Work around GCC 6.3.1 bug
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
61baf725 4 Copyright (C) 1986-2017 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
11db9430 73static void info_signals_command (char *, int);
c906108c 74
96baa820 75static void handle_command (char *, int);
c906108c 76
2ea28649 77static void sig_print_info (enum gdb_signal);
c906108c 78
96baa820 79static void sig_print_header (void);
c906108c 80
74b7792f 81static void resume_cleanups (void *);
c906108c 82
4ef3f3be 83static int follow_fork (void);
96baa820 84
d83ad864
DB
85static int follow_fork_inferior (int follow_child, int detach_fork);
86
87static void follow_inferior_reset_breakpoints (void);
88
96baa820 89static void set_schedlock_func (char *args, int from_tty,
488f131b 90 struct cmd_list_element *c);
96baa820 91
a289b8f6
JK
92static int currently_stepping (struct thread_info *tp);
93
e58b0e63
PA
94void nullify_last_target_wait_ptid (void);
95
2c03e5be 96static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
97
98static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
99
2484c66b
UW
100static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
101
8550d3b3
YQ
102static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
103
372316f1
PA
104/* Asynchronous signal handler registered as event loop source for
105 when we have pending events ready to be passed to the core. */
106static struct async_event_handler *infrun_async_inferior_event_token;
107
108/* Stores whether infrun_async was previously enabled or disabled.
109 Starts off as -1, indicating "never enabled/disabled". */
110static int infrun_is_async = -1;
111
112/* See infrun.h. */
113
114void
115infrun_async (int enable)
116{
117 if (infrun_is_async != enable)
118 {
119 infrun_is_async = enable;
120
121 if (debug_infrun)
122 fprintf_unfiltered (gdb_stdlog,
123 "infrun: infrun_async(%d)\n",
124 enable);
125
126 if (enable)
127 mark_async_event_handler (infrun_async_inferior_event_token);
128 else
129 clear_async_event_handler (infrun_async_inferior_event_token);
130 }
131}
132
0b333c5e
PA
133/* See infrun.h. */
134
135void
136mark_infrun_async_event_handler (void)
137{
138 mark_async_event_handler (infrun_async_inferior_event_token);
139}
140
5fbbeb29
CF
141/* When set, stop the 'step' command if we enter a function which has
142 no line number information. The normal behavior is that we step
143 over such function. */
144int step_stop_if_no_debug = 0;
920d2a44
AC
145static void
146show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148{
149 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
150}
5fbbeb29 151
b9f437de
PA
152/* proceed and normal_stop use this to notify the user when the
153 inferior stopped in a different thread than it had been running
154 in. */
96baa820 155
39f77062 156static ptid_t previous_inferior_ptid;
7a292a7a 157
07107ca6
LM
158/* If set (default for legacy reasons), when following a fork, GDB
159 will detach from one of the fork branches, child or parent.
160 Exactly which branch is detached depends on 'set follow-fork-mode'
161 setting. */
162
163static int detach_fork = 1;
6c95b8df 164
237fc4c9
PA
165int debug_displaced = 0;
166static void
167show_debug_displaced (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169{
170 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
171}
172
ccce17b0 173unsigned int debug_infrun = 0;
920d2a44
AC
174static void
175show_debug_infrun (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177{
178 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
179}
527159b7 180
03583c20
UW
181
182/* Support for disabling address space randomization. */
183
184int disable_randomization = 1;
185
186static void
187show_disable_randomization (struct ui_file *file, int from_tty,
188 struct cmd_list_element *c, const char *value)
189{
190 if (target_supports_disable_randomization ())
191 fprintf_filtered (file,
192 _("Disabling randomization of debuggee's "
193 "virtual address space is %s.\n"),
194 value);
195 else
196 fputs_filtered (_("Disabling randomization of debuggee's "
197 "virtual address space is unsupported on\n"
198 "this platform.\n"), file);
199}
200
201static void
202set_disable_randomization (char *args, int from_tty,
203 struct cmd_list_element *c)
204{
205 if (!target_supports_disable_randomization ())
206 error (_("Disabling randomization of debuggee's "
207 "virtual address space is unsupported on\n"
208 "this platform."));
209}
210
d32dc48e
PA
211/* User interface for non-stop mode. */
212
213int non_stop = 0;
214static int non_stop_1 = 0;
215
216static void
217set_non_stop (char *args, int from_tty,
218 struct cmd_list_element *c)
219{
220 if (target_has_execution)
221 {
222 non_stop_1 = non_stop;
223 error (_("Cannot change this setting while the inferior is running."));
224 }
225
226 non_stop = non_stop_1;
227}
228
229static void
230show_non_stop (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232{
233 fprintf_filtered (file,
234 _("Controlling the inferior in non-stop mode is %s.\n"),
235 value);
236}
237
d914c394
SS
238/* "Observer mode" is somewhat like a more extreme version of
239 non-stop, in which all GDB operations that might affect the
240 target's execution have been disabled. */
241
d914c394
SS
242int observer_mode = 0;
243static int observer_mode_1 = 0;
244
245static void
246set_observer_mode (char *args, int from_tty,
247 struct cmd_list_element *c)
248{
d914c394
SS
249 if (target_has_execution)
250 {
251 observer_mode_1 = observer_mode;
252 error (_("Cannot change this setting while the inferior is running."));
253 }
254
255 observer_mode = observer_mode_1;
256
257 may_write_registers = !observer_mode;
258 may_write_memory = !observer_mode;
259 may_insert_breakpoints = !observer_mode;
260 may_insert_tracepoints = !observer_mode;
261 /* We can insert fast tracepoints in or out of observer mode,
262 but enable them if we're going into this mode. */
263 if (observer_mode)
264 may_insert_fast_tracepoints = 1;
265 may_stop = !observer_mode;
266 update_target_permissions ();
267
268 /* Going *into* observer mode we must force non-stop, then
269 going out we leave it that way. */
270 if (observer_mode)
271 {
d914c394
SS
272 pagination_enabled = 0;
273 non_stop = non_stop_1 = 1;
274 }
275
276 if (from_tty)
277 printf_filtered (_("Observer mode is now %s.\n"),
278 (observer_mode ? "on" : "off"));
279}
280
281static void
282show_observer_mode (struct ui_file *file, int from_tty,
283 struct cmd_list_element *c, const char *value)
284{
285 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
286}
287
288/* This updates the value of observer mode based on changes in
289 permissions. Note that we are deliberately ignoring the values of
290 may-write-registers and may-write-memory, since the user may have
291 reason to enable these during a session, for instance to turn on a
292 debugging-related global. */
293
294void
295update_observer_mode (void)
296{
297 int newval;
298
299 newval = (!may_insert_breakpoints
300 && !may_insert_tracepoints
301 && may_insert_fast_tracepoints
302 && !may_stop
303 && non_stop);
304
305 /* Let the user know if things change. */
306 if (newval != observer_mode)
307 printf_filtered (_("Observer mode is now %s.\n"),
308 (newval ? "on" : "off"));
309
310 observer_mode = observer_mode_1 = newval;
311}
c2c6d25f 312
c906108c
SS
313/* Tables of how to react to signals; the user sets them. */
314
315static unsigned char *signal_stop;
316static unsigned char *signal_print;
317static unsigned char *signal_program;
318
ab04a2af
TT
319/* Table of signals that are registered with "catch signal". A
320 non-zero entry indicates that the signal is caught by some "catch
321 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
322 signals. */
323static unsigned char *signal_catch;
324
2455069d
UW
325/* Table of signals that the target may silently handle.
326 This is automatically determined from the flags above,
327 and simply cached here. */
328static unsigned char *signal_pass;
329
c906108c
SS
330#define SET_SIGS(nsigs,sigs,flags) \
331 do { \
332 int signum = (nsigs); \
333 while (signum-- > 0) \
334 if ((sigs)[signum]) \
335 (flags)[signum] = 1; \
336 } while (0)
337
338#define UNSET_SIGS(nsigs,sigs,flags) \
339 do { \
340 int signum = (nsigs); \
341 while (signum-- > 0) \
342 if ((sigs)[signum]) \
343 (flags)[signum] = 0; \
344 } while (0)
345
9b224c5e
PA
346/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
347 this function is to avoid exporting `signal_program'. */
348
349void
350update_signals_program_target (void)
351{
a493e3e2 352 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
353}
354
1777feb0 355/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 356
edb3359d 357#define RESUME_ALL minus_one_ptid
c906108c
SS
358
359/* Command list pointer for the "stop" placeholder. */
360
361static struct cmd_list_element *stop_command;
362
c906108c
SS
363/* Nonzero if we want to give control to the user when we're notified
364 of shared library events by the dynamic linker. */
628fe4e4 365int stop_on_solib_events;
f9e14852
GB
366
367/* Enable or disable optional shared library event breakpoints
368 as appropriate when the above flag is changed. */
369
370static void
371set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
372{
373 update_solib_breakpoints ();
374}
375
920d2a44
AC
376static void
377show_stop_on_solib_events (struct ui_file *file, int from_tty,
378 struct cmd_list_element *c, const char *value)
379{
380 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
381 value);
382}
c906108c 383
c906108c
SS
384/* Nonzero after stop if current stack frame should be printed. */
385
386static int stop_print_frame;
387
e02bc4cc 388/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
389 returned by target_wait()/deprecated_target_wait_hook(). This
390 information is returned by get_last_target_status(). */
39f77062 391static ptid_t target_last_wait_ptid;
e02bc4cc
DS
392static struct target_waitstatus target_last_waitstatus;
393
0d1e5fa7
PA
394static void context_switch (ptid_t ptid);
395
4e1c45ea 396void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 397
53904c9e
AC
398static const char follow_fork_mode_child[] = "child";
399static const char follow_fork_mode_parent[] = "parent";
400
40478521 401static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
402 follow_fork_mode_child,
403 follow_fork_mode_parent,
404 NULL
ef346e04 405};
c906108c 406
53904c9e 407static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
408static void
409show_follow_fork_mode_string (struct ui_file *file, int from_tty,
410 struct cmd_list_element *c, const char *value)
411{
3e43a32a
MS
412 fprintf_filtered (file,
413 _("Debugger response to a program "
414 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
415 value);
416}
c906108c
SS
417\f
418
d83ad864
DB
419/* Handle changes to the inferior list based on the type of fork,
420 which process is being followed, and whether the other process
421 should be detached. On entry inferior_ptid must be the ptid of
422 the fork parent. At return inferior_ptid is the ptid of the
423 followed inferior. */
424
425static int
426follow_fork_inferior (int follow_child, int detach_fork)
427{
428 int has_vforked;
79639e11 429 ptid_t parent_ptid, child_ptid;
d83ad864
DB
430
431 has_vforked = (inferior_thread ()->pending_follow.kind
432 == TARGET_WAITKIND_VFORKED);
79639e11
PA
433 parent_ptid = inferior_ptid;
434 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
435
436 if (has_vforked
437 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 438 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
439 && !(follow_child || detach_fork || sched_multi))
440 {
441 /* The parent stays blocked inside the vfork syscall until the
442 child execs or exits. If we don't let the child run, then
443 the parent stays blocked. If we're telling the parent to run
444 in the foreground, the user will not be able to ctrl-c to get
445 back the terminal, effectively hanging the debug session. */
446 fprintf_filtered (gdb_stderr, _("\
447Can not resume the parent process over vfork in the foreground while\n\
448holding the child stopped. Try \"set detach-on-fork\" or \
449\"set schedule-multiple\".\n"));
450 /* FIXME output string > 80 columns. */
451 return 1;
452 }
453
454 if (!follow_child)
455 {
456 /* Detach new forked process? */
457 if (detach_fork)
458 {
d83ad864
DB
459 /* Before detaching from the child, remove all breakpoints
460 from it. If we forked, then this has already been taken
461 care of by infrun.c. If we vforked however, any
462 breakpoint inserted in the parent is visible in the
463 child, even those added while stopped in a vfork
464 catchpoint. This will remove the breakpoints from the
465 parent also, but they'll be reinserted below. */
466 if (has_vforked)
467 {
468 /* Keep breakpoints list in sync. */
469 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
470 }
471
472 if (info_verbose || debug_infrun)
473 {
8dd06f7a
DB
474 /* Ensure that we have a process ptid. */
475 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
476
223ffa71 477 target_terminal::ours_for_output ();
d83ad864 478 fprintf_filtered (gdb_stdlog,
79639e11 479 _("Detaching after %s from child %s.\n"),
6f259a23 480 has_vforked ? "vfork" : "fork",
8dd06f7a 481 target_pid_to_str (process_ptid));
d83ad864
DB
482 }
483 }
484 else
485 {
486 struct inferior *parent_inf, *child_inf;
d83ad864
DB
487
488 /* Add process to GDB's tables. */
79639e11 489 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
490
491 parent_inf = current_inferior ();
492 child_inf->attach_flag = parent_inf->attach_flag;
493 copy_terminal_info (child_inf, parent_inf);
494 child_inf->gdbarch = parent_inf->gdbarch;
495 copy_inferior_target_desc_info (child_inf, parent_inf);
496
5ed8105e 497 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 498
79639e11 499 inferior_ptid = child_ptid;
d83ad864 500 add_thread (inferior_ptid);
2a00d7ce 501 set_current_inferior (child_inf);
d83ad864
DB
502 child_inf->symfile_flags = SYMFILE_NO_READ;
503
504 /* If this is a vfork child, then the address-space is
505 shared with the parent. */
506 if (has_vforked)
507 {
508 child_inf->pspace = parent_inf->pspace;
509 child_inf->aspace = parent_inf->aspace;
510
511 /* The parent will be frozen until the child is done
512 with the shared region. Keep track of the
513 parent. */
514 child_inf->vfork_parent = parent_inf;
515 child_inf->pending_detach = 0;
516 parent_inf->vfork_child = child_inf;
517 parent_inf->pending_detach = 0;
518 }
519 else
520 {
521 child_inf->aspace = new_address_space ();
522 child_inf->pspace = add_program_space (child_inf->aspace);
523 child_inf->removable = 1;
524 set_current_program_space (child_inf->pspace);
525 clone_program_space (child_inf->pspace, parent_inf->pspace);
526
527 /* Let the shared library layer (e.g., solib-svr4) learn
528 about this new process, relocate the cloned exec, pull
529 in shared libraries, and install the solib event
530 breakpoint. If a "cloned-VM" event was propagated
531 better throughout the core, this wouldn't be
532 required. */
533 solib_create_inferior_hook (0);
534 }
d83ad864
DB
535 }
536
537 if (has_vforked)
538 {
539 struct inferior *parent_inf;
540
541 parent_inf = current_inferior ();
542
543 /* If we detached from the child, then we have to be careful
544 to not insert breakpoints in the parent until the child
545 is done with the shared memory region. However, if we're
546 staying attached to the child, then we can and should
547 insert breakpoints, so that we can debug it. A
548 subsequent child exec or exit is enough to know when does
549 the child stops using the parent's address space. */
550 parent_inf->waiting_for_vfork_done = detach_fork;
551 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
552 }
553 }
554 else
555 {
556 /* Follow the child. */
557 struct inferior *parent_inf, *child_inf;
558 struct program_space *parent_pspace;
559
560 if (info_verbose || debug_infrun)
561 {
223ffa71 562 target_terminal::ours_for_output ();
6f259a23 563 fprintf_filtered (gdb_stdlog,
79639e11
PA
564 _("Attaching after %s %s to child %s.\n"),
565 target_pid_to_str (parent_ptid),
6f259a23 566 has_vforked ? "vfork" : "fork",
79639e11 567 target_pid_to_str (child_ptid));
d83ad864
DB
568 }
569
570 /* Add the new inferior first, so that the target_detach below
571 doesn't unpush the target. */
572
79639e11 573 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
574
575 parent_inf = current_inferior ();
576 child_inf->attach_flag = parent_inf->attach_flag;
577 copy_terminal_info (child_inf, parent_inf);
578 child_inf->gdbarch = parent_inf->gdbarch;
579 copy_inferior_target_desc_info (child_inf, parent_inf);
580
581 parent_pspace = parent_inf->pspace;
582
583 /* If we're vforking, we want to hold on to the parent until the
584 child exits or execs. At child exec or exit time we can
585 remove the old breakpoints from the parent and detach or
586 resume debugging it. Otherwise, detach the parent now; we'll
587 want to reuse it's program/address spaces, but we can't set
588 them to the child before removing breakpoints from the
589 parent, otherwise, the breakpoints module could decide to
590 remove breakpoints from the wrong process (since they'd be
591 assigned to the same address space). */
592
593 if (has_vforked)
594 {
595 gdb_assert (child_inf->vfork_parent == NULL);
596 gdb_assert (parent_inf->vfork_child == NULL);
597 child_inf->vfork_parent = parent_inf;
598 child_inf->pending_detach = 0;
599 parent_inf->vfork_child = child_inf;
600 parent_inf->pending_detach = detach_fork;
601 parent_inf->waiting_for_vfork_done = 0;
602 }
603 else if (detach_fork)
6f259a23
DB
604 {
605 if (info_verbose || debug_infrun)
606 {
8dd06f7a
DB
607 /* Ensure that we have a process ptid. */
608 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
609
223ffa71 610 target_terminal::ours_for_output ();
6f259a23
DB
611 fprintf_filtered (gdb_stdlog,
612 _("Detaching after fork from "
79639e11 613 "child %s.\n"),
8dd06f7a 614 target_pid_to_str (process_ptid));
6f259a23
DB
615 }
616
617 target_detach (NULL, 0);
618 }
d83ad864
DB
619
620 /* Note that the detach above makes PARENT_INF dangling. */
621
622 /* Add the child thread to the appropriate lists, and switch to
623 this new thread, before cloning the program space, and
624 informing the solib layer about this new process. */
625
79639e11 626 inferior_ptid = child_ptid;
d83ad864 627 add_thread (inferior_ptid);
2a00d7ce 628 set_current_inferior (child_inf);
d83ad864
DB
629
630 /* If this is a vfork child, then the address-space is shared
631 with the parent. If we detached from the parent, then we can
632 reuse the parent's program/address spaces. */
633 if (has_vforked || detach_fork)
634 {
635 child_inf->pspace = parent_pspace;
636 child_inf->aspace = child_inf->pspace->aspace;
637 }
638 else
639 {
640 child_inf->aspace = new_address_space ();
641 child_inf->pspace = add_program_space (child_inf->aspace);
642 child_inf->removable = 1;
643 child_inf->symfile_flags = SYMFILE_NO_READ;
644 set_current_program_space (child_inf->pspace);
645 clone_program_space (child_inf->pspace, parent_pspace);
646
647 /* Let the shared library layer (e.g., solib-svr4) learn
648 about this new process, relocate the cloned exec, pull in
649 shared libraries, and install the solib event breakpoint.
650 If a "cloned-VM" event was propagated better throughout
651 the core, this wouldn't be required. */
652 solib_create_inferior_hook (0);
653 }
654 }
655
656 return target_follow_fork (follow_child, detach_fork);
657}
658
e58b0e63
PA
659/* Tell the target to follow the fork we're stopped at. Returns true
660 if the inferior should be resumed; false, if the target for some
661 reason decided it's best not to resume. */
662
6604731b 663static int
4ef3f3be 664follow_fork (void)
c906108c 665{
ea1dd7bc 666 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
667 int should_resume = 1;
668 struct thread_info *tp;
669
670 /* Copy user stepping state to the new inferior thread. FIXME: the
671 followed fork child thread should have a copy of most of the
4e3990f4
DE
672 parent thread structure's run control related fields, not just these.
673 Initialized to avoid "may be used uninitialized" warnings from gcc. */
674 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 675 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
676 CORE_ADDR step_range_start = 0;
677 CORE_ADDR step_range_end = 0;
678 struct frame_id step_frame_id = { 0 };
8980e177 679 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
680
681 if (!non_stop)
682 {
683 ptid_t wait_ptid;
684 struct target_waitstatus wait_status;
685
686 /* Get the last target status returned by target_wait(). */
687 get_last_target_status (&wait_ptid, &wait_status);
688
689 /* If not stopped at a fork event, then there's nothing else to
690 do. */
691 if (wait_status.kind != TARGET_WAITKIND_FORKED
692 && wait_status.kind != TARGET_WAITKIND_VFORKED)
693 return 1;
694
695 /* Check if we switched over from WAIT_PTID, since the event was
696 reported. */
697 if (!ptid_equal (wait_ptid, minus_one_ptid)
698 && !ptid_equal (inferior_ptid, wait_ptid))
699 {
700 /* We did. Switch back to WAIT_PTID thread, to tell the
701 target to follow it (in either direction). We'll
702 afterwards refuse to resume, and inform the user what
703 happened. */
704 switch_to_thread (wait_ptid);
705 should_resume = 0;
706 }
707 }
708
709 tp = inferior_thread ();
710
711 /* If there were any forks/vforks that were caught and are now to be
712 followed, then do so now. */
713 switch (tp->pending_follow.kind)
714 {
715 case TARGET_WAITKIND_FORKED:
716 case TARGET_WAITKIND_VFORKED:
717 {
718 ptid_t parent, child;
719
720 /* If the user did a next/step, etc, over a fork call,
721 preserve the stepping state in the fork child. */
722 if (follow_child && should_resume)
723 {
8358c15c
JK
724 step_resume_breakpoint = clone_momentary_breakpoint
725 (tp->control.step_resume_breakpoint);
16c381f0
JK
726 step_range_start = tp->control.step_range_start;
727 step_range_end = tp->control.step_range_end;
728 step_frame_id = tp->control.step_frame_id;
186c406b
TT
729 exception_resume_breakpoint
730 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 731 thread_fsm = tp->thread_fsm;
e58b0e63
PA
732
733 /* For now, delete the parent's sr breakpoint, otherwise,
734 parent/child sr breakpoints are considered duplicates,
735 and the child version will not be installed. Remove
736 this when the breakpoints module becomes aware of
737 inferiors and address spaces. */
738 delete_step_resume_breakpoint (tp);
16c381f0
JK
739 tp->control.step_range_start = 0;
740 tp->control.step_range_end = 0;
741 tp->control.step_frame_id = null_frame_id;
186c406b 742 delete_exception_resume_breakpoint (tp);
8980e177 743 tp->thread_fsm = NULL;
e58b0e63
PA
744 }
745
746 parent = inferior_ptid;
747 child = tp->pending_follow.value.related_pid;
748
d83ad864
DB
749 /* Set up inferior(s) as specified by the caller, and tell the
750 target to do whatever is necessary to follow either parent
751 or child. */
752 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
753 {
754 /* Target refused to follow, or there's some other reason
755 we shouldn't resume. */
756 should_resume = 0;
757 }
758 else
759 {
760 /* This pending follow fork event is now handled, one way
761 or another. The previous selected thread may be gone
762 from the lists by now, but if it is still around, need
763 to clear the pending follow request. */
e09875d4 764 tp = find_thread_ptid (parent);
e58b0e63
PA
765 if (tp)
766 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
767
768 /* This makes sure we don't try to apply the "Switched
769 over from WAIT_PID" logic above. */
770 nullify_last_target_wait_ptid ();
771
1777feb0 772 /* If we followed the child, switch to it... */
e58b0e63
PA
773 if (follow_child)
774 {
775 switch_to_thread (child);
776
777 /* ... and preserve the stepping state, in case the
778 user was stepping over the fork call. */
779 if (should_resume)
780 {
781 tp = inferior_thread ();
8358c15c
JK
782 tp->control.step_resume_breakpoint
783 = step_resume_breakpoint;
16c381f0
JK
784 tp->control.step_range_start = step_range_start;
785 tp->control.step_range_end = step_range_end;
786 tp->control.step_frame_id = step_frame_id;
186c406b
TT
787 tp->control.exception_resume_breakpoint
788 = exception_resume_breakpoint;
8980e177 789 tp->thread_fsm = thread_fsm;
e58b0e63
PA
790 }
791 else
792 {
793 /* If we get here, it was because we're trying to
794 resume from a fork catchpoint, but, the user
795 has switched threads away from the thread that
796 forked. In that case, the resume command
797 issued is most likely not applicable to the
798 child, so just warn, and refuse to resume. */
3e43a32a 799 warning (_("Not resuming: switched threads "
fd7dcb94 800 "before following fork child."));
e58b0e63
PA
801 }
802
803 /* Reset breakpoints in the child as appropriate. */
804 follow_inferior_reset_breakpoints ();
805 }
806 else
807 switch_to_thread (parent);
808 }
809 }
810 break;
811 case TARGET_WAITKIND_SPURIOUS:
812 /* Nothing to follow. */
813 break;
814 default:
815 internal_error (__FILE__, __LINE__,
816 "Unexpected pending_follow.kind %d\n",
817 tp->pending_follow.kind);
818 break;
819 }
c906108c 820
e58b0e63 821 return should_resume;
c906108c
SS
822}
823
d83ad864 824static void
6604731b 825follow_inferior_reset_breakpoints (void)
c906108c 826{
4e1c45ea
PA
827 struct thread_info *tp = inferior_thread ();
828
6604731b
DJ
829 /* Was there a step_resume breakpoint? (There was if the user
830 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
831 thread number. Cloned step_resume breakpoints are disabled on
832 creation, so enable it here now that it is associated with the
833 correct thread.
6604731b
DJ
834
835 step_resumes are a form of bp that are made to be per-thread.
836 Since we created the step_resume bp when the parent process
837 was being debugged, and now are switching to the child process,
838 from the breakpoint package's viewpoint, that's a switch of
839 "threads". We must update the bp's notion of which thread
840 it is for, or it'll be ignored when it triggers. */
841
8358c15c 842 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
843 {
844 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
845 tp->control.step_resume_breakpoint->loc->enabled = 1;
846 }
6604731b 847
a1aa2221 848 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 849 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
850 {
851 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
852 tp->control.exception_resume_breakpoint->loc->enabled = 1;
853 }
186c406b 854
6604731b
DJ
855 /* Reinsert all breakpoints in the child. The user may have set
856 breakpoints after catching the fork, in which case those
857 were never set in the child, but only in the parent. This makes
858 sure the inserted breakpoints match the breakpoint list. */
859
860 breakpoint_re_set ();
861 insert_breakpoints ();
c906108c 862}
c906108c 863
6c95b8df
PA
864/* The child has exited or execed: resume threads of the parent the
865 user wanted to be executing. */
866
867static int
868proceed_after_vfork_done (struct thread_info *thread,
869 void *arg)
870{
871 int pid = * (int *) arg;
872
873 if (ptid_get_pid (thread->ptid) == pid
874 && is_running (thread->ptid)
875 && !is_executing (thread->ptid)
876 && !thread->stop_requested
a493e3e2 877 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
878 {
879 if (debug_infrun)
880 fprintf_unfiltered (gdb_stdlog,
881 "infrun: resuming vfork parent thread %s\n",
882 target_pid_to_str (thread->ptid));
883
884 switch_to_thread (thread->ptid);
70509625 885 clear_proceed_status (0);
64ce06e4 886 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
887 }
888
889 return 0;
890}
891
5ed8105e
PA
892/* Save/restore inferior_ptid, current program space and current
893 inferior. Only use this if the current context points at an exited
894 inferior (and therefore there's no current thread to save). */
895class scoped_restore_exited_inferior
896{
897public:
898 scoped_restore_exited_inferior ()
899 : m_saved_ptid (&inferior_ptid)
900 {}
901
902private:
903 scoped_restore_tmpl<ptid_t> m_saved_ptid;
904 scoped_restore_current_program_space m_pspace;
905 scoped_restore_current_inferior m_inferior;
906};
907
6c95b8df
PA
908/* Called whenever we notice an exec or exit event, to handle
909 detaching or resuming a vfork parent. */
910
911static void
912handle_vfork_child_exec_or_exit (int exec)
913{
914 struct inferior *inf = current_inferior ();
915
916 if (inf->vfork_parent)
917 {
918 int resume_parent = -1;
919
920 /* This exec or exit marks the end of the shared memory region
921 between the parent and the child. If the user wanted to
922 detach from the parent, now is the time. */
923
924 if (inf->vfork_parent->pending_detach)
925 {
926 struct thread_info *tp;
6c95b8df
PA
927 struct program_space *pspace;
928 struct address_space *aspace;
929
1777feb0 930 /* follow-fork child, detach-on-fork on. */
6c95b8df 931
68c9da30
PA
932 inf->vfork_parent->pending_detach = 0;
933
5ed8105e
PA
934 gdb::optional<scoped_restore_exited_inferior>
935 maybe_restore_inferior;
936 gdb::optional<scoped_restore_current_pspace_and_thread>
937 maybe_restore_thread;
938
939 /* If we're handling a child exit, then inferior_ptid points
940 at the inferior's pid, not to a thread. */
f50f4e56 941 if (!exec)
5ed8105e 942 maybe_restore_inferior.emplace ();
f50f4e56 943 else
5ed8105e 944 maybe_restore_thread.emplace ();
6c95b8df
PA
945
946 /* We're letting loose of the parent. */
947 tp = any_live_thread_of_process (inf->vfork_parent->pid);
948 switch_to_thread (tp->ptid);
949
950 /* We're about to detach from the parent, which implicitly
951 removes breakpoints from its address space. There's a
952 catch here: we want to reuse the spaces for the child,
953 but, parent/child are still sharing the pspace at this
954 point, although the exec in reality makes the kernel give
955 the child a fresh set of new pages. The problem here is
956 that the breakpoints module being unaware of this, would
957 likely chose the child process to write to the parent
958 address space. Swapping the child temporarily away from
959 the spaces has the desired effect. Yes, this is "sort
960 of" a hack. */
961
962 pspace = inf->pspace;
963 aspace = inf->aspace;
964 inf->aspace = NULL;
965 inf->pspace = NULL;
966
967 if (debug_infrun || info_verbose)
968 {
223ffa71 969 target_terminal::ours_for_output ();
6c95b8df
PA
970
971 if (exec)
6f259a23
DB
972 {
973 fprintf_filtered (gdb_stdlog,
974 _("Detaching vfork parent process "
975 "%d after child exec.\n"),
976 inf->vfork_parent->pid);
977 }
6c95b8df 978 else
6f259a23
DB
979 {
980 fprintf_filtered (gdb_stdlog,
981 _("Detaching vfork parent process "
982 "%d after child exit.\n"),
983 inf->vfork_parent->pid);
984 }
6c95b8df
PA
985 }
986
987 target_detach (NULL, 0);
988
989 /* Put it back. */
990 inf->pspace = pspace;
991 inf->aspace = aspace;
6c95b8df
PA
992 }
993 else if (exec)
994 {
995 /* We're staying attached to the parent, so, really give the
996 child a new address space. */
997 inf->pspace = add_program_space (maybe_new_address_space ());
998 inf->aspace = inf->pspace->aspace;
999 inf->removable = 1;
1000 set_current_program_space (inf->pspace);
1001
1002 resume_parent = inf->vfork_parent->pid;
1003
1004 /* Break the bonds. */
1005 inf->vfork_parent->vfork_child = NULL;
1006 }
1007 else
1008 {
6c95b8df
PA
1009 struct program_space *pspace;
1010
1011 /* If this is a vfork child exiting, then the pspace and
1012 aspaces were shared with the parent. Since we're
1013 reporting the process exit, we'll be mourning all that is
1014 found in the address space, and switching to null_ptid,
1015 preparing to start a new inferior. But, since we don't
1016 want to clobber the parent's address/program spaces, we
1017 go ahead and create a new one for this exiting
1018 inferior. */
1019
5ed8105e
PA
1020 /* Switch to null_ptid while running clone_program_space, so
1021 that clone_program_space doesn't want to read the
1022 selected frame of a dead process. */
1023 scoped_restore restore_ptid
1024 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1025
1026 /* This inferior is dead, so avoid giving the breakpoints
1027 module the option to write through to it (cloning a
1028 program space resets breakpoints). */
1029 inf->aspace = NULL;
1030 inf->pspace = NULL;
1031 pspace = add_program_space (maybe_new_address_space ());
1032 set_current_program_space (pspace);
1033 inf->removable = 1;
7dcd53a0 1034 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1035 clone_program_space (pspace, inf->vfork_parent->pspace);
1036 inf->pspace = pspace;
1037 inf->aspace = pspace->aspace;
1038
6c95b8df
PA
1039 resume_parent = inf->vfork_parent->pid;
1040 /* Break the bonds. */
1041 inf->vfork_parent->vfork_child = NULL;
1042 }
1043
1044 inf->vfork_parent = NULL;
1045
1046 gdb_assert (current_program_space == inf->pspace);
1047
1048 if (non_stop && resume_parent != -1)
1049 {
1050 /* If the user wanted the parent to be running, let it go
1051 free now. */
5ed8105e 1052 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1053
1054 if (debug_infrun)
3e43a32a
MS
1055 fprintf_unfiltered (gdb_stdlog,
1056 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1057 resume_parent);
1058
1059 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1060 }
1061 }
1062}
1063
eb6c553b 1064/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1065
1066static const char follow_exec_mode_new[] = "new";
1067static const char follow_exec_mode_same[] = "same";
40478521 1068static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1069{
1070 follow_exec_mode_new,
1071 follow_exec_mode_same,
1072 NULL,
1073};
1074
1075static const char *follow_exec_mode_string = follow_exec_mode_same;
1076static void
1077show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1078 struct cmd_list_element *c, const char *value)
1079{
1080 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1081}
1082
ecf45d2c 1083/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1084
c906108c 1085static void
ecf45d2c 1086follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1087{
95e50b27 1088 struct thread_info *th, *tmp;
6c95b8df 1089 struct inferior *inf = current_inferior ();
95e50b27 1090 int pid = ptid_get_pid (ptid);
94585166 1091 ptid_t process_ptid;
ecf45d2c
SL
1092 char *exec_file_host;
1093 struct cleanup *old_chain;
7a292a7a 1094
c906108c
SS
1095 /* This is an exec event that we actually wish to pay attention to.
1096 Refresh our symbol table to the newly exec'd program, remove any
1097 momentary bp's, etc.
1098
1099 If there are breakpoints, they aren't really inserted now,
1100 since the exec() transformed our inferior into a fresh set
1101 of instructions.
1102
1103 We want to preserve symbolic breakpoints on the list, since
1104 we have hopes that they can be reset after the new a.out's
1105 symbol table is read.
1106
1107 However, any "raw" breakpoints must be removed from the list
1108 (e.g., the solib bp's), since their address is probably invalid
1109 now.
1110
1111 And, we DON'T want to call delete_breakpoints() here, since
1112 that may write the bp's "shadow contents" (the instruction
1113 value that was overwritten witha TRAP instruction). Since
1777feb0 1114 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1115
1116 mark_breakpoints_out ();
1117
95e50b27
PA
1118 /* The target reports the exec event to the main thread, even if
1119 some other thread does the exec, and even if the main thread was
1120 stopped or already gone. We may still have non-leader threads of
1121 the process on our list. E.g., on targets that don't have thread
1122 exit events (like remote); or on native Linux in non-stop mode if
1123 there were only two threads in the inferior and the non-leader
1124 one is the one that execs (and nothing forces an update of the
1125 thread list up to here). When debugging remotely, it's best to
1126 avoid extra traffic, when possible, so avoid syncing the thread
1127 list with the target, and instead go ahead and delete all threads
1128 of the process but one that reported the event. Note this must
1129 be done before calling update_breakpoints_after_exec, as
1130 otherwise clearing the threads' resources would reference stale
1131 thread breakpoints -- it may have been one of these threads that
1132 stepped across the exec. We could just clear their stepping
1133 states, but as long as we're iterating, might as well delete
1134 them. Deleting them now rather than at the next user-visible
1135 stop provides a nicer sequence of events for user and MI
1136 notifications. */
8a06aea7 1137 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1138 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1139 delete_thread (th->ptid);
1140
1141 /* We also need to clear any left over stale state for the
1142 leader/event thread. E.g., if there was any step-resume
1143 breakpoint or similar, it's gone now. We cannot truly
1144 step-to-next statement through an exec(). */
1145 th = inferior_thread ();
8358c15c 1146 th->control.step_resume_breakpoint = NULL;
186c406b 1147 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1148 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1149 th->control.step_range_start = 0;
1150 th->control.step_range_end = 0;
c906108c 1151
95e50b27
PA
1152 /* The user may have had the main thread held stopped in the
1153 previous image (e.g., schedlock on, or non-stop). Release
1154 it now. */
a75724bc
PA
1155 th->stop_requested = 0;
1156
95e50b27
PA
1157 update_breakpoints_after_exec ();
1158
1777feb0 1159 /* What is this a.out's name? */
94585166 1160 process_ptid = pid_to_ptid (pid);
6c95b8df 1161 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1162 target_pid_to_str (process_ptid),
ecf45d2c 1163 exec_file_target);
c906108c
SS
1164
1165 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1166 inferior has essentially been killed & reborn. */
7a292a7a 1167
c906108c 1168 gdb_flush (gdb_stdout);
6ca15a4b
PA
1169
1170 breakpoint_init_inferior (inf_execd);
e85a822c 1171
ecf45d2c
SL
1172 exec_file_host = exec_file_find (exec_file_target, NULL);
1173 old_chain = make_cleanup (xfree, exec_file_host);
ff862be4 1174
ecf45d2c
SL
1175 /* If we were unable to map the executable target pathname onto a host
1176 pathname, tell the user that. Otherwise GDB's subsequent behavior
1177 is confusing. Maybe it would even be better to stop at this point
1178 so that the user can specify a file manually before continuing. */
1179 if (exec_file_host == NULL)
1180 warning (_("Could not load symbols for executable %s.\n"
1181 "Do you need \"set sysroot\"?"),
1182 exec_file_target);
c906108c 1183
cce9b6bf
PA
1184 /* Reset the shared library package. This ensures that we get a
1185 shlib event when the child reaches "_start", at which point the
1186 dld will have had a chance to initialize the child. */
1187 /* Also, loading a symbol file below may trigger symbol lookups, and
1188 we don't want those to be satisfied by the libraries of the
1189 previous incarnation of this process. */
1190 no_shared_libraries (NULL, 0);
1191
6c95b8df
PA
1192 if (follow_exec_mode_string == follow_exec_mode_new)
1193 {
6c95b8df
PA
1194 /* The user wants to keep the old inferior and program spaces
1195 around. Create a new fresh one, and switch to it. */
1196
17d8546e
DB
1197 /* Do exit processing for the original inferior before adding
1198 the new inferior so we don't have two active inferiors with
1199 the same ptid, which can confuse find_inferior_ptid. */
1200 exit_inferior_num_silent (current_inferior ()->num);
1201
94585166
DB
1202 inf = add_inferior_with_spaces ();
1203 inf->pid = pid;
ecf45d2c 1204 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1205
1206 set_current_inferior (inf);
94585166 1207 set_current_program_space (inf->pspace);
6c95b8df 1208 }
9107fc8d
PA
1209 else
1210 {
1211 /* The old description may no longer be fit for the new image.
