Initialize gdb::optional empty payload to quiet false -Wmaybe-uninitialized warnings
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
61baf725 4 Copyright (C) 1986-2017 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
c906108c
SS
67
68/* Prototypes for local functions */
69
96baa820 70static void signals_info (char *, int);
c906108c 71
96baa820 72static void handle_command (char *, int);
c906108c 73
2ea28649 74static void sig_print_info (enum gdb_signal);
c906108c 75
96baa820 76static void sig_print_header (void);
c906108c 77
74b7792f 78static void resume_cleanups (void *);
c906108c 79
96baa820 80static int hook_stop_stub (void *);
c906108c 81
96baa820
JM
82static int restore_selected_frame (void *);
83
4ef3f3be 84static int follow_fork (void);
96baa820 85
d83ad864
DB
86static int follow_fork_inferior (int follow_child, int detach_fork);
87
88static void follow_inferior_reset_breakpoints (void);
89
96baa820 90static void set_schedlock_func (char *args, int from_tty,
488f131b 91 struct cmd_list_element *c);
96baa820 92
a289b8f6
JK
93static int currently_stepping (struct thread_info *tp);
94
96baa820 95void _initialize_infrun (void);
43ff13b4 96
e58b0e63
PA
97void nullify_last_target_wait_ptid (void);
98
2c03e5be 99static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
100
101static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
2484c66b
UW
103static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
8550d3b3
YQ
105static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
372316f1
PA
107/* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109static struct async_event_handler *infrun_async_inferior_event_token;
110
111/* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113static int infrun_is_async = -1;
114
115/* See infrun.h. */
116
117void
118infrun_async (int enable)
119{
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134}
135
0b333c5e
PA
136/* See infrun.h. */
137
138void
139mark_infrun_async_event_handler (void)
140{
141 mark_async_event_handler (infrun_async_inferior_event_token);
142}
143
5fbbeb29
CF
144/* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147int step_stop_if_no_debug = 0;
920d2a44
AC
148static void
149show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151{
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153}
5fbbeb29 154
b9f437de
PA
155/* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
96baa820 158
39f77062 159static ptid_t previous_inferior_ptid;
7a292a7a 160
07107ca6
LM
161/* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166static int detach_fork = 1;
6c95b8df 167
237fc4c9
PA
168int debug_displaced = 0;
169static void
170show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172{
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174}
175
ccce17b0 176unsigned int debug_infrun = 0;
920d2a44
AC
177static void
178show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182}
527159b7 183
03583c20
UW
184
185/* Support for disabling address space randomization. */
186
187int disable_randomization = 1;
188
189static void
190show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192{
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202}
203
204static void
205set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207{
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212}
213
d32dc48e
PA
214/* User interface for non-stop mode. */
215
216int non_stop = 0;
217static int non_stop_1 = 0;
218
219static void
220set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222{
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230}
231
232static void
233show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235{
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239}
240
d914c394
SS
241/* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
d914c394
SS
245int observer_mode = 0;
246static int observer_mode_1 = 0;
247
248static void
249set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251{
d914c394
SS
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
d914c394
SS
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282}
283
284static void
285show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287{
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289}
290
291/* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297void
298update_observer_mode (void)
299{
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314}
c2c6d25f 315
c906108c
SS
316/* Tables of how to react to signals; the user sets them. */
317
318static unsigned char *signal_stop;
319static unsigned char *signal_print;
320static unsigned char *signal_program;
321
ab04a2af
TT
322/* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326static unsigned char *signal_catch;
327
2455069d
UW
328/* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331static unsigned char *signal_pass;
332
c906108c
SS
333#define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341#define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
9b224c5e
PA
349/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352void
353update_signals_program_target (void)
354{
a493e3e2 355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
356}
357
1777feb0 358/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 359
edb3359d 360#define RESUME_ALL minus_one_ptid
c906108c
SS
361
362/* Command list pointer for the "stop" placeholder. */
363
364static struct cmd_list_element *stop_command;
365
c906108c
SS
366/* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
628fe4e4 368int stop_on_solib_events;
f9e14852
GB
369
370/* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373static void
374set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375{
376 update_solib_breakpoints ();
377}
378
920d2a44
AC
379static void
380show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382{
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385}
c906108c 386
c906108c
SS
387/* Nonzero after stop if current stack frame should be printed. */
388
389static int stop_print_frame;
390
e02bc4cc 391/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
39f77062 394static ptid_t target_last_wait_ptid;
e02bc4cc
DS
395static struct target_waitstatus target_last_waitstatus;
396
0d1e5fa7
PA
397static void context_switch (ptid_t ptid);
398
4e1c45ea 399void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 400
53904c9e
AC
401static const char follow_fork_mode_child[] = "child";
402static const char follow_fork_mode_parent[] = "parent";
403
40478521 404static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
ef346e04 408};
c906108c 409
53904c9e 410static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
411static void
412show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414{
3e43a32a
MS
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
418 value);
419}
c906108c
SS
420\f
421
d83ad864
DB
422/* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428static int
429follow_fork_inferior (int follow_child, int detach_fork)
430{
431 int has_vforked;
79639e11 432 ptid_t parent_ptid, child_ptid;
d83ad864
DB
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
79639e11
PA
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 441 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450Can not resume the parent process over vfork in the foreground while\n\
451holding the child stopped. Try \"set detach-on-fork\" or \
452\"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
d83ad864
DB
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
8dd06f7a
DB
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
6f259a23 480 target_terminal_ours_for_output ();
d83ad864 481 fprintf_filtered (gdb_stdlog,
79639e11 482 _("Detaching after %s from child %s.\n"),
6f259a23 483 has_vforked ? "vfork" : "fork",
8dd06f7a 484 target_pid_to_str (process_ptid));
d83ad864
DB
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
79639e11 493 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_inferior_ptid ();
502 save_current_program_space ();
503
79639e11 504 inferior_ptid = child_ptid;
d83ad864
DB
505 add_thread (inferior_ptid);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
6f259a23
DB
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
79639e11
PA
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
6f259a23 572 has_vforked ? "vfork" : "fork",
79639e11 573 target_pid_to_str (child_ptid));
d83ad864
DB
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
79639e11 579 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
6f259a23
DB
610 {
611 if (info_verbose || debug_infrun)
612 {
8dd06f7a
DB
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
6f259a23
DB
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
79639e11 619 "child %s.\n"),
8dd06f7a 620 target_pid_to_str (process_ptid));
6f259a23
DB
621 }
622
623 target_detach (NULL, 0);
624 }
d83ad864
DB
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
79639e11 632 inferior_ptid = child_ptid;
d83ad864
DB
633 add_thread (inferior_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662}
663
e58b0e63
PA
664/* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
6604731b 668static int
4ef3f3be 669follow_fork (void)
c906108c 670{
ea1dd7bc 671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
4e3990f4
DE
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 680 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
8980e177 684 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
8358c15c
JK
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
16c381f0
JK
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
186c406b
TT
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 736 thread_fsm = tp->thread_fsm;
e58b0e63
PA
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
16c381f0
JK
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
186c406b 747 delete_exception_resume_breakpoint (tp);
8980e177 748 tp->thread_fsm = NULL;
e58b0e63
PA
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
d83ad864
DB
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
e09875d4 769 tp = find_thread_ptid (parent);
e58b0e63
PA
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
1777feb0 777 /* If we followed the child, switch to it... */
e58b0e63
PA
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
8358c15c
JK
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
16c381f0
JK
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
186c406b
TT
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
8980e177 794 tp->thread_fsm = thread_fsm;
e58b0e63
PA
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
3e43a32a 804 warning (_("Not resuming: switched threads "
fd7dcb94 805 "before following fork child."));
e58b0e63
PA
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
c906108c 825
e58b0e63 826 return should_resume;
c906108c
SS
827}
828
d83ad864 829static void
6604731b 830follow_inferior_reset_breakpoints (void)
c906108c 831{
4e1c45ea
PA
832 struct thread_info *tp = inferior_thread ();
833
6604731b
DJ
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
6604731b
DJ
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
8358c15c 847 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
6604731b 852
a1aa2221 853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 854 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
186c406b 859
6604731b
DJ
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
c906108c 867}
c906108c 868
6c95b8df
PA
869/* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872static int
873proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875{
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
a493e3e2 882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
70509625 890 clear_proceed_status (0);
64ce06e4 891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
892 }
893
894 return 0;
895}
896
897/* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900static void
901handle_vfork_child_exec_or_exit (int exec)
902{
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. If the user wanted to
911 detach from the parent, now is the time. */
912
913 if (inf->vfork_parent->pending_detach)
914 {
915 struct thread_info *tp;
916 struct cleanup *old_chain;
917 struct program_space *pspace;
918 struct address_space *aspace;
919
1777feb0 920 /* follow-fork child, detach-on-fork on. */
6c95b8df 921
68c9da30
PA
922 inf->vfork_parent->pending_detach = 0;
923
f50f4e56
PA
924 if (!exec)
925 {
926 /* If we're handling a child exit, then inferior_ptid
927 points at the inferior's pid, not to a thread. */
928 old_chain = save_inferior_ptid ();
929 save_current_program_space ();
930 save_current_inferior ();
931 }
932 else
933 old_chain = save_current_space_and_thread ();
6c95b8df
PA
934
935 /* We're letting loose of the parent. */
936 tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 switch_to_thread (tp->ptid);
938
939 /* We're about to detach from the parent, which implicitly
940 removes breakpoints from its address space. There's a
941 catch here: we want to reuse the spaces for the child,
942 but, parent/child are still sharing the pspace at this
943 point, although the exec in reality makes the kernel give
944 the child a fresh set of new pages. The problem here is
945 that the breakpoints module being unaware of this, would
946 likely chose the child process to write to the parent
947 address space. Swapping the child temporarily away from
948 the spaces has the desired effect. Yes, this is "sort
949 of" a hack. */
950
951 pspace = inf->pspace;
952 aspace = inf->aspace;
953 inf->aspace = NULL;
954 inf->pspace = NULL;
955
956 if (debug_infrun || info_verbose)
957 {
6f259a23 958 target_terminal_ours_for_output ();
6c95b8df
PA
959
960 if (exec)
6f259a23
DB
961 {
962 fprintf_filtered (gdb_stdlog,
963 _("Detaching vfork parent process "
964 "%d after child exec.\n"),
965 inf->vfork_parent->pid);
966 }
6c95b8df 967 else
6f259a23
DB
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("Detaching vfork parent process "
971 "%d after child exit.\n"),
972 inf->vfork_parent->pid);
973 }
6c95b8df
PA
974 }
975
976 target_detach (NULL, 0);
977
978 /* Put it back. */
979 inf->pspace = pspace;
980 inf->aspace = aspace;
981
982 do_cleanups (old_chain);
983 }
984 else if (exec)
985 {
986 /* We're staying attached to the parent, so, really give the
987 child a new address space. */
988 inf->pspace = add_program_space (maybe_new_address_space ());
989 inf->aspace = inf->pspace->aspace;
990 inf->removable = 1;
991 set_current_program_space (inf->pspace);
992
993 resume_parent = inf->vfork_parent->pid;
994
995 /* Break the bonds. */
996 inf->vfork_parent->vfork_child = NULL;
997 }
998 else
999 {
1000 struct cleanup *old_chain;
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid, so that clone_program_space doesn't want
1013 to read the selected frame of a dead process. */
1014 old_chain = save_inferior_ptid ();
1015 inferior_ptid = null_ptid;
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = add_program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
7dcd53a0 1025 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1026 clone_program_space (pspace, inf->vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1031 inferior. */
6c95b8df
PA
1032 do_cleanups (old_chain);
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048
1049 if (debug_infrun)
3e43a32a
MS
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055
1056 do_cleanups (old_chain);
1057 }
1058 }
1059}
1060
eb6c553b 1061/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1062
1063static const char follow_exec_mode_new[] = "new";
1064static const char follow_exec_mode_same[] = "same";
40478521 1065static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1066{
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070};
1071
1072static const char *follow_exec_mode_string = follow_exec_mode_same;
1073static void
1074show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076{
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078}
1079
ecf45d2c 1080/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1081
c906108c 1082static void
ecf45d2c 1083follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1084{
95e50b27 1085 struct thread_info *th, *tmp;
6c95b8df 1086 struct inferior *inf = current_inferior ();
95e50b27 1087 int pid = ptid_get_pid (ptid);
94585166 1088 ptid_t process_ptid;
ecf45d2c
SL
1089 char *exec_file_host;
1090 struct cleanup *old_chain;
7a292a7a 1091
c906108c
SS
1092 /* This is an exec event that we actually wish to pay attention to.
1093 Refresh our symbol table to the newly exec'd program, remove any
1094 momentary bp's, etc.
1095
1096 If there are breakpoints, they aren't really inserted now,
1097 since the exec() transformed our inferior into a fresh set
1098 of instructions.
1099
1100 We want to preserve symbolic breakpoints on the list, since
1101 we have hopes that they can be reset after the new a.out's
1102 symbol table is read.
1103
1104 However, any "raw" breakpoints must be removed from the list
1105 (e.g., the solib bp's), since their address is probably invalid
1106 now.
1107
1108 And, we DON'T want to call delete_breakpoints() here, since
1109 that may write the bp's "shadow contents" (the instruction
1110 value that was overwritten witha TRAP instruction). Since
1777feb0 1111 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1112
1113 mark_breakpoints_out ();
1114
95e50b27
PA
1115 /* The target reports the exec event to the main thread, even if
1116 some other thread does the exec, and even if the main thread was
1117 stopped or already gone. We may still have non-leader threads of
1118 the process on our list. E.g., on targets that don't have thread
1119 exit events (like remote); or on native Linux in non-stop mode if
1120 there were only two threads in the inferior and the non-leader
1121 one is the one that execs (and nothing forces an update of the
1122 thread list up to here). When debugging remotely, it's best to
1123 avoid extra traffic, when possible, so avoid syncing the thread
1124 list with the target, and instead go ahead and delete all threads
1125 of the process but one that reported the event. Note this must
1126 be done before calling update_breakpoints_after_exec, as
1127 otherwise clearing the threads' resources would reference stale
1128 thread breakpoints -- it may have been one of these threads that
1129 stepped across the exec. We could just clear their stepping
1130 states, but as long as we're iterating, might as well delete
1131 them. Deleting them now rather than at the next user-visible
1132 stop provides a nicer sequence of events for user and MI
1133 notifications. */
8a06aea7 1134 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1135 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1136 delete_thread (th->ptid);
1137
1138 /* We also need to clear any left over stale state for the
1139 leader/event thread. E.g., if there was any step-resume
1140 breakpoint or similar, it's gone now. We cannot truly
1141 step-to-next statement through an exec(). */
1142 th = inferior_thread ();
8358c15c 1143 th->control.step_resume_breakpoint = NULL;
186c406b 1144 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1145 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1146 th->control.step_range_start = 0;
1147 th->control.step_range_end = 0;
c906108c 1148
95e50b27
PA
1149 /* The user may have had the main thread held stopped in the
1150 previous image (e.g., schedlock on, or non-stop). Release
1151 it now. */
a75724bc
PA
1152 th->stop_requested = 0;
1153
95e50b27
PA
1154 update_breakpoints_after_exec ();
1155
1777feb0 1156 /* What is this a.out's name? */
94585166 1157 process_ptid = pid_to_ptid (pid);
6c95b8df 1158 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1159 target_pid_to_str (process_ptid),
ecf45d2c 1160 exec_file_target);
c906108c
SS
1161
1162 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1163 inferior has essentially been killed & reborn. */
7a292a7a 1164
c906108c 1165 gdb_flush (gdb_stdout);
6ca15a4b
PA
1166
1167 breakpoint_init_inferior (inf_execd);
e85a822c 1168
ecf45d2c
SL
1169 exec_file_host = exec_file_find (exec_file_target, NULL);
1170 old_chain = make_cleanup (xfree, exec_file_host);
ff862be4 1171
ecf45d2c
SL
1172 /* If we were unable to map the executable target pathname onto a host
1173 pathname, tell the user that. Otherwise GDB's subsequent behavior
1174 is confusing. Maybe it would even be better to stop at this point
1175 so that the user can specify a file manually before continuing. */
1176 if (exec_file_host == NULL)
1177 warning (_("Could not load symbols for executable %s.\n"
1178 "Do you need \"set sysroot\"?"),
1179 exec_file_target);
c906108c 1180
cce9b6bf
PA
1181 /* Reset the shared library package. This ensures that we get a
1182 shlib event when the child reaches "_start", at which point the
1183 dld will have had a chance to initialize the child. */
1184 /* Also, loading a symbol file below may trigger symbol lookups, and
1185 we don't want those to be satisfied by the libraries of the
1186 previous incarnation of this process. */
1187 no_shared_libraries (NULL, 0);
1188
6c95b8df
PA
1189 if (follow_exec_mode_string == follow_exec_mode_new)
1190 {
6c95b8df
PA
1191 /* The user wants to keep the old inferior and program spaces
1192 around. Create a new fresh one, and switch to it. */
1193
17d8546e
DB
1194 /* Do exit processing for the original inferior before adding
1195 the new inferior so we don't have two active inferiors with
1196 the same ptid, which can confuse find_inferior_ptid. */
1197 exit_inferior_num_silent (current_inferior ()->num);
1198
94585166
DB
1199 inf = add_inferior_with_spaces ();
1200 inf->pid = pid;
ecf45d2c 1201 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1202
1203 set_current_inferior (inf);
94585166
DB
1204 set_current_program_space (inf->pspace);
1205 add_thread (ptid);
6c95b8df 1206 }
9107fc8d
PA
1207 else
1208 {
1209 /* The old description may no longer be fit for the new image.
1210 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1211 old description; we'll read a new one below. No need to do
1212 this on "follow-exec-mode new", as the old inferior stays
1213 around (its description is later cleared/refetched on
1214 restart). */
1215 target_clear_description ();
1216 }
6c95b8df
PA
1217
1218 gdb_assert (current_program_space == inf->pspace);
1219
ecf45d2c
SL
1220 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1221 because the proper displacement for a PIE (Position Independent
1222 Executable) main symbol file will only be computed by
1223 solib_create_inferior_hook below. breakpoint_re_set would fail
1224 to insert the breakpoints with the zero displacement. */
1225 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
c1e56572 1226
ecf45d2c 1227 do_cleanups (old_chain);
c906108c 1228
9107fc8d
PA
1229 /* If the target can specify a description, read it. Must do this
1230 after flipping to the new executable (because the target supplied
1231 description must be compatible with the executable's
1232 architecture, and the old executable may e.g., be 32-bit, while
1233 the new one 64-bit), and before anything involving memory or
1234 registers. */
1235 target_find_description ();
1236
268a4a75 1237 solib_create_inferior_hook (0);
c906108c 1238
4efc6507
DE
1239 jit_inferior_created_hook ();
1240
c1e56572
JK
1241 breakpoint_re_set ();
1242
c906108c
SS
1243 /* Reinsert all breakpoints. (Those which were symbolic have
1244 been reset to the proper address in the new a.out, thanks
1777feb0 1245 to symbol_file_command...). */
c906108c
SS
1246 insert_breakpoints ();
1247
1248 /* The next resume of this inferior should bring it to the shlib
1249 startup breakpoints. (If the user had also set bp's on
1250 "main" from the old (parent) process, then they'll auto-
1777feb0 1251 matically get reset there in the new process.). */
c906108c
SS
1252}
1253
c2829269
PA
1254/* The queue of threads that need to do a step-over operation to get
1255 past e.g., a breakpoint. What technique is used to step over the
1256 breakpoint/watchpoint does not matter -- all threads end up in the
1257 same queue, to maintain rough temporal order of execution, in order
1258 to avoid starvation, otherwise, we could e.g., find ourselves
1259 constantly stepping the same couple threads past their breakpoints
1260 over and over, if the single-step finish fast enough. */
1261struct thread_info *step_over_queue_head;
1262
6c4cfb24
PA
1263/* Bit flags indicating what the thread needs to step over. */
1264
8d297bbf 1265enum step_over_what_flag
6c4cfb24
PA
1266 {
1267 /* Step over a breakpoint. */
1268 STEP_OVER_BREAKPOINT = 1,
1269
1270 /* Step past a non-continuable watchpoint, in order to let the
1271 instruction execute so we can evaluate the watchpoint
1272 expression. */
1273 STEP_OVER_WATCHPOINT = 2
1274 };
8d297bbf 1275DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1276
963f9c80 1277/* Info about an instruction that is being stepped over. */
31e77af2
PA
1278
1279struct step_over_info
1280{
963f9c80
PA
1281 /* If we're stepping past a breakpoint, this is the address space
1282 and address of the instruction the breakpoint is set at. We'll
1283 skip inserting all breakpoints here. Valid iff ASPACE is
1284 non-NULL. */
31e77af2 1285 struct address_space *aspace;
31e77af2 1286 CORE_ADDR address;
963f9c80
PA
1287
1288 /* The instruction being stepped over triggers a nonsteppable
1289 watchpoint. If true, we'll skip inserting watchpoints. */
1290 int nonsteppable_watchpoint_p;
21edc42f
YQ
1291
1292 /* The thread's global number. */
1293 int thread;
31e77af2
PA
1294};
1295
1296/* The step-over info of the location that is being stepped over.
1297
1298 Note that with async/breakpoint always-inserted mode, a user might
1299 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1300 being stepped over. As setting a new breakpoint inserts all
1301 breakpoints, we need to make sure the breakpoint being stepped over
1302 isn't inserted then. We do that by only clearing the step-over
1303 info when the step-over is actually finished (or aborted).
1304
1305 Presently GDB can only step over one breakpoint at any given time.
1306 Given threads that can't run code in the same address space as the
1307 breakpoint's can't really miss the breakpoint, GDB could be taught
1308 to step-over at most one breakpoint per address space (so this info
1309 could move to the address space object if/when GDB is extended).
1310 The set of breakpoints being stepped over will normally be much
1311 smaller than the set of all breakpoints, so a flag in the
1312 breakpoint location structure would be wasteful. A separate list
1313 also saves complexity and run-time, as otherwise we'd have to go
1314 through all breakpoint locations clearing their flag whenever we
1315 start a new sequence. Similar considerations weigh against storing
1316 this info in the thread object. Plus, not all step overs actually
1317 have breakpoint locations -- e.g., stepping past a single-step
1318 breakpoint, or stepping to complete a non-continuable
1319 watchpoint. */
1320static struct step_over_info step_over_info;
1321
1322/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1323 stepping over.
1324 N.B. We record the aspace and address now, instead of say just the thread,
1325 because when we need the info later the thread may be running. */
31e77af2
PA
1326
1327static void
963f9c80 1328set_step_over_info (struct address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1329 int nonsteppable_watchpoint_p,
1330 int thread)
31e77af2
PA
1331{
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
963f9c80 1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1335 step_over_info.thread = thread;
31e77af2
PA
1336}
1337
1338/* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341static void
1342clear_step_over_info (void)
1343{
372316f1
PA
1344 if (debug_infrun)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "infrun: clear_step_over_info\n");
31e77af2
PA
1347 step_over_info.aspace = NULL;
1348 step_over_info.address = 0;
963f9c80 1349 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1350 step_over_info.thread = -1;
31e77af2
PA
1351}
1352
7f89fd65 1353/* See infrun.h. */
31e77af2
PA
1354
1355int
1356stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358{
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363}
1364
963f9c80
PA
1365/* See infrun.h. */
1366
21edc42f
YQ
1367int
1368thread_is_stepping_over_breakpoint (int thread)
1369{
1370 return (step_over_info.thread != -1
1371 && thread == step_over_info.thread);
1372}
1373
1374/* See infrun.h. */
1375
963f9c80
PA
1376int
1377stepping_past_nonsteppable_watchpoint (void)
1378{
1379 return step_over_info.nonsteppable_watchpoint_p;
1380}
1381
6cc83d2a
PA
1382/* Returns true if step-over info is valid. */
1383
1384static int
1385step_over_info_valid_p (void)
1386{
963f9c80
PA
1387 return (step_over_info.aspace != NULL
1388 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1389}
1390
c906108c 1391\f
237fc4c9
PA
1392/* Displaced stepping. */
1393
1394/* In non-stop debugging mode, we must take special care to manage
1395 breakpoints properly; in particular, the traditional strategy for
1396 stepping a thread past a breakpoint it has hit is unsuitable.
1397 'Displaced stepping' is a tactic for stepping one thread past a
1398 breakpoint it has hit while ensuring that other threads running
1399 concurrently will hit the breakpoint as they should.
1400
1401 The traditional way to step a thread T off a breakpoint in a
1402 multi-threaded program in all-stop mode is as follows:
1403
1404 a0) Initially, all threads are stopped, and breakpoints are not
1405 inserted.
1406 a1) We single-step T, leaving breakpoints uninserted.
1407 a2) We insert breakpoints, and resume all threads.
1408
1409 In non-stop debugging, however, this strategy is unsuitable: we
1410 don't want to have to stop all threads in the system in order to
1411 continue or step T past a breakpoint. Instead, we use displaced
1412 stepping:
1413
1414 n0) Initially, T is stopped, other threads are running, and
1415 breakpoints are inserted.
1416 n1) We copy the instruction "under" the breakpoint to a separate
1417 location, outside the main code stream, making any adjustments
1418 to the instruction, register, and memory state as directed by
1419 T's architecture.
1420 n2) We single-step T over the instruction at its new location.
1421 n3) We adjust the resulting register and memory state as directed
1422 by T's architecture. This includes resetting T's PC to point
1423 back into the main instruction stream.
1424 n4) We resume T.
1425
1426 This approach depends on the following gdbarch methods:
1427
1428 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1429 indicate where to copy the instruction, and how much space must
1430 be reserved there. We use these in step n1.
1431
1432 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1433 address, and makes any necessary adjustments to the instruction,
1434 register contents, and memory. We use this in step n1.
1435
1436 - gdbarch_displaced_step_fixup adjusts registers and memory after
1437 we have successfuly single-stepped the instruction, to yield the
1438 same effect the instruction would have had if we had executed it
1439 at its original address. We use this in step n3.
1440
1441 - gdbarch_displaced_step_free_closure provides cleanup.
1442
1443 The gdbarch_displaced_step_copy_insn and
1444 gdbarch_displaced_step_fixup functions must be written so that
1445 copying an instruction with gdbarch_displaced_step_copy_insn,
1446 single-stepping across the copied instruction, and then applying
1447 gdbarch_displaced_insn_fixup should have the same effects on the
1448 thread's memory and registers as stepping the instruction in place
1449 would have. Exactly which responsibilities fall to the copy and
1450 which fall to the fixup is up to the author of those functions.
1451
1452 See the comments in gdbarch.sh for details.
1453
1454 Note that displaced stepping and software single-step cannot
1455 currently be used in combination, although with some care I think
1456 they could be made to. Software single-step works by placing
1457 breakpoints on all possible subsequent instructions; if the
1458 displaced instruction is a PC-relative jump, those breakpoints
1459 could fall in very strange places --- on pages that aren't
1460 executable, or at addresses that are not proper instruction
1461 boundaries. (We do generally let other threads run while we wait
1462 to hit the software single-step breakpoint, and they might
1463 encounter such a corrupted instruction.) One way to work around
1464 this would be to have gdbarch_displaced_step_copy_insn fully
1465 simulate the effect of PC-relative instructions (and return NULL)
1466 on architectures that use software single-stepping.
1467
1468 In non-stop mode, we can have independent and simultaneous step
1469 requests, so more than one thread may need to simultaneously step
1470 over a breakpoint. The current implementation assumes there is
1471 only one scratch space per process. In this case, we have to
1472 serialize access to the scratch space. If thread A wants to step
1473 over a breakpoint, but we are currently waiting for some other
1474 thread to complete a displaced step, we leave thread A stopped and
1475 place it in the displaced_step_request_queue. Whenever a displaced
1476 step finishes, we pick the next thread in the queue and start a new
1477 displaced step operation on it. See displaced_step_prepare and
1478 displaced_step_fixup for details. */
1479
fc1cf338
PA
1480/* Per-inferior displaced stepping state. */
1481struct displaced_step_inferior_state
1482{
1483 /* Pointer to next in linked list. */
1484 struct displaced_step_inferior_state *next;
1485
1486 /* The process this displaced step state refers to. */
1487 int pid;
1488
3fc8eb30
PA
1489 /* True if preparing a displaced step ever failed. If so, we won't
1490 try displaced stepping for this inferior again. */
1491 int failed_before;
1492
fc1cf338
PA
1493 /* If this is not null_ptid, this is the thread carrying out a
1494 displaced single-step in process PID. This thread's state will
1495 require fixing up once it has completed its step. */
1496 ptid_t step_ptid;
1497
1498 /* The architecture the thread had when we stepped it. */
1499 struct gdbarch *step_gdbarch;
1500
1501 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1502 for post-step cleanup. */
1503 struct displaced_step_closure *step_closure;
1504
1505 /* The address of the original instruction, and the copy we
1506 made. */
1507 CORE_ADDR step_original, step_copy;
1508
1509 /* Saved contents of copy area. */
1510 gdb_byte *step_saved_copy;
1511};
1512
1513/* The list of states of processes involved in displaced stepping
1514 presently. */
1515static struct displaced_step_inferior_state *displaced_step_inferior_states;
1516
1517/* Get the displaced stepping state of process PID. */
1518
1519static struct displaced_step_inferior_state *
1520get_displaced_stepping_state (int pid)
1521{
1522 struct displaced_step_inferior_state *state;
1523
1524 for (state = displaced_step_inferior_states;
1525 state != NULL;
1526 state = state->next)
1527 if (state->pid == pid)
1528 return state;
1529
1530 return NULL;
1531}
1532
372316f1
PA
1533/* Returns true if any inferior has a thread doing a displaced
1534 step. */
1535
1536static int
1537displaced_step_in_progress_any_inferior (void)
1538{
1539 struct displaced_step_inferior_state *state;
1540
1541 for (state = displaced_step_inferior_states;
1542 state != NULL;
1543 state = state->next)
1544 if (!ptid_equal (state->step_ptid, null_ptid))
1545 return 1;
1546
1547 return 0;
1548}
1549
c0987663
YQ
1550/* Return true if thread represented by PTID is doing a displaced
1551 step. */
1552
1553static int
1554displaced_step_in_progress_thread (ptid_t ptid)
1555{
1556 struct displaced_step_inferior_state *displaced;
1557
1558 gdb_assert (!ptid_equal (ptid, null_ptid));
1559
1560 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1561
1562 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1563}
1564
8f572e5c
PA
1565/* Return true if process PID has a thread doing a displaced step. */
1566
1567static int
1568displaced_step_in_progress (int pid)
1569{
1570 struct displaced_step_inferior_state *displaced;
1571
1572 displaced = get_displaced_stepping_state (pid);
1573 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1574 return 1;
1575
1576 return 0;
1577}
1578
fc1cf338
PA
1579/* Add a new displaced stepping state for process PID to the displaced
1580 stepping state list, or return a pointer to an already existing
1581 entry, if it already exists. Never returns NULL. */
1582
1583static struct displaced_step_inferior_state *
1584add_displaced_stepping_state (int pid)
1585{
1586 struct displaced_step_inferior_state *state;
1587
1588 for (state = displaced_step_inferior_states;
1589 state != NULL;
1590 state = state->next)
1591 if (state->pid == pid)
1592 return state;
237fc4c9 1593
8d749320 1594 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1595 state->pid = pid;
1596 state->next = displaced_step_inferior_states;
1597 displaced_step_inferior_states = state;
237fc4c9 1598
fc1cf338
PA
1599 return state;
1600}
1601
a42244db
YQ
1602/* If inferior is in displaced stepping, and ADDR equals to starting address
1603 of copy area, return corresponding displaced_step_closure. Otherwise,
1604 return NULL. */
1605
1606struct displaced_step_closure*
1607get_displaced_step_closure_by_addr (CORE_ADDR addr)
1608{
1609 struct displaced_step_inferior_state *displaced
1610 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1611
1612 /* If checking the mode of displaced instruction in copy area. */
1613 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1614 && (displaced->step_copy == addr))
1615 return displaced->step_closure;
1616
1617 return NULL;
1618}
1619
fc1cf338 1620/* Remove the displaced stepping state of process PID. */
237fc4c9 1621
fc1cf338
PA
1622static void
1623remove_displaced_stepping_state (int pid)
1624{
1625 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1626
fc1cf338
PA
1627 gdb_assert (pid != 0);
1628
1629 it = displaced_step_inferior_states;
1630 prev_next_p = &displaced_step_inferior_states;
1631 while (it)
1632 {
1633 if (it->pid == pid)
1634 {
1635 *prev_next_p = it->next;
1636 xfree (it);
1637 return;
1638 }
1639
1640 prev_next_p = &it->next;
1641 it = *prev_next_p;
1642 }
1643}
1644
1645static void
1646infrun_inferior_exit (struct inferior *inf)
1647{
1648 remove_displaced_stepping_state (inf->pid);
1649}
237fc4c9 1650
fff08868
HZ
1651/* If ON, and the architecture supports it, GDB will use displaced
1652 stepping to step over breakpoints. If OFF, or if the architecture
1653 doesn't support it, GDB will instead use the traditional
1654 hold-and-step approach. If AUTO (which is the default), GDB will
1655 decide which technique to use to step over breakpoints depending on
1656 which of all-stop or non-stop mode is active --- displaced stepping
1657 in non-stop mode; hold-and-step in all-stop mode. */
1658
72d0e2c5 1659static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1660
237fc4c9
PA
1661static void
1662show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1663 struct cmd_list_element *c,
1664 const char *value)
1665{
72d0e2c5 1666 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1667 fprintf_filtered (file,
1668 _("Debugger's willingness to use displaced stepping "
1669 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1670 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1671 else
3e43a32a
MS
1672 fprintf_filtered (file,
1673 _("Debugger's willingness to use displaced stepping "
1674 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1675}
1676
fff08868 1677/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1678 over breakpoints of thread TP. */
fff08868 1679
237fc4c9 1680static int
3fc8eb30 1681use_displaced_stepping (struct thread_info *tp)
237fc4c9 1682{
3fc8eb30
PA
1683 struct regcache *regcache = get_thread_regcache (tp->ptid);
1684 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1685 struct displaced_step_inferior_state *displaced_state;
1686
1687 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1688
fbea99ea
PA
1689 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1690 && target_is_non_stop_p ())
72d0e2c5 1691 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1692 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1693 && find_record_target () == NULL
1694 && (displaced_state == NULL
1695 || !displaced_state->failed_before));
237fc4c9
PA
1696}
1697
1698/* Clean out any stray displaced stepping state. */
1699static void
fc1cf338 1700displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1701{
1702 /* Indicate that there is no cleanup pending. */
fc1cf338 1703 displaced->step_ptid = null_ptid;
237fc4c9 1704
fc1cf338 1705 if (displaced->step_closure)
237fc4c9 1706 {
fc1cf338
PA
1707 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1708 displaced->step_closure);
1709 displaced->step_closure = NULL;
237fc4c9
PA
1710 }
1711}
1712
1713static void
fc1cf338 1714displaced_step_clear_cleanup (void *arg)
237fc4c9 1715{
9a3c8263
SM
1716 struct displaced_step_inferior_state *state
1717 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1718
1719 displaced_step_clear (state);
237fc4c9
PA
1720}
1721
1722/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1723void
1724displaced_step_dump_bytes (struct ui_file *file,
1725 const gdb_byte *buf,
1726 size_t len)
1727{
1728 int i;
1729
1730 for (i = 0; i < len; i++)
1731 fprintf_unfiltered (file, "%02x ", buf[i]);
1732 fputs_unfiltered ("\n", file);
1733}
1734
1735/* Prepare to single-step, using displaced stepping.
1736
1737 Note that we cannot use displaced stepping when we have a signal to
1738 deliver. If we have a signal to deliver and an instruction to step
1739 over, then after the step, there will be no indication from the
1740 target whether the thread entered a signal handler or ignored the
1741 signal and stepped over the instruction successfully --- both cases
1742 result in a simple SIGTRAP. In the first case we mustn't do a
1743 fixup, and in the second case we must --- but we can't tell which.
1744 Comments in the code for 'random signals' in handle_inferior_event
1745 explain how we handle this case instead.
