*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca
DJ
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
8621d6a9 6 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
197e01b6
EZ
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
60250e8b 31#include "exceptions.h"
c906108c 32#include "breakpoint.h"
03f2053f 33#include "gdb_wait.h"
c906108c
SS
34#include "gdbcore.h"
35#include "gdbcmd.h"
210661e7 36#include "cli/cli-script.h"
c906108c
SS
37#include "target.h"
38#include "gdbthread.h"
39#include "annotate.h"
1adeb98a 40#include "symfile.h"
7a292a7a 41#include "top.h"
c906108c 42#include <signal.h>
2acceee2 43#include "inf-loop.h"
4e052eda 44#include "regcache.h"
fd0407d6 45#include "value.h"
06600e06 46#include "observer.h"
f636b87d 47#include "language.h"
a77053c2 48#include "solib.h"
f17517ea 49#include "main.h"
a77053c2 50
9f976b41 51#include "gdb_assert.h"
034dad6f 52#include "mi/mi-common.h"
c906108c
SS
53
54/* Prototypes for local functions */
55
96baa820 56static void signals_info (char *, int);
c906108c 57
96baa820 58static void handle_command (char *, int);
c906108c 59
96baa820 60static void sig_print_info (enum target_signal);
c906108c 61
96baa820 62static void sig_print_header (void);
c906108c 63
74b7792f 64static void resume_cleanups (void *);
c906108c 65
96baa820 66static int hook_stop_stub (void *);
c906108c 67
96baa820
JM
68static int restore_selected_frame (void *);
69
70static void build_infrun (void);
71
4ef3f3be 72static int follow_fork (void);
96baa820
JM
73
74static void set_schedlock_func (char *args, int from_tty,
488f131b 75 struct cmd_list_element *c);
96baa820 76
96baa820
JM
77struct execution_control_state;
78
79static int currently_stepping (struct execution_control_state *ecs);
80
81static void xdb_handle_command (char *args, int from_tty);
82
ea67f13b
DJ
83static int prepare_to_proceed (void);
84
96baa820 85void _initialize_infrun (void);
43ff13b4 86
c906108c
SS
87int inferior_ignoring_leading_exec_events = 0;
88
5fbbeb29
CF
89/* When set, stop the 'step' command if we enter a function which has
90 no line number information. The normal behavior is that we step
91 over such function. */
92int step_stop_if_no_debug = 0;
920d2a44
AC
93static void
94show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96{
97 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
98}
5fbbeb29 99
43ff13b4 100/* In asynchronous mode, but simulating synchronous execution. */
96baa820 101
43ff13b4
JM
102int sync_execution = 0;
103
c906108c
SS
104/* wait_for_inferior and normal_stop use this to notify the user
105 when the inferior stopped in a different thread than it had been
96baa820
JM
106 running in. */
107
39f77062 108static ptid_t previous_inferior_ptid;
7a292a7a
SS
109
110/* This is true for configurations that may follow through execl() and
111 similar functions. At present this is only true for HP-UX native. */
112
113#ifndef MAY_FOLLOW_EXEC
114#define MAY_FOLLOW_EXEC (0)
c906108c
SS
115#endif
116
7a292a7a
SS
117static int may_follow_exec = MAY_FOLLOW_EXEC;
118
527159b7 119static int debug_infrun = 0;
920d2a44
AC
120static void
121show_debug_infrun (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c, const char *value)
123{
124 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
125}
527159b7 126
d4f3574e
SS
127/* If the program uses ELF-style shared libraries, then calls to
128 functions in shared libraries go through stubs, which live in a
129 table called the PLT (Procedure Linkage Table). The first time the
130 function is called, the stub sends control to the dynamic linker,
131 which looks up the function's real address, patches the stub so
132 that future calls will go directly to the function, and then passes
133 control to the function.
134
135 If we are stepping at the source level, we don't want to see any of
136 this --- we just want to skip over the stub and the dynamic linker.
137 The simple approach is to single-step until control leaves the
138 dynamic linker.
139
ca557f44
AC
140 However, on some systems (e.g., Red Hat's 5.2 distribution) the
141 dynamic linker calls functions in the shared C library, so you
142 can't tell from the PC alone whether the dynamic linker is still
143 running. In this case, we use a step-resume breakpoint to get us
144 past the dynamic linker, as if we were using "next" to step over a
145 function call.
d4f3574e
SS
146
147 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
148 linker code or not. Normally, this means we single-step. However,
149 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
150 address where we can place a step-resume breakpoint to get past the
151 linker's symbol resolution function.
152
153 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
154 pretty portable way, by comparing the PC against the address ranges
155 of the dynamic linker's sections.
156
157 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
158 it depends on internal details of the dynamic linker. It's usually
159 not too hard to figure out where to put a breakpoint, but it
160 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
161 sanity checking. If it can't figure things out, returning zero and
162 getting the (possibly confusing) stepping behavior is better than
163 signalling an error, which will obscure the change in the
164 inferior's state. */
c906108c 165
c906108c
SS
166/* This function returns TRUE if pc is the address of an instruction
167 that lies within the dynamic linker (such as the event hook, or the
168 dld itself).
169
170 This function must be used only when a dynamic linker event has
171 been caught, and the inferior is being stepped out of the hook, or
172 undefined results are guaranteed. */
173
174#ifndef SOLIB_IN_DYNAMIC_LINKER
175#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
176#endif
177
c2c6d25f 178
7a292a7a
SS
179/* Convert the #defines into values. This is temporary until wfi control
180 flow is completely sorted out. */
181
692590c1
MS
182#ifndef CANNOT_STEP_HW_WATCHPOINTS
183#define CANNOT_STEP_HW_WATCHPOINTS 0
184#else
185#undef CANNOT_STEP_HW_WATCHPOINTS
186#define CANNOT_STEP_HW_WATCHPOINTS 1
187#endif
188
c906108c
SS
189/* Tables of how to react to signals; the user sets them. */
190
191static unsigned char *signal_stop;
192static unsigned char *signal_print;
193static unsigned char *signal_program;
194
195#define SET_SIGS(nsigs,sigs,flags) \
196 do { \
197 int signum = (nsigs); \
198 while (signum-- > 0) \
199 if ((sigs)[signum]) \
200 (flags)[signum] = 1; \
201 } while (0)
202
203#define UNSET_SIGS(nsigs,sigs,flags) \
204 do { \
205 int signum = (nsigs); \
206 while (signum-- > 0) \
207 if ((sigs)[signum]) \
208 (flags)[signum] = 0; \
209 } while (0)
210
39f77062
KB
211/* Value to pass to target_resume() to cause all threads to resume */
212
213#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
214
215/* Command list pointer for the "stop" placeholder. */
216
217static struct cmd_list_element *stop_command;
218
219/* Nonzero if breakpoints are now inserted in the inferior. */
220
221static int breakpoints_inserted;
222
223/* Function inferior was in as of last step command. */
224
225static struct symbol *step_start_function;
226
227/* Nonzero if we are expecting a trace trap and should proceed from it. */
228
229static int trap_expected;
230
c906108c
SS
231/* Nonzero if we want to give control to the user when we're notified
232 of shared library events by the dynamic linker. */
233static int stop_on_solib_events;
920d2a44
AC
234static void
235show_stop_on_solib_events (struct ui_file *file, int from_tty,
236 struct cmd_list_element *c, const char *value)
237{
238 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
239 value);
240}
c906108c 241
c906108c
SS
242/* Nonzero means expecting a trace trap
243 and should stop the inferior and return silently when it happens. */
244
245int stop_after_trap;
246
247/* Nonzero means expecting a trap and caller will handle it themselves.
248 It is used after attach, due to attaching to a process;
249 when running in the shell before the child program has been exec'd;
250 and when running some kinds of remote stuff (FIXME?). */
251
c0236d92 252enum stop_kind stop_soon;
c906108c
SS
253
254/* Nonzero if proceed is being used for a "finish" command or a similar
255 situation when stop_registers should be saved. */
256
257int proceed_to_finish;
258
259/* Save register contents here when about to pop a stack dummy frame,
260 if-and-only-if proceed_to_finish is set.
261 Thus this contains the return value from the called function (assuming
262 values are returned in a register). */
263
72cec141 264struct regcache *stop_registers;
c906108c 265
c906108c
SS
266/* Nonzero after stop if current stack frame should be printed. */
267
268static int stop_print_frame;
269
270static struct breakpoint *step_resume_breakpoint = NULL;
c906108c 271
e02bc4cc 272/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
273 returned by target_wait()/deprecated_target_wait_hook(). This
274 information is returned by get_last_target_status(). */
39f77062 275static ptid_t target_last_wait_ptid;
e02bc4cc
DS
276static struct target_waitstatus target_last_waitstatus;
277
c906108c
SS
278/* This is used to remember when a fork, vfork or exec event
279 was caught by a catchpoint, and thus the event is to be
280 followed at the next resume of the inferior, and not
281 immediately. */
282static struct
488f131b
JB
283{
284 enum target_waitkind kind;
285 struct
c906108c 286 {
488f131b 287 int parent_pid;
488f131b 288 int child_pid;
c906108c 289 }
488f131b
JB
290 fork_event;
291 char *execd_pathname;
292}
c906108c
SS
293pending_follow;
294
53904c9e
AC
295static const char follow_fork_mode_child[] = "child";
296static const char follow_fork_mode_parent[] = "parent";
297
488f131b 298static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
299 follow_fork_mode_child,
300 follow_fork_mode_parent,
301 NULL
ef346e04 302};
c906108c 303
53904c9e 304static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
305static void
306show_follow_fork_mode_string (struct ui_file *file, int from_tty,
307 struct cmd_list_element *c, const char *value)
308{
309 fprintf_filtered (file, _("\
310Debugger response to a program call of fork or vfork is \"%s\".\n"),
311 value);
312}
c906108c
SS
313\f
314
6604731b 315static int
4ef3f3be 316follow_fork (void)
c906108c 317{
ea1dd7bc 318 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 319
6604731b 320 return target_follow_fork (follow_child);
c906108c
SS
321}
322
6604731b
DJ
323void
324follow_inferior_reset_breakpoints (void)
c906108c 325{
6604731b
DJ
326 /* Was there a step_resume breakpoint? (There was if the user
327 did a "next" at the fork() call.) If so, explicitly reset its
328 thread number.
329
330 step_resumes are a form of bp that are made to be per-thread.
331 Since we created the step_resume bp when the parent process
332 was being debugged, and now are switching to the child process,
333 from the breakpoint package's viewpoint, that's a switch of
334 "threads". We must update the bp's notion of which thread
335 it is for, or it'll be ignored when it triggers. */
336
337 if (step_resume_breakpoint)
338 breakpoint_re_set_thread (step_resume_breakpoint);
339
340 /* Reinsert all breakpoints in the child. The user may have set
341 breakpoints after catching the fork, in which case those
342 were never set in the child, but only in the parent. This makes
343 sure the inserted breakpoints match the breakpoint list. */
344
345 breakpoint_re_set ();
346 insert_breakpoints ();
c906108c 347}
c906108c 348
1adeb98a
FN
349/* EXECD_PATHNAME is assumed to be non-NULL. */
350
c906108c 351static void
96baa820 352follow_exec (int pid, char *execd_pathname)
c906108c 353{
c906108c 354 int saved_pid = pid;
7a292a7a
SS
355 struct target_ops *tgt;
356
357 if (!may_follow_exec)
358 return;
c906108c 359
c906108c
SS
360 /* This is an exec event that we actually wish to pay attention to.
361 Refresh our symbol table to the newly exec'd program, remove any
362 momentary bp's, etc.
363
364 If there are breakpoints, they aren't really inserted now,
365 since the exec() transformed our inferior into a fresh set
366 of instructions.
367
368 We want to preserve symbolic breakpoints on the list, since
369 we have hopes that they can be reset after the new a.out's
370 symbol table is read.
371
372 However, any "raw" breakpoints must be removed from the list
373 (e.g., the solib bp's), since their address is probably invalid
374 now.
375
376 And, we DON'T want to call delete_breakpoints() here, since
377 that may write the bp's "shadow contents" (the instruction
378 value that was overwritten witha TRAP instruction). Since
379 we now have a new a.out, those shadow contents aren't valid. */
380 update_breakpoints_after_exec ();
381
382 /* If there was one, it's gone now. We cannot truly step-to-next
383 statement through an exec(). */
384 step_resume_breakpoint = NULL;
385 step_range_start = 0;
386 step_range_end = 0;
387
c906108c 388 /* What is this a.out's name? */
a3f17187 389 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
390
391 /* We've followed the inferior through an exec. Therefore, the
392 inferior has essentially been killed & reborn. */
7a292a7a
SS
393
394 /* First collect the run target in effect. */
395 tgt = find_run_target ();
396 /* If we can't find one, things are in a very strange state... */
397 if (tgt == NULL)
8a3fe4f8 398 error (_("Could find run target to save before following exec"));
7a292a7a 399
c906108c
SS
400 gdb_flush (gdb_stdout);
401 target_mourn_inferior ();
39f77062 402 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 403 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 404 push_target (tgt);
c906108c
SS
405
406 /* That a.out is now the one to use. */
407 exec_file_attach (execd_pathname, 0);
408
409 /* And also is where symbols can be found. */
1adeb98a 410 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
411
412 /* Reset the shared library package. This ensures that we get
413 a shlib event when the child reaches "_start", at which point
414 the dld will have had a chance to initialize the child. */
7a292a7a 415#if defined(SOLIB_RESTART)
c906108c 416 SOLIB_RESTART ();
7a292a7a
SS
417#endif
418#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 419 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
420#else
421 solib_create_inferior_hook ();
7a292a7a 422#endif
c906108c
SS
423
424 /* Reinsert all breakpoints. (Those which were symbolic have
425 been reset to the proper address in the new a.out, thanks
426 to symbol_file_command...) */
427 insert_breakpoints ();
428
429 /* The next resume of this inferior should bring it to the shlib
430 startup breakpoints. (If the user had also set bp's on
431 "main" from the old (parent) process, then they'll auto-
432 matically get reset there in the new process.) */
c906108c
SS
433}
434
435/* Non-zero if we just simulating a single-step. This is needed
436 because we cannot remove the breakpoints in the inferior process
437 until after the `wait' in `wait_for_inferior'. */
438static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
439
440/* The thread we inserted single-step breakpoints for. */
441static ptid_t singlestep_ptid;
442
fd48f117
DJ
443/* PC when we started this single-step. */
444static CORE_ADDR singlestep_pc;
445
9f976b41
DJ
446/* If another thread hit the singlestep breakpoint, we save the original
447 thread here so that we can resume single-stepping it later. */
448static ptid_t saved_singlestep_ptid;
449static int stepping_past_singlestep_breakpoint;
c906108c
SS
450\f
451
452/* Things to clean up if we QUIT out of resume (). */
c906108c 453static void
74b7792f 454resume_cleanups (void *ignore)
c906108c
SS
455{
456 normal_stop ();
457}
458
53904c9e
AC
459static const char schedlock_off[] = "off";
460static const char schedlock_on[] = "on";
461static const char schedlock_step[] = "step";
488f131b 462static const char *scheduler_enums[] = {
ef346e04
AC
463 schedlock_off,
464 schedlock_on,
465 schedlock_step,
466 NULL
467};
920d2a44
AC
468static const char *scheduler_mode = schedlock_off;
469static void
470show_scheduler_mode (struct ui_file *file, int from_tty,
471 struct cmd_list_element *c, const char *value)
472{
473 fprintf_filtered (file, _("\
474Mode for locking scheduler during execution is \"%s\".\n"),
475 value);
476}
c906108c
SS
477
478static void
96baa820 479set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 480{
eefe576e
AC
481 if (!target_can_lock_scheduler)
482 {
483 scheduler_mode = schedlock_off;
484 error (_("Target '%s' cannot support this command."), target_shortname);
485 }
c906108c
SS
486}
487
488
489/* Resume the inferior, but allow a QUIT. This is useful if the user
490 wants to interrupt some lengthy single-stepping operation
491 (for child processes, the SIGINT goes to the inferior, and so
492 we get a SIGINT random_signal, but for remote debugging and perhaps
493 other targets, that's not true).
494
495 STEP nonzero if we should step (zero to continue instead).
496 SIG is the signal to give the inferior (zero for none). */
497void
96baa820 498resume (int step, enum target_signal sig)
c906108c
SS
499{
500 int should_resume = 1;
74b7792f 501 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
502 QUIT;
503
527159b7 504 if (debug_infrun)
8a9de0e4
AC
505 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
506 step, sig);
527159b7 507
ef5cf84e
MS
508 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
509
c906108c 510
692590c1
MS
511 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
512 over an instruction that causes a page fault without triggering
513 a hardware watchpoint. The kernel properly notices that it shouldn't
514 stop, because the hardware watchpoint is not triggered, but it forgets
515 the step request and continues the program normally.
516 Work around the problem by removing hardware watchpoints if a step is
517 requested, GDB will check for a hardware watchpoint trigger after the
518 step anyway. */
519 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
520 remove_hw_watchpoints ();
488f131b 521
692590c1 522
c2c6d25f
JM
523 /* Normally, by the time we reach `resume', the breakpoints are either
524 removed or inserted, as appropriate. The exception is if we're sitting
525 at a permanent breakpoint; we need to step over it, but permanent
526 breakpoints can't be removed. So we have to test for it here. */
527 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
6d350bb5
UW
528 {
529 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
594f7785
UW
530 gdbarch_skip_permanent_breakpoint (current_gdbarch,
531 get_current_regcache ());
6d350bb5
UW
532 else
533 error (_("\
534The program is stopped at a permanent breakpoint, but GDB does not know\n\
535how to step past a permanent breakpoint on this architecture. Try using\n\
536a command like `return' or `jump' to continue execution."));
537 }
c2c6d25f 538
1c0fdd0e 539 if (step && gdbarch_software_single_step_p (current_gdbarch))
c906108c
SS
540 {
541 /* Do it the hard way, w/temp breakpoints */
1c0fdd0e 542 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
e6590a1b
UW
543 {
544 /* ...and don't ask hardware to do it. */
545 step = 0;
546 /* and do not pull these breakpoints until after a `wait' in
547 `wait_for_inferior' */
548 singlestep_breakpoints_inserted_p = 1;
549 singlestep_ptid = inferior_ptid;
550 singlestep_pc = read_pc ();
551 }
c906108c
SS
552 }
553
c906108c 554 /* If there were any forks/vforks/execs that were caught and are
6604731b 555 now to be followed, then do so. */
c906108c
SS
556 switch (pending_follow.kind)
557 {
6604731b
DJ
558 case TARGET_WAITKIND_FORKED:
559 case TARGET_WAITKIND_VFORKED:
c906108c 560 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
561 if (follow_fork ())
562 should_resume = 0;
c906108c
SS
563 break;
564
6604731b 565 case TARGET_WAITKIND_EXECD:
c906108c 566 /* follow_exec is called as soon as the exec event is seen. */
6604731b 567 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
568 break;
569
570 default:
571 break;
572 }
c906108c
SS
573
574 /* Install inferior's terminal modes. */
575 target_terminal_inferior ();
576
577 if (should_resume)
578 {
39f77062 579 ptid_t resume_ptid;
dfcd3bfb 580
488f131b 581 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 582
8fb3e588
AC
583 if ((step || singlestep_breakpoints_inserted_p)
584 && (stepping_past_singlestep_breakpoint
585 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 586 {
ef5cf84e
MS
587 /* Stepping past a breakpoint without inserting breakpoints.