1212 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1213 old description; we'll read a new one below. No need to do
1214 this on "follow-exec-mode new", as the old inferior stays
1215 around (its description is later cleared/refetched on
1216 restart). */
1217 target_clear_description ();
1218 }
6c95b8df
PA
1219
1220 gdb_assert (current_program_space == inf->pspace);
1221
ecf45d2c
SL
1222 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1223 because the proper displacement for a PIE (Position Independent
1224 Executable) main symbol file will only be computed by
1225 solib_create_inferior_hook below. breakpoint_re_set would fail
1226 to insert the breakpoints with the zero displacement. */
1227 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
c1e56572 1228
ecf45d2c 1229 do_cleanups (old_chain);
c906108c 1230
9107fc8d
PA
1231 /* If the target can specify a description, read it. Must do this
1232 after flipping to the new executable (because the target supplied
1233 description must be compatible with the executable's
1234 architecture, and the old executable may e.g., be 32-bit, while
1235 the new one 64-bit), and before anything involving memory or
1236 registers. */
1237 target_find_description ();
1238
bf93d7ba
SM
1239 /* The add_thread call ends up reading registers, so do it after updating the
1240 target description. */
1241 if (follow_exec_mode_string == follow_exec_mode_new)
1242 add_thread (ptid);
1243
268a4a75 1244 solib_create_inferior_hook (0);
c906108c 1245
4efc6507
DE
1246 jit_inferior_created_hook ();
1247
c1e56572
JK
1248 breakpoint_re_set ();
1249
c906108c
SS
1250 /* Reinsert all breakpoints. (Those which were symbolic have
1251 been reset to the proper address in the new a.out, thanks
1777feb0 1252 to symbol_file_command...). */
c906108c
SS
1253 insert_breakpoints ();
1254
1255 /* The next resume of this inferior should bring it to the shlib
1256 startup breakpoints. (If the user had also set bp's on
1257 "main" from the old (parent) process, then they'll auto-
1777feb0 1258 matically get reset there in the new process.). */
c906108c
SS
1259}
1260
c2829269
PA
1261/* The queue of threads that need to do a step-over operation to get
1262 past e.g., a breakpoint. What technique is used to step over the
1263 breakpoint/watchpoint does not matter -- all threads end up in the
1264 same queue, to maintain rough temporal order of execution, in order
1265 to avoid starvation, otherwise, we could e.g., find ourselves
1266 constantly stepping the same couple threads past their breakpoints
1267 over and over, if the single-step finish fast enough. */
1268struct thread_info *step_over_queue_head;
1269
6c4cfb24
PA
1270/* Bit flags indicating what the thread needs to step over. */
1271
8d297bbf 1272enum step_over_what_flag
6c4cfb24
PA
1273 {
1274 /* Step over a breakpoint. */
1275 STEP_OVER_BREAKPOINT = 1,
1276
1277 /* Step past a non-continuable watchpoint, in order to let the
1278 instruction execute so we can evaluate the watchpoint
1279 expression. */
1280 STEP_OVER_WATCHPOINT = 2
1281 };
8d297bbf 1282DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1283
963f9c80 1284/* Info about an instruction that is being stepped over. */
31e77af2
PA
1285
1286struct step_over_info
1287{
963f9c80
PA
1288 /* If we're stepping past a breakpoint, this is the address space
1289 and address of the instruction the breakpoint is set at. We'll
1290 skip inserting all breakpoints here. Valid iff ASPACE is
1291 non-NULL. */
31e77af2 1292 struct address_space *aspace;
31e77af2 1293 CORE_ADDR address;
963f9c80
PA
1294
1295 /* The instruction being stepped over triggers a nonsteppable
1296 watchpoint. If true, we'll skip inserting watchpoints. */
1297 int nonsteppable_watchpoint_p;
21edc42f
YQ
1298
1299 /* The thread's global number. */
1300 int thread;
31e77af2
PA
1301};
1302
1303/* The step-over info of the location that is being stepped over.
1304
1305 Note that with async/breakpoint always-inserted mode, a user might
1306 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1307 being stepped over. As setting a new breakpoint inserts all
1308 breakpoints, we need to make sure the breakpoint being stepped over
1309 isn't inserted then. We do that by only clearing the step-over
1310 info when the step-over is actually finished (or aborted).
1311
1312 Presently GDB can only step over one breakpoint at any given time.
1313 Given threads that can't run code in the same address space as the
1314 breakpoint's can't really miss the breakpoint, GDB could be taught
1315 to step-over at most one breakpoint per address space (so this info
1316 could move to the address space object if/when GDB is extended).
1317 The set of breakpoints being stepped over will normally be much
1318 smaller than the set of all breakpoints, so a flag in the
1319 breakpoint location structure would be wasteful. A separate list
1320 also saves complexity and run-time, as otherwise we'd have to go
1321 through all breakpoint locations clearing their flag whenever we
1322 start a new sequence. Similar considerations weigh against storing
1323 this info in the thread object. Plus, not all step overs actually
1324 have breakpoint locations -- e.g., stepping past a single-step
1325 breakpoint, or stepping to complete a non-continuable
1326 watchpoint. */
1327static struct step_over_info step_over_info;
1328
1329/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1330 stepping over.
1331 N.B. We record the aspace and address now, instead of say just the thread,
1332 because when we need the info later the thread may be running. */
31e77af2
PA
1333
1334static void
963f9c80 1335set_step_over_info (struct address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1336 int nonsteppable_watchpoint_p,
1337 int thread)
31e77af2
PA
1338{
1339 step_over_info.aspace = aspace;
1340 step_over_info.address = address;
963f9c80 1341 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1342 step_over_info.thread = thread;
31e77af2
PA
1343}
1344
1345/* Called when we're not longer stepping over a breakpoint / an
1346 instruction, so all breakpoints are free to be (re)inserted. */
1347
1348static void
1349clear_step_over_info (void)
1350{
372316f1
PA
1351 if (debug_infrun)
1352 fprintf_unfiltered (gdb_stdlog,
1353 "infrun: clear_step_over_info\n");
31e77af2
PA
1354 step_over_info.aspace = NULL;
1355 step_over_info.address = 0;
963f9c80 1356 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1357 step_over_info.thread = -1;
31e77af2
PA
1358}
1359
7f89fd65 1360/* See infrun.h. */
31e77af2
PA
1361
1362int
1363stepping_past_instruction_at (struct address_space *aspace,
1364 CORE_ADDR address)
1365{
1366 return (step_over_info.aspace != NULL
1367 && breakpoint_address_match (aspace, address,
1368 step_over_info.aspace,
1369 step_over_info.address));
1370}
1371
963f9c80
PA
1372/* See infrun.h. */
1373
21edc42f
YQ
1374int
1375thread_is_stepping_over_breakpoint (int thread)
1376{
1377 return (step_over_info.thread != -1
1378 && thread == step_over_info.thread);
1379}
1380
1381/* See infrun.h. */
1382
963f9c80
PA
1383int
1384stepping_past_nonsteppable_watchpoint (void)
1385{
1386 return step_over_info.nonsteppable_watchpoint_p;
1387}
1388
6cc83d2a
PA
1389/* Returns true if step-over info is valid. */
1390
1391static int
1392step_over_info_valid_p (void)
1393{
963f9c80
PA
1394 return (step_over_info.aspace != NULL
1395 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1396}
1397
c906108c 1398\f
237fc4c9
PA
1399/* Displaced stepping. */
1400
1401/* In non-stop debugging mode, we must take special care to manage
1402 breakpoints properly; in particular, the traditional strategy for
1403 stepping a thread past a breakpoint it has hit is unsuitable.
1404 'Displaced stepping' is a tactic for stepping one thread past a
1405 breakpoint it has hit while ensuring that other threads running
1406 concurrently will hit the breakpoint as they should.
1407
1408 The traditional way to step a thread T off a breakpoint in a
1409 multi-threaded program in all-stop mode is as follows:
1410
1411 a0) Initially, all threads are stopped, and breakpoints are not
1412 inserted.
1413 a1) We single-step T, leaving breakpoints uninserted.
1414 a2) We insert breakpoints, and resume all threads.
1415
1416 In non-stop debugging, however, this strategy is unsuitable: we
1417 don't want to have to stop all threads in the system in order to
1418 continue or step T past a breakpoint. Instead, we use displaced
1419 stepping:
1420
1421 n0) Initially, T is stopped, other threads are running, and
1422 breakpoints are inserted.
1423 n1) We copy the instruction "under" the breakpoint to a separate
1424 location, outside the main code stream, making any adjustments
1425 to the instruction, register, and memory state as directed by
1426 T's architecture.
1427 n2) We single-step T over the instruction at its new location.
1428 n3) We adjust the resulting register and memory state as directed
1429 by T's architecture. This includes resetting T's PC to point
1430 back into the main instruction stream.
1431 n4) We resume T.
1432
1433 This approach depends on the following gdbarch methods:
1434
1435 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1436 indicate where to copy the instruction, and how much space must
1437 be reserved there. We use these in step n1.
1438
1439 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1440 address, and makes any necessary adjustments to the instruction,
1441 register contents, and memory. We use this in step n1.
1442
1443 - gdbarch_displaced_step_fixup adjusts registers and memory after
1444 we have successfuly single-stepped the instruction, to yield the
1445 same effect the instruction would have had if we had executed it
1446 at its original address. We use this in step n3.
1447
1448 - gdbarch_displaced_step_free_closure provides cleanup.
1449
1450 The gdbarch_displaced_step_copy_insn and
1451 gdbarch_displaced_step_fixup functions must be written so that
1452 copying an instruction with gdbarch_displaced_step_copy_insn,
1453 single-stepping across the copied instruction, and then applying
1454 gdbarch_displaced_insn_fixup should have the same effects on the
1455 thread's memory and registers as stepping the instruction in place
1456 would have. Exactly which responsibilities fall to the copy and
1457 which fall to the fixup is up to the author of those functions.
1458
1459 See the comments in gdbarch.sh for details.
1460
1461 Note that displaced stepping and software single-step cannot
1462 currently be used in combination, although with some care I think
1463 they could be made to. Software single-step works by placing
1464 breakpoints on all possible subsequent instructions; if the
1465 displaced instruction is a PC-relative jump, those breakpoints
1466 could fall in very strange places --- on pages that aren't
1467 executable, or at addresses that are not proper instruction
1468 boundaries. (We do generally let other threads run while we wait
1469 to hit the software single-step breakpoint, and they might
1470 encounter such a corrupted instruction.) One way to work around
1471 this would be to have gdbarch_displaced_step_copy_insn fully
1472 simulate the effect of PC-relative instructions (and return NULL)
1473 on architectures that use software single-stepping.
1474
1475 In non-stop mode, we can have independent and simultaneous step
1476 requests, so more than one thread may need to simultaneously step
1477 over a breakpoint. The current implementation assumes there is
1478 only one scratch space per process. In this case, we have to
1479 serialize access to the scratch space. If thread A wants to step
1480 over a breakpoint, but we are currently waiting for some other
1481 thread to complete a displaced step, we leave thread A stopped and
1482 place it in the displaced_step_request_queue. Whenever a displaced
1483 step finishes, we pick the next thread in the queue and start a new
1484 displaced step operation on it. See displaced_step_prepare and
1485 displaced_step_fixup for details. */
1486
fc1cf338
PA
1487/* Per-inferior displaced stepping state. */
1488struct displaced_step_inferior_state
1489{
1490 /* Pointer to next in linked list. */
1491 struct displaced_step_inferior_state *next;
1492
1493 /* The process this displaced step state refers to. */
1494 int pid;
1495
3fc8eb30
PA
1496 /* True if preparing a displaced step ever failed. If so, we won't
1497 try displaced stepping for this inferior again. */
1498 int failed_before;
1499
fc1cf338
PA
1500 /* If this is not null_ptid, this is the thread carrying out a
1501 displaced single-step in process PID. This thread's state will
1502 require fixing up once it has completed its step. */
1503 ptid_t step_ptid;
1504
1505 /* The architecture the thread had when we stepped it. */
1506 struct gdbarch *step_gdbarch;
1507
1508 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1509 for post-step cleanup. */
1510 struct displaced_step_closure *step_closure;
1511
1512 /* The address of the original instruction, and the copy we
1513 made. */
1514 CORE_ADDR step_original, step_copy;
1515
1516 /* Saved contents of copy area. */
1517 gdb_byte *step_saved_copy;
1518};
1519
1520/* The list of states of processes involved in displaced stepping
1521 presently. */
1522static struct displaced_step_inferior_state *displaced_step_inferior_states;
1523
1524/* Get the displaced stepping state of process PID. */
1525
1526static struct displaced_step_inferior_state *
1527get_displaced_stepping_state (int pid)
1528{
1529 struct displaced_step_inferior_state *state;
1530
1531 for (state = displaced_step_inferior_states;
1532 state != NULL;
1533 state = state->next)
1534 if (state->pid == pid)
1535 return state;
1536
1537 return NULL;
1538}
1539
372316f1
PA
1540/* Returns true if any inferior has a thread doing a displaced
1541 step. */
1542
1543static int
1544displaced_step_in_progress_any_inferior (void)
1545{
1546 struct displaced_step_inferior_state *state;
1547
1548 for (state = displaced_step_inferior_states;
1549 state != NULL;
1550 state = state->next)
1551 if (!ptid_equal (state->step_ptid, null_ptid))
1552 return 1;
1553
1554 return 0;
1555}
1556
c0987663
YQ
1557/* Return true if thread represented by PTID is doing a displaced
1558 step. */
1559
1560static int
1561displaced_step_in_progress_thread (ptid_t ptid)
1562{
1563 struct displaced_step_inferior_state *displaced;
1564
1565 gdb_assert (!ptid_equal (ptid, null_ptid));
1566
1567 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1568
1569 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1570}
1571
8f572e5c
PA
1572/* Return true if process PID has a thread doing a displaced step. */
1573
1574static int
1575displaced_step_in_progress (int pid)
1576{
1577 struct displaced_step_inferior_state *displaced;
1578
1579 displaced = get_displaced_stepping_state (pid);
1580 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1581 return 1;
1582
1583 return 0;
1584}
1585
fc1cf338
PA
1586/* Add a new displaced stepping state for process PID to the displaced
1587 stepping state list, or return a pointer to an already existing
1588 entry, if it already exists. Never returns NULL. */
1589
1590static struct displaced_step_inferior_state *
1591add_displaced_stepping_state (int pid)
1592{
1593 struct displaced_step_inferior_state *state;
1594
1595 for (state = displaced_step_inferior_states;
1596 state != NULL;
1597 state = state->next)
1598 if (state->pid == pid)
1599 return state;
237fc4c9 1600
8d749320 1601 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1602 state->pid = pid;
1603 state->next = displaced_step_inferior_states;
1604 displaced_step_inferior_states = state;
237fc4c9 1605
fc1cf338
PA
1606 return state;
1607}
1608
a42244db
YQ
1609/* If inferior is in displaced stepping, and ADDR equals to starting address
1610 of copy area, return corresponding displaced_step_closure. Otherwise,
1611 return NULL. */
1612
1613struct displaced_step_closure*
1614get_displaced_step_closure_by_addr (CORE_ADDR addr)
1615{
1616 struct displaced_step_inferior_state *displaced
1617 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1618
1619 /* If checking the mode of displaced instruction in copy area. */
1620 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1621 && (displaced->step_copy == addr))
1622 return displaced->step_closure;
1623
1624 return NULL;
1625}
1626
fc1cf338 1627/* Remove the displaced stepping state of process PID. */
237fc4c9 1628
fc1cf338
PA
1629static void
1630remove_displaced_stepping_state (int pid)
1631{
1632 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1633
fc1cf338
PA
1634 gdb_assert (pid != 0);
1635
1636 it = displaced_step_inferior_states;
1637 prev_next_p = &displaced_step_inferior_states;
1638 while (it)
1639 {
1640 if (it->pid == pid)
1641 {
1642 *prev_next_p = it->next;
1643 xfree (it);
1644 return;
1645 }
1646
1647 prev_next_p = &it->next;
1648 it = *prev_next_p;
1649 }
1650}
1651
1652static void
1653infrun_inferior_exit (struct inferior *inf)
1654{
1655 remove_displaced_stepping_state (inf->pid);
1656}
237fc4c9 1657
fff08868
HZ
1658/* If ON, and the architecture supports it, GDB will use displaced
1659 stepping to step over breakpoints. If OFF, or if the architecture
1660 doesn't support it, GDB will instead use the traditional
1661 hold-and-step approach. If AUTO (which is the default), GDB will
1662 decide which technique to use to step over breakpoints depending on
1663 which of all-stop or non-stop mode is active --- displaced stepping
1664 in non-stop mode; hold-and-step in all-stop mode. */
1665
72d0e2c5 1666static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1667
237fc4c9
PA
1668static void
1669show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1670 struct cmd_list_element *c,
1671 const char *value)
1672{
72d0e2c5 1673 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1674 fprintf_filtered (file,
1675 _("Debugger's willingness to use displaced stepping "
1676 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1677 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1678 else
3e43a32a
MS
1679 fprintf_filtered (file,
1680 _("Debugger's willingness to use displaced stepping "
1681 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1682}
1683
fff08868 1684/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1685 over breakpoints of thread TP. */
fff08868 1686
237fc4c9 1687static int
3fc8eb30 1688use_displaced_stepping (struct thread_info *tp)
237fc4c9 1689{
3fc8eb30
PA
1690 struct regcache *regcache = get_thread_regcache (tp->ptid);
1691 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1692 struct displaced_step_inferior_state *displaced_state;
1693
1694 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1695
fbea99ea
PA
1696 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1697 && target_is_non_stop_p ())
72d0e2c5 1698 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1699 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1700 && find_record_target () == NULL
1701 && (displaced_state == NULL
1702 || !displaced_state->failed_before));
237fc4c9
PA
1703}
1704
1705/* Clean out any stray displaced stepping state. */
1706static void
fc1cf338 1707displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1708{
1709 /* Indicate that there is no cleanup pending. */
fc1cf338 1710 displaced->step_ptid = null_ptid;
237fc4c9 1711
6d45d4b4
SM
1712 xfree (displaced->step_closure);
1713 displaced->step_closure = NULL;
237fc4c9
PA
1714}
1715
1716static void
fc1cf338 1717displaced_step_clear_cleanup (void *arg)
237fc4c9 1718{
9a3c8263
SM
1719 struct displaced_step_inferior_state *state
1720 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1721
1722 displaced_step_clear (state);
237fc4c9
PA
1723}
1724
1725/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1726void
1727displaced_step_dump_bytes (struct ui_file *file,
1728 const gdb_byte *buf,
1729 size_t len)
1730{
1731 int i;
1732
1733 for (i = 0; i < len; i++)
1734 fprintf_unfiltered (file, "%02x ", buf[i]);
1735 fputs_unfiltered ("\n", file);
1736}
1737
1738/* Prepare to single-step, using displaced stepping.
1739
1740 Note that we cannot use displaced stepping when we have a signal to
1741 deliver. If we have a signal to deliver and an instruction to step
1742 over, then after the step, there will be no indication from the
1743 target whether the thread entered a signal handler or ignored the
1744 signal and stepped over the instruction successfully --- both cases
1745 result in a simple SIGTRAP. In the first case we mustn't do a
1746 fixup, and in the second case we must --- but we can't tell which.
1747 Comments in the code for 'random signals' in handle_inferior_event
1748 explain how we handle this case instead.
1749
1750 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1751 stepped now; 0 if displaced stepping this thread got queued; or -1
1752 if this instruction can't be displaced stepped. */
1753
237fc4c9 1754static int
3fc8eb30 1755displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1756{
2989a365 1757 struct cleanup *ignore_cleanups;
c1e36e3e 1758 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1759 struct regcache *regcache = get_thread_regcache (ptid);
1760 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d35ae833 1761 struct address_space *aspace = get_regcache_aspace (regcache);
237fc4c9
PA
1762 CORE_ADDR original, copy;
1763 ULONGEST len;
1764 struct displaced_step_closure *closure;
fc1cf338 1765 struct displaced_step_inferior_state *displaced;
9e529e1d 1766 int status;
237fc4c9
PA
1767
1768 /* We should never reach this function if the architecture does not
1769 support displaced stepping. */
1770 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1771
c2829269
PA
1772 /* Nor if the thread isn't meant to step over a breakpoint. */
1773 gdb_assert (tp->control.trap_expected);
1774
c1e36e3e
PA
1775 /* Disable range stepping while executing in the scratch pad. We
1776 want a single-step even if executing the displaced instruction in
1777 the scratch buffer lands within the stepping range (e.g., a
1778 jump/branch). */
1779 tp->control.may_range_step = 0;
1780
fc1cf338
PA
1781 /* We have to displaced step one thread at a time, as we only have
1782 access to a single scratch space per inferior. */
237fc4c9 1783
fc1cf338
PA
1784 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1785
1786 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1787 {
1788 /* Already waiting for a displaced step to finish. Defer this
1789 request and place in queue. */
237fc4c9
PA
1790
1791 if (debug_displaced)
1792 fprintf_unfiltered (gdb_stdlog,
c2829269 1793 "displaced: deferring step of %s\n",
237fc4c9
PA
1794 target_pid_to_str (ptid));
1795
c2829269 1796 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1797 return 0;
1798 }
1799 else
1800 {
1801 if (debug_displaced)
1802 fprintf_unfiltered (gdb_stdlog,
1803 "displaced: stepping %s now\n",
1804 target_pid_to_str (ptid));
1805 }
1806
fc1cf338 1807 displaced_step_clear (displaced);
237fc4c9 1808
2989a365 1809 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
ad53cd71
PA
1810 inferior_ptid = ptid;
1811
515630c5 1812 original = regcache_read_pc (regcache);
237fc4c9
PA
1813
1814 copy = gdbarch_displaced_step_location (gdbarch);
1815 len = gdbarch_max_insn_length (gdbarch);
1816
d35ae833
PA
1817 if (breakpoint_in_range_p (aspace, copy, len))
1818 {
1819 /* There's a breakpoint set in the scratch pad location range
1820 (which is usually around the entry point). We'd either
1821 install it before resuming, which would overwrite/corrupt the
1822 scratch pad, or if it was already inserted, this displaced
1823 step would overwrite it. The latter is OK in the sense that
1824 we already assume that no thread is going to execute the code
1825 in the scratch pad range (after initial startup) anyway, but
1826 the former is unacceptable. Simply punt and fallback to
1827 stepping over this breakpoint in-line. */
1828 if (debug_displaced)
1829 {
1830 fprintf_unfiltered (gdb_stdlog,
1831 "displaced: breakpoint set in scratch pad. "
1832 "Stepping over breakpoint in-line instead.\n");
1833 }
1834
d35ae833
PA
1835 return -1;
1836 }
1837
237fc4c9 1838 /* Save the original contents of the copy area. */
224c3ddb 1839 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1840 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1841 &displaced->step_saved_copy);
9e529e1d
JK
1842 status = target_read_memory (copy, displaced->step_saved_copy, len);
1843 if (status != 0)
1844 throw_error (MEMORY_ERROR,
1845 _("Error accessing memory address %s (%s) for "
1846 "displaced-stepping scratch space."),
1847 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1848 if (debug_displaced)
1849 {
5af949e3
UW
1850 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1851 paddress (gdbarch, copy));
fc1cf338
PA
1852 displaced_step_dump_bytes (gdb_stdlog,
1853 displaced->step_saved_copy,
1854 len);
237fc4c9
PA
1855 };
1856
1857 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1858 original, copy, regcache);
7f03bd92
PA
1859 if (closure == NULL)
1860 {
1861 /* The architecture doesn't know how or want to displaced step
1862 this instruction or instruction sequence. Fallback to
1863 stepping over the breakpoint in-line. */
2989a365 1864 do_cleanups (ignore_cleanups);
7f03bd92
PA
1865 return -1;
1866 }
237fc4c9 1867
9f5a595d
UW
1868 /* Save the information we need to fix things up if the step
1869 succeeds. */
fc1cf338
PA
1870 displaced->step_ptid = ptid;
1871 displaced->step_gdbarch = gdbarch;
1872 displaced->step_closure = closure;
1873 displaced->step_original = original;
1874 displaced->step_copy = copy;
9f5a595d 1875
fc1cf338 1876 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1877
1878 /* Resume execution at the copy. */
515630c5 1879 regcache_write_pc (regcache, copy);
237fc4c9 1880
ad53cd71
PA
1881 discard_cleanups (ignore_cleanups);
1882
237fc4c9 1883 if (debug_displaced)
5af949e3
UW
1884 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1885 paddress (gdbarch, copy));
237fc4c9 1886
237fc4c9
PA
1887 return 1;
1888}
1889
3fc8eb30
PA
1890/* Wrapper for displaced_step_prepare_throw that disabled further
1891 attempts at displaced stepping if we get a memory error. */
1892
1893static int
1894displaced_step_prepare (ptid_t ptid)
1895{
1896 int prepared = -1;
1897
1898 TRY
1899 {
1900 prepared = displaced_step_prepare_throw (ptid);
1901 }
1902 CATCH (ex, RETURN_MASK_ERROR)
1903 {
1904 struct displaced_step_inferior_state *displaced_state;
1905
16b41842
PA
1906 if (ex.error != MEMORY_ERROR
1907 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1908 throw_exception (ex);
1909
1910 if (debug_infrun)
1911 {
1912 fprintf_unfiltered (gdb_stdlog,
1913 "infrun: disabling displaced stepping: %s\n",
1914 ex.message);
1915 }
1916
1917 /* Be verbose if "set displaced-stepping" is "on", silent if
1918 "auto". */
1919 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1920 {
fd7dcb94 1921 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1922 ex.message);
1923 }
1924
1925 /* Disable further displaced stepping attempts. */
1926 displaced_state
1927 = get_displaced_stepping_state (ptid_get_pid (ptid));
1928 displaced_state->failed_before = 1;
1929 }
1930 END_CATCH
1931
1932 return prepared;
1933}
1934
237fc4c9 1935static void
3e43a32a
MS
1936write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1937 const gdb_byte *myaddr, int len)
237fc4c9 1938{
2989a365 1939 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1940
237fc4c9
PA
1941 inferior_ptid = ptid;
1942 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1943}
1944
e2d96639
YQ
1945/* Restore the contents of the copy area for thread PTID. */
1946
1947static void
1948displaced_step_restore (struct displaced_step_inferior_state *displaced,
1949 ptid_t ptid)
1950{
1951 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1952
1953 write_memory_ptid (ptid, displaced->step_copy,
1954 displaced->step_saved_copy, len);
1955 if (debug_displaced)
1956 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1957 target_pid_to_str (ptid),
1958 paddress (displaced->step_gdbarch,
1959 displaced->step_copy));
1960}
1961
372316f1
PA
1962/* If we displaced stepped an instruction successfully, adjust
1963 registers and memory to yield the same effect the instruction would
1964 have had if we had executed it at its original address, and return
1965 1. If the instruction didn't complete, relocate the PC and return
1966 -1. If the thread wasn't displaced stepping, return 0. */
1967
1968static int
2ea28649 1969displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1970{
1971 struct cleanup *old_cleanups;
fc1cf338
PA
1972 struct displaced_step_inferior_state *displaced
1973 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1974 int ret;
fc1cf338
PA
1975
1976 /* Was any thread of this process doing a displaced step? */
1977 if (displaced == NULL)
372316f1 1978 return 0;
237fc4c9
PA
1979
1980 /* Was this event for the pid we displaced? */
fc1cf338
PA
1981 if (ptid_equal (displaced->step_ptid, null_ptid)
1982 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1983 return 0;
237fc4c9 1984
fc1cf338 1985 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1986
e2d96639 1987 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1988
cb71640d
PA
1989 /* Fixup may need to read memory/registers. Switch to the thread
1990 that we're fixing up. Also, target_stopped_by_watchpoint checks
1991 the current thread. */
1992 switch_to_thread (event_ptid);
1993
237fc4c9 1994 /* Did the instruction complete successfully? */
cb71640d
PA
1995 if (signal == GDB_SIGNAL_TRAP
1996 && !(target_stopped_by_watchpoint ()
1997 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1998 || target_have_steppable_watchpoint)))
237fc4c9
PA
1999 {
2000 /* Fix up the resulting state. */
fc1cf338
PA
2001 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2002 displaced->step_closure,
2003 displaced->step_original,
2004 displaced->step_copy,
2005 get_thread_regcache (displaced->step_ptid));
372316f1 2006 ret = 1;
237fc4c9
PA
2007 }
2008 else
2009 {
2010 /* Since the instruction didn't complete, all we can do is
2011 relocate the PC. */
515630c5
UW
2012 struct regcache *regcache = get_thread_regcache (event_ptid);
2013 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2014
fc1cf338 2015 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2016 regcache_write_pc (regcache, pc);
372316f1 2017 ret = -1;
237fc4c9
PA
2018 }
2019
2020 do_cleanups (old_cleanups);
2021
fc1cf338 2022 displaced->step_ptid = null_ptid;
372316f1
PA
2023
2024 return ret;
c2829269 2025}
1c5cfe86 2026
4d9d9d04
PA
2027/* Data to be passed around while handling an event. This data is
2028 discarded between events. */
2029struct execution_control_state
2030{
2031 ptid_t ptid;
2032 /* The thread that got the event, if this was a thread event; NULL
2033 otherwise. */
2034 struct thread_info *event_thread;
2035
2036 struct target_waitstatus ws;
2037 int stop_func_filled_in;
2038 CORE_ADDR stop_func_start;
2039 CORE_ADDR stop_func_end;
2040 const char *stop_func_name;
2041 int wait_some_more;
2042
2043 /* True if the event thread hit the single-step breakpoint of
2044 another thread. Thus the event doesn't cause a stop, the thread
2045 needs to be single-stepped past the single-step breakpoint before
2046 we can switch back to the original stepping thread. */
2047 int hit_singlestep_breakpoint;
2048};
2049
2050/* Clear ECS and set it to point at TP. */
c2829269
PA
2051
2052static void
4d9d9d04
PA
2053reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2054{
2055 memset (ecs, 0, sizeof (*ecs));
2056 ecs->event_thread = tp;
2057 ecs->ptid = tp->ptid;
2058}
2059
2060static void keep_going_pass_signal (struct execution_control_state *ecs);
2061static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2062static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2063static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2064
2065/* Are there any pending step-over requests? If so, run all we can
2066 now and return true. Otherwise, return false. */
2067
2068static int
c2829269
PA
2069start_step_over (void)
2070{
2071 struct thread_info *tp, *next;
2072
372316f1
PA
2073 /* Don't start a new step-over if we already have an in-line
2074 step-over operation ongoing. */
2075 if (step_over_info_valid_p ())
2076 return 0;
2077
c2829269 2078 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2079 {
4d9d9d04
PA
2080 struct execution_control_state ecss;
2081 struct execution_control_state *ecs = &ecss;
8d297bbf 2082 step_over_what step_what;
372316f1 2083 int must_be_in_line;
c2829269 2084
c65d6b55
PA
2085 gdb_assert (!tp->stop_requested);
2086
c2829269 2087 next = thread_step_over_chain_next (tp);
237fc4c9 2088
c2829269
PA
2089 /* If this inferior already has a displaced step in process,
2090 don't start a new one. */
4d9d9d04 2091 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2092 continue;
2093
372316f1
PA
2094 step_what = thread_still_needs_step_over (tp);
2095 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2096 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2097 && !use_displaced_stepping (tp)));
372316f1
PA
2098
2099 /* We currently stop all threads of all processes to step-over
2100 in-line. If we need to start a new in-line step-over, let
2101 any pending displaced steps finish first. */
2102 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2103 return 0;
2104
c2829269
PA
2105 thread_step_over_chain_remove (tp);
2106
2107 if (step_over_queue_head == NULL)
2108 {
2109 if (debug_infrun)
2110 fprintf_unfiltered (gdb_stdlog,
2111 "infrun: step-over queue now empty\n");
2112 }
2113
372316f1
PA
2114 if (tp->control.trap_expected
2115 || tp->resumed
2116 || tp->executing)
ad53cd71 2117 {
4d9d9d04
PA
2118 internal_error (__FILE__, __LINE__,
2119 "[%s] has inconsistent state: "
372316f1 2120 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2121 target_pid_to_str (tp->ptid),
2122 tp->control.trap_expected,
372316f1 2123 tp->resumed,
4d9d9d04 2124 tp->executing);
ad53cd71 2125 }
1c5cfe86 2126
4d9d9d04
PA
2127 if (debug_infrun)
2128 fprintf_unfiltered (gdb_stdlog,
2129 "infrun: resuming [%s] for step-over\n",
2130 target_pid_to_str (tp->ptid));
2131
2132 /* keep_going_pass_signal skips the step-over if the breakpoint
2133 is no longer inserted. In all-stop, we want to keep looking
2134 for a thread that needs a step-over instead of resuming TP,
2135 because we wouldn't be able to resume anything else until the
2136 target stops again. In non-stop, the resume always resumes
2137 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2138 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2139 continue;
8550d3b3 2140
4d9d9d04
PA
2141 switch_to_thread (tp->ptid);
2142 reset_ecs (ecs, tp);
2143 keep_going_pass_signal (ecs);
1c5cfe86 2144
4d9d9d04
PA
2145 if (!ecs->wait_some_more)
2146 error (_("Command aborted."));
1c5cfe86 2147
372316f1
PA
2148 gdb_assert (tp->resumed);
2149
2150 /* If we started a new in-line step-over, we're done. */
2151 if (step_over_info_valid_p ())
2152 {
2153 gdb_assert (tp->control.trap_expected);
2154 return 1;
2155 }
2156
fbea99ea 2157 if (!target_is_non_stop_p ())
4d9d9d04
PA
2158 {
2159 /* On all-stop, shouldn't have resumed unless we needed a
2160 step over. */
2161 gdb_assert (tp->control.trap_expected
2162 || tp->step_after_step_resume_breakpoint);
2163
2164 /* With remote targets (at least), in all-stop, we can't
2165 issue any further remote commands until the program stops
2166 again. */
2167 return 1;
1c5cfe86 2168 }
c2829269 2169
4d9d9d04
PA
2170 /* Either the thread no longer needed a step-over, or a new
2171 displaced stepping sequence started. Even in the latter
2172 case, continue looking. Maybe we can also start another
2173 displaced step on a thread of other process. */
237fc4c9 2174 }
4d9d9d04
PA
2175
2176 return 0;
237fc4c9
PA
2177}
2178
5231c1fd
PA
2179/* Update global variables holding ptids to hold NEW_PTID if they were
2180 holding OLD_PTID. */
2181static void
2182infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2183{
fc1cf338 2184 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2185
2186 if (ptid_equal (inferior_ptid, old_ptid))
2187 inferior_ptid = new_ptid;
2188
fc1cf338
PA
2189 for (displaced = displaced_step_inferior_states;
2190 displaced;
2191 displaced = displaced->next)
2192 {
2193 if (ptid_equal (displaced->step_ptid, old_ptid))
2194 displaced->step_ptid = new_ptid;
fc1cf338 2195 }
5231c1fd
PA
2196}
2197
237fc4c9
PA
2198\f
2199/* Resuming. */
c906108c
SS
2200
2201/* Things to clean up if we QUIT out of resume (). */
c906108c 2202static void
74b7792f 2203resume_cleanups (void *ignore)
c906108c 2204{
34b7e8a6
PA
2205 if (!ptid_equal (inferior_ptid, null_ptid))
2206 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2207
c906108c
SS
2208 normal_stop ();
2209}
2210
53904c9e
AC
2211static const char schedlock_off[] = "off";
2212static const char schedlock_on[] = "on";
2213static const char schedlock_step[] = "step";
f2665db5 2214static const char schedlock_replay[] = "replay";
40478521 2215static const char *const scheduler_enums[] = {
ef346e04
AC
2216 schedlock_off,
2217 schedlock_on,
2218 schedlock_step,
f2665db5 2219 schedlock_replay,
ef346e04
AC
2220 NULL
2221};
f2665db5 2222static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2223static void
2224show_scheduler_mode (struct ui_file *file, int from_tty,
2225 struct cmd_list_element *c, const char *value)
2226{
3e43a32a
MS
2227 fprintf_filtered (file,
2228 _("Mode for locking scheduler "
2229 "during execution is \"%s\".\n"),
920d2a44
AC
2230 value);
2231}
c906108c
SS
2232
2233static void
96baa820 2234set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2235{
eefe576e
AC
2236 if (!target_can_lock_scheduler)
2237 {
2238 scheduler_mode = schedlock_off;
2239 error (_("Target '%s' cannot support this command."), target_shortname);
2240 }
c906108c
SS
2241}
2242
d4db2f36
PA
2243/* True if execution commands resume all threads of all processes by
2244 default; otherwise, resume only threads of the current inferior
2245 process. */
2246int sched_multi = 0;
2247
2facfe5c
DD
2248/* Try to setup for software single stepping over the specified location.
2249 Return 1 if target_resume() should use hardware single step.
2250
2251 GDBARCH the current gdbarch.
2252 PC the location to step over. */
2253
2254static int
2255maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2256{
2257 int hw_step = 1;
2258
f02253f1 2259 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2260 && gdbarch_software_single_step_p (gdbarch))
2261 hw_step = !insert_single_step_breakpoints (gdbarch);
2262
2facfe5c
DD
2263 return hw_step;
2264}
c906108c 2265
f3263aa4
PA
2266/* See infrun.h. */
2267
09cee04b
PA
2268ptid_t
2269user_visible_resume_ptid (int step)
2270{
f3263aa4 2271 ptid_t resume_ptid;
09cee04b 2272
09cee04b
PA
2273 if (non_stop)
2274 {
2275 /* With non-stop mode on, threads are always handled
2276 individually. */
2277 resume_ptid = inferior_ptid;
2278 }
2279 else if ((scheduler_mode == schedlock_on)
03d46957 2280 || (scheduler_mode == schedlock_step && step))
09cee04b 2281 {
f3263aa4
PA
2282 /* User-settable 'scheduler' mode requires solo thread
2283 resume. */
09cee04b
PA
2284 resume_ptid = inferior_ptid;
2285 }
f2665db5
MM
2286 else if ((scheduler_mode == schedlock_replay)
2287 && target_record_will_replay (minus_one_ptid, execution_direction))
2288 {
2289 /* User-settable 'scheduler' mode requires solo thread resume in replay
2290 mode. */
2291 resume_ptid = inferior_ptid;
2292 }
f3263aa4
PA
2293 else if (!sched_multi && target_supports_multi_process ())
2294 {
2295 /* Resume all threads of the current process (and none of other
2296 processes). */
2297 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2298 }
2299 else
2300 {
2301 /* Resume all threads of all processes. */
2302 resume_ptid = RESUME_ALL;
2303 }
09cee04b
PA
2304
2305 return resume_ptid;
2306}
2307
fbea99ea
PA
2308/* Return a ptid representing the set of threads that we will resume,
2309 in the perspective of the target, assuming run control handling
2310 does not require leaving some threads stopped (e.g., stepping past
2311 breakpoint). USER_STEP indicates whether we're about to start the
2312 target for a stepping command. */
2313
2314static ptid_t
2315internal_resume_ptid (int user_step)
2316{
2317 /* In non-stop, we always control threads individually. Note that
2318 the target may always work in non-stop mode even with "set
2319 non-stop off", in which case user_visible_resume_ptid could
2320 return a wildcard ptid. */
2321 if (target_is_non_stop_p ())
2322 return inferior_ptid;
2323 else
2324 return user_visible_resume_ptid (user_step);
2325}
2326
64ce06e4
PA
2327/* Wrapper for target_resume, that handles infrun-specific
2328 bookkeeping. */
2329
2330static void
2331do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2332{
2333 struct thread_info *tp = inferior_thread ();
2334
c65d6b55
PA
2335 gdb_assert (!tp->stop_requested);
2336
64ce06e4 2337 /* Install inferior's terminal modes. */
223ffa71 2338 target_terminal::inferior ();
64ce06e4
PA
2339
2340 /* Avoid confusing the next resume, if the next stop/resume
2341 happens to apply to another thread. */
2342 tp->suspend.stop_signal = GDB_SIGNAL_0;
2343
8f572e5c
PA
2344 /* Advise target which signals may be handled silently.
2345
2346 If we have removed breakpoints because we are stepping over one
2347 in-line (in any thread), we need to receive all signals to avoid
2348 accidentally skipping a breakpoint during execution of a signal
2349 handler.
2350
2351 Likewise if we're displaced stepping, otherwise a trap for a
2352 breakpoint in a signal handler might be confused with the
2353 displaced step finishing. We don't make the displaced_step_fixup
2354 step distinguish the cases instead, because:
2355
2356 - a backtrace while stopped in the signal handler would show the
2357 scratch pad as frame older than the signal handler, instead of
2358 the real mainline code.
2359
2360 - when the thread is later resumed, the signal handler would
2361 return to the scratch pad area, which would no longer be
2362 valid. */
2363 if (step_over_info_valid_p ()
2364 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2365 target_pass_signals (0, NULL);
2366 else
2367 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2368
2369 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2370
2371 target_commit_resume ();
64ce06e4
PA
2372}
2373
c906108c
SS
2374/* Resume the inferior, but allow a QUIT. This is useful if the user
2375 wants to interrupt some lengthy single-stepping operation
2376 (for child processes, the SIGINT goes to the inferior, and so
2377 we get a SIGINT random_signal, but for remote debugging and perhaps
2378 other targets, that's not true).
2379
c906108c
SS
2380 SIG is the signal to give the inferior (zero for none). */
2381void
64ce06e4 2382resume (enum gdb_signal sig)
c906108c 2383{
74b7792f 2384 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2385 struct regcache *regcache = get_current_regcache ();
2386 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2387 struct thread_info *tp = inferior_thread ();
515630c5 2388 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2389 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2390 ptid_t resume_ptid;
856e7dd6
PA
2391 /* This represents the user's step vs continue request. When
2392 deciding whether "set scheduler-locking step" applies, it's the
2393 user's intention that counts. */
2394 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2395 /* This represents what we'll actually request the target to do.