1746
1747 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1748 stepped now; 0 if displaced stepping this thread got queued; or -1
1749 if this instruction can't be displaced stepped. */
1750
237fc4c9 1751static int
3fc8eb30 1752displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1753{
ad53cd71 1754 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1755 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1756 struct regcache *regcache = get_thread_regcache (ptid);
1757 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d35ae833 1758 struct address_space *aspace = get_regcache_aspace (regcache);
237fc4c9
PA
1759 CORE_ADDR original, copy;
1760 ULONGEST len;
1761 struct displaced_step_closure *closure;
fc1cf338 1762 struct displaced_step_inferior_state *displaced;
9e529e1d 1763 int status;
237fc4c9
PA
1764
1765 /* We should never reach this function if the architecture does not
1766 support displaced stepping. */
1767 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1768
c2829269
PA
1769 /* Nor if the thread isn't meant to step over a breakpoint. */
1770 gdb_assert (tp->control.trap_expected);
1771
c1e36e3e
PA
1772 /* Disable range stepping while executing in the scratch pad. We
1773 want a single-step even if executing the displaced instruction in
1774 the scratch buffer lands within the stepping range (e.g., a
1775 jump/branch). */
1776 tp->control.may_range_step = 0;
1777
fc1cf338
PA
1778 /* We have to displaced step one thread at a time, as we only have
1779 access to a single scratch space per inferior. */
237fc4c9 1780
fc1cf338
PA
1781 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1782
1783 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1784 {
1785 /* Already waiting for a displaced step to finish. Defer this
1786 request and place in queue. */
237fc4c9
PA
1787
1788 if (debug_displaced)
1789 fprintf_unfiltered (gdb_stdlog,
c2829269 1790 "displaced: deferring step of %s\n",
237fc4c9
PA
1791 target_pid_to_str (ptid));
1792
c2829269 1793 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1794 return 0;
1795 }
1796 else
1797 {
1798 if (debug_displaced)
1799 fprintf_unfiltered (gdb_stdlog,
1800 "displaced: stepping %s now\n",
1801 target_pid_to_str (ptid));
1802 }
1803
fc1cf338 1804 displaced_step_clear (displaced);
237fc4c9 1805
ad53cd71
PA
1806 old_cleanups = save_inferior_ptid ();
1807 inferior_ptid = ptid;
1808
515630c5 1809 original = regcache_read_pc (regcache);
237fc4c9
PA
1810
1811 copy = gdbarch_displaced_step_location (gdbarch);
1812 len = gdbarch_max_insn_length (gdbarch);
1813
d35ae833
PA
1814 if (breakpoint_in_range_p (aspace, copy, len))
1815 {
1816 /* There's a breakpoint set in the scratch pad location range
1817 (which is usually around the entry point). We'd either
1818 install it before resuming, which would overwrite/corrupt the
1819 scratch pad, or if it was already inserted, this displaced
1820 step would overwrite it. The latter is OK in the sense that
1821 we already assume that no thread is going to execute the code
1822 in the scratch pad range (after initial startup) anyway, but
1823 the former is unacceptable. Simply punt and fallback to
1824 stepping over this breakpoint in-line. */
1825 if (debug_displaced)
1826 {
1827 fprintf_unfiltered (gdb_stdlog,
1828 "displaced: breakpoint set in scratch pad. "
1829 "Stepping over breakpoint in-line instead.\n");
1830 }
1831
1832 do_cleanups (old_cleanups);
1833 return -1;
1834 }
1835
237fc4c9 1836 /* Save the original contents of the copy area. */
224c3ddb 1837 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1838 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1839 &displaced->step_saved_copy);
9e529e1d
JK
1840 status = target_read_memory (copy, displaced->step_saved_copy, len);
1841 if (status != 0)
1842 throw_error (MEMORY_ERROR,
1843 _("Error accessing memory address %s (%s) for "
1844 "displaced-stepping scratch space."),
1845 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1846 if (debug_displaced)
1847 {
5af949e3
UW
1848 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1849 paddress (gdbarch, copy));
fc1cf338
PA
1850 displaced_step_dump_bytes (gdb_stdlog,
1851 displaced->step_saved_copy,
1852 len);
237fc4c9
PA
1853 };
1854
1855 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1856 original, copy, regcache);
7f03bd92
PA
1857 if (closure == NULL)
1858 {
1859 /* The architecture doesn't know how or want to displaced step
1860 this instruction or instruction sequence. Fallback to
1861 stepping over the breakpoint in-line. */
1862 do_cleanups (old_cleanups);
1863 return -1;
1864 }
237fc4c9 1865
9f5a595d
UW
1866 /* Save the information we need to fix things up if the step
1867 succeeds. */
fc1cf338
PA
1868 displaced->step_ptid = ptid;
1869 displaced->step_gdbarch = gdbarch;
1870 displaced->step_closure = closure;
1871 displaced->step_original = original;
1872 displaced->step_copy = copy;
9f5a595d 1873
fc1cf338 1874 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1875
1876 /* Resume execution at the copy. */
515630c5 1877 regcache_write_pc (regcache, copy);
237fc4c9 1878
ad53cd71
PA
1879 discard_cleanups (ignore_cleanups);
1880
1881 do_cleanups (old_cleanups);
237fc4c9
PA
1882
1883 if (debug_displaced)
5af949e3
UW
1884 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1885 paddress (gdbarch, copy));
237fc4c9 1886
237fc4c9
PA
1887 return 1;
1888}
1889
3fc8eb30
PA
1890/* Wrapper for displaced_step_prepare_throw that disabled further
1891 attempts at displaced stepping if we get a memory error. */
1892
1893static int
1894displaced_step_prepare (ptid_t ptid)
1895{
1896 int prepared = -1;
1897
1898 TRY
1899 {
1900 prepared = displaced_step_prepare_throw (ptid);
1901 }
1902 CATCH (ex, RETURN_MASK_ERROR)
1903 {
1904 struct displaced_step_inferior_state *displaced_state;
1905
16b41842
PA
1906 if (ex.error != MEMORY_ERROR
1907 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1908 throw_exception (ex);
1909
1910 if (debug_infrun)
1911 {
1912 fprintf_unfiltered (gdb_stdlog,
1913 "infrun: disabling displaced stepping: %s\n",
1914 ex.message);
1915 }
1916
1917 /* Be verbose if "set displaced-stepping" is "on", silent if
1918 "auto". */
1919 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1920 {
fd7dcb94 1921 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1922 ex.message);
1923 }
1924
1925 /* Disable further displaced stepping attempts. */
1926 displaced_state
1927 = get_displaced_stepping_state (ptid_get_pid (ptid));
1928 displaced_state->failed_before = 1;
1929 }
1930 END_CATCH
1931
1932 return prepared;
1933}
1934
237fc4c9 1935static void
3e43a32a
MS
1936write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1937 const gdb_byte *myaddr, int len)
237fc4c9
PA
1938{
1939 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1940
237fc4c9
PA
1941 inferior_ptid = ptid;
1942 write_memory (memaddr, myaddr, len);
1943 do_cleanups (ptid_cleanup);
1944}
1945
e2d96639
YQ
1946/* Restore the contents of the copy area for thread PTID. */
1947
1948static void
1949displaced_step_restore (struct displaced_step_inferior_state *displaced,
1950 ptid_t ptid)
1951{
1952 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1953
1954 write_memory_ptid (ptid, displaced->step_copy,
1955 displaced->step_saved_copy, len);
1956 if (debug_displaced)
1957 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1958 target_pid_to_str (ptid),
1959 paddress (displaced->step_gdbarch,
1960 displaced->step_copy));
1961}
1962
372316f1
PA
1963/* If we displaced stepped an instruction successfully, adjust
1964 registers and memory to yield the same effect the instruction would
1965 have had if we had executed it at its original address, and return
1966 1. If the instruction didn't complete, relocate the PC and return
1967 -1. If the thread wasn't displaced stepping, return 0. */
1968
1969static int
2ea28649 1970displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1971{
1972 struct cleanup *old_cleanups;
fc1cf338
PA
1973 struct displaced_step_inferior_state *displaced
1974 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1975 int ret;
fc1cf338
PA
1976
1977 /* Was any thread of this process doing a displaced step? */
1978 if (displaced == NULL)
372316f1 1979 return 0;
237fc4c9
PA
1980
1981 /* Was this event for the pid we displaced? */
fc1cf338
PA
1982 if (ptid_equal (displaced->step_ptid, null_ptid)
1983 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1984 return 0;
237fc4c9 1985
fc1cf338 1986 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1987
e2d96639 1988 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1989
cb71640d
PA
1990 /* Fixup may need to read memory/registers. Switch to the thread
1991 that we're fixing up. Also, target_stopped_by_watchpoint checks
1992 the current thread. */
1993 switch_to_thread (event_ptid);
1994
237fc4c9 1995 /* Did the instruction complete successfully? */
cb71640d
PA
1996 if (signal == GDB_SIGNAL_TRAP
1997 && !(target_stopped_by_watchpoint ()
1998 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1999 || target_have_steppable_watchpoint)))
237fc4c9
PA
2000 {
2001 /* Fix up the resulting state. */
fc1cf338
PA
2002 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2003 displaced->step_closure,
2004 displaced->step_original,
2005 displaced->step_copy,
2006 get_thread_regcache (displaced->step_ptid));
372316f1 2007 ret = 1;
237fc4c9
PA
2008 }
2009 else
2010 {
2011 /* Since the instruction didn't complete, all we can do is
2012 relocate the PC. */
515630c5
UW
2013 struct regcache *regcache = get_thread_regcache (event_ptid);
2014 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2015
fc1cf338 2016 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2017 regcache_write_pc (regcache, pc);
372316f1 2018 ret = -1;
237fc4c9
PA
2019 }
2020
2021 do_cleanups (old_cleanups);
2022
fc1cf338 2023 displaced->step_ptid = null_ptid;
372316f1
PA
2024
2025 return ret;
c2829269 2026}
1c5cfe86 2027
4d9d9d04
PA
2028/* Data to be passed around while handling an event. This data is
2029 discarded between events. */
2030struct execution_control_state
2031{
2032 ptid_t ptid;
2033 /* The thread that got the event, if this was a thread event; NULL
2034 otherwise. */
2035 struct thread_info *event_thread;
2036
2037 struct target_waitstatus ws;
2038 int stop_func_filled_in;
2039 CORE_ADDR stop_func_start;
2040 CORE_ADDR stop_func_end;
2041 const char *stop_func_name;
2042 int wait_some_more;
2043
2044 /* True if the event thread hit the single-step breakpoint of
2045 another thread. Thus the event doesn't cause a stop, the thread
2046 needs to be single-stepped past the single-step breakpoint before
2047 we can switch back to the original stepping thread. */
2048 int hit_singlestep_breakpoint;
2049};
2050
2051/* Clear ECS and set it to point at TP. */
c2829269
PA
2052
2053static void
4d9d9d04
PA
2054reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2055{
2056 memset (ecs, 0, sizeof (*ecs));
2057 ecs->event_thread = tp;
2058 ecs->ptid = tp->ptid;
2059}
2060
2061static void keep_going_pass_signal (struct execution_control_state *ecs);
2062static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2063static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2064static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2065
2066/* Are there any pending step-over requests? If so, run all we can
2067 now and return true. Otherwise, return false. */
2068
2069static int
c2829269
PA
2070start_step_over (void)
2071{
2072 struct thread_info *tp, *next;
2073
372316f1
PA
2074 /* Don't start a new step-over if we already have an in-line
2075 step-over operation ongoing. */
2076 if (step_over_info_valid_p ())
2077 return 0;
2078
c2829269 2079 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2080 {
4d9d9d04
PA
2081 struct execution_control_state ecss;
2082 struct execution_control_state *ecs = &ecss;
8d297bbf 2083 step_over_what step_what;
372316f1 2084 int must_be_in_line;
c2829269 2085
c65d6b55
PA
2086 gdb_assert (!tp->stop_requested);
2087
c2829269 2088 next = thread_step_over_chain_next (tp);
237fc4c9 2089
c2829269
PA
2090 /* If this inferior already has a displaced step in process,
2091 don't start a new one. */
4d9d9d04 2092 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2093 continue;
2094
372316f1
PA
2095 step_what = thread_still_needs_step_over (tp);
2096 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2097 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2098 && !use_displaced_stepping (tp)));
372316f1
PA
2099
2100 /* We currently stop all threads of all processes to step-over
2101 in-line. If we need to start a new in-line step-over, let
2102 any pending displaced steps finish first. */
2103 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2104 return 0;
2105
c2829269
PA
2106 thread_step_over_chain_remove (tp);
2107
2108 if (step_over_queue_head == NULL)
2109 {
2110 if (debug_infrun)
2111 fprintf_unfiltered (gdb_stdlog,
2112 "infrun: step-over queue now empty\n");
2113 }
2114
372316f1
PA
2115 if (tp->control.trap_expected
2116 || tp->resumed
2117 || tp->executing)
ad53cd71 2118 {
4d9d9d04
PA
2119 internal_error (__FILE__, __LINE__,
2120 "[%s] has inconsistent state: "
372316f1 2121 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2122 target_pid_to_str (tp->ptid),
2123 tp->control.trap_expected,
372316f1 2124 tp->resumed,
4d9d9d04 2125 tp->executing);
ad53cd71 2126 }
1c5cfe86 2127
4d9d9d04
PA
2128 if (debug_infrun)
2129 fprintf_unfiltered (gdb_stdlog,
2130 "infrun: resuming [%s] for step-over\n",
2131 target_pid_to_str (tp->ptid));
2132
2133 /* keep_going_pass_signal skips the step-over if the breakpoint
2134 is no longer inserted. In all-stop, we want to keep looking
2135 for a thread that needs a step-over instead of resuming TP,
2136 because we wouldn't be able to resume anything else until the
2137 target stops again. In non-stop, the resume always resumes
2138 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2139 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2140 continue;
8550d3b3 2141
4d9d9d04
PA
2142 switch_to_thread (tp->ptid);
2143 reset_ecs (ecs, tp);
2144 keep_going_pass_signal (ecs);
1c5cfe86 2145
4d9d9d04
PA
2146 if (!ecs->wait_some_more)
2147 error (_("Command aborted."));
1c5cfe86 2148
372316f1
PA
2149 gdb_assert (tp->resumed);
2150
2151 /* If we started a new in-line step-over, we're done. */
2152 if (step_over_info_valid_p ())
2153 {
2154 gdb_assert (tp->control.trap_expected);
2155 return 1;
2156 }
2157
fbea99ea 2158 if (!target_is_non_stop_p ())
4d9d9d04
PA
2159 {
2160 /* On all-stop, shouldn't have resumed unless we needed a
2161 step over. */
2162 gdb_assert (tp->control.trap_expected
2163 || tp->step_after_step_resume_breakpoint);
2164
2165 /* With remote targets (at least), in all-stop, we can't
2166 issue any further remote commands until the program stops
2167 again. */
2168 return 1;
1c5cfe86 2169 }
c2829269 2170
4d9d9d04
PA
2171 /* Either the thread no longer needed a step-over, or a new
2172 displaced stepping sequence started. Even in the latter
2173 case, continue looking. Maybe we can also start another
2174 displaced step on a thread of other process. */
237fc4c9 2175 }
4d9d9d04
PA
2176
2177 return 0;
237fc4c9
PA
2178}
2179
5231c1fd
PA
2180/* Update global variables holding ptids to hold NEW_PTID if they were
2181 holding OLD_PTID. */
2182static void
2183infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2184{
fc1cf338 2185 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2186
2187 if (ptid_equal (inferior_ptid, old_ptid))
2188 inferior_ptid = new_ptid;
2189
fc1cf338
PA
2190 for (displaced = displaced_step_inferior_states;
2191 displaced;
2192 displaced = displaced->next)
2193 {
2194 if (ptid_equal (displaced->step_ptid, old_ptid))
2195 displaced->step_ptid = new_ptid;
fc1cf338 2196 }
5231c1fd
PA
2197}
2198
237fc4c9
PA
2199\f
2200/* Resuming. */
c906108c
SS
2201
2202/* Things to clean up if we QUIT out of resume (). */
c906108c 2203static void
74b7792f 2204resume_cleanups (void *ignore)
c906108c 2205{
34b7e8a6
PA
2206 if (!ptid_equal (inferior_ptid, null_ptid))
2207 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2208
c906108c
SS
2209 normal_stop ();
2210}
2211
53904c9e
AC
2212static const char schedlock_off[] = "off";
2213static const char schedlock_on[] = "on";
2214static const char schedlock_step[] = "step";
f2665db5 2215static const char schedlock_replay[] = "replay";
40478521 2216static const char *const scheduler_enums[] = {
ef346e04
AC
2217 schedlock_off,
2218 schedlock_on,
2219 schedlock_step,
f2665db5 2220 schedlock_replay,
ef346e04
AC
2221 NULL
2222};
f2665db5 2223static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2224static void
2225show_scheduler_mode (struct ui_file *file, int from_tty,
2226 struct cmd_list_element *c, const char *value)
2227{
3e43a32a
MS
2228 fprintf_filtered (file,
2229 _("Mode for locking scheduler "
2230 "during execution is \"%s\".\n"),
920d2a44
AC
2231 value);
2232}
c906108c
SS
2233
2234static void
96baa820 2235set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2236{
eefe576e
AC
2237 if (!target_can_lock_scheduler)
2238 {
2239 scheduler_mode = schedlock_off;
2240 error (_("Target '%s' cannot support this command."), target_shortname);
2241 }
c906108c
SS
2242}
2243
d4db2f36
PA
2244/* True if execution commands resume all threads of all processes by
2245 default; otherwise, resume only threads of the current inferior
2246 process. */
2247int sched_multi = 0;
2248
2facfe5c
DD
2249/* Try to setup for software single stepping over the specified location.
2250 Return 1 if target_resume() should use hardware single step.
2251
2252 GDBARCH the current gdbarch.
2253 PC the location to step over. */
2254
2255static int
2256maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2257{
2258 int hw_step = 1;
2259
f02253f1 2260 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2261 && gdbarch_software_single_step_p (gdbarch))
2262 hw_step = !insert_single_step_breakpoints (gdbarch);
2263
2facfe5c
DD
2264 return hw_step;
2265}
c906108c 2266
f3263aa4
PA
2267/* See infrun.h. */
2268
09cee04b
PA
2269ptid_t
2270user_visible_resume_ptid (int step)
2271{
f3263aa4 2272 ptid_t resume_ptid;
09cee04b 2273
09cee04b
PA
2274 if (non_stop)
2275 {
2276 /* With non-stop mode on, threads are always handled
2277 individually. */
2278 resume_ptid = inferior_ptid;
2279 }
2280 else if ((scheduler_mode == schedlock_on)
03d46957 2281 || (scheduler_mode == schedlock_step && step))
09cee04b 2282 {
f3263aa4
PA
2283 /* User-settable 'scheduler' mode requires solo thread
2284 resume. */
09cee04b
PA
2285 resume_ptid = inferior_ptid;
2286 }
f2665db5
MM
2287 else if ((scheduler_mode == schedlock_replay)
2288 && target_record_will_replay (minus_one_ptid, execution_direction))
2289 {
2290 /* User-settable 'scheduler' mode requires solo thread resume in replay
2291 mode. */
2292 resume_ptid = inferior_ptid;
2293 }
f3263aa4
PA
2294 else if (!sched_multi && target_supports_multi_process ())
2295 {
2296 /* Resume all threads of the current process (and none of other
2297 processes). */
2298 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2299 }
2300 else
2301 {
2302 /* Resume all threads of all processes. */
2303 resume_ptid = RESUME_ALL;
2304 }
09cee04b
PA
2305
2306 return resume_ptid;
2307}
2308
fbea99ea
PA
2309/* Return a ptid representing the set of threads that we will resume,
2310 in the perspective of the target, assuming run control handling
2311 does not require leaving some threads stopped (e.g., stepping past
2312 breakpoint). USER_STEP indicates whether we're about to start the
2313 target for a stepping command. */
2314
2315static ptid_t
2316internal_resume_ptid (int user_step)
2317{
2318 /* In non-stop, we always control threads individually. Note that
2319 the target may always work in non-stop mode even with "set
2320 non-stop off", in which case user_visible_resume_ptid could
2321 return a wildcard ptid. */
2322 if (target_is_non_stop_p ())
2323 return inferior_ptid;
2324 else
2325 return user_visible_resume_ptid (user_step);
2326}
2327
64ce06e4
PA
2328/* Wrapper for target_resume, that handles infrun-specific
2329 bookkeeping. */
2330
2331static void
2332do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2333{
2334 struct thread_info *tp = inferior_thread ();
2335
c65d6b55
PA
2336 gdb_assert (!tp->stop_requested);
2337
64ce06e4
PA
2338 /* Install inferior's terminal modes. */
2339 target_terminal_inferior ();
2340
2341 /* Avoid confusing the next resume, if the next stop/resume
2342 happens to apply to another thread. */
2343 tp->suspend.stop_signal = GDB_SIGNAL_0;
2344
8f572e5c
PA
2345 /* Advise target which signals may be handled silently.
2346
2347 If we have removed breakpoints because we are stepping over one
2348 in-line (in any thread), we need to receive all signals to avoid
2349 accidentally skipping a breakpoint during execution of a signal
2350 handler.
2351
2352 Likewise if we're displaced stepping, otherwise a trap for a
2353 breakpoint in a signal handler might be confused with the
2354 displaced step finishing. We don't make the displaced_step_fixup
2355 step distinguish the cases instead, because:
2356
2357 - a backtrace while stopped in the signal handler would show the
2358 scratch pad as frame older than the signal handler, instead of
2359 the real mainline code.
2360
2361 - when the thread is later resumed, the signal handler would
2362 return to the scratch pad area, which would no longer be
2363 valid. */
2364 if (step_over_info_valid_p ()
2365 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2366 target_pass_signals (0, NULL);
2367 else
2368 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2369
2370 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2371
2372 target_commit_resume ();
64ce06e4
PA
2373}
2374
c906108c
SS
2375/* Resume the inferior, but allow a QUIT. This is useful if the user
2376 wants to interrupt some lengthy single-stepping operation
2377 (for child processes, the SIGINT goes to the inferior, and so
2378 we get a SIGINT random_signal, but for remote debugging and perhaps
2379 other targets, that's not true).
2380
c906108c
SS
2381 SIG is the signal to give the inferior (zero for none). */
2382void
64ce06e4 2383resume (enum gdb_signal sig)
c906108c 2384{
74b7792f 2385 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2386 struct regcache *regcache = get_current_regcache ();
2387 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2388 struct thread_info *tp = inferior_thread ();
515630c5 2389 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2390 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2391 ptid_t resume_ptid;
856e7dd6
PA
2392 /* This represents the user's step vs continue request. When
2393 deciding whether "set scheduler-locking step" applies, it's the
2394 user's intention that counts. */
2395 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2396 /* This represents what we'll actually request the target to do.
2397 This can decay from a step to a continue, if e.g., we need to
2398 implement single-stepping with breakpoints (software
2399 single-step). */
6b403daa 2400 int step;
c7e8a53c 2401
c65d6b55 2402 gdb_assert (!tp->stop_requested);
c2829269
PA
2403 gdb_assert (!thread_is_in_step_over_chain (tp));
2404
c906108c
SS
2405 QUIT;
2406
372316f1
PA
2407 if (tp->suspend.waitstatus_pending_p)
2408 {
2409 if (debug_infrun)
2410 {
2411 char *statstr;
2412
2413 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2414 fprintf_unfiltered (gdb_stdlog,
2415 "infrun: resume: thread %s has pending wait status %s "
2416 "(currently_stepping=%d).\n",
2417 target_pid_to_str (tp->ptid), statstr,
2418 currently_stepping (tp));
2419 xfree (statstr);
2420 }
2421
2422 tp->resumed = 1;
2423
2424 /* FIXME: What should we do if we are supposed to resume this
2425 thread with a signal? Maybe we should maintain a queue of
2426 pending signals to deliver. */
2427 if (sig != GDB_SIGNAL_0)
2428 {
fd7dcb94 2429 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2430 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2431 }
2432
2433 tp->suspend.stop_signal = GDB_SIGNAL_0;
2434 discard_cleanups (old_cleanups);
2435
2436 if (target_can_async_p ())
2437 target_async (1);
2438 return;
2439 }
2440
2441 tp->stepped_breakpoint = 0;
2442
6b403daa
PA
2443 /* Depends on stepped_breakpoint. */
2444 step = currently_stepping (tp);
2445
74609e71
YQ
2446 if (current_inferior ()->waiting_for_vfork_done)
2447 {
48f9886d
PA
2448 /* Don't try to single-step a vfork parent that is waiting for
2449 the child to get out of the shared memory region (by exec'ing
2450 or exiting). This is particularly important on software
2451 single-step archs, as the child process would trip on the
2452 software single step breakpoint inserted for the parent
2453 process. Since the parent will not actually execute any
2454 instruction until the child is out of the shared region (such
2455 are vfork's semantics), it is safe to simply continue it.
2456 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2457 the parent, and tell it to `keep_going', which automatically
2458 re-sets it stepping. */
74609e71
YQ
2459 if (debug_infrun)
2460 fprintf_unfiltered (gdb_stdlog,
2461 "infrun: resume : clear step\n");
a09dd441 2462 step = 0;
74609e71
YQ
2463 }
2464
527159b7 2465 if (debug_infrun)
237fc4c9 2466 fprintf_unfiltered (gdb_stdlog,
c9737c08 2467 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2468 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2469 step, gdb_signal_to_symbol_string (sig),
2470 tp->control.trap_expected,
0d9a9a5f
PA
2471 target_pid_to_str (inferior_ptid),
2472 paddress (gdbarch, pc));
c906108c 2473
c2c6d25f
JM
2474 /* Normally, by the time we reach `resume', the breakpoints are either
2475 removed or inserted, as appropriate. The exception is if we're sitting
2476 at a permanent breakpoint; we need to step over it, but permanent
2477 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2478 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2479 {
af48d08f
PA
2480 if (sig != GDB_SIGNAL_0)
2481 {
2482 /* We have a signal to pass to the inferior. The resume
2483 may, or may not take us to the signal handler. If this
2484 is a step, we'll need to stop in the signal handler, if
2485 there's one, (if the target supports stepping into
2486 handlers), or in the next mainline instruction, if
2487 there's no handler. If this is a continue, we need to be
2488 sure to run the handler with all breakpoints inserted.
2489 In all cases, set a breakpoint at the current address
2490 (where the handler returns to), and once that breakpoint
2491 is hit, resume skipping the permanent breakpoint. If
2492 that breakpoint isn't hit, then we've stepped into the
2493 signal handler (or hit some other event). We'll delete
2494 the step-resume breakpoint then. */
2495
2496 if (debug_infrun)
2497 fprintf_unfiltered (gdb_stdlog,
2498 "infrun: resume: skipping permanent breakpoint, "
2499 "deliver signal first\n");
2500
2501 clear_step_over_info ();
2502 tp->control.trap_expected = 0;
2503
2504 if (tp->control.step_resume_breakpoint == NULL)
2505 {
2506 /* Set a "high-priority" step-resume, as we don't want
2507 user breakpoints at PC to trigger (again) when this
2508 hits. */
2509 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2510 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2511
2512 tp->step_after_step_resume_breakpoint = step;
2513 }
2514
2515 insert_breakpoints ();
2516 }
2517 else
2518 {
2519 /* There's no signal to pass, we can go ahead and skip the
2520 permanent breakpoint manually. */
2521 if (debug_infrun)
2522 fprintf_unfiltered (gdb_stdlog,
2523 "infrun: resume: skipping permanent breakpoint\n");
2524 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2525 /* Update pc to reflect the new address from which we will
2526 execute instructions. */
2527 pc = regcache_read_pc (regcache);
2528
2529 if (step)
2530 {
2531 /* We've already advanced the PC, so the stepping part
2532 is done. Now we need to arrange for a trap to be
2533 reported to handle_inferior_event. Set a breakpoint
2534 at the current PC, and run to it. Don't update
2535 prev_pc, because if we end in
44a1ee51
PA
2536 switch_back_to_stepped_thread, we want the "expected
2537 thread advanced also" branch to be taken. IOW, we
2538 don't want this thread to step further from PC
af48d08f 2539 (overstep). */
1ac806b8 2540 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2541 insert_single_step_breakpoint (gdbarch, aspace, pc);
2542 insert_breakpoints ();
2543
fbea99ea 2544 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2545 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2546 discard_cleanups (old_cleanups);
372316f1 2547 tp->resumed = 1;
af48d08f
PA
2548 return;
2549 }
2550 }
6d350bb5 2551 }
c2c6d25f 2552
c1e36e3e
PA
2553 /* If we have a breakpoint to step over, make sure to do a single
2554 step only. Same if we have software watchpoints. */
2555 if (tp->control.trap_expected || bpstat_should_step ())
2556 tp->control.may_range_step = 0;
2557
237fc4c9
PA
2558 /* If enabled, step over breakpoints by executing a copy of the
2559 instruction at a different address.
2560
2561 We can't use displaced stepping when we have a signal to deliver;
2562 the comments for displaced_step_prepare explain why. The
2563 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2564 signals' explain what we do instead.
2565
2566 We can't use displaced stepping when we are waiting for vfork_done
2567 event, displaced stepping breaks the vfork child similarly as single
2568 step software breakpoint. */
3fc8eb30
PA
2569 if (tp->control.trap_expected
2570 && use_displaced_stepping (tp)
cb71640d 2571 && !step_over_info_valid_p ()
a493e3e2 2572 && sig == GDB_SIGNAL_0
74609e71 2573 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2574 {
3fc8eb30 2575 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2576
3fc8eb30 2577 if (prepared == 0)
d56b7306 2578 {
4d9d9d04
PA
2579 if (debug_infrun)
2580 fprintf_unfiltered (gdb_stdlog,
2581 "Got placed in step-over queue\n");
2582
2583 tp->control.trap_expected = 0;
d56b7306
VP
2584 discard_cleanups (old_cleanups);
2585 return;
2586 }
3fc8eb30
PA
2587 else if (prepared < 0)
2588 {
2589 /* Fallback to stepping over the breakpoint in-line. */
2590
2591 if (target_is_non_stop_p ())
2592 stop_all_threads ();
2593
2594 set_step_over_info (get_regcache_aspace (regcache),
21edc42f 2595 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2596
2597 step = maybe_software_singlestep (gdbarch, pc);
2598
2599 insert_breakpoints ();
2600 }
2601 else if (prepared > 0)
2602 {
2603 struct displaced_step_inferior_state *displaced;
99e40580 2604
3fc8eb30
PA
2605 /* Update pc to reflect the new address from which we will
2606 execute instructions due to displaced stepping. */
2607 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2608
3fc8eb30
PA
2609 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2610 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2611 displaced->step_closure);
2612 }
237fc4c9
PA
2613 }
2614
2facfe5c 2615 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2616 else if (step)
2facfe5c 2617 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2618
30852783
UW
2619 /* Currently, our software single-step implementation leads to different
2620 results than hardware single-stepping in one situation: when stepping
2621 into delivering a signal which has an associated signal handler,
2622 hardware single-step will stop at the first instruction of the handler,
2623 while software single-step will simply skip execution of the handler.
2624
2625 For now, this difference in behavior is accepted since there is no
2626 easy way to actually implement single-stepping into a signal handler
2627 without kernel support.
2628
2629 However, there is one scenario where this difference leads to follow-on
2630 problems: if we're stepping off a breakpoint by removing all breakpoints
2631 and then single-stepping. In this case, the software single-step
2632 behavior means that even if there is a *breakpoint* in the signal
2633 handler, GDB still would not stop.
2634
2635 Fortunately, we can at least fix this particular issue. We detect
2636 here the case where we are about to deliver a signal while software
2637 single-stepping with breakpoints removed. In this situation, we
2638 revert the decisions to remove all breakpoints and insert single-
2639 step breakpoints, and instead we install a step-resume breakpoint
2640 at the current address, deliver the signal without stepping, and
2641 once we arrive back at the step-resume breakpoint, actually step
2642 over the breakpoint we originally wanted to step over. */
34b7e8a6 2643 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2644 && sig != GDB_SIGNAL_0
2645 && step_over_info_valid_p ())
30852783
UW
2646 {
2647 /* If we have nested signals or a pending signal is delivered
2648 immediately after a handler returns, might might already have
2649 a step-resume breakpoint set on the earlier handler. We cannot
2650 set another step-resume breakpoint; just continue on until the
2651 original breakpoint is hit. */
2652 if (tp->control.step_resume_breakpoint == NULL)
2653 {
2c03e5be 2654 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2655 tp->step_after_step_resume_breakpoint = 1;
2656 }
2657
34b7e8a6 2658 delete_single_step_breakpoints (tp);
30852783 2659
31e77af2 2660 clear_step_over_info ();
30852783 2661 tp->control.trap_expected = 0;
31e77af2
PA
2662
2663 insert_breakpoints ();
30852783
UW
2664 }
2665
b0f16a3e
SM
2666 /* If STEP is set, it's a request to use hardware stepping
2667 facilities. But in that case, we should never
2668 use singlestep breakpoint. */
34b7e8a6 2669 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2670
fbea99ea 2671 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2672 if (tp->control.trap_expected)
b0f16a3e
SM
2673 {
2674 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2675 hit, either by single-stepping the thread with the breakpoint
2676 removed, or by displaced stepping, with the breakpoint inserted.
2677 In the former case, we need to single-step only this thread,
2678 and keep others stopped, as they can miss this breakpoint if
2679 allowed to run. That's not really a problem for displaced
2680 stepping, but, we still keep other threads stopped, in case
2681 another thread is also stopped for a breakpoint waiting for
2682 its turn in the displaced stepping queue. */
b0f16a3e
SM
2683 resume_ptid = inferior_ptid;
2684 }
fbea99ea
PA
2685 else
2686 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2687
7f5ef605
PA
2688 if (execution_direction != EXEC_REVERSE
2689 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2690 {
372316f1
PA
2691 /* There are two cases where we currently need to step a
2692 breakpoint instruction when we have a signal to deliver:
2693
2694 - See handle_signal_stop where we handle random signals that
2695 could take out us out of the stepping range. Normally, in
2696 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2697 signal handler with a breakpoint at PC, but there are cases
2698 where we should _always_ single-step, even if we have a
2699 step-resume breakpoint, like when a software watchpoint is
2700 set. Assuming single-stepping and delivering a signal at the
2701 same time would takes us to the signal handler, then we could
2702 have removed the breakpoint at PC to step over it. However,
2703 some hardware step targets (like e.g., Mac OS) can't step
2704 into signal handlers, and for those, we need to leave the
2705 breakpoint at PC inserted, as otherwise if the handler
2706 recurses and executes PC again, it'll miss the breakpoint.
2707 So we leave the breakpoint inserted anyway, but we need to
2708 record that we tried to step a breakpoint instruction, so
372316f1
PA
2709 that adjust_pc_after_break doesn't end up confused.
2710
2711 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2712 in one thread after another thread that was stepping had been
2713 momentarily paused for a step-over. When we re-resume the
2714 stepping thread, it may be resumed from that address with a
2715 breakpoint that hasn't trapped yet. Seen with
2716 gdb.threads/non-stop-fair-events.exp, on targets that don't
2717 do displaced stepping. */
2718
2719 if (debug_infrun)
2720 fprintf_unfiltered (gdb_stdlog,
2721 "infrun: resume: [%s] stepped breakpoint\n",
2722 target_pid_to_str (tp->ptid));
7f5ef605
PA
2723
2724 tp->stepped_breakpoint = 1;
2725
b0f16a3e
SM
2726 /* Most targets can step a breakpoint instruction, thus
2727 executing it normally. But if this one cannot, just
2728 continue and we will hit it anyway. */
7f5ef605 2729 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2730 step = 0;
2731 }
ef5cf84e 2732
b0f16a3e 2733 if (debug_displaced
cb71640d 2734 && tp->control.trap_expected
3fc8eb30 2735 && use_displaced_stepping (tp)
cb71640d 2736 && !step_over_info_valid_p ())
b0f16a3e 2737 {
d9b67d9f 2738 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2739 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2740 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2741 gdb_byte buf[4];
2742
2743 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2744 paddress (resume_gdbarch, actual_pc));
2745 read_memory (actual_pc, buf, sizeof (buf));
2746 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2747 }
237fc4c9 2748
b0f16a3e
SM
2749 if (tp->control.may_range_step)
2750 {
2751 /* If we're resuming a thread with the PC out of the step
2752 range, then we're doing some nested/finer run control
2753 operation, like stepping the thread out of the dynamic
2754 linker or the displaced stepping scratch pad. We
2755 shouldn't have allowed a range step then. */
2756 gdb_assert (pc_in_thread_step_range (pc, tp));
2757 }
c1e36e3e 2758
64ce06e4 2759 do_target_resume (resume_ptid, step, sig);
372316f1 2760 tp->resumed = 1;
c906108c
SS
2761 discard_cleanups (old_cleanups);
2762}
2763\f
237fc4c9 2764/* Proceeding. */
c906108c 2765
4c2f2a79
PA
2766/* See infrun.h. */
2767
2768/* Counter that tracks number of user visible stops. This can be used
2769 to tell whether a command has proceeded the inferior past the
2770 current location. This allows e.g., inferior function calls in
2771 breakpoint commands to not interrupt the command list. When the
2772 call finishes successfully, the inferior is standing at the same
2773 breakpoint as if nothing happened (and so we don't call
2774 normal_stop). */
2775static ULONGEST current_stop_id;
2776
2777/* See infrun.h. */
2778
2779ULONGEST
2780get_stop_id (void)
2781{
2782 return current_stop_id;
2783}
2784
2785/* Called when we report a user visible stop. */
2786
2787static void
2788new_stop_id (void)
2789{
2790 current_stop_id++;
2791}
2792
c906108c
SS
2793/* Clear out all variables saying what to do when inferior is continued.
2794 First do this, then set the ones you want, then call `proceed'. */
2795
a7212384
UW
2796static void
2797clear_proceed_status_thread (struct thread_info *tp)
c906108c 2798{
a7212384
UW
2799 if (debug_infrun)
2800 fprintf_unfiltered (gdb_stdlog,
2801 "infrun: clear_proceed_status_thread (%s)\n",
2802 target_pid_to_str (tp->ptid));
d6b48e9c 2803
372316f1
PA
2804 /* If we're starting a new sequence, then the previous finished
2805 single-step is no longer relevant. */
2806 if (tp->suspend.waitstatus_pending_p)
2807 {
2808 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2809 {
2810 if (debug_infrun)
2811 fprintf_unfiltered (gdb_stdlog,
2812 "infrun: clear_proceed_status: pending "
2813 "event of %s was a finished step. "
2814 "Discarding.\n",
2815 target_pid_to_str (tp->ptid));
2816
2817 tp->suspend.waitstatus_pending_p = 0;
2818 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2819 }
2820 else if (debug_infrun)
2821 {
2822 char *statstr;
2823
2824 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2825 fprintf_unfiltered (gdb_stdlog,
2826 "infrun: clear_proceed_status_thread: thread %s "
2827 "has pending wait status %s "
2828 "(currently_stepping=%d).\n",
2829 target_pid_to_str (tp->ptid), statstr,
2830 currently_stepping (tp));
2831 xfree (statstr);
2832 }
2833 }
2834
70509625
PA
2835 /* If this signal should not be seen by program, give it zero.
2836 Used for debugging signals. */
2837 if (!signal_pass_state (tp->suspend.stop_signal))
2838 tp->suspend.stop_signal = GDB_SIGNAL_0;
2839
243a9253
PA
2840 thread_fsm_delete (tp->thread_fsm);
2841 tp->thread_fsm = NULL;
2842
16c381f0
JK
2843 tp->control.trap_expected = 0;
2844 tp->control.step_range_start = 0;
2845 tp->control.step_range_end = 0;
c1e36e3e 2846 tp->control.may_range_step = 0;
16c381f0
JK
2847 tp->control.step_frame_id = null_frame_id;
2848 tp->control.step_stack_frame_id = null_frame_id;
2849 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2850 tp->control.step_start_function = NULL;
a7212384 2851 tp->stop_requested = 0;
4e1c45ea 2852
16c381f0 2853 tp->control.stop_step = 0;
32400beb 2854
16c381f0 2855 tp->control.proceed_to_finish = 0;
414c69f7 2856
856e7dd6 2857 tp->control.stepping_command = 0;
17b2616c 2858
a7212384 2859 /* Discard any remaining commands or status from previous stop. */
16c381f0 2860 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2861}
32400beb 2862
a7212384 2863void
70509625 2864clear_proceed_status (int step)
a7212384 2865{
f2665db5
MM
2866 /* With scheduler-locking replay, stop replaying other threads if we're
2867 not replaying the user-visible resume ptid.
