make gdb.asm parallel-safe
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
28e7fd62 4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
d02ed0bb 52#include "record-full.h"
edb3359d 53#include "inline-frame.h"
4efc6507 54#include "jit.h"
06cd862c 55#include "tracepoint.h"
be34f849 56#include "continuations.h"
b4a14fd0 57#include "interps.h"
1bfeeb0f 58#include "skip.h"
28106bc2
SDJ
59#include "probe.h"
60#include "objfiles.h"
de0bea00 61#include "completer.h"
9107fc8d 62#include "target-descriptions.h"
c906108c
SS
63
64/* Prototypes for local functions */
65
96baa820 66static void signals_info (char *, int);
c906108c 67
96baa820 68static void handle_command (char *, int);
c906108c 69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
74b7792f 74static void resume_cleanups (void *);
c906108c 75
96baa820 76static int hook_stop_stub (void *);
c906108c 77
96baa820
JM
78static int restore_selected_frame (void *);
79
4ef3f3be 80static int follow_fork (void);
96baa820
JM
81
82static void set_schedlock_func (char *args, int from_tty,
488f131b 83 struct cmd_list_element *c);
96baa820 84
a289b8f6
JK
85static int currently_stepping (struct thread_info *tp);
86
b3444185
PA
87static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
a7212384 89
96baa820
JM
90static void xdb_handle_command (char *args, int from_tty);
91
6a6b96b9 92static int prepare_to_proceed (int);
ea67f13b 93
33d62d64
JK
94static void print_exited_reason (int exitstatus);
95
2ea28649 96static void print_signal_exited_reason (enum gdb_signal siggnal);
33d62d64
JK
97
98static void print_no_history_reason (void);
99
2ea28649 100static void print_signal_received_reason (enum gdb_signal siggnal);
33d62d64
JK
101
102static void print_end_stepping_range_reason (void);
103
96baa820 104void _initialize_infrun (void);
43ff13b4 105
e58b0e63
PA
106void nullify_last_target_wait_ptid (void);
107
2c03e5be 108static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
109
110static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
2484c66b
UW
112static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
5fbbeb29
CF
114/* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117int step_stop_if_no_debug = 0;
920d2a44
AC
118static void
119show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121{
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123}
5fbbeb29 124
1777feb0 125/* In asynchronous mode, but simulating synchronous execution. */
96baa820 126
43ff13b4
JM
127int sync_execution = 0;
128
c906108c
SS
129/* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
96baa820
JM
131 running in. */
132
39f77062 133static ptid_t previous_inferior_ptid;
7a292a7a 134
07107ca6
LM
135/* If set (default for legacy reasons), when following a fork, GDB
136 will detach from one of the fork branches, child or parent.
137 Exactly which branch is detached depends on 'set follow-fork-mode'
138 setting. */
139
140static int detach_fork = 1;
6c95b8df 141
237fc4c9
PA
142int debug_displaced = 0;
143static void
144show_debug_displaced (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146{
147 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
148}
149
ccce17b0 150unsigned int debug_infrun = 0;
920d2a44
AC
151static void
152show_debug_infrun (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154{
155 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
156}
527159b7 157
03583c20
UW
158
159/* Support for disabling address space randomization. */
160
161int disable_randomization = 1;
162
163static void
164show_disable_randomization (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 if (target_supports_disable_randomization ())
168 fprintf_filtered (file,
169 _("Disabling randomization of debuggee's "
170 "virtual address space is %s.\n"),
171 value);
172 else
173 fputs_filtered (_("Disabling randomization of debuggee's "
174 "virtual address space is unsupported on\n"
175 "this platform.\n"), file);
176}
177
178static void
179set_disable_randomization (char *args, int from_tty,
180 struct cmd_list_element *c)
181{
182 if (!target_supports_disable_randomization ())
183 error (_("Disabling randomization of debuggee's "
184 "virtual address space is unsupported on\n"
185 "this platform."));
186}
187
d32dc48e
PA
188/* User interface for non-stop mode. */
189
190int non_stop = 0;
191static int non_stop_1 = 0;
192
193static void
194set_non_stop (char *args, int from_tty,
195 struct cmd_list_element *c)
196{
197 if (target_has_execution)
198 {
199 non_stop_1 = non_stop;
200 error (_("Cannot change this setting while the inferior is running."));
201 }
202
203 non_stop = non_stop_1;
204}
205
206static void
207show_non_stop (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209{
210 fprintf_filtered (file,
211 _("Controlling the inferior in non-stop mode is %s.\n"),
212 value);
213}
214
d914c394
SS
215/* "Observer mode" is somewhat like a more extreme version of
216 non-stop, in which all GDB operations that might affect the
217 target's execution have been disabled. */
218
d914c394
SS
219int observer_mode = 0;
220static int observer_mode_1 = 0;
221
222static void
223set_observer_mode (char *args, int from_tty,
224 struct cmd_list_element *c)
225{
d914c394
SS
226 if (target_has_execution)
227 {
228 observer_mode_1 = observer_mode;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 observer_mode = observer_mode_1;
233
234 may_write_registers = !observer_mode;
235 may_write_memory = !observer_mode;
236 may_insert_breakpoints = !observer_mode;
237 may_insert_tracepoints = !observer_mode;
238 /* We can insert fast tracepoints in or out of observer mode,
239 but enable them if we're going into this mode. */
240 if (observer_mode)
241 may_insert_fast_tracepoints = 1;
242 may_stop = !observer_mode;
243 update_target_permissions ();
244
245 /* Going *into* observer mode we must force non-stop, then
246 going out we leave it that way. */
247 if (observer_mode)
248 {
249 target_async_permitted = 1;
250 pagination_enabled = 0;
251 non_stop = non_stop_1 = 1;
252 }
253
254 if (from_tty)
255 printf_filtered (_("Observer mode is now %s.\n"),
256 (observer_mode ? "on" : "off"));
257}
258
259static void
260show_observer_mode (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262{
263 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
264}
265
266/* This updates the value of observer mode based on changes in
267 permissions. Note that we are deliberately ignoring the values of
268 may-write-registers and may-write-memory, since the user may have
269 reason to enable these during a session, for instance to turn on a
270 debugging-related global. */
271
272void
273update_observer_mode (void)
274{
275 int newval;
276
277 newval = (!may_insert_breakpoints
278 && !may_insert_tracepoints
279 && may_insert_fast_tracepoints
280 && !may_stop
281 && non_stop);
282
283 /* Let the user know if things change. */
284 if (newval != observer_mode)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (newval ? "on" : "off"));
287
288 observer_mode = observer_mode_1 = newval;
289}
c2c6d25f 290
c906108c
SS
291/* Tables of how to react to signals; the user sets them. */
292
293static unsigned char *signal_stop;
294static unsigned char *signal_print;
295static unsigned char *signal_program;
296
ab04a2af
TT
297/* Table of signals that are registered with "catch signal". A
298 non-zero entry indicates that the signal is caught by some "catch
299 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
300 signals. */
301static unsigned char *signal_catch;
302
2455069d
UW
303/* Table of signals that the target may silently handle.
304 This is automatically determined from the flags above,
305 and simply cached here. */
306static unsigned char *signal_pass;
307
c906108c
SS
308#define SET_SIGS(nsigs,sigs,flags) \
309 do { \
310 int signum = (nsigs); \
311 while (signum-- > 0) \
312 if ((sigs)[signum]) \
313 (flags)[signum] = 1; \
314 } while (0)
315
316#define UNSET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 0; \
322 } while (0)
323
9b224c5e
PA
324/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
325 this function is to avoid exporting `signal_program'. */
326
327void
328update_signals_program_target (void)
329{
a493e3e2 330 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
331}
332
1777feb0 333/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 334
edb3359d 335#define RESUME_ALL minus_one_ptid
c906108c
SS
336
337/* Command list pointer for the "stop" placeholder. */
338
339static struct cmd_list_element *stop_command;
340
c906108c
SS
341/* Function inferior was in as of last step command. */
342
343static struct symbol *step_start_function;
344
c906108c
SS
345/* Nonzero if we want to give control to the user when we're notified
346 of shared library events by the dynamic linker. */
628fe4e4 347int stop_on_solib_events;
f9e14852
GB
348
349/* Enable or disable optional shared library event breakpoints
350 as appropriate when the above flag is changed. */
351
352static void
353set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
354{
355 update_solib_breakpoints ();
356}
357
920d2a44
AC
358static void
359show_stop_on_solib_events (struct ui_file *file, int from_tty,
360 struct cmd_list_element *c, const char *value)
361{
362 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
363 value);
364}
c906108c 365
c906108c
SS
366/* Nonzero means expecting a trace trap
367 and should stop the inferior and return silently when it happens. */
368
369int stop_after_trap;
370
642fd101
DE
371/* Save register contents here when executing a "finish" command or are
372 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
373 Thus this contains the return value from the called function (assuming
374 values are returned in a register). */
375
72cec141 376struct regcache *stop_registers;
c906108c 377
c906108c
SS
378/* Nonzero after stop if current stack frame should be printed. */
379
380static int stop_print_frame;
381
e02bc4cc 382/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
39f77062 385static ptid_t target_last_wait_ptid;
e02bc4cc
DS
386static struct target_waitstatus target_last_waitstatus;
387
0d1e5fa7
PA
388static void context_switch (ptid_t ptid);
389
4e1c45ea 390void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 391
7a76f5b8 392static void init_infwait_state (void);
a474d7c2 393
53904c9e
AC
394static const char follow_fork_mode_child[] = "child";
395static const char follow_fork_mode_parent[] = "parent";
396
40478521 397static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
398 follow_fork_mode_child,
399 follow_fork_mode_parent,
400 NULL
ef346e04 401};
c906108c 402
53904c9e 403static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
404static void
405show_follow_fork_mode_string (struct ui_file *file, int from_tty,
406 struct cmd_list_element *c, const char *value)
407{
3e43a32a
MS
408 fprintf_filtered (file,
409 _("Debugger response to a program "
410 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
411 value);
412}
c906108c
SS
413\f
414
e58b0e63
PA
415/* Tell the target to follow the fork we're stopped at. Returns true
416 if the inferior should be resumed; false, if the target for some
417 reason decided it's best not to resume. */
418
6604731b 419static int
4ef3f3be 420follow_fork (void)
c906108c 421{
ea1dd7bc 422 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
423 int should_resume = 1;
424 struct thread_info *tp;
425
426 /* Copy user stepping state to the new inferior thread. FIXME: the
427 followed fork child thread should have a copy of most of the
4e3990f4
DE
428 parent thread structure's run control related fields, not just these.
429 Initialized to avoid "may be used uninitialized" warnings from gcc. */
430 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 431 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
432 CORE_ADDR step_range_start = 0;
433 CORE_ADDR step_range_end = 0;
434 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
435
436 if (!non_stop)
437 {
438 ptid_t wait_ptid;
439 struct target_waitstatus wait_status;
440
441 /* Get the last target status returned by target_wait(). */
442 get_last_target_status (&wait_ptid, &wait_status);
443
444 /* If not stopped at a fork event, then there's nothing else to
445 do. */
446 if (wait_status.kind != TARGET_WAITKIND_FORKED
447 && wait_status.kind != TARGET_WAITKIND_VFORKED)
448 return 1;
449
450 /* Check if we switched over from WAIT_PTID, since the event was
451 reported. */
452 if (!ptid_equal (wait_ptid, minus_one_ptid)
453 && !ptid_equal (inferior_ptid, wait_ptid))
454 {
455 /* We did. Switch back to WAIT_PTID thread, to tell the
456 target to follow it (in either direction). We'll
457 afterwards refuse to resume, and inform the user what
458 happened. */
459 switch_to_thread (wait_ptid);
460 should_resume = 0;
461 }
462 }
463
464 tp = inferior_thread ();
465
466 /* If there were any forks/vforks that were caught and are now to be
467 followed, then do so now. */
468 switch (tp->pending_follow.kind)
469 {
470 case TARGET_WAITKIND_FORKED:
471 case TARGET_WAITKIND_VFORKED:
472 {
473 ptid_t parent, child;
474
475 /* If the user did a next/step, etc, over a fork call,
476 preserve the stepping state in the fork child. */
477 if (follow_child && should_resume)
478 {
8358c15c
JK
479 step_resume_breakpoint = clone_momentary_breakpoint
480 (tp->control.step_resume_breakpoint);
16c381f0
JK
481 step_range_start = tp->control.step_range_start;
482 step_range_end = tp->control.step_range_end;
483 step_frame_id = tp->control.step_frame_id;
186c406b
TT
484 exception_resume_breakpoint
485 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
486
487 /* For now, delete the parent's sr breakpoint, otherwise,
488 parent/child sr breakpoints are considered duplicates,
489 and the child version will not be installed. Remove
490 this when the breakpoints module becomes aware of
491 inferiors and address spaces. */
492 delete_step_resume_breakpoint (tp);
16c381f0
JK
493 tp->control.step_range_start = 0;
494 tp->control.step_range_end = 0;
495 tp->control.step_frame_id = null_frame_id;
186c406b 496 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
497 }
498
499 parent = inferior_ptid;
500 child = tp->pending_follow.value.related_pid;
501
502 /* Tell the target to do whatever is necessary to follow
503 either parent or child. */
07107ca6 504 if (target_follow_fork (follow_child, detach_fork))
e58b0e63
PA
505 {
506 /* Target refused to follow, or there's some other reason
507 we shouldn't resume. */
508 should_resume = 0;
509 }
510 else
511 {
512 /* This pending follow fork event is now handled, one way
513 or another. The previous selected thread may be gone
514 from the lists by now, but if it is still around, need
515 to clear the pending follow request. */
e09875d4 516 tp = find_thread_ptid (parent);
e58b0e63
PA
517 if (tp)
518 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
519
520 /* This makes sure we don't try to apply the "Switched
521 over from WAIT_PID" logic above. */
522 nullify_last_target_wait_ptid ();
523
1777feb0 524 /* If we followed the child, switch to it... */
e58b0e63
PA
525 if (follow_child)
526 {
527 switch_to_thread (child);
528
529 /* ... and preserve the stepping state, in case the
530 user was stepping over the fork call. */
531 if (should_resume)
532 {
533 tp = inferior_thread ();
8358c15c
JK
534 tp->control.step_resume_breakpoint
535 = step_resume_breakpoint;
16c381f0
JK
536 tp->control.step_range_start = step_range_start;
537 tp->control.step_range_end = step_range_end;
538 tp->control.step_frame_id = step_frame_id;
186c406b
TT
539 tp->control.exception_resume_breakpoint
540 = exception_resume_breakpoint;
e58b0e63
PA
541 }
542 else
543 {
544 /* If we get here, it was because we're trying to
545 resume from a fork catchpoint, but, the user
546 has switched threads away from the thread that
547 forked. In that case, the resume command
548 issued is most likely not applicable to the
549 child, so just warn, and refuse to resume. */
3e43a32a
MS
550 warning (_("Not resuming: switched threads "
551 "before following fork child.\n"));
e58b0e63
PA
552 }
553
554 /* Reset breakpoints in the child as appropriate. */
555 follow_inferior_reset_breakpoints ();
556 }
557 else
558 switch_to_thread (parent);
559 }
560 }
561 break;
562 case TARGET_WAITKIND_SPURIOUS:
563 /* Nothing to follow. */
564 break;
565 default:
566 internal_error (__FILE__, __LINE__,
567 "Unexpected pending_follow.kind %d\n",
568 tp->pending_follow.kind);
569 break;
570 }
c906108c 571
e58b0e63 572 return should_resume;
c906108c
SS
573}
574
6604731b
DJ
575void
576follow_inferior_reset_breakpoints (void)
c906108c 577{
4e1c45ea
PA
578 struct thread_info *tp = inferior_thread ();
579
6604731b
DJ
580 /* Was there a step_resume breakpoint? (There was if the user
581 did a "next" at the fork() call.) If so, explicitly reset its
582 thread number.
583
584 step_resumes are a form of bp that are made to be per-thread.
585 Since we created the step_resume bp when the parent process
586 was being debugged, and now are switching to the child process,
587 from the breakpoint package's viewpoint, that's a switch of
588 "threads". We must update the bp's notion of which thread
589 it is for, or it'll be ignored when it triggers. */
590
8358c15c
JK
591 if (tp->control.step_resume_breakpoint)
592 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 593
186c406b
TT
594 if (tp->control.exception_resume_breakpoint)
595 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
596
6604731b
DJ
597 /* Reinsert all breakpoints in the child. The user may have set
598 breakpoints after catching the fork, in which case those
599 were never set in the child, but only in the parent. This makes
600 sure the inserted breakpoints match the breakpoint list. */
601
602 breakpoint_re_set ();
603 insert_breakpoints ();
c906108c 604}
c906108c 605
6c95b8df
PA
606/* The child has exited or execed: resume threads of the parent the
607 user wanted to be executing. */
608
609static int
610proceed_after_vfork_done (struct thread_info *thread,
611 void *arg)
612{
613 int pid = * (int *) arg;
614
615 if (ptid_get_pid (thread->ptid) == pid
616 && is_running (thread->ptid)
617 && !is_executing (thread->ptid)
618 && !thread->stop_requested
a493e3e2 619 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
620 {
621 if (debug_infrun)
622 fprintf_unfiltered (gdb_stdlog,
623 "infrun: resuming vfork parent thread %s\n",
624 target_pid_to_str (thread->ptid));
625
626 switch_to_thread (thread->ptid);
627 clear_proceed_status ();
a493e3e2 628 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
629 }
630
631 return 0;
632}
633
634/* Called whenever we notice an exec or exit event, to handle
635 detaching or resuming a vfork parent. */
636
637static void
638handle_vfork_child_exec_or_exit (int exec)
639{
640 struct inferior *inf = current_inferior ();
641
642 if (inf->vfork_parent)
643 {
644 int resume_parent = -1;
645
646 /* This exec or exit marks the end of the shared memory region
647 between the parent and the child. If the user wanted to
648 detach from the parent, now is the time. */
649
650 if (inf->vfork_parent->pending_detach)
651 {
652 struct thread_info *tp;
653 struct cleanup *old_chain;
654 struct program_space *pspace;
655 struct address_space *aspace;
656
1777feb0 657 /* follow-fork child, detach-on-fork on. */
6c95b8df 658
68c9da30
PA
659 inf->vfork_parent->pending_detach = 0;
660
f50f4e56
PA
661 if (!exec)
662 {
663 /* If we're handling a child exit, then inferior_ptid
664 points at the inferior's pid, not to a thread. */
665 old_chain = save_inferior_ptid ();
666 save_current_program_space ();
667 save_current_inferior ();
668 }
669 else
670 old_chain = save_current_space_and_thread ();
6c95b8df
PA
671
672 /* We're letting loose of the parent. */
673 tp = any_live_thread_of_process (inf->vfork_parent->pid);
674 switch_to_thread (tp->ptid);
675
676 /* We're about to detach from the parent, which implicitly
677 removes breakpoints from its address space. There's a
678 catch here: we want to reuse the spaces for the child,
679 but, parent/child are still sharing the pspace at this
680 point, although the exec in reality makes the kernel give
681 the child a fresh set of new pages. The problem here is
682 that the breakpoints module being unaware of this, would
683 likely chose the child process to write to the parent
684 address space. Swapping the child temporarily away from
685 the spaces has the desired effect. Yes, this is "sort
686 of" a hack. */
687
688 pspace = inf->pspace;
689 aspace = inf->aspace;
690 inf->aspace = NULL;
691 inf->pspace = NULL;
692
693 if (debug_infrun || info_verbose)
694 {
695 target_terminal_ours ();
696
697 if (exec)
698 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
699 "Detaching vfork parent process "
700 "%d after child exec.\n",
6c95b8df
PA
701 inf->vfork_parent->pid);
702 else
703 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
704 "Detaching vfork parent process "
705 "%d after child exit.\n",
6c95b8df
PA
706 inf->vfork_parent->pid);
707 }
708
709 target_detach (NULL, 0);
710
711 /* Put it back. */
712 inf->pspace = pspace;
713 inf->aspace = aspace;
714
715 do_cleanups (old_chain);
716 }
717 else if (exec)
718 {
719 /* We're staying attached to the parent, so, really give the
720 child a new address space. */
721 inf->pspace = add_program_space (maybe_new_address_space ());
722 inf->aspace = inf->pspace->aspace;
723 inf->removable = 1;
724 set_current_program_space (inf->pspace);
725
726 resume_parent = inf->vfork_parent->pid;
727
728 /* Break the bonds. */
729 inf->vfork_parent->vfork_child = NULL;
730 }
731 else
732 {
733 struct cleanup *old_chain;
734 struct program_space *pspace;
735
736 /* If this is a vfork child exiting, then the pspace and
737 aspaces were shared with the parent. Since we're
738 reporting the process exit, we'll be mourning all that is
739 found in the address space, and switching to null_ptid,
740 preparing to start a new inferior. But, since we don't
741 want to clobber the parent's address/program spaces, we
742 go ahead and create a new one for this exiting
743 inferior. */
744
745 /* Switch to null_ptid, so that clone_program_space doesn't want
746 to read the selected frame of a dead process. */
747 old_chain = save_inferior_ptid ();
748 inferior_ptid = null_ptid;
749
750 /* This inferior is dead, so avoid giving the breakpoints
751 module the option to write through to it (cloning a
752 program space resets breakpoints). */
753 inf->aspace = NULL;
754 inf->pspace = NULL;
755 pspace = add_program_space (maybe_new_address_space ());
756 set_current_program_space (pspace);
757 inf->removable = 1;
7dcd53a0 758 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
759 clone_program_space (pspace, inf->vfork_parent->pspace);
760 inf->pspace = pspace;
761 inf->aspace = pspace->aspace;
762
763 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 764 inferior. */
6c95b8df
PA
765 do_cleanups (old_chain);
766
767 resume_parent = inf->vfork_parent->pid;
768 /* Break the bonds. */
769 inf->vfork_parent->vfork_child = NULL;
770 }
771
772 inf->vfork_parent = NULL;
773
774 gdb_assert (current_program_space == inf->pspace);
775
776 if (non_stop && resume_parent != -1)
777 {
778 /* If the user wanted the parent to be running, let it go
779 free now. */
780 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
781
782 if (debug_infrun)
3e43a32a
MS
783 fprintf_unfiltered (gdb_stdlog,
784 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
785 resume_parent);
786
787 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
788
789 do_cleanups (old_chain);
790 }
791 }
792}
793
eb6c553b 794/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
795
796static const char follow_exec_mode_new[] = "new";
797static const char follow_exec_mode_same[] = "same";
40478521 798static const char *const follow_exec_mode_names[] =
6c95b8df
PA
799{
800 follow_exec_mode_new,
801 follow_exec_mode_same,
802 NULL,
803};
804
805static const char *follow_exec_mode_string = follow_exec_mode_same;
806static void
807show_follow_exec_mode_string (struct ui_file *file, int from_tty,
808 struct cmd_list_element *c, const char *value)
809{
810 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
811}
812
1777feb0 813/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 814
c906108c 815static void
3a3e9ee3 816follow_exec (ptid_t pid, char *execd_pathname)
c906108c 817{
4e1c45ea 818 struct thread_info *th = inferior_thread ();
6c95b8df 819 struct inferior *inf = current_inferior ();
7a292a7a 820
c906108c
SS
821 /* This is an exec event that we actually wish to pay attention to.
822 Refresh our symbol table to the newly exec'd program, remove any
823 momentary bp's, etc.
824
825 If there are breakpoints, they aren't really inserted now,
826 since the exec() transformed our inferior into a fresh set
827 of instructions.
828
829 We want to preserve symbolic breakpoints on the list, since
830 we have hopes that they can be reset after the new a.out's
831 symbol table is read.
832
833 However, any "raw" breakpoints must be removed from the list
834 (e.g., the solib bp's), since their address is probably invalid
835 now.
836
837 And, we DON'T want to call delete_breakpoints() here, since
838 that may write the bp's "shadow contents" (the instruction
839 value that was overwritten witha TRAP instruction). Since
1777feb0 840 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
841
842 mark_breakpoints_out ();
843
c906108c
SS
844 update_breakpoints_after_exec ();
845
846 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 847 statement through an exec(). */
8358c15c 848 th->control.step_resume_breakpoint = NULL;
186c406b 849 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
850 th->control.step_range_start = 0;
851 th->control.step_range_end = 0;
c906108c 852
a75724bc
PA
853 /* The target reports the exec event to the main thread, even if
854 some other thread does the exec, and even if the main thread was
855 already stopped --- if debugging in non-stop mode, it's possible
856 the user had the main thread held stopped in the previous image
857 --- release it now. This is the same behavior as step-over-exec
858 with scheduler-locking on in all-stop mode. */
859 th->stop_requested = 0;
860
1777feb0 861 /* What is this a.out's name? */
6c95b8df
PA
862 printf_unfiltered (_("%s is executing new program: %s\n"),
863 target_pid_to_str (inferior_ptid),
864 execd_pathname);
c906108c
SS
865
866 /* We've followed the inferior through an exec. Therefore, the
1777feb0 867 inferior has essentially been killed & reborn. */
7a292a7a 868
c906108c 869 gdb_flush (gdb_stdout);
6ca15a4b
PA
870
871 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
872
873 if (gdb_sysroot && *gdb_sysroot)
874 {
875 char *name = alloca (strlen (gdb_sysroot)
876 + strlen (execd_pathname)
877 + 1);
abbb1732 878
e85a822c
DJ
879 strcpy (name, gdb_sysroot);
880 strcat (name, execd_pathname);
881 execd_pathname = name;
882 }
c906108c 883
cce9b6bf
PA
884 /* Reset the shared library package. This ensures that we get a
885 shlib event when the child reaches "_start", at which point the
886 dld will have had a chance to initialize the child. */
887 /* Also, loading a symbol file below may trigger symbol lookups, and
888 we don't want those to be satisfied by the libraries of the
889 previous incarnation of this process. */
890 no_shared_libraries (NULL, 0);
891
6c95b8df
PA
892 if (follow_exec_mode_string == follow_exec_mode_new)
893 {
894 struct program_space *pspace;
6c95b8df
PA
895
896 /* The user wants to keep the old inferior and program spaces
897 around. Create a new fresh one, and switch to it. */
898
899 inf = add_inferior (current_inferior ()->pid);
900 pspace = add_program_space (maybe_new_address_space ());
901 inf->pspace = pspace;
902 inf->aspace = pspace->aspace;
903
904 exit_inferior_num_silent (current_inferior ()->num);
905
906 set_current_inferior (inf);
907 set_current_program_space (pspace);
908 }
9107fc8d
PA
909 else
910 {
911 /* The old description may no longer be fit for the new image.
912 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
913 old description; we'll read a new one below. No need to do
914 this on "follow-exec-mode new", as the old inferior stays
915 around (its description is later cleared/refetched on
916 restart). */
917 target_clear_description ();
918 }
6c95b8df
PA
919
920 gdb_assert (current_program_space == inf->pspace);
921
1777feb0 922 /* That a.out is now the one to use. */
6c95b8df
PA
923 exec_file_attach (execd_pathname, 0);
924
c1e56572
JK
925 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
926 (Position Independent Executable) main symbol file will get applied by
927 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
928 the breakpoints with the zero displacement. */
929
7dcd53a0
TT
930 symbol_file_add (execd_pathname,
931 (inf->symfile_flags
932 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
933 NULL, 0);
934
7dcd53a0
TT
935 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
936 set_initial_language ();
c906108c 937
9107fc8d
PA
938 /* If the target can specify a description, read it. Must do this
939 after flipping to the new executable (because the target supplied
940 description must be compatible with the executable's
941 architecture, and the old executable may e.g., be 32-bit, while
942 the new one 64-bit), and before anything involving memory or
943 registers. */
944 target_find_description ();
945
268a4a75 946 solib_create_inferior_hook (0);
c906108c 947
4efc6507
DE
948 jit_inferior_created_hook ();
949
c1e56572
JK
950 breakpoint_re_set ();
951
c906108c
SS
952 /* Reinsert all breakpoints. (Those which were symbolic have
953 been reset to the proper address in the new a.out, thanks
1777feb0 954 to symbol_file_command...). */
c906108c
SS
955 insert_breakpoints ();
956
957 /* The next resume of this inferior should bring it to the shlib
958 startup breakpoints. (If the user had also set bp's on
959 "main" from the old (parent) process, then they'll auto-
1777feb0 960 matically get reset there in the new process.). */
c906108c
SS
961}
962
963/* Non-zero if we just simulating a single-step. This is needed
964 because we cannot remove the breakpoints in the inferior process
965 until after the `wait' in `wait_for_inferior'. */
966static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
967
968/* The thread we inserted single-step breakpoints for. */
969static ptid_t singlestep_ptid;
970
fd48f117
DJ
971/* PC when we started this single-step. */
972static CORE_ADDR singlestep_pc;
973
9f976b41
DJ
974/* If another thread hit the singlestep breakpoint, we save the original
975 thread here so that we can resume single-stepping it later. */
976static ptid_t saved_singlestep_ptid;
977static int stepping_past_singlestep_breakpoint;
6a6b96b9 978
ca67fcb8
VP
979/* If not equal to null_ptid, this means that after stepping over breakpoint
980 is finished, we need to switch to deferred_step_ptid, and step it.
981
982 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 983 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
984 breakpoint in the thread which hit the breakpoint, but then continue
985 stepping the thread user has selected. */
986static ptid_t deferred_step_ptid;
c906108c 987\f
237fc4c9
PA
988/* Displaced stepping. */
989
990/* In non-stop debugging mode, we must take special care to manage
991 breakpoints properly; in particular, the traditional strategy for
992 stepping a thread past a breakpoint it has hit is unsuitable.
993 'Displaced stepping' is a tactic for stepping one thread past a
994 breakpoint it has hit while ensuring that other threads running
995 concurrently will hit the breakpoint as they should.
996
997 The traditional way to step a thread T off a breakpoint in a
998 multi-threaded program in all-stop mode is as follows:
999
1000 a0) Initially, all threads are stopped, and breakpoints are not
1001 inserted.
1002 a1) We single-step T, leaving breakpoints uninserted.
1003 a2) We insert breakpoints, and resume all threads.
1004
1005 In non-stop debugging, however, this strategy is unsuitable: we
1006 don't want to have to stop all threads in the system in order to
1007 continue or step T past a breakpoint. Instead, we use displaced
1008 stepping:
1009
1010 n0) Initially, T is stopped, other threads are running, and
1011 breakpoints are inserted.
1012 n1) We copy the instruction "under" the breakpoint to a separate
1013 location, outside the main code stream, making any adjustments
1014 to the instruction, register, and memory state as directed by
1015 T's architecture.
1016 n2) We single-step T over the instruction at its new location.
1017 n3) We adjust the resulting register and memory state as directed
1018 by T's architecture. This includes resetting T's PC to point
1019 back into the main instruction stream.
1020 n4) We resume T.
1021
1022 This approach depends on the following gdbarch methods:
1023
1024 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1025 indicate where to copy the instruction, and how much space must
1026 be reserved there. We use these in step n1.
1027
1028 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1029 address, and makes any necessary adjustments to the instruction,
1030 register contents, and memory. We use this in step n1.
1031
1032 - gdbarch_displaced_step_fixup adjusts registers and memory after
1033 we have successfuly single-stepped the instruction, to yield the
1034 same effect the instruction would have had if we had executed it
1035 at its original address. We use this in step n3.
1036
1037 - gdbarch_displaced_step_free_closure provides cleanup.
1038
1039 The gdbarch_displaced_step_copy_insn and
1040 gdbarch_displaced_step_fixup functions must be written so that
1041 copying an instruction with gdbarch_displaced_step_copy_insn,
1042 single-stepping across the copied instruction, and then applying
1043 gdbarch_displaced_insn_fixup should have the same effects on the
1044 thread's memory and registers as stepping the instruction in place
1045 would have. Exactly which responsibilities fall to the copy and
1046 which fall to the fixup is up to the author of those functions.
1047
1048 See the comments in gdbarch.sh for details.
1049
1050 Note that displaced stepping and software single-step cannot
1051 currently be used in combination, although with some care I think
1052 they could be made to. Software single-step works by placing
1053 breakpoints on all possible subsequent instructions; if the
1054 displaced instruction is a PC-relative jump, those breakpoints
1055 could fall in very strange places --- on pages that aren't
1056 executable, or at addresses that are not proper instruction
1057 boundaries. (We do generally let other threads run while we wait
1058 to hit the software single-step breakpoint, and they might
1059 encounter such a corrupted instruction.) One way to work around
1060 this would be to have gdbarch_displaced_step_copy_insn fully
1061 simulate the effect of PC-relative instructions (and return NULL)
1062 on architectures that use software single-stepping.