2396 This can decay from a step to a continue, if e.g., we need to
2397 implement single-stepping with breakpoints (software
2398 single-step). */
6b403daa 2399 int step;
c7e8a53c 2400
c65d6b55 2401 gdb_assert (!tp->stop_requested);
c2829269
PA
2402 gdb_assert (!thread_is_in_step_over_chain (tp));
2403
c906108c
SS
2404 QUIT;
2405
372316f1
PA
2406 if (tp->suspend.waitstatus_pending_p)
2407 {
2408 if (debug_infrun)
2409 {
23fdd69e
SM
2410 std::string statstr
2411 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2412
372316f1 2413 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2414 "infrun: resume: thread %s has pending wait "
2415 "status %s (currently_stepping=%d).\n",
2416 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2417 currently_stepping (tp));
372316f1
PA
2418 }
2419
2420 tp->resumed = 1;
2421
2422 /* FIXME: What should we do if we are supposed to resume this
2423 thread with a signal? Maybe we should maintain a queue of
2424 pending signals to deliver. */
2425 if (sig != GDB_SIGNAL_0)
2426 {
fd7dcb94 2427 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2428 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2429 }
2430
2431 tp->suspend.stop_signal = GDB_SIGNAL_0;
2432 discard_cleanups (old_cleanups);
2433
2434 if (target_can_async_p ())
2435 target_async (1);
2436 return;
2437 }
2438
2439 tp->stepped_breakpoint = 0;
2440
6b403daa
PA
2441 /* Depends on stepped_breakpoint. */
2442 step = currently_stepping (tp);
2443
74609e71
YQ
2444 if (current_inferior ()->waiting_for_vfork_done)
2445 {
48f9886d
PA
2446 /* Don't try to single-step a vfork parent that is waiting for
2447 the child to get out of the shared memory region (by exec'ing
2448 or exiting). This is particularly important on software
2449 single-step archs, as the child process would trip on the
2450 software single step breakpoint inserted for the parent
2451 process. Since the parent will not actually execute any
2452 instruction until the child is out of the shared region (such
2453 are vfork's semantics), it is safe to simply continue it.
2454 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2455 the parent, and tell it to `keep_going', which automatically
2456 re-sets it stepping. */
74609e71
YQ
2457 if (debug_infrun)
2458 fprintf_unfiltered (gdb_stdlog,
2459 "infrun: resume : clear step\n");
a09dd441 2460 step = 0;
74609e71
YQ
2461 }
2462
527159b7 2463 if (debug_infrun)
237fc4c9 2464 fprintf_unfiltered (gdb_stdlog,
c9737c08 2465 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2466 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2467 step, gdb_signal_to_symbol_string (sig),
2468 tp->control.trap_expected,
0d9a9a5f
PA
2469 target_pid_to_str (inferior_ptid),
2470 paddress (gdbarch, pc));
c906108c 2471
c2c6d25f
JM
2472 /* Normally, by the time we reach `resume', the breakpoints are either
2473 removed or inserted, as appropriate. The exception is if we're sitting
2474 at a permanent breakpoint; we need to step over it, but permanent
2475 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2476 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2477 {
af48d08f
PA
2478 if (sig != GDB_SIGNAL_0)
2479 {
2480 /* We have a signal to pass to the inferior. The resume
2481 may, or may not take us to the signal handler. If this
2482 is a step, we'll need to stop in the signal handler, if
2483 there's one, (if the target supports stepping into
2484 handlers), or in the next mainline instruction, if
2485 there's no handler. If this is a continue, we need to be
2486 sure to run the handler with all breakpoints inserted.
2487 In all cases, set a breakpoint at the current address
2488 (where the handler returns to), and once that breakpoint
2489 is hit, resume skipping the permanent breakpoint. If
2490 that breakpoint isn't hit, then we've stepped into the
2491 signal handler (or hit some other event). We'll delete
2492 the step-resume breakpoint then. */
2493
2494 if (debug_infrun)
2495 fprintf_unfiltered (gdb_stdlog,
2496 "infrun: resume: skipping permanent breakpoint, "
2497 "deliver signal first\n");
2498
2499 clear_step_over_info ();
2500 tp->control.trap_expected = 0;
2501
2502 if (tp->control.step_resume_breakpoint == NULL)
2503 {
2504 /* Set a "high-priority" step-resume, as we don't want
2505 user breakpoints at PC to trigger (again) when this
2506 hits. */
2507 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2508 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2509
2510 tp->step_after_step_resume_breakpoint = step;
2511 }
2512
2513 insert_breakpoints ();
2514 }
2515 else
2516 {
2517 /* There's no signal to pass, we can go ahead and skip the
2518 permanent breakpoint manually. */
2519 if (debug_infrun)
2520 fprintf_unfiltered (gdb_stdlog,
2521 "infrun: resume: skipping permanent breakpoint\n");
2522 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2523 /* Update pc to reflect the new address from which we will
2524 execute instructions. */
2525 pc = regcache_read_pc (regcache);
2526
2527 if (step)
2528 {
2529 /* We've already advanced the PC, so the stepping part
2530 is done. Now we need to arrange for a trap to be
2531 reported to handle_inferior_event. Set a breakpoint
2532 at the current PC, and run to it. Don't update
2533 prev_pc, because if we end in
44a1ee51
PA
2534 switch_back_to_stepped_thread, we want the "expected
2535 thread advanced also" branch to be taken. IOW, we
2536 don't want this thread to step further from PC
af48d08f 2537 (overstep). */
1ac806b8 2538 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2539 insert_single_step_breakpoint (gdbarch, aspace, pc);
2540 insert_breakpoints ();
2541
fbea99ea 2542 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2543 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2544 discard_cleanups (old_cleanups);
372316f1 2545 tp->resumed = 1;
af48d08f
PA
2546 return;
2547 }
2548 }
6d350bb5 2549 }
c2c6d25f 2550
c1e36e3e
PA
2551 /* If we have a breakpoint to step over, make sure to do a single
2552 step only. Same if we have software watchpoints. */
2553 if (tp->control.trap_expected || bpstat_should_step ())
2554 tp->control.may_range_step = 0;
2555
237fc4c9
PA
2556 /* If enabled, step over breakpoints by executing a copy of the
2557 instruction at a different address.
2558
2559 We can't use displaced stepping when we have a signal to deliver;
2560 the comments for displaced_step_prepare explain why. The
2561 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2562 signals' explain what we do instead.
2563
2564 We can't use displaced stepping when we are waiting for vfork_done
2565 event, displaced stepping breaks the vfork child similarly as single
2566 step software breakpoint. */
3fc8eb30
PA
2567 if (tp->control.trap_expected
2568 && use_displaced_stepping (tp)
cb71640d 2569 && !step_over_info_valid_p ()
a493e3e2 2570 && sig == GDB_SIGNAL_0
74609e71 2571 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2572 {
3fc8eb30 2573 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2574
3fc8eb30 2575 if (prepared == 0)
d56b7306 2576 {
4d9d9d04
PA
2577 if (debug_infrun)
2578 fprintf_unfiltered (gdb_stdlog,
2579 "Got placed in step-over queue\n");
2580
2581 tp->control.trap_expected = 0;
d56b7306
VP
2582 discard_cleanups (old_cleanups);
2583 return;
2584 }
3fc8eb30
PA
2585 else if (prepared < 0)
2586 {
2587 /* Fallback to stepping over the breakpoint in-line. */
2588
2589 if (target_is_non_stop_p ())
2590 stop_all_threads ();
2591
2592 set_step_over_info (get_regcache_aspace (regcache),
21edc42f 2593 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2594
2595 step = maybe_software_singlestep (gdbarch, pc);
2596
2597 insert_breakpoints ();
2598 }
2599 else if (prepared > 0)
2600 {
2601 struct displaced_step_inferior_state *displaced;
99e40580 2602
3fc8eb30
PA
2603 /* Update pc to reflect the new address from which we will
2604 execute instructions due to displaced stepping. */
2605 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2606
3fc8eb30
PA
2607 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2608 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2609 displaced->step_closure);
2610 }
237fc4c9
PA
2611 }
2612
2facfe5c 2613 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2614 else if (step)
2facfe5c 2615 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2616
30852783
UW
2617 /* Currently, our software single-step implementation leads to different
2618 results than hardware single-stepping in one situation: when stepping
2619 into delivering a signal which has an associated signal handler,
2620 hardware single-step will stop at the first instruction of the handler,
2621 while software single-step will simply skip execution of the handler.
2622
2623 For now, this difference in behavior is accepted since there is no
2624 easy way to actually implement single-stepping into a signal handler
2625 without kernel support.
2626
2627 However, there is one scenario where this difference leads to follow-on
2628 problems: if we're stepping off a breakpoint by removing all breakpoints
2629 and then single-stepping. In this case, the software single-step
2630 behavior means that even if there is a *breakpoint* in the signal
2631 handler, GDB still would not stop.
2632
2633 Fortunately, we can at least fix this particular issue. We detect
2634 here the case where we are about to deliver a signal while software
2635 single-stepping with breakpoints removed. In this situation, we
2636 revert the decisions to remove all breakpoints and insert single-
2637 step breakpoints, and instead we install a step-resume breakpoint
2638 at the current address, deliver the signal without stepping, and
2639 once we arrive back at the step-resume breakpoint, actually step
2640 over the breakpoint we originally wanted to step over. */
34b7e8a6 2641 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2642 && sig != GDB_SIGNAL_0
2643 && step_over_info_valid_p ())
30852783
UW
2644 {
2645 /* If we have nested signals or a pending signal is delivered
2646 immediately after a handler returns, might might already have
2647 a step-resume breakpoint set on the earlier handler. We cannot
2648 set another step-resume breakpoint; just continue on until the
2649 original breakpoint is hit. */
2650 if (tp->control.step_resume_breakpoint == NULL)
2651 {
2c03e5be 2652 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2653 tp->step_after_step_resume_breakpoint = 1;
2654 }
2655
34b7e8a6 2656 delete_single_step_breakpoints (tp);
30852783 2657
31e77af2 2658 clear_step_over_info ();
30852783 2659 tp->control.trap_expected = 0;
31e77af2
PA
2660
2661 insert_breakpoints ();
30852783
UW
2662 }
2663
b0f16a3e
SM
2664 /* If STEP is set, it's a request to use hardware stepping
2665 facilities. But in that case, we should never
2666 use singlestep breakpoint. */
34b7e8a6 2667 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2668
fbea99ea 2669 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2670 if (tp->control.trap_expected)
b0f16a3e
SM
2671 {
2672 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2673 hit, either by single-stepping the thread with the breakpoint
2674 removed, or by displaced stepping, with the breakpoint inserted.
2675 In the former case, we need to single-step only this thread,
2676 and keep others stopped, as they can miss this breakpoint if
2677 allowed to run. That's not really a problem for displaced
2678 stepping, but, we still keep other threads stopped, in case
2679 another thread is also stopped for a breakpoint waiting for
2680 its turn in the displaced stepping queue. */
b0f16a3e
SM
2681 resume_ptid = inferior_ptid;
2682 }
fbea99ea
PA
2683 else
2684 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2685
7f5ef605
PA
2686 if (execution_direction != EXEC_REVERSE
2687 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2688 {
372316f1
PA
2689 /* There are two cases where we currently need to step a
2690 breakpoint instruction when we have a signal to deliver:
2691
2692 - See handle_signal_stop where we handle random signals that
2693 could take out us out of the stepping range. Normally, in
2694 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2695 signal handler with a breakpoint at PC, but there are cases
2696 where we should _always_ single-step, even if we have a
2697 step-resume breakpoint, like when a software watchpoint is
2698 set. Assuming single-stepping and delivering a signal at the
2699 same time would takes us to the signal handler, then we could
2700 have removed the breakpoint at PC to step over it. However,
2701 some hardware step targets (like e.g., Mac OS) can't step
2702 into signal handlers, and for those, we need to leave the
2703 breakpoint at PC inserted, as otherwise if the handler
2704 recurses and executes PC again, it'll miss the breakpoint.
2705 So we leave the breakpoint inserted anyway, but we need to
2706 record that we tried to step a breakpoint instruction, so
372316f1
PA
2707 that adjust_pc_after_break doesn't end up confused.
2708
2709 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2710 in one thread after another thread that was stepping had been
2711 momentarily paused for a step-over. When we re-resume the
2712 stepping thread, it may be resumed from that address with a
2713 breakpoint that hasn't trapped yet. Seen with
2714 gdb.threads/non-stop-fair-events.exp, on targets that don't
2715 do displaced stepping. */
2716
2717 if (debug_infrun)
2718 fprintf_unfiltered (gdb_stdlog,
2719 "infrun: resume: [%s] stepped breakpoint\n",
2720 target_pid_to_str (tp->ptid));
7f5ef605
PA
2721
2722 tp->stepped_breakpoint = 1;
2723
b0f16a3e
SM
2724 /* Most targets can step a breakpoint instruction, thus
2725 executing it normally. But if this one cannot, just
2726 continue and we will hit it anyway. */
7f5ef605 2727 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2728 step = 0;
2729 }
ef5cf84e 2730
b0f16a3e 2731 if (debug_displaced
cb71640d 2732 && tp->control.trap_expected
3fc8eb30 2733 && use_displaced_stepping (tp)
cb71640d 2734 && !step_over_info_valid_p ())
b0f16a3e 2735 {
d9b67d9f 2736 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2737 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2738 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2739 gdb_byte buf[4];
2740
2741 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2742 paddress (resume_gdbarch, actual_pc));
2743 read_memory (actual_pc, buf, sizeof (buf));
2744 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2745 }
237fc4c9 2746
b0f16a3e
SM
2747 if (tp->control.may_range_step)
2748 {
2749 /* If we're resuming a thread with the PC out of the step
2750 range, then we're doing some nested/finer run control
2751 operation, like stepping the thread out of the dynamic
2752 linker or the displaced stepping scratch pad. We
2753 shouldn't have allowed a range step then. */
2754 gdb_assert (pc_in_thread_step_range (pc, tp));
2755 }
c1e36e3e 2756
64ce06e4 2757 do_target_resume (resume_ptid, step, sig);
372316f1 2758 tp->resumed = 1;
c906108c
SS
2759 discard_cleanups (old_cleanups);
2760}
2761\f
237fc4c9 2762/* Proceeding. */
c906108c 2763
4c2f2a79
PA
2764/* See infrun.h. */
2765
2766/* Counter that tracks number of user visible stops. This can be used
2767 to tell whether a command has proceeded the inferior past the
2768 current location. This allows e.g., inferior function calls in
2769 breakpoint commands to not interrupt the command list. When the
2770 call finishes successfully, the inferior is standing at the same
2771 breakpoint as if nothing happened (and so we don't call
2772 normal_stop). */
2773static ULONGEST current_stop_id;
2774
2775/* See infrun.h. */
2776
2777ULONGEST
2778get_stop_id (void)
2779{
2780 return current_stop_id;
2781}
2782
2783/* Called when we report a user visible stop. */
2784
2785static void
2786new_stop_id (void)
2787{
2788 current_stop_id++;
2789}
2790
c906108c
SS
2791/* Clear out all variables saying what to do when inferior is continued.
2792 First do this, then set the ones you want, then call `proceed'. */
2793
a7212384
UW
2794static void
2795clear_proceed_status_thread (struct thread_info *tp)
c906108c 2796{
a7212384
UW
2797 if (debug_infrun)
2798 fprintf_unfiltered (gdb_stdlog,
2799 "infrun: clear_proceed_status_thread (%s)\n",
2800 target_pid_to_str (tp->ptid));
d6b48e9c 2801
372316f1
PA
2802 /* If we're starting a new sequence, then the previous finished
2803 single-step is no longer relevant. */
2804 if (tp->suspend.waitstatus_pending_p)
2805 {
2806 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2807 {
2808 if (debug_infrun)
2809 fprintf_unfiltered (gdb_stdlog,
2810 "infrun: clear_proceed_status: pending "
2811 "event of %s was a finished step. "
2812 "Discarding.\n",
2813 target_pid_to_str (tp->ptid));
2814
2815 tp->suspend.waitstatus_pending_p = 0;
2816 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2817 }
2818 else if (debug_infrun)
2819 {
23fdd69e
SM
2820 std::string statstr
2821 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2822
372316f1
PA
2823 fprintf_unfiltered (gdb_stdlog,
2824 "infrun: clear_proceed_status_thread: thread %s "
2825 "has pending wait status %s "
2826 "(currently_stepping=%d).\n",
23fdd69e 2827 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2828 currently_stepping (tp));
372316f1
PA
2829 }
2830 }
2831
70509625
PA
2832 /* If this signal should not be seen by program, give it zero.
2833 Used for debugging signals. */
2834 if (!signal_pass_state (tp->suspend.stop_signal))
2835 tp->suspend.stop_signal = GDB_SIGNAL_0;
2836
243a9253
PA
2837 thread_fsm_delete (tp->thread_fsm);
2838 tp->thread_fsm = NULL;
2839
16c381f0
JK
2840 tp->control.trap_expected = 0;
2841 tp->control.step_range_start = 0;
2842 tp->control.step_range_end = 0;
c1e36e3e 2843 tp->control.may_range_step = 0;
16c381f0
JK
2844 tp->control.step_frame_id = null_frame_id;
2845 tp->control.step_stack_frame_id = null_frame_id;
2846 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2847 tp->control.step_start_function = NULL;
a7212384 2848 tp->stop_requested = 0;
4e1c45ea 2849
16c381f0 2850 tp->control.stop_step = 0;
32400beb 2851
16c381f0 2852 tp->control.proceed_to_finish = 0;
414c69f7 2853
856e7dd6 2854 tp->control.stepping_command = 0;
17b2616c 2855
a7212384 2856 /* Discard any remaining commands or status from previous stop. */
16c381f0 2857 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2858}
32400beb 2859
a7212384 2860void
70509625 2861clear_proceed_status (int step)
a7212384 2862{
f2665db5
MM
2863 /* With scheduler-locking replay, stop replaying other threads if we're
2864 not replaying the user-visible resume ptid.
2865
2866 This is a convenience feature to not require the user to explicitly
2867 stop replaying the other threads. We're assuming that the user's
2868 intent is to resume tracing the recorded process. */
2869 if (!non_stop && scheduler_mode == schedlock_replay
2870 && target_record_is_replaying (minus_one_ptid)
2871 && !target_record_will_replay (user_visible_resume_ptid (step),
2872 execution_direction))
2873 target_record_stop_replaying ();
2874
6c95b8df
PA
2875 if (!non_stop)
2876 {
70509625
PA
2877 struct thread_info *tp;
2878 ptid_t resume_ptid;
2879
2880 resume_ptid = user_visible_resume_ptid (step);
2881
2882 /* In all-stop mode, delete the per-thread status of all threads
2883 we're about to resume, implicitly and explicitly. */
2884 ALL_NON_EXITED_THREADS (tp)
2885 {
2886 if (!ptid_match (tp->ptid, resume_ptid))
2887 continue;
2888 clear_proceed_status_thread (tp);
2889 }
6c95b8df
PA
2890 }
2891
a7212384
UW
2892 if (!ptid_equal (inferior_ptid, null_ptid))
2893 {
2894 struct inferior *inferior;
2895
2896 if (non_stop)
2897 {
6c95b8df
PA
2898 /* If in non-stop mode, only delete the per-thread status of
2899 the current thread. */
a7212384
UW
2900 clear_proceed_status_thread (inferior_thread ());
2901 }
6c95b8df 2902
d6b48e9c 2903 inferior = current_inferior ();
16c381f0 2904 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2905 }
2906
f3b1572e 2907 observer_notify_about_to_proceed ();
c906108c
SS
2908}
2909
99619bea
PA
2910/* Returns true if TP is still stopped at a breakpoint that needs
2911 stepping-over in order to make progress. If the breakpoint is gone
2912 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2913
2914static int
6c4cfb24 2915thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2916{
2917 if (tp->stepping_over_breakpoint)
2918 {
2919 struct regcache *regcache = get_thread_regcache (tp->ptid);
2920
2921 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2922 regcache_read_pc (regcache))
2923 == ordinary_breakpoint_here)
99619bea
PA
2924 return 1;
2925
2926 tp->stepping_over_breakpoint = 0;
2927 }
2928
2929 return 0;
2930}
2931
6c4cfb24
PA
2932/* Check whether thread TP still needs to start a step-over in order
2933 to make progress when resumed. Returns an bitwise or of enum
2934 step_over_what bits, indicating what needs to be stepped over. */
2935
8d297bbf 2936static step_over_what
6c4cfb24
PA
2937thread_still_needs_step_over (struct thread_info *tp)
2938{
8d297bbf 2939 step_over_what what = 0;
6c4cfb24
PA
2940
2941 if (thread_still_needs_step_over_bp (tp))
2942 what |= STEP_OVER_BREAKPOINT;
2943
2944 if (tp->stepping_over_watchpoint
2945 && !target_have_steppable_watchpoint)
2946 what |= STEP_OVER_WATCHPOINT;
2947
2948 return what;
2949}
2950
483805cf
PA
2951/* Returns true if scheduler locking applies. STEP indicates whether
2952 we're about to do a step/next-like command to a thread. */
2953
2954static int
856e7dd6 2955schedlock_applies (struct thread_info *tp)
483805cf
PA
2956{
2957 return (scheduler_mode == schedlock_on
2958 || (scheduler_mode == schedlock_step
f2665db5
MM
2959 && tp->control.stepping_command)
2960 || (scheduler_mode == schedlock_replay
2961 && target_record_will_replay (minus_one_ptid,
2962 execution_direction)));
483805cf
PA
2963}
2964
c906108c
SS
2965/* Basic routine for continuing the program in various fashions.
2966
2967 ADDR is the address to resume at, or -1 for resume where stopped.
2968 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2969 or -1 for act according to how it stopped.
c906108c 2970 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2971 -1 means return after that and print nothing.
2972 You should probably set various step_... variables
2973 before calling here, if you are stepping.
c906108c
SS
2974
2975 You should call clear_proceed_status before calling proceed. */
2976
2977void
64ce06e4 2978proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2979{
e58b0e63
PA
2980 struct regcache *regcache;
2981 struct gdbarch *gdbarch;
4e1c45ea 2982 struct thread_info *tp;
e58b0e63 2983 CORE_ADDR pc;
6c95b8df 2984 struct address_space *aspace;
4d9d9d04
PA
2985 ptid_t resume_ptid;
2986 struct execution_control_state ecss;
2987 struct execution_control_state *ecs = &ecss;
2988 struct cleanup *old_chain;
2989 int started;
c906108c 2990
e58b0e63
PA
2991 /* If we're stopped at a fork/vfork, follow the branch set by the
2992 "set follow-fork-mode" command; otherwise, we'll just proceed
2993 resuming the current thread. */
2994 if (!follow_fork ())
2995 {
2996 /* The target for some reason decided not to resume. */
2997 normal_stop ();
f148b27e
PA
2998 if (target_can_async_p ())
2999 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
3000 return;
3001 }
3002
842951eb
PA
3003 /* We'll update this if & when we switch to a new thread. */
3004 previous_inferior_ptid = inferior_ptid;
3005
e58b0e63
PA
3006 regcache = get_current_regcache ();
3007 gdbarch = get_regcache_arch (regcache);
6c95b8df 3008 aspace = get_regcache_aspace (regcache);
e58b0e63 3009 pc = regcache_read_pc (regcache);
2adfaa28 3010 tp = inferior_thread ();
e58b0e63 3011
99619bea
PA
3012 /* Fill in with reasonable starting values. */
3013 init_thread_stepping_state (tp);
3014
c2829269
PA
3015 gdb_assert (!thread_is_in_step_over_chain (tp));
3016
2acceee2 3017 if (addr == (CORE_ADDR) -1)
c906108c 3018 {
af48d08f
PA
3019 if (pc == stop_pc
3020 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3021 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3022 /* There is a breakpoint at the address we will resume at,
3023 step one instruction before inserting breakpoints so that
3024 we do not stop right away (and report a second hit at this
b2175913
MS
3025 breakpoint).
3026
3027 Note, we don't do this in reverse, because we won't
3028 actually be executing the breakpoint insn anyway.
3029 We'll be (un-)executing the previous instruction. */
99619bea 3030 tp->stepping_over_breakpoint = 1;
515630c5
UW
3031 else if (gdbarch_single_step_through_delay_p (gdbarch)
3032 && gdbarch_single_step_through_delay (gdbarch,
3033 get_current_frame ()))
3352ef37
AC
3034 /* We stepped onto an instruction that needs to be stepped
3035 again before re-inserting the breakpoint, do so. */
99619bea 3036 tp->stepping_over_breakpoint = 1;
c906108c
SS
3037 }
3038 else
3039 {
515630c5 3040 regcache_write_pc (regcache, addr);
c906108c
SS
3041 }
3042
70509625
PA
3043 if (siggnal != GDB_SIGNAL_DEFAULT)
3044 tp->suspend.stop_signal = siggnal;
3045
4d9d9d04
PA
3046 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3047
3048 /* If an exception is thrown from this point on, make sure to
3049 propagate GDB's knowledge of the executing state to the
3050 frontend/user running state. */
3051 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3052
3053 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3054 threads (e.g., we might need to set threads stepping over
3055 breakpoints first), from the user/frontend's point of view, all
3056 threads in RESUME_PTID are now running. Unless we're calling an
3057 inferior function, as in that case we pretend the inferior
3058 doesn't run at all. */
3059 if (!tp->control.in_infcall)
3060 set_running (resume_ptid, 1);
17b2616c 3061
527159b7 3062 if (debug_infrun)
8a9de0e4 3063 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3064 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3065 paddress (gdbarch, addr),
64ce06e4 3066 gdb_signal_to_symbol_string (siggnal));
527159b7 3067
4d9d9d04
PA
3068 annotate_starting ();
3069
3070 /* Make sure that output from GDB appears before output from the
3071 inferior. */
3072 gdb_flush (gdb_stdout);
3073
3074 /* In a multi-threaded task we may select another thread and
3075 then continue or step.
3076
3077 But if a thread that we're resuming had stopped at a breakpoint,
3078 it will immediately cause another breakpoint stop without any
3079 execution (i.e. it will report a breakpoint hit incorrectly). So
3080 we must step over it first.
3081
3082 Look for threads other than the current (TP) that reported a
3083 breakpoint hit and haven't been resumed yet since. */
3084
3085 /* If scheduler locking applies, we can avoid iterating over all
3086 threads. */
3087 if (!non_stop && !schedlock_applies (tp))
94cc34af 3088 {
4d9d9d04
PA
3089 struct thread_info *current = tp;
3090
3091 ALL_NON_EXITED_THREADS (tp)
3092 {
3093 /* Ignore the current thread here. It's handled
3094 afterwards. */
3095 if (tp == current)
3096 continue;
99619bea 3097
4d9d9d04
PA
3098 /* Ignore threads of processes we're not resuming. */
3099 if (!ptid_match (tp->ptid, resume_ptid))
3100 continue;
c906108c 3101
4d9d9d04
PA
3102 if (!thread_still_needs_step_over (tp))
3103 continue;
3104
3105 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3106
99619bea
PA
3107 if (debug_infrun)
3108 fprintf_unfiltered (gdb_stdlog,
3109 "infrun: need to step-over [%s] first\n",
4d9d9d04 3110 target_pid_to_str (tp->ptid));
99619bea 3111
4d9d9d04 3112 thread_step_over_chain_enqueue (tp);
2adfaa28 3113 }
31e77af2 3114
4d9d9d04 3115 tp = current;
30852783
UW
3116 }
3117
4d9d9d04
PA
3118 /* Enqueue the current thread last, so that we move all other
3119 threads over their breakpoints first. */
3120 if (tp->stepping_over_breakpoint)
3121 thread_step_over_chain_enqueue (tp);
30852783 3122
4d9d9d04
PA
3123 /* If the thread isn't started, we'll still need to set its prev_pc,
3124 so that switch_back_to_stepped_thread knows the thread hasn't
3125 advanced. Must do this before resuming any thread, as in
3126 all-stop/remote, once we resume we can't send any other packet
3127 until the target stops again. */
3128 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3129
a9bc57b9
TT
3130 {
3131 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3132
a9bc57b9 3133 started = start_step_over ();
c906108c 3134
a9bc57b9
TT
3135 if (step_over_info_valid_p ())
3136 {
3137 /* Either this thread started a new in-line step over, or some
3138 other thread was already doing one. In either case, don't
3139 resume anything else until the step-over is finished. */
3140 }
3141 else if (started && !target_is_non_stop_p ())
3142 {
3143 /* A new displaced stepping sequence was started. In all-stop,
3144 we can't talk to the target anymore until it next stops. */
3145 }
3146 else if (!non_stop && target_is_non_stop_p ())
3147 {
3148 /* In all-stop, but the target is always in non-stop mode.
3149 Start all other threads that are implicitly resumed too. */
3150 ALL_NON_EXITED_THREADS (tp)
fbea99ea
PA
3151 {
3152 /* Ignore threads of processes we're not resuming. */
3153 if (!ptid_match (tp->ptid, resume_ptid))
3154 continue;
3155
3156 if (tp->resumed)
3157 {
3158 if (debug_infrun)
3159 fprintf_unfiltered (gdb_stdlog,
3160 "infrun: proceed: [%s] resumed\n",
3161 target_pid_to_str (tp->ptid));
3162 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3163 continue;
3164 }
3165
3166 if (thread_is_in_step_over_chain (tp))
3167 {
3168 if (debug_infrun)
3169 fprintf_unfiltered (gdb_stdlog,
3170 "infrun: proceed: [%s] needs step-over\n",
3171 target_pid_to_str (tp->ptid));
3172 continue;
3173 }
3174
3175 if (debug_infrun)
3176 fprintf_unfiltered (gdb_stdlog,
3177 "infrun: proceed: resuming %s\n",
3178 target_pid_to_str (tp->ptid));
3179
3180 reset_ecs (ecs, tp);
3181 switch_to_thread (tp->ptid);
3182 keep_going_pass_signal (ecs);
3183 if (!ecs->wait_some_more)
fd7dcb94 3184 error (_("Command aborted."));
fbea99ea 3185 }
a9bc57b9
TT
3186 }
3187 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3188 {
3189 /* The thread wasn't started, and isn't queued, run it now. */
3190 reset_ecs (ecs, tp);
3191 switch_to_thread (tp->ptid);
3192 keep_going_pass_signal (ecs);
3193 if (!ecs->wait_some_more)
3194 error (_("Command aborted."));
3195 }
3196 }
c906108c 3197
85ad3aaf
PA
3198 target_commit_resume ();
3199
4d9d9d04 3200 discard_cleanups (old_chain);
c906108c 3201
0b333c5e
PA
3202 /* Tell the event loop to wait for it to stop. If the target
3203 supports asynchronous execution, it'll do this from within
3204 target_resume. */
362646f5 3205 if (!target_can_async_p ())
0b333c5e 3206 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3207}
c906108c
SS
3208\f
3209
3210/* Start remote-debugging of a machine over a serial link. */
96baa820 3211
c906108c 3212void
8621d6a9 3213start_remote (int from_tty)
c906108c 3214{
d6b48e9c 3215 struct inferior *inferior;
d6b48e9c
PA
3216
3217 inferior = current_inferior ();
16c381f0 3218 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3219
1777feb0 3220 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3221 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3222 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3223 nothing is returned (instead of just blocking). Because of this,
3224 targets expecting an immediate response need to, internally, set
3225 things up so that the target_wait() is forced to eventually
1777feb0 3226 timeout. */
6426a772
JM
3227 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3228 differentiate to its caller what the state of the target is after
3229 the initial open has been performed. Here we're assuming that
3230 the target has stopped. It should be possible to eventually have
3231 target_open() return to the caller an indication that the target
3232 is currently running and GDB state should be set to the same as
1777feb0 3233 for an async run. */
e4c8541f 3234 wait_for_inferior ();
8621d6a9
DJ
3235
3236 /* Now that the inferior has stopped, do any bookkeeping like
3237 loading shared libraries. We want to do this before normal_stop,
3238 so that the displayed frame is up to date. */
3239 post_create_inferior (&current_target, from_tty);
3240
6426a772 3241 normal_stop ();
c906108c
SS
3242}
3243
3244/* Initialize static vars when a new inferior begins. */
3245
3246void
96baa820 3247init_wait_for_inferior (void)
c906108c
SS
3248{
3249 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3250
c906108c
SS
3251 breakpoint_init_inferior (inf_starting);
3252
70509625 3253 clear_proceed_status (0);
9f976b41 3254
ca005067 3255 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3256
842951eb 3257 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3258
edb3359d
DJ
3259 /* Discard any skipped inlined frames. */
3260 clear_inline_frame_state (minus_one_ptid);
c906108c 3261}
237fc4c9 3262
c906108c 3263\f
488f131b 3264
ec9499be 3265static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3266
568d6575
UW
3267static void handle_step_into_function (struct gdbarch *gdbarch,
3268 struct execution_control_state *ecs);
3269static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3270 struct execution_control_state *ecs);
4f5d7f63 3271static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3272static void check_exception_resume (struct execution_control_state *,
28106bc2 3273 struct frame_info *);
611c83ae 3274
bdc36728 3275static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3276static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3277static void keep_going (struct execution_control_state *ecs);
94c57d6a 3278static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3279static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3280
252fbfc8
PA
3281/* This function is attached as a "thread_stop_requested" observer.
3282 Cleanup local state that assumed the PTID was to be resumed, and
3283 report the stop to the frontend. */
3284
2c0b251b 3285static void
252fbfc8
PA
3286infrun_thread_stop_requested (ptid_t ptid)
3287{
c2829269 3288 struct thread_info *tp;
252fbfc8 3289
c65d6b55
PA
3290 /* PTID was requested to stop. If the thread was already stopped,
3291 but the user/frontend doesn't know about that yet (e.g., the
3292 thread had been temporarily paused for some step-over), set up
3293 for reporting the stop now. */
c2829269
PA
3294 ALL_NON_EXITED_THREADS (tp)
3295 if (ptid_match (tp->ptid, ptid))
3296 {
c65d6b55
PA
3297 if (tp->state != THREAD_RUNNING)
3298 continue;
3299 if (tp->executing)
3300 continue;
3301
3302 /* Remove matching threads from the step-over queue, so
3303 start_step_over doesn't try to resume them
3304 automatically. */
c2829269
PA
3305 if (thread_is_in_step_over_chain (tp))
3306 thread_step_over_chain_remove (tp);
252fbfc8 3307
c65d6b55
PA
3308 /* If the thread is stopped, but the user/frontend doesn't
3309 know about that yet, queue a pending event, as if the
3310 thread had just stopped now. Unless the thread already had
3311 a pending event. */
3312 if (!tp->suspend.waitstatus_pending_p)
3313 {
3314 tp->suspend.waitstatus_pending_p = 1;
3315 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3316 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3317 }
3318
3319 /* Clear the inline-frame state, since we're re-processing the
3320 stop. */
3321 clear_inline_frame_state (tp->ptid);
3322
3323 /* If this thread was paused because some other thread was
3324 doing an inline-step over, let that finish first. Once
3325 that happens, we'll restart all threads and consume pending
3326 stop events then. */
3327 if (step_over_info_valid_p ())
3328 continue;
3329
3330 /* Otherwise we can process the (new) pending event now. Set
3331 it so this pending event is considered by
3332 do_target_wait. */
3333 tp->resumed = 1;
3334 }
252fbfc8
PA
3335}
3336
a07daef3
PA
3337static void
3338infrun_thread_thread_exit (struct thread_info *tp, int silent)
3339{
3340 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3341 nullify_last_target_wait_ptid ();
3342}
3343
0cbcdb96
PA
3344/* Delete the step resume, single-step and longjmp/exception resume
3345 breakpoints of TP. */
4e1c45ea 3346
0cbcdb96
PA
3347static void
3348delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3349{
0cbcdb96
PA
3350 delete_step_resume_breakpoint (tp);
3351 delete_exception_resume_breakpoint (tp);
34b7e8a6 3352 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3353}
3354
0cbcdb96
PA
3355/* If the target still has execution, call FUNC for each thread that
3356 just stopped. In all-stop, that's all the non-exited threads; in
3357 non-stop, that's the current thread, only. */
3358
3359typedef void (*for_each_just_stopped_thread_callback_func)
3360 (struct thread_info *tp);
4e1c45ea
PA
3361
3362static void
0cbcdb96 3363for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3364{
0cbcdb96 3365 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3366 return;
3367
fbea99ea 3368 if (target_is_non_stop_p ())
4e1c45ea 3369 {
0cbcdb96
PA
3370 /* If in non-stop mode, only the current thread stopped. */
3371 func (inferior_thread ());
4e1c45ea
PA
3372 }
3373 else
0cbcdb96
PA
3374 {
3375 struct thread_info *tp;
3376
3377 /* In all-stop mode, all threads have stopped. */
3378 ALL_NON_EXITED_THREADS (tp)
3379 {
3380 func (tp);
3381 }
3382 }
3383}
3384
3385/* Delete the step resume and longjmp/exception resume breakpoints of
3386 the threads that just stopped. */
3387
3388static void
3389delete_just_stopped_threads_infrun_breakpoints (void)
3390{
3391 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3392}
3393
3394/* Delete the single-step breakpoints of the threads that just
3395 stopped. */
7c16b83e 3396
34b7e8a6
PA
3397static void
3398delete_just_stopped_threads_single_step_breakpoints (void)
3399{
3400 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3401}
3402
1777feb0 3403/* A cleanup wrapper. */
4e1c45ea
PA
3404
3405static void
0cbcdb96 3406delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3407{
0cbcdb96 3408 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3409}
3410
221e1a37 3411/* See infrun.h. */
223698f8 3412
221e1a37 3413void
223698f8
DE
3414print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3415 const struct target_waitstatus *ws)
3416{
23fdd69e 3417 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3418 string_file stb;
223698f8
DE
3419
3420 /* The text is split over several lines because it was getting too long.