2868
2869 This is a convenience feature to not require the user to explicitly
2870 stop replaying the other threads. We're assuming that the user's
2871 intent is to resume tracing the recorded process. */
2872 if (!non_stop && scheduler_mode == schedlock_replay
2873 && target_record_is_replaying (minus_one_ptid)
2874 && !target_record_will_replay (user_visible_resume_ptid (step),
2875 execution_direction))
2876 target_record_stop_replaying ();
2877
6c95b8df
PA
2878 if (!non_stop)
2879 {
70509625
PA
2880 struct thread_info *tp;
2881 ptid_t resume_ptid;
2882
2883 resume_ptid = user_visible_resume_ptid (step);
2884
2885 /* In all-stop mode, delete the per-thread status of all threads
2886 we're about to resume, implicitly and explicitly. */
2887 ALL_NON_EXITED_THREADS (tp)
2888 {
2889 if (!ptid_match (tp->ptid, resume_ptid))
2890 continue;
2891 clear_proceed_status_thread (tp);
2892 }
6c95b8df
PA
2893 }
2894
a7212384
UW
2895 if (!ptid_equal (inferior_ptid, null_ptid))
2896 {
2897 struct inferior *inferior;
2898
2899 if (non_stop)
2900 {
6c95b8df
PA
2901 /* If in non-stop mode, only delete the per-thread status of
2902 the current thread. */
a7212384
UW
2903 clear_proceed_status_thread (inferior_thread ());
2904 }
6c95b8df 2905
d6b48e9c 2906 inferior = current_inferior ();
16c381f0 2907 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2908 }
2909
f3b1572e 2910 observer_notify_about_to_proceed ();
c906108c
SS
2911}
2912
99619bea
PA
2913/* Returns true if TP is still stopped at a breakpoint that needs
2914 stepping-over in order to make progress. If the breakpoint is gone
2915 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2916
2917static int
6c4cfb24 2918thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2919{
2920 if (tp->stepping_over_breakpoint)
2921 {
2922 struct regcache *regcache = get_thread_regcache (tp->ptid);
2923
2924 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2925 regcache_read_pc (regcache))
2926 == ordinary_breakpoint_here)
99619bea
PA
2927 return 1;
2928
2929 tp->stepping_over_breakpoint = 0;
2930 }
2931
2932 return 0;
2933}
2934
6c4cfb24
PA
2935/* Check whether thread TP still needs to start a step-over in order
2936 to make progress when resumed. Returns an bitwise or of enum
2937 step_over_what bits, indicating what needs to be stepped over. */
2938
8d297bbf 2939static step_over_what
6c4cfb24
PA
2940thread_still_needs_step_over (struct thread_info *tp)
2941{
8d297bbf 2942 step_over_what what = 0;
6c4cfb24
PA
2943
2944 if (thread_still_needs_step_over_bp (tp))
2945 what |= STEP_OVER_BREAKPOINT;
2946
2947 if (tp->stepping_over_watchpoint
2948 && !target_have_steppable_watchpoint)
2949 what |= STEP_OVER_WATCHPOINT;
2950
2951 return what;
2952}
2953
483805cf
PA
2954/* Returns true if scheduler locking applies. STEP indicates whether
2955 we're about to do a step/next-like command to a thread. */
2956
2957static int
856e7dd6 2958schedlock_applies (struct thread_info *tp)
483805cf
PA
2959{
2960 return (scheduler_mode == schedlock_on
2961 || (scheduler_mode == schedlock_step
f2665db5
MM
2962 && tp->control.stepping_command)
2963 || (scheduler_mode == schedlock_replay
2964 && target_record_will_replay (minus_one_ptid,
2965 execution_direction)));
483805cf
PA
2966}
2967
c906108c
SS
2968/* Basic routine for continuing the program in various fashions.
2969
2970 ADDR is the address to resume at, or -1 for resume where stopped.
2971 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2972 or -1 for act according to how it stopped.
c906108c 2973 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2974 -1 means return after that and print nothing.
2975 You should probably set various step_... variables
2976 before calling here, if you are stepping.
c906108c
SS
2977
2978 You should call clear_proceed_status before calling proceed. */
2979
2980void
64ce06e4 2981proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2982{
e58b0e63
PA
2983 struct regcache *regcache;
2984 struct gdbarch *gdbarch;
4e1c45ea 2985 struct thread_info *tp;
e58b0e63 2986 CORE_ADDR pc;
6c95b8df 2987 struct address_space *aspace;
4d9d9d04
PA
2988 ptid_t resume_ptid;
2989 struct execution_control_state ecss;
2990 struct execution_control_state *ecs = &ecss;
2991 struct cleanup *old_chain;
85ad3aaf 2992 struct cleanup *defer_resume_cleanup;
4d9d9d04 2993 int started;
c906108c 2994
e58b0e63
PA
2995 /* If we're stopped at a fork/vfork, follow the branch set by the
2996 "set follow-fork-mode" command; otherwise, we'll just proceed
2997 resuming the current thread. */
2998 if (!follow_fork ())
2999 {
3000 /* The target for some reason decided not to resume. */
3001 normal_stop ();
f148b27e
PA
3002 if (target_can_async_p ())
3003 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
3004 return;
3005 }
3006
842951eb
PA
3007 /* We'll update this if & when we switch to a new thread. */
3008 previous_inferior_ptid = inferior_ptid;
3009
e58b0e63
PA
3010 regcache = get_current_regcache ();
3011 gdbarch = get_regcache_arch (regcache);
6c95b8df 3012 aspace = get_regcache_aspace (regcache);
e58b0e63 3013 pc = regcache_read_pc (regcache);
2adfaa28 3014 tp = inferior_thread ();
e58b0e63 3015
99619bea
PA
3016 /* Fill in with reasonable starting values. */
3017 init_thread_stepping_state (tp);
3018
c2829269
PA
3019 gdb_assert (!thread_is_in_step_over_chain (tp));
3020
2acceee2 3021 if (addr == (CORE_ADDR) -1)
c906108c 3022 {
af48d08f
PA
3023 if (pc == stop_pc
3024 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3025 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3026 /* There is a breakpoint at the address we will resume at,
3027 step one instruction before inserting breakpoints so that
3028 we do not stop right away (and report a second hit at this
b2175913
MS
3029 breakpoint).
3030
3031 Note, we don't do this in reverse, because we won't
3032 actually be executing the breakpoint insn anyway.
3033 We'll be (un-)executing the previous instruction. */
99619bea 3034 tp->stepping_over_breakpoint = 1;
515630c5
UW
3035 else if (gdbarch_single_step_through_delay_p (gdbarch)
3036 && gdbarch_single_step_through_delay (gdbarch,
3037 get_current_frame ()))
3352ef37
AC
3038 /* We stepped onto an instruction that needs to be stepped
3039 again before re-inserting the breakpoint, do so. */
99619bea 3040 tp->stepping_over_breakpoint = 1;
c906108c
SS
3041 }
3042 else
3043 {
515630c5 3044 regcache_write_pc (regcache, addr);
c906108c
SS
3045 }
3046
70509625
PA
3047 if (siggnal != GDB_SIGNAL_DEFAULT)
3048 tp->suspend.stop_signal = siggnal;
3049
4d9d9d04
PA
3050 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3051
3052 /* If an exception is thrown from this point on, make sure to
3053 propagate GDB's knowledge of the executing state to the
3054 frontend/user running state. */
3055 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3056
3057 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3058 threads (e.g., we might need to set threads stepping over
3059 breakpoints first), from the user/frontend's point of view, all
3060 threads in RESUME_PTID are now running. Unless we're calling an
3061 inferior function, as in that case we pretend the inferior
3062 doesn't run at all. */
3063 if (!tp->control.in_infcall)
3064 set_running (resume_ptid, 1);
17b2616c 3065
527159b7 3066 if (debug_infrun)
8a9de0e4 3067 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3068 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3069 paddress (gdbarch, addr),
64ce06e4 3070 gdb_signal_to_symbol_string (siggnal));
527159b7 3071
4d9d9d04
PA
3072 annotate_starting ();
3073
3074 /* Make sure that output from GDB appears before output from the
3075 inferior. */
3076 gdb_flush (gdb_stdout);
3077
3078 /* In a multi-threaded task we may select another thread and
3079 then continue or step.
3080
3081 But if a thread that we're resuming had stopped at a breakpoint,
3082 it will immediately cause another breakpoint stop without any
3083 execution (i.e. it will report a breakpoint hit incorrectly). So
3084 we must step over it first.
3085
3086 Look for threads other than the current (TP) that reported a
3087 breakpoint hit and haven't been resumed yet since. */
3088
3089 /* If scheduler locking applies, we can avoid iterating over all
3090 threads. */
3091 if (!non_stop && !schedlock_applies (tp))
94cc34af 3092 {
4d9d9d04
PA
3093 struct thread_info *current = tp;
3094
3095 ALL_NON_EXITED_THREADS (tp)
3096 {
3097 /* Ignore the current thread here. It's handled
3098 afterwards. */
3099 if (tp == current)
3100 continue;
99619bea 3101
4d9d9d04
PA
3102 /* Ignore threads of processes we're not resuming. */
3103 if (!ptid_match (tp->ptid, resume_ptid))
3104 continue;
c906108c 3105
4d9d9d04
PA
3106 if (!thread_still_needs_step_over (tp))
3107 continue;
3108
3109 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3110
99619bea
PA
3111 if (debug_infrun)
3112 fprintf_unfiltered (gdb_stdlog,
3113 "infrun: need to step-over [%s] first\n",
4d9d9d04 3114 target_pid_to_str (tp->ptid));
99619bea 3115
4d9d9d04 3116 thread_step_over_chain_enqueue (tp);
2adfaa28 3117 }
31e77af2 3118
4d9d9d04 3119 tp = current;
30852783
UW
3120 }
3121
4d9d9d04
PA
3122 /* Enqueue the current thread last, so that we move all other
3123 threads over their breakpoints first. */
3124 if (tp->stepping_over_breakpoint)
3125 thread_step_over_chain_enqueue (tp);
30852783 3126
4d9d9d04
PA
3127 /* If the thread isn't started, we'll still need to set its prev_pc,
3128 so that switch_back_to_stepped_thread knows the thread hasn't
3129 advanced. Must do this before resuming any thread, as in
3130 all-stop/remote, once we resume we can't send any other packet
3131 until the target stops again. */
3132 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3133
85ad3aaf
PA
3134 defer_resume_cleanup = make_cleanup_defer_target_commit_resume ();
3135
4d9d9d04 3136 started = start_step_over ();
c906108c 3137
4d9d9d04
PA
3138 if (step_over_info_valid_p ())
3139 {
3140 /* Either this thread started a new in-line step over, or some
3141 other thread was already doing one. In either case, don't
3142 resume anything else until the step-over is finished. */
3143 }
fbea99ea 3144 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3145 {
3146 /* A new displaced stepping sequence was started. In all-stop,
3147 we can't talk to the target anymore until it next stops. */
3148 }
fbea99ea
PA
3149 else if (!non_stop && target_is_non_stop_p ())
3150 {
3151 /* In all-stop, but the target is always in non-stop mode.
3152 Start all other threads that are implicitly resumed too. */
3153 ALL_NON_EXITED_THREADS (tp)
3154 {
3155 /* Ignore threads of processes we're not resuming. */
3156 if (!ptid_match (tp->ptid, resume_ptid))
3157 continue;
3158
3159 if (tp->resumed)
3160 {
3161 if (debug_infrun)
3162 fprintf_unfiltered (gdb_stdlog,
3163 "infrun: proceed: [%s] resumed\n",
3164 target_pid_to_str (tp->ptid));
3165 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3166 continue;
3167 }
3168
3169 if (thread_is_in_step_over_chain (tp))
3170 {
3171 if (debug_infrun)
3172 fprintf_unfiltered (gdb_stdlog,
3173 "infrun: proceed: [%s] needs step-over\n",
3174 target_pid_to_str (tp->ptid));
3175 continue;
3176 }
3177
3178 if (debug_infrun)
3179 fprintf_unfiltered (gdb_stdlog,
3180 "infrun: proceed: resuming %s\n",
3181 target_pid_to_str (tp->ptid));
3182
3183 reset_ecs (ecs, tp);
3184 switch_to_thread (tp->ptid);
3185 keep_going_pass_signal (ecs);
3186 if (!ecs->wait_some_more)
fd7dcb94 3187 error (_("Command aborted."));
fbea99ea
PA
3188 }
3189 }
372316f1 3190 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3191 {
3192 /* The thread wasn't started, and isn't queued, run it now. */
3193 reset_ecs (ecs, tp);
3194 switch_to_thread (tp->ptid);
3195 keep_going_pass_signal (ecs);
3196 if (!ecs->wait_some_more)
fd7dcb94 3197 error (_("Command aborted."));
4d9d9d04 3198 }
c906108c 3199
85ad3aaf
PA
3200 do_cleanups (defer_resume_cleanup);
3201 target_commit_resume ();
3202
4d9d9d04 3203 discard_cleanups (old_chain);
c906108c 3204
0b333c5e
PA
3205 /* Tell the event loop to wait for it to stop. If the target
3206 supports asynchronous execution, it'll do this from within
3207 target_resume. */
362646f5 3208 if (!target_can_async_p ())
0b333c5e 3209 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3210}
c906108c
SS
3211\f
3212
3213/* Start remote-debugging of a machine over a serial link. */
96baa820 3214
c906108c 3215void
8621d6a9 3216start_remote (int from_tty)
c906108c 3217{
d6b48e9c 3218 struct inferior *inferior;
d6b48e9c
PA
3219
3220 inferior = current_inferior ();
16c381f0 3221 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3222
1777feb0 3223 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3224 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3225 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3226 nothing is returned (instead of just blocking). Because of this,
3227 targets expecting an immediate response need to, internally, set
3228 things up so that the target_wait() is forced to eventually
1777feb0 3229 timeout. */
6426a772
JM
3230 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3231 differentiate to its caller what the state of the target is after
3232 the initial open has been performed. Here we're assuming that
3233 the target has stopped. It should be possible to eventually have
3234 target_open() return to the caller an indication that the target
3235 is currently running and GDB state should be set to the same as
1777feb0 3236 for an async run. */
e4c8541f 3237 wait_for_inferior ();
8621d6a9
DJ
3238
3239 /* Now that the inferior has stopped, do any bookkeeping like
3240 loading shared libraries. We want to do this before normal_stop,
3241 so that the displayed frame is up to date. */
3242 post_create_inferior (&current_target, from_tty);
3243
6426a772 3244 normal_stop ();
c906108c
SS
3245}
3246
3247/* Initialize static vars when a new inferior begins. */
3248
3249void
96baa820 3250init_wait_for_inferior (void)
c906108c
SS
3251{
3252 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3253
c906108c
SS
3254 breakpoint_init_inferior (inf_starting);
3255
70509625 3256 clear_proceed_status (0);
9f976b41 3257
ca005067 3258 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3259
842951eb 3260 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3261
edb3359d
DJ
3262 /* Discard any skipped inlined frames. */
3263 clear_inline_frame_state (minus_one_ptid);
c906108c 3264}
237fc4c9 3265
c906108c 3266\f
488f131b 3267
ec9499be 3268static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3269
568d6575
UW
3270static void handle_step_into_function (struct gdbarch *gdbarch,
3271 struct execution_control_state *ecs);
3272static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3273 struct execution_control_state *ecs);
4f5d7f63 3274static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3275static void check_exception_resume (struct execution_control_state *,
28106bc2 3276 struct frame_info *);
611c83ae 3277
bdc36728 3278static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3279static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3280static void keep_going (struct execution_control_state *ecs);
94c57d6a 3281static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3282static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3283
252fbfc8
PA
3284/* This function is attached as a "thread_stop_requested" observer.
3285 Cleanup local state that assumed the PTID was to be resumed, and
3286 report the stop to the frontend. */
3287
2c0b251b 3288static void
252fbfc8
PA
3289infrun_thread_stop_requested (ptid_t ptid)
3290{
c2829269 3291 struct thread_info *tp;
252fbfc8 3292
c65d6b55
PA
3293 /* PTID was requested to stop. If the thread was already stopped,
3294 but the user/frontend doesn't know about that yet (e.g., the
3295 thread had been temporarily paused for some step-over), set up
3296 for reporting the stop now. */
c2829269
PA
3297 ALL_NON_EXITED_THREADS (tp)
3298 if (ptid_match (tp->ptid, ptid))
3299 {
c65d6b55
PA
3300 if (tp->state != THREAD_RUNNING)
3301 continue;
3302 if (tp->executing)
3303 continue;
3304
3305 /* Remove matching threads from the step-over queue, so
3306 start_step_over doesn't try to resume them
3307 automatically. */
c2829269
PA
3308 if (thread_is_in_step_over_chain (tp))
3309 thread_step_over_chain_remove (tp);
252fbfc8 3310
c65d6b55
PA
3311 /* If the thread is stopped, but the user/frontend doesn't
3312 know about that yet, queue a pending event, as if the
3313 thread had just stopped now. Unless the thread already had
3314 a pending event. */
3315 if (!tp->suspend.waitstatus_pending_p)
3316 {
3317 tp->suspend.waitstatus_pending_p = 1;
3318 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3319 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3320 }
3321
3322 /* Clear the inline-frame state, since we're re-processing the
3323 stop. */
3324 clear_inline_frame_state (tp->ptid);
3325
3326 /* If this thread was paused because some other thread was
3327 doing an inline-step over, let that finish first. Once
3328 that happens, we'll restart all threads and consume pending
3329 stop events then. */
3330 if (step_over_info_valid_p ())
3331 continue;
3332
3333 /* Otherwise we can process the (new) pending event now. Set
3334 it so this pending event is considered by
3335 do_target_wait. */
3336 tp->resumed = 1;
3337 }
252fbfc8
PA
3338}
3339
a07daef3
PA
3340static void
3341infrun_thread_thread_exit (struct thread_info *tp, int silent)
3342{
3343 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3344 nullify_last_target_wait_ptid ();
3345}
3346
0cbcdb96
PA
3347/* Delete the step resume, single-step and longjmp/exception resume
3348 breakpoints of TP. */
4e1c45ea 3349
0cbcdb96
PA
3350static void
3351delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3352{
0cbcdb96
PA
3353 delete_step_resume_breakpoint (tp);
3354 delete_exception_resume_breakpoint (tp);
34b7e8a6 3355 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3356}
3357
0cbcdb96
PA
3358/* If the target still has execution, call FUNC for each thread that
3359 just stopped. In all-stop, that's all the non-exited threads; in
3360 non-stop, that's the current thread, only. */
3361
3362typedef void (*for_each_just_stopped_thread_callback_func)
3363 (struct thread_info *tp);
4e1c45ea
PA
3364
3365static void
0cbcdb96 3366for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3367{
0cbcdb96 3368 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3369 return;
3370
fbea99ea 3371 if (target_is_non_stop_p ())
4e1c45ea 3372 {
0cbcdb96
PA
3373 /* If in non-stop mode, only the current thread stopped. */
3374 func (inferior_thread ());
4e1c45ea
PA
3375 }
3376 else
0cbcdb96
PA
3377 {
3378 struct thread_info *tp;
3379
3380 /* In all-stop mode, all threads have stopped. */
3381 ALL_NON_EXITED_THREADS (tp)
3382 {
3383 func (tp);
3384 }
3385 }
3386}
3387
3388/* Delete the step resume and longjmp/exception resume breakpoints of
3389 the threads that just stopped. */
3390
3391static void
3392delete_just_stopped_threads_infrun_breakpoints (void)
3393{
3394 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3395}
3396
3397/* Delete the single-step breakpoints of the threads that just
3398 stopped. */
7c16b83e 3399
34b7e8a6
PA
3400static void
3401delete_just_stopped_threads_single_step_breakpoints (void)
3402{
3403 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3404}
3405
1777feb0 3406/* A cleanup wrapper. */
4e1c45ea
PA
3407
3408static void
0cbcdb96 3409delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3410{
0cbcdb96 3411 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3412}
3413
221e1a37 3414/* See infrun.h. */
223698f8 3415
221e1a37 3416void
223698f8
DE
3417print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3418 const struct target_waitstatus *ws)
3419{
3420 char *status_string = target_waitstatus_to_string (ws);
d7e74731 3421 string_file stb;
223698f8
DE
3422
3423 /* The text is split over several lines because it was getting too long.
3424 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3425 output as a unit; we want only one timestamp printed if debug_timestamp
3426 is set. */
3427
d7e74731
PA
3428 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3429 ptid_get_pid (waiton_ptid),
3430 ptid_get_lwp (waiton_ptid),
3431 ptid_get_tid (waiton_ptid));
dfd4cc63 3432 if (ptid_get_pid (waiton_ptid) != -1)
d7e74731
PA
3433 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3434 stb.printf (", status) =\n");
3435 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3436 ptid_get_pid (result_ptid),
3437 ptid_get_lwp (result_ptid),
3438 ptid_get_tid (result_ptid),
3439 target_pid_to_str (result_ptid));
3440 stb.printf ("infrun: %s\n", status_string);
223698f8
DE
3441
3442 /* This uses %s in part to handle %'s in the text, but also to avoid
3443 a gcc error: the format attribute requires a string literal. */
d7e74731 3444 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3445
3446 xfree (status_string);
223698f8
DE
3447}
3448
372316f1
PA
3449/* Select a thread at random, out of those which are resumed and have
3450 had events. */
3451
3452static struct thread_info *
3453random_pending_event_thread (ptid_t waiton_ptid)
3454{
3455 struct thread_info *event_tp;
3456 int num_events = 0;
3457 int random_selector;
3458
3459 /* First see how many events we have. Count only resumed threads
3460 that have an event pending. */
3461 ALL_NON_EXITED_THREADS (event_tp)
3462 if (ptid_match (event_tp->ptid, waiton_ptid)
3463 && event_tp->resumed
3464 && event_tp->suspend.waitstatus_pending_p)
3465 num_events++;
3466
3467 if (num_events == 0)
3468 return NULL;
3469
3470 /* Now randomly pick a thread out of those that have had events. */
3471 random_selector = (int)
3472 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3473
3474 if (debug_infrun && num_events > 1)
3475 fprintf_unfiltered (gdb_stdlog,
3476 "infrun: Found %d events, selecting #%d\n",
3477 num_events, random_selector);
3478
3479 /* Select the Nth thread that has had an event. */
3480 ALL_NON_EXITED_THREADS (event_tp)
3481 if (ptid_match (event_tp->ptid, waiton_ptid)
3482 && event_tp->resumed
3483 && event_tp->suspend.waitstatus_pending_p)
3484 if (random_selector-- == 0)
3485 break;
3486
3487 return event_tp;
3488}
3489
3490/* Wrapper for target_wait that first checks whether threads have
3491 pending statuses to report before actually asking the target for
3492 more events. */
3493
3494static ptid_t
3495do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3496{
3497 ptid_t event_ptid;
3498 struct thread_info *tp;
3499
3500 /* First check if there is a resumed thread with a wait status
3501 pending. */
3502 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3503 {
3504 tp = random_pending_event_thread (ptid);
3505 }
3506 else
3507 {
3508 if (debug_infrun)
3509 fprintf_unfiltered (gdb_stdlog,
3510 "infrun: Waiting for specific thread %s.\n",
3511 target_pid_to_str (ptid));
3512
3513 /* We have a specific thread to check. */
3514 tp = find_thread_ptid (ptid);
3515 gdb_assert (tp != NULL);
3516 if (!tp->suspend.waitstatus_pending_p)
3517 tp = NULL;
3518 }
3519
3520 if (tp != NULL
3521 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3522 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3523 {
3524 struct regcache *regcache = get_thread_regcache (tp->ptid);
3525 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3526 CORE_ADDR pc;
3527 int discard = 0;
3528
3529 pc = regcache_read_pc (regcache);
3530
3531 if (pc != tp->suspend.stop_pc)
3532 {
3533 if (debug_infrun)
3534 fprintf_unfiltered (gdb_stdlog,
3535 "infrun: PC of %s changed. was=%s, now=%s\n",
3536 target_pid_to_str (tp->ptid),
3537 paddress (gdbarch, tp->prev_pc),
3538 paddress (gdbarch, pc));
3539 discard = 1;
3540 }
3541 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3542 {
3543 if (debug_infrun)
3544 fprintf_unfiltered (gdb_stdlog,
3545 "infrun: previous breakpoint of %s, at %s gone\n",
3546 target_pid_to_str (tp->ptid),
3547 paddress (gdbarch, pc));
3548
3549 discard = 1;
3550 }
3551
3552 if (discard)
3553 {
3554 if (debug_infrun)
3555 fprintf_unfiltered (gdb_stdlog,
3556 "infrun: pending event of %s cancelled.\n",
3557 target_pid_to_str (tp->ptid));
3558
3559 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3560 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3561 }
3562 }
3563
3564 if (tp != NULL)
3565 {
3566 if (debug_infrun)
3567 {
3568 char *statstr;
3569
3570 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3571 fprintf_unfiltered (gdb_stdlog,
3572 "infrun: Using pending wait status %s for %s.\n",
3573 statstr,
3574 target_pid_to_str (tp->ptid));
3575 xfree (statstr);
3576 }
3577
3578 /* Now that we've selected our final event LWP, un-adjust its PC
3579 if it was a software breakpoint (and the target doesn't
3580 always adjust the PC itself). */
3581 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3582 && !target_supports_stopped_by_sw_breakpoint ())
3583 {
3584 struct regcache *regcache;
3585 struct gdbarch *gdbarch;
3586 int decr_pc;
3587
3588 regcache = get_thread_regcache (tp->ptid);
3589 gdbarch = get_regcache_arch (regcache);
3590
3591 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3592 if (decr_pc != 0)
3593 {
3594 CORE_ADDR pc;
3595
3596 pc = regcache_read_pc (regcache);
3597 regcache_write_pc (regcache, pc + decr_pc);
3598 }
3599 }
3600
3601 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3602 *status = tp->suspend.waitstatus;
3603 tp->suspend.waitstatus_pending_p = 0;
3604
3605 /* Wake up the event loop again, until all pending events are
3606 processed. */
3607 if (target_is_async_p ())
3608 mark_async_event_handler (infrun_async_inferior_event_token);
3609 return tp->ptid;
3610 }
3611
3612 /* But if we don't find one, we'll have to wait. */
3613
3614 if (deprecated_target_wait_hook)
3615 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3616 else
3617 event_ptid = target_wait (ptid, status, options);
3618
3619 return event_ptid;
3620}
3621
24291992
PA
3622/* Prepare and stabilize the inferior for detaching it. E.g.,
3623 detaching while a thread is displaced stepping is a recipe for
3624 crashing it, as nothing would readjust the PC out of the scratch
3625 pad. */
3626
3627void
3628prepare_for_detach (void)
3629{
3630 struct inferior *inf = current_inferior ();
3631 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3632 struct cleanup *old_chain_1;
3633 struct displaced_step_inferior_state *displaced;
3634
3635 displaced = get_displaced_stepping_state (inf->pid);
3636
3637 /* Is any thread of this process displaced stepping? If not,
3638 there's nothing else to do. */
3639 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3640 return;
3641
3642 if (debug_infrun)
3643 fprintf_unfiltered (gdb_stdlog,
3644 "displaced-stepping in-process while detaching");
3645
3646 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3647 inf->detaching = 1;
3648
3649 while (!ptid_equal (displaced->step_ptid, null_ptid))
3650 {
3651 struct cleanup *old_chain_2;
3652 struct execution_control_state ecss;
3653 struct execution_control_state *ecs;
3654
3655 ecs = &ecss;
3656 memset (ecs, 0, sizeof (*ecs));
3657
3658 overlay_cache_invalid = 1;
f15cb84a
YQ
3659 /* Flush target cache before starting to handle each event.
3660 Target was running and cache could be stale. This is just a
3661 heuristic. Running threads may modify target memory, but we
3662 don't get any event. */
3663 target_dcache_invalidate ();
24291992 3664
372316f1 3665 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3666
3667 if (debug_infrun)
3668 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3669
3670 /* If an error happens while handling the event, propagate GDB's
3671 knowledge of the executing state to the frontend/user running
3672 state. */
3e43a32a
MS
3673 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3674 &minus_one_ptid);
24291992
PA
3675
3676 /* Now figure out what to do with the result of the result. */
3677 handle_inferior_event (ecs);
3678
3679 /* No error, don't finish the state yet. */
3680 discard_cleanups (old_chain_2);
3681
3682 /* Breakpoints and watchpoints are not installed on the target
3683 at this point, and signals are passed directly to the
3684 inferior, so this must mean the process is gone. */
3685 if (!ecs->wait_some_more)
3686 {
3687 discard_cleanups (old_chain_1);
3688 error (_("Program exited while detaching"));
3689 }
3690 }
3691
3692 discard_cleanups (old_chain_1);
3693}
3694
cd0fc7c3 3695/* Wait for control to return from inferior to debugger.
ae123ec6 3696
cd0fc7c3
SS
3697 If inferior gets a signal, we may decide to start it up again
3698 instead of returning. That is why there is a loop in this function.
3699 When this function actually returns it means the inferior
3700 should be left stopped and GDB should read more commands. */
3701
3702void
e4c8541f 3703wait_for_inferior (void)
cd0fc7c3
SS
3704{
3705 struct cleanup *old_cleanups;
e6f5c25b 3706 struct cleanup *thread_state_chain;
c906108c 3707
527159b7 3708 if (debug_infrun)
ae123ec6 3709 fprintf_unfiltered
e4c8541f 3710 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3711
0cbcdb96
PA
3712 old_cleanups
3713 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3714 NULL);
cd0fc7c3 3715
e6f5c25b
PA
3716 /* If an error happens while handling the event, propagate GDB's
3717 knowledge of the executing state to the frontend/user running
3718 state. */
3719 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3720
c906108c
SS
3721 while (1)
3722 {
ae25568b
PA
3723 struct execution_control_state ecss;
3724 struct execution_control_state *ecs = &ecss;
963f9c80 3725 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3726
ae25568b
PA
3727 memset (ecs, 0, sizeof (*ecs));
3728
ec9499be 3729 overlay_cache_invalid = 1;
ec9499be 3730
f15cb84a
YQ
3731 /* Flush target cache before starting to handle each event.
3732 Target was running and cache could be stale. This is just a
3733 heuristic. Running threads may modify target memory, but we
3734 don't get any event. */
3735 target_dcache_invalidate ();
3736
372316f1 3737 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3738
f00150c9 3739 if (debug_infrun)
223698f8 3740 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3741
cd0fc7c3
SS
3742 /* Now figure out what to do with the result of the result. */
3743 handle_inferior_event (ecs);
c906108c 3744
cd0fc7c3
SS
3745 if (!ecs->wait_some_more)
3746 break;
3747 }
4e1c45ea 3748
e6f5c25b
PA
3749 /* No error, don't finish the state yet. */
3750 discard_cleanups (thread_state_chain);
3751
cd0fc7c3
SS
3752 do_cleanups (old_cleanups);
3753}
c906108c 3754
d3d4baed
PA
3755/* Cleanup that reinstalls the readline callback handler, if the
3756 target is running in the background. If while handling the target
3757 event something triggered a secondary prompt, like e.g., a
3758 pagination prompt, we'll have removed the callback handler (see
3759 gdb_readline_wrapper_line). Need to do this as we go back to the
3760 event loop, ready to process further input. Note this has no
3761 effect if the handler hasn't actually been removed, because calling
3762 rl_callback_handler_install resets the line buffer, thus losing
3763 input. */
3764
3765static void
3766reinstall_readline_callback_handler_cleanup (void *arg)
3767{
3b12939d
PA
3768 struct ui *ui = current_ui;
3769
3770 if (!ui->async)
6c400b59
PA
3771 {
3772 /* We're not going back to the top level event loop yet. Don't
3773 install the readline callback, as it'd prep the terminal,
3774 readline-style (raw, noecho) (e.g., --batch). We'll install
3775 it the next time the prompt is displayed, when we're ready
3776 for input. */
3777 return;
3778 }
3779
3b12939d 3780 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3781 gdb_rl_callback_handler_reinstall ();
3782}
3783
243a9253
PA
3784/* Clean up the FSMs of threads that are now stopped. In non-stop,
3785 that's just the event thread. In all-stop, that's all threads. */
3786
3787static void
3788clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3789{
3790 struct thread_info *thr = ecs->event_thread;
3791
3792 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3793 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3794
3795 if (!non_stop)
3796 {
3797 ALL_NON_EXITED_THREADS (thr)
3798 {
3799 if (thr->thread_fsm == NULL)
3800 continue;
3801 if (thr == ecs->event_thread)
3802 continue;
3803
3804 switch_to_thread (thr->ptid);
8980e177 3805 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3806 }
3807
3808 if (ecs->event_thread != NULL)
3809 switch_to_thread (ecs->event_thread->ptid);
3810 }
3811}
3812
3b12939d
PA
3813/* Helper for all_uis_check_sync_execution_done that works on the
3814 current UI. */
3815
3816static void
3817check_curr_ui_sync_execution_done (void)
3818{
3819 struct ui *ui = current_ui;
3820
3821 if (ui->prompt_state == PROMPT_NEEDED
3822 && ui->async
3823 && !gdb_in_secondary_prompt_p (ui))
3824 {
3825 target_terminal_ours ();
3826 observer_notify_sync_execution_done ();
3eb7562a 3827 ui_register_input_event_handler (ui);
3b12939d
PA
3828 }
3829}
3830
3831/* See infrun.h. */
3832
3833void
3834all_uis_check_sync_execution_done (void)
3835{
0e454242 3836 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3837 {
3838 check_curr_ui_sync_execution_done ();
3839 }
3840}
3841
a8836c93
PA
3842/* See infrun.h. */
3843
3844void
3845all_uis_on_sync_execution_starting (void)
3846{
0e454242 3847 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3848 {
3849 if (current_ui->prompt_state == PROMPT_NEEDED)
3850 async_disable_stdin ();
3851 }
3852}
3853
1777feb0 3854/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3855 event loop whenever a change of state is detected on the file
1777feb0
MS
3856 descriptor corresponding to the target. It can be called more than
3857 once to complete a single execution command. In such cases we need
3858 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3859 that this function is called for a single execution command, then
3860 report to the user that the inferior has stopped, and do the
1777feb0 3861 necessary cleanups. */
43ff13b4
JM
3862
3863void
fba45db2 3864fetch_inferior_event (void *client_data)
43ff13b4 3865{
0d1e5fa7 3866 struct execution_control_state ecss;
a474d7c2 3867 struct execution_control_state *ecs = &ecss;
4f8d22e3 3868 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3869 struct cleanup *ts_old_chain;
0f641c01 3870 int cmd_done = 0;
963f9c80 3871 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3872
0d1e5fa7
PA
3873 memset (ecs, 0, sizeof (*ecs));
3874
c61db772
PA
3875 /* Events are always processed with the main UI as current UI. This
3876 way, warnings, debug output, etc. are always consistently sent to
3877 the main console. */
4b6749b9 3878 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3879
d3d4baed
PA
3880 /* End up with readline processing input, if necessary. */
3881 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3882
c5187ac6
PA
3883 /* We're handling a live event, so make sure we're doing live
3884 debugging. If we're looking at traceframes while the target is
3885 running, we're going to need to get back to that mode after
3886 handling the event. */
3887 if (non_stop)
3888 {
3889 make_cleanup_restore_current_traceframe ();
e6e4e701 3890 set_current_traceframe (-1);
c5187ac6
PA
3891 }
3892
4f8d22e3
PA
3893 if (non_stop)
3894 /* In non-stop mode, the user/frontend should not notice a thread
3895 switch due to internal events. Make sure we reverse to the
3896 user selected thread and frame after handling the event and
3897 running any breakpoint commands. */
3898 make_cleanup_restore_current_thread ();
3899
ec9499be 3900 overlay_cache_invalid = 1;
f15cb84a
YQ
3901 /* Flush target cache before starting to handle each event. Target
3902 was running and cache could be stale. This is just a heuristic.
