that address with a
2710 breakpoint that hasn't trapped yet. Seen with
2711 gdb.threads/non-stop-fair-events.exp, on targets that don't
2712 do displaced stepping. */
2713
2714 if (debug_infrun)
2715 fprintf_unfiltered (gdb_stdlog,
2716 "infrun: resume: [%s] stepped breakpoint\n",
2717 target_pid_to_str (tp->ptid));
7f5ef605
PA
2718
2719 tp->stepped_breakpoint = 1;
2720
b0f16a3e
SM
2721 /* Most targets can step a breakpoint instruction, thus
2722 executing it normally. But if this one cannot, just
2723 continue and we will hit it anyway. */
7f5ef605 2724 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2725 step = 0;
2726 }
ef5cf84e 2727
b0f16a3e 2728 if (debug_displaced
cb71640d 2729 && tp->control.trap_expected
3fc8eb30 2730 && use_displaced_stepping (tp)
cb71640d 2731 && !step_over_info_valid_p ())
b0f16a3e 2732 {
d9b67d9f 2733 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2734 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2735 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2736 gdb_byte buf[4];
2737
2738 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2739 paddress (resume_gdbarch, actual_pc));
2740 read_memory (actual_pc, buf, sizeof (buf));
2741 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2742 }
237fc4c9 2743
b0f16a3e
SM
2744 if (tp->control.may_range_step)
2745 {
2746 /* If we're resuming a thread with the PC out of the step
2747 range, then we're doing some nested/finer run control
2748 operation, like stepping the thread out of the dynamic
2749 linker or the displaced stepping scratch pad. We
2750 shouldn't have allowed a range step then. */
2751 gdb_assert (pc_in_thread_step_range (pc, tp));
2752 }
c1e36e3e 2753
64ce06e4 2754 do_target_resume (resume_ptid, step, sig);
372316f1 2755 tp->resumed = 1;
c906108c
SS
2756 discard_cleanups (old_cleanups);
2757}
2758\f
237fc4c9 2759/* Proceeding. */
c906108c 2760
4c2f2a79
PA
2761/* See infrun.h. */
2762
2763/* Counter that tracks number of user visible stops. This can be used
2764 to tell whether a command has proceeded the inferior past the
2765 current location. This allows e.g., inferior function calls in
2766 breakpoint commands to not interrupt the command list. When the
2767 call finishes successfully, the inferior is standing at the same
2768 breakpoint as if nothing happened (and so we don't call
2769 normal_stop). */
2770static ULONGEST current_stop_id;
2771
2772/* See infrun.h. */
2773
2774ULONGEST
2775get_stop_id (void)
2776{
2777 return current_stop_id;
2778}
2779
2780/* Called when we report a user visible stop. */
2781
2782static void
2783new_stop_id (void)
2784{
2785 current_stop_id++;
2786}
2787
c906108c
SS
2788/* Clear out all variables saying what to do when inferior is continued.
2789 First do this, then set the ones you want, then call `proceed'. */
2790
a7212384
UW
2791static void
2792clear_proceed_status_thread (struct thread_info *tp)
c906108c 2793{
a7212384
UW
2794 if (debug_infrun)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "infrun: clear_proceed_status_thread (%s)\n",
2797 target_pid_to_str (tp->ptid));
d6b48e9c 2798
372316f1
PA
2799 /* If we're starting a new sequence, then the previous finished
2800 single-step is no longer relevant. */
2801 if (tp->suspend.waitstatus_pending_p)
2802 {
2803 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2804 {
2805 if (debug_infrun)
2806 fprintf_unfiltered (gdb_stdlog,
2807 "infrun: clear_proceed_status: pending "
2808 "event of %s was a finished step. "
2809 "Discarding.\n",
2810 target_pid_to_str (tp->ptid));
2811
2812 tp->suspend.waitstatus_pending_p = 0;
2813 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2814 }
2815 else if (debug_infrun)
2816 {
2817 char *statstr;
2818
2819 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2820 fprintf_unfiltered (gdb_stdlog,
2821 "infrun: clear_proceed_status_thread: thread %s "
2822 "has pending wait status %s "
2823 "(currently_stepping=%d).\n",
2824 target_pid_to_str (tp->ptid), statstr,
2825 currently_stepping (tp));
2826 xfree (statstr);
2827 }
2828 }
2829
70509625
PA
2830 /* If this signal should not be seen by program, give it zero.
2831 Used for debugging signals. */
2832 if (!signal_pass_state (tp->suspend.stop_signal))
2833 tp->suspend.stop_signal = GDB_SIGNAL_0;
2834
243a9253
PA
2835 thread_fsm_delete (tp->thread_fsm);
2836 tp->thread_fsm = NULL;
2837
16c381f0
JK
2838 tp->control.trap_expected = 0;
2839 tp->control.step_range_start = 0;
2840 tp->control.step_range_end = 0;
c1e36e3e 2841 tp->control.may_range_step = 0;
16c381f0
JK
2842 tp->control.step_frame_id = null_frame_id;
2843 tp->control.step_stack_frame_id = null_frame_id;
2844 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2845 tp->control.step_start_function = NULL;
a7212384 2846 tp->stop_requested = 0;
4e1c45ea 2847
16c381f0 2848 tp->control.stop_step = 0;
32400beb 2849
16c381f0 2850 tp->control.proceed_to_finish = 0;
414c69f7 2851
856e7dd6 2852 tp->control.stepping_command = 0;
17b2616c 2853
a7212384 2854 /* Discard any remaining commands or status from previous stop. */
16c381f0 2855 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2856}
32400beb 2857
a7212384 2858void
70509625 2859clear_proceed_status (int step)
a7212384 2860{
f2665db5
MM
2861 /* With scheduler-locking replay, stop replaying other threads if we're
2862 not replaying the user-visible resume ptid.
2863
2864 This is a convenience feature to not require the user to explicitly
2865 stop replaying the other threads. We're assuming that the user's
2866 intent is to resume tracing the recorded process. */
2867 if (!non_stop && scheduler_mode == schedlock_replay
2868 && target_record_is_replaying (minus_one_ptid)
2869 && !target_record_will_replay (user_visible_resume_ptid (step),
2870 execution_direction))
2871 target_record_stop_replaying ();
2872
6c95b8df
PA
2873 if (!non_stop)
2874 {
70509625
PA
2875 struct thread_info *tp;
2876 ptid_t resume_ptid;
2877
2878 resume_ptid = user_visible_resume_ptid (step);
2879
2880 /* In all-stop mode, delete the per-thread status of all threads
2881 we're about to resume, implicitly and explicitly. */
2882 ALL_NON_EXITED_THREADS (tp)
2883 {
2884 if (!ptid_match (tp->ptid, resume_ptid))
2885 continue;
2886 clear_proceed_status_thread (tp);
2887 }
6c95b8df
PA
2888 }
2889
a7212384
UW
2890 if (!ptid_equal (inferior_ptid, null_ptid))
2891 {
2892 struct inferior *inferior;
2893
2894 if (non_stop)
2895 {
6c95b8df
PA
2896 /* If in non-stop mode, only delete the per-thread status of
2897 the current thread. */
a7212384
UW
2898 clear_proceed_status_thread (inferior_thread ());
2899 }
6c95b8df 2900
d6b48e9c 2901 inferior = current_inferior ();
16c381f0 2902 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2903 }
2904
f3b1572e 2905 observer_notify_about_to_proceed ();
c906108c
SS
2906}
2907
99619bea
PA
2908/* Returns true if TP is still stopped at a breakpoint that needs
2909 stepping-over in order to make progress. If the breakpoint is gone
2910 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2911
2912static int
6c4cfb24 2913thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2914{
2915 if (tp->stepping_over_breakpoint)
2916 {
2917 struct regcache *regcache = get_thread_regcache (tp->ptid);
2918
2919 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2920 regcache_read_pc (regcache))
2921 == ordinary_breakpoint_here)
99619bea
PA
2922 return 1;
2923
2924 tp->stepping_over_breakpoint = 0;
2925 }
2926
2927 return 0;
2928}
2929
6c4cfb24
PA
2930/* Check whether thread TP still needs to start a step-over in order
2931 to make progress when resumed. Returns an bitwise or of enum
2932 step_over_what bits, indicating what needs to be stepped over. */
2933
8d297bbf 2934static step_over_what
6c4cfb24
PA
2935thread_still_needs_step_over (struct thread_info *tp)
2936{
8d297bbf 2937 step_over_what what = 0;
6c4cfb24
PA
2938
2939 if (thread_still_needs_step_over_bp (tp))
2940 what |= STEP_OVER_BREAKPOINT;
2941
2942 if (tp->stepping_over_watchpoint
2943 && !target_have_steppable_watchpoint)
2944 what |= STEP_OVER_WATCHPOINT;
2945
2946 return what;
2947}
2948
483805cf
PA
2949/* Returns true if scheduler locking applies. STEP indicates whether
2950 we're about to do a step/next-like command to a thread. */
2951
2952static int
856e7dd6 2953schedlock_applies (struct thread_info *tp)
483805cf
PA
2954{
2955 return (scheduler_mode == schedlock_on
2956 || (scheduler_mode == schedlock_step
f2665db5
MM
2957 && tp->control.stepping_command)
2958 || (scheduler_mode == schedlock_replay
2959 && target_record_will_replay (minus_one_ptid,
2960 execution_direction)));
483805cf
PA
2961}
2962
c906108c
SS
2963/* Basic routine for continuing the program in various fashions.
2964
2965 ADDR is the address to resume at, or -1 for resume where stopped.
2966 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2967 or -1 for act according to how it stopped.
c906108c 2968 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2969 -1 means return after that and print nothing.
2970 You should probably set various step_... variables
2971 before calling here, if you are stepping.
c906108c
SS
2972
2973 You should call clear_proceed_status before calling proceed. */
2974
2975void
64ce06e4 2976proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2977{
e58b0e63
PA
2978 struct regcache *regcache;
2979 struct gdbarch *gdbarch;
4e1c45ea 2980 struct thread_info *tp;
e58b0e63 2981 CORE_ADDR pc;
6c95b8df 2982 struct address_space *aspace;
4d9d9d04
PA
2983 ptid_t resume_ptid;
2984 struct execution_control_state ecss;
2985 struct execution_control_state *ecs = &ecss;
2986 struct cleanup *old_chain;
85ad3aaf 2987 struct cleanup *defer_resume_cleanup;
4d9d9d04 2988 int started;
c906108c 2989
e58b0e63
PA
2990 /* If we're stopped at a fork/vfork, follow the branch set by the
2991 "set follow-fork-mode" command; otherwise, we'll just proceed
2992 resuming the current thread. */
2993 if (!follow_fork ())
2994 {
2995 /* The target for some reason decided not to resume. */
2996 normal_stop ();
f148b27e
PA
2997 if (target_can_async_p ())
2998 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2999 return;
3000 }
3001
842951eb
PA
3002 /* We'll update this if & when we switch to a new thread. */
3003 previous_inferior_ptid = inferior_ptid;
3004
e58b0e63
PA
3005 regcache = get_current_regcache ();
3006 gdbarch = get_regcache_arch (regcache);
6c95b8df 3007 aspace = get_regcache_aspace (regcache);
e58b0e63 3008 pc = regcache_read_pc (regcache);
2adfaa28 3009 tp = inferior_thread ();
e58b0e63 3010
99619bea
PA
3011 /* Fill in with reasonable starting values. */
3012 init_thread_stepping_state (tp);
3013
c2829269
PA
3014 gdb_assert (!thread_is_in_step_over_chain (tp));
3015
2acceee2 3016 if (addr == (CORE_ADDR) -1)
c906108c 3017 {
af48d08f
PA
3018 if (pc == stop_pc
3019 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3020 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3021 /* There is a breakpoint at the address we will resume at,
3022 step one instruction before inserting breakpoints so that
3023 we do not stop right away (and report a second hit at this
b2175913
MS
3024 breakpoint).
3025
3026 Note, we don't do this in reverse, because we won't
3027 actually be executing the breakpoint insn anyway.
3028 We'll be (un-)executing the previous instruction. */
99619bea 3029 tp->stepping_over_breakpoint = 1;
515630c5
UW
3030 else if (gdbarch_single_step_through_delay_p (gdbarch)
3031 && gdbarch_single_step_through_delay (gdbarch,
3032 get_current_frame ()))
3352ef37
AC
3033 /* We stepped onto an instruction that needs to be stepped
3034 again before re-inserting the breakpoint, do so. */
99619bea 3035 tp->stepping_over_breakpoint = 1;
c906108c
SS
3036 }
3037 else
3038 {
515630c5 3039 regcache_write_pc (regcache, addr);
c906108c
SS
3040 }
3041
70509625
PA
3042 if (siggnal != GDB_SIGNAL_DEFAULT)
3043 tp->suspend.stop_signal = siggnal;
3044
4d9d9d04
PA
3045 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3046
3047 /* If an exception is thrown from this point on, make sure to
3048 propagate GDB's knowledge of the executing state to the
3049 frontend/user running state. */
3050 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3051
3052 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3053 threads (e.g., we might need to set threads stepping over
3054 breakpoints first), from the user/frontend's point of view, all
3055 threads in RESUME_PTID are now running. Unless we're calling an
3056 inferior function, as in that case we pretend the inferior
3057 doesn't run at all. */
3058 if (!tp->control.in_infcall)
3059 set_running (resume_ptid, 1);
17b2616c 3060
527159b7 3061 if (debug_infrun)
8a9de0e4 3062 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3063 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3064 paddress (gdbarch, addr),
64ce06e4 3065 gdb_signal_to_symbol_string (siggnal));
527159b7 3066
4d9d9d04
PA
3067 annotate_starting ();
3068
3069 /* Make sure that output from GDB appears before output from the
3070 inferior. */
3071 gdb_flush (gdb_stdout);
3072
3073 /* In a multi-threaded task we may select another thread and
3074 then continue or step.
3075
3076 But if a thread that we're resuming had stopped at a breakpoint,
3077 it will immediately cause another breakpoint stop without any
3078 execution (i.e. it will report a breakpoint hit incorrectly). So
3079 we must step over it first.
3080
3081 Look for threads other than the current (TP) that reported a
3082 breakpoint hit and haven't been resumed yet since. */
3083
3084 /* If scheduler locking applies, we can avoid iterating over all
3085 threads. */
3086 if (!non_stop && !schedlock_applies (tp))
94cc34af 3087 {
4d9d9d04
PA
3088 struct thread_info *current = tp;
3089
3090 ALL_NON_EXITED_THREADS (tp)
3091 {
3092 /* Ignore the current thread here. It's handled
3093 afterwards. */
3094 if (tp == current)
3095 continue;
99619bea 3096
4d9d9d04
PA
3097 /* Ignore threads of processes we're not resuming. */
3098 if (!ptid_match (tp->ptid, resume_ptid))
3099 continue;
c906108c 3100
4d9d9d04
PA
3101 if (!thread_still_needs_step_over (tp))
3102 continue;
3103
3104 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3105
99619bea
PA
3106 if (debug_infrun)
3107 fprintf_unfiltered (gdb_stdlog,
3108 "infrun: need to step-over [%s] first\n",
4d9d9d04 3109 target_pid_to_str (tp->ptid));
99619bea 3110
4d9d9d04 3111 thread_step_over_chain_enqueue (tp);
2adfaa28 3112 }
31e77af2 3113
4d9d9d04 3114 tp = current;
30852783
UW
3115 }
3116
4d9d9d04
PA
3117 /* Enqueue the current thread last, so that we move all other
3118 threads over their breakpoints first. */
3119 if (tp->stepping_over_breakpoint)
3120 thread_step_over_chain_enqueue (tp);
30852783 3121
4d9d9d04
PA
3122 /* If the thread isn't started, we'll still need to set its prev_pc,
3123 so that switch_back_to_stepped_thread knows the thread hasn't
3124 advanced. Must do this before resuming any thread, as in
3125 all-stop/remote, once we resume we can't send any other packet
3126 until the target stops again. */
3127 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3128
85ad3aaf
PA
3129 defer_resume_cleanup = make_cleanup_defer_target_commit_resume ();
3130
4d9d9d04 3131 started = start_step_over ();
c906108c 3132
4d9d9d04
PA
3133 if (step_over_info_valid_p ())
3134 {
3135 /* Either this thread started a new in-line step over, or some
3136 other thread was already doing one. In either case, don't
3137 resume anything else until the step-over is finished. */
3138 }
fbea99ea 3139 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3140 {
3141 /* A new displaced stepping sequence was started. In all-stop,
3142 we can't talk to the target anymore until it next stops. */
3143 }
fbea99ea
PA
3144 else if (!non_stop && target_is_non_stop_p ())
3145 {
3146 /* In all-stop, but the target is always in non-stop mode.
3147 Start all other threads that are implicitly resumed too. */
3148 ALL_NON_EXITED_THREADS (tp)
3149 {
3150 /* Ignore threads of processes we're not resuming. */
3151 if (!ptid_match (tp->ptid, resume_ptid))
3152 continue;
3153
3154 if (tp->resumed)
3155 {
3156 if (debug_infrun)
3157 fprintf_unfiltered (gdb_stdlog,
3158 "infrun: proceed: [%s] resumed\n",
3159 target_pid_to_str (tp->ptid));
3160 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3161 continue;
3162 }
3163
3164 if (thread_is_in_step_over_chain (tp))
3165 {
3166 if (debug_infrun)
3167 fprintf_unfiltered (gdb_stdlog,
3168 "infrun: proceed: [%s] needs step-over\n",
3169 target_pid_to_str (tp->ptid));
3170 continue;
3171 }
3172
3173 if (debug_infrun)
3174 fprintf_unfiltered (gdb_stdlog,
3175 "infrun: proceed: resuming %s\n",
3176 target_pid_to_str (tp->ptid));
3177
3178 reset_ecs (ecs, tp);
3179 switch_to_thread (tp->ptid);
3180 keep_going_pass_signal (ecs);
3181 if (!ecs->wait_some_more)
fd7dcb94 3182 error (_("Command aborted."));
fbea99ea
PA
3183 }
3184 }
372316f1 3185 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3186 {
3187 /* The thread wasn't started, and isn't queued, run it now. */
3188 reset_ecs (ecs, tp);
3189 switch_to_thread (tp->ptid);
3190 keep_going_pass_signal (ecs);
3191 if (!ecs->wait_some_more)
fd7dcb94 3192 error (_("Command aborted."));
4d9d9d04 3193 }
c906108c 3194
85ad3aaf
PA
3195 do_cleanups (defer_resume_cleanup);
3196 target_commit_resume ();
3197
4d9d9d04 3198 discard_cleanups (old_chain);
c906108c 3199
0b333c5e
PA
3200 /* Tell the event loop to wait for it to stop. If the target
3201 supports asynchronous execution, it'll do this from within
3202 target_resume. */
362646f5 3203 if (!target_can_async_p ())
0b333c5e 3204 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3205}
c906108c
SS
3206\f
3207
3208/* Start remote-debugging of a machine over a serial link. */
96baa820 3209
c906108c 3210void
8621d6a9 3211start_remote (int from_tty)
c906108c 3212{
d6b48e9c 3213 struct inferior *inferior;
d6b48e9c
PA
3214
3215 inferior = current_inferior ();
16c381f0 3216 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3217
1777feb0 3218 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3219 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3220 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3221 nothing is returned (instead of just blocking). Because of this,
3222 targets expecting an immediate response need to, internally, set
3223 things up so that the target_wait() is forced to eventually
1777feb0 3224 timeout. */
6426a772
JM
3225 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3226 differentiate to its caller what the state of the target is after
3227 the initial open has been performed. Here we're assuming that
3228 the target has stopped. It should be possible to eventually have
3229 target_open() return to the caller an indication that the target
3230 is currently running and GDB state should be set to the same as
1777feb0 3231 for an async run. */
e4c8541f 3232 wait_for_inferior ();
8621d6a9
DJ
3233
3234 /* Now that the inferior has stopped, do any bookkeeping like
3235 loading shared libraries. We want to do this before normal_stop,
3236 so that the displayed frame is up to date. */
3237 post_create_inferior (&current_target, from_tty);
3238
6426a772 3239 normal_stop ();
c906108c
SS
3240}
3241
3242/* Initialize static vars when a new inferior begins. */
3243
3244void
96baa820 3245init_wait_for_inferior (void)
c906108c
SS
3246{
3247 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3248
c906108c
SS
3249 breakpoint_init_inferior (inf_starting);
3250
70509625 3251 clear_proceed_status (0);
9f976b41 3252
ca005067 3253 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3254
842951eb 3255 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3256
edb3359d
DJ
3257 /* Discard any skipped inlined frames. */
3258 clear_inline_frame_state (minus_one_ptid);
c906108c 3259}
237fc4c9 3260
c906108c 3261\f
488f131b 3262
ec9499be 3263static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3264
568d6575
UW
3265static void handle_step_into_function (struct gdbarch *gdbarch,
3266 struct execution_control_state *ecs);
3267static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3268 struct execution_control_state *ecs);
4f5d7f63 3269static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3270static void check_exception_resume (struct execution_control_state *,
28106bc2 3271 struct frame_info *);
611c83ae 3272
bdc36728 3273static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3274static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3275static void keep_going (struct execution_control_state *ecs);
94c57d6a 3276static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3277static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3278
252fbfc8
PA
3279/* Callback for iterate over threads. If the thread is stopped, but
3280 the user/frontend doesn't know about that yet, go through
3281 normal_stop, as if the thread had just stopped now. ARG points at
3282 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3283 ptid_is_pid(PTID) is true, applies to all threads of the process
3284 pointed at by PTID. Otherwise, apply only to the thread pointed by
3285 PTID. */
3286
3287static int
3288infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3289{
3290 ptid_t ptid = * (ptid_t *) arg;
3291
3292 if ((ptid_equal (info->ptid, ptid)
3293 || ptid_equal (minus_one_ptid, ptid)
3294 || (ptid_is_pid (ptid)
3295 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3296 && is_running (info->ptid)
3297 && !is_executing (info->ptid))
3298 {
3299 struct cleanup *old_chain;
3300 struct execution_control_state ecss;
3301 struct execution_control_state *ecs = &ecss;
3302
3303 memset (ecs, 0, sizeof (*ecs));
3304
3305 old_chain = make_cleanup_restore_current_thread ();
3306
f15cb84a
YQ
3307 overlay_cache_invalid = 1;
3308 /* Flush target cache before starting to handle each event.
3309 Target was running and cache could be stale. This is just a
3310 heuristic. Running threads may modify target memory, but we
3311 don't get any event. */
3312 target_dcache_invalidate ();
3313
252fbfc8
PA
3314 /* Go through handle_inferior_event/normal_stop, so we always
3315 have consistent output as if the stop event had been
3316 reported. */
3317 ecs->ptid = info->ptid;
243a9253 3318 ecs->event_thread = info;
252fbfc8 3319 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3320 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3321
3322 handle_inferior_event (ecs);
3323
3324 if (!ecs->wait_some_more)
3325 {
243a9253
PA
3326 /* Cancel any running execution command. */
3327 thread_cancel_execution_command (info);
3328
252fbfc8 3329 normal_stop ();
252fbfc8
PA
3330 }
3331
3332 do_cleanups (old_chain);
3333 }
3334
3335 return 0;
3336}
3337
3338/* This function is attached as a "thread_stop_requested" observer.
3339 Cleanup local state that assumed the PTID was to be resumed, and
3340 report the stop to the frontend. */
3341
2c0b251b 3342static void
252fbfc8
PA
3343infrun_thread_stop_requested (ptid_t ptid)
3344{
c2829269 3345 struct thread_info *tp;
252fbfc8 3346
c2829269
PA
3347 /* PTID was requested to stop. Remove matching threads from the
3348 step-over queue, so we don't try to resume them
3349 automatically. */
3350 ALL_NON_EXITED_THREADS (tp)
3351 if (ptid_match (tp->ptid, ptid))
3352 {
3353 if (thread_is_in_step_over_chain (tp))
3354 thread_step_over_chain_remove (tp);
3355 }
252fbfc8
PA
3356
3357 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3358}
3359
a07daef3
PA
3360static void
3361infrun_thread_thread_exit (struct thread_info *tp, int silent)
3362{
3363 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3364 nullify_last_target_wait_ptid ();
3365}
3366
0cbcdb96
PA
3367/* Delete the step resume, single-step and longjmp/exception resume
3368 breakpoints of TP. */
4e1c45ea 3369
0cbcdb96
PA
3370static void
3371delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3372{
0cbcdb96
PA
3373 delete_step_resume_breakpoint (tp);
3374 delete_exception_resume_breakpoint (tp);
34b7e8a6 3375 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3376}
3377
0cbcdb96
PA
3378/* If the target still has execution, call FUNC for each thread that
3379 just stopped. In all-stop, that's all the non-exited threads; in
3380 non-stop, that's the current thread, only. */
3381
3382typedef void (*for_each_just_stopped_thread_callback_func)
3383 (struct thread_info *tp);
4e1c45ea
PA
3384
3385static void
0cbcdb96 3386for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3387{
0cbcdb96 3388 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3389 return;
3390
fbea99ea 3391 if (target_is_non_stop_p ())
4e1c45ea 3392 {
0cbcdb96
PA
3393 /* If in non-stop mode, only the current thread stopped. */
3394 func (inferior_thread ());
4e1c45ea
PA
3395 }
3396 else
0cbcdb96
PA
3397 {
3398 struct thread_info *tp;
3399
3400 /* In all-stop mode, all threads have stopped. */
3401 ALL_NON_EXITED_THREADS (tp)
3402 {
3403 func (tp);
3404 }
3405 }
3406}
3407
3408/* Delete the step resume and longjmp/exception resume breakpoints of
3409 the threads that just stopped. */
3410
3411static void
3412delete_just_stopped_threads_infrun_breakpoints (void)
3413{
3414 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3415}
3416
3417/* Delete the single-step breakpoints of the threads that just
3418 stopped. */
7c16b83e 3419
34b7e8a6
PA
3420static void
3421delete_just_stopped_threads_single_step_breakpoints (void)
3422{
3423 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3424}
3425
1777feb0 3426/* A cleanup wrapper. */
4e1c45ea
PA
3427
3428static void
0cbcdb96 3429delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3430{
0cbcdb96 3431 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3432}
3433
221e1a37 3434/* See infrun.h. */
223698f8 3435
221e1a37 3436void
223698f8
DE
3437print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3438 const struct target_waitstatus *ws)
3439{
3440 char *status_string = target_waitstatus_to_string (ws);
3441 struct ui_file *tmp_stream = mem_fileopen ();
3442 char *text;
223698f8
DE
3443
3444 /* The text is split over several lines because it was getting too long.