3421 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3422 output as a unit; we want only one timestamp printed if debug_timestamp
3423 is set. */
3424
d7e74731
PA
3425 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3426 ptid_get_pid (waiton_ptid),
3427 ptid_get_lwp (waiton_ptid),
3428 ptid_get_tid (waiton_ptid));
dfd4cc63 3429 if (ptid_get_pid (waiton_ptid) != -1)
d7e74731
PA
3430 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3431 stb.printf (", status) =\n");
3432 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3433 ptid_get_pid (result_ptid),
3434 ptid_get_lwp (result_ptid),
3435 ptid_get_tid (result_ptid),
3436 target_pid_to_str (result_ptid));
23fdd69e 3437 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3438
3439 /* This uses %s in part to handle %'s in the text, but also to avoid
3440 a gcc error: the format attribute requires a string literal. */
d7e74731 3441 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3442}
3443
372316f1
PA
3444/* Select a thread at random, out of those which are resumed and have
3445 had events. */
3446
3447static struct thread_info *
3448random_pending_event_thread (ptid_t waiton_ptid)
3449{
3450 struct thread_info *event_tp;
3451 int num_events = 0;
3452 int random_selector;
3453
3454 /* First see how many events we have. Count only resumed threads
3455 that have an event pending. */
3456 ALL_NON_EXITED_THREADS (event_tp)
3457 if (ptid_match (event_tp->ptid, waiton_ptid)
3458 && event_tp->resumed
3459 && event_tp->suspend.waitstatus_pending_p)
3460 num_events++;
3461
3462 if (num_events == 0)
3463 return NULL;
3464
3465 /* Now randomly pick a thread out of those that have had events. */
3466 random_selector = (int)
3467 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3468
3469 if (debug_infrun && num_events > 1)
3470 fprintf_unfiltered (gdb_stdlog,
3471 "infrun: Found %d events, selecting #%d\n",
3472 num_events, random_selector);
3473
3474 /* Select the Nth thread that has had an event. */
3475 ALL_NON_EXITED_THREADS (event_tp)
3476 if (ptid_match (event_tp->ptid, waiton_ptid)
3477 && event_tp->resumed
3478 && event_tp->suspend.waitstatus_pending_p)
3479 if (random_selector-- == 0)
3480 break;
3481
3482 return event_tp;
3483}
3484
3485/* Wrapper for target_wait that first checks whether threads have
3486 pending statuses to report before actually asking the target for
3487 more events. */
3488
3489static ptid_t
3490do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3491{
3492 ptid_t event_ptid;
3493 struct thread_info *tp;
3494
3495 /* First check if there is a resumed thread with a wait status
3496 pending. */
3497 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3498 {
3499 tp = random_pending_event_thread (ptid);
3500 }
3501 else
3502 {
3503 if (debug_infrun)
3504 fprintf_unfiltered (gdb_stdlog,
3505 "infrun: Waiting for specific thread %s.\n",
3506 target_pid_to_str (ptid));
3507
3508 /* We have a specific thread to check. */
3509 tp = find_thread_ptid (ptid);
3510 gdb_assert (tp != NULL);
3511 if (!tp->suspend.waitstatus_pending_p)
3512 tp = NULL;
3513 }
3514
3515 if (tp != NULL
3516 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3517 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3518 {
3519 struct regcache *regcache = get_thread_regcache (tp->ptid);
3520 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3521 CORE_ADDR pc;
3522 int discard = 0;
3523
3524 pc = regcache_read_pc (regcache);
3525
3526 if (pc != tp->suspend.stop_pc)
3527 {
3528 if (debug_infrun)
3529 fprintf_unfiltered (gdb_stdlog,
3530 "infrun: PC of %s changed. was=%s, now=%s\n",
3531 target_pid_to_str (tp->ptid),
3532 paddress (gdbarch, tp->prev_pc),
3533 paddress (gdbarch, pc));
3534 discard = 1;
3535 }
3536 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3537 {
3538 if (debug_infrun)
3539 fprintf_unfiltered (gdb_stdlog,
3540 "infrun: previous breakpoint of %s, at %s gone\n",
3541 target_pid_to_str (tp->ptid),
3542 paddress (gdbarch, pc));
3543
3544 discard = 1;
3545 }
3546
3547 if (discard)
3548 {
3549 if (debug_infrun)
3550 fprintf_unfiltered (gdb_stdlog,
3551 "infrun: pending event of %s cancelled.\n",
3552 target_pid_to_str (tp->ptid));
3553
3554 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3555 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3556 }
3557 }
3558
3559 if (tp != NULL)
3560 {
3561 if (debug_infrun)
3562 {
23fdd69e
SM
3563 std::string statstr
3564 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3565
372316f1
PA
3566 fprintf_unfiltered (gdb_stdlog,
3567 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3568 statstr.c_str (),
372316f1 3569 target_pid_to_str (tp->ptid));
372316f1
PA
3570 }
3571
3572 /* Now that we've selected our final event LWP, un-adjust its PC
3573 if it was a software breakpoint (and the target doesn't
3574 always adjust the PC itself). */
3575 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3576 && !target_supports_stopped_by_sw_breakpoint ())
3577 {
3578 struct regcache *regcache;
3579 struct gdbarch *gdbarch;
3580 int decr_pc;
3581
3582 regcache = get_thread_regcache (tp->ptid);
3583 gdbarch = get_regcache_arch (regcache);
3584
3585 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3586 if (decr_pc != 0)
3587 {
3588 CORE_ADDR pc;
3589
3590 pc = regcache_read_pc (regcache);
3591 regcache_write_pc (regcache, pc + decr_pc);
3592 }
3593 }
3594
3595 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3596 *status = tp->suspend.waitstatus;
3597 tp->suspend.waitstatus_pending_p = 0;
3598
3599 /* Wake up the event loop again, until all pending events are
3600 processed. */
3601 if (target_is_async_p ())
3602 mark_async_event_handler (infrun_async_inferior_event_token);
3603 return tp->ptid;
3604 }
3605
3606 /* But if we don't find one, we'll have to wait. */
3607
3608 if (deprecated_target_wait_hook)
3609 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3610 else
3611 event_ptid = target_wait (ptid, status, options);
3612
3613 return event_ptid;
3614}
3615
24291992
PA
3616/* Prepare and stabilize the inferior for detaching it. E.g.,
3617 detaching while a thread is displaced stepping is a recipe for
3618 crashing it, as nothing would readjust the PC out of the scratch
3619 pad. */
3620
3621void
3622prepare_for_detach (void)
3623{
3624 struct inferior *inf = current_inferior ();
3625 ptid_t pid_ptid = pid_to_ptid (inf->pid);
24291992
PA
3626 struct displaced_step_inferior_state *displaced;
3627
3628 displaced = get_displaced_stepping_state (inf->pid);
3629
3630 /* Is any thread of this process displaced stepping? If not,
3631 there's nothing else to do. */
3632 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3633 return;
3634
3635 if (debug_infrun)
3636 fprintf_unfiltered (gdb_stdlog,
3637 "displaced-stepping in-process while detaching");
3638
9bcb1f16 3639 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992
PA
3640
3641 while (!ptid_equal (displaced->step_ptid, null_ptid))
3642 {
3643 struct cleanup *old_chain_2;
3644 struct execution_control_state ecss;
3645 struct execution_control_state *ecs;
3646
3647 ecs = &ecss;
3648 memset (ecs, 0, sizeof (*ecs));
3649
3650 overlay_cache_invalid = 1;
f15cb84a
YQ
3651 /* Flush target cache before starting to handle each event.
3652 Target was running and cache could be stale. This is just a
3653 heuristic. Running threads may modify target memory, but we
3654 don't get any event. */
3655 target_dcache_invalidate ();
24291992 3656
372316f1 3657 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3658
3659 if (debug_infrun)
3660 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3661
3662 /* If an error happens while handling the event, propagate GDB's
3663 knowledge of the executing state to the frontend/user running
3664 state. */
3e43a32a
MS
3665 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3666 &minus_one_ptid);
24291992
PA
3667
3668 /* Now figure out what to do with the result of the result. */
3669 handle_inferior_event (ecs);
3670
3671 /* No error, don't finish the state yet. */
3672 discard_cleanups (old_chain_2);
3673
3674 /* Breakpoints and watchpoints are not installed on the target
3675 at this point, and signals are passed directly to the
3676 inferior, so this must mean the process is gone. */
3677 if (!ecs->wait_some_more)
3678 {
9bcb1f16 3679 restore_detaching.release ();
24291992
PA
3680 error (_("Program exited while detaching"));
3681 }
3682 }
3683
9bcb1f16 3684 restore_detaching.release ();
24291992
PA
3685}
3686
cd0fc7c3 3687/* Wait for control to return from inferior to debugger.
ae123ec6 3688
cd0fc7c3
SS
3689 If inferior gets a signal, we may decide to start it up again
3690 instead of returning. That is why there is a loop in this function.
3691 When this function actually returns it means the inferior
3692 should be left stopped and GDB should read more commands. */
3693
3694void
e4c8541f 3695wait_for_inferior (void)
cd0fc7c3
SS
3696{
3697 struct cleanup *old_cleanups;
e6f5c25b 3698 struct cleanup *thread_state_chain;
c906108c 3699
527159b7 3700 if (debug_infrun)
ae123ec6 3701 fprintf_unfiltered
e4c8541f 3702 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3703
0cbcdb96
PA
3704 old_cleanups
3705 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3706 NULL);
cd0fc7c3 3707
e6f5c25b
PA
3708 /* If an error happens while handling the event, propagate GDB's
3709 knowledge of the executing state to the frontend/user running
3710 state. */
3711 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3712
c906108c
SS
3713 while (1)
3714 {
ae25568b
PA
3715 struct execution_control_state ecss;
3716 struct execution_control_state *ecs = &ecss;
963f9c80 3717 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3718
ae25568b
PA
3719 memset (ecs, 0, sizeof (*ecs));
3720
ec9499be 3721 overlay_cache_invalid = 1;
ec9499be 3722
f15cb84a
YQ
3723 /* Flush target cache before starting to handle each event.
3724 Target was running and cache could be stale. This is just a
3725 heuristic. Running threads may modify target memory, but we
3726 don't get any event. */
3727 target_dcache_invalidate ();
3728
372316f1 3729 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3730
f00150c9 3731 if (debug_infrun)
223698f8 3732 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3733
cd0fc7c3
SS
3734 /* Now figure out what to do with the result of the result. */
3735 handle_inferior_event (ecs);
c906108c 3736
cd0fc7c3
SS
3737 if (!ecs->wait_some_more)
3738 break;
3739 }
4e1c45ea 3740
e6f5c25b
PA
3741 /* No error, don't finish the state yet. */
3742 discard_cleanups (thread_state_chain);
3743
cd0fc7c3
SS
3744 do_cleanups (old_cleanups);
3745}
c906108c 3746
d3d4baed
PA
3747/* Cleanup that reinstalls the readline callback handler, if the
3748 target is running in the background. If while handling the target
3749 event something triggered a secondary prompt, like e.g., a
3750 pagination prompt, we'll have removed the callback handler (see
3751 gdb_readline_wrapper_line). Need to do this as we go back to the
3752 event loop, ready to process further input. Note this has no
3753 effect if the handler hasn't actually been removed, because calling
3754 rl_callback_handler_install resets the line buffer, thus losing
3755 input. */
3756
3757static void
3758reinstall_readline_callback_handler_cleanup (void *arg)
3759{
3b12939d
PA
3760 struct ui *ui = current_ui;
3761
3762 if (!ui->async)
6c400b59
PA
3763 {
3764 /* We're not going back to the top level event loop yet. Don't
3765 install the readline callback, as it'd prep the terminal,
3766 readline-style (raw, noecho) (e.g., --batch). We'll install
3767 it the next time the prompt is displayed, when we're ready
3768 for input. */
3769 return;
3770 }
3771
3b12939d 3772 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3773 gdb_rl_callback_handler_reinstall ();
3774}
3775
243a9253
PA
3776/* Clean up the FSMs of threads that are now stopped. In non-stop,
3777 that's just the event thread. In all-stop, that's all threads. */
3778
3779static void
3780clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3781{
3782 struct thread_info *thr = ecs->event_thread;
3783
3784 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3785 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3786
3787 if (!non_stop)
3788 {
3789 ALL_NON_EXITED_THREADS (thr)
3790 {
3791 if (thr->thread_fsm == NULL)
3792 continue;
3793 if (thr == ecs->event_thread)
3794 continue;
3795
3796 switch_to_thread (thr->ptid);
8980e177 3797 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3798 }
3799
3800 if (ecs->event_thread != NULL)
3801 switch_to_thread (ecs->event_thread->ptid);
3802 }
3803}
3804
3b12939d
PA
3805/* Helper for all_uis_check_sync_execution_done that works on the
3806 current UI. */
3807
3808static void
3809check_curr_ui_sync_execution_done (void)
3810{
3811 struct ui *ui = current_ui;
3812
3813 if (ui->prompt_state == PROMPT_NEEDED
3814 && ui->async
3815 && !gdb_in_secondary_prompt_p (ui))
3816 {
223ffa71 3817 target_terminal::ours ();
3b12939d 3818 observer_notify_sync_execution_done ();
3eb7562a 3819 ui_register_input_event_handler (ui);
3b12939d
PA
3820 }
3821}
3822
3823/* See infrun.h. */
3824
3825void
3826all_uis_check_sync_execution_done (void)
3827{
0e454242 3828 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3829 {
3830 check_curr_ui_sync_execution_done ();
3831 }
3832}
3833
a8836c93
PA
3834/* See infrun.h. */
3835
3836void
3837all_uis_on_sync_execution_starting (void)
3838{
0e454242 3839 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3840 {
3841 if (current_ui->prompt_state == PROMPT_NEEDED)
3842 async_disable_stdin ();
3843 }
3844}
3845
1777feb0 3846/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3847 event loop whenever a change of state is detected on the file
1777feb0
MS
3848 descriptor corresponding to the target. It can be called more than
3849 once to complete a single execution command. In such cases we need
3850 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3851 that this function is called for a single execution command, then
3852 report to the user that the inferior has stopped, and do the
1777feb0 3853 necessary cleanups. */
43ff13b4
JM
3854
3855void
fba45db2 3856fetch_inferior_event (void *client_data)
43ff13b4 3857{
0d1e5fa7 3858 struct execution_control_state ecss;
a474d7c2 3859 struct execution_control_state *ecs = &ecss;
4f8d22e3 3860 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3861 struct cleanup *ts_old_chain;
0f641c01 3862 int cmd_done = 0;
963f9c80 3863 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3864
0d1e5fa7
PA
3865 memset (ecs, 0, sizeof (*ecs));
3866
c61db772
PA
3867 /* Events are always processed with the main UI as current UI. This
3868 way, warnings, debug output, etc. are always consistently sent to
3869 the main console. */
4b6749b9 3870 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3871
d3d4baed
PA
3872 /* End up with readline processing input, if necessary. */
3873 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3874
c5187ac6
PA
3875 /* We're handling a live event, so make sure we're doing live
3876 debugging. If we're looking at traceframes while the target is
3877 running, we're going to need to get back to that mode after
3878 handling the event. */
3879 if (non_stop)
3880 {
3881 make_cleanup_restore_current_traceframe ();
e6e4e701 3882 set_current_traceframe (-1);
c5187ac6
PA
3883 }
3884
5ed8105e
PA
3885 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3886
4f8d22e3
PA
3887 if (non_stop)
3888 /* In non-stop mode, the user/frontend should not notice a thread
3889 switch due to internal events. Make sure we reverse to the
3890 user selected thread and frame after handling the event and
3891 running any breakpoint commands. */
5ed8105e 3892 maybe_restore_thread.emplace ();
4f8d22e3 3893
ec9499be 3894 overlay_cache_invalid = 1;
f15cb84a
YQ
3895 /* Flush target cache before starting to handle each event. Target
3896 was running and cache could be stale. This is just a heuristic.
3897 Running threads may modify target memory, but we don't get any
3898 event. */
3899 target_dcache_invalidate ();
3dd5b83d 3900
b7b633e9
TT
3901 scoped_restore save_exec_dir
3902 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3903
0b333c5e
PA
3904 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3905 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3906
f00150c9 3907 if (debug_infrun)
223698f8 3908 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3909
29f49a6a
PA
3910 /* If an error happens while handling the event, propagate GDB's
3911 knowledge of the executing state to the frontend/user running
3912 state. */
fbea99ea 3913 if (!target_is_non_stop_p ())
29f49a6a
PA
3914 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3915 else
3916 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3917
353d1d73
JK
3918 /* Get executed before make_cleanup_restore_current_thread above to apply
3919 still for the thread which has thrown the exception. */
3920 make_bpstat_clear_actions_cleanup ();
3921
7c16b83e
PA
3922 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3923
43ff13b4 3924 /* Now figure out what to do with the result of the result. */
a474d7c2 3925 handle_inferior_event (ecs);
43ff13b4 3926
a474d7c2 3927 if (!ecs->wait_some_more)
43ff13b4 3928 {
c9657e70 3929 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3930 int should_stop = 1;
3931 struct thread_info *thr = ecs->event_thread;
388a7084 3932 int should_notify_stop = 1;
d6b48e9c 3933
0cbcdb96 3934 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3935
243a9253
PA
3936 if (thr != NULL)
3937 {
3938 struct thread_fsm *thread_fsm = thr->thread_fsm;
3939
3940 if (thread_fsm != NULL)
8980e177 3941 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3942 }
3943
3944 if (!should_stop)
3945 {
3946 keep_going (ecs);
3947 }
c2d11a7d 3948 else
0f641c01 3949 {
243a9253
PA
3950 clean_up_just_stopped_threads_fsms (ecs);
3951
388a7084
PA
3952 if (thr != NULL && thr->thread_fsm != NULL)
3953 {
3954 should_notify_stop
3955 = thread_fsm_should_notify_stop (thr->thread_fsm);
3956 }
3957
3958 if (should_notify_stop)
3959 {
4c2f2a79
PA
3960 int proceeded = 0;
3961
388a7084
PA
3962 /* We may not find an inferior if this was a process exit. */
3963 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3964 proceeded = normal_stop ();
243a9253 3965
4c2f2a79
PA
3966 if (!proceeded)
3967 {
3968 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3969 cmd_done = 1;
3970 }
388a7084 3971 }
0f641c01 3972 }
43ff13b4 3973 }
4f8d22e3 3974
29f49a6a
PA
3975 /* No error, don't finish the thread states yet. */
3976 discard_cleanups (ts_old_chain);
3977
4f8d22e3
PA
3978 /* Revert thread and frame. */
3979 do_cleanups (old_chain);
3980
3b12939d
PA
3981 /* If a UI was in sync execution mode, and now isn't, restore its
3982 prompt (a synchronous execution command has finished, and we're
3983 ready for input). */
3984 all_uis_check_sync_execution_done ();
0f641c01
PA
3985
3986 if (cmd_done
0f641c01
PA
3987 && exec_done_display_p
3988 && (ptid_equal (inferior_ptid, null_ptid)
3989 || !is_running (inferior_ptid)))
3990 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3991}
3992
edb3359d
DJ
3993/* Record the frame and location we're currently stepping through. */
3994void
3995set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3996{
3997 struct thread_info *tp = inferior_thread ();
3998
16c381f0
JK
3999 tp->control.step_frame_id = get_frame_id (frame);
4000 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4001
4002 tp->current_symtab = sal.symtab;
4003 tp->current_line = sal.line;
4004}
4005
0d1e5fa7
PA
4006/* Clear context switchable stepping state. */
4007
4008void
4e1c45ea 4009init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4010{
7f5ef605 4011 tss->stepped_breakpoint = 0;
0d1e5fa7 4012 tss->stepping_over_breakpoint = 0;
963f9c80 4013 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4014 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4015}
4016
c32c64b7
DE
4017/* Set the cached copy of the last ptid/waitstatus. */
4018
6efcd9a8 4019void
c32c64b7
DE
4020set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4021{
4022 target_last_wait_ptid = ptid;
4023 target_last_waitstatus = status;
4024}
4025
e02bc4cc 4026/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4027 target_wait()/deprecated_target_wait_hook(). The data is actually
4028 cached by handle_inferior_event(), which gets called immediately
4029 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4030
4031void
488f131b 4032get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4033{
39f77062 4034 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4035 *status = target_last_waitstatus;
4036}
4037
ac264b3b
MS
4038void
4039nullify_last_target_wait_ptid (void)
4040{
4041 target_last_wait_ptid = minus_one_ptid;
4042}
4043
dcf4fbde 4044/* Switch thread contexts. */
dd80620e
MS
4045
4046static void
0d1e5fa7 4047context_switch (ptid_t ptid)
dd80620e 4048{
4b51d87b 4049 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4050 {
4051 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4052 target_pid_to_str (inferior_ptid));
4053 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4054 target_pid_to_str (ptid));
fd48f117
DJ
4055 }
4056
0d1e5fa7 4057 switch_to_thread (ptid);
dd80620e
MS
4058}
4059
d8dd4d5f
PA
4060/* If the target can't tell whether we've hit breakpoints
4061 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4062 check whether that could have been caused by a breakpoint. If so,
4063 adjust the PC, per gdbarch_decr_pc_after_break. */
4064
4fa8626c 4065static void
d8dd4d5f
PA
4066adjust_pc_after_break (struct thread_info *thread,
4067 struct target_waitstatus *ws)
4fa8626c 4068{
24a73cce
UW
4069 struct regcache *regcache;
4070 struct gdbarch *gdbarch;
6c95b8df 4071 struct address_space *aspace;
118e6252 4072 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4073
4fa8626c
DJ
4074 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4075 we aren't, just return.
9709f61c
DJ
4076
4077 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4078 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4079 implemented by software breakpoints should be handled through the normal
4080 breakpoint layer.
8fb3e588 4081
4fa8626c
DJ
4082 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4083 different signals (SIGILL or SIGEMT for instance), but it is less
4084 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4085 gdbarch_decr_pc_after_break. I don't know any specific target that
4086 generates these signals at breakpoints (the code has been in GDB since at
4087 least 1992) so I can not guess how to handle them here.
8fb3e588 4088
e6cf7916
UW
4089 In earlier versions of GDB, a target with
4090 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4091 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4092 target with both of these set in GDB history, and it seems unlikely to be
4093 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4094
d8dd4d5f 4095 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4096 return;
4097
d8dd4d5f 4098 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4099 return;
4100
4058b839
PA
4101 /* In reverse execution, when a breakpoint is hit, the instruction
4102 under it has already been de-executed. The reported PC always
4103 points at the breakpoint address, so adjusting it further would
4104 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4105 architecture:
4106
4107 B1 0x08000000 : INSN1
4108 B2 0x08000001 : INSN2
4109 0x08000002 : INSN3
4110 PC -> 0x08000003 : INSN4
4111
4112 Say you're stopped at 0x08000003 as above. Reverse continuing
4113 from that point should hit B2 as below. Reading the PC when the
4114 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4115 been de-executed already.
4116
4117 B1 0x08000000 : INSN1
4118 B2 PC -> 0x08000001 : INSN2
4119 0x08000002 : INSN3
4120 0x08000003 : INSN4
4121
4122 We can't apply the same logic as for forward execution, because
4123 we would wrongly adjust the PC to 0x08000000, since there's a
4124 breakpoint at PC - 1. We'd then report a hit on B1, although
4125 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4126 behaviour. */
4127 if (execution_direction == EXEC_REVERSE)
4128 return;
4129
1cf4d951
PA
4130 /* If the target can tell whether the thread hit a SW breakpoint,
4131 trust it. Targets that can tell also adjust the PC
4132 themselves. */
4133 if (target_supports_stopped_by_sw_breakpoint ())
4134 return;
4135
4136 /* Note that relying on whether a breakpoint is planted in memory to
4137 determine this can fail. E.g,. the breakpoint could have been
4138 removed since. Or the thread could have been told to step an
4139 instruction the size of a breakpoint instruction, and only
4140 _after_ was a breakpoint inserted at its address. */
4141
24a73cce
UW
4142 /* If this target does not decrement the PC after breakpoints, then
4143 we have nothing to do. */
d8dd4d5f 4144 regcache = get_thread_regcache (thread->ptid);
24a73cce 4145 gdbarch = get_regcache_arch (regcache);
118e6252 4146
527a273a 4147 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4148 if (decr_pc == 0)
24a73cce
UW
4149 return;
4150
6c95b8df
PA
4151 aspace = get_regcache_aspace (regcache);
4152
8aad930b
AC
4153 /* Find the location where (if we've hit a breakpoint) the
4154 breakpoint would be. */
118e6252 4155 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4156
1cf4d951
PA
4157 /* If the target can't tell whether a software breakpoint triggered,
4158 fallback to figuring it out based on breakpoints we think were
4159 inserted in the target, and on whether the thread was stepped or
4160 continued. */
4161
1c5cfe86
PA
4162 /* Check whether there actually is a software breakpoint inserted at
4163 that location.
4164
4165 If in non-stop mode, a race condition is possible where we've
4166 removed a breakpoint, but stop events for that breakpoint were
4167 already queued and arrive later. To suppress those spurious
4168 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4169 and retire them after a number of stop events are reported. Note
4170 this is an heuristic and can thus get confused. The real fix is
4171 to get the "stopped by SW BP and needs adjustment" info out of
4172 the target/kernel (and thus never reach here; see above). */
6c95b8df 4173 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4174 || (target_is_non_stop_p ()
4175 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4176 {
07036511 4177 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4178
8213266a 4179 if (record_full_is_used ())
07036511
TT
4180 restore_operation_disable.emplace
4181 (record_full_gdb_operation_disable_set ());
96429cc8 4182
1c0fdd0e
UW
4183 /* When using hardware single-step, a SIGTRAP is reported for both
4184 a completed single-step and a software breakpoint. Need to
4185 differentiate between the two, as the latter needs adjusting
4186 but the former does not.
4187
4188 The SIGTRAP can be due to a completed hardware single-step only if
4189 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4190 - this thread is currently being stepped
4191
4192 If any of these events did not occur, we must have stopped due
4193 to hitting a software breakpoint, and have to back up to the
4194 breakpoint address.
4195
4196 As a special case, we could have hardware single-stepped a
4197 software breakpoint. In this case (prev_pc == breakpoint_pc),
4198 we also need to back up to the breakpoint address. */
4199
d8dd4d5f
PA
4200 if (thread_has_single_step_breakpoints_set (thread)
4201 || !currently_stepping (thread)
4202 || (thread->stepped_breakpoint
4203 && thread->prev_pc == breakpoint_pc))
515630c5 4204 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4205 }
4fa8626c
DJ
4206}
4207
edb3359d
DJ
4208static int
4209stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4210{
4211 for (frame = get_prev_frame (frame);
4212 frame != NULL;
4213 frame = get_prev_frame (frame))
4214 {
4215 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4216 return 1;
4217 if (get_frame_type (frame) != INLINE_FRAME)
4218 break;
4219 }
4220
4221 return 0;
4222}
4223
c65d6b55
PA
4224/* If the event thread has the stop requested flag set, pretend it
4225 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4226 target_stop). */
4227
4228static bool
4229handle_stop_requested (struct execution_control_state *ecs)
4230{
4231 if (ecs->event_thread->stop_requested)
4232 {
4233 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4234 ecs->ws.value.sig = GDB_SIGNAL_0;
4235 handle_signal_stop (ecs);
4236 return true;
4237 }
4238 return false;
4239}
4240
a96d9b2e
SDJ
4241/* Auxiliary function that handles syscall entry/return events.
4242 It returns 1 if the inferior should keep going (and GDB
4243 should ignore the event), or 0 if the event deserves to be
4244 processed. */
ca2163eb 4245
a96d9b2e 4246static int
ca2163eb 4247handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4248{
ca2163eb 4249 struct regcache *regcache;
ca2163eb
PA
4250 int syscall_number;
4251
4252 if (!ptid_equal (ecs->ptid, inferior_ptid))
4253 context_switch (ecs->ptid);
4254
4255 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4256 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4257 stop_pc = regcache_read_pc (regcache);
4258
a96d9b2e
SDJ
4259 if (catch_syscall_enabled () > 0
4260 && catching_syscall_number (syscall_number) > 0)
4261 {
4262 if (debug_infrun)
4263 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4264 syscall_number);
a96d9b2e 4265
16c381f0 4266 ecs->event_thread->control.stop_bpstat
6c95b8df 4267 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4268 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4269
c65d6b55
PA
4270 if (handle_stop_requested (ecs))
4271 return 0;
4272
ce12b012 4273 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4274 {
4275 /* Catchpoint hit. */
ca2163eb
PA
4276 return 0;
4277 }
a96d9b2e 4278 }
ca2163eb 4279
c65d6b55
PA
4280 if (handle_stop_requested (ecs))
4281 return 0;
4282
ca2163eb 4283 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4284 keep_going (ecs);
4285 return 1;
a96d9b2e
SDJ
4286}
4287
7e324e48
GB
4288/* Lazily fill in the execution_control_state's stop_func_* fields. */
4289
4290static void
4291fill_in_stop_func (struct gdbarch *gdbarch,
4292 struct execution_control_state *ecs)
4293{
4294 if (!ecs->stop_func_filled_in)
4295 {
4296 /* Don't care about return value; stop_func_start and stop_func_name
4297 will both be 0 if it doesn't work. */
4298 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4299 &ecs->stop_func_start, &ecs->stop_func_end);
4300 ecs->stop_func_start
4301 += gdbarch_deprecated_function_start_offset (gdbarch);
4302
591a12a1
UW
4303 if (gdbarch_skip_entrypoint_p (gdbarch))
4304 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4305 ecs->stop_func_start);
4306
7e324e48
GB
4307 ecs->stop_func_filled_in = 1;
4308 }
4309}
4310
4f5d7f63
PA
4311
4312/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4313
4314static enum stop_kind
4315get_inferior_stop_soon (ptid_t ptid)
4316{
c9657e70 4317 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4318
4319 gdb_assert (inf != NULL);
4320 return inf->control.stop_soon;
4321}
4322
372316f1
PA
4323/* Wait for one event. Store the resulting waitstatus in WS, and
4324 return the event ptid. */
4325
4326static ptid_t
4327wait_one (struct target_waitstatus *ws)
4328{
4329 ptid_t event_ptid;
4330 ptid_t wait_ptid = minus_one_ptid;
4331
4332 overlay_cache_invalid = 1;
4333
4334 /* Flush target cache before starting to handle each event.
4335 Target was running and cache could be stale. This is just a
4336 heuristic. Running threads may modify target memory, but we
4337 don't get any event. */
4338 target_dcache_invalidate ();
4339
4340 if (deprecated_target_wait_hook)
4341 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4342 else
4343 event_ptid = target_wait (wait_ptid, ws, 0);
4344
4345 if (debug_infrun)
4346 print_target_wait_results (wait_ptid, event_ptid, ws);
4347
4348 return event_ptid;
4349}
4350
4351/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4352 instead of the current thread. */
4353#define THREAD_STOPPED_BY(REASON) \
4354static int \
4355thread_stopped_by_ ## REASON (ptid_t ptid) \
4356{ \
2989a365 4357 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4358 inferior_ptid = ptid; \
4359 \
2989a365 4360 return target_stopped_by_ ## REASON (); \
372316f1
PA
4361}
4362
4363/* Generate thread_stopped_by_watchpoint. */
4364THREAD_STOPPED_BY (watchpoint)
4365/* Generate thread_stopped_by_sw_breakpoint. */
4366THREAD_STOPPED_BY (sw_breakpoint)
4367/* Generate thread_stopped_by_hw_breakpoint. */
4368THREAD_STOPPED_BY (hw_breakpoint)
4369
4370/* Cleanups that switches to the PTID pointed at by PTID_P. */
4371
4372static void
4373switch_to_thread_cleanup (void *ptid_p)
4374{
4375 ptid_t ptid = *(ptid_t *) ptid_p;
4376
4377 switch_to_thread (ptid);
4378}
4379
4380/* Save the thread's event and stop reason to process it later. */
4381
4382static void
4383save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4384{
4385 struct regcache *regcache;
4386 struct address_space *aspace;
4387
4388 if (debug_infrun)
4389 {
23fdd69e 4390 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4391
372316f1
PA
4392 fprintf_unfiltered (gdb_stdlog,
4393 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4394 statstr.c_str (),
372316f1
PA
4395 ptid_get_pid (tp->ptid),
4396 ptid_get_lwp (tp->ptid),
4397 ptid_get_tid (tp->ptid));
372316f1
PA
4398 }
4399
4400 /* Record for later. */
4401 tp->suspend.waitstatus = *ws;
4402 tp->suspend.waitstatus_pending_p = 1;
4403
4404 regcache = get_thread_regcache (tp->ptid);
4405 aspace = get_regcache_aspace (regcache);
4406
4407 if (ws->kind == TARGET_WAITKIND_STOPPED
4408 && ws->value.sig == GDB_SIGNAL_TRAP)
4409 {
4410 CORE_ADDR pc = regcache_read_pc (regcache);
4411
4412 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4413
4414 if (thread_stopped_by_watchpoint (tp->ptid))
4415 {
4416 tp->suspend.stop_reason
4417 = TARGET_STOPPED_BY_WATCHPOINT;
4418 }
4419 else if (target_supports_stopped_by_sw_breakpoint ()
4420 && thread_stopped_by_sw_breakpoint (tp->ptid))
4421 {
4422 tp->suspend.stop_reason
4423 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4424 }
4425 else if (target_supports_stopped_by_hw_breakpoint ()
4426 && thread_stopped_by_hw_breakpoint (tp->ptid))
4427 {
4428 tp->suspend.stop_reason
4429 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4430 }
4431 else if (!target_supports_stopped_by_hw_breakpoint ()
4432 && hardware_breakpoint_inserted_here_p (aspace,
4433 pc))
4434 {
4435 tp->suspend.stop_reason
4436 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4437 }
4438 else if (!target_supports_stopped_by_sw_breakpoint ()
4439 && software_breakpoint_inserted_here_p (aspace,
4440 pc))
4441 {
4442 tp->suspend.stop_reason
4443 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4444 }
4445 else if (!thread_has_single_step_breakpoints_set (tp)
4446 && currently_stepping (tp))
4447 {
4448 tp->suspend.stop_reason
4449 = TARGET_STOPPED_BY_SINGLE_STEP;
4450 }
4451 }
4452}
4453
65706a29
PA
4454/* A cleanup that disables thread create/exit events. */
4455
4456static void
4457disable_thread_events (void *arg)
4458{
4459 target_thread_events (0);
4460}
4461
6efcd9a8 4462/* See infrun.h. */
372316f1 4463
6efcd9a8 4464void
372316f1
PA
4465stop_all_threads (void)
4466{
4467 /* We may need multiple passes to discover all threads. */
4468 int pass;
4469 int iterations = 0;
4470 ptid_t entry_ptid;
4471 struct cleanup *old_chain;
4472
fbea99ea 4473 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4474
4475 if (debug_infrun)
4476 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4477
4478 entry_ptid = inferior_ptid;
4479 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4480
65706a29
PA
4481 target_thread_events (1);
4482 make_cleanup (disable_thread_events, NULL);
4483
372316f1
PA
4484 /* Request threads to stop, and then wait for the stops. Because
4485 threads we already know about can spawn more threads while we're
4486 trying to stop them, and we only learn about new threads when we
4487 update the thread list, do this in a loop, and keep iterating
4488 until two passes find no threads that need to be stopped. */
4489 for (pass = 0; pass < 2; pass++, iterations++)
4490 {
4491 if (debug_infrun)
4492 fprintf_unfiltered (gdb_stdlog,
4493 "infrun: stop_all_threads, pass=%d, "
4494 "iterations=%d\n", pass, iterations);
4495 while (1)
4496 {
4497 ptid_t event_ptid;
4498 struct target_waitstatus ws;
4499 int need_wait = 0;
4500 struct thread_info *t;
4501
4502 update_thread_list ();
4503
4504 /* Go through all threads looking for threads that we need
4505 to tell the target to stop. */
4506 ALL_NON_EXITED_THREADS (t)
4507 {
4508 if (t->executing)
4509 {
4510 /* If already stopping, don't request a stop again.
4511 We just haven't seen the notification yet. */
4512 if (!t->stop_requested)
4513 {
4514 if (debug_infrun)
4515 fprintf_unfiltered (gdb_stdlog,
4516 "infrun: %s executing, "
4517 "need stop\n",
4518 target_pid_to_str (t->ptid));
4519 target_stop (t->ptid);
4520 t->stop_requested = 1;
4521 }
4522 else
4523 {
4524 if (debug_infrun)
4525 fprintf_unfiltered (gdb_stdlog,
4526 "infrun: %s executing, "
4527 "already stopping\n",
4528 target_pid_to_str (t->ptid));
4529 }
4530
4531 if (t->stop_requested)
4532 need_wait = 1;
4533 }
4534 else
4535 {
4536 if (debug_infrun)
4537 fprintf_unfiltered (gdb_stdlog,
4538 "infrun: %s not executing\n",
4539 target_pid_to_str (t->ptid));
4540
4541 /* The thread may be not executing, but still be
4542 resumed with a pending status to process. */
4543 t->resumed = 0;
4544 }
4545 }
4546
4547 if (!need_wait)
4548 break;
4549
4550 /* If we find new threads on the second iteration, restart
4551 over. We want to see two iterations in a row with all
4552 threads stopped. */
4553 if (pass > 0)
4554 pass = -1;
4555
4556 event_ptid = wait_one (&ws);
4557 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4558 {
4559 /* All resumed threads exited. */
4560 }
65706a29
PA
4561 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4562 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4563 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4564 {
4565 if (debug_infrun)
4566 {
4567 ptid_t ptid = pid_to_ptid (ws.value.integer);
4568
4569 fprintf_unfiltered (gdb_stdlog,
4570 "infrun: %s exited while "
4571 "stopping threads\n",
4572 target_pid_to_str (ptid));
4573 }
4574 }
4575 else
4576 {
6efcd9a8
PA
4577 struct inferior *inf;
4578
372316f1
PA
4579 t = find_thread_ptid (event_ptid);
4580 if (t == NULL)
4581 t = add_thread (event_ptid);
4582
4583 t->stop_requested = 0;
4584 t->executing = 0;
4585 t->resumed = 0;
4586 t->control.may_range_step = 0;
4587
6efcd9a8
PA
4588 /* This may be the first time we see the inferior report
4589 a stop. */
4590 inf = find_inferior_ptid (event_ptid);
4591 if (inf->needs_setup)
4592 {
4593 switch_to_thread_no_regs (t);
4594 setup_inferior (0);
4595 }
4596
372316f1
PA
4597 if (ws.kind == TARGET_WAITKIND_STOPPED
4598 && ws.value.sig == GDB_SIGNAL_0)
4599 {
4600 /* We caught the event that we intended to catch, so
4601 there's no event pending. */
4602 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4603 t->suspend.waitstatus_pending_p = 0;
4604
4605 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4606 {
4607 /* Add it back to the step-over queue. */
4608 if (debug_infrun)
4609 {
4610 fprintf_unfiltered (gdb_stdlog,
4611 "infrun: displaced-step of %s "
4612 "canceled: adding back to the "
4613 "step-over queue\n",
4614 target_pid_to_str (t->ptid));
4615 }
4616 t->control.trap_expected = 0;
4617 thread_step_over_chain_enqueue (t);
4618 }
4619 }
4620 else
4621 {
4622 enum gdb_signal sig;
4623 struct regcache *regcache;
372316f1
PA
4624
4625 if (debug_infrun)
4626 {
23fdd69e 4627 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4628
372316f1
PA
4629 fprintf_unfiltered (gdb_stdlog,
4630 "infrun: target_wait %s, saving "
4631 "status for %d.%ld.%ld\n",
23fdd69e 4632 statstr.c_str (),
372316f1
PA
4633 ptid_get_pid (t->ptid),
4634 ptid_get_lwp (t->ptid),
4635 ptid_get_tid (t->ptid));
372316f1
PA
4636 }
4637
4638 /* Record for later. */
4639 save_waitstatus (t, &ws);
4640
4641 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4642 ? ws.value.sig : GDB_SIGNAL_0);
4643
4644 if (displaced_step_fixup (t->ptid, sig) < 0)
4645 {
4646 /* Add it back to the step-over queue. */
4647 t->control.trap_expected = 0;
4648 thread_step_over_chain_enqueue (t);
4649 }
4650
4651 regcache = get_thread_regcache (t->ptid);
4652 t->suspend.stop_pc = regcache_read_pc (regcache);
4653
4654 if (debug_infrun)
4655 {
4656 fprintf_unfiltered (gdb_stdlog,
4657 "infrun: saved stop_pc=%s for %s "
4658 "(currently_stepping=%d)\n",
4659 paddress (target_gdbarch (),
4660 t->suspend.stop_pc),
4661 target_pid_to_str (t->ptid),
4662 currently_stepping (t));
4663 }
4664 }
4665 }
4666 }
4667 }
4668
4669 do_cleanups (old_chain);
4670
4671 if (debug_infrun)
4672 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4673}
4674
f4836ba9
PA
4675/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4676
4677static int
4678handle_no_resumed (struct execution_control_state *ecs)
4679{
4680 struct inferior *inf;
4681 struct thread_info *thread;
4682
3b12939d 4683 if (target_can_async_p ())
f4836ba9 4684 {
3b12939d
PA
4685 struct ui *ui;
4686 int any_sync = 0;
f4836ba9 4687
3b12939d
PA
4688 ALL_UIS (ui)
4689 {
4690 if (ui->prompt_state == PROMPT_BLOCKED)
4691 {
4692 any_sync = 1;
4693 break;
4694 }
4695 }
4696 if (!any_sync)
4697 {
4698 /* There were no unwaited-for children left in the target, but,
4699 we're not synchronously waiting for events either. Just
4700 ignore. */
4701
4702 if (debug_infrun)
4703 fprintf_unfiltered (gdb_stdlog,
4704 "infrun: TARGET_WAITKIND_NO_RESUMED "
4705 "(ignoring: bg)\n");
4706 prepare_to_wait (ecs);
4707 return 1;
4708 }
f4836ba9
PA
4709 }
4710
4711 /* Otherwise, if we were running a synchronous execution command, we
4712 may need to cancel it and give the user back the terminal.
4713
4714 In non-stop mode, the target can't tell whether we've already
4715 consumed previous stop events, so it can end up sending us a
4716 no-resumed event like so:
4717
4718 #0 - thread 1 is left stopped
4719
4720 #1 - thread 2 is resumed and hits breakpoint
4721 -> TARGET_WAITKIND_STOPPED
4722
4723 #2 - thread 3 is resumed and exits
4724 this is the last resumed thread, so
4725 -> TARGET_WAITKIND_NO_RESUMED
4726
4727 #3 - gdb processes stop for thread 2 and decides to re-resume
4728 it.
4729
4730 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4731 thread 2 is now resumed, so the event should be ignored.
4732
4733 IOW, if the stop for thread 2 doesn't end a foreground command,
4734 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4735 event. But it could be that the event meant that thread 2 itself
4736 (or whatever other thread was the last resumed thread) exited.