3903 Running threads may modify target memory, but we don't get any
3904 event. */
3905 target_dcache_invalidate ();
3dd5b83d 3906
b7b633e9
TT
3907 scoped_restore save_exec_dir
3908 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3909
0b333c5e
PA
3910 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3911 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3912
f00150c9 3913 if (debug_infrun)
223698f8 3914 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3915
29f49a6a
PA
3916 /* If an error happens while handling the event, propagate GDB's
3917 knowledge of the executing state to the frontend/user running
3918 state. */
fbea99ea 3919 if (!target_is_non_stop_p ())
29f49a6a
PA
3920 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3921 else
3922 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3923
353d1d73
JK
3924 /* Get executed before make_cleanup_restore_current_thread above to apply
3925 still for the thread which has thrown the exception. */
3926 make_bpstat_clear_actions_cleanup ();
3927
7c16b83e
PA
3928 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3929
43ff13b4 3930 /* Now figure out what to do with the result of the result. */
a474d7c2 3931 handle_inferior_event (ecs);
43ff13b4 3932
a474d7c2 3933 if (!ecs->wait_some_more)
43ff13b4 3934 {
c9657e70 3935 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3936 int should_stop = 1;
3937 struct thread_info *thr = ecs->event_thread;
388a7084 3938 int should_notify_stop = 1;
d6b48e9c 3939
0cbcdb96 3940 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3941
243a9253
PA
3942 if (thr != NULL)
3943 {
3944 struct thread_fsm *thread_fsm = thr->thread_fsm;
3945
3946 if (thread_fsm != NULL)
8980e177 3947 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3948 }
3949
3950 if (!should_stop)
3951 {
3952 keep_going (ecs);
3953 }
c2d11a7d 3954 else
0f641c01 3955 {
243a9253
PA
3956 clean_up_just_stopped_threads_fsms (ecs);
3957
388a7084
PA
3958 if (thr != NULL && thr->thread_fsm != NULL)
3959 {
3960 should_notify_stop
3961 = thread_fsm_should_notify_stop (thr->thread_fsm);
3962 }
3963
3964 if (should_notify_stop)
3965 {
4c2f2a79
PA
3966 int proceeded = 0;
3967
388a7084
PA
3968 /* We may not find an inferior if this was a process exit. */
3969 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3970 proceeded = normal_stop ();
243a9253 3971
4c2f2a79
PA
3972 if (!proceeded)
3973 {
3974 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3975 cmd_done = 1;
3976 }
388a7084 3977 }
0f641c01 3978 }
43ff13b4 3979 }
4f8d22e3 3980
29f49a6a
PA
3981 /* No error, don't finish the thread states yet. */
3982 discard_cleanups (ts_old_chain);
3983
4f8d22e3
PA
3984 /* Revert thread and frame. */
3985 do_cleanups (old_chain);
3986
3b12939d
PA
3987 /* If a UI was in sync execution mode, and now isn't, restore its
3988 prompt (a synchronous execution command has finished, and we're
3989 ready for input). */
3990 all_uis_check_sync_execution_done ();
0f641c01
PA
3991
3992 if (cmd_done
0f641c01
PA
3993 && exec_done_display_p
3994 && (ptid_equal (inferior_ptid, null_ptid)
3995 || !is_running (inferior_ptid)))
3996 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3997}
3998
edb3359d
DJ
3999/* Record the frame and location we're currently stepping through. */
4000void
4001set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4002{
4003 struct thread_info *tp = inferior_thread ();
4004
16c381f0
JK
4005 tp->control.step_frame_id = get_frame_id (frame);
4006 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4007
4008 tp->current_symtab = sal.symtab;
4009 tp->current_line = sal.line;
4010}
4011
0d1e5fa7
PA
4012/* Clear context switchable stepping state. */
4013
4014void
4e1c45ea 4015init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4016{
7f5ef605 4017 tss->stepped_breakpoint = 0;
0d1e5fa7 4018 tss->stepping_over_breakpoint = 0;
963f9c80 4019 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4020 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4021}
4022
c32c64b7
DE
4023/* Set the cached copy of the last ptid/waitstatus. */
4024
6efcd9a8 4025void
c32c64b7
DE
4026set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4027{
4028 target_last_wait_ptid = ptid;
4029 target_last_waitstatus = status;
4030}
4031
e02bc4cc 4032/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4033 target_wait()/deprecated_target_wait_hook(). The data is actually
4034 cached by handle_inferior_event(), which gets called immediately
4035 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4036
4037void
488f131b 4038get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4039{
39f77062 4040 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4041 *status = target_last_waitstatus;
4042}
4043
ac264b3b
MS
4044void
4045nullify_last_target_wait_ptid (void)
4046{
4047 target_last_wait_ptid = minus_one_ptid;
4048}
4049
dcf4fbde 4050/* Switch thread contexts. */
dd80620e
MS
4051
4052static void
0d1e5fa7 4053context_switch (ptid_t ptid)
dd80620e 4054{
4b51d87b 4055 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4056 {
4057 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4058 target_pid_to_str (inferior_ptid));
4059 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4060 target_pid_to_str (ptid));
fd48f117
DJ
4061 }
4062
0d1e5fa7 4063 switch_to_thread (ptid);
dd80620e
MS
4064}
4065
d8dd4d5f
PA
4066/* If the target can't tell whether we've hit breakpoints
4067 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4068 check whether that could have been caused by a breakpoint. If so,
4069 adjust the PC, per gdbarch_decr_pc_after_break. */
4070
4fa8626c 4071static void
d8dd4d5f
PA
4072adjust_pc_after_break (struct thread_info *thread,
4073 struct target_waitstatus *ws)
4fa8626c 4074{
24a73cce
UW
4075 struct regcache *regcache;
4076 struct gdbarch *gdbarch;
6c95b8df 4077 struct address_space *aspace;
118e6252 4078 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4079
4fa8626c
DJ
4080 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4081 we aren't, just return.
9709f61c
DJ
4082
4083 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4084 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4085 implemented by software breakpoints should be handled through the normal
4086 breakpoint layer.
8fb3e588 4087
4fa8626c
DJ
4088 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4089 different signals (SIGILL or SIGEMT for instance), but it is less
4090 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4091 gdbarch_decr_pc_after_break. I don't know any specific target that
4092 generates these signals at breakpoints (the code has been in GDB since at
4093 least 1992) so I can not guess how to handle them here.
8fb3e588 4094
e6cf7916
UW
4095 In earlier versions of GDB, a target with
4096 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4097 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4098 target with both of these set in GDB history, and it seems unlikely to be
4099 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4100
d8dd4d5f 4101 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4102 return;
4103
d8dd4d5f 4104 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4105 return;
4106
4058b839
PA
4107 /* In reverse execution, when a breakpoint is hit, the instruction
4108 under it has already been de-executed. The reported PC always
4109 points at the breakpoint address, so adjusting it further would
4110 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4111 architecture:
4112
4113 B1 0x08000000 : INSN1
4114 B2 0x08000001 : INSN2
4115 0x08000002 : INSN3
4116 PC -> 0x08000003 : INSN4
4117
4118 Say you're stopped at 0x08000003 as above. Reverse continuing
4119 from that point should hit B2 as below. Reading the PC when the
4120 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4121 been de-executed already.
4122
4123 B1 0x08000000 : INSN1
4124 B2 PC -> 0x08000001 : INSN2
4125 0x08000002 : INSN3
4126 0x08000003 : INSN4
4127
4128 We can't apply the same logic as for forward execution, because
4129 we would wrongly adjust the PC to 0x08000000, since there's a
4130 breakpoint at PC - 1. We'd then report a hit on B1, although
4131 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4132 behaviour. */
4133 if (execution_direction == EXEC_REVERSE)
4134 return;
4135
1cf4d951
PA
4136 /* If the target can tell whether the thread hit a SW breakpoint,
4137 trust it. Targets that can tell also adjust the PC
4138 themselves. */
4139 if (target_supports_stopped_by_sw_breakpoint ())
4140 return;
4141
4142 /* Note that relying on whether a breakpoint is planted in memory to
4143 determine this can fail. E.g,. the breakpoint could have been
4144 removed since. Or the thread could have been told to step an
4145 instruction the size of a breakpoint instruction, and only
4146 _after_ was a breakpoint inserted at its address. */
4147
24a73cce
UW
4148 /* If this target does not decrement the PC after breakpoints, then
4149 we have nothing to do. */
d8dd4d5f 4150 regcache = get_thread_regcache (thread->ptid);
24a73cce 4151 gdbarch = get_regcache_arch (regcache);
118e6252 4152
527a273a 4153 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4154 if (decr_pc == 0)
24a73cce
UW
4155 return;
4156
6c95b8df
PA
4157 aspace = get_regcache_aspace (regcache);
4158
8aad930b
AC
4159 /* Find the location where (if we've hit a breakpoint) the
4160 breakpoint would be. */
118e6252 4161 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4162
1cf4d951
PA
4163 /* If the target can't tell whether a software breakpoint triggered,
4164 fallback to figuring it out based on breakpoints we think were
4165 inserted in the target, and on whether the thread was stepped or
4166 continued. */
4167
1c5cfe86
PA
4168 /* Check whether there actually is a software breakpoint inserted at
4169 that location.
4170
4171 If in non-stop mode, a race condition is possible where we've
4172 removed a breakpoint, but stop events for that breakpoint were
4173 already queued and arrive later. To suppress those spurious
4174 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4175 and retire them after a number of stop events are reported. Note
4176 this is an heuristic and can thus get confused. The real fix is
4177 to get the "stopped by SW BP and needs adjustment" info out of
4178 the target/kernel (and thus never reach here; see above). */
6c95b8df 4179 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4180 || (target_is_non_stop_p ()
4181 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4182 {
77f9e713 4183 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4184
8213266a 4185 if (record_full_is_used ())
77f9e713 4186 record_full_gdb_operation_disable_set ();
96429cc8 4187
1c0fdd0e
UW
4188 /* When using hardware single-step, a SIGTRAP is reported for both
4189 a completed single-step and a software breakpoint. Need to
4190 differentiate between the two, as the latter needs adjusting
4191 but the former does not.
4192
4193 The SIGTRAP can be due to a completed hardware single-step only if
4194 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4195 - this thread is currently being stepped
4196
4197 If any of these events did not occur, we must have stopped due
4198 to hitting a software breakpoint, and have to back up to the
4199 breakpoint address.
4200
4201 As a special case, we could have hardware single-stepped a
4202 software breakpoint. In this case (prev_pc == breakpoint_pc),
4203 we also need to back up to the breakpoint address. */
4204
d8dd4d5f
PA
4205 if (thread_has_single_step_breakpoints_set (thread)
4206 || !currently_stepping (thread)
4207 || (thread->stepped_breakpoint
4208 && thread->prev_pc == breakpoint_pc))
515630c5 4209 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4210
77f9e713 4211 do_cleanups (old_cleanups);
8aad930b 4212 }
4fa8626c
DJ
4213}
4214
edb3359d
DJ
4215static int
4216stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4217{
4218 for (frame = get_prev_frame (frame);
4219 frame != NULL;
4220 frame = get_prev_frame (frame))
4221 {
4222 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4223 return 1;
4224 if (get_frame_type (frame) != INLINE_FRAME)
4225 break;
4226 }
4227
4228 return 0;
4229}
4230
c65d6b55
PA
4231/* If the event thread has the stop requested flag set, pretend it
4232 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4233 target_stop). */
4234
4235static bool
4236handle_stop_requested (struct execution_control_state *ecs)
4237{
4238 if (ecs->event_thread->stop_requested)
4239 {
4240 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4241 ecs->ws.value.sig = GDB_SIGNAL_0;
4242 handle_signal_stop (ecs);
4243 return true;
4244 }
4245 return false;
4246}
4247
a96d9b2e
SDJ
4248/* Auxiliary function that handles syscall entry/return events.
4249 It returns 1 if the inferior should keep going (and GDB
4250 should ignore the event), or 0 if the event deserves to be
4251 processed. */
ca2163eb 4252
a96d9b2e 4253static int
ca2163eb 4254handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4255{
ca2163eb 4256 struct regcache *regcache;
ca2163eb
PA
4257 int syscall_number;
4258
4259 if (!ptid_equal (ecs->ptid, inferior_ptid))
4260 context_switch (ecs->ptid);
4261
4262 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4263 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4264 stop_pc = regcache_read_pc (regcache);
4265
a96d9b2e
SDJ
4266 if (catch_syscall_enabled () > 0
4267 && catching_syscall_number (syscall_number) > 0)
4268 {
4269 if (debug_infrun)
4270 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4271 syscall_number);
a96d9b2e 4272
16c381f0 4273 ecs->event_thread->control.stop_bpstat
6c95b8df 4274 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4275 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4276
c65d6b55
PA
4277 if (handle_stop_requested (ecs))
4278 return 0;
4279
ce12b012 4280 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4281 {
4282 /* Catchpoint hit. */
ca2163eb
PA
4283 return 0;
4284 }
a96d9b2e 4285 }
ca2163eb 4286
c65d6b55
PA
4287 if (handle_stop_requested (ecs))
4288 return 0;
4289
ca2163eb 4290 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4291 keep_going (ecs);
4292 return 1;
a96d9b2e
SDJ
4293}
4294
7e324e48
GB
4295/* Lazily fill in the execution_control_state's stop_func_* fields. */
4296
4297static void
4298fill_in_stop_func (struct gdbarch *gdbarch,
4299 struct execution_control_state *ecs)
4300{
4301 if (!ecs->stop_func_filled_in)
4302 {
4303 /* Don't care about return value; stop_func_start and stop_func_name
4304 will both be 0 if it doesn't work. */
4305 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4306 &ecs->stop_func_start, &ecs->stop_func_end);
4307 ecs->stop_func_start
4308 += gdbarch_deprecated_function_start_offset (gdbarch);
4309
591a12a1
UW
4310 if (gdbarch_skip_entrypoint_p (gdbarch))
4311 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4312 ecs->stop_func_start);
4313
7e324e48
GB
4314 ecs->stop_func_filled_in = 1;
4315 }
4316}
4317
4f5d7f63
PA
4318
4319/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4320
4321static enum stop_kind
4322get_inferior_stop_soon (ptid_t ptid)
4323{
c9657e70 4324 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4325
4326 gdb_assert (inf != NULL);
4327 return inf->control.stop_soon;
4328}
4329
372316f1
PA
4330/* Wait for one event. Store the resulting waitstatus in WS, and
4331 return the event ptid. */
4332
4333static ptid_t
4334wait_one (struct target_waitstatus *ws)
4335{
4336 ptid_t event_ptid;
4337 ptid_t wait_ptid = minus_one_ptid;
4338
4339 overlay_cache_invalid = 1;
4340
4341 /* Flush target cache before starting to handle each event.
4342 Target was running and cache could be stale. This is just a
4343 heuristic. Running threads may modify target memory, but we
4344 don't get any event. */
4345 target_dcache_invalidate ();
4346
4347 if (deprecated_target_wait_hook)
4348 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4349 else
4350 event_ptid = target_wait (wait_ptid, ws, 0);
4351
4352 if (debug_infrun)
4353 print_target_wait_results (wait_ptid, event_ptid, ws);
4354
4355 return event_ptid;
4356}
4357
4358/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4359 instead of the current thread. */
4360#define THREAD_STOPPED_BY(REASON) \
4361static int \
4362thread_stopped_by_ ## REASON (ptid_t ptid) \
4363{ \
4364 struct cleanup *old_chain; \
4365 int res; \
4366 \
4367 old_chain = save_inferior_ptid (); \
4368 inferior_ptid = ptid; \
4369 \
4370 res = target_stopped_by_ ## REASON (); \
4371 \
4372 do_cleanups (old_chain); \
4373 \
4374 return res; \
4375}
4376
4377/* Generate thread_stopped_by_watchpoint. */
4378THREAD_STOPPED_BY (watchpoint)
4379/* Generate thread_stopped_by_sw_breakpoint. */
4380THREAD_STOPPED_BY (sw_breakpoint)
4381/* Generate thread_stopped_by_hw_breakpoint. */
4382THREAD_STOPPED_BY (hw_breakpoint)
4383
4384/* Cleanups that switches to the PTID pointed at by PTID_P. */
4385
4386static void
4387switch_to_thread_cleanup (void *ptid_p)
4388{
4389 ptid_t ptid = *(ptid_t *) ptid_p;
4390
4391 switch_to_thread (ptid);
4392}
4393
4394/* Save the thread's event and stop reason to process it later. */
4395
4396static void
4397save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4398{
4399 struct regcache *regcache;
4400 struct address_space *aspace;
4401
4402 if (debug_infrun)
4403 {
4404 char *statstr;
4405
4406 statstr = target_waitstatus_to_string (ws);
4407 fprintf_unfiltered (gdb_stdlog,
4408 "infrun: saving status %s for %d.%ld.%ld\n",
4409 statstr,
4410 ptid_get_pid (tp->ptid),
4411 ptid_get_lwp (tp->ptid),
4412 ptid_get_tid (tp->ptid));
4413 xfree (statstr);
4414 }
4415
4416 /* Record for later. */
4417 tp->suspend.waitstatus = *ws;
4418 tp->suspend.waitstatus_pending_p = 1;
4419
4420 regcache = get_thread_regcache (tp->ptid);
4421 aspace = get_regcache_aspace (regcache);
4422
4423 if (ws->kind == TARGET_WAITKIND_STOPPED
4424 && ws->value.sig == GDB_SIGNAL_TRAP)
4425 {
4426 CORE_ADDR pc = regcache_read_pc (regcache);
4427
4428 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4429
4430 if (thread_stopped_by_watchpoint (tp->ptid))
4431 {
4432 tp->suspend.stop_reason
4433 = TARGET_STOPPED_BY_WATCHPOINT;
4434 }
4435 else if (target_supports_stopped_by_sw_breakpoint ()
4436 && thread_stopped_by_sw_breakpoint (tp->ptid))
4437 {
4438 tp->suspend.stop_reason
4439 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4440 }
4441 else if (target_supports_stopped_by_hw_breakpoint ()
4442 && thread_stopped_by_hw_breakpoint (tp->ptid))
4443 {
4444 tp->suspend.stop_reason
4445 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4446 }
4447 else if (!target_supports_stopped_by_hw_breakpoint ()
4448 && hardware_breakpoint_inserted_here_p (aspace,
4449 pc))
4450 {
4451 tp->suspend.stop_reason
4452 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4453 }
4454 else if (!target_supports_stopped_by_sw_breakpoint ()
4455 && software_breakpoint_inserted_here_p (aspace,
4456 pc))
4457 {
4458 tp->suspend.stop_reason
4459 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4460 }
4461 else if (!thread_has_single_step_breakpoints_set (tp)
4462 && currently_stepping (tp))
4463 {
4464 tp->suspend.stop_reason
4465 = TARGET_STOPPED_BY_SINGLE_STEP;
4466 }
4467 }
4468}
4469
65706a29
PA
4470/* A cleanup that disables thread create/exit events. */
4471
4472static void
4473disable_thread_events (void *arg)
4474{
4475 target_thread_events (0);
4476}
4477
6efcd9a8 4478/* See infrun.h. */
372316f1 4479
6efcd9a8 4480void
372316f1
PA
4481stop_all_threads (void)
4482{
4483 /* We may need multiple passes to discover all threads. */
4484 int pass;
4485 int iterations = 0;
4486 ptid_t entry_ptid;
4487 struct cleanup *old_chain;
4488
fbea99ea 4489 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4490
4491 if (debug_infrun)
4492 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4493
4494 entry_ptid = inferior_ptid;
4495 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4496
65706a29
PA
4497 target_thread_events (1);
4498 make_cleanup (disable_thread_events, NULL);
4499
372316f1
PA
4500 /* Request threads to stop, and then wait for the stops. Because
4501 threads we already know about can spawn more threads while we're
4502 trying to stop them, and we only learn about new threads when we
4503 update the thread list, do this in a loop, and keep iterating
4504 until two passes find no threads that need to be stopped. */
4505 for (pass = 0; pass < 2; pass++, iterations++)
4506 {
4507 if (debug_infrun)
4508 fprintf_unfiltered (gdb_stdlog,
4509 "infrun: stop_all_threads, pass=%d, "
4510 "iterations=%d\n", pass, iterations);
4511 while (1)
4512 {
4513 ptid_t event_ptid;
4514 struct target_waitstatus ws;
4515 int need_wait = 0;
4516 struct thread_info *t;
4517
4518 update_thread_list ();
4519
4520 /* Go through all threads looking for threads that we need
4521 to tell the target to stop. */
4522 ALL_NON_EXITED_THREADS (t)
4523 {
4524 if (t->executing)
4525 {
4526 /* If already stopping, don't request a stop again.
4527 We just haven't seen the notification yet. */
4528 if (!t->stop_requested)
4529 {
4530 if (debug_infrun)
4531 fprintf_unfiltered (gdb_stdlog,
4532 "infrun: %s executing, "
4533 "need stop\n",
4534 target_pid_to_str (t->ptid));
4535 target_stop (t->ptid);
4536 t->stop_requested = 1;
4537 }
4538 else
4539 {
4540 if (debug_infrun)
4541 fprintf_unfiltered (gdb_stdlog,
4542 "infrun: %s executing, "
4543 "already stopping\n",
4544 target_pid_to_str (t->ptid));
4545 }
4546
4547 if (t->stop_requested)
4548 need_wait = 1;
4549 }
4550 else
4551 {
4552 if (debug_infrun)
4553 fprintf_unfiltered (gdb_stdlog,
4554 "infrun: %s not executing\n",
4555 target_pid_to_str (t->ptid));
4556
4557 /* The thread may be not executing, but still be
4558 resumed with a pending status to process. */
4559 t->resumed = 0;
4560 }
4561 }
4562
4563 if (!need_wait)
4564 break;
4565
4566 /* If we find new threads on the second iteration, restart
4567 over. We want to see two iterations in a row with all
4568 threads stopped. */
4569 if (pass > 0)
4570 pass = -1;
4571
4572 event_ptid = wait_one (&ws);
4573 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4574 {
4575 /* All resumed threads exited. */
4576 }
65706a29
PA
4577 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4578 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4579 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4580 {
4581 if (debug_infrun)
4582 {
4583 ptid_t ptid = pid_to_ptid (ws.value.integer);
4584
4585 fprintf_unfiltered (gdb_stdlog,
4586 "infrun: %s exited while "
4587 "stopping threads\n",
4588 target_pid_to_str (ptid));
4589 }
4590 }
4591 else
4592 {
6efcd9a8
PA
4593 struct inferior *inf;
4594
372316f1
PA
4595 t = find_thread_ptid (event_ptid);
4596 if (t == NULL)
4597 t = add_thread (event_ptid);
4598
4599 t->stop_requested = 0;
4600 t->executing = 0;
4601 t->resumed = 0;
4602 t->control.may_range_step = 0;
4603
6efcd9a8
PA
4604 /* This may be the first time we see the inferior report
4605 a stop. */
4606 inf = find_inferior_ptid (event_ptid);
4607 if (inf->needs_setup)
4608 {
4609 switch_to_thread_no_regs (t);
4610 setup_inferior (0);
4611 }
4612
372316f1
PA
4613 if (ws.kind == TARGET_WAITKIND_STOPPED
4614 && ws.value.sig == GDB_SIGNAL_0)
4615 {
4616 /* We caught the event that we intended to catch, so
4617 there's no event pending. */
4618 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4619 t->suspend.waitstatus_pending_p = 0;
4620
4621 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4622 {
4623 /* Add it back to the step-over queue. */
4624 if (debug_infrun)
4625 {
4626 fprintf_unfiltered (gdb_stdlog,
4627 "infrun: displaced-step of %s "
4628 "canceled: adding back to the "
4629 "step-over queue\n",
4630 target_pid_to_str (t->ptid));
4631 }
4632 t->control.trap_expected = 0;
4633 thread_step_over_chain_enqueue (t);
4634 }
4635 }
4636 else
4637 {
4638 enum gdb_signal sig;
4639 struct regcache *regcache;
372316f1
PA
4640
4641 if (debug_infrun)
4642 {
4643 char *statstr;
4644
4645 statstr = target_waitstatus_to_string (&ws);
4646 fprintf_unfiltered (gdb_stdlog,
4647 "infrun: target_wait %s, saving "
4648 "status for %d.%ld.%ld\n",
4649 statstr,
4650 ptid_get_pid (t->ptid),
4651 ptid_get_lwp (t->ptid),
4652 ptid_get_tid (t->ptid));
4653 xfree (statstr);
4654 }
4655
4656 /* Record for later. */
4657 save_waitstatus (t, &ws);
4658
4659 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4660 ? ws.value.sig : GDB_SIGNAL_0);
4661
4662 if (displaced_step_fixup (t->ptid, sig) < 0)
4663 {
4664 /* Add it back to the step-over queue. */
4665 t->control.trap_expected = 0;
4666 thread_step_over_chain_enqueue (t);
4667 }
4668
4669 regcache = get_thread_regcache (t->ptid);
4670 t->suspend.stop_pc = regcache_read_pc (regcache);
4671
4672 if (debug_infrun)
4673 {
4674 fprintf_unfiltered (gdb_stdlog,
4675 "infrun: saved stop_pc=%s for %s "
4676 "(currently_stepping=%d)\n",
4677 paddress (target_gdbarch (),
4678 t->suspend.stop_pc),
4679 target_pid_to_str (t->ptid),
4680 currently_stepping (t));
4681 }
4682 }
4683 }
4684 }
4685 }
4686
4687 do_cleanups (old_chain);
4688
4689 if (debug_infrun)
4690 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4691}
4692
f4836ba9
PA
4693/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4694
4695static int
4696handle_no_resumed (struct execution_control_state *ecs)
4697{
4698 struct inferior *inf;
4699 struct thread_info *thread;
4700
3b12939d 4701 if (target_can_async_p ())
f4836ba9 4702 {
3b12939d
PA
4703 struct ui *ui;
4704 int any_sync = 0;
f4836ba9 4705
3b12939d
PA
4706 ALL_UIS (ui)
4707 {
4708 if (ui->prompt_state == PROMPT_BLOCKED)
4709 {
4710 any_sync = 1;
4711 break;
4712 }
4713 }
4714 if (!any_sync)
4715 {
4716 /* There were no unwaited-for children left in the target, but,
4717 we're not synchronously waiting for events either. Just
4718 ignore. */
4719
4720 if (debug_infrun)
4721 fprintf_unfiltered (gdb_stdlog,
4722 "infrun: TARGET_WAITKIND_NO_RESUMED "
4723 "(ignoring: bg)\n");
4724 prepare_to_wait (ecs);
4725 return 1;
4726 }
f4836ba9
PA
4727 }
4728
4729 /* Otherwise, if we were running a synchronous execution command, we
4730 may need to cancel it and give the user back the terminal.
4731
4732 In non-stop mode, the target can't tell whether we've already
4733 consumed previous stop events, so it can end up sending us a
4734 no-resumed event like so:
4735
4736 #0 - thread 1 is left stopped
4737
4738 #1 - thread 2 is resumed and hits breakpoint
4739 -> TARGET_WAITKIND_STOPPED
4740
4741 #2 - thread 3 is resumed and exits
4742 this is the last resumed thread, so
4743 -> TARGET_WAITKIND_NO_RESUMED
4744
4745 #3 - gdb processes stop for thread 2 and decides to re-resume
4746 it.
4747
4748 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4749 thread 2 is now resumed, so the event should be ignored.
4750
4751 IOW, if the stop for thread 2 doesn't end a foreground command,
4752 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4753 event. But it could be that the event meant that thread 2 itself
4754 (or whatever other thread was the last resumed thread) exited.
4755
4756 To address this we refresh the thread list and check whether we
4757 have resumed threads _now_. In the example above, this removes
4758 thread 3 from the thread list. If thread 2 was re-resumed, we
4759 ignore this event. If we find no thread resumed, then we cancel
4760 the synchronous command show "no unwaited-for " to the user. */
4761 update_thread_list ();
4762
4763 ALL_NON_EXITED_THREADS (thread)
4764 {
4765 if (thread->executing
4766 || thread->suspend.waitstatus_pending_p)
4767 {
4768 /* There were no unwaited-for children left in the target at
4769 some point, but there are now. Just ignore. */
4770 if (debug_infrun)
4771 fprintf_unfiltered (gdb_stdlog,
4772 "infrun: TARGET_WAITKIND_NO_RESUMED "
4773 "(ignoring: found resumed)\n");
4774 prepare_to_wait (ecs);
4775 return 1;
4776 }
4777 }
4778
4779 /* Note however that we may find no resumed thread because the whole
4780 process exited meanwhile (thus updating the thread list results
4781 in an empty thread list). In this case we know we'll be getting
4782 a process exit event shortly. */
4783 ALL_INFERIORS (inf)
4784 {
4785 if (inf->pid == 0)
4786 continue;
4787
4788 thread = any_live_thread_of_process (inf->pid);
4789 if (thread == NULL)
4790 {
4791 if (debug_infrun)
4792 fprintf_unfiltered (gdb_stdlog,
4793 "infrun: TARGET_WAITKIND_NO_RESUMED "
4794 "(expect process exit)\n");
4795 prepare_to_wait (ecs);
4796 return 1;
4797 }
4798 }
4799
4800 /* Go ahead and report the event. */
4801 return 0;
4802}
4803
05ba8510
PA
4804/* Given an execution control state that has been freshly filled in by
4805 an event from the inferior, figure out what it means and take
4806 appropriate action.
4807
4808 The alternatives are:
4809
22bcd14b 4810 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4811 debugger.
4812
4813 2) keep_going and return; to wait for the next event (set
4814 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4815 once). */
c906108c 4816
ec9499be 4817static void
0b6e5e10 4818handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4819{
d6b48e9c
PA
4820 enum stop_kind stop_soon;
4821
28736962
PA
4822 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4823 {
4824 /* We had an event in the inferior, but we are not interested in
4825 handling it at this level. The lower layers have already
4826 done what needs to be done, if anything.
4827
4828 One of the possible circumstances for this is when the
4829 inferior produces output for the console. The inferior has
4830 not stopped, and we are ignoring the event. Another possible
4831 circumstance is any event which the lower level knows will be
4832 reported multiple times without an intervening resume. */
4833 if (debug_infrun)
4834 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4835 prepare_to_wait (ecs);
4836 return;
4837 }
4838
65706a29
PA
4839 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4840 {
4841 if (debug_infrun)
4842 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4843 prepare_to_wait (ecs);
4844 return;
4845 }
4846
0e5bf2a8 4847 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4848 && handle_no_resumed (ecs))
4849 return;
0e5bf2a8 4850
1777feb0 4851 /* Cache the last pid/waitstatus. */
c32c64b7 4852 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4853
ca005067 4854 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4855 stop_stack_dummy = STOP_NONE;
ca005067 4856
0e5bf2a8
PA
4857 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4858 {
4859 /* No unwaited-for children left. IOW, all resumed children
4860 have exited. */
4861 if (debug_infrun)
4862 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4863
4864 stop_print_frame = 0;
22bcd14b 4865 stop_waiting (ecs);
0e5bf2a8
PA
4866 return;
4867 }
4868
8c90c137 4869 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4870 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4871 {
4872 ecs->event_thread = find_thread_ptid (ecs->ptid);
4873 /* If it's a new thread, add it to the thread database. */
4874 if (ecs->event_thread == NULL)
4875 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4876
4877 /* Disable range stepping. If the next step request could use a
4878 range, this will be end up re-enabled then. */
4879 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4880 }
88ed393a
JK
4881
4882 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4883 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4884
4885 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4886 reinit_frame_cache ();
4887
28736962
PA
4888 breakpoint_retire_moribund ();
4889
2b009048
DJ
4890 /* First, distinguish signals caused by the debugger from signals
4891 that have to do with the program's own actions. Note that
4892 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4893 on the operating system version. Here we detect when a SIGILL or
4894 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4895 something similar for SIGSEGV, since a SIGSEGV will be generated
4896 when we're trying to execute a breakpoint instruction on a
4897 non-executable stack. This happens for call dummy breakpoints
4898 for architectures like SPARC that place call dummies on the
4899 stack. */
2b009048 4900 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4901 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4902 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4903 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4904 {
de0a0249
UW
4905 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4906
4907 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4908 regcache_read_pc (regcache)))
4909 {
4910 if (debug_infrun)
4911 fprintf_unfiltered (gdb_stdlog,
4912 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4913 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4914 }
2b009048
DJ
4915 }
4916
28736962
PA
4917 /* Mark the non-executing threads accordingly. In all-stop, all
4918 threads of all processes are stopped when we get any event
e1316e60 4919 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4920 {
4921 ptid_t mark_ptid;
4922
fbea99ea 4923 if (!target_is_non_stop_p ())
372316f1
PA
4924 mark_ptid = minus_one_ptid;
4925 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4926 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4927 {
4928 /* If we're handling a process exit in non-stop mode, even
4929 though threads haven't been deleted yet, one would think
4930 that there is nothing to do, as threads of the dead process
4931 will be soon deleted, and threads of any other process were
4932 left running. However, on some targets, threads survive a
4933 process exit event. E.g., for the "checkpoint" command,
4934 when the current checkpoint/fork exits, linux-fork.c
4935 automatically switches to another fork from within
4936 target_mourn_inferior, by associating the same
4937 inferior/thread to another fork. We haven't mourned yet at
4938 this point, but we must mark any threads left in the
4939 process as not-executing so that finish_thread_state marks
4940 them stopped (in the user's perspective) if/when we present
4941 the stop to the user. */
4942 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4943 }
4944 else
4945 mark_ptid = ecs->ptid;
4946
4947 set_executing (mark_ptid, 0);
4948
4949 /* Likewise the resumed flag. */
4950 set_resumed (mark_ptid, 0);
4951 }
8c90c137 4952
488f131b
JB
4953 switch (ecs->ws.kind)
4954 {
4955 case TARGET_WAITKIND_LOADED:
527159b7 4956 if (debug_infrun)
8a9de0e4 4957 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4958 if (!ptid_equal (ecs->ptid, inferior_ptid))
4959 context_switch (ecs->ptid);
b0f4b84b
DJ
4960 /* Ignore gracefully during startup of the inferior, as it might
4961 be the shell which has just loaded some objects, otherwise
4962 add the symbols for the newly loaded objects. Also ignore at
4963 the beginning of an attach or remote session; we will query
4964 the full list of libraries once the connection is
4965 established. */
4f5d7f63
PA
4966
4967 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4968 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4969 {
edcc5120
TT
4970 struct regcache *regcache;
4971
edcc5120
TT
4972 regcache = get_thread_regcache (ecs->ptid);
4973
4974 handle_solib_event ();
4975
4976 ecs->event_thread->control.stop_bpstat
4977 = bpstat_stop_status (get_regcache_aspace (regcache),
4978 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4979
c65d6b55
PA
4980 if (handle_stop_requested (ecs))
4981 return;
4982
ce12b012 4983 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4984 {
4985 /* A catchpoint triggered. */
94c57d6a
PA
4986 process_event_stop_test (ecs);
4987 return;
edcc5120 4988 }
488f131b 4989
b0f4b84b
DJ
4990 /* If requested, stop when the dynamic linker notifies
4991 gdb of events. This allows the user to get control
4992 and place breakpoints in initializer routines for
4993 dynamically loaded objects (among other things). */
a493e3e2 4994 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4995 if (stop_on_solib_events)
4996 {
55409f9d
DJ
4997 /* Make sure we print "Stopped due to solib-event" in
4998 normal_stop. */
4999 stop_print_frame = 1;
5000
22bcd14b 5001 stop_waiting (ecs);
b0f4b84b
DJ
5002 return;
5003 }
488f131b 5004 }
b0f4b84b
DJ
5005
5006 /* If we are skipping through a shell, or through shared library
5007 loading that we aren't interested in, resume the program. If
5c09a2c5 5008 we're running the program normally, also resume. */
b0f4b84b
DJ
5009 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5010 {
74960c60
VP
5011 /* Loading of shared libraries might have changed breakpoint
5012 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5013 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5014 insert_breakpoints ();
64ce06e4 5015 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5016 prepare_to_wait (ecs);
5017 return;
5018 }
5019
5c09a2c5
PA
5020 /* But stop if we're attaching or setting up a remote
5021 connection. */
5022 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5023 || stop_soon == STOP_QUIETLY_REMOTE)
5024 {
5025 if (debug_infrun)
5026 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5027 stop_waiting (ecs);
5c09a2c5
PA
5028 return;
5029 }
5030
5031 internal_error (__FILE__, __LINE__,
5032 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5033
488f131b 5034 case TARGET_WAITKIND_SPURIOUS:
527159b7 5035 if (debug_infrun)
8a9de0e4 5036 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
5037 if (handle_stop_requested (ecs))
5038 return;
64776a0b 5039 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 5040 context_switch (ecs->ptid);
64ce06e4 5041 resume (GDB_SIGNAL_0);
488f131b
JB
5042 prepare_to_wait (ecs);
5043 return;
c5aa993b 5044
65706a29
PA
5045 case TARGET_WAITKIND_THREAD_CREATED:
5046 if (debug_infrun)
5047 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
5048 if (handle_stop_requested (ecs))
5049 return;
65706a29
PA
5050 if (!ptid_equal (ecs->ptid, inferior_ptid))
5051 context_switch (ecs->ptid);
5052 if (!switch_back_to_stepped_thread (ecs))
5053 keep_going (ecs);
5054 return;
5055
488f131b 5056 case TARGET_WAITKIND_EXITED:
940c3c06 5057 case TARGET_WAITKIND_SIGNALLED:
527159b7 5058 if (debug_infrun)
940c3c06
PA
5059 {
5060 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5061 fprintf_unfiltered (gdb_stdlog,
5062 "infrun: TARGET_WAITKIND_EXITED\n");
5063 else
5064 fprintf_unfiltered (gdb_stdlog,
5065 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5066 }
5067
fb66883a 5068 inferior_ptid = ecs->ptid;
c9657e70 5069 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5070 set_current_program_space (current_inferior ()->pspace);
5071 handle_vfork_child_exec_or_exit (0);
1777feb0 5072 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 5073
0c557179
SDJ
5074 /* Clearing any previous state of convenience variables. */
5075 clear_exit_convenience_vars ();
5076
940c3c06
PA
5077 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5078 {
5079 /* Record the exit code in the convenience variable $_exitcode, so
5080 that the user can inspect this again later. */
5081 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5082 (LONGEST) ecs->ws.value.integer);
5083
5084 /* Also record this in the inferior itself. */
5085 current_inferior ()->has_exit_code = 1;
5086 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5087
98eb56a4
PA
5088 /* Support the --return-child-result option. */
5089 return_child_result_value = ecs->ws.value.integer;
5090
fd664c91 5091 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
5092 }
5093 else
0c557179
SDJ
5094 {
5095 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5096 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5097
5098 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5099 {
5100 /* Set the value of the internal variable $_exitsignal,
5101 which holds the signal uncaught by the inferior. */
5102 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5103 gdbarch_gdb_signal_to_target (gdbarch,
5104 ecs->ws.value.sig));
5105 }
5106 else
5107 {
5108 /* We don't have access to the target's method used for
5109 converting between signal numbers (GDB's internal
5110 representation <-> target's representation).