588 Make sure only the current thread gets to step, so that
589 other threads don't sneak past breakpoints while they are
590 not inserted. */
c906108c 591
ef5cf84e 592 resume_ptid = inferior_ptid;
c906108c 593 }
ef5cf84e 594
8fb3e588
AC
595 if ((scheduler_mode == schedlock_on)
596 || (scheduler_mode == schedlock_step
597 && (step || singlestep_breakpoints_inserted_p)))
c906108c 598 {
ef5cf84e 599 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 600 resume_ptid = inferior_ptid;
c906108c 601 }
ef5cf84e 602
e6cf7916 603 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
c4ed33b9
AC
604 {
605 /* Most targets can step a breakpoint instruction, thus
606 executing it normally. But if this one cannot, just
607 continue and we will hit it anyway. */
608 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
609 step = 0;
610 }
39f77062 611 target_resume (resume_ptid, step, sig);
c906108c
SS
612 }
613
614 discard_cleanups (old_cleanups);
615}
616\f
617
618/* Clear out all variables saying what to do when inferior is continued.
619 First do this, then set the ones you want, then call `proceed'. */
620
621void
96baa820 622clear_proceed_status (void)
c906108c
SS
623{
624 trap_expected = 0;
625 step_range_start = 0;
626 step_range_end = 0;
aa0cd9c1 627 step_frame_id = null_frame_id;
5fbbeb29 628 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 629 stop_after_trap = 0;
c0236d92 630 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
631 proceed_to_finish = 0;
632 breakpoint_proceeded = 1; /* We're about to proceed... */
633
d5c31457
UW
634 if (stop_registers)
635 {
636 regcache_xfree (stop_registers);
637 stop_registers = NULL;
638 }
639
c906108c
SS
640 /* Discard any remaining commands or status from previous stop. */
641 bpstat_clear (&stop_bpstat);
642}
643
ea67f13b
DJ
644/* This should be suitable for any targets that support threads. */
645
646static int
647prepare_to_proceed (void)
648{
649 ptid_t wait_ptid;
650 struct target_waitstatus wait_status;
651
652 /* Get the last target status returned by target_wait(). */
653 get_last_target_status (&wait_ptid, &wait_status);
654
655 /* Make sure we were stopped either at a breakpoint, or because
656 of a Ctrl-C. */
657 if (wait_status.kind != TARGET_WAITKIND_STOPPED
8fb3e588
AC
658 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
659 && wait_status.value.sig != TARGET_SIGNAL_INT))
ea67f13b
DJ
660 {
661 return 0;
662 }
663
664 if (!ptid_equal (wait_ptid, minus_one_ptid)
665 && !ptid_equal (inferior_ptid, wait_ptid))
666 {
667 /* Switched over from WAIT_PID. */
668 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
669
670 if (wait_pc != read_pc ())
671 {
672 /* Switch back to WAIT_PID thread. */
673 inferior_ptid = wait_ptid;
674
675 /* FIXME: This stuff came from switch_to_thread() in
676 thread.c (which should probably be a public function). */
35f196d9 677 reinit_frame_cache ();
ea67f13b
DJ
678 registers_changed ();
679 stop_pc = wait_pc;
ea67f13b
DJ
680 }
681
8fb3e588
AC
682 /* We return 1 to indicate that there is a breakpoint here,
683 so we need to step over it before continuing to avoid
684 hitting it straight away. */
685 if (breakpoint_here_p (wait_pc))
686 return 1;
ea67f13b
DJ
687 }
688
689 return 0;
8fb3e588 690
ea67f13b 691}
e4846b08
JJ
692
693/* Record the pc of the program the last time it stopped. This is
694 just used internally by wait_for_inferior, but need to be preserved
695 over calls to it and cleared when the inferior is started. */
696static CORE_ADDR prev_pc;
697
c906108c
SS
698/* Basic routine for continuing the program in various fashions.
699
700 ADDR is the address to resume at, or -1 for resume where stopped.
701 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 702 or -1 for act according to how it stopped.
c906108c 703 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
704 -1 means return after that and print nothing.
705 You should probably set various step_... variables
706 before calling here, if you are stepping.
c906108c
SS
707
708 You should call clear_proceed_status before calling proceed. */
709
710void
96baa820 711proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
712{
713 int oneproc = 0;
714
715 if (step > 0)
716 step_start_function = find_pc_function (read_pc ());
717 if (step < 0)
718 stop_after_trap = 1;
719
2acceee2 720 if (addr == (CORE_ADDR) -1)
c906108c 721 {
c906108c 722 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
3352ef37
AC
723 /* There is a breakpoint at the address we will resume at,
724 step one instruction before inserting breakpoints so that
725 we do not stop right away (and report a second hit at this
726 breakpoint). */
c906108c 727 oneproc = 1;
3352ef37
AC
728 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
729 && gdbarch_single_step_through_delay (current_gdbarch,
730 get_current_frame ()))
731 /* We stepped onto an instruction that needs to be stepped
732 again before re-inserting the breakpoint, do so. */
c906108c
SS
733 oneproc = 1;
734 }
735 else
736 {
737 write_pc (addr);
c906108c
SS
738 }
739
527159b7 740 if (debug_infrun)
8a9de0e4
AC
741 fprintf_unfiltered (gdb_stdlog,
742 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
743 paddr_nz (addr), siggnal, step);
527159b7 744
c906108c
SS
745 /* In a multi-threaded task we may select another thread
746 and then continue or step.
747
748 But if the old thread was stopped at a breakpoint, it
749 will immediately cause another breakpoint stop without
750 any execution (i.e. it will report a breakpoint hit
751 incorrectly). So we must step over it first.
752
ea67f13b 753 prepare_to_proceed checks the current thread against the thread
c906108c
SS
754 that reported the most recent event. If a step-over is required
755 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
756 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
757 oneproc = 1;
c906108c 758
c906108c
SS
759 if (oneproc)
760 /* We will get a trace trap after one instruction.
761 Continue it automatically and insert breakpoints then. */
762 trap_expected = 1;
763 else
764 {
81d0cc19
GS
765 insert_breakpoints ();
766 /* If we get here there was no call to error() in
8fb3e588 767 insert breakpoints -- so they were inserted. */
c906108c
SS
768 breakpoints_inserted = 1;
769 }
770
771 if (siggnal != TARGET_SIGNAL_DEFAULT)
772 stop_signal = siggnal;
773 /* If this signal should not be seen by program,
774 give it zero. Used for debugging signals. */
775 else if (!signal_program[stop_signal])
776 stop_signal = TARGET_SIGNAL_0;
777
778 annotate_starting ();
779
780 /* Make sure that output from GDB appears before output from the
781 inferior. */
782 gdb_flush (gdb_stdout);
783
e4846b08
JJ
784 /* Refresh prev_pc value just prior to resuming. This used to be
785 done in stop_stepping, however, setting prev_pc there did not handle
786 scenarios such as inferior function calls or returning from
787 a function via the return command. In those cases, the prev_pc
788 value was not set properly for subsequent commands. The prev_pc value
789 is used to initialize the starting line number in the ecs. With an
790 invalid value, the gdb next command ends up stopping at the position
791 represented by the next line table entry past our start position.
792 On platforms that generate one line table entry per line, this
793 is not a problem. However, on the ia64, the compiler generates
794 extraneous line table entries that do not increase the line number.
795 When we issue the gdb next command on the ia64 after an inferior call
796 or a return command, we often end up a few instructions forward, still
797 within the original line we started.
798
799 An attempt was made to have init_execution_control_state () refresh
800 the prev_pc value before calculating the line number. This approach
801 did not work because on platforms that use ptrace, the pc register
802 cannot be read unless the inferior is stopped. At that point, we
803 are not guaranteed the inferior is stopped and so the read_pc ()
804 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 805 updated correctly when the inferior is stopped. */
e4846b08
JJ
806 prev_pc = read_pc ();
807
c906108c
SS
808 /* Resume inferior. */
809 resume (oneproc || step || bpstat_should_step (), stop_signal);
810
811 /* Wait for it to stop (if not standalone)
812 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
813 /* Do this only if we are not using the event loop, or if the target
814 does not support asynchronous execution. */
362646f5 815 if (!target_can_async_p ())
43ff13b4
JM
816 {
817 wait_for_inferior ();
818 normal_stop ();
819 }
c906108c 820}
c906108c
SS
821\f
822
823/* Start remote-debugging of a machine over a serial link. */
96baa820 824
c906108c 825void
8621d6a9 826start_remote (int from_tty)
c906108c
SS
827{
828 init_thread_list ();
829 init_wait_for_inferior ();
b0f4b84b 830 stop_soon = STOP_QUIETLY_REMOTE;
c906108c 831 trap_expected = 0;
43ff13b4 832
6426a772
JM
833 /* Always go on waiting for the target, regardless of the mode. */
834 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 835 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
836 nothing is returned (instead of just blocking). Because of this,
837 targets expecting an immediate response need to, internally, set
838 things up so that the target_wait() is forced to eventually
839 timeout. */
840 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
841 differentiate to its caller what the state of the target is after
842 the initial open has been performed. Here we're assuming that
843 the target has stopped. It should be possible to eventually have
844 target_open() return to the caller an indication that the target
845 is currently running and GDB state should be set to the same as
846 for an async run. */
847 wait_for_inferior ();
8621d6a9
DJ
848
849 /* Now that the inferior has stopped, do any bookkeeping like
850 loading shared libraries. We want to do this before normal_stop,
851 so that the displayed frame is up to date. */
852 post_create_inferior (&current_target, from_tty);
853
6426a772 854 normal_stop ();
c906108c
SS
855}
856
857/* Initialize static vars when a new inferior begins. */
858
859void
96baa820 860init_wait_for_inferior (void)
c906108c
SS
861{
862 /* These are meaningless until the first time through wait_for_inferior. */
863 prev_pc = 0;
c906108c 864
c906108c
SS
865 breakpoints_inserted = 0;
866 breakpoint_init_inferior (inf_starting);
867
868 /* Don't confuse first call to proceed(). */
869 stop_signal = TARGET_SIGNAL_0;
870
871 /* The first resume is not following a fork/vfork/exec. */
872 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 873
c906108c 874 clear_proceed_status ();
9f976b41
DJ
875
876 stepping_past_singlestep_breakpoint = 0;
c906108c 877}
c906108c 878\f
b83266a0
SS
879/* This enum encodes possible reasons for doing a target_wait, so that
880 wfi can call target_wait in one place. (Ultimately the call will be
881 moved out of the infinite loop entirely.) */
882
c5aa993b
JM
883enum infwait_states
884{
cd0fc7c3
SS
885 infwait_normal_state,
886 infwait_thread_hop_state,
cd0fc7c3 887 infwait_nonstep_watch_state
b83266a0
SS
888};
889
11cf8741
JM
890/* Why did the inferior stop? Used to print the appropriate messages
891 to the interface from within handle_inferior_event(). */
892enum inferior_stop_reason
893{
11cf8741
JM
894 /* Step, next, nexti, stepi finished. */
895 END_STEPPING_RANGE,
11cf8741
JM
896 /* Inferior terminated by signal. */
897 SIGNAL_EXITED,
898 /* Inferior exited. */
899 EXITED,
900 /* Inferior received signal, and user asked to be notified. */
901 SIGNAL_RECEIVED
902};
903
cd0fc7c3
SS
904/* This structure contains what used to be local variables in
905 wait_for_inferior. Probably many of them can return to being
906 locals in handle_inferior_event. */
907
c5aa993b 908struct execution_control_state
488f131b
JB
909{
910 struct target_waitstatus ws;
911 struct target_waitstatus *wp;
912 int another_trap;
913 int random_signal;
914 CORE_ADDR stop_func_start;
915 CORE_ADDR stop_func_end;
916 char *stop_func_name;
917 struct symtab_and_line sal;
488f131b
JB
918 int current_line;
919 struct symtab *current_symtab;
920 int handling_longjmp; /* FIXME */
921 ptid_t ptid;
922 ptid_t saved_inferior_ptid;
68f53502 923 int step_after_step_resume_breakpoint;
488f131b
JB
924 int stepping_through_solib_after_catch;
925 bpstat stepping_through_solib_catchpoints;
488f131b
JB
926 int new_thread_event;
927 struct target_waitstatus tmpstatus;
928 enum infwait_states infwait_state;
929 ptid_t waiton_ptid;
930 int wait_some_more;
931};
932
933void init_execution_control_state (struct execution_control_state *ecs);
934
935void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 936
c2c6d25f 937static void step_into_function (struct execution_control_state *ecs);
44cbf7b5 938static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 939static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
940static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
941 struct frame_id sr_id);
104c1213
JM
942static void stop_stepping (struct execution_control_state *ecs);
943static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 944static void keep_going (struct execution_control_state *ecs);
488f131b
JB
945static void print_stop_reason (enum inferior_stop_reason stop_reason,
946 int stop_info);
104c1213 947
cd0fc7c3
SS
948/* Wait for control to return from inferior to debugger.
949 If inferior gets a signal, we may decide to start it up again
950 instead of returning. That is why there is a loop in this function.
951 When this function actually returns it means the inferior
952 should be left stopped and GDB should read more commands. */
953
954void
96baa820 955wait_for_inferior (void)
cd0fc7c3
SS
956{
957 struct cleanup *old_cleanups;
958 struct execution_control_state ecss;
959 struct execution_control_state *ecs;
c906108c 960
527159b7 961 if (debug_infrun)
8a9de0e4 962 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
527159b7 963
8601f500 964 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 965 &step_resume_breakpoint);
cd0fc7c3
SS
966
967 /* wfi still stays in a loop, so it's OK just to take the address of
968 a local to get the ecs pointer. */
969 ecs = &ecss;
970
971 /* Fill in with reasonable starting values. */
972 init_execution_control_state (ecs);
973
c906108c 974 /* We'll update this if & when we switch to a new thread. */
39f77062 975 previous_inferior_ptid = inferior_ptid;
c906108c 976
cd0fc7c3
SS
977 overlay_cache_invalid = 1;
978
979 /* We have to invalidate the registers BEFORE calling target_wait
980 because they can be loaded from the target while in target_wait.
981 This makes remote debugging a bit more efficient for those
982 targets that provide critical registers as part of their normal
983 status mechanism. */
984
985 registers_changed ();
b83266a0 986
c906108c
SS
987 while (1)
988 {
9a4105ab
AC
989 if (deprecated_target_wait_hook)
990 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 991 else
39f77062 992 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 993
cd0fc7c3
SS
994 /* Now figure out what to do with the result of the result. */
995 handle_inferior_event (ecs);
c906108c 996
cd0fc7c3
SS
997 if (!ecs->wait_some_more)
998 break;
999 }
1000 do_cleanups (old_cleanups);
1001}
c906108c 1002
43ff13b4
JM
1003/* Asynchronous version of wait_for_inferior. It is called by the
1004 event loop whenever a change of state is detected on the file
1005 descriptor corresponding to the target. It can be called more than
1006 once to complete a single execution command. In such cases we need
1007 to keep the state in a global variable ASYNC_ECSS. If it is the
1008 last time that this function is called for a single execution
1009 command, then report to the user that the inferior has stopped, and
1010 do the necessary cleanups. */
1011
1012struct execution_control_state async_ecss;
1013struct execution_control_state *async_ecs;
1014
1015void
fba45db2 1016fetch_inferior_event (void *client_data)
43ff13b4
JM
1017{
1018 static struct cleanup *old_cleanups;
1019
c5aa993b 1020 async_ecs = &async_ecss;
43ff13b4
JM
1021
1022 if (!async_ecs->wait_some_more)
1023 {
488f131b 1024 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1025 &step_resume_breakpoint);
43ff13b4
JM
1026
1027 /* Fill in with reasonable starting values. */
1028 init_execution_control_state (async_ecs);
1029
43ff13b4 1030 /* We'll update this if & when we switch to a new thread. */
39f77062 1031 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1032
1033 overlay_cache_invalid = 1;
1034
1035 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1036 because they can be loaded from the target while in target_wait.
1037 This makes remote debugging a bit more efficient for those
1038 targets that provide critical registers as part of their normal
1039 status mechanism. */
43ff13b4
JM
1040
1041 registers_changed ();
1042 }
1043
9a4105ab 1044 if (deprecated_target_wait_hook)
488f131b 1045 async_ecs->ptid =
9a4105ab 1046 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1047 else
39f77062 1048 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1049
1050 /* Now figure out what to do with the result of the result. */
1051 handle_inferior_event (async_ecs);
1052
1053 if (!async_ecs->wait_some_more)
1054 {
adf40b2e 1055 /* Do only the cleanups that have been added by this
488f131b
JB
1056 function. Let the continuations for the commands do the rest,
1057 if there are any. */
43ff13b4
JM
1058 do_exec_cleanups (old_cleanups);
1059 normal_stop ();
c2d11a7d
JM
1060 if (step_multi && stop_step)
1061 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1062 else
1063 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1064 }
1065}
1066
cd0fc7c3
SS
1067/* Prepare an execution control state for looping through a
1068 wait_for_inferior-type loop. */
1069
1070void
96baa820 1071init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1072{
6ad80df0 1073 ecs->another_trap = 0;
cd0fc7c3 1074 ecs->random_signal = 0;
68f53502 1075 ecs->step_after_step_resume_breakpoint = 0;
cd0fc7c3 1076 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1077 ecs->stepping_through_solib_after_catch = 0;
1078 ecs->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
1079 ecs->sal = find_pc_line (prev_pc, 0);
1080 ecs->current_line = ecs->sal.line;
1081 ecs->current_symtab = ecs->sal.symtab;
1082 ecs->infwait_state = infwait_normal_state;
39f77062 1083 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1084 ecs->wp = &(ecs->ws);
1085}
1086
e02bc4cc 1087/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1088 target_wait()/deprecated_target_wait_hook(). The data is actually
1089 cached by handle_inferior_event(), which gets called immediately
1090 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1091
1092void
488f131b 1093get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1094{
39f77062 1095 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1096 *status = target_last_waitstatus;
1097}
1098
ac264b3b
MS
1099void
1100nullify_last_target_wait_ptid (void)
1101{
1102 target_last_wait_ptid = minus_one_ptid;
1103}
1104
dd80620e
MS
1105/* Switch thread contexts, maintaining "infrun state". */
1106
1107static void
1108context_switch (struct execution_control_state *ecs)
1109{
1110 /* Caution: it may happen that the new thread (or the old one!)