4737
4738 To address this we refresh the thread list and check whether we
4739 have resumed threads _now_. In the example above, this removes
4740 thread 3 from the thread list. If thread 2 was re-resumed, we
4741 ignore this event. If we find no thread resumed, then we cancel
4742 the synchronous command show "no unwaited-for " to the user. */
4743 update_thread_list ();
4744
4745 ALL_NON_EXITED_THREADS (thread)
4746 {
4747 if (thread->executing
4748 || thread->suspend.waitstatus_pending_p)
4749 {
4750 /* There were no unwaited-for children left in the target at
4751 some point, but there are now. Just ignore. */
4752 if (debug_infrun)
4753 fprintf_unfiltered (gdb_stdlog,
4754 "infrun: TARGET_WAITKIND_NO_RESUMED "
4755 "(ignoring: found resumed)\n");
4756 prepare_to_wait (ecs);
4757 return 1;
4758 }
4759 }
4760
4761 /* Note however that we may find no resumed thread because the whole
4762 process exited meanwhile (thus updating the thread list results
4763 in an empty thread list). In this case we know we'll be getting
4764 a process exit event shortly. */
4765 ALL_INFERIORS (inf)
4766 {
4767 if (inf->pid == 0)
4768 continue;
4769
4770 thread = any_live_thread_of_process (inf->pid);
4771 if (thread == NULL)
4772 {
4773 if (debug_infrun)
4774 fprintf_unfiltered (gdb_stdlog,
4775 "infrun: TARGET_WAITKIND_NO_RESUMED "
4776 "(expect process exit)\n");
4777 prepare_to_wait (ecs);
4778 return 1;
4779 }
4780 }
4781
4782 /* Go ahead and report the event. */
4783 return 0;
4784}
4785
05ba8510
PA
4786/* Given an execution control state that has been freshly filled in by
4787 an event from the inferior, figure out what it means and take
4788 appropriate action.
4789
4790 The alternatives are:
4791
22bcd14b 4792 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4793 debugger.
4794
4795 2) keep_going and return; to wait for the next event (set
4796 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4797 once). */
c906108c 4798
ec9499be 4799static void
0b6e5e10 4800handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4801{
d6b48e9c
PA
4802 enum stop_kind stop_soon;
4803
28736962
PA
4804 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4805 {
4806 /* We had an event in the inferior, but we are not interested in
4807 handling it at this level. The lower layers have already
4808 done what needs to be done, if anything.
4809
4810 One of the possible circumstances for this is when the
4811 inferior produces output for the console. The inferior has
4812 not stopped, and we are ignoring the event. Another possible
4813 circumstance is any event which the lower level knows will be
4814 reported multiple times without an intervening resume. */
4815 if (debug_infrun)
4816 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4817 prepare_to_wait (ecs);
4818 return;
4819 }
4820
65706a29
PA
4821 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4822 {
4823 if (debug_infrun)
4824 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4825 prepare_to_wait (ecs);
4826 return;
4827 }
4828
0e5bf2a8 4829 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4830 && handle_no_resumed (ecs))
4831 return;
0e5bf2a8 4832
1777feb0 4833 /* Cache the last pid/waitstatus. */
c32c64b7 4834 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4835
ca005067 4836 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4837 stop_stack_dummy = STOP_NONE;
ca005067 4838
0e5bf2a8
PA
4839 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4840 {
4841 /* No unwaited-for children left. IOW, all resumed children
4842 have exited. */
4843 if (debug_infrun)
4844 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4845
4846 stop_print_frame = 0;
22bcd14b 4847 stop_waiting (ecs);
0e5bf2a8
PA
4848 return;
4849 }
4850
8c90c137 4851 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4852 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4853 {
4854 ecs->event_thread = find_thread_ptid (ecs->ptid);
4855 /* If it's a new thread, add it to the thread database. */
4856 if (ecs->event_thread == NULL)
4857 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4858
4859 /* Disable range stepping. If the next step request could use a
4860 range, this will be end up re-enabled then. */
4861 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4862 }
88ed393a
JK
4863
4864 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4865 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4866
4867 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4868 reinit_frame_cache ();
4869
28736962
PA
4870 breakpoint_retire_moribund ();
4871
2b009048
DJ
4872 /* First, distinguish signals caused by the debugger from signals
4873 that have to do with the program's own actions. Note that
4874 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4875 on the operating system version. Here we detect when a SIGILL or
4876 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4877 something similar for SIGSEGV, since a SIGSEGV will be generated
4878 when we're trying to execute a breakpoint instruction on a
4879 non-executable stack. This happens for call dummy breakpoints
4880 for architectures like SPARC that place call dummies on the
4881 stack. */
2b009048 4882 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4883 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4884 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4885 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4886 {
de0a0249
UW
4887 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4888
4889 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4890 regcache_read_pc (regcache)))
4891 {
4892 if (debug_infrun)
4893 fprintf_unfiltered (gdb_stdlog,
4894 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4895 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4896 }
2b009048
DJ
4897 }
4898
28736962
PA
4899 /* Mark the non-executing threads accordingly. In all-stop, all
4900 threads of all processes are stopped when we get any event
e1316e60 4901 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4902 {
4903 ptid_t mark_ptid;
4904
fbea99ea 4905 if (!target_is_non_stop_p ())
372316f1
PA
4906 mark_ptid = minus_one_ptid;
4907 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4908 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4909 {
4910 /* If we're handling a process exit in non-stop mode, even
4911 though threads haven't been deleted yet, one would think
4912 that there is nothing to do, as threads of the dead process
4913 will be soon deleted, and threads of any other process were
4914 left running. However, on some targets, threads survive a
4915 process exit event. E.g., for the "checkpoint" command,
4916 when the current checkpoint/fork exits, linux-fork.c
4917 automatically switches to another fork from within
4918 target_mourn_inferior, by associating the same
4919 inferior/thread to another fork. We haven't mourned yet at
4920 this point, but we must mark any threads left in the
4921 process as not-executing so that finish_thread_state marks
4922 them stopped (in the user's perspective) if/when we present
4923 the stop to the user. */
4924 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4925 }
4926 else
4927 mark_ptid = ecs->ptid;
4928
4929 set_executing (mark_ptid, 0);
4930
4931 /* Likewise the resumed flag. */
4932 set_resumed (mark_ptid, 0);
4933 }
8c90c137 4934
488f131b
JB
4935 switch (ecs->ws.kind)
4936 {
4937 case TARGET_WAITKIND_LOADED:
527159b7 4938 if (debug_infrun)
8a9de0e4 4939 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4940 if (!ptid_equal (ecs->ptid, inferior_ptid))
4941 context_switch (ecs->ptid);
b0f4b84b
DJ
4942 /* Ignore gracefully during startup of the inferior, as it might
4943 be the shell which has just loaded some objects, otherwise
4944 add the symbols for the newly loaded objects. Also ignore at
4945 the beginning of an attach or remote session; we will query
4946 the full list of libraries once the connection is
4947 established. */
4f5d7f63
PA
4948
4949 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4950 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4951 {
edcc5120
TT
4952 struct regcache *regcache;
4953
edcc5120
TT
4954 regcache = get_thread_regcache (ecs->ptid);
4955
4956 handle_solib_event ();
4957
4958 ecs->event_thread->control.stop_bpstat
4959 = bpstat_stop_status (get_regcache_aspace (regcache),
4960 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4961
c65d6b55
PA
4962 if (handle_stop_requested (ecs))
4963 return;
4964
ce12b012 4965 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4966 {
4967 /* A catchpoint triggered. */
94c57d6a
PA
4968 process_event_stop_test (ecs);
4969 return;
edcc5120 4970 }
488f131b 4971
b0f4b84b
DJ
4972 /* If requested, stop when the dynamic linker notifies
4973 gdb of events. This allows the user to get control
4974 and place breakpoints in initializer routines for
4975 dynamically loaded objects (among other things). */
a493e3e2 4976 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4977 if (stop_on_solib_events)
4978 {
55409f9d
DJ
4979 /* Make sure we print "Stopped due to solib-event" in
4980 normal_stop. */
4981 stop_print_frame = 1;
4982
22bcd14b 4983 stop_waiting (ecs);
b0f4b84b
DJ
4984 return;
4985 }
488f131b 4986 }
b0f4b84b
DJ
4987
4988 /* If we are skipping through a shell, or through shared library
4989 loading that we aren't interested in, resume the program. If
5c09a2c5 4990 we're running the program normally, also resume. */
b0f4b84b
DJ
4991 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4992 {
74960c60
VP
4993 /* Loading of shared libraries might have changed breakpoint
4994 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4995 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4996 insert_breakpoints ();
64ce06e4 4997 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4998 prepare_to_wait (ecs);
4999 return;
5000 }
5001
5c09a2c5
PA
5002 /* But stop if we're attaching or setting up a remote
5003 connection. */
5004 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5005 || stop_soon == STOP_QUIETLY_REMOTE)
5006 {
5007 if (debug_infrun)
5008 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5009 stop_waiting (ecs);
5c09a2c5
PA
5010 return;
5011 }
5012
5013 internal_error (__FILE__, __LINE__,
5014 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5015
488f131b 5016 case TARGET_WAITKIND_SPURIOUS:
527159b7 5017 if (debug_infrun)
8a9de0e4 5018 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
5019 if (handle_stop_requested (ecs))
5020 return;
64776a0b 5021 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 5022 context_switch (ecs->ptid);
64ce06e4 5023 resume (GDB_SIGNAL_0);
488f131b
JB
5024 prepare_to_wait (ecs);
5025 return;
c5aa993b 5026
65706a29
PA
5027 case TARGET_WAITKIND_THREAD_CREATED:
5028 if (debug_infrun)
5029 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
5030 if (handle_stop_requested (ecs))
5031 return;
65706a29
PA
5032 if (!ptid_equal (ecs->ptid, inferior_ptid))
5033 context_switch (ecs->ptid);
5034 if (!switch_back_to_stepped_thread (ecs))
5035 keep_going (ecs);
5036 return;
5037
488f131b 5038 case TARGET_WAITKIND_EXITED:
940c3c06 5039 case TARGET_WAITKIND_SIGNALLED:
527159b7 5040 if (debug_infrun)
940c3c06
PA
5041 {
5042 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5043 fprintf_unfiltered (gdb_stdlog,
5044 "infrun: TARGET_WAITKIND_EXITED\n");
5045 else
5046 fprintf_unfiltered (gdb_stdlog,
5047 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5048 }
5049
fb66883a 5050 inferior_ptid = ecs->ptid;
c9657e70 5051 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5052 set_current_program_space (current_inferior ()->pspace);
5053 handle_vfork_child_exec_or_exit (0);
223ffa71 5054 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5055
0c557179
SDJ
5056 /* Clearing any previous state of convenience variables. */
5057 clear_exit_convenience_vars ();
5058
940c3c06
PA
5059 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5060 {
5061 /* Record the exit code in the convenience variable $_exitcode, so
5062 that the user can inspect this again later. */
5063 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5064 (LONGEST) ecs->ws.value.integer);
5065
5066 /* Also record this in the inferior itself. */
5067 current_inferior ()->has_exit_code = 1;
5068 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5069
98eb56a4
PA
5070 /* Support the --return-child-result option. */
5071 return_child_result_value = ecs->ws.value.integer;
5072
fd664c91 5073 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
5074 }
5075 else
0c557179
SDJ
5076 {
5077 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5078 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5079
5080 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5081 {
5082 /* Set the value of the internal variable $_exitsignal,
5083 which holds the signal uncaught by the inferior. */
5084 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5085 gdbarch_gdb_signal_to_target (gdbarch,
5086 ecs->ws.value.sig));
5087 }
5088 else
5089 {
5090 /* We don't have access to the target's method used for
5091 converting between signal numbers (GDB's internal
5092 representation <-> target's representation).
5093 Therefore, we cannot do a good job at displaying this
5094 information to the user. It's better to just warn
5095 her about it (if infrun debugging is enabled), and
5096 give up. */
5097 if (debug_infrun)
5098 fprintf_filtered (gdb_stdlog, _("\
5099Cannot fill $_exitsignal with the correct signal number.\n"));
5100 }
5101
fd664c91 5102 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 5103 }
8cf64490 5104
488f131b 5105 gdb_flush (gdb_stdout);
bc1e6c81 5106 target_mourn_inferior (inferior_ptid);
488f131b 5107 stop_print_frame = 0;
22bcd14b 5108 stop_waiting (ecs);
488f131b 5109 return;
c5aa993b 5110
488f131b 5111 /* The following are the only cases in which we keep going;
1777feb0 5112 the above cases end in a continue or goto. */
488f131b 5113 case TARGET_WAITKIND_FORKED:
deb3b17b 5114 case TARGET_WAITKIND_VFORKED:
527159b7 5115 if (debug_infrun)
fed708ed
PA
5116 {
5117 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5118 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5119 else
5120 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5121 }
c906108c 5122
e2d96639
YQ
5123 /* Check whether the inferior is displaced stepping. */
5124 {
5125 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5126 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e2d96639
YQ
5127
5128 /* If checking displaced stepping is supported, and thread
5129 ecs->ptid is displaced stepping. */
c0987663 5130 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5131 {
5132 struct inferior *parent_inf
c9657e70 5133 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5134 struct regcache *child_regcache;
5135 CORE_ADDR parent_pc;
5136
5137 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5138 indicating that the displaced stepping of syscall instruction
5139 has been done. Perform cleanup for parent process here. Note
5140 that this operation also cleans up the child process for vfork,
5141 because their pages are shared. */
a493e3e2 5142 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5143 /* Start a new step-over in another thread if there's one
5144 that needs it. */
5145 start_step_over ();
e2d96639
YQ
5146
5147 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5148 {
c0987663
YQ
5149 struct displaced_step_inferior_state *displaced
5150 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5151
e2d96639
YQ
5152 /* Restore scratch pad for child process. */
5153 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5154 }
5155
5156 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5157 the child's PC is also within the scratchpad. Set the child's PC
5158 to the parent's PC value, which has already been fixed up.
5159 FIXME: we use the parent's aspace here, although we're touching
5160 the child, because the child hasn't been added to the inferior
5161 list yet at this point. */
5162
5163 child_regcache
5164 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5165 gdbarch,
5166 parent_inf->aspace);
5167 /* Read PC value of parent process. */
5168 parent_pc = regcache_read_pc (regcache);
5169
5170 if (debug_displaced)
5171 fprintf_unfiltered (gdb_stdlog,
5172 "displaced: write child pc from %s to %s\n",
5173 paddress (gdbarch,
5174 regcache_read_pc (child_regcache)),
5175 paddress (gdbarch, parent_pc));
5176
5177 regcache_write_pc (child_regcache, parent_pc);
5178 }
5179 }
5180
5a2901d9 5181 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5182 context_switch (ecs->ptid);
5a2901d9 5183
b242c3c2
PA
5184 /* Immediately detach breakpoints from the child before there's
5185 any chance of letting the user delete breakpoints from the
5186 breakpoint lists. If we don't do this early, it's easy to
5187 leave left over traps in the child, vis: "break foo; catch
5188 fork; c; <fork>; del; c; <child calls foo>". We only follow
5189 the fork on the last `continue', and by that time the
5190 breakpoint at "foo" is long gone from the breakpoint table.
5191 If we vforked, then we don't need to unpatch here, since both
5192 parent and child are sharing the same memory pages; we'll
5193 need to unpatch at follow/detach time instead to be certain
5194 that new breakpoints added between catchpoint hit time and
5195 vfork follow are detached. */
5196 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5197 {
b242c3c2
PA
5198 /* This won't actually modify the breakpoint list, but will
5199 physically remove the breakpoints from the child. */
d80ee84f 5200 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5201 }
5202
34b7e8a6 5203 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5204
e58b0e63
PA
5205 /* In case the event is caught by a catchpoint, remember that
5206 the event is to be followed at the next resume of the thread,
5207 and not immediately. */
5208 ecs->event_thread->pending_follow = ecs->ws;
5209
fb14de7b 5210 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5211
16c381f0 5212 ecs->event_thread->control.stop_bpstat
6c95b8df 5213 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5214 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5215
c65d6b55
PA
5216 if (handle_stop_requested (ecs))
5217 return;
5218
ce12b012
PA
5219 /* If no catchpoint triggered for this, then keep going. Note
5220 that we're interested in knowing the bpstat actually causes a
5221 stop, not just if it may explain the signal. Software
5222 watchpoints, for example, always appear in the bpstat. */
5223 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5224 {
6c95b8df
PA
5225 ptid_t parent;
5226 ptid_t child;
e58b0e63 5227 int should_resume;
3e43a32a
MS
5228 int follow_child
5229 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5230
a493e3e2 5231 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5232
5233 should_resume = follow_fork ();
5234
6c95b8df
PA
5235 parent = ecs->ptid;
5236 child = ecs->ws.value.related_pid;
5237
a2077e25
PA
5238 /* At this point, the parent is marked running, and the
5239 child is marked stopped. */
5240
5241 /* If not resuming the parent, mark it stopped. */
5242 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5243 set_running (parent, 0);
5244
5245 /* If resuming the child, mark it running. */
5246 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5247 set_running (child, 1);
5248
6c95b8df 5249 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5250 if (!detach_fork && (non_stop
5251 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5252 {
5253 if (follow_child)
5254 switch_to_thread (parent);
5255 else
5256 switch_to_thread (child);
5257
5258 ecs->event_thread = inferior_thread ();
5259 ecs->ptid = inferior_ptid;
5260 keep_going (ecs);
5261 }
5262
5263 if (follow_child)
5264 switch_to_thread (child);
5265 else
5266 switch_to_thread (parent);
5267
e58b0e63
PA
5268 ecs->event_thread = inferior_thread ();
5269 ecs->ptid = inferior_ptid;
5270
5271 if (should_resume)
5272 keep_going (ecs);
5273 else
22bcd14b 5274 stop_waiting (ecs);
04e68871
DJ
5275 return;
5276 }
94c57d6a
PA
5277 process_event_stop_test (ecs);
5278 return;
488f131b 5279
6c95b8df
PA
5280 case TARGET_WAITKIND_VFORK_DONE:
5281 /* Done with the shared memory region. Re-insert breakpoints in
5282 the parent, and keep going. */
5283
5284 if (debug_infrun)
3e43a32a
MS
5285 fprintf_unfiltered (gdb_stdlog,
5286 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5287
5288 if (!ptid_equal (ecs->ptid, inferior_ptid))
5289 context_switch (ecs->ptid);
5290
5291 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5292 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5293
5294 if (handle_stop_requested (ecs))
5295 return;
5296
6c95b8df
PA
5297 /* This also takes care of reinserting breakpoints in the
5298 previously locked inferior. */
5299 keep_going (ecs);
5300 return;
5301
488f131b 5302 case TARGET_WAITKIND_EXECD:
527159b7 5303 if (debug_infrun)
fc5261f2 5304 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5305
cbd2b4e3
PA
5306 /* Note we can't read registers yet (the stop_pc), because we
5307 don't yet know the inferior's post-exec architecture.
5308 'stop_pc' is explicitly read below instead. */
5a2901d9 5309 if (!ptid_equal (ecs->ptid, inferior_ptid))
cbd2b4e3 5310 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5311
6c95b8df
PA
5312 /* Do whatever is necessary to the parent branch of the vfork. */
5313 handle_vfork_child_exec_or_exit (1);
5314
795e548f
PA
5315 /* This causes the eventpoints and symbol table to be reset.
5316 Must do this now, before trying to determine whether to
5317 stop. */
71b43ef8 5318 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5319
1bb7c059
SM
5320 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5321
17d8546e
DB
5322 /* In follow_exec we may have deleted the original thread and
5323 created a new one. Make sure that the event thread is the
5324 execd thread for that case (this is a nop otherwise). */
5325 ecs->event_thread = inferior_thread ();
5326
16c381f0 5327 ecs->event_thread->control.stop_bpstat
6c95b8df 5328 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5329 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5330
71b43ef8
PA
5331 /* Note that this may be referenced from inside
5332 bpstat_stop_status above, through inferior_has_execd. */
5333 xfree (ecs->ws.value.execd_pathname);
5334 ecs->ws.value.execd_pathname = NULL;
5335
c65d6b55
PA
5336 if (handle_stop_requested (ecs))
5337 return;
5338
04e68871 5339 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5340 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5341 {
a493e3e2 5342 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5343 keep_going (ecs);
5344 return;
5345 }
94c57d6a
PA
5346 process_event_stop_test (ecs);
5347 return;
488f131b 5348
b4dc5ffa
MK
5349 /* Be careful not to try to gather much state about a thread
5350 that's in a syscall. It's frequently a losing proposition. */
488f131b 5351 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5352 if (debug_infrun)
3e43a32a
MS
5353 fprintf_unfiltered (gdb_stdlog,
5354 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5355 /* Getting the current syscall number. */
94c57d6a
PA
5356 if (handle_syscall_event (ecs) == 0)
5357 process_event_stop_test (ecs);
5358 return;
c906108c 5359
488f131b
JB
5360 /* Before examining the threads further, step this thread to
5361 get it entirely out of the syscall. (We get notice of the
5362 event when the thread is just on the verge of exiting a
5363 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5364 into user code.) */
488f131b 5365 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5366 if (debug_infrun)
3e43a32a
MS
5367 fprintf_unfiltered (gdb_stdlog,
5368 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5369 if (handle_syscall_event (ecs) == 0)
5370 process_event_stop_test (ecs);
5371 return;
c906108c 5372
488f131b 5373 case TARGET_WAITKIND_STOPPED:
527159b7 5374 if (debug_infrun)
8a9de0e4 5375 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5376 handle_signal_stop (ecs);
5377 return;
c906108c 5378
b2175913 5379 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5380 if (debug_infrun)
5381 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5382 /* Reverse execution: target ran out of history info. */
eab402df 5383
d1988021
MM
5384 /* Switch to the stopped thread. */
5385 if (!ptid_equal (ecs->ptid, inferior_ptid))
5386 context_switch (ecs->ptid);
5387 if (debug_infrun)
5388 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5389
34b7e8a6 5390 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5391 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
c65d6b55
PA
5392
5393 if (handle_stop_requested (ecs))
5394 return;
5395
fd664c91 5396 observer_notify_no_history ();
22bcd14b 5397 stop_waiting (ecs);
b2175913 5398 return;
488f131b 5399 }
4f5d7f63
PA
5400}
5401
0b6e5e10
JB
5402/* A wrapper around handle_inferior_event_1, which also makes sure
5403 that all temporary struct value objects that were created during
5404 the handling of the event get deleted at the end. */
5405
5406static void
5407handle_inferior_event (struct execution_control_state *ecs)
5408{
5409 struct value *mark = value_mark ();
5410
5411 handle_inferior_event_1 (ecs);
5412 /* Purge all temporary values created during the event handling,
5413 as it could be a long time before we return to the command level
5414 where such values would otherwise be purged. */
5415 value_free_to_mark (mark);
5416}
5417
372316f1
PA
5418/* Restart threads back to what they were trying to do back when we
5419 paused them for an in-line step-over. The EVENT_THREAD thread is
5420 ignored. */
4d9d9d04
PA
5421
5422static void
372316f1
PA
5423restart_threads (struct thread_info *event_thread)
5424{
5425 struct thread_info *tp;
372316f1
PA
5426
5427 /* In case the instruction just stepped spawned a new thread. */
5428 update_thread_list ();
5429
5430 ALL_NON_EXITED_THREADS (tp)
5431 {
5432 if (tp == event_thread)
5433 {
5434 if (debug_infrun)
5435 fprintf_unfiltered (gdb_stdlog,
5436 "infrun: restart threads: "
5437 "[%s] is event thread\n",
5438 target_pid_to_str (tp->ptid));
5439 continue;
5440 }
5441
5442 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5443 {
5444 if (debug_infrun)
5445 fprintf_unfiltered (gdb_stdlog,
5446 "infrun: restart threads: "
5447 "[%s] not meant to be running\n",
5448 target_pid_to_str (tp->ptid));
5449 continue;
5450 }
5451
5452 if (tp->resumed)
5453 {
5454 if (debug_infrun)
5455 fprintf_unfiltered (gdb_stdlog,
5456 "infrun: restart threads: [%s] resumed\n",
5457 target_pid_to_str (tp->ptid));
5458 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5459 continue;
5460 }
5461
5462 if (thread_is_in_step_over_chain (tp))
5463 {
5464 if (debug_infrun)
5465 fprintf_unfiltered (gdb_stdlog,
5466 "infrun: restart threads: "
5467 "[%s] needs step-over\n",
5468 target_pid_to_str (tp->ptid));
5469 gdb_assert (!tp->resumed);
5470 continue;
5471 }
5472
5473
5474 if (tp->suspend.waitstatus_pending_p)
5475 {
5476 if (debug_infrun)
5477 fprintf_unfiltered (gdb_stdlog,
5478 "infrun: restart threads: "
5479 "[%s] has pending status\n",
5480 target_pid_to_str (tp->ptid));
5481 tp->resumed = 1;
5482 continue;
5483 }
5484
c65d6b55
PA
5485 gdb_assert (!tp->stop_requested);
5486
372316f1
PA
5487 /* If some thread needs to start a step-over at this point, it
5488 should still be in the step-over queue, and thus skipped
5489 above. */
5490 if (thread_still_needs_step_over (tp))
5491 {
5492 internal_error (__FILE__, __LINE__,
5493 "thread [%s] needs a step-over, but not in "
5494 "step-over queue\n",
5495 target_pid_to_str (tp->ptid));
5496 }
5497
5498 if (currently_stepping (tp))
5499 {
5500 if (debug_infrun)
5501 fprintf_unfiltered (gdb_stdlog,
5502 "infrun: restart threads: [%s] was stepping\n",
5503 target_pid_to_str (tp->ptid));
5504 keep_going_stepped_thread (tp);
5505 }
5506 else
5507 {
5508 struct execution_control_state ecss;
5509 struct execution_control_state *ecs = &ecss;
5510
5511 if (debug_infrun)
5512 fprintf_unfiltered (gdb_stdlog,
5513 "infrun: restart threads: [%s] continuing\n",
5514 target_pid_to_str (tp->ptid));
5515 reset_ecs (ecs, tp);
5516 switch_to_thread (tp->ptid);
5517 keep_going_pass_signal (ecs);
5518 }
5519 }
5520}
5521
5522/* Callback for iterate_over_threads. Find a resumed thread that has
5523 a pending waitstatus. */
5524
5525static int
5526resumed_thread_with_pending_status (struct thread_info *tp,
5527 void *arg)
5528{
5529 return (tp->resumed
5530 && tp->suspend.waitstatus_pending_p);
5531}
5532
5533/* Called when we get an event that may finish an in-line or
5534 out-of-line (displaced stepping) step-over started previously.
5535 Return true if the event is processed and we should go back to the
5536 event loop; false if the caller should continue processing the
5537 event. */
5538
5539static int
4d9d9d04
PA
5540finish_step_over (struct execution_control_state *ecs)
5541{
372316f1
PA
5542 int had_step_over_info;
5543
4d9d9d04
PA
5544 displaced_step_fixup (ecs->ptid,
5545 ecs->event_thread->suspend.stop_signal);
5546
372316f1
PA
5547 had_step_over_info = step_over_info_valid_p ();
5548
5549 if (had_step_over_info)
4d9d9d04
PA
5550 {
5551 /* If we're stepping over a breakpoint with all threads locked,
5552 then only the thread that was stepped should be reporting
5553 back an event. */
5554 gdb_assert (ecs->event_thread->control.trap_expected);
5555
c65d6b55 5556 clear_step_over_info ();
4d9d9d04
PA
5557 }
5558
fbea99ea 5559 if (!target_is_non_stop_p ())
372316f1 5560 return 0;
4d9d9d04
PA
5561
5562 /* Start a new step-over in another thread if there's one that
5563 needs it. */
5564 start_step_over ();
372316f1
PA
5565
5566 /* If we were stepping over a breakpoint before, and haven't started
5567 a new in-line step-over sequence, then restart all other threads
5568 (except the event thread). We can't do this in all-stop, as then
5569 e.g., we wouldn't be able to issue any other remote packet until
5570 these other threads stop. */
5571 if (had_step_over_info && !step_over_info_valid_p ())
5572 {
5573 struct thread_info *pending;
5574
5575 /* If we only have threads with pending statuses, the restart
5576 below won't restart any thread and so nothing re-inserts the
5577 breakpoint we just stepped over. But we need it inserted
5578 when we later process the pending events, otherwise if
5579 another thread has a pending event for this breakpoint too,
5580 we'd discard its event (because the breakpoint that
5581 originally caused the event was no longer inserted). */
5582 context_switch (ecs->ptid);
5583 insert_breakpoints ();
5584
5585 restart_threads (ecs->event_thread);
5586
5587 /* If we have events pending, go through handle_inferior_event
5588 again, picking up a pending event at random. This avoids
5589 thread starvation. */
5590
5591 /* But not if we just stepped over a watchpoint in order to let
5592 the instruction execute so we can evaluate its expression.
5593 The set of watchpoints that triggered is recorded in the
5594 breakpoint objects themselves (see bp->watchpoint_triggered).
5595 If we processed another event first, that other event could
5596 clobber this info. */
5597 if (ecs->event_thread->stepping_over_watchpoint)
5598 return 0;
5599
5600 pending = iterate_over_threads (resumed_thread_with_pending_status,
5601 NULL);
5602 if (pending != NULL)
5603 {
5604 struct thread_info *tp = ecs->event_thread;
5605 struct regcache *regcache;
5606
5607 if (debug_infrun)
5608 {
5609 fprintf_unfiltered (gdb_stdlog,
5610 "infrun: found resumed threads with "
5611 "pending events, saving status\n");
5612 }
5613
5614 gdb_assert (pending != tp);
5615
5616 /* Record the event thread's event for later. */
5617 save_waitstatus (tp, &ecs->ws);
5618 /* This was cleared early, by handle_inferior_event. Set it
5619 so this pending event is considered by
5620 do_target_wait. */
5621 tp->resumed = 1;
5622
5623 gdb_assert (!tp->executing);
5624
5625 regcache = get_thread_regcache (tp->ptid);
5626 tp->suspend.stop_pc = regcache_read_pc (regcache);
5627
5628 if (debug_infrun)
5629 {
5630 fprintf_unfiltered (gdb_stdlog,
5631 "infrun: saved stop_pc=%s for %s "
5632 "(currently_stepping=%d)\n",
5633 paddress (target_gdbarch (),
5634 tp->suspend.stop_pc),
5635 target_pid_to_str (tp->ptid),
5636 currently_stepping (tp));
5637 }
5638
5639 /* This in-line step-over finished; clear this so we won't
5640 start a new one. This is what handle_signal_stop would
5641 do, if we returned false. */
5642 tp->stepping_over_breakpoint = 0;
5643
5644 /* Wake up the event loop again. */
5645 mark_async_event_handler (infrun_async_inferior_event_token);
5646
5647 prepare_to_wait (ecs);
5648 return 1;
5649 }
5650 }
5651
5652 return 0;
4d9d9d04
PA
5653}
5654
4f5d7f63
PA
5655/* Come here when the program has stopped with a signal. */
5656
5657static void
5658handle_signal_stop (struct execution_control_state *ecs)
5659{
5660 struct frame_info *frame;
5661 struct gdbarch *gdbarch;
5662 int stopped_by_watchpoint;
5663 enum stop_kind stop_soon;
5664 int random_signal;
c906108c 5665
f0407826
DE
5666 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5667
c65d6b55
PA
5668 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5669
f0407826
DE
5670 /* Do we need to clean up the state of a thread that has
5671 completed a displaced single-step? (Doing so usually affects
5672 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5673 if (finish_step_over (ecs))
5674 return;
f0407826
DE
5675
5676 /* If we either finished a single-step or hit a breakpoint, but
5677 the user wanted this thread to be stopped, pretend we got a
5678 SIG0 (generic unsignaled stop). */
5679 if (ecs->event_thread->stop_requested
5680 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5681 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5682
515630c5 5683 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5684
527159b7 5685 if (debug_infrun)
237fc4c9 5686 {
5af949e3
UW
5687 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5688 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2989a365 5689 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5690
5691 inferior_ptid = ecs->ptid;
5af949e3
UW
5692
5693 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5694 paddress (gdbarch, stop_pc));
d92524f1 5695 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5696 {
5697 CORE_ADDR addr;
abbb1732 5698
237fc4c9
PA
5699 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5700
5701 if (target_stopped_data_address (&current_target, &addr))
5702 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5703 "infrun: stopped data address = %s\n",
5704 paddress (gdbarch, addr));
237fc4c9
PA
5705 else
5706 fprintf_unfiltered (gdb_stdlog,
5707 "infrun: (no data address available)\n");
5708 }
5709 }
527159b7 5710
36fa8042
PA
5711 /* This is originated from start_remote(), start_inferior() and
5712 shared libraries hook functions. */
5713 stop_soon = get_inferior_stop_soon (ecs->ptid);
5714 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5715 {
5716 if (!ptid_equal (ecs->ptid, inferior_ptid))
5717 context_switch (ecs->ptid);
5718 if (debug_infrun)
5719 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5720 stop_print_frame = 1;
22bcd14b 5721 stop_waiting (ecs);
36fa8042
PA
5722 return;
5723 }
5724
36fa8042
PA
5725 /* This originates from attach_command(). We need to overwrite
5726 the stop_signal here, because some kernels don't ignore a
5727 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5728 See more comments in inferior.h. On the other hand, if we
5729 get a non-SIGSTOP, report it to the user - assume the backend
5730 will handle the SIGSTOP if it should show up later.
5731
5732 Also consider that the attach is complete when we see a
5733 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5734 target extended-remote report it instead of a SIGSTOP
5735 (e.g. gdbserver). We already rely on SIGTRAP being our
5736 signal, so this is no exception.
5737
5738 Also consider that the attach is complete when we see a
5739 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5740 the target to stop all threads of the inferior, in case the
5741 low level attach operation doesn't stop them implicitly. If
5742 they weren't stopped implicitly, then the stub will report a
5743 GDB_SIGNAL_0, meaning: stopped for no particular reason
5744 other than GDB's request. */
5745 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5746 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5747 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5748 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5749 {
5750 stop_print_frame = 1;
22bcd14b 5751 stop_waiting (ecs);
36fa8042
PA
5752 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5753 return;
5754 }
5755
488f131b 5756 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5757 so, then switch to that thread. */
5758 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5759 {
527159b7 5760 if (debug_infrun)
8a9de0e4 5761 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5762
0d1e5fa7 5763 context_switch (ecs->ptid);
c5aa993b 5764
9a4105ab 5765 if (deprecated_context_hook)
5d5658a1 5766 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
488f131b 5767 }
c906108c 5768
568d6575
UW
5769 /* At this point, get hold of the now-current thread's frame. */
5770 frame = get_current_frame ();
5771 gdbarch = get_frame_arch (frame);
5772
2adfaa28 5773 /* Pull the single step breakpoints out of the target. */
af48d08f 5774 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5775 {
af48d08f
PA
5776 struct regcache *regcache;
5777 struct address_space *aspace;
5778 CORE_ADDR pc;
2adfaa28 5779
af48d08f
PA
5780 regcache = get_thread_regcache (ecs->ptid);
5781 aspace = get_regcache_aspace (regcache);
5782 pc = regcache_read_pc (regcache);
34b7e8a6 5783
af48d08f
PA
5784 /* However, before doing so, if this single-step breakpoint was
5785 actually for another thread, set this thread up for moving
5786 past it. */
5787 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5788 aspace, pc))
5789 {
5790 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5791 {
5792 if (debug_infrun)
5793 {
5794 fprintf_unfiltered (gdb_stdlog,
af48d08f 5795 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5796 "single-step breakpoint\n",
5797 target_pid_to_str (ecs->ptid));
2adfaa28 5798 }
af48d08f
PA
5799 ecs->hit_singlestep_breakpoint = 1;
5800 }
5801 }
5802 else
5803 {
5804 if (debug_infrun)
5805 {
5806 fprintf_unfiltered (gdb_stdlog,
5807 "infrun: [%s] hit its "
5808 "single-step breakpoint\n",
5809 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5810 }
5811 }
488f131b 5812 }
af48d08f 5813 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5814
963f9c80
PA
5815 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5816 && ecs->event_thread->control.trap_expected
5817 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5818 stopped_by_watchpoint = 0;
5819 else
5820 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5821
5822 /* If necessary, step over this watchpoint. We'll be back to display
5823 it in a moment. */
5824 if (stopped_by_watchpoint
d92524f1 5825 && (target_have_steppable_watchpoint
568d6575 5826 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5827 {
488f131b
JB
5828 /* At this point, we are stopped at an instruction which has
5829 attempted to write to a piece of memory under control of
5830 a watchpoint. The instruction hasn't actually executed
5831 yet. If we were to evaluate the watchpoint expression
5832 now, we would get the old value, and therefore no change
5833 would seem to have occurred.
5834
5835 In order to make watchpoints work `right', we really need
5836 to complete the memory write, and then evaluate the
d983da9c
DJ
5837 watchpoint expression. We do this by single-stepping the
5838 target.
5839
7f89fd65 5840 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5841 it. For example, the PA can (with some kernel cooperation)
5842 single step over a watchpoint without disabling the watchpoint.
5843
5844 It is far more common to need to disable a watchpoint to step
5845 the inferior over it. If we have non-steppable watchpoints,
5846 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5847 disable all watchpoints.
5848
5849 Any breakpoint at PC must also be stepped over -- if there's
5850 one, it will have already triggered before the watchpoint
5851 triggered, and we either already reported it to the user, or
5852 it didn't cause a stop and we called keep_going. In either
5853 case, if there was a breakpoint at PC, we must be trying to
5854 step past it. */
5855 ecs->event_thread->stepping_over_watchpoint = 1;
5856 keep_going (ecs);
488f131b
JB
5857 return;
5858 }
5859
4e1c45ea 5860 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5861 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5862 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5863 ecs->event_thread->control.stop_step = 0;
488f131b 5864 stop_print_frame = 1;
488f131b 5865 stopped_by_random_signal = 0;
488f131b 5866
edb3359d
DJ
5867 /* Hide inlined functions starting here, unless we just performed stepi or
5868 nexti. After stepi and nexti, always show the innermost frame (not any
5869 inline function call sites). */
16c381f0 5870 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5871 {
5872 struct address_space *aspace =
5873 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5874
5875 /* skip_inline_frames is expensive, so we avoid it if we can
5876 determine that the address is one where functions cannot have
5877 been inlined. This improves performance with inferiors that
5878 load a lot of shared libraries, because the solib event
5879 breakpoint is defined as the address of a function (i.e. not
5880 inline). Note that we have to check the previous PC as well
5881 as the current one to catch cases when we have just
5882 single-stepped off a breakpoint prior to reinstating it.
5883 Note that we're assuming that the code we single-step to is
5884 not inline, but that's not definitive: there's nothing
5885 preventing the event breakpoint function from containing
5886 inlined code, and the single-step ending up there. If the
5887 user had set a breakpoint on that inlined code, the missing
5888 skip_inline_frames call would break things. Fortunately
5889 that's an extremely unlikely scenario. */
09ac7c10 5890 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5891 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5892 && ecs->event_thread->control.trap_expected
5893 && pc_at_non_inline_function (aspace,
5894 ecs->event_thread->prev_pc,
09ac7c10 5895 &ecs->ws)))
1c5a993e
MR
5896 {
5897 skip_inline_frames (ecs->ptid);
5898
5899 /* Re-fetch current thread's frame in case that invalidated
5900 the frame cache. */
5901 frame = get_current_frame ();
5902 gdbarch = get_frame_arch (frame);
5903 }
0574c78f 5904 }
edb3359d 5905
a493e3e2 5906 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5907 && ecs->event_thread->control.trap_expected
568d6575 5908 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5909 && currently_stepping (ecs->event_thread))
3352ef37 5910 {
b50d7442 5911 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5912 also on an instruction that needs to be stepped multiple
1777feb0 5913 times before it's been fully executing. E.g., architectures
3352ef37
AC
5914 with a delay slot. It needs to be stepped twice, once for
5915 the instruction and once for the delay slot. */
5916 int step_through_delay
568d6575 5917 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5918
527159b7 5919 if (debug_infrun && step_through_delay)
8a9de0e4 5920 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5921 if (ecs->event_thread->control.step_range_end == 0
5922 && step_through_delay)
3352ef37
AC
5923 {
5924 /* The user issued a continue when stopped at a breakpoint.
5925 Set up for another trap and get out of here. */
4e1c45ea 5926 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5927 keep_going (ecs);
5928 return;
5929 }
5930 else if (step_through_delay)
5931 {
5932 /* The user issued a step when stopped at a breakpoint.
5933 Maybe we should stop, maybe we should not - the delay
5934 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5935 case, don't decide that here, just set
5936 ecs->stepping_over_breakpoint, making sure we
5937 single-step again before breakpoints are re-inserted. */
4e1c45ea 5938 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5939 }
5940 }
5941
ab04a2af
TT
5942 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5943 handles this event. */
5944 ecs->event_thread->control.stop_bpstat
5945 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5946 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5947
ab04a2af
TT
5948 /* Following in case break condition called a
5949 function. */
5950 stop_print_frame = 1;
73dd234f 5951
ab04a2af
TT
5952 /* This is where we handle "moribund" watchpoints. Unlike
5953 software breakpoints traps, hardware watchpoint traps are
5954 always distinguishable from random traps. If no high-level
5955 watchpoint is associated with the reported stop data address
5956 anymore, then the bpstat does not explain the signal ---
5957 simply make sure to ignore it if `stopped_by_watchpoint' is
5958 set. */
5959
5960 if (debug_infrun
5961 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5962 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5963 GDB_SIGNAL_TRAP)
ab04a2af
TT
5964 && stopped_by_watchpoint)
5965 fprintf_unfiltered (gdb_stdlog,
5966 "infrun: no user watchpoint explains "
5967 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5968
bac7d97b 5969 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5970 at one stage in the past included checks for an inferior
5971 function call's call dummy's return breakpoint. The original
5972 comment, that went with the test, read:
03cebad2 5973
ab04a2af
TT
5974 ``End of a stack dummy. Some systems (e.g. Sony news) give
5975 another signal besides SIGTRAP, so check here as well as
5976 above.''