1063
1064 In non-stop mode, we can have independent and simultaneous step
1065 requests, so more than one thread may need to simultaneously step
1066 over a breakpoint. The current implementation assumes there is
1067 only one scratch space per process. In this case, we have to
1068 serialize access to the scratch space. If thread A wants to step
1069 over a breakpoint, but we are currently waiting for some other
1070 thread to complete a displaced step, we leave thread A stopped and
1071 place it in the displaced_step_request_queue. Whenever a displaced
1072 step finishes, we pick the next thread in the queue and start a new
1073 displaced step operation on it. See displaced_step_prepare and
1074 displaced_step_fixup for details. */
1075
237fc4c9
PA
1076struct displaced_step_request
1077{
1078 ptid_t ptid;
1079 struct displaced_step_request *next;
1080};
1081
fc1cf338
PA
1082/* Per-inferior displaced stepping state. */
1083struct displaced_step_inferior_state
1084{
1085 /* Pointer to next in linked list. */
1086 struct displaced_step_inferior_state *next;
1087
1088 /* The process this displaced step state refers to. */
1089 int pid;
1090
1091 /* A queue of pending displaced stepping requests. One entry per
1092 thread that needs to do a displaced step. */
1093 struct displaced_step_request *step_request_queue;
1094
1095 /* If this is not null_ptid, this is the thread carrying out a
1096 displaced single-step in process PID. This thread's state will
1097 require fixing up once it has completed its step. */
1098 ptid_t step_ptid;
1099
1100 /* The architecture the thread had when we stepped it. */
1101 struct gdbarch *step_gdbarch;
1102
1103 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1104 for post-step cleanup. */
1105 struct displaced_step_closure *step_closure;
1106
1107 /* The address of the original instruction, and the copy we
1108 made. */
1109 CORE_ADDR step_original, step_copy;
1110
1111 /* Saved contents of copy area. */
1112 gdb_byte *step_saved_copy;
1113};
1114
1115/* The list of states of processes involved in displaced stepping
1116 presently. */
1117static struct displaced_step_inferior_state *displaced_step_inferior_states;
1118
1119/* Get the displaced stepping state of process PID. */
1120
1121static struct displaced_step_inferior_state *
1122get_displaced_stepping_state (int pid)
1123{
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
1131
1132 return NULL;
1133}
1134
1135/* Add a new displaced stepping state for process PID to the displaced
1136 stepping state list, or return a pointer to an already existing
1137 entry, if it already exists. Never returns NULL. */
1138
1139static struct displaced_step_inferior_state *
1140add_displaced_stepping_state (int pid)
1141{
1142 struct displaced_step_inferior_state *state;
1143
1144 for (state = displaced_step_inferior_states;
1145 state != NULL;
1146 state = state->next)
1147 if (state->pid == pid)
1148 return state;
237fc4c9 1149
fc1cf338
PA
1150 state = xcalloc (1, sizeof (*state));
1151 state->pid = pid;
1152 state->next = displaced_step_inferior_states;
1153 displaced_step_inferior_states = state;
237fc4c9 1154
fc1cf338
PA
1155 return state;
1156}
1157
a42244db
YQ
1158/* If inferior is in displaced stepping, and ADDR equals to starting address
1159 of copy area, return corresponding displaced_step_closure. Otherwise,
1160 return NULL. */
1161
1162struct displaced_step_closure*
1163get_displaced_step_closure_by_addr (CORE_ADDR addr)
1164{
1165 struct displaced_step_inferior_state *displaced
1166 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1167
1168 /* If checking the mode of displaced instruction in copy area. */
1169 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1170 && (displaced->step_copy == addr))
1171 return displaced->step_closure;
1172
1173 return NULL;
1174}
1175
fc1cf338 1176/* Remove the displaced stepping state of process PID. */
237fc4c9 1177
fc1cf338
PA
1178static void
1179remove_displaced_stepping_state (int pid)
1180{
1181 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1182
fc1cf338
PA
1183 gdb_assert (pid != 0);
1184
1185 it = displaced_step_inferior_states;
1186 prev_next_p = &displaced_step_inferior_states;
1187 while (it)
1188 {
1189 if (it->pid == pid)
1190 {
1191 *prev_next_p = it->next;
1192 xfree (it);
1193 return;
1194 }
1195
1196 prev_next_p = &it->next;
1197 it = *prev_next_p;
1198 }
1199}
1200
1201static void
1202infrun_inferior_exit (struct inferior *inf)
1203{
1204 remove_displaced_stepping_state (inf->pid);
1205}
237fc4c9 1206
fff08868
HZ
1207/* If ON, and the architecture supports it, GDB will use displaced
1208 stepping to step over breakpoints. If OFF, or if the architecture
1209 doesn't support it, GDB will instead use the traditional
1210 hold-and-step approach. If AUTO (which is the default), GDB will
1211 decide which technique to use to step over breakpoints depending on
1212 which of all-stop or non-stop mode is active --- displaced stepping
1213 in non-stop mode; hold-and-step in all-stop mode. */
1214
72d0e2c5 1215static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1216
237fc4c9
PA
1217static void
1218show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1219 struct cmd_list_element *c,
1220 const char *value)
1221{
72d0e2c5 1222 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1223 fprintf_filtered (file,
1224 _("Debugger's willingness to use displaced stepping "
1225 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1226 value, non_stop ? "on" : "off");
1227 else
3e43a32a
MS
1228 fprintf_filtered (file,
1229 _("Debugger's willingness to use displaced stepping "
1230 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1231}
1232
fff08868
HZ
1233/* Return non-zero if displaced stepping can/should be used to step
1234 over breakpoints. */
1235
237fc4c9
PA
1236static int
1237use_displaced_stepping (struct gdbarch *gdbarch)
1238{
72d0e2c5
YQ
1239 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1240 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8
HZ
1241 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1242 && !RECORD_IS_USED);
237fc4c9
PA
1243}
1244
1245/* Clean out any stray displaced stepping state. */
1246static void
fc1cf338 1247displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1248{
1249 /* Indicate that there is no cleanup pending. */
fc1cf338 1250 displaced->step_ptid = null_ptid;
237fc4c9 1251
fc1cf338 1252 if (displaced->step_closure)
237fc4c9 1253 {
fc1cf338
PA
1254 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1255 displaced->step_closure);
1256 displaced->step_closure = NULL;
237fc4c9
PA
1257 }
1258}
1259
1260static void
fc1cf338 1261displaced_step_clear_cleanup (void *arg)
237fc4c9 1262{
fc1cf338
PA
1263 struct displaced_step_inferior_state *state = arg;
1264
1265 displaced_step_clear (state);
237fc4c9
PA
1266}
1267
1268/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1269void
1270displaced_step_dump_bytes (struct ui_file *file,
1271 const gdb_byte *buf,
1272 size_t len)
1273{
1274 int i;
1275
1276 for (i = 0; i < len; i++)
1277 fprintf_unfiltered (file, "%02x ", buf[i]);
1278 fputs_unfiltered ("\n", file);
1279}
1280
1281/* Prepare to single-step, using displaced stepping.
1282
1283 Note that we cannot use displaced stepping when we have a signal to
1284 deliver. If we have a signal to deliver and an instruction to step
1285 over, then after the step, there will be no indication from the
1286 target whether the thread entered a signal handler or ignored the
1287 signal and stepped over the instruction successfully --- both cases
1288 result in a simple SIGTRAP. In the first case we mustn't do a
1289 fixup, and in the second case we must --- but we can't tell which.
1290 Comments in the code for 'random signals' in handle_inferior_event
1291 explain how we handle this case instead.
1292
1293 Returns 1 if preparing was successful -- this thread is going to be
1294 stepped now; or 0 if displaced stepping this thread got queued. */
1295static int
1296displaced_step_prepare (ptid_t ptid)
1297{
ad53cd71 1298 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1299 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1300 struct regcache *regcache = get_thread_regcache (ptid);
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302 CORE_ADDR original, copy;
1303 ULONGEST len;
1304 struct displaced_step_closure *closure;
fc1cf338 1305 struct displaced_step_inferior_state *displaced;
9e529e1d 1306 int status;
237fc4c9
PA
1307
1308 /* We should never reach this function if the architecture does not
1309 support displaced stepping. */
1310 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1311
c1e36e3e
PA
1312 /* Disable range stepping while executing in the scratch pad. We
1313 want a single-step even if executing the displaced instruction in
1314 the scratch buffer lands within the stepping range (e.g., a
1315 jump/branch). */
1316 tp->control.may_range_step = 0;
1317
fc1cf338
PA
1318 /* We have to displaced step one thread at a time, as we only have
1319 access to a single scratch space per inferior. */
237fc4c9 1320
fc1cf338
PA
1321 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1322
1323 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1324 {
1325 /* Already waiting for a displaced step to finish. Defer this
1326 request and place in queue. */
1327 struct displaced_step_request *req, *new_req;
1328
1329 if (debug_displaced)
1330 fprintf_unfiltered (gdb_stdlog,
1331 "displaced: defering step of %s\n",
1332 target_pid_to_str (ptid));
1333
1334 new_req = xmalloc (sizeof (*new_req));
1335 new_req->ptid = ptid;
1336 new_req->next = NULL;
1337
fc1cf338 1338 if (displaced->step_request_queue)
237fc4c9 1339 {
fc1cf338 1340 for (req = displaced->step_request_queue;
237fc4c9
PA
1341 req && req->next;
1342 req = req->next)
1343 ;
1344 req->next = new_req;
1345 }
1346 else
fc1cf338 1347 displaced->step_request_queue = new_req;
237fc4c9
PA
1348
1349 return 0;
1350 }
1351 else
1352 {
1353 if (debug_displaced)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "displaced: stepping %s now\n",
1356 target_pid_to_str (ptid));
1357 }
1358
fc1cf338 1359 displaced_step_clear (displaced);
237fc4c9 1360
ad53cd71
PA
1361 old_cleanups = save_inferior_ptid ();
1362 inferior_ptid = ptid;
1363
515630c5 1364 original = regcache_read_pc (regcache);
237fc4c9
PA
1365
1366 copy = gdbarch_displaced_step_location (gdbarch);
1367 len = gdbarch_max_insn_length (gdbarch);
1368
1369 /* Save the original contents of the copy area. */
fc1cf338 1370 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1371 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1372 &displaced->step_saved_copy);
9e529e1d
JK
1373 status = target_read_memory (copy, displaced->step_saved_copy, len);
1374 if (status != 0)
1375 throw_error (MEMORY_ERROR,
1376 _("Error accessing memory address %s (%s) for "
1377 "displaced-stepping scratch space."),
1378 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1379 if (debug_displaced)
1380 {
5af949e3
UW
1381 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1382 paddress (gdbarch, copy));
fc1cf338
PA
1383 displaced_step_dump_bytes (gdb_stdlog,
1384 displaced->step_saved_copy,
1385 len);
237fc4c9
PA
1386 };
1387
1388 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1389 original, copy, regcache);
237fc4c9
PA
1390
1391 /* We don't support the fully-simulated case at present. */
1392 gdb_assert (closure);
1393
9f5a595d
UW
1394 /* Save the information we need to fix things up if the step
1395 succeeds. */
fc1cf338
PA
1396 displaced->step_ptid = ptid;
1397 displaced->step_gdbarch = gdbarch;
1398 displaced->step_closure = closure;
1399 displaced->step_original = original;
1400 displaced->step_copy = copy;
9f5a595d 1401
fc1cf338 1402 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1403
1404 /* Resume execution at the copy. */
515630c5 1405 regcache_write_pc (regcache, copy);
237fc4c9 1406
ad53cd71
PA
1407 discard_cleanups (ignore_cleanups);
1408
1409 do_cleanups (old_cleanups);
237fc4c9
PA
1410
1411 if (debug_displaced)
5af949e3
UW
1412 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1413 paddress (gdbarch, copy));
237fc4c9 1414
237fc4c9
PA
1415 return 1;
1416}
1417
237fc4c9 1418static void
3e43a32a
MS
1419write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1420 const gdb_byte *myaddr, int len)
237fc4c9
PA
1421{
1422 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1423
237fc4c9
PA
1424 inferior_ptid = ptid;
1425 write_memory (memaddr, myaddr, len);
1426 do_cleanups (ptid_cleanup);
1427}
1428
e2d96639
YQ
1429/* Restore the contents of the copy area for thread PTID. */
1430
1431static void
1432displaced_step_restore (struct displaced_step_inferior_state *displaced,
1433 ptid_t ptid)
1434{
1435 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1436
1437 write_memory_ptid (ptid, displaced->step_copy,
1438 displaced->step_saved_copy, len);
1439 if (debug_displaced)
1440 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1441 target_pid_to_str (ptid),
1442 paddress (displaced->step_gdbarch,
1443 displaced->step_copy));
1444}
1445
237fc4c9 1446static void
2ea28649 1447displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1448{
1449 struct cleanup *old_cleanups;
fc1cf338
PA
1450 struct displaced_step_inferior_state *displaced
1451 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1452
1453 /* Was any thread of this process doing a displaced step? */
1454 if (displaced == NULL)
1455 return;
237fc4c9
PA
1456
1457 /* Was this event for the pid we displaced? */
fc1cf338
PA
1458 if (ptid_equal (displaced->step_ptid, null_ptid)
1459 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1460 return;
1461
fc1cf338 1462 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1463
e2d96639 1464 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1465
1466 /* Did the instruction complete successfully? */
a493e3e2 1467 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1468 {
1469 /* Fix up the resulting state. */
fc1cf338
PA
1470 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1471 displaced->step_closure,
1472 displaced->step_original,
1473 displaced->step_copy,
1474 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1475 }
1476 else
1477 {
1478 /* Since the instruction didn't complete, all we can do is
1479 relocate the PC. */
515630c5
UW
1480 struct regcache *regcache = get_thread_regcache (event_ptid);
1481 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1482
fc1cf338 1483 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1484 regcache_write_pc (regcache, pc);
237fc4c9
PA
1485 }
1486
1487 do_cleanups (old_cleanups);
1488
fc1cf338 1489 displaced->step_ptid = null_ptid;
1c5cfe86 1490
237fc4c9 1491 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1492 one now. Leave the state object around, since we're likely to
1493 need it again soon. */
1494 while (displaced->step_request_queue)
237fc4c9
PA
1495 {
1496 struct displaced_step_request *head;
1497 ptid_t ptid;
5af949e3 1498 struct regcache *regcache;
929dfd4f 1499 struct gdbarch *gdbarch;
1c5cfe86 1500 CORE_ADDR actual_pc;
6c95b8df 1501 struct address_space *aspace;
237fc4c9 1502
fc1cf338 1503 head = displaced->step_request_queue;
237fc4c9 1504 ptid = head->ptid;
fc1cf338 1505 displaced->step_request_queue = head->next;
237fc4c9
PA
1506 xfree (head);
1507
ad53cd71
PA
1508 context_switch (ptid);
1509
5af949e3
UW
1510 regcache = get_thread_regcache (ptid);
1511 actual_pc = regcache_read_pc (regcache);
6c95b8df 1512 aspace = get_regcache_aspace (regcache);
1c5cfe86 1513
6c95b8df 1514 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1515 {
1c5cfe86
PA
1516 if (debug_displaced)
1517 fprintf_unfiltered (gdb_stdlog,
1518 "displaced: stepping queued %s now\n",
1519 target_pid_to_str (ptid));
1520
1521 displaced_step_prepare (ptid);
1522
929dfd4f
JB
1523 gdbarch = get_regcache_arch (regcache);
1524
1c5cfe86
PA
1525 if (debug_displaced)
1526 {
929dfd4f 1527 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1528 gdb_byte buf[4];
1529
5af949e3
UW
1530 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1531 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1532 read_memory (actual_pc, buf, sizeof (buf));
1533 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1534 }
1535
fc1cf338
PA
1536 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1537 displaced->step_closure))
a493e3e2 1538 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1539 else
a493e3e2 1540 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1541
1542 /* Done, we're stepping a thread. */
1543 break;
ad53cd71 1544 }
1c5cfe86
PA
1545 else
1546 {
1547 int step;
1548 struct thread_info *tp = inferior_thread ();
1549
1550 /* The breakpoint we were sitting under has since been
1551 removed. */
16c381f0 1552 tp->control.trap_expected = 0;
1c5cfe86
PA
1553
1554 /* Go back to what we were trying to do. */
1555 step = currently_stepping (tp);
ad53cd71 1556
1c5cfe86 1557 if (debug_displaced)
3e43a32a 1558 fprintf_unfiltered (gdb_stdlog,
27d2932e 1559 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1560 target_pid_to_str (tp->ptid), step);
1561
a493e3e2
PA
1562 target_resume (ptid, step, GDB_SIGNAL_0);
1563 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1564
1565 /* This request was discarded. See if there's any other
1566 thread waiting for its turn. */
1567 }
237fc4c9
PA
1568 }
1569}
1570
5231c1fd
PA
1571/* Update global variables holding ptids to hold NEW_PTID if they were
1572 holding OLD_PTID. */
1573static void
1574infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1575{
1576 struct displaced_step_request *it;
fc1cf338 1577 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1578
1579 if (ptid_equal (inferior_ptid, old_ptid))
1580 inferior_ptid = new_ptid;
1581
1582 if (ptid_equal (singlestep_ptid, old_ptid))
1583 singlestep_ptid = new_ptid;
1584
5231c1fd
PA
1585 if (ptid_equal (deferred_step_ptid, old_ptid))
1586 deferred_step_ptid = new_ptid;
1587
fc1cf338
PA
1588 for (displaced = displaced_step_inferior_states;
1589 displaced;
1590 displaced = displaced->next)
1591 {
1592 if (ptid_equal (displaced->step_ptid, old_ptid))
1593 displaced->step_ptid = new_ptid;
1594
1595 for (it = displaced->step_request_queue; it; it = it->next)
1596 if (ptid_equal (it->ptid, old_ptid))
1597 it->ptid = new_ptid;
1598 }
5231c1fd
PA
1599}
1600
237fc4c9
PA
1601\f
1602/* Resuming. */
c906108c
SS
1603
1604/* Things to clean up if we QUIT out of resume (). */
c906108c 1605static void
74b7792f 1606resume_cleanups (void *ignore)
c906108c
SS
1607{
1608 normal_stop ();
1609}
1610
53904c9e
AC
1611static const char schedlock_off[] = "off";
1612static const char schedlock_on[] = "on";
1613static const char schedlock_step[] = "step";
40478521 1614static const char *const scheduler_enums[] = {
ef346e04
AC
1615 schedlock_off,
1616 schedlock_on,
1617 schedlock_step,
1618 NULL
1619};
920d2a44
AC
1620static const char *scheduler_mode = schedlock_off;
1621static void
1622show_scheduler_mode (struct ui_file *file, int from_tty,
1623 struct cmd_list_element *c, const char *value)
1624{
3e43a32a
MS
1625 fprintf_filtered (file,
1626 _("Mode for locking scheduler "
1627 "during execution is \"%s\".\n"),
920d2a44
AC
1628 value);
1629}
c906108c
SS
1630
1631static void
96baa820 1632set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1633{
eefe576e
AC
1634 if (!target_can_lock_scheduler)
1635 {
1636 scheduler_mode = schedlock_off;
1637 error (_("Target '%s' cannot support this command."), target_shortname);
1638 }
c906108c
SS
1639}
1640
d4db2f36
PA
1641/* True if execution commands resume all threads of all processes by
1642 default; otherwise, resume only threads of the current inferior
1643 process. */
1644int sched_multi = 0;
1645
2facfe5c
DD
1646/* Try to setup for software single stepping over the specified location.
1647 Return 1 if target_resume() should use hardware single step.
1648
1649 GDBARCH the current gdbarch.
1650 PC the location to step over. */
1651
1652static int
1653maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1654{
1655 int hw_step = 1;
1656
f02253f1
HZ
1657 if (execution_direction == EXEC_FORWARD
1658 && gdbarch_software_single_step_p (gdbarch)
99e40580 1659 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1660 {
99e40580
UW
1661 hw_step = 0;
1662 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1663 `wait_for_inferior'. */
99e40580
UW
1664 singlestep_breakpoints_inserted_p = 1;
1665 singlestep_ptid = inferior_ptid;
1666 singlestep_pc = pc;
2facfe5c
DD
1667 }
1668 return hw_step;
1669}
c906108c 1670
09cee04b
PA
1671/* Return a ptid representing the set of threads that we will proceed,
1672 in the perspective of the user/frontend. We may actually resume
1673 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1674 breakpoint that needs stepping-off, but that should not be visible
1675 to the user/frontend, and neither should the frontend/user be
1676 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1677 internal run control handling, if a previous command wanted them
1678 resumed. */
1679
1680ptid_t
1681user_visible_resume_ptid (int step)
1682{
1683 /* By default, resume all threads of all processes. */
1684 ptid_t resume_ptid = RESUME_ALL;
1685
1686 /* Maybe resume only all threads of the current process. */
1687 if (!sched_multi && target_supports_multi_process ())
1688 {
1689 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1690 }
1691
1692 /* Maybe resume a single thread after all. */
1693 if (non_stop)
1694 {
1695 /* With non-stop mode on, threads are always handled
1696 individually. */
1697 resume_ptid = inferior_ptid;
1698 }
1699 else if ((scheduler_mode == schedlock_on)
1700 || (scheduler_mode == schedlock_step
1701 && (step || singlestep_breakpoints_inserted_p)))
1702 {
1703 /* User-settable 'scheduler' mode requires solo thread resume. */
1704 resume_ptid = inferior_ptid;
1705 }
1706
1707 return resume_ptid;
1708}
1709
c906108c
SS
1710/* Resume the inferior, but allow a QUIT. This is useful if the user
1711 wants to interrupt some lengthy single-stepping operation
1712 (for child processes, the SIGINT goes to the inferior, and so
1713 we get a SIGINT random_signal, but for remote debugging and perhaps
1714 other targets, that's not true).
1715
1716 STEP nonzero if we should step (zero to continue instead).
1717 SIG is the signal to give the inferior (zero for none). */
1718void
2ea28649 1719resume (int step, enum gdb_signal sig)
c906108c
SS
1720{
1721 int should_resume = 1;
74b7792f 1722 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1723 struct regcache *regcache = get_current_regcache ();
1724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1725 struct thread_info *tp = inferior_thread ();
515630c5 1726 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1727 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1728
c906108c
SS
1729 QUIT;
1730
74609e71
YQ
1731 if (current_inferior ()->waiting_for_vfork_done)
1732 {
48f9886d
PA
1733 /* Don't try to single-step a vfork parent that is waiting for
1734 the child to get out of the shared memory region (by exec'ing
1735 or exiting). This is particularly important on software
1736 single-step archs, as the child process would trip on the
1737 software single step breakpoint inserted for the parent
1738 process. Since the parent will not actually execute any
1739 instruction until the child is out of the shared region (such
1740 are vfork's semantics), it is safe to simply continue it.
1741 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1742 the parent, and tell it to `keep_going', which automatically
1743 re-sets it stepping. */
74609e71
YQ
1744 if (debug_infrun)
1745 fprintf_unfiltered (gdb_stdlog,
1746 "infrun: resume : clear step\n");
1747 step = 0;
1748 }
1749
527159b7 1750 if (debug_infrun)
237fc4c9 1751 fprintf_unfiltered (gdb_stdlog,
c9737c08 1752 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 1753 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
1754 step, gdb_signal_to_symbol_string (sig),
1755 tp->control.trap_expected,
0d9a9a5f
PA
1756 target_pid_to_str (inferior_ptid),
1757 paddress (gdbarch, pc));
c906108c 1758
c2c6d25f
JM
1759 /* Normally, by the time we reach `resume', the breakpoints are either
1760 removed or inserted, as appropriate. The exception is if we're sitting
1761 at a permanent breakpoint; we need to step over it, but permanent
1762 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1763 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1764 {
515630c5
UW
1765 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1766 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1767 else
ac74f770
MS
1768 error (_("\
1769The program is stopped at a permanent breakpoint, but GDB does not know\n\
1770how to step past a permanent breakpoint on this architecture. Try using\n\
1771a command like `return' or `jump' to continue execution."));
6d350bb5 1772 }
c2c6d25f 1773
c1e36e3e
PA
1774 /* If we have a breakpoint to step over, make sure to do a single
1775 step only. Same if we have software watchpoints. */
1776 if (tp->control.trap_expected || bpstat_should_step ())
1777 tp->control.may_range_step = 0;
1778
237fc4c9
PA
1779 /* If enabled, step over breakpoints by executing a copy of the
1780 instruction at a different address.
1781
1782 We can't use displaced stepping when we have a signal to deliver;
1783 the comments for displaced_step_prepare explain why. The
1784 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1785 signals' explain what we do instead.
1786
1787 We can't use displaced stepping when we are waiting for vfork_done
1788 event, displaced stepping breaks the vfork child similarly as single
1789 step software breakpoint. */
515630c5 1790 if (use_displaced_stepping (gdbarch)
16c381f0 1791 && (tp->control.trap_expected
929dfd4f 1792 || (step && gdbarch_software_single_step_p (gdbarch)))
a493e3e2 1793 && sig == GDB_SIGNAL_0
74609e71 1794 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1795 {
fc1cf338
PA
1796 struct displaced_step_inferior_state *displaced;
1797
237fc4c9 1798 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1799 {
1800 /* Got placed in displaced stepping queue. Will be resumed
1801 later when all the currently queued displaced stepping
7f7efbd9
VP
1802 requests finish. The thread is not executing at this point,
1803 and the call to set_executing will be made later. But we
1804 need to call set_running here, since from frontend point of view,
1805 the thread is running. */
1806 set_running (inferior_ptid, 1);
d56b7306
VP
1807 discard_cleanups (old_cleanups);
1808 return;
1809 }
99e40580 1810
ca7781d2
LM
1811 /* Update pc to reflect the new address from which we will execute
1812 instructions due to displaced stepping. */
1813 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1814
fc1cf338
PA
1815 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1816 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1817 displaced->step_closure);
237fc4c9
PA
1818 }
1819
2facfe5c 1820 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1821 else if (step)
2facfe5c 1822 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1823
30852783
UW
1824 /* Currently, our software single-step implementation leads to different
1825 results than hardware single-stepping in one situation: when stepping
1826 into delivering a signal which has an associated signal handler,
1827 hardware single-step will stop at the first instruction of the handler,
1828 while software single-step will simply skip execution of the handler.
1829
1830 For now, this difference in behavior is accepted since there is no
1831 easy way to actually implement single-stepping into a signal handler
1832 without kernel support.
1833
1834 However, there is one scenario where this difference leads to follow-on
1835 problems: if we're stepping off a breakpoint by removing all breakpoints
1836 and then single-stepping. In this case, the software single-step
1837 behavior means that even if there is a *breakpoint* in the signal
1838 handler, GDB still would not stop.
1839
1840 Fortunately, we can at least fix this particular issue. We detect
1841 here the case where we are about to deliver a signal while software
1842 single-stepping with breakpoints removed. In this situation, we
1843 revert the decisions to remove all breakpoints and insert single-
1844 step breakpoints, and instead we install a step-resume breakpoint
1845 at the current address, deliver the signal without stepping, and
1846 once we arrive back at the step-resume breakpoint, actually step
1847 over the breakpoint we originally wanted to step over. */
1848 if (singlestep_breakpoints_inserted_p
a493e3e2 1849 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
30852783
UW
1850 {
1851 /* If we have nested signals or a pending signal is delivered
1852 immediately after a handler returns, might might already have
1853 a step-resume breakpoint set on the earlier handler. We cannot
1854 set another step-resume breakpoint; just continue on until the
1855 original breakpoint is hit. */
1856 if (tp->control.step_resume_breakpoint == NULL)
1857 {
2c03e5be 1858 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1859 tp->step_after_step_resume_breakpoint = 1;
1860 }
1861
1862 remove_single_step_breakpoints ();
1863 singlestep_breakpoints_inserted_p = 0;
1864
1865 insert_breakpoints ();
1866 tp->control.trap_expected = 0;
1867 }
1868
c906108c
SS
1869 if (should_resume)
1870 {
39f77062 1871 ptid_t resume_ptid;
dfcd3bfb 1872
cd76b0b7
VP
1873 /* If STEP is set, it's a request to use hardware stepping
1874 facilities. But in that case, we should never
1875 use singlestep breakpoint. */
1876 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1877
d4db2f36
PA
1878 /* Decide the set of threads to ask the target to resume. Start
1879 by assuming everything will be resumed, than narrow the set
1880 by applying increasingly restricting conditions. */
09cee04b 1881 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1882
1883 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1884 if (singlestep_breakpoints_inserted_p
1885 && stepping_past_singlestep_breakpoint)
c906108c 1886 {
cd76b0b7
VP
1887 /* The situation here is as follows. In thread T1 we wanted to
1888 single-step. Lacking hardware single-stepping we've
1889 set breakpoint at the PC of the next instruction -- call it
1890 P. After resuming, we've hit that breakpoint in thread T2.
1891 Now we've removed original breakpoint, inserted breakpoint
1892 at P+1, and try to step to advance T2 past breakpoint.
1893 We need to step only T2, as if T1 is allowed to freely run,
1894 it can run past P, and if other threads are allowed to run,
1895 they can hit breakpoint at P+1, and nested hits of single-step
1896 breakpoints is not something we'd want -- that's complicated
1897 to support, and has no value. */
1898 resume_ptid = inferior_ptid;
1899 }
d4db2f36 1900 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1901 && tp->control.trap_expected)
cd76b0b7 1902 {
74960c60
VP
1903 /* We're allowing a thread to run past a breakpoint it has
1904 hit, by single-stepping the thread with the breakpoint
1905 removed. In which case, we need to single-step only this
1906 thread, and keep others stopped, as they can miss this
1907 breakpoint if allowed to run.
1908
1909 The current code actually removes all breakpoints when
1910 doing this, not just the one being stepped over, so if we
1911 let other threads run, we can actually miss any
1912 breakpoint, not just the one at PC. */
ef5cf84e 1913 resume_ptid = inferior_ptid;
c906108c 1914 }
ef5cf84e 1915
515630c5 1916 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1917 {
1918 /* Most targets can step a breakpoint instruction, thus
1919 executing it normally. But if this one cannot, just
1920 continue and we will hit it anyway. */
6c95b8df 1921 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1922 step = 0;
1923 }
237fc4c9
PA
1924
1925 if (debug_displaced
515630c5 1926 && use_displaced_stepping (gdbarch)
16c381f0 1927 && tp->control.trap_expected)
237fc4c9 1928 {
515630c5 1929 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1930 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1931 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1932 gdb_byte buf[4];
1933
5af949e3
UW
1934 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1935 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1936 read_memory (actual_pc, buf, sizeof (buf));
1937 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1938 }
1939
c1e36e3e
PA
1940 if (tp->control.may_range_step)
1941 {
1942 /* If we're resuming a thread with the PC out of the step
1943 range, then we're doing some nested/finer run control
1944 operation, like stepping the thread out of the dynamic
1945 linker or the displaced stepping scratch pad. We
1946 shouldn't have allowed a range step then. */
1947 gdb_assert (pc_in_thread_step_range (pc, tp));
1948 }
1949
e58b0e63
PA
1950 /* Install inferior's terminal modes. */
1951 target_terminal_inferior ();
1952
2020b7ab
PA
1953 /* Avoid confusing the next resume, if the next stop/resume
1954 happens to apply to another thread. */
a493e3e2 1955 tp->suspend.stop_signal = GDB_SIGNAL_0;
607cecd2 1956
2455069d
UW
1957 /* Advise target which signals may be handled silently. If we have
1958 removed breakpoints because we are stepping over one (which can
1959 happen only if we are not using displaced stepping), we need to
1960 receive all signals to avoid accidentally skipping a breakpoint
1961 during execution of a signal handler. */
1962 if ((step || singlestep_breakpoints_inserted_p)
1963 && tp->control.trap_expected
1964 && !use_displaced_stepping (gdbarch))
1965 target_pass_signals (0, NULL);
1966 else
a493e3e2 1967 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 1968
607cecd2 1969 target_resume (resume_ptid, step, sig);
c906108c
SS
1970 }
1971
1972 discard_cleanups (old_cleanups);
1973}
1974\f
237fc4c9 1975/* Proceeding. */
c906108c
SS
1976
1977/* Clear out all variables saying what to do when inferior is continued.