1111 is not in the thread list. In this case we must not attempt
1112 to "switch context", or we run the risk that our context may
1113 be lost. This may happen as a result of the target module
1114 mishandling thread creation. */
1115
fd48f117
DJ
1116 if (debug_infrun)
1117 {
1118 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1119 target_pid_to_str (inferior_ptid));
1120 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1121 target_pid_to_str (ecs->ptid));
1122 }
1123
dd80620e 1124 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1125 { /* Perform infrun state context switch: */
dd80620e 1126 /* Save infrun state for the old thread. */
0ce3d317 1127 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1128 trap_expected, step_resume_breakpoint,
15960608 1129 step_range_start,
aa0cd9c1 1130 step_range_end, &step_frame_id,
dd80620e
MS
1131 ecs->handling_longjmp, ecs->another_trap,
1132 ecs->stepping_through_solib_after_catch,
1133 ecs->stepping_through_solib_catchpoints,
f2c9ca08 1134 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1135
1136 /* Load infrun state for the new thread. */
0ce3d317 1137 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1138 &trap_expected, &step_resume_breakpoint,
15960608 1139 &step_range_start,
aa0cd9c1 1140 &step_range_end, &step_frame_id,
dd80620e
MS
1141 &ecs->handling_longjmp, &ecs->another_trap,
1142 &ecs->stepping_through_solib_after_catch,
1143 &ecs->stepping_through_solib_catchpoints,
f2c9ca08 1144 &ecs->current_line, &ecs->current_symtab);
dd80620e
MS
1145 }
1146 inferior_ptid = ecs->ptid;
35f196d9 1147 reinit_frame_cache ();
dd80620e
MS
1148}
1149
4fa8626c
DJ
1150static void
1151adjust_pc_after_break (struct execution_control_state *ecs)
1152{
8aad930b 1153 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1154
1155 /* If this target does not decrement the PC after breakpoints, then
1156 we have nothing to do. */
b798847d 1157 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
4fa8626c
DJ
1158 return;
1159
1160 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1161 we aren't, just return.
9709f61c
DJ
1162
1163 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
1164 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1165 implemented by software breakpoints should be handled through the normal
1166 breakpoint layer.
8fb3e588 1167
4fa8626c
DJ
1168 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1169 different signals (SIGILL or SIGEMT for instance), but it is less
1170 clear where the PC is pointing afterwards. It may not match
b798847d
UW
1171 gdbarch_decr_pc_after_break. I don't know any specific target that
1172 generates these signals at breakpoints (the code has been in GDB since at
1173 least 1992) so I can not guess how to handle them here.
8fb3e588 1174
e6cf7916
UW
1175 In earlier versions of GDB, a target with
1176 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
1177 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1178 target with both of these set in GDB history, and it seems unlikely to be
1179 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
1180
1181 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1182 return;
1183
1184 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1185 return;
1186
8aad930b
AC
1187 /* Find the location where (if we've hit a breakpoint) the
1188 breakpoint would be. */
b798847d
UW
1189 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1190 (current_gdbarch);
8aad930b 1191
1c0fdd0e
UW
1192 /* Check whether there actually is a software breakpoint inserted
1193 at that location. */
1194 if (software_breakpoint_inserted_here_p (breakpoint_pc))
8aad930b 1195 {
1c0fdd0e
UW
1196 /* When using hardware single-step, a SIGTRAP is reported for both
1197 a completed single-step and a software breakpoint. Need to
1198 differentiate between the two, as the latter needs adjusting
1199 but the former does not.
1200
1201 The SIGTRAP can be due to a completed hardware single-step only if
1202 - we didn't insert software single-step breakpoints
1203 - the thread to be examined is still the current thread
1204 - this thread is currently being stepped
1205
1206 If any of these events did not occur, we must have stopped due
1207 to hitting a software breakpoint, and have to back up to the
1208 breakpoint address.
1209
1210 As a special case, we could have hardware single-stepped a
1211 software breakpoint. In this case (prev_pc == breakpoint_pc),
1212 we also need to back up to the breakpoint address. */
1213
1214 if (singlestep_breakpoints_inserted_p
1215 || !ptid_equal (ecs->ptid, inferior_ptid)
1216 || !currently_stepping (ecs)
1217 || prev_pc == breakpoint_pc)
8aad930b
AC
1218 write_pc_pid (breakpoint_pc, ecs->ptid);
1219 }
4fa8626c
DJ
1220}
1221
cd0fc7c3
SS
1222/* Given an execution control state that has been freshly filled in
1223 by an event from the inferior, figure out what it means and take
1224 appropriate action. */
c906108c 1225
7270d8f2
OF
1226int stepped_after_stopped_by_watchpoint;
1227
cd0fc7c3 1228void
96baa820 1229handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1230{
8bbde302
BE
1231 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1232 that the variable stepped_after_stopped_by_watchpoint isn't used,
1233 then you're wrong! See remote.c:remote_stopped_data_address. */
1234
c8edd8b4 1235 int sw_single_step_trap_p = 0;
8fb3e588 1236 int stopped_by_watchpoint = -1; /* Mark as unknown. */
cd0fc7c3 1237
e02bc4cc 1238 /* Cache the last pid/waitstatus. */
39f77062 1239 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1240 target_last_waitstatus = *ecs->wp;
1241
4fa8626c
DJ
1242 adjust_pc_after_break (ecs);
1243
488f131b
JB
1244 switch (ecs->infwait_state)
1245 {
1246 case infwait_thread_hop_state:
527159b7 1247 if (debug_infrun)
8a9de0e4 1248 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b
JB
1249 /* Cancel the waiton_ptid. */
1250 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032 1251 break;
b83266a0 1252
488f131b 1253 case infwait_normal_state:
527159b7 1254 if (debug_infrun)
8a9de0e4 1255 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
488f131b
JB
1256 stepped_after_stopped_by_watchpoint = 0;
1257 break;
b83266a0 1258
488f131b 1259 case infwait_nonstep_watch_state:
527159b7 1260 if (debug_infrun)
8a9de0e4
AC
1261 fprintf_unfiltered (gdb_stdlog,
1262 "infrun: infwait_nonstep_watch_state\n");
488f131b 1263 insert_breakpoints ();
c906108c 1264
488f131b
JB
1265 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1266 handle things like signals arriving and other things happening
1267 in combination correctly? */
1268 stepped_after_stopped_by_watchpoint = 1;
1269 break;
65e82032
AC
1270
1271 default:
e2e0b3e5 1272 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b
JB
1273 }
1274 ecs->infwait_state = infwait_normal_state;
c906108c 1275
35f196d9 1276 reinit_frame_cache ();
c906108c 1277
488f131b 1278 /* If it's a new process, add it to the thread database */
c906108c 1279
488f131b 1280 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
b9b5d7ea 1281 && !ptid_equal (ecs->ptid, minus_one_ptid)
488f131b
JB
1282 && !in_thread_list (ecs->ptid));
1283
1284 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1285 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1286 {
1287 add_thread (ecs->ptid);
c906108c 1288
488f131b
JB
1289 ui_out_text (uiout, "[New ");
1290 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1291 ui_out_text (uiout, "]\n");
488f131b 1292 }
c906108c 1293
488f131b
JB
1294 switch (ecs->ws.kind)
1295 {
1296 case TARGET_WAITKIND_LOADED:
527159b7 1297 if (debug_infrun)
8a9de0e4 1298 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
1299 /* Ignore gracefully during startup of the inferior, as it might
1300 be the shell which has just loaded some objects, otherwise
1301 add the symbols for the newly loaded objects. Also ignore at
1302 the beginning of an attach or remote session; we will query
1303 the full list of libraries once the connection is
1304 established. */
c0236d92 1305 if (stop_soon == NO_STOP_QUIETLY)
488f131b 1306 {
b0f4b84b
DJ
1307 int breakpoints_were_inserted;
1308
488f131b
JB
1309 /* Remove breakpoints, SOLIB_ADD might adjust
1310 breakpoint addresses via breakpoint_re_set. */
b0f4b84b 1311 breakpoints_were_inserted = breakpoints_inserted;
488f131b
JB
1312 if (breakpoints_inserted)
1313 remove_breakpoints ();
b0f4b84b 1314 breakpoints_inserted = 0;
c906108c 1315
488f131b
JB
1316 /* Check for any newly added shared libraries if we're
1317 supposed to be adding them automatically. Switch
1318 terminal for any messages produced by
1319 breakpoint_re_set. */
1320 target_terminal_ours_for_output ();
aff6338a 1321 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1322 stack's section table is kept up-to-date. Architectures,
1323 (e.g., PPC64), use the section table to perform
1324 operations such as address => section name and hence
1325 require the table to contain all sections (including
1326 those found in shared libraries). */
aff6338a 1327 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1328 exec_ops to SOLIB_ADD. This is because current GDB is
1329 only tooled to propagate section_table changes out from
1330 the "current_target" (see target_resize_to_sections), and
1331 not up from the exec stratum. This, of course, isn't
1332 right. "infrun.c" should only interact with the
1333 exec/process stratum, instead relying on the target stack
1334 to propagate relevant changes (stop, section table
1335 changed, ...) up to other layers. */
b0f4b84b 1336#ifdef SOLIB_ADD
aff6338a 1337 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
1338#else
1339 solib_add (NULL, 0, &current_target, auto_solib_add);
1340#endif
488f131b
JB
1341 target_terminal_inferior ();
1342
b0f4b84b
DJ
1343 /* Try to reenable shared library breakpoints, additional
1344 code segments in shared libraries might be mapped in now. */
1345 re_enable_breakpoints_in_shlibs ();
1346
1347 /* If requested, stop when the dynamic linker notifies
1348 gdb of events. This allows the user to get control
1349 and place breakpoints in initializer routines for
1350 dynamically loaded objects (among other things). */
1351 if (stop_on_solib_events)
1352 {
1353 stop_stepping (ecs);
1354 return;
1355 }
1356
1357 /* NOTE drow/2007-05-11: This might be a good place to check
1358 for "catch load". */
1359
488f131b 1360 /* Reinsert breakpoints and continue. */
b0f4b84b
DJ
1361 if (breakpoints_were_inserted)
1362 {
1363 insert_breakpoints ();
1364 breakpoints_inserted = 1;
1365 }
488f131b 1366 }
b0f4b84b
DJ
1367
1368 /* If we are skipping through a shell, or through shared library
1369 loading that we aren't interested in, resume the program. If
1370 we're running the program normally, also resume. But stop if
1371 we're attaching or setting up a remote connection. */
1372 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1373 {
1374 resume (0, TARGET_SIGNAL_0);
1375 prepare_to_wait (ecs);
1376 return;
1377 }
1378
1379 break;
c5aa993b 1380
488f131b 1381 case TARGET_WAITKIND_SPURIOUS:
527159b7 1382 if (debug_infrun)
8a9de0e4 1383 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1384 resume (0, TARGET_SIGNAL_0);
1385 prepare_to_wait (ecs);
1386 return;
c5aa993b 1387
488f131b 1388 case TARGET_WAITKIND_EXITED:
527159b7 1389 if (debug_infrun)
8a9de0e4 1390 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
1391 target_terminal_ours (); /* Must do this before mourn anyway */
1392 print_stop_reason (EXITED, ecs->ws.value.integer);
1393
1394 /* Record the exit code in the convenience variable $_exitcode, so
1395 that the user can inspect this again later. */
1396 set_internalvar (lookup_internalvar ("_exitcode"),
1397 value_from_longest (builtin_type_int,
1398 (LONGEST) ecs->ws.value.integer));
1399 gdb_flush (gdb_stdout);
1400 target_mourn_inferior ();
1c0fdd0e 1401 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
1402 stop_print_frame = 0;
1403 stop_stepping (ecs);
1404 return;
c5aa993b 1405
488f131b 1406 case TARGET_WAITKIND_SIGNALLED:
527159b7 1407 if (debug_infrun)
8a9de0e4 1408 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
1409 stop_print_frame = 0;
1410 stop_signal = ecs->ws.value.sig;
1411 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1412
488f131b
JB
1413 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1414 reach here unless the inferior is dead. However, for years
1415 target_kill() was called here, which hints that fatal signals aren't
1416 really fatal on some systems. If that's true, then some changes
1417 may be needed. */
1418 target_mourn_inferior ();
c906108c 1419
488f131b 1420 print_stop_reason (SIGNAL_EXITED, stop_signal);
1c0fdd0e 1421 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
1422 stop_stepping (ecs);
1423 return;
c906108c 1424
488f131b
JB
1425 /* The following are the only cases in which we keep going;
1426 the above cases end in a continue or goto. */
1427 case TARGET_WAITKIND_FORKED:
deb3b17b 1428 case TARGET_WAITKIND_VFORKED:
527159b7 1429 if (debug_infrun)
8a9de0e4 1430 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
1431 stop_signal = TARGET_SIGNAL_TRAP;
1432 pending_follow.kind = ecs->ws.kind;
1433
8e7d2c16
DJ
1434 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1435 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1436
5a2901d9
DJ
1437 if (!ptid_equal (ecs->ptid, inferior_ptid))
1438 {
1439 context_switch (ecs);
35f196d9 1440 reinit_frame_cache ();
5a2901d9
DJ
1441 }
1442
488f131b 1443 stop_pc = read_pc ();
675bf4cb 1444
00d4360e 1445 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1446
488f131b 1447 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1448
1449 /* If no catchpoint triggered for this, then keep going. */
1450 if (ecs->random_signal)
1451 {
1452 stop_signal = TARGET_SIGNAL_0;
1453 keep_going (ecs);
1454 return;
1455 }
488f131b
JB
1456 goto process_event_stop_test;
1457
1458 case TARGET_WAITKIND_EXECD:
527159b7 1459 if (debug_infrun)
fc5261f2 1460 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
1461 stop_signal = TARGET_SIGNAL_TRAP;
1462
7d2830a3 1463 /* NOTE drow/2002-12-05: This code should be pushed down into the
8fb3e588
AC
1464 target_wait function. Until then following vfork on HP/UX 10.20
1465 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1466 /* Is this a target which reports multiple exec events per actual
1467 call to exec()? (HP-UX using ptrace does, for example.) If so,
1468 ignore all but the last one. Just resume the exec'r, and wait
1469 for the next exec event. */
1470 if (inferior_ignoring_leading_exec_events)
1471 {
1472 inferior_ignoring_leading_exec_events--;
488f131b
JB
1473 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1474 prepare_to_wait (ecs);
1475 return;
1476 }
1477 inferior_ignoring_leading_exec_events =
1478 target_reported_exec_events_per_exec_call () - 1;
1479
1480 pending_follow.execd_pathname =
1481 savestring (ecs->ws.value.execd_pathname,
1482 strlen (ecs->ws.value.execd_pathname));
1483
488f131b
JB
1484 /* This causes the eventpoints and symbol table to be reset. Must
1485 do this now, before trying to determine whether to stop. */
1486 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1487 xfree (pending_follow.execd_pathname);
c906108c 1488
488f131b
JB
1489 stop_pc = read_pc_pid (ecs->ptid);
1490 ecs->saved_inferior_ptid = inferior_ptid;
1491 inferior_ptid = ecs->ptid;
675bf4cb 1492
00d4360e 1493 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1494
488f131b
JB
1495 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1496 inferior_ptid = ecs->saved_inferior_ptid;
04e68871 1497
5a2901d9
DJ
1498 if (!ptid_equal (ecs->ptid, inferior_ptid))
1499 {
1500 context_switch (ecs);
35f196d9 1501 reinit_frame_cache ();
5a2901d9
DJ
1502 }
1503
04e68871
DJ
1504 /* If no catchpoint triggered for this, then keep going. */
1505 if (ecs->random_signal)
1506 {
1507 stop_signal = TARGET_SIGNAL_0;
1508 keep_going (ecs);
1509 return;
1510 }
488f131b
JB
1511 goto process_event_stop_test;
1512
b4dc5ffa
MK
1513 /* Be careful not to try to gather much state about a thread
1514 that's in a syscall. It's frequently a losing proposition. */
488f131b 1515 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 1516 if (debug_infrun)
8a9de0e4 1517 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
1518 resume (0, TARGET_SIGNAL_0);
1519 prepare_to_wait (ecs);
1520 return;
c906108c 1521
488f131b
JB
1522 /* Before examining the threads further, step this thread to
1523 get it entirely out of the syscall. (We get notice of the
1524 event when the thread is just on the verge of exiting a
1525 syscall. Stepping one instruction seems to get it back
b4dc5ffa 1526 into user code.) */
488f131b 1527 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 1528 if (debug_infrun)
8a9de0e4 1529 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 1530 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
1531 prepare_to_wait (ecs);
1532 return;
c906108c 1533
488f131b 1534 case TARGET_WAITKIND_STOPPED:
527159b7 1535 if (debug_infrun)
8a9de0e4 1536 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
1537 stop_signal = ecs->ws.value.sig;
1538 break;
c906108c 1539
488f131b
JB
1540 /* We had an event in the inferior, but we are not interested
1541 in handling it at this level. The lower layers have already
8e7d2c16 1542 done what needs to be done, if anything.