73dd234f 5977
ab04a2af
TT
5978 If someone ever tries to get call dummys on a
5979 non-executable stack to work (where the target would stop
5980 with something like a SIGSEGV), then those tests might need
5981 to be re-instated. Given, however, that the tests were only
5982 enabled when momentary breakpoints were not being used, I
5983 suspect that it won't be the case.
488f131b 5984
ab04a2af
TT
5985 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5986 be necessary for call dummies on a non-executable stack on
5987 SPARC. */
488f131b 5988
bac7d97b 5989 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5990 random_signal
5991 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5992 ecs->event_thread->suspend.stop_signal);
bac7d97b 5993
1cf4d951
PA
5994 /* Maybe this was a trap for a software breakpoint that has since
5995 been removed. */
5996 if (random_signal && target_stopped_by_sw_breakpoint ())
5997 {
5998 if (program_breakpoint_here_p (gdbarch, stop_pc))
5999 {
6000 struct regcache *regcache;
6001 int decr_pc;
6002
6003 /* Re-adjust PC to what the program would see if GDB was not
6004 debugging it. */
6005 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 6006 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6007 if (decr_pc != 0)
6008 {
07036511
TT
6009 gdb::optional<scoped_restore_tmpl<int>>
6010 restore_operation_disable;
1cf4d951
PA
6011
6012 if (record_full_is_used ())
07036511
TT
6013 restore_operation_disable.emplace
6014 (record_full_gdb_operation_disable_set ());
1cf4d951
PA
6015
6016 regcache_write_pc (regcache, stop_pc + decr_pc);
1cf4d951
PA
6017 }
6018 }
6019 else
6020 {
6021 /* A delayed software breakpoint event. Ignore the trap. */
6022 if (debug_infrun)
6023 fprintf_unfiltered (gdb_stdlog,
6024 "infrun: delayed software breakpoint "
6025 "trap, ignoring\n");
6026 random_signal = 0;
6027 }
6028 }
6029
6030 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6031 has since been removed. */
6032 if (random_signal && target_stopped_by_hw_breakpoint ())
6033 {
6034 /* A delayed hardware breakpoint event. Ignore the trap. */
6035 if (debug_infrun)
6036 fprintf_unfiltered (gdb_stdlog,
6037 "infrun: delayed hardware breakpoint/watchpoint "
6038 "trap, ignoring\n");
6039 random_signal = 0;
6040 }
6041
bac7d97b
PA
6042 /* If not, perhaps stepping/nexting can. */
6043 if (random_signal)
6044 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6045 && currently_stepping (ecs->event_thread));
ab04a2af 6046
2adfaa28
PA
6047 /* Perhaps the thread hit a single-step breakpoint of _another_
6048 thread. Single-step breakpoints are transparent to the
6049 breakpoints module. */
6050 if (random_signal)
6051 random_signal = !ecs->hit_singlestep_breakpoint;
6052
bac7d97b
PA
6053 /* No? Perhaps we got a moribund watchpoint. */
6054 if (random_signal)
6055 random_signal = !stopped_by_watchpoint;
ab04a2af 6056
c65d6b55
PA
6057 /* Always stop if the user explicitly requested this thread to
6058 remain stopped. */
6059 if (ecs->event_thread->stop_requested)
6060 {
6061 random_signal = 1;
6062 if (debug_infrun)
6063 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6064 }
6065
488f131b
JB
6066 /* For the program's own signals, act according to
6067 the signal handling tables. */
6068
ce12b012 6069 if (random_signal)
488f131b
JB
6070 {
6071 /* Signal not for debugging purposes. */
c9657e70 6072 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6073 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6074
527159b7 6075 if (debug_infrun)
c9737c08
PA
6076 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6077 gdb_signal_to_symbol_string (stop_signal));
527159b7 6078
488f131b
JB
6079 stopped_by_random_signal = 1;
6080
252fbfc8
PA
6081 /* Always stop on signals if we're either just gaining control
6082 of the program, or the user explicitly requested this thread
6083 to remain stopped. */
d6b48e9c 6084 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6085 || ecs->event_thread->stop_requested
24291992 6086 || (!inf->detaching
16c381f0 6087 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6088 {
22bcd14b 6089 stop_waiting (ecs);
488f131b
JB
6090 return;
6091 }
b57bacec
PA
6092
6093 /* Notify observers the signal has "handle print" set. Note we
6094 returned early above if stopping; normal_stop handles the
6095 printing in that case. */
6096 if (signal_print[ecs->event_thread->suspend.stop_signal])
6097 {
6098 /* The signal table tells us to print about this signal. */
223ffa71 6099 target_terminal::ours_for_output ();
b57bacec 6100 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
223ffa71 6101 target_terminal::inferior ();
b57bacec 6102 }
488f131b
JB
6103
6104 /* Clear the signal if it should not be passed. */
16c381f0 6105 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6106 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6107
fb14de7b 6108 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6109 && ecs->event_thread->control.trap_expected
8358c15c 6110 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6111 {
6112 /* We were just starting a new sequence, attempting to
6113 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6114 Instead this signal arrives. This signal will take us out
68f53502
AC
6115 of the stepping range so GDB needs to remember to, when
6116 the signal handler returns, resume stepping off that
6117 breakpoint. */
6118 /* To simplify things, "continue" is forced to use the same
6119 code paths as single-step - set a breakpoint at the
6120 signal return address and then, once hit, step off that
6121 breakpoint. */
237fc4c9
PA
6122 if (debug_infrun)
6123 fprintf_unfiltered (gdb_stdlog,
6124 "infrun: signal arrived while stepping over "
6125 "breakpoint\n");
d3169d93 6126
2c03e5be 6127 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6128 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6129 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6130 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6131
6132 /* If we were nexting/stepping some other thread, switch to
6133 it, so that we don't continue it, losing control. */
6134 if (!switch_back_to_stepped_thread (ecs))
6135 keep_going (ecs);
9d799f85 6136 return;
68f53502 6137 }
9d799f85 6138
e5f8a7cc
PA
6139 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6140 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6141 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6142 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6143 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6144 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6145 {
6146 /* The inferior is about to take a signal that will take it
6147 out of the single step range. Set a breakpoint at the
6148 current PC (which is presumably where the signal handler
6149 will eventually return) and then allow the inferior to
6150 run free.
6151
6152 Note that this is only needed for a signal delivered
6153 while in the single-step range. Nested signals aren't a
6154 problem as they eventually all return. */
237fc4c9
PA
6155 if (debug_infrun)
6156 fprintf_unfiltered (gdb_stdlog,
6157 "infrun: signal may take us out of "
6158 "single-step range\n");
6159
372316f1 6160 clear_step_over_info ();
2c03e5be 6161 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6162 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6163 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6164 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6165 keep_going (ecs);
6166 return;
d303a6c7 6167 }
9d799f85
AC
6168
6169 /* Note: step_resume_breakpoint may be non-NULL. This occures
6170 when either there's a nested signal, or when there's a
6171 pending signal enabled just as the signal handler returns
6172 (leaving the inferior at the step-resume-breakpoint without
6173 actually executing it). Either way continue until the
6174 breakpoint is really hit. */
c447ac0b
PA
6175
6176 if (!switch_back_to_stepped_thread (ecs))
6177 {
6178 if (debug_infrun)
6179 fprintf_unfiltered (gdb_stdlog,
6180 "infrun: random signal, keep going\n");
6181
6182 keep_going (ecs);
6183 }
6184 return;
488f131b 6185 }
94c57d6a
PA
6186
6187 process_event_stop_test (ecs);
6188}
6189
6190/* Come here when we've got some debug event / signal we can explain
6191 (IOW, not a random signal), and test whether it should cause a
6192 stop, or whether we should resume the inferior (transparently).
6193 E.g., could be a breakpoint whose condition evaluates false; we
6194 could be still stepping within the line; etc. */
6195
6196static void
6197process_event_stop_test (struct execution_control_state *ecs)
6198{
6199 struct symtab_and_line stop_pc_sal;
6200 struct frame_info *frame;
6201 struct gdbarch *gdbarch;
cdaa5b73
PA
6202 CORE_ADDR jmp_buf_pc;
6203 struct bpstat_what what;
94c57d6a 6204
cdaa5b73 6205 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6206
cdaa5b73
PA
6207 frame = get_current_frame ();
6208 gdbarch = get_frame_arch (frame);
fcf3daef 6209
cdaa5b73 6210 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6211
cdaa5b73
PA
6212 if (what.call_dummy)
6213 {
6214 stop_stack_dummy = what.call_dummy;
6215 }
186c406b 6216
243a9253
PA
6217 /* A few breakpoint types have callbacks associated (e.g.,
6218 bp_jit_event). Run them now. */
6219 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6220
cdaa5b73
PA
6221 /* If we hit an internal event that triggers symbol changes, the
6222 current frame will be invalidated within bpstat_what (e.g., if we
6223 hit an internal solib event). Re-fetch it. */
6224 frame = get_current_frame ();
6225 gdbarch = get_frame_arch (frame);
e2e4d78b 6226
cdaa5b73
PA
6227 switch (what.main_action)
6228 {
6229 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6230 /* If we hit the breakpoint at longjmp while stepping, we
6231 install a momentary breakpoint at the target of the
6232 jmp_buf. */
186c406b 6233
cdaa5b73
PA
6234 if (debug_infrun)
6235 fprintf_unfiltered (gdb_stdlog,
6236 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6237
cdaa5b73 6238 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6239
cdaa5b73
PA
6240 if (what.is_longjmp)
6241 {
6242 struct value *arg_value;
6243
6244 /* If we set the longjmp breakpoint via a SystemTap probe,
6245 then use it to extract the arguments. The destination PC
6246 is the third argument to the probe. */
6247 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6248 if (arg_value)
8fa0c4f8
AA
6249 {
6250 jmp_buf_pc = value_as_address (arg_value);
6251 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6252 }
cdaa5b73
PA
6253 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6254 || !gdbarch_get_longjmp_target (gdbarch,
6255 frame, &jmp_buf_pc))
e2e4d78b 6256 {
cdaa5b73
PA
6257 if (debug_infrun)
6258 fprintf_unfiltered (gdb_stdlog,
6259 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6260 "(!gdbarch_get_longjmp_target)\n");
6261 keep_going (ecs);
6262 return;
e2e4d78b 6263 }
e2e4d78b 6264
cdaa5b73
PA
6265 /* Insert a breakpoint at resume address. */
6266 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6267 }
6268 else
6269 check_exception_resume (ecs, frame);
6270 keep_going (ecs);
6271 return;
e81a37f7 6272
cdaa5b73
PA
6273 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6274 {
6275 struct frame_info *init_frame;
e81a37f7 6276
cdaa5b73 6277 /* There are several cases to consider.
c906108c 6278
cdaa5b73
PA
6279 1. The initiating frame no longer exists. In this case we
6280 must stop, because the exception or longjmp has gone too
6281 far.
2c03e5be 6282
cdaa5b73
PA
6283 2. The initiating frame exists, and is the same as the
6284 current frame. We stop, because the exception or longjmp
6285 has been caught.
2c03e5be 6286
cdaa5b73
PA
6287 3. The initiating frame exists and is different from the
6288 current frame. This means the exception or longjmp has
6289 been caught beneath the initiating frame, so keep going.
c906108c 6290
cdaa5b73
PA
6291 4. longjmp breakpoint has been placed just to protect
6292 against stale dummy frames and user is not interested in
6293 stopping around longjmps. */
c5aa993b 6294
cdaa5b73
PA
6295 if (debug_infrun)
6296 fprintf_unfiltered (gdb_stdlog,
6297 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6298
cdaa5b73
PA
6299 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6300 != NULL);
6301 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6302
cdaa5b73
PA
6303 if (what.is_longjmp)
6304 {
b67a2c6f 6305 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6306
cdaa5b73 6307 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6308 {
cdaa5b73
PA
6309 /* Case 4. */
6310 keep_going (ecs);
6311 return;
e5ef252a 6312 }
cdaa5b73 6313 }
c5aa993b 6314
cdaa5b73 6315 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6316
cdaa5b73
PA
6317 if (init_frame)
6318 {
6319 struct frame_id current_id
6320 = get_frame_id (get_current_frame ());
6321 if (frame_id_eq (current_id,
6322 ecs->event_thread->initiating_frame))
6323 {
6324 /* Case 2. Fall through. */
6325 }
6326 else
6327 {
6328 /* Case 3. */
6329 keep_going (ecs);
6330 return;
6331 }
68f53502 6332 }
488f131b 6333
cdaa5b73
PA
6334 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6335 exists. */
6336 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6337
bdc36728 6338 end_stepping_range (ecs);
cdaa5b73
PA
6339 }
6340 return;
e5ef252a 6341
cdaa5b73
PA
6342 case BPSTAT_WHAT_SINGLE:
6343 if (debug_infrun)
6344 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6345 ecs->event_thread->stepping_over_breakpoint = 1;
6346 /* Still need to check other stuff, at least the case where we
6347 are stepping and step out of the right range. */
6348 break;
e5ef252a 6349
cdaa5b73
PA
6350 case BPSTAT_WHAT_STEP_RESUME:
6351 if (debug_infrun)
6352 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6353
cdaa5b73
PA
6354 delete_step_resume_breakpoint (ecs->event_thread);
6355 if (ecs->event_thread->control.proceed_to_finish
6356 && execution_direction == EXEC_REVERSE)
6357 {
6358 struct thread_info *tp = ecs->event_thread;
6359
6360 /* We are finishing a function in reverse, and just hit the
6361 step-resume breakpoint at the start address of the
6362 function, and we're almost there -- just need to back up
6363 by one more single-step, which should take us back to the
6364 function call. */
6365 tp->control.step_range_start = tp->control.step_range_end = 1;
6366 keep_going (ecs);
e5ef252a 6367 return;
cdaa5b73
PA
6368 }
6369 fill_in_stop_func (gdbarch, ecs);
6370 if (stop_pc == ecs->stop_func_start
6371 && execution_direction == EXEC_REVERSE)
6372 {
6373 /* We are stepping over a function call in reverse, and just
6374 hit the step-resume breakpoint at the start address of
6375 the function. Go back to single-stepping, which should
6376 take us back to the function call. */
6377 ecs->event_thread->stepping_over_breakpoint = 1;
6378 keep_going (ecs);
6379 return;
6380 }
6381 break;
e5ef252a 6382
cdaa5b73
PA
6383 case BPSTAT_WHAT_STOP_NOISY:
6384 if (debug_infrun)
6385 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6386 stop_print_frame = 1;
e5ef252a 6387
99619bea
PA
6388 /* Assume the thread stopped for a breapoint. We'll still check
6389 whether a/the breakpoint is there when the thread is next
6390 resumed. */
6391 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6392
22bcd14b 6393 stop_waiting (ecs);
cdaa5b73 6394 return;
e5ef252a 6395
cdaa5b73
PA
6396 case BPSTAT_WHAT_STOP_SILENT:
6397 if (debug_infrun)
6398 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6399 stop_print_frame = 0;
e5ef252a 6400
99619bea
PA
6401 /* Assume the thread stopped for a breapoint. We'll still check
6402 whether a/the breakpoint is there when the thread is next
6403 resumed. */
6404 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6405 stop_waiting (ecs);
cdaa5b73
PA
6406 return;
6407
6408 case BPSTAT_WHAT_HP_STEP_RESUME:
6409 if (debug_infrun)
6410 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6411
6412 delete_step_resume_breakpoint (ecs->event_thread);
6413 if (ecs->event_thread->step_after_step_resume_breakpoint)
6414 {
6415 /* Back when the step-resume breakpoint was inserted, we
6416 were trying to single-step off a breakpoint. Go back to
6417 doing that. */
6418 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6419 ecs->event_thread->stepping_over_breakpoint = 1;
6420 keep_going (ecs);
6421 return;
e5ef252a 6422 }
cdaa5b73
PA
6423 break;
6424
6425 case BPSTAT_WHAT_KEEP_CHECKING:
6426 break;
e5ef252a 6427 }
c906108c 6428
af48d08f
PA
6429 /* If we stepped a permanent breakpoint and we had a high priority
6430 step-resume breakpoint for the address we stepped, but we didn't
6431 hit it, then we must have stepped into the signal handler. The
6432 step-resume was only necessary to catch the case of _not_
6433 stepping into the handler, so delete it, and fall through to
6434 checking whether the step finished. */
6435 if (ecs->event_thread->stepped_breakpoint)
6436 {
6437 struct breakpoint *sr_bp
6438 = ecs->event_thread->control.step_resume_breakpoint;
6439
8d707a12
PA
6440 if (sr_bp != NULL
6441 && sr_bp->loc->permanent
af48d08f
PA
6442 && sr_bp->type == bp_hp_step_resume
6443 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6444 {
6445 if (debug_infrun)
6446 fprintf_unfiltered (gdb_stdlog,
6447 "infrun: stepped permanent breakpoint, stopped in "
6448 "handler\n");
6449 delete_step_resume_breakpoint (ecs->event_thread);
6450 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6451 }
6452 }
6453
cdaa5b73
PA
6454 /* We come here if we hit a breakpoint but should not stop for it.
6455 Possibly we also were stepping and should stop for that. So fall
6456 through and test for stepping. But, if not stepping, do not
6457 stop. */
c906108c 6458
a7212384
UW
6459 /* In all-stop mode, if we're currently stepping but have stopped in
6460 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6461 if (switch_back_to_stepped_thread (ecs))
6462 return;
776f04fa 6463
8358c15c 6464 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6465 {
527159b7 6466 if (debug_infrun)
d3169d93
DJ
6467 fprintf_unfiltered (gdb_stdlog,
6468 "infrun: step-resume breakpoint is inserted\n");
527159b7 6469
488f131b
JB
6470 /* Having a step-resume breakpoint overrides anything
6471 else having to do with stepping commands until
6472 that breakpoint is reached. */
488f131b
JB
6473 keep_going (ecs);
6474 return;
6475 }
c5aa993b 6476
16c381f0 6477 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6478 {
527159b7 6479 if (debug_infrun)
8a9de0e4 6480 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6481 /* Likewise if we aren't even stepping. */
488f131b
JB
6482 keep_going (ecs);
6483 return;
6484 }
c5aa993b 6485
4b7703ad
JB
6486 /* Re-fetch current thread's frame in case the code above caused
6487 the frame cache to be re-initialized, making our FRAME variable
6488 a dangling pointer. */
6489 frame = get_current_frame ();
628fe4e4 6490 gdbarch = get_frame_arch (frame);
7e324e48 6491 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6492
488f131b 6493 /* If stepping through a line, keep going if still within it.
c906108c 6494
488f131b
JB
6495 Note that step_range_end is the address of the first instruction
6496 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6497 within it!
6498
6499 Note also that during reverse execution, we may be stepping
6500 through a function epilogue and therefore must detect when
6501 the current-frame changes in the middle of a line. */
6502
ce4c476a 6503 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6504 && (execution_direction != EXEC_REVERSE
388a8562 6505 || frame_id_eq (get_frame_id (frame),
16c381f0 6506 ecs->event_thread->control.step_frame_id)))
488f131b 6507 {
527159b7 6508 if (debug_infrun)
5af949e3
UW
6509 fprintf_unfiltered
6510 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6511 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6512 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6513
c1e36e3e
PA
6514 /* Tentatively re-enable range stepping; `resume' disables it if
6515 necessary (e.g., if we're stepping over a breakpoint or we
6516 have software watchpoints). */
6517 ecs->event_thread->control.may_range_step = 1;
6518
b2175913
MS
6519 /* When stepping backward, stop at beginning of line range
6520 (unless it's the function entry point, in which case
6521 keep going back to the call point). */
16c381f0 6522 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6523 && stop_pc != ecs->stop_func_start
6524 && execution_direction == EXEC_REVERSE)
bdc36728 6525 end_stepping_range (ecs);
b2175913
MS
6526 else
6527 keep_going (ecs);
6528
488f131b
JB
6529 return;
6530 }
c5aa993b 6531
488f131b 6532 /* We stepped out of the stepping range. */
c906108c 6533
488f131b 6534 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6535 loader dynamic symbol resolution code...
6536
6537 EXEC_FORWARD: we keep on single stepping until we exit the run
6538 time loader code and reach the callee's address.
6539
6540 EXEC_REVERSE: we've already executed the callee (backward), and
6541 the runtime loader code is handled just like any other
6542 undebuggable function call. Now we need only keep stepping
6543 backward through the trampoline code, and that's handled further
6544 down, so there is nothing for us to do here. */
6545
6546 if (execution_direction != EXEC_REVERSE
16c381f0 6547 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6548 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6549 {
4c8c40e6 6550 CORE_ADDR pc_after_resolver =
568d6575 6551 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6552
527159b7 6553 if (debug_infrun)
3e43a32a
MS
6554 fprintf_unfiltered (gdb_stdlog,
6555 "infrun: stepped into dynsym resolve code\n");
527159b7 6556
488f131b
JB
6557 if (pc_after_resolver)
6558 {
6559 /* Set up a step-resume breakpoint at the address
6560 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6561 symtab_and_line sr_sal;
488f131b 6562 sr_sal.pc = pc_after_resolver;
6c95b8df 6563 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6564
a6d9a66e
UW
6565 insert_step_resume_breakpoint_at_sal (gdbarch,
6566 sr_sal, null_frame_id);
c5aa993b 6567 }
c906108c 6568
488f131b
JB
6569 keep_going (ecs);
6570 return;
6571 }
c906108c 6572
16c381f0
JK
6573 if (ecs->event_thread->control.step_range_end != 1
6574 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6575 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6576 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6577 {
527159b7 6578 if (debug_infrun)
3e43a32a
MS
6579 fprintf_unfiltered (gdb_stdlog,
6580 "infrun: stepped into signal trampoline\n");
42edda50 6581 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6582 a signal trampoline (either by a signal being delivered or by
6583 the signal handler returning). Just single-step until the
6584 inferior leaves the trampoline (either by calling the handler
6585 or returning). */
488f131b
JB
6586 keep_going (ecs);
6587 return;
6588 }
c906108c 6589
14132e89
MR
6590 /* If we're in the return path from a shared library trampoline,
6591 we want to proceed through the trampoline when stepping. */
6592 /* macro/2012-04-25: This needs to come before the subroutine
6593 call check below as on some targets return trampolines look
6594 like subroutine calls (MIPS16 return thunks). */
6595 if (gdbarch_in_solib_return_trampoline (gdbarch,
6596 stop_pc, ecs->stop_func_name)
6597 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6598 {
6599 /* Determine where this trampoline returns. */
6600 CORE_ADDR real_stop_pc;
6601
6602 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6603
6604 if (debug_infrun)
6605 fprintf_unfiltered (gdb_stdlog,
6606 "infrun: stepped into solib return tramp\n");
6607
6608 /* Only proceed through if we know where it's going. */
6609 if (real_stop_pc)
6610 {
6611 /* And put the step-breakpoint there and go until there. */
51abb421 6612 symtab_and_line sr_sal;
14132e89
MR
6613 sr_sal.pc = real_stop_pc;
6614 sr_sal.section = find_pc_overlay (sr_sal.pc);
6615 sr_sal.pspace = get_frame_program_space (frame);
6616
6617 /* Do not specify what the fp should be when we stop since
6618 on some machines the prologue is where the new fp value
6619 is established. */
6620 insert_step_resume_breakpoint_at_sal (gdbarch,
6621 sr_sal, null_frame_id);
6622
6623 /* Restart without fiddling with the step ranges or
6624 other state. */
6625 keep_going (ecs);
6626 return;
6627 }
6628 }
6629
c17eaafe
DJ
6630 /* Check for subroutine calls. The check for the current frame
6631 equalling the step ID is not necessary - the check of the
6632 previous frame's ID is sufficient - but it is a common case and
6633 cheaper than checking the previous frame's ID.
14e60db5
DJ
6634
6635 NOTE: frame_id_eq will never report two invalid frame IDs as
6636 being equal, so to get into this block, both the current and
6637 previous frame must have valid frame IDs. */
005ca36a
JB
6638 /* The outer_frame_id check is a heuristic to detect stepping
6639 through startup code. If we step over an instruction which
6640 sets the stack pointer from an invalid value to a valid value,
6641 we may detect that as a subroutine call from the mythical
6642 "outermost" function. This could be fixed by marking
6643 outermost frames as !stack_p,code_p,special_p. Then the
6644 initial outermost frame, before sp was valid, would
ce6cca6d 6645 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6646 for more. */
edb3359d 6647 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6648 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6649 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6650 ecs->event_thread->control.step_stack_frame_id)
6651 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6652 outer_frame_id)
885eeb5b
PA
6653 || (ecs->event_thread->control.step_start_function
6654 != find_pc_function (stop_pc)))))
488f131b 6655 {
95918acb 6656 CORE_ADDR real_stop_pc;
8fb3e588 6657
527159b7 6658 if (debug_infrun)
8a9de0e4 6659 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6660
b7a084be 6661 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6662 {
6663 /* I presume that step_over_calls is only 0 when we're
6664 supposed to be stepping at the assembly language level
6665 ("stepi"). Just stop. */
388a8562 6666 /* And this works the same backward as frontward. MVS */
bdc36728 6667 end_stepping_range (ecs);
95918acb
AC
6668 return;
6669 }
8fb3e588 6670
388a8562
MS
6671 /* Reverse stepping through solib trampolines. */
6672
6673 if (execution_direction == EXEC_REVERSE
16c381f0 6674 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6675 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6676 || (ecs->stop_func_start == 0
6677 && in_solib_dynsym_resolve_code (stop_pc))))
6678 {
6679 /* Any solib trampoline code can be handled in reverse
6680 by simply continuing to single-step. We have already
6681 executed the solib function (backwards), and a few
6682 steps will take us back through the trampoline to the
6683 caller. */
6684 keep_going (ecs);
6685 return;
6686 }
6687
16c381f0 6688 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6689 {
b2175913
MS
6690 /* We're doing a "next".
6691
6692 Normal (forward) execution: set a breakpoint at the
6693 callee's return address (the address at which the caller
6694 will resume).
6695
6696 Reverse (backward) execution. set the step-resume
6697 breakpoint at the start of the function that we just
6698 stepped into (backwards), and continue to there. When we
6130d0b7 6699 get there, we'll need to single-step back to the caller. */
b2175913
MS
6700
6701 if (execution_direction == EXEC_REVERSE)
6702 {
acf9414f
JK
6703 /* If we're already at the start of the function, we've either
6704 just stepped backward into a single instruction function,
6705 or stepped back out of a signal handler to the first instruction
6706 of the function. Just keep going, which will single-step back
6707 to the caller. */
58c48e72 6708 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6709 {
acf9414f 6710 /* Normal function call return (static or dynamic). */
51abb421 6711 symtab_and_line sr_sal;
acf9414f
JK
6712 sr_sal.pc = ecs->stop_func_start;
6713 sr_sal.pspace = get_frame_program_space (frame);
6714 insert_step_resume_breakpoint_at_sal (gdbarch,
6715 sr_sal, null_frame_id);
6716 }
b2175913
MS
6717 }
6718 else
568d6575 6719 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6720
8567c30f
AC
6721 keep_going (ecs);
6722 return;
6723 }
a53c66de 6724
95918acb 6725 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6726 calling routine and the real function), locate the real
6727 function. That's what tells us (a) whether we want to step
6728 into it at all, and (b) what prologue we want to run to the
6729 end of, if we do step into it. */
568d6575 6730 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6731 if (real_stop_pc == 0)
568d6575 6732 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6733 if (real_stop_pc != 0)
6734 ecs->stop_func_start = real_stop_pc;
8fb3e588 6735
db5f024e 6736 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6737 {
51abb421 6738 symtab_and_line sr_sal;
1b2bfbb9 6739 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6740 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6741
a6d9a66e
UW
6742 insert_step_resume_breakpoint_at_sal (gdbarch,
6743 sr_sal, null_frame_id);
8fb3e588
AC
6744 keep_going (ecs);
6745 return;
1b2bfbb9
RC
6746 }
6747
95918acb 6748 /* If we have line number information for the function we are
1bfeeb0f
JL
6749 thinking of stepping into and the function isn't on the skip
6750 list, step into it.
95918acb 6751
8fb3e588
AC
6752 If there are several symtabs at that PC (e.g. with include
6753 files), just want to know whether *any* of them have line
6754 numbers. find_pc_line handles this. */
95918acb
AC
6755 {
6756 struct symtab_and_line tmp_sal;
8fb3e588 6757
95918acb 6758 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6759 if (tmp_sal.line != 0
85817405 6760 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6761 tmp_sal))
95918acb 6762 {
b2175913 6763 if (execution_direction == EXEC_REVERSE)
568d6575 6764 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6765 else
568d6575 6766 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6767 return;
6768 }
6769 }
6770
6771 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6772 set, we stop the step so that the user has a chance to switch
6773 in assembly mode. */
16c381f0 6774 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6775 && step_stop_if_no_debug)
95918acb 6776 {
bdc36728 6777 end_stepping_range (ecs);
95918acb
AC
6778 return;
6779 }
6780
b2175913
MS
6781 if (execution_direction == EXEC_REVERSE)
6782 {
acf9414f
JK
6783 /* If we're already at the start of the function, we've either just
6784 stepped backward into a single instruction function without line
6785 number info, or stepped back out of a signal handler to the first
6786 instruction of the function without line number info. Just keep
6787 going, which will single-step back to the caller. */
6788 if (ecs->stop_func_start != stop_pc)
6789 {
6790 /* Set a breakpoint at callee's start address.
6791 From there we can step once and be back in the caller. */
51abb421 6792 symtab_and_line sr_sal;
acf9414f
JK
6793 sr_sal.pc = ecs->stop_func_start;
6794 sr_sal.pspace = get_frame_program_space (frame);
6795 insert_step_resume_breakpoint_at_sal (gdbarch,
6796 sr_sal, null_frame_id);
6797 }
b2175913
MS
6798 }
6799 else
6800 /* Set a breakpoint at callee's return address (the address
6801 at which the caller will resume). */
568d6575 6802 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6803
95918acb 6804 keep_going (ecs);
488f131b 6805 return;
488f131b 6806 }
c906108c 6807
fdd654f3
MS
6808 /* Reverse stepping through solib trampolines. */
6809
6810 if (execution_direction == EXEC_REVERSE
16c381f0 6811 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6812 {
6813 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6814 || (ecs->stop_func_start == 0
6815 && in_solib_dynsym_resolve_code (stop_pc)))
6816 {
6817 /* Any solib trampoline code can be handled in reverse
6818 by simply continuing to single-step. We have already
6819 executed the solib function (backwards), and a few
6820 steps will take us back through the trampoline to the
6821 caller. */
6822 keep_going (ecs);
6823 return;
6824 }
6825 else if (in_solib_dynsym_resolve_code (stop_pc))
6826 {
6827 /* Stepped backward into the solib dynsym resolver.
6828 Set a breakpoint at its start and continue, then
6829 one more step will take us out. */
51abb421 6830 symtab_and_line sr_sal;
fdd654f3 6831 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6832 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6833 insert_step_resume_breakpoint_at_sal (gdbarch,
6834 sr_sal, null_frame_id);
6835 keep_going (ecs);
6836 return;
6837 }
6838 }
6839
2afb61aa 6840 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6841
1b2bfbb9
RC
6842 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6843 the trampoline processing logic, however, there are some trampolines
6844 that have no names, so we should do trampoline handling first. */
16c381f0 6845 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6846 && ecs->stop_func_name == NULL
2afb61aa 6847 && stop_pc_sal.line == 0)
1b2bfbb9 6848 {
527159b7 6849 if (debug_infrun)
3e43a32a
MS
6850 fprintf_unfiltered (gdb_stdlog,
6851 "infrun: stepped into undebuggable function\n");
527159b7 6852
1b2bfbb9 6853 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6854 undebuggable function (where there is no debugging information
6855 and no line number corresponding to the address where the
1b2bfbb9
RC
6856 inferior stopped). Since we want to skip this kind of code,
6857 we keep going until the inferior returns from this
14e60db5
DJ
6858 function - unless the user has asked us not to (via
6859 set step-mode) or we no longer know how to get back
6860 to the call site. */
6861 if (step_stop_if_no_debug
c7ce8faa 6862 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6863 {
6864 /* If we have no line number and the step-stop-if-no-debug
6865 is set, we stop the step so that the user has a chance to
6866 switch in assembly mode. */
bdc36728 6867 end_stepping_range (ecs);
1b2bfbb9
RC
6868 return;
6869 }
6870 else
6871 {
6872 /* Set a breakpoint at callee's return address (the address
6873 at which the caller will resume). */
568d6575 6874 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6875 keep_going (ecs);
6876 return;
6877 }
6878 }
6879
16c381f0 6880 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6881 {
6882 /* It is stepi or nexti. We always want to stop stepping after
6883 one instruction. */
527159b7 6884 if (debug_infrun)
8a9de0e4 6885 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6886 end_stepping_range (ecs);
1b2bfbb9
RC
6887 return;
6888 }
6889
2afb61aa 6890 if (stop_pc_sal.line == 0)
488f131b
JB
6891 {
6892 /* We have no line number information. That means to stop
6893 stepping (does this always happen right after one instruction,
6894 when we do "s" in a function with no line numbers,
6895 or can this happen as a result of a return or longjmp?). */
527159b7 6896 if (debug_infrun)
8a9de0e4 6897 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6898 end_stepping_range (ecs);
488f131b
JB
6899 return;
6900 }
c906108c 6901
edb3359d
DJ
6902 /* Look for "calls" to inlined functions, part one. If the inline
6903 frame machinery detected some skipped call sites, we have entered
6904 a new inline function. */
6905
6906 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6907 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6908 && inline_skipped_frames (ecs->ptid))
6909 {
edb3359d
DJ
6910 if (debug_infrun)
6911 fprintf_unfiltered (gdb_stdlog,
6912 "infrun: stepped into inlined function\n");
6913
51abb421 6914 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6915
16c381f0 6916 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6917 {
6918 /* For "step", we're going to stop. But if the call site
6919 for this inlined function is on the same source line as
6920 we were previously stepping, go down into the function
6921 first. Otherwise stop at the call site. */
6922
6923 if (call_sal.line == ecs->event_thread->current_line
6924 && call_sal.symtab == ecs->event_thread->current_symtab)
6925 step_into_inline_frame (ecs->ptid);
6926
bdc36728 6927 end_stepping_range (ecs);
edb3359d
DJ
6928 return;
6929 }
6930 else
6931 {
6932 /* For "next", we should stop at the call site if it is on a
6933 different source line. Otherwise continue through the
6934 inlined function. */
6935 if (call_sal.line == ecs->event_thread->current_line
6936 && call_sal.symtab == ecs->event_thread->current_symtab)
6937 keep_going (ecs);
6938 else
bdc36728 6939 end_stepping_range (ecs);
edb3359d
DJ
6940 return;
6941 }
6942 }
6943
6944 /* Look for "calls" to inlined functions, part two. If we are still
6945 in the same real function we were stepping through, but we have
6946 to go further up to find the exact frame ID, we are stepping
6947 through a more inlined call beyond its call site. */
6948
6949 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6950 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6951 ecs->event_thread->control.step_frame_id)
edb3359d 6952 && stepped_in_from (get_current_frame (),
16c381f0 6953 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6954 {
6955 if (debug_infrun)
6956 fprintf_unfiltered (gdb_stdlog,
6957 "infrun: stepping through inlined function\n");
6958
16c381f0 6959 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6960 keep_going (ecs);
6961 else
bdc36728 6962 end_stepping_range (ecs);
edb3359d
DJ
6963 return;
6964 }
6965
2afb61aa 6966 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6967 && (ecs->event_thread->current_line != stop_pc_sal.line
6968 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6969 {
6970 /* We are at the start of a different line. So stop. Note that
6971 we don't stop if we step into the middle of a different line.
6972 That is said to make things like for (;;) statements work
6973 better. */
527159b7 6974 if (debug_infrun)
3e43a32a
MS
6975 fprintf_unfiltered (gdb_stdlog,
6976 "infrun: stepped to a different line\n");
bdc36728 6977 end_stepping_range (ecs);
488f131b
JB
6978 return;
6979 }
c906108c 6980
488f131b 6981 /* We aren't done stepping.
c906108c 6982
488f131b
JB
6983 Optimize by setting the stepping range to the line.
6984 (We might not be in the original line, but if we entered a
6985 new line in mid-statement, we continue stepping. This makes
6986 things like for(;;) statements work better.) */
c906108c 6987
16c381f0
JK
6988 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6989 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6990 ecs->event_thread->control.may_range_step = 1;
edb3359d 6991 set_step_info (frame, stop_pc_sal);
488f131b 6992
527159b7 6993 if (debug_infrun)
8a9de0e4 6994 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6995 keep_going (ecs);
104c1213
JM
6996}
6997
c447ac0b
PA
6998/* In all-stop mode, if we're currently stepping but have stopped in
6999 some other thread, we may need to switch back to the stepped
7000 thread. Returns true we set the inferior running, false if we left
7001 it stopped (and the event needs further processing). */
7002
7003static int
7004switch_back_to_stepped_thread (struct execution_control_state *ecs)
7005{
fbea99ea 7006 if (!target_is_non_stop_p ())
c447ac0b
PA
7007 {
7008 struct thread_info *tp;
99619bea
PA
7009 struct thread_info *stepping_thread;
7010
7011 /* If any thread is blocked on some internal breakpoint, and we
7012 simply need to step over that breakpoint to get it going
7013 again, do that first. */
7014
7015 /* However, if we see an event for the stepping thread, then we
7016 know all other threads have been moved past their breakpoints
7017 already. Let the caller check whether the step is finished,
7018 etc., before deciding to move it past a breakpoint. */
7019 if (ecs->event_thread->control.step_range_end != 0)
7020 return 0;
7021
7022 /* Check if the current thread is blocked on an incomplete
7023 step-over, interrupted by a random signal. */
7024 if (ecs->event_thread->control.trap_expected
7025 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7026 {
99619bea
PA
7027 if (debug_infrun)
7028 {
7029 fprintf_unfiltered (gdb_stdlog,
7030 "infrun: need to finish step-over of [%s]\n",
7031 target_pid_to_str (ecs->event_thread->ptid));
7032 }
7033 keep_going (ecs);
7034 return 1;
7035 }
2adfaa28 7036
99619bea
PA
7037 /* Check if the current thread is blocked by a single-step
7038 breakpoint of another thread. */
7039 if (ecs->hit_singlestep_breakpoint)
7040 {
7041 if (debug_infrun)
7042 {
7043 fprintf_unfiltered (gdb_stdlog,
7044 "infrun: need to step [%s] over single-step "
7045 "breakpoint\n",
7046 target_pid_to_str (ecs->ptid));
7047 }
7048 keep_going (ecs);
7049 return 1;
7050 }
7051
4d9d9d04
PA
7052 /* If this thread needs yet another step-over (e.g., stepping
7053 through a delay slot), do it first before moving on to
7054 another thread. */
7055 if (thread_still_needs_step_over (ecs->event_thread))
7056 {
7057 if (debug_infrun)
7058 {
7059 fprintf_unfiltered (gdb_stdlog,
7060 "infrun: thread [%s] still needs step-over\n",
7061 target_pid_to_str (ecs->event_thread->ptid));
7062 }
7063 keep_going (ecs);
7064 return 1;
7065 }
70509625 7066
483805cf
PA
7067 /* If scheduler locking applies even if not stepping, there's no
7068 need to walk over threads. Above we've checked whether the
7069 current thread is stepping. If some other thread not the
7070 event thread is stepping, then it must be that scheduler
7071 locking is not in effect. */
856e7dd6 7072 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7073 return 0;
7074
4d9d9d04
PA
7075 /* Otherwise, we no longer expect a trap in the current thread.