1978 First do this, then set the ones you want, then call `proceed'. */
1979
a7212384
UW
1980static void
1981clear_proceed_status_thread (struct thread_info *tp)
c906108c 1982{
a7212384
UW
1983 if (debug_infrun)
1984 fprintf_unfiltered (gdb_stdlog,
1985 "infrun: clear_proceed_status_thread (%s)\n",
1986 target_pid_to_str (tp->ptid));
d6b48e9c 1987
16c381f0
JK
1988 tp->control.trap_expected = 0;
1989 tp->control.step_range_start = 0;
1990 tp->control.step_range_end = 0;
c1e36e3e 1991 tp->control.may_range_step = 0;
16c381f0
JK
1992 tp->control.step_frame_id = null_frame_id;
1993 tp->control.step_stack_frame_id = null_frame_id;
1994 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1995 tp->stop_requested = 0;
4e1c45ea 1996
16c381f0 1997 tp->control.stop_step = 0;
32400beb 1998
16c381f0 1999 tp->control.proceed_to_finish = 0;
414c69f7 2000
a7212384 2001 /* Discard any remaining commands or status from previous stop. */
16c381f0 2002 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2003}
32400beb 2004
a7212384
UW
2005static int
2006clear_proceed_status_callback (struct thread_info *tp, void *data)
2007{
2008 if (is_exited (tp->ptid))
2009 return 0;
d6b48e9c 2010
a7212384
UW
2011 clear_proceed_status_thread (tp);
2012 return 0;
2013}
2014
2015void
2016clear_proceed_status (void)
2017{
6c95b8df
PA
2018 if (!non_stop)
2019 {
2020 /* In all-stop mode, delete the per-thread status of all
2021 threads, even if inferior_ptid is null_ptid, there may be
2022 threads on the list. E.g., we may be launching a new
2023 process, while selecting the executable. */
2024 iterate_over_threads (clear_proceed_status_callback, NULL);
2025 }
2026
a7212384
UW
2027 if (!ptid_equal (inferior_ptid, null_ptid))
2028 {
2029 struct inferior *inferior;
2030
2031 if (non_stop)
2032 {
6c95b8df
PA
2033 /* If in non-stop mode, only delete the per-thread status of
2034 the current thread. */
a7212384
UW
2035 clear_proceed_status_thread (inferior_thread ());
2036 }
6c95b8df 2037
d6b48e9c 2038 inferior = current_inferior ();
16c381f0 2039 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2040 }
2041
c906108c 2042 stop_after_trap = 0;
f3b1572e
PA
2043
2044 observer_notify_about_to_proceed ();
c906108c 2045
d5c31457
UW
2046 if (stop_registers)
2047 {
2048 regcache_xfree (stop_registers);
2049 stop_registers = NULL;
2050 }
c906108c
SS
2051}
2052
5a437975
DE
2053/* Check the current thread against the thread that reported the most recent
2054 event. If a step-over is required return TRUE and set the current thread
2055 to the old thread. Otherwise return FALSE.
2056
1777feb0 2057 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2058
2059static int
6a6b96b9 2060prepare_to_proceed (int step)
ea67f13b
DJ
2061{
2062 ptid_t wait_ptid;
2063 struct target_waitstatus wait_status;
5a437975
DE
2064 int schedlock_enabled;
2065
2066 /* With non-stop mode on, threads are always handled individually. */
2067 gdb_assert (! non_stop);
ea67f13b
DJ
2068
2069 /* Get the last target status returned by target_wait(). */
2070 get_last_target_status (&wait_ptid, &wait_status);
2071
6a6b96b9 2072 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2073 if (wait_status.kind != TARGET_WAITKIND_STOPPED
a493e3e2
PA
2074 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2075 && wait_status.value.sig != GDB_SIGNAL_ILL
2076 && wait_status.value.sig != GDB_SIGNAL_SEGV
2077 && wait_status.value.sig != GDB_SIGNAL_EMT))
ea67f13b
DJ
2078 {
2079 return 0;
2080 }
2081
5a437975
DE
2082 schedlock_enabled = (scheduler_mode == schedlock_on
2083 || (scheduler_mode == schedlock_step
2084 && step));
2085
d4db2f36
PA
2086 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2087 if (schedlock_enabled)
2088 return 0;
2089
2090 /* Don't switch over if we're about to resume some other process
2091 other than WAIT_PTID's, and schedule-multiple is off. */
2092 if (!sched_multi
2093 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2094 return 0;
2095
6a6b96b9 2096 /* Switched over from WAIT_PID. */
ea67f13b 2097 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2098 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2099 {
515630c5
UW
2100 struct regcache *regcache = get_thread_regcache (wait_ptid);
2101
6c95b8df
PA
2102 if (breakpoint_here_p (get_regcache_aspace (regcache),
2103 regcache_read_pc (regcache)))
ea67f13b 2104 {
515630c5
UW
2105 /* If stepping, remember current thread to switch back to. */
2106 if (step)
2107 deferred_step_ptid = inferior_ptid;
ea67f13b 2108
515630c5
UW
2109 /* Switch back to WAIT_PID thread. */
2110 switch_to_thread (wait_ptid);
6a6b96b9 2111
0d9a9a5f
PA
2112 if (debug_infrun)
2113 fprintf_unfiltered (gdb_stdlog,
2114 "infrun: prepare_to_proceed (step=%d), "
2115 "switched to [%s]\n",
2116 step, target_pid_to_str (inferior_ptid));
2117
515630c5
UW
2118 /* We return 1 to indicate that there is a breakpoint here,
2119 so we need to step over it before continuing to avoid
1777feb0 2120 hitting it straight away. */
515630c5
UW
2121 return 1;
2122 }
ea67f13b
DJ
2123 }
2124
2125 return 0;
ea67f13b 2126}
e4846b08 2127
c906108c
SS
2128/* Basic routine for continuing the program in various fashions.
2129
2130 ADDR is the address to resume at, or -1 for resume where stopped.
2131 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2132 or -1 for act according to how it stopped.
c906108c 2133 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2134 -1 means return after that and print nothing.
2135 You should probably set various step_... variables
2136 before calling here, if you are stepping.
c906108c
SS
2137
2138 You should call clear_proceed_status before calling proceed. */
2139
2140void
2ea28649 2141proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2142{
e58b0e63
PA
2143 struct regcache *regcache;
2144 struct gdbarch *gdbarch;
4e1c45ea 2145 struct thread_info *tp;
e58b0e63 2146 CORE_ADDR pc;
6c95b8df 2147 struct address_space *aspace;
0de5618e
YQ
2148 /* GDB may force the inferior to step due to various reasons. */
2149 int force_step = 0;
c906108c 2150
e58b0e63
PA
2151 /* If we're stopped at a fork/vfork, follow the branch set by the
2152 "set follow-fork-mode" command; otherwise, we'll just proceed
2153 resuming the current thread. */
2154 if (!follow_fork ())
2155 {
2156 /* The target for some reason decided not to resume. */
2157 normal_stop ();
f148b27e
PA
2158 if (target_can_async_p ())
2159 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2160 return;
2161 }
2162
842951eb
PA
2163 /* We'll update this if & when we switch to a new thread. */
2164 previous_inferior_ptid = inferior_ptid;
2165
e58b0e63
PA
2166 regcache = get_current_regcache ();
2167 gdbarch = get_regcache_arch (regcache);
6c95b8df 2168 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2169 pc = regcache_read_pc (regcache);
2170
c906108c 2171 if (step > 0)
515630c5 2172 step_start_function = find_pc_function (pc);
c906108c
SS
2173 if (step < 0)
2174 stop_after_trap = 1;
2175
2acceee2 2176 if (addr == (CORE_ADDR) -1)
c906108c 2177 {
6c95b8df 2178 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2179 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2180 /* There is a breakpoint at the address we will resume at,
2181 step one instruction before inserting breakpoints so that
2182 we do not stop right away (and report a second hit at this
b2175913
MS
2183 breakpoint).
2184
2185 Note, we don't do this in reverse, because we won't
2186 actually be executing the breakpoint insn anyway.
2187 We'll be (un-)executing the previous instruction. */
2188
0de5618e 2189 force_step = 1;
515630c5
UW
2190 else if (gdbarch_single_step_through_delay_p (gdbarch)
2191 && gdbarch_single_step_through_delay (gdbarch,
2192 get_current_frame ()))
3352ef37
AC
2193 /* We stepped onto an instruction that needs to be stepped
2194 again before re-inserting the breakpoint, do so. */
0de5618e 2195 force_step = 1;
c906108c
SS
2196 }
2197 else
2198 {
515630c5 2199 regcache_write_pc (regcache, addr);
c906108c
SS
2200 }
2201
527159b7 2202 if (debug_infrun)
8a9de0e4 2203 fprintf_unfiltered (gdb_stdlog,
c9737c08
PA
2204 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2205 paddress (gdbarch, addr),
2206 gdb_signal_to_symbol_string (siggnal), step);
527159b7 2207
94cc34af
PA
2208 if (non_stop)
2209 /* In non-stop, each thread is handled individually. The context
2210 must already be set to the right thread here. */
2211 ;
2212 else
2213 {
2214 /* In a multi-threaded task we may select another thread and
2215 then continue or step.
c906108c 2216
94cc34af
PA
2217 But if the old thread was stopped at a breakpoint, it will
2218 immediately cause another breakpoint stop without any
2219 execution (i.e. it will report a breakpoint hit incorrectly).
2220 So we must step over it first.
c906108c 2221
94cc34af
PA
2222 prepare_to_proceed checks the current thread against the
2223 thread that reported the most recent event. If a step-over
2224 is required it returns TRUE and sets the current thread to
1777feb0 2225 the old thread. */
94cc34af 2226 if (prepare_to_proceed (step))
0de5618e 2227 force_step = 1;
94cc34af 2228 }
c906108c 2229
4e1c45ea
PA
2230 /* prepare_to_proceed may change the current thread. */
2231 tp = inferior_thread ();
2232
0de5618e 2233 if (force_step)
30852783
UW
2234 {
2235 tp->control.trap_expected = 1;
2236 /* If displaced stepping is enabled, we can step over the
2237 breakpoint without hitting it, so leave all breakpoints
2238 inserted. Otherwise we need to disable all breakpoints, step
2239 one instruction, and then re-add them when that step is
2240 finished. */
2241 if (!use_displaced_stepping (gdbarch))
2242 remove_breakpoints ();
2243 }
2244
2245 /* We can insert breakpoints if we're not trying to step over one,
2246 or if we are stepping over one but we're using displaced stepping
2247 to do so. */
2248 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2249 insert_breakpoints ();
2250
2020b7ab
PA
2251 if (!non_stop)
2252 {
2253 /* Pass the last stop signal to the thread we're resuming,
2254 irrespective of whether the current thread is the thread that
2255 got the last event or not. This was historically GDB's
2256 behaviour before keeping a stop_signal per thread. */
2257
2258 struct thread_info *last_thread;
2259 ptid_t last_ptid;
2260 struct target_waitstatus last_status;
2261
2262 get_last_target_status (&last_ptid, &last_status);
2263 if (!ptid_equal (inferior_ptid, last_ptid)
2264 && !ptid_equal (last_ptid, null_ptid)
2265 && !ptid_equal (last_ptid, minus_one_ptid))
2266 {
e09875d4 2267 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2268 if (last_thread)
2269 {
16c381f0 2270 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
a493e3e2 2271 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2020b7ab
PA
2272 }
2273 }
2274 }
2275
a493e3e2 2276 if (siggnal != GDB_SIGNAL_DEFAULT)
16c381f0 2277 tp->suspend.stop_signal = siggnal;
c906108c
SS
2278 /* If this signal should not be seen by program,
2279 give it zero. Used for debugging signals. */
16c381f0 2280 else if (!signal_program[tp->suspend.stop_signal])
a493e3e2 2281 tp->suspend.stop_signal = GDB_SIGNAL_0;
c906108c
SS
2282
2283 annotate_starting ();
2284
2285 /* Make sure that output from GDB appears before output from the
2286 inferior. */
2287 gdb_flush (gdb_stdout);
2288
e4846b08
JJ
2289 /* Refresh prev_pc value just prior to resuming. This used to be
2290 done in stop_stepping, however, setting prev_pc there did not handle
2291 scenarios such as inferior function calls or returning from
2292 a function via the return command. In those cases, the prev_pc
2293 value was not set properly for subsequent commands. The prev_pc value
2294 is used to initialize the starting line number in the ecs. With an
2295 invalid value, the gdb next command ends up stopping at the position
2296 represented by the next line table entry past our start position.
2297 On platforms that generate one line table entry per line, this
2298 is not a problem. However, on the ia64, the compiler generates
2299 extraneous line table entries that do not increase the line number.
2300 When we issue the gdb next command on the ia64 after an inferior call
2301 or a return command, we often end up a few instructions forward, still
2302 within the original line we started.
2303
d5cd6034
JB
2304 An attempt was made to refresh the prev_pc at the same time the
2305 execution_control_state is initialized (for instance, just before
2306 waiting for an inferior event). But this approach did not work
2307 because of platforms that use ptrace, where the pc register cannot
2308 be read unless the inferior is stopped. At that point, we are not
2309 guaranteed the inferior is stopped and so the regcache_read_pc() call
2310 can fail. Setting the prev_pc value here ensures the value is updated
2311 correctly when the inferior is stopped. */
4e1c45ea 2312 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2313
59f0d5d9 2314 /* Fill in with reasonable starting values. */
4e1c45ea 2315 init_thread_stepping_state (tp);
59f0d5d9 2316
59f0d5d9
PA
2317 /* Reset to normal state. */
2318 init_infwait_state ();
2319
c906108c 2320 /* Resume inferior. */
0de5618e
YQ
2321 resume (force_step || step || bpstat_should_step (),
2322 tp->suspend.stop_signal);
c906108c
SS
2323
2324 /* Wait for it to stop (if not standalone)
2325 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2326 /* Do this only if we are not using the event loop, or if the target
1777feb0 2327 does not support asynchronous execution. */
362646f5 2328 if (!target_can_async_p ())
43ff13b4 2329 {
e4c8541f 2330 wait_for_inferior ();
43ff13b4
JM
2331 normal_stop ();
2332 }
c906108c 2333}
c906108c
SS
2334\f
2335
2336/* Start remote-debugging of a machine over a serial link. */
96baa820 2337
c906108c 2338void
8621d6a9 2339start_remote (int from_tty)
c906108c 2340{
d6b48e9c 2341 struct inferior *inferior;
d6b48e9c
PA
2342
2343 inferior = current_inferior ();
16c381f0 2344 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2345
1777feb0 2346 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2347 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2348 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2349 nothing is returned (instead of just blocking). Because of this,
2350 targets expecting an immediate response need to, internally, set
2351 things up so that the target_wait() is forced to eventually
1777feb0 2352 timeout. */
6426a772
JM
2353 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2354 differentiate to its caller what the state of the target is after
2355 the initial open has been performed. Here we're assuming that
2356 the target has stopped. It should be possible to eventually have
2357 target_open() return to the caller an indication that the target
2358 is currently running and GDB state should be set to the same as
1777feb0 2359 for an async run. */
e4c8541f 2360 wait_for_inferior ();
8621d6a9
DJ
2361
2362 /* Now that the inferior has stopped, do any bookkeeping like
2363 loading shared libraries. We want to do this before normal_stop,
2364 so that the displayed frame is up to date. */
2365 post_create_inferior (&current_target, from_tty);
2366
6426a772 2367 normal_stop ();
c906108c
SS
2368}
2369
2370/* Initialize static vars when a new inferior begins. */
2371
2372void
96baa820 2373init_wait_for_inferior (void)
c906108c
SS
2374{
2375 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2376
c906108c
SS
2377 breakpoint_init_inferior (inf_starting);
2378
c906108c 2379 clear_proceed_status ();
9f976b41
DJ
2380
2381 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2382 deferred_step_ptid = null_ptid;
ca005067
DJ
2383
2384 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2385
842951eb 2386 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2387 init_infwait_state ();
2388
edb3359d
DJ
2389 /* Discard any skipped inlined frames. */
2390 clear_inline_frame_state (minus_one_ptid);
c906108c 2391}
237fc4c9 2392
c906108c 2393\f
b83266a0
SS
2394/* This enum encodes possible reasons for doing a target_wait, so that
2395 wfi can call target_wait in one place. (Ultimately the call will be
2396 moved out of the infinite loop entirely.) */
2397
c5aa993b
JM
2398enum infwait_states
2399{
cd0fc7c3
SS
2400 infwait_normal_state,
2401 infwait_thread_hop_state,
d983da9c 2402 infwait_step_watch_state,
cd0fc7c3 2403 infwait_nonstep_watch_state
b83266a0
SS
2404};
2405
0d1e5fa7
PA
2406/* The PTID we'll do a target_wait on.*/
2407ptid_t waiton_ptid;
2408
2409/* Current inferior wait state. */
8870954f 2410static enum infwait_states infwait_state;
cd0fc7c3 2411
0d1e5fa7
PA
2412/* Data to be passed around while handling an event. This data is
2413 discarded between events. */
c5aa993b 2414struct execution_control_state
488f131b 2415{
0d1e5fa7 2416 ptid_t ptid;
4e1c45ea
PA
2417 /* The thread that got the event, if this was a thread event; NULL
2418 otherwise. */
2419 struct thread_info *event_thread;
2420
488f131b 2421 struct target_waitstatus ws;
488f131b 2422 int random_signal;
7e324e48 2423 int stop_func_filled_in;
488f131b
JB
2424 CORE_ADDR stop_func_start;
2425 CORE_ADDR stop_func_end;
2c02bd72 2426 const char *stop_func_name;
488f131b
JB
2427 int wait_some_more;
2428};
2429
ec9499be 2430static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2431
568d6575
UW
2432static void handle_step_into_function (struct gdbarch *gdbarch,
2433 struct execution_control_state *ecs);
2434static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2435 struct execution_control_state *ecs);
186c406b 2436static void check_exception_resume (struct execution_control_state *,
28106bc2 2437 struct frame_info *);
611c83ae 2438
104c1213
JM
2439static void stop_stepping (struct execution_control_state *ecs);
2440static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2441static void keep_going (struct execution_control_state *ecs);
94c57d6a 2442static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 2443static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 2444
252fbfc8
PA
2445/* Callback for iterate over threads. If the thread is stopped, but
2446 the user/frontend doesn't know about that yet, go through
2447 normal_stop, as if the thread had just stopped now. ARG points at
2448 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2449 ptid_is_pid(PTID) is true, applies to all threads of the process
2450 pointed at by PTID. Otherwise, apply only to the thread pointed by
2451 PTID. */
2452
2453static int
2454infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2455{
2456 ptid_t ptid = * (ptid_t *) arg;
2457
2458 if ((ptid_equal (info->ptid, ptid)
2459 || ptid_equal (minus_one_ptid, ptid)
2460 || (ptid_is_pid (ptid)
2461 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2462 && is_running (info->ptid)
2463 && !is_executing (info->ptid))
2464 {
2465 struct cleanup *old_chain;
2466 struct execution_control_state ecss;
2467 struct execution_control_state *ecs = &ecss;
2468
2469 memset (ecs, 0, sizeof (*ecs));
2470
2471 old_chain = make_cleanup_restore_current_thread ();
2472
252fbfc8
PA
2473 /* Go through handle_inferior_event/normal_stop, so we always
2474 have consistent output as if the stop event had been
2475 reported. */
2476 ecs->ptid = info->ptid;
e09875d4 2477 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2478 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2479 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2480
2481 handle_inferior_event (ecs);
2482
2483 if (!ecs->wait_some_more)
2484 {
2485 struct thread_info *tp;
2486
2487 normal_stop ();
2488
fa4cd53f 2489 /* Finish off the continuations. */
252fbfc8 2490 tp = inferior_thread ();
fa4cd53f
PA
2491 do_all_intermediate_continuations_thread (tp, 1);
2492 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2493 }
2494
2495 do_cleanups (old_chain);
2496 }
2497
2498 return 0;
2499}
2500
2501/* This function is attached as a "thread_stop_requested" observer.
2502 Cleanup local state that assumed the PTID was to be resumed, and
2503 report the stop to the frontend. */
2504
2c0b251b 2505static void
252fbfc8
PA
2506infrun_thread_stop_requested (ptid_t ptid)
2507{
fc1cf338 2508 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2509
2510 /* PTID was requested to stop. Remove it from the displaced
2511 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2512
2513 for (displaced = displaced_step_inferior_states;
2514 displaced;
2515 displaced = displaced->next)
252fbfc8 2516 {
fc1cf338 2517 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2518
fc1cf338
PA
2519 it = displaced->step_request_queue;
2520 prev_next_p = &displaced->step_request_queue;
2521 while (it)
252fbfc8 2522 {
fc1cf338
PA
2523 if (ptid_match (it->ptid, ptid))
2524 {
2525 *prev_next_p = it->next;
2526 it->next = NULL;
2527 xfree (it);
2528 }
252fbfc8 2529 else
fc1cf338
PA
2530 {
2531 prev_next_p = &it->next;
2532 }
252fbfc8 2533
fc1cf338 2534 it = *prev_next_p;
252fbfc8 2535 }
252fbfc8
PA
2536 }
2537
2538 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2539}
2540
a07daef3
PA
2541static void
2542infrun_thread_thread_exit (struct thread_info *tp, int silent)
2543{
2544 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2545 nullify_last_target_wait_ptid ();
2546}
2547
4e1c45ea
PA
2548/* Callback for iterate_over_threads. */
2549
2550static int
2551delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2552{
2553 if (is_exited (info->ptid))
2554 return 0;
2555
2556 delete_step_resume_breakpoint (info);
186c406b 2557 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2558 return 0;
2559}
2560
2561/* In all-stop, delete the step resume breakpoint of any thread that
2562 had one. In non-stop, delete the step resume breakpoint of the
2563 thread that just stopped. */
2564
2565static void
2566delete_step_thread_step_resume_breakpoint (void)
2567{
2568 if (!target_has_execution
2569 || ptid_equal (inferior_ptid, null_ptid))
2570 /* If the inferior has exited, we have already deleted the step
2571 resume breakpoints out of GDB's lists. */
2572 return;
2573
2574 if (non_stop)
2575 {
2576 /* If in non-stop mode, only delete the step-resume or
2577 longjmp-resume breakpoint of the thread that just stopped
2578 stepping. */
2579 struct thread_info *tp = inferior_thread ();
abbb1732 2580
4e1c45ea 2581 delete_step_resume_breakpoint (tp);
186c406b 2582 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2583 }
2584 else
2585 /* In all-stop mode, delete all step-resume and longjmp-resume
2586 breakpoints of any thread that had them. */
2587 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2588}
2589
1777feb0 2590/* A cleanup wrapper. */
4e1c45ea
PA
2591
2592static void
2593delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2594{
2595 delete_step_thread_step_resume_breakpoint ();
2596}
2597
223698f8
DE
2598/* Pretty print the results of target_wait, for debugging purposes. */
2599
2600static void
2601print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2602 const struct target_waitstatus *ws)
2603{
2604 char *status_string = target_waitstatus_to_string (ws);
2605 struct ui_file *tmp_stream = mem_fileopen ();
2606 char *text;
223698f8
DE
2607
2608 /* The text is split over several lines because it was getting too long.
2609 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2610 output as a unit; we want only one timestamp printed if debug_timestamp
2611 is set. */
2612
2613 fprintf_unfiltered (tmp_stream,
dfd4cc63
LM
2614 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2615 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
2616 fprintf_unfiltered (tmp_stream,
2617 " [%s]", target_pid_to_str (waiton_ptid));
2618 fprintf_unfiltered (tmp_stream, ", status) =\n");
2619 fprintf_unfiltered (tmp_stream,
2620 "infrun: %d [%s],\n",
dfd4cc63
LM
2621 ptid_get_pid (result_ptid),
2622 target_pid_to_str (result_ptid));
223698f8
DE
2623 fprintf_unfiltered (tmp_stream,
2624 "infrun: %s\n",
2625 status_string);
2626
759ef836 2627 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2628
2629 /* This uses %s in part to handle %'s in the text, but also to avoid
2630 a gcc error: the format attribute requires a string literal. */
2631 fprintf_unfiltered (gdb_stdlog, "%s", text);
2632
2633 xfree (status_string);
2634 xfree (text);
2635 ui_file_delete (tmp_stream);
2636}
2637
24291992
PA
2638/* Prepare and stabilize the inferior for detaching it. E.g.,
2639 detaching while a thread is displaced stepping is a recipe for
2640 crashing it, as nothing would readjust the PC out of the scratch
2641 pad. */
2642
2643void
2644prepare_for_detach (void)
2645{
2646 struct inferior *inf = current_inferior ();
2647 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2648 struct cleanup *old_chain_1;
2649 struct displaced_step_inferior_state *displaced;
2650
2651 displaced = get_displaced_stepping_state (inf->pid);
2652
2653 /* Is any thread of this process displaced stepping? If not,
2654 there's nothing else to do. */
2655 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2656 return;
2657
2658 if (debug_infrun)
2659 fprintf_unfiltered (gdb_stdlog,
2660 "displaced-stepping in-process while detaching");
2661
2662 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2663 inf->detaching = 1;
2664
2665 while (!ptid_equal (displaced->step_ptid, null_ptid))
2666 {
2667 struct cleanup *old_chain_2;
2668 struct execution_control_state ecss;
2669 struct execution_control_state *ecs;
2670
2671 ecs = &ecss;
2672 memset (ecs, 0, sizeof (*ecs));
2673
2674 overlay_cache_invalid = 1;
2675
24291992
PA
2676 if (deprecated_target_wait_hook)
2677 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2678 else
2679 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2680
2681 if (debug_infrun)
2682 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2683
2684 /* If an error happens while handling the event, propagate GDB's
2685 knowledge of the executing state to the frontend/user running
2686 state. */
3e43a32a
MS
2687 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2688 &minus_one_ptid);
24291992
PA
2689
2690 /* Now figure out what to do with the result of the result. */
2691 handle_inferior_event (ecs);
2692
2693 /* No error, don't finish the state yet. */
2694 discard_cleanups (old_chain_2);
2695
2696 /* Breakpoints and watchpoints are not installed on the target
2697 at this point, and signals are passed directly to the
2698 inferior, so this must mean the process is gone. */
2699 if (!ecs->wait_some_more)
2700 {
2701 discard_cleanups (old_chain_1);
2702 error (_("Program exited while detaching"));
2703 }
2704 }
2705
2706 discard_cleanups (old_chain_1);
2707}
2708
cd0fc7c3 2709/* Wait for control to return from inferior to debugger.
ae123ec6 2710
cd0fc7c3
SS
2711 If inferior gets a signal, we may decide to start it up again
2712 instead of returning. That is why there is a loop in this function.
2713 When this function actually returns it means the inferior
2714 should be left stopped and GDB should read more commands. */
2715
2716void
e4c8541f 2717wait_for_inferior (void)
cd0fc7c3
SS
2718{
2719 struct cleanup *old_cleanups;
c906108c 2720
527159b7 2721 if (debug_infrun)
ae123ec6 2722 fprintf_unfiltered
e4c8541f 2723 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2724
4e1c45ea
PA
2725 old_cleanups =
2726 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2727
c906108c
SS
2728 while (1)
2729 {
ae25568b
PA
2730 struct execution_control_state ecss;
2731 struct execution_control_state *ecs = &ecss;
29f49a6a
PA
2732 struct cleanup *old_chain;
2733
ae25568b
PA
2734 memset (ecs, 0, sizeof (*ecs));
2735
ec9499be 2736 overlay_cache_invalid = 1;
ec9499be 2737
9a4105ab 2738 if (deprecated_target_wait_hook)
47608cb1 2739 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2740 else
47608cb1 2741 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2742
f00150c9 2743 if (debug_infrun)
223698f8 2744 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2745
29f49a6a
PA
2746 /* If an error happens while handling the event, propagate GDB's
2747 knowledge of the executing state to the frontend/user running
2748 state. */
2749 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2750
cd0fc7c3
SS
2751 /* Now figure out what to do with the result of the result. */
2752 handle_inferior_event (ecs);
c906108c 2753
29f49a6a
PA
2754 /* No error, don't finish the state yet. */
2755 discard_cleanups (old_chain);
2756
cd0fc7c3
SS
2757 if (!ecs->wait_some_more)
2758 break;
2759 }
4e1c45ea 2760
cd0fc7c3
SS
2761 do_cleanups (old_cleanups);
2762}
c906108c 2763
1777feb0 2764/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2765 event loop whenever a change of state is detected on the file
1777feb0
MS
2766 descriptor corresponding to the target. It can be called more than
2767 once to complete a single execution command. In such cases we need
2768 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2769 that this function is called for a single execution command, then
2770 report to the user that the inferior has stopped, and do the
1777feb0 2771 necessary cleanups. */
43ff13b4
JM
2772
2773void
fba45db2 2774fetch_inferior_event (void *client_data)
43ff13b4 2775{
0d1e5fa7 2776 struct execution_control_state ecss;
a474d7c2 2777 struct execution_control_state *ecs = &ecss;
4f8d22e3 2778 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2779 struct cleanup *ts_old_chain;
4f8d22e3 2780 int was_sync = sync_execution;
0f641c01 2781 int cmd_done = 0;
43ff13b4 2782
0d1e5fa7
PA
2783 memset (ecs, 0, sizeof (*ecs));
2784
c5187ac6
PA
2785 /* We're handling a live event, so make sure we're doing live
2786 debugging. If we're looking at traceframes while the target is
2787 running, we're going to need to get back to that mode after
2788 handling the event. */
2789 if (non_stop)
2790 {
2791 make_cleanup_restore_current_traceframe ();
e6e4e701 2792 set_current_traceframe (-1);
c5187ac6
PA
2793 }
2794
4f8d22e3
PA
2795 if (non_stop)
2796 /* In non-stop mode, the user/frontend should not notice a thread
2797 switch due to internal events. Make sure we reverse to the
2798 user selected thread and frame after handling the event and
2799 running any breakpoint commands. */
2800 make_cleanup_restore_current_thread ();
2801
ec9499be 2802 overlay_cache_invalid = 1;
3dd5b83d 2803
32231432
PA
2804 make_cleanup_restore_integer (&execution_direction);
2805 execution_direction = target_execution_direction ();
2806
9a4105ab 2807 if (deprecated_target_wait_hook)
a474d7c2 2808 ecs->ptid =
47608cb1 2809 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2810 else
47608cb1 2811 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2812
f00150c9 2813 if (debug_infrun)
223698f8 2814 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2815
29f49a6a
PA
2816 /* If an error happens while handling the event, propagate GDB's
2817 knowledge of the executing state to the frontend/user running
2818 state. */
2819 if (!non_stop)
2820 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2821 else
2822 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2823
353d1d73
JK
2824 /* Get executed before make_cleanup_restore_current_thread above to apply
2825 still for the thread which has thrown the exception. */
2826 make_bpstat_clear_actions_cleanup ();
2827
43ff13b4 2828 /* Now figure out what to do with the result of the result. */
a474d7c2 2829 handle_inferior_event (ecs);
43ff13b4 2830
a474d7c2 2831 if (!ecs->wait_some_more)
43ff13b4 2832 {
d6b48e9c
PA
2833 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2834
4e1c45ea 2835 delete_step_thread_step_resume_breakpoint ();
f107f563 2836
d6b48e9c 2837 /* We may not find an inferior if this was a process exit. */
16c381f0 2838 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2839 normal_stop ();
2840
af679fd0 2841 if (target_has_execution
0e5bf2a8 2842 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2843 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2844 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2845 && ecs->event_thread->step_multi
16c381f0 2846 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2847 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2848 else
0f641c01
PA
2849 {
2850 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2851 cmd_done = 1;
2852 }
43ff13b4 2853 }
4f8d22e3 2854
29f49a6a
PA
2855 /* No error, don't finish the thread states yet. */
2856 discard_cleanups (ts_old_chain);
2857
4f8d22e3
PA
2858 /* Revert thread and frame. */
2859 do_cleanups (old_chain);
2860
2861 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2862 restore the prompt (a synchronous execution command has finished,
2863 and we're ready for input). */
b4a14fd0 2864 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2865 display_gdb_prompt (0);
0f641c01
PA
2866
2867 if (cmd_done
2868 && !was_sync
2869 && exec_done_display_p
2870 && (ptid_equal (inferior_ptid, null_ptid)
2871 || !is_running (inferior_ptid)))
2872 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2873}
2874
edb3359d
DJ
2875/* Record the frame and location we're currently stepping through. */
2876void
2877set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2878{
2879 struct thread_info *tp = inferior_thread ();
2880
16c381f0
JK
2881 tp->control.step_frame_id = get_frame_id (frame);
2882 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2883
2884 tp->current_symtab = sal.symtab;
2885 tp->current_line = sal.line;
2886}
2887
0d1e5fa7
PA
2888/* Clear context switchable stepping state. */
2889
2890void
4e1c45ea 2891init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2892{
2893 tss->stepping_over_breakpoint = 0;
2894 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2895}
2896
e02bc4cc 2897/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2898 target_wait()/deprecated_target_wait_hook(). The data is actually
2899 cached by handle_inferior_event(), which gets called immediately
2900 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2901
2902void
488f131b 2903get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2904{
39f77062 2905 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2906 *status = target_last_waitstatus;
2907}
2908
ac264b3b
MS
2909void
2910nullify_last_target_wait_ptid (void)
2911{
2912 target_last_wait_ptid = minus_one_ptid;
2913}
2914
dcf4fbde 2915/* Switch thread contexts. */
dd80620e
MS
2916
2917static void
0d1e5fa7 2918context_switch (ptid_t ptid)
dd80620e 2919{
4b51d87b 2920 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2921 {
2922 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2923 target_pid_to_str (inferior_ptid));
2924 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2925 target_pid_to_str (ptid));
fd48f117
DJ
2926 }
2927
0d1e5fa7 2928 switch_to_thread (ptid);
dd80620e
MS
2929}
2930
4fa8626c
DJ
2931static void
2932adjust_pc_after_break (struct execution_control_state *ecs)
2933{
24a73cce
UW
2934 struct regcache *regcache;
2935 struct gdbarch *gdbarch;
6c95b8df 2936 struct address_space *aspace;
8aad930b 2937 CORE_ADDR breakpoint_pc;
4fa8626c 2938
4fa8626c
DJ
2939 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2940 we aren't, just return.