5111 Therefore, we cannot do a good job at displaying this
5112 information to the user. It's better to just warn
5113 her about it (if infrun debugging is enabled), and
5114 give up. */
5115 if (debug_infrun)
5116 fprintf_filtered (gdb_stdlog, _("\
5117Cannot fill $_exitsignal with the correct signal number.\n"));
5118 }
5119
fd664c91 5120 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 5121 }
8cf64490 5122
488f131b 5123 gdb_flush (gdb_stdout);
bc1e6c81 5124 target_mourn_inferior (inferior_ptid);
488f131b 5125 stop_print_frame = 0;
22bcd14b 5126 stop_waiting (ecs);
488f131b 5127 return;
c5aa993b 5128
488f131b 5129 /* The following are the only cases in which we keep going;
1777feb0 5130 the above cases end in a continue or goto. */
488f131b 5131 case TARGET_WAITKIND_FORKED:
deb3b17b 5132 case TARGET_WAITKIND_VFORKED:
527159b7 5133 if (debug_infrun)
fed708ed
PA
5134 {
5135 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5136 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5137 else
5138 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5139 }
c906108c 5140
e2d96639
YQ
5141 /* Check whether the inferior is displaced stepping. */
5142 {
5143 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5144 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e2d96639
YQ
5145
5146 /* If checking displaced stepping is supported, and thread
5147 ecs->ptid is displaced stepping. */
c0987663 5148 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5149 {
5150 struct inferior *parent_inf
c9657e70 5151 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5152 struct regcache *child_regcache;
5153 CORE_ADDR parent_pc;
5154
5155 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5156 indicating that the displaced stepping of syscall instruction
5157 has been done. Perform cleanup for parent process here. Note
5158 that this operation also cleans up the child process for vfork,
5159 because their pages are shared. */
a493e3e2 5160 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5161 /* Start a new step-over in another thread if there's one
5162 that needs it. */
5163 start_step_over ();
e2d96639
YQ
5164
5165 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5166 {
c0987663
YQ
5167 struct displaced_step_inferior_state *displaced
5168 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5169
e2d96639
YQ
5170 /* Restore scratch pad for child process. */
5171 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5172 }
5173
5174 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5175 the child's PC is also within the scratchpad. Set the child's PC
5176 to the parent's PC value, which has already been fixed up.
5177 FIXME: we use the parent's aspace here, although we're touching
5178 the child, because the child hasn't been added to the inferior
5179 list yet at this point. */
5180
5181 child_regcache
5182 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5183 gdbarch,
5184 parent_inf->aspace);
5185 /* Read PC value of parent process. */
5186 parent_pc = regcache_read_pc (regcache);
5187
5188 if (debug_displaced)
5189 fprintf_unfiltered (gdb_stdlog,
5190 "displaced: write child pc from %s to %s\n",
5191 paddress (gdbarch,
5192 regcache_read_pc (child_regcache)),
5193 paddress (gdbarch, parent_pc));
5194
5195 regcache_write_pc (child_regcache, parent_pc);
5196 }
5197 }
5198
5a2901d9 5199 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5200 context_switch (ecs->ptid);
5a2901d9 5201
b242c3c2
PA
5202 /* Immediately detach breakpoints from the child before there's
5203 any chance of letting the user delete breakpoints from the
5204 breakpoint lists. If we don't do this early, it's easy to
5205 leave left over traps in the child, vis: "break foo; catch
5206 fork; c; <fork>; del; c; <child calls foo>". We only follow
5207 the fork on the last `continue', and by that time the
5208 breakpoint at "foo" is long gone from the breakpoint table.
5209 If we vforked, then we don't need to unpatch here, since both
5210 parent and child are sharing the same memory pages; we'll
5211 need to unpatch at follow/detach time instead to be certain
5212 that new breakpoints added between catchpoint hit time and
5213 vfork follow are detached. */
5214 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5215 {
b242c3c2
PA
5216 /* This won't actually modify the breakpoint list, but will
5217 physically remove the breakpoints from the child. */
d80ee84f 5218 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5219 }
5220
34b7e8a6 5221 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5222
e58b0e63
PA
5223 /* In case the event is caught by a catchpoint, remember that
5224 the event is to be followed at the next resume of the thread,
5225 and not immediately. */
5226 ecs->event_thread->pending_follow = ecs->ws;
5227
fb14de7b 5228 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5229
16c381f0 5230 ecs->event_thread->control.stop_bpstat
6c95b8df 5231 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5232 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5233
c65d6b55
PA
5234 if (handle_stop_requested (ecs))
5235 return;
5236
ce12b012
PA
5237 /* If no catchpoint triggered for this, then keep going. Note
5238 that we're interested in knowing the bpstat actually causes a
5239 stop, not just if it may explain the signal. Software
5240 watchpoints, for example, always appear in the bpstat. */
5241 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5242 {
6c95b8df
PA
5243 ptid_t parent;
5244 ptid_t child;
e58b0e63 5245 int should_resume;
3e43a32a
MS
5246 int follow_child
5247 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5248
a493e3e2 5249 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5250
5251 should_resume = follow_fork ();
5252
6c95b8df
PA
5253 parent = ecs->ptid;
5254 child = ecs->ws.value.related_pid;
5255
a2077e25
PA
5256 /* At this point, the parent is marked running, and the
5257 child is marked stopped. */
5258
5259 /* If not resuming the parent, mark it stopped. */
5260 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5261 set_running (parent, 0);
5262
5263 /* If resuming the child, mark it running. */
5264 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5265 set_running (child, 1);
5266
6c95b8df 5267 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5268 if (!detach_fork && (non_stop
5269 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5270 {
5271 if (follow_child)
5272 switch_to_thread (parent);
5273 else
5274 switch_to_thread (child);
5275
5276 ecs->event_thread = inferior_thread ();
5277 ecs->ptid = inferior_ptid;
5278 keep_going (ecs);
5279 }
5280
5281 if (follow_child)
5282 switch_to_thread (child);
5283 else
5284 switch_to_thread (parent);
5285
e58b0e63
PA
5286 ecs->event_thread = inferior_thread ();
5287 ecs->ptid = inferior_ptid;
5288
5289 if (should_resume)
5290 keep_going (ecs);
5291 else
22bcd14b 5292 stop_waiting (ecs);
04e68871
DJ
5293 return;
5294 }
94c57d6a
PA
5295 process_event_stop_test (ecs);
5296 return;
488f131b 5297
6c95b8df
PA
5298 case TARGET_WAITKIND_VFORK_DONE:
5299 /* Done with the shared memory region. Re-insert breakpoints in
5300 the parent, and keep going. */
5301
5302 if (debug_infrun)
3e43a32a
MS
5303 fprintf_unfiltered (gdb_stdlog,
5304 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5305
5306 if (!ptid_equal (ecs->ptid, inferior_ptid))
5307 context_switch (ecs->ptid);
5308
5309 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5310 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5311
5312 if (handle_stop_requested (ecs))
5313 return;
5314
6c95b8df
PA
5315 /* This also takes care of reinserting breakpoints in the
5316 previously locked inferior. */
5317 keep_going (ecs);
5318 return;
5319
488f131b 5320 case TARGET_WAITKIND_EXECD:
527159b7 5321 if (debug_infrun)
fc5261f2 5322 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5323
5a2901d9 5324 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5325 context_switch (ecs->ptid);
5a2901d9 5326
fb14de7b 5327 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5328
6c95b8df
PA
5329 /* Do whatever is necessary to the parent branch of the vfork. */
5330 handle_vfork_child_exec_or_exit (1);
5331
795e548f
PA
5332 /* This causes the eventpoints and symbol table to be reset.
5333 Must do this now, before trying to determine whether to
5334 stop. */
71b43ef8 5335 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5336
17d8546e
DB
5337 /* In follow_exec we may have deleted the original thread and
5338 created a new one. Make sure that the event thread is the
5339 execd thread for that case (this is a nop otherwise). */
5340 ecs->event_thread = inferior_thread ();
5341
16c381f0 5342 ecs->event_thread->control.stop_bpstat
6c95b8df 5343 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5344 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5345
71b43ef8
PA
5346 /* Note that this may be referenced from inside
5347 bpstat_stop_status above, through inferior_has_execd. */
5348 xfree (ecs->ws.value.execd_pathname);
5349 ecs->ws.value.execd_pathname = NULL;
5350
c65d6b55
PA
5351 if (handle_stop_requested (ecs))
5352 return;
5353
04e68871 5354 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5355 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5356 {
a493e3e2 5357 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5358 keep_going (ecs);
5359 return;
5360 }
94c57d6a
PA
5361 process_event_stop_test (ecs);
5362 return;
488f131b 5363
b4dc5ffa
MK
5364 /* Be careful not to try to gather much state about a thread
5365 that's in a syscall. It's frequently a losing proposition. */
488f131b 5366 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5367 if (debug_infrun)
3e43a32a
MS
5368 fprintf_unfiltered (gdb_stdlog,
5369 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5370 /* Getting the current syscall number. */
94c57d6a
PA
5371 if (handle_syscall_event (ecs) == 0)
5372 process_event_stop_test (ecs);
5373 return;
c906108c 5374
488f131b
JB
5375 /* Before examining the threads further, step this thread to
5376 get it entirely out of the syscall. (We get notice of the
5377 event when the thread is just on the verge of exiting a
5378 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5379 into user code.) */
488f131b 5380 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5381 if (debug_infrun)
3e43a32a
MS
5382 fprintf_unfiltered (gdb_stdlog,
5383 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5384 if (handle_syscall_event (ecs) == 0)
5385 process_event_stop_test (ecs);
5386 return;
c906108c 5387
488f131b 5388 case TARGET_WAITKIND_STOPPED:
527159b7 5389 if (debug_infrun)
8a9de0e4 5390 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5391 handle_signal_stop (ecs);
5392 return;
c906108c 5393
b2175913 5394 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5395 if (debug_infrun)
5396 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5397 /* Reverse execution: target ran out of history info. */
eab402df 5398
d1988021
MM
5399 /* Switch to the stopped thread. */
5400 if (!ptid_equal (ecs->ptid, inferior_ptid))
5401 context_switch (ecs->ptid);
5402 if (debug_infrun)
5403 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5404
34b7e8a6 5405 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5406 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
c65d6b55
PA
5407
5408 if (handle_stop_requested (ecs))
5409 return;
5410
fd664c91 5411 observer_notify_no_history ();
22bcd14b 5412 stop_waiting (ecs);
b2175913 5413 return;
488f131b 5414 }
4f5d7f63
PA
5415}
5416
0b6e5e10
JB
5417/* A wrapper around handle_inferior_event_1, which also makes sure
5418 that all temporary struct value objects that were created during
5419 the handling of the event get deleted at the end. */
5420
5421static void
5422handle_inferior_event (struct execution_control_state *ecs)
5423{
5424 struct value *mark = value_mark ();
5425
5426 handle_inferior_event_1 (ecs);
5427 /* Purge all temporary values created during the event handling,
5428 as it could be a long time before we return to the command level
5429 where such values would otherwise be purged. */
5430 value_free_to_mark (mark);
5431}
5432
372316f1
PA
5433/* Restart threads back to what they were trying to do back when we
5434 paused them for an in-line step-over. The EVENT_THREAD thread is
5435 ignored. */
4d9d9d04
PA
5436
5437static void
372316f1
PA
5438restart_threads (struct thread_info *event_thread)
5439{
5440 struct thread_info *tp;
372316f1
PA
5441
5442 /* In case the instruction just stepped spawned a new thread. */
5443 update_thread_list ();
5444
5445 ALL_NON_EXITED_THREADS (tp)
5446 {
5447 if (tp == event_thread)
5448 {
5449 if (debug_infrun)
5450 fprintf_unfiltered (gdb_stdlog,
5451 "infrun: restart threads: "
5452 "[%s] is event thread\n",
5453 target_pid_to_str (tp->ptid));
5454 continue;
5455 }
5456
5457 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5458 {
5459 if (debug_infrun)
5460 fprintf_unfiltered (gdb_stdlog,
5461 "infrun: restart threads: "
5462 "[%s] not meant to be running\n",
5463 target_pid_to_str (tp->ptid));
5464 continue;
5465 }
5466
5467 if (tp->resumed)
5468 {
5469 if (debug_infrun)
5470 fprintf_unfiltered (gdb_stdlog,
5471 "infrun: restart threads: [%s] resumed\n",
5472 target_pid_to_str (tp->ptid));
5473 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5474 continue;
5475 }
5476
5477 if (thread_is_in_step_over_chain (tp))
5478 {
5479 if (debug_infrun)
5480 fprintf_unfiltered (gdb_stdlog,
5481 "infrun: restart threads: "
5482 "[%s] needs step-over\n",
5483 target_pid_to_str (tp->ptid));
5484 gdb_assert (!tp->resumed);
5485 continue;
5486 }
5487
5488
5489 if (tp->suspend.waitstatus_pending_p)
5490 {
5491 if (debug_infrun)
5492 fprintf_unfiltered (gdb_stdlog,
5493 "infrun: restart threads: "
5494 "[%s] has pending status\n",
5495 target_pid_to_str (tp->ptid));
5496 tp->resumed = 1;
5497 continue;
5498 }
5499
c65d6b55
PA
5500 gdb_assert (!tp->stop_requested);
5501
372316f1
PA
5502 /* If some thread needs to start a step-over at this point, it
5503 should still be in the step-over queue, and thus skipped
5504 above. */
5505 if (thread_still_needs_step_over (tp))
5506 {
5507 internal_error (__FILE__, __LINE__,
5508 "thread [%s] needs a step-over, but not in "
5509 "step-over queue\n",
5510 target_pid_to_str (tp->ptid));
5511 }
5512
5513 if (currently_stepping (tp))
5514 {
5515 if (debug_infrun)
5516 fprintf_unfiltered (gdb_stdlog,
5517 "infrun: restart threads: [%s] was stepping\n",
5518 target_pid_to_str (tp->ptid));
5519 keep_going_stepped_thread (tp);
5520 }
5521 else
5522 {
5523 struct execution_control_state ecss;
5524 struct execution_control_state *ecs = &ecss;
5525
5526 if (debug_infrun)
5527 fprintf_unfiltered (gdb_stdlog,
5528 "infrun: restart threads: [%s] continuing\n",
5529 target_pid_to_str (tp->ptid));
5530 reset_ecs (ecs, tp);
5531 switch_to_thread (tp->ptid);
5532 keep_going_pass_signal (ecs);
5533 }
5534 }
5535}
5536
5537/* Callback for iterate_over_threads. Find a resumed thread that has
5538 a pending waitstatus. */
5539
5540static int
5541resumed_thread_with_pending_status (struct thread_info *tp,
5542 void *arg)
5543{
5544 return (tp->resumed
5545 && tp->suspend.waitstatus_pending_p);
5546}
5547
5548/* Called when we get an event that may finish an in-line or
5549 out-of-line (displaced stepping) step-over started previously.
5550 Return true if the event is processed and we should go back to the
5551 event loop; false if the caller should continue processing the
5552 event. */
5553
5554static int
4d9d9d04
PA
5555finish_step_over (struct execution_control_state *ecs)
5556{
372316f1
PA
5557 int had_step_over_info;
5558
4d9d9d04
PA
5559 displaced_step_fixup (ecs->ptid,
5560 ecs->event_thread->suspend.stop_signal);
5561
372316f1
PA
5562 had_step_over_info = step_over_info_valid_p ();
5563
5564 if (had_step_over_info)
4d9d9d04
PA
5565 {
5566 /* If we're stepping over a breakpoint with all threads locked,
5567 then only the thread that was stepped should be reporting
5568 back an event. */
5569 gdb_assert (ecs->event_thread->control.trap_expected);
5570
c65d6b55 5571 clear_step_over_info ();
4d9d9d04
PA
5572 }
5573
fbea99ea 5574 if (!target_is_non_stop_p ())
372316f1 5575 return 0;
4d9d9d04
PA
5576
5577 /* Start a new step-over in another thread if there's one that
5578 needs it. */
5579 start_step_over ();
372316f1
PA
5580
5581 /* If we were stepping over a breakpoint before, and haven't started
5582 a new in-line step-over sequence, then restart all other threads
5583 (except the event thread). We can't do this in all-stop, as then
5584 e.g., we wouldn't be able to issue any other remote packet until
5585 these other threads stop. */
5586 if (had_step_over_info && !step_over_info_valid_p ())
5587 {
5588 struct thread_info *pending;
5589
5590 /* If we only have threads with pending statuses, the restart
5591 below won't restart any thread and so nothing re-inserts the
5592 breakpoint we just stepped over. But we need it inserted
5593 when we later process the pending events, otherwise if
5594 another thread has a pending event for this breakpoint too,
5595 we'd discard its event (because the breakpoint that
5596 originally caused the event was no longer inserted). */
5597 context_switch (ecs->ptid);
5598 insert_breakpoints ();
5599
5600 restart_threads (ecs->event_thread);
5601
5602 /* If we have events pending, go through handle_inferior_event
5603 again, picking up a pending event at random. This avoids
5604 thread starvation. */
5605
5606 /* But not if we just stepped over a watchpoint in order to let
5607 the instruction execute so we can evaluate its expression.
5608 The set of watchpoints that triggered is recorded in the
5609 breakpoint objects themselves (see bp->watchpoint_triggered).
5610 If we processed another event first, that other event could
5611 clobber this info. */
5612 if (ecs->event_thread->stepping_over_watchpoint)
5613 return 0;
5614
5615 pending = iterate_over_threads (resumed_thread_with_pending_status,
5616 NULL);
5617 if (pending != NULL)
5618 {
5619 struct thread_info *tp = ecs->event_thread;
5620 struct regcache *regcache;
5621
5622 if (debug_infrun)
5623 {
5624 fprintf_unfiltered (gdb_stdlog,
5625 "infrun: found resumed threads with "
5626 "pending events, saving status\n");
5627 }
5628
5629 gdb_assert (pending != tp);
5630
5631 /* Record the event thread's event for later. */
5632 save_waitstatus (tp, &ecs->ws);
5633 /* This was cleared early, by handle_inferior_event. Set it
5634 so this pending event is considered by
5635 do_target_wait. */
5636 tp->resumed = 1;
5637
5638 gdb_assert (!tp->executing);
5639
5640 regcache = get_thread_regcache (tp->ptid);
5641 tp->suspend.stop_pc = regcache_read_pc (regcache);
5642
5643 if (debug_infrun)
5644 {
5645 fprintf_unfiltered (gdb_stdlog,
5646 "infrun: saved stop_pc=%s for %s "
5647 "(currently_stepping=%d)\n",
5648 paddress (target_gdbarch (),
5649 tp->suspend.stop_pc),
5650 target_pid_to_str (tp->ptid),
5651 currently_stepping (tp));
5652 }
5653
5654 /* This in-line step-over finished; clear this so we won't
5655 start a new one. This is what handle_signal_stop would
5656 do, if we returned false. */
5657 tp->stepping_over_breakpoint = 0;
5658
5659 /* Wake up the event loop again. */
5660 mark_async_event_handler (infrun_async_inferior_event_token);
5661
5662 prepare_to_wait (ecs);
5663 return 1;
5664 }
5665 }
5666
5667 return 0;
4d9d9d04
PA
5668}
5669
4f5d7f63
PA
5670/* Come here when the program has stopped with a signal. */
5671
5672static void
5673handle_signal_stop (struct execution_control_state *ecs)
5674{
5675 struct frame_info *frame;
5676 struct gdbarch *gdbarch;
5677 int stopped_by_watchpoint;
5678 enum stop_kind stop_soon;
5679 int random_signal;
c906108c 5680
f0407826
DE
5681 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5682
c65d6b55
PA
5683 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5684
f0407826
DE
5685 /* Do we need to clean up the state of a thread that has
5686 completed a displaced single-step? (Doing so usually affects
5687 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5688 if (finish_step_over (ecs))
5689 return;
f0407826
DE
5690
5691 /* If we either finished a single-step or hit a breakpoint, but
5692 the user wanted this thread to be stopped, pretend we got a
5693 SIG0 (generic unsignaled stop). */
5694 if (ecs->event_thread->stop_requested
5695 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5696 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5697
515630c5 5698 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5699
527159b7 5700 if (debug_infrun)
237fc4c9 5701 {
5af949e3
UW
5702 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5703 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5704 struct cleanup *old_chain = save_inferior_ptid ();
5705
5706 inferior_ptid = ecs->ptid;
5af949e3
UW
5707
5708 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5709 paddress (gdbarch, stop_pc));
d92524f1 5710 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5711 {
5712 CORE_ADDR addr;
abbb1732 5713
237fc4c9
PA
5714 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5715
5716 if (target_stopped_data_address (&current_target, &addr))
5717 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5718 "infrun: stopped data address = %s\n",
5719 paddress (gdbarch, addr));
237fc4c9
PA
5720 else
5721 fprintf_unfiltered (gdb_stdlog,
5722 "infrun: (no data address available)\n");
5723 }
7f82dfc7
JK
5724
5725 do_cleanups (old_chain);
237fc4c9 5726 }
527159b7 5727
36fa8042
PA
5728 /* This is originated from start_remote(), start_inferior() and
5729 shared libraries hook functions. */
5730 stop_soon = get_inferior_stop_soon (ecs->ptid);
5731 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5732 {
5733 if (!ptid_equal (ecs->ptid, inferior_ptid))
5734 context_switch (ecs->ptid);
5735 if (debug_infrun)
5736 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5737 stop_print_frame = 1;
22bcd14b 5738 stop_waiting (ecs);
36fa8042
PA
5739 return;
5740 }
5741
36fa8042
PA
5742 /* This originates from attach_command(). We need to overwrite
5743 the stop_signal here, because some kernels don't ignore a
5744 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5745 See more comments in inferior.h. On the other hand, if we
5746 get a non-SIGSTOP, report it to the user - assume the backend
5747 will handle the SIGSTOP if it should show up later.
5748
5749 Also consider that the attach is complete when we see a
5750 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5751 target extended-remote report it instead of a SIGSTOP
5752 (e.g. gdbserver). We already rely on SIGTRAP being our
5753 signal, so this is no exception.
5754
5755 Also consider that the attach is complete when we see a
5756 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5757 the target to stop all threads of the inferior, in case the
5758 low level attach operation doesn't stop them implicitly. If
5759 they weren't stopped implicitly, then the stub will report a
5760 GDB_SIGNAL_0, meaning: stopped for no particular reason
5761 other than GDB's request. */
5762 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5763 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5764 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5765 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5766 {
5767 stop_print_frame = 1;
22bcd14b 5768 stop_waiting (ecs);
36fa8042
PA
5769 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5770 return;
5771 }
5772
488f131b 5773 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5774 so, then switch to that thread. */
5775 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5776 {
527159b7 5777 if (debug_infrun)
8a9de0e4 5778 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5779
0d1e5fa7 5780 context_switch (ecs->ptid);
c5aa993b 5781
9a4105ab 5782 if (deprecated_context_hook)
5d5658a1 5783 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
488f131b 5784 }
c906108c 5785
568d6575
UW
5786 /* At this point, get hold of the now-current thread's frame. */
5787 frame = get_current_frame ();
5788 gdbarch = get_frame_arch (frame);
5789
2adfaa28 5790 /* Pull the single step breakpoints out of the target. */
af48d08f 5791 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5792 {
af48d08f
PA
5793 struct regcache *regcache;
5794 struct address_space *aspace;
5795 CORE_ADDR pc;
2adfaa28 5796
af48d08f
PA
5797 regcache = get_thread_regcache (ecs->ptid);
5798 aspace = get_regcache_aspace (regcache);
5799 pc = regcache_read_pc (regcache);
34b7e8a6 5800
af48d08f
PA
5801 /* However, before doing so, if this single-step breakpoint was
5802 actually for another thread, set this thread up for moving
5803 past it. */
5804 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5805 aspace, pc))
5806 {
5807 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5808 {
5809 if (debug_infrun)
5810 {
5811 fprintf_unfiltered (gdb_stdlog,
af48d08f 5812 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5813 "single-step breakpoint\n",
5814 target_pid_to_str (ecs->ptid));
2adfaa28 5815 }
af48d08f
PA
5816 ecs->hit_singlestep_breakpoint = 1;
5817 }
5818 }
5819 else
5820 {
5821 if (debug_infrun)
5822 {
5823 fprintf_unfiltered (gdb_stdlog,
5824 "infrun: [%s] hit its "
5825 "single-step breakpoint\n",
5826 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5827 }
5828 }
488f131b 5829 }
af48d08f 5830 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5831
963f9c80
PA
5832 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5833 && ecs->event_thread->control.trap_expected
5834 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5835 stopped_by_watchpoint = 0;
5836 else
5837 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5838
5839 /* If necessary, step over this watchpoint. We'll be back to display
5840 it in a moment. */
5841 if (stopped_by_watchpoint
d92524f1 5842 && (target_have_steppable_watchpoint
568d6575 5843 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5844 {
488f131b
JB
5845 /* At this point, we are stopped at an instruction which has
5846 attempted to write to a piece of memory under control of
5847 a watchpoint. The instruction hasn't actually executed
5848 yet. If we were to evaluate the watchpoint expression
5849 now, we would get the old value, and therefore no change
5850 would seem to have occurred.
5851
5852 In order to make watchpoints work `right', we really need
5853 to complete the memory write, and then evaluate the
d983da9c
DJ
5854 watchpoint expression. We do this by single-stepping the
5855 target.
5856
7f89fd65 5857 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5858 it. For example, the PA can (with some kernel cooperation)
5859 single step over a watchpoint without disabling the watchpoint.
5860
5861 It is far more common to need to disable a watchpoint to step
5862 the inferior over it. If we have non-steppable watchpoints,
5863 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5864 disable all watchpoints.
5865
5866 Any breakpoint at PC must also be stepped over -- if there's
5867 one, it will have already triggered before the watchpoint
5868 triggered, and we either already reported it to the user, or
5869 it didn't cause a stop and we called keep_going. In either
5870 case, if there was a breakpoint at PC, we must be trying to
5871 step past it. */
5872 ecs->event_thread->stepping_over_watchpoint = 1;
5873 keep_going (ecs);
488f131b
JB
5874 return;
5875 }
5876
4e1c45ea 5877 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5878 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5879 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5880 ecs->event_thread->control.stop_step = 0;
488f131b 5881 stop_print_frame = 1;
488f131b 5882 stopped_by_random_signal = 0;
488f131b 5883
edb3359d
DJ
5884 /* Hide inlined functions starting here, unless we just performed stepi or
5885 nexti. After stepi and nexti, always show the innermost frame (not any
5886 inline function call sites). */
16c381f0 5887 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5888 {
5889 struct address_space *aspace =
5890 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5891
5892 /* skip_inline_frames is expensive, so we avoid it if we can
5893 determine that the address is one where functions cannot have
5894 been inlined. This improves performance with inferiors that
5895 load a lot of shared libraries, because the solib event
5896 breakpoint is defined as the address of a function (i.e. not
5897 inline). Note that we have to check the previous PC as well
5898 as the current one to catch cases when we have just
5899 single-stepped off a breakpoint prior to reinstating it.
5900 Note that we're assuming that the code we single-step to is
5901 not inline, but that's not definitive: there's nothing
5902 preventing the event breakpoint function from containing
5903 inlined code, and the single-step ending up there. If the
5904 user had set a breakpoint on that inlined code, the missing
5905 skip_inline_frames call would break things. Fortunately
5906 that's an extremely unlikely scenario. */
09ac7c10 5907 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5908 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5909 && ecs->event_thread->control.trap_expected
5910 && pc_at_non_inline_function (aspace,
5911 ecs->event_thread->prev_pc,
09ac7c10 5912 &ecs->ws)))
1c5a993e
MR
5913 {
5914 skip_inline_frames (ecs->ptid);
5915
5916 /* Re-fetch current thread's frame in case that invalidated
5917 the frame cache. */
5918 frame = get_current_frame ();
5919 gdbarch = get_frame_arch (frame);
5920 }
0574c78f 5921 }
edb3359d 5922
a493e3e2 5923 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5924 && ecs->event_thread->control.trap_expected
568d6575 5925 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5926 && currently_stepping (ecs->event_thread))
3352ef37 5927 {
b50d7442 5928 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5929 also on an instruction that needs to be stepped multiple
1777feb0 5930 times before it's been fully executing. E.g., architectures
3352ef37
AC
5931 with a delay slot. It needs to be stepped twice, once for
5932 the instruction and once for the delay slot. */
5933 int step_through_delay
568d6575 5934 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5935
527159b7 5936 if (debug_infrun && step_through_delay)
8a9de0e4 5937 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5938 if (ecs->event_thread->control.step_range_end == 0
5939 && step_through_delay)
3352ef37
AC
5940 {
5941 /* The user issued a continue when stopped at a breakpoint.
5942 Set up for another trap and get out of here. */
4e1c45ea 5943 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5944 keep_going (ecs);
5945 return;
5946 }
5947 else if (step_through_delay)
5948 {
5949 /* The user issued a step when stopped at a breakpoint.
5950 Maybe we should stop, maybe we should not - the delay
5951 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5952 case, don't decide that here, just set
5953 ecs->stepping_over_breakpoint, making sure we
5954 single-step again before breakpoints are re-inserted. */
4e1c45ea 5955 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5956 }
5957 }
5958
ab04a2af
TT
5959 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5960 handles this event. */
5961 ecs->event_thread->control.stop_bpstat
5962 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5963 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5964
ab04a2af
TT
5965 /* Following in case break condition called a
5966 function. */
5967 stop_print_frame = 1;
73dd234f 5968
ab04a2af
TT
5969 /* This is where we handle "moribund" watchpoints. Unlike
5970 software breakpoints traps, hardware watchpoint traps are
5971 always distinguishable from random traps. If no high-level
5972 watchpoint is associated with the reported stop data address
5973 anymore, then the bpstat does not explain the signal ---
5974 simply make sure to ignore it if `stopped_by_watchpoint' is
5975 set. */
5976
5977 if (debug_infrun
5978 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5979 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5980 GDB_SIGNAL_TRAP)
ab04a2af
TT
5981 && stopped_by_watchpoint)
5982 fprintf_unfiltered (gdb_stdlog,
5983 "infrun: no user watchpoint explains "
5984 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5985
bac7d97b 5986 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5987 at one stage in the past included checks for an inferior
5988 function call's call dummy's return breakpoint. The original
5989 comment, that went with the test, read:
03cebad2 5990
ab04a2af
TT
5991 ``End of a stack dummy. Some systems (e.g. Sony news) give
5992 another signal besides SIGTRAP, so check here as well as
5993 above.''
73dd234f 5994
ab04a2af
TT
5995 If someone ever tries to get call dummys on a
5996 non-executable stack to work (where the target would stop
5997 with something like a SIGSEGV), then those tests might need
5998 to be re-instated. Given, however, that the tests were only
5999 enabled when momentary breakpoints were not being used, I
6000 suspect that it won't be the case.
488f131b 6001
ab04a2af
TT
6002 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6003 be necessary for call dummies on a non-executable stack on
6004 SPARC. */
488f131b 6005
bac7d97b 6006 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6007 random_signal
6008 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6009 ecs->event_thread->suspend.stop_signal);
bac7d97b 6010
1cf4d951
PA
6011 /* Maybe this was a trap for a software breakpoint that has since
6012 been removed. */
6013 if (random_signal && target_stopped_by_sw_breakpoint ())
6014 {
6015 if (program_breakpoint_here_p (gdbarch, stop_pc))
6016 {
6017 struct regcache *regcache;
6018 int decr_pc;
6019
6020 /* Re-adjust PC to what the program would see if GDB was not
6021 debugging it. */
6022 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 6023 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6024 if (decr_pc != 0)
6025 {
6026 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6027
6028 if (record_full_is_used ())
6029 record_full_gdb_operation_disable_set ();
6030
6031 regcache_write_pc (regcache, stop_pc + decr_pc);
6032
6033 do_cleanups (old_cleanups);
6034 }
6035 }
6036 else
6037 {
6038 /* A delayed software breakpoint event. Ignore the trap. */
6039 if (debug_infrun)
6040 fprintf_unfiltered (gdb_stdlog,
6041 "infrun: delayed software breakpoint "
6042 "trap, ignoring\n");
6043 random_signal = 0;
6044 }
6045 }
6046
6047 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6048 has since been removed. */
6049 if (random_signal && target_stopped_by_hw_breakpoint ())
6050 {
6051 /* A delayed hardware breakpoint event. Ignore the trap. */
6052 if (debug_infrun)
6053 fprintf_unfiltered (gdb_stdlog,
6054 "infrun: delayed hardware breakpoint/watchpoint "
6055 "trap, ignoring\n");
6056 random_signal = 0;
6057 }
6058
bac7d97b
PA
6059 /* If not, perhaps stepping/nexting can. */
6060 if (random_signal)
6061 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6062 && currently_stepping (ecs->event_thread));
ab04a2af 6063
2adfaa28
PA
6064 /* Perhaps the thread hit a single-step breakpoint of _another_
6065 thread. Single-step breakpoints are transparent to the
6066 breakpoints module. */
6067 if (random_signal)
6068 random_signal = !ecs->hit_singlestep_breakpoint;
6069
bac7d97b
PA
6070 /* No? Perhaps we got a moribund watchpoint. */
6071 if (random_signal)
6072 random_signal = !stopped_by_watchpoint;
ab04a2af 6073
c65d6b55
PA
6074 /* Always stop if the user explicitly requested this thread to
6075 remain stopped. */
6076 if (ecs->event_thread->stop_requested)
6077 {
6078 random_signal = 1;
6079 if (debug_infrun)
6080 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6081 }
6082
488f131b
JB
6083 /* For the program's own signals, act according to
6084 the signal handling tables. */
6085
ce12b012 6086 if (random_signal)
488f131b
JB
6087 {
6088 /* Signal not for debugging purposes. */
c9657e70 6089 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6090 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6091
527159b7 6092 if (debug_infrun)
c9737c08
PA
6093 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6094 gdb_signal_to_symbol_string (stop_signal));
527159b7 6095
488f131b
JB
6096 stopped_by_random_signal = 1;
6097
252fbfc8
PA
6098 /* Always stop on signals if we're either just gaining control
6099 of the program, or the user explicitly requested this thread
6100 to remain stopped. */
d6b48e9c 6101 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6102 || ecs->event_thread->stop_requested
24291992 6103 || (!inf->detaching
16c381f0 6104 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6105 {
22bcd14b 6106 stop_waiting (ecs);
488f131b
JB
6107 return;
6108 }
b57bacec
PA
6109
6110 /* Notify observers the signal has "handle print" set. Note we
6111 returned early above if stopping; normal_stop handles the
6112 printing in that case. */
6113 if (signal_print[ecs->event_thread->suspend.stop_signal])
6114 {
6115 /* The signal table tells us to print about this signal. */
6116 target_terminal_ours_for_output ();
6117 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6118 target_terminal_inferior ();
6119 }
488f131b
JB
6120
6121 /* Clear the signal if it should not be passed. */
16c381f0 6122 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6123 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6124
fb14de7b 6125 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6126 && ecs->event_thread->control.trap_expected
8358c15c 6127 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6128 {
6129 /* We were just starting a new sequence, attempting to
6130 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6131 Instead this signal arrives. This signal will take us out
68f53502
AC
6132 of the stepping range so GDB needs to remember to, when
6133 the signal handler returns, resume stepping off that
6134 breakpoint. */
6135 /* To simplify things, "continue" is forced to use the same
6136 code paths as single-step - set a breakpoint at the
6137 signal return address and then, once hit, step off that
6138 breakpoint. */
237fc4c9
PA
6139 if (debug_infrun)
6140 fprintf_unfiltered (gdb_stdlog,
6141 "infrun: signal arrived while stepping over "
6142 "breakpoint\n");
d3169d93 6143
2c03e5be 6144 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6145 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6146 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6147 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6148
6149 /* If we were nexting/stepping some other thread, switch to
6150 it, so that we don't continue it, losing control. */
6151 if (!switch_back_to_stepped_thread (ecs))
6152 keep_going (ecs);
9d799f85 6153 return;
68f53502 6154 }
9d799f85 6155
e5f8a7cc
PA
6156 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6157 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6158 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6159 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6160 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6161 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6162 {
6163 /* The inferior is about to take a signal that will take it
6164 out of the single step range. Set a breakpoint at the
6165 current PC (which is presumably where the signal handler
6166 will eventually return) and then allow the inferior to
6167 run free.
6168
6169 Note that this is only needed for a signal delivered
6170 while in the single-step range. Nested signals aren't a
6171 problem as they eventually all return. */
237fc4c9
PA
6172 if (debug_infrun)
6173 fprintf_unfiltered (gdb_stdlog,
6174 "infrun: signal may take us out of "
6175 "single-step range\n");
6176
372316f1 6177 clear_step_over_info ();
2c03e5be 6178 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6179 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6180 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6181 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6182 keep_going (ecs);
6183 return;
d303a6c7 6184 }
9d799f85
AC
6185
6186 /* Note: step_resume_breakpoint may be non-NULL. This occures
6187 when either there's a nested signal, or when there's a
6188 pending signal enabled just as the signal handler returns
6189 (leaving the inferior at the step-resume-breakpoint without
6190 actually executing it). Either way continue until the
6191 breakpoint is really hit. */
c447ac0b
PA
6192
6193 if (!switch_back_to_stepped_thread (ecs))
6194 {
6195 if (debug_infrun)
6196 fprintf_unfiltered (gdb_stdlog,
6197 "infrun: random signal, keep going\n");
6198
6199 keep_going (ecs);
6200 }
6201 return;
488f131b 6202 }
94c57d6a
PA
6203
6204 process_event_stop_test (ecs);
6205}
6206
6207/* Come here when we've got some debug event / signal we can explain
6208 (IOW, not a random signal), and test whether it should cause a
6209 stop, or whether we should resume the inferior (transparently).