8fb3e588
AC
1543
1544 One of the possible circumstances for this is when the
1545 inferior produces output for the console. The inferior has
1546 not stopped, and we are ignoring the event. Another possible
1547 circumstance is any event which the lower level knows will be
1548 reported multiple times without an intervening resume. */
488f131b 1549 case TARGET_WAITKIND_IGNORE:
527159b7 1550 if (debug_infrun)
8a9de0e4 1551 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 1552 prepare_to_wait (ecs);
488f131b
JB
1553 return;
1554 }
c906108c 1555
488f131b
JB
1556 /* We may want to consider not doing a resume here in order to give
1557 the user a chance to play with the new thread. It might be good
1558 to make that a user-settable option. */
c906108c 1559
488f131b
JB
1560 /* At this point, all threads are stopped (happens automatically in
1561 either the OS or the native code). Therefore we need to continue
1562 all threads in order to make progress. */
1563 if (ecs->new_thread_event)
1564 {
1565 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1566 prepare_to_wait (ecs);
1567 return;
1568 }
c906108c 1569
488f131b
JB
1570 stop_pc = read_pc_pid (ecs->ptid);
1571
527159b7 1572 if (debug_infrun)
8a9de0e4 1573 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
527159b7 1574
9f976b41
DJ
1575 if (stepping_past_singlestep_breakpoint)
1576 {
1c0fdd0e 1577 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
1578 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1579 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1580
1581 stepping_past_singlestep_breakpoint = 0;
1582
1583 /* We've either finished single-stepping past the single-step
8fb3e588
AC
1584 breakpoint, or stopped for some other reason. It would be nice if
1585 we could tell, but we can't reliably. */
9f976b41 1586 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 1587 {
527159b7 1588 if (debug_infrun)
8a9de0e4 1589 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 1590 /* Pull the single step breakpoints out of the target. */
e0cd558a 1591 remove_single_step_breakpoints ();
9f976b41
DJ
1592 singlestep_breakpoints_inserted_p = 0;
1593
1594 ecs->random_signal = 0;
1595
1596 ecs->ptid = saved_singlestep_ptid;
1597 context_switch (ecs);
9a4105ab
AC
1598 if (deprecated_context_hook)
1599 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1600
1601 resume (1, TARGET_SIGNAL_0);
1602 prepare_to_wait (ecs);
1603 return;
1604 }
1605 }
1606
1607 stepping_past_singlestep_breakpoint = 0;
1608
488f131b
JB
1609 /* See if a thread hit a thread-specific breakpoint that was meant for
1610 another thread. If so, then step that thread past the breakpoint,
1611 and continue it. */
1612
1613 if (stop_signal == TARGET_SIGNAL_TRAP)
1614 {
9f976b41
DJ
1615 int thread_hop_needed = 0;
1616
f8d40ec8
JB
1617 /* Check if a regular breakpoint has been hit before checking
1618 for a potential single step breakpoint. Otherwise, GDB will
1619 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1620 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1621 {
c5aa993b 1622 ecs->random_signal = 0;
4fa8626c 1623 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1624 thread_hop_needed = 1;
1625 }
1c0fdd0e 1626 else if (singlestep_breakpoints_inserted_p)
9f976b41 1627 {
fd48f117
DJ
1628 /* We have not context switched yet, so this should be true
1629 no matter which thread hit the singlestep breakpoint. */
1630 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1631 if (debug_infrun)
1632 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1633 "trap for %s\n",
1634 target_pid_to_str (ecs->ptid));
1635
9f976b41
DJ
1636 ecs->random_signal = 0;
1637 /* The call to in_thread_list is necessary because PTIDs sometimes
1638 change when we go from single-threaded to multi-threaded. If
1639 the singlestep_ptid is still in the list, assume that it is
1640 really different from ecs->ptid. */
1641 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1642 && in_thread_list (singlestep_ptid))
1643 {
fd48f117
DJ
1644 /* If the PC of the thread we were trying to single-step
1645 has changed, discard this event (which we were going
1646 to ignore anyway), and pretend we saw that thread
1647 trap. This prevents us continuously moving the
1648 single-step breakpoint forward, one instruction at a
1649 time. If the PC has changed, then the thread we were
1650 trying to single-step has trapped or been signalled,
1651 but the event has not been reported to GDB yet.
1652
1653 There might be some cases where this loses signal
1654 information, if a signal has arrived at exactly the
1655 same time that the PC changed, but this is the best
1656 we can do with the information available. Perhaps we
1657 should arrange to report all events for all threads
1658 when they stop, or to re-poll the remote looking for
1659 this particular thread (i.e. temporarily enable
1660 schedlock). */
1661 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1662 {
1663 if (debug_infrun)
1664 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1665 " but expected thread advanced also\n");
1666
1667 /* The current context still belongs to
1668 singlestep_ptid. Don't swap here, since that's
1669 the context we want to use. Just fudge our
1670 state and continue. */
1671 ecs->ptid = singlestep_ptid;
1672 stop_pc = read_pc_pid (ecs->ptid);
1673 }
1674 else
1675 {
1676 if (debug_infrun)
1677 fprintf_unfiltered (gdb_stdlog,
1678 "infrun: unexpected thread\n");
1679
1680 thread_hop_needed = 1;
1681 stepping_past_singlestep_breakpoint = 1;
1682 saved_singlestep_ptid = singlestep_ptid;
1683 }
9f976b41
DJ
1684 }
1685 }
1686
1687 if (thread_hop_needed)
8fb3e588
AC
1688 {
1689 int remove_status;
1690
527159b7 1691 if (debug_infrun)
8a9de0e4 1692 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 1693
8fb3e588
AC
1694 /* Saw a breakpoint, but it was hit by the wrong thread.
1695 Just continue. */
1696
1c0fdd0e 1697 if (singlestep_breakpoints_inserted_p)
488f131b 1698 {
8fb3e588 1699 /* Pull the single step breakpoints out of the target. */
e0cd558a 1700 remove_single_step_breakpoints ();
8fb3e588
AC
1701 singlestep_breakpoints_inserted_p = 0;
1702 }
1703
1704 remove_status = remove_breakpoints ();
1705 /* Did we fail to remove breakpoints? If so, try
1706 to set the PC past the bp. (There's at least
1707 one situation in which we can fail to remove
1708 the bp's: On HP-UX's that use ttrace, we can't
1709 change the address space of a vforking child
1710 process until the child exits (well, okay, not
1711 then either :-) or execs. */
1712 if (remove_status != 0)
1713 {
1714 /* FIXME! This is obviously non-portable! */
1715 write_pc_pid (stop_pc + 4, ecs->ptid);
1716 /* We need to restart all the threads now,
1717 * unles we're running in scheduler-locked mode.
1718 * Use currently_stepping to determine whether to
1719 * step or continue.
1720 */
1721 /* FIXME MVS: is there any reason not to call resume()? */
1722 if (scheduler_mode == schedlock_on)
1723 target_resume (ecs->ptid,
1724 currently_stepping (ecs), TARGET_SIGNAL_0);
488f131b 1725 else
8fb3e588
AC
1726 target_resume (RESUME_ALL,
1727 currently_stepping (ecs), TARGET_SIGNAL_0);
1728 prepare_to_wait (ecs);
1729 return;
1730 }
1731 else
1732 { /* Single step */
1733 breakpoints_inserted = 0;
1734 if (!ptid_equal (inferior_ptid, ecs->ptid))
1735 context_switch (ecs);
1736 ecs->waiton_ptid = ecs->ptid;
1737 ecs->wp = &(ecs->ws);
1738 ecs->another_trap = 1;
1739
1740 ecs->infwait_state = infwait_thread_hop_state;
1741 keep_going (ecs);
1742 registers_changed ();
1743 return;
1744 }
488f131b 1745 }
1c0fdd0e 1746 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
1747 {
1748 sw_single_step_trap_p = 1;
1749 ecs->random_signal = 0;
1750 }
488f131b
JB
1751 }
1752 else
1753 ecs->random_signal = 1;
c906108c 1754
488f131b 1755 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1756 so, then switch to that thread. */
1757 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1758 {
527159b7 1759 if (debug_infrun)
8a9de0e4 1760 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 1761
488f131b 1762 context_switch (ecs);
c5aa993b 1763
9a4105ab
AC
1764 if (deprecated_context_hook)
1765 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 1766 }
c906108c 1767
1c0fdd0e 1768 if (singlestep_breakpoints_inserted_p)
488f131b
JB
1769 {
1770 /* Pull the single step breakpoints out of the target. */
e0cd558a 1771 remove_single_step_breakpoints ();
488f131b
JB
1772 singlestep_breakpoints_inserted_p = 0;
1773 }
c906108c 1774
488f131b
JB
1775 /* It may not be necessary to disable the watchpoint to stop over
1776 it. For example, the PA can (with some kernel cooperation)
1777 single step over a watchpoint without disabling the watchpoint. */
1778 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1779 {
527159b7 1780 if (debug_infrun)
8a9de0e4 1781 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1782 resume (1, 0);
1783 prepare_to_wait (ecs);
1784 return;
1785 }
c906108c 1786
488f131b
JB
1787 /* It is far more common to need to disable a watchpoint to step
1788 the inferior over it. FIXME. What else might a debug
1789 register or page protection watchpoint scheme need here? */
e6cf7916
UW
1790 if (gdbarch_have_nonsteppable_watchpoint (current_gdbarch)
1791 && STOPPED_BY_WATCHPOINT (ecs->ws))
488f131b
JB
1792 {
1793 /* At this point, we are stopped at an instruction which has
1794 attempted to write to a piece of memory under control of
1795 a watchpoint. The instruction hasn't actually executed
1796 yet. If we were to evaluate the watchpoint expression
1797 now, we would get the old value, and therefore no change
1798 would seem to have occurred.
1799
1800 In order to make watchpoints work `right', we really need
1801 to complete the memory write, and then evaluate the
1802 watchpoint expression. The following code does that by
1803 removing the watchpoint (actually, all watchpoints and
1804 breakpoints), single-stepping the target, re-inserting
1805 watchpoints, and then falling through to let normal
1806 single-step processing handle proceed. Since this
1807 includes evaluating watchpoints, things will come to a
1808 stop in the correct manner. */
1809
527159b7 1810 if (debug_infrun)
8a9de0e4 1811 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1812 remove_breakpoints ();
1813 registers_changed ();
1814 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1815
488f131b
JB
1816 ecs->waiton_ptid = ecs->ptid;
1817 ecs->wp = &(ecs->ws);
1818 ecs->infwait_state = infwait_nonstep_watch_state;
1819 prepare_to_wait (ecs);
1820 return;
1821 }
1822
1823 /* It may be possible to simply continue after a watchpoint. */
1824 if (HAVE_CONTINUABLE_WATCHPOINT)
00d4360e 1825 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
488f131b
JB
1826
1827 ecs->stop_func_start = 0;
1828 ecs->stop_func_end = 0;
1829 ecs->stop_func_name = 0;
1830 /* Don't care about return value; stop_func_start and stop_func_name
1831 will both be 0 if it doesn't work. */
1832 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1833 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a
UW
1834 ecs->stop_func_start
1835 += gdbarch_deprecated_function_start_offset (current_gdbarch);
488f131b
JB
1836 ecs->another_trap = 0;
1837 bpstat_clear (&stop_bpstat);
1838 stop_step = 0;
1839 stop_stack_dummy = 0;
1840 stop_print_frame = 1;
1841 ecs->random_signal = 0;
1842 stopped_by_random_signal = 0;
488f131b 1843
3352ef37
AC
1844 if (stop_signal == TARGET_SIGNAL_TRAP
1845 && trap_expected
1846 && gdbarch_single_step_through_delay_p (current_gdbarch)
1847 && currently_stepping (ecs))
1848 {
1849 /* We're trying to step of a breakpoint. Turns out that we're
1850 also on an instruction that needs to be stepped multiple
1851 times before it's been fully executing. E.g., architectures
1852 with a delay slot. It needs to be stepped twice, once for
1853 the instruction and once for the delay slot. */
1854 int step_through_delay
1855 = gdbarch_single_step_through_delay (current_gdbarch,
1856 get_current_frame ());
527159b7 1857 if (debug_infrun && step_through_delay)
8a9de0e4 1858 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3352ef37
AC
1859 if (step_range_end == 0 && step_through_delay)
1860 {
1861 /* The user issued a continue when stopped at a breakpoint.
1862 Set up for another trap and get out of here. */
1863 ecs->another_trap = 1;
1864 keep_going (ecs);
1865 return;
1866 }
1867 else if (step_through_delay)
1868 {
1869 /* The user issued a step when stopped at a breakpoint.
1870 Maybe we should stop, maybe we should not - the delay
1871 slot *might* correspond to a line of source. In any
1872 case, don't decide that here, just set ecs->another_trap,
1873 making sure we single-step again before breakpoints are
1874 re-inserted. */
1875 ecs->another_trap = 1;
1876 }
1877 }
1878
488f131b
JB
1879 /* Look at the cause of the stop, and decide what to do.
1880 The alternatives are:
1881 1) break; to really stop and return to the debugger,
1882 2) drop through to start up again
1883 (set ecs->another_trap to 1 to single step once)
1884 3) set ecs->random_signal to 1, and the decision between 1 and 2
1885 will be made according to the signal handling tables. */
1886
1887 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1888 that have to do with the program's own actions. Note that
1889 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1890 on the operating system version. Here we detect when a SIGILL or
1891 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1892 something similar for SIGSEGV, since a SIGSEGV will be generated
1893 when we're trying to execute a breakpoint instruction on a
1894 non-executable stack. This happens for call dummy breakpoints
1895 for architectures like SPARC that place call dummies on the
1896 stack. */
488f131b
JB
1897
1898 if (stop_signal == TARGET_SIGNAL_TRAP
8fb3e588
AC
1899 || (breakpoints_inserted
1900 && (stop_signal == TARGET_SIGNAL_ILL
1901 || stop_signal == TARGET_SIGNAL_SEGV
1902 || stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
1903 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1904 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b
JB
1905 {
1906 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1907 {
527159b7 1908 if (debug_infrun)
8a9de0e4 1909 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
1910 stop_print_frame = 0;
1911 stop_stepping (ecs);
1912 return;
1913 }
c54cfec8
EZ
1914
1915 /* This is originated from start_remote(), start_inferior() and
1916 shared libraries hook functions. */
b0f4b84b 1917 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 1918 {
527159b7 1919 if (debug_infrun)
8a9de0e4 1920 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
1921 stop_stepping (ecs);
1922 return;
1923 }
1924
c54cfec8
EZ
1925 /* This originates from attach_command(). We need to overwrite
1926 the stop_signal here, because some kernels don't ignore a
1927 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1928 See more comments in inferior.h. */
c0236d92 1929 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1930 {
1931 stop_stepping (ecs);
1932 if (stop_signal == TARGET_SIGNAL_STOP)
1933 stop_signal = TARGET_SIGNAL_0;
1934 return;
1935 }
1936
d303a6c7
AC
1937 /* Don't even think about breakpoints if just proceeded over a
1938 breakpoint. */
1939 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
527159b7
RC
1940 {
1941 if (debug_infrun)
8a9de0e4 1942 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
527159b7
RC
1943 bpstat_clear (&stop_bpstat);
1944 }
488f131b
JB
1945 else
1946 {
1947 /* See if there is a breakpoint at the current PC. */
8fb3e588 1948 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
00d4360e 1949 stopped_by_watchpoint);
488f131b 1950
488f131b
JB
1951 /* Following in case break condition called a
1952 function. */
1953 stop_print_frame = 1;
1954 }
1955
73dd234f 1956 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
1957 at one stage in the past included checks for an inferior
1958 function call's call dummy's return breakpoint. The original
1959 comment, that went with the test, read:
73dd234f 1960
8fb3e588
AC
1961 ``End of a stack dummy. Some systems (e.g. Sony news) give
1962 another signal besides SIGTRAP, so check here as well as
1963 above.''
73dd234f
AC
1964
1965 If someone ever tries to get get call dummys on a
1966 non-executable stack to work (where the target would stop
03cebad2
MK
1967 with something like a SIGSEGV), then those tests might need
1968 to be re-instated. Given, however, that the tests were only
73dd234f 1969 enabled when momentary breakpoints were not being used, I
03cebad2
MK
1970 suspect that it won't be the case.
1971
8fb3e588
AC
1972 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1973 be necessary for call dummies on a non-executable stack on
1974 SPARC. */
73dd234f 1975
488f131b
JB
1976 if (stop_signal == TARGET_SIGNAL_TRAP)
1977 ecs->random_signal
1978 = !(bpstat_explains_signal (stop_bpstat)
1979 || trap_expected
488f131b 1980 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
1981 else
1982 {
73dd234f 1983 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
1984 if (!ecs->random_signal)
1985 stop_signal = TARGET_SIGNAL_TRAP;
1986 }
1987 }
1988
1989 /* When we reach this point, we've pretty much decided
1990 that the reason for stopping must've been a random
1991 (unexpected) signal. */
1992
1993 else
1994 ecs->random_signal = 1;
488f131b 1995
04e68871 1996process_event_stop_test:
488f131b
JB
1997 /* For the program's own signals, act according to
1998 the signal handling tables. */
1999
2000 if (ecs->random_signal)
2001 {
2002 /* Signal not for debugging purposes. */
2003 int printed = 0;
2004
527159b7 2005 if (debug_infrun)
8a9de0e4 2006 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
527159b7 2007
488f131b
JB
2008 stopped_by_random_signal = 1;
2009
2010 if (signal_print[stop_signal])
2011 {
2012 printed = 1;
2013 target_terminal_ours_for_output ();
2014 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2015 }
2016 if (signal_stop[stop_signal])
2017 {
2018 stop_stepping (ecs);
2019 return;
2020 }
2021 /* If not going to stop, give terminal back
2022 if we took it away. */
2023 else if (printed)
2024 target_terminal_inferior ();
2025
2026 /* Clear the signal if it should not be passed. */
2027 if (signal_program[stop_signal] == 0)
2028 stop_signal = TARGET_SIGNAL_0;
2029
68f53502
AC
2030 if (prev_pc == read_pc ()
2031 && !breakpoints_inserted
2032 && breakpoint_here_p (read_pc ())
2033 && step_resume_breakpoint == NULL)
2034 {
2035 /* We were just starting a new sequence, attempting to
2036 single-step off of a breakpoint and expecting a SIGTRAP.