3445 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3446 output as a unit; we want only one timestamp printed if debug_timestamp
3447 is set. */
3448
3449 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3450 "infrun: target_wait (%d.%ld.%ld",
3451 ptid_get_pid (waiton_ptid),
3452 ptid_get_lwp (waiton_ptid),
3453 ptid_get_tid (waiton_ptid));
dfd4cc63 3454 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3455 fprintf_unfiltered (tmp_stream,
3456 " [%s]", target_pid_to_str (waiton_ptid));
3457 fprintf_unfiltered (tmp_stream, ", status) =\n");
3458 fprintf_unfiltered (tmp_stream,
1176ecec 3459 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3460 ptid_get_pid (result_ptid),
1176ecec
PA
3461 ptid_get_lwp (result_ptid),
3462 ptid_get_tid (result_ptid),
dfd4cc63 3463 target_pid_to_str (result_ptid));
223698f8
DE
3464 fprintf_unfiltered (tmp_stream,
3465 "infrun: %s\n",
3466 status_string);
3467
759ef836 3468 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3469
3470 /* This uses %s in part to handle %'s in the text, but also to avoid
3471 a gcc error: the format attribute requires a string literal. */
3472 fprintf_unfiltered (gdb_stdlog, "%s", text);
3473
3474 xfree (status_string);
3475 xfree (text);
3476 ui_file_delete (tmp_stream);
3477}
3478
372316f1
PA
3479/* Select a thread at random, out of those which are resumed and have
3480 had events. */
3481
3482static struct thread_info *
3483random_pending_event_thread (ptid_t waiton_ptid)
3484{
3485 struct thread_info *event_tp;
3486 int num_events = 0;
3487 int random_selector;
3488
3489 /* First see how many events we have. Count only resumed threads
3490 that have an event pending. */
3491 ALL_NON_EXITED_THREADS (event_tp)
3492 if (ptid_match (event_tp->ptid, waiton_ptid)
3493 && event_tp->resumed
3494 && event_tp->suspend.waitstatus_pending_p)
3495 num_events++;
3496
3497 if (num_events == 0)
3498 return NULL;
3499
3500 /* Now randomly pick a thread out of those that have had events. */
3501 random_selector = (int)
3502 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3503
3504 if (debug_infrun && num_events > 1)
3505 fprintf_unfiltered (gdb_stdlog,
3506 "infrun: Found %d events, selecting #%d\n",
3507 num_events, random_selector);
3508
3509 /* Select the Nth thread that has had an event. */
3510 ALL_NON_EXITED_THREADS (event_tp)
3511 if (ptid_match (event_tp->ptid, waiton_ptid)
3512 && event_tp->resumed
3513 && event_tp->suspend.waitstatus_pending_p)
3514 if (random_selector-- == 0)
3515 break;
3516
3517 return event_tp;
3518}
3519
3520/* Wrapper for target_wait that first checks whether threads have
3521 pending statuses to report before actually asking the target for
3522 more events. */
3523
3524static ptid_t
3525do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3526{
3527 ptid_t event_ptid;
3528 struct thread_info *tp;
3529
3530 /* First check if there is a resumed thread with a wait status
3531 pending. */
3532 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3533 {
3534 tp = random_pending_event_thread (ptid);
3535 }
3536 else
3537 {
3538 if (debug_infrun)
3539 fprintf_unfiltered (gdb_stdlog,
3540 "infrun: Waiting for specific thread %s.\n",
3541 target_pid_to_str (ptid));
3542
3543 /* We have a specific thread to check. */
3544 tp = find_thread_ptid (ptid);
3545 gdb_assert (tp != NULL);
3546 if (!tp->suspend.waitstatus_pending_p)
3547 tp = NULL;
3548 }
3549
3550 if (tp != NULL
3551 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3552 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3553 {
3554 struct regcache *regcache = get_thread_regcache (tp->ptid);
3555 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3556 CORE_ADDR pc;
3557 int discard = 0;
3558
3559 pc = regcache_read_pc (regcache);
3560
3561 if (pc != tp->suspend.stop_pc)
3562 {
3563 if (debug_infrun)
3564 fprintf_unfiltered (gdb_stdlog,
3565 "infrun: PC of %s changed. was=%s, now=%s\n",
3566 target_pid_to_str (tp->ptid),
3567 paddress (gdbarch, tp->prev_pc),
3568 paddress (gdbarch, pc));
3569 discard = 1;
3570 }
3571 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3572 {
3573 if (debug_infrun)
3574 fprintf_unfiltered (gdb_stdlog,
3575 "infrun: previous breakpoint of %s, at %s gone\n",
3576 target_pid_to_str (tp->ptid),
3577 paddress (gdbarch, pc));
3578
3579 discard = 1;
3580 }
3581
3582 if (discard)
3583 {
3584 if (debug_infrun)
3585 fprintf_unfiltered (gdb_stdlog,
3586 "infrun: pending event of %s cancelled.\n",
3587 target_pid_to_str (tp->ptid));
3588
3589 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3590 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3591 }
3592 }
3593
3594 if (tp != NULL)
3595 {
3596 if (debug_infrun)
3597 {
3598 char *statstr;
3599
3600 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3601 fprintf_unfiltered (gdb_stdlog,
3602 "infrun: Using pending wait status %s for %s.\n",
3603 statstr,
3604 target_pid_to_str (tp->ptid));
3605 xfree (statstr);
3606 }
3607
3608 /* Now that we've selected our final event LWP, un-adjust its PC
3609 if it was a software breakpoint (and the target doesn't
3610 always adjust the PC itself). */
3611 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3612 && !target_supports_stopped_by_sw_breakpoint ())
3613 {
3614 struct regcache *regcache;
3615 struct gdbarch *gdbarch;
3616 int decr_pc;
3617
3618 regcache = get_thread_regcache (tp->ptid);
3619 gdbarch = get_regcache_arch (regcache);
3620
3621 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3622 if (decr_pc != 0)
3623 {
3624 CORE_ADDR pc;
3625
3626 pc = regcache_read_pc (regcache);
3627 regcache_write_pc (regcache, pc + decr_pc);
3628 }
3629 }
3630
3631 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3632 *status = tp->suspend.waitstatus;
3633 tp->suspend.waitstatus_pending_p = 0;
3634
3635 /* Wake up the event loop again, until all pending events are
3636 processed. */
3637 if (target_is_async_p ())
3638 mark_async_event_handler (infrun_async_inferior_event_token);
3639 return tp->ptid;
3640 }
3641
3642 /* But if we don't find one, we'll have to wait. */
3643
3644 if (deprecated_target_wait_hook)
3645 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3646 else
3647 event_ptid = target_wait (ptid, status, options);
3648
3649 return event_ptid;
3650}
3651
24291992
PA
3652/* Prepare and stabilize the inferior for detaching it. E.g.,
3653 detaching while a thread is displaced stepping is a recipe for
3654 crashing it, as nothing would readjust the PC out of the scratch
3655 pad. */
3656
3657void
3658prepare_for_detach (void)
3659{
3660 struct inferior *inf = current_inferior ();
3661 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3662 struct cleanup *old_chain_1;
3663 struct displaced_step_inferior_state *displaced;
3664
3665 displaced = get_displaced_stepping_state (inf->pid);
3666
3667 /* Is any thread of this process displaced stepping? If not,
3668 there's nothing else to do. */
3669 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3670 return;
3671
3672 if (debug_infrun)
3673 fprintf_unfiltered (gdb_stdlog,
3674 "displaced-stepping in-process while detaching");
3675
3676 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3677 inf->detaching = 1;
3678
3679 while (!ptid_equal (displaced->step_ptid, null_ptid))
3680 {
3681 struct cleanup *old_chain_2;
3682 struct execution_control_state ecss;
3683 struct execution_control_state *ecs;
3684
3685 ecs = &ecss;
3686 memset (ecs, 0, sizeof (*ecs));
3687
3688 overlay_cache_invalid = 1;
f15cb84a
YQ
3689 /* Flush target cache before starting to handle each event.
3690 Target was running and cache could be stale. This is just a
3691 heuristic. Running threads may modify target memory, but we
3692 don't get any event. */
3693 target_dcache_invalidate ();
24291992 3694
372316f1 3695 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3696
3697 if (debug_infrun)
3698 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3699
3700 /* If an error happens while handling the event, propagate GDB's
3701 knowledge of the executing state to the frontend/user running
3702 state. */
3e43a32a
MS
3703 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3704 &minus_one_ptid);
24291992
PA
3705
3706 /* Now figure out what to do with the result of the result. */
3707 handle_inferior_event (ecs);
3708
3709 /* No error, don't finish the state yet. */
3710 discard_cleanups (old_chain_2);
3711
3712 /* Breakpoints and watchpoints are not installed on the target
3713 at this point, and signals are passed directly to the
3714 inferior, so this must mean the process is gone. */
3715 if (!ecs->wait_some_more)
3716 {
3717 discard_cleanups (old_chain_1);
3718 error (_("Program exited while detaching"));
3719 }
3720 }
3721
3722 discard_cleanups (old_chain_1);
3723}
3724
cd0fc7c3 3725/* Wait for control to return from inferior to debugger.
ae123ec6 3726
cd0fc7c3
SS
3727 If inferior gets a signal, we may decide to start it up again
3728 instead of returning. That is why there is a loop in this function.
3729 When this function actually returns it means the inferior
3730 should be left stopped and GDB should read more commands. */
3731
3732void
e4c8541f 3733wait_for_inferior (void)
cd0fc7c3
SS
3734{
3735 struct cleanup *old_cleanups;
e6f5c25b 3736 struct cleanup *thread_state_chain;
c906108c 3737
527159b7 3738 if (debug_infrun)
ae123ec6 3739 fprintf_unfiltered
e4c8541f 3740 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3741
0cbcdb96
PA
3742 old_cleanups
3743 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3744 NULL);
cd0fc7c3 3745
e6f5c25b
PA
3746 /* If an error happens while handling the event, propagate GDB's
3747 knowledge of the executing state to the frontend/user running
3748 state. */
3749 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3750
c906108c
SS
3751 while (1)
3752 {
ae25568b
PA
3753 struct execution_control_state ecss;
3754 struct execution_control_state *ecs = &ecss;
963f9c80 3755 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3756
ae25568b
PA
3757 memset (ecs, 0, sizeof (*ecs));
3758
ec9499be 3759 overlay_cache_invalid = 1;
ec9499be 3760
f15cb84a
YQ
3761 /* Flush target cache before starting to handle each event.
3762 Target was running and cache could be stale. This is just a
3763 heuristic. Running threads may modify target memory, but we
3764 don't get any event. */
3765 target_dcache_invalidate ();
3766
372316f1 3767 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3768
f00150c9 3769 if (debug_infrun)
223698f8 3770 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3771
cd0fc7c3
SS
3772 /* Now figure out what to do with the result of the result. */
3773 handle_inferior_event (ecs);
c906108c 3774
cd0fc7c3
SS
3775 if (!ecs->wait_some_more)
3776 break;
3777 }
4e1c45ea 3778
e6f5c25b
PA
3779 /* No error, don't finish the state yet. */
3780 discard_cleanups (thread_state_chain);
3781
cd0fc7c3
SS
3782 do_cleanups (old_cleanups);
3783}
c906108c 3784
d3d4baed
PA
3785/* Cleanup that reinstalls the readline callback handler, if the
3786 target is running in the background. If while handling the target
3787 event something triggered a secondary prompt, like e.g., a
3788 pagination prompt, we'll have removed the callback handler (see
3789 gdb_readline_wrapper_line). Need to do this as we go back to the
3790 event loop, ready to process further input. Note this has no
3791 effect if the handler hasn't actually been removed, because calling
3792 rl_callback_handler_install resets the line buffer, thus losing
3793 input. */
3794
3795static void
3796reinstall_readline_callback_handler_cleanup (void *arg)
3797{
3b12939d
PA
3798 struct ui *ui = current_ui;
3799
3800 if (!ui->async)
6c400b59
PA
3801 {
3802 /* We're not going back to the top level event loop yet. Don't
3803 install the readline callback, as it'd prep the terminal,
3804 readline-style (raw, noecho) (e.g., --batch). We'll install
3805 it the next time the prompt is displayed, when we're ready
3806 for input. */
3807 return;
3808 }
3809
3b12939d 3810 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3811 gdb_rl_callback_handler_reinstall ();
3812}
3813
243a9253
PA
3814/* Clean up the FSMs of threads that are now stopped. In non-stop,
3815 that's just the event thread. In all-stop, that's all threads. */
3816
3817static void
3818clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3819{
3820 struct thread_info *thr = ecs->event_thread;
3821
3822 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3823 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3824
3825 if (!non_stop)
3826 {
3827 ALL_NON_EXITED_THREADS (thr)
3828 {
3829 if (thr->thread_fsm == NULL)
3830 continue;
3831 if (thr == ecs->event_thread)
3832 continue;
3833
3834 switch_to_thread (thr->ptid);
8980e177 3835 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3836 }
3837
3838 if (ecs->event_thread != NULL)
3839 switch_to_thread (ecs->event_thread->ptid);
3840 }
3841}
3842
3b12939d
PA
3843/* Helper for all_uis_check_sync_execution_done that works on the
3844 current UI. */
3845
3846static void
3847check_curr_ui_sync_execution_done (void)
3848{
3849 struct ui *ui = current_ui;
3850
3851 if (ui->prompt_state == PROMPT_NEEDED
3852 && ui->async
3853 && !gdb_in_secondary_prompt_p (ui))
3854 {
3855 target_terminal_ours ();
3856 observer_notify_sync_execution_done ();
3eb7562a 3857 ui_register_input_event_handler (ui);
3b12939d
PA
3858 }
3859}
3860
3861/* See infrun.h. */
3862
3863void
3864all_uis_check_sync_execution_done (void)
3865{
0e454242 3866 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3867 {
3868 check_curr_ui_sync_execution_done ();
3869 }
3870}
3871
a8836c93
PA
3872/* See infrun.h. */
3873
3874void
3875all_uis_on_sync_execution_starting (void)
3876{
0e454242 3877 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3878 {
3879 if (current_ui->prompt_state == PROMPT_NEEDED)
3880 async_disable_stdin ();
3881 }
3882}
3883
1777feb0 3884/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3885 event loop whenever a change of state is detected on the file
1777feb0
MS
3886 descriptor corresponding to the target. It can be called more than
3887 once to complete a single execution command. In such cases we need
3888 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3889 that this function is called for a single execution command, then
3890 report to the user that the inferior has stopped, and do the
1777feb0 3891 necessary cleanups. */
43ff13b4
JM
3892
3893void
fba45db2 3894fetch_inferior_event (void *client_data)
43ff13b4 3895{
0d1e5fa7 3896 struct execution_control_state ecss;
a474d7c2 3897 struct execution_control_state *ecs = &ecss;
4f8d22e3 3898 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3899 struct cleanup *ts_old_chain;
0f641c01 3900 int cmd_done = 0;
963f9c80 3901 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3902
0d1e5fa7
PA
3903 memset (ecs, 0, sizeof (*ecs));
3904
c61db772
PA
3905 /* Events are always processed with the main UI as current UI. This
3906 way, warnings, debug output, etc. are always consistently sent to
3907 the main console. */
4b6749b9 3908 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3909
d3d4baed
PA
3910 /* End up with readline processing input, if necessary. */
3911 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3912
c5187ac6
PA
3913 /* We're handling a live event, so make sure we're doing live
3914 debugging. If we're looking at traceframes while the target is
3915 running, we're going to need to get back to that mode after
3916 handling the event. */
3917 if (non_stop)
3918 {
3919 make_cleanup_restore_current_traceframe ();
e6e4e701 3920 set_current_traceframe (-1);
c5187ac6
PA
3921 }
3922
4f8d22e3
PA
3923 if (non_stop)
3924 /* In non-stop mode, the user/frontend should not notice a thread
3925 switch due to internal events. Make sure we reverse to the
3926 user selected thread and frame after handling the event and
3927 running any breakpoint commands. */
3928 make_cleanup_restore_current_thread ();
3929
ec9499be 3930 overlay_cache_invalid = 1;
f15cb84a
YQ
3931 /* Flush target cache before starting to handle each event. Target
3932 was running and cache could be stale. This is just a heuristic.
3933 Running threads may modify target memory, but we don't get any
3934 event. */
3935 target_dcache_invalidate ();
3dd5b83d 3936
b7b633e9
TT
3937 scoped_restore save_exec_dir
3938 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3939
0b333c5e
PA
3940 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3941 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3942
f00150c9 3943 if (debug_infrun)
223698f8 3944 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3945
29f49a6a
PA
3946 /* If an error happens while handling the event, propagate GDB's
3947 knowledge of the executing state to the frontend/user running
3948 state. */
fbea99ea 3949 if (!target_is_non_stop_p ())
29f49a6a
PA
3950 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3951 else
3952 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3953
353d1d73
JK
3954 /* Get executed before make_cleanup_restore_current_thread above to apply
3955 still for the thread which has thrown the exception. */
3956 make_bpstat_clear_actions_cleanup ();
3957
7c16b83e
PA
3958 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3959
43ff13b4 3960 /* Now figure out what to do with the result of the result. */
a474d7c2 3961 handle_inferior_event (ecs);
43ff13b4 3962
a474d7c2 3963 if (!ecs->wait_some_more)
43ff13b4 3964 {
c9657e70 3965 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3966 int should_stop = 1;
3967 struct thread_info *thr = ecs->event_thread;
388a7084 3968 int should_notify_stop = 1;
d6b48e9c 3969
0cbcdb96 3970 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3971
243a9253
PA
3972 if (thr != NULL)
3973 {
3974 struct thread_fsm *thread_fsm = thr->thread_fsm;
3975
3976 if (thread_fsm != NULL)
8980e177 3977 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3978 }
3979
3980 if (!should_stop)
3981 {
3982 keep_going (ecs);
3983 }
c2d11a7d 3984 else
0f641c01 3985 {
243a9253
PA
3986 clean_up_just_stopped_threads_fsms (ecs);
3987
388a7084
PA
3988 if (thr != NULL && thr->thread_fsm != NULL)
3989 {
3990 should_notify_stop
3991 = thread_fsm_should_notify_stop (thr->thread_fsm);
3992 }
3993
3994 if (should_notify_stop)
3995 {
4c2f2a79
PA
3996 int proceeded = 0;
3997
388a7084
PA
3998 /* We may not find an inferior if this was a process exit. */
3999 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 4000 proceeded = normal_stop ();
243a9253 4001
4c2f2a79
PA
4002 if (!proceeded)
4003 {
4004 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4005 cmd_done = 1;
4006 }
388a7084 4007 }
0f641c01 4008 }
43ff13b4 4009 }
4f8d22e3 4010
29f49a6a
PA
4011 /* No error, don't finish the thread states yet. */
4012 discard_cleanups (ts_old_chain);
4013
4f8d22e3
PA
4014 /* Revert thread and frame. */
4015 do_cleanups (old_chain);
4016
3b12939d
PA
4017 /* If a UI was in sync execution mode, and now isn't, restore its
4018 prompt (a synchronous execution command has finished, and we're
4019 ready for input). */
4020 all_uis_check_sync_execution_done ();
0f641c01
PA
4021
4022 if (cmd_done
0f641c01
PA
4023 && exec_done_display_p
4024 && (ptid_equal (inferior_ptid, null_ptid)
4025 || !is_running (inferior_ptid)))
4026 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4027}
4028
edb3359d
DJ
4029/* Record the frame and location we're currently stepping through. */
4030void
4031set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4032{
4033 struct thread_info *tp = inferior_thread ();
4034
16c381f0
JK
4035 tp->control.step_frame_id = get_frame_id (frame);
4036 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4037
4038 tp->current_symtab = sal.symtab;
4039 tp->current_line = sal.line;
4040}
4041
0d1e5fa7
PA
4042/* Clear context switchable stepping state. */
4043
4044void
4e1c45ea 4045init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4046{
7f5ef605 4047 tss->stepped_breakpoint = 0;
0d1e5fa7 4048 tss->stepping_over_breakpoint = 0;
963f9c80 4049 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4050 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4051}
4052
c32c64b7
DE
4053/* Set the cached copy of the last ptid/waitstatus. */
4054
6efcd9a8 4055void
c32c64b7
DE
4056set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4057{
4058 target_last_wait_ptid = ptid;
4059 target_last_waitstatus = status;
4060}
4061
e02bc4cc 4062/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4063 target_wait()/deprecated_target_wait_hook(). The data is actually
4064 cached by handle_inferior_event(), which gets called immediately
4065 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4066
4067void
488f131b 4068get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4069{
39f77062 4070 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4071 *status = target_last_waitstatus;
4072}
4073
ac264b3b
MS
4074void
4075nullify_last_target_wait_ptid (void)
4076{
4077 target_last_wait_ptid = minus_one_ptid;
4078}
4079
dcf4fbde 4080/* Switch thread contexts. */
dd80620e
MS
4081
4082static void
0d1e5fa7 4083context_switch (ptid_t ptid)
dd80620e 4084{
4b51d87b 4085 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4086 {
4087 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4088 target_pid_to_str (inferior_ptid));
4089 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4090 target_pid_to_str (ptid));
fd48f117
DJ
4091 }
4092
0d1e5fa7 4093 switch_to_thread (ptid);
dd80620e
MS
4094}
4095
d8dd4d5f
PA
4096/* If the target can't tell whether we've hit breakpoints
4097 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4098 check whether that could have been caused by a breakpoint. If so,
4099 adjust the PC, per gdbarch_decr_pc_after_break. */
4100
4fa8626c 4101static void
d8dd4d5f
PA
4102adjust_pc_after_break (struct thread_info *thread,
4103 struct target_waitstatus *ws)
4fa8626c 4104{
24a73cce
UW
4105 struct regcache *regcache;
4106 struct gdbarch *gdbarch;
6c95b8df 4107 struct address_space *aspace;
118e6252 4108 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4109
4fa8626c
DJ
4110 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4111 we aren't, just return.
9709f61c
DJ
4112
4113 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4114 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4115 implemented by software breakpoints should be handled through the normal
4116 breakpoint layer.
8fb3e588 4117
4fa8626c
DJ
4118 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4119 different signals (SIGILL or SIGEMT for instance), but it is less
4120 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4121 gdbarch_decr_pc_after_break. I don't know any specific target that
4122 generates these signals at breakpoints (the code has been in GDB since at
4123 least 1992) so I can not guess how to handle them here.
8fb3e588 4124
e6cf7916
UW
4125 In earlier versions of GDB, a target with
4126 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4127 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4128 target with both of these set in GDB history, and it seems unlikely to be
4129 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4130
d8dd4d5f 4131 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4132 return;
4133
d8dd4d5f 4134 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4135 return;
4136
4058b839
PA
4137 /* In reverse execution, when a breakpoint is hit, the instruction
4138 under it has already been de-executed. The reported PC always
4139 points at the breakpoint address, so adjusting it further would
4140 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4141 architecture:
4142
4143 B1 0x08000000 : INSN1
4144 B2 0x08000001 : INSN2
4145 0x08000002 : INSN3
4146 PC -> 0x08000003 : INSN4
4147
4148 Say you're stopped at 0x08000003 as above. Reverse continuing
4149 from that point should hit B2 as below. Reading the PC when the
4150 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4151 been de-executed already.
4152
4153 B1 0x08000000 : INSN1
4154 B2 PC -> 0x08000001 : INSN2
4155 0x08000002 : INSN3
4156 0x08000003 : INSN4
4157
4158 We can't apply the same logic as for forward execution, because
4159 we would wrongly adjust the PC to 0x08000000, since there's a
4160 breakpoint at PC - 1. We'd then report a hit on B1, although
4161 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4162 behaviour. */
4163 if (execution_direction == EXEC_REVERSE)
4164 return;
4165
1cf4d951
PA
4166 /* If the target can tell whether the thread hit a SW breakpoint,
4167 trust it. Targets that can tell also adjust the PC
4168 themselves. */
4169 if (target_supports_stopped_by_sw_breakpoint ())
4170 return;
4171
4172 /* Note that relying on whether a breakpoint is planted in memory to
4173 determine this can fail. E.g,. the breakpoint could have been
4174 removed since. Or the thread could have been told to step an
4175 instruction the size of a breakpoint instruction, and only
4176 _after_ was a breakpoint inserted at its address. */
4177
24a73cce
UW
4178 /* If this target does not decrement the PC after breakpoints, then
4179 we have nothing to do. */
d8dd4d5f 4180 regcache = get_thread_regcache (thread->ptid);
24a73cce 4181 gdbarch = get_regcache_arch (regcache);
118e6252 4182
527a273a 4183 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4184 if (decr_pc == 0)
24a73cce
UW
4185 return;
4186
6c95b8df
PA
4187 aspace = get_regcache_aspace (regcache);
4188
8aad930b
AC
4189 /* Find the location where (if we've hit a breakpoint) the
4190 breakpoint would be. */
118e6252 4191 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4192
1cf4d951
PA
4193 /* If the target can't tell whether a software breakpoint triggered,
4194 fallback to figuring it out based on breakpoints we think were
4195 inserted in the target, and on whether the thread was stepped or
4196 continued. */
4197
1c5cfe86
PA
4198 /* Check whether there actually is a software breakpoint inserted at
4199 that location.
4200
4201 If in non-stop mode, a race condition is possible where we've
4202 removed a breakpoint, but stop events for that breakpoint were
4203 already queued and arrive later. To suppress those spurious
4204 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4205 and retire them after a number of stop events are reported. Note
4206 this is an heuristic and can thus get confused. The real fix is
4207 to get the "stopped by SW BP and needs adjustment" info out of
4208 the target/kernel (and thus never reach here; see above). */
6c95b8df 4209 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4210 || (target_is_non_stop_p ()
4211 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4212 {
77f9e713 4213 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4214
8213266a 4215 if (record_full_is_used ())
77f9e713 4216 record_full_gdb_operation_disable_set ();
96429cc8 4217
1c0fdd0e
UW
4218 /* When using hardware single-step, a SIGTRAP is reported for both
4219 a completed single-step and a software breakpoint. Need to
4220 differentiate between the two, as the latter needs adjusting
4221 but the former does not.
4222
4223 The SIGTRAP can be due to a completed hardware single-step only if
4224 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4225 - this thread is currently being stepped
4226
4227 If any of these events did not occur, we must have stopped due
4228 to hitting a software breakpoint, and have to back up to the
4229 breakpoint address.
4230
4231 As a special case, we could have hardware single-stepped a
4232 software breakpoint. In this case (prev_pc == breakpoint_pc),
4233 we also need to back up to the breakpoint address. */
4234
d8dd4d5f
PA
4235 if (thread_has_single_step_breakpoints_set (thread)
4236 || !currently_stepping (thread)
4237 || (thread->stepped_breakpoint
4238 && thread->prev_pc == breakpoint_pc))
515630c5 4239 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4240
77f9e713 4241 do_cleanups (old_cleanups);
8aad930b 4242 }
4fa8626c
DJ
4243}
4244
edb3359d
DJ
4245static int
4246stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4247{
4248 for (frame = get_prev_frame (frame);
4249 frame != NULL;
4250 frame = get_prev_frame (frame))
4251 {
4252 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4253 return 1;
4254 if (get_frame_type (frame) != INLINE_FRAME)
4255 break;
4256 }
4257
4258 return 0;
4259}
4260
a96d9b2e
SDJ
4261/* Auxiliary function that handles syscall entry/return events.
4262 It returns 1 if the inferior should keep going (and GDB
4263 should ignore the event), or 0 if the event deserves to be
4264 processed. */
ca2163eb 4265
a96d9b2e 4266static int
ca2163eb 4267handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4268{
ca2163eb 4269 struct regcache *regcache;
ca2163eb
PA
4270 int syscall_number;
4271
4272 if (!ptid_equal (ecs->ptid, inferior_ptid))
4273 context_switch (ecs->ptid);
4274
4275 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4276 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4277 stop_pc = regcache_read_pc (regcache);
4278
a96d9b2e
SDJ
4279 if (catch_syscall_enabled () > 0
4280 && catching_syscall_number (syscall_number) > 0)
4281 {
4282 if (debug_infrun)
4283 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4284 syscall_number);
a96d9b2e 4285
16c381f0 4286 ecs->event_thread->control.stop_bpstat
6c95b8df 4287 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4288 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4289
ce12b012 4290 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4291 {
4292 /* Catchpoint hit. */
ca2163eb
PA
4293 return 0;
4294 }
a96d9b2e 4295 }
ca2163eb
PA
4296
4297 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4298 keep_going (ecs);
4299 return 1;
a96d9b2e
SDJ
4300}
4301
7e324e48
GB
4302/* Lazily fill in the execution_control_state's stop_func_* fields. */
4303
4304static void
4305fill_in_stop_func (struct gdbarch *gdbarch,
4306 struct execution_control_state *ecs)
4307{
4308 if (!ecs->stop_func_filled_in)
4309 {
4310 /* Don't care about return value; stop_func_start and stop_func_name
4311 will both be 0 if it doesn't work. */
4312 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4313 &ecs->stop_func_start, &ecs->stop_func_end);
4314 ecs->stop_func_start
4315 += gdbarch_deprecated_function_start_offset (gdbarch);
4316
591a12a1
UW
4317 if (gdbarch_skip_entrypoint_p (gdbarch))
4318 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4319 ecs->stop_func_start);
4320
7e324e48
GB
4321 ecs->stop_func_filled_in = 1;
4322 }
4323}
4324
4f5d7f63
PA
4325
4326/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4327
4328static enum stop_kind
4329get_inferior_stop_soon (ptid_t ptid)
4330{
c9657e70 4331 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4332
4333 gdb_assert (inf != NULL);
4334 return inf->control.stop_soon;
4335}
4336
372316f1
PA
4337/* Wait for one event. Store the resulting waitstatus in WS, and
4338 return the event ptid. */
4339
4340static ptid_t
4341wait_one (struct target_waitstatus *ws)
4342{
4343 ptid_t event_ptid;
4344 ptid_t wait_ptid = minus_one_ptid;
4345
4346 overlay_cache_invalid = 1;
4347
4348 /* Flush target cache before starting to handle each event.