9709f61c
DJ
2941
2942 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2943 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2944 implemented by software breakpoints should be handled through the normal
2945 breakpoint layer.
8fb3e588 2946
4fa8626c
DJ
2947 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2948 different signals (SIGILL or SIGEMT for instance), but it is less
2949 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2950 gdbarch_decr_pc_after_break. I don't know any specific target that
2951 generates these signals at breakpoints (the code has been in GDB since at
2952 least 1992) so I can not guess how to handle them here.
8fb3e588 2953
e6cf7916
UW
2954 In earlier versions of GDB, a target with
2955 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2956 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2957 target with both of these set in GDB history, and it seems unlikely to be
2958 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2959
2960 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2961 return;
2962
a493e3e2 2963 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
2964 return;
2965
4058b839
PA
2966 /* In reverse execution, when a breakpoint is hit, the instruction
2967 under it has already been de-executed. The reported PC always
2968 points at the breakpoint address, so adjusting it further would
2969 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2970 architecture:
2971
2972 B1 0x08000000 : INSN1
2973 B2 0x08000001 : INSN2
2974 0x08000002 : INSN3
2975 PC -> 0x08000003 : INSN4
2976
2977 Say you're stopped at 0x08000003 as above. Reverse continuing
2978 from that point should hit B2 as below. Reading the PC when the
2979 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2980 been de-executed already.
2981
2982 B1 0x08000000 : INSN1
2983 B2 PC -> 0x08000001 : INSN2
2984 0x08000002 : INSN3
2985 0x08000003 : INSN4
2986
2987 We can't apply the same logic as for forward execution, because
2988 we would wrongly adjust the PC to 0x08000000, since there's a
2989 breakpoint at PC - 1. We'd then report a hit on B1, although
2990 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2991 behaviour. */
2992 if (execution_direction == EXEC_REVERSE)
2993 return;
2994
24a73cce
UW
2995 /* If this target does not decrement the PC after breakpoints, then
2996 we have nothing to do. */
2997 regcache = get_thread_regcache (ecs->ptid);
2998 gdbarch = get_regcache_arch (regcache);
2999 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
3000 return;
3001
6c95b8df
PA
3002 aspace = get_regcache_aspace (regcache);
3003
8aad930b
AC
3004 /* Find the location where (if we've hit a breakpoint) the
3005 breakpoint would be. */
515630c5
UW
3006 breakpoint_pc = regcache_read_pc (regcache)
3007 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 3008
1c5cfe86
PA
3009 /* Check whether there actually is a software breakpoint inserted at
3010 that location.
3011
3012 If in non-stop mode, a race condition is possible where we've
3013 removed a breakpoint, but stop events for that breakpoint were
3014 already queued and arrive later. To suppress those spurious
3015 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3016 and retire them after a number of stop events are reported. */
6c95b8df
PA
3017 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3018 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3019 {
77f9e713 3020 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3021
96429cc8 3022 if (RECORD_IS_USED)
77f9e713 3023 record_full_gdb_operation_disable_set ();
96429cc8 3024
1c0fdd0e
UW
3025 /* When using hardware single-step, a SIGTRAP is reported for both
3026 a completed single-step and a software breakpoint. Need to
3027 differentiate between the two, as the latter needs adjusting
3028 but the former does not.
3029
3030 The SIGTRAP can be due to a completed hardware single-step only if
3031 - we didn't insert software single-step breakpoints
3032 - the thread to be examined is still the current thread
3033 - this thread is currently being stepped
3034
3035 If any of these events did not occur, we must have stopped due
3036 to hitting a software breakpoint, and have to back up to the
3037 breakpoint address.
3038
3039 As a special case, we could have hardware single-stepped a
3040 software breakpoint. In this case (prev_pc == breakpoint_pc),
3041 we also need to back up to the breakpoint address. */
3042
3043 if (singlestep_breakpoints_inserted_p
3044 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3045 || !currently_stepping (ecs->event_thread)
3046 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3047 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3048
77f9e713 3049 do_cleanups (old_cleanups);
8aad930b 3050 }
4fa8626c
DJ
3051}
3052
7a76f5b8 3053static void
0d1e5fa7
PA
3054init_infwait_state (void)
3055{
3056 waiton_ptid = pid_to_ptid (-1);
3057 infwait_state = infwait_normal_state;
3058}
3059
edb3359d
DJ
3060static int
3061stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3062{
3063 for (frame = get_prev_frame (frame);
3064 frame != NULL;
3065 frame = get_prev_frame (frame))
3066 {
3067 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3068 return 1;
3069 if (get_frame_type (frame) != INLINE_FRAME)
3070 break;
3071 }
3072
3073 return 0;
3074}
3075
a96d9b2e
SDJ
3076/* Auxiliary function that handles syscall entry/return events.
3077 It returns 1 if the inferior should keep going (and GDB
3078 should ignore the event), or 0 if the event deserves to be
3079 processed. */
ca2163eb 3080
a96d9b2e 3081static int
ca2163eb 3082handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3083{
ca2163eb 3084 struct regcache *regcache;
ca2163eb
PA
3085 int syscall_number;
3086
3087 if (!ptid_equal (ecs->ptid, inferior_ptid))
3088 context_switch (ecs->ptid);
3089
3090 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3091 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3092 stop_pc = regcache_read_pc (regcache);
3093
a96d9b2e
SDJ
3094 if (catch_syscall_enabled () > 0
3095 && catching_syscall_number (syscall_number) > 0)
3096 {
ab04a2af
TT
3097 enum bpstat_signal_value sval;
3098
a96d9b2e
SDJ
3099 if (debug_infrun)
3100 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3101 syscall_number);
a96d9b2e 3102
16c381f0 3103 ecs->event_thread->control.stop_bpstat
6c95b8df 3104 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3105 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3106
427cd150 3107 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
b18e90f5 3108 GDB_SIGNAL_0);
ab04a2af 3109 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
a96d9b2e 3110
ca2163eb
PA
3111 if (!ecs->random_signal)
3112 {
3113 /* Catchpoint hit. */
ca2163eb
PA
3114 return 0;
3115 }
a96d9b2e 3116 }
ca2163eb
PA
3117
3118 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
3119 keep_going (ecs);
3120 return 1;
a96d9b2e
SDJ
3121}
3122
7e324e48
GB
3123/* Lazily fill in the execution_control_state's stop_func_* fields. */
3124
3125static void
3126fill_in_stop_func (struct gdbarch *gdbarch,
3127 struct execution_control_state *ecs)
3128{
3129 if (!ecs->stop_func_filled_in)
3130 {
3131 /* Don't care about return value; stop_func_start and stop_func_name
3132 will both be 0 if it doesn't work. */
3133 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3134 &ecs->stop_func_start, &ecs->stop_func_end);
3135 ecs->stop_func_start
3136 += gdbarch_deprecated_function_start_offset (gdbarch);
3137
3138 ecs->stop_func_filled_in = 1;
3139 }
3140}
3141
cd0fc7c3
SS
3142/* Given an execution control state that has been freshly filled in
3143 by an event from the inferior, figure out what it means and take
3144 appropriate action. */
c906108c 3145
ec9499be 3146static void
96baa820 3147handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3148{
568d6575
UW
3149 struct frame_info *frame;
3150 struct gdbarch *gdbarch;
d983da9c
DJ
3151 int stopped_by_watchpoint;
3152 int stepped_after_stopped_by_watchpoint = 0;
d6b48e9c
PA
3153 enum stop_kind stop_soon;
3154
28736962
PA
3155 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3156 {
3157 /* We had an event in the inferior, but we are not interested in
3158 handling it at this level. The lower layers have already
3159 done what needs to be done, if anything.
3160
3161 One of the possible circumstances for this is when the
3162 inferior produces output for the console. The inferior has
3163 not stopped, and we are ignoring the event. Another possible
3164 circumstance is any event which the lower level knows will be
3165 reported multiple times without an intervening resume. */
3166 if (debug_infrun)
3167 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3168 prepare_to_wait (ecs);
3169 return;
3170 }
3171
0e5bf2a8
PA
3172 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3173 && target_can_async_p () && !sync_execution)
3174 {
3175 /* There were no unwaited-for children left in the target, but,
3176 we're not synchronously waiting for events either. Just
3177 ignore. Otherwise, if we were running a synchronous
3178 execution command, we need to cancel it and give the user
3179 back the terminal. */
3180 if (debug_infrun)
3181 fprintf_unfiltered (gdb_stdlog,
3182 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3183 prepare_to_wait (ecs);
3184 return;
3185 }
3186
d6b48e9c 3187 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3188 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3189 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3190 {
3191 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3192
d6b48e9c 3193 gdb_assert (inf);
16c381f0 3194 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3195 }
3196 else
3197 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3198
1777feb0 3199 /* Cache the last pid/waitstatus. */
39f77062 3200 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3201 target_last_waitstatus = ecs->ws;
e02bc4cc 3202
ca005067 3203 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3204 stop_stack_dummy = STOP_NONE;
ca005067 3205
0e5bf2a8
PA
3206 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3207 {
3208 /* No unwaited-for children left. IOW, all resumed children
3209 have exited. */
3210 if (debug_infrun)
3211 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3212
3213 stop_print_frame = 0;
3214 stop_stepping (ecs);
3215 return;
3216 }
3217
8c90c137 3218 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3219 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3220 {
3221 ecs->event_thread = find_thread_ptid (ecs->ptid);
3222 /* If it's a new thread, add it to the thread database. */
3223 if (ecs->event_thread == NULL)
3224 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3225
3226 /* Disable range stepping. If the next step request could use a
3227 range, this will be end up re-enabled then. */
3228 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3229 }
88ed393a
JK
3230
3231 /* Dependent on valid ECS->EVENT_THREAD. */
3232 adjust_pc_after_break (ecs);
3233
3234 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3235 reinit_frame_cache ();
3236
28736962
PA
3237 breakpoint_retire_moribund ();
3238
2b009048
DJ
3239 /* First, distinguish signals caused by the debugger from signals
3240 that have to do with the program's own actions. Note that
3241 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3242 on the operating system version. Here we detect when a SIGILL or
3243 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3244 something similar for SIGSEGV, since a SIGSEGV will be generated
3245 when we're trying to execute a breakpoint instruction on a
3246 non-executable stack. This happens for call dummy breakpoints
3247 for architectures like SPARC that place call dummies on the
3248 stack. */
2b009048 3249 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3250 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3251 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3252 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3253 {
de0a0249
UW
3254 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3255
3256 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3257 regcache_read_pc (regcache)))
3258 {
3259 if (debug_infrun)
3260 fprintf_unfiltered (gdb_stdlog,
3261 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3262 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3263 }
2b009048
DJ
3264 }
3265
28736962
PA
3266 /* Mark the non-executing threads accordingly. In all-stop, all
3267 threads of all processes are stopped when we get any event
3268 reported. In non-stop mode, only the event thread stops. If
3269 we're handling a process exit in non-stop mode, there's nothing
3270 to do, as threads of the dead process are gone, and threads of
3271 any other process were left running. */
3272 if (!non_stop)
3273 set_executing (minus_one_ptid, 0);
3274 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3275 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3276 set_executing (ecs->ptid, 0);
8c90c137 3277
0d1e5fa7 3278 switch (infwait_state)
488f131b
JB
3279 {
3280 case infwait_thread_hop_state:
527159b7 3281 if (debug_infrun)
8a9de0e4 3282 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3283 break;
b83266a0 3284
488f131b 3285 case infwait_normal_state:
527159b7 3286 if (debug_infrun)
8a9de0e4 3287 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3288 break;
3289
3290 case infwait_step_watch_state:
3291 if (debug_infrun)
3292 fprintf_unfiltered (gdb_stdlog,
3293 "infrun: infwait_step_watch_state\n");
3294
3295 stepped_after_stopped_by_watchpoint = 1;
488f131b 3296 break;
b83266a0 3297
488f131b 3298 case infwait_nonstep_watch_state:
527159b7 3299 if (debug_infrun)
8a9de0e4
AC
3300 fprintf_unfiltered (gdb_stdlog,
3301 "infrun: infwait_nonstep_watch_state\n");
488f131b 3302 insert_breakpoints ();
c906108c 3303
488f131b
JB
3304 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3305 handle things like signals arriving and other things happening
3306 in combination correctly? */
3307 stepped_after_stopped_by_watchpoint = 1;
3308 break;
65e82032
AC
3309
3310 default:
e2e0b3e5 3311 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3312 }
ec9499be 3313
0d1e5fa7 3314 infwait_state = infwait_normal_state;
ec9499be 3315 waiton_ptid = pid_to_ptid (-1);
c906108c 3316
488f131b
JB
3317 switch (ecs->ws.kind)
3318 {
3319 case TARGET_WAITKIND_LOADED:
527159b7 3320 if (debug_infrun)
8a9de0e4 3321 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3322 /* Ignore gracefully during startup of the inferior, as it might
3323 be the shell which has just loaded some objects, otherwise
3324 add the symbols for the newly loaded objects. Also ignore at
3325 the beginning of an attach or remote session; we will query
3326 the full list of libraries once the connection is
3327 established. */
c0236d92 3328 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3329 {
edcc5120 3330 struct regcache *regcache;
ab04a2af 3331 enum bpstat_signal_value sval;
edcc5120
TT
3332
3333 if (!ptid_equal (ecs->ptid, inferior_ptid))
3334 context_switch (ecs->ptid);
3335 regcache = get_thread_regcache (ecs->ptid);
3336
3337 handle_solib_event ();
3338
3339 ecs->event_thread->control.stop_bpstat
3340 = bpstat_stop_status (get_regcache_aspace (regcache),
3341 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af
TT
3342
3343 sval
427cd150 3344 = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
b18e90f5 3345 GDB_SIGNAL_0);
ab04a2af 3346 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
edcc5120
TT
3347
3348 if (!ecs->random_signal)
3349 {
3350 /* A catchpoint triggered. */
94c57d6a
PA
3351 process_event_stop_test (ecs);
3352 return;
edcc5120 3353 }
488f131b 3354
b0f4b84b
DJ
3355 /* If requested, stop when the dynamic linker notifies
3356 gdb of events. This allows the user to get control
3357 and place breakpoints in initializer routines for
3358 dynamically loaded objects (among other things). */
a493e3e2 3359 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3360 if (stop_on_solib_events)
3361 {
55409f9d
DJ
3362 /* Make sure we print "Stopped due to solib-event" in
3363 normal_stop. */
3364 stop_print_frame = 1;
3365
b0f4b84b
DJ
3366 stop_stepping (ecs);
3367 return;
3368 }
488f131b 3369 }
b0f4b84b
DJ
3370
3371 /* If we are skipping through a shell, or through shared library
3372 loading that we aren't interested in, resume the program. If
3373 we're running the program normally, also resume. But stop if
3374 we're attaching or setting up a remote connection. */
3375 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3376 {
8b3ee56d
PA
3377 if (!ptid_equal (ecs->ptid, inferior_ptid))
3378 context_switch (ecs->ptid);
3379
74960c60
VP
3380 /* Loading of shared libraries might have changed breakpoint
3381 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3382 if (stop_soon == NO_STOP_QUIETLY
3383 && !breakpoints_always_inserted_mode ())
74960c60 3384 insert_breakpoints ();
a493e3e2 3385 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3386 prepare_to_wait (ecs);
3387 return;
3388 }
3389
3390 break;
c5aa993b 3391
488f131b 3392 case TARGET_WAITKIND_SPURIOUS:
527159b7 3393 if (debug_infrun)
8a9de0e4 3394 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3395 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3396 context_switch (ecs->ptid);
a493e3e2 3397 resume (0, GDB_SIGNAL_0);
488f131b
JB
3398 prepare_to_wait (ecs);
3399 return;
c5aa993b 3400
488f131b 3401 case TARGET_WAITKIND_EXITED:
940c3c06 3402 case TARGET_WAITKIND_SIGNALLED:
527159b7 3403 if (debug_infrun)
940c3c06
PA
3404 {
3405 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3406 fprintf_unfiltered (gdb_stdlog,
3407 "infrun: TARGET_WAITKIND_EXITED\n");
3408 else
3409 fprintf_unfiltered (gdb_stdlog,
3410 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3411 }
3412
fb66883a 3413 inferior_ptid = ecs->ptid;
6c95b8df
PA
3414 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3415 set_current_program_space (current_inferior ()->pspace);
3416 handle_vfork_child_exec_or_exit (0);
1777feb0 3417 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3418
0c557179
SDJ
3419 /* Clearing any previous state of convenience variables. */
3420 clear_exit_convenience_vars ();
3421
940c3c06
PA
3422 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3423 {
3424 /* Record the exit code in the convenience variable $_exitcode, so
3425 that the user can inspect this again later. */
3426 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3427 (LONGEST) ecs->ws.value.integer);
3428
3429 /* Also record this in the inferior itself. */
3430 current_inferior ()->has_exit_code = 1;
3431 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3432
940c3c06
PA
3433 print_exited_reason (ecs->ws.value.integer);
3434 }
3435 else
0c557179
SDJ
3436 {
3437 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3438 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3439
3440 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3441 {
3442 /* Set the value of the internal variable $_exitsignal,
3443 which holds the signal uncaught by the inferior. */
3444 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3445 gdbarch_gdb_signal_to_target (gdbarch,
3446 ecs->ws.value.sig));
3447 }
3448 else
3449 {
3450 /* We don't have access to the target's method used for
3451 converting between signal numbers (GDB's internal
3452 representation <-> target's representation).
3453 Therefore, we cannot do a good job at displaying this
3454 information to the user. It's better to just warn
3455 her about it (if infrun debugging is enabled), and
3456 give up. */
3457 if (debug_infrun)
3458 fprintf_filtered (gdb_stdlog, _("\
3459Cannot fill $_exitsignal with the correct signal number.\n"));
3460 }
3461
3462 print_signal_exited_reason (ecs->ws.value.sig);
3463 }
8cf64490 3464
488f131b
JB
3465 gdb_flush (gdb_stdout);
3466 target_mourn_inferior ();
1c0fdd0e 3467 singlestep_breakpoints_inserted_p = 0;
d03285ec 3468 cancel_single_step_breakpoints ();
488f131b
JB
3469 stop_print_frame = 0;
3470 stop_stepping (ecs);
3471 return;
c5aa993b 3472
488f131b 3473 /* The following are the only cases in which we keep going;
1777feb0 3474 the above cases end in a continue or goto. */
488f131b 3475 case TARGET_WAITKIND_FORKED:
deb3b17b 3476 case TARGET_WAITKIND_VFORKED:
527159b7 3477 if (debug_infrun)
fed708ed
PA
3478 {
3479 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3480 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3481 else
3482 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3483 }
c906108c 3484
e2d96639
YQ
3485 /* Check whether the inferior is displaced stepping. */
3486 {
3487 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3488 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3489 struct displaced_step_inferior_state *displaced
3490 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3491
3492 /* If checking displaced stepping is supported, and thread
3493 ecs->ptid is displaced stepping. */
3494 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3495 {
3496 struct inferior *parent_inf
3497 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3498 struct regcache *child_regcache;
3499 CORE_ADDR parent_pc;
3500
3501 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3502 indicating that the displaced stepping of syscall instruction
3503 has been done. Perform cleanup for parent process here. Note
3504 that this operation also cleans up the child process for vfork,
3505 because their pages are shared. */
a493e3e2 3506 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3507
3508 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3509 {
3510 /* Restore scratch pad for child process. */
3511 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3512 }
3513
3514 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3515 the child's PC is also within the scratchpad. Set the child's PC
3516 to the parent's PC value, which has already been fixed up.
3517 FIXME: we use the parent's aspace here, although we're touching
3518 the child, because the child hasn't been added to the inferior
3519 list yet at this point. */
3520
3521 child_regcache
3522 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3523 gdbarch,
3524 parent_inf->aspace);
3525 /* Read PC value of parent process. */
3526 parent_pc = regcache_read_pc (regcache);
3527
3528 if (debug_displaced)
3529 fprintf_unfiltered (gdb_stdlog,
3530 "displaced: write child pc from %s to %s\n",
3531 paddress (gdbarch,
3532 regcache_read_pc (child_regcache)),
3533 paddress (gdbarch, parent_pc));
3534
3535 regcache_write_pc (child_regcache, parent_pc);
3536 }
3537 }
3538
5a2901d9 3539 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3540 context_switch (ecs->ptid);
5a2901d9 3541
b242c3c2
PA
3542 /* Immediately detach breakpoints from the child before there's
3543 any chance of letting the user delete breakpoints from the
3544 breakpoint lists. If we don't do this early, it's easy to
3545 leave left over traps in the child, vis: "break foo; catch
3546 fork; c; <fork>; del; c; <child calls foo>". We only follow
3547 the fork on the last `continue', and by that time the
3548 breakpoint at "foo" is long gone from the breakpoint table.
3549 If we vforked, then we don't need to unpatch here, since both
3550 parent and child are sharing the same memory pages; we'll
3551 need to unpatch at follow/detach time instead to be certain
3552 that new breakpoints added between catchpoint hit time and
3553 vfork follow are detached. */
3554 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3555 {
b242c3c2
PA
3556 /* This won't actually modify the breakpoint list, but will
3557 physically remove the breakpoints from the child. */
d80ee84f 3558 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3559 }
3560
d03285ec
UW
3561 if (singlestep_breakpoints_inserted_p)
3562 {
1777feb0 3563 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3564 remove_single_step_breakpoints ();
3565 singlestep_breakpoints_inserted_p = 0;
3566 }
3567
e58b0e63
PA
3568 /* In case the event is caught by a catchpoint, remember that
3569 the event is to be followed at the next resume of the thread,
3570 and not immediately. */
3571 ecs->event_thread->pending_follow = ecs->ws;
3572
fb14de7b 3573 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3574
16c381f0 3575 ecs->event_thread->control.stop_bpstat
6c95b8df 3576 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3577 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3578
67822962
PA
3579 /* Note that we're interested in knowing the bpstat actually
3580 causes a stop, not just if it may explain the signal.
3581 Software watchpoints, for example, always appear in the
3582 bpstat. */
16c381f0
JK
3583 ecs->random_signal
3584 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3585
3586 /* If no catchpoint triggered for this, then keep going. */
3587 if (ecs->random_signal)
3588 {
6c95b8df
PA
3589 ptid_t parent;
3590 ptid_t child;
e58b0e63 3591 int should_resume;
3e43a32a
MS
3592 int follow_child
3593 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3594
a493e3e2 3595 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3596
3597 should_resume = follow_fork ();
3598
6c95b8df
PA
3599 parent = ecs->ptid;
3600 child = ecs->ws.value.related_pid;
3601
3602 /* In non-stop mode, also resume the other branch. */
3603 if (non_stop && !detach_fork)
3604 {
3605 if (follow_child)
3606 switch_to_thread (parent);
3607 else
3608 switch_to_thread (child);
3609
3610 ecs->event_thread = inferior_thread ();
3611 ecs->ptid = inferior_ptid;
3612 keep_going (ecs);
3613 }
3614
3615 if (follow_child)
3616 switch_to_thread (child);
3617 else
3618 switch_to_thread (parent);
3619
e58b0e63
PA
3620 ecs->event_thread = inferior_thread ();
3621 ecs->ptid = inferior_ptid;
3622
3623 if (should_resume)
3624 keep_going (ecs);
3625 else
3626 stop_stepping (ecs);
04e68871
DJ
3627 return;
3628 }
94c57d6a
PA
3629 process_event_stop_test (ecs);
3630 return;
488f131b 3631
6c95b8df
PA
3632 case TARGET_WAITKIND_VFORK_DONE:
3633 /* Done with the shared memory region. Re-insert breakpoints in
3634 the parent, and keep going. */
3635
3636 if (debug_infrun)
3e43a32a
MS
3637 fprintf_unfiltered (gdb_stdlog,
3638 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3639
3640 if (!ptid_equal (ecs->ptid, inferior_ptid))
3641 context_switch (ecs->ptid);
3642
3643 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3644 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3645 /* This also takes care of reinserting breakpoints in the
3646 previously locked inferior. */
3647 keep_going (ecs);
3648 return;
3649
488f131b 3650 case TARGET_WAITKIND_EXECD:
527159b7 3651 if (debug_infrun)
fc5261f2 3652 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3653
5a2901d9 3654 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3655 context_switch (ecs->ptid);
5a2901d9 3656
d03285ec
UW
3657 singlestep_breakpoints_inserted_p = 0;
3658 cancel_single_step_breakpoints ();
3659
fb14de7b 3660 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3661
6c95b8df
PA
3662 /* Do whatever is necessary to the parent branch of the vfork. */
3663 handle_vfork_child_exec_or_exit (1);
3664
795e548f
PA
3665 /* This causes the eventpoints and symbol table to be reset.
3666 Must do this now, before trying to determine whether to
3667 stop. */
71b43ef8 3668 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3669
16c381f0 3670 ecs->event_thread->control.stop_bpstat
6c95b8df 3671 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3672 stop_pc, ecs->ptid, &ecs->ws);
16c381f0 3673 ecs->random_signal
427cd150 3674 = (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
b18e90f5 3675 GDB_SIGNAL_0)
ab04a2af 3676 == BPSTAT_SIGNAL_NO);
795e548f 3677
71b43ef8
PA
3678 /* Note that this may be referenced from inside
3679 bpstat_stop_status above, through inferior_has_execd. */
3680 xfree (ecs->ws.value.execd_pathname);
3681 ecs->ws.value.execd_pathname = NULL;
3682
04e68871
DJ
3683 /* If no catchpoint triggered for this, then keep going. */
3684 if (ecs->random_signal)
3685 {
a493e3e2 3686 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3687 keep_going (ecs);
3688 return;
3689 }
94c57d6a
PA
3690 process_event_stop_test (ecs);
3691 return;
488f131b 3692
b4dc5ffa
MK
3693 /* Be careful not to try to gather much state about a thread
3694 that's in a syscall. It's frequently a losing proposition. */
488f131b 3695 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3696 if (debug_infrun)
3e43a32a
MS
3697 fprintf_unfiltered (gdb_stdlog,
3698 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3699 /* Getting the current syscall number. */
94c57d6a
PA
3700 if (handle_syscall_event (ecs) == 0)
3701 process_event_stop_test (ecs);
3702 return;
c906108c 3703
488f131b
JB
3704 /* Before examining the threads further, step this thread to
3705 get it entirely out of the syscall. (We get notice of the
3706 event when the thread is just on the verge of exiting a
3707 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3708 into user code.) */
488f131b 3709 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3710 if (debug_infrun)
3e43a32a
MS
3711 fprintf_unfiltered (gdb_stdlog,
3712 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
3713 if (handle_syscall_event (ecs) == 0)
3714 process_event_stop_test (ecs);
3715 return;
c906108c 3716
488f131b 3717 case TARGET_WAITKIND_STOPPED:
527159b7 3718 if (debug_infrun)
8a9de0e4 3719 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3720 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3721 break;
c906108c 3722
b2175913 3723 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3724 if (debug_infrun)
3725 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3726 /* Reverse execution: target ran out of history info. */
eab402df
PA
3727
3728 /* Pull the single step breakpoints out of the target. */
3729 if (singlestep_breakpoints_inserted_p)
3730 {
3731 if (!ptid_equal (ecs->ptid, inferior_ptid))
3732 context_switch (ecs->ptid);
3733 remove_single_step_breakpoints ();
3734 singlestep_breakpoints_inserted_p = 0;
3735 }
fb14de7b 3736 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3737 print_no_history_reason ();
b2175913
MS
3738 stop_stepping (ecs);
3739 return;
488f131b 3740 }
c906108c 3741
2020b7ab 3742 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3743 {
3744 /* Do we need to clean up the state of a thread that has
3745 completed a displaced single-step? (Doing so usually affects
3746 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3747 displaced_step_fixup (ecs->ptid,
3748 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3749
3750 /* If we either finished a single-step or hit a breakpoint, but
3751 the user wanted this thread to be stopped, pretend we got a
3752 SIG0 (generic unsignaled stop). */
3753
3754 if (ecs->event_thread->stop_requested
a493e3e2
PA
3755 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3756 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
252fbfc8 3757 }
237fc4c9 3758
515630c5 3759 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3760
527159b7 3761 if (debug_infrun)
237fc4c9 3762 {
5af949e3
UW
3763 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3764 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3765 struct cleanup *old_chain = save_inferior_ptid ();
3766
3767 inferior_ptid = ecs->ptid;
5af949e3
UW
3768
3769 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3770 paddress (gdbarch, stop_pc));
d92524f1 3771 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3772 {
3773 CORE_ADDR addr;
abbb1732 3774
237fc4c9
PA
3775 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3776
3777 if (target_stopped_data_address (&current_target, &addr))
3778 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3779 "infrun: stopped data address = %s\n",
3780 paddress (gdbarch, addr));
237fc4c9
PA
3781 else
3782 fprintf_unfiltered (gdb_stdlog,
3783 "infrun: (no data address available)\n");
3784 }
7f82dfc7
JK
3785
3786 do_cleanups (old_chain);
237fc4c9 3787 }
527159b7 3788
9f976b41
DJ
3789 if (stepping_past_singlestep_breakpoint)
3790 {
1c0fdd0e 3791 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3792 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3793 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3794
3795 stepping_past_singlestep_breakpoint = 0;
3796
3797 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3798 breakpoint, or stopped for some other reason. It would be nice if
3799 we could tell, but we can't reliably. */
a493e3e2 3800 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8fb3e588 3801 {
527159b7 3802 if (debug_infrun)
3e43a32a
MS
3803 fprintf_unfiltered (gdb_stdlog,
3804 "infrun: stepping_past_"
3805 "singlestep_breakpoint\n");
9f976b41 3806 /* Pull the single step breakpoints out of the target. */
8b3ee56d
PA
3807 if (!ptid_equal (ecs->ptid, inferior_ptid))
3808 context_switch (ecs->ptid);
e0cd558a 3809 remove_single_step_breakpoints ();
9f976b41
DJ
3810 singlestep_breakpoints_inserted_p = 0;
3811
16c381f0 3812 ecs->event_thread->control.trap_expected = 0;
9f976b41 3813
0d1e5fa7 3814 context_switch (saved_singlestep_ptid);
9a4105ab 3815 if (deprecated_context_hook)
de9f1b68 3816 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
9f976b41 3817
a493e3e2 3818 resume (1, GDB_SIGNAL_0);
9f976b41
DJ
3819 prepare_to_wait (ecs);
3820 return;
3821 }
3822 }
3823
ca67fcb8 3824 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3825 {
94cc34af
PA
3826 /* In non-stop mode, there's never a deferred_step_ptid set. */
3827 gdb_assert (!non_stop);
3828
6a6b96b9
UW
3829 /* If we stopped for some other reason than single-stepping, ignore
3830 the fact that we were supposed to switch back. */
a493e3e2 3831 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6a6b96b9
UW
3832 {
3833 if (debug_infrun)
3834 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3835 "infrun: handling deferred step\n");
6a6b96b9
UW
3836
3837 /* Pull the single step breakpoints out of the target. */
3838 if (singlestep_breakpoints_inserted_p)
3839 {
8b3ee56d
PA
3840 if (!ptid_equal (ecs->ptid, inferior_ptid))
3841 context_switch (ecs->ptid);
6a6b96b9
UW
3842 remove_single_step_breakpoints ();
3843 singlestep_breakpoints_inserted_p = 0;
3844 }
3845
cd3da28e
PA
3846 ecs->event_thread->control.trap_expected = 0;
3847
d25f45d9 3848 context_switch (deferred_step_ptid);
ca67fcb8 3849 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3850 /* Suppress spurious "Switching to ..." message. */
3851 previous_inferior_ptid = inferior_ptid;
3852
a493e3e2 3853 resume (1, GDB_SIGNAL_0);
6a6b96b9
UW
3854 prepare_to_wait (ecs);
3855 return;
3856 }
ca67fcb8
VP
3857
3858 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3859 }
3860
488f131b
JB
3861 /* See if a thread hit a thread-specific breakpoint that was meant for
3862 another thread. If so, then step that thread past the breakpoint,
3863 and continue it. */
3864
a493e3e2 3865 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 3866 {
9f976b41 3867 int thread_hop_needed = 0;
cf00dfa7
VP
3868 struct address_space *aspace =
3869 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3870
f8d40ec8 3871 /* Check if a regular breakpoint has been hit before checking
1777feb0 3872 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3873 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3874 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3875 {
6c95b8df 3876 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3877 thread_hop_needed = 1;
3878 }
1c0fdd0e 3879 else if (singlestep_breakpoints_inserted_p)
9f976b41 3880 {
fd48f117
DJ
3881 /* We have not context switched yet, so this should be true
3882 no matter which thread hit the singlestep breakpoint. */
3883 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3884 if (debug_infrun)
3885 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3886 "trap for %s\n",
3887 target_pid_to_str (ecs->ptid));
3888
9f976b41
DJ
3889 /* The call to in_thread_list is necessary because PTIDs sometimes
3890 change when we go from single-threaded to multi-threaded. If
3891 the singlestep_ptid is still in the list, assume that it is
3892 really different from ecs->ptid. */
3893 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3894 && in_thread_list (singlestep_ptid))
3895 {
fd48f117
DJ
3896 /* If the PC of the thread we were trying to single-step
3897 has changed, discard this event (which we were going
3898 to ignore anyway), and pretend we saw that thread
3899 trap. This prevents us continuously moving the
3900 single-step breakpoint forward, one instruction at a
3901 time. If the PC has changed, then the thread we were
3902 trying to single-step has trapped or been signalled,
3903 but the event has not been reported to GDB yet.