2037 Intead this signal arrives. This signal will take us out
2038 of the stepping range so GDB needs to remember to, when
2039 the signal handler returns, resume stepping off that
2040 breakpoint. */
2041 /* To simplify things, "continue" is forced to use the same
2042 code paths as single-step - set a breakpoint at the
2043 signal return address and then, once hit, step off that
2044 breakpoint. */
d3169d93 2045
44cbf7b5 2046 insert_step_resume_breakpoint_at_frame (get_current_frame ());
68f53502 2047 ecs->step_after_step_resume_breakpoint = 1;
9d799f85
AC
2048 keep_going (ecs);
2049 return;
68f53502 2050 }
9d799f85
AC
2051
2052 if (step_range_end != 0
2053 && stop_signal != TARGET_SIGNAL_0
2054 && stop_pc >= step_range_start && stop_pc < step_range_end
2055 && frame_id_eq (get_frame_id (get_current_frame ()),
2056 step_frame_id)
2057 && step_resume_breakpoint == NULL)
d303a6c7
AC
2058 {
2059 /* The inferior is about to take a signal that will take it
2060 out of the single step range. Set a breakpoint at the
2061 current PC (which is presumably where the signal handler
2062 will eventually return) and then allow the inferior to
2063 run free.
2064
2065 Note that this is only needed for a signal delivered
2066 while in the single-step range. Nested signals aren't a
2067 problem as they eventually all return. */
44cbf7b5 2068 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
2069 keep_going (ecs);
2070 return;
d303a6c7 2071 }
9d799f85
AC
2072
2073 /* Note: step_resume_breakpoint may be non-NULL. This occures
2074 when either there's a nested signal, or when there's a
2075 pending signal enabled just as the signal handler returns
2076 (leaving the inferior at the step-resume-breakpoint without
2077 actually executing it). Either way continue until the
2078 breakpoint is really hit. */
488f131b
JB
2079 keep_going (ecs);
2080 return;
2081 }
2082
2083 /* Handle cases caused by hitting a breakpoint. */
2084 {
2085 CORE_ADDR jmp_buf_pc;
2086 struct bpstat_what what;
2087
2088 what = bpstat_what (stop_bpstat);
2089
2090 if (what.call_dummy)
2091 {
2092 stop_stack_dummy = 1;
c5aa993b 2093 }
c906108c 2094
488f131b 2095 switch (what.main_action)
c5aa993b 2096 {
488f131b
JB
2097 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2098 /* If we hit the breakpoint at longjmp, disable it for the
2099 duration of this command. Then, install a temporary
2100 breakpoint at the target of the jmp_buf. */
527159b7 2101 if (debug_infrun)
8802d8ed 2102 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
488f131b
JB
2103 disable_longjmp_breakpoint ();
2104 remove_breakpoints ();
2105 breakpoints_inserted = 0;
91104499 2106 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
60ade65d
UW
2107 || !gdbarch_get_longjmp_target (current_gdbarch,
2108 get_current_frame (), &jmp_buf_pc))
c5aa993b 2109 {
488f131b 2110 keep_going (ecs);
104c1213 2111 return;
c5aa993b 2112 }
488f131b
JB
2113
2114 /* Need to blow away step-resume breakpoint, as it
2115 interferes with us */
2116 if (step_resume_breakpoint != NULL)
104c1213 2117 {
488f131b 2118 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2119 }
c906108c 2120
8fb3e588 2121 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2122 ecs->handling_longjmp = 1; /* FIXME */
2123 keep_going (ecs);
2124 return;
c906108c 2125
488f131b
JB
2126 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2127 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
527159b7 2128 if (debug_infrun)
8802d8ed 2129 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
488f131b
JB
2130 remove_breakpoints ();
2131 breakpoints_inserted = 0;
488f131b
JB
2132 disable_longjmp_breakpoint ();
2133 ecs->handling_longjmp = 0; /* FIXME */
2134 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2135 break;
2136 /* else fallthrough */
2137
2138 case BPSTAT_WHAT_SINGLE:
527159b7 2139 if (debug_infrun)
8802d8ed 2140 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
488f131b 2141 if (breakpoints_inserted)
569631c6 2142 remove_breakpoints ();
488f131b
JB
2143 breakpoints_inserted = 0;
2144 ecs->another_trap = 1;
2145 /* Still need to check other stuff, at least the case
2146 where we are stepping and step out of the right range. */
2147 break;
c906108c 2148
488f131b 2149 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2150 if (debug_infrun)
8802d8ed 2151 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 2152 stop_print_frame = 1;
c906108c 2153
d303a6c7
AC
2154 /* We are about to nuke the step_resume_breakpointt via the
2155 cleanup chain, so no need to worry about it here. */
c5aa993b 2156
488f131b
JB
2157 stop_stepping (ecs);
2158 return;
c5aa993b 2159
488f131b 2160 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2161 if (debug_infrun)
8802d8ed 2162 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 2163 stop_print_frame = 0;
c5aa993b 2164
d303a6c7
AC
2165 /* We are about to nuke the step_resume_breakpoin via the
2166 cleanup chain, so no need to worry about it here. */
c5aa993b 2167
488f131b 2168 stop_stepping (ecs);
e441088d 2169 return;
c5aa993b 2170
488f131b
JB
2171 case BPSTAT_WHAT_STEP_RESUME:
2172 /* This proably demands a more elegant solution, but, yeah
2173 right...
c5aa993b 2174
488f131b
JB
2175 This function's use of the simple variable
2176 step_resume_breakpoint doesn't seem to accomodate
2177 simultaneously active step-resume bp's, although the
2178 breakpoint list certainly can.
c5aa993b 2179
488f131b
JB
2180 If we reach here and step_resume_breakpoint is already
2181 NULL, then apparently we have multiple active
2182 step-resume bp's. We'll just delete the breakpoint we
2183 stopped at, and carry on.
2184
2185 Correction: what the code currently does is delete a
2186 step-resume bp, but it makes no effort to ensure that
2187 the one deleted is the one currently stopped at. MVS */
c5aa993b 2188
527159b7 2189 if (debug_infrun)
8802d8ed 2190 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 2191
488f131b
JB
2192 if (step_resume_breakpoint == NULL)
2193 {
2194 step_resume_breakpoint =
2195 bpstat_find_step_resume_breakpoint (stop_bpstat);
2196 }
2197 delete_step_resume_breakpoint (&step_resume_breakpoint);
68f53502
AC
2198 if (ecs->step_after_step_resume_breakpoint)
2199 {
2200 /* Back when the step-resume breakpoint was inserted, we
2201 were trying to single-step off a breakpoint. Go back
2202 to doing that. */
2203 ecs->step_after_step_resume_breakpoint = 0;
2204 remove_breakpoints ();
2205 breakpoints_inserted = 0;
2206 ecs->another_trap = 1;
2207 keep_going (ecs);
2208 return;
2209 }
488f131b
JB
2210 break;
2211
488f131b
JB
2212 case BPSTAT_WHAT_CHECK_SHLIBS:
2213 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 2214 {
527159b7 2215 if (debug_infrun)
8802d8ed 2216 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2217 /* Remove breakpoints, we eventually want to step over the
2218 shlib event breakpoint, and SOLIB_ADD might adjust
2219 breakpoint addresses via breakpoint_re_set. */
2220 if (breakpoints_inserted)
2221 remove_breakpoints ();
c5aa993b 2222 breakpoints_inserted = 0;
488f131b
JB
2223
2224 /* Check for any newly added shared libraries if we're
2225 supposed to be adding them automatically. Switch
2226 terminal for any messages produced by
2227 breakpoint_re_set. */
2228 target_terminal_ours_for_output ();
aff6338a 2229 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2230 stack's section table is kept up-to-date. Architectures,
2231 (e.g., PPC64), use the section table to perform
2232 operations such as address => section name and hence
2233 require the table to contain all sections (including
2234 those found in shared libraries). */
aff6338a 2235 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2236 exec_ops to SOLIB_ADD. This is because current GDB is
2237 only tooled to propagate section_table changes out from
2238 the "current_target" (see target_resize_to_sections), and
2239 not up from the exec stratum. This, of course, isn't
2240 right. "infrun.c" should only interact with the
2241 exec/process stratum, instead relying on the target stack
2242 to propagate relevant changes (stop, section table
2243 changed, ...) up to other layers. */
a77053c2 2244#ifdef SOLIB_ADD
aff6338a 2245 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
2246#else
2247 solib_add (NULL, 0, &current_target, auto_solib_add);
2248#endif
488f131b
JB
2249 target_terminal_inferior ();
2250
2251 /* Try to reenable shared library breakpoints, additional
2252 code segments in shared libraries might be mapped in now. */
2253 re_enable_breakpoints_in_shlibs ();
2254
2255 /* If requested, stop when the dynamic linker notifies
2256 gdb of events. This allows the user to get control
2257 and place breakpoints in initializer routines for
2258 dynamically loaded objects (among other things). */
877522db 2259 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2260 {
488f131b 2261 stop_stepping (ecs);
d4f3574e
SS
2262 return;
2263 }
c5aa993b 2264
488f131b
JB
2265 /* If we stopped due to an explicit catchpoint, then the
2266 (see above) call to SOLIB_ADD pulled in any symbols
2267 from a newly-loaded library, if appropriate.
2268
2269 We do want the inferior to stop, but not where it is
2270 now, which is in the dynamic linker callback. Rather,
2271 we would like it stop in the user's program, just after
2272 the call that caused this catchpoint to trigger. That
2273 gives the user a more useful vantage from which to
2274 examine their program's state. */
8fb3e588
AC
2275 else if (what.main_action
2276 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2277 {
488f131b
JB
2278 /* ??rehrauer: If I could figure out how to get the
2279 right return PC from here, we could just set a temp
2280 breakpoint and resume. I'm not sure we can without
2281 cracking open the dld's shared libraries and sniffing
2282 their unwind tables and text/data ranges, and that's
2283 not a terribly portable notion.
2284
2285 Until that time, we must step the inferior out of the
2286 dld callback, and also out of the dld itself (and any
2287 code or stubs in libdld.sl, such as "shl_load" and
2288 friends) until we reach non-dld code. At that point,
2289 we can stop stepping. */
2290 bpstat_get_triggered_catchpoints (stop_bpstat,
2291 &ecs->
2292 stepping_through_solib_catchpoints);
2293 ecs->stepping_through_solib_after_catch = 1;
2294
2295 /* Be sure to lift all breakpoints, so the inferior does
2296 actually step past this point... */
2297 ecs->another_trap = 1;
2298 break;
c906108c 2299 }
c5aa993b 2300 else
c5aa993b 2301 {
488f131b 2302 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2303 ecs->another_trap = 1;
488f131b 2304 break;
c5aa993b 2305 }
488f131b 2306 }
488f131b 2307 break;
c906108c 2308
488f131b
JB
2309 case BPSTAT_WHAT_LAST:
2310 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2311
488f131b
JB
2312 case BPSTAT_WHAT_KEEP_CHECKING:
2313 break;
2314 }
2315 }
c906108c 2316
488f131b
JB
2317 /* We come here if we hit a breakpoint but should not
2318 stop for it. Possibly we also were stepping
2319 and should stop for that. So fall through and
2320 test for stepping. But, if not stepping,
2321 do not stop. */
c906108c 2322
9d1ff73f
MS
2323 /* Are we stepping to get the inferior out of the dynamic linker's
2324 hook (and possibly the dld itself) after catching a shlib
2325 event? */
488f131b
JB
2326 if (ecs->stepping_through_solib_after_catch)
2327 {
2328#if defined(SOLIB_ADD)
2329 /* Have we reached our destination? If not, keep going. */
2330 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2331 {
527159b7 2332 if (debug_infrun)
8a9de0e4 2333 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
488f131b
JB
2334 ecs->another_trap = 1;
2335 keep_going (ecs);
104c1213 2336 return;
488f131b
JB
2337 }
2338#endif
527159b7 2339 if (debug_infrun)
8a9de0e4 2340 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
2341 /* Else, stop and report the catchpoint(s) whose triggering
2342 caused us to begin stepping. */
2343 ecs->stepping_through_solib_after_catch = 0;
2344 bpstat_clear (&stop_bpstat);
2345 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2346 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2347 stop_print_frame = 1;
2348 stop_stepping (ecs);
2349 return;
2350 }
c906108c 2351
488f131b
JB
2352 if (step_resume_breakpoint)
2353 {
527159b7 2354 if (debug_infrun)
d3169d93
DJ
2355 fprintf_unfiltered (gdb_stdlog,
2356 "infrun: step-resume breakpoint is inserted\n");
527159b7 2357
488f131b
JB
2358 /* Having a step-resume breakpoint overrides anything
2359 else having to do with stepping commands until
2360 that breakpoint is reached. */
488f131b
JB
2361 keep_going (ecs);
2362 return;
2363 }
c5aa993b 2364
488f131b
JB
2365 if (step_range_end == 0)
2366 {
527159b7 2367 if (debug_infrun)
8a9de0e4 2368 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 2369 /* Likewise if we aren't even stepping. */
488f131b
JB
2370 keep_going (ecs);
2371 return;
2372 }
c5aa993b 2373
488f131b 2374 /* If stepping through a line, keep going if still within it.
c906108c 2375
488f131b
JB
2376 Note that step_range_end is the address of the first instruction
2377 beyond the step range, and NOT the address of the last instruction
2378 within it! */
2379 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2380 {
527159b7 2381 if (debug_infrun)
8a9de0e4 2382 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
527159b7
RC
2383 paddr_nz (step_range_start),
2384 paddr_nz (step_range_end));
488f131b
JB
2385 keep_going (ecs);
2386 return;
2387 }
c5aa993b 2388
488f131b 2389 /* We stepped out of the stepping range. */
c906108c 2390
488f131b
JB
2391 /* If we are stepping at the source level and entered the runtime
2392 loader dynamic symbol resolution code, we keep on single stepping
2393 until we exit the run time loader code and reach the callee's
2394 address. */
2395 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
a77053c2
MK
2396#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2397 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2398#else
2399 && in_solib_dynsym_resolve_code (stop_pc)
2400#endif
2401 )
488f131b 2402 {
4c8c40e6
MK
2403 CORE_ADDR pc_after_resolver =
2404 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2405
527159b7 2406 if (debug_infrun)
8a9de0e4 2407 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 2408
488f131b
JB
2409 if (pc_after_resolver)
2410 {
2411 /* Set up a step-resume breakpoint at the address
2412 indicated by SKIP_SOLIB_RESOLVER. */
2413 struct symtab_and_line sr_sal;
fe39c653 2414 init_sal (&sr_sal);
488f131b
JB
2415 sr_sal.pc = pc_after_resolver;
2416
44cbf7b5 2417 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 2418 }
c906108c 2419
488f131b
JB
2420 keep_going (ecs);
2421 return;
2422 }
c906108c 2423
42edda50
AC
2424 if (step_range_end != 1
2425 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2426 || step_over_calls == STEP_OVER_ALL)
2427 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2428 {
527159b7 2429 if (debug_infrun)
8a9de0e4 2430 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 2431 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
2432 a signal trampoline (either by a signal being delivered or by
2433 the signal handler returning). Just single-step until the
2434 inferior leaves the trampoline (either by calling the handler
2435 or returning). */
488f131b
JB
2436 keep_going (ecs);
2437 return;
2438 }
c906108c 2439
c17eaafe
DJ
2440 /* Check for subroutine calls. The check for the current frame
2441 equalling the step ID is not necessary - the check of the
2442 previous frame's ID is sufficient - but it is a common case and
2443 cheaper than checking the previous frame's ID.
14e60db5
DJ
2444
2445 NOTE: frame_id_eq will never report two invalid frame IDs as
2446 being equal, so to get into this block, both the current and
2447 previous frame must have valid frame IDs. */
c17eaafe
DJ
2448 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2449 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b 2450 {
95918acb 2451 CORE_ADDR real_stop_pc;
8fb3e588 2452
527159b7 2453 if (debug_infrun)
8a9de0e4 2454 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 2455
95918acb
AC
2456 if ((step_over_calls == STEP_OVER_NONE)
2457 || ((step_range_end == 1)
2458 && in_prologue (prev_pc, ecs->stop_func_start)))
2459 {
2460 /* I presume that step_over_calls is only 0 when we're
2461 supposed to be stepping at the assembly language level
2462 ("stepi"). Just stop. */
2463 /* Also, maybe we just did a "nexti" inside a prolog, so we
2464 thought it was a subroutine call but it was not. Stop as
2465 well. FENN */
2466 stop_step = 1;
2467 print_stop_reason (END_STEPPING_RANGE, 0);
2468 stop_stepping (ecs);
2469 return;
2470 }
8fb3e588 2471
8567c30f
AC
2472 if (step_over_calls == STEP_OVER_ALL)
2473 {
2474 /* We're doing a "next", set a breakpoint at callee's return
2475 address (the address at which the caller will
2476 resume). */
14e60db5 2477 insert_step_resume_breakpoint_at_caller (get_current_frame ());
8567c30f
AC
2478 keep_going (ecs);
2479 return;
2480 }
a53c66de 2481
95918acb 2482 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
2483 calling routine and the real function), locate the real
2484 function. That's what tells us (a) whether we want to step
2485 into it at all, and (b) what prologue we want to run to the
2486 end of, if we do step into it. */
52f729a7 2487 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
95918acb 2488 if (real_stop_pc == 0)
52f729a7
UW
2489 real_stop_pc = gdbarch_skip_trampoline_code
2490 (current_gdbarch, get_current_frame (), stop_pc);
95918acb
AC
2491 if (real_stop_pc != 0)
2492 ecs->stop_func_start = real_stop_pc;
8fb3e588 2493
a77053c2
MK
2494 if (
2495#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2496 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2497#else
2498 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2499#endif
2500)
1b2bfbb9
RC
2501 {
2502 struct symtab_and_line sr_sal;
2503 init_sal (&sr_sal);
2504 sr_sal.pc = ecs->stop_func_start;
2505
44cbf7b5 2506 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
2507 keep_going (ecs);
2508 return;
1b2bfbb9
RC
2509 }
2510
95918acb 2511 /* If we have line number information for the function we are
8fb3e588 2512 thinking of stepping into, step into it.