4349 Target was running and cache could be stale. This is just a
4350 heuristic. Running threads may modify target memory, but we
4351 don't get any event. */
4352 target_dcache_invalidate ();
4353
4354 if (deprecated_target_wait_hook)
4355 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4356 else
4357 event_ptid = target_wait (wait_ptid, ws, 0);
4358
4359 if (debug_infrun)
4360 print_target_wait_results (wait_ptid, event_ptid, ws);
4361
4362 return event_ptid;
4363}
4364
4365/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4366 instead of the current thread. */
4367#define THREAD_STOPPED_BY(REASON) \
4368static int \
4369thread_stopped_by_ ## REASON (ptid_t ptid) \
4370{ \
4371 struct cleanup *old_chain; \
4372 int res; \
4373 \
4374 old_chain = save_inferior_ptid (); \
4375 inferior_ptid = ptid; \
4376 \
4377 res = target_stopped_by_ ## REASON (); \
4378 \
4379 do_cleanups (old_chain); \
4380 \
4381 return res; \
4382}
4383
4384/* Generate thread_stopped_by_watchpoint. */
4385THREAD_STOPPED_BY (watchpoint)
4386/* Generate thread_stopped_by_sw_breakpoint. */
4387THREAD_STOPPED_BY (sw_breakpoint)
4388/* Generate thread_stopped_by_hw_breakpoint. */
4389THREAD_STOPPED_BY (hw_breakpoint)
4390
4391/* Cleanups that switches to the PTID pointed at by PTID_P. */
4392
4393static void
4394switch_to_thread_cleanup (void *ptid_p)
4395{
4396 ptid_t ptid = *(ptid_t *) ptid_p;
4397
4398 switch_to_thread (ptid);
4399}
4400
4401/* Save the thread's event and stop reason to process it later. */
4402
4403static void
4404save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4405{
4406 struct regcache *regcache;
4407 struct address_space *aspace;
4408
4409 if (debug_infrun)
4410 {
4411 char *statstr;
4412
4413 statstr = target_waitstatus_to_string (ws);
4414 fprintf_unfiltered (gdb_stdlog,
4415 "infrun: saving status %s for %d.%ld.%ld\n",
4416 statstr,
4417 ptid_get_pid (tp->ptid),
4418 ptid_get_lwp (tp->ptid),
4419 ptid_get_tid (tp->ptid));
4420 xfree (statstr);
4421 }
4422
4423 /* Record for later. */
4424 tp->suspend.waitstatus = *ws;
4425 tp->suspend.waitstatus_pending_p = 1;
4426
4427 regcache = get_thread_regcache (tp->ptid);
4428 aspace = get_regcache_aspace (regcache);
4429
4430 if (ws->kind == TARGET_WAITKIND_STOPPED
4431 && ws->value.sig == GDB_SIGNAL_TRAP)
4432 {
4433 CORE_ADDR pc = regcache_read_pc (regcache);
4434
4435 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4436
4437 if (thread_stopped_by_watchpoint (tp->ptid))
4438 {
4439 tp->suspend.stop_reason
4440 = TARGET_STOPPED_BY_WATCHPOINT;
4441 }
4442 else if (target_supports_stopped_by_sw_breakpoint ()
4443 && thread_stopped_by_sw_breakpoint (tp->ptid))
4444 {
4445 tp->suspend.stop_reason
4446 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4447 }
4448 else if (target_supports_stopped_by_hw_breakpoint ()
4449 && thread_stopped_by_hw_breakpoint (tp->ptid))
4450 {
4451 tp->suspend.stop_reason
4452 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4453 }
4454 else if (!target_supports_stopped_by_hw_breakpoint ()
4455 && hardware_breakpoint_inserted_here_p (aspace,
4456 pc))
4457 {
4458 tp->suspend.stop_reason
4459 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4460 }
4461 else if (!target_supports_stopped_by_sw_breakpoint ()
4462 && software_breakpoint_inserted_here_p (aspace,
4463 pc))
4464 {
4465 tp->suspend.stop_reason
4466 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4467 }
4468 else if (!thread_has_single_step_breakpoints_set (tp)
4469 && currently_stepping (tp))
4470 {
4471 tp->suspend.stop_reason
4472 = TARGET_STOPPED_BY_SINGLE_STEP;
4473 }
4474 }
4475}
4476
65706a29
PA
4477/* A cleanup that disables thread create/exit events. */
4478
4479static void
4480disable_thread_events (void *arg)
4481{
4482 target_thread_events (0);
4483}
4484
6efcd9a8 4485/* See infrun.h. */
372316f1 4486
6efcd9a8 4487void
372316f1
PA
4488stop_all_threads (void)
4489{
4490 /* We may need multiple passes to discover all threads. */
4491 int pass;
4492 int iterations = 0;
4493 ptid_t entry_ptid;
4494 struct cleanup *old_chain;
4495
fbea99ea 4496 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4497
4498 if (debug_infrun)
4499 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4500
4501 entry_ptid = inferior_ptid;
4502 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4503
65706a29
PA
4504 target_thread_events (1);
4505 make_cleanup (disable_thread_events, NULL);
4506
372316f1
PA
4507 /* Request threads to stop, and then wait for the stops. Because
4508 threads we already know about can spawn more threads while we're
4509 trying to stop them, and we only learn about new threads when we
4510 update the thread list, do this in a loop, and keep iterating
4511 until two passes find no threads that need to be stopped. */
4512 for (pass = 0; pass < 2; pass++, iterations++)
4513 {
4514 if (debug_infrun)
4515 fprintf_unfiltered (gdb_stdlog,
4516 "infrun: stop_all_threads, pass=%d, "
4517 "iterations=%d\n", pass, iterations);
4518 while (1)
4519 {
4520 ptid_t event_ptid;
4521 struct target_waitstatus ws;
4522 int need_wait = 0;
4523 struct thread_info *t;
4524
4525 update_thread_list ();
4526
4527 /* Go through all threads looking for threads that we need
4528 to tell the target to stop. */
4529 ALL_NON_EXITED_THREADS (t)
4530 {
4531 if (t->executing)
4532 {
4533 /* If already stopping, don't request a stop again.
4534 We just haven't seen the notification yet. */
4535 if (!t->stop_requested)
4536 {
4537 if (debug_infrun)
4538 fprintf_unfiltered (gdb_stdlog,
4539 "infrun: %s executing, "
4540 "need stop\n",
4541 target_pid_to_str (t->ptid));
4542 target_stop (t->ptid);
4543 t->stop_requested = 1;
4544 }
4545 else
4546 {
4547 if (debug_infrun)
4548 fprintf_unfiltered (gdb_stdlog,
4549 "infrun: %s executing, "
4550 "already stopping\n",
4551 target_pid_to_str (t->ptid));
4552 }
4553
4554 if (t->stop_requested)
4555 need_wait = 1;
4556 }
4557 else
4558 {
4559 if (debug_infrun)
4560 fprintf_unfiltered (gdb_stdlog,
4561 "infrun: %s not executing\n",
4562 target_pid_to_str (t->ptid));
4563
4564 /* The thread may be not executing, but still be
4565 resumed with a pending status to process. */
4566 t->resumed = 0;
4567 }
4568 }
4569
4570 if (!need_wait)
4571 break;
4572
4573 /* If we find new threads on the second iteration, restart
4574 over. We want to see two iterations in a row with all
4575 threads stopped. */
4576 if (pass > 0)
4577 pass = -1;
4578
4579 event_ptid = wait_one (&ws);
4580 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4581 {
4582 /* All resumed threads exited. */
4583 }
65706a29
PA
4584 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4585 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4586 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4587 {
4588 if (debug_infrun)
4589 {
4590 ptid_t ptid = pid_to_ptid (ws.value.integer);
4591
4592 fprintf_unfiltered (gdb_stdlog,
4593 "infrun: %s exited while "
4594 "stopping threads\n",
4595 target_pid_to_str (ptid));
4596 }
4597 }
4598 else
4599 {
6efcd9a8
PA
4600 struct inferior *inf;
4601
372316f1
PA
4602 t = find_thread_ptid (event_ptid);
4603 if (t == NULL)
4604 t = add_thread (event_ptid);
4605
4606 t->stop_requested = 0;
4607 t->executing = 0;
4608 t->resumed = 0;
4609 t->control.may_range_step = 0;
4610
6efcd9a8
PA
4611 /* This may be the first time we see the inferior report
4612 a stop. */
4613 inf = find_inferior_ptid (event_ptid);
4614 if (inf->needs_setup)
4615 {
4616 switch_to_thread_no_regs (t);
4617 setup_inferior (0);
4618 }
4619
372316f1
PA
4620 if (ws.kind == TARGET_WAITKIND_STOPPED
4621 && ws.value.sig == GDB_SIGNAL_0)
4622 {
4623 /* We caught the event that we intended to catch, so
4624 there's no event pending. */
4625 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4626 t->suspend.waitstatus_pending_p = 0;
4627
4628 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4629 {
4630 /* Add it back to the step-over queue. */
4631 if (debug_infrun)
4632 {
4633 fprintf_unfiltered (gdb_stdlog,
4634 "infrun: displaced-step of %s "
4635 "canceled: adding back to the "
4636 "step-over queue\n",
4637 target_pid_to_str (t->ptid));
4638 }
4639 t->control.trap_expected = 0;
4640 thread_step_over_chain_enqueue (t);
4641 }
4642 }
4643 else
4644 {
4645 enum gdb_signal sig;
4646 struct regcache *regcache;
372316f1
PA
4647
4648 if (debug_infrun)
4649 {
4650 char *statstr;
4651
4652 statstr = target_waitstatus_to_string (&ws);
4653 fprintf_unfiltered (gdb_stdlog,
4654 "infrun: target_wait %s, saving "
4655 "status for %d.%ld.%ld\n",
4656 statstr,
4657 ptid_get_pid (t->ptid),
4658 ptid_get_lwp (t->ptid),
4659 ptid_get_tid (t->ptid));
4660 xfree (statstr);
4661 }
4662
4663 /* Record for later. */
4664 save_waitstatus (t, &ws);
4665
4666 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4667 ? ws.value.sig : GDB_SIGNAL_0);
4668
4669 if (displaced_step_fixup (t->ptid, sig) < 0)
4670 {
4671 /* Add it back to the step-over queue. */
4672 t->control.trap_expected = 0;
4673 thread_step_over_chain_enqueue (t);
4674 }
4675
4676 regcache = get_thread_regcache (t->ptid);
4677 t->suspend.stop_pc = regcache_read_pc (regcache);
4678
4679 if (debug_infrun)
4680 {
4681 fprintf_unfiltered (gdb_stdlog,
4682 "infrun: saved stop_pc=%s for %s "
4683 "(currently_stepping=%d)\n",
4684 paddress (target_gdbarch (),
4685 t->suspend.stop_pc),
4686 target_pid_to_str (t->ptid),
4687 currently_stepping (t));
4688 }
4689 }
4690 }
4691 }
4692 }
4693
4694 do_cleanups (old_chain);
4695
4696 if (debug_infrun)
4697 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4698}
4699
f4836ba9
PA
4700/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4701
4702static int
4703handle_no_resumed (struct execution_control_state *ecs)
4704{
4705 struct inferior *inf;
4706 struct thread_info *thread;
4707
3b12939d 4708 if (target_can_async_p ())
f4836ba9 4709 {
3b12939d
PA
4710 struct ui *ui;
4711 int any_sync = 0;
f4836ba9 4712
3b12939d
PA
4713 ALL_UIS (ui)
4714 {
4715 if (ui->prompt_state == PROMPT_BLOCKED)
4716 {
4717 any_sync = 1;
4718 break;
4719 }
4720 }
4721 if (!any_sync)
4722 {
4723 /* There were no unwaited-for children left in the target, but,
4724 we're not synchronously waiting for events either. Just
4725 ignore. */
4726
4727 if (debug_infrun)
4728 fprintf_unfiltered (gdb_stdlog,
4729 "infrun: TARGET_WAITKIND_NO_RESUMED "
4730 "(ignoring: bg)\n");
4731 prepare_to_wait (ecs);
4732 return 1;
4733 }
f4836ba9
PA
4734 }
4735
4736 /* Otherwise, if we were running a synchronous execution command, we
4737 may need to cancel it and give the user back the terminal.
4738
4739 In non-stop mode, the target can't tell whether we've already
4740 consumed previous stop events, so it can end up sending us a
4741 no-resumed event like so:
4742
4743 #0 - thread 1 is left stopped
4744
4745 #1 - thread 2 is resumed and hits breakpoint
4746 -> TARGET_WAITKIND_STOPPED
4747
4748 #2 - thread 3 is resumed and exits
4749 this is the last resumed thread, so
4750 -> TARGET_WAITKIND_NO_RESUMED
4751
4752 #3 - gdb processes stop for thread 2 and decides to re-resume
4753 it.
4754
4755 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4756 thread 2 is now resumed, so the event should be ignored.
4757
4758 IOW, if the stop for thread 2 doesn't end a foreground command,
4759 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4760 event. But it could be that the event meant that thread 2 itself
4761 (or whatever other thread was the last resumed thread) exited.
4762
4763 To address this we refresh the thread list and check whether we
4764 have resumed threads _now_. In the example above, this removes
4765 thread 3 from the thread list. If thread 2 was re-resumed, we
4766 ignore this event. If we find no thread resumed, then we cancel
4767 the synchronous command show "no unwaited-for " to the user. */
4768 update_thread_list ();
4769
4770 ALL_NON_EXITED_THREADS (thread)
4771 {
4772 if (thread->executing
4773 || thread->suspend.waitstatus_pending_p)
4774 {
4775 /* There were no unwaited-for children left in the target at
4776 some point, but there are now. Just ignore. */
4777 if (debug_infrun)
4778 fprintf_unfiltered (gdb_stdlog,
4779 "infrun: TARGET_WAITKIND_NO_RESUMED "
4780 "(ignoring: found resumed)\n");
4781 prepare_to_wait (ecs);
4782 return 1;
4783 }
4784 }
4785
4786 /* Note however that we may find no resumed thread because the whole
4787 process exited meanwhile (thus updating the thread list results
4788 in an empty thread list). In this case we know we'll be getting
4789 a process exit event shortly. */
4790 ALL_INFERIORS (inf)
4791 {
4792 if (inf->pid == 0)
4793 continue;
4794
4795 thread = any_live_thread_of_process (inf->pid);
4796 if (thread == NULL)
4797 {
4798 if (debug_infrun)
4799 fprintf_unfiltered (gdb_stdlog,
4800 "infrun: TARGET_WAITKIND_NO_RESUMED "
4801 "(expect process exit)\n");
4802 prepare_to_wait (ecs);
4803 return 1;
4804 }
4805 }
4806
4807 /* Go ahead and report the event. */
4808 return 0;
4809}
4810
05ba8510
PA
4811/* Given an execution control state that has been freshly filled in by
4812 an event from the inferior, figure out what it means and take
4813 appropriate action.
4814
4815 The alternatives are:
4816
22bcd14b 4817 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4818 debugger.
4819
4820 2) keep_going and return; to wait for the next event (set
4821 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4822 once). */
c906108c 4823
ec9499be 4824static void
0b6e5e10 4825handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4826{
d6b48e9c
PA
4827 enum stop_kind stop_soon;
4828
28736962
PA
4829 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4830 {
4831 /* We had an event in the inferior, but we are not interested in
4832 handling it at this level. The lower layers have already
4833 done what needs to be done, if anything.
4834
4835 One of the possible circumstances for this is when the
4836 inferior produces output for the console. The inferior has
4837 not stopped, and we are ignoring the event. Another possible
4838 circumstance is any event which the lower level knows will be
4839 reported multiple times without an intervening resume. */
4840 if (debug_infrun)
4841 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4842 prepare_to_wait (ecs);
4843 return;
4844 }
4845
65706a29
PA
4846 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4847 {
4848 if (debug_infrun)
4849 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4850 prepare_to_wait (ecs);
4851 return;
4852 }
4853
0e5bf2a8 4854 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4855 && handle_no_resumed (ecs))
4856 return;
0e5bf2a8 4857
1777feb0 4858 /* Cache the last pid/waitstatus. */
c32c64b7 4859 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4860
ca005067 4861 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4862 stop_stack_dummy = STOP_NONE;
ca005067 4863
0e5bf2a8
PA
4864 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4865 {
4866 /* No unwaited-for children left. IOW, all resumed children
4867 have exited. */
4868 if (debug_infrun)
4869 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4870
4871 stop_print_frame = 0;
22bcd14b 4872 stop_waiting (ecs);
0e5bf2a8
PA
4873 return;
4874 }
4875
8c90c137 4876 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4877 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4878 {
4879 ecs->event_thread = find_thread_ptid (ecs->ptid);
4880 /* If it's a new thread, add it to the thread database. */
4881 if (ecs->event_thread == NULL)
4882 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4883
4884 /* Disable range stepping. If the next step request could use a
4885 range, this will be end up re-enabled then. */
4886 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4887 }
88ed393a
JK
4888
4889 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4890 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4891
4892 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4893 reinit_frame_cache ();
4894
28736962
PA
4895 breakpoint_retire_moribund ();
4896
2b009048
DJ
4897 /* First, distinguish signals caused by the debugger from signals
4898 that have to do with the program's own actions. Note that
4899 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4900 on the operating system version. Here we detect when a SIGILL or
4901 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4902 something similar for SIGSEGV, since a SIGSEGV will be generated
4903 when we're trying to execute a breakpoint instruction on a
4904 non-executable stack. This happens for call dummy breakpoints
4905 for architectures like SPARC that place call dummies on the
4906 stack. */
2b009048 4907 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4908 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4909 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4910 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4911 {
de0a0249
UW
4912 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4913
4914 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4915 regcache_read_pc (regcache)))
4916 {
4917 if (debug_infrun)
4918 fprintf_unfiltered (gdb_stdlog,
4919 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4920 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4921 }
2b009048
DJ
4922 }
4923
28736962
PA
4924 /* Mark the non-executing threads accordingly. In all-stop, all
4925 threads of all processes are stopped when we get any event
e1316e60 4926 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4927 {
4928 ptid_t mark_ptid;
4929
fbea99ea 4930 if (!target_is_non_stop_p ())
372316f1
PA
4931 mark_ptid = minus_one_ptid;
4932 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4933 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4934 {
4935 /* If we're handling a process exit in non-stop mode, even
4936 though threads haven't been deleted yet, one would think
4937 that there is nothing to do, as threads of the dead process
4938 will be soon deleted, and threads of any other process were
4939 left running. However, on some targets, threads survive a
4940 process exit event. E.g., for the "checkpoint" command,
4941 when the current checkpoint/fork exits, linux-fork.c
4942 automatically switches to another fork from within
4943 target_mourn_inferior, by associating the same
4944 inferior/thread to another fork. We haven't mourned yet at
4945 this point, but we must mark any threads left in the
4946 process as not-executing so that finish_thread_state marks
4947 them stopped (in the user's perspective) if/when we present
4948 the stop to the user. */
4949 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4950 }
4951 else
4952 mark_ptid = ecs->ptid;
4953
4954 set_executing (mark_ptid, 0);
4955
4956 /* Likewise the resumed flag. */
4957 set_resumed (mark_ptid, 0);
4958 }
8c90c137 4959
488f131b
JB
4960 switch (ecs->ws.kind)
4961 {
4962 case TARGET_WAITKIND_LOADED:
527159b7 4963 if (debug_infrun)
8a9de0e4 4964 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4965 if (!ptid_equal (ecs->ptid, inferior_ptid))
4966 context_switch (ecs->ptid);
b0f4b84b
DJ
4967 /* Ignore gracefully during startup of the inferior, as it might
4968 be the shell which has just loaded some objects, otherwise
4969 add the symbols for the newly loaded objects. Also ignore at
4970 the beginning of an attach or remote session; we will query
4971 the full list of libraries once the connection is
4972 established. */
4f5d7f63
PA
4973
4974 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4975 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4976 {
edcc5120
TT
4977 struct regcache *regcache;
4978
edcc5120
TT
4979 regcache = get_thread_regcache (ecs->ptid);
4980
4981 handle_solib_event ();
4982
4983 ecs->event_thread->control.stop_bpstat
4984 = bpstat_stop_status (get_regcache_aspace (regcache),
4985 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4986
ce12b012 4987 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4988 {
4989 /* A catchpoint triggered. */
94c57d6a
PA
4990 process_event_stop_test (ecs);
4991 return;
edcc5120 4992 }
488f131b 4993
b0f4b84b
DJ
4994 /* If requested, stop when the dynamic linker notifies
4995 gdb of events. This allows the user to get control
4996 and place breakpoints in initializer routines for
4997 dynamically loaded objects (among other things). */
a493e3e2 4998 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4999 if (stop_on_solib_events)
5000 {
55409f9d
DJ
5001 /* Make sure we print "Stopped due to solib-event" in
5002 normal_stop. */
5003 stop_print_frame = 1;
5004
22bcd14b 5005 stop_waiting (ecs);
b0f4b84b
DJ
5006 return;
5007 }
488f131b 5008 }
b0f4b84b
DJ
5009
5010 /* If we are skipping through a shell, or through shared library
5011 loading that we aren't interested in, resume the program. If
5c09a2c5 5012 we're running the program normally, also resume. */
b0f4b84b
DJ
5013 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5014 {
74960c60
VP
5015 /* Loading of shared libraries might have changed breakpoint
5016 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5017 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5018 insert_breakpoints ();
64ce06e4 5019 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5020 prepare_to_wait (ecs);
5021 return;
5022 }
5023
5c09a2c5
PA
5024 /* But stop if we're attaching or setting up a remote
5025 connection. */
5026 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5027 || stop_soon == STOP_QUIETLY_REMOTE)
5028 {
5029 if (debug_infrun)
5030 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5031 stop_waiting (ecs);
5c09a2c5
PA
5032 return;
5033 }
5034
5035 internal_error (__FILE__, __LINE__,
5036 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5037
488f131b 5038 case TARGET_WAITKIND_SPURIOUS:
527159b7 5039 if (debug_infrun)
8a9de0e4 5040 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 5041 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 5042 context_switch (ecs->ptid);
64ce06e4 5043 resume (GDB_SIGNAL_0);
488f131b
JB
5044 prepare_to_wait (ecs);
5045 return;
c5aa993b 5046
65706a29
PA
5047 case TARGET_WAITKIND_THREAD_CREATED:
5048 if (debug_infrun)
5049 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5050 if (!ptid_equal (ecs->ptid, inferior_ptid))
5051 context_switch (ecs->ptid);
5052 if (!switch_back_to_stepped_thread (ecs))
5053 keep_going (ecs);
5054 return;
5055
488f131b 5056 case TARGET_WAITKIND_EXITED:
940c3c06 5057 case TARGET_WAITKIND_SIGNALLED:
527159b7 5058 if (debug_infrun)
940c3c06
PA
5059 {
5060 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5061 fprintf_unfiltered (gdb_stdlog,
5062 "infrun: TARGET_WAITKIND_EXITED\n");
5063 else
5064 fprintf_unfiltered (gdb_stdlog,
5065 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5066 }
5067
fb66883a 5068 inferior_ptid = ecs->ptid;
c9657e70 5069 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5070 set_current_program_space (current_inferior ()->pspace);
5071 handle_vfork_child_exec_or_exit (0);
1777feb0 5072 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 5073
0c557179
SDJ
5074 /* Clearing any previous state of convenience variables. */
5075 clear_exit_convenience_vars ();
5076
940c3c06
PA
5077 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5078 {
5079 /* Record the exit code in the convenience variable $_exitcode, so
5080 that the user can inspect this again later. */
5081 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5082 (LONGEST) ecs->ws.value.integer);
5083
5084 /* Also record this in the inferior itself. */
5085 current_inferior ()->has_exit_code = 1;
5086 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5087
98eb56a4
PA
5088 /* Support the --return-child-result option. */
5089 return_child_result_value = ecs->ws.value.integer;
5090
fd664c91 5091 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
5092 }
5093 else
0c557179
SDJ
5094 {
5095 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5096 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5097
5098 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5099 {
5100 /* Set the value of the internal variable $_exitsignal,
5101 which holds the signal uncaught by the inferior. */
5102 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5103 gdbarch_gdb_signal_to_target (gdbarch,
5104 ecs->ws.value.sig));
5105 }
5106 else
5107 {
5108 /* We don't have access to the target's method used for
5109 converting between signal numbers (GDB's internal
5110 representation <-> target's representation).
5111 Therefore, we cannot do a good job at displaying this
5112 information to the user. It's better to just warn
5113 her about it (if infrun debugging is enabled), and
5114 give up. */
5115 if (debug_infrun)
5116 fprintf_filtered (gdb_stdlog, _("\
5117Cannot fill $_exitsignal with the correct signal number.\n"));
5118 }
5119
fd664c91 5120 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 5121 }
8cf64490 5122
488f131b 5123 gdb_flush (gdb_stdout);
bc1e6c81 5124 target_mourn_inferior (inferior_ptid);
488f131b 5125 stop_print_frame = 0;
22bcd14b 5126 stop_waiting (ecs);
488f131b 5127 return;
c5aa993b 5128
488f131b 5129 /* The following are the only cases in which we keep going;
1777feb0 5130 the above cases end in a continue or goto. */
488f131b 5131 case TARGET_WAITKIND_FORKED:
deb3b17b 5132 case TARGET_WAITKIND_VFORKED:
527159b7 5133 if (debug_infrun)
fed708ed
PA
5134 {
5135 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5136 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5137 else
5138 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5139 }
c906108c 5140
e2d96639
YQ
5141 /* Check whether the inferior is displaced stepping. */
5142 {
5143 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5144 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e2d96639
YQ
5145
5146 /* If checking displaced stepping is supported, and thread
5147 ecs->ptid is displaced stepping. */
c0987663 5148 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5149 {
5150 struct inferior *parent_inf
c9657e70 5151 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5152 struct regcache *child_regcache;
5153 CORE_ADDR parent_pc;
5154
5155 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5156 indicating that the displaced stepping of syscall instruction
5157 has been done. Perform cleanup for parent process here. Note
5158 that this operation also cleans up the child process for vfork,
5159 because their pages are shared. */
a493e3e2 5160 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5161 /* Start a new step-over in another thread if there's one
5162 that needs it. */
5163 start_step_over ();
e2d96639
YQ
5164
5165 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5166 {
c0987663
YQ
5167 struct displaced_step_inferior_state *displaced
5168 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5169
e2d96639
YQ
5170 /* Restore scratch pad for child process. */
5171 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5172 }
5173
5174 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5175 the child's PC is also within the scratchpad. Set the child's PC
5176 to the parent's PC value, which has already been fixed up.
5177 FIXME: we use the parent's aspace here, although we're touching
5178 the child, because the child hasn't been added to the inferior
5179 list yet at this point. */
5180
5181 child_regcache
5182 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5183 gdbarch,
5184 parent_inf->aspace);
5185 /* Read PC value of parent process. */
5186 parent_pc = regcache_read_pc (regcache);
5187
5188 if (debug_displaced)
5189 fprintf_unfiltered (gdb_stdlog,
5190 "displaced: write child pc from %s to %s\n",
5191 paddress (gdbarch,
5192 regcache_read_pc (child_regcache)),
5193 paddress (gdbarch, parent_pc));
5194
5195 regcache_write_pc (child_regcache, parent_pc);
5196 }
5197 }
5198
5a2901d9 5199 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5200 context_switch (ecs->ptid);
5a2901d9 5201
b242c3c2
PA
5202 /* Immediately detach breakpoints from the child before there's
5203 any chance of letting the user delete breakpoints from the
5204 breakpoint lists. If we don't do this early, it's easy to
5205 leave left over traps in the child, vis: "break foo; catch
5206 fork; c; <fork>; del; c; <child calls foo>". We only follow
5207 the fork on the last `continue', and by that time the
5208 breakpoint at "foo" is long gone from the breakpoint table.
5209 If we vforked, then we don't need to unpatch here, since both
5210 parent and child are sharing the same memory pages; we'll
5211 need to unpatch at follow/detach time instead to be certain
5212 that new breakpoints added between catchpoint hit time and
5213 vfork follow are detached. */
5214 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5215 {
b242c3c2
PA
5216 /* This won't actually modify the breakpoint list, but will
5217 physically remove the breakpoints from the child. */
d80ee84f 5218 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5219 }
5220
34b7e8a6 5221 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5222
e58b0e63
PA
5223 /* In case the event is caught by a catchpoint, remember that
5224 the event is to be followed at the next resume of the thread,
5225 and not immediately. */
5226 ecs->event_thread->pending_follow = ecs->ws;
5227
fb14de7b 5228 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5229
16c381f0 5230 ecs->event_thread->control.stop_bpstat
6c95b8df 5231 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5232 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5233
ce12b012
PA
5234 /* If no catchpoint triggered for this, then keep going. Note
5235 that we're interested in knowing the bpstat actually causes a
5236 stop, not just if it may explain the signal. Software
5237 watchpoints, for example, always appear in the bpstat. */
5238 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5239 {
6c95b8df
PA
5240 ptid_t parent;
5241 ptid_t child;
e58b0e63 5242 int should_resume;
3e43a32a
MS
5243 int follow_child
5244 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5245
a493e3e2 5246 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5247
5248 should_resume = follow_fork ();
5249
6c95b8df
PA
5250 parent = ecs->ptid;
5251 child = ecs->ws.value.related_pid;
5252
a2077e25
PA
5253 /* At this point, the parent is marked running, and the
5254 child is marked stopped. */
5255
5256 /* If not resuming the parent, mark it stopped. */
5257 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5258 set_running (parent, 0);
5259
5260 /* If resuming the child, mark it running. */
5261 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5262 set_running (child, 1);
5263
6c95b8df 5264 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5265 if (!detach_fork && (non_stop
5266 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5267 {
5268 if (follow_child)
5269 switch_to_thread (parent);
5270 else
5271 switch_to_thread (child);
5272
5273 ecs->event_thread = inferior_thread ();
5274 ecs->ptid = inferior_ptid;
5275 keep_going (ecs);
5276 }
5277
5278 if (follow_child)
5279 switch_to_thread (child);
5280 else
5281 switch_to_thread (parent);
5282
e58b0e63
PA
5283 ecs->event_thread = inferior_thread ();
5284 ecs->ptid = inferior_ptid;
5285
5286 if (should_resume)
5287 keep_going (ecs);
5288 else
22bcd14b 5289 stop_waiting (ecs);
04e68871
DJ
5290 return;
5291 }
94c57d6a
PA
5292 process_event_stop_test (ecs);
5293 return;
488f131b 5294
6c95b8df
PA
5295 case TARGET_WAITKIND_VFORK_DONE:
5296 /* Done with the shared memory region. Re-insert breakpoints in
5297 the parent, and keep going. */
5298
5299 if (debug_infrun)
3e43a32a
MS
5300 fprintf_unfiltered (gdb_stdlog,
5301 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5302
5303 if (!ptid_equal (ecs->ptid, inferior_ptid))
5304 context_switch (ecs->ptid);
5305
5306 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5307 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5308 /* This also takes care of reinserting breakpoints in the
5309 previously locked inferior. */
5310 keep_going (ecs);
5311 return;
5312
488f131b 5313 case TARGET_WAITKIND_EXECD:
527159b7 5314 if (debug_infrun)
fc5261f2 5315 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5316
5a2901d9 5317 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5318 context_switch (ecs->ptid);
5a2901d9 5319
fb14de7b 5320 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5321
6c95b8df
PA
5322 /* Do whatever is necessary to the parent branch of the vfork. */
5323 handle_vfork_child_exec_or_exit (1);
5324
795e548f
PA
5325 /* This causes the eventpoints and symbol table to be reset.