6210 E.g., could be a breakpoint whose condition evaluates false; we
6211 could be still stepping within the line; etc. */
6212
6213static void
6214process_event_stop_test (struct execution_control_state *ecs)
6215{
6216 struct symtab_and_line stop_pc_sal;
6217 struct frame_info *frame;
6218 struct gdbarch *gdbarch;
cdaa5b73
PA
6219 CORE_ADDR jmp_buf_pc;
6220 struct bpstat_what what;
94c57d6a 6221
cdaa5b73 6222 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6223
cdaa5b73
PA
6224 frame = get_current_frame ();
6225 gdbarch = get_frame_arch (frame);
fcf3daef 6226
cdaa5b73 6227 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6228
cdaa5b73
PA
6229 if (what.call_dummy)
6230 {
6231 stop_stack_dummy = what.call_dummy;
6232 }
186c406b 6233
243a9253
PA
6234 /* A few breakpoint types have callbacks associated (e.g.,
6235 bp_jit_event). Run them now. */
6236 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6237
cdaa5b73
PA
6238 /* If we hit an internal event that triggers symbol changes, the
6239 current frame will be invalidated within bpstat_what (e.g., if we
6240 hit an internal solib event). Re-fetch it. */
6241 frame = get_current_frame ();
6242 gdbarch = get_frame_arch (frame);
e2e4d78b 6243
cdaa5b73
PA
6244 switch (what.main_action)
6245 {
6246 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6247 /* If we hit the breakpoint at longjmp while stepping, we
6248 install a momentary breakpoint at the target of the
6249 jmp_buf. */
186c406b 6250
cdaa5b73
PA
6251 if (debug_infrun)
6252 fprintf_unfiltered (gdb_stdlog,
6253 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6254
cdaa5b73 6255 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6256
cdaa5b73
PA
6257 if (what.is_longjmp)
6258 {
6259 struct value *arg_value;
6260
6261 /* If we set the longjmp breakpoint via a SystemTap probe,
6262 then use it to extract the arguments. The destination PC
6263 is the third argument to the probe. */
6264 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6265 if (arg_value)
8fa0c4f8
AA
6266 {
6267 jmp_buf_pc = value_as_address (arg_value);
6268 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6269 }
cdaa5b73
PA
6270 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6271 || !gdbarch_get_longjmp_target (gdbarch,
6272 frame, &jmp_buf_pc))
e2e4d78b 6273 {
cdaa5b73
PA
6274 if (debug_infrun)
6275 fprintf_unfiltered (gdb_stdlog,
6276 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6277 "(!gdbarch_get_longjmp_target)\n");
6278 keep_going (ecs);
6279 return;
e2e4d78b 6280 }
e2e4d78b 6281
cdaa5b73
PA
6282 /* Insert a breakpoint at resume address. */
6283 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6284 }
6285 else
6286 check_exception_resume (ecs, frame);
6287 keep_going (ecs);
6288 return;
e81a37f7 6289
cdaa5b73
PA
6290 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6291 {
6292 struct frame_info *init_frame;
e81a37f7 6293
cdaa5b73 6294 /* There are several cases to consider.
c906108c 6295
cdaa5b73
PA
6296 1. The initiating frame no longer exists. In this case we
6297 must stop, because the exception or longjmp has gone too
6298 far.
2c03e5be 6299
cdaa5b73
PA
6300 2. The initiating frame exists, and is the same as the
6301 current frame. We stop, because the exception or longjmp
6302 has been caught.
2c03e5be 6303
cdaa5b73
PA
6304 3. The initiating frame exists and is different from the
6305 current frame. This means the exception or longjmp has
6306 been caught beneath the initiating frame, so keep going.
c906108c 6307
cdaa5b73
PA
6308 4. longjmp breakpoint has been placed just to protect
6309 against stale dummy frames and user is not interested in
6310 stopping around longjmps. */
c5aa993b 6311
cdaa5b73
PA
6312 if (debug_infrun)
6313 fprintf_unfiltered (gdb_stdlog,
6314 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6315
cdaa5b73
PA
6316 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6317 != NULL);
6318 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6319
cdaa5b73
PA
6320 if (what.is_longjmp)
6321 {
b67a2c6f 6322 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6323
cdaa5b73 6324 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6325 {
cdaa5b73
PA
6326 /* Case 4. */
6327 keep_going (ecs);
6328 return;
e5ef252a 6329 }
cdaa5b73 6330 }
c5aa993b 6331
cdaa5b73 6332 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6333
cdaa5b73
PA
6334 if (init_frame)
6335 {
6336 struct frame_id current_id
6337 = get_frame_id (get_current_frame ());
6338 if (frame_id_eq (current_id,
6339 ecs->event_thread->initiating_frame))
6340 {
6341 /* Case 2. Fall through. */
6342 }
6343 else
6344 {
6345 /* Case 3. */
6346 keep_going (ecs);
6347 return;
6348 }
68f53502 6349 }
488f131b 6350
cdaa5b73
PA
6351 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6352 exists. */
6353 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6354
bdc36728 6355 end_stepping_range (ecs);
cdaa5b73
PA
6356 }
6357 return;
e5ef252a 6358
cdaa5b73
PA
6359 case BPSTAT_WHAT_SINGLE:
6360 if (debug_infrun)
6361 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6362 ecs->event_thread->stepping_over_breakpoint = 1;
6363 /* Still need to check other stuff, at least the case where we
6364 are stepping and step out of the right range. */
6365 break;
e5ef252a 6366
cdaa5b73
PA
6367 case BPSTAT_WHAT_STEP_RESUME:
6368 if (debug_infrun)
6369 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6370
cdaa5b73
PA
6371 delete_step_resume_breakpoint (ecs->event_thread);
6372 if (ecs->event_thread->control.proceed_to_finish
6373 && execution_direction == EXEC_REVERSE)
6374 {
6375 struct thread_info *tp = ecs->event_thread;
6376
6377 /* We are finishing a function in reverse, and just hit the
6378 step-resume breakpoint at the start address of the
6379 function, and we're almost there -- just need to back up
6380 by one more single-step, which should take us back to the
6381 function call. */
6382 tp->control.step_range_start = tp->control.step_range_end = 1;
6383 keep_going (ecs);
e5ef252a 6384 return;
cdaa5b73
PA
6385 }
6386 fill_in_stop_func (gdbarch, ecs);
6387 if (stop_pc == ecs->stop_func_start
6388 && execution_direction == EXEC_REVERSE)
6389 {
6390 /* We are stepping over a function call in reverse, and just
6391 hit the step-resume breakpoint at the start address of
6392 the function. Go back to single-stepping, which should
6393 take us back to the function call. */
6394 ecs->event_thread->stepping_over_breakpoint = 1;
6395 keep_going (ecs);
6396 return;
6397 }
6398 break;
e5ef252a 6399
cdaa5b73
PA
6400 case BPSTAT_WHAT_STOP_NOISY:
6401 if (debug_infrun)
6402 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6403 stop_print_frame = 1;
e5ef252a 6404
99619bea
PA
6405 /* Assume the thread stopped for a breapoint. We'll still check
6406 whether a/the breakpoint is there when the thread is next
6407 resumed. */
6408 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6409
22bcd14b 6410 stop_waiting (ecs);
cdaa5b73 6411 return;
e5ef252a 6412
cdaa5b73
PA
6413 case BPSTAT_WHAT_STOP_SILENT:
6414 if (debug_infrun)
6415 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6416 stop_print_frame = 0;
e5ef252a 6417
99619bea
PA
6418 /* Assume the thread stopped for a breapoint. We'll still check
6419 whether a/the breakpoint is there when the thread is next
6420 resumed. */
6421 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6422 stop_waiting (ecs);
cdaa5b73
PA
6423 return;
6424
6425 case BPSTAT_WHAT_HP_STEP_RESUME:
6426 if (debug_infrun)
6427 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6428
6429 delete_step_resume_breakpoint (ecs->event_thread);
6430 if (ecs->event_thread->step_after_step_resume_breakpoint)
6431 {
6432 /* Back when the step-resume breakpoint was inserted, we
6433 were trying to single-step off a breakpoint. Go back to
6434 doing that. */
6435 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6436 ecs->event_thread->stepping_over_breakpoint = 1;
6437 keep_going (ecs);
6438 return;
e5ef252a 6439 }
cdaa5b73
PA
6440 break;
6441
6442 case BPSTAT_WHAT_KEEP_CHECKING:
6443 break;
e5ef252a 6444 }
c906108c 6445
af48d08f
PA
6446 /* If we stepped a permanent breakpoint and we had a high priority
6447 step-resume breakpoint for the address we stepped, but we didn't
6448 hit it, then we must have stepped into the signal handler. The
6449 step-resume was only necessary to catch the case of _not_
6450 stepping into the handler, so delete it, and fall through to
6451 checking whether the step finished. */
6452 if (ecs->event_thread->stepped_breakpoint)
6453 {
6454 struct breakpoint *sr_bp
6455 = ecs->event_thread->control.step_resume_breakpoint;
6456
8d707a12
PA
6457 if (sr_bp != NULL
6458 && sr_bp->loc->permanent
af48d08f
PA
6459 && sr_bp->type == bp_hp_step_resume
6460 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6461 {
6462 if (debug_infrun)
6463 fprintf_unfiltered (gdb_stdlog,
6464 "infrun: stepped permanent breakpoint, stopped in "
6465 "handler\n");
6466 delete_step_resume_breakpoint (ecs->event_thread);
6467 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6468 }
6469 }
6470
cdaa5b73
PA
6471 /* We come here if we hit a breakpoint but should not stop for it.
6472 Possibly we also were stepping and should stop for that. So fall
6473 through and test for stepping. But, if not stepping, do not
6474 stop. */
c906108c 6475
a7212384
UW
6476 /* In all-stop mode, if we're currently stepping but have stopped in
6477 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6478 if (switch_back_to_stepped_thread (ecs))
6479 return;
776f04fa 6480
8358c15c 6481 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6482 {
527159b7 6483 if (debug_infrun)
d3169d93
DJ
6484 fprintf_unfiltered (gdb_stdlog,
6485 "infrun: step-resume breakpoint is inserted\n");
527159b7 6486
488f131b
JB
6487 /* Having a step-resume breakpoint overrides anything
6488 else having to do with stepping commands until
6489 that breakpoint is reached. */
488f131b
JB
6490 keep_going (ecs);
6491 return;
6492 }
c5aa993b 6493
16c381f0 6494 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6495 {
527159b7 6496 if (debug_infrun)
8a9de0e4 6497 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6498 /* Likewise if we aren't even stepping. */
488f131b
JB
6499 keep_going (ecs);
6500 return;
6501 }
c5aa993b 6502
4b7703ad
JB
6503 /* Re-fetch current thread's frame in case the code above caused
6504 the frame cache to be re-initialized, making our FRAME variable
6505 a dangling pointer. */
6506 frame = get_current_frame ();
628fe4e4 6507 gdbarch = get_frame_arch (frame);
7e324e48 6508 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6509
488f131b 6510 /* If stepping through a line, keep going if still within it.
c906108c 6511
488f131b
JB
6512 Note that step_range_end is the address of the first instruction
6513 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6514 within it!
6515
6516 Note also that during reverse execution, we may be stepping
6517 through a function epilogue and therefore must detect when
6518 the current-frame changes in the middle of a line. */
6519
ce4c476a 6520 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6521 && (execution_direction != EXEC_REVERSE
388a8562 6522 || frame_id_eq (get_frame_id (frame),
16c381f0 6523 ecs->event_thread->control.step_frame_id)))
488f131b 6524 {
527159b7 6525 if (debug_infrun)
5af949e3
UW
6526 fprintf_unfiltered
6527 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6528 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6529 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6530
c1e36e3e
PA
6531 /* Tentatively re-enable range stepping; `resume' disables it if
6532 necessary (e.g., if we're stepping over a breakpoint or we
6533 have software watchpoints). */
6534 ecs->event_thread->control.may_range_step = 1;
6535
b2175913
MS
6536 /* When stepping backward, stop at beginning of line range
6537 (unless it's the function entry point, in which case
6538 keep going back to the call point). */
16c381f0 6539 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6540 && stop_pc != ecs->stop_func_start
6541 && execution_direction == EXEC_REVERSE)
bdc36728 6542 end_stepping_range (ecs);
b2175913
MS
6543 else
6544 keep_going (ecs);
6545
488f131b
JB
6546 return;
6547 }
c5aa993b 6548
488f131b 6549 /* We stepped out of the stepping range. */
c906108c 6550
488f131b 6551 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6552 loader dynamic symbol resolution code...
6553
6554 EXEC_FORWARD: we keep on single stepping until we exit the run
6555 time loader code and reach the callee's address.
6556
6557 EXEC_REVERSE: we've already executed the callee (backward), and
6558 the runtime loader code is handled just like any other
6559 undebuggable function call. Now we need only keep stepping
6560 backward through the trampoline code, and that's handled further
6561 down, so there is nothing for us to do here. */
6562
6563 if (execution_direction != EXEC_REVERSE
16c381f0 6564 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6565 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6566 {
4c8c40e6 6567 CORE_ADDR pc_after_resolver =
568d6575 6568 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6569
527159b7 6570 if (debug_infrun)
3e43a32a
MS
6571 fprintf_unfiltered (gdb_stdlog,
6572 "infrun: stepped into dynsym resolve code\n");
527159b7 6573
488f131b
JB
6574 if (pc_after_resolver)
6575 {
6576 /* Set up a step-resume breakpoint at the address
6577 indicated by SKIP_SOLIB_RESOLVER. */
6578 struct symtab_and_line sr_sal;
abbb1732 6579
fe39c653 6580 init_sal (&sr_sal);
488f131b 6581 sr_sal.pc = pc_after_resolver;
6c95b8df 6582 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6583
a6d9a66e
UW
6584 insert_step_resume_breakpoint_at_sal (gdbarch,
6585 sr_sal, null_frame_id);
c5aa993b 6586 }
c906108c 6587
488f131b
JB
6588 keep_going (ecs);
6589 return;
6590 }
c906108c 6591
16c381f0
JK
6592 if (ecs->event_thread->control.step_range_end != 1
6593 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6594 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6595 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6596 {
527159b7 6597 if (debug_infrun)
3e43a32a
MS
6598 fprintf_unfiltered (gdb_stdlog,
6599 "infrun: stepped into signal trampoline\n");
42edda50 6600 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6601 a signal trampoline (either by a signal being delivered or by
6602 the signal handler returning). Just single-step until the
6603 inferior leaves the trampoline (either by calling the handler
6604 or returning). */
488f131b
JB
6605 keep_going (ecs);
6606 return;
6607 }
c906108c 6608
14132e89
MR
6609 /* If we're in the return path from a shared library trampoline,
6610 we want to proceed through the trampoline when stepping. */
6611 /* macro/2012-04-25: This needs to come before the subroutine
6612 call check below as on some targets return trampolines look
6613 like subroutine calls (MIPS16 return thunks). */
6614 if (gdbarch_in_solib_return_trampoline (gdbarch,
6615 stop_pc, ecs->stop_func_name)
6616 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6617 {
6618 /* Determine where this trampoline returns. */
6619 CORE_ADDR real_stop_pc;
6620
6621 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6622
6623 if (debug_infrun)
6624 fprintf_unfiltered (gdb_stdlog,
6625 "infrun: stepped into solib return tramp\n");
6626
6627 /* Only proceed through if we know where it's going. */
6628 if (real_stop_pc)
6629 {
6630 /* And put the step-breakpoint there and go until there. */
6631 struct symtab_and_line sr_sal;
6632
6633 init_sal (&sr_sal); /* initialize to zeroes */
6634 sr_sal.pc = real_stop_pc;
6635 sr_sal.section = find_pc_overlay (sr_sal.pc);
6636 sr_sal.pspace = get_frame_program_space (frame);
6637
6638 /* Do not specify what the fp should be when we stop since
6639 on some machines the prologue is where the new fp value
6640 is established. */
6641 insert_step_resume_breakpoint_at_sal (gdbarch,
6642 sr_sal, null_frame_id);
6643
6644 /* Restart without fiddling with the step ranges or
6645 other state. */
6646 keep_going (ecs);
6647 return;
6648 }
6649 }
6650
c17eaafe
DJ
6651 /* Check for subroutine calls. The check for the current frame
6652 equalling the step ID is not necessary - the check of the
6653 previous frame's ID is sufficient - but it is a common case and
6654 cheaper than checking the previous frame's ID.
14e60db5
DJ
6655
6656 NOTE: frame_id_eq will never report two invalid frame IDs as
6657 being equal, so to get into this block, both the current and
6658 previous frame must have valid frame IDs. */
005ca36a
JB
6659 /* The outer_frame_id check is a heuristic to detect stepping
6660 through startup code. If we step over an instruction which
6661 sets the stack pointer from an invalid value to a valid value,
6662 we may detect that as a subroutine call from the mythical
6663 "outermost" function. This could be fixed by marking
6664 outermost frames as !stack_p,code_p,special_p. Then the
6665 initial outermost frame, before sp was valid, would
ce6cca6d 6666 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6667 for more. */
edb3359d 6668 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6669 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6670 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6671 ecs->event_thread->control.step_stack_frame_id)
6672 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6673 outer_frame_id)
885eeb5b
PA
6674 || (ecs->event_thread->control.step_start_function
6675 != find_pc_function (stop_pc)))))
488f131b 6676 {
95918acb 6677 CORE_ADDR real_stop_pc;
8fb3e588 6678
527159b7 6679 if (debug_infrun)
8a9de0e4 6680 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6681
b7a084be 6682 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6683 {
6684 /* I presume that step_over_calls is only 0 when we're
6685 supposed to be stepping at the assembly language level
6686 ("stepi"). Just stop. */
388a8562 6687 /* And this works the same backward as frontward. MVS */
bdc36728 6688 end_stepping_range (ecs);
95918acb
AC
6689 return;
6690 }
8fb3e588 6691
388a8562
MS
6692 /* Reverse stepping through solib trampolines. */
6693
6694 if (execution_direction == EXEC_REVERSE
16c381f0 6695 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6696 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6697 || (ecs->stop_func_start == 0
6698 && in_solib_dynsym_resolve_code (stop_pc))))
6699 {
6700 /* Any solib trampoline code can be handled in reverse
6701 by simply continuing to single-step. We have already
6702 executed the solib function (backwards), and a few
6703 steps will take us back through the trampoline to the
6704 caller. */
6705 keep_going (ecs);
6706 return;
6707 }
6708
16c381f0 6709 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6710 {
b2175913
MS
6711 /* We're doing a "next".
6712
6713 Normal (forward) execution: set a breakpoint at the
6714 callee's return address (the address at which the caller
6715 will resume).
6716
6717 Reverse (backward) execution. set the step-resume
6718 breakpoint at the start of the function that we just
6719 stepped into (backwards), and continue to there. When we
6130d0b7 6720 get there, we'll need to single-step back to the caller. */
b2175913
MS
6721
6722 if (execution_direction == EXEC_REVERSE)
6723 {
acf9414f
JK
6724 /* If we're already at the start of the function, we've either
6725 just stepped backward into a single instruction function,
6726 or stepped back out of a signal handler to the first instruction
6727 of the function. Just keep going, which will single-step back
6728 to the caller. */
58c48e72 6729 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6730 {
6731 struct symtab_and_line sr_sal;
6732
6733 /* Normal function call return (static or dynamic). */
6734 init_sal (&sr_sal);
6735 sr_sal.pc = ecs->stop_func_start;
6736 sr_sal.pspace = get_frame_program_space (frame);
6737 insert_step_resume_breakpoint_at_sal (gdbarch,
6738 sr_sal, null_frame_id);
6739 }
b2175913
MS
6740 }
6741 else
568d6575 6742 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6743
8567c30f
AC
6744 keep_going (ecs);
6745 return;
6746 }
a53c66de 6747
95918acb 6748 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6749 calling routine and the real function), locate the real
6750 function. That's what tells us (a) whether we want to step
6751 into it at all, and (b) what prologue we want to run to the
6752 end of, if we do step into it. */
568d6575 6753 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6754 if (real_stop_pc == 0)
568d6575 6755 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6756 if (real_stop_pc != 0)
6757 ecs->stop_func_start = real_stop_pc;
8fb3e588 6758
db5f024e 6759 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6760 {
6761 struct symtab_and_line sr_sal;
abbb1732 6762
1b2bfbb9
RC
6763 init_sal (&sr_sal);
6764 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6765 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6766
a6d9a66e
UW
6767 insert_step_resume_breakpoint_at_sal (gdbarch,
6768 sr_sal, null_frame_id);
8fb3e588
AC
6769 keep_going (ecs);
6770 return;
1b2bfbb9
RC
6771 }
6772
95918acb 6773 /* If we have line number information for the function we are
1bfeeb0f
JL
6774 thinking of stepping into and the function isn't on the skip
6775 list, step into it.
95918acb 6776
8fb3e588
AC
6777 If there are several symtabs at that PC (e.g. with include
6778 files), just want to know whether *any* of them have line
6779 numbers. find_pc_line handles this. */
95918acb
AC
6780 {
6781 struct symtab_and_line tmp_sal;
8fb3e588 6782
95918acb 6783 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6784 if (tmp_sal.line != 0
85817405
JK
6785 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6786 &tmp_sal))
95918acb 6787 {
b2175913 6788 if (execution_direction == EXEC_REVERSE)
568d6575 6789 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6790 else
568d6575 6791 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6792 return;
6793 }
6794 }
6795
6796 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6797 set, we stop the step so that the user has a chance to switch
6798 in assembly mode. */
16c381f0 6799 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6800 && step_stop_if_no_debug)
95918acb 6801 {
bdc36728 6802 end_stepping_range (ecs);
95918acb
AC
6803 return;
6804 }
6805
b2175913
MS
6806 if (execution_direction == EXEC_REVERSE)
6807 {
acf9414f
JK
6808 /* If we're already at the start of the function, we've either just
6809 stepped backward into a single instruction function without line
6810 number info, or stepped back out of a signal handler to the first
6811 instruction of the function without line number info. Just keep
6812 going, which will single-step back to the caller. */
6813 if (ecs->stop_func_start != stop_pc)
6814 {
6815 /* Set a breakpoint at callee's start address.
6816 From there we can step once and be back in the caller. */
6817 struct symtab_and_line sr_sal;
abbb1732 6818
acf9414f
JK
6819 init_sal (&sr_sal);
6820 sr_sal.pc = ecs->stop_func_start;
6821 sr_sal.pspace = get_frame_program_space (frame);
6822 insert_step_resume_breakpoint_at_sal (gdbarch,
6823 sr_sal, null_frame_id);
6824 }
b2175913
MS
6825 }
6826 else
6827 /* Set a breakpoint at callee's return address (the address
6828 at which the caller will resume). */
568d6575 6829 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6830
95918acb 6831 keep_going (ecs);
488f131b 6832 return;
488f131b 6833 }
c906108c 6834
fdd654f3
MS
6835 /* Reverse stepping through solib trampolines. */
6836
6837 if (execution_direction == EXEC_REVERSE
16c381f0 6838 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6839 {
6840 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6841 || (ecs->stop_func_start == 0
6842 && in_solib_dynsym_resolve_code (stop_pc)))
6843 {
6844 /* Any solib trampoline code can be handled in reverse
6845 by simply continuing to single-step. We have already
6846 executed the solib function (backwards), and a few
6847 steps will take us back through the trampoline to the
6848 caller. */
6849 keep_going (ecs);
6850 return;
6851 }
6852 else if (in_solib_dynsym_resolve_code (stop_pc))
6853 {
6854 /* Stepped backward into the solib dynsym resolver.
6855 Set a breakpoint at its start and continue, then
6856 one more step will take us out. */
6857 struct symtab_and_line sr_sal;
abbb1732 6858
fdd654f3
MS
6859 init_sal (&sr_sal);
6860 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6861 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6862 insert_step_resume_breakpoint_at_sal (gdbarch,
6863 sr_sal, null_frame_id);
6864 keep_going (ecs);
6865 return;
6866 }
6867 }
6868
2afb61aa 6869 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6870
1b2bfbb9
RC
6871 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6872 the trampoline processing logic, however, there are some trampolines
6873 that have no names, so we should do trampoline handling first. */
16c381f0 6874 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6875 && ecs->stop_func_name == NULL
2afb61aa 6876 && stop_pc_sal.line == 0)
1b2bfbb9 6877 {
527159b7 6878 if (debug_infrun)
3e43a32a
MS
6879 fprintf_unfiltered (gdb_stdlog,
6880 "infrun: stepped into undebuggable function\n");
527159b7 6881
1b2bfbb9 6882 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6883 undebuggable function (where there is no debugging information
6884 and no line number corresponding to the address where the
1b2bfbb9
RC
6885 inferior stopped). Since we want to skip this kind of code,
6886 we keep going until the inferior returns from this
14e60db5
DJ
6887 function - unless the user has asked us not to (via
6888 set step-mode) or we no longer know how to get back
6889 to the call site. */
6890 if (step_stop_if_no_debug
c7ce8faa 6891 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6892 {
6893 /* If we have no line number and the step-stop-if-no-debug
6894 is set, we stop the step so that the user has a chance to
6895 switch in assembly mode. */
bdc36728 6896 end_stepping_range (ecs);
1b2bfbb9
RC
6897 return;
6898 }
6899 else
6900 {
6901 /* Set a breakpoint at callee's return address (the address
6902 at which the caller will resume). */
568d6575 6903 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6904 keep_going (ecs);
6905 return;
6906 }
6907 }
6908
16c381f0 6909 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6910 {
6911 /* It is stepi or nexti. We always want to stop stepping after
6912 one instruction. */
527159b7 6913 if (debug_infrun)
8a9de0e4 6914 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6915 end_stepping_range (ecs);
1b2bfbb9
RC
6916 return;
6917 }
6918
2afb61aa 6919 if (stop_pc_sal.line == 0)
488f131b
JB
6920 {
6921 /* We have no line number information. That means to stop
6922 stepping (does this always happen right after one instruction,
6923 when we do "s" in a function with no line numbers,
6924 or can this happen as a result of a return or longjmp?). */
527159b7 6925 if (debug_infrun)
8a9de0e4 6926 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6927 end_stepping_range (ecs);
488f131b
JB
6928 return;
6929 }
c906108c 6930
edb3359d
DJ
6931 /* Look for "calls" to inlined functions, part one. If the inline
6932 frame machinery detected some skipped call sites, we have entered
6933 a new inline function. */
6934
6935 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6936 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6937 && inline_skipped_frames (ecs->ptid))
6938 {
6939 struct symtab_and_line call_sal;
6940
6941 if (debug_infrun)
6942 fprintf_unfiltered (gdb_stdlog,
6943 "infrun: stepped into inlined function\n");
6944
6945 find_frame_sal (get_current_frame (), &call_sal);
6946
16c381f0 6947 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6948 {
6949 /* For "step", we're going to stop. But if the call site
6950 for this inlined function is on the same source line as
6951 we were previously stepping, go down into the function
6952 first. Otherwise stop at the call site. */
6953
6954 if (call_sal.line == ecs->event_thread->current_line
6955 && call_sal.symtab == ecs->event_thread->current_symtab)
6956 step_into_inline_frame (ecs->ptid);
6957
bdc36728 6958 end_stepping_range (ecs);
edb3359d
DJ
6959 return;
6960 }
6961 else
6962 {
6963 /* For "next", we should stop at the call site if it is on a
6964 different source line. Otherwise continue through the
6965 inlined function. */
6966 if (call_sal.line == ecs->event_thread->current_line
6967 && call_sal.symtab == ecs->event_thread->current_symtab)
6968 keep_going (ecs);
6969 else
bdc36728 6970 end_stepping_range (ecs);
edb3359d
DJ
6971 return;
6972 }
6973 }
6974
6975 /* Look for "calls" to inlined functions, part two. If we are still
6976 in the same real function we were stepping through, but we have
6977 to go further up to find the exact frame ID, we are stepping
6978 through a more inlined call beyond its call site. */
6979
6980 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6981 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6982 ecs->event_thread->control.step_frame_id)
edb3359d 6983 && stepped_in_from (get_current_frame (),
16c381f0 6984 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6985 {
6986 if (debug_infrun)
6987 fprintf_unfiltered (gdb_stdlog,
6988 "infrun: stepping through inlined function\n");
6989
16c381f0 6990 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6991 keep_going (ecs);
6992 else
bdc36728 6993 end_stepping_range (ecs);
edb3359d
DJ
6994 return;
6995 }
6996
2afb61aa 6997 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6998 && (ecs->event_thread->current_line != stop_pc_sal.line
6999 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
7000 {
7001 /* We are at the start of a different line. So stop. Note that
7002 we don't stop if we step into the middle of a different line.
7003 That is said to make things like for (;;) statements work
7004 better. */
527159b7 7005 if (debug_infrun)
3e43a32a
MS
7006 fprintf_unfiltered (gdb_stdlog,
7007 "infrun: stepped to a different line\n");
bdc36728 7008 end_stepping_range (ecs);
488f131b
JB
7009 return;
7010 }
c906108c 7011
488f131b 7012 /* We aren't done stepping.
c906108c 7013
488f131b
JB
7014 Optimize by setting the stepping range to the line.
7015 (We might not be in the original line, but if we entered a
7016 new line in mid-statement, we continue stepping. This makes
7017 things like for(;;) statements work better.) */
c906108c 7018
16c381f0
JK
7019 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7020 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7021 ecs->event_thread->control.may_range_step = 1;
edb3359d 7022 set_step_info (frame, stop_pc_sal);
488f131b 7023
527159b7 7024 if (debug_infrun)
8a9de0e4 7025 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7026 keep_going (ecs);
104c1213
JM
7027}
7028
c447ac0b
PA
7029/* In all-stop mode, if we're currently stepping but have stopped in
7030 some other thread, we may need to switch back to the stepped
7031 thread. Returns true we set the inferior running, false if we left
7032 it stopped (and the event needs further processing). */
7033
7034static int
7035switch_back_to_stepped_thread (struct execution_control_state *ecs)
7036{
fbea99ea 7037 if (!target_is_non_stop_p ())
c447ac0b
PA
7038 {
7039 struct thread_info *tp;
99619bea
PA
7040 struct thread_info *stepping_thread;
7041
7042 /* If any thread is blocked on some internal breakpoint, and we
7043 simply need to step over that breakpoint to get it going
7044 again, do that first. */
7045
7046 /* However, if we see an event for the stepping thread, then we
7047 know all other threads have been moved past their breakpoints
7048 already. Let the caller check whether the step is finished,
7049 etc., before deciding to move it past a breakpoint. */
7050 if (ecs->event_thread->control.step_range_end != 0)
7051 return 0;
7052
7053 /* Check if the current thread is blocked on an incomplete
7054 step-over, interrupted by a random signal. */
7055 if (ecs->event_thread->control.trap_expected
7056 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7057 {
99619bea
PA
7058 if (debug_infrun)
7059 {
7060 fprintf_unfiltered (gdb_stdlog,
7061 "infrun: need to finish step-over of [%s]\n",
7062 target_pid_to_str (ecs->event_thread->ptid));
7063 }
7064 keep_going (ecs);
7065 return 1;
7066 }
2adfaa28 7067
99619bea
PA
7068 /* Check if the current thread is blocked by a single-step
7069 breakpoint of another thread. */
7070 if (ecs->hit_singlestep_breakpoint)
7071 {
7072 if (debug_infrun)
7073 {
7074 fprintf_unfiltered (gdb_stdlog,
7075 "infrun: need to step [%s] over single-step "
7076 "breakpoint\n",
7077 target_pid_to_str (ecs->ptid));
7078 }
7079 keep_going (ecs);
7080 return 1;
7081 }
7082
4d9d9d04
PA
7083 /* If this thread needs yet another step-over (e.g., stepping
7084 through a delay slot), do it first before moving on to
7085 another thread. */
7086 if (thread_still_needs_step_over (ecs->event_thread))
7087 {
7088 if (debug_infrun)
7089 {
7090 fprintf_unfiltered (gdb_stdlog,
7091 "infrun: thread [%s] still needs step-over\n",
7092 target_pid_to_str (ecs->event_thread->ptid));
7093 }
7094 keep_going (ecs);
7095 return 1;
7096 }
70509625 7097
483805cf
PA
7098 /* If scheduler locking applies even if not stepping, there's no
7099 need to walk over threads. Above we've checked whether the
7100 current thread is stepping. If some other thread not the
7101 event thread is stepping, then it must be that scheduler
7102 locking is not in effect. */
856e7dd6 7103 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7104 return 0;
7105
4d9d9d04
PA
7106 /* Otherwise, we no longer expect a trap in the current thread.
7107 Clear the trap_expected flag before switching back -- this is
7108 what keep_going does as well, if we call it. */
7109 ecs->event_thread->control.trap_expected = 0;
7110
7111 /* Likewise, clear the signal if it should not be passed. */
7112 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7113 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7114
7115 /* Do all pending step-overs before actually proceeding with
483805cf 7116 step/next/etc. */
4d9d9d04
PA
7117 if (start_step_over ())
7118 {
7119 prepare_to_wait (ecs);
7120 return 1;
7121 }
7122
7123 /* Look for the stepping/nexting thread. */
483805cf 7124 stepping_thread = NULL;
4d9d9d04 7125
034f788c 7126 ALL_NON_EXITED_THREADS (tp)
483805cf 7127 {
fbea99ea
PA
7128 /* Ignore threads of processes the caller is not
7129 resuming. */
483805cf 7130 if (!sched_multi
1afd5965 7131 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7132 continue;
7133
7134 /* When stepping over a breakpoint, we lock all threads
7135 except the one that needs to move past the breakpoint.
7136 If a non-event thread has this set, the "incomplete
7137 step-over" check above should have caught it earlier. */
372316f1
PA
7138 if (tp->control.trap_expected)
7139 {
7140 internal_error (__FILE__, __LINE__,
7141 "[%s] has inconsistent state: "
7142 "trap_expected=%d\n",
7143 target_pid_to_str (tp->ptid),
7144 tp->control.trap_expected);
7145 }
483805cf
PA
7146
7147 /* Did we find the stepping thread? */
7148 if (tp->control.step_range_end)
7149 {
7150 /* Yep. There should only one though. */
7151 gdb_assert (stepping_thread == NULL);
7152
7153 /* The event thread is handled at the top, before we
7154 enter this loop. */
7155 gdb_assert (tp != ecs->event_thread);
7156
7157 /* If some thread other than the event thread is
7158 stepping, then scheduler locking can't be in effect,
7159 otherwise we wouldn't have resumed the current event
7160 thread in the first place. */
856e7dd6 7161 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7162
7163 stepping_thread = tp;
7164 }
99619bea
PA
7165 }
7166
483805cf 7167 if (stepping_thread != NULL)
99619bea 7168 {
c447ac0b
PA
7169 if (debug_infrun)
7170 fprintf_unfiltered (gdb_stdlog,
7171 "infrun: switching back to stepped thread\n");
7172
2ac7589c
PA
7173 if (keep_going_stepped_thread (stepping_thread))
7174 {
7175 prepare_to_wait (ecs);
7176 return 1;
7177 }
7178 }
7179 }
2adfaa28 7180
2ac7589c
PA
7181 return 0;
7182}
2adfaa28 7183
2ac7589c
PA
7184/* Set a previously stepped thread back to stepping. Returns true on
7185 success, false if the resume is not possible (e.g., the thread
7186 vanished). */
7187
7188static int
7189keep_going_stepped_thread (struct thread_info *tp)
7190{
7191 struct frame_info *frame;
2ac7589c
PA
7192 struct execution_control_state ecss;
7193 struct execution_control_state *ecs = &ecss;
2adfaa28 7194
2ac7589c
PA
7195 /* If the stepping thread exited, then don't try to switch back and
7196 resume it, which could fail in several different ways depending
7197 on the target. Instead, just keep going.
2adfaa28 7198
2ac7589c
PA
7199 We can find a stepping dead thread in the thread list in two
7200 cases:
2adfaa28 7201
2ac7589c
PA
7202 - The target supports thread exit events, and when the target
7203 tries to delete the thread from the thread list, inferior_ptid
7204 pointed at the exiting thread. In such case, calling
7205 delete_thread does not really remove the thread from the list;
7206 instead, the thread is left listed, with 'exited' state.
64ce06e4 7207
2ac7589c
PA
7208 - The target's debug interface does not support thread exit
7209 events, and so we have no idea whatsoever if the previously
7210 stepping thread is still alive. For that reason, we need to
7211 synchronously query the target now. */
2adfaa28 7212
2ac7589c
PA
7213 if (is_exited (tp->ptid)
7214 || !target_thread_alive (tp->ptid))
7215 {
7216 if (debug_infrun)
7217 fprintf_unfiltered (gdb_stdlog,
7218 "infrun: not resuming previously "
7219 "stepped thread, it has vanished\n");
7220
7221 delete_thread (tp->ptid);
7222 return 0;
c447ac0b 7223 }
2ac7589c
PA
7224
7225 if (debug_infrun)
7226 fprintf_unfiltered (gdb_stdlog,
7227 "infrun: resuming previously stepped thread\n");
7228
7229 reset_ecs (ecs, tp);
7230 switch_to_thread (tp->ptid);
7231
7232 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7233 frame = get_current_frame ();
2ac7589c
PA
7234
7235 /* If the PC of the thread we were trying to single-step has
7236 changed, then that thread has trapped or been signaled, but the
7237 event has not been reported to GDB yet. Re-poll the target
7238 looking for this particular thread's event (i.e. temporarily
7239 enable schedlock) by:
7240
7241 - setting a break at the current PC
7242 - resuming that particular thread, only (by setting trap
7243 expected)
7244
7245 This prevents us continuously moving the single-step breakpoint
7246 forward, one instruction at a time, overstepping. */
7247
7248 if (stop_pc != tp->prev_pc)
7249 {
7250 ptid_t resume_ptid;
7251
7252 if (debug_infrun)
7253 fprintf_unfiltered (gdb_stdlog,
7254 "infrun: expected thread advanced also (%s -> %s)\n",
7255 paddress (target_gdbarch (), tp->prev_pc),
7256 paddress (target_gdbarch (), stop_pc));
7257
7258 /* Clear the info of the previous step-over, as it's no longer
7259 valid (if the thread was trying to step over a breakpoint, it
7260 has already succeeded). It's what keep_going would do too,
7261 if we called it. Do this before trying to insert the sss
7262 breakpoint, otherwise if we were previously trying to step
7263 over this exact address in another thread, the breakpoint is
7264 skipped. */
7265 clear_step_over_info ();
7266 tp->control.trap_expected = 0;
7267
7268 insert_single_step_breakpoint (get_frame_arch (frame),
7269 get_frame_address_space (frame),
7270 stop_pc);
7271
372316f1 7272 tp->resumed = 1;
fbea99ea 7273 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7274 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7275 }
7276 else
7277 {
7278 if (debug_infrun)
7279 fprintf_unfiltered (gdb_stdlog,
7280 "infrun: expected thread still hasn't advanced\n");
7281
7282 keep_going_pass_signal (ecs);
7283 }
7284 return 1;
c447ac0b
PA
7285}
7286
8b061563
PA
7287/* Is thread TP in the middle of (software or hardware)
7288 single-stepping? (Note the result of this function must never be
7289 passed directly as target_resume's STEP parameter.) */
104c1213 7290
a289b8f6 7291static int
b3444185 7292currently_stepping (struct thread_info *tp)
a7212384 7293{
8358c15c
JK
7294 return ((tp->control.step_range_end
7295 && tp->control.step_resume_breakpoint == NULL)
7296 || tp->control.trap_expected
af48d08f 7297 || tp->stepped_breakpoint
8358c15c 7298 || bpstat_should_step ());
a7212384
UW
7299}
7300
b2175913
MS
7301/* Inferior has stepped into a subroutine call with source code that
7302 we should not step over. Do step to the first line of code in
7303 it. */
c2c6d25f
JM
7304
7305static void
568d6575
UW
7306handle_step_into_function (struct gdbarch *gdbarch,
7307 struct execution_control_state *ecs)
c2c6d25f 7308{
43f3e411 7309 struct compunit_symtab *cust;
2afb61aa 7310 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7311
7e324e48
GB
7312 fill_in_stop_func (gdbarch, ecs);
7313
43f3e411
DE
7314 cust = find_pc_compunit_symtab (stop_pc);
7315 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7316 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7317 ecs->stop_func_start);
c2c6d25f 7318
2afb61aa 7319 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7320 /* Use the step_resume_break to step until the end of the prologue,
7321 even if that involves jumps (as it seems to on the vax under
7322 4.2). */
7323 /* If the prologue ends in the middle of a source line, continue to
7324 the end of that source line (if it is still within the function).