95918acb 2513
8fb3e588
AC
2514 If there are several symtabs at that PC (e.g. with include
2515 files), just want to know whether *any* of them have line
2516 numbers. find_pc_line handles this. */
95918acb
AC
2517 {
2518 struct symtab_and_line tmp_sal;
8fb3e588 2519
95918acb
AC
2520 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2521 if (tmp_sal.line != 0)
2522 {
2523 step_into_function (ecs);
2524 return;
2525 }
2526 }
2527
2528 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
2529 set, we stop the step so that the user has a chance to switch
2530 in assembly mode. */
95918acb
AC
2531 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2532 {
2533 stop_step = 1;
2534 print_stop_reason (END_STEPPING_RANGE, 0);
2535 stop_stepping (ecs);
2536 return;
2537 }
2538
2539 /* Set a breakpoint at callee's return address (the address at
8fb3e588 2540 which the caller will resume). */
14e60db5 2541 insert_step_resume_breakpoint_at_caller (get_current_frame ());
95918acb 2542 keep_going (ecs);
488f131b 2543 return;
488f131b 2544 }
c906108c 2545
488f131b
JB
2546 /* If we're in the return path from a shared library trampoline,
2547 we want to proceed through the trampoline when stepping. */
e76f05fa
UW
2548 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2549 stop_pc, ecs->stop_func_name))
488f131b 2550 {
488f131b 2551 /* Determine where this trampoline returns. */
52f729a7
UW
2552 CORE_ADDR real_stop_pc;
2553 real_stop_pc = gdbarch_skip_trampoline_code
2554 (current_gdbarch, get_current_frame (), stop_pc);
c906108c 2555
527159b7 2556 if (debug_infrun)
8a9de0e4 2557 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 2558
488f131b 2559 /* Only proceed through if we know where it's going. */
d764a824 2560 if (real_stop_pc)
488f131b
JB
2561 {
2562 /* And put the step-breakpoint there and go until there. */
2563 struct symtab_and_line sr_sal;
2564
fe39c653 2565 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2566 sr_sal.pc = real_stop_pc;
488f131b 2567 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
2568
2569 /* Do not specify what the fp should be when we stop since
2570 on some machines the prologue is where the new fp value
2571 is established. */
2572 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 2573
488f131b
JB
2574 /* Restart without fiddling with the step ranges or
2575 other state. */
2576 keep_going (ecs);
2577 return;
2578 }
2579 }
c906108c 2580
7ed0fe66
DJ
2581 ecs->sal = find_pc_line (stop_pc, 0);
2582
1b2bfbb9
RC
2583 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2584 the trampoline processing logic, however, there are some trampolines
2585 that have no names, so we should do trampoline handling first. */
2586 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66
DJ
2587 && ecs->stop_func_name == NULL
2588 && ecs->sal.line == 0)
1b2bfbb9 2589 {
527159b7 2590 if (debug_infrun)
8a9de0e4 2591 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 2592
1b2bfbb9 2593 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
2594 undebuggable function (where there is no debugging information
2595 and no line number corresponding to the address where the
1b2bfbb9
RC
2596 inferior stopped). Since we want to skip this kind of code,
2597 we keep going until the inferior returns from this
14e60db5
DJ
2598 function - unless the user has asked us not to (via
2599 set step-mode) or we no longer know how to get back
2600 to the call site. */
2601 if (step_stop_if_no_debug
2602 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
2603 {
2604 /* If we have no line number and the step-stop-if-no-debug
2605 is set, we stop the step so that the user has a chance to
2606 switch in assembly mode. */
2607 stop_step = 1;
2608 print_stop_reason (END_STEPPING_RANGE, 0);
2609 stop_stepping (ecs);
2610 return;
2611 }
2612 else
2613 {
2614 /* Set a breakpoint at callee's return address (the address
2615 at which the caller will resume). */
14e60db5 2616 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
2617 keep_going (ecs);
2618 return;
2619 }
2620 }
2621
2622 if (step_range_end == 1)
2623 {
2624 /* It is stepi or nexti. We always want to stop stepping after
2625 one instruction. */
527159b7 2626 if (debug_infrun)
8a9de0e4 2627 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
1b2bfbb9
RC
2628 stop_step = 1;
2629 print_stop_reason (END_STEPPING_RANGE, 0);
2630 stop_stepping (ecs);
2631 return;
2632 }
2633
488f131b
JB
2634 if (ecs->sal.line == 0)
2635 {
2636 /* We have no line number information. That means to stop
2637 stepping (does this always happen right after one instruction,
2638 when we do "s" in a function with no line numbers,
2639 or can this happen as a result of a return or longjmp?). */
527159b7 2640 if (debug_infrun)
8a9de0e4 2641 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
488f131b
JB
2642 stop_step = 1;
2643 print_stop_reason (END_STEPPING_RANGE, 0);
2644 stop_stepping (ecs);
2645 return;
2646 }
c906108c 2647
488f131b
JB
2648 if ((stop_pc == ecs->sal.pc)
2649 && (ecs->current_line != ecs->sal.line
2650 || ecs->current_symtab != ecs->sal.symtab))
2651 {
2652 /* We are at the start of a different line. So stop. Note that
2653 we don't stop if we step into the middle of a different line.
2654 That is said to make things like for (;;) statements work
2655 better. */
527159b7 2656 if (debug_infrun)
8a9de0e4 2657 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
488f131b
JB
2658 stop_step = 1;
2659 print_stop_reason (END_STEPPING_RANGE, 0);
2660 stop_stepping (ecs);
2661 return;
2662 }
c906108c 2663
488f131b 2664 /* We aren't done stepping.
c906108c 2665
488f131b
JB
2666 Optimize by setting the stepping range to the line.
2667 (We might not be in the original line, but if we entered a
2668 new line in mid-statement, we continue stepping. This makes
2669 things like for(;;) statements work better.) */
c906108c 2670
488f131b 2671 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2672 {
488f131b
JB
2673 /* If this is the last line of the function, don't keep stepping
2674 (it would probably step us out of the function).
2675 This is particularly necessary for a one-line function,
2676 in which after skipping the prologue we better stop even though
2677 we will be in mid-line. */
527159b7 2678 if (debug_infrun)
8a9de0e4 2679 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
488f131b
JB
2680 stop_step = 1;
2681 print_stop_reason (END_STEPPING_RANGE, 0);
2682 stop_stepping (ecs);
2683 return;
c5aa993b 2684 }
488f131b
JB
2685 step_range_start = ecs->sal.pc;
2686 step_range_end = ecs->sal.end;
aa0cd9c1 2687 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2688 ecs->current_line = ecs->sal.line;
2689 ecs->current_symtab = ecs->sal.symtab;
2690
aa0cd9c1
AC
2691 /* In the case where we just stepped out of a function into the
2692 middle of a line of the caller, continue stepping, but
2693 step_frame_id must be modified to current frame */
65815ea1
AC
2694#if 0
2695 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2696 generous. It will trigger on things like a step into a frameless
2697 stackless leaf function. I think the logic should instead look
2698 at the unwound frame ID has that should give a more robust
2699 indication of what happened. */
8fb3e588
AC
2700 if (step - ID == current - ID)
2701 still stepping in same function;
2702 else if (step - ID == unwind (current - ID))
2703 stepped into a function;
2704 else
2705 stepped out of a function;
2706 /* Of course this assumes that the frame ID unwind code is robust
2707 and we're willing to introduce frame unwind logic into this
2708 function. Fortunately, those days are nearly upon us. */
65815ea1 2709#endif
488f131b 2710 {
aa0cd9c1
AC
2711 struct frame_id current_frame = get_frame_id (get_current_frame ());
2712 if (!(frame_id_inner (current_frame, step_frame_id)))
2713 step_frame_id = current_frame;
488f131b 2714 }
c906108c 2715
527159b7 2716 if (debug_infrun)
8a9de0e4 2717 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 2718 keep_going (ecs);
104c1213
JM
2719}
2720
2721/* Are we in the middle of stepping? */
2722
2723static int
2724currently_stepping (struct execution_control_state *ecs)
2725{
d303a6c7 2726 return ((!ecs->handling_longjmp
104c1213
JM
2727 && ((step_range_end && step_resume_breakpoint == NULL)
2728 || trap_expected))
2729 || ecs->stepping_through_solib_after_catch
2730 || bpstat_should_step ());
2731}
c906108c 2732
c2c6d25f
JM
2733/* Subroutine call with source code we should not step over. Do step
2734 to the first line of code in it. */
2735
2736static void
2737step_into_function (struct execution_control_state *ecs)
2738{
2739 struct symtab *s;
2740 struct symtab_and_line sr_sal;
2741
2742 s = find_pc_symtab (stop_pc);
2743 if (s && s->language != language_asm)
a433963d
UW
2744 ecs->stop_func_start = gdbarch_skip_prologue
2745 (current_gdbarch, ecs->stop_func_start);
c2c6d25f
JM
2746
2747 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2748 /* Use the step_resume_break to step until the end of the prologue,
2749 even if that involves jumps (as it seems to on the vax under
2750 4.2). */
2751 /* If the prologue ends in the middle of a source line, continue to
2752 the end of that source line (if it is still within the function).
2753 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2754 if (ecs->sal.end
2755 && ecs->sal.pc != ecs->stop_func_start
2756 && ecs->sal.end < ecs->stop_func_end)
2757 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2758
2dbd5e30
KB
2759 /* Architectures which require breakpoint adjustment might not be able
2760 to place a breakpoint at the computed address. If so, the test
2761 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2762 ecs->stop_func_start to an address at which a breakpoint may be
2763 legitimately placed.
8fb3e588 2764
2dbd5e30
KB
2765 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2766 made, GDB will enter an infinite loop when stepping through
2767 optimized code consisting of VLIW instructions which contain
2768 subinstructions corresponding to different source lines. On
2769 FR-V, it's not permitted to place a breakpoint on any but the
2770 first subinstruction of a VLIW instruction. When a breakpoint is
2771 set, GDB will adjust the breakpoint address to the beginning of
2772 the VLIW instruction. Thus, we need to make the corresponding
2773 adjustment here when computing the stop address. */
8fb3e588 2774
2dbd5e30
KB
2775 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2776 {
2777 ecs->stop_func_start
2778 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 2779 ecs->stop_func_start);
2dbd5e30
KB
2780 }
2781
c2c6d25f
JM
2782 if (ecs->stop_func_start == stop_pc)
2783 {
2784 /* We are already there: stop now. */
2785 stop_step = 1;
488f131b 2786 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2787 stop_stepping (ecs);
2788 return;
2789 }
2790 else
2791 {
2792 /* Put the step-breakpoint there and go until there. */
fe39c653 2793 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2794 sr_sal.pc = ecs->stop_func_start;
2795 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 2796
c2c6d25f 2797 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2798 some machines the prologue is where the new fp value is
2799 established. */
44cbf7b5 2800 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
2801
2802 /* And make sure stepping stops right away then. */
2803 step_range_end = step_range_start;
2804 }
2805 keep_going (ecs);
2806}
d4f3574e 2807
d3169d93 2808/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
2809 This is used to both functions and to skip over code. */
2810
2811static void
2812insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2813 struct frame_id sr_id)
2814{
2815 /* There should never be more than one step-resume breakpoint per
2816 thread, so we should never be setting a new
2817 step_resume_breakpoint when one is already active. */
2818 gdb_assert (step_resume_breakpoint == NULL);
d3169d93
DJ
2819
2820 if (debug_infrun)
2821 fprintf_unfiltered (gdb_stdlog,
2822 "infrun: inserting step-resume breakpoint at 0x%s\n",
2823 paddr_nz (sr_sal.pc));
2824
44cbf7b5
AC
2825 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2826 bp_step_resume);
2827 if (breakpoints_inserted)
2828 insert_breakpoints ();
2829}
7ce450bd 2830
d3169d93 2831/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 2832 to skip a potential signal handler.
7ce450bd 2833
14e60db5
DJ
2834 This is called with the interrupted function's frame. The signal
2835 handler, when it returns, will resume the interrupted function at
2836 RETURN_FRAME.pc. */
d303a6c7
AC
2837
2838static void
44cbf7b5 2839insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
2840{
2841 struct symtab_and_line sr_sal;
2842
d303a6c7
AC
2843 init_sal (&sr_sal); /* initialize to zeros */
2844
bf6ae464
UW
2845 sr_sal.pc = gdbarch_addr_bits_remove
2846 (current_gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
2847 sr_sal.section = find_pc_overlay (sr_sal.pc);
2848
44cbf7b5 2849 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
2850}
2851
14e60db5
DJ
2852/* Similar to insert_step_resume_breakpoint_at_frame, except
2853 but a breakpoint at the previous frame's PC. This is used to
2854 skip a function after stepping into it (for "next" or if the called
2855 function has no debugging information).
2856
2857 The current function has almost always been reached by single
2858 stepping a call or return instruction. NEXT_FRAME belongs to the
2859 current function, and the breakpoint will be set at the caller's
2860 resume address.
2861
2862 This is a separate function rather than reusing
2863 insert_step_resume_breakpoint_at_frame in order to avoid
2864 get_prev_frame, which may stop prematurely (see the implementation
2865 of frame_unwind_id for an example). */
2866
2867static void
2868insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2869{
2870 struct symtab_and_line sr_sal;
2871
2872 /* We shouldn't have gotten here if we don't know where the call site
2873 is. */
2874 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2875
2876 init_sal (&sr_sal); /* initialize to zeros */
2877
bf6ae464
UW
2878 sr_sal.pc = gdbarch_addr_bits_remove
2879 (current_gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
2880 sr_sal.section = find_pc_overlay (sr_sal.pc);
2881
2882 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2883}
2884
104c1213
JM
2885static void
2886stop_stepping (struct execution_control_state *ecs)
2887{
527159b7 2888 if (debug_infrun)
8a9de0e4 2889 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 2890
cd0fc7c3
SS
2891 /* Let callers know we don't want to wait for the inferior anymore. */
2892 ecs->wait_some_more = 0;
2893}
2894
d4f3574e
SS
2895/* This function handles various cases where we need to continue
2896 waiting for the inferior. */
2897/* (Used to be the keep_going: label in the old wait_for_inferior) */
2898
2899static void
2900keep_going (struct execution_control_state *ecs)
2901{
d4f3574e 2902 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2903 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2904
d4f3574e
SS
2905 /* If we did not do break;, it means we should keep running the
2906 inferior and not return to debugger. */
2907
2908 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2909 {
2910 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2911 the inferior, else we'd have done a break above) and we
2912 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2913 resume (currently_stepping (ecs), stop_signal);
2914 }
2915 else
2916 {
2917 /* Either the trap was not expected, but we are continuing
488f131b
JB
2918 anyway (the user asked that this signal be passed to the
2919 child)
2920 -- or --
2921 The signal was SIGTRAP, e.g. it was our signal, but we
2922 decided we should resume from it.
d4f3574e 2923
68f53502 2924 We're going to run this baby now! */
d4f3574e 2925
68f53502 2926 if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e 2927 {
569631c6
UW
2928 /* Stop stepping when inserting breakpoints
2929 has failed. */
2930 if (insert_breakpoints () != 0)
d4f3574e
SS
2931 {
2932 stop_stepping (ecs);
2933 return;
2934 }
2935 breakpoints_inserted = 1;
2936 }
2937
2938 trap_expected = ecs->another_trap;
2939
2940 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2941 specifies that such a signal should be delivered to the
2942 target program).
2943
2944 Typically, this would occure when a user is debugging a
2945 target monitor on a simulator: the target monitor sets a
2946 breakpoint; the simulator encounters this break-point and
2947 halts the simulation handing control to GDB; GDB, noteing
2948 that the break-point isn't valid, returns control back to the
2949 simulator; the simulator then delivers the hardware
2950 equivalent of a SIGNAL_TRAP to the program being debugged. */
2951
2952 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2953 stop_signal = TARGET_SIGNAL_0;
2954
d4f3574e
SS
2955
2956 resume (currently_stepping (ecs), stop_signal);
2957 }
2958
488f131b 2959 prepare_to_wait (ecs);
d4f3574e
SS
2960}
2961
104c1213
JM
2962/* This function normally comes after a resume, before
2963 handle_inferior_event exits. It takes care of any last bits of
2964 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2965
104c1213
JM
2966static void
2967prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2968{
527159b7 2969 if (debug_infrun)
8a9de0e4 2970 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213
JM
2971 if (ecs->infwait_state == infwait_normal_state)
2972 {
2973 overlay_cache_invalid = 1;
2974
2975 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2976 target_wait because they can be loaded from the target while
2977 in target_wait. This makes remote debugging a bit more
2978 efficient for those targets that provide critical registers
2979 as part of their normal status mechanism. */
104c1213
JM
2980
2981 registers_changed ();
39f77062 2982 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2983 ecs->wp = &(ecs->ws);
2984 }
2985 /* This is the old end of the while loop. Let everybody know we
2986 want to wait for the inferior some more and get called again
2987 soon. */
2988 ecs->wait_some_more = 1;
c906108c 2989}
11cf8741
JM
2990
2991/* Print why the inferior has stopped. We always print something when
2992 the inferior exits, or receives a signal. The rest of the cases are
2993 dealt with later on in normal_stop() and print_it_typical(). Ideally
2994 there should be a call to this function from handle_inferior_event()
2995 each time stop_stepping() is called.*/
2996static void
2997print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2998{
2999 switch (stop_reason)
3000 {
11cf8741
JM
3001 case END_STEPPING_RANGE:
3002 /* We are done with a step/next/si/ni command. */
3003 /* For now print nothing. */
fb40c209 3004 /* Print a message only if not in the middle of doing a "step n"
488f131b 3005 operation for n > 1 */
fb40c209 3006 if (!step_multi || !stop_step)
9dc5e2a9 3007 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3008 ui_out_field_string
3009 (uiout, "reason",
3010 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 3011 break;
11cf8741
JM
3012 case SIGNAL_EXITED:
3013 /* The inferior was terminated by a signal. */
8b93c638 3014 annotate_signalled ();
9dc5e2a9 3015 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3016 ui_out_field_string
3017 (uiout, "reason",
3018 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
3019 ui_out_text (uiout, "\nProgram terminated with signal ");
3020 annotate_signal_name ();
488f131b
JB
3021 ui_out_field_string (uiout, "signal-name",
3022 target_signal_to_name (stop_info));
8b93c638
JM
3023 annotate_signal_name_end ();
3024 ui_out_text (uiout, ", ");
3025 annotate_signal_string ();
488f131b
JB
3026 ui_out_field_string (uiout, "signal-meaning",
3027 target_signal_to_string (stop_info));
8b93c638
JM
3028 annotate_signal_string_end ();
3029 ui_out_text (uiout, ".\n");
3030 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3031 break;
3032 case EXITED:
3033 /* The inferior program is finished. */
8b93c638
JM
3034 annotate_exited (stop_info);
3035 if (stop_info)
3036 {
9dc5e2a9 3037 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3038 ui_out_field_string (uiout, "reason",
3039 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 3040 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3041 ui_out_field_fmt (uiout, "exit-code", "0%o",
3042 (unsigned int) stop_info);
8b93c638
JM
3043 ui_out_text (uiout, ".\n");
3044 }
3045 else
3046 {
9dc5e2a9 3047 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3048 ui_out_field_string
3049 (uiout, "reason",
3050 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
3051 ui_out_text (uiout, "\nProgram exited normally.\n");
3052 }
f17517ea
AS
3053 /* Support the --return-child-result option. */
3054 return_child_result_value = stop_info;
11cf8741
JM
3055 break;
3056 case SIGNAL_RECEIVED:
3057 /* Signal received. The signal table tells us to print about
3058 it. */
8b93c638
JM
3059 annotate_signal ();
3060 ui_out_text (uiout, "\nProgram received signal ");
3061 annotate_signal_name ();
84c6c83c 3062 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3063 ui_out_field_string
3064 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b
JB
3065 ui_out_field_string (uiout, "signal-name",
3066 target_signal_to_name (stop_info));
8b93c638
JM
3067 annotate_signal_name_end ();
3068 ui_out_text (uiout, ", ");
3069 annotate_signal_string ();
488f131b
JB
3070 ui_out_field_string (uiout, "signal-meaning",
3071 target_signal_to_string (stop_info));
8b93c638
JM
3072 annotate_signal_string_end ();
3073 ui_out_text (uiout, ".\n");
11cf8741
JM
3074 break;
3075 default:
8e65ff28 3076 internal_error (__FILE__, __LINE__,
e2e0b3e5 3077 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
3078 break;
3079 }
3080}
c906108c 3081\f
43ff13b4 3082
c906108c
SS
3083/* Here to return control to GDB when the inferior stops for real.