5326 Must do this now, before trying to determine whether to
5327 stop. */
71b43ef8 5328 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5329
17d8546e
DB
5330 /* In follow_exec we may have deleted the original thread and
5331 created a new one. Make sure that the event thread is the
5332 execd thread for that case (this is a nop otherwise). */
5333 ecs->event_thread = inferior_thread ();
5334
16c381f0 5335 ecs->event_thread->control.stop_bpstat
6c95b8df 5336 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5337 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5338
71b43ef8
PA
5339 /* Note that this may be referenced from inside
5340 bpstat_stop_status above, through inferior_has_execd. */
5341 xfree (ecs->ws.value.execd_pathname);
5342 ecs->ws.value.execd_pathname = NULL;
5343
04e68871 5344 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5345 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5346 {
a493e3e2 5347 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5348 keep_going (ecs);
5349 return;
5350 }
94c57d6a
PA
5351 process_event_stop_test (ecs);
5352 return;
488f131b 5353
b4dc5ffa
MK
5354 /* Be careful not to try to gather much state about a thread
5355 that's in a syscall. It's frequently a losing proposition. */
488f131b 5356 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5357 if (debug_infrun)
3e43a32a
MS
5358 fprintf_unfiltered (gdb_stdlog,
5359 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5360 /* Getting the current syscall number. */
94c57d6a
PA
5361 if (handle_syscall_event (ecs) == 0)
5362 process_event_stop_test (ecs);
5363 return;
c906108c 5364
488f131b
JB
5365 /* Before examining the threads further, step this thread to
5366 get it entirely out of the syscall. (We get notice of the
5367 event when the thread is just on the verge of exiting a
5368 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5369 into user code.) */
488f131b 5370 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5371 if (debug_infrun)
3e43a32a
MS
5372 fprintf_unfiltered (gdb_stdlog,
5373 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5374 if (handle_syscall_event (ecs) == 0)
5375 process_event_stop_test (ecs);
5376 return;
c906108c 5377
488f131b 5378 case TARGET_WAITKIND_STOPPED:
527159b7 5379 if (debug_infrun)
8a9de0e4 5380 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5381 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5382 handle_signal_stop (ecs);
5383 return;
c906108c 5384
b2175913 5385 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5386 if (debug_infrun)
5387 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5388 /* Reverse execution: target ran out of history info. */
eab402df 5389
d1988021
MM
5390 /* Switch to the stopped thread. */
5391 if (!ptid_equal (ecs->ptid, inferior_ptid))
5392 context_switch (ecs->ptid);
5393 if (debug_infrun)
5394 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5395
34b7e8a6 5396 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5397 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
fd664c91 5398 observer_notify_no_history ();
22bcd14b 5399 stop_waiting (ecs);
b2175913 5400 return;
488f131b 5401 }
4f5d7f63
PA
5402}
5403
0b6e5e10
JB
5404/* A wrapper around handle_inferior_event_1, which also makes sure
5405 that all temporary struct value objects that were created during
5406 the handling of the event get deleted at the end. */
5407
5408static void
5409handle_inferior_event (struct execution_control_state *ecs)
5410{
5411 struct value *mark = value_mark ();
5412
5413 handle_inferior_event_1 (ecs);
5414 /* Purge all temporary values created during the event handling,
5415 as it could be a long time before we return to the command level
5416 where such values would otherwise be purged. */
5417 value_free_to_mark (mark);
5418}
5419
372316f1
PA
5420/* Restart threads back to what they were trying to do back when we
5421 paused them for an in-line step-over. The EVENT_THREAD thread is
5422 ignored. */
4d9d9d04
PA
5423
5424static void
372316f1
PA
5425restart_threads (struct thread_info *event_thread)
5426{
5427 struct thread_info *tp;
372316f1
PA
5428
5429 /* In case the instruction just stepped spawned a new thread. */
5430 update_thread_list ();
5431
5432 ALL_NON_EXITED_THREADS (tp)
5433 {
5434 if (tp == event_thread)
5435 {
5436 if (debug_infrun)
5437 fprintf_unfiltered (gdb_stdlog,
5438 "infrun: restart threads: "
5439 "[%s] is event thread\n",
5440 target_pid_to_str (tp->ptid));
5441 continue;
5442 }
5443
5444 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5445 {
5446 if (debug_infrun)
5447 fprintf_unfiltered (gdb_stdlog,
5448 "infrun: restart threads: "
5449 "[%s] not meant to be running\n",
5450 target_pid_to_str (tp->ptid));
5451 continue;
5452 }
5453
5454 if (tp->resumed)
5455 {
5456 if (debug_infrun)
5457 fprintf_unfiltered (gdb_stdlog,
5458 "infrun: restart threads: [%s] resumed\n",
5459 target_pid_to_str (tp->ptid));
5460 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5461 continue;
5462 }
5463
5464 if (thread_is_in_step_over_chain (tp))
5465 {
5466 if (debug_infrun)
5467 fprintf_unfiltered (gdb_stdlog,
5468 "infrun: restart threads: "
5469 "[%s] needs step-over\n",
5470 target_pid_to_str (tp->ptid));
5471 gdb_assert (!tp->resumed);
5472 continue;
5473 }
5474
5475
5476 if (tp->suspend.waitstatus_pending_p)
5477 {
5478 if (debug_infrun)
5479 fprintf_unfiltered (gdb_stdlog,
5480 "infrun: restart threads: "
5481 "[%s] has pending status\n",
5482 target_pid_to_str (tp->ptid));
5483 tp->resumed = 1;
5484 continue;
5485 }
5486
5487 /* If some thread needs to start a step-over at this point, it
5488 should still be in the step-over queue, and thus skipped
5489 above. */
5490 if (thread_still_needs_step_over (tp))
5491 {
5492 internal_error (__FILE__, __LINE__,
5493 "thread [%s] needs a step-over, but not in "
5494 "step-over queue\n",
5495 target_pid_to_str (tp->ptid));
5496 }
5497
5498 if (currently_stepping (tp))
5499 {
5500 if (debug_infrun)
5501 fprintf_unfiltered (gdb_stdlog,
5502 "infrun: restart threads: [%s] was stepping\n",
5503 target_pid_to_str (tp->ptid));
5504 keep_going_stepped_thread (tp);
5505 }
5506 else
5507 {
5508 struct execution_control_state ecss;
5509 struct execution_control_state *ecs = &ecss;
5510
5511 if (debug_infrun)
5512 fprintf_unfiltered (gdb_stdlog,
5513 "infrun: restart threads: [%s] continuing\n",
5514 target_pid_to_str (tp->ptid));
5515 reset_ecs (ecs, tp);
5516 switch_to_thread (tp->ptid);
5517 keep_going_pass_signal (ecs);
5518 }
5519 }
5520}
5521
5522/* Callback for iterate_over_threads. Find a resumed thread that has
5523 a pending waitstatus. */
5524
5525static int
5526resumed_thread_with_pending_status (struct thread_info *tp,
5527 void *arg)
5528{
5529 return (tp->resumed
5530 && tp->suspend.waitstatus_pending_p);
5531}
5532
5533/* Called when we get an event that may finish an in-line or
5534 out-of-line (displaced stepping) step-over started previously.
5535 Return true if the event is processed and we should go back to the
5536 event loop; false if the caller should continue processing the
5537 event. */
5538
5539static int
4d9d9d04
PA
5540finish_step_over (struct execution_control_state *ecs)
5541{
372316f1
PA
5542 int had_step_over_info;
5543
4d9d9d04
PA
5544 displaced_step_fixup (ecs->ptid,
5545 ecs->event_thread->suspend.stop_signal);
5546
372316f1
PA
5547 had_step_over_info = step_over_info_valid_p ();
5548
5549 if (had_step_over_info)
4d9d9d04
PA
5550 {
5551 /* If we're stepping over a breakpoint with all threads locked,
5552 then only the thread that was stepped should be reporting
5553 back an event. */
5554 gdb_assert (ecs->event_thread->control.trap_expected);
5555
5556 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5557 clear_step_over_info ();
5558 }
5559
fbea99ea 5560 if (!target_is_non_stop_p ())
372316f1 5561 return 0;
4d9d9d04
PA
5562
5563 /* Start a new step-over in another thread if there's one that
5564 needs it. */
5565 start_step_over ();
372316f1
PA
5566
5567 /* If we were stepping over a breakpoint before, and haven't started
5568 a new in-line step-over sequence, then restart all other threads
5569 (except the event thread). We can't do this in all-stop, as then
5570 e.g., we wouldn't be able to issue any other remote packet until
5571 these other threads stop. */
5572 if (had_step_over_info && !step_over_info_valid_p ())
5573 {
5574 struct thread_info *pending;
5575
5576 /* If we only have threads with pending statuses, the restart
5577 below won't restart any thread and so nothing re-inserts the
5578 breakpoint we just stepped over. But we need it inserted
5579 when we later process the pending events, otherwise if
5580 another thread has a pending event for this breakpoint too,
5581 we'd discard its event (because the breakpoint that
5582 originally caused the event was no longer inserted). */
5583 context_switch (ecs->ptid);
5584 insert_breakpoints ();
5585
5586 restart_threads (ecs->event_thread);
5587
5588 /* If we have events pending, go through handle_inferior_event
5589 again, picking up a pending event at random. This avoids
5590 thread starvation. */
5591
5592 /* But not if we just stepped over a watchpoint in order to let
5593 the instruction execute so we can evaluate its expression.
5594 The set of watchpoints that triggered is recorded in the
5595 breakpoint objects themselves (see bp->watchpoint_triggered).
5596 If we processed another event first, that other event could
5597 clobber this info. */
5598 if (ecs->event_thread->stepping_over_watchpoint)
5599 return 0;
5600
5601 pending = iterate_over_threads (resumed_thread_with_pending_status,
5602 NULL);
5603 if (pending != NULL)
5604 {
5605 struct thread_info *tp = ecs->event_thread;
5606 struct regcache *regcache;
5607
5608 if (debug_infrun)
5609 {
5610 fprintf_unfiltered (gdb_stdlog,
5611 "infrun: found resumed threads with "
5612 "pending events, saving status\n");
5613 }
5614
5615 gdb_assert (pending != tp);
5616
5617 /* Record the event thread's event for later. */
5618 save_waitstatus (tp, &ecs->ws);
5619 /* This was cleared early, by handle_inferior_event. Set it
5620 so this pending event is considered by
5621 do_target_wait. */
5622 tp->resumed = 1;
5623
5624 gdb_assert (!tp->executing);
5625
5626 regcache = get_thread_regcache (tp->ptid);
5627 tp->suspend.stop_pc = regcache_read_pc (regcache);
5628
5629 if (debug_infrun)
5630 {
5631 fprintf_unfiltered (gdb_stdlog,
5632 "infrun: saved stop_pc=%s for %s "
5633 "(currently_stepping=%d)\n",
5634 paddress (target_gdbarch (),
5635 tp->suspend.stop_pc),
5636 target_pid_to_str (tp->ptid),
5637 currently_stepping (tp));
5638 }
5639
5640 /* This in-line step-over finished; clear this so we won't
5641 start a new one. This is what handle_signal_stop would
5642 do, if we returned false. */
5643 tp->stepping_over_breakpoint = 0;
5644
5645 /* Wake up the event loop again. */
5646 mark_async_event_handler (infrun_async_inferior_event_token);
5647
5648 prepare_to_wait (ecs);
5649 return 1;
5650 }
5651 }
5652
5653 return 0;
4d9d9d04
PA
5654}
5655
4f5d7f63
PA
5656/* Come here when the program has stopped with a signal. */
5657
5658static void
5659handle_signal_stop (struct execution_control_state *ecs)
5660{
5661 struct frame_info *frame;
5662 struct gdbarch *gdbarch;
5663 int stopped_by_watchpoint;
5664 enum stop_kind stop_soon;
5665 int random_signal;
c906108c 5666
f0407826
DE
5667 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5668
5669 /* Do we need to clean up the state of a thread that has
5670 completed a displaced single-step? (Doing so usually affects
5671 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5672 if (finish_step_over (ecs))
5673 return;
f0407826
DE
5674
5675 /* If we either finished a single-step or hit a breakpoint, but
5676 the user wanted this thread to be stopped, pretend we got a
5677 SIG0 (generic unsignaled stop). */
5678 if (ecs->event_thread->stop_requested
5679 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5680 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5681
515630c5 5682 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5683
527159b7 5684 if (debug_infrun)
237fc4c9 5685 {
5af949e3
UW
5686 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5687 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5688 struct cleanup *old_chain = save_inferior_ptid ();
5689
5690 inferior_ptid = ecs->ptid;
5af949e3
UW
5691
5692 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5693 paddress (gdbarch, stop_pc));
d92524f1 5694 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5695 {
5696 CORE_ADDR addr;
abbb1732 5697
237fc4c9
PA
5698 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5699
5700 if (target_stopped_data_address (&current_target, &addr))
5701 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5702 "infrun: stopped data address = %s\n",
5703 paddress (gdbarch, addr));
237fc4c9
PA
5704 else
5705 fprintf_unfiltered (gdb_stdlog,
5706 "infrun: (no data address available)\n");
5707 }
7f82dfc7
JK
5708
5709 do_cleanups (old_chain);
237fc4c9 5710 }
527159b7 5711
36fa8042
PA
5712 /* This is originated from start_remote(), start_inferior() and
5713 shared libraries hook functions. */
5714 stop_soon = get_inferior_stop_soon (ecs->ptid);
5715 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5716 {
5717 if (!ptid_equal (ecs->ptid, inferior_ptid))
5718 context_switch (ecs->ptid);
5719 if (debug_infrun)
5720 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5721 stop_print_frame = 1;
22bcd14b 5722 stop_waiting (ecs);
36fa8042
PA
5723 return;
5724 }
5725
36fa8042
PA
5726 /* This originates from attach_command(). We need to overwrite
5727 the stop_signal here, because some kernels don't ignore a
5728 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5729 See more comments in inferior.h. On the other hand, if we
5730 get a non-SIGSTOP, report it to the user - assume the backend
5731 will handle the SIGSTOP if it should show up later.
5732
5733 Also consider that the attach is complete when we see a
5734 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5735 target extended-remote report it instead of a SIGSTOP
5736 (e.g. gdbserver). We already rely on SIGTRAP being our
5737 signal, so this is no exception.
5738
5739 Also consider that the attach is complete when we see a
5740 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5741 the target to stop all threads of the inferior, in case the
5742 low level attach operation doesn't stop them implicitly. If
5743 they weren't stopped implicitly, then the stub will report a
5744 GDB_SIGNAL_0, meaning: stopped for no particular reason
5745 other than GDB's request. */
5746 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5747 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5748 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5749 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5750 {
5751 stop_print_frame = 1;
22bcd14b 5752 stop_waiting (ecs);
36fa8042
PA
5753 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5754 return;
5755 }
5756
488f131b 5757 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5758 so, then switch to that thread. */
5759 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5760 {
527159b7 5761 if (debug_infrun)
8a9de0e4 5762 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5763
0d1e5fa7 5764 context_switch (ecs->ptid);
c5aa993b 5765
9a4105ab 5766 if (deprecated_context_hook)
5d5658a1 5767 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
488f131b 5768 }
c906108c 5769
568d6575
UW
5770 /* At this point, get hold of the now-current thread's frame. */
5771 frame = get_current_frame ();
5772 gdbarch = get_frame_arch (frame);
5773
2adfaa28 5774 /* Pull the single step breakpoints out of the target. */
af48d08f 5775 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5776 {
af48d08f
PA
5777 struct regcache *regcache;
5778 struct address_space *aspace;
5779 CORE_ADDR pc;
2adfaa28 5780
af48d08f
PA
5781 regcache = get_thread_regcache (ecs->ptid);
5782 aspace = get_regcache_aspace (regcache);
5783 pc = regcache_read_pc (regcache);
34b7e8a6 5784
af48d08f
PA
5785 /* However, before doing so, if this single-step breakpoint was
5786 actually for another thread, set this thread up for moving
5787 past it. */
5788 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5789 aspace, pc))
5790 {
5791 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5792 {
5793 if (debug_infrun)
5794 {
5795 fprintf_unfiltered (gdb_stdlog,
af48d08f 5796 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5797 "single-step breakpoint\n",
5798 target_pid_to_str (ecs->ptid));
2adfaa28 5799 }
af48d08f
PA
5800 ecs->hit_singlestep_breakpoint = 1;
5801 }
5802 }
5803 else
5804 {
5805 if (debug_infrun)
5806 {
5807 fprintf_unfiltered (gdb_stdlog,
5808 "infrun: [%s] hit its "
5809 "single-step breakpoint\n",
5810 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5811 }
5812 }
488f131b 5813 }
af48d08f 5814 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5815
963f9c80
PA
5816 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5817 && ecs->event_thread->control.trap_expected
5818 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5819 stopped_by_watchpoint = 0;
5820 else
5821 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5822
5823 /* If necessary, step over this watchpoint. We'll be back to display
5824 it in a moment. */
5825 if (stopped_by_watchpoint
d92524f1 5826 && (target_have_steppable_watchpoint
568d6575 5827 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5828 {
488f131b
JB
5829 /* At this point, we are stopped at an instruction which has
5830 attempted to write to a piece of memory under control of
5831 a watchpoint. The instruction hasn't actually executed
5832 yet. If we were to evaluate the watchpoint expression
5833 now, we would get the old value, and therefore no change
5834 would seem to have occurred.
5835
5836 In order to make watchpoints work `right', we really need
5837 to complete the memory write, and then evaluate the
d983da9c
DJ
5838 watchpoint expression. We do this by single-stepping the
5839 target.
5840
7f89fd65 5841 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5842 it. For example, the PA can (with some kernel cooperation)
5843 single step over a watchpoint without disabling the watchpoint.
5844
5845 It is far more common to need to disable a watchpoint to step
5846 the inferior over it. If we have non-steppable watchpoints,
5847 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5848 disable all watchpoints.
5849
5850 Any breakpoint at PC must also be stepped over -- if there's
5851 one, it will have already triggered before the watchpoint
5852 triggered, and we either already reported it to the user, or
5853 it didn't cause a stop and we called keep_going. In either
5854 case, if there was a breakpoint at PC, we must be trying to
5855 step past it. */
5856 ecs->event_thread->stepping_over_watchpoint = 1;
5857 keep_going (ecs);
488f131b
JB
5858 return;
5859 }
5860
4e1c45ea 5861 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5862 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5863 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5864 ecs->event_thread->control.stop_step = 0;
488f131b 5865 stop_print_frame = 1;
488f131b 5866 stopped_by_random_signal = 0;
488f131b 5867
edb3359d
DJ
5868 /* Hide inlined functions starting here, unless we just performed stepi or
5869 nexti. After stepi and nexti, always show the innermost frame (not any
5870 inline function call sites). */
16c381f0 5871 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5872 {
5873 struct address_space *aspace =
5874 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5875
5876 /* skip_inline_frames is expensive, so we avoid it if we can
5877 determine that the address is one where functions cannot have
5878 been inlined. This improves performance with inferiors that
5879 load a lot of shared libraries, because the solib event
5880 breakpoint is defined as the address of a function (i.e. not
5881 inline). Note that we have to check the previous PC as well
5882 as the current one to catch cases when we have just
5883 single-stepped off a breakpoint prior to reinstating it.
5884 Note that we're assuming that the code we single-step to is
5885 not inline, but that's not definitive: there's nothing
5886 preventing the event breakpoint function from containing
5887 inlined code, and the single-step ending up there. If the
5888 user had set a breakpoint on that inlined code, the missing
5889 skip_inline_frames call would break things. Fortunately
5890 that's an extremely unlikely scenario. */
09ac7c10 5891 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5892 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5893 && ecs->event_thread->control.trap_expected
5894 && pc_at_non_inline_function (aspace,
5895 ecs->event_thread->prev_pc,
09ac7c10 5896 &ecs->ws)))
1c5a993e
MR
5897 {
5898 skip_inline_frames (ecs->ptid);
5899
5900 /* Re-fetch current thread's frame in case that invalidated
5901 the frame cache. */
5902 frame = get_current_frame ();
5903 gdbarch = get_frame_arch (frame);
5904 }
0574c78f 5905 }
edb3359d 5906
a493e3e2 5907 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5908 && ecs->event_thread->control.trap_expected
568d6575 5909 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5910 && currently_stepping (ecs->event_thread))
3352ef37 5911 {
b50d7442 5912 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5913 also on an instruction that needs to be stepped multiple
1777feb0 5914 times before it's been fully executing. E.g., architectures
3352ef37
AC
5915 with a delay slot. It needs to be stepped twice, once for
5916 the instruction and once for the delay slot. */
5917 int step_through_delay
568d6575 5918 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5919
527159b7 5920 if (debug_infrun && step_through_delay)
8a9de0e4 5921 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5922 if (ecs->event_thread->control.step_range_end == 0
5923 && step_through_delay)
3352ef37
AC
5924 {
5925 /* The user issued a continue when stopped at a breakpoint.
5926 Set up for another trap and get out of here. */
4e1c45ea 5927 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5928 keep_going (ecs);
5929 return;
5930 }
5931 else if (step_through_delay)
5932 {
5933 /* The user issued a step when stopped at a breakpoint.
5934 Maybe we should stop, maybe we should not - the delay
5935 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5936 case, don't decide that here, just set
5937 ecs->stepping_over_breakpoint, making sure we
5938 single-step again before breakpoints are re-inserted. */
4e1c45ea 5939 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5940 }
5941 }
5942
ab04a2af
TT
5943 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5944 handles this event. */
5945 ecs->event_thread->control.stop_bpstat
5946 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5947 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5948
ab04a2af
TT
5949 /* Following in case break condition called a
5950 function. */
5951 stop_print_frame = 1;
73dd234f 5952
ab04a2af
TT
5953 /* This is where we handle "moribund" watchpoints. Unlike
5954 software breakpoints traps, hardware watchpoint traps are
5955 always distinguishable from random traps. If no high-level
5956 watchpoint is associated with the reported stop data address
5957 anymore, then the bpstat does not explain the signal ---
5958 simply make sure to ignore it if `stopped_by_watchpoint' is
5959 set. */
5960
5961 if (debug_infrun
5962 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5963 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5964 GDB_SIGNAL_TRAP)
ab04a2af
TT
5965 && stopped_by_watchpoint)
5966 fprintf_unfiltered (gdb_stdlog,
5967 "infrun: no user watchpoint explains "
5968 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5969
bac7d97b 5970 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5971 at one stage in the past included checks for an inferior
5972 function call's call dummy's return breakpoint. The original
5973 comment, that went with the test, read:
03cebad2 5974
ab04a2af
TT
5975 ``End of a stack dummy. Some systems (e.g. Sony news) give
5976 another signal besides SIGTRAP, so check here as well as
5977 above.''
73dd234f 5978
ab04a2af
TT
5979 If someone ever tries to get call dummys on a
5980 non-executable stack to work (where the target would stop
5981 with something like a SIGSEGV), then those tests might need
5982 to be re-instated. Given, however, that the tests were only
5983 enabled when momentary breakpoints were not being used, I
5984 suspect that it won't be the case.
488f131b 5985
ab04a2af
TT
5986 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5987 be necessary for call dummies on a non-executable stack on
5988 SPARC. */
488f131b 5989
bac7d97b 5990 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5991 random_signal
5992 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5993 ecs->event_thread->suspend.stop_signal);
bac7d97b 5994
1cf4d951
PA
5995 /* Maybe this was a trap for a software breakpoint that has since
5996 been removed. */
5997 if (random_signal && target_stopped_by_sw_breakpoint ())
5998 {
5999 if (program_breakpoint_here_p (gdbarch, stop_pc))
6000 {
6001 struct regcache *regcache;
6002 int decr_pc;
6003
6004 /* Re-adjust PC to what the program would see if GDB was not
6005 debugging it. */
6006 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 6007 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6008 if (decr_pc != 0)
6009 {
6010 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6011
6012 if (record_full_is_used ())
6013 record_full_gdb_operation_disable_set ();
6014
6015 regcache_write_pc (regcache, stop_pc + decr_pc);
6016
6017 do_cleanups (old_cleanups);
6018 }
6019 }
6020 else
6021 {
6022 /* A delayed software breakpoint event. Ignore the trap. */
6023 if (debug_infrun)
6024 fprintf_unfiltered (gdb_stdlog,
6025 "infrun: delayed software breakpoint "
6026 "trap, ignoring\n");
6027 random_signal = 0;
6028 }
6029 }
6030
6031 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6032 has since been removed. */
6033 if (random_signal && target_stopped_by_hw_breakpoint ())
6034 {
6035 /* A delayed hardware breakpoint event. Ignore the trap. */
6036 if (debug_infrun)
6037 fprintf_unfiltered (gdb_stdlog,
6038 "infrun: delayed hardware breakpoint/watchpoint "
6039 "trap, ignoring\n");
6040 random_signal = 0;
6041 }
6042
bac7d97b
PA
6043 /* If not, perhaps stepping/nexting can. */
6044 if (random_signal)
6045 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6046 && currently_stepping (ecs->event_thread));
ab04a2af 6047
2adfaa28
PA
6048 /* Perhaps the thread hit a single-step breakpoint of _another_
6049 thread. Single-step breakpoints are transparent to the
6050 breakpoints module. */
6051 if (random_signal)
6052 random_signal = !ecs->hit_singlestep_breakpoint;
6053
bac7d97b
PA
6054 /* No? Perhaps we got a moribund watchpoint. */
6055 if (random_signal)
6056 random_signal = !stopped_by_watchpoint;
ab04a2af 6057
488f131b
JB
6058 /* For the program's own signals, act according to
6059 the signal handling tables. */
6060
ce12b012 6061 if (random_signal)
488f131b
JB
6062 {
6063 /* Signal not for debugging purposes. */
c9657e70 6064 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6065 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6066
527159b7 6067 if (debug_infrun)
c9737c08
PA
6068 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6069 gdb_signal_to_symbol_string (stop_signal));
527159b7 6070
488f131b
JB
6071 stopped_by_random_signal = 1;
6072
252fbfc8
PA
6073 /* Always stop on signals if we're either just gaining control
6074 of the program, or the user explicitly requested this thread
6075 to remain stopped. */
d6b48e9c 6076 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6077 || ecs->event_thread->stop_requested
24291992 6078 || (!inf->detaching
16c381f0 6079 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6080 {
22bcd14b 6081 stop_waiting (ecs);
488f131b
JB
6082 return;
6083 }
b57bacec
PA
6084
6085 /* Notify observers the signal has "handle print" set. Note we
6086 returned early above if stopping; normal_stop handles the
6087 printing in that case. */
6088 if (signal_print[ecs->event_thread->suspend.stop_signal])
6089 {
6090 /* The signal table tells us to print about this signal. */
6091 target_terminal_ours_for_output ();
6092 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6093 target_terminal_inferior ();
6094 }
488f131b
JB
6095
6096 /* Clear the signal if it should not be passed. */
16c381f0 6097 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6098 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6099
fb14de7b 6100 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6101 && ecs->event_thread->control.trap_expected
8358c15c 6102 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 6103 {
372316f1
PA
6104 int was_in_line;
6105
68f53502
AC
6106 /* We were just starting a new sequence, attempting to
6107 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6108 Instead this signal arrives. This signal will take us out
68f53502
AC
6109 of the stepping range so GDB needs to remember to, when
6110 the signal handler returns, resume stepping off that
6111 breakpoint. */
6112 /* To simplify things, "continue" is forced to use the same
6113 code paths as single-step - set a breakpoint at the
6114 signal return address and then, once hit, step off that
6115 breakpoint. */
237fc4c9
PA
6116 if (debug_infrun)
6117 fprintf_unfiltered (gdb_stdlog,
6118 "infrun: signal arrived while stepping over "
6119 "breakpoint\n");
d3169d93 6120
372316f1
PA
6121 was_in_line = step_over_info_valid_p ();
6122 clear_step_over_info ();
2c03e5be 6123 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6124 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6125 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6126 ecs->event_thread->control.trap_expected = 0;
d137e6dc 6127
fbea99ea 6128 if (target_is_non_stop_p ())
372316f1 6129 {
fbea99ea
PA
6130 /* Either "set non-stop" is "on", or the target is
6131 always in non-stop mode. In this case, we have a bit
6132 more work to do. Resume the current thread, and if
6133 we had paused all threads, restart them while the
6134 signal handler runs. */
372316f1
PA
6135 keep_going (ecs);
6136
372316f1
PA
6137 if (was_in_line)
6138 {
372316f1
PA
6139 restart_threads (ecs->event_thread);
6140 }
6141 else if (debug_infrun)
6142 {
6143 fprintf_unfiltered (gdb_stdlog,
6144 "infrun: no need to restart threads\n");
6145 }
6146 return;
6147 }
6148
d137e6dc
PA
6149 /* If we were nexting/stepping some other thread, switch to
6150 it, so that we don't continue it, losing control. */
6151 if (!switch_back_to_stepped_thread (ecs))
6152 keep_going (ecs);
9d799f85 6153 return;
68f53502 6154 }
9d799f85 6155
e5f8a7cc
PA
6156 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6157 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6158 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6159 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6160 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6161 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6162 {
6163 /* The inferior is about to take a signal that will take it
6164 out of the single step range. Set a breakpoint at the
6165 current PC (which is presumably where the signal handler
6166 will eventually return) and then allow the inferior to
6167 run free.