7325 Otherwise, just go to end of prologue. */
2afb61aa
PA
7326 if (stop_func_sal.end
7327 && stop_func_sal.pc != ecs->stop_func_start
7328 && stop_func_sal.end < ecs->stop_func_end)
7329 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7330
2dbd5e30
KB
7331 /* Architectures which require breakpoint adjustment might not be able
7332 to place a breakpoint at the computed address. If so, the test
7333 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7334 ecs->stop_func_start to an address at which a breakpoint may be
7335 legitimately placed.
8fb3e588 7336
2dbd5e30
KB
7337 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7338 made, GDB will enter an infinite loop when stepping through
7339 optimized code consisting of VLIW instructions which contain
7340 subinstructions corresponding to different source lines. On
7341 FR-V, it's not permitted to place a breakpoint on any but the
7342 first subinstruction of a VLIW instruction. When a breakpoint is
7343 set, GDB will adjust the breakpoint address to the beginning of
7344 the VLIW instruction. Thus, we need to make the corresponding
7345 adjustment here when computing the stop address. */
8fb3e588 7346
568d6575 7347 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7348 {
7349 ecs->stop_func_start
568d6575 7350 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7351 ecs->stop_func_start);
2dbd5e30
KB
7352 }
7353
c2c6d25f
JM
7354 if (ecs->stop_func_start == stop_pc)
7355 {
7356 /* We are already there: stop now. */
bdc36728 7357 end_stepping_range (ecs);
c2c6d25f
JM
7358 return;
7359 }
7360 else
7361 {
7362 /* Put the step-breakpoint there and go until there. */
fe39c653 7363 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7364 sr_sal.pc = ecs->stop_func_start;
7365 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7366 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7367
c2c6d25f 7368 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7369 some machines the prologue is where the new fp value is
7370 established. */
a6d9a66e 7371 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7372
7373 /* And make sure stepping stops right away then. */
16c381f0
JK
7374 ecs->event_thread->control.step_range_end
7375 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7376 }
7377 keep_going (ecs);
7378}
d4f3574e 7379
b2175913
MS
7380/* Inferior has stepped backward into a subroutine call with source
7381 code that we should not step over. Do step to the beginning of the
7382 last line of code in it. */
7383
7384static void
568d6575
UW
7385handle_step_into_function_backward (struct gdbarch *gdbarch,
7386 struct execution_control_state *ecs)
b2175913 7387{
43f3e411 7388 struct compunit_symtab *cust;
167e4384 7389 struct symtab_and_line stop_func_sal;
b2175913 7390
7e324e48
GB
7391 fill_in_stop_func (gdbarch, ecs);
7392
43f3e411
DE
7393 cust = find_pc_compunit_symtab (stop_pc);
7394 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7395 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7396 ecs->stop_func_start);
7397
7398 stop_func_sal = find_pc_line (stop_pc, 0);
7399
7400 /* OK, we're just going to keep stepping here. */
7401 if (stop_func_sal.pc == stop_pc)
7402 {
7403 /* We're there already. Just stop stepping now. */
bdc36728 7404 end_stepping_range (ecs);
b2175913
MS
7405 }
7406 else
7407 {
7408 /* Else just reset the step range and keep going.
7409 No step-resume breakpoint, they don't work for
7410 epilogues, which can have multiple entry paths. */
16c381f0
JK
7411 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7412 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7413 keep_going (ecs);
7414 }
7415 return;
7416}
7417
d3169d93 7418/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7419 This is used to both functions and to skip over code. */
7420
7421static void
2c03e5be
PA
7422insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7423 struct symtab_and_line sr_sal,
7424 struct frame_id sr_id,
7425 enum bptype sr_type)
44cbf7b5 7426{
611c83ae
PA
7427 /* There should never be more than one step-resume or longjmp-resume
7428 breakpoint per thread, so we should never be setting a new
44cbf7b5 7429 step_resume_breakpoint when one is already active. */
8358c15c 7430 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7431 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7432
7433 if (debug_infrun)
7434 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7435 "infrun: inserting step-resume breakpoint at %s\n",
7436 paddress (gdbarch, sr_sal.pc));
d3169d93 7437
8358c15c 7438 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7439 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7440}
7441
9da8c2a0 7442void
2c03e5be
PA
7443insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7444 struct symtab_and_line sr_sal,
7445 struct frame_id sr_id)
7446{
7447 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7448 sr_sal, sr_id,
7449 bp_step_resume);
44cbf7b5 7450}
7ce450bd 7451
2c03e5be
PA
7452/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7453 This is used to skip a potential signal handler.
7ce450bd 7454
14e60db5
DJ
7455 This is called with the interrupted function's frame. The signal
7456 handler, when it returns, will resume the interrupted function at
7457 RETURN_FRAME.pc. */
d303a6c7
AC
7458
7459static void
2c03e5be 7460insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7461{
7462 struct symtab_and_line sr_sal;
a6d9a66e 7463 struct gdbarch *gdbarch;
d303a6c7 7464
f4c1edd8 7465 gdb_assert (return_frame != NULL);
d303a6c7
AC
7466 init_sal (&sr_sal); /* initialize to zeros */
7467
a6d9a66e 7468 gdbarch = get_frame_arch (return_frame);
568d6575 7469 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7470 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7471 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7472
2c03e5be
PA
7473 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7474 get_stack_frame_id (return_frame),
7475 bp_hp_step_resume);
d303a6c7
AC
7476}
7477
2c03e5be
PA
7478/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7479 is used to skip a function after stepping into it (for "next" or if
7480 the called function has no debugging information).
14e60db5
DJ
7481
7482 The current function has almost always been reached by single
7483 stepping a call or return instruction. NEXT_FRAME belongs to the
7484 current function, and the breakpoint will be set at the caller's
7485 resume address.
7486
7487 This is a separate function rather than reusing
2c03e5be 7488 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7489 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7490 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7491
7492static void
7493insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7494{
7495 struct symtab_and_line sr_sal;
a6d9a66e 7496 struct gdbarch *gdbarch;
14e60db5
DJ
7497
7498 /* We shouldn't have gotten here if we don't know where the call site
7499 is. */
c7ce8faa 7500 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7501
7502 init_sal (&sr_sal); /* initialize to zeros */
7503
a6d9a66e 7504 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7505 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7506 frame_unwind_caller_pc (next_frame));
14e60db5 7507 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7508 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7509
a6d9a66e 7510 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7511 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7512}
7513
611c83ae
PA
7514/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7515 new breakpoint at the target of a jmp_buf. The handling of
7516 longjmp-resume uses the same mechanisms used for handling
7517 "step-resume" breakpoints. */
7518
7519static void
a6d9a66e 7520insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7521{
e81a37f7
TT
7522 /* There should never be more than one longjmp-resume breakpoint per
7523 thread, so we should never be setting a new
611c83ae 7524 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7525 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7526
7527 if (debug_infrun)
7528 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7529 "infrun: inserting longjmp-resume breakpoint at %s\n",
7530 paddress (gdbarch, pc));
611c83ae 7531
e81a37f7 7532 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7533 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7534}
7535
186c406b
TT
7536/* Insert an exception resume breakpoint. TP is the thread throwing
7537 the exception. The block B is the block of the unwinder debug hook
7538 function. FRAME is the frame corresponding to the call to this
7539 function. SYM is the symbol of the function argument holding the
7540 target PC of the exception. */
7541
7542static void
7543insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7544 const struct block *b,
186c406b
TT
7545 struct frame_info *frame,
7546 struct symbol *sym)
7547{
492d29ea 7548 TRY
186c406b 7549 {
63e43d3a 7550 struct block_symbol vsym;
186c406b
TT
7551 struct value *value;
7552 CORE_ADDR handler;
7553 struct breakpoint *bp;
7554
63e43d3a
PMR
7555 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7556 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7557 /* If the value was optimized out, revert to the old behavior. */
7558 if (! value_optimized_out (value))
7559 {
7560 handler = value_as_address (value);
7561
7562 if (debug_infrun)
7563 fprintf_unfiltered (gdb_stdlog,
7564 "infrun: exception resume at %lx\n",
7565 (unsigned long) handler);
7566
7567 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7568 handler, bp_exception_resume);
c70a6932
JK
7569
7570 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7571 frame = NULL;
7572
5d5658a1 7573 bp->thread = tp->global_num;
186c406b
TT
7574 inferior_thread ()->control.exception_resume_breakpoint = bp;
7575 }
7576 }
492d29ea
PA
7577 CATCH (e, RETURN_MASK_ERROR)
7578 {
7579 /* We want to ignore errors here. */
7580 }
7581 END_CATCH
186c406b
TT
7582}
7583
28106bc2
SDJ
7584/* A helper for check_exception_resume that sets an
7585 exception-breakpoint based on a SystemTap probe. */
7586
7587static void
7588insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7589 const struct bound_probe *probe,
28106bc2
SDJ
7590 struct frame_info *frame)
7591{
7592 struct value *arg_value;
7593 CORE_ADDR handler;
7594 struct breakpoint *bp;
7595
7596 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7597 if (!arg_value)
7598 return;
7599
7600 handler = value_as_address (arg_value);
7601
7602 if (debug_infrun)
7603 fprintf_unfiltered (gdb_stdlog,
7604 "infrun: exception resume at %s\n",
6bac7473 7605 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7606 handler));
7607
7608 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7609 handler, bp_exception_resume);
5d5658a1 7610 bp->thread = tp->global_num;
28106bc2
SDJ
7611 inferior_thread ()->control.exception_resume_breakpoint = bp;
7612}
7613
186c406b
TT
7614/* This is called when an exception has been intercepted. Check to
7615 see whether the exception's destination is of interest, and if so,
7616 set an exception resume breakpoint there. */
7617
7618static void
7619check_exception_resume (struct execution_control_state *ecs,
28106bc2 7620 struct frame_info *frame)
186c406b 7621{
729662a5 7622 struct bound_probe probe;
28106bc2
SDJ
7623 struct symbol *func;
7624
7625 /* First see if this exception unwinding breakpoint was set via a
7626 SystemTap probe point. If so, the probe has two arguments: the
7627 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7628 set a breakpoint there. */
6bac7473 7629 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7630 if (probe.probe)
28106bc2 7631 {
729662a5 7632 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7633 return;
7634 }
7635
7636 func = get_frame_function (frame);
7637 if (!func)
7638 return;
186c406b 7639
492d29ea 7640 TRY
186c406b 7641 {
3977b71f 7642 const struct block *b;
8157b174 7643 struct block_iterator iter;
186c406b
TT
7644 struct symbol *sym;
7645 int argno = 0;
7646
7647 /* The exception breakpoint is a thread-specific breakpoint on
7648 the unwinder's debug hook, declared as:
7649
7650 void _Unwind_DebugHook (void *cfa, void *handler);
7651
7652 The CFA argument indicates the frame to which control is
7653 about to be transferred. HANDLER is the destination PC.
7654
7655 We ignore the CFA and set a temporary breakpoint at HANDLER.
7656 This is not extremely efficient but it avoids issues in gdb
7657 with computing the DWARF CFA, and it also works even in weird
7658 cases such as throwing an exception from inside a signal
7659 handler. */
7660
7661 b = SYMBOL_BLOCK_VALUE (func);
7662 ALL_BLOCK_SYMBOLS (b, iter, sym)
7663 {
7664 if (!SYMBOL_IS_ARGUMENT (sym))
7665 continue;
7666
7667 if (argno == 0)
7668 ++argno;
7669 else
7670 {
7671 insert_exception_resume_breakpoint (ecs->event_thread,
7672 b, frame, sym);
7673 break;
7674 }
7675 }
7676 }
492d29ea
PA
7677 CATCH (e, RETURN_MASK_ERROR)
7678 {
7679 }
7680 END_CATCH
186c406b
TT
7681}
7682
104c1213 7683static void
22bcd14b 7684stop_waiting (struct execution_control_state *ecs)
104c1213 7685{
527159b7 7686 if (debug_infrun)
22bcd14b 7687 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7688
cd0fc7c3
SS
7689 /* Let callers know we don't want to wait for the inferior anymore. */
7690 ecs->wait_some_more = 0;
fbea99ea
PA
7691
7692 /* If all-stop, but the target is always in non-stop mode, stop all
7693 threads now that we're presenting the stop to the user. */
7694 if (!non_stop && target_is_non_stop_p ())
7695 stop_all_threads ();
cd0fc7c3
SS
7696}
7697
4d9d9d04
PA
7698/* Like keep_going, but passes the signal to the inferior, even if the
7699 signal is set to nopass. */
d4f3574e
SS
7700
7701static void
4d9d9d04 7702keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7703{
c4dbc9af
PA
7704 /* Make sure normal_stop is called if we get a QUIT handled before
7705 reaching resume. */
7706 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7707
4d9d9d04 7708 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7709 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7710
d4f3574e 7711 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7712 ecs->event_thread->prev_pc
7713 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7714
4d9d9d04 7715 if (ecs->event_thread->control.trap_expected)
d4f3574e 7716 {
4d9d9d04
PA
7717 struct thread_info *tp = ecs->event_thread;
7718
7719 if (debug_infrun)
7720 fprintf_unfiltered (gdb_stdlog,
7721 "infrun: %s has trap_expected set, "
7722 "resuming to collect trap\n",
7723 target_pid_to_str (tp->ptid));
7724
a9ba6bae
PA
7725 /* We haven't yet gotten our trap, and either: intercepted a
7726 non-signal event (e.g., a fork); or took a signal which we
7727 are supposed to pass through to the inferior. Simply
7728 continue. */
c4dbc9af 7729 discard_cleanups (old_cleanups);
64ce06e4 7730 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7731 }
372316f1
PA
7732 else if (step_over_info_valid_p ())
7733 {
7734 /* Another thread is stepping over a breakpoint in-line. If
7735 this thread needs a step-over too, queue the request. In
7736 either case, this resume must be deferred for later. */
7737 struct thread_info *tp = ecs->event_thread;
7738
7739 if (ecs->hit_singlestep_breakpoint
7740 || thread_still_needs_step_over (tp))
7741 {
7742 if (debug_infrun)
7743 fprintf_unfiltered (gdb_stdlog,
7744 "infrun: step-over already in progress: "
7745 "step-over for %s deferred\n",
7746 target_pid_to_str (tp->ptid));
7747 thread_step_over_chain_enqueue (tp);
7748 }
7749 else
7750 {
7751 if (debug_infrun)
7752 fprintf_unfiltered (gdb_stdlog,
7753 "infrun: step-over in progress: "
7754 "resume of %s deferred\n",
7755 target_pid_to_str (tp->ptid));
7756 }
7757
7758 discard_cleanups (old_cleanups);
7759 }
d4f3574e
SS
7760 else
7761 {
31e77af2 7762 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7763 int remove_bp;
7764 int remove_wps;
8d297bbf 7765 step_over_what step_what;
31e77af2 7766
d4f3574e 7767 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7768 anyway (if we got a signal, the user asked it be passed to
7769 the child)
7770 -- or --
7771 We got our expected trap, but decided we should resume from
7772 it.
d4f3574e 7773
a9ba6bae 7774 We're going to run this baby now!
d4f3574e 7775
c36b740a
VP
7776 Note that insert_breakpoints won't try to re-insert
7777 already inserted breakpoints. Therefore, we don't
7778 care if breakpoints were already inserted, or not. */
a9ba6bae 7779
31e77af2
PA
7780 /* If we need to step over a breakpoint, and we're not using
7781 displaced stepping to do so, insert all breakpoints
7782 (watchpoints, etc.) but the one we're stepping over, step one
7783 instruction, and then re-insert the breakpoint when that step
7784 is finished. */
963f9c80 7785
6c4cfb24
PA
7786 step_what = thread_still_needs_step_over (ecs->event_thread);
7787
963f9c80 7788 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7789 || (step_what & STEP_OVER_BREAKPOINT));
7790 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7791
cb71640d
PA
7792 /* We can't use displaced stepping if we need to step past a
7793 watchpoint. The instruction copied to the scratch pad would
7794 still trigger the watchpoint. */
7795 if (remove_bp
3fc8eb30 7796 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7797 {
31e77af2 7798 set_step_over_info (get_regcache_aspace (regcache),
21edc42f
YQ
7799 regcache_read_pc (regcache), remove_wps,
7800 ecs->event_thread->global_num);
45e8c884 7801 }
963f9c80 7802 else if (remove_wps)
21edc42f 7803 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7804
7805 /* If we now need to do an in-line step-over, we need to stop
7806 all other threads. Note this must be done before
7807 insert_breakpoints below, because that removes the breakpoint
7808 we're about to step over, otherwise other threads could miss
7809 it. */
fbea99ea 7810 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7811 stop_all_threads ();
abbb1732 7812
31e77af2 7813 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7814 TRY
31e77af2
PA
7815 {
7816 insert_breakpoints ();
7817 }
492d29ea 7818 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7819 {
7820 exception_print (gdb_stderr, e);
22bcd14b 7821 stop_waiting (ecs);
de1fe8c8 7822 discard_cleanups (old_cleanups);
31e77af2 7823 return;
d4f3574e 7824 }
492d29ea 7825 END_CATCH
d4f3574e 7826
963f9c80 7827 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7828
c4dbc9af 7829 discard_cleanups (old_cleanups);
64ce06e4 7830 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7831 }
7832
488f131b 7833 prepare_to_wait (ecs);
d4f3574e
SS
7834}
7835
4d9d9d04
PA
7836/* Called when we should continue running the inferior, because the
7837 current event doesn't cause a user visible stop. This does the
7838 resuming part; waiting for the next event is done elsewhere. */
7839
7840static void
7841keep_going (struct execution_control_state *ecs)
7842{
7843 if (ecs->event_thread->control.trap_expected
7844 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7845 ecs->event_thread->control.trap_expected = 0;
7846
7847 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7848 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7849 keep_going_pass_signal (ecs);
7850}
7851
104c1213
JM
7852/* This function normally comes after a resume, before
7853 handle_inferior_event exits. It takes care of any last bits of
7854 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7855
104c1213
JM
7856static void
7857prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7858{
527159b7 7859 if (debug_infrun)
8a9de0e4 7860 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7861
104c1213 7862 ecs->wait_some_more = 1;
0b333c5e
PA
7863
7864 if (!target_is_async_p ())
7865 mark_infrun_async_event_handler ();
c906108c 7866}
11cf8741 7867
fd664c91 7868/* We are done with the step range of a step/next/si/ni command.
b57bacec 7869 Called once for each n of a "step n" operation. */
fd664c91
PA
7870
7871static void
bdc36728 7872end_stepping_range (struct execution_control_state *ecs)
fd664c91 7873{
bdc36728 7874 ecs->event_thread->control.stop_step = 1;
bdc36728 7875 stop_waiting (ecs);
fd664c91
PA
7876}
7877
33d62d64
JK
7878/* Several print_*_reason functions to print why the inferior has stopped.
7879 We always print something when the inferior exits, or receives a signal.
7880 The rest of the cases are dealt with later on in normal_stop and
7881 print_it_typical. Ideally there should be a call to one of these
7882 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7883 stop_waiting is called.
33d62d64 7884
fd664c91
PA
7885 Note that we don't call these directly, instead we delegate that to
7886 the interpreters, through observers. Interpreters then call these
7887 with whatever uiout is right. */
33d62d64 7888
fd664c91
PA
7889void
7890print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7891{
fd664c91 7892 /* For CLI-like interpreters, print nothing. */
33d62d64 7893
112e8700 7894 if (uiout->is_mi_like_p ())
fd664c91 7895 {
112e8700 7896 uiout->field_string ("reason",
fd664c91
PA
7897 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7898 }
7899}
33d62d64 7900
fd664c91
PA
7901void
7902print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7903{
33d62d64 7904 annotate_signalled ();
112e8700
SM
7905 if (uiout->is_mi_like_p ())
7906 uiout->field_string
7907 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7908 uiout->text ("\nProgram terminated with signal ");
33d62d64 7909 annotate_signal_name ();
112e8700 7910 uiout->field_string ("signal-name",
2ea28649 7911 gdb_signal_to_name (siggnal));
33d62d64 7912 annotate_signal_name_end ();
112e8700 7913 uiout->text (", ");
33d62d64 7914 annotate_signal_string ();
112e8700 7915 uiout->field_string ("signal-meaning",
2ea28649 7916 gdb_signal_to_string (siggnal));
33d62d64 7917 annotate_signal_string_end ();
112e8700
SM
7918 uiout->text (".\n");
7919 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7920}
7921
fd664c91
PA
7922void
7923print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7924{
fda326dd
TT
7925 struct inferior *inf = current_inferior ();
7926 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7927
33d62d64
JK
7928 annotate_exited (exitstatus);
7929 if (exitstatus)
7930 {
112e8700
SM
7931 if (uiout->is_mi_like_p ())
7932 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7933 uiout->text ("[Inferior ");
7934 uiout->text (plongest (inf->num));
7935 uiout->text (" (");
7936 uiout->text (pidstr);
7937 uiout->text (") exited with code ");
7938 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7939 uiout->text ("]\n");
33d62d64
JK
7940 }
7941 else
11cf8741 7942 {
112e8700
SM
7943 if (uiout->is_mi_like_p ())
7944 uiout->field_string
7945 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7946 uiout->text ("[Inferior ");
7947 uiout->text (plongest (inf->num));
7948 uiout->text (" (");
7949 uiout->text (pidstr);
7950 uiout->text (") exited normally]\n");
33d62d64 7951 }
33d62d64
JK
7952}
7953
012b3a21
WT
7954/* Some targets/architectures can do extra processing/display of
7955 segmentation faults. E.g., Intel MPX boundary faults.
7956 Call the architecture dependent function to handle the fault. */
7957
7958static void
7959handle_segmentation_fault (struct ui_out *uiout)
7960{
7961 struct regcache *regcache = get_current_regcache ();
7962 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7963
7964 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7965 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7966}
7967
fd664c91
PA
7968void
7969print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7970{
f303dbd6
PA
7971 struct thread_info *thr = inferior_thread ();
7972
33d62d64
JK
7973 annotate_signal ();
7974
112e8700 7975 if (uiout->is_mi_like_p ())
f303dbd6
PA
7976 ;
7977 else if (show_thread_that_caused_stop ())
33d62d64 7978 {
f303dbd6 7979 const char *name;
33d62d64 7980
112e8700
SM
7981 uiout->text ("\nThread ");
7982 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7983
7984 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7985 if (name != NULL)
7986 {
112e8700
SM
7987 uiout->text (" \"");
7988 uiout->field_fmt ("name", "%s", name);
7989 uiout->text ("\"");
f303dbd6 7990 }
33d62d64 7991 }
f303dbd6 7992 else
112e8700 7993 uiout->text ("\nProgram");
f303dbd6 7994
112e8700
SM
7995 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7996 uiout->text (" stopped");
33d62d64
JK
7997 else
7998 {
112e8700 7999 uiout->text (" received signal ");
8b93c638 8000 annotate_signal_name ();
112e8700
SM
8001 if (uiout->is_mi_like_p ())
8002 uiout->field_string
8003 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8004 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8005 annotate_signal_name_end ();
112e8700 8006 uiout->text (", ");
8b93c638 8007 annotate_signal_string ();
112e8700 8008 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
8009
8010 if (siggnal == GDB_SIGNAL_SEGV)
8011 handle_segmentation_fault (uiout);
8012
8b93c638 8013 annotate_signal_string_end ();
33d62d64 8014 }
112e8700 8015 uiout->text (".\n");
33d62d64 8016}
252fbfc8 8017
fd664c91
PA
8018void
8019print_no_history_reason (struct ui_out *uiout)
33d62d64 8020{
112e8700 8021 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8022}
43ff13b4 8023
0c7e1a46
PA
8024/* Print current location without a level number, if we have changed
8025 functions or hit a breakpoint. Print source line if we have one.
8026 bpstat_print contains the logic deciding in detail what to print,
8027 based on the event(s) that just occurred. */
8028
243a9253
PA
8029static void
8030print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8031{
8032 int bpstat_ret;
f486487f 8033 enum print_what source_flag;
0c7e1a46
PA
8034 int do_frame_printing = 1;
8035 struct thread_info *tp = inferior_thread ();
8036
8037 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8038 switch (bpstat_ret)
8039 {
8040 case PRINT_UNKNOWN:
8041 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8042 should) carry around the function and does (or should) use
8043 that when doing a frame comparison. */
8044 if (tp->control.stop_step
8045 && frame_id_eq (tp->control.step_frame_id,
8046 get_frame_id (get_current_frame ()))
885eeb5b 8047 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
8048 {
8049 /* Finished step, just print source line. */
8050 source_flag = SRC_LINE;
8051 }
8052 else
8053 {
8054 /* Print location and source line. */
8055 source_flag = SRC_AND_LOC;
8056 }
8057 break;
8058 case PRINT_SRC_AND_LOC:
8059 /* Print location and source line. */
8060 source_flag = SRC_AND_LOC;
8061 break;
8062 case PRINT_SRC_ONLY:
8063 source_flag = SRC_LINE;
8064 break;
8065 case PRINT_NOTHING:
8066 /* Something bogus. */
8067 source_flag = SRC_LINE;
8068 do_frame_printing = 0;
8069 break;
8070 default:
8071 internal_error (__FILE__, __LINE__, _("Unknown value."));
8072 }
8073
8074 /* The behavior of this routine with respect to the source
8075 flag is:
8076 SRC_LINE: Print only source line
8077 LOCATION: Print only location
8078 SRC_AND_LOC: Print location and source line. */
8079 if (do_frame_printing)
8080 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8081}
8082
243a9253
PA
8083/* See infrun.h. */
8084
8085void
8086print_stop_event (struct ui_out *uiout)
8087{
243a9253
PA
8088 struct target_waitstatus last;
8089 ptid_t last_ptid;
8090 struct thread_info *tp;
8091
8092 get_last_target_status (&last_ptid, &last);
8093
67ad9399
TT
8094 {
8095 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8096
67ad9399 8097 print_stop_location (&last);
243a9253 8098
67ad9399
TT
8099 /* Display the auto-display expressions. */
8100 do_displays ();
8101 }
243a9253
PA
8102
8103 tp = inferior_thread ();
8104 if (tp->thread_fsm != NULL
8105 && thread_fsm_finished_p (tp->thread_fsm))
8106 {
8107 struct return_value_info *rv;
8108
8109 rv = thread_fsm_return_value (tp->thread_fsm);
8110 if (rv != NULL)
8111 print_return_value (uiout, rv);
8112 }
0c7e1a46
PA
8113}
8114
388a7084
PA
8115/* See infrun.h. */
8116
8117void
8118maybe_remove_breakpoints (void)
8119{
8120 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8121 {
8122 if (remove_breakpoints ())
8123 {
8124 target_terminal_ours_for_output ();
8125 printf_filtered (_("Cannot remove breakpoints because "
8126 "program is no longer writable.\nFurther "
8127 "execution is probably impossible.\n"));
8128 }
8129 }
8130}
8131
4c2f2a79
PA
8132/* The execution context that just caused a normal stop. */
8133
8134struct stop_context
8135{
8136 /* The stop ID. */
8137 ULONGEST stop_id;
c906108c 8138
4c2f2a79 8139 /* The event PTID. */
c906108c 8140
4c2f2a79
PA
8141 ptid_t ptid;
8142
8143 /* If stopp for a thread event, this is the thread that caused the
8144 stop. */
8145 struct thread_info *thread;
8146
8147 /* The inferior that caused the stop. */
8148 int inf_num;
8149};
8150
8151/* Returns a new stop context. If stopped for a thread event, this
8152 takes a strong reference to the thread. */
8153
8154static struct stop_context *
8155save_stop_context (void)
8156{
224c3ddb 8157 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8158
8159 sc->stop_id = get_stop_id ();
8160 sc->ptid = inferior_ptid;
8161 sc->inf_num = current_inferior ()->num;
8162
8163 if (!ptid_equal (inferior_ptid, null_ptid))
8164 {
8165 /* Take a strong reference so that the thread can't be deleted
8166 yet. */
8167 sc->thread = inferior_thread ();
8168 sc->thread->refcount++;
8169 }
8170 else
8171 sc->thread = NULL;
8172
8173 return sc;
8174}
8175
8176/* Release a stop context previously created with save_stop_context.
8177 Releases the strong reference to the thread as well. */
8178
8179static void
8180release_stop_context_cleanup (void *arg)
8181{
9a3c8263 8182 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8183
8184 if (sc->thread != NULL)
8185 sc->thread->refcount--;
8186 xfree (sc);
8187}
8188
8189/* Return true if the current context no longer matches the saved stop
8190 context. */
8191
8192static int
8193stop_context_changed (struct stop_context *prev)
8194{
8195 if (!ptid_equal (prev->ptid, inferior_ptid))
8196 return 1;
8197 if (prev->inf_num != current_inferior ()->num)
8198 return 1;
8199 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8200 return 1;
8201 if (get_stop_id () != prev->stop_id)
8202 return 1;
8203 return 0;
8204}
8205
8206/* See infrun.h. */
8207
8208int
96baa820 8209normal_stop (void)
c906108c 8210{
73b65bb0
DJ
8211 struct target_waitstatus last;
8212 ptid_t last_ptid;
29f49a6a 8213 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8214 ptid_t pid_ptid;
73b65bb0
DJ
8215
8216 get_last_target_status (&last_ptid, &last);
8217
4c2f2a79
PA
8218 new_stop_id ();
8219
29f49a6a
PA
8220 /* If an exception is thrown from this point on, make sure to
8221 propagate GDB's knowledge of the executing state to the
8222 frontend/user running state. A QUIT is an easy exception to see
8223 here, so do this before any filtered output. */
c35b1492
PA
8224 if (!non_stop)
8225 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8226 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8227 || last.kind == TARGET_WAITKIND_EXITED)
8228 {
8229 /* On some targets, we may still have live threads in the
8230 inferior when we get a process exit event. E.g., for
8231 "checkpoint", when the current checkpoint/fork exits,
8232 linux-fork.c automatically switches to another fork from
8233 within target_mourn_inferior. */
8234 if (!ptid_equal (inferior_ptid, null_ptid))
8235 {
8236 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8237 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8238 }
8239 }
8240 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8241 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8242
b57bacec
PA
8243 /* As we're presenting a stop, and potentially removing breakpoints,
8244 update the thread list so we can tell whether there are threads
8245 running on the target. With target remote, for example, we can
8246 only learn about new threads when we explicitly update the thread
8247 list. Do this before notifying the interpreters about signal
8248 stops, end of stepping ranges, etc., so that the "new thread"
8249 output is emitted before e.g., "Program received signal FOO",
8250 instead of after. */
8251 update_thread_list ();
8252
8253 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8254 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8255
c906108c
SS
8256 /* As with the notification of thread events, we want to delay
8257 notifying the user that we've switched thread context until
8258 the inferior actually stops.
8259
73b65bb0
DJ
8260 There's no point in saying anything if the inferior has exited.
8261 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8262 "received a signal".
8263
8264 Also skip saying anything in non-stop mode. In that mode, as we
8265 don't want GDB to switch threads behind the user's back, to avoid
8266 races where the user is typing a command to apply to thread x,
8267 but GDB switches to thread y before the user finishes entering
8268 the command, fetch_inferior_event installs a cleanup to restore
8269 the current thread back to the thread the user had selected right
8270 after this event is handled, so we're not really switching, only
8271 informing of a stop. */
4f8d22e3
PA
8272 if (!non_stop
8273 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8274 && target_has_execution
8275 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8276 && last.kind != TARGET_WAITKIND_EXITED
8277 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8278 {
0e454242 8279 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8280 {
8281 target_terminal_ours_for_output ();
8282 printf_filtered (_("[Switching to %s]\n"),
8283 target_pid_to_str (inferior_ptid));
8284 annotate_thread_changed ();
8285 }
39f77062 8286 previous_inferior_ptid = inferior_ptid;
c906108c 8287 }
c906108c 8288
0e5bf2a8
PA
8289 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8290 {
0e454242 8291 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8292 if (current_ui->prompt_state == PROMPT_BLOCKED)
8293 {
8294 target_terminal_ours_for_output ();
8295 printf_filtered (_("No unwaited-for children left.\n"));
8296 }
0e5bf2a8
PA
8297 }
8298
b57bacec 8299 /* Note: this depends on the update_thread_list call above. */
388a7084 8300 maybe_remove_breakpoints ();
c906108c 8301
c906108c
SS
8302 /* If an auto-display called a function and that got a signal,
8303 delete that auto-display to avoid an infinite recursion. */
8304
8305 if (stopped_by_random_signal)
8306 disable_current_display ();
8307
0e454242 8308 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8309 {
8310 async_enable_stdin ();
8311 }
c906108c 8312
388a7084
PA
8313 /* Let the user/frontend see the threads as stopped. */
8314 do_cleanups (old_chain);
8315
8316 /* Select innermost stack frame - i.e., current frame is frame 0,
8317 and current location is based on that. Handle the case where the
8318 dummy call is returning after being stopped. E.g. the dummy call
8319 previously hit a breakpoint. (If the dummy call returns
8320 normally, we won't reach here.) Do this before the stop hook is
8321 run, so that it doesn't get to see the temporary dummy frame,
8322 which is not where we'll present the stop. */
8323 if (has_stack_frames ())
8324 {
8325 if (stop_stack_dummy == STOP_STACK_DUMMY)
8326 {
8327 /* Pop the empty frame that contains the stack dummy. This
8328 also restores inferior state prior to the call (struct
8329 infcall_suspend_state). */
8330 struct frame_info *frame = get_current_frame ();
8331
8332 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8333 frame_pop (frame);
8334 /* frame_pop calls reinit_frame_cache as the last thing it
8335 does which means there's now no selected frame. */
8336 }
8337
8338 select_frame (get_current_frame ());
8339
8340 /* Set the current source location. */
8341 set_current_sal_from_frame (get_current_frame ());
8342 }
dd7e2d2b
PA
8343
8344 /* Look up the hook_stop and run it (CLI internally handles problem
8345 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8346 if (stop_command != NULL)
8347 {
8348 struct stop_context *saved_context = save_stop_context ();
8349 struct cleanup *old_chain
8350 = make_cleanup (release_stop_context_cleanup, saved_context);
8351
8352 catch_errors (hook_stop_stub, stop_command,
8353 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8354
8355 /* If the stop hook resumes the target, then there's no point in
8356 trying to notify about the previous stop; its context is
8357 gone. Likewise if the command switches thread or inferior --
8358 the observers would print a stop for the wrong
8359 thread/inferior. */
8360 if (stop_context_changed (saved_context))
8361 {
8362 do_cleanups (old_chain);
8363 return 1;
8364 }
8365 do_cleanups (old_chain);
8366 }
dd7e2d2b 8367
388a7084
PA
8368 /* Notify observers about the stop. This is where the interpreters
8369 print the stop event. */
8370 if (!ptid_equal (inferior_ptid, null_ptid))
8371 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8372 stop_print_frame);
8373 else
8374 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8375
243a9253
PA
8376 annotate_stopped ();
8377
48844aa6
PA
8378 if (target_has_execution)
8379 {
8380 if (last.kind != TARGET_WAITKIND_SIGNALLED
8381 && last.kind != TARGET_WAITKIND_EXITED)
8382 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8383 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8384 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8385 }
6c95b8df
PA
8386
8387 /* Try to get rid of automatically added inferiors that are no
8388 longer needed. Keeping those around slows down things linearly.