3904
3905 There might be some cases where this loses signal
3906 information, if a signal has arrived at exactly the
3907 same time that the PC changed, but this is the best
3908 we can do with the information available. Perhaps we
3909 should arrange to report all events for all threads
3910 when they stop, or to re-poll the remote looking for
3911 this particular thread (i.e. temporarily enable
3912 schedlock). */
515630c5
UW
3913
3914 CORE_ADDR new_singlestep_pc
3915 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3916
3917 if (new_singlestep_pc != singlestep_pc)
fd48f117 3918 {
2ea28649 3919 enum gdb_signal stop_signal;
2020b7ab 3920
fd48f117
DJ
3921 if (debug_infrun)
3922 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3923 " but expected thread advanced also\n");
3924
3925 /* The current context still belongs to
3926 singlestep_ptid. Don't swap here, since that's
3927 the context we want to use. Just fudge our
3928 state and continue. */
16c381f0 3929 stop_signal = ecs->event_thread->suspend.stop_signal;
a493e3e2 3930 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
fd48f117 3931 ecs->ptid = singlestep_ptid;
e09875d4 3932 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3933 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3934 stop_pc = new_singlestep_pc;
fd48f117
DJ
3935 }
3936 else
3937 {
3938 if (debug_infrun)
3939 fprintf_unfiltered (gdb_stdlog,
3940 "infrun: unexpected thread\n");
3941
3942 thread_hop_needed = 1;
3943 stepping_past_singlestep_breakpoint = 1;
3944 saved_singlestep_ptid = singlestep_ptid;
3945 }
9f976b41
DJ
3946 }
3947 }
3948
3949 if (thread_hop_needed)
8fb3e588 3950 {
9f5a595d 3951 struct regcache *thread_regcache;
237fc4c9 3952 int remove_status = 0;
8fb3e588 3953
527159b7 3954 if (debug_infrun)
8a9de0e4 3955 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3956
b3444185
PA
3957 /* Switch context before touching inferior memory, the
3958 previous thread may have exited. */
3959 if (!ptid_equal (inferior_ptid, ecs->ptid))
3960 context_switch (ecs->ptid);
3961
8fb3e588 3962 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3963 Just continue. */
8fb3e588 3964
1c0fdd0e 3965 if (singlestep_breakpoints_inserted_p)
488f131b 3966 {
1777feb0 3967 /* Pull the single step breakpoints out of the target. */
e0cd558a 3968 remove_single_step_breakpoints ();
8fb3e588
AC
3969 singlestep_breakpoints_inserted_p = 0;
3970 }
3971
237fc4c9
PA
3972 /* If the arch can displace step, don't remove the
3973 breakpoints. */
9f5a595d
UW
3974 thread_regcache = get_thread_regcache (ecs->ptid);
3975 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3976 remove_status = remove_breakpoints ();
3977
8fb3e588
AC
3978 /* Did we fail to remove breakpoints? If so, try
3979 to set the PC past the bp. (There's at least
3980 one situation in which we can fail to remove
3981 the bp's: On HP-UX's that use ttrace, we can't
3982 change the address space of a vforking child
3983 process until the child exits (well, okay, not
1777feb0 3984 then either :-) or execs. */
8fb3e588 3985 if (remove_status != 0)
9d9cd7ac 3986 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3987 else
3988 { /* Single step */
94cc34af
PA
3989 if (!non_stop)
3990 {
3991 /* Only need to require the next event from this
3992 thread in all-stop mode. */
3993 waiton_ptid = ecs->ptid;
3994 infwait_state = infwait_thread_hop_state;
3995 }
8fb3e588 3996
4e1c45ea 3997 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3998 keep_going (ecs);
8fb3e588
AC
3999 return;
4000 }
488f131b
JB
4001 }
4002 }
c906108c 4003
488f131b 4004 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4005 so, then switch to that thread. */
4006 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4007 {
527159b7 4008 if (debug_infrun)
8a9de0e4 4009 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4010
0d1e5fa7 4011 context_switch (ecs->ptid);
c5aa993b 4012
9a4105ab
AC
4013 if (deprecated_context_hook)
4014 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4015 }
c906108c 4016
568d6575
UW
4017 /* At this point, get hold of the now-current thread's frame. */
4018 frame = get_current_frame ();
4019 gdbarch = get_frame_arch (frame);
4020
1c0fdd0e 4021 if (singlestep_breakpoints_inserted_p)
488f131b 4022 {
1777feb0 4023 /* Pull the single step breakpoints out of the target. */
e0cd558a 4024 remove_single_step_breakpoints ();
488f131b
JB
4025 singlestep_breakpoints_inserted_p = 0;
4026 }
c906108c 4027
d983da9c
DJ
4028 if (stepped_after_stopped_by_watchpoint)
4029 stopped_by_watchpoint = 0;
4030 else
4031 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4032
4033 /* If necessary, step over this watchpoint. We'll be back to display
4034 it in a moment. */
4035 if (stopped_by_watchpoint
d92524f1 4036 && (target_have_steppable_watchpoint
568d6575 4037 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4038 {
488f131b
JB
4039 /* At this point, we are stopped at an instruction which has
4040 attempted to write to a piece of memory under control of
4041 a watchpoint. The instruction hasn't actually executed
4042 yet. If we were to evaluate the watchpoint expression
4043 now, we would get the old value, and therefore no change
4044 would seem to have occurred.
4045
4046 In order to make watchpoints work `right', we really need
4047 to complete the memory write, and then evaluate the
d983da9c
DJ
4048 watchpoint expression. We do this by single-stepping the
4049 target.
4050
4051 It may not be necessary to disable the watchpoint to stop over
4052 it. For example, the PA can (with some kernel cooperation)
4053 single step over a watchpoint without disabling the watchpoint.
4054
4055 It is far more common to need to disable a watchpoint to step
4056 the inferior over it. If we have non-steppable watchpoints,
4057 we must disable the current watchpoint; it's simplest to
4058 disable all watchpoints and breakpoints. */
2facfe5c
DD
4059 int hw_step = 1;
4060
d92524f1 4061 if (!target_have_steppable_watchpoint)
2455069d
UW
4062 {
4063 remove_breakpoints ();
4064 /* See comment in resume why we need to stop bypassing signals
4065 while breakpoints have been removed. */
4066 target_pass_signals (0, NULL);
4067 }
2facfe5c 4068 /* Single step */
568d6575 4069 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
a493e3e2 4070 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
0d1e5fa7 4071 waiton_ptid = ecs->ptid;
d92524f1 4072 if (target_have_steppable_watchpoint)
0d1e5fa7 4073 infwait_state = infwait_step_watch_state;
d983da9c 4074 else
0d1e5fa7 4075 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4076 prepare_to_wait (ecs);
4077 return;
4078 }
4079
4e1c45ea 4080 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4081 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4082 ecs->event_thread->control.stop_step = 0;
488f131b 4083 stop_print_frame = 1;
488f131b 4084 stopped_by_random_signal = 0;
488f131b 4085
edb3359d
DJ
4086 /* Hide inlined functions starting here, unless we just performed stepi or
4087 nexti. After stepi and nexti, always show the innermost frame (not any
4088 inline function call sites). */
16c381f0 4089 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4090 {
4091 struct address_space *aspace =
4092 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4093
4094 /* skip_inline_frames is expensive, so we avoid it if we can
4095 determine that the address is one where functions cannot have
4096 been inlined. This improves performance with inferiors that
4097 load a lot of shared libraries, because the solib event
4098 breakpoint is defined as the address of a function (i.e. not
4099 inline). Note that we have to check the previous PC as well
4100 as the current one to catch cases when we have just
4101 single-stepped off a breakpoint prior to reinstating it.
4102 Note that we're assuming that the code we single-step to is
4103 not inline, but that's not definitive: there's nothing
4104 preventing the event breakpoint function from containing
4105 inlined code, and the single-step ending up there. If the
4106 user had set a breakpoint on that inlined code, the missing
4107 skip_inline_frames call would break things. Fortunately
4108 that's an extremely unlikely scenario. */
09ac7c10 4109 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4110 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4111 && ecs->event_thread->control.trap_expected
4112 && pc_at_non_inline_function (aspace,
4113 ecs->event_thread->prev_pc,
09ac7c10 4114 &ecs->ws)))
1c5a993e
MR
4115 {
4116 skip_inline_frames (ecs->ptid);
4117
4118 /* Re-fetch current thread's frame in case that invalidated
4119 the frame cache. */
4120 frame = get_current_frame ();
4121 gdbarch = get_frame_arch (frame);
4122 }
0574c78f 4123 }
edb3359d 4124
a493e3e2 4125 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4126 && ecs->event_thread->control.trap_expected
568d6575 4127 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4128 && currently_stepping (ecs->event_thread))
3352ef37 4129 {
b50d7442 4130 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4131 also on an instruction that needs to be stepped multiple
1777feb0 4132 times before it's been fully executing. E.g., architectures
3352ef37
AC
4133 with a delay slot. It needs to be stepped twice, once for
4134 the instruction and once for the delay slot. */
4135 int step_through_delay
568d6575 4136 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4137
527159b7 4138 if (debug_infrun && step_through_delay)
8a9de0e4 4139 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4140 if (ecs->event_thread->control.step_range_end == 0
4141 && step_through_delay)
3352ef37
AC
4142 {
4143 /* The user issued a continue when stopped at a breakpoint.
4144 Set up for another trap and get out of here. */
4e1c45ea 4145 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4146 keep_going (ecs);
4147 return;
4148 }
4149 else if (step_through_delay)
4150 {
4151 /* The user issued a step when stopped at a breakpoint.
4152 Maybe we should stop, maybe we should not - the delay
4153 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4154 case, don't decide that here, just set
4155 ecs->stepping_over_breakpoint, making sure we
4156 single-step again before breakpoints are re-inserted. */
4e1c45ea 4157 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4158 }
4159 }
4160
488f131b
JB
4161 /* Look at the cause of the stop, and decide what to do.
4162 The alternatives are:
0d1e5fa7
PA
4163 1) stop_stepping and return; to really stop and return to the debugger,
4164 2) keep_going and return to start up again
4e1c45ea 4165 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4166 3) set ecs->random_signal to 1, and the decision between 1 and 2
4167 will be made according to the signal handling tables. */
4168
a493e3e2 4169 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
ab04a2af 4170 && stop_after_trap)
488f131b 4171 {
ab04a2af
TT
4172 if (debug_infrun)
4173 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4174 stop_print_frame = 0;
4175 stop_stepping (ecs);
4176 return;
4177 }
488f131b 4178
ab04a2af
TT
4179 /* This is originated from start_remote(), start_inferior() and
4180 shared libraries hook functions. */
4181 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4182 {
4183 if (debug_infrun)
4184 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4185 stop_stepping (ecs);
4186 return;
4187 }
c54cfec8 4188
ab04a2af
TT
4189 /* This originates from attach_command(). We need to overwrite
4190 the stop_signal here, because some kernels don't ignore a
4191 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4192 See more comments in inferior.h. On the other hand, if we
4193 get a non-SIGSTOP, report it to the user - assume the backend
4194 will handle the SIGSTOP if it should show up later.
4195
4196 Also consider that the attach is complete when we see a
4197 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4198 target extended-remote report it instead of a SIGSTOP
4199 (e.g. gdbserver). We already rely on SIGTRAP being our
4200 signal, so this is no exception.
4201
4202 Also consider that the attach is complete when we see a
4203 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4204 the target to stop all threads of the inferior, in case the
4205 low level attach operation doesn't stop them implicitly. If
4206 they weren't stopped implicitly, then the stub will report a
4207 GDB_SIGNAL_0, meaning: stopped for no particular reason
4208 other than GDB's request. */
4209 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4210 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4211 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4212 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4213 {
4214 stop_stepping (ecs);
4215 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4216 return;
4217 }
6c95b8df 4218
ab04a2af
TT
4219 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4220 handles this event. */
4221 ecs->event_thread->control.stop_bpstat
4222 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4223 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4224
ab04a2af
TT
4225 /* Following in case break condition called a
4226 function. */
4227 stop_print_frame = 1;
73dd234f 4228
ab04a2af
TT
4229 /* This is where we handle "moribund" watchpoints. Unlike
4230 software breakpoints traps, hardware watchpoint traps are
4231 always distinguishable from random traps. If no high-level
4232 watchpoint is associated with the reported stop data address
4233 anymore, then the bpstat does not explain the signal ---
4234 simply make sure to ignore it if `stopped_by_watchpoint' is
4235 set. */
4236
4237 if (debug_infrun
4238 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
427cd150
TT
4239 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4240 GDB_SIGNAL_TRAP)
ab04a2af
TT
4241 == BPSTAT_SIGNAL_NO)
4242 && stopped_by_watchpoint)
4243 fprintf_unfiltered (gdb_stdlog,
4244 "infrun: no user watchpoint explains "
4245 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4246
ab04a2af
TT
4247 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4248 at one stage in the past included checks for an inferior
4249 function call's call dummy's return breakpoint. The original
4250 comment, that went with the test, read:
03cebad2 4251
ab04a2af
TT
4252 ``End of a stack dummy. Some systems (e.g. Sony news) give
4253 another signal besides SIGTRAP, so check here as well as
4254 above.''
73dd234f 4255
ab04a2af
TT
4256 If someone ever tries to get call dummys on a
4257 non-executable stack to work (where the target would stop
4258 with something like a SIGSEGV), then those tests might need
4259 to be re-instated. Given, however, that the tests were only
4260 enabled when momentary breakpoints were not being used, I
4261 suspect that it won't be the case.
488f131b 4262
ab04a2af
TT
4263 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4264 be necessary for call dummies on a non-executable stack on
4265 SPARC. */
488f131b 4266
ab04a2af
TT
4267 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4268 ecs->random_signal
427cd150
TT
4269 = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4270 GDB_SIGNAL_TRAP)
ab04a2af
TT
4271 != BPSTAT_SIGNAL_NO)
4272 || stopped_by_watchpoint
4273 || ecs->event_thread->control.trap_expected
4274 || (ecs->event_thread->control.step_range_end
4275 && (ecs->event_thread->control.step_resume_breakpoint
4276 == NULL)));
488f131b 4277 else
ab04a2af
TT
4278 {
4279 enum bpstat_signal_value sval;
4280
427cd150
TT
4281 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4282 ecs->event_thread->suspend.stop_signal);
ab04a2af
TT
4283 ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
4284
4285 if (sval == BPSTAT_SIGNAL_HIDE)
b18e90f5 4286 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
ab04a2af 4287 }
488f131b
JB
4288
4289 /* For the program's own signals, act according to
4290 the signal handling tables. */
4291
4292 if (ecs->random_signal)
4293 {
4294 /* Signal not for debugging purposes. */
4295 int printed = 0;
24291992 4296 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
c9737c08 4297 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4298
527159b7 4299 if (debug_infrun)
c9737c08
PA
4300 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4301 gdb_signal_to_symbol_string (stop_signal));
527159b7 4302
488f131b
JB
4303 stopped_by_random_signal = 1;
4304
16c381f0 4305 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4306 {
4307 printed = 1;
4308 target_terminal_ours_for_output ();
16c381f0
JK
4309 print_signal_received_reason
4310 (ecs->event_thread->suspend.stop_signal);
488f131b 4311 }
252fbfc8
PA
4312 /* Always stop on signals if we're either just gaining control
4313 of the program, or the user explicitly requested this thread
4314 to remain stopped. */
d6b48e9c 4315 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4316 || ecs->event_thread->stop_requested
24291992 4317 || (!inf->detaching
16c381f0 4318 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4319 {
4320 stop_stepping (ecs);
4321 return;
4322 }
4323 /* If not going to stop, give terminal back
4324 if we took it away. */
4325 else if (printed)
4326 target_terminal_inferior ();
4327
4328 /* Clear the signal if it should not be passed. */
16c381f0 4329 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4330 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4331
fb14de7b 4332 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4333 && ecs->event_thread->control.trap_expected
8358c15c 4334 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4335 {
4336 /* We were just starting a new sequence, attempting to
4337 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4338 Instead this signal arrives. This signal will take us out
68f53502
AC
4339 of the stepping range so GDB needs to remember to, when
4340 the signal handler returns, resume stepping off that
4341 breakpoint. */
4342 /* To simplify things, "continue" is forced to use the same
4343 code paths as single-step - set a breakpoint at the
4344 signal return address and then, once hit, step off that
4345 breakpoint. */
237fc4c9
PA
4346 if (debug_infrun)
4347 fprintf_unfiltered (gdb_stdlog,
4348 "infrun: signal arrived while stepping over "
4349 "breakpoint\n");
d3169d93 4350
2c03e5be 4351 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4352 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4353 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4354 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4355 keep_going (ecs);
4356 return;
68f53502 4357 }
9d799f85 4358
16c381f0 4359 if (ecs->event_thread->control.step_range_end != 0
a493e3e2 4360 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
ce4c476a 4361 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
edb3359d 4362 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4363 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4364 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4365 {
4366 /* The inferior is about to take a signal that will take it
4367 out of the single step range. Set a breakpoint at the
4368 current PC (which is presumably where the signal handler
4369 will eventually return) and then allow the inferior to
4370 run free.
4371
4372 Note that this is only needed for a signal delivered
4373 while in the single-step range. Nested signals aren't a
4374 problem as they eventually all return. */
237fc4c9
PA
4375 if (debug_infrun)
4376 fprintf_unfiltered (gdb_stdlog,
4377 "infrun: signal may take us out of "
4378 "single-step range\n");
4379
2c03e5be 4380 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4381 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4382 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4383 keep_going (ecs);
4384 return;
d303a6c7 4385 }
9d799f85
AC
4386
4387 /* Note: step_resume_breakpoint may be non-NULL. This occures
4388 when either there's a nested signal, or when there's a
4389 pending signal enabled just as the signal handler returns
4390 (leaving the inferior at the step-resume-breakpoint without
4391 actually executing it). Either way continue until the
4392 breakpoint is really hit. */
c447ac0b
PA
4393
4394 if (!switch_back_to_stepped_thread (ecs))
4395 {
4396 if (debug_infrun)
4397 fprintf_unfiltered (gdb_stdlog,
4398 "infrun: random signal, keep going\n");
4399
4400 keep_going (ecs);
4401 }
4402 return;
488f131b 4403 }
94c57d6a
PA
4404
4405 process_event_stop_test (ecs);
4406}
4407
4408/* Come here when we've got some debug event / signal we can explain
4409 (IOW, not a random signal), and test whether it should cause a
4410 stop, or whether we should resume the inferior (transparently).
4411 E.g., could be a breakpoint whose condition evaluates false; we
4412 could be still stepping within the line; etc. */
4413
4414static void
4415process_event_stop_test (struct execution_control_state *ecs)
4416{
4417 struct symtab_and_line stop_pc_sal;
4418 struct frame_info *frame;
4419 struct gdbarch *gdbarch;
cdaa5b73
PA
4420 CORE_ADDR jmp_buf_pc;
4421 struct bpstat_what what;
94c57d6a 4422
cdaa5b73 4423 /* Handle cases caused by hitting a breakpoint. */
611c83ae 4424
cdaa5b73
PA
4425 frame = get_current_frame ();
4426 gdbarch = get_frame_arch (frame);
fcf3daef 4427
cdaa5b73 4428 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4429
cdaa5b73
PA
4430 if (what.call_dummy)
4431 {
4432 stop_stack_dummy = what.call_dummy;
4433 }
186c406b 4434
cdaa5b73
PA
4435 /* If we hit an internal event that triggers symbol changes, the
4436 current frame will be invalidated within bpstat_what (e.g., if we
4437 hit an internal solib event). Re-fetch it. */
4438 frame = get_current_frame ();
4439 gdbarch = get_frame_arch (frame);
e2e4d78b 4440
cdaa5b73
PA
4441 switch (what.main_action)
4442 {
4443 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4444 /* If we hit the breakpoint at longjmp while stepping, we
4445 install a momentary breakpoint at the target of the
4446 jmp_buf. */
186c406b 4447
cdaa5b73
PA
4448 if (debug_infrun)
4449 fprintf_unfiltered (gdb_stdlog,
4450 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4451
cdaa5b73 4452 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4453
cdaa5b73
PA
4454 if (what.is_longjmp)
4455 {
4456 struct value *arg_value;
4457
4458 /* If we set the longjmp breakpoint via a SystemTap probe,
4459 then use it to extract the arguments. The destination PC
4460 is the third argument to the probe. */
4461 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4462 if (arg_value)
4463 jmp_buf_pc = value_as_address (arg_value);
4464 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4465 || !gdbarch_get_longjmp_target (gdbarch,
4466 frame, &jmp_buf_pc))
e2e4d78b 4467 {
cdaa5b73
PA
4468 if (debug_infrun)
4469 fprintf_unfiltered (gdb_stdlog,
4470 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4471 "(!gdbarch_get_longjmp_target)\n");
4472 keep_going (ecs);
4473 return;
e2e4d78b 4474 }
e2e4d78b 4475
cdaa5b73
PA
4476 /* Insert a breakpoint at resume address. */
4477 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4478 }
4479 else
4480 check_exception_resume (ecs, frame);
4481 keep_going (ecs);
4482 return;
e81a37f7 4483
cdaa5b73
PA
4484 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4485 {
4486 struct frame_info *init_frame;
e81a37f7 4487
cdaa5b73 4488 /* There are several cases to consider.
c906108c 4489
cdaa5b73
PA
4490 1. The initiating frame no longer exists. In this case we
4491 must stop, because the exception or longjmp has gone too
4492 far.
2c03e5be 4493
cdaa5b73
PA
4494 2. The initiating frame exists, and is the same as the
4495 current frame. We stop, because the exception or longjmp
4496 has been caught.
2c03e5be 4497
cdaa5b73
PA
4498 3. The initiating frame exists and is different from the
4499 current frame. This means the exception or longjmp has
4500 been caught beneath the initiating frame, so keep going.
c906108c 4501
cdaa5b73
PA
4502 4. longjmp breakpoint has been placed just to protect
4503 against stale dummy frames and user is not interested in
4504 stopping around longjmps. */
c5aa993b 4505
cdaa5b73
PA
4506 if (debug_infrun)
4507 fprintf_unfiltered (gdb_stdlog,
4508 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 4509
cdaa5b73
PA
4510 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4511 != NULL);
4512 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4513
cdaa5b73
PA
4514 if (what.is_longjmp)
4515 {
4516 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
c5aa993b 4517
cdaa5b73 4518 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 4519 {
cdaa5b73
PA
4520 /* Case 4. */
4521 keep_going (ecs);
4522 return;
e5ef252a 4523 }
cdaa5b73 4524 }
c5aa993b 4525
cdaa5b73 4526 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 4527
cdaa5b73
PA
4528 if (init_frame)
4529 {
4530 struct frame_id current_id
4531 = get_frame_id (get_current_frame ());
4532 if (frame_id_eq (current_id,
4533 ecs->event_thread->initiating_frame))
4534 {
4535 /* Case 2. Fall through. */
4536 }
4537 else
4538 {
4539 /* Case 3. */
4540 keep_going (ecs);
4541 return;
4542 }
68f53502 4543 }
488f131b 4544
cdaa5b73
PA
4545 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4546 exists. */
4547 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 4548
cdaa5b73
PA
4549 ecs->event_thread->control.stop_step = 1;
4550 print_end_stepping_range_reason ();
4551 stop_stepping (ecs);
4552 }
4553 return;
e5ef252a 4554
cdaa5b73
PA
4555 case BPSTAT_WHAT_SINGLE:
4556 if (debug_infrun)
4557 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4558 ecs->event_thread->stepping_over_breakpoint = 1;
4559 /* Still need to check other stuff, at least the case where we
4560 are stepping and step out of the right range. */
4561 break;
e5ef252a 4562
cdaa5b73
PA
4563 case BPSTAT_WHAT_STEP_RESUME:
4564 if (debug_infrun)
4565 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 4566
cdaa5b73
PA
4567 delete_step_resume_breakpoint (ecs->event_thread);
4568 if (ecs->event_thread->control.proceed_to_finish
4569 && execution_direction == EXEC_REVERSE)
4570 {
4571 struct thread_info *tp = ecs->event_thread;
4572
4573 /* We are finishing a function in reverse, and just hit the
4574 step-resume breakpoint at the start address of the
4575 function, and we're almost there -- just need to back up
4576 by one more single-step, which should take us back to the
4577 function call. */
4578 tp->control.step_range_start = tp->control.step_range_end = 1;
4579 keep_going (ecs);
e5ef252a 4580 return;
cdaa5b73
PA
4581 }
4582 fill_in_stop_func (gdbarch, ecs);
4583 if (stop_pc == ecs->stop_func_start
4584 && execution_direction == EXEC_REVERSE)
4585 {
4586 /* We are stepping over a function call in reverse, and just
4587 hit the step-resume breakpoint at the start address of
4588 the function. Go back to single-stepping, which should
4589 take us back to the function call. */
4590 ecs->event_thread->stepping_over_breakpoint = 1;
4591 keep_going (ecs);
4592 return;
4593 }
4594 break;
e5ef252a 4595
cdaa5b73
PA
4596 case BPSTAT_WHAT_STOP_NOISY:
4597 if (debug_infrun)
4598 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4599 stop_print_frame = 1;
e5ef252a 4600
cdaa5b73
PA
4601 /* We are about to nuke the step_resume_breakpointt via the
4602 cleanup chain, so no need to worry about it here. */
e5ef252a 4603
cdaa5b73
PA
4604 stop_stepping (ecs);
4605 return;
e5ef252a 4606
cdaa5b73
PA
4607 case BPSTAT_WHAT_STOP_SILENT:
4608 if (debug_infrun)
4609 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4610 stop_print_frame = 0;
e5ef252a 4611
cdaa5b73
PA
4612 /* We are about to nuke the step_resume_breakpoin via the
4613 cleanup chain, so no need to worry about it here. */
e5ef252a 4614
cdaa5b73
PA
4615 stop_stepping (ecs);
4616 return;
4617
4618 case BPSTAT_WHAT_HP_STEP_RESUME:
4619 if (debug_infrun)
4620 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4621
4622 delete_step_resume_breakpoint (ecs->event_thread);
4623 if (ecs->event_thread->step_after_step_resume_breakpoint)
4624 {
4625 /* Back when the step-resume breakpoint was inserted, we
4626 were trying to single-step off a breakpoint. Go back to
4627 doing that. */
4628 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4629 ecs->event_thread->stepping_over_breakpoint = 1;
4630 keep_going (ecs);
4631 return;
e5ef252a 4632 }
cdaa5b73
PA
4633 break;
4634
4635 case BPSTAT_WHAT_KEEP_CHECKING:
4636 break;
e5ef252a 4637 }
c906108c 4638
cdaa5b73
PA
4639 /* We come here if we hit a breakpoint but should not stop for it.
4640 Possibly we also were stepping and should stop for that. So fall
4641 through and test for stepping. But, if not stepping, do not
4642 stop. */
c906108c 4643
a7212384
UW
4644 /* In all-stop mode, if we're currently stepping but have stopped in
4645 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
4646 if (switch_back_to_stepped_thread (ecs))
4647 return;
776f04fa 4648
8358c15c 4649 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4650 {
527159b7 4651 if (debug_infrun)
d3169d93
DJ
4652 fprintf_unfiltered (gdb_stdlog,
4653 "infrun: step-resume breakpoint is inserted\n");
527159b7 4654
488f131b
JB
4655 /* Having a step-resume breakpoint overrides anything
4656 else having to do with stepping commands until
4657 that breakpoint is reached. */
488f131b
JB
4658 keep_going (ecs);
4659 return;
4660 }
c5aa993b 4661
16c381f0 4662 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4663 {
527159b7 4664 if (debug_infrun)
8a9de0e4 4665 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4666 /* Likewise if we aren't even stepping. */
488f131b
JB
4667 keep_going (ecs);
4668 return;
4669 }
c5aa993b 4670
4b7703ad
JB
4671 /* Re-fetch current thread's frame in case the code above caused
4672 the frame cache to be re-initialized, making our FRAME variable
4673 a dangling pointer. */
4674 frame = get_current_frame ();
628fe4e4 4675 gdbarch = get_frame_arch (frame);
7e324e48 4676 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4677
488f131b 4678 /* If stepping through a line, keep going if still within it.
c906108c 4679
488f131b
JB
4680 Note that step_range_end is the address of the first instruction
4681 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4682 within it!
4683
4684 Note also that during reverse execution, we may be stepping
4685 through a function epilogue and therefore must detect when
4686 the current-frame changes in the middle of a line. */
4687
ce4c476a 4688 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 4689 && (execution_direction != EXEC_REVERSE
388a8562 4690 || frame_id_eq (get_frame_id (frame),
16c381f0 4691 ecs->event_thread->control.step_frame_id)))
488f131b 4692 {
527159b7 4693 if (debug_infrun)
5af949e3
UW
4694 fprintf_unfiltered
4695 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4696 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4697 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 4698
c1e36e3e
PA
4699 /* Tentatively re-enable range stepping; `resume' disables it if
4700 necessary (e.g., if we're stepping over a breakpoint or we
4701 have software watchpoints). */
4702 ecs->event_thread->control.may_range_step = 1;
4703
b2175913
MS
4704 /* When stepping backward, stop at beginning of line range
4705 (unless it's the function entry point, in which case
4706 keep going back to the call point). */
16c381f0 4707 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4708 && stop_pc != ecs->stop_func_start
4709 && execution_direction == EXEC_REVERSE)
4710 {
16c381f0 4711 ecs->event_thread->control.stop_step = 1;
33d62d64 4712 print_end_stepping_range_reason ();
b2175913
MS
4713 stop_stepping (ecs);
4714 }
4715 else
4716 keep_going (ecs);
4717
488f131b
JB
4718 return;
4719 }
c5aa993b 4720
488f131b 4721 /* We stepped out of the stepping range. */
c906108c 4722
488f131b 4723 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4724 loader dynamic symbol resolution code...