6168
6169 Note that this is only needed for a signal delivered
6170 while in the single-step range. Nested signals aren't a
6171 problem as they eventually all return. */
237fc4c9
PA
6172 if (debug_infrun)
6173 fprintf_unfiltered (gdb_stdlog,
6174 "infrun: signal may take us out of "
6175 "single-step range\n");
6176
372316f1 6177 clear_step_over_info ();
2c03e5be 6178 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6179 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6180 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6181 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6182 keep_going (ecs);
6183 return;
d303a6c7 6184 }
9d799f85
AC
6185
6186 /* Note: step_resume_breakpoint may be non-NULL. This occures
6187 when either there's a nested signal, or when there's a
6188 pending signal enabled just as the signal handler returns
6189 (leaving the inferior at the step-resume-breakpoint without
6190 actually executing it). Either way continue until the
6191 breakpoint is really hit. */
c447ac0b
PA
6192
6193 if (!switch_back_to_stepped_thread (ecs))
6194 {
6195 if (debug_infrun)
6196 fprintf_unfiltered (gdb_stdlog,
6197 "infrun: random signal, keep going\n");
6198
6199 keep_going (ecs);
6200 }
6201 return;
488f131b 6202 }
94c57d6a
PA
6203
6204 process_event_stop_test (ecs);
6205}
6206
6207/* Come here when we've got some debug event / signal we can explain
6208 (IOW, not a random signal), and test whether it should cause a
6209 stop, or whether we should resume the inferior (transparently).
6210 E.g., could be a breakpoint whose condition evaluates false; we
6211 could be still stepping within the line; etc. */
6212
6213static void
6214process_event_stop_test (struct execution_control_state *ecs)
6215{
6216 struct symtab_and_line stop_pc_sal;
6217 struct frame_info *frame;
6218 struct gdbarch *gdbarch;
cdaa5b73
PA
6219 CORE_ADDR jmp_buf_pc;
6220 struct bpstat_what what;
94c57d6a 6221
cdaa5b73 6222 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6223
cdaa5b73
PA
6224 frame = get_current_frame ();
6225 gdbarch = get_frame_arch (frame);
fcf3daef 6226
cdaa5b73 6227 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6228
cdaa5b73
PA
6229 if (what.call_dummy)
6230 {
6231 stop_stack_dummy = what.call_dummy;
6232 }
186c406b 6233
243a9253
PA
6234 /* A few breakpoint types have callbacks associated (e.g.,
6235 bp_jit_event). Run them now. */
6236 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6237
cdaa5b73
PA
6238 /* If we hit an internal event that triggers symbol changes, the
6239 current frame will be invalidated within bpstat_what (e.g., if we
6240 hit an internal solib event). Re-fetch it. */
6241 frame = get_current_frame ();
6242 gdbarch = get_frame_arch (frame);
e2e4d78b 6243
cdaa5b73
PA
6244 switch (what.main_action)
6245 {
6246 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6247 /* If we hit the breakpoint at longjmp while stepping, we
6248 install a momentary breakpoint at the target of the
6249 jmp_buf. */
186c406b 6250
cdaa5b73
PA
6251 if (debug_infrun)
6252 fprintf_unfiltered (gdb_stdlog,
6253 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6254
cdaa5b73 6255 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6256
cdaa5b73
PA
6257 if (what.is_longjmp)
6258 {
6259 struct value *arg_value;
6260
6261 /* If we set the longjmp breakpoint via a SystemTap probe,
6262 then use it to extract the arguments. The destination PC
6263 is the third argument to the probe. */
6264 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6265 if (arg_value)
8fa0c4f8
AA
6266 {
6267 jmp_buf_pc = value_as_address (arg_value);
6268 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6269 }
cdaa5b73
PA
6270 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6271 || !gdbarch_get_longjmp_target (gdbarch,
6272 frame, &jmp_buf_pc))
e2e4d78b 6273 {
cdaa5b73
PA
6274 if (debug_infrun)
6275 fprintf_unfiltered (gdb_stdlog,
6276 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6277 "(!gdbarch_get_longjmp_target)\n");
6278 keep_going (ecs);
6279 return;
e2e4d78b 6280 }
e2e4d78b 6281
cdaa5b73
PA
6282 /* Insert a breakpoint at resume address. */
6283 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6284 }
6285 else
6286 check_exception_resume (ecs, frame);
6287 keep_going (ecs);
6288 return;
e81a37f7 6289
cdaa5b73
PA
6290 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6291 {
6292 struct frame_info *init_frame;
e81a37f7 6293
cdaa5b73 6294 /* There are several cases to consider.
c906108c 6295
cdaa5b73
PA
6296 1. The initiating frame no longer exists. In this case we
6297 must stop, because the exception or longjmp has gone too
6298 far.
2c03e5be 6299
cdaa5b73
PA
6300 2. The initiating frame exists, and is the same as the
6301 current frame. We stop, because the exception or longjmp
6302 has been caught.
2c03e5be 6303
cdaa5b73
PA
6304 3. The initiating frame exists and is different from the
6305 current frame. This means the exception or longjmp has
6306 been caught beneath the initiating frame, so keep going.
c906108c 6307
cdaa5b73
PA
6308 4. longjmp breakpoint has been placed just to protect
6309 against stale dummy frames and user is not interested in
6310 stopping around longjmps. */
c5aa993b 6311
cdaa5b73
PA
6312 if (debug_infrun)
6313 fprintf_unfiltered (gdb_stdlog,
6314 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6315
cdaa5b73
PA
6316 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6317 != NULL);
6318 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6319
cdaa5b73
PA
6320 if (what.is_longjmp)
6321 {
b67a2c6f 6322 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6323
cdaa5b73 6324 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6325 {
cdaa5b73
PA
6326 /* Case 4. */
6327 keep_going (ecs);
6328 return;
e5ef252a 6329 }
cdaa5b73 6330 }
c5aa993b 6331
cdaa5b73 6332 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6333
cdaa5b73
PA
6334 if (init_frame)
6335 {
6336 struct frame_id current_id
6337 = get_frame_id (get_current_frame ());
6338 if (frame_id_eq (current_id,
6339 ecs->event_thread->initiating_frame))
6340 {
6341 /* Case 2. Fall through. */
6342 }
6343 else
6344 {
6345 /* Case 3. */
6346 keep_going (ecs);
6347 return;
6348 }
68f53502 6349 }
488f131b 6350
cdaa5b73
PA
6351 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6352 exists. */
6353 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6354
bdc36728 6355 end_stepping_range (ecs);
cdaa5b73
PA
6356 }
6357 return;
e5ef252a 6358
cdaa5b73
PA
6359 case BPSTAT_WHAT_SINGLE:
6360 if (debug_infrun)
6361 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6362 ecs->event_thread->stepping_over_breakpoint = 1;
6363 /* Still need to check other stuff, at least the case where we
6364 are stepping and step out of the right range. */
6365 break;
e5ef252a 6366
cdaa5b73
PA
6367 case BPSTAT_WHAT_STEP_RESUME:
6368 if (debug_infrun)
6369 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6370
cdaa5b73
PA
6371 delete_step_resume_breakpoint (ecs->event_thread);
6372 if (ecs->event_thread->control.proceed_to_finish
6373 && execution_direction == EXEC_REVERSE)
6374 {
6375 struct thread_info *tp = ecs->event_thread;
6376
6377 /* We are finishing a function in reverse, and just hit the
6378 step-resume breakpoint at the start address of the
6379 function, and we're almost there -- just need to back up
6380 by one more single-step, which should take us back to the
6381 function call. */
6382 tp->control.step_range_start = tp->control.step_range_end = 1;
6383 keep_going (ecs);
e5ef252a 6384 return;
cdaa5b73
PA
6385 }
6386 fill_in_stop_func (gdbarch, ecs);
6387 if (stop_pc == ecs->stop_func_start
6388 && execution_direction == EXEC_REVERSE)
6389 {
6390 /* We are stepping over a function call in reverse, and just
6391 hit the step-resume breakpoint at the start address of
6392 the function. Go back to single-stepping, which should
6393 take us back to the function call. */
6394 ecs->event_thread->stepping_over_breakpoint = 1;
6395 keep_going (ecs);
6396 return;
6397 }
6398 break;
e5ef252a 6399
cdaa5b73
PA
6400 case BPSTAT_WHAT_STOP_NOISY:
6401 if (debug_infrun)
6402 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6403 stop_print_frame = 1;
e5ef252a 6404
99619bea
PA
6405 /* Assume the thread stopped for a breapoint. We'll still check
6406 whether a/the breakpoint is there when the thread is next
6407 resumed. */
6408 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6409
22bcd14b 6410 stop_waiting (ecs);
cdaa5b73 6411 return;
e5ef252a 6412
cdaa5b73
PA
6413 case BPSTAT_WHAT_STOP_SILENT:
6414 if (debug_infrun)
6415 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6416 stop_print_frame = 0;
e5ef252a 6417
99619bea
PA
6418 /* Assume the thread stopped for a breapoint. We'll still check
6419 whether a/the breakpoint is there when the thread is next
6420 resumed. */
6421 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6422 stop_waiting (ecs);
cdaa5b73
PA
6423 return;
6424
6425 case BPSTAT_WHAT_HP_STEP_RESUME:
6426 if (debug_infrun)
6427 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6428
6429 delete_step_resume_breakpoint (ecs->event_thread);
6430 if (ecs->event_thread->step_after_step_resume_breakpoint)
6431 {
6432 /* Back when the step-resume breakpoint was inserted, we
6433 were trying to single-step off a breakpoint. Go back to
6434 doing that. */
6435 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6436 ecs->event_thread->stepping_over_breakpoint = 1;
6437 keep_going (ecs);
6438 return;
e5ef252a 6439 }
cdaa5b73
PA
6440 break;
6441
6442 case BPSTAT_WHAT_KEEP_CHECKING:
6443 break;
e5ef252a 6444 }
c906108c 6445
af48d08f
PA
6446 /* If we stepped a permanent breakpoint and we had a high priority
6447 step-resume breakpoint for the address we stepped, but we didn't
6448 hit it, then we must have stepped into the signal handler. The
6449 step-resume was only necessary to catch the case of _not_
6450 stepping into the handler, so delete it, and fall through to
6451 checking whether the step finished. */
6452 if (ecs->event_thread->stepped_breakpoint)
6453 {
6454 struct breakpoint *sr_bp
6455 = ecs->event_thread->control.step_resume_breakpoint;
6456
8d707a12
PA
6457 if (sr_bp != NULL
6458 && sr_bp->loc->permanent
af48d08f
PA
6459 && sr_bp->type == bp_hp_step_resume
6460 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6461 {
6462 if (debug_infrun)
6463 fprintf_unfiltered (gdb_stdlog,
6464 "infrun: stepped permanent breakpoint, stopped in "
6465 "handler\n");
6466 delete_step_resume_breakpoint (ecs->event_thread);
6467 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6468 }
6469 }
6470
cdaa5b73
PA
6471 /* We come here if we hit a breakpoint but should not stop for it.
6472 Possibly we also were stepping and should stop for that. So fall
6473 through and test for stepping. But, if not stepping, do not
6474 stop. */
c906108c 6475
a7212384
UW
6476 /* In all-stop mode, if we're currently stepping but have stopped in
6477 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6478 if (switch_back_to_stepped_thread (ecs))
6479 return;
776f04fa 6480
8358c15c 6481 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6482 {
527159b7 6483 if (debug_infrun)
d3169d93
DJ
6484 fprintf_unfiltered (gdb_stdlog,
6485 "infrun: step-resume breakpoint is inserted\n");
527159b7 6486
488f131b
JB
6487 /* Having a step-resume breakpoint overrides anything
6488 else having to do with stepping commands until
6489 that breakpoint is reached. */
488f131b
JB
6490 keep_going (ecs);
6491 return;
6492 }
c5aa993b 6493
16c381f0 6494 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6495 {
527159b7 6496 if (debug_infrun)
8a9de0e4 6497 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6498 /* Likewise if we aren't even stepping. */
488f131b
JB
6499 keep_going (ecs);
6500 return;
6501 }
c5aa993b 6502
4b7703ad
JB
6503 /* Re-fetch current thread's frame in case the code above caused
6504 the frame cache to be re-initialized, making our FRAME variable
6505 a dangling pointer. */
6506 frame = get_current_frame ();
628fe4e4 6507 gdbarch = get_frame_arch (frame);
7e324e48 6508 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6509
488f131b 6510 /* If stepping through a line, keep going if still within it.
c906108c 6511
488f131b
JB
6512 Note that step_range_end is the address of the first instruction
6513 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6514 within it!
6515
6516 Note also that during reverse execution, we may be stepping
6517 through a function epilogue and therefore must detect when
6518 the current-frame changes in the middle of a line. */
6519
ce4c476a 6520 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6521 && (execution_direction != EXEC_REVERSE
388a8562 6522 || frame_id_eq (get_frame_id (frame),
16c381f0 6523 ecs->event_thread->control.step_frame_id)))
488f131b 6524 {
527159b7 6525 if (debug_infrun)
5af949e3
UW
6526 fprintf_unfiltered
6527 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6528 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6529 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6530
c1e36e3e
PA
6531 /* Tentatively re-enable range stepping; `resume' disables it if
6532 necessary (e.g., if we're stepping over a breakpoint or we
6533 have software watchpoints). */
6534 ecs->event_thread->control.may_range_step = 1;
6535
b2175913
MS
6536 /* When stepping backward, stop at beginning of line range
6537 (unless it's the function entry point, in which case
6538 keep going back to the call point). */
16c381f0 6539 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6540 && stop_pc != ecs->stop_func_start
6541 && execution_direction == EXEC_REVERSE)
bdc36728 6542 end_stepping_range (ecs);
b2175913
MS
6543 else
6544 keep_going (ecs);
6545
488f131b
JB
6546 return;
6547 }
c5aa993b 6548
488f131b 6549 /* We stepped out of the stepping range. */
c906108c 6550
488f131b 6551 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6552 loader dynamic symbol resolution code...
6553
6554 EXEC_FORWARD: we keep on single stepping until we exit the run
6555 time loader code and reach the callee's address.
6556
6557 EXEC_REVERSE: we've already executed the callee (backward), and
6558 the runtime loader code is handled just like any other
6559 undebuggable function call. Now we need only keep stepping
6560 backward through the trampoline code, and that's handled further
6561 down, so there is nothing for us to do here. */
6562
6563 if (execution_direction != EXEC_REVERSE
16c381f0 6564 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6565 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6566 {
4c8c40e6 6567 CORE_ADDR pc_after_resolver =
568d6575 6568 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6569
527159b7 6570 if (debug_infrun)
3e43a32a
MS
6571 fprintf_unfiltered (gdb_stdlog,
6572 "infrun: stepped into dynsym resolve code\n");
527159b7 6573
488f131b
JB
6574 if (pc_after_resolver)
6575 {
6576 /* Set up a step-resume breakpoint at the address
6577 indicated by SKIP_SOLIB_RESOLVER. */
6578 struct symtab_and_line sr_sal;
abbb1732 6579
fe39c653 6580 init_sal (&sr_sal);
488f131b 6581 sr_sal.pc = pc_after_resolver;
6c95b8df 6582 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6583
a6d9a66e
UW
6584 insert_step_resume_breakpoint_at_sal (gdbarch,
6585 sr_sal, null_frame_id);
c5aa993b 6586 }
c906108c 6587
488f131b
JB
6588 keep_going (ecs);
6589 return;
6590 }
c906108c 6591
16c381f0
JK
6592 if (ecs->event_thread->control.step_range_end != 1
6593 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6594 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6595 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6596 {
527159b7 6597 if (debug_infrun)
3e43a32a
MS
6598 fprintf_unfiltered (gdb_stdlog,
6599 "infrun: stepped into signal trampoline\n");
42edda50 6600 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6601 a signal trampoline (either by a signal being delivered or by
6602 the signal handler returning). Just single-step until the
6603 inferior leaves the trampoline (either by calling the handler
6604 or returning). */
488f131b
JB
6605 keep_going (ecs);
6606 return;
6607 }
c906108c 6608
14132e89
MR
6609 /* If we're in the return path from a shared library trampoline,
6610 we want to proceed through the trampoline when stepping. */
6611 /* macro/2012-04-25: This needs to come before the subroutine
6612 call check below as on some targets return trampolines look
6613 like subroutine calls (MIPS16 return thunks). */
6614 if (gdbarch_in_solib_return_trampoline (gdbarch,
6615 stop_pc, ecs->stop_func_name)
6616 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6617 {
6618 /* Determine where this trampoline returns. */
6619 CORE_ADDR real_stop_pc;
6620
6621 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6622
6623 if (debug_infrun)
6624 fprintf_unfiltered (gdb_stdlog,
6625 "infrun: stepped into solib return tramp\n");
6626
6627 /* Only proceed through if we know where it's going. */
6628 if (real_stop_pc)
6629 {
6630 /* And put the step-breakpoint there and go until there. */
6631 struct symtab_and_line sr_sal;
6632
6633 init_sal (&sr_sal); /* initialize to zeroes */
6634 sr_sal.pc = real_stop_pc;
6635 sr_sal.section = find_pc_overlay (sr_sal.pc);
6636 sr_sal.pspace = get_frame_program_space (frame);
6637
6638 /* Do not specify what the fp should be when we stop since
6639 on some machines the prologue is where the new fp value
6640 is established. */
6641 insert_step_resume_breakpoint_at_sal (gdbarch,
6642 sr_sal, null_frame_id);
6643
6644 /* Restart without fiddling with the step ranges or
6645 other state. */
6646 keep_going (ecs);
6647 return;
6648 }
6649 }
6650
c17eaafe
DJ
6651 /* Check for subroutine calls. The check for the current frame
6652 equalling the step ID is not necessary - the check of the
6653 previous frame's ID is sufficient - but it is a common case and
6654 cheaper than checking the previous frame's ID.
14e60db5
DJ
6655
6656 NOTE: frame_id_eq will never report two invalid frame IDs as
6657 being equal, so to get into this block, both the current and
6658 previous frame must have valid frame IDs. */
005ca36a
JB
6659 /* The outer_frame_id check is a heuristic to detect stepping
6660 through startup code. If we step over an instruction which
6661 sets the stack pointer from an invalid value to a valid value,
6662 we may detect that as a subroutine call from the mythical
6663 "outermost" function. This could be fixed by marking
6664 outermost frames as !stack_p,code_p,special_p. Then the
6665 initial outermost frame, before sp was valid, would
ce6cca6d 6666 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6667 for more. */
edb3359d 6668 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6669 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6670 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6671 ecs->event_thread->control.step_stack_frame_id)
6672 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6673 outer_frame_id)
885eeb5b
PA
6674 || (ecs->event_thread->control.step_start_function
6675 != find_pc_function (stop_pc)))))
488f131b 6676 {
95918acb 6677 CORE_ADDR real_stop_pc;
8fb3e588 6678
527159b7 6679 if (debug_infrun)
8a9de0e4 6680 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6681
b7a084be 6682 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6683 {
6684 /* I presume that step_over_calls is only 0 when we're
6685 supposed to be stepping at the assembly language level
6686 ("stepi"). Just stop. */
388a8562 6687 /* And this works the same backward as frontward. MVS */
bdc36728 6688 end_stepping_range (ecs);
95918acb
AC
6689 return;
6690 }
8fb3e588 6691
388a8562
MS
6692 /* Reverse stepping through solib trampolines. */
6693
6694 if (execution_direction == EXEC_REVERSE
16c381f0 6695 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6696 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6697 || (ecs->stop_func_start == 0
6698 && in_solib_dynsym_resolve_code (stop_pc))))
6699 {
6700 /* Any solib trampoline code can be handled in reverse
6701 by simply continuing to single-step. We have already
6702 executed the solib function (backwards), and a few
6703 steps will take us back through the trampoline to the
6704 caller. */
6705 keep_going (ecs);
6706 return;
6707 }
6708
16c381f0 6709 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6710 {
b2175913
MS
6711 /* We're doing a "next".
6712
6713 Normal (forward) execution: set a breakpoint at the
6714 callee's return address (the address at which the caller
6715 will resume).
6716
6717 Reverse (backward) execution. set the step-resume
6718 breakpoint at the start of the function that we just
6719 stepped into (backwards), and continue to there. When we
6130d0b7 6720 get there, we'll need to single-step back to the caller. */
b2175913
MS
6721
6722 if (execution_direction == EXEC_REVERSE)
6723 {
acf9414f
JK
6724 /* If we're already at the start of the function, we've either
6725 just stepped backward into a single instruction function,
6726 or stepped back out of a signal handler to the first instruction
6727 of the function. Just keep going, which will single-step back
6728 to the caller. */
58c48e72 6729 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6730 {
6731 struct symtab_and_line sr_sal;
6732
6733 /* Normal function call return (static or dynamic). */
6734 init_sal (&sr_sal);
6735 sr_sal.pc = ecs->stop_func_start;
6736 sr_sal.pspace = get_frame_program_space (frame);
6737 insert_step_resume_breakpoint_at_sal (gdbarch,
6738 sr_sal, null_frame_id);
6739 }
b2175913
MS
6740 }
6741 else
568d6575 6742 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6743
8567c30f
AC
6744 keep_going (ecs);
6745 return;
6746 }
a53c66de 6747
95918acb 6748 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6749 calling routine and the real function), locate the real
6750 function. That's what tells us (a) whether we want to step
6751 into it at all, and (b) what prologue we want to run to the
6752 end of, if we do step into it. */
568d6575 6753 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6754 if (real_stop_pc == 0)
568d6575 6755 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6756 if (real_stop_pc != 0)
6757 ecs->stop_func_start = real_stop_pc;
8fb3e588 6758
db5f024e 6759 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6760 {
6761 struct symtab_and_line sr_sal;
abbb1732 6762
1b2bfbb9
RC
6763 init_sal (&sr_sal);
6764 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6765 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6766
a6d9a66e
UW
6767 insert_step_resume_breakpoint_at_sal (gdbarch,
6768 sr_sal, null_frame_id);
8fb3e588
AC
6769 keep_going (ecs);
6770 return;
1b2bfbb9
RC
6771 }
6772
95918acb 6773 /* If we have line number information for the function we are
1bfeeb0f
JL
6774 thinking of stepping into and the function isn't on the skip
6775 list, step into it.
95918acb 6776
8fb3e588
AC
6777 If there are several symtabs at that PC (e.g. with include
6778 files), just want to know whether *any* of them have line
6779 numbers. find_pc_line handles this. */
95918acb
AC
6780 {
6781 struct symtab_and_line tmp_sal;
8fb3e588 6782
95918acb 6783 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6784 if (tmp_sal.line != 0
85817405
JK
6785 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6786 &tmp_sal))
95918acb 6787 {
b2175913 6788 if (execution_direction == EXEC_REVERSE)
568d6575 6789 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6790 else
568d6575 6791 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6792 return;
6793 }
6794 }
6795
6796 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6797 set, we stop the step so that the user has a chance to switch
6798 in assembly mode. */
16c381f0 6799 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6800 && step_stop_if_no_debug)
95918acb 6801 {
bdc36728 6802 end_stepping_range (ecs);
95918acb
AC
6803 return;
6804 }
6805
b2175913
MS
6806 if (execution_direction == EXEC_REVERSE)
6807 {
acf9414f
JK
6808 /* If we're already at the start of the function, we've either just
6809 stepped backward into a single instruction function without line
6810 number info, or stepped back out of a signal handler to the first
6811 instruction of the function without line number info. Just keep
6812 going, which will single-step back to the caller. */
6813 if (ecs->stop_func_start != stop_pc)
6814 {
6815 /* Set a breakpoint at callee's start address.
6816 From there we can step once and be back in the caller. */
6817 struct symtab_and_line sr_sal;
abbb1732 6818
acf9414f
JK
6819 init_sal (&sr_sal);
6820 sr_sal.pc = ecs->stop_func_start;
6821 sr_sal.pspace = get_frame_program_space (frame);
6822 insert_step_resume_breakpoint_at_sal (gdbarch,
6823 sr_sal, null_frame_id);
6824 }
b2175913
MS
6825 }
6826 else
6827 /* Set a breakpoint at callee's return address (the address
6828 at which the caller will resume). */
568d6575 6829 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6830
95918acb 6831 keep_going (ecs);
488f131b 6832 return;
488f131b 6833 }
c906108c 6834
fdd654f3
MS
6835 /* Reverse stepping through solib trampolines. */
6836
6837 if (execution_direction == EXEC_REVERSE
16c381f0 6838 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6839 {
6840 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6841 || (ecs->stop_func_start == 0
6842 && in_solib_dynsym_resolve_code (stop_pc)))
6843 {
6844 /* Any solib trampoline code can be handled in reverse
6845 by simply continuing to single-step. We have already
6846 executed the solib function (backwards), and a few
6847 steps will take us back through the trampoline to the
6848 caller. */
6849 keep_going (ecs);
6850 return;
6851 }
6852 else if (in_solib_dynsym_resolve_code (stop_pc))
6853 {
6854 /* Stepped backward into the solib dynsym resolver.
6855 Set a breakpoint at its start and continue, then
6856 one more step will take us out. */
6857 struct symtab_and_line sr_sal;
abbb1732 6858
fdd654f3
MS
6859 init_sal (&sr_sal);
6860 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6861 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6862 insert_step_resume_breakpoint_at_sal (gdbarch,
6863 sr_sal, null_frame_id);
6864 keep_going (ecs);
6865 return;
6866 }
6867 }
6868
2afb61aa 6869 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6870
1b2bfbb9
RC
6871 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6872 the trampoline processing logic, however, there are some trampolines
6873 that have no names, so we should do trampoline handling first. */
16c381f0 6874 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6875 && ecs->stop_func_name == NULL
2afb61aa 6876 && stop_pc_sal.line == 0)
1b2bfbb9 6877 {
527159b7 6878 if (debug_infrun)
3e43a32a
MS
6879 fprintf_unfiltered (gdb_stdlog,
6880 "infrun: stepped into undebuggable function\n");
527159b7 6881
1b2bfbb9 6882 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6883 undebuggable function (where there is no debugging information
6884 and no line number corresponding to the address where the
1b2bfbb9
RC
6885 inferior stopped). Since we want to skip this kind of code,
6886 we keep going until the inferior returns from this
14e60db5
DJ
6887 function - unless the user has asked us not to (via
6888 set step-mode) or we no longer know how to get back
6889 to the call site. */
6890 if (step_stop_if_no_debug
c7ce8faa 6891 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6892 {
6893 /* If we have no line number and the step-stop-if-no-debug
6894 is set, we stop the step so that the user has a chance to
6895 switch in assembly mode. */
bdc36728 6896 end_stepping_range (ecs);
1b2bfbb9
RC
6897 return;
6898 }
6899 else
6900 {
6901 /* Set a breakpoint at callee's return address (the address
6902 at which the caller will resume). */
568d6575 6903 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6904 keep_going (ecs);
6905 return;
6906 }
6907 }
6908
16c381f0 6909 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6910 {
6911 /* It is stepi or nexti. We always want to stop stepping after
6912 one instruction. */
527159b7 6913 if (debug_infrun)
8a9de0e4 6914 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6915 end_stepping_range (ecs);
1b2bfbb9
RC
6916 return;
6917 }
6918
2afb61aa 6919 if (stop_pc_sal.line == 0)
488f131b
JB
6920 {
6921 /* We have no line number information. That means to stop
6922 stepping (does this always happen right after one instruction,
6923 when we do "s" in a function with no line numbers,
6924 or can this happen as a result of a return or longjmp?). */
527159b7 6925 if (debug_infrun)
8a9de0e4 6926 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6927 end_stepping_range (ecs);
488f131b
JB
6928 return;
6929 }
c906108c 6930
edb3359d
DJ
6931 /* Look for "calls" to inlined functions, part one. If the inline
6932 frame machinery detected some skipped call sites, we have entered
6933 a new inline function. */
6934
6935 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6936 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6937 && inline_skipped_frames (ecs->ptid))
6938 {
6939 struct symtab_and_line call_sal;
6940
6941 if (debug_infrun)
6942 fprintf_unfiltered (gdb_stdlog,
6943 "infrun: stepped into inlined function\n");
6944
6945 find_frame_sal (get_current_frame (), &call_sal);
6946
16c381f0 6947 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6948 {
6949 /* For "step", we're going to stop. But if the call site
6950 for this inlined function is on the same source line as
6951 we were previously stepping, go down into the function
6952 first. Otherwise stop at the call site. */
6953
6954 if (call_sal.line == ecs->event_thread->current_line
6955 && call_sal.symtab == ecs->event_thread->current_symtab)
6956 step_into_inline_frame (ecs->ptid);
6957
bdc36728 6958 end_stepping_range (ecs);
edb3359d
DJ
6959 return;
6960 }
6961 else
6962 {
6963 /* For "next", we should stop at the call site if it is on a
6964 different source line. Otherwise continue through the
6965 inlined function. */
6966 if (call_sal.line == ecs->event_thread->current_line
6967 && call_sal.symtab == ecs->event_thread->current_symtab)
6968 keep_going (ecs);
6969 else
bdc36728 6970 end_stepping_range (ecs);
edb3359d
DJ
6971 return;
6972 }
6973 }
6974
6975 /* Look for "calls" to inlined functions, part two. If we are still
6976 in the same real function we were stepping through, but we have
6977 to go further up to find the exact frame ID, we are stepping
6978 through a more inlined call beyond its call site. */
6979
6980 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6981 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6982 ecs->event_thread->control.step_frame_id)
edb3359d 6983 && stepped_in_from (get_current_frame (),
16c381f0 6984 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6985 {
6986 if (debug_infrun)
6987 fprintf_unfiltered (gdb_stdlog,
6988 "infrun: stepping through inlined function\n");
6989
16c381f0 6990 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6991 keep_going (ecs);
6992 else
bdc36728 6993 end_stepping_range (ecs);
edb3359d
DJ
6994 return;
6995 }
6996
2afb61aa 6997 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6998 && (ecs->event_thread->current_line != stop_pc_sal.line
6999 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
7000 {
7001 /* We are at the start of a different line. So stop. Note that
7002 we don't stop if we step into the middle of a different line.