3084 Print appropriate messages, remove breakpoints, give terminal our modes.
3085
3086 STOP_PRINT_FRAME nonzero means print the executing frame
3087 (pc, function, args, file, line number and line text).
3088 BREAKPOINTS_FAILED nonzero means stop was due to error
3089 attempting to insert breakpoints. */
3090
3091void
96baa820 3092normal_stop (void)
c906108c 3093{
73b65bb0
DJ
3094 struct target_waitstatus last;
3095 ptid_t last_ptid;
3096
3097 get_last_target_status (&last_ptid, &last);
3098
c906108c
SS
3099 /* As with the notification of thread events, we want to delay
3100 notifying the user that we've switched thread context until
3101 the inferior actually stops.
3102
73b65bb0
DJ
3103 There's no point in saying anything if the inferior has exited.
3104 Note that SIGNALLED here means "exited with a signal", not
3105 "received a signal". */
488f131b 3106 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3107 && target_has_execution
3108 && last.kind != TARGET_WAITKIND_SIGNALLED
3109 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3110 {
3111 target_terminal_ours_for_output ();
a3f17187 3112 printf_filtered (_("[Switching to %s]\n"),
39f77062
KB
3113 target_pid_or_tid_to_str (inferior_ptid));
3114 previous_inferior_ptid = inferior_ptid;
c906108c 3115 }
c906108c 3116
4fa8626c 3117 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3118 /* Make sure that the current_frame's pc is correct. This
3119 is a correction for setting up the frame info before doing
b798847d 3120 gdbarch_decr_pc_after_break */
b87efeee
AC
3121 if (target_has_execution)
3122 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
b798847d 3123 gdbarch_decr_pc_after_break, the program counter can change. Ask the
b87efeee 3124 frame code to check for this and sort out any resultant mess.
b798847d 3125 gdbarch_decr_pc_after_break needs to just go away. */
2f107107 3126 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3127
c906108c
SS
3128 if (target_has_execution && breakpoints_inserted)
3129 {
3130 if (remove_breakpoints ())
3131 {
3132 target_terminal_ours_for_output ();
a3f17187
AC
3133 printf_filtered (_("\
3134Cannot remove breakpoints because program is no longer writable.\n\
3135It might be running in another process.\n\
3136Further execution is probably impossible.\n"));
c906108c
SS
3137 }
3138 }
3139 breakpoints_inserted = 0;
3140
3141 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3142 Delete any breakpoint that is to be deleted at the next stop. */
3143
3144 breakpoint_auto_delete (stop_bpstat);
3145
3146 /* If an auto-display called a function and that got a signal,
3147 delete that auto-display to avoid an infinite recursion. */
3148
3149 if (stopped_by_random_signal)
3150 disable_current_display ();
3151
3152 /* Don't print a message if in the middle of doing a "step n"
3153 operation for n > 1 */
3154 if (step_multi && stop_step)
3155 goto done;
3156
3157 target_terminal_ours ();
3158
7abfe014
DJ
3159 /* Set the current source location. This will also happen if we
3160 display the frame below, but the current SAL will be incorrect
3161 during a user hook-stop function. */
3162 if (target_has_stack && !stop_stack_dummy)
3163 set_current_sal_from_frame (get_current_frame (), 1);
3164
5913bcb0
AC
3165 /* Look up the hook_stop and run it (CLI internally handles problem
3166 of stop_command's pre-hook not existing). */
3167 if (stop_command)
3168 catch_errors (hook_stop_stub, stop_command,
3169 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3170
3171 if (!target_has_stack)
3172 {
3173
3174 goto done;
3175 }
3176
3177 /* Select innermost stack frame - i.e., current frame is frame 0,
3178 and current location is based on that.
3179 Don't do this on return from a stack dummy routine,
3180 or if the program has exited. */
3181
3182 if (!stop_stack_dummy)
3183 {
0f7d239c 3184 select_frame (get_current_frame ());
c906108c
SS
3185
3186 /* Print current location without a level number, if
c5aa993b
JM
3187 we have changed functions or hit a breakpoint.
3188 Print source line if we have one.
3189 bpstat_print() contains the logic deciding in detail
3190 what to print, based on the event(s) that just occurred. */
c906108c 3191
206415a3 3192 if (stop_print_frame)
c906108c
SS
3193 {
3194 int bpstat_ret;
3195 int source_flag;
917317f4 3196 int do_frame_printing = 1;
c906108c
SS
3197
3198 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3199 switch (bpstat_ret)
3200 {
3201 case PRINT_UNKNOWN:
b0f4b84b
DJ
3202 /* If we had hit a shared library event breakpoint,
3203 bpstat_print would print out this message. If we hit
3204 an OS-level shared library event, do the same
3205 thing. */
3206 if (last.kind == TARGET_WAITKIND_LOADED)
3207 {
3208 printf_filtered (_("Stopped due to shared library event\n"));
3209 source_flag = SRC_LINE; /* something bogus */
3210 do_frame_printing = 0;
3211 break;
3212 }
3213
aa0cd9c1 3214 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3215 (or should) carry around the function and does (or
3216 should) use that when doing a frame comparison. */
917317f4 3217 if (stop_step
aa0cd9c1
AC
3218 && frame_id_eq (step_frame_id,
3219 get_frame_id (get_current_frame ()))
917317f4 3220 && step_start_function == find_pc_function (stop_pc))
488f131b 3221 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3222 else
488f131b 3223 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3224 break;
3225 case PRINT_SRC_AND_LOC:
488f131b 3226 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3227 break;
3228 case PRINT_SRC_ONLY:
c5394b80 3229 source_flag = SRC_LINE;
917317f4
JM
3230 break;
3231 case PRINT_NOTHING:
488f131b 3232 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3233 do_frame_printing = 0;
3234 break;
3235 default:
e2e0b3e5 3236 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 3237 }
c906108c 3238
9dc5e2a9 3239 if (ui_out_is_mi_like_p (uiout))
39f77062 3240 ui_out_field_int (uiout, "thread-id",
488f131b 3241 pid_to_thread_id (inferior_ptid));
c906108c
SS
3242 /* The behavior of this routine with respect to the source
3243 flag is:
c5394b80
JM
3244 SRC_LINE: Print only source line
3245 LOCATION: Print only location
3246 SRC_AND_LOC: Print location and source line */
917317f4 3247 if (do_frame_printing)
b04f3ab4 3248 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3249
3250 /* Display the auto-display expressions. */
3251 do_displays ();
3252 }
3253 }
3254
3255 /* Save the function value return registers, if we care.
3256 We might be about to restore their previous contents. */
3257 if (proceed_to_finish)
d5c31457
UW
3258 {
3259 /* This should not be necessary. */
3260 if (stop_registers)
3261 regcache_xfree (stop_registers);
3262
3263 /* NB: The copy goes through to the target picking up the value of
3264 all the registers. */
3265 stop_registers = regcache_dup (get_current_regcache ());
3266 }
c906108c
SS
3267
3268 if (stop_stack_dummy)
3269 {
dbe9fe58
AC
3270 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3271 ends with a setting of the current frame, so we can use that
3272 next. */
3273 frame_pop (get_current_frame ());
c906108c 3274 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3275 Can't rely on restore_inferior_status because that only gets
3276 called if we don't stop in the called function. */
c906108c 3277 stop_pc = read_pc ();
0f7d239c 3278 select_frame (get_current_frame ());
c906108c
SS
3279 }
3280
c906108c
SS
3281done:
3282 annotate_stopped ();
7a464420 3283 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3284}
3285
3286static int
96baa820 3287hook_stop_stub (void *cmd)
c906108c 3288{
5913bcb0 3289 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3290 return (0);
3291}
3292\f
c5aa993b 3293int
96baa820 3294signal_stop_state (int signo)
c906108c
SS
3295{
3296 return signal_stop[signo];
3297}
3298
c5aa993b 3299int
96baa820 3300signal_print_state (int signo)
c906108c
SS
3301{
3302 return signal_print[signo];
3303}
3304
c5aa993b 3305int
96baa820 3306signal_pass_state (int signo)
c906108c
SS
3307{
3308 return signal_program[signo];
3309}
3310
488f131b 3311int
7bda5e4a 3312signal_stop_update (int signo, int state)
d4f3574e
SS
3313{
3314 int ret = signal_stop[signo];
3315 signal_stop[signo] = state;
3316 return ret;
3317}
3318
488f131b 3319int
7bda5e4a 3320signal_print_update (int signo, int state)
d4f3574e
SS
3321{
3322 int ret = signal_print[signo];
3323 signal_print[signo] = state;
3324 return ret;
3325}
3326
488f131b 3327int
7bda5e4a 3328signal_pass_update (int signo, int state)
d4f3574e
SS
3329{
3330 int ret = signal_program[signo];
3331 signal_program[signo] = state;
3332 return ret;
3333}
3334
c906108c 3335static void
96baa820 3336sig_print_header (void)
c906108c 3337{
a3f17187
AC
3338 printf_filtered (_("\
3339Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
3340}
3341
3342static void
96baa820 3343sig_print_info (enum target_signal oursig)
c906108c
SS
3344{
3345 char *name = target_signal_to_name (oursig);
3346 int name_padding = 13 - strlen (name);
96baa820 3347
c906108c
SS
3348 if (name_padding <= 0)
3349 name_padding = 0;
3350
3351 printf_filtered ("%s", name);
488f131b 3352 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3353 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3354 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3355 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3356 printf_filtered ("%s\n", target_signal_to_string (oursig));
3357}
3358
3359/* Specify how various signals in the inferior should be handled. */
3360
3361static void
96baa820 3362handle_command (char *args, int from_tty)
c906108c
SS
3363{
3364 char **argv;
3365 int digits, wordlen;
3366 int sigfirst, signum, siglast;
3367 enum target_signal oursig;
3368 int allsigs;
3369 int nsigs;
3370 unsigned char *sigs;
3371 struct cleanup *old_chain;
3372
3373 if (args == NULL)
3374 {
e2e0b3e5 3375 error_no_arg (_("signal to handle"));
c906108c
SS
3376 }
3377
3378 /* Allocate and zero an array of flags for which signals to handle. */
3379
3380 nsigs = (int) TARGET_SIGNAL_LAST;
3381 sigs = (unsigned char *) alloca (nsigs);
3382 memset (sigs, 0, nsigs);
3383
3384 /* Break the command line up into args. */
3385
3386 argv = buildargv (args);
3387 if (argv == NULL)
3388 {
3389 nomem (0);
3390 }
7a292a7a 3391 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3392
3393 /* Walk through the args, looking for signal oursigs, signal names, and
3394 actions. Signal numbers and signal names may be interspersed with
3395 actions, with the actions being performed for all signals cumulatively
3396 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3397
3398 while (*argv != NULL)
3399 {
3400 wordlen = strlen (*argv);
3401 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3402 {;
3403 }
3404 allsigs = 0;
3405 sigfirst = siglast = -1;
3406
3407 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3408 {
3409 /* Apply action to all signals except those used by the
3410 debugger. Silently skip those. */
3411 allsigs = 1;
3412 sigfirst = 0;
3413 siglast = nsigs - 1;
3414 }
3415 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3416 {
3417 SET_SIGS (nsigs, sigs, signal_stop);
3418 SET_SIGS (nsigs, sigs, signal_print);
3419 }
3420 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3421 {
3422 UNSET_SIGS (nsigs, sigs, signal_program);
3423 }
3424 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3425 {
3426 SET_SIGS (nsigs, sigs, signal_print);
3427 }
3428 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3429 {
3430 SET_SIGS (nsigs, sigs, signal_program);
3431 }
3432 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3433 {
3434 UNSET_SIGS (nsigs, sigs, signal_stop);
3435 }
3436 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3437 {
3438 SET_SIGS (nsigs, sigs, signal_program);
3439 }
3440 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3441 {
3442 UNSET_SIGS (nsigs, sigs, signal_print);
3443 UNSET_SIGS (nsigs, sigs, signal_stop);
3444 }
3445 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3446 {
3447 UNSET_SIGS (nsigs, sigs, signal_program);
3448 }
3449 else if (digits > 0)
3450 {
3451 /* It is numeric. The numeric signal refers to our own
3452 internal signal numbering from target.h, not to host/target
3453 signal number. This is a feature; users really should be
3454 using symbolic names anyway, and the common ones like
3455 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3456
3457 sigfirst = siglast = (int)
3458 target_signal_from_command (atoi (*argv));
3459 if ((*argv)[digits] == '-')
3460 {
3461 siglast = (int)
3462 target_signal_from_command (atoi ((*argv) + digits + 1));
3463 }
3464 if (sigfirst > siglast)
3465 {
3466 /* Bet he didn't figure we'd think of this case... */
3467 signum = sigfirst;
3468 sigfirst = siglast;
3469 siglast = signum;
3470 }
3471 }
3472 else
3473 {
3474 oursig = target_signal_from_name (*argv);
3475 if (oursig != TARGET_SIGNAL_UNKNOWN)
3476 {
3477 sigfirst = siglast = (int) oursig;
3478 }
3479 else
3480 {
3481 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 3482 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
3483 }
3484 }
3485
3486 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3487 which signals to apply actions to. */
c906108c
SS
3488
3489 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3490 {
3491 switch ((enum target_signal) signum)
3492 {
3493 case TARGET_SIGNAL_TRAP:
3494 case TARGET_SIGNAL_INT:
3495 if (!allsigs && !sigs[signum])
3496 {
3497 if (query ("%s is used by the debugger.\n\
488f131b 3498Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3499 {
3500 sigs[signum] = 1;
3501 }
3502 else
3503 {
a3f17187 3504 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
3505 gdb_flush (gdb_stdout);
3506 }
3507 }
3508 break;
3509 case TARGET_SIGNAL_0:
3510 case TARGET_SIGNAL_DEFAULT:
3511 case TARGET_SIGNAL_UNKNOWN:
3512 /* Make sure that "all" doesn't print these. */
3513 break;
3514 default:
3515 sigs[signum] = 1;
3516 break;
3517 }
3518 }
3519
3520 argv++;
3521 }
3522
39f77062 3523 target_notice_signals (inferior_ptid);
c906108c
SS
3524
3525 if (from_tty)
3526 {
3527 /* Show the results. */
3528 sig_print_header ();
3529 for (signum = 0; signum < nsigs; signum++)
3530 {
3531 if (sigs[signum])
3532 {
3533 sig_print_info (signum);
3534 }
3535 }
3536 }
3537
3538 do_cleanups (old_chain);
3539}
3540
3541static void
96baa820 3542xdb_handle_command (char *args, int from_tty)
c906108c
SS
3543{
3544 char **argv;
3545 struct cleanup *old_chain;
3546
3547 /* Break the command line up into args. */
3548
3549 argv = buildargv (args);
3550 if (argv == NULL)
3551 {
3552 nomem (0);
3553 }
7a292a7a 3554 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3555 if (argv[1] != (char *) NULL)
3556 {
3557 char *argBuf;
3558 int bufLen;
3559
3560 bufLen = strlen (argv[0]) + 20;
3561 argBuf = (char *) xmalloc (bufLen);
3562 if (argBuf)
3563 {
3564 int validFlag = 1;
3565 enum target_signal oursig;
3566
3567 oursig = target_signal_from_name (argv[0]);
3568 memset (argBuf, 0, bufLen);
3569 if (strcmp (argv[1], "Q") == 0)
3570 sprintf (argBuf, "%s %s", argv[0], "noprint");
3571 else
3572 {
3573 if (strcmp (argv[1], "s") == 0)
3574 {
3575 if (!signal_stop[oursig])
3576 sprintf (argBuf, "%s %s", argv[0], "stop");
3577 else
3578 sprintf (argBuf, "%s %s", argv[0], "nostop");
3579 }
3580 else if (strcmp (argv[1], "i") == 0)
3581 {
3582 if (!signal_program[oursig])
3583 sprintf (argBuf, "%s %s", argv[0], "pass");
3584 else
3585 sprintf (argBuf, "%s %s", argv[0], "nopass");
3586 }
3587 else if (strcmp (argv[1], "r") == 0)
3588 {
3589 if (!signal_print[oursig])
3590 sprintf (argBuf, "%s %s", argv[0], "print");
3591 else
3592 sprintf (argBuf, "%s %s", argv[0], "noprint");
3593 }
3594 else
3595 validFlag = 0;
3596 }
3597 if (validFlag)
3598 handle_command (argBuf, from_tty);
3599 else
a3f17187 3600 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 3601 if (argBuf)
b8c9b27d 3602 xfree (argBuf);
c906108c
SS
3603 }
3604 }
3605 do_cleanups (old_chain);
3606}
3607
3608/* Print current contents of the tables set by the handle command.