4725
4726 EXEC_FORWARD: we keep on single stepping until we exit the run
4727 time loader code and reach the callee's address.
4728
4729 EXEC_REVERSE: we've already executed the callee (backward), and
4730 the runtime loader code is handled just like any other
4731 undebuggable function call. Now we need only keep stepping
4732 backward through the trampoline code, and that's handled further
4733 down, so there is nothing for us to do here. */
4734
4735 if (execution_direction != EXEC_REVERSE
16c381f0 4736 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4737 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4738 {
4c8c40e6 4739 CORE_ADDR pc_after_resolver =
568d6575 4740 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4741
527159b7 4742 if (debug_infrun)
3e43a32a
MS
4743 fprintf_unfiltered (gdb_stdlog,
4744 "infrun: stepped into dynsym resolve code\n");
527159b7 4745
488f131b
JB
4746 if (pc_after_resolver)
4747 {
4748 /* Set up a step-resume breakpoint at the address
4749 indicated by SKIP_SOLIB_RESOLVER. */
4750 struct symtab_and_line sr_sal;
abbb1732 4751
fe39c653 4752 init_sal (&sr_sal);
488f131b 4753 sr_sal.pc = pc_after_resolver;
6c95b8df 4754 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4755
a6d9a66e
UW
4756 insert_step_resume_breakpoint_at_sal (gdbarch,
4757 sr_sal, null_frame_id);
c5aa993b 4758 }
c906108c 4759
488f131b
JB
4760 keep_going (ecs);
4761 return;
4762 }
c906108c 4763
16c381f0
JK
4764 if (ecs->event_thread->control.step_range_end != 1
4765 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4766 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4767 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4768 {
527159b7 4769 if (debug_infrun)
3e43a32a
MS
4770 fprintf_unfiltered (gdb_stdlog,
4771 "infrun: stepped into signal trampoline\n");
42edda50 4772 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4773 a signal trampoline (either by a signal being delivered or by
4774 the signal handler returning). Just single-step until the
4775 inferior leaves the trampoline (either by calling the handler
4776 or returning). */
488f131b
JB
4777 keep_going (ecs);
4778 return;
4779 }
c906108c 4780
14132e89
MR
4781 /* If we're in the return path from a shared library trampoline,
4782 we want to proceed through the trampoline when stepping. */
4783 /* macro/2012-04-25: This needs to come before the subroutine
4784 call check below as on some targets return trampolines look
4785 like subroutine calls (MIPS16 return thunks). */
4786 if (gdbarch_in_solib_return_trampoline (gdbarch,
4787 stop_pc, ecs->stop_func_name)
4788 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4789 {
4790 /* Determine where this trampoline returns. */
4791 CORE_ADDR real_stop_pc;
4792
4793 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4794
4795 if (debug_infrun)
4796 fprintf_unfiltered (gdb_stdlog,
4797 "infrun: stepped into solib return tramp\n");
4798
4799 /* Only proceed through if we know where it's going. */
4800 if (real_stop_pc)
4801 {
4802 /* And put the step-breakpoint there and go until there. */
4803 struct symtab_and_line sr_sal;
4804
4805 init_sal (&sr_sal); /* initialize to zeroes */
4806 sr_sal.pc = real_stop_pc;
4807 sr_sal.section = find_pc_overlay (sr_sal.pc);
4808 sr_sal.pspace = get_frame_program_space (frame);
4809
4810 /* Do not specify what the fp should be when we stop since
4811 on some machines the prologue is where the new fp value
4812 is established. */
4813 insert_step_resume_breakpoint_at_sal (gdbarch,
4814 sr_sal, null_frame_id);
4815
4816 /* Restart without fiddling with the step ranges or
4817 other state. */
4818 keep_going (ecs);
4819 return;
4820 }
4821 }
4822
c17eaafe
DJ
4823 /* Check for subroutine calls. The check for the current frame
4824 equalling the step ID is not necessary - the check of the
4825 previous frame's ID is sufficient - but it is a common case and
4826 cheaper than checking the previous frame's ID.
14e60db5
DJ
4827
4828 NOTE: frame_id_eq will never report two invalid frame IDs as
4829 being equal, so to get into this block, both the current and
4830 previous frame must have valid frame IDs. */
005ca36a
JB
4831 /* The outer_frame_id check is a heuristic to detect stepping
4832 through startup code. If we step over an instruction which
4833 sets the stack pointer from an invalid value to a valid value,
4834 we may detect that as a subroutine call from the mythical
4835 "outermost" function. This could be fixed by marking
4836 outermost frames as !stack_p,code_p,special_p. Then the
4837 initial outermost frame, before sp was valid, would
ce6cca6d 4838 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4839 for more. */
edb3359d 4840 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4841 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4842 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4843 ecs->event_thread->control.step_stack_frame_id)
4844 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4845 outer_frame_id)
4846 || step_start_function != find_pc_function (stop_pc))))
488f131b 4847 {
95918acb 4848 CORE_ADDR real_stop_pc;
8fb3e588 4849
527159b7 4850 if (debug_infrun)
8a9de0e4 4851 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4852
16c381f0
JK
4853 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4854 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4855 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4856 ecs->stop_func_start)))
95918acb
AC
4857 {
4858 /* I presume that step_over_calls is only 0 when we're
4859 supposed to be stepping at the assembly language level
4860 ("stepi"). Just stop. */
4861 /* Also, maybe we just did a "nexti" inside a prolog, so we
4862 thought it was a subroutine call but it was not. Stop as
4863 well. FENN */
388a8562 4864 /* And this works the same backward as frontward. MVS */
16c381f0 4865 ecs->event_thread->control.stop_step = 1;
33d62d64 4866 print_end_stepping_range_reason ();
95918acb
AC
4867 stop_stepping (ecs);
4868 return;
4869 }
8fb3e588 4870
388a8562
MS
4871 /* Reverse stepping through solib trampolines. */
4872
4873 if (execution_direction == EXEC_REVERSE
16c381f0 4874 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4875 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4876 || (ecs->stop_func_start == 0
4877 && in_solib_dynsym_resolve_code (stop_pc))))
4878 {
4879 /* Any solib trampoline code can be handled in reverse
4880 by simply continuing to single-step. We have already
4881 executed the solib function (backwards), and a few
4882 steps will take us back through the trampoline to the
4883 caller. */
4884 keep_going (ecs);
4885 return;
4886 }
4887
16c381f0 4888 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4889 {
b2175913
MS
4890 /* We're doing a "next".
4891
4892 Normal (forward) execution: set a breakpoint at the
4893 callee's return address (the address at which the caller
4894 will resume).
4895
4896 Reverse (backward) execution. set the step-resume
4897 breakpoint at the start of the function that we just
4898 stepped into (backwards), and continue to there. When we
6130d0b7 4899 get there, we'll need to single-step back to the caller. */
b2175913
MS
4900
4901 if (execution_direction == EXEC_REVERSE)
4902 {
acf9414f
JK
4903 /* If we're already at the start of the function, we've either
4904 just stepped backward into a single instruction function,
4905 or stepped back out of a signal handler to the first instruction
4906 of the function. Just keep going, which will single-step back
4907 to the caller. */
58c48e72 4908 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
4909 {
4910 struct symtab_and_line sr_sal;
4911
4912 /* Normal function call return (static or dynamic). */
4913 init_sal (&sr_sal);
4914 sr_sal.pc = ecs->stop_func_start;
4915 sr_sal.pspace = get_frame_program_space (frame);
4916 insert_step_resume_breakpoint_at_sal (gdbarch,
4917 sr_sal, null_frame_id);
4918 }
b2175913
MS
4919 }
4920 else
568d6575 4921 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4922
8567c30f
AC
4923 keep_going (ecs);
4924 return;
4925 }
a53c66de 4926
95918acb 4927 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4928 calling routine and the real function), locate the real
4929 function. That's what tells us (a) whether we want to step
4930 into it at all, and (b) what prologue we want to run to the
4931 end of, if we do step into it. */
568d6575 4932 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4933 if (real_stop_pc == 0)
568d6575 4934 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4935 if (real_stop_pc != 0)
4936 ecs->stop_func_start = real_stop_pc;
8fb3e588 4937
db5f024e 4938 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4939 {
4940 struct symtab_and_line sr_sal;
abbb1732 4941
1b2bfbb9
RC
4942 init_sal (&sr_sal);
4943 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4944 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4945
a6d9a66e
UW
4946 insert_step_resume_breakpoint_at_sal (gdbarch,
4947 sr_sal, null_frame_id);
8fb3e588
AC
4948 keep_going (ecs);
4949 return;
1b2bfbb9
RC
4950 }
4951
95918acb 4952 /* If we have line number information for the function we are
1bfeeb0f
JL
4953 thinking of stepping into and the function isn't on the skip
4954 list, step into it.
95918acb 4955
8fb3e588
AC
4956 If there are several symtabs at that PC (e.g. with include
4957 files), just want to know whether *any* of them have line
4958 numbers. find_pc_line handles this. */
95918acb
AC
4959 {
4960 struct symtab_and_line tmp_sal;
8fb3e588 4961
95918acb 4962 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 4963 if (tmp_sal.line != 0
85817405
JK
4964 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4965 &tmp_sal))
95918acb 4966 {
b2175913 4967 if (execution_direction == EXEC_REVERSE)
568d6575 4968 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4969 else
568d6575 4970 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4971 return;
4972 }
4973 }
4974
4975 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4976 set, we stop the step so that the user has a chance to switch
4977 in assembly mode. */
16c381f0 4978 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4979 && step_stop_if_no_debug)
95918acb 4980 {
16c381f0 4981 ecs->event_thread->control.stop_step = 1;
33d62d64 4982 print_end_stepping_range_reason ();
95918acb
AC
4983 stop_stepping (ecs);
4984 return;
4985 }
4986
b2175913
MS
4987 if (execution_direction == EXEC_REVERSE)
4988 {
acf9414f
JK
4989 /* If we're already at the start of the function, we've either just
4990 stepped backward into a single instruction function without line
4991 number info, or stepped back out of a signal handler to the first
4992 instruction of the function without line number info. Just keep
4993 going, which will single-step back to the caller. */
4994 if (ecs->stop_func_start != stop_pc)
4995 {
4996 /* Set a breakpoint at callee's start address.
4997 From there we can step once and be back in the caller. */
4998 struct symtab_and_line sr_sal;
abbb1732 4999
acf9414f
JK
5000 init_sal (&sr_sal);
5001 sr_sal.pc = ecs->stop_func_start;
5002 sr_sal.pspace = get_frame_program_space (frame);
5003 insert_step_resume_breakpoint_at_sal (gdbarch,
5004 sr_sal, null_frame_id);
5005 }
b2175913
MS
5006 }
5007 else
5008 /* Set a breakpoint at callee's return address (the address
5009 at which the caller will resume). */
568d6575 5010 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5011
95918acb 5012 keep_going (ecs);
488f131b 5013 return;
488f131b 5014 }
c906108c 5015
fdd654f3
MS
5016 /* Reverse stepping through solib trampolines. */
5017
5018 if (execution_direction == EXEC_REVERSE
16c381f0 5019 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5020 {
5021 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5022 || (ecs->stop_func_start == 0
5023 && in_solib_dynsym_resolve_code (stop_pc)))
5024 {
5025 /* Any solib trampoline code can be handled in reverse
5026 by simply continuing to single-step. We have already
5027 executed the solib function (backwards), and a few
5028 steps will take us back through the trampoline to the
5029 caller. */
5030 keep_going (ecs);
5031 return;
5032 }
5033 else if (in_solib_dynsym_resolve_code (stop_pc))
5034 {
5035 /* Stepped backward into the solib dynsym resolver.
5036 Set a breakpoint at its start and continue, then
5037 one more step will take us out. */
5038 struct symtab_and_line sr_sal;
abbb1732 5039
fdd654f3
MS
5040 init_sal (&sr_sal);
5041 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5042 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5043 insert_step_resume_breakpoint_at_sal (gdbarch,
5044 sr_sal, null_frame_id);
5045 keep_going (ecs);
5046 return;
5047 }
5048 }
5049
2afb61aa 5050 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5051
1b2bfbb9
RC
5052 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5053 the trampoline processing logic, however, there are some trampolines
5054 that have no names, so we should do trampoline handling first. */
16c381f0 5055 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5056 && ecs->stop_func_name == NULL
2afb61aa 5057 && stop_pc_sal.line == 0)
1b2bfbb9 5058 {
527159b7 5059 if (debug_infrun)
3e43a32a
MS
5060 fprintf_unfiltered (gdb_stdlog,
5061 "infrun: stepped into undebuggable function\n");
527159b7 5062
1b2bfbb9 5063 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5064 undebuggable function (where there is no debugging information
5065 and no line number corresponding to the address where the
1b2bfbb9
RC
5066 inferior stopped). Since we want to skip this kind of code,
5067 we keep going until the inferior returns from this
14e60db5
DJ
5068 function - unless the user has asked us not to (via
5069 set step-mode) or we no longer know how to get back
5070 to the call site. */
5071 if (step_stop_if_no_debug
c7ce8faa 5072 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5073 {
5074 /* If we have no line number and the step-stop-if-no-debug
5075 is set, we stop the step so that the user has a chance to
5076 switch in assembly mode. */
16c381f0 5077 ecs->event_thread->control.stop_step = 1;
33d62d64 5078 print_end_stepping_range_reason ();
1b2bfbb9
RC
5079 stop_stepping (ecs);
5080 return;
5081 }
5082 else
5083 {
5084 /* Set a breakpoint at callee's return address (the address
5085 at which the caller will resume). */
568d6575 5086 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5087 keep_going (ecs);
5088 return;
5089 }
5090 }
5091
16c381f0 5092 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5093 {
5094 /* It is stepi or nexti. We always want to stop stepping after
5095 one instruction. */
527159b7 5096 if (debug_infrun)
8a9de0e4 5097 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5098 ecs->event_thread->control.stop_step = 1;
33d62d64 5099 print_end_stepping_range_reason ();
1b2bfbb9
RC
5100 stop_stepping (ecs);
5101 return;
5102 }
5103
2afb61aa 5104 if (stop_pc_sal.line == 0)
488f131b
JB
5105 {
5106 /* We have no line number information. That means to stop
5107 stepping (does this always happen right after one instruction,
5108 when we do "s" in a function with no line numbers,
5109 or can this happen as a result of a return or longjmp?). */
527159b7 5110 if (debug_infrun)
8a9de0e4 5111 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5112 ecs->event_thread->control.stop_step = 1;
33d62d64 5113 print_end_stepping_range_reason ();
488f131b
JB
5114 stop_stepping (ecs);
5115 return;
5116 }
c906108c 5117
edb3359d
DJ
5118 /* Look for "calls" to inlined functions, part one. If the inline
5119 frame machinery detected some skipped call sites, we have entered
5120 a new inline function. */
5121
5122 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5123 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5124 && inline_skipped_frames (ecs->ptid))
5125 {
5126 struct symtab_and_line call_sal;
5127
5128 if (debug_infrun)
5129 fprintf_unfiltered (gdb_stdlog,
5130 "infrun: stepped into inlined function\n");
5131
5132 find_frame_sal (get_current_frame (), &call_sal);
5133
16c381f0 5134 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5135 {
5136 /* For "step", we're going to stop. But if the call site
5137 for this inlined function is on the same source line as
5138 we were previously stepping, go down into the function
5139 first. Otherwise stop at the call site. */
5140
5141 if (call_sal.line == ecs->event_thread->current_line
5142 && call_sal.symtab == ecs->event_thread->current_symtab)
5143 step_into_inline_frame (ecs->ptid);
5144
16c381f0 5145 ecs->event_thread->control.stop_step = 1;
33d62d64 5146 print_end_stepping_range_reason ();
edb3359d
DJ
5147 stop_stepping (ecs);
5148 return;
5149 }
5150 else
5151 {
5152 /* For "next", we should stop at the call site if it is on a
5153 different source line. Otherwise continue through the
5154 inlined function. */
5155 if (call_sal.line == ecs->event_thread->current_line
5156 && call_sal.symtab == ecs->event_thread->current_symtab)
5157 keep_going (ecs);
5158 else
5159 {
16c381f0 5160 ecs->event_thread->control.stop_step = 1;
33d62d64 5161 print_end_stepping_range_reason ();
edb3359d
DJ
5162 stop_stepping (ecs);
5163 }
5164 return;
5165 }
5166 }
5167
5168 /* Look for "calls" to inlined functions, part two. If we are still
5169 in the same real function we were stepping through, but we have
5170 to go further up to find the exact frame ID, we are stepping
5171 through a more inlined call beyond its call site. */
5172
5173 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5174 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5175 ecs->event_thread->control.step_frame_id)
edb3359d 5176 && stepped_in_from (get_current_frame (),
16c381f0 5177 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5178 {
5179 if (debug_infrun)
5180 fprintf_unfiltered (gdb_stdlog,
5181 "infrun: stepping through inlined function\n");
5182
16c381f0 5183 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5184 keep_going (ecs);
5185 else
5186 {
16c381f0 5187 ecs->event_thread->control.stop_step = 1;
33d62d64 5188 print_end_stepping_range_reason ();
edb3359d
DJ
5189 stop_stepping (ecs);
5190 }
5191 return;
5192 }
5193
2afb61aa 5194 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5195 && (ecs->event_thread->current_line != stop_pc_sal.line
5196 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5197 {
5198 /* We are at the start of a different line. So stop. Note that
5199 we don't stop if we step into the middle of a different line.
5200 That is said to make things like for (;;) statements work
5201 better. */
527159b7 5202 if (debug_infrun)
3e43a32a
MS
5203 fprintf_unfiltered (gdb_stdlog,
5204 "infrun: stepped to a different line\n");
16c381f0 5205 ecs->event_thread->control.stop_step = 1;
33d62d64 5206 print_end_stepping_range_reason ();
488f131b
JB
5207 stop_stepping (ecs);
5208 return;
5209 }
c906108c 5210
488f131b 5211 /* We aren't done stepping.
c906108c 5212
488f131b
JB
5213 Optimize by setting the stepping range to the line.
5214 (We might not be in the original line, but if we entered a
5215 new line in mid-statement, we continue stepping. This makes
5216 things like for(;;) statements work better.) */
c906108c 5217
16c381f0
JK
5218 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5219 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5220 ecs->event_thread->control.may_range_step = 1;
edb3359d 5221 set_step_info (frame, stop_pc_sal);
488f131b 5222
527159b7 5223 if (debug_infrun)
8a9de0e4 5224 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5225 keep_going (ecs);
104c1213
JM
5226}
5227
c447ac0b
PA
5228/* In all-stop mode, if we're currently stepping but have stopped in
5229 some other thread, we may need to switch back to the stepped
5230 thread. Returns true we set the inferior running, false if we left
5231 it stopped (and the event needs further processing). */
5232
5233static int
5234switch_back_to_stepped_thread (struct execution_control_state *ecs)
5235{
5236 if (!non_stop)
5237 {
5238 struct thread_info *tp;
5239
5240 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
5241 ecs->event_thread);
5242 if (tp)
5243 {
5244 /* However, if the current thread is blocked on some internal
5245 breakpoint, and we simply need to step over that breakpoint
5246 to get it going again, do that first. */
5247 if ((ecs->event_thread->control.trap_expected
5248 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5249 || ecs->event_thread->stepping_over_breakpoint)
5250 {
5251 keep_going (ecs);
5252 return 1;
5253 }
5254
5255 /* If the stepping thread exited, then don't try to switch
5256 back and resume it, which could fail in several different
5257 ways depending on the target. Instead, just keep going.
5258
5259 We can find a stepping dead thread in the thread list in
5260 two cases:
5261
5262 - The target supports thread exit events, and when the
5263 target tries to delete the thread from the thread list,
5264 inferior_ptid pointed at the exiting thread. In such
5265 case, calling delete_thread does not really remove the
5266 thread from the list; instead, the thread is left listed,
5267 with 'exited' state.
5268
5269 - The target's debug interface does not support thread
5270 exit events, and so we have no idea whatsoever if the
5271 previously stepping thread is still alive. For that
5272 reason, we need to synchronously query the target
5273 now. */
5274 if (is_exited (tp->ptid)
5275 || !target_thread_alive (tp->ptid))
5276 {
5277 if (debug_infrun)
5278 fprintf_unfiltered (gdb_stdlog,
5279 "infrun: not switching back to "
5280 "stepped thread, it has vanished\n");
5281
5282 delete_thread (tp->ptid);
5283 keep_going (ecs);
5284 return 1;
5285 }
5286
5287 /* Otherwise, we no longer expect a trap in the current thread.
5288 Clear the trap_expected flag before switching back -- this is
5289 what keep_going would do as well, if we called it. */
5290 ecs->event_thread->control.trap_expected = 0;
5291
5292 if (debug_infrun)
5293 fprintf_unfiltered (gdb_stdlog,
5294 "infrun: switching back to stepped thread\n");
5295
5296 ecs->event_thread = tp;
5297 ecs->ptid = tp->ptid;
5298 context_switch (ecs->ptid);
5299 keep_going (ecs);
5300 return 1;
5301 }
5302 }
5303 return 0;
5304}
5305
b3444185 5306/* Is thread TP in the middle of single-stepping? */
104c1213 5307
a289b8f6 5308static int
b3444185 5309currently_stepping (struct thread_info *tp)
a7212384 5310{
8358c15c
JK
5311 return ((tp->control.step_range_end
5312 && tp->control.step_resume_breakpoint == NULL)
5313 || tp->control.trap_expected
8358c15c 5314 || bpstat_should_step ());
a7212384
UW
5315}
5316
b3444185
PA
5317/* Returns true if any thread *but* the one passed in "data" is in the
5318 middle of stepping or of handling a "next". */
a7212384 5319
104c1213 5320static int
b3444185 5321currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5322{
b3444185
PA
5323 if (tp == data)
5324 return 0;
5325
16c381f0 5326 return (tp->control.step_range_end
ede1849f 5327 || tp->control.trap_expected);
104c1213 5328}
c906108c 5329
b2175913
MS
5330/* Inferior has stepped into a subroutine call with source code that
5331 we should not step over. Do step to the first line of code in
5332 it. */
c2c6d25f
JM
5333
5334static void
568d6575
UW
5335handle_step_into_function (struct gdbarch *gdbarch,
5336 struct execution_control_state *ecs)
c2c6d25f
JM
5337{
5338 struct symtab *s;
2afb61aa 5339 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5340
7e324e48
GB
5341 fill_in_stop_func (gdbarch, ecs);
5342
c2c6d25f
JM
5343 s = find_pc_symtab (stop_pc);
5344 if (s && s->language != language_asm)
568d6575 5345 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5346 ecs->stop_func_start);
c2c6d25f 5347
2afb61aa 5348 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5349 /* Use the step_resume_break to step until the end of the prologue,
5350 even if that involves jumps (as it seems to on the vax under
5351 4.2). */
5352 /* If the prologue ends in the middle of a source line, continue to
5353 the end of that source line (if it is still within the function).
5354 Otherwise, just go to end of prologue. */
2afb61aa
PA
5355 if (stop_func_sal.end
5356 && stop_func_sal.pc != ecs->stop_func_start
5357 && stop_func_sal.end < ecs->stop_func_end)
5358 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5359
2dbd5e30
KB
5360 /* Architectures which require breakpoint adjustment might not be able
5361 to place a breakpoint at the computed address. If so, the test
5362 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5363 ecs->stop_func_start to an address at which a breakpoint may be
5364 legitimately placed.
8fb3e588 5365
2dbd5e30
KB
5366 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5367 made, GDB will enter an infinite loop when stepping through
5368 optimized code consisting of VLIW instructions which contain
5369 subinstructions corresponding to different source lines. On
5370 FR-V, it's not permitted to place a breakpoint on any but the
5371 first subinstruction of a VLIW instruction. When a breakpoint is
5372 set, GDB will adjust the breakpoint address to the beginning of
5373 the VLIW instruction. Thus, we need to make the corresponding
5374 adjustment here when computing the stop address. */
8fb3e588 5375
568d6575 5376 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5377 {
5378 ecs->stop_func_start
568d6575 5379 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5380 ecs->stop_func_start);
2dbd5e30
KB
5381 }
5382
c2c6d25f
JM
5383 if (ecs->stop_func_start == stop_pc)
5384 {
5385 /* We are already there: stop now. */
16c381f0 5386 ecs->event_thread->control.stop_step = 1;
33d62d64 5387 print_end_stepping_range_reason ();
c2c6d25f
JM
5388 stop_stepping (ecs);
5389 return;
5390 }
5391 else
5392 {
5393 /* Put the step-breakpoint there and go until there. */
fe39c653 5394 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5395 sr_sal.pc = ecs->stop_func_start;
5396 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5397 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5398
c2c6d25f 5399 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5400 some machines the prologue is where the new fp value is
5401 established. */
a6d9a66e 5402 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5403
5404 /* And make sure stepping stops right away then. */
16c381f0
JK
5405 ecs->event_thread->control.step_range_end
5406 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5407 }
5408 keep_going (ecs);
5409}
d4f3574e 5410
b2175913
MS
5411/* Inferior has stepped backward into a subroutine call with source
5412 code that we should not step over. Do step to the beginning of the
5413 last line of code in it. */
5414
5415static void
568d6575
UW
5416handle_step_into_function_backward (struct gdbarch *gdbarch,
5417 struct execution_control_state *ecs)
b2175913
MS
5418{
5419 struct symtab *s;
167e4384 5420 struct symtab_and_line stop_func_sal;
b2175913 5421
7e324e48
GB
5422 fill_in_stop_func (gdbarch, ecs);
5423
b2175913
MS
5424 s = find_pc_symtab (stop_pc);
5425 if (s && s->language != language_asm)
568d6575 5426 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5427 ecs->stop_func_start);
5428
5429 stop_func_sal = find_pc_line (stop_pc, 0);
5430
5431 /* OK, we're just going to keep stepping here. */
5432 if (stop_func_sal.pc == stop_pc)
5433 {
5434 /* We're there already. Just stop stepping now. */
16c381f0 5435 ecs->event_thread->control.stop_step = 1;
33d62d64 5436 print_end_stepping_range_reason ();
b2175913
MS
5437 stop_stepping (ecs);
5438 }
5439 else
5440 {
5441 /* Else just reset the step range and keep going.
5442 No step-resume breakpoint, they don't work for
5443 epilogues, which can have multiple entry paths. */
16c381f0
JK
5444 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5445 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5446 keep_going (ecs);
5447 }
5448 return;
5449}
5450
d3169d93 5451/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5452 This is used to both functions and to skip over code. */
5453
5454static void
2c03e5be
PA
5455insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5456 struct symtab_and_line sr_sal,
5457 struct frame_id sr_id,
5458 enum bptype sr_type)
44cbf7b5 5459{
611c83ae
PA
5460 /* There should never be more than one step-resume or longjmp-resume
5461 breakpoint per thread, so we should never be setting a new
44cbf7b5 5462 step_resume_breakpoint when one is already active. */
8358c15c 5463 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5464 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5465
5466 if (debug_infrun)
5467 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5468 "infrun: inserting step-resume breakpoint at %s\n",
5469 paddress (gdbarch, sr_sal.pc));
d3169d93 5470
8358c15c 5471 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5472 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5473}
5474
9da8c2a0 5475void
2c03e5be
PA
5476insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5477 struct symtab_and_line sr_sal,
5478 struct frame_id sr_id)
5479{
5480 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5481 sr_sal, sr_id,
5482 bp_step_resume);
44cbf7b5 5483}
7ce450bd 5484
2c03e5be
PA
5485/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5486 This is used to skip a potential signal handler.
7ce450bd 5487
14e60db5
DJ
5488 This is called with the interrupted function's frame. The signal
5489 handler, when it returns, will resume the interrupted function at
5490 RETURN_FRAME.pc. */
d303a6c7
AC
5491
5492static void
2c03e5be 5493insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5494{
5495 struct symtab_and_line sr_sal;
a6d9a66e 5496 struct gdbarch *gdbarch;
d303a6c7 5497
f4c1edd8 5498 gdb_assert (return_frame != NULL);
d303a6c7
AC
5499 init_sal (&sr_sal); /* initialize to zeros */
5500
a6d9a66e 5501 gdbarch = get_frame_arch (return_frame);
568d6575 5502 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5503 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5504 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5505
2c03e5be
PA
5506 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5507 get_stack_frame_id (return_frame),
5508 bp_hp_step_resume);
d303a6c7
AC
5509}
5510
2c03e5be
PA
5511/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5512 is used to skip a function after stepping into it (for "next" or if
5513 the called function has no debugging information).
14e60db5
DJ
5514
5515 The current function has almost always been reached by single
5516 stepping a call or return instruction. NEXT_FRAME belongs to the
5517 current function, and the breakpoint will be set at the caller's
5518 resume address.
5519
5520 This is a separate function rather than reusing
2c03e5be 5521 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5522 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5523 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5524
5525static void
5526insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5527{
5528 struct symtab_and_line sr_sal;
a6d9a66e 5529 struct gdbarch *gdbarch;
14e60db5
DJ
5530
5531 /* We shouldn't have gotten here if we don't know where the call site
5532 is. */
c7ce8faa 5533 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5534
5535 init_sal (&sr_sal); /* initialize to zeros */
5536
a6d9a66e 5537 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5538 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5539 frame_unwind_caller_pc (next_frame));
14e60db5 5540 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5541 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5542
a6d9a66e 5543 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5544 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5545}
5546
611c83ae
PA
5547/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5548 new breakpoint at the target of a jmp_buf. The handling of
5549 longjmp-resume uses the same mechanisms used for handling
5550 "step-resume" breakpoints. */
5551
5552static void
a6d9a66e 5553insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5554{
e81a37f7
TT
5555 /* There should never be more than one longjmp-resume breakpoint per
5556 thread, so we should never be setting a new
611c83ae 5557 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5558 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5559
5560 if (debug_infrun)
5561 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5562 "infrun: inserting longjmp-resume breakpoint at %s\n",
5563 paddress (gdbarch, pc));
611c83ae 5564
e81a37f7 5565 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5566 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5567}
5568
186c406b
TT
5569/* Insert an exception resume breakpoint. TP is the thread throwing
5570 the exception. The block B is the block of the unwinder debug hook
5571 function. FRAME is the frame corresponding to the call to this
5572 function. SYM is the symbol of the function argument holding the
5573 target PC of the exception. */
5574
5575static void
5576insert_exception_resume_breakpoint (struct thread_info *tp,
5577 struct block *b,
5578 struct frame_info *frame,
5579 struct symbol *sym)
5580{
bfd189b1 5581 volatile struct gdb_exception e;
186c406b
TT
5582
5583 /* We want to ignore errors here. */
5584 TRY_CATCH (e, RETURN_MASK_ERROR)
5585 {
5586 struct symbol *vsym;
5587 struct value *value;
5588 CORE_ADDR handler;
5589 struct breakpoint *bp;
5590
5591 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5592 value = read_var_value (vsym, frame);
5593 /* If the value was optimized out, revert to the old behavior. */
5594 if (! value_optimized_out (value))
5595 {
5596 handler = value_as_address (value);
5597
5598 if (debug_infrun)
5599 fprintf_unfiltered (gdb_stdlog,
5600 "infrun: exception resume at %lx\n",
5601 (unsigned long) handler);
5602
5603 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5604 handler, bp_exception_resume);
c70a6932
JK
5605
5606 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5607 frame = NULL;
5608
186c406b
TT
5609 bp->thread = tp->num;
5610 inferior_thread ()->control.exception_resume_breakpoint = bp;
5611 }
5612 }
5613}
5614
28106bc2
SDJ
5615/* A helper for check_exception_resume that sets an
5616 exception-breakpoint based on a SystemTap probe. */
5617
5618static void
5619insert_exception_resume_from_probe (struct thread_info *tp,
5620 const struct probe *probe,
28106bc2
SDJ
5621 struct frame_info *frame)
5622{
5623 struct value *arg_value;
5624 CORE_ADDR handler;
5625 struct breakpoint *bp;
5626
5627 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5628 if (!arg_value)
5629 return;
5630
5631 handler = value_as_address (arg_value);
5632
5633 if (debug_infrun)
5634 fprintf_unfiltered (gdb_stdlog,
5635 "infrun: exception resume at %s\n",
6bac7473 5636 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5637 handler));
5638
5639 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5640 handler, bp_exception_resume);
5641 bp->thread = tp->num;
5642 inferior_thread ()->control.exception_resume_breakpoint = bp;
5643}
5644
186c406b
TT
5645/* This is called when an exception has been intercepted. Check to
5646 see whether the exception's destination is of interest, and if so,
5647 set an exception resume breakpoint there. */
5648
5649static void
5650check_exception_resume (struct execution_control_state *ecs,
28106bc2 5651 struct frame_info *frame)
186c406b 5652{
bfd189b1 5653 volatile struct gdb_exception e;
28106bc2
SDJ
5654 const struct probe *probe;
5655 struct symbol *func;
5656
5657 /* First see if this exception unwinding breakpoint was set via a
5658 SystemTap probe point. If so, the probe has two arguments: the
5659 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5660 set a breakpoint there. */
6bac7473 5661 probe = find_probe_by_pc (get_frame_pc (frame));
28106bc2
SDJ
5662 if (probe)
5663 {
6bac7473 5664 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
28106bc2
SDJ
5665 return;
5666 }
5667
5668 func = get_frame_function (frame);
5669 if (!func)
5670 return;
186c406b
TT
5671
5672 TRY_CATCH (e, RETURN_MASK_ERROR)
5673 {
5674 struct block *b;
8157b174 5675 struct block_iterator iter;
186c406b
TT
5676 struct symbol *sym;
5677 int argno = 0;
5678
5679 /* The exception breakpoint is a thread-specific breakpoint on
5680 the unwinder's debug hook, declared as:
5681
5682 void _Unwind_DebugHook (void *cfa, void *handler);
5683
5684 The CFA argument indicates the frame to which control is
5685 about to be transferred. HANDLER is the destination PC.