7003 That is said to make things like for (;;) statements work
7004 better. */
527159b7 7005 if (debug_infrun)
3e43a32a
MS
7006 fprintf_unfiltered (gdb_stdlog,
7007 "infrun: stepped to a different line\n");
bdc36728 7008 end_stepping_range (ecs);
488f131b
JB
7009 return;
7010 }
c906108c 7011
488f131b 7012 /* We aren't done stepping.
c906108c 7013
488f131b
JB
7014 Optimize by setting the stepping range to the line.
7015 (We might not be in the original line, but if we entered a
7016 new line in mid-statement, we continue stepping. This makes
7017 things like for(;;) statements work better.) */
c906108c 7018
16c381f0
JK
7019 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7020 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7021 ecs->event_thread->control.may_range_step = 1;
edb3359d 7022 set_step_info (frame, stop_pc_sal);
488f131b 7023
527159b7 7024 if (debug_infrun)
8a9de0e4 7025 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7026 keep_going (ecs);
104c1213
JM
7027}
7028
c447ac0b
PA
7029/* In all-stop mode, if we're currently stepping but have stopped in
7030 some other thread, we may need to switch back to the stepped
7031 thread. Returns true we set the inferior running, false if we left
7032 it stopped (and the event needs further processing). */
7033
7034static int
7035switch_back_to_stepped_thread (struct execution_control_state *ecs)
7036{
fbea99ea 7037 if (!target_is_non_stop_p ())
c447ac0b
PA
7038 {
7039 struct thread_info *tp;
99619bea
PA
7040 struct thread_info *stepping_thread;
7041
7042 /* If any thread is blocked on some internal breakpoint, and we
7043 simply need to step over that breakpoint to get it going
7044 again, do that first. */
7045
7046 /* However, if we see an event for the stepping thread, then we
7047 know all other threads have been moved past their breakpoints
7048 already. Let the caller check whether the step is finished,
7049 etc., before deciding to move it past a breakpoint. */
7050 if (ecs->event_thread->control.step_range_end != 0)
7051 return 0;
7052
7053 /* Check if the current thread is blocked on an incomplete
7054 step-over, interrupted by a random signal. */
7055 if (ecs->event_thread->control.trap_expected
7056 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7057 {
99619bea
PA
7058 if (debug_infrun)
7059 {
7060 fprintf_unfiltered (gdb_stdlog,
7061 "infrun: need to finish step-over of [%s]\n",
7062 target_pid_to_str (ecs->event_thread->ptid));
7063 }
7064 keep_going (ecs);
7065 return 1;
7066 }
2adfaa28 7067
99619bea
PA
7068 /* Check if the current thread is blocked by a single-step
7069 breakpoint of another thread. */
7070 if (ecs->hit_singlestep_breakpoint)
7071 {
7072 if (debug_infrun)
7073 {
7074 fprintf_unfiltered (gdb_stdlog,
7075 "infrun: need to step [%s] over single-step "
7076 "breakpoint\n",
7077 target_pid_to_str (ecs->ptid));
7078 }
7079 keep_going (ecs);
7080 return 1;
7081 }
7082
4d9d9d04
PA
7083 /* If this thread needs yet another step-over (e.g., stepping
7084 through a delay slot), do it first before moving on to
7085 another thread. */
7086 if (thread_still_needs_step_over (ecs->event_thread))
7087 {
7088 if (debug_infrun)
7089 {
7090 fprintf_unfiltered (gdb_stdlog,
7091 "infrun: thread [%s] still needs step-over\n",
7092 target_pid_to_str (ecs->event_thread->ptid));
7093 }
7094 keep_going (ecs);
7095 return 1;
7096 }
70509625 7097
483805cf
PA
7098 /* If scheduler locking applies even if not stepping, there's no
7099 need to walk over threads. Above we've checked whether the
7100 current thread is stepping. If some other thread not the
7101 event thread is stepping, then it must be that scheduler
7102 locking is not in effect. */
856e7dd6 7103 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7104 return 0;
7105
4d9d9d04
PA
7106 /* Otherwise, we no longer expect a trap in the current thread.
7107 Clear the trap_expected flag before switching back -- this is
7108 what keep_going does as well, if we call it. */
7109 ecs->event_thread->control.trap_expected = 0;
7110
7111 /* Likewise, clear the signal if it should not be passed. */
7112 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7113 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7114
7115 /* Do all pending step-overs before actually proceeding with
483805cf 7116 step/next/etc. */
4d9d9d04
PA
7117 if (start_step_over ())
7118 {
7119 prepare_to_wait (ecs);
7120 return 1;
7121 }
7122
7123 /* Look for the stepping/nexting thread. */
483805cf 7124 stepping_thread = NULL;
4d9d9d04 7125
034f788c 7126 ALL_NON_EXITED_THREADS (tp)
483805cf 7127 {
fbea99ea
PA
7128 /* Ignore threads of processes the caller is not
7129 resuming. */
483805cf 7130 if (!sched_multi
1afd5965 7131 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7132 continue;
7133
7134 /* When stepping over a breakpoint, we lock all threads
7135 except the one that needs to move past the breakpoint.
7136 If a non-event thread has this set, the "incomplete
7137 step-over" check above should have caught it earlier. */
372316f1
PA
7138 if (tp->control.trap_expected)
7139 {
7140 internal_error (__FILE__, __LINE__,
7141 "[%s] has inconsistent state: "
7142 "trap_expected=%d\n",
7143 target_pid_to_str (tp->ptid),
7144 tp->control.trap_expected);
7145 }
483805cf
PA
7146
7147 /* Did we find the stepping thread? */
7148 if (tp->control.step_range_end)
7149 {
7150 /* Yep. There should only one though. */
7151 gdb_assert (stepping_thread == NULL);
7152
7153 /* The event thread is handled at the top, before we
7154 enter this loop. */
7155 gdb_assert (tp != ecs->event_thread);
7156
7157 /* If some thread other than the event thread is
7158 stepping, then scheduler locking can't be in effect,
7159 otherwise we wouldn't have resumed the current event
7160 thread in the first place. */
856e7dd6 7161 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7162
7163 stepping_thread = tp;
7164 }
99619bea
PA
7165 }
7166
483805cf 7167 if (stepping_thread != NULL)
99619bea 7168 {
c447ac0b
PA
7169 if (debug_infrun)
7170 fprintf_unfiltered (gdb_stdlog,
7171 "infrun: switching back to stepped thread\n");
7172
2ac7589c
PA
7173 if (keep_going_stepped_thread (stepping_thread))
7174 {
7175 prepare_to_wait (ecs);
7176 return 1;
7177 }
7178 }
7179 }
2adfaa28 7180
2ac7589c
PA
7181 return 0;
7182}
2adfaa28 7183
2ac7589c
PA
7184/* Set a previously stepped thread back to stepping. Returns true on
7185 success, false if the resume is not possible (e.g., the thread
7186 vanished). */
7187
7188static int
7189keep_going_stepped_thread (struct thread_info *tp)
7190{
7191 struct frame_info *frame;
2ac7589c
PA
7192 struct execution_control_state ecss;
7193 struct execution_control_state *ecs = &ecss;
2adfaa28 7194
2ac7589c
PA
7195 /* If the stepping thread exited, then don't try to switch back and
7196 resume it, which could fail in several different ways depending
7197 on the target. Instead, just keep going.
2adfaa28 7198
2ac7589c
PA
7199 We can find a stepping dead thread in the thread list in two
7200 cases:
2adfaa28 7201
2ac7589c
PA
7202 - The target supports thread exit events, and when the target
7203 tries to delete the thread from the thread list, inferior_ptid
7204 pointed at the exiting thread. In such case, calling
7205 delete_thread does not really remove the thread from the list;
7206 instead, the thread is left listed, with 'exited' state.
64ce06e4 7207
2ac7589c
PA
7208 - The target's debug interface does not support thread exit
7209 events, and so we have no idea whatsoever if the previously
7210 stepping thread is still alive. For that reason, we need to
7211 synchronously query the target now. */
2adfaa28 7212
2ac7589c
PA
7213 if (is_exited (tp->ptid)
7214 || !target_thread_alive (tp->ptid))
7215 {
7216 if (debug_infrun)
7217 fprintf_unfiltered (gdb_stdlog,
7218 "infrun: not resuming previously "
7219 "stepped thread, it has vanished\n");
7220
7221 delete_thread (tp->ptid);
7222 return 0;
c447ac0b 7223 }
2ac7589c
PA
7224
7225 if (debug_infrun)
7226 fprintf_unfiltered (gdb_stdlog,
7227 "infrun: resuming previously stepped thread\n");
7228
7229 reset_ecs (ecs, tp);
7230 switch_to_thread (tp->ptid);
7231
7232 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7233 frame = get_current_frame ();
2ac7589c
PA
7234
7235 /* If the PC of the thread we were trying to single-step has
7236 changed, then that thread has trapped or been signaled, but the
7237 event has not been reported to GDB yet. Re-poll the target
7238 looking for this particular thread's event (i.e. temporarily
7239 enable schedlock) by:
7240
7241 - setting a break at the current PC
7242 - resuming that particular thread, only (by setting trap
7243 expected)
7244
7245 This prevents us continuously moving the single-step breakpoint
7246 forward, one instruction at a time, overstepping. */
7247
7248 if (stop_pc != tp->prev_pc)
7249 {
7250 ptid_t resume_ptid;
7251
7252 if (debug_infrun)
7253 fprintf_unfiltered (gdb_stdlog,
7254 "infrun: expected thread advanced also (%s -> %s)\n",
7255 paddress (target_gdbarch (), tp->prev_pc),
7256 paddress (target_gdbarch (), stop_pc));
7257
7258 /* Clear the info of the previous step-over, as it's no longer
7259 valid (if the thread was trying to step over a breakpoint, it
7260 has already succeeded). It's what keep_going would do too,
7261 if we called it. Do this before trying to insert the sss
7262 breakpoint, otherwise if we were previously trying to step
7263 over this exact address in another thread, the breakpoint is
7264 skipped. */
7265 clear_step_over_info ();
7266 tp->control.trap_expected = 0;
7267
7268 insert_single_step_breakpoint (get_frame_arch (frame),
7269 get_frame_address_space (frame),
7270 stop_pc);
7271
372316f1 7272 tp->resumed = 1;
fbea99ea 7273 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7274 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7275 }
7276 else
7277 {
7278 if (debug_infrun)
7279 fprintf_unfiltered (gdb_stdlog,
7280 "infrun: expected thread still hasn't advanced\n");
7281
7282 keep_going_pass_signal (ecs);
7283 }
7284 return 1;
c447ac0b
PA
7285}
7286
8b061563
PA
7287/* Is thread TP in the middle of (software or hardware)
7288 single-stepping? (Note the result of this function must never be
7289 passed directly as target_resume's STEP parameter.) */
104c1213 7290
a289b8f6 7291static int
b3444185 7292currently_stepping (struct thread_info *tp)
a7212384 7293{
8358c15c
JK
7294 return ((tp->control.step_range_end
7295 && tp->control.step_resume_breakpoint == NULL)
7296 || tp->control.trap_expected
af48d08f 7297 || tp->stepped_breakpoint
8358c15c 7298 || bpstat_should_step ());
a7212384
UW
7299}
7300
b2175913
MS
7301/* Inferior has stepped into a subroutine call with source code that
7302 we should not step over. Do step to the first line of code in
7303 it. */
c2c6d25f
JM
7304
7305static void
568d6575
UW
7306handle_step_into_function (struct gdbarch *gdbarch,
7307 struct execution_control_state *ecs)
c2c6d25f 7308{
43f3e411 7309 struct compunit_symtab *cust;
2afb61aa 7310 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7311
7e324e48
GB
7312 fill_in_stop_func (gdbarch, ecs);
7313
43f3e411
DE
7314 cust = find_pc_compunit_symtab (stop_pc);
7315 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7316 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7317 ecs->stop_func_start);
c2c6d25f 7318
2afb61aa 7319 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7320 /* Use the step_resume_break to step until the end of the prologue,
7321 even if that involves jumps (as it seems to on the vax under
7322 4.2). */
7323 /* If the prologue ends in the middle of a source line, continue to
7324 the end of that source line (if it is still within the function).
7325 Otherwise, just go to end of prologue. */
2afb61aa
PA
7326 if (stop_func_sal.end
7327 && stop_func_sal.pc != ecs->stop_func_start
7328 && stop_func_sal.end < ecs->stop_func_end)
7329 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7330
2dbd5e30
KB
7331 /* Architectures which require breakpoint adjustment might not be able
7332 to place a breakpoint at the computed address. If so, the test
7333 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7334 ecs->stop_func_start to an address at which a breakpoint may be
7335 legitimately placed.
8fb3e588 7336
2dbd5e30
KB
7337 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7338 made, GDB will enter an infinite loop when stepping through
7339 optimized code consisting of VLIW instructions which contain
7340 subinstructions corresponding to different source lines. On
7341 FR-V, it's not permitted to place a breakpoint on any but the
7342 first subinstruction of a VLIW instruction. When a breakpoint is
7343 set, GDB will adjust the breakpoint address to the beginning of
7344 the VLIW instruction. Thus, we need to make the corresponding
7345 adjustment here when computing the stop address. */
8fb3e588 7346
568d6575 7347 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7348 {
7349 ecs->stop_func_start
568d6575 7350 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7351 ecs->stop_func_start);
2dbd5e30
KB
7352 }
7353
c2c6d25f
JM
7354 if (ecs->stop_func_start == stop_pc)
7355 {
7356 /* We are already there: stop now. */
bdc36728 7357 end_stepping_range (ecs);
c2c6d25f
JM
7358 return;
7359 }
7360 else
7361 {
7362 /* Put the step-breakpoint there and go until there. */
fe39c653 7363 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7364 sr_sal.pc = ecs->stop_func_start;
7365 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7366 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7367
c2c6d25f 7368 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7369 some machines the prologue is where the new fp value is
7370 established. */
a6d9a66e 7371 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7372
7373 /* And make sure stepping stops right away then. */
16c381f0
JK
7374 ecs->event_thread->control.step_range_end
7375 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7376 }
7377 keep_going (ecs);
7378}
d4f3574e 7379
b2175913
MS
7380/* Inferior has stepped backward into a subroutine call with source
7381 code that we should not step over. Do step to the beginning of the
7382 last line of code in it. */
7383
7384static void
568d6575
UW
7385handle_step_into_function_backward (struct gdbarch *gdbarch,
7386 struct execution_control_state *ecs)
b2175913 7387{
43f3e411 7388 struct compunit_symtab *cust;
167e4384 7389 struct symtab_and_line stop_func_sal;
b2175913 7390
7e324e48
GB
7391 fill_in_stop_func (gdbarch, ecs);
7392
43f3e411
DE
7393 cust = find_pc_compunit_symtab (stop_pc);
7394 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7395 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7396 ecs->stop_func_start);
7397
7398 stop_func_sal = find_pc_line (stop_pc, 0);
7399
7400 /* OK, we're just going to keep stepping here. */
7401 if (stop_func_sal.pc == stop_pc)
7402 {
7403 /* We're there already. Just stop stepping now. */
bdc36728 7404 end_stepping_range (ecs);
b2175913
MS
7405 }
7406 else
7407 {
7408 /* Else just reset the step range and keep going.
7409 No step-resume breakpoint, they don't work for
7410 epilogues, which can have multiple entry paths. */
16c381f0
JK
7411 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7412 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7413 keep_going (ecs);
7414 }
7415 return;
7416}
7417
d3169d93 7418/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7419 This is used to both functions and to skip over code. */
7420
7421static void
2c03e5be
PA
7422insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7423 struct symtab_and_line sr_sal,
7424 struct frame_id sr_id,
7425 enum bptype sr_type)
44cbf7b5 7426{
611c83ae
PA
7427 /* There should never be more than one step-resume or longjmp-resume
7428 breakpoint per thread, so we should never be setting a new
44cbf7b5 7429 step_resume_breakpoint when one is already active. */
8358c15c 7430 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7431 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7432
7433 if (debug_infrun)
7434 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7435 "infrun: inserting step-resume breakpoint at %s\n",
7436 paddress (gdbarch, sr_sal.pc));
d3169d93 7437
8358c15c 7438 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7439 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7440}
7441
9da8c2a0 7442void
2c03e5be
PA
7443insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7444 struct symtab_and_line sr_sal,
7445 struct frame_id sr_id)
7446{
7447 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7448 sr_sal, sr_id,
7449 bp_step_resume);
44cbf7b5 7450}
7ce450bd 7451
2c03e5be
PA
7452/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7453 This is used to skip a potential signal handler.
7ce450bd 7454
14e60db5
DJ
7455 This is called with the interrupted function's frame. The signal
7456 handler, when it returns, will resume the interrupted function at
7457 RETURN_FRAME.pc. */
d303a6c7
AC
7458
7459static void
2c03e5be 7460insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7461{
7462 struct symtab_and_line sr_sal;
a6d9a66e 7463 struct gdbarch *gdbarch;
d303a6c7 7464
f4c1edd8 7465 gdb_assert (return_frame != NULL);
d303a6c7
AC
7466 init_sal (&sr_sal); /* initialize to zeros */
7467
a6d9a66e 7468 gdbarch = get_frame_arch (return_frame);
568d6575 7469 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7470 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7471 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7472
2c03e5be
PA
7473 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7474 get_stack_frame_id (return_frame),
7475 bp_hp_step_resume);
d303a6c7
AC
7476}
7477
2c03e5be
PA
7478/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7479 is used to skip a function after stepping into it (for "next" or if
7480 the called function has no debugging information).
14e60db5
DJ
7481
7482 The current function has almost always been reached by single
7483 stepping a call or return instruction. NEXT_FRAME belongs to the
7484 current function, and the breakpoint will be set at the caller's
7485 resume address.
7486
7487 This is a separate function rather than reusing
2c03e5be 7488 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7489 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7490 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7491
7492static void
7493insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7494{
7495 struct symtab_and_line sr_sal;
a6d9a66e 7496 struct gdbarch *gdbarch;
14e60db5
DJ
7497
7498 /* We shouldn't have gotten here if we don't know where the call site
7499 is. */
c7ce8faa 7500 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7501
7502 init_sal (&sr_sal); /* initialize to zeros */
7503
a6d9a66e 7504 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7505 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7506 frame_unwind_caller_pc (next_frame));
14e60db5 7507 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7508 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7509
a6d9a66e 7510 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7511 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7512}
7513
611c83ae
PA
7514/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7515 new breakpoint at the target of a jmp_buf. The handling of
7516 longjmp-resume uses the same mechanisms used for handling
7517 "step-resume" breakpoints. */
7518
7519static void
a6d9a66e 7520insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7521{
e81a37f7
TT
7522 /* There should never be more than one longjmp-resume breakpoint per
7523 thread, so we should never be setting a new
611c83ae 7524 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7525 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7526
7527 if (debug_infrun)
7528 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7529 "infrun: inserting longjmp-resume breakpoint at %s\n",
7530 paddress (gdbarch, pc));
611c83ae 7531
e81a37f7 7532 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7533 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7534}
7535
186c406b
TT
7536/* Insert an exception resume breakpoint. TP is the thread throwing
7537 the exception. The block B is the block of the unwinder debug hook
7538 function. FRAME is the frame corresponding to the call to this
7539 function. SYM is the symbol of the function argument holding the
7540 target PC of the exception. */
7541
7542static void
7543insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7544 const struct block *b,
186c406b
TT
7545 struct frame_info *frame,
7546 struct symbol *sym)
7547{
492d29ea 7548 TRY
186c406b 7549 {
63e43d3a 7550 struct block_symbol vsym;
186c406b
TT
7551 struct value *value;
7552 CORE_ADDR handler;
7553 struct breakpoint *bp;
7554
63e43d3a
PMR
7555 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7556 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7557 /* If the value was optimized out, revert to the old behavior. */
7558 if (! value_optimized_out (value))
7559 {
7560 handler = value_as_address (value);
7561
7562 if (debug_infrun)
7563 fprintf_unfiltered (gdb_stdlog,
7564 "infrun: exception resume at %lx\n",
7565 (unsigned long) handler);
7566
7567 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7568 handler, bp_exception_resume);
c70a6932
JK
7569
7570 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7571 frame = NULL;
7572
5d5658a1 7573 bp->thread = tp->global_num;
186c406b
TT
7574 inferior_thread ()->control.exception_resume_breakpoint = bp;
7575 }
7576 }
492d29ea
PA
7577 CATCH (e, RETURN_MASK_ERROR)
7578 {
7579 /* We want to ignore errors here. */
7580 }
7581 END_CATCH
186c406b
TT
7582}
7583
28106bc2
SDJ
7584/* A helper for check_exception_resume that sets an
7585 exception-breakpoint based on a SystemTap probe. */
7586
7587static void
7588insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7589 const struct bound_probe *probe,
28106bc2
SDJ
7590 struct frame_info *frame)
7591{
7592 struct value *arg_value;
7593 CORE_ADDR handler;
7594 struct breakpoint *bp;
7595
7596 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7597 if (!arg_value)
7598 return;
7599
7600 handler = value_as_address (arg_value);
7601
7602 if (debug_infrun)
7603 fprintf_unfiltered (gdb_stdlog,
7604 "infrun: exception resume at %s\n",
6bac7473 7605 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7606 handler));
7607
7608 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7609 handler, bp_exception_resume);
5d5658a1 7610 bp->thread = tp->global_num;
28106bc2
SDJ
7611 inferior_thread ()->control.exception_resume_breakpoint = bp;
7612}
7613
186c406b
TT
7614/* This is called when an exception has been intercepted. Check to
7615 see whether the exception's destination is of interest, and if so,
7616 set an exception resume breakpoint there. */
7617
7618static void
7619check_exception_resume (struct execution_control_state *ecs,
28106bc2 7620 struct frame_info *frame)
186c406b 7621{
729662a5 7622 struct bound_probe probe;
28106bc2
SDJ
7623 struct symbol *func;
7624
7625 /* First see if this exception unwinding breakpoint was set via a
7626 SystemTap probe point. If so, the probe has two arguments: the
7627 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7628 set a breakpoint there. */
6bac7473 7629 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7630 if (probe.probe)
28106bc2 7631 {
729662a5 7632 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7633 return;
7634 }
7635
7636 func = get_frame_function (frame);
7637 if (!func)
7638 return;
186c406b 7639
492d29ea 7640 TRY
186c406b 7641 {
3977b71f 7642 const struct block *b;
8157b174 7643 struct block_iterator iter;
186c406b
TT
7644 struct symbol *sym;
7645 int argno = 0;
7646
7647 /* The exception breakpoint is a thread-specific breakpoint on
7648 the unwinder's debug hook, declared as:
7649
7650 void _Unwind_DebugHook (void *cfa, void *handler);
7651
7652 The CFA argument indicates the frame to which control is
7653 about to be transferred. HANDLER is the destination PC.
7654
7655 We ignore the CFA and set a temporary breakpoint at HANDLER.
7656 This is not extremely efficient but it avoids issues in gdb
7657 with computing the DWARF CFA, and it also works even in weird
7658 cases such as throwing an exception from inside a signal
7659 handler. */
7660
7661 b = SYMBOL_BLOCK_VALUE (func);
7662 ALL_BLOCK_SYMBOLS (b, iter, sym)
7663 {
7664 if (!SYMBOL_IS_ARGUMENT (sym))
7665 continue;
7666
7667 if (argno == 0)
7668 ++argno;
7669 else
7670 {
7671 insert_exception_resume_breakpoint (ecs->event_thread,
7672 b, frame, sym);
7673 break;
7674 }
7675 }
7676 }
492d29ea
PA
7677 CATCH (e, RETURN_MASK_ERROR)
7678 {
7679 }
7680 END_CATCH
186c406b
TT
7681}
7682
104c1213 7683static void
22bcd14b 7684stop_waiting (struct execution_control_state *ecs)
104c1213 7685{
527159b7 7686 if (debug_infrun)
22bcd14b 7687 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7688
31e77af2
PA
7689 clear_step_over_info ();
7690
cd0fc7c3
SS
7691 /* Let callers know we don't want to wait for the inferior anymore. */
7692 ecs->wait_some_more = 0;
fbea99ea
PA
7693
7694 /* If all-stop, but the target is always in non-stop mode, stop all
7695 threads now that we're presenting the stop to the user. */
7696 if (!non_stop && target_is_non_stop_p ())
7697 stop_all_threads ();
cd0fc7c3
SS
7698}
7699
4d9d9d04
PA
7700/* Like keep_going, but passes the signal to the inferior, even if the
7701 signal is set to nopass. */
d4f3574e
SS
7702
7703static void
4d9d9d04 7704keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7705{
c4dbc9af
PA
7706 /* Make sure normal_stop is called if we get a QUIT handled before
7707 reaching resume. */
7708 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7709
4d9d9d04 7710 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7711 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7712
d4f3574e 7713 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7714 ecs->event_thread->prev_pc
7715 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7716
4d9d9d04 7717 if (ecs->event_thread->control.trap_expected)
d4f3574e 7718 {
4d9d9d04
PA
7719 struct thread_info *tp = ecs->event_thread;
7720
7721 if (debug_infrun)
7722 fprintf_unfiltered (gdb_stdlog,
7723 "infrun: %s has trap_expected set, "
7724 "resuming to collect trap\n",
7725 target_pid_to_str (tp->ptid));
7726
a9ba6bae
PA
7727 /* We haven't yet gotten our trap, and either: intercepted a
7728 non-signal event (e.g., a fork); or took a signal which we
7729 are supposed to pass through to the inferior. Simply
7730 continue. */
c4dbc9af 7731 discard_cleanups (old_cleanups);
64ce06e4 7732 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7733 }
372316f1
PA
7734 else if (step_over_info_valid_p ())
7735 {
7736 /* Another thread is stepping over a breakpoint in-line. If
7737 this thread needs a step-over too, queue the request. In
7738 either case, this resume must be deferred for later. */
7739 struct thread_info *tp = ecs->event_thread;
7740
7741 if (ecs->hit_singlestep_breakpoint
7742 || thread_still_needs_step_over (tp))
7743 {
7744 if (debug_infrun)
7745 fprintf_unfiltered (gdb_stdlog,
7746 "infrun: step-over already in progress: "
7747 "step-over for %s deferred\n",
7748 target_pid_to_str (tp->ptid));
7749 thread_step_over_chain_enqueue (tp);
7750 }
7751 else
7752 {
7753 if (debug_infrun)
7754 fprintf_unfiltered (gdb_stdlog,
7755 "infrun: step-over in progress: "
7756 "resume of %s deferred\n",
7757 target_pid_to_str (tp->ptid));
7758 }
7759
7760 discard_cleanups (old_cleanups);
7761 }
d4f3574e
SS
7762 else
7763 {
31e77af2 7764 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7765 int remove_bp;
7766 int remove_wps;
8d297bbf 7767 step_over_what step_what;
31e77af2 7768
d4f3574e 7769 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7770 anyway (if we got a signal, the user asked it be passed to
7771 the child)
7772 -- or --
7773 We got our expected trap, but decided we should resume from
7774 it.
d4f3574e 7775
a9ba6bae 7776 We're going to run this baby now!
d4f3574e 7777
c36b740a
VP
7778 Note that insert_breakpoints won't try to re-insert
7779 already inserted breakpoints. Therefore, we don't
7780 care if breakpoints were already inserted, or not. */
a9ba6bae 7781
31e77af2
PA
7782 /* If we need to step over a breakpoint, and we're not using
7783 displaced stepping to do so, insert all breakpoints
7784 (watchpoints, etc.) but the one we're stepping over, step one
7785 instruction, and then re-insert the breakpoint when that step
7786 is finished. */
963f9c80 7787
6c4cfb24
PA
7788 step_what = thread_still_needs_step_over (ecs->event_thread);
7789
963f9c80 7790 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7791 || (step_what & STEP_OVER_BREAKPOINT));
7792 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7793
cb71640d
PA
7794 /* We can't use displaced stepping if we need to step past a
7795 watchpoint. The instruction copied to the scratch pad would
7796 still trigger the watchpoint. */
7797 if (remove_bp
3fc8eb30 7798 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7799 {
31e77af2 7800 set_step_over_info (get_regcache_aspace (regcache),
21edc42f
YQ
7801 regcache_read_pc (regcache), remove_wps,
7802 ecs->event_thread->global_num);
45e8c884 7803 }
963f9c80 7804 else if (remove_wps)
21edc42f 7805 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7806
7807 /* If we now need to do an in-line step-over, we need to stop
7808 all other threads. Note this must be done before
7809 insert_breakpoints below, because that removes the breakpoint
7810 we're about to step over, otherwise other threads could miss
7811 it. */
fbea99ea 7812 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7813 stop_all_threads ();
abbb1732 7814
31e77af2 7815 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7816 TRY
31e77af2
PA
7817 {
7818 insert_breakpoints ();
7819 }
492d29ea 7820 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7821 {
7822 exception_print (gdb_stderr, e);
22bcd14b 7823 stop_waiting (ecs);
de1fe8c8 7824 discard_cleanups (old_cleanups);
31e77af2 7825 return;
d4f3574e 7826 }
492d29ea 7827 END_CATCH
d4f3574e 7828
963f9c80 7829 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7830
c4dbc9af 7831 discard_cleanups (old_cleanups);
64ce06e4 7832 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7833 }
7834
488f131b 7835 prepare_to_wait (ecs);
d4f3574e
SS
7836}
7837
4d9d9d04
PA
7838/* Called when we should continue running the inferior, because the
7839 current event doesn't cause a user visible stop. This does the
7840 resuming part; waiting for the next event is done elsewhere. */
7841
7842static void
7843keep_going (struct execution_control_state *ecs)
7844{
7845 if (ecs->event_thread->control.trap_expected
7846 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7847 ecs->event_thread->control.trap_expected = 0;
7848
7849 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7850 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7851 keep_going_pass_signal (ecs);
7852}
7853
104c1213
JM
7854/* This function normally comes after a resume, before
7855 handle_inferior_event exits. It takes care of any last bits of
7856 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7857
104c1213
JM
7858static void
7859prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7860{
527159b7 7861 if (debug_infrun)
8a9de0e4 7862 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7863
104c1213 7864 ecs->wait_some_more = 1;
0b333c5e
PA
7865
7866 if (!target_is_async_p ())
7867 mark_infrun_async_event_handler ();
c906108c 7868}
11cf8741 7869
fd664c91 7870/* We are done with the step range of a step/next/si/ni command.
b57bacec 7871 Called once for each n of a "step n" operation. */
fd664c91
PA
7872
7873static void
bdc36728 7874end_stepping_range (struct execution_control_state *ecs)
fd664c91 7875{
bdc36728 7876 ecs->event_thread->control.stop_step = 1;
bdc36728 7877 stop_waiting (ecs);
fd664c91
PA
7878}
7879
33d62d64
JK
7880/* Several print_*_reason functions to print why the inferior has stopped.