8389 Note that this never removes the current inferior. */
8390 prune_inferiors ();
4c2f2a79
PA
8391
8392 return 0;
c906108c
SS
8393}
8394
8395static int
96baa820 8396hook_stop_stub (void *cmd)
c906108c 8397{
5913bcb0 8398 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8399 return (0);
8400}
8401\f
c5aa993b 8402int
96baa820 8403signal_stop_state (int signo)
c906108c 8404{
d6b48e9c 8405 return signal_stop[signo];
c906108c
SS
8406}
8407
c5aa993b 8408int
96baa820 8409signal_print_state (int signo)
c906108c
SS
8410{
8411 return signal_print[signo];
8412}
8413
c5aa993b 8414int
96baa820 8415signal_pass_state (int signo)
c906108c
SS
8416{
8417 return signal_program[signo];
8418}
8419
2455069d
UW
8420static void
8421signal_cache_update (int signo)
8422{
8423 if (signo == -1)
8424 {
a493e3e2 8425 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8426 signal_cache_update (signo);
8427
8428 return;
8429 }
8430
8431 signal_pass[signo] = (signal_stop[signo] == 0
8432 && signal_print[signo] == 0
ab04a2af
TT
8433 && signal_program[signo] == 1
8434 && signal_catch[signo] == 0);
2455069d
UW
8435}
8436
488f131b 8437int
7bda5e4a 8438signal_stop_update (int signo, int state)
d4f3574e
SS
8439{
8440 int ret = signal_stop[signo];
abbb1732 8441
d4f3574e 8442 signal_stop[signo] = state;
2455069d 8443 signal_cache_update (signo);
d4f3574e
SS
8444 return ret;
8445}
8446
488f131b 8447int
7bda5e4a 8448signal_print_update (int signo, int state)
d4f3574e
SS
8449{
8450 int ret = signal_print[signo];
abbb1732 8451
d4f3574e 8452 signal_print[signo] = state;
2455069d 8453 signal_cache_update (signo);
d4f3574e
SS
8454 return ret;
8455}
8456
488f131b 8457int
7bda5e4a 8458signal_pass_update (int signo, int state)
d4f3574e
SS
8459{
8460 int ret = signal_program[signo];
abbb1732 8461
d4f3574e 8462 signal_program[signo] = state;
2455069d 8463 signal_cache_update (signo);
d4f3574e
SS
8464 return ret;
8465}
8466
ab04a2af
TT
8467/* Update the global 'signal_catch' from INFO and notify the
8468 target. */
8469
8470void
8471signal_catch_update (const unsigned int *info)
8472{
8473 int i;
8474
8475 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8476 signal_catch[i] = info[i] > 0;
8477 signal_cache_update (-1);
8478 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8479}
8480
c906108c 8481static void
96baa820 8482sig_print_header (void)
c906108c 8483{
3e43a32a
MS
8484 printf_filtered (_("Signal Stop\tPrint\tPass "
8485 "to program\tDescription\n"));
c906108c
SS
8486}
8487
8488static void
2ea28649 8489sig_print_info (enum gdb_signal oursig)
c906108c 8490{
2ea28649 8491 const char *name = gdb_signal_to_name (oursig);
c906108c 8492 int name_padding = 13 - strlen (name);
96baa820 8493
c906108c
SS
8494 if (name_padding <= 0)
8495 name_padding = 0;
8496
8497 printf_filtered ("%s", name);
488f131b 8498 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8499 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8500 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8501 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8502 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8503}
8504
8505/* Specify how various signals in the inferior should be handled. */
8506
8507static void
96baa820 8508handle_command (char *args, int from_tty)
c906108c
SS
8509{
8510 char **argv;
8511 int digits, wordlen;
8512 int sigfirst, signum, siglast;
2ea28649 8513 enum gdb_signal oursig;
c906108c
SS
8514 int allsigs;
8515 int nsigs;
8516 unsigned char *sigs;
8517 struct cleanup *old_chain;
8518
8519 if (args == NULL)
8520 {
e2e0b3e5 8521 error_no_arg (_("signal to handle"));
c906108c
SS
8522 }
8523
1777feb0 8524 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8525
a493e3e2 8526 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8527 sigs = (unsigned char *) alloca (nsigs);
8528 memset (sigs, 0, nsigs);
8529
1777feb0 8530 /* Break the command line up into args. */
c906108c 8531
d1a41061 8532 argv = gdb_buildargv (args);
7a292a7a 8533 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8534
8535 /* Walk through the args, looking for signal oursigs, signal names, and
8536 actions. Signal numbers and signal names may be interspersed with
8537 actions, with the actions being performed for all signals cumulatively
1777feb0 8538 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8539
8540 while (*argv != NULL)
8541 {
8542 wordlen = strlen (*argv);
8543 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8544 {;
8545 }
8546 allsigs = 0;
8547 sigfirst = siglast = -1;
8548
8549 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8550 {
8551 /* Apply action to all signals except those used by the
1777feb0 8552 debugger. Silently skip those. */
c906108c
SS
8553 allsigs = 1;
8554 sigfirst = 0;
8555 siglast = nsigs - 1;
8556 }
8557 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8558 {
8559 SET_SIGS (nsigs, sigs, signal_stop);
8560 SET_SIGS (nsigs, sigs, signal_print);
8561 }
8562 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8563 {
8564 UNSET_SIGS (nsigs, sigs, signal_program);
8565 }
8566 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8567 {
8568 SET_SIGS (nsigs, sigs, signal_print);
8569 }
8570 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8571 {
8572 SET_SIGS (nsigs, sigs, signal_program);
8573 }
8574 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8575 {
8576 UNSET_SIGS (nsigs, sigs, signal_stop);
8577 }
8578 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8579 {
8580 SET_SIGS (nsigs, sigs, signal_program);
8581 }
8582 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8583 {
8584 UNSET_SIGS (nsigs, sigs, signal_print);
8585 UNSET_SIGS (nsigs, sigs, signal_stop);
8586 }
8587 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8588 {
8589 UNSET_SIGS (nsigs, sigs, signal_program);
8590 }
8591 else if (digits > 0)
8592 {
8593 /* It is numeric. The numeric signal refers to our own
8594 internal signal numbering from target.h, not to host/target
8595 signal number. This is a feature; users really should be
8596 using symbolic names anyway, and the common ones like
8597 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8598
8599 sigfirst = siglast = (int)
2ea28649 8600 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8601 if ((*argv)[digits] == '-')
8602 {
8603 siglast = (int)
2ea28649 8604 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8605 }
8606 if (sigfirst > siglast)
8607 {
1777feb0 8608 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8609 signum = sigfirst;
8610 sigfirst = siglast;
8611 siglast = signum;
8612 }
8613 }
8614 else
8615 {
2ea28649 8616 oursig = gdb_signal_from_name (*argv);
a493e3e2 8617 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8618 {
8619 sigfirst = siglast = (int) oursig;
8620 }
8621 else
8622 {
8623 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8624 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8625 }
8626 }
8627
8628 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8629 which signals to apply actions to. */
c906108c
SS
8630
8631 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8632 {
2ea28649 8633 switch ((enum gdb_signal) signum)
c906108c 8634 {
a493e3e2
PA
8635 case GDB_SIGNAL_TRAP:
8636 case GDB_SIGNAL_INT:
c906108c
SS
8637 if (!allsigs && !sigs[signum])
8638 {
9e2f0ad4 8639 if (query (_("%s is used by the debugger.\n\
3e43a32a 8640Are you sure you want to change it? "),
2ea28649 8641 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8642 {
8643 sigs[signum] = 1;
8644 }
8645 else
8646 {
a3f17187 8647 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8648 gdb_flush (gdb_stdout);
8649 }
8650 }
8651 break;
a493e3e2
PA
8652 case GDB_SIGNAL_0:
8653 case GDB_SIGNAL_DEFAULT:
8654 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8655 /* Make sure that "all" doesn't print these. */
8656 break;
8657 default:
8658 sigs[signum] = 1;
8659 break;
8660 }
8661 }
8662
8663 argv++;
8664 }
8665
3a031f65
PA
8666 for (signum = 0; signum < nsigs; signum++)
8667 if (sigs[signum])
8668 {
2455069d 8669 signal_cache_update (-1);
a493e3e2
PA
8670 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8671 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8672
3a031f65
PA
8673 if (from_tty)
8674 {
8675 /* Show the results. */
8676 sig_print_header ();
8677 for (; signum < nsigs; signum++)
8678 if (sigs[signum])
aead7601 8679 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8680 }
8681
8682 break;
8683 }
c906108c
SS
8684
8685 do_cleanups (old_chain);
8686}
8687
de0bea00
MF
8688/* Complete the "handle" command. */
8689
8690static VEC (char_ptr) *
8691handle_completer (struct cmd_list_element *ignore,
6f937416 8692 const char *text, const char *word)
de0bea00
MF
8693{
8694 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8695 static const char * const keywords[] =
8696 {
8697 "all",
8698 "stop",
8699 "ignore",
8700 "print",
8701 "pass",
8702 "nostop",
8703 "noignore",
8704 "noprint",
8705 "nopass",
8706 NULL,
8707 };
8708
8709 vec_signals = signal_completer (ignore, text, word);
8710 vec_keywords = complete_on_enum (keywords, word, word);
8711
8712 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8713 VEC_free (char_ptr, vec_signals);
8714 VEC_free (char_ptr, vec_keywords);
8715 return return_val;
8716}
8717
2ea28649
PA
8718enum gdb_signal
8719gdb_signal_from_command (int num)
ed01b82c
PA
8720{
8721 if (num >= 1 && num <= 15)
2ea28649 8722 return (enum gdb_signal) num;
ed01b82c
PA
8723 error (_("Only signals 1-15 are valid as numeric signals.\n\
8724Use \"info signals\" for a list of symbolic signals."));
8725}
8726
c906108c
SS
8727/* Print current contents of the tables set by the handle command.
8728 It is possible we should just be printing signals actually used
8729 by the current target (but for things to work right when switching
8730 targets, all signals should be in the signal tables). */
8731
8732static void
96baa820 8733signals_info (char *signum_exp, int from_tty)
c906108c 8734{
2ea28649 8735 enum gdb_signal oursig;
abbb1732 8736
c906108c
SS
8737 sig_print_header ();
8738
8739 if (signum_exp)
8740 {
8741 /* First see if this is a symbol name. */
2ea28649 8742 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8743 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8744 {
8745 /* No, try numeric. */
8746 oursig =
2ea28649 8747 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8748 }
8749 sig_print_info (oursig);
8750 return;
8751 }
8752
8753 printf_filtered ("\n");
8754 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8755 for (oursig = GDB_SIGNAL_FIRST;
8756 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8757 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8758 {
8759 QUIT;
8760
a493e3e2
PA
8761 if (oursig != GDB_SIGNAL_UNKNOWN
8762 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8763 sig_print_info (oursig);
8764 }
8765
3e43a32a
MS
8766 printf_filtered (_("\nUse the \"handle\" command "
8767 "to change these tables.\n"));
c906108c 8768}
4aa995e1
PA
8769
8770/* The $_siginfo convenience variable is a bit special. We don't know
8771 for sure the type of the value until we actually have a chance to
7a9dd1b2 8772 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8773 also dependent on which thread you have selected.
8774
8775 1. making $_siginfo be an internalvar that creates a new value on
8776 access.
8777
8778 2. making the value of $_siginfo be an lval_computed value. */
8779
8780/* This function implements the lval_computed support for reading a
8781 $_siginfo value. */
8782
8783static void
8784siginfo_value_read (struct value *v)
8785{
8786 LONGEST transferred;
8787
a911d87a
PA
8788 /* If we can access registers, so can we access $_siginfo. Likewise
8789 vice versa. */
8790 validate_registers_access ();
c709acd1 8791
4aa995e1
PA
8792 transferred =
8793 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8794 NULL,
8795 value_contents_all_raw (v),
8796 value_offset (v),
8797 TYPE_LENGTH (value_type (v)));
8798
8799 if (transferred != TYPE_LENGTH (value_type (v)))
8800 error (_("Unable to read siginfo"));
8801}
8802
8803/* This function implements the lval_computed support for writing a
8804 $_siginfo value. */
8805
8806static void
8807siginfo_value_write (struct value *v, struct value *fromval)
8808{
8809 LONGEST transferred;
8810
a911d87a
PA
8811 /* If we can access registers, so can we access $_siginfo. Likewise
8812 vice versa. */
8813 validate_registers_access ();
c709acd1 8814
4aa995e1
PA
8815 transferred = target_write (&current_target,
8816 TARGET_OBJECT_SIGNAL_INFO,
8817 NULL,
8818 value_contents_all_raw (fromval),
8819 value_offset (v),
8820 TYPE_LENGTH (value_type (fromval)));
8821
8822 if (transferred != TYPE_LENGTH (value_type (fromval)))
8823 error (_("Unable to write siginfo"));
8824}
8825
c8f2448a 8826static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8827 {
8828 siginfo_value_read,
8829 siginfo_value_write
8830 };
8831
8832/* Return a new value with the correct type for the siginfo object of
78267919
UW
8833 the current thread using architecture GDBARCH. Return a void value
8834 if there's no object available. */
4aa995e1 8835
2c0b251b 8836static struct value *
22d2b532
SDJ
8837siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8838 void *ignore)
4aa995e1 8839{
4aa995e1 8840 if (target_has_stack
78267919
UW
8841 && !ptid_equal (inferior_ptid, null_ptid)
8842 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8843 {
78267919 8844 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8845
78267919 8846 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8847 }
8848
78267919 8849 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8850}
8851
c906108c 8852\f
16c381f0
JK
8853/* infcall_suspend_state contains state about the program itself like its
8854 registers and any signal it received when it last stopped.
8855 This state must be restored regardless of how the inferior function call
8856 ends (either successfully, or after it hits a breakpoint or signal)
8857 if the program is to properly continue where it left off. */
8858
8859struct infcall_suspend_state
7a292a7a 8860{
16c381f0 8861 struct thread_suspend_state thread_suspend;
16c381f0
JK
8862
8863 /* Other fields: */
7a292a7a 8864 CORE_ADDR stop_pc;
b89667eb 8865 struct regcache *registers;
1736ad11 8866
35515841 8867 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8868 struct gdbarch *siginfo_gdbarch;
8869
8870 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8871 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8872 content would be invalid. */
8873 gdb_byte *siginfo_data;
b89667eb
DE
8874};
8875
16c381f0
JK
8876struct infcall_suspend_state *
8877save_infcall_suspend_state (void)
b89667eb 8878{
16c381f0 8879 struct infcall_suspend_state *inf_state;
b89667eb 8880 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8881 struct regcache *regcache = get_current_regcache ();
8882 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8883 gdb_byte *siginfo_data = NULL;
8884
8885 if (gdbarch_get_siginfo_type_p (gdbarch))
8886 {
8887 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8888 size_t len = TYPE_LENGTH (type);
8889 struct cleanup *back_to;
8890
224c3ddb 8891 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8892 back_to = make_cleanup (xfree, siginfo_data);
8893
8894 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8895 siginfo_data, 0, len) == len)
8896 discard_cleanups (back_to);
8897 else
8898 {
8899 /* Errors ignored. */
8900 do_cleanups (back_to);
8901 siginfo_data = NULL;
8902 }
8903 }
8904
41bf6aca 8905 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8906
8907 if (siginfo_data)
8908 {
8909 inf_state->siginfo_gdbarch = gdbarch;
8910 inf_state->siginfo_data = siginfo_data;
8911 }
b89667eb 8912
16c381f0 8913 inf_state->thread_suspend = tp->suspend;
16c381f0 8914
35515841 8915 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8916 GDB_SIGNAL_0 anyway. */
8917 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8918
b89667eb
DE
8919 inf_state->stop_pc = stop_pc;
8920
1736ad11 8921 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8922
8923 return inf_state;
8924}
8925
8926/* Restore inferior session state to INF_STATE. */
8927
8928void
16c381f0 8929restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8930{
8931 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8932 struct regcache *regcache = get_current_regcache ();
8933 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8934
16c381f0 8935 tp->suspend = inf_state->thread_suspend;
16c381f0 8936
b89667eb
DE
8937 stop_pc = inf_state->stop_pc;
8938
1736ad11
JK
8939 if (inf_state->siginfo_gdbarch == gdbarch)
8940 {
8941 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8942
8943 /* Errors ignored. */
8944 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8945 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8946 }
8947
b89667eb
DE
8948 /* The inferior can be gone if the user types "print exit(0)"
8949 (and perhaps other times). */
8950 if (target_has_execution)
8951 /* NB: The register write goes through to the target. */
1736ad11 8952 regcache_cpy (regcache, inf_state->registers);
803b5f95 8953
16c381f0 8954 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8955}
8956
8957static void
16c381f0 8958do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8959{
9a3c8263 8960 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8961}
8962
8963struct cleanup *
16c381f0
JK
8964make_cleanup_restore_infcall_suspend_state
8965 (struct infcall_suspend_state *inf_state)
b89667eb 8966{
16c381f0 8967 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8968}
8969
8970void
16c381f0 8971discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8972{
8973 regcache_xfree (inf_state->registers);
803b5f95 8974 xfree (inf_state->siginfo_data);
b89667eb
DE
8975 xfree (inf_state);
8976}
8977
8978struct regcache *
16c381f0 8979get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8980{
8981 return inf_state->registers;
8982}
8983
16c381f0
JK
8984/* infcall_control_state contains state regarding gdb's control of the
8985 inferior itself like stepping control. It also contains session state like
8986 the user's currently selected frame. */
b89667eb 8987
16c381f0 8988struct infcall_control_state
b89667eb 8989{
16c381f0
JK
8990 struct thread_control_state thread_control;
8991 struct inferior_control_state inferior_control;
d82142e2
JK
8992
8993 /* Other fields: */
8994 enum stop_stack_kind stop_stack_dummy;
8995 int stopped_by_random_signal;
7a292a7a 8996
b89667eb 8997 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8998 struct frame_id selected_frame_id;
7a292a7a
SS
8999};
9000
c906108c 9001/* Save all of the information associated with the inferior<==>gdb
b89667eb 9002 connection. */
c906108c 9003
16c381f0
JK
9004struct infcall_control_state *
9005save_infcall_control_state (void)
c906108c 9006{
8d749320
SM
9007 struct infcall_control_state *inf_status =
9008 XNEW (struct infcall_control_state);
4e1c45ea 9009 struct thread_info *tp = inferior_thread ();
d6b48e9c 9010 struct inferior *inf = current_inferior ();
7a292a7a 9011
16c381f0
JK
9012 inf_status->thread_control = tp->control;
9013 inf_status->inferior_control = inf->control;
d82142e2 9014
8358c15c 9015 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9016 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9017
16c381f0
JK
9018 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9019 chain. If caller's caller is walking the chain, they'll be happier if we
9020 hand them back the original chain when restore_infcall_control_state is
9021 called. */
9022 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9023
9024 /* Other fields: */
9025 inf_status->stop_stack_dummy = stop_stack_dummy;
9026 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9027
206415a3 9028 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9029
7a292a7a 9030 return inf_status;
c906108c
SS
9031}
9032
c906108c 9033static int
96baa820 9034restore_selected_frame (void *args)
c906108c 9035{
488f131b 9036 struct frame_id *fid = (struct frame_id *) args;
c906108c 9037 struct frame_info *frame;
c906108c 9038
101dcfbe 9039 frame = frame_find_by_id (*fid);
c906108c 9040
aa0cd9c1
AC
9041 /* If inf_status->selected_frame_id is NULL, there was no previously
9042 selected frame. */
101dcfbe 9043 if (frame == NULL)
c906108c 9044 {
8a3fe4f8 9045 warning (_("Unable to restore previously selected frame."));
c906108c
SS
9046 return 0;
9047 }
9048
0f7d239c 9049 select_frame (frame);
c906108c
SS
9050
9051 return (1);
9052}
9053
b89667eb
DE
9054/* Restore inferior session state to INF_STATUS. */
9055
c906108c 9056void
16c381f0 9057restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9058{
4e1c45ea 9059 struct thread_info *tp = inferior_thread ();
d6b48e9c 9060 struct inferior *inf = current_inferior ();
4e1c45ea 9061
8358c15c
JK
9062 if (tp->control.step_resume_breakpoint)
9063 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9064
5b79abe7
TT
9065 if (tp->control.exception_resume_breakpoint)
9066 tp->control.exception_resume_breakpoint->disposition
9067 = disp_del_at_next_stop;
9068
d82142e2 9069 /* Handle the bpstat_copy of the chain. */
16c381f0 9070 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9071
16c381f0
JK
9072 tp->control = inf_status->thread_control;
9073 inf->control = inf_status->inferior_control;
d82142e2
JK
9074
9075 /* Other fields: */
9076 stop_stack_dummy = inf_status->stop_stack_dummy;
9077 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9078
b89667eb 9079 if (target_has_stack)
c906108c 9080 {
c906108c 9081 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
9082 walking the stack might encounter a garbage pointer and
9083 error() trying to dereference it. */
488f131b
JB
9084 if (catch_errors
9085 (restore_selected_frame, &inf_status->selected_frame_id,
9086 "Unable to restore previously selected frame:\n",
9087 RETURN_MASK_ERROR) == 0)
c906108c
SS
9088 /* Error in restoring the selected frame. Select the innermost
9089 frame. */
0f7d239c 9090 select_frame (get_current_frame ());
c906108c 9091 }
c906108c 9092
72cec141 9093 xfree (inf_status);
7a292a7a 9094}
c906108c 9095
74b7792f 9096static void
16c381f0 9097do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9098{
9a3c8263 9099 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9100}
9101
9102struct cleanup *
16c381f0
JK
9103make_cleanup_restore_infcall_control_state
9104 (struct infcall_control_state *inf_status)
74b7792f 9105{
16c381f0 9106 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9107}
9108
c906108c 9109void
16c381f0 9110discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9111{
8358c15c
JK
9112 if (inf_status->thread_control.step_resume_breakpoint)
9113 inf_status->thread_control.step_resume_breakpoint->disposition
9114 = disp_del_at_next_stop;
9115
5b79abe7
TT
9116 if (inf_status->thread_control.exception_resume_breakpoint)
9117 inf_status->thread_control.exception_resume_breakpoint->disposition
9118 = disp_del_at_next_stop;
9119
1777feb0 9120 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9121 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9122
72cec141 9123 xfree (inf_status);
7a292a7a 9124}
b89667eb 9125\f
ca6724c1
KB
9126/* restore_inferior_ptid() will be used by the cleanup machinery
9127 to restore the inferior_ptid value saved in a call to
9128 save_inferior_ptid(). */
ce696e05
KB
9129
9130static void
9131restore_inferior_ptid (void *arg)
9132{
9a3c8263 9133 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
abbb1732 9134
ce696e05
KB
9135 inferior_ptid = *saved_ptid_ptr;
9136 xfree (arg);
9137}
9138
9139/* Save the value of inferior_ptid so that it may be restored by a
9140 later call to do_cleanups(). Returns the struct cleanup pointer
9141 needed for later doing the cleanup. */
9142
9143struct cleanup *
9144save_inferior_ptid (void)
9145{
8d749320 9146 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 9147
ce696e05
KB
9148 *saved_ptid_ptr = inferior_ptid;
9149 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9150}
0c557179 9151
7f89fd65 9152/* See infrun.h. */
0c557179
SDJ
9153
9154void
9155clear_exit_convenience_vars (void)
9156{
9157 clear_internalvar (lookup_internalvar ("_exitsignal"));
9158 clear_internalvar (lookup_internalvar ("_exitcode"));
9159}
c5aa993b 9160\f
488f131b 9161
b2175913
MS
9162/* User interface for reverse debugging:
9163 Set exec-direction / show exec-direction commands
9164 (returns error unless target implements to_set_exec_direction method). */
9165
170742de 9166enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9167static const char exec_forward[] = "forward";
9168static const char exec_reverse[] = "reverse";
9169static const char *exec_direction = exec_forward;
40478521 9170static const char *const exec_direction_names[] = {
b2175913
MS
9171 exec_forward,
9172 exec_reverse,
9173 NULL
9174};
9175
9176static void
9177set_exec_direction_func (char *args, int from_tty,
9178 struct cmd_list_element *cmd)
9179{
9180 if (target_can_execute_reverse)
9181 {
9182 if (!strcmp (exec_direction, exec_forward))
9183 execution_direction = EXEC_FORWARD;
9184 else if (!strcmp (exec_direction, exec_reverse))
9185 execution_direction = EXEC_REVERSE;
9186 }
8bbed405
MS
9187 else
9188 {
9189 exec_direction = exec_forward;
9190 error (_("Target does not support this operation."));
9191 }
b2175913
MS
9192}
9193
9194static void
9195show_exec_direction_func (struct ui_file *out, int from_tty,
9196 struct cmd_list_element *cmd, const char *value)
9197{
9198 switch (execution_direction) {
9199 case EXEC_FORWARD:
9200 fprintf_filtered (out, _("Forward.\n"));
9201 break;
9202 case EXEC_REVERSE:
9203 fprintf_filtered (out, _("Reverse.\n"));
9204 break;
b2175913 9205 default:
d8b34453
PA
9206 internal_error (__FILE__, __LINE__,
9207 _("bogus execution_direction value: %d"),
9208 (int) execution_direction);
b2175913
MS
9209 }
9210}
9211
d4db2f36
PA
9212static void
9213show_schedule_multiple (struct ui_file *file, int from_tty,
9214 struct cmd_list_element *c, const char *value)
9215{
3e43a32a
MS
9216 fprintf_filtered (file, _("Resuming the execution of threads "
9217 "of all processes is %s.\n"), value);
d4db2f36 9218}
ad52ddc6 9219
22d2b532
SDJ
9220/* Implementation of `siginfo' variable. */
9221
9222static const struct internalvar_funcs siginfo_funcs =
9223{
9224 siginfo_make_value,
9225 NULL,
9226 NULL
9227};
9228
372316f1
PA
9229/* Callback for infrun's target events source. This is marked when a
9230 thread has a pending status to process. */
9231
9232static void
9233infrun_async_inferior_event_handler (gdb_client_data data)
9234{
372316f1
PA
9235 inferior_event_handler (INF_REG_EVENT, NULL);
9236}
9237
c906108c 9238void
96baa820 9239_initialize_infrun (void)
c906108c 9240{
52f0bd74
AC
9241 int i;
9242 int numsigs;
de0bea00 9243 struct cmd_list_element *c;
c906108c 9244
372316f1
PA
9245 /* Register extra event sources in the event loop. */
9246 infrun_async_inferior_event_token
9247 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9248
1bedd215
AC
9249 add_info ("signals", signals_info, _("\
9250What debugger does when program gets various signals.\n\
9251Specify a signal as argument to print info on that signal only."));
c906108c
SS
9252 add_info_alias ("handle", "signals", 0);
9253
de0bea00 9254 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9255Specify how to handle signals.\n\
486c7739 9256Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9257Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9258If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9259will be displayed instead.\n\
9260\n\
c906108c
SS
9261Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9262from 1-15 are allowed for compatibility with old versions of GDB.\n\
9263Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9264The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9265used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9266\n\
1bedd215 9267Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9268\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9269Stop means reenter debugger if this signal happens (implies print).\n\
9270Print means print a message if this signal happens.\n\
9271Pass means let program see this signal; otherwise program doesn't know.\n\
9272Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9273Pass and Stop may be combined.\n\
9274\n\
9275Multiple signals may be specified. Signal numbers and signal names\n\
9276may be interspersed with actions, with the actions being performed for\n\
9277all signals cumulatively specified."));
de0bea00 9278 set_cmd_completer (c, handle_completer);
486c7739 9279
c906108c 9280 if (!dbx_commands)
1a966eab
AC
9281 stop_command = add_cmd ("stop", class_obscure,
9282 not_just_help_class_command, _("\
9283There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9284This allows you to set a list of commands to be run each time execution\n\
1a966eab 9285of the program stops."), &cmdlist);
c906108c 9286
ccce17b0 9287 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9288Set inferior debugging."), _("\
9289Show inferior debugging."), _("\
9290When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9291 NULL,
9292 show_debug_infrun,
9293 &setdebuglist, &showdebuglist);
527159b7 9294
3e43a32a
MS
9295 add_setshow_boolean_cmd ("displaced", class_maintenance,
9296 &debug_displaced, _("\
237fc4c9
PA
9297Set displaced stepping debugging."), _("\
9298Show displaced stepping debugging."), _("\
9299When non-zero, displaced stepping specific debugging is enabled."),
9300 NULL,
9301 show_debug_displaced,
9302 &setdebuglist, &showdebuglist);
9303
ad52ddc6
PA
9304 add_setshow_boolean_cmd ("non-stop", no_class,
9305 &non_stop_1, _("\
9306Set whether gdb controls the inferior in non-stop mode."), _("\
9307Show whether gdb controls the inferior in non-stop mode."), _("\
9308When debugging a multi-threaded program and this setting is\n\
9309off (the default, also called all-stop mode), when one thread stops\n\
9310(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9311all other threads in the program while you interact with the thread of\n\
9312interest. When you continue or step a thread, you can allow the other\n\
9313threads to run, or have them remain stopped, but while you inspect any\n\
9314thread's state, all threads stop.\n\
9315\n\
9316In non-stop mode, when one thread stops, other threads can continue\n\
9317to run freely. You'll be able to step each thread independently,\n\
9318leave it stopped or free to run as needed."),
9319 set_non_stop,
9320 show_non_stop,
9321 &setlist,
9322 &showlist);
9323
a493e3e2 9324 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9325 signal_stop = XNEWVEC (unsigned char, numsigs);
9326 signal_print = XNEWVEC (unsigned char, numsigs);
9327 signal_program = XNEWVEC (unsigned char, numsigs);
9328 signal_catch = XNEWVEC (unsigned char, numsigs);
9329 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9330 for (i = 0; i < numsigs; i++)
9331 {
9332 signal_stop[i] = 1;
9333 signal_print[i] = 1;
9334 signal_program[i] = 1;
ab04a2af 9335 signal_catch[i] = 0;
c906108c
SS
9336 }
9337
4d9d9d04
PA
9338 /* Signals caused by debugger's own actions should not be given to
9339 the program afterwards.
9340
9341 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9342 explicitly specifies that it should be delivered to the target
9343 program. Typically, that would occur when a user is debugging a
9344 target monitor on a simulator: the target monitor sets a
9345 breakpoint; the simulator encounters this breakpoint and halts
9346 the simulation handing control to GDB; GDB, noting that the stop
9347 address doesn't map to any known breakpoint, returns control back
9348 to the simulator; the simulator then delivers the hardware
9349 equivalent of a GDB_SIGNAL_TRAP to the program being
9350 debugged. */
a493e3e2
PA
9351 signal_program[GDB_SIGNAL_TRAP] = 0;
9352 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9353
9354 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9355 signal_stop[GDB_SIGNAL_ALRM] = 0;
9356 signal_print[GDB_SIGNAL_ALRM] = 0;
9357 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9358 signal_print[GDB_SIGNAL_VTALRM] = 0;
9359 signal_stop[GDB_SIGNAL_PROF] = 0;
9360 signal_print[GDB_SIGNAL_PROF] = 0;
9361 signal_stop[GDB_SIGNAL_CHLD] = 0;
9362 signal_print[GDB_SIGNAL_CHLD] = 0;
9363 signal_stop[GDB_SIGNAL_IO] = 0;
9364 signal_print[GDB_SIGNAL_IO] = 0;
9365 signal_stop[GDB_SIGNAL_POLL] = 0;
9366 signal_print[GDB_SIGNAL_POLL] = 0;
9367 signal_stop[GDB_SIGNAL_URG] = 0;
9368 signal_print[GDB_SIGNAL_URG] = 0;
9369 signal_stop[GDB_SIGNAL_WINCH] = 0;
9370 signal_print[GDB_SIGNAL_WINCH] = 0;
9371 signal_stop[GDB_SIGNAL_PRIO] = 0;
9372 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9373
cd0fc7c3
SS
9374 /* These signals are used internally by user-level thread
9375 implementations. (See signal(5) on Solaris.) Like the above
9376 signals, a healthy program receives and handles them as part of
9377 its normal operation. */
a493e3e2
PA
9378 signal_stop[GDB_SIGNAL_LWP] = 0;
9379 signal_print[GDB_SIGNAL_LWP] = 0;
9380 signal_stop[GDB_SIGNAL_WAITING] = 0;
9381 signal_print[GDB_SIGNAL_WAITING] = 0;
9382 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9383 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9384 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9385 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9386
2455069d
UW
9387 /* Update cached state. */
9388 signal_cache_update (-1);
9389
85c07804
AC
9390 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9391 &stop_on_solib_events, _("\
9392Set stopping for shared library events."), _("\
9393Show stopping for shared library events."), _("\
c906108c
SS
9394If nonzero, gdb will give control to the user when the dynamic linker\n\
9395notifies gdb of shared library events. The most common event of interest\n\
85c07804 9396to the user would be loading/unloading of a new library."),
f9e14852 9397 set_stop_on_solib_events,
920d2a44 9398 show_stop_on_solib_events,
85c07804 9399 &setlist, &showlist);
c906108c 9400
7ab04401
AC
9401 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9402 follow_fork_mode_kind_names,
9403 &follow_fork_mode_string, _("\
9404Set debugger response to a program call of fork or vfork."), _("\
9405Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9406A fork or vfork creates a new process. follow-fork-mode can be:\n\
9407 parent - the original process is debugged after a fork\n\
9408 child - the new process is debugged after a fork\n\
ea1dd7bc 9409The unfollowed process will continue to run.\n\
7ab04401
AC
9410By default, the debugger will follow the parent process."),
9411 NULL,
920d2a44 9412 show_follow_fork_mode_string,
7ab04401
AC
9413 &setlist, &showlist);
9414
6c95b8df
PA
9415 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9416 follow_exec_mode_names,
9417 &follow_exec_mode_string, _("\
9418Set debugger response to a program call of exec."), _("\
9419Show debugger response to a program call of exec."), _("\
9420An exec call replaces the program image of a process.\n\
9421\n\
9422follow-exec-mode can be:\n\
9423\n\
cce7e648 9424 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9425to this new inferior. The program the process was running before\n\
9426the exec call can be restarted afterwards by restarting the original\n\
9427inferior.\n\
9428\n\
9429 same - the debugger keeps the process bound to the same inferior.\n\
9430The new executable image replaces the previous executable loaded in\n\
9431the inferior. Restarting the inferior after the exec call restarts\n\
9432the executable the process was running after the exec call.\n\
9433\n\
9434By default, the debugger will use the same inferior."),
9435 NULL,
9436 show_follow_exec_mode_string,
9437 &setlist, &showlist);
9438
7ab04401
AC
9439 add_setshow_enum_cmd ("scheduler-locking", class_run,
9440 scheduler_enums, &scheduler_mode, _("\
9441Set mode for locking scheduler during execution."), _("\
9442Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9443off == no locking (threads may preempt at any time)\n\
9444on == full locking (no thread except the current thread may run)\n\
9445 This applies to both normal execution and replay mode.\n\
9446step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9447 In this mode, other threads may run during other commands.\n\
9448 This applies to both normal execution and replay mode.\n\
9449replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9450 set_schedlock_func, /* traps on target vector */
920d2a44 9451 show_scheduler_mode,
7ab04401 9452 &setlist, &showlist);
5fbbeb29 9453
d4db2f36
PA
9454 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9455Set mode for resuming threads of all processes."), _("\
9456Show mode for resuming threads of all processes."), _("\
9457When on, execution commands (such as 'continue' or 'next') resume all\n\
9458threads of all processes. When off (which is the default), execution\n\
9459commands only resume the threads of the current process. The set of\n\
9460threads that are resumed is further refined by the scheduler-locking\n\
9461mode (see help set scheduler-locking)."),
9462 NULL,
9463 show_schedule_multiple,
9464 &setlist, &showlist);
9465
5bf193a2
AC
9466 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9467Set mode of the step operation."), _("\
9468Show mode of the step operation."), _("\
9469When set, doing a step over a function without debug line information\n\
9470will stop at the first instruction of that function. Otherwise, the\n\
9471function is skipped and the step command stops at a different source line."),
9472 NULL,
920d2a44 9473 show_step_stop_if_no_debug,
5bf193a2 9474 &setlist, &showlist);
ca6724c1 9475
72d0e2c5
YQ
9476 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9477 &can_use_displaced_stepping, _("\
237fc4c9
PA
9478Set debugger's willingness to use displaced stepping."), _("\
9479Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9480If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9481supported by the target architecture. If off, gdb will not use displaced\n\
9482stepping to step over breakpoints, even if such is supported by the target\n\
9483architecture. If auto (which is the default), gdb will use displaced stepping\n\
9484if the target architecture supports it and non-stop mode is active, but will not\n\
9485use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9486 NULL,
9487 show_can_use_displaced_stepping,
9488 &setlist, &showlist);
237fc4c9 9489
b2175913
MS
9490 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9491 &exec_direction, _("Set direction of execution.\n\
9492Options are 'forward' or 'reverse'."),
9493 _("Show direction of execution (forward/reverse)."),
9494 _("Tells gdb whether to execute forward or backward."),
9495 set_exec_direction_func, show_exec_direction_func,
9496 &setlist, &showlist);
9497
6c95b8df
PA
9498 /* Set/show detach-on-fork: user-settable mode. */
9499
9500 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9501Set whether gdb will detach the child of a fork."), _("\
9502Show whether gdb will detach the child of a fork."), _("\
9503Tells gdb whether to detach the child of a fork."),
9504 NULL, NULL, &setlist, &showlist);
9505
03583c20
UW
9506 /* Set/show disable address space randomization mode. */
9507
9508 add_setshow_boolean_cmd ("disable-randomization", class_support,
9509 &disable_randomization, _("\
9510Set disabling of debuggee's virtual address space randomization."), _("\
9511Show disabling of debuggee's virtual address space randomization."), _("\
9512When this mode is on (which is the default), randomization of the virtual\n\
9513address space is disabled. Standalone programs run with the randomization\n\
9514enabled by default on some platforms."),
9515 &set_disable_randomization,
9516 &show_disable_randomization,
9517 &setlist, &showlist);
9518
ca6724c1 9519 /* ptid initializations */
ca6724c1
KB
9520 inferior_ptid = null_ptid;
9521 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9522
9523 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9524 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9525 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9526 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9527
9528 /* Explicitly create without lookup, since that tries to create a
9529 value with a void typed value, and when we get here, gdbarch
9530 isn't initialized yet. At this point, we're quite sure there
9531 isn't another convenience variable of the same name. */
22d2b532 9532 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9533
9534 add_setshow_boolean_cmd ("observer", no_class,
9535 &observer_mode_1, _("\
9536Set whether gdb controls the inferior in observer mode."), _("\
9537Show whether gdb controls the inferior in observer mode."), _("\
9538In observer mode, GDB can get data from the inferior, but not\n\
9539affect its execution. Registers and memory may not be changed,\n\
9540breakpoints may not be set, and the program cannot be interrupted\n\
9541or signalled."),
9542 set_observer_mode,
9543 show_observer_mode,
9544 &setlist,
9545 &showlist);
c906108c 9546}
This page took 2.233415 seconds and 4 git commands to generate.