5686
5687 We ignore the CFA and set a temporary breakpoint at HANDLER.
5688 This is not extremely efficient but it avoids issues in gdb
5689 with computing the DWARF CFA, and it also works even in weird
5690 cases such as throwing an exception from inside a signal
5691 handler. */
5692
5693 b = SYMBOL_BLOCK_VALUE (func);
5694 ALL_BLOCK_SYMBOLS (b, iter, sym)
5695 {
5696 if (!SYMBOL_IS_ARGUMENT (sym))
5697 continue;
5698
5699 if (argno == 0)
5700 ++argno;
5701 else
5702 {
5703 insert_exception_resume_breakpoint (ecs->event_thread,
5704 b, frame, sym);
5705 break;
5706 }
5707 }
5708 }
5709}
5710
104c1213
JM
5711static void
5712stop_stepping (struct execution_control_state *ecs)
5713{
527159b7 5714 if (debug_infrun)
8a9de0e4 5715 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5716
cd0fc7c3
SS
5717 /* Let callers know we don't want to wait for the inferior anymore. */
5718 ecs->wait_some_more = 0;
5719}
5720
a9ba6bae
PA
5721/* Called when we should continue running the inferior, because the
5722 current event doesn't cause a user visible stop. This does the
5723 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
5724
5725static void
5726keep_going (struct execution_control_state *ecs)
5727{
c4dbc9af
PA
5728 /* Make sure normal_stop is called if we get a QUIT handled before
5729 reaching resume. */
5730 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5731
d4f3574e 5732 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5733 ecs->event_thread->prev_pc
5734 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5735
16c381f0 5736 if (ecs->event_thread->control.trap_expected
a493e3e2 5737 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 5738 {
a9ba6bae
PA
5739 /* We haven't yet gotten our trap, and either: intercepted a
5740 non-signal event (e.g., a fork); or took a signal which we
5741 are supposed to pass through to the inferior. Simply
5742 continue. */
c4dbc9af 5743 discard_cleanups (old_cleanups);
2020b7ab 5744 resume (currently_stepping (ecs->event_thread),
16c381f0 5745 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5746 }
5747 else
5748 {
5749 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
5750 anyway (if we got a signal, the user asked it be passed to
5751 the child)
5752 -- or --
5753 We got our expected trap, but decided we should resume from
5754 it.
d4f3574e 5755
a9ba6bae 5756 We're going to run this baby now!
d4f3574e 5757
c36b740a
VP
5758 Note that insert_breakpoints won't try to re-insert
5759 already inserted breakpoints. Therefore, we don't
5760 care if breakpoints were already inserted, or not. */
a9ba6bae 5761
4e1c45ea 5762 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5763 {
9f5a595d 5764 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5765
9f5a595d 5766 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
a9ba6bae
PA
5767 {
5768 /* Since we can't do a displaced step, we have to remove
5769 the breakpoint while we step it. To keep things
5770 simple, we remove them all. */
5771 remove_breakpoints ();
5772 }
45e8c884
VP
5773 }
5774 else
d4f3574e 5775 {
bfd189b1 5776 volatile struct gdb_exception e;
abbb1732 5777
a9ba6bae 5778 /* Stop stepping if inserting breakpoints fails. */
e236ba44
VP
5779 TRY_CATCH (e, RETURN_MASK_ERROR)
5780 {
5781 insert_breakpoints ();
5782 }
5783 if (e.reason < 0)
d4f3574e 5784 {
97bd5475 5785 exception_print (gdb_stderr, e);
d4f3574e
SS
5786 stop_stepping (ecs);
5787 return;
5788 }
d4f3574e
SS
5789 }
5790
16c381f0
JK
5791 ecs->event_thread->control.trap_expected
5792 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e 5793
a9ba6bae
PA
5794 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5795 explicitly specifies that such a signal should be delivered
5796 to the target program). Typically, that would occur when a
5797 user is debugging a target monitor on a simulator: the target
5798 monitor sets a breakpoint; the simulator encounters this
5799 breakpoint and halts the simulation handing control to GDB;
5800 GDB, noting that the stop address doesn't map to any known
5801 breakpoint, returns control back to the simulator; the
5802 simulator then delivers the hardware equivalent of a
5803 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 5804 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5805 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 5806 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 5807
c4dbc9af 5808 discard_cleanups (old_cleanups);
2020b7ab 5809 resume (currently_stepping (ecs->event_thread),
16c381f0 5810 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5811 }
5812
488f131b 5813 prepare_to_wait (ecs);
d4f3574e
SS
5814}
5815
104c1213
JM
5816/* This function normally comes after a resume, before
5817 handle_inferior_event exits. It takes care of any last bits of
5818 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5819
104c1213
JM
5820static void
5821prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5822{
527159b7 5823 if (debug_infrun)
8a9de0e4 5824 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5825
104c1213
JM
5826 /* This is the old end of the while loop. Let everybody know we
5827 want to wait for the inferior some more and get called again
5828 soon. */
5829 ecs->wait_some_more = 1;
c906108c 5830}
11cf8741 5831
33d62d64
JK
5832/* Several print_*_reason functions to print why the inferior has stopped.
5833 We always print something when the inferior exits, or receives a signal.
5834 The rest of the cases are dealt with later on in normal_stop and
5835 print_it_typical. Ideally there should be a call to one of these
5836 print_*_reason functions functions from handle_inferior_event each time
5837 stop_stepping is called. */
5838
5839/* Print why the inferior has stopped.
5840 We are done with a step/next/si/ni command, print why the inferior has
5841 stopped. For now print nothing. Print a message only if not in the middle
5842 of doing a "step n" operation for n > 1. */
5843
5844static void
5845print_end_stepping_range_reason (void)
5846{
16c381f0
JK
5847 if ((!inferior_thread ()->step_multi
5848 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5849 && ui_out_is_mi_like_p (current_uiout))
5850 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5851 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5852}
5853
5854/* The inferior was terminated by a signal, print why it stopped. */
5855
11cf8741 5856static void
2ea28649 5857print_signal_exited_reason (enum gdb_signal siggnal)
11cf8741 5858{
79a45e25
PA
5859 struct ui_out *uiout = current_uiout;
5860
33d62d64
JK
5861 annotate_signalled ();
5862 if (ui_out_is_mi_like_p (uiout))
5863 ui_out_field_string
5864 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5865 ui_out_text (uiout, "\nProgram terminated with signal ");
5866 annotate_signal_name ();
5867 ui_out_field_string (uiout, "signal-name",
2ea28649 5868 gdb_signal_to_name (siggnal));
33d62d64
JK
5869 annotate_signal_name_end ();
5870 ui_out_text (uiout, ", ");
5871 annotate_signal_string ();
5872 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5873 gdb_signal_to_string (siggnal));
33d62d64
JK
5874 annotate_signal_string_end ();
5875 ui_out_text (uiout, ".\n");
5876 ui_out_text (uiout, "The program no longer exists.\n");
5877}
5878
5879/* The inferior program is finished, print why it stopped. */
5880
5881static void
5882print_exited_reason (int exitstatus)
5883{
fda326dd
TT
5884 struct inferior *inf = current_inferior ();
5885 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5886 struct ui_out *uiout = current_uiout;
fda326dd 5887
33d62d64
JK
5888 annotate_exited (exitstatus);
5889 if (exitstatus)
5890 {
5891 if (ui_out_is_mi_like_p (uiout))
5892 ui_out_field_string (uiout, "reason",
5893 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5894 ui_out_text (uiout, "[Inferior ");
5895 ui_out_text (uiout, plongest (inf->num));
5896 ui_out_text (uiout, " (");
5897 ui_out_text (uiout, pidstr);
5898 ui_out_text (uiout, ") exited with code ");
33d62d64 5899 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5900 ui_out_text (uiout, "]\n");
33d62d64
JK
5901 }
5902 else
11cf8741 5903 {
9dc5e2a9 5904 if (ui_out_is_mi_like_p (uiout))
034dad6f 5905 ui_out_field_string
33d62d64 5906 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5907 ui_out_text (uiout, "[Inferior ");
5908 ui_out_text (uiout, plongest (inf->num));
5909 ui_out_text (uiout, " (");
5910 ui_out_text (uiout, pidstr);
5911 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5912 }
5913 /* Support the --return-child-result option. */
5914 return_child_result_value = exitstatus;
5915}
5916
5917/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5918 tells us to print about it. */
33d62d64
JK
5919
5920static void
2ea28649 5921print_signal_received_reason (enum gdb_signal siggnal)
33d62d64 5922{
79a45e25
PA
5923 struct ui_out *uiout = current_uiout;
5924
33d62d64
JK
5925 annotate_signal ();
5926
a493e3e2 5927 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
5928 {
5929 struct thread_info *t = inferior_thread ();
5930
5931 ui_out_text (uiout, "\n[");
5932 ui_out_field_string (uiout, "thread-name",
5933 target_pid_to_str (t->ptid));
5934 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5935 ui_out_text (uiout, " stopped");
5936 }
5937 else
5938 {
5939 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5940 annotate_signal_name ();
33d62d64
JK
5941 if (ui_out_is_mi_like_p (uiout))
5942 ui_out_field_string
5943 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5944 ui_out_field_string (uiout, "signal-name",
2ea28649 5945 gdb_signal_to_name (siggnal));
8b93c638
JM
5946 annotate_signal_name_end ();
5947 ui_out_text (uiout, ", ");
5948 annotate_signal_string ();
488f131b 5949 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5950 gdb_signal_to_string (siggnal));
8b93c638 5951 annotate_signal_string_end ();
33d62d64
JK
5952 }
5953 ui_out_text (uiout, ".\n");
5954}
252fbfc8 5955
33d62d64
JK
5956/* Reverse execution: target ran out of history info, print why the inferior
5957 has stopped. */
252fbfc8 5958
33d62d64
JK
5959static void
5960print_no_history_reason (void)
5961{
79a45e25 5962 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5963}
43ff13b4 5964
c906108c
SS
5965/* Here to return control to GDB when the inferior stops for real.
5966 Print appropriate messages, remove breakpoints, give terminal our modes.
5967
5968 STOP_PRINT_FRAME nonzero means print the executing frame
5969 (pc, function, args, file, line number and line text).
5970 BREAKPOINTS_FAILED nonzero means stop was due to error
5971 attempting to insert breakpoints. */
5972
5973void
96baa820 5974normal_stop (void)
c906108c 5975{
73b65bb0
DJ
5976 struct target_waitstatus last;
5977 ptid_t last_ptid;
29f49a6a 5978 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5979
5980 get_last_target_status (&last_ptid, &last);
5981
29f49a6a
PA
5982 /* If an exception is thrown from this point on, make sure to
5983 propagate GDB's knowledge of the executing state to the
5984 frontend/user running state. A QUIT is an easy exception to see
5985 here, so do this before any filtered output. */
c35b1492
PA
5986 if (!non_stop)
5987 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5988 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5989 && last.kind != TARGET_WAITKIND_EXITED
5990 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5991 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5992
4f8d22e3
PA
5993 /* In non-stop mode, we don't want GDB to switch threads behind the
5994 user's back, to avoid races where the user is typing a command to
5995 apply to thread x, but GDB switches to thread y before the user
5996 finishes entering the command. */
5997
c906108c
SS
5998 /* As with the notification of thread events, we want to delay
5999 notifying the user that we've switched thread context until
6000 the inferior actually stops.
6001
73b65bb0
DJ
6002 There's no point in saying anything if the inferior has exited.
6003 Note that SIGNALLED here means "exited with a signal", not
6004 "received a signal". */
4f8d22e3
PA
6005 if (!non_stop
6006 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
6007 && target_has_execution
6008 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6009 && last.kind != TARGET_WAITKIND_EXITED
6010 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
6011 {
6012 target_terminal_ours_for_output ();
a3f17187 6013 printf_filtered (_("[Switching to %s]\n"),
c95310c6 6014 target_pid_to_str (inferior_ptid));
b8fa951a 6015 annotate_thread_changed ();
39f77062 6016 previous_inferior_ptid = inferior_ptid;
c906108c 6017 }
c906108c 6018
0e5bf2a8
PA
6019 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6020 {
6021 gdb_assert (sync_execution || !target_can_async_p ());
6022
6023 target_terminal_ours_for_output ();
6024 printf_filtered (_("No unwaited-for children left.\n"));
6025 }
6026
74960c60 6027 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
6028 {
6029 if (remove_breakpoints ())
6030 {
6031 target_terminal_ours_for_output ();
3e43a32a
MS
6032 printf_filtered (_("Cannot remove breakpoints because "
6033 "program is no longer writable.\nFurther "
6034 "execution is probably impossible.\n"));
c906108c
SS
6035 }
6036 }
c906108c 6037
c906108c
SS
6038 /* If an auto-display called a function and that got a signal,
6039 delete that auto-display to avoid an infinite recursion. */
6040
6041 if (stopped_by_random_signal)
6042 disable_current_display ();
6043
6044 /* Don't print a message if in the middle of doing a "step n"
6045 operation for n > 1 */
af679fd0
PA
6046 if (target_has_execution
6047 && last.kind != TARGET_WAITKIND_SIGNALLED
6048 && last.kind != TARGET_WAITKIND_EXITED
6049 && inferior_thread ()->step_multi
16c381f0 6050 && inferior_thread ()->control.stop_step)
c906108c
SS
6051 goto done;
6052
6053 target_terminal_ours ();
0f641c01 6054 async_enable_stdin ();
c906108c 6055
7abfe014
DJ
6056 /* Set the current source location. This will also happen if we
6057 display the frame below, but the current SAL will be incorrect
6058 during a user hook-stop function. */
d729566a 6059 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
6060 set_current_sal_from_frame (get_current_frame (), 1);
6061
dd7e2d2b
PA
6062 /* Let the user/frontend see the threads as stopped. */
6063 do_cleanups (old_chain);
6064
6065 /* Look up the hook_stop and run it (CLI internally handles problem
6066 of stop_command's pre-hook not existing). */
6067 if (stop_command)
6068 catch_errors (hook_stop_stub, stop_command,
6069 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6070
d729566a 6071 if (!has_stack_frames ())
d51fd4c8 6072 goto done;
c906108c 6073
32400beb
PA
6074 if (last.kind == TARGET_WAITKIND_SIGNALLED
6075 || last.kind == TARGET_WAITKIND_EXITED)
6076 goto done;
6077
c906108c
SS
6078 /* Select innermost stack frame - i.e., current frame is frame 0,
6079 and current location is based on that.
6080 Don't do this on return from a stack dummy routine,
1777feb0 6081 or if the program has exited. */
c906108c
SS
6082
6083 if (!stop_stack_dummy)
6084 {
0f7d239c 6085 select_frame (get_current_frame ());
c906108c
SS
6086
6087 /* Print current location without a level number, if
c5aa993b
JM
6088 we have changed functions or hit a breakpoint.
6089 Print source line if we have one.
6090 bpstat_print() contains the logic deciding in detail
1777feb0 6091 what to print, based on the event(s) that just occurred. */
c906108c 6092
d01a8610
AS
6093 /* If --batch-silent is enabled then there's no need to print the current
6094 source location, and to try risks causing an error message about
6095 missing source files. */
6096 if (stop_print_frame && !batch_silent)
c906108c
SS
6097 {
6098 int bpstat_ret;
6099 int source_flag;
917317f4 6100 int do_frame_printing = 1;
347bddb7 6101 struct thread_info *tp = inferior_thread ();
c906108c 6102
36dfb11c 6103 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
6104 switch (bpstat_ret)
6105 {
6106 case PRINT_UNKNOWN:
aa0cd9c1 6107 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
6108 (or should) carry around the function and does (or
6109 should) use that when doing a frame comparison. */
16c381f0
JK
6110 if (tp->control.stop_step
6111 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 6112 get_frame_id (get_current_frame ()))
917317f4 6113 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
6114 source_flag = SRC_LINE; /* Finished step, just
6115 print source line. */
917317f4 6116 else
1777feb0
MS
6117 source_flag = SRC_AND_LOC; /* Print location and
6118 source line. */
917317f4
JM
6119 break;
6120 case PRINT_SRC_AND_LOC:
1777feb0
MS
6121 source_flag = SRC_AND_LOC; /* Print location and
6122 source line. */
917317f4
JM
6123 break;
6124 case PRINT_SRC_ONLY:
c5394b80 6125 source_flag = SRC_LINE;
917317f4
JM
6126 break;
6127 case PRINT_NOTHING:
488f131b 6128 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6129 do_frame_printing = 0;
6130 break;
6131 default:
e2e0b3e5 6132 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6133 }
c906108c
SS
6134
6135 /* The behavior of this routine with respect to the source
6136 flag is:
c5394b80
JM
6137 SRC_LINE: Print only source line
6138 LOCATION: Print only location
1777feb0 6139 SRC_AND_LOC: Print location and source line. */
917317f4 6140 if (do_frame_printing)
08d72866 6141 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
c906108c
SS
6142
6143 /* Display the auto-display expressions. */
6144 do_displays ();
6145 }
6146 }
6147
6148 /* Save the function value return registers, if we care.
6149 We might be about to restore their previous contents. */
9da8c2a0
PA
6150 if (inferior_thread ()->control.proceed_to_finish
6151 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6152 {
6153 /* This should not be necessary. */
6154 if (stop_registers)
6155 regcache_xfree (stop_registers);
6156
6157 /* NB: The copy goes through to the target picking up the value of
6158 all the registers. */
6159 stop_registers = regcache_dup (get_current_regcache ());
6160 }
c906108c 6161
aa7d318d 6162 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6163 {
b89667eb
DE
6164 /* Pop the empty frame that contains the stack dummy.
6165 This also restores inferior state prior to the call
16c381f0 6166 (struct infcall_suspend_state). */
b89667eb 6167 struct frame_info *frame = get_current_frame ();
abbb1732 6168
b89667eb
DE
6169 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6170 frame_pop (frame);
3e43a32a
MS
6171 /* frame_pop() calls reinit_frame_cache as the last thing it
6172 does which means there's currently no selected frame. We
6173 don't need to re-establish a selected frame if the dummy call
6174 returns normally, that will be done by
6175 restore_infcall_control_state. However, we do have to handle
6176 the case where the dummy call is returning after being
6177 stopped (e.g. the dummy call previously hit a breakpoint).
6178 We can't know which case we have so just always re-establish
6179 a selected frame here. */
0f7d239c 6180 select_frame (get_current_frame ());
c906108c
SS
6181 }
6182
c906108c
SS
6183done:
6184 annotate_stopped ();
41d2bdb4
PA
6185
6186 /* Suppress the stop observer if we're in the middle of:
6187
6188 - a step n (n > 1), as there still more steps to be done.
6189
6190 - a "finish" command, as the observer will be called in
6191 finish_command_continuation, so it can include the inferior
6192 function's return value.
6193
6194 - calling an inferior function, as we pretend we inferior didn't
6195 run at all. The return value of the call is handled by the
6196 expression evaluator, through call_function_by_hand. */
6197
6198 if (!target_has_execution
6199 || last.kind == TARGET_WAITKIND_SIGNALLED
6200 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6201 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6202 || (!(inferior_thread ()->step_multi
6203 && inferior_thread ()->control.stop_step)
16c381f0
JK
6204 && !(inferior_thread ()->control.stop_bpstat
6205 && inferior_thread ()->control.proceed_to_finish)
6206 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6207 {
6208 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6209 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6210 stop_print_frame);
347bddb7 6211 else
1d33d6ba 6212 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6213 }
347bddb7 6214
48844aa6
PA
6215 if (target_has_execution)
6216 {
6217 if (last.kind != TARGET_WAITKIND_SIGNALLED
6218 && last.kind != TARGET_WAITKIND_EXITED)
6219 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6220 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6221 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6222 }
6c95b8df
PA
6223
6224 /* Try to get rid of automatically added inferiors that are no
6225 longer needed. Keeping those around slows down things linearly.
6226 Note that this never removes the current inferior. */
6227 prune_inferiors ();
c906108c
SS
6228}
6229
6230static int
96baa820 6231hook_stop_stub (void *cmd)
c906108c 6232{
5913bcb0 6233 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6234 return (0);
6235}
6236\f
c5aa993b 6237int
96baa820 6238signal_stop_state (int signo)
c906108c 6239{
d6b48e9c 6240 return signal_stop[signo];
c906108c
SS
6241}
6242
c5aa993b 6243int
96baa820 6244signal_print_state (int signo)
c906108c
SS
6245{
6246 return signal_print[signo];
6247}
6248
c5aa993b 6249int
96baa820 6250signal_pass_state (int signo)
c906108c
SS
6251{
6252 return signal_program[signo];
6253}
6254
2455069d
UW
6255static void
6256signal_cache_update (int signo)
6257{
6258 if (signo == -1)
6259 {
a493e3e2 6260 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6261 signal_cache_update (signo);
6262
6263 return;
6264 }
6265
6266 signal_pass[signo] = (signal_stop[signo] == 0
6267 && signal_print[signo] == 0
ab04a2af
TT
6268 && signal_program[signo] == 1
6269 && signal_catch[signo] == 0);
2455069d
UW
6270}
6271
488f131b 6272int
7bda5e4a 6273signal_stop_update (int signo, int state)
d4f3574e
SS
6274{
6275 int ret = signal_stop[signo];
abbb1732 6276
d4f3574e 6277 signal_stop[signo] = state;
2455069d 6278 signal_cache_update (signo);
d4f3574e
SS
6279 return ret;
6280}
6281
488f131b 6282int
7bda5e4a 6283signal_print_update (int signo, int state)
d4f3574e
SS
6284{
6285 int ret = signal_print[signo];
abbb1732 6286
d4f3574e 6287 signal_print[signo] = state;
2455069d 6288 signal_cache_update (signo);
d4f3574e
SS
6289 return ret;
6290}
6291
488f131b 6292int
7bda5e4a 6293signal_pass_update (int signo, int state)
d4f3574e
SS
6294{
6295 int ret = signal_program[signo];
abbb1732 6296
d4f3574e 6297 signal_program[signo] = state;
2455069d 6298 signal_cache_update (signo);
d4f3574e
SS
6299 return ret;
6300}
6301
ab04a2af
TT
6302/* Update the global 'signal_catch' from INFO and notify the
6303 target. */
6304
6305void
6306signal_catch_update (const unsigned int *info)
6307{
6308 int i;
6309
6310 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6311 signal_catch[i] = info[i] > 0;
6312 signal_cache_update (-1);
6313 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6314}
6315
c906108c 6316static void
96baa820 6317sig_print_header (void)
c906108c 6318{
3e43a32a
MS
6319 printf_filtered (_("Signal Stop\tPrint\tPass "
6320 "to program\tDescription\n"));
c906108c
SS
6321}
6322
6323static void
2ea28649 6324sig_print_info (enum gdb_signal oursig)
c906108c 6325{
2ea28649 6326 const char *name = gdb_signal_to_name (oursig);
c906108c 6327 int name_padding = 13 - strlen (name);
96baa820 6328
c906108c
SS
6329 if (name_padding <= 0)
6330 name_padding = 0;
6331
6332 printf_filtered ("%s", name);
488f131b 6333 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6334 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6335 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6336 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6337 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6338}
6339
6340/* Specify how various signals in the inferior should be handled. */
6341
6342static void
96baa820 6343handle_command (char *args, int from_tty)
c906108c
SS
6344{
6345 char **argv;
6346 int digits, wordlen;
6347 int sigfirst, signum, siglast;
2ea28649 6348 enum gdb_signal oursig;
c906108c
SS
6349 int allsigs;
6350 int nsigs;
6351 unsigned char *sigs;
6352 struct cleanup *old_chain;
6353
6354 if (args == NULL)
6355 {
e2e0b3e5 6356 error_no_arg (_("signal to handle"));
c906108c
SS
6357 }
6358
1777feb0 6359 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6360
a493e3e2 6361 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6362 sigs = (unsigned char *) alloca (nsigs);
6363 memset (sigs, 0, nsigs);
6364
1777feb0 6365 /* Break the command line up into args. */
c906108c 6366
d1a41061 6367 argv = gdb_buildargv (args);
7a292a7a 6368 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6369
6370 /* Walk through the args, looking for signal oursigs, signal names, and
6371 actions. Signal numbers and signal names may be interspersed with
6372 actions, with the actions being performed for all signals cumulatively
1777feb0 6373 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6374
6375 while (*argv != NULL)
6376 {
6377 wordlen = strlen (*argv);
6378 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6379 {;
6380 }
6381 allsigs = 0;
6382 sigfirst = siglast = -1;
6383
6384 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6385 {
6386 /* Apply action to all signals except those used by the
1777feb0 6387 debugger. Silently skip those. */
c906108c
SS
6388 allsigs = 1;
6389 sigfirst = 0;
6390 siglast = nsigs - 1;
6391 }
6392 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6393 {
6394 SET_SIGS (nsigs, sigs, signal_stop);
6395 SET_SIGS (nsigs, sigs, signal_print);
6396 }
6397 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6398 {
6399 UNSET_SIGS (nsigs, sigs, signal_program);
6400 }
6401 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6402 {
6403 SET_SIGS (nsigs, sigs, signal_print);
6404 }
6405 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6406 {
6407 SET_SIGS (nsigs, sigs, signal_program);
6408 }
6409 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6410 {
6411 UNSET_SIGS (nsigs, sigs, signal_stop);
6412 }
6413 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6414 {
6415 SET_SIGS (nsigs, sigs, signal_program);
6416 }
6417 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6418 {
6419 UNSET_SIGS (nsigs, sigs, signal_print);
6420 UNSET_SIGS (nsigs, sigs, signal_stop);
6421 }
6422 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6423 {
6424 UNSET_SIGS (nsigs, sigs, signal_program);
6425 }
6426 else if (digits > 0)
6427 {
6428 /* It is numeric. The numeric signal refers to our own
6429 internal signal numbering from target.h, not to host/target
6430 signal number. This is a feature; users really should be
6431 using symbolic names anyway, and the common ones like
6432 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6433
6434 sigfirst = siglast = (int)
2ea28649 6435 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6436 if ((*argv)[digits] == '-')
6437 {
6438 siglast = (int)
2ea28649 6439 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6440 }
6441 if (sigfirst > siglast)
6442 {
1777feb0 6443 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6444 signum = sigfirst;
6445 sigfirst = siglast;
6446 siglast = signum;
6447 }
6448 }
6449 else
6450 {
2ea28649 6451 oursig = gdb_signal_from_name (*argv);
a493e3e2 6452 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6453 {
6454 sigfirst = siglast = (int) oursig;
6455 }
6456 else
6457 {
6458 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6459 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6460 }
6461 }
6462
6463 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6464 which signals to apply actions to. */
c906108c
SS
6465
6466 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6467 {
2ea28649 6468 switch ((enum gdb_signal) signum)
c906108c 6469 {
a493e3e2
PA
6470 case GDB_SIGNAL_TRAP:
6471 case GDB_SIGNAL_INT:
c906108c
SS
6472 if (!allsigs && !sigs[signum])
6473 {
9e2f0ad4 6474 if (query (_("%s is used by the debugger.\n\
3e43a32a 6475Are you sure you want to change it? "),
2ea28649 6476 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6477 {
6478 sigs[signum] = 1;
6479 }
6480 else
6481 {
a3f17187 6482 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6483 gdb_flush (gdb_stdout);
6484 }
6485 }
6486 break;
a493e3e2
PA
6487 case GDB_SIGNAL_0:
6488 case GDB_SIGNAL_DEFAULT:
6489 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6490 /* Make sure that "all" doesn't print these. */
6491 break;
6492 default:
6493 sigs[signum] = 1;
6494 break;
6495 }
6496 }
6497
6498 argv++;
6499 }
6500
3a031f65
PA
6501 for (signum = 0; signum < nsigs; signum++)
6502 if (sigs[signum])
6503 {
2455069d 6504 signal_cache_update (-1);
a493e3e2
PA
6505 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6506 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6507
3a031f65
PA
6508 if (from_tty)
6509 {
6510 /* Show the results. */
6511 sig_print_header ();
6512 for (; signum < nsigs; signum++)
6513 if (sigs[signum])
6514 sig_print_info (signum);
6515 }
6516
6517 break;
6518 }
c906108c
SS
6519
6520 do_cleanups (old_chain);
6521}
6522
de0bea00
MF
6523/* Complete the "handle" command. */
6524
6525static VEC (char_ptr) *
6526handle_completer (struct cmd_list_element *ignore,
6f937416 6527 const char *text, const char *word)
de0bea00
MF
6528{
6529 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6530 static const char * const keywords[] =
6531 {
6532 "all",
6533 "stop",
6534 "ignore",
6535 "print",
6536 "pass",
6537 "nostop",
6538 "noignore",
6539 "noprint",
6540 "nopass",
6541 NULL,
6542 };
6543
6544 vec_signals = signal_completer (ignore, text, word);
6545 vec_keywords = complete_on_enum (keywords, word, word);
6546
6547 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6548 VEC_free (char_ptr, vec_signals);
6549 VEC_free (char_ptr, vec_keywords);
6550 return return_val;
6551}
6552
c906108c 6553static void
96baa820 6554xdb_handle_command (char *args, int from_tty)
c906108c
SS
6555{
6556 char **argv;
6557 struct cleanup *old_chain;
6558
d1a41061
PP
6559 if (args == NULL)
6560 error_no_arg (_("xdb command"));
6561
1777feb0 6562 /* Break the command line up into args. */
c906108c 6563
d1a41061 6564 argv = gdb_buildargv (args);
7a292a7a 6565 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6566 if (argv[1] != (char *) NULL)
6567 {
6568 char *argBuf;
6569 int bufLen;
6570
6571 bufLen = strlen (argv[0]) + 20;
6572 argBuf = (char *) xmalloc (bufLen);
6573 if (argBuf)
6574 {
6575 int validFlag = 1;
2ea28649 6576 enum gdb_signal oursig;
c906108c 6577
2ea28649 6578 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6579 memset (argBuf, 0, bufLen);
6580 if (strcmp (argv[1], "Q") == 0)
6581 sprintf (argBuf, "%s %s", argv[0], "noprint");
6582 else
6583 {
6584 if (strcmp (argv[1], "s") == 0)
6585 {
6586 if (!signal_stop[oursig])
6587 sprintf (argBuf, "%s %s", argv[0], "stop");
6588 else
6589 sprintf (argBuf, "%s %s", argv[0], "nostop");
6590 }
6591 else if (strcmp (argv[1], "i") == 0)
6592 {
6593 if (!signal_program[oursig])
6594 sprintf (argBuf, "%s %s", argv[0], "pass");
6595 else
6596 sprintf (argBuf, "%s %s", argv[0], "nopass");
6597 }
6598 else if (strcmp (argv[1], "r") == 0)
6599 {
6600 if (!signal_print[oursig])
6601 sprintf (argBuf, "%s %s", argv[0], "print");
6602 else
6603 sprintf (argBuf, "%s %s", argv[0], "noprint");
6604 }
6605 else
6606 validFlag = 0;
6607 }
6608 if (validFlag)
6609 handle_command (argBuf, from_tty);
6610 else
a3f17187 6611 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6612 if (argBuf)
b8c9b27d 6613 xfree (argBuf);
c906108c
SS
6614 }
6615 }
6616 do_cleanups (old_chain);
6617}
6618
2ea28649
PA
6619enum gdb_signal
6620gdb_signal_from_command (int num)
ed01b82c
PA
6621{
6622 if (num >= 1 && num <= 15)
2ea28649 6623 return (enum gdb_signal) num;
ed01b82c
PA
6624 error (_("Only signals 1-15 are valid as numeric signals.\n\
6625Use \"info signals\" for a list of symbolic signals."));
6626}
6627
c906108c
SS
6628/* Print current contents of the tables set by the handle command.