7881 We always print something when the inferior exits, or receives a signal.
7882 The rest of the cases are dealt with later on in normal_stop and
7883 print_it_typical. Ideally there should be a call to one of these
7884 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7885 stop_waiting is called.
33d62d64 7886
fd664c91
PA
7887 Note that we don't call these directly, instead we delegate that to
7888 the interpreters, through observers. Interpreters then call these
7889 with whatever uiout is right. */
33d62d64 7890
fd664c91
PA
7891void
7892print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7893{
fd664c91 7894 /* For CLI-like interpreters, print nothing. */
33d62d64 7895
fd664c91
PA
7896 if (ui_out_is_mi_like_p (uiout))
7897 {
7898 ui_out_field_string (uiout, "reason",
7899 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7900 }
7901}
33d62d64 7902
fd664c91
PA
7903void
7904print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7905{
33d62d64
JK
7906 annotate_signalled ();
7907 if (ui_out_is_mi_like_p (uiout))
7908 ui_out_field_string
7909 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7910 ui_out_text (uiout, "\nProgram terminated with signal ");
7911 annotate_signal_name ();
7912 ui_out_field_string (uiout, "signal-name",
2ea28649 7913 gdb_signal_to_name (siggnal));
33d62d64
JK
7914 annotate_signal_name_end ();
7915 ui_out_text (uiout, ", ");
7916 annotate_signal_string ();
7917 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7918 gdb_signal_to_string (siggnal));
33d62d64
JK
7919 annotate_signal_string_end ();
7920 ui_out_text (uiout, ".\n");
7921 ui_out_text (uiout, "The program no longer exists.\n");
7922}
7923
fd664c91
PA
7924void
7925print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7926{
fda326dd
TT
7927 struct inferior *inf = current_inferior ();
7928 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7929
33d62d64
JK
7930 annotate_exited (exitstatus);
7931 if (exitstatus)
7932 {
7933 if (ui_out_is_mi_like_p (uiout))
7934 ui_out_field_string (uiout, "reason",
7935 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7936 ui_out_text (uiout, "[Inferior ");
7937 ui_out_text (uiout, plongest (inf->num));
7938 ui_out_text (uiout, " (");
7939 ui_out_text (uiout, pidstr);
7940 ui_out_text (uiout, ") exited with code ");
33d62d64 7941 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7942 ui_out_text (uiout, "]\n");
33d62d64
JK
7943 }
7944 else
11cf8741 7945 {
9dc5e2a9 7946 if (ui_out_is_mi_like_p (uiout))
034dad6f 7947 ui_out_field_string
33d62d64 7948 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7949 ui_out_text (uiout, "[Inferior ");
7950 ui_out_text (uiout, plongest (inf->num));
7951 ui_out_text (uiout, " (");
7952 ui_out_text (uiout, pidstr);
7953 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7954 }
33d62d64
JK
7955}
7956
012b3a21
WT
7957/* Some targets/architectures can do extra processing/display of
7958 segmentation faults. E.g., Intel MPX boundary faults.
7959 Call the architecture dependent function to handle the fault. */
7960
7961static void
7962handle_segmentation_fault (struct ui_out *uiout)
7963{
7964 struct regcache *regcache = get_current_regcache ();
7965 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7966
7967 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7968 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7969}
7970
fd664c91
PA
7971void
7972print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7973{
f303dbd6
PA
7974 struct thread_info *thr = inferior_thread ();
7975
33d62d64
JK
7976 annotate_signal ();
7977
f303dbd6
PA
7978 if (ui_out_is_mi_like_p (uiout))
7979 ;
7980 else if (show_thread_that_caused_stop ())
33d62d64 7981 {
f303dbd6 7982 const char *name;
33d62d64 7983
f303dbd6
PA
7984 ui_out_text (uiout, "\nThread ");
7985 ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr));
7986
7987 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7988 if (name != NULL)
7989 {
7990 ui_out_text (uiout, " \"");
7991 ui_out_field_fmt (uiout, "name", "%s", name);
7992 ui_out_text (uiout, "\"");
7993 }
33d62d64 7994 }
f303dbd6
PA
7995 else
7996 ui_out_text (uiout, "\nProgram");
7997
7998 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
7999 ui_out_text (uiout, " stopped");
33d62d64
JK
8000 else
8001 {
f303dbd6 8002 ui_out_text (uiout, " received signal ");
8b93c638 8003 annotate_signal_name ();
33d62d64
JK
8004 if (ui_out_is_mi_like_p (uiout))
8005 ui_out_field_string
8006 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 8007 ui_out_field_string (uiout, "signal-name",
2ea28649 8008 gdb_signal_to_name (siggnal));
8b93c638
JM
8009 annotate_signal_name_end ();
8010 ui_out_text (uiout, ", ");
8011 annotate_signal_string ();
488f131b 8012 ui_out_field_string (uiout, "signal-meaning",
2ea28649 8013 gdb_signal_to_string (siggnal));
012b3a21
WT
8014
8015 if (siggnal == GDB_SIGNAL_SEGV)
8016 handle_segmentation_fault (uiout);
8017
8b93c638 8018 annotate_signal_string_end ();
33d62d64
JK
8019 }
8020 ui_out_text (uiout, ".\n");
8021}
252fbfc8 8022
fd664c91
PA
8023void
8024print_no_history_reason (struct ui_out *uiout)
33d62d64 8025{
fd664c91 8026 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 8027}
43ff13b4 8028
0c7e1a46
PA
8029/* Print current location without a level number, if we have changed
8030 functions or hit a breakpoint. Print source line if we have one.
8031 bpstat_print contains the logic deciding in detail what to print,
8032 based on the event(s) that just occurred. */
8033
243a9253
PA
8034static void
8035print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8036{
8037 int bpstat_ret;
f486487f 8038 enum print_what source_flag;
0c7e1a46
PA
8039 int do_frame_printing = 1;
8040 struct thread_info *tp = inferior_thread ();
8041
8042 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8043 switch (bpstat_ret)
8044 {
8045 case PRINT_UNKNOWN:
8046 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8047 should) carry around the function and does (or should) use
8048 that when doing a frame comparison. */
8049 if (tp->control.stop_step
8050 && frame_id_eq (tp->control.step_frame_id,
8051 get_frame_id (get_current_frame ()))
885eeb5b 8052 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
8053 {
8054 /* Finished step, just print source line. */
8055 source_flag = SRC_LINE;
8056 }
8057 else
8058 {
8059 /* Print location and source line. */
8060 source_flag = SRC_AND_LOC;
8061 }
8062 break;
8063 case PRINT_SRC_AND_LOC:
8064 /* Print location and source line. */
8065 source_flag = SRC_AND_LOC;
8066 break;
8067 case PRINT_SRC_ONLY:
8068 source_flag = SRC_LINE;
8069 break;
8070 case PRINT_NOTHING:
8071 /* Something bogus. */
8072 source_flag = SRC_LINE;
8073 do_frame_printing = 0;
8074 break;
8075 default:
8076 internal_error (__FILE__, __LINE__, _("Unknown value."));
8077 }
8078
8079 /* The behavior of this routine with respect to the source
8080 flag is:
8081 SRC_LINE: Print only source line
8082 LOCATION: Print only location
8083 SRC_AND_LOC: Print location and source line. */
8084 if (do_frame_printing)
8085 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8086}
8087
243a9253
PA
8088/* See infrun.h. */
8089
8090void
8091print_stop_event (struct ui_out *uiout)
8092{
243a9253
PA
8093 struct target_waitstatus last;
8094 ptid_t last_ptid;
8095 struct thread_info *tp;
8096
8097 get_last_target_status (&last_ptid, &last);
8098
67ad9399
TT
8099 {
8100 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8101
67ad9399 8102 print_stop_location (&last);
243a9253 8103
67ad9399
TT
8104 /* Display the auto-display expressions. */
8105 do_displays ();
8106 }
243a9253
PA
8107
8108 tp = inferior_thread ();
8109 if (tp->thread_fsm != NULL
8110 && thread_fsm_finished_p (tp->thread_fsm))
8111 {
8112 struct return_value_info *rv;
8113
8114 rv = thread_fsm_return_value (tp->thread_fsm);
8115 if (rv != NULL)
8116 print_return_value (uiout, rv);
8117 }
0c7e1a46
PA
8118}
8119
388a7084
PA
8120/* See infrun.h. */
8121
8122void
8123maybe_remove_breakpoints (void)
8124{
8125 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8126 {
8127 if (remove_breakpoints ())
8128 {
8129 target_terminal_ours_for_output ();
8130 printf_filtered (_("Cannot remove breakpoints because "
8131 "program is no longer writable.\nFurther "
8132 "execution is probably impossible.\n"));
8133 }
8134 }
8135}
8136
4c2f2a79
PA
8137/* The execution context that just caused a normal stop. */
8138
8139struct stop_context
8140{
8141 /* The stop ID. */
8142 ULONGEST stop_id;
c906108c 8143
4c2f2a79 8144 /* The event PTID. */
c906108c 8145
4c2f2a79
PA
8146 ptid_t ptid;
8147
8148 /* If stopp for a thread event, this is the thread that caused the
8149 stop. */
8150 struct thread_info *thread;
8151
8152 /* The inferior that caused the stop. */
8153 int inf_num;
8154};
8155
8156/* Returns a new stop context. If stopped for a thread event, this
8157 takes a strong reference to the thread. */
8158
8159static struct stop_context *
8160save_stop_context (void)
8161{
224c3ddb 8162 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8163
8164 sc->stop_id = get_stop_id ();
8165 sc->ptid = inferior_ptid;
8166 sc->inf_num = current_inferior ()->num;
8167
8168 if (!ptid_equal (inferior_ptid, null_ptid))
8169 {
8170 /* Take a strong reference so that the thread can't be deleted
8171 yet. */
8172 sc->thread = inferior_thread ();
8173 sc->thread->refcount++;
8174 }
8175 else
8176 sc->thread = NULL;
8177
8178 return sc;
8179}
8180
8181/* Release a stop context previously created with save_stop_context.
8182 Releases the strong reference to the thread as well. */
8183
8184static void
8185release_stop_context_cleanup (void *arg)
8186{
9a3c8263 8187 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8188
8189 if (sc->thread != NULL)
8190 sc->thread->refcount--;
8191 xfree (sc);
8192}
8193
8194/* Return true if the current context no longer matches the saved stop
8195 context. */
8196
8197static int
8198stop_context_changed (struct stop_context *prev)
8199{
8200 if (!ptid_equal (prev->ptid, inferior_ptid))
8201 return 1;
8202 if (prev->inf_num != current_inferior ()->num)
8203 return 1;
8204 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8205 return 1;
8206 if (get_stop_id () != prev->stop_id)
8207 return 1;
8208 return 0;
8209}
8210
8211/* See infrun.h. */
8212
8213int
96baa820 8214normal_stop (void)
c906108c 8215{
73b65bb0
DJ
8216 struct target_waitstatus last;
8217 ptid_t last_ptid;
29f49a6a 8218 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8219 ptid_t pid_ptid;
73b65bb0
DJ
8220
8221 get_last_target_status (&last_ptid, &last);
8222
4c2f2a79
PA
8223 new_stop_id ();
8224
29f49a6a
PA
8225 /* If an exception is thrown from this point on, make sure to
8226 propagate GDB's knowledge of the executing state to the
8227 frontend/user running state. A QUIT is an easy exception to see
8228 here, so do this before any filtered output. */
c35b1492
PA
8229 if (!non_stop)
8230 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8231 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8232 || last.kind == TARGET_WAITKIND_EXITED)
8233 {
8234 /* On some targets, we may still have live threads in the
8235 inferior when we get a process exit event. E.g., for
8236 "checkpoint", when the current checkpoint/fork exits,
8237 linux-fork.c automatically switches to another fork from
8238 within target_mourn_inferior. */
8239 if (!ptid_equal (inferior_ptid, null_ptid))
8240 {
8241 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8242 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8243 }
8244 }
8245 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8246 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8247
b57bacec
PA
8248 /* As we're presenting a stop, and potentially removing breakpoints,
8249 update the thread list so we can tell whether there are threads
8250 running on the target. With target remote, for example, we can
8251 only learn about new threads when we explicitly update the thread
8252 list. Do this before notifying the interpreters about signal
8253 stops, end of stepping ranges, etc., so that the "new thread"
8254 output is emitted before e.g., "Program received signal FOO",
8255 instead of after. */
8256 update_thread_list ();
8257
8258 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8259 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8260
c906108c
SS
8261 /* As with the notification of thread events, we want to delay
8262 notifying the user that we've switched thread context until
8263 the inferior actually stops.
8264
73b65bb0
DJ
8265 There's no point in saying anything if the inferior has exited.
8266 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8267 "received a signal".
8268
8269 Also skip saying anything in non-stop mode. In that mode, as we
8270 don't want GDB to switch threads behind the user's back, to avoid
8271 races where the user is typing a command to apply to thread x,
8272 but GDB switches to thread y before the user finishes entering
8273 the command, fetch_inferior_event installs a cleanup to restore
8274 the current thread back to the thread the user had selected right
8275 after this event is handled, so we're not really switching, only
8276 informing of a stop. */
4f8d22e3
PA
8277 if (!non_stop
8278 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8279 && target_has_execution
8280 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8281 && last.kind != TARGET_WAITKIND_EXITED
8282 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8283 {
0e454242 8284 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8285 {
8286 target_terminal_ours_for_output ();
8287 printf_filtered (_("[Switching to %s]\n"),
8288 target_pid_to_str (inferior_ptid));
8289 annotate_thread_changed ();
8290 }
39f77062 8291 previous_inferior_ptid = inferior_ptid;
c906108c 8292 }
c906108c 8293
0e5bf2a8
PA
8294 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8295 {
0e454242 8296 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8297 if (current_ui->prompt_state == PROMPT_BLOCKED)
8298 {
8299 target_terminal_ours_for_output ();
8300 printf_filtered (_("No unwaited-for children left.\n"));
8301 }
0e5bf2a8
PA
8302 }
8303
b57bacec 8304 /* Note: this depends on the update_thread_list call above. */
388a7084 8305 maybe_remove_breakpoints ();
c906108c 8306
c906108c
SS
8307 /* If an auto-display called a function and that got a signal,
8308 delete that auto-display to avoid an infinite recursion. */
8309
8310 if (stopped_by_random_signal)
8311 disable_current_display ();
8312
0e454242 8313 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8314 {
8315 async_enable_stdin ();
8316 }
c906108c 8317
388a7084
PA
8318 /* Let the user/frontend see the threads as stopped. */
8319 do_cleanups (old_chain);
8320
8321 /* Select innermost stack frame - i.e., current frame is frame 0,
8322 and current location is based on that. Handle the case where the
8323 dummy call is returning after being stopped. E.g. the dummy call
8324 previously hit a breakpoint. (If the dummy call returns
8325 normally, we won't reach here.) Do this before the stop hook is
8326 run, so that it doesn't get to see the temporary dummy frame,
8327 which is not where we'll present the stop. */
8328 if (has_stack_frames ())
8329 {
8330 if (stop_stack_dummy == STOP_STACK_DUMMY)
8331 {
8332 /* Pop the empty frame that contains the stack dummy. This
8333 also restores inferior state prior to the call (struct
8334 infcall_suspend_state). */
8335 struct frame_info *frame = get_current_frame ();
8336
8337 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8338 frame_pop (frame);
8339 /* frame_pop calls reinit_frame_cache as the last thing it
8340 does which means there's now no selected frame. */
8341 }
8342
8343 select_frame (get_current_frame ());
8344
8345 /* Set the current source location. */
8346 set_current_sal_from_frame (get_current_frame ());
8347 }
dd7e2d2b
PA
8348
8349 /* Look up the hook_stop and run it (CLI internally handles problem
8350 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8351 if (stop_command != NULL)
8352 {
8353 struct stop_context *saved_context = save_stop_context ();
8354 struct cleanup *old_chain
8355 = make_cleanup (release_stop_context_cleanup, saved_context);
8356
8357 catch_errors (hook_stop_stub, stop_command,
8358 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8359
8360 /* If the stop hook resumes the target, then there's no point in
8361 trying to notify about the previous stop; its context is
8362 gone. Likewise if the command switches thread or inferior --
8363 the observers would print a stop for the wrong
8364 thread/inferior. */
8365 if (stop_context_changed (saved_context))
8366 {
8367 do_cleanups (old_chain);
8368 return 1;
8369 }
8370 do_cleanups (old_chain);
8371 }
dd7e2d2b 8372
388a7084
PA
8373 /* Notify observers about the stop. This is where the interpreters
8374 print the stop event. */
8375 if (!ptid_equal (inferior_ptid, null_ptid))
8376 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8377 stop_print_frame);
8378 else
8379 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8380
243a9253
PA
8381 annotate_stopped ();
8382
48844aa6
PA
8383 if (target_has_execution)
8384 {
8385 if (last.kind != TARGET_WAITKIND_SIGNALLED
8386 && last.kind != TARGET_WAITKIND_EXITED)
8387 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8388 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8389 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8390 }
6c95b8df
PA
8391
8392 /* Try to get rid of automatically added inferiors that are no
8393 longer needed. Keeping those around slows down things linearly.
8394 Note that this never removes the current inferior. */
8395 prune_inferiors ();
4c2f2a79
PA
8396
8397 return 0;
c906108c
SS
8398}
8399
8400static int
96baa820 8401hook_stop_stub (void *cmd)
c906108c 8402{
5913bcb0 8403 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8404 return (0);
8405}
8406\f
c5aa993b 8407int
96baa820 8408signal_stop_state (int signo)
c906108c 8409{
d6b48e9c 8410 return signal_stop[signo];
c906108c
SS
8411}
8412
c5aa993b 8413int
96baa820 8414signal_print_state (int signo)
c906108c
SS
8415{
8416 return signal_print[signo];
8417}
8418
c5aa993b 8419int
96baa820 8420signal_pass_state (int signo)
c906108c
SS
8421{
8422 return signal_program[signo];
8423}
8424
2455069d
UW
8425static void
8426signal_cache_update (int signo)
8427{
8428 if (signo == -1)
8429 {
a493e3e2 8430 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8431 signal_cache_update (signo);
8432
8433 return;
8434 }
8435
8436 signal_pass[signo] = (signal_stop[signo] == 0
8437 && signal_print[signo] == 0
ab04a2af
TT
8438 && signal_program[signo] == 1
8439 && signal_catch[signo] == 0);
2455069d
UW
8440}
8441
488f131b 8442int
7bda5e4a 8443signal_stop_update (int signo, int state)
d4f3574e
SS
8444{
8445 int ret = signal_stop[signo];
abbb1732 8446
d4f3574e 8447 signal_stop[signo] = state;
2455069d 8448 signal_cache_update (signo);
d4f3574e
SS
8449 return ret;
8450}
8451
488f131b 8452int
7bda5e4a 8453signal_print_update (int signo, int state)
d4f3574e
SS
8454{
8455 int ret = signal_print[signo];
abbb1732 8456
d4f3574e 8457 signal_print[signo] = state;
2455069d 8458 signal_cache_update (signo);
d4f3574e
SS
8459 return ret;
8460}
8461
488f131b 8462int
7bda5e4a 8463signal_pass_update (int signo, int state)
d4f3574e
SS
8464{
8465 int ret = signal_program[signo];
abbb1732 8466
d4f3574e 8467 signal_program[signo] = state;
2455069d 8468 signal_cache_update (signo);
d4f3574e
SS
8469 return ret;
8470}
8471
ab04a2af
TT
8472/* Update the global 'signal_catch' from INFO and notify the
8473 target. */
8474
8475void
8476signal_catch_update (const unsigned int *info)
8477{
8478 int i;
8479
8480 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8481 signal_catch[i] = info[i] > 0;
8482 signal_cache_update (-1);
8483 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8484}
8485
c906108c 8486static void
96baa820 8487sig_print_header (void)
c906108c 8488{
3e43a32a
MS
8489 printf_filtered (_("Signal Stop\tPrint\tPass "
8490 "to program\tDescription\n"));
c906108c
SS
8491}
8492
8493static void
2ea28649 8494sig_print_info (enum gdb_signal oursig)
c906108c 8495{
2ea28649 8496 const char *name = gdb_signal_to_name (oursig);
c906108c 8497 int name_padding = 13 - strlen (name);
96baa820 8498
c906108c
SS
8499 if (name_padding <= 0)
8500 name_padding = 0;
8501
8502 printf_filtered ("%s", name);
488f131b 8503 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8504 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8505 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8506 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8507 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8508}
8509
8510/* Specify how various signals in the inferior should be handled. */
8511
8512static void
96baa820 8513handle_command (char *args, int from_tty)
c906108c
SS
8514{
8515 char **argv;
8516 int digits, wordlen;
8517 int sigfirst, signum, siglast;
2ea28649 8518 enum gdb_signal oursig;
c906108c
SS
8519 int allsigs;
8520 int nsigs;
8521 unsigned char *sigs;
8522 struct cleanup *old_chain;
8523
8524 if (args == NULL)
8525 {
e2e0b3e5 8526 error_no_arg (_("signal to handle"));
c906108c
SS
8527 }
8528
1777feb0 8529 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8530
a493e3e2 8531 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8532 sigs = (unsigned char *) alloca (nsigs);
8533 memset (sigs, 0, nsigs);
8534
1777feb0 8535 /* Break the command line up into args. */
c906108c 8536
d1a41061 8537 argv = gdb_buildargv (args);
7a292a7a 8538 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8539
8540 /* Walk through the args, looking for signal oursigs, signal names, and
8541 actions. Signal numbers and signal names may be interspersed with
8542 actions, with the actions being performed for all signals cumulatively
1777feb0 8543 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8544
8545 while (*argv != NULL)
8546 {
8547 wordlen = strlen (*argv);
8548 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8549 {;
8550 }
8551 allsigs = 0;
8552 sigfirst = siglast = -1;
8553
8554 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8555 {
8556 /* Apply action to all signals except those used by the
1777feb0 8557 debugger. Silently skip those. */
c906108c
SS
8558 allsigs = 1;
8559 sigfirst = 0;
8560 siglast = nsigs - 1;
8561 }
8562 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8563 {
8564 SET_SIGS (nsigs, sigs, signal_stop);
8565 SET_SIGS (nsigs, sigs, signal_print);
8566 }
8567 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8568 {
8569 UNSET_SIGS (nsigs, sigs, signal_program);
8570 }
8571 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8572 {
8573 SET_SIGS (nsigs, sigs, signal_print);
8574 }
8575 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8576 {
8577 SET_SIGS (nsigs, sigs, signal_program);
8578 }
8579 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8580 {
8581 UNSET_SIGS (nsigs, sigs, signal_stop);
8582 }
8583 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8584 {
8585 SET_SIGS (nsigs, sigs, signal_program);
8586 }
8587 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8588 {
8589 UNSET_SIGS (nsigs, sigs, signal_print);
8590 UNSET_SIGS (nsigs, sigs, signal_stop);
8591 }
8592 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8593 {
8594 UNSET_SIGS (nsigs, sigs, signal_program);
8595 }
8596 else if (digits > 0)
8597 {
8598 /* It is numeric. The numeric signal refers to our own
8599 internal signal numbering from target.h, not to host/target
8600 signal number. This is a feature; users really should be
8601 using symbolic names anyway, and the common ones like
8602 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8603
8604 sigfirst = siglast = (int)
2ea28649 8605 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8606 if ((*argv)[digits] == '-')
8607 {
8608 siglast = (int)
2ea28649 8609 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8610 }
8611 if (sigfirst > siglast)
8612 {
1777feb0 8613 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8614 signum = sigfirst;
8615 sigfirst = siglast;
8616 siglast = signum;
8617 }
8618 }
8619 else
8620 {
2ea28649 8621 oursig = gdb_signal_from_name (*argv);
a493e3e2 8622 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8623 {
8624 sigfirst = siglast = (int) oursig;
8625 }
8626 else
8627 {
8628 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8629 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8630 }
8631 }
8632
8633 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8634 which signals to apply actions to. */
c906108c
SS
8635
8636 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8637 {
2ea28649 8638 switch ((enum gdb_signal) signum)
c906108c 8639 {
a493e3e2
PA
8640 case GDB_SIGNAL_TRAP:
8641 case GDB_SIGNAL_INT:
c906108c
SS
8642 if (!allsigs && !sigs[signum])
8643 {
9e2f0ad4 8644 if (query (_("%s is used by the debugger.\n\
3e43a32a 8645Are you sure you want to change it? "),
2ea28649 8646 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8647 {
8648 sigs[signum] = 1;
8649 }
8650 else
8651 {
a3f17187 8652 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8653 gdb_flush (gdb_stdout);
8654 }
8655 }
8656 break;
a493e3e2
PA
8657 case GDB_SIGNAL_0:
8658 case GDB_SIGNAL_DEFAULT:
8659 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8660 /* Make sure that "all" doesn't print these. */
8661 break;
8662 default:
8663 sigs[signum] = 1;
8664 break;
8665 }
8666 }
8667
8668 argv++;
8669 }
8670
3a031f65
PA
8671 for (signum = 0; signum < nsigs; signum++)
8672 if (sigs[signum])
8673 {
2455069d 8674 signal_cache_update (-1);
a493e3e2
PA
8675 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8676 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8677
3a031f65
PA
8678 if (from_tty)
8679 {
8680 /* Show the results. */
8681 sig_print_header ();
8682 for (; signum < nsigs; signum++)
8683 if (sigs[signum])
aead7601 8684 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8685 }
8686
8687 break;
8688 }
c906108c
SS
8689
8690 do_cleanups (old_chain);
8691}
8692
de0bea00
MF
8693/* Complete the "handle" command. */
8694
8695static VEC (char_ptr) *
8696handle_completer (struct cmd_list_element *ignore,
6f937416 8697 const char *text, const char *word)
de0bea00
MF
8698{
8699 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8700 static const char * const keywords[] =
8701 {
8702 "all",
8703 "stop",
8704 "ignore",
8705 "print",
8706 "pass",
8707 "nostop",
8708 "noignore",
8709 "noprint",
8710 "nopass",
8711 NULL,
8712 };
8713
8714 vec_signals = signal_completer (ignore, text, word);
8715 vec_keywords = complete_on_enum (keywords, word, word);
8716
8717 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8718 VEC_free (char_ptr, vec_signals);
8719 VEC_free (char_ptr, vec_keywords);
8720 return return_val;
8721}
8722
2ea28649
PA
8723enum gdb_signal
8724gdb_signal_from_command (int num)
ed01b82c
PA
8725{
8726 if (num >= 1 && num <= 15)
2ea28649 8727 return (enum gdb_signal) num;
ed01b82c
PA
8728 error (_("Only signals 1-15 are valid as numeric signals.\n\
8729Use \"info signals\" for a list of symbolic signals."));
8730}
8731
c906108c
SS
8732/* Print current contents of the tables set by the handle command.