7076 Clear the trap_expected flag before switching back -- this is
7077 what keep_going does as well, if we call it. */
7078 ecs->event_thread->control.trap_expected = 0;
7079
7080 /* Likewise, clear the signal if it should not be passed. */
7081 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7082 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7083
7084 /* Do all pending step-overs before actually proceeding with
483805cf 7085 step/next/etc. */
4d9d9d04
PA
7086 if (start_step_over ())
7087 {
7088 prepare_to_wait (ecs);
7089 return 1;
7090 }
7091
7092 /* Look for the stepping/nexting thread. */
483805cf 7093 stepping_thread = NULL;
4d9d9d04 7094
034f788c 7095 ALL_NON_EXITED_THREADS (tp)
483805cf 7096 {
fbea99ea
PA
7097 /* Ignore threads of processes the caller is not
7098 resuming. */
483805cf 7099 if (!sched_multi
1afd5965 7100 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7101 continue;
7102
7103 /* When stepping over a breakpoint, we lock all threads
7104 except the one that needs to move past the breakpoint.
7105 If a non-event thread has this set, the "incomplete
7106 step-over" check above should have caught it earlier. */
372316f1
PA
7107 if (tp->control.trap_expected)
7108 {
7109 internal_error (__FILE__, __LINE__,
7110 "[%s] has inconsistent state: "
7111 "trap_expected=%d\n",
7112 target_pid_to_str (tp->ptid),
7113 tp->control.trap_expected);
7114 }
483805cf
PA
7115
7116 /* Did we find the stepping thread? */
7117 if (tp->control.step_range_end)
7118 {
7119 /* Yep. There should only one though. */
7120 gdb_assert (stepping_thread == NULL);
7121
7122 /* The event thread is handled at the top, before we
7123 enter this loop. */
7124 gdb_assert (tp != ecs->event_thread);
7125
7126 /* If some thread other than the event thread is
7127 stepping, then scheduler locking can't be in effect,
7128 otherwise we wouldn't have resumed the current event
7129 thread in the first place. */
856e7dd6 7130 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7131
7132 stepping_thread = tp;
7133 }
99619bea
PA
7134 }
7135
483805cf 7136 if (stepping_thread != NULL)
99619bea 7137 {
c447ac0b
PA
7138 if (debug_infrun)
7139 fprintf_unfiltered (gdb_stdlog,
7140 "infrun: switching back to stepped thread\n");
7141
2ac7589c
PA
7142 if (keep_going_stepped_thread (stepping_thread))
7143 {
7144 prepare_to_wait (ecs);
7145 return 1;
7146 }
7147 }
7148 }
2adfaa28 7149
2ac7589c
PA
7150 return 0;
7151}
2adfaa28 7152
2ac7589c
PA
7153/* Set a previously stepped thread back to stepping. Returns true on
7154 success, false if the resume is not possible (e.g., the thread
7155 vanished). */
7156
7157static int
7158keep_going_stepped_thread (struct thread_info *tp)
7159{
7160 struct frame_info *frame;
2ac7589c
PA
7161 struct execution_control_state ecss;
7162 struct execution_control_state *ecs = &ecss;
2adfaa28 7163
2ac7589c
PA
7164 /* If the stepping thread exited, then don't try to switch back and
7165 resume it, which could fail in several different ways depending
7166 on the target. Instead, just keep going.
2adfaa28 7167
2ac7589c
PA
7168 We can find a stepping dead thread in the thread list in two
7169 cases:
2adfaa28 7170
2ac7589c
PA
7171 - The target supports thread exit events, and when the target
7172 tries to delete the thread from the thread list, inferior_ptid
7173 pointed at the exiting thread. In such case, calling
7174 delete_thread does not really remove the thread from the list;
7175 instead, the thread is left listed, with 'exited' state.
64ce06e4 7176
2ac7589c
PA
7177 - The target's debug interface does not support thread exit
7178 events, and so we have no idea whatsoever if the previously
7179 stepping thread is still alive. For that reason, we need to
7180 synchronously query the target now. */
2adfaa28 7181
2ac7589c
PA
7182 if (is_exited (tp->ptid)
7183 || !target_thread_alive (tp->ptid))
7184 {
7185 if (debug_infrun)
7186 fprintf_unfiltered (gdb_stdlog,
7187 "infrun: not resuming previously "
7188 "stepped thread, it has vanished\n");
7189
7190 delete_thread (tp->ptid);
7191 return 0;
c447ac0b 7192 }
2ac7589c
PA
7193
7194 if (debug_infrun)
7195 fprintf_unfiltered (gdb_stdlog,
7196 "infrun: resuming previously stepped thread\n");
7197
7198 reset_ecs (ecs, tp);
7199 switch_to_thread (tp->ptid);
7200
7201 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7202 frame = get_current_frame ();
2ac7589c
PA
7203
7204 /* If the PC of the thread we were trying to single-step has
7205 changed, then that thread has trapped or been signaled, but the
7206 event has not been reported to GDB yet. Re-poll the target
7207 looking for this particular thread's event (i.e. temporarily
7208 enable schedlock) by:
7209
7210 - setting a break at the current PC
7211 - resuming that particular thread, only (by setting trap
7212 expected)
7213
7214 This prevents us continuously moving the single-step breakpoint
7215 forward, one instruction at a time, overstepping. */
7216
7217 if (stop_pc != tp->prev_pc)
7218 {
7219 ptid_t resume_ptid;
7220
7221 if (debug_infrun)
7222 fprintf_unfiltered (gdb_stdlog,
7223 "infrun: expected thread advanced also (%s -> %s)\n",
7224 paddress (target_gdbarch (), tp->prev_pc),
7225 paddress (target_gdbarch (), stop_pc));
7226
7227 /* Clear the info of the previous step-over, as it's no longer
7228 valid (if the thread was trying to step over a breakpoint, it
7229 has already succeeded). It's what keep_going would do too,
7230 if we called it. Do this before trying to insert the sss
7231 breakpoint, otherwise if we were previously trying to step
7232 over this exact address in another thread, the breakpoint is
7233 skipped. */
7234 clear_step_over_info ();
7235 tp->control.trap_expected = 0;
7236
7237 insert_single_step_breakpoint (get_frame_arch (frame),
7238 get_frame_address_space (frame),
7239 stop_pc);
7240
372316f1 7241 tp->resumed = 1;
fbea99ea 7242 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7243 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7244 }
7245 else
7246 {
7247 if (debug_infrun)
7248 fprintf_unfiltered (gdb_stdlog,
7249 "infrun: expected thread still hasn't advanced\n");
7250
7251 keep_going_pass_signal (ecs);
7252 }
7253 return 1;
c447ac0b
PA
7254}
7255
8b061563
PA
7256/* Is thread TP in the middle of (software or hardware)
7257 single-stepping? (Note the result of this function must never be
7258 passed directly as target_resume's STEP parameter.) */
104c1213 7259
a289b8f6 7260static int
b3444185 7261currently_stepping (struct thread_info *tp)
a7212384 7262{
8358c15c
JK
7263 return ((tp->control.step_range_end
7264 && tp->control.step_resume_breakpoint == NULL)
7265 || tp->control.trap_expected
af48d08f 7266 || tp->stepped_breakpoint
8358c15c 7267 || bpstat_should_step ());
a7212384
UW
7268}
7269
b2175913
MS
7270/* Inferior has stepped into a subroutine call with source code that
7271 we should not step over. Do step to the first line of code in
7272 it. */
c2c6d25f
JM
7273
7274static void
568d6575
UW
7275handle_step_into_function (struct gdbarch *gdbarch,
7276 struct execution_control_state *ecs)
c2c6d25f 7277{
7e324e48
GB
7278 fill_in_stop_func (gdbarch, ecs);
7279
51abb421 7280 compunit_symtab *cust = find_pc_compunit_symtab (stop_pc);
43f3e411 7281 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7282 ecs->stop_func_start
7283 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7284
51abb421 7285 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7286 /* Use the step_resume_break to step until the end of the prologue,
7287 even if that involves jumps (as it seems to on the vax under
7288 4.2). */
7289 /* If the prologue ends in the middle of a source line, continue to
7290 the end of that source line (if it is still within the function).
7291 Otherwise, just go to end of prologue. */
2afb61aa
PA
7292 if (stop_func_sal.end
7293 && stop_func_sal.pc != ecs->stop_func_start
7294 && stop_func_sal.end < ecs->stop_func_end)
7295 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7296
2dbd5e30
KB
7297 /* Architectures which require breakpoint adjustment might not be able
7298 to place a breakpoint at the computed address. If so, the test
7299 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7300 ecs->stop_func_start to an address at which a breakpoint may be
7301 legitimately placed.
8fb3e588 7302
2dbd5e30
KB
7303 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7304 made, GDB will enter an infinite loop when stepping through
7305 optimized code consisting of VLIW instructions which contain
7306 subinstructions corresponding to different source lines. On
7307 FR-V, it's not permitted to place a breakpoint on any but the
7308 first subinstruction of a VLIW instruction. When a breakpoint is
7309 set, GDB will adjust the breakpoint address to the beginning of
7310 the VLIW instruction. Thus, we need to make the corresponding
7311 adjustment here when computing the stop address. */
8fb3e588 7312
568d6575 7313 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7314 {
7315 ecs->stop_func_start
568d6575 7316 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7317 ecs->stop_func_start);
2dbd5e30
KB
7318 }
7319
c2c6d25f
JM
7320 if (ecs->stop_func_start == stop_pc)
7321 {
7322 /* We are already there: stop now. */
bdc36728 7323 end_stepping_range (ecs);
c2c6d25f
JM
7324 return;
7325 }
7326 else
7327 {
7328 /* Put the step-breakpoint there and go until there. */
51abb421 7329 symtab_and_line sr_sal;
c2c6d25f
JM
7330 sr_sal.pc = ecs->stop_func_start;
7331 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7332 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7333
c2c6d25f 7334 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7335 some machines the prologue is where the new fp value is
7336 established. */
a6d9a66e 7337 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7338
7339 /* And make sure stepping stops right away then. */
16c381f0
JK
7340 ecs->event_thread->control.step_range_end
7341 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7342 }
7343 keep_going (ecs);
7344}
d4f3574e 7345
b2175913
MS
7346/* Inferior has stepped backward into a subroutine call with source
7347 code that we should not step over. Do step to the beginning of the
7348 last line of code in it. */
7349
7350static void
568d6575
UW
7351handle_step_into_function_backward (struct gdbarch *gdbarch,
7352 struct execution_control_state *ecs)
b2175913 7353{
43f3e411 7354 struct compunit_symtab *cust;
167e4384 7355 struct symtab_and_line stop_func_sal;
b2175913 7356
7e324e48
GB
7357 fill_in_stop_func (gdbarch, ecs);
7358
43f3e411
DE
7359 cust = find_pc_compunit_symtab (stop_pc);
7360 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7361 ecs->stop_func_start
7362 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913
MS
7363
7364 stop_func_sal = find_pc_line (stop_pc, 0);
7365
7366 /* OK, we're just going to keep stepping here. */
7367 if (stop_func_sal.pc == stop_pc)
7368 {
7369 /* We're there already. Just stop stepping now. */
bdc36728 7370 end_stepping_range (ecs);
b2175913
MS
7371 }
7372 else
7373 {
7374 /* Else just reset the step range and keep going.
7375 No step-resume breakpoint, they don't work for
7376 epilogues, which can have multiple entry paths. */
16c381f0
JK
7377 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7378 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7379 keep_going (ecs);
7380 }
7381 return;
7382}
7383
d3169d93 7384/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7385 This is used to both functions and to skip over code. */
7386
7387static void
2c03e5be
PA
7388insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7389 struct symtab_and_line sr_sal,
7390 struct frame_id sr_id,
7391 enum bptype sr_type)
44cbf7b5 7392{
611c83ae
PA
7393 /* There should never be more than one step-resume or longjmp-resume
7394 breakpoint per thread, so we should never be setting a new
44cbf7b5 7395 step_resume_breakpoint when one is already active. */
8358c15c 7396 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7397 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7398
7399 if (debug_infrun)
7400 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7401 "infrun: inserting step-resume breakpoint at %s\n",
7402 paddress (gdbarch, sr_sal.pc));
d3169d93 7403
8358c15c 7404 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7405 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7406}
7407
9da8c2a0 7408void
2c03e5be
PA
7409insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7410 struct symtab_and_line sr_sal,
7411 struct frame_id sr_id)
7412{
7413 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7414 sr_sal, sr_id,
7415 bp_step_resume);
44cbf7b5 7416}
7ce450bd 7417
2c03e5be
PA
7418/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7419 This is used to skip a potential signal handler.
7ce450bd 7420
14e60db5
DJ
7421 This is called with the interrupted function's frame. The signal
7422 handler, when it returns, will resume the interrupted function at
7423 RETURN_FRAME.pc. */
d303a6c7
AC
7424
7425static void
2c03e5be 7426insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7427{
f4c1edd8 7428 gdb_assert (return_frame != NULL);
d303a6c7 7429
51abb421
PA
7430 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7431
7432 symtab_and_line sr_sal;
568d6575 7433 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7434 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7435 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7436
2c03e5be
PA
7437 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7438 get_stack_frame_id (return_frame),
7439 bp_hp_step_resume);
d303a6c7
AC
7440}
7441
2c03e5be
PA
7442/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7443 is used to skip a function after stepping into it (for "next" or if
7444 the called function has no debugging information).
14e60db5
DJ
7445
7446 The current function has almost always been reached by single
7447 stepping a call or return instruction. NEXT_FRAME belongs to the
7448 current function, and the breakpoint will be set at the caller's
7449 resume address.
7450
7451 This is a separate function rather than reusing
2c03e5be 7452 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7453 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7454 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7455
7456static void
7457insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7458{
14e60db5
DJ
7459 /* We shouldn't have gotten here if we don't know where the call site
7460 is. */
c7ce8faa 7461 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7462
51abb421 7463 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7464
51abb421 7465 symtab_and_line sr_sal;
c7ce8faa
DJ
7466 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7467 frame_unwind_caller_pc (next_frame));
14e60db5 7468 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7469 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7470
a6d9a66e 7471 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7472 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7473}
7474
611c83ae
PA
7475/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7476 new breakpoint at the target of a jmp_buf. The handling of
7477 longjmp-resume uses the same mechanisms used for handling
7478 "step-resume" breakpoints. */
7479
7480static void
a6d9a66e 7481insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7482{
e81a37f7
TT
7483 /* There should never be more than one longjmp-resume breakpoint per
7484 thread, so we should never be setting a new
611c83ae 7485 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7486 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7487
7488 if (debug_infrun)
7489 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7490 "infrun: inserting longjmp-resume breakpoint at %s\n",
7491 paddress (gdbarch, pc));
611c83ae 7492
e81a37f7 7493 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7494 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7495}
7496
186c406b
TT
7497/* Insert an exception resume breakpoint. TP is the thread throwing
7498 the exception. The block B is the block of the unwinder debug hook
7499 function. FRAME is the frame corresponding to the call to this
7500 function. SYM is the symbol of the function argument holding the
7501 target PC of the exception. */
7502
7503static void
7504insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7505 const struct block *b,
186c406b
TT
7506 struct frame_info *frame,
7507 struct symbol *sym)
7508{
492d29ea 7509 TRY
186c406b 7510 {
63e43d3a 7511 struct block_symbol vsym;
186c406b
TT
7512 struct value *value;
7513 CORE_ADDR handler;
7514 struct breakpoint *bp;
7515
63e43d3a
PMR
7516 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7517 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7518 /* If the value was optimized out, revert to the old behavior. */
7519 if (! value_optimized_out (value))
7520 {
7521 handler = value_as_address (value);
7522
7523 if (debug_infrun)
7524 fprintf_unfiltered (gdb_stdlog,
7525 "infrun: exception resume at %lx\n",
7526 (unsigned long) handler);
7527
7528 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7529 handler, bp_exception_resume);
c70a6932
JK
7530
7531 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7532 frame = NULL;
7533
5d5658a1 7534 bp->thread = tp->global_num;
186c406b
TT
7535 inferior_thread ()->control.exception_resume_breakpoint = bp;
7536 }
7537 }
492d29ea
PA
7538 CATCH (e, RETURN_MASK_ERROR)
7539 {
7540 /* We want to ignore errors here. */
7541 }
7542 END_CATCH
186c406b
TT
7543}
7544
28106bc2
SDJ
7545/* A helper for check_exception_resume that sets an
7546 exception-breakpoint based on a SystemTap probe. */
7547
7548static void
7549insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7550 const struct bound_probe *probe,
28106bc2
SDJ
7551 struct frame_info *frame)
7552{
7553 struct value *arg_value;
7554 CORE_ADDR handler;
7555 struct breakpoint *bp;
7556
7557 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7558 if (!arg_value)
7559 return;
7560
7561 handler = value_as_address (arg_value);
7562
7563 if (debug_infrun)
7564 fprintf_unfiltered (gdb_stdlog,
7565 "infrun: exception resume at %s\n",
6bac7473 7566 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7567 handler));
7568
7569 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7570 handler, bp_exception_resume);
5d5658a1 7571 bp->thread = tp->global_num;
28106bc2
SDJ
7572 inferior_thread ()->control.exception_resume_breakpoint = bp;
7573}
7574
186c406b
TT
7575/* This is called when an exception has been intercepted. Check to
7576 see whether the exception's destination is of interest, and if so,
7577 set an exception resume breakpoint there. */
7578
7579static void
7580check_exception_resume (struct execution_control_state *ecs,
28106bc2 7581 struct frame_info *frame)
186c406b 7582{
729662a5 7583 struct bound_probe probe;
28106bc2
SDJ
7584 struct symbol *func;
7585
7586 /* First see if this exception unwinding breakpoint was set via a
7587 SystemTap probe point. If so, the probe has two arguments: the
7588 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7589 set a breakpoint there. */
6bac7473 7590 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7591 if (probe.probe)
28106bc2 7592 {
729662a5 7593 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7594 return;
7595 }
7596
7597 func = get_frame_function (frame);
7598 if (!func)
7599 return;
186c406b 7600
492d29ea 7601 TRY
186c406b 7602 {
3977b71f 7603 const struct block *b;
8157b174 7604 struct block_iterator iter;
186c406b
TT
7605 struct symbol *sym;
7606 int argno = 0;
7607
7608 /* The exception breakpoint is a thread-specific breakpoint on
7609 the unwinder's debug hook, declared as:
7610
7611 void _Unwind_DebugHook (void *cfa, void *handler);
7612
7613 The CFA argument indicates the frame to which control is
7614 about to be transferred. HANDLER is the destination PC.
7615
7616 We ignore the CFA and set a temporary breakpoint at HANDLER.
7617 This is not extremely efficient but it avoids issues in gdb
7618 with computing the DWARF CFA, and it also works even in weird
7619 cases such as throwing an exception from inside a signal
7620 handler. */
7621
7622 b = SYMBOL_BLOCK_VALUE (func);
7623 ALL_BLOCK_SYMBOLS (b, iter, sym)
7624 {
7625 if (!SYMBOL_IS_ARGUMENT (sym))
7626 continue;
7627
7628 if (argno == 0)
7629 ++argno;
7630 else
7631 {
7632 insert_exception_resume_breakpoint (ecs->event_thread,
7633 b, frame, sym);
7634 break;
7635 }
7636 }
7637 }
492d29ea
PA
7638 CATCH (e, RETURN_MASK_ERROR)
7639 {
7640 }
7641 END_CATCH
186c406b
TT
7642}
7643
104c1213 7644static void
22bcd14b 7645stop_waiting (struct execution_control_state *ecs)
104c1213 7646{
527159b7 7647 if (debug_infrun)
22bcd14b 7648 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7649
cd0fc7c3
SS
7650 /* Let callers know we don't want to wait for the inferior anymore. */
7651 ecs->wait_some_more = 0;
fbea99ea
PA
7652
7653 /* If all-stop, but the target is always in non-stop mode, stop all
7654 threads now that we're presenting the stop to the user. */
7655 if (!non_stop && target_is_non_stop_p ())
7656 stop_all_threads ();
cd0fc7c3
SS
7657}
7658
4d9d9d04
PA
7659/* Like keep_going, but passes the signal to the inferior, even if the
7660 signal is set to nopass. */
d4f3574e
SS
7661
7662static void
4d9d9d04 7663keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7664{
c4dbc9af
PA
7665 /* Make sure normal_stop is called if we get a QUIT handled before
7666 reaching resume. */
7667 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7668
4d9d9d04 7669 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7670 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7671
d4f3574e 7672 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7673 ecs->event_thread->prev_pc
7674 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7675
4d9d9d04 7676 if (ecs->event_thread->control.trap_expected)
d4f3574e 7677 {
4d9d9d04
PA
7678 struct thread_info *tp = ecs->event_thread;
7679
7680 if (debug_infrun)
7681 fprintf_unfiltered (gdb_stdlog,
7682 "infrun: %s has trap_expected set, "
7683 "resuming to collect trap\n",
7684 target_pid_to_str (tp->ptid));
7685
a9ba6bae
PA
7686 /* We haven't yet gotten our trap, and either: intercepted a
7687 non-signal event (e.g., a fork); or took a signal which we
7688 are supposed to pass through to the inferior. Simply
7689 continue. */
c4dbc9af 7690 discard_cleanups (old_cleanups);
64ce06e4 7691 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7692 }
372316f1
PA
7693 else if (step_over_info_valid_p ())
7694 {
7695 /* Another thread is stepping over a breakpoint in-line. If
7696 this thread needs a step-over too, queue the request. In
7697 either case, this resume must be deferred for later. */
7698 struct thread_info *tp = ecs->event_thread;
7699
7700 if (ecs->hit_singlestep_breakpoint
7701 || thread_still_needs_step_over (tp))
7702 {
7703 if (debug_infrun)
7704 fprintf_unfiltered (gdb_stdlog,
7705 "infrun: step-over already in progress: "
7706 "step-over for %s deferred\n",
7707 target_pid_to_str (tp->ptid));
7708 thread_step_over_chain_enqueue (tp);
7709 }
7710 else
7711 {
7712 if (debug_infrun)
7713 fprintf_unfiltered (gdb_stdlog,
7714 "infrun: step-over in progress: "
7715 "resume of %s deferred\n",
7716 target_pid_to_str (tp->ptid));
7717 }
7718
7719 discard_cleanups (old_cleanups);
7720 }
d4f3574e
SS
7721 else
7722 {
31e77af2 7723 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7724 int remove_bp;
7725 int remove_wps;
8d297bbf 7726 step_over_what step_what;
31e77af2 7727
d4f3574e 7728 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7729 anyway (if we got a signal, the user asked it be passed to
7730 the child)
7731 -- or --
7732 We got our expected trap, but decided we should resume from
7733 it.
d4f3574e 7734
a9ba6bae 7735 We're going to run this baby now!
d4f3574e 7736
c36b740a
VP
7737 Note that insert_breakpoints won't try to re-insert
7738 already inserted breakpoints. Therefore, we don't
7739 care if breakpoints were already inserted, or not. */
a9ba6bae 7740
31e77af2
PA
7741 /* If we need to step over a breakpoint, and we're not using
7742 displaced stepping to do so, insert all breakpoints
7743 (watchpoints, etc.) but the one we're stepping over, step one
7744 instruction, and then re-insert the breakpoint when that step
7745 is finished. */
963f9c80 7746
6c4cfb24
PA
7747 step_what = thread_still_needs_step_over (ecs->event_thread);
7748
963f9c80 7749 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7750 || (step_what & STEP_OVER_BREAKPOINT));
7751 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7752
cb71640d
PA
7753 /* We can't use displaced stepping if we need to step past a
7754 watchpoint. The instruction copied to the scratch pad would
7755 still trigger the watchpoint. */
7756 if (remove_bp
3fc8eb30 7757 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7758 {
31e77af2 7759 set_step_over_info (get_regcache_aspace (regcache),
21edc42f
YQ
7760 regcache_read_pc (regcache), remove_wps,
7761 ecs->event_thread->global_num);
45e8c884 7762 }
963f9c80 7763 else if (remove_wps)
21edc42f 7764 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7765
7766 /* If we now need to do an in-line step-over, we need to stop
7767 all other threads. Note this must be done before
7768 insert_breakpoints below, because that removes the breakpoint
7769 we're about to step over, otherwise other threads could miss
7770 it. */
fbea99ea 7771 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7772 stop_all_threads ();
abbb1732 7773
31e77af2 7774 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7775 TRY
31e77af2
PA
7776 {
7777 insert_breakpoints ();
7778 }
492d29ea 7779 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7780 {
7781 exception_print (gdb_stderr, e);
22bcd14b 7782 stop_waiting (ecs);
de1fe8c8 7783 discard_cleanups (old_cleanups);
31e77af2 7784 return;
d4f3574e 7785 }
492d29ea 7786 END_CATCH
d4f3574e 7787
963f9c80 7788 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7789
c4dbc9af 7790 discard_cleanups (old_cleanups);
64ce06e4 7791 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7792 }
7793
488f131b 7794 prepare_to_wait (ecs);
d4f3574e
SS
7795}
7796
4d9d9d04
PA
7797/* Called when we should continue running the inferior, because the
7798 current event doesn't cause a user visible stop. This does the
7799 resuming part; waiting for the next event is done elsewhere. */
7800
7801static void
7802keep_going (struct execution_control_state *ecs)
7803{
7804 if (ecs->event_thread->control.trap_expected
7805 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7806 ecs->event_thread->control.trap_expected = 0;
7807
7808 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7809 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7810 keep_going_pass_signal (ecs);
7811}
7812
104c1213
JM
7813/* This function normally comes after a resume, before
7814 handle_inferior_event exits. It takes care of any last bits of
7815 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7816
104c1213
JM
7817static void
7818prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7819{
527159b7 7820 if (debug_infrun)
8a9de0e4 7821 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7822
104c1213 7823 ecs->wait_some_more = 1;
0b333c5e
PA
7824
7825 if (!target_is_async_p ())
7826 mark_infrun_async_event_handler ();
c906108c 7827}
11cf8741 7828
fd664c91 7829/* We are done with the step range of a step/next/si/ni command.
b57bacec 7830 Called once for each n of a "step n" operation. */
fd664c91
PA
7831
7832static void
bdc36728 7833end_stepping_range (struct execution_control_state *ecs)
fd664c91 7834{
bdc36728 7835 ecs->event_thread->control.stop_step = 1;
bdc36728 7836 stop_waiting (ecs);
fd664c91
PA
7837}
7838
33d62d64
JK
7839/* Several print_*_reason functions to print why the inferior has stopped.
7840 We always print something when the inferior exits, or receives a signal.
7841 The rest of the cases are dealt with later on in normal_stop and
7842 print_it_typical. Ideally there should be a call to one of these
7843 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7844 stop_waiting is called.
33d62d64 7845
fd664c91
PA
7846 Note that we don't call these directly, instead we delegate that to
7847 the interpreters, through observers. Interpreters then call these
7848 with whatever uiout is right. */
33d62d64 7849
fd664c91
PA
7850void
7851print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7852{
fd664c91 7853 /* For CLI-like interpreters, print nothing. */
33d62d64 7854
112e8700 7855 if (uiout->is_mi_like_p ())
fd664c91 7856 {
112e8700 7857 uiout->field_string ("reason",
fd664c91
PA
7858 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7859 }
7860}
33d62d64 7861
fd664c91
PA
7862void
7863print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7864{
33d62d64 7865 annotate_signalled ();
112e8700
SM
7866 if (uiout->is_mi_like_p ())
7867 uiout->field_string
7868 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7869 uiout->text ("\nProgram terminated with signal ");
33d62d64 7870 annotate_signal_name ();
112e8700 7871 uiout->field_string ("signal-name",
2ea28649 7872 gdb_signal_to_name (siggnal));
33d62d64 7873 annotate_signal_name_end ();
112e8700 7874 uiout->text (", ");
33d62d64 7875 annotate_signal_string ();
112e8700 7876 uiout->field_string ("signal-meaning",
2ea28649 7877 gdb_signal_to_string (siggnal));
33d62d64 7878 annotate_signal_string_end ();
112e8700
SM
7879 uiout->text (".\n");
7880 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7881}
7882
fd664c91
PA
7883void
7884print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7885{
fda326dd
TT
7886 struct inferior *inf = current_inferior ();
7887 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7888
33d62d64
JK
7889 annotate_exited (exitstatus);
7890 if (exitstatus)
7891 {
112e8700
SM
7892 if (uiout->is_mi_like_p ())
7893 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7894 uiout->text ("[Inferior ");
7895 uiout->text (plongest (inf->num));
7896 uiout->text (" (");
7897 uiout->text (pidstr);
7898 uiout->text (") exited with code ");
7899 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7900 uiout->text ("]\n");
33d62d64
JK
7901 }
7902 else
11cf8741 7903 {
112e8700
SM
7904 if (uiout->is_mi_like_p ())
7905 uiout->field_string
7906 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7907 uiout->text ("[Inferior ");
7908 uiout->text (plongest (inf->num));
7909 uiout->text (" (");
7910 uiout->text (pidstr);
7911 uiout->text (") exited normally]\n");
33d62d64 7912 }
33d62d64
JK
7913}
7914
012b3a21
WT
7915/* Some targets/architectures can do extra processing/display of
7916 segmentation faults. E.g., Intel MPX boundary faults.
7917 Call the architecture dependent function to handle the fault. */
7918
7919static void
7920handle_segmentation_fault (struct ui_out *uiout)
7921{
7922 struct regcache *regcache = get_current_regcache ();
7923 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7924
7925 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7926 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7927}
7928
fd664c91
PA
7929void
7930print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7931{
f303dbd6
PA
7932 struct thread_info *thr = inferior_thread ();
7933
33d62d64
JK
7934 annotate_signal ();
7935
112e8700 7936 if (uiout->is_mi_like_p ())
f303dbd6
PA
7937 ;
7938 else if (show_thread_that_caused_stop ())
33d62d64 7939 {
f303dbd6 7940 const char *name;
33d62d64 7941
112e8700
SM
7942 uiout->text ("\nThread ");
7943 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7944
7945 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7946 if (name != NULL)
7947 {
112e8700
SM
7948 uiout->text (" \"");
7949 uiout->field_fmt ("name", "%s", name);
7950 uiout->text ("\"");
f303dbd6 7951 }
33d62d64 7952 }
f303dbd6 7953 else
112e8700 7954 uiout->text ("\nProgram");
f303dbd6 7955
112e8700
SM
7956 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7957 uiout->text (" stopped");
33d62d64
JK
7958 else
7959 {
112e8700 7960 uiout->text (" received signal ");
8b93c638 7961 annotate_signal_name ();
112e8700
SM
7962 if (uiout->is_mi_like_p ())
7963 uiout->field_string
7964 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7965 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7966 annotate_signal_name_end ();
112e8700 7967 uiout->text (", ");
8b93c638 7968 annotate_signal_string ();
112e8700 7969 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7970
7971 if (siggnal == GDB_SIGNAL_SEGV)
7972 handle_segmentation_fault (uiout);
7973
8b93c638 7974 annotate_signal_string_end ();
33d62d64 7975 }
112e8700 7976 uiout->text (".\n");
33d62d64 7977}
252fbfc8 7978
fd664c91
PA
7979void
7980print_no_history_reason (struct ui_out *uiout)
33d62d64 7981{
112e8700 7982 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7983}
43ff13b4 7984
0c7e1a46
PA
7985/* Print current location without a level number, if we have changed
7986 functions or hit a breakpoint. Print source line if we have one.
7987 bpstat_print contains the logic deciding in detail what to print,
7988 based on the event(s) that just occurred. */
7989
243a9253
PA
7990static void
7991print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7992{
7993 int bpstat_ret;
f486487f 7994 enum print_what source_flag;
0c7e1a46
PA
7995 int do_frame_printing = 1;
7996 struct thread_info *tp = inferior_thread ();
7997
7998 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7999 switch (bpstat_ret)
8000 {
8001 case PRINT_UNKNOWN:
8002 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8003 should) carry around the function and does (or should) use
8004 that when doing a frame comparison. */
8005 if (tp->control.stop_step
8006 && frame_id_eq (tp->control.step_frame_id,
8007 get_frame_id (get_current_frame ()))
885eeb5b 8008 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
8009 {
8010 /* Finished step, just print source line. */
8011 source_flag = SRC_LINE;
8012 }
8013 else
8014 {
8015 /* Print location and source line. */
8016 source_flag = SRC_AND_LOC;
8017 }
8018 break;
8019 case PRINT_SRC_AND_LOC:
8020 /* Print location and source line. */
8021 source_flag = SRC_AND_LOC;
8022 break;
8023 case PRINT_SRC_ONLY:
8024 source_flag = SRC_LINE;
8025 break;
8026 case PRINT_NOTHING:
8027 /* Something bogus. */
8028 source_flag = SRC_LINE;
8029 do_frame_printing = 0;
8030 break;
8031 default:
8032 internal_error (__FILE__, __LINE__, _("Unknown value."));
8033 }
8034
8035 /* The behavior of this routine with respect to the source
8036 flag is:
8037 SRC_LINE: Print only source line
8038 LOCATION: Print only location
8039 SRC_AND_LOC: Print location and source line. */
8040 if (do_frame_printing)
8041 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8042}
8043
243a9253
PA
8044/* See infrun.h. */
8045
8046void
8047print_stop_event (struct ui_out *uiout)
8048{
243a9253
PA
8049 struct target_waitstatus last;
8050 ptid_t last_ptid;
8051 struct thread_info *tp;
8052
8053 get_last_target_status (&last_ptid, &last);
8054
67ad9399
TT
8055 {
8056 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8057
67ad9399 8058 print_stop_location (&last);
243a9253 8059
67ad9399
TT
8060 /* Display the auto-display expressions. */
8061 do_displays ();
8062 }
243a9253
PA
8063
8064 tp = inferior_thread ();
8065 if (tp->thread_fsm != NULL
8066 && thread_fsm_finished_p (tp->thread_fsm))
8067 {
8068 struct return_value_info *rv;
8069
8070 rv = thread_fsm_return_value (tp->thread_fsm);
8071 if (rv != NULL)
8072 print_return_value (uiout, rv);
8073 }
0c7e1a46
PA
8074}
8075
388a7084
PA
8076/* See infrun.h. */
8077
8078void
8079maybe_remove_breakpoints (void)
8080{
8081 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8082 {
8083 if (remove_breakpoints ())
8084 {
223ffa71 8085 target_terminal::ours_for_output ();
388a7084
PA
8086 printf_filtered (_("Cannot remove breakpoints because "
8087 "program is no longer writable.\nFurther "
8088 "execution is probably impossible.\n"));
8089 }
8090 }
8091}
8092
4c2f2a79
PA
8093/* The execution context that just caused a normal stop. */
8094
8095struct stop_context
8096{
8097 /* The stop ID. */
8098 ULONGEST stop_id;
c906108c 8099
4c2f2a79 8100 /* The event PTID. */
c906108c 8101
4c2f2a79
PA
8102 ptid_t ptid;
8103
8104 /* If stopp for a thread event, this is the thread that caused the
8105 stop. */
8106 struct thread_info *thread;
8107
8108 /* The inferior that caused the stop. */
8109 int inf_num;
8110};
8111
8112/* Returns a new stop context. If stopped for a thread event, this
8113 takes a strong reference to the thread. */
8114
8115static struct stop_context *
8116save_stop_context (void)
8117{
224c3ddb 8118 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8119
8120 sc->stop_id = get_stop_id ();
8121 sc->ptid = inferior_ptid;
8122 sc->inf_num = current_inferior ()->num;
8123
8124 if (!ptid_equal (inferior_ptid, null_ptid))
8125 {
8126 /* Take a strong reference so that the thread can't be deleted
8127 yet. */
8128 sc->thread = inferior_thread ();
803bdfe4 8129 sc->thread->incref ();
4c2f2a79
PA
8130 }
8131 else
8132 sc->thread = NULL;
8133
8134 return sc;
8135}
8136
8137/* Release a stop context previously created with save_stop_context.
8138 Releases the strong reference to the thread as well. */
8139
8140static void
8141release_stop_context_cleanup (void *arg)
8142{
9a3c8263 8143 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8144
8145 if (sc->thread != NULL)
803bdfe4 8146 sc->thread->decref ();
4c2f2a79
PA
8147 xfree (sc);
8148}
8149
8150/* Return true if the current context no longer matches the saved stop
8151 context. */
8152
8153static int
8154stop_context_changed (struct stop_context *prev)
8155{
8156 if (!ptid_equal (prev->ptid, inferior_ptid))
8157 return 1;
8158 if (prev->inf_num != current_inferior ()->num)
8159 return 1;
8160 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8161 return 1;
8162 if (get_stop_id () != prev->stop_id)
8163 return 1;
8164 return 0;
8165}
8166
8167/* See infrun.h. */
8168
8169int
96baa820 8170normal_stop (void)
c906108c 8171{
73b65bb0
DJ
8172 struct target_waitstatus last;
8173 ptid_t last_ptid;
29f49a6a 8174 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8175 ptid_t pid_ptid;
73b65bb0
DJ
8176
8177 get_last_target_status (&last_ptid, &last);
8178
4c2f2a79
PA
8179 new_stop_id ();
8180
29f49a6a
PA
8181 /* If an exception is thrown from this point on, make sure to
8182 propagate GDB's knowledge of the executing state to the
8183 frontend/user running state. A QUIT is an easy exception to see
8184 here, so do this before any filtered output. */
c35b1492
PA
8185 if (!non_stop)
8186 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8187 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8188 || last.kind == TARGET_WAITKIND_EXITED)
8189 {
8190 /* On some targets, we may still have live threads in the
8191 inferior when we get a process exit event. E.g., for
8192 "checkpoint", when the current checkpoint/fork exits,
8193 linux-fork.c automatically switches to another fork from
8194 within target_mourn_inferior. */
8195 if (!ptid_equal (inferior_ptid, null_ptid))
8196 {
8197 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8198 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8199 }
8200 }
8201 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8202 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8203
b57bacec
PA
8204 /* As we're presenting a stop, and potentially removing breakpoints,
8205 update the thread list so we can tell whether there are threads
8206 running on the target. With target remote, for example, we can
8207 only learn about new threads when we explicitly update the thread
8208 list. Do this before notifying the interpreters about signal
8209 stops, end of stepping ranges, etc., so that the "new thread"
8210 output is emitted before e.g., "Program received signal FOO",
8211 instead of after. */
8212 update_thread_list ();
8213
8214 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8215 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8216
c906108c
SS
8217 /* As with the notification of thread events, we want to delay
8218 notifying the user that we've switched thread context until
8219 the inferior actually stops.
8220
73b65bb0
DJ
8221 There's no point in saying anything if the inferior has exited.
8222 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8223 "received a signal".