3609 It is possible we should just be printing signals actually used
3610 by the current target (but for things to work right when switching
3611 targets, all signals should be in the signal tables). */
3612
3613static void
96baa820 3614signals_info (char *signum_exp, int from_tty)
c906108c
SS
3615{
3616 enum target_signal oursig;
3617 sig_print_header ();
3618
3619 if (signum_exp)
3620 {
3621 /* First see if this is a symbol name. */
3622 oursig = target_signal_from_name (signum_exp);
3623 if (oursig == TARGET_SIGNAL_UNKNOWN)
3624 {
3625 /* No, try numeric. */
3626 oursig =
bb518678 3627 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3628 }
3629 sig_print_info (oursig);
3630 return;
3631 }
3632
3633 printf_filtered ("\n");
3634 /* These ugly casts brought to you by the native VAX compiler. */
3635 for (oursig = TARGET_SIGNAL_FIRST;
3636 (int) oursig < (int) TARGET_SIGNAL_LAST;
3637 oursig = (enum target_signal) ((int) oursig + 1))
3638 {
3639 QUIT;
3640
3641 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3642 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3643 sig_print_info (oursig);
3644 }
3645
a3f17187 3646 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
3647}
3648\f
7a292a7a
SS
3649struct inferior_status
3650{
3651 enum target_signal stop_signal;
3652 CORE_ADDR stop_pc;
3653 bpstat stop_bpstat;
3654 int stop_step;
3655 int stop_stack_dummy;
3656 int stopped_by_random_signal;
3657 int trap_expected;
3658 CORE_ADDR step_range_start;
3659 CORE_ADDR step_range_end;
aa0cd9c1 3660 struct frame_id step_frame_id;
5fbbeb29 3661 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3662 CORE_ADDR step_resume_break_address;
3663 int stop_after_trap;
c0236d92 3664 int stop_soon;
7a292a7a
SS
3665
3666 /* These are here because if call_function_by_hand has written some
3667 registers and then decides to call error(), we better not have changed
3668 any registers. */
72cec141 3669 struct regcache *registers;
7a292a7a 3670
101dcfbe
AC
3671 /* A frame unique identifier. */
3672 struct frame_id selected_frame_id;
3673
7a292a7a
SS
3674 int breakpoint_proceeded;
3675 int restore_stack_info;
3676 int proceed_to_finish;
3677};
3678
7a292a7a 3679void
96baa820
JM
3680write_inferior_status_register (struct inferior_status *inf_status, int regno,
3681 LONGEST val)
7a292a7a 3682{
3acba339 3683 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
3684 void *buf = alloca (size);
3685 store_signed_integer (buf, size, val);
0818c12a 3686 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3687}
3688
c906108c
SS
3689/* Save all of the information associated with the inferior<==>gdb
3690 connection. INF_STATUS is a pointer to a "struct inferior_status"
3691 (defined in inferior.h). */
3692
7a292a7a 3693struct inferior_status *
96baa820 3694save_inferior_status (int restore_stack_info)
c906108c 3695{
72cec141 3696 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3697
c906108c
SS
3698 inf_status->stop_signal = stop_signal;
3699 inf_status->stop_pc = stop_pc;
3700 inf_status->stop_step = stop_step;
3701 inf_status->stop_stack_dummy = stop_stack_dummy;
3702 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3703 inf_status->trap_expected = trap_expected;
3704 inf_status->step_range_start = step_range_start;
3705 inf_status->step_range_end = step_range_end;
aa0cd9c1 3706 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3707 inf_status->step_over_calls = step_over_calls;
3708 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3709 inf_status->stop_soon = stop_soon;
c906108c
SS
3710 /* Save original bpstat chain here; replace it with copy of chain.
3711 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3712 hand them back the original chain when restore_inferior_status is
3713 called. */
c906108c
SS
3714 inf_status->stop_bpstat = stop_bpstat;
3715 stop_bpstat = bpstat_copy (stop_bpstat);
3716 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3717 inf_status->restore_stack_info = restore_stack_info;
3718 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3719
594f7785 3720 inf_status->registers = regcache_dup (get_current_regcache ());
c906108c 3721
206415a3 3722 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7a292a7a 3723 return inf_status;
c906108c
SS
3724}
3725
c906108c 3726static int
96baa820 3727restore_selected_frame (void *args)
c906108c 3728{
488f131b 3729 struct frame_id *fid = (struct frame_id *) args;
c906108c 3730 struct frame_info *frame;
c906108c 3731
101dcfbe 3732 frame = frame_find_by_id (*fid);
c906108c 3733
aa0cd9c1
AC
3734 /* If inf_status->selected_frame_id is NULL, there was no previously
3735 selected frame. */
101dcfbe 3736 if (frame == NULL)
c906108c 3737 {
8a3fe4f8 3738 warning (_("Unable to restore previously selected frame."));
c906108c
SS
3739 return 0;
3740 }
3741
0f7d239c 3742 select_frame (frame);
c906108c
SS
3743
3744 return (1);
3745}
3746
3747void
96baa820 3748restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3749{
3750 stop_signal = inf_status->stop_signal;
3751 stop_pc = inf_status->stop_pc;
3752 stop_step = inf_status->stop_step;
3753 stop_stack_dummy = inf_status->stop_stack_dummy;
3754 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3755 trap_expected = inf_status->trap_expected;
3756 step_range_start = inf_status->step_range_start;
3757 step_range_end = inf_status->step_range_end;
aa0cd9c1 3758 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3759 step_over_calls = inf_status->step_over_calls;
3760 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3761 stop_soon = inf_status->stop_soon;
c906108c
SS
3762 bpstat_clear (&stop_bpstat);
3763 stop_bpstat = inf_status->stop_bpstat;
3764 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3765 proceed_to_finish = inf_status->proceed_to_finish;
3766
c906108c
SS
3767 /* The inferior can be gone if the user types "print exit(0)"
3768 (and perhaps other times). */
3769 if (target_has_execution)
72cec141 3770 /* NB: The register write goes through to the target. */
594f7785 3771 regcache_cpy (get_current_regcache (), inf_status->registers);
72cec141 3772 regcache_xfree (inf_status->registers);
c906108c 3773
c906108c
SS
3774 /* FIXME: If we are being called after stopping in a function which
3775 is called from gdb, we should not be trying to restore the
3776 selected frame; it just prints a spurious error message (The
3777 message is useful, however, in detecting bugs in gdb (like if gdb
3778 clobbers the stack)). In fact, should we be restoring the
3779 inferior status at all in that case? . */
3780
3781 if (target_has_stack && inf_status->restore_stack_info)
3782 {
c906108c 3783 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3784 walking the stack might encounter a garbage pointer and
3785 error() trying to dereference it. */
488f131b
JB
3786 if (catch_errors
3787 (restore_selected_frame, &inf_status->selected_frame_id,
3788 "Unable to restore previously selected frame:\n",
3789 RETURN_MASK_ERROR) == 0)
c906108c
SS
3790 /* Error in restoring the selected frame. Select the innermost
3791 frame. */
0f7d239c 3792 select_frame (get_current_frame ());
c906108c
SS
3793
3794 }
c906108c 3795
72cec141 3796 xfree (inf_status);
7a292a7a 3797}
c906108c 3798
74b7792f
AC
3799static void
3800do_restore_inferior_status_cleanup (void *sts)
3801{
3802 restore_inferior_status (sts);
3803}
3804
3805struct cleanup *
3806make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3807{
3808 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3809}
3810
c906108c 3811void
96baa820 3812discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3813{
3814 /* See save_inferior_status for info on stop_bpstat. */
3815 bpstat_clear (&inf_status->stop_bpstat);
72cec141 3816 regcache_xfree (inf_status->registers);
72cec141 3817 xfree (inf_status);
7a292a7a
SS
3818}
3819
47932f85
DJ
3820int
3821inferior_has_forked (int pid, int *child_pid)
3822{
3823 struct target_waitstatus last;
3824 ptid_t last_ptid;
3825
3826 get_last_target_status (&last_ptid, &last);
3827
3828 if (last.kind != TARGET_WAITKIND_FORKED)
3829 return 0;
3830
3831 if (ptid_get_pid (last_ptid) != pid)
3832 return 0;
3833
3834 *child_pid = last.value.related_pid;
3835 return 1;
3836}
3837
3838int
3839inferior_has_vforked (int pid, int *child_pid)
3840{
3841 struct target_waitstatus last;
3842 ptid_t last_ptid;
3843
3844 get_last_target_status (&last_ptid, &last);
3845
3846 if (last.kind != TARGET_WAITKIND_VFORKED)
3847 return 0;
3848
3849 if (ptid_get_pid (last_ptid) != pid)
3850 return 0;
3851
3852 *child_pid = last.value.related_pid;
3853 return 1;
3854}
3855
3856int
3857inferior_has_execd (int pid, char **execd_pathname)
3858{
3859 struct target_waitstatus last;
3860 ptid_t last_ptid;
3861
3862 get_last_target_status (&last_ptid, &last);
3863
3864 if (last.kind != TARGET_WAITKIND_EXECD)
3865 return 0;
3866
3867 if (ptid_get_pid (last_ptid) != pid)
3868 return 0;
3869
3870 *execd_pathname = xstrdup (last.value.execd_pathname);
3871 return 1;
3872}
3873
ca6724c1
KB
3874/* Oft used ptids */
3875ptid_t null_ptid;
3876ptid_t minus_one_ptid;
3877
3878/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3879
ca6724c1
KB
3880ptid_t
3881ptid_build (int pid, long lwp, long tid)
3882{
3883 ptid_t ptid;
3884
3885 ptid.pid = pid;
3886 ptid.lwp = lwp;
3887 ptid.tid = tid;
3888 return ptid;
3889}
3890
3891/* Create a ptid from just a pid. */
3892
3893ptid_t
3894pid_to_ptid (int pid)
3895{
3896 return ptid_build (pid, 0, 0);
3897}
3898
3899/* Fetch the pid (process id) component from a ptid. */
3900
3901int
3902ptid_get_pid (ptid_t ptid)
3903{
3904 return ptid.pid;
3905}
3906
3907/* Fetch the lwp (lightweight process) component from a ptid. */
3908
3909long
3910ptid_get_lwp (ptid_t ptid)
3911{
3912 return ptid.lwp;
3913}
3914
3915/* Fetch the tid (thread id) component from a ptid. */
3916
3917long
3918ptid_get_tid (ptid_t ptid)
3919{
3920 return ptid.tid;
3921}
3922
3923/* ptid_equal() is used to test equality of two ptids. */
3924
3925int
3926ptid_equal (ptid_t ptid1, ptid_t ptid2)
3927{
3928 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3929 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3930}
3931
3932/* restore_inferior_ptid() will be used by the cleanup machinery
3933 to restore the inferior_ptid value saved in a call to
3934 save_inferior_ptid(). */
ce696e05
KB
3935
3936static void
3937restore_inferior_ptid (void *arg)
3938{
3939 ptid_t *saved_ptid_ptr = arg;
3940 inferior_ptid = *saved_ptid_ptr;
3941 xfree (arg);
3942}
3943
3944/* Save the value of inferior_ptid so that it may be restored by a
3945 later call to do_cleanups(). Returns the struct cleanup pointer
3946 needed for later doing the cleanup. */
3947
3948struct cleanup *
3949save_inferior_ptid (void)
3950{
3951 ptid_t *saved_ptid_ptr;
3952
3953 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3954 *saved_ptid_ptr = inferior_ptid;
3955 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3956}
c5aa993b 3957\f
488f131b 3958
c906108c 3959void
96baa820 3960_initialize_infrun (void)
c906108c 3961{
52f0bd74
AC
3962 int i;
3963 int numsigs;
c906108c
SS
3964 struct cmd_list_element *c;
3965
1bedd215
AC
3966 add_info ("signals", signals_info, _("\
3967What debugger does when program gets various signals.\n\
3968Specify a signal as argument to print info on that signal only."));
c906108c
SS
3969 add_info_alias ("handle", "signals", 0);
3970
1bedd215
AC
3971 add_com ("handle", class_run, handle_command, _("\
3972Specify how to handle a signal.\n\
c906108c
SS
3973Args are signals and actions to apply to those signals.\n\
3974Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3975from 1-15 are allowed for compatibility with old versions of GDB.\n\
3976Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3977The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3978used by the debugger, typically SIGTRAP and SIGINT.\n\
3979Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3980\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3981Stop means reenter debugger if this signal happens (implies print).\n\
3982Print means print a message if this signal happens.\n\
3983Pass means let program see this signal; otherwise program doesn't know.\n\
3984Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3985Pass and Stop may be combined."));
c906108c
SS
3986 if (xdb_commands)
3987 {
1bedd215
AC
3988 add_com ("lz", class_info, signals_info, _("\
3989What debugger does when program gets various signals.\n\
3990Specify a signal as argument to print info on that signal only."));
3991 add_com ("z", class_run, xdb_handle_command, _("\
3992Specify how to handle a signal.\n\
c906108c
SS
3993Args are signals and actions to apply to those signals.\n\
3994Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3995from 1-15 are allowed for compatibility with old versions of GDB.\n\
3996Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3997The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3998used by the debugger, typically SIGTRAP and SIGINT.\n\
3999Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
4000\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4001nopass), \"Q\" (noprint)\n\
4002Stop means reenter debugger if this signal happens (implies print).\n\
4003Print means print a message if this signal happens.\n\
4004Pass means let program see this signal; otherwise program doesn't know.\n\
4005Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4006Pass and Stop may be combined."));
c906108c
SS
4007 }
4008
4009 if (!dbx_commands)
1a966eab
AC
4010 stop_command = add_cmd ("stop", class_obscure,
4011 not_just_help_class_command, _("\
4012There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 4013This allows you to set a list of commands to be run each time execution\n\
1a966eab 4014of the program stops."), &cmdlist);
c906108c 4015
85c07804
AC
4016 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4017Set inferior debugging."), _("\
4018Show inferior debugging."), _("\
4019When non-zero, inferior specific debugging is enabled."),
4020 NULL,
920d2a44 4021 show_debug_infrun,
85c07804 4022 &setdebuglist, &showdebuglist);
527159b7 4023
c906108c 4024 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 4025 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
4026 signal_print = (unsigned char *)
4027 xmalloc (sizeof (signal_print[0]) * numsigs);
4028 signal_program = (unsigned char *)
4029 xmalloc (sizeof (signal_program[0]) * numsigs);
4030 for (i = 0; i < numsigs; i++)
4031 {
4032 signal_stop[i] = 1;
4033 signal_print[i] = 1;
4034 signal_program[i] = 1;
4035 }
4036
4037 /* Signals caused by debugger's own actions
4038 should not be given to the program afterwards. */
4039 signal_program[TARGET_SIGNAL_TRAP] = 0;
4040 signal_program[TARGET_SIGNAL_INT] = 0;
4041
4042 /* Signals that are not errors should not normally enter the debugger. */
4043 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4044 signal_print[TARGET_SIGNAL_ALRM] = 0;
4045 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4046 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4047 signal_stop[TARGET_SIGNAL_PROF] = 0;
4048 signal_print[TARGET_SIGNAL_PROF] = 0;
4049 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4050 signal_print[TARGET_SIGNAL_CHLD] = 0;
4051 signal_stop[TARGET_SIGNAL_IO] = 0;
4052 signal_print[TARGET_SIGNAL_IO] = 0;
4053 signal_stop[TARGET_SIGNAL_POLL] = 0;
4054 signal_print[TARGET_SIGNAL_POLL] = 0;
4055 signal_stop[TARGET_SIGNAL_URG] = 0;
4056 signal_print[TARGET_SIGNAL_URG] = 0;
4057 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4058 signal_print[TARGET_SIGNAL_WINCH] = 0;
4059
cd0fc7c3
SS
4060 /* These signals are used internally by user-level thread
4061 implementations. (See signal(5) on Solaris.) Like the above
4062 signals, a healthy program receives and handles them as part of
4063 its normal operation. */
4064 signal_stop[TARGET_SIGNAL_LWP] = 0;
4065 signal_print[TARGET_SIGNAL_LWP] = 0;
4066 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4067 signal_print[TARGET_SIGNAL_WAITING] = 0;
4068 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4069 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4070
85c07804
AC
4071 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4072 &stop_on_solib_events, _("\
4073Set stopping for shared library events."), _("\
4074Show stopping for shared library events."), _("\
c906108c
SS
4075If nonzero, gdb will give control to the user when the dynamic linker\n\
4076notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
4077to the user would be loading/unloading of a new library."),
4078 NULL,
920d2a44 4079 show_stop_on_solib_events,
85c07804 4080 &setlist, &showlist);
c906108c 4081
7ab04401
AC
4082 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4083 follow_fork_mode_kind_names,
4084 &follow_fork_mode_string, _("\
4085Set debugger response to a program call of fork or vfork."), _("\
4086Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
4087A fork or vfork creates a new process. follow-fork-mode can be:\n\
4088 parent - the original process is debugged after a fork\n\
4089 child - the new process is debugged after a fork\n\
ea1dd7bc 4090The unfollowed process will continue to run.\n\
7ab04401
AC
4091By default, the debugger will follow the parent process."),
4092 NULL,
920d2a44 4093 show_follow_fork_mode_string,
7ab04401
AC
4094 &setlist, &showlist);
4095
4096 add_setshow_enum_cmd ("scheduler-locking", class_run,
4097 scheduler_enums, &scheduler_mode, _("\
4098Set mode for locking scheduler during execution."), _("\
4099Show mode for locking scheduler during execution."), _("\
c906108c
SS
4100off == no locking (threads may preempt at any time)\n\
4101on == full locking (no thread except the current thread may run)\n\
4102step == scheduler locked during every single-step operation.\n\
4103 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
4104 Other threads may run while stepping over a function call ('next')."),
4105 set_schedlock_func, /* traps on target vector */
920d2a44 4106 show_scheduler_mode,
7ab04401 4107 &setlist, &showlist);
5fbbeb29 4108
5bf193a2
AC
4109 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4110Set mode of the step operation."), _("\
4111Show mode of the step operation."), _("\
4112When set, doing a step over a function without debug line information\n\
4113will stop at the first instruction of that function. Otherwise, the\n\
4114function is skipped and the step command stops at a different source line."),
4115 NULL,
920d2a44 4116 show_step_stop_if_no_debug,
5bf193a2 4117 &setlist, &showlist);
ca6724c1
KB
4118
4119 /* ptid initializations */
4120 null_ptid = ptid_build (0, 0, 0);
4121 minus_one_ptid = ptid_build (-1, 0, 0);
4122 inferior_ptid = null_ptid;
4123 target_last_wait_ptid = minus_one_ptid;
c906108c 4124}
This page took 0.84173 seconds and 4 git commands to generate.