8733 It is possible we should just be printing signals actually used
8734 by the current target (but for things to work right when switching
8735 targets, all signals should be in the signal tables). */
8736
8737static void
96baa820 8738signals_info (char *signum_exp, int from_tty)
c906108c 8739{
2ea28649 8740 enum gdb_signal oursig;
abbb1732 8741
c906108c
SS
8742 sig_print_header ();
8743
8744 if (signum_exp)
8745 {
8746 /* First see if this is a symbol name. */
2ea28649 8747 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8748 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8749 {
8750 /* No, try numeric. */
8751 oursig =
2ea28649 8752 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8753 }
8754 sig_print_info (oursig);
8755 return;
8756 }
8757
8758 printf_filtered ("\n");
8759 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8760 for (oursig = GDB_SIGNAL_FIRST;
8761 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8762 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8763 {
8764 QUIT;
8765
a493e3e2
PA
8766 if (oursig != GDB_SIGNAL_UNKNOWN
8767 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8768 sig_print_info (oursig);
8769 }
8770
3e43a32a
MS
8771 printf_filtered (_("\nUse the \"handle\" command "
8772 "to change these tables.\n"));
c906108c 8773}
4aa995e1
PA
8774
8775/* The $_siginfo convenience variable is a bit special. We don't know
8776 for sure the type of the value until we actually have a chance to
7a9dd1b2 8777 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8778 also dependent on which thread you have selected.
8779
8780 1. making $_siginfo be an internalvar that creates a new value on
8781 access.
8782
8783 2. making the value of $_siginfo be an lval_computed value. */
8784
8785/* This function implements the lval_computed support for reading a
8786 $_siginfo value. */
8787
8788static void
8789siginfo_value_read (struct value *v)
8790{
8791 LONGEST transferred;
8792
a911d87a
PA
8793 /* If we can access registers, so can we access $_siginfo. Likewise
8794 vice versa. */
8795 validate_registers_access ();
c709acd1 8796
4aa995e1
PA
8797 transferred =
8798 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8799 NULL,
8800 value_contents_all_raw (v),
8801 value_offset (v),
8802 TYPE_LENGTH (value_type (v)));
8803
8804 if (transferred != TYPE_LENGTH (value_type (v)))
8805 error (_("Unable to read siginfo"));
8806}
8807
8808/* This function implements the lval_computed support for writing a
8809 $_siginfo value. */
8810
8811static void
8812siginfo_value_write (struct value *v, struct value *fromval)
8813{
8814 LONGEST transferred;
8815
a911d87a
PA
8816 /* If we can access registers, so can we access $_siginfo. Likewise
8817 vice versa. */
8818 validate_registers_access ();
c709acd1 8819
4aa995e1
PA
8820 transferred = target_write (&current_target,
8821 TARGET_OBJECT_SIGNAL_INFO,
8822 NULL,
8823 value_contents_all_raw (fromval),
8824 value_offset (v),
8825 TYPE_LENGTH (value_type (fromval)));
8826
8827 if (transferred != TYPE_LENGTH (value_type (fromval)))
8828 error (_("Unable to write siginfo"));
8829}
8830
c8f2448a 8831static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8832 {
8833 siginfo_value_read,
8834 siginfo_value_write
8835 };
8836
8837/* Return a new value with the correct type for the siginfo object of
78267919
UW
8838 the current thread using architecture GDBARCH. Return a void value
8839 if there's no object available. */
4aa995e1 8840
2c0b251b 8841static struct value *
22d2b532
SDJ
8842siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8843 void *ignore)
4aa995e1 8844{
4aa995e1 8845 if (target_has_stack
78267919
UW
8846 && !ptid_equal (inferior_ptid, null_ptid)
8847 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8848 {
78267919 8849 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8850
78267919 8851 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8852 }
8853
78267919 8854 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8855}
8856
c906108c 8857\f
16c381f0
JK
8858/* infcall_suspend_state contains state about the program itself like its
8859 registers and any signal it received when it last stopped.
8860 This state must be restored regardless of how the inferior function call
8861 ends (either successfully, or after it hits a breakpoint or signal)
8862 if the program is to properly continue where it left off. */
8863
8864struct infcall_suspend_state
7a292a7a 8865{
16c381f0 8866 struct thread_suspend_state thread_suspend;
16c381f0
JK
8867
8868 /* Other fields: */
7a292a7a 8869 CORE_ADDR stop_pc;
b89667eb 8870 struct regcache *registers;
1736ad11 8871
35515841 8872 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8873 struct gdbarch *siginfo_gdbarch;
8874
8875 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8876 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8877 content would be invalid. */
8878 gdb_byte *siginfo_data;
b89667eb
DE
8879};
8880
16c381f0
JK
8881struct infcall_suspend_state *
8882save_infcall_suspend_state (void)
b89667eb 8883{
16c381f0 8884 struct infcall_suspend_state *inf_state;
b89667eb 8885 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8886 struct regcache *regcache = get_current_regcache ();
8887 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8888 gdb_byte *siginfo_data = NULL;
8889
8890 if (gdbarch_get_siginfo_type_p (gdbarch))
8891 {
8892 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8893 size_t len = TYPE_LENGTH (type);
8894 struct cleanup *back_to;
8895
224c3ddb 8896 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8897 back_to = make_cleanup (xfree, siginfo_data);
8898
8899 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8900 siginfo_data, 0, len) == len)
8901 discard_cleanups (back_to);
8902 else
8903 {
8904 /* Errors ignored. */
8905 do_cleanups (back_to);
8906 siginfo_data = NULL;
8907 }
8908 }
8909
41bf6aca 8910 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8911
8912 if (siginfo_data)
8913 {
8914 inf_state->siginfo_gdbarch = gdbarch;
8915 inf_state->siginfo_data = siginfo_data;
8916 }
b89667eb 8917
16c381f0 8918 inf_state->thread_suspend = tp->suspend;
16c381f0 8919
35515841 8920 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8921 GDB_SIGNAL_0 anyway. */
8922 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8923
b89667eb
DE
8924 inf_state->stop_pc = stop_pc;
8925
1736ad11 8926 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8927
8928 return inf_state;
8929}
8930
8931/* Restore inferior session state to INF_STATE. */
8932
8933void
16c381f0 8934restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8935{
8936 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8937 struct regcache *regcache = get_current_regcache ();
8938 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8939
16c381f0 8940 tp->suspend = inf_state->thread_suspend;
16c381f0 8941
b89667eb
DE
8942 stop_pc = inf_state->stop_pc;
8943
1736ad11
JK
8944 if (inf_state->siginfo_gdbarch == gdbarch)
8945 {
8946 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8947
8948 /* Errors ignored. */
8949 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8950 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8951 }
8952
b89667eb
DE
8953 /* The inferior can be gone if the user types "print exit(0)"
8954 (and perhaps other times). */
8955 if (target_has_execution)
8956 /* NB: The register write goes through to the target. */
1736ad11 8957 regcache_cpy (regcache, inf_state->registers);
803b5f95 8958
16c381f0 8959 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8960}
8961
8962static void
16c381f0 8963do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8964{
9a3c8263 8965 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8966}
8967
8968struct cleanup *
16c381f0
JK
8969make_cleanup_restore_infcall_suspend_state
8970 (struct infcall_suspend_state *inf_state)
b89667eb 8971{
16c381f0 8972 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8973}
8974
8975void
16c381f0 8976discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8977{
8978 regcache_xfree (inf_state->registers);
803b5f95 8979 xfree (inf_state->siginfo_data);
b89667eb
DE
8980 xfree (inf_state);
8981}
8982
8983struct regcache *
16c381f0 8984get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8985{
8986 return inf_state->registers;
8987}
8988
16c381f0
JK
8989/* infcall_control_state contains state regarding gdb's control of the
8990 inferior itself like stepping control. It also contains session state like
8991 the user's currently selected frame. */
b89667eb 8992
16c381f0 8993struct infcall_control_state
b89667eb 8994{
16c381f0
JK
8995 struct thread_control_state thread_control;
8996 struct inferior_control_state inferior_control;
d82142e2
JK
8997
8998 /* Other fields: */
8999 enum stop_stack_kind stop_stack_dummy;
9000 int stopped_by_random_signal;
7a292a7a 9001
b89667eb 9002 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 9003 struct frame_id selected_frame_id;
7a292a7a
SS
9004};
9005
c906108c 9006/* Save all of the information associated with the inferior<==>gdb
b89667eb 9007 connection. */
c906108c 9008
16c381f0
JK
9009struct infcall_control_state *
9010save_infcall_control_state (void)
c906108c 9011{
8d749320
SM
9012 struct infcall_control_state *inf_status =
9013 XNEW (struct infcall_control_state);
4e1c45ea 9014 struct thread_info *tp = inferior_thread ();
d6b48e9c 9015 struct inferior *inf = current_inferior ();
7a292a7a 9016
16c381f0
JK
9017 inf_status->thread_control = tp->control;
9018 inf_status->inferior_control = inf->control;
d82142e2 9019
8358c15c 9020 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9021 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9022
16c381f0
JK
9023 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9024 chain. If caller's caller is walking the chain, they'll be happier if we
9025 hand them back the original chain when restore_infcall_control_state is
9026 called. */
9027 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9028
9029 /* Other fields: */
9030 inf_status->stop_stack_dummy = stop_stack_dummy;
9031 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9032
206415a3 9033 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9034
7a292a7a 9035 return inf_status;
c906108c
SS
9036}
9037
c906108c 9038static int
96baa820 9039restore_selected_frame (void *args)
c906108c 9040{
488f131b 9041 struct frame_id *fid = (struct frame_id *) args;
c906108c 9042 struct frame_info *frame;
c906108c 9043
101dcfbe 9044 frame = frame_find_by_id (*fid);
c906108c 9045
aa0cd9c1
AC
9046 /* If inf_status->selected_frame_id is NULL, there was no previously
9047 selected frame. */
101dcfbe 9048 if (frame == NULL)
c906108c 9049 {
8a3fe4f8 9050 warning (_("Unable to restore previously selected frame."));
c906108c
SS
9051 return 0;
9052 }
9053
0f7d239c 9054 select_frame (frame);
c906108c
SS
9055
9056 return (1);
9057}
9058
b89667eb
DE
9059/* Restore inferior session state to INF_STATUS. */
9060
c906108c 9061void
16c381f0 9062restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9063{
4e1c45ea 9064 struct thread_info *tp = inferior_thread ();
d6b48e9c 9065 struct inferior *inf = current_inferior ();
4e1c45ea 9066
8358c15c
JK
9067 if (tp->control.step_resume_breakpoint)
9068 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9069
5b79abe7
TT
9070 if (tp->control.exception_resume_breakpoint)
9071 tp->control.exception_resume_breakpoint->disposition
9072 = disp_del_at_next_stop;
9073
d82142e2 9074 /* Handle the bpstat_copy of the chain. */
16c381f0 9075 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9076
16c381f0
JK
9077 tp->control = inf_status->thread_control;
9078 inf->control = inf_status->inferior_control;
d82142e2
JK
9079
9080 /* Other fields: */
9081 stop_stack_dummy = inf_status->stop_stack_dummy;
9082 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9083
b89667eb 9084 if (target_has_stack)
c906108c 9085 {
c906108c 9086 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
9087 walking the stack might encounter a garbage pointer and
9088 error() trying to dereference it. */
488f131b
JB
9089 if (catch_errors
9090 (restore_selected_frame, &inf_status->selected_frame_id,
9091 "Unable to restore previously selected frame:\n",
9092 RETURN_MASK_ERROR) == 0)
c906108c
SS
9093 /* Error in restoring the selected frame. Select the innermost
9094 frame. */
0f7d239c 9095 select_frame (get_current_frame ());
c906108c 9096 }
c906108c 9097
72cec141 9098 xfree (inf_status);
7a292a7a 9099}
c906108c 9100
74b7792f 9101static void
16c381f0 9102do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9103{
9a3c8263 9104 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9105}
9106
9107struct cleanup *
16c381f0
JK
9108make_cleanup_restore_infcall_control_state
9109 (struct infcall_control_state *inf_status)
74b7792f 9110{
16c381f0 9111 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9112}
9113
c906108c 9114void
16c381f0 9115discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9116{
8358c15c
JK
9117 if (inf_status->thread_control.step_resume_breakpoint)
9118 inf_status->thread_control.step_resume_breakpoint->disposition
9119 = disp_del_at_next_stop;
9120
5b79abe7
TT
9121 if (inf_status->thread_control.exception_resume_breakpoint)
9122 inf_status->thread_control.exception_resume_breakpoint->disposition
9123 = disp_del_at_next_stop;
9124
1777feb0 9125 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9126 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9127
72cec141 9128 xfree (inf_status);
7a292a7a 9129}
b89667eb 9130\f
ca6724c1
KB
9131/* restore_inferior_ptid() will be used by the cleanup machinery
9132 to restore the inferior_ptid value saved in a call to
9133 save_inferior_ptid(). */
ce696e05
KB
9134
9135static void
9136restore_inferior_ptid (void *arg)
9137{
9a3c8263 9138 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
abbb1732 9139
ce696e05
KB
9140 inferior_ptid = *saved_ptid_ptr;
9141 xfree (arg);
9142}
9143
9144/* Save the value of inferior_ptid so that it may be restored by a
9145 later call to do_cleanups(). Returns the struct cleanup pointer
9146 needed for later doing the cleanup. */
9147
9148struct cleanup *
9149save_inferior_ptid (void)
9150{
8d749320 9151 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 9152
ce696e05
KB
9153 *saved_ptid_ptr = inferior_ptid;
9154 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9155}
0c557179 9156
7f89fd65 9157/* See infrun.h. */
0c557179
SDJ
9158
9159void
9160clear_exit_convenience_vars (void)
9161{
9162 clear_internalvar (lookup_internalvar ("_exitsignal"));
9163 clear_internalvar (lookup_internalvar ("_exitcode"));
9164}
c5aa993b 9165\f
488f131b 9166
b2175913
MS
9167/* User interface for reverse debugging:
9168 Set exec-direction / show exec-direction commands
9169 (returns error unless target implements to_set_exec_direction method). */
9170
170742de 9171enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9172static const char exec_forward[] = "forward";
9173static const char exec_reverse[] = "reverse";
9174static const char *exec_direction = exec_forward;
40478521 9175static const char *const exec_direction_names[] = {
b2175913
MS
9176 exec_forward,
9177 exec_reverse,
9178 NULL
9179};
9180
9181static void
9182set_exec_direction_func (char *args, int from_tty,
9183 struct cmd_list_element *cmd)
9184{
9185 if (target_can_execute_reverse)
9186 {
9187 if (!strcmp (exec_direction, exec_forward))
9188 execution_direction = EXEC_FORWARD;
9189 else if (!strcmp (exec_direction, exec_reverse))
9190 execution_direction = EXEC_REVERSE;
9191 }
8bbed405
MS
9192 else
9193 {
9194 exec_direction = exec_forward;
9195 error (_("Target does not support this operation."));
9196 }
b2175913
MS
9197}
9198
9199static void
9200show_exec_direction_func (struct ui_file *out, int from_tty,
9201 struct cmd_list_element *cmd, const char *value)
9202{
9203 switch (execution_direction) {
9204 case EXEC_FORWARD:
9205 fprintf_filtered (out, _("Forward.\n"));
9206 break;
9207 case EXEC_REVERSE:
9208 fprintf_filtered (out, _("Reverse.\n"));
9209 break;
b2175913 9210 default:
d8b34453
PA
9211 internal_error (__FILE__, __LINE__,
9212 _("bogus execution_direction value: %d"),
9213 (int) execution_direction);
b2175913
MS
9214 }
9215}
9216
d4db2f36
PA
9217static void
9218show_schedule_multiple (struct ui_file *file, int from_tty,
9219 struct cmd_list_element *c, const char *value)
9220{
3e43a32a
MS
9221 fprintf_filtered (file, _("Resuming the execution of threads "
9222 "of all processes is %s.\n"), value);
d4db2f36 9223}
ad52ddc6 9224
22d2b532
SDJ
9225/* Implementation of `siginfo' variable. */
9226
9227static const struct internalvar_funcs siginfo_funcs =
9228{
9229 siginfo_make_value,
9230 NULL,
9231 NULL
9232};
9233
372316f1
PA
9234/* Callback for infrun's target events source. This is marked when a
9235 thread has a pending status to process. */
9236
9237static void
9238infrun_async_inferior_event_handler (gdb_client_data data)
9239{
372316f1
PA
9240 inferior_event_handler (INF_REG_EVENT, NULL);
9241}
9242
c906108c 9243void
96baa820 9244_initialize_infrun (void)
c906108c 9245{
52f0bd74
AC
9246 int i;
9247 int numsigs;
de0bea00 9248 struct cmd_list_element *c;
c906108c 9249
372316f1
PA
9250 /* Register extra event sources in the event loop. */
9251 infrun_async_inferior_event_token
9252 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9253
1bedd215
AC
9254 add_info ("signals", signals_info, _("\
9255What debugger does when program gets various signals.\n\
9256Specify a signal as argument to print info on that signal only."));
c906108c
SS
9257 add_info_alias ("handle", "signals", 0);
9258
de0bea00 9259 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9260Specify how to handle signals.\n\
486c7739 9261Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9262Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9263If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9264will be displayed instead.\n\
9265\n\
c906108c
SS
9266Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9267from 1-15 are allowed for compatibility with old versions of GDB.\n\
9268Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9269The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9270used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9271\n\
1bedd215 9272Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9273\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9274Stop means reenter debugger if this signal happens (implies print).\n\
9275Print means print a message if this signal happens.\n\
9276Pass means let program see this signal; otherwise program doesn't know.\n\
9277Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9278Pass and Stop may be combined.\n\
9279\n\
9280Multiple signals may be specified. Signal numbers and signal names\n\
9281may be interspersed with actions, with the actions being performed for\n\
9282all signals cumulatively specified."));
de0bea00 9283 set_cmd_completer (c, handle_completer);
486c7739 9284
c906108c 9285 if (!dbx_commands)
1a966eab
AC
9286 stop_command = add_cmd ("stop", class_obscure,
9287 not_just_help_class_command, _("\
9288There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9289This allows you to set a list of commands to be run each time execution\n\
1a966eab 9290of the program stops."), &cmdlist);
c906108c 9291
ccce17b0 9292 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9293Set inferior debugging."), _("\
9294Show inferior debugging."), _("\
9295When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9296 NULL,
9297 show_debug_infrun,
9298 &setdebuglist, &showdebuglist);
527159b7 9299
3e43a32a
MS
9300 add_setshow_boolean_cmd ("displaced", class_maintenance,
9301 &debug_displaced, _("\
237fc4c9
PA
9302Set displaced stepping debugging."), _("\
9303Show displaced stepping debugging."), _("\
9304When non-zero, displaced stepping specific debugging is enabled."),
9305 NULL,
9306 show_debug_displaced,
9307 &setdebuglist, &showdebuglist);
9308
ad52ddc6
PA
9309 add_setshow_boolean_cmd ("non-stop", no_class,
9310 &non_stop_1, _("\
9311Set whether gdb controls the inferior in non-stop mode."), _("\
9312Show whether gdb controls the inferior in non-stop mode."), _("\
9313When debugging a multi-threaded program and this setting is\n\
9314off (the default, also called all-stop mode), when one thread stops\n\
9315(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9316all other threads in the program while you interact with the thread of\n\
9317interest. When you continue or step a thread, you can allow the other\n\
9318threads to run, or have them remain stopped, but while you inspect any\n\
9319thread's state, all threads stop.\n\
9320\n\
9321In non-stop mode, when one thread stops, other threads can continue\n\
9322to run freely. You'll be able to step each thread independently,\n\
9323leave it stopped or free to run as needed."),
9324 set_non_stop,
9325 show_non_stop,
9326 &setlist,
9327 &showlist);
9328
a493e3e2 9329 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9330 signal_stop = XNEWVEC (unsigned char, numsigs);
9331 signal_print = XNEWVEC (unsigned char, numsigs);
9332 signal_program = XNEWVEC (unsigned char, numsigs);
9333 signal_catch = XNEWVEC (unsigned char, numsigs);
9334 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9335 for (i = 0; i < numsigs; i++)
9336 {
9337 signal_stop[i] = 1;
9338 signal_print[i] = 1;
9339 signal_program[i] = 1;
ab04a2af 9340 signal_catch[i] = 0;
c906108c
SS
9341 }
9342
4d9d9d04
PA
9343 /* Signals caused by debugger's own actions should not be given to
9344 the program afterwards.
9345
9346 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9347 explicitly specifies that it should be delivered to the target
9348 program. Typically, that would occur when a user is debugging a
9349 target monitor on a simulator: the target monitor sets a
9350 breakpoint; the simulator encounters this breakpoint and halts
9351 the simulation handing control to GDB; GDB, noting that the stop
9352 address doesn't map to any known breakpoint, returns control back
9353 to the simulator; the simulator then delivers the hardware
9354 equivalent of a GDB_SIGNAL_TRAP to the program being
9355 debugged. */
a493e3e2
PA
9356 signal_program[GDB_SIGNAL_TRAP] = 0;
9357 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9358
9359 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9360 signal_stop[GDB_SIGNAL_ALRM] = 0;
9361 signal_print[GDB_SIGNAL_ALRM] = 0;
9362 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9363 signal_print[GDB_SIGNAL_VTALRM] = 0;
9364 signal_stop[GDB_SIGNAL_PROF] = 0;
9365 signal_print[GDB_SIGNAL_PROF] = 0;
9366 signal_stop[GDB_SIGNAL_CHLD] = 0;
9367 signal_print[GDB_SIGNAL_CHLD] = 0;
9368 signal_stop[GDB_SIGNAL_IO] = 0;
9369 signal_print[GDB_SIGNAL_IO] = 0;
9370 signal_stop[GDB_SIGNAL_POLL] = 0;
9371 signal_print[GDB_SIGNAL_POLL] = 0;
9372 signal_stop[GDB_SIGNAL_URG] = 0;
9373 signal_print[GDB_SIGNAL_URG] = 0;
9374 signal_stop[GDB_SIGNAL_WINCH] = 0;
9375 signal_print[GDB_SIGNAL_WINCH] = 0;
9376 signal_stop[GDB_SIGNAL_PRIO] = 0;
9377 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9378
cd0fc7c3
SS
9379 /* These signals are used internally by user-level thread
9380 implementations. (See signal(5) on Solaris.) Like the above
9381 signals, a healthy program receives and handles them as part of
9382 its normal operation. */
a493e3e2
PA
9383 signal_stop[GDB_SIGNAL_LWP] = 0;
9384 signal_print[GDB_SIGNAL_LWP] = 0;
9385 signal_stop[GDB_SIGNAL_WAITING] = 0;
9386 signal_print[GDB_SIGNAL_WAITING] = 0;
9387 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9388 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9389 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9390 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9391
2455069d
UW
9392 /* Update cached state. */
9393 signal_cache_update (-1);
9394
85c07804
AC
9395 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9396 &stop_on_solib_events, _("\
9397Set stopping for shared library events."), _("\
9398Show stopping for shared library events."), _("\
c906108c
SS
9399If nonzero, gdb will give control to the user when the dynamic linker\n\
9400notifies gdb of shared library events. The most common event of interest\n\
85c07804 9401to the user would be loading/unloading of a new library."),
f9e14852 9402 set_stop_on_solib_events,
920d2a44 9403 show_stop_on_solib_events,
85c07804 9404 &setlist, &showlist);
c906108c 9405
7ab04401
AC
9406 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9407 follow_fork_mode_kind_names,
9408 &follow_fork_mode_string, _("\
9409Set debugger response to a program call of fork or vfork."), _("\
9410Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9411A fork or vfork creates a new process. follow-fork-mode can be:\n\
9412 parent - the original process is debugged after a fork\n\
9413 child - the new process is debugged after a fork\n\
ea1dd7bc 9414The unfollowed process will continue to run.\n\
7ab04401
AC
9415By default, the debugger will follow the parent process."),
9416 NULL,
920d2a44 9417 show_follow_fork_mode_string,
7ab04401
AC
9418 &setlist, &showlist);
9419
6c95b8df
PA
9420 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9421 follow_exec_mode_names,
9422 &follow_exec_mode_string, _("\
9423Set debugger response to a program call of exec."), _("\
9424Show debugger response to a program call of exec."), _("\
9425An exec call replaces the program image of a process.\n\
9426\n\
9427follow-exec-mode can be:\n\
9428\n\
cce7e648 9429 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9430to this new inferior. The program the process was running before\n\
9431the exec call can be restarted afterwards by restarting the original\n\
9432inferior.\n\
9433\n\
9434 same - the debugger keeps the process bound to the same inferior.\n\
9435The new executable image replaces the previous executable loaded in\n\
9436the inferior. Restarting the inferior after the exec call restarts\n\
9437the executable the process was running after the exec call.\n\
9438\n\
9439By default, the debugger will use the same inferior."),
9440 NULL,
9441 show_follow_exec_mode_string,
9442 &setlist, &showlist);
9443
7ab04401
AC
9444 add_setshow_enum_cmd ("scheduler-locking", class_run,
9445 scheduler_enums, &scheduler_mode, _("\
9446Set mode for locking scheduler during execution."), _("\
9447Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9448off == no locking (threads may preempt at any time)\n\
9449on == full locking (no thread except the current thread may run)\n\
9450 This applies to both normal execution and replay mode.\n\
9451step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9452 In this mode, other threads may run during other commands.\n\
9453 This applies to both normal execution and replay mode.\n\
9454replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9455 set_schedlock_func, /* traps on target vector */
920d2a44 9456 show_scheduler_mode,
7ab04401 9457 &setlist, &showlist);
5fbbeb29 9458
d4db2f36
PA
9459 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9460Set mode for resuming threads of all processes."), _("\
9461Show mode for resuming threads of all processes."), _("\
9462When on, execution commands (such as 'continue' or 'next') resume all\n\
9463threads of all processes. When off (which is the default), execution\n\
9464commands only resume the threads of the current process. The set of\n\
9465threads that are resumed is further refined by the scheduler-locking\n\
9466mode (see help set scheduler-locking)."),
9467 NULL,
9468 show_schedule_multiple,
9469 &setlist, &showlist);
9470
5bf193a2
AC
9471 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9472Set mode of the step operation."), _("\
9473Show mode of the step operation."), _("\
9474When set, doing a step over a function without debug line information\n\
9475will stop at the first instruction of that function. Otherwise, the\n\
9476function is skipped and the step command stops at a different source line."),
9477 NULL,
920d2a44 9478 show_step_stop_if_no_debug,
5bf193a2 9479 &setlist, &showlist);
ca6724c1 9480
72d0e2c5
YQ
9481 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9482 &can_use_displaced_stepping, _("\
237fc4c9
PA
9483Set debugger's willingness to use displaced stepping."), _("\
9484Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9485If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9486supported by the target architecture. If off, gdb will not use displaced\n\
9487stepping to step over breakpoints, even if such is supported by the target\n\
9488architecture. If auto (which is the default), gdb will use displaced stepping\n\
9489if the target architecture supports it and non-stop mode is active, but will not\n\
9490use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9491 NULL,
9492 show_can_use_displaced_stepping,
9493 &setlist, &showlist);
237fc4c9 9494
b2175913
MS
9495 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9496 &exec_direction, _("Set direction of execution.\n\
9497Options are 'forward' or 'reverse'."),
9498 _("Show direction of execution (forward/reverse)."),
9499 _("Tells gdb whether to execute forward or backward."),
9500 set_exec_direction_func, show_exec_direction_func,
9501 &setlist, &showlist);
9502
6c95b8df
PA
9503 /* Set/show detach-on-fork: user-settable mode. */
9504
9505 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9506Set whether gdb will detach the child of a fork."), _("\
9507Show whether gdb will detach the child of a fork."), _("\
9508Tells gdb whether to detach the child of a fork."),
9509 NULL, NULL, &setlist, &showlist);
9510
03583c20
UW
9511 /* Set/show disable address space randomization mode. */
9512
9513 add_setshow_boolean_cmd ("disable-randomization", class_support,
9514 &disable_randomization, _("\
9515Set disabling of debuggee's virtual address space randomization."), _("\
9516Show disabling of debuggee's virtual address space randomization."), _("\
9517When this mode is on (which is the default), randomization of the virtual\n\
9518address space is disabled. Standalone programs run with the randomization\n\
9519enabled by default on some platforms."),
9520 &set_disable_randomization,
9521 &show_disable_randomization,
9522 &setlist, &showlist);
9523
ca6724c1 9524 /* ptid initializations */
ca6724c1
KB
9525 inferior_ptid = null_ptid;
9526 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9527
9528 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9529 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9530 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9531 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9532
9533 /* Explicitly create without lookup, since that tries to create a
9534 value with a void typed value, and when we get here, gdbarch
9535 isn't initialized yet. At this point, we're quite sure there
9536 isn't another convenience variable of the same name. */
22d2b532 9537 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9538
9539 add_setshow_boolean_cmd ("observer", no_class,
9540 &observer_mode_1, _("\
9541Set whether gdb controls the inferior in observer mode."), _("\
9542Show whether gdb controls the inferior in observer mode."), _("\
9543In observer mode, GDB can get data from the inferior, but not\n\
9544affect its execution. Registers and memory may not be changed,\n\
9545breakpoints may not be set, and the program cannot be interrupted\n\
9546or signalled."),
9547 set_observer_mode,
9548 show_observer_mode,
9549 &setlist,
9550 &showlist);
c906108c 9551}
This page took 3.085608 seconds and 4 git commands to generate.