6629 It is possible we should just be printing signals actually used
6630 by the current target (but for things to work right when switching
6631 targets, all signals should be in the signal tables). */
6632
6633static void
96baa820 6634signals_info (char *signum_exp, int from_tty)
c906108c 6635{
2ea28649 6636 enum gdb_signal oursig;
abbb1732 6637
c906108c
SS
6638 sig_print_header ();
6639
6640 if (signum_exp)
6641 {
6642 /* First see if this is a symbol name. */
2ea28649 6643 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6644 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6645 {
6646 /* No, try numeric. */
6647 oursig =
2ea28649 6648 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6649 }
6650 sig_print_info (oursig);
6651 return;
6652 }
6653
6654 printf_filtered ("\n");
6655 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6656 for (oursig = GDB_SIGNAL_FIRST;
6657 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6658 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6659 {
6660 QUIT;
6661
a493e3e2
PA
6662 if (oursig != GDB_SIGNAL_UNKNOWN
6663 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6664 sig_print_info (oursig);
6665 }
6666
3e43a32a
MS
6667 printf_filtered (_("\nUse the \"handle\" command "
6668 "to change these tables.\n"));
c906108c 6669}
4aa995e1 6670
c709acd1
PA
6671/* Check if it makes sense to read $_siginfo from the current thread
6672 at this point. If not, throw an error. */
6673
6674static void
6675validate_siginfo_access (void)
6676{
6677 /* No current inferior, no siginfo. */
6678 if (ptid_equal (inferior_ptid, null_ptid))
6679 error (_("No thread selected."));
6680
6681 /* Don't try to read from a dead thread. */
6682 if (is_exited (inferior_ptid))
6683 error (_("The current thread has terminated"));
6684
6685 /* ... or from a spinning thread. */
6686 if (is_running (inferior_ptid))
6687 error (_("Selected thread is running."));
6688}
6689
4aa995e1
PA
6690/* The $_siginfo convenience variable is a bit special. We don't know
6691 for sure the type of the value until we actually have a chance to
7a9dd1b2 6692 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6693 also dependent on which thread you have selected.
6694
6695 1. making $_siginfo be an internalvar that creates a new value on
6696 access.
6697
6698 2. making the value of $_siginfo be an lval_computed value. */
6699
6700/* This function implements the lval_computed support for reading a
6701 $_siginfo value. */
6702
6703static void
6704siginfo_value_read (struct value *v)
6705{
6706 LONGEST transferred;
6707
c709acd1
PA
6708 validate_siginfo_access ();
6709
4aa995e1
PA
6710 transferred =
6711 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6712 NULL,
6713 value_contents_all_raw (v),
6714 value_offset (v),
6715 TYPE_LENGTH (value_type (v)));
6716
6717 if (transferred != TYPE_LENGTH (value_type (v)))
6718 error (_("Unable to read siginfo"));
6719}
6720
6721/* This function implements the lval_computed support for writing a
6722 $_siginfo value. */
6723
6724static void
6725siginfo_value_write (struct value *v, struct value *fromval)
6726{
6727 LONGEST transferred;
6728
c709acd1
PA
6729 validate_siginfo_access ();
6730
4aa995e1
PA
6731 transferred = target_write (&current_target,
6732 TARGET_OBJECT_SIGNAL_INFO,
6733 NULL,
6734 value_contents_all_raw (fromval),
6735 value_offset (v),
6736 TYPE_LENGTH (value_type (fromval)));
6737
6738 if (transferred != TYPE_LENGTH (value_type (fromval)))
6739 error (_("Unable to write siginfo"));
6740}
6741
c8f2448a 6742static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6743 {
6744 siginfo_value_read,
6745 siginfo_value_write
6746 };
6747
6748/* Return a new value with the correct type for the siginfo object of
78267919
UW
6749 the current thread using architecture GDBARCH. Return a void value
6750 if there's no object available. */
4aa995e1 6751
2c0b251b 6752static struct value *
22d2b532
SDJ
6753siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6754 void *ignore)
4aa995e1 6755{
4aa995e1 6756 if (target_has_stack
78267919
UW
6757 && !ptid_equal (inferior_ptid, null_ptid)
6758 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6759 {
78267919 6760 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6761
78267919 6762 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6763 }
6764
78267919 6765 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6766}
6767
c906108c 6768\f
16c381f0
JK
6769/* infcall_suspend_state contains state about the program itself like its
6770 registers and any signal it received when it last stopped.
6771 This state must be restored regardless of how the inferior function call
6772 ends (either successfully, or after it hits a breakpoint or signal)
6773 if the program is to properly continue where it left off. */
6774
6775struct infcall_suspend_state
7a292a7a 6776{
16c381f0 6777 struct thread_suspend_state thread_suspend;
dd80ea3c 6778#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6779 struct inferior_suspend_state inferior_suspend;
dd80ea3c 6780#endif
16c381f0
JK
6781
6782 /* Other fields: */
7a292a7a 6783 CORE_ADDR stop_pc;
b89667eb 6784 struct regcache *registers;
1736ad11 6785
35515841 6786 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6787 struct gdbarch *siginfo_gdbarch;
6788
6789 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6790 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6791 content would be invalid. */
6792 gdb_byte *siginfo_data;
b89667eb
DE
6793};
6794
16c381f0
JK
6795struct infcall_suspend_state *
6796save_infcall_suspend_state (void)
b89667eb 6797{
16c381f0 6798 struct infcall_suspend_state *inf_state;
b89667eb 6799 struct thread_info *tp = inferior_thread ();
974a734b 6800#if 0
16c381f0 6801 struct inferior *inf = current_inferior ();
974a734b 6802#endif
1736ad11
JK
6803 struct regcache *regcache = get_current_regcache ();
6804 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6805 gdb_byte *siginfo_data = NULL;
6806
6807 if (gdbarch_get_siginfo_type_p (gdbarch))
6808 {
6809 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6810 size_t len = TYPE_LENGTH (type);
6811 struct cleanup *back_to;
6812
6813 siginfo_data = xmalloc (len);
6814 back_to = make_cleanup (xfree, siginfo_data);
6815
6816 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6817 siginfo_data, 0, len) == len)
6818 discard_cleanups (back_to);
6819 else
6820 {
6821 /* Errors ignored. */
6822 do_cleanups (back_to);
6823 siginfo_data = NULL;
6824 }
6825 }
6826
16c381f0 6827 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6828
6829 if (siginfo_data)
6830 {
6831 inf_state->siginfo_gdbarch = gdbarch;
6832 inf_state->siginfo_data = siginfo_data;
6833 }
b89667eb 6834
16c381f0 6835 inf_state->thread_suspend = tp->suspend;
dd80ea3c 6836#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6837 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 6838#endif
16c381f0 6839
35515841 6840 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
6841 GDB_SIGNAL_0 anyway. */
6842 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 6843
b89667eb
DE
6844 inf_state->stop_pc = stop_pc;
6845
1736ad11 6846 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6847
6848 return inf_state;
6849}
6850
6851/* Restore inferior session state to INF_STATE. */
6852
6853void
16c381f0 6854restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6855{
6856 struct thread_info *tp = inferior_thread ();
974a734b 6857#if 0
16c381f0 6858 struct inferior *inf = current_inferior ();
974a734b 6859#endif
1736ad11
JK
6860 struct regcache *regcache = get_current_regcache ();
6861 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6862
16c381f0 6863 tp->suspend = inf_state->thread_suspend;
dd80ea3c 6864#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6865 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 6866#endif
16c381f0 6867
b89667eb
DE
6868 stop_pc = inf_state->stop_pc;
6869
1736ad11
JK
6870 if (inf_state->siginfo_gdbarch == gdbarch)
6871 {
6872 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
6873
6874 /* Errors ignored. */
6875 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 6876 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
6877 }
6878
b89667eb
DE
6879 /* The inferior can be gone if the user types "print exit(0)"
6880 (and perhaps other times). */
6881 if (target_has_execution)
6882 /* NB: The register write goes through to the target. */
1736ad11 6883 regcache_cpy (regcache, inf_state->registers);
803b5f95 6884
16c381f0 6885 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6886}
6887
6888static void
16c381f0 6889do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6890{
16c381f0 6891 restore_infcall_suspend_state (state);
b89667eb
DE
6892}
6893
6894struct cleanup *
16c381f0
JK
6895make_cleanup_restore_infcall_suspend_state
6896 (struct infcall_suspend_state *inf_state)
b89667eb 6897{
16c381f0 6898 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6899}
6900
6901void
16c381f0 6902discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6903{
6904 regcache_xfree (inf_state->registers);
803b5f95 6905 xfree (inf_state->siginfo_data);
b89667eb
DE
6906 xfree (inf_state);
6907}
6908
6909struct regcache *
16c381f0 6910get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6911{
6912 return inf_state->registers;
6913}
6914
16c381f0
JK
6915/* infcall_control_state contains state regarding gdb's control of the
6916 inferior itself like stepping control. It also contains session state like
6917 the user's currently selected frame. */
b89667eb 6918
16c381f0 6919struct infcall_control_state
b89667eb 6920{
16c381f0
JK
6921 struct thread_control_state thread_control;
6922 struct inferior_control_state inferior_control;
d82142e2
JK
6923
6924 /* Other fields: */
6925 enum stop_stack_kind stop_stack_dummy;
6926 int stopped_by_random_signal;
7a292a7a 6927 int stop_after_trap;
7a292a7a 6928
b89667eb 6929 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6930 struct frame_id selected_frame_id;
7a292a7a
SS
6931};
6932
c906108c 6933/* Save all of the information associated with the inferior<==>gdb
b89667eb 6934 connection. */
c906108c 6935
16c381f0
JK
6936struct infcall_control_state *
6937save_infcall_control_state (void)
c906108c 6938{
16c381f0 6939 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6940 struct thread_info *tp = inferior_thread ();
d6b48e9c 6941 struct inferior *inf = current_inferior ();
7a292a7a 6942
16c381f0
JK
6943 inf_status->thread_control = tp->control;
6944 inf_status->inferior_control = inf->control;
d82142e2 6945
8358c15c 6946 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6947 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6948
16c381f0
JK
6949 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6950 chain. If caller's caller is walking the chain, they'll be happier if we
6951 hand them back the original chain when restore_infcall_control_state is
6952 called. */
6953 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6954
6955 /* Other fields: */
6956 inf_status->stop_stack_dummy = stop_stack_dummy;
6957 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6958 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6959
206415a3 6960 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6961
7a292a7a 6962 return inf_status;
c906108c
SS
6963}
6964
c906108c 6965static int
96baa820 6966restore_selected_frame (void *args)
c906108c 6967{
488f131b 6968 struct frame_id *fid = (struct frame_id *) args;
c906108c 6969 struct frame_info *frame;
c906108c 6970
101dcfbe 6971 frame = frame_find_by_id (*fid);
c906108c 6972
aa0cd9c1
AC
6973 /* If inf_status->selected_frame_id is NULL, there was no previously
6974 selected frame. */
101dcfbe 6975 if (frame == NULL)
c906108c 6976 {
8a3fe4f8 6977 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6978 return 0;
6979 }
6980
0f7d239c 6981 select_frame (frame);
c906108c
SS
6982
6983 return (1);
6984}
6985
b89667eb
DE
6986/* Restore inferior session state to INF_STATUS. */
6987
c906108c 6988void
16c381f0 6989restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6990{
4e1c45ea 6991 struct thread_info *tp = inferior_thread ();
d6b48e9c 6992 struct inferior *inf = current_inferior ();
4e1c45ea 6993
8358c15c
JK
6994 if (tp->control.step_resume_breakpoint)
6995 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6996
5b79abe7
TT
6997 if (tp->control.exception_resume_breakpoint)
6998 tp->control.exception_resume_breakpoint->disposition
6999 = disp_del_at_next_stop;
7000
d82142e2 7001 /* Handle the bpstat_copy of the chain. */
16c381f0 7002 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 7003
16c381f0
JK
7004 tp->control = inf_status->thread_control;
7005 inf->control = inf_status->inferior_control;
d82142e2
JK
7006
7007 /* Other fields: */
7008 stop_stack_dummy = inf_status->stop_stack_dummy;
7009 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7010 stop_after_trap = inf_status->stop_after_trap;
c906108c 7011
b89667eb 7012 if (target_has_stack)
c906108c 7013 {
c906108c 7014 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7015 walking the stack might encounter a garbage pointer and
7016 error() trying to dereference it. */
488f131b
JB
7017 if (catch_errors
7018 (restore_selected_frame, &inf_status->selected_frame_id,
7019 "Unable to restore previously selected frame:\n",
7020 RETURN_MASK_ERROR) == 0)
c906108c
SS
7021 /* Error in restoring the selected frame. Select the innermost
7022 frame. */
0f7d239c 7023 select_frame (get_current_frame ());
c906108c 7024 }
c906108c 7025
72cec141 7026 xfree (inf_status);
7a292a7a 7027}
c906108c 7028
74b7792f 7029static void
16c381f0 7030do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7031{
16c381f0 7032 restore_infcall_control_state (sts);
74b7792f
AC
7033}
7034
7035struct cleanup *
16c381f0
JK
7036make_cleanup_restore_infcall_control_state
7037 (struct infcall_control_state *inf_status)
74b7792f 7038{
16c381f0 7039 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7040}
7041
c906108c 7042void
16c381f0 7043discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7044{
8358c15c
JK
7045 if (inf_status->thread_control.step_resume_breakpoint)
7046 inf_status->thread_control.step_resume_breakpoint->disposition
7047 = disp_del_at_next_stop;
7048
5b79abe7
TT
7049 if (inf_status->thread_control.exception_resume_breakpoint)
7050 inf_status->thread_control.exception_resume_breakpoint->disposition
7051 = disp_del_at_next_stop;
7052
1777feb0 7053 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7054 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7055
72cec141 7056 xfree (inf_status);
7a292a7a 7057}
b89667eb 7058\f
0723dbf5
PA
7059int
7060ptid_match (ptid_t ptid, ptid_t filter)
7061{
0723dbf5
PA
7062 if (ptid_equal (filter, minus_one_ptid))
7063 return 1;
7064 if (ptid_is_pid (filter)
7065 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7066 return 1;
7067 else if (ptid_equal (ptid, filter))
7068 return 1;
7069
7070 return 0;
7071}
7072
ca6724c1
KB
7073/* restore_inferior_ptid() will be used by the cleanup machinery
7074 to restore the inferior_ptid value saved in a call to
7075 save_inferior_ptid(). */
ce696e05
KB
7076
7077static void
7078restore_inferior_ptid (void *arg)
7079{
7080 ptid_t *saved_ptid_ptr = arg;
abbb1732 7081
ce696e05
KB
7082 inferior_ptid = *saved_ptid_ptr;
7083 xfree (arg);
7084}
7085
7086/* Save the value of inferior_ptid so that it may be restored by a
7087 later call to do_cleanups(). Returns the struct cleanup pointer
7088 needed for later doing the cleanup. */
7089
7090struct cleanup *
7091save_inferior_ptid (void)
7092{
7093 ptid_t *saved_ptid_ptr;
7094
7095 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7096 *saved_ptid_ptr = inferior_ptid;
7097 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7098}
0c557179
SDJ
7099
7100/* See inferior.h. */
7101
7102void
7103clear_exit_convenience_vars (void)
7104{
7105 clear_internalvar (lookup_internalvar ("_exitsignal"));
7106 clear_internalvar (lookup_internalvar ("_exitcode"));
7107}
c5aa993b 7108\f
488f131b 7109
b2175913
MS
7110/* User interface for reverse debugging:
7111 Set exec-direction / show exec-direction commands
7112 (returns error unless target implements to_set_exec_direction method). */
7113
32231432 7114int execution_direction = EXEC_FORWARD;
b2175913
MS
7115static const char exec_forward[] = "forward";
7116static const char exec_reverse[] = "reverse";
7117static const char *exec_direction = exec_forward;
40478521 7118static const char *const exec_direction_names[] = {
b2175913
MS
7119 exec_forward,
7120 exec_reverse,
7121 NULL
7122};
7123
7124static void
7125set_exec_direction_func (char *args, int from_tty,
7126 struct cmd_list_element *cmd)
7127{
7128 if (target_can_execute_reverse)
7129 {
7130 if (!strcmp (exec_direction, exec_forward))
7131 execution_direction = EXEC_FORWARD;
7132 else if (!strcmp (exec_direction, exec_reverse))
7133 execution_direction = EXEC_REVERSE;
7134 }
8bbed405
MS
7135 else
7136 {
7137 exec_direction = exec_forward;
7138 error (_("Target does not support this operation."));
7139 }
b2175913
MS
7140}
7141
7142static void
7143show_exec_direction_func (struct ui_file *out, int from_tty,
7144 struct cmd_list_element *cmd, const char *value)
7145{
7146 switch (execution_direction) {
7147 case EXEC_FORWARD:
7148 fprintf_filtered (out, _("Forward.\n"));
7149 break;
7150 case EXEC_REVERSE:
7151 fprintf_filtered (out, _("Reverse.\n"));
7152 break;
b2175913 7153 default:
d8b34453
PA
7154 internal_error (__FILE__, __LINE__,
7155 _("bogus execution_direction value: %d"),
7156 (int) execution_direction);
b2175913
MS
7157 }
7158}
7159
d4db2f36
PA
7160static void
7161show_schedule_multiple (struct ui_file *file, int from_tty,
7162 struct cmd_list_element *c, const char *value)
7163{
3e43a32a
MS
7164 fprintf_filtered (file, _("Resuming the execution of threads "
7165 "of all processes is %s.\n"), value);
d4db2f36 7166}
ad52ddc6 7167
22d2b532
SDJ
7168/* Implementation of `siginfo' variable. */
7169
7170static const struct internalvar_funcs siginfo_funcs =
7171{
7172 siginfo_make_value,
7173 NULL,
7174 NULL
7175};
7176
c906108c 7177void
96baa820 7178_initialize_infrun (void)
c906108c 7179{
52f0bd74
AC
7180 int i;
7181 int numsigs;
de0bea00 7182 struct cmd_list_element *c;
c906108c 7183
1bedd215
AC
7184 add_info ("signals", signals_info, _("\
7185What debugger does when program gets various signals.\n\
7186Specify a signal as argument to print info on that signal only."));
c906108c
SS
7187 add_info_alias ("handle", "signals", 0);
7188
de0bea00 7189 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7190Specify how to handle signals.\n\
486c7739 7191Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7192Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7193If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7194will be displayed instead.\n\
7195\n\
c906108c
SS
7196Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7197from 1-15 are allowed for compatibility with old versions of GDB.\n\
7198Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7199The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7200used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7201\n\
1bedd215 7202Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7203\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7204Stop means reenter debugger if this signal happens (implies print).\n\
7205Print means print a message if this signal happens.\n\
7206Pass means let program see this signal; otherwise program doesn't know.\n\
7207Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7208Pass and Stop may be combined.\n\
7209\n\
7210Multiple signals may be specified. Signal numbers and signal names\n\
7211may be interspersed with actions, with the actions being performed for\n\
7212all signals cumulatively specified."));
de0bea00 7213 set_cmd_completer (c, handle_completer);
486c7739 7214
c906108c
SS
7215 if (xdb_commands)
7216 {
1bedd215
AC
7217 add_com ("lz", class_info, signals_info, _("\
7218What debugger does when program gets various signals.\n\
7219Specify a signal as argument to print info on that signal only."));
7220 add_com ("z", class_run, xdb_handle_command, _("\
7221Specify how to handle a signal.\n\
c906108c
SS
7222Args are signals and actions to apply to those signals.\n\
7223Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7224from 1-15 are allowed for compatibility with old versions of GDB.\n\
7225Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7226The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7227used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7228Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7229\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7230nopass), \"Q\" (noprint)\n\
7231Stop means reenter debugger if this signal happens (implies print).\n\
7232Print means print a message if this signal happens.\n\
7233Pass means let program see this signal; otherwise program doesn't know.\n\
7234Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7235Pass and Stop may be combined."));
c906108c
SS
7236 }
7237
7238 if (!dbx_commands)
1a966eab
AC
7239 stop_command = add_cmd ("stop", class_obscure,
7240 not_just_help_class_command, _("\
7241There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7242This allows you to set a list of commands to be run each time execution\n\
1a966eab 7243of the program stops."), &cmdlist);
c906108c 7244
ccce17b0 7245 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7246Set inferior debugging."), _("\
7247Show inferior debugging."), _("\
7248When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7249 NULL,
7250 show_debug_infrun,
7251 &setdebuglist, &showdebuglist);
527159b7 7252
3e43a32a
MS
7253 add_setshow_boolean_cmd ("displaced", class_maintenance,
7254 &debug_displaced, _("\
237fc4c9
PA
7255Set displaced stepping debugging."), _("\
7256Show displaced stepping debugging."), _("\
7257When non-zero, displaced stepping specific debugging is enabled."),
7258 NULL,
7259 show_debug_displaced,
7260 &setdebuglist, &showdebuglist);
7261
ad52ddc6
PA
7262 add_setshow_boolean_cmd ("non-stop", no_class,
7263 &non_stop_1, _("\
7264Set whether gdb controls the inferior in non-stop mode."), _("\
7265Show whether gdb controls the inferior in non-stop mode."), _("\
7266When debugging a multi-threaded program and this setting is\n\
7267off (the default, also called all-stop mode), when one thread stops\n\
7268(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7269all other threads in the program while you interact with the thread of\n\
7270interest. When you continue or step a thread, you can allow the other\n\
7271threads to run, or have them remain stopped, but while you inspect any\n\
7272thread's state, all threads stop.\n\
7273\n\
7274In non-stop mode, when one thread stops, other threads can continue\n\
7275to run freely. You'll be able to step each thread independently,\n\
7276leave it stopped or free to run as needed."),
7277 set_non_stop,
7278 show_non_stop,
7279 &setlist,
7280 &showlist);
7281
a493e3e2 7282 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7283 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7284 signal_print = (unsigned char *)
7285 xmalloc (sizeof (signal_print[0]) * numsigs);
7286 signal_program = (unsigned char *)
7287 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7288 signal_catch = (unsigned char *)
7289 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d
UW
7290 signal_pass = (unsigned char *)
7291 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7292 for (i = 0; i < numsigs; i++)
7293 {
7294 signal_stop[i] = 1;
7295 signal_print[i] = 1;
7296 signal_program[i] = 1;
ab04a2af 7297 signal_catch[i] = 0;
c906108c
SS
7298 }
7299
7300 /* Signals caused by debugger's own actions
7301 should not be given to the program afterwards. */
a493e3e2
PA
7302 signal_program[GDB_SIGNAL_TRAP] = 0;
7303 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7304
7305 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7306 signal_stop[GDB_SIGNAL_ALRM] = 0;
7307 signal_print[GDB_SIGNAL_ALRM] = 0;
7308 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7309 signal_print[GDB_SIGNAL_VTALRM] = 0;
7310 signal_stop[GDB_SIGNAL_PROF] = 0;
7311 signal_print[GDB_SIGNAL_PROF] = 0;
7312 signal_stop[GDB_SIGNAL_CHLD] = 0;
7313 signal_print[GDB_SIGNAL_CHLD] = 0;
7314 signal_stop[GDB_SIGNAL_IO] = 0;
7315 signal_print[GDB_SIGNAL_IO] = 0;
7316 signal_stop[GDB_SIGNAL_POLL] = 0;
7317 signal_print[GDB_SIGNAL_POLL] = 0;
7318 signal_stop[GDB_SIGNAL_URG] = 0;
7319 signal_print[GDB_SIGNAL_URG] = 0;
7320 signal_stop[GDB_SIGNAL_WINCH] = 0;
7321 signal_print[GDB_SIGNAL_WINCH] = 0;
7322 signal_stop[GDB_SIGNAL_PRIO] = 0;
7323 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7324
cd0fc7c3
SS
7325 /* These signals are used internally by user-level thread
7326 implementations. (See signal(5) on Solaris.) Like the above
7327 signals, a healthy program receives and handles them as part of
7328 its normal operation. */
a493e3e2
PA
7329 signal_stop[GDB_SIGNAL_LWP] = 0;
7330 signal_print[GDB_SIGNAL_LWP] = 0;
7331 signal_stop[GDB_SIGNAL_WAITING] = 0;
7332 signal_print[GDB_SIGNAL_WAITING] = 0;
7333 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7334 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7335
2455069d
UW
7336 /* Update cached state. */
7337 signal_cache_update (-1);
7338
85c07804
AC
7339 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7340 &stop_on_solib_events, _("\
7341Set stopping for shared library events."), _("\
7342Show stopping for shared library events."), _("\
c906108c
SS
7343If nonzero, gdb will give control to the user when the dynamic linker\n\
7344notifies gdb of shared library events. The most common event of interest\n\
85c07804 7345to the user would be loading/unloading of a new library."),
f9e14852 7346 set_stop_on_solib_events,
920d2a44 7347 show_stop_on_solib_events,
85c07804 7348 &setlist, &showlist);
c906108c 7349
7ab04401
AC
7350 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7351 follow_fork_mode_kind_names,
7352 &follow_fork_mode_string, _("\
7353Set debugger response to a program call of fork or vfork."), _("\
7354Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7355A fork or vfork creates a new process. follow-fork-mode can be:\n\
7356 parent - the original process is debugged after a fork\n\
7357 child - the new process is debugged after a fork\n\
ea1dd7bc 7358The unfollowed process will continue to run.\n\
7ab04401
AC
7359By default, the debugger will follow the parent process."),
7360 NULL,
920d2a44 7361 show_follow_fork_mode_string,
7ab04401
AC
7362 &setlist, &showlist);
7363
6c95b8df
PA
7364 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7365 follow_exec_mode_names,
7366 &follow_exec_mode_string, _("\
7367Set debugger response to a program call of exec."), _("\
7368Show debugger response to a program call of exec."), _("\
7369An exec call replaces the program image of a process.\n\
7370\n\
7371follow-exec-mode can be:\n\
7372\n\
cce7e648 7373 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7374to this new inferior. The program the process was running before\n\
7375the exec call can be restarted afterwards by restarting the original\n\
7376inferior.\n\
7377\n\
7378 same - the debugger keeps the process bound to the same inferior.\n\
7379The new executable image replaces the previous executable loaded in\n\
7380the inferior. Restarting the inferior after the exec call restarts\n\
7381the executable the process was running after the exec call.\n\
7382\n\
7383By default, the debugger will use the same inferior."),
7384 NULL,
7385 show_follow_exec_mode_string,
7386 &setlist, &showlist);
7387
7ab04401
AC
7388 add_setshow_enum_cmd ("scheduler-locking", class_run,
7389 scheduler_enums, &scheduler_mode, _("\
7390Set mode for locking scheduler during execution."), _("\
7391Show mode for locking scheduler during execution."), _("\
c906108c
SS
7392off == no locking (threads may preempt at any time)\n\
7393on == full locking (no thread except the current thread may run)\n\
7394step == scheduler locked during every single-step operation.\n\
7395 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7396 Other threads may run while stepping over a function call ('next')."),
7397 set_schedlock_func, /* traps on target vector */
920d2a44 7398 show_scheduler_mode,
7ab04401 7399 &setlist, &showlist);
5fbbeb29 7400
d4db2f36
PA
7401 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7402Set mode for resuming threads of all processes."), _("\
7403Show mode for resuming threads of all processes."), _("\
7404When on, execution commands (such as 'continue' or 'next') resume all\n\
7405threads of all processes. When off (which is the default), execution\n\
7406commands only resume the threads of the current process. The set of\n\
7407threads that are resumed is further refined by the scheduler-locking\n\
7408mode (see help set scheduler-locking)."),
7409 NULL,
7410 show_schedule_multiple,
7411 &setlist, &showlist);
7412
5bf193a2
AC
7413 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7414Set mode of the step operation."), _("\
7415Show mode of the step operation."), _("\
7416When set, doing a step over a function without debug line information\n\
7417will stop at the first instruction of that function. Otherwise, the\n\
7418function is skipped and the step command stops at a different source line."),
7419 NULL,
920d2a44 7420 show_step_stop_if_no_debug,
5bf193a2 7421 &setlist, &showlist);
ca6724c1 7422
72d0e2c5
YQ
7423 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7424 &can_use_displaced_stepping, _("\
237fc4c9
PA
7425Set debugger's willingness to use displaced stepping."), _("\
7426Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7427If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7428supported by the target architecture. If off, gdb will not use displaced\n\
7429stepping to step over breakpoints, even if such is supported by the target\n\
7430architecture. If auto (which is the default), gdb will use displaced stepping\n\
7431if the target architecture supports it and non-stop mode is active, but will not\n\
7432use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7433 NULL,
7434 show_can_use_displaced_stepping,
7435 &setlist, &showlist);
237fc4c9 7436
b2175913
MS
7437 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7438 &exec_direction, _("Set direction of execution.\n\
7439Options are 'forward' or 'reverse'."),
7440 _("Show direction of execution (forward/reverse)."),
7441 _("Tells gdb whether to execute forward or backward."),
7442 set_exec_direction_func, show_exec_direction_func,
7443 &setlist, &showlist);
7444
6c95b8df
PA
7445 /* Set/show detach-on-fork: user-settable mode. */
7446
7447 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7448Set whether gdb will detach the child of a fork."), _("\
7449Show whether gdb will detach the child of a fork."), _("\
7450Tells gdb whether to detach the child of a fork."),
7451 NULL, NULL, &setlist, &showlist);
7452
03583c20
UW
7453 /* Set/show disable address space randomization mode. */
7454
7455 add_setshow_boolean_cmd ("disable-randomization", class_support,
7456 &disable_randomization, _("\
7457Set disabling of debuggee's virtual address space randomization."), _("\
7458Show disabling of debuggee's virtual address space randomization."), _("\
7459When this mode is on (which is the default), randomization of the virtual\n\
7460address space is disabled. Standalone programs run with the randomization\n\
7461enabled by default on some platforms."),
7462 &set_disable_randomization,
7463 &show_disable_randomization,
7464 &setlist, &showlist);
7465
ca6724c1 7466 /* ptid initializations */
ca6724c1
KB
7467 inferior_ptid = null_ptid;
7468 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7469
7470 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7471 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7472 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7473 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7474
7475 /* Explicitly create without lookup, since that tries to create a
7476 value with a void typed value, and when we get here, gdbarch
7477 isn't initialized yet. At this point, we're quite sure there
7478 isn't another convenience variable of the same name. */
22d2b532 7479 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7480
7481 add_setshow_boolean_cmd ("observer", no_class,
7482 &observer_mode_1, _("\
7483Set whether gdb controls the inferior in observer mode."), _("\
7484Show whether gdb controls the inferior in observer mode."), _("\
7485In observer mode, GDB can get data from the inferior, but not\n\
7486affect its execution. Registers and memory may not be changed,\n\
7487breakpoints may not be set, and the program cannot be interrupted\n\
7488or signalled."),
7489 set_observer_mode,
7490 show_observer_mode,
7491 &setlist,
7492 &showlist);
c906108c 7493}
This page took 1.779932 seconds and 4 git commands to generate.