8224
8225 Also skip saying anything in non-stop mode. In that mode, as we
8226 don't want GDB to switch threads behind the user's back, to avoid
8227 races where the user is typing a command to apply to thread x,
8228 but GDB switches to thread y before the user finishes entering
8229 the command, fetch_inferior_event installs a cleanup to restore
8230 the current thread back to the thread the user had selected right
8231 after this event is handled, so we're not really switching, only
8232 informing of a stop. */
4f8d22e3
PA
8233 if (!non_stop
8234 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8235 && target_has_execution
8236 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8237 && last.kind != TARGET_WAITKIND_EXITED
8238 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8239 {
0e454242 8240 SWITCH_THRU_ALL_UIS ()
3b12939d 8241 {
223ffa71 8242 target_terminal::ours_for_output ();
3b12939d
PA
8243 printf_filtered (_("[Switching to %s]\n"),
8244 target_pid_to_str (inferior_ptid));
8245 annotate_thread_changed ();
8246 }
39f77062 8247 previous_inferior_ptid = inferior_ptid;
c906108c 8248 }
c906108c 8249
0e5bf2a8
PA
8250 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8251 {
0e454242 8252 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8253 if (current_ui->prompt_state == PROMPT_BLOCKED)
8254 {
223ffa71 8255 target_terminal::ours_for_output ();
3b12939d
PA
8256 printf_filtered (_("No unwaited-for children left.\n"));
8257 }
0e5bf2a8
PA
8258 }
8259
b57bacec 8260 /* Note: this depends on the update_thread_list call above. */
388a7084 8261 maybe_remove_breakpoints ();
c906108c 8262
c906108c
SS
8263 /* If an auto-display called a function and that got a signal,
8264 delete that auto-display to avoid an infinite recursion. */
8265
8266 if (stopped_by_random_signal)
8267 disable_current_display ();
8268
0e454242 8269 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8270 {
8271 async_enable_stdin ();
8272 }
c906108c 8273
388a7084
PA
8274 /* Let the user/frontend see the threads as stopped. */
8275 do_cleanups (old_chain);
8276
8277 /* Select innermost stack frame - i.e., current frame is frame 0,
8278 and current location is based on that. Handle the case where the
8279 dummy call is returning after being stopped. E.g. the dummy call
8280 previously hit a breakpoint. (If the dummy call returns
8281 normally, we won't reach here.) Do this before the stop hook is
8282 run, so that it doesn't get to see the temporary dummy frame,
8283 which is not where we'll present the stop. */
8284 if (has_stack_frames ())
8285 {
8286 if (stop_stack_dummy == STOP_STACK_DUMMY)
8287 {
8288 /* Pop the empty frame that contains the stack dummy. This
8289 also restores inferior state prior to the call (struct
8290 infcall_suspend_state). */
8291 struct frame_info *frame = get_current_frame ();
8292
8293 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8294 frame_pop (frame);
8295 /* frame_pop calls reinit_frame_cache as the last thing it
8296 does which means there's now no selected frame. */
8297 }
8298
8299 select_frame (get_current_frame ());
8300
8301 /* Set the current source location. */
8302 set_current_sal_from_frame (get_current_frame ());
8303 }
dd7e2d2b
PA
8304
8305 /* Look up the hook_stop and run it (CLI internally handles problem
8306 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8307 if (stop_command != NULL)
8308 {
8309 struct stop_context *saved_context = save_stop_context ();
8310 struct cleanup *old_chain
8311 = make_cleanup (release_stop_context_cleanup, saved_context);
8312
bf469271
PA
8313 TRY
8314 {
8315 execute_cmd_pre_hook (stop_command);
8316 }
8317 CATCH (ex, RETURN_MASK_ALL)
8318 {
8319 exception_fprintf (gdb_stderr, ex,
8320 "Error while running hook_stop:\n");
8321 }
8322 END_CATCH
4c2f2a79
PA
8323
8324 /* If the stop hook resumes the target, then there's no point in
8325 trying to notify about the previous stop; its context is
8326 gone. Likewise if the command switches thread or inferior --
8327 the observers would print a stop for the wrong
8328 thread/inferior. */
8329 if (stop_context_changed (saved_context))
8330 {
8331 do_cleanups (old_chain);
8332 return 1;
8333 }
8334 do_cleanups (old_chain);
8335 }
dd7e2d2b 8336
388a7084
PA
8337 /* Notify observers about the stop. This is where the interpreters
8338 print the stop event. */
8339 if (!ptid_equal (inferior_ptid, null_ptid))
8340 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8341 stop_print_frame);
8342 else
8343 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8344
243a9253
PA
8345 annotate_stopped ();
8346
48844aa6
PA
8347 if (target_has_execution)
8348 {
8349 if (last.kind != TARGET_WAITKIND_SIGNALLED
8350 && last.kind != TARGET_WAITKIND_EXITED)
8351 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8352 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8353 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8354 }
6c95b8df
PA
8355
8356 /* Try to get rid of automatically added inferiors that are no
8357 longer needed. Keeping those around slows down things linearly.
8358 Note that this never removes the current inferior. */
8359 prune_inferiors ();
4c2f2a79
PA
8360
8361 return 0;
c906108c 8362}
c906108c 8363\f
c5aa993b 8364int
96baa820 8365signal_stop_state (int signo)
c906108c 8366{
d6b48e9c 8367 return signal_stop[signo];
c906108c
SS
8368}
8369
c5aa993b 8370int
96baa820 8371signal_print_state (int signo)
c906108c
SS
8372{
8373 return signal_print[signo];
8374}
8375
c5aa993b 8376int
96baa820 8377signal_pass_state (int signo)
c906108c
SS
8378{
8379 return signal_program[signo];
8380}
8381
2455069d
UW
8382static void
8383signal_cache_update (int signo)
8384{
8385 if (signo == -1)
8386 {
a493e3e2 8387 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8388 signal_cache_update (signo);
8389
8390 return;
8391 }
8392
8393 signal_pass[signo] = (signal_stop[signo] == 0
8394 && signal_print[signo] == 0
ab04a2af
TT
8395 && signal_program[signo] == 1
8396 && signal_catch[signo] == 0);
2455069d
UW
8397}
8398
488f131b 8399int
7bda5e4a 8400signal_stop_update (int signo, int state)
d4f3574e
SS
8401{
8402 int ret = signal_stop[signo];
abbb1732 8403
d4f3574e 8404 signal_stop[signo] = state;
2455069d 8405 signal_cache_update (signo);
d4f3574e
SS
8406 return ret;
8407}
8408
488f131b 8409int
7bda5e4a 8410signal_print_update (int signo, int state)
d4f3574e
SS
8411{
8412 int ret = signal_print[signo];
abbb1732 8413
d4f3574e 8414 signal_print[signo] = state;
2455069d 8415 signal_cache_update (signo);
d4f3574e
SS
8416 return ret;
8417}
8418
488f131b 8419int
7bda5e4a 8420signal_pass_update (int signo, int state)
d4f3574e
SS
8421{
8422 int ret = signal_program[signo];
abbb1732 8423
d4f3574e 8424 signal_program[signo] = state;
2455069d 8425 signal_cache_update (signo);
d4f3574e
SS
8426 return ret;
8427}
8428
ab04a2af
TT
8429/* Update the global 'signal_catch' from INFO and notify the
8430 target. */
8431
8432void
8433signal_catch_update (const unsigned int *info)
8434{
8435 int i;
8436
8437 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8438 signal_catch[i] = info[i] > 0;
8439 signal_cache_update (-1);
8440 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8441}
8442
c906108c 8443static void
96baa820 8444sig_print_header (void)
c906108c 8445{
3e43a32a
MS
8446 printf_filtered (_("Signal Stop\tPrint\tPass "
8447 "to program\tDescription\n"));
c906108c
SS
8448}
8449
8450static void
2ea28649 8451sig_print_info (enum gdb_signal oursig)
c906108c 8452{
2ea28649 8453 const char *name = gdb_signal_to_name (oursig);
c906108c 8454 int name_padding = 13 - strlen (name);
96baa820 8455
c906108c
SS
8456 if (name_padding <= 0)
8457 name_padding = 0;
8458
8459 printf_filtered ("%s", name);
488f131b 8460 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8461 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8462 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8463 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8464 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8465}
8466
8467/* Specify how various signals in the inferior should be handled. */
8468
8469static void
96baa820 8470handle_command (char *args, int from_tty)
c906108c 8471{
c906108c
SS
8472 int digits, wordlen;
8473 int sigfirst, signum, siglast;
2ea28649 8474 enum gdb_signal oursig;
c906108c
SS
8475 int allsigs;
8476 int nsigs;
8477 unsigned char *sigs;
c906108c
SS
8478
8479 if (args == NULL)
8480 {
e2e0b3e5 8481 error_no_arg (_("signal to handle"));
c906108c
SS
8482 }
8483
1777feb0 8484 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8485
a493e3e2 8486 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8487 sigs = (unsigned char *) alloca (nsigs);
8488 memset (sigs, 0, nsigs);
8489
1777feb0 8490 /* Break the command line up into args. */
c906108c 8491
773a1edc 8492 gdb_argv built_argv (args);
c906108c
SS
8493
8494 /* Walk through the args, looking for signal oursigs, signal names, and
8495 actions. Signal numbers and signal names may be interspersed with
8496 actions, with the actions being performed for all signals cumulatively
1777feb0 8497 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8498
773a1edc 8499 for (char *arg : built_argv)
c906108c 8500 {
773a1edc
TT
8501 wordlen = strlen (arg);
8502 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8503 {;
8504 }
8505 allsigs = 0;
8506 sigfirst = siglast = -1;
8507
773a1edc 8508 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8509 {
8510 /* Apply action to all signals except those used by the
1777feb0 8511 debugger. Silently skip those. */
c906108c
SS
8512 allsigs = 1;
8513 sigfirst = 0;
8514 siglast = nsigs - 1;
8515 }
773a1edc 8516 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8517 {
8518 SET_SIGS (nsigs, sigs, signal_stop);
8519 SET_SIGS (nsigs, sigs, signal_print);
8520 }
773a1edc 8521 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8522 {
8523 UNSET_SIGS (nsigs, sigs, signal_program);
8524 }
773a1edc 8525 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8526 {
8527 SET_SIGS (nsigs, sigs, signal_print);
8528 }
773a1edc 8529 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8530 {
8531 SET_SIGS (nsigs, sigs, signal_program);
8532 }
773a1edc 8533 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8534 {
8535 UNSET_SIGS (nsigs, sigs, signal_stop);
8536 }
773a1edc 8537 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8538 {
8539 SET_SIGS (nsigs, sigs, signal_program);
8540 }
773a1edc 8541 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8542 {
8543 UNSET_SIGS (nsigs, sigs, signal_print);
8544 UNSET_SIGS (nsigs, sigs, signal_stop);
8545 }
773a1edc 8546 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8547 {
8548 UNSET_SIGS (nsigs, sigs, signal_program);
8549 }
8550 else if (digits > 0)
8551 {
8552 /* It is numeric. The numeric signal refers to our own
8553 internal signal numbering from target.h, not to host/target
8554 signal number. This is a feature; users really should be
8555 using symbolic names anyway, and the common ones like
8556 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8557
8558 sigfirst = siglast = (int)
773a1edc
TT
8559 gdb_signal_from_command (atoi (arg));
8560 if (arg[digits] == '-')
c906108c
SS
8561 {
8562 siglast = (int)
773a1edc 8563 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8564 }
8565 if (sigfirst > siglast)
8566 {
1777feb0 8567 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8568 signum = sigfirst;
8569 sigfirst = siglast;
8570 siglast = signum;
8571 }
8572 }
8573 else
8574 {
773a1edc 8575 oursig = gdb_signal_from_name (arg);
a493e3e2 8576 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8577 {
8578 sigfirst = siglast = (int) oursig;
8579 }
8580 else
8581 {
8582 /* Not a number and not a recognized flag word => complain. */
773a1edc 8583 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8584 }
8585 }
8586
8587 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8588 which signals to apply actions to. */
c906108c
SS
8589
8590 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8591 {
2ea28649 8592 switch ((enum gdb_signal) signum)
c906108c 8593 {
a493e3e2
PA
8594 case GDB_SIGNAL_TRAP:
8595 case GDB_SIGNAL_INT:
c906108c
SS
8596 if (!allsigs && !sigs[signum])
8597 {
9e2f0ad4 8598 if (query (_("%s is used by the debugger.\n\
3e43a32a 8599Are you sure you want to change it? "),
2ea28649 8600 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8601 {
8602 sigs[signum] = 1;
8603 }
8604 else
8605 {
a3f17187 8606 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8607 gdb_flush (gdb_stdout);
8608 }
8609 }
8610 break;
a493e3e2
PA
8611 case GDB_SIGNAL_0:
8612 case GDB_SIGNAL_DEFAULT:
8613 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8614 /* Make sure that "all" doesn't print these. */
8615 break;
8616 default:
8617 sigs[signum] = 1;
8618 break;
8619 }
8620 }
c906108c
SS
8621 }
8622
3a031f65
PA
8623 for (signum = 0; signum < nsigs; signum++)
8624 if (sigs[signum])
8625 {
2455069d 8626 signal_cache_update (-1);
a493e3e2
PA
8627 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8628 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8629
3a031f65
PA
8630 if (from_tty)
8631 {
8632 /* Show the results. */
8633 sig_print_header ();
8634 for (; signum < nsigs; signum++)
8635 if (sigs[signum])
aead7601 8636 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8637 }
8638
8639 break;
8640 }
c906108c
SS
8641}
8642
de0bea00
MF
8643/* Complete the "handle" command. */
8644
eb3ff9a5 8645static void
de0bea00 8646handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8647 completion_tracker &tracker,
6f937416 8648 const char *text, const char *word)
de0bea00 8649{
de0bea00
MF
8650 static const char * const keywords[] =
8651 {
8652 "all",
8653 "stop",
8654 "ignore",
8655 "print",
8656 "pass",
8657 "nostop",
8658 "noignore",
8659 "noprint",
8660 "nopass",
8661 NULL,
8662 };
8663
eb3ff9a5
PA
8664 signal_completer (ignore, tracker, text, word);
8665 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8666}
8667
2ea28649
PA
8668enum gdb_signal
8669gdb_signal_from_command (int num)
ed01b82c
PA
8670{
8671 if (num >= 1 && num <= 15)
2ea28649 8672 return (enum gdb_signal) num;
ed01b82c
PA
8673 error (_("Only signals 1-15 are valid as numeric signals.\n\
8674Use \"info signals\" for a list of symbolic signals."));
8675}
8676
c906108c
SS
8677/* Print current contents of the tables set by the handle command.
8678 It is possible we should just be printing signals actually used
8679 by the current target (but for things to work right when switching
8680 targets, all signals should be in the signal tables). */
8681
8682static void
11db9430 8683info_signals_command (char *signum_exp, int from_tty)
c906108c 8684{
2ea28649 8685 enum gdb_signal oursig;
abbb1732 8686
c906108c
SS
8687 sig_print_header ();
8688
8689 if (signum_exp)
8690 {
8691 /* First see if this is a symbol name. */
2ea28649 8692 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8693 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8694 {
8695 /* No, try numeric. */
8696 oursig =
2ea28649 8697 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8698 }
8699 sig_print_info (oursig);
8700 return;
8701 }
8702
8703 printf_filtered ("\n");
8704 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8705 for (oursig = GDB_SIGNAL_FIRST;
8706 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8707 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8708 {
8709 QUIT;
8710
a493e3e2
PA
8711 if (oursig != GDB_SIGNAL_UNKNOWN
8712 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8713 sig_print_info (oursig);
8714 }
8715
3e43a32a
MS
8716 printf_filtered (_("\nUse the \"handle\" command "
8717 "to change these tables.\n"));
c906108c 8718}
4aa995e1
PA
8719
8720/* The $_siginfo convenience variable is a bit special. We don't know
8721 for sure the type of the value until we actually have a chance to
7a9dd1b2 8722 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8723 also dependent on which thread you have selected.
8724
8725 1. making $_siginfo be an internalvar that creates a new value on
8726 access.
8727
8728 2. making the value of $_siginfo be an lval_computed value. */
8729
8730/* This function implements the lval_computed support for reading a
8731 $_siginfo value. */
8732
8733static void
8734siginfo_value_read (struct value *v)
8735{
8736 LONGEST transferred;
8737
a911d87a
PA
8738 /* If we can access registers, so can we access $_siginfo. Likewise
8739 vice versa. */
8740 validate_registers_access ();
c709acd1 8741
4aa995e1
PA
8742 transferred =
8743 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8744 NULL,
8745 value_contents_all_raw (v),
8746 value_offset (v),
8747 TYPE_LENGTH (value_type (v)));
8748
8749 if (transferred != TYPE_LENGTH (value_type (v)))
8750 error (_("Unable to read siginfo"));
8751}
8752
8753/* This function implements the lval_computed support for writing a
8754 $_siginfo value. */
8755
8756static void
8757siginfo_value_write (struct value *v, struct value *fromval)
8758{
8759 LONGEST transferred;
8760
a911d87a
PA
8761 /* If we can access registers, so can we access $_siginfo. Likewise
8762 vice versa. */
8763 validate_registers_access ();
c709acd1 8764
4aa995e1
PA
8765 transferred = target_write (&current_target,
8766 TARGET_OBJECT_SIGNAL_INFO,
8767 NULL,
8768 value_contents_all_raw (fromval),
8769 value_offset (v),
8770 TYPE_LENGTH (value_type (fromval)));
8771
8772 if (transferred != TYPE_LENGTH (value_type (fromval)))
8773 error (_("Unable to write siginfo"));
8774}
8775
c8f2448a 8776static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8777 {
8778 siginfo_value_read,
8779 siginfo_value_write
8780 };
8781
8782/* Return a new value with the correct type for the siginfo object of
78267919
UW
8783 the current thread using architecture GDBARCH. Return a void value
8784 if there's no object available. */
4aa995e1 8785
2c0b251b 8786static struct value *
22d2b532
SDJ
8787siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8788 void *ignore)
4aa995e1 8789{
4aa995e1 8790 if (target_has_stack
78267919
UW
8791 && !ptid_equal (inferior_ptid, null_ptid)
8792 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8793 {
78267919 8794 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8795
78267919 8796 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8797 }
8798
78267919 8799 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8800}
8801
c906108c 8802\f
16c381f0
JK
8803/* infcall_suspend_state contains state about the program itself like its
8804 registers and any signal it received when it last stopped.
8805 This state must be restored regardless of how the inferior function call
8806 ends (either successfully, or after it hits a breakpoint or signal)
8807 if the program is to properly continue where it left off. */
8808
8809struct infcall_suspend_state
7a292a7a 8810{
16c381f0 8811 struct thread_suspend_state thread_suspend;
16c381f0
JK
8812
8813 /* Other fields: */
7a292a7a 8814 CORE_ADDR stop_pc;
b89667eb 8815 struct regcache *registers;
1736ad11 8816
35515841 8817 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8818 struct gdbarch *siginfo_gdbarch;
8819
8820 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8821 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8822 content would be invalid. */
8823 gdb_byte *siginfo_data;
b89667eb
DE
8824};
8825
16c381f0
JK
8826struct infcall_suspend_state *
8827save_infcall_suspend_state (void)
b89667eb 8828{
16c381f0 8829 struct infcall_suspend_state *inf_state;
b89667eb 8830 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8831 struct regcache *regcache = get_current_regcache ();
8832 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8833 gdb_byte *siginfo_data = NULL;
8834
8835 if (gdbarch_get_siginfo_type_p (gdbarch))
8836 {
8837 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8838 size_t len = TYPE_LENGTH (type);
8839 struct cleanup *back_to;
8840
224c3ddb 8841 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8842 back_to = make_cleanup (xfree, siginfo_data);
8843
8844 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8845 siginfo_data, 0, len) == len)
8846 discard_cleanups (back_to);
8847 else
8848 {
8849 /* Errors ignored. */
8850 do_cleanups (back_to);
8851 siginfo_data = NULL;
8852 }
8853 }
8854
41bf6aca 8855 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8856
8857 if (siginfo_data)
8858 {
8859 inf_state->siginfo_gdbarch = gdbarch;
8860 inf_state->siginfo_data = siginfo_data;
8861 }
b89667eb 8862
16c381f0 8863 inf_state->thread_suspend = tp->suspend;
16c381f0 8864
35515841 8865 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8866 GDB_SIGNAL_0 anyway. */
8867 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8868
b89667eb
DE
8869 inf_state->stop_pc = stop_pc;
8870
1736ad11 8871 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8872
8873 return inf_state;
8874}
8875
8876/* Restore inferior session state to INF_STATE. */
8877
8878void
16c381f0 8879restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8880{
8881 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8882 struct regcache *regcache = get_current_regcache ();
8883 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8884
16c381f0 8885 tp->suspend = inf_state->thread_suspend;
16c381f0 8886
b89667eb
DE
8887 stop_pc = inf_state->stop_pc;
8888
1736ad11
JK
8889 if (inf_state->siginfo_gdbarch == gdbarch)
8890 {
8891 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8892
8893 /* Errors ignored. */
8894 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8895 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8896 }
8897
b89667eb
DE
8898 /* The inferior can be gone if the user types "print exit(0)"
8899 (and perhaps other times). */
8900 if (target_has_execution)
8901 /* NB: The register write goes through to the target. */
1736ad11 8902 regcache_cpy (regcache, inf_state->registers);
803b5f95 8903
16c381f0 8904 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8905}
8906
8907static void
16c381f0 8908do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8909{
9a3c8263 8910 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8911}
8912
8913struct cleanup *
16c381f0
JK
8914make_cleanup_restore_infcall_suspend_state
8915 (struct infcall_suspend_state *inf_state)
b89667eb 8916{
16c381f0 8917 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8918}
8919
8920void
16c381f0 8921discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8922{
c0e383c6 8923 delete inf_state->registers;
803b5f95 8924 xfree (inf_state->siginfo_data);
b89667eb
DE
8925 xfree (inf_state);
8926}
8927
8928struct regcache *
16c381f0 8929get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8930{
8931 return inf_state->registers;
8932}
8933
16c381f0
JK
8934/* infcall_control_state contains state regarding gdb's control of the
8935 inferior itself like stepping control. It also contains session state like
8936 the user's currently selected frame. */
b89667eb 8937
16c381f0 8938struct infcall_control_state
b89667eb 8939{
16c381f0
JK
8940 struct thread_control_state thread_control;
8941 struct inferior_control_state inferior_control;
d82142e2
JK
8942
8943 /* Other fields: */
8944 enum stop_stack_kind stop_stack_dummy;
8945 int stopped_by_random_signal;
7a292a7a 8946
b89667eb 8947 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8948 struct frame_id selected_frame_id;
7a292a7a
SS
8949};
8950
c906108c 8951/* Save all of the information associated with the inferior<==>gdb
b89667eb 8952 connection. */
c906108c 8953
16c381f0
JK
8954struct infcall_control_state *
8955save_infcall_control_state (void)
c906108c 8956{
8d749320
SM
8957 struct infcall_control_state *inf_status =
8958 XNEW (struct infcall_control_state);
4e1c45ea 8959 struct thread_info *tp = inferior_thread ();
d6b48e9c 8960 struct inferior *inf = current_inferior ();
7a292a7a 8961
16c381f0
JK
8962 inf_status->thread_control = tp->control;
8963 inf_status->inferior_control = inf->control;
d82142e2 8964
8358c15c 8965 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8966 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8967
16c381f0
JK
8968 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8969 chain. If caller's caller is walking the chain, they'll be happier if we
8970 hand them back the original chain when restore_infcall_control_state is
8971 called. */
8972 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8973
8974 /* Other fields: */
8975 inf_status->stop_stack_dummy = stop_stack_dummy;
8976 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8977
206415a3 8978 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8979
7a292a7a 8980 return inf_status;
c906108c
SS
8981}
8982
bf469271
PA
8983static void
8984restore_selected_frame (const frame_id &fid)
c906108c 8985{
bf469271 8986 frame_info *frame = frame_find_by_id (fid);
c906108c 8987
aa0cd9c1
AC
8988 /* If inf_status->selected_frame_id is NULL, there was no previously
8989 selected frame. */
101dcfbe 8990 if (frame == NULL)
c906108c 8991 {
8a3fe4f8 8992 warning (_("Unable to restore previously selected frame."));
bf469271 8993 return;
c906108c
SS
8994 }
8995
0f7d239c 8996 select_frame (frame);
c906108c
SS
8997}
8998
b89667eb
DE
8999/* Restore inferior session state to INF_STATUS. */
9000
c906108c 9001void
16c381f0 9002restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9003{
4e1c45ea 9004 struct thread_info *tp = inferior_thread ();
d6b48e9c 9005 struct inferior *inf = current_inferior ();
4e1c45ea 9006
8358c15c
JK
9007 if (tp->control.step_resume_breakpoint)
9008 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9009
5b79abe7
TT
9010 if (tp->control.exception_resume_breakpoint)
9011 tp->control.exception_resume_breakpoint->disposition
9012 = disp_del_at_next_stop;
9013
d82142e2 9014 /* Handle the bpstat_copy of the chain. */
16c381f0 9015 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9016
16c381f0
JK
9017 tp->control = inf_status->thread_control;
9018 inf->control = inf_status->inferior_control;
d82142e2
JK
9019
9020 /* Other fields: */
9021 stop_stack_dummy = inf_status->stop_stack_dummy;
9022 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9023
b89667eb 9024 if (target_has_stack)
c906108c 9025 {
bf469271 9026 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9027 walking the stack might encounter a garbage pointer and
9028 error() trying to dereference it. */
bf469271
PA
9029 TRY
9030 {
9031 restore_selected_frame (inf_status->selected_frame_id);
9032 }
9033 CATCH (ex, RETURN_MASK_ERROR)
9034 {
9035 exception_fprintf (gdb_stderr, ex,
9036 "Unable to restore previously selected frame:\n");
9037 /* Error in restoring the selected frame. Select the
9038 innermost frame. */
9039 select_frame (get_current_frame ());
9040 }
9041 END_CATCH
c906108c 9042 }
c906108c 9043
72cec141 9044 xfree (inf_status);
7a292a7a 9045}
c906108c 9046
74b7792f 9047static void
16c381f0 9048do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9049{
9a3c8263 9050 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9051}
9052
9053struct cleanup *
16c381f0
JK
9054make_cleanup_restore_infcall_control_state
9055 (struct infcall_control_state *inf_status)
74b7792f 9056{
16c381f0 9057 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9058}
9059
c906108c 9060void
16c381f0 9061discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9062{
8358c15c
JK
9063 if (inf_status->thread_control.step_resume_breakpoint)
9064 inf_status->thread_control.step_resume_breakpoint->disposition
9065 = disp_del_at_next_stop;
9066
5b79abe7
TT
9067 if (inf_status->thread_control.exception_resume_breakpoint)
9068 inf_status->thread_control.exception_resume_breakpoint->disposition
9069 = disp_del_at_next_stop;
9070
1777feb0 9071 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9072 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9073
72cec141 9074 xfree (inf_status);
7a292a7a 9075}
b89667eb 9076\f
7f89fd65 9077/* See infrun.h. */
0c557179
SDJ
9078
9079void
9080clear_exit_convenience_vars (void)
9081{
9082 clear_internalvar (lookup_internalvar ("_exitsignal"));
9083 clear_internalvar (lookup_internalvar ("_exitcode"));
9084}
c5aa993b 9085\f
488f131b 9086
b2175913
MS
9087/* User interface for reverse debugging:
9088 Set exec-direction / show exec-direction commands
9089 (returns error unless target implements to_set_exec_direction method). */
9090
170742de 9091enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9092static const char exec_forward[] = "forward";
9093static const char exec_reverse[] = "reverse";
9094static const char *exec_direction = exec_forward;
40478521 9095static const char *const exec_direction_names[] = {
b2175913
MS
9096 exec_forward,
9097 exec_reverse,
9098 NULL
9099};
9100
9101static void
9102set_exec_direction_func (char *args, int from_tty,
9103 struct cmd_list_element *cmd)
9104{
9105 if (target_can_execute_reverse)
9106 {
9107 if (!strcmp (exec_direction, exec_forward))
9108 execution_direction = EXEC_FORWARD;
9109 else if (!strcmp (exec_direction, exec_reverse))
9110 execution_direction = EXEC_REVERSE;
9111 }
8bbed405
MS
9112 else
9113 {
9114 exec_direction = exec_forward;
9115 error (_("Target does not support this operation."));
9116 }
b2175913
MS
9117}
9118
9119static void
9120show_exec_direction_func (struct ui_file *out, int from_tty,
9121 struct cmd_list_element *cmd, const char *value)
9122{
9123 switch (execution_direction) {
9124 case EXEC_FORWARD:
9125 fprintf_filtered (out, _("Forward.\n"));
9126 break;
9127 case EXEC_REVERSE:
9128 fprintf_filtered (out, _("Reverse.\n"));
9129 break;
b2175913 9130 default:
d8b34453
PA
9131 internal_error (__FILE__, __LINE__,
9132 _("bogus execution_direction value: %d"),
9133 (int) execution_direction);
b2175913
MS
9134 }
9135}
9136
d4db2f36
PA
9137static void
9138show_schedule_multiple (struct ui_file *file, int from_tty,
9139 struct cmd_list_element *c, const char *value)
9140{
3e43a32a
MS
9141 fprintf_filtered (file, _("Resuming the execution of threads "
9142 "of all processes is %s.\n"), value);
d4db2f36 9143}
ad52ddc6 9144
22d2b532
SDJ
9145/* Implementation of `siginfo' variable. */
9146
9147static const struct internalvar_funcs siginfo_funcs =
9148{
9149 siginfo_make_value,
9150 NULL,
9151 NULL
9152};
9153
372316f1
PA
9154/* Callback for infrun's target events source. This is marked when a
9155 thread has a pending status to process. */
9156
9157static void
9158infrun_async_inferior_event_handler (gdb_client_data data)
9159{
372316f1
PA
9160 inferior_event_handler (INF_REG_EVENT, NULL);
9161}
9162
c906108c 9163void
96baa820 9164_initialize_infrun (void)
c906108c 9165{
52f0bd74
AC
9166 int i;
9167 int numsigs;
de0bea00 9168 struct cmd_list_element *c;
c906108c 9169
372316f1
PA
9170 /* Register extra event sources in the event loop. */
9171 infrun_async_inferior_event_token
9172 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9173
11db9430 9174 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9175What debugger does when program gets various signals.\n\
9176Specify a signal as argument to print info on that signal only."));
c906108c
SS
9177 add_info_alias ("handle", "signals", 0);
9178
de0bea00 9179 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9180Specify how to handle signals.\n\
486c7739 9181Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9182Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9183If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9184will be displayed instead.\n\
9185\n\
c906108c
SS
9186Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9187from 1-15 are allowed for compatibility with old versions of GDB.\n\
9188Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9189The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9190used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9191\n\
1bedd215 9192Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9193\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9194Stop means reenter debugger if this signal happens (implies print).\n\
9195Print means print a message if this signal happens.\n\
9196Pass means let program see this signal; otherwise program doesn't know.\n\
9197Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9198Pass and Stop may be combined.\n\
9199\n\
9200Multiple signals may be specified. Signal numbers and signal names\n\
9201may be interspersed with actions, with the actions being performed for\n\
9202all signals cumulatively specified."));
de0bea00 9203 set_cmd_completer (c, handle_completer);
486c7739 9204
c906108c 9205 if (!dbx_commands)
1a966eab
AC
9206 stop_command = add_cmd ("stop", class_obscure,
9207 not_just_help_class_command, _("\
9208There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9209This allows you to set a list of commands to be run each time execution\n\
1a966eab 9210of the program stops."), &cmdlist);
c906108c 9211
ccce17b0 9212 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9213Set inferior debugging."), _("\
9214Show inferior debugging."), _("\
9215When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9216 NULL,
9217 show_debug_infrun,
9218 &setdebuglist, &showdebuglist);
527159b7 9219
3e43a32a
MS
9220 add_setshow_boolean_cmd ("displaced", class_maintenance,
9221 &debug_displaced, _("\
237fc4c9
PA
9222Set displaced stepping debugging."), _("\
9223Show displaced stepping debugging."), _("\
9224When non-zero, displaced stepping specific debugging is enabled."),
9225 NULL,
9226 show_debug_displaced,
9227 &setdebuglist, &showdebuglist);
9228
ad52ddc6
PA
9229 add_setshow_boolean_cmd ("non-stop", no_class,
9230 &non_stop_1, _("\
9231Set whether gdb controls the inferior in non-stop mode."), _("\
9232Show whether gdb controls the inferior in non-stop mode."), _("\
9233When debugging a multi-threaded program and this setting is\n\
9234off (the default, also called all-stop mode), when one thread stops\n\
9235(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9236all other threads in the program while you interact with the thread of\n\
9237interest. When you continue or step a thread, you can allow the other\n\
9238threads to run, or have them remain stopped, but while you inspect any\n\
9239thread's state, all threads stop.\n\
9240\n\
9241In non-stop mode, when one thread stops, other threads can continue\n\
9242to run freely. You'll be able to step each thread independently,\n\
9243leave it stopped or free to run as needed."),
9244 set_non_stop,
9245 show_non_stop,
9246 &setlist,
9247 &showlist);
9248
a493e3e2 9249 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9250 signal_stop = XNEWVEC (unsigned char, numsigs);
9251 signal_print = XNEWVEC (unsigned char, numsigs);
9252 signal_program = XNEWVEC (unsigned char, numsigs);
9253 signal_catch = XNEWVEC (unsigned char, numsigs);
9254 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9255 for (i = 0; i < numsigs; i++)
9256 {
9257 signal_stop[i] = 1;
9258 signal_print[i] = 1;
9259 signal_program[i] = 1;
ab04a2af 9260 signal_catch[i] = 0;
c906108c
SS
9261 }
9262
4d9d9d04
PA
9263 /* Signals caused by debugger's own actions should not be given to
9264 the program afterwards.
9265
9266 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9267 explicitly specifies that it should be delivered to the target
9268 program. Typically, that would occur when a user is debugging a
9269 target monitor on a simulator: the target monitor sets a
9270 breakpoint; the simulator encounters this breakpoint and halts
9271 the simulation handing control to GDB; GDB, noting that the stop
9272 address doesn't map to any known breakpoint, returns control back
9273 to the simulator; the simulator then delivers the hardware
9274 equivalent of a GDB_SIGNAL_TRAP to the program being
9275 debugged. */
a493e3e2
PA
9276 signal_program[GDB_SIGNAL_TRAP] = 0;
9277 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9278
9279 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9280 signal_stop[GDB_SIGNAL_ALRM] = 0;
9281 signal_print[GDB_SIGNAL_ALRM] = 0;
9282 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9283 signal_print[GDB_SIGNAL_VTALRM] = 0;
9284 signal_stop[GDB_SIGNAL_PROF] = 0;
9285 signal_print[GDB_SIGNAL_PROF] = 0;
9286 signal_stop[GDB_SIGNAL_CHLD] = 0;
9287 signal_print[GDB_SIGNAL_CHLD] = 0;
9288 signal_stop[GDB_SIGNAL_IO] = 0;
9289 signal_print[GDB_SIGNAL_IO] = 0;
9290 signal_stop[GDB_SIGNAL_POLL] = 0;
9291 signal_print[GDB_SIGNAL_POLL] = 0;
9292 signal_stop[GDB_SIGNAL_URG] = 0;
9293 signal_print[GDB_SIGNAL_URG] = 0;
9294 signal_stop[GDB_SIGNAL_WINCH] = 0;
9295 signal_print[GDB_SIGNAL_WINCH] = 0;
9296 signal_stop[GDB_SIGNAL_PRIO] = 0;
9297 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9298
cd0fc7c3
SS
9299 /* These signals are used internally by user-level thread
9300 implementations. (See signal(5) on Solaris.) Like the above
9301 signals, a healthy program receives and handles them as part of
9302 its normal operation. */
a493e3e2
PA
9303 signal_stop[GDB_SIGNAL_LWP] = 0;
9304 signal_print[GDB_SIGNAL_LWP] = 0;
9305 signal_stop[GDB_SIGNAL_WAITING] = 0;
9306 signal_print[GDB_SIGNAL_WAITING] = 0;
9307 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9308 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9309 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9310 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9311
2455069d
UW
9312 /* Update cached state. */
9313 signal_cache_update (-1);
9314
85c07804
AC
9315 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9316 &stop_on_solib_events, _("\
9317Set stopping for shared library events."), _("\
9318Show stopping for shared library events."), _("\
c906108c
SS
9319If nonzero, gdb will give control to the user when the dynamic linker\n\
9320notifies gdb of shared library events. The most common event of interest\n\
85c07804 9321to the user would be loading/unloading of a new library."),
f9e14852 9322 set_stop_on_solib_events,
920d2a44 9323 show_stop_on_solib_events,
85c07804 9324 &setlist, &showlist);
c906108c 9325
7ab04401
AC
9326 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9327 follow_fork_mode_kind_names,
9328 &follow_fork_mode_string, _("\
9329Set debugger response to a program call of fork or vfork."), _("\
9330Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9331A fork or vfork creates a new process. follow-fork-mode can be:\n\
9332 parent - the original process is debugged after a fork\n\
9333 child - the new process is debugged after a fork\n\
ea1dd7bc 9334The unfollowed process will continue to run.\n\
7ab04401
AC
9335By default, the debugger will follow the parent process."),
9336 NULL,
920d2a44 9337 show_follow_fork_mode_string,
7ab04401
AC
9338 &setlist, &showlist);
9339
6c95b8df
PA
9340 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9341 follow_exec_mode_names,
9342 &follow_exec_mode_string, _("\
9343Set debugger response to a program call of exec."), _("\
9344Show debugger response to a program call of exec."), _("\
9345An exec call replaces the program image of a process.\n\
9346\n\
9347follow-exec-mode can be:\n\
9348\n\
cce7e648 9349 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9350to this new inferior. The program the process was running before\n\
9351the exec call can be restarted afterwards by restarting the original\n\
9352inferior.\n\
9353\n\
9354 same - the debugger keeps the process bound to the same inferior.\n\
9355The new executable image replaces the previous executable loaded in\n\
9356the inferior. Restarting the inferior after the exec call restarts\n\
9357the executable the process was running after the exec call.\n\
9358\n\
9359By default, the debugger will use the same inferior."),
9360 NULL,
9361 show_follow_exec_mode_string,
9362 &setlist, &showlist);
9363
7ab04401
AC
9364 add_setshow_enum_cmd ("scheduler-locking", class_run,
9365 scheduler_enums, &scheduler_mode, _("\
9366Set mode for locking scheduler during execution."), _("\
9367Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9368off == no locking (threads may preempt at any time)\n\
9369on == full locking (no thread except the current thread may run)\n\
9370 This applies to both normal execution and replay mode.\n\
9371step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9372 In this mode, other threads may run during other commands.\n\
9373 This applies to both normal execution and replay mode.\n\
9374replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9375 set_schedlock_func, /* traps on target vector */
920d2a44 9376 show_scheduler_mode,
7ab04401 9377 &setlist, &showlist);
5fbbeb29 9378
d4db2f36
PA
9379 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9380Set mode for resuming threads of all processes."), _("\
9381Show mode for resuming threads of all processes."), _("\
9382When on, execution commands (such as 'continue' or 'next') resume all\n\
9383threads of all processes. When off (which is the default), execution\n\
9384commands only resume the threads of the current process. The set of\n\
9385threads that are resumed is further refined by the scheduler-locking\n\
9386mode (see help set scheduler-locking)."),
9387 NULL,
9388 show_schedule_multiple,
9389 &setlist, &showlist);
9390
5bf193a2
AC
9391 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9392Set mode of the step operation."), _("\
9393Show mode of the step operation."), _("\
9394When set, doing a step over a function without debug line information\n\
9395will stop at the first instruction of that function. Otherwise, the\n\
9396function is skipped and the step command stops at a different source line."),
9397 NULL,
920d2a44 9398 show_step_stop_if_no_debug,
5bf193a2 9399 &setlist, &showlist);
ca6724c1 9400
72d0e2c5
YQ
9401 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9402 &can_use_displaced_stepping, _("\
237fc4c9
PA
9403Set debugger's willingness to use displaced stepping."), _("\
9404Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9405If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9406supported by the target architecture. If off, gdb will not use displaced\n\
9407stepping to step over breakpoints, even if such is supported by the target\n\
9408architecture. If auto (which is the default), gdb will use displaced stepping\n\
9409if the target architecture supports it and non-stop mode is active, but will not\n\
9410use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9411 NULL,
9412 show_can_use_displaced_stepping,
9413 &setlist, &showlist);
237fc4c9 9414
b2175913
MS
9415 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9416 &exec_direction, _("Set direction of execution.\n\
9417Options are 'forward' or 'reverse'."),
9418 _("Show direction of execution (forward/reverse)."),
9419 _("Tells gdb whether to execute forward or backward."),
9420 set_exec_direction_func, show_exec_direction_func,
9421 &setlist, &showlist);
9422
6c95b8df
PA
9423 /* Set/show detach-on-fork: user-settable mode. */
9424
9425 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9426Set whether gdb will detach the child of a fork."), _("\
9427Show whether gdb will detach the child of a fork."), _("\
9428Tells gdb whether to detach the child of a fork."),
9429 NULL, NULL, &setlist, &showlist);
9430
03583c20
UW
9431 /* Set/show disable address space randomization mode. */
9432
9433 add_setshow_boolean_cmd ("disable-randomization", class_support,
9434 &disable_randomization, _("\
9435Set disabling of debuggee's virtual address space randomization."), _("\
9436Show disabling of debuggee's virtual address space randomization."), _("\
9437When this mode is on (which is the default), randomization of the virtual\n\
9438address space is disabled. Standalone programs run with the randomization\n\
9439enabled by default on some platforms."),
9440 &set_disable_randomization,
9441 &show_disable_randomization,
9442 &setlist, &showlist);
9443
ca6724c1 9444 /* ptid initializations */
ca6724c1
KB
9445 inferior_ptid = null_ptid;
9446 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9447
9448 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9449 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9450 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9451 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9452
9453 /* Explicitly create without lookup, since that tries to create a
9454 value with a void typed value, and when we get here, gdbarch
9455 isn't initialized yet. At this point, we're quite sure there
9456 isn't another convenience variable of the same name. */
22d2b532 9457 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9458
9459 add_setshow_boolean_cmd ("observer", no_class,
9460 &observer_mode_1, _("\
9461Set whether gdb controls the inferior in observer mode."), _("\
9462Show whether gdb controls the inferior in observer mode."), _("\
9463In observer mode, GDB can get data from the inferior, but not\n\
9464affect its execution. Registers and memory may not be changed,\n\
9465breakpoints may not be set, and the program cannot be interrupted\n\
9466or signalled."),
9467 set_observer_mode,
9468 show_observer_mode,
9469 &setlist,
9470 &showlist);
c906108c 9471}
This page took 4.187219 seconds and 4 git commands to generate.