* gdb.threads/threadapply.exp: Correct "macro details" test.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c
AC
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
c6f0559b
AC
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
31#include "breakpoint.h"
03f2053f 32#include "gdb_wait.h"
c906108c
SS
33#include "gdbcore.h"
34#include "gdbcmd.h"
210661e7 35#include "cli/cli-script.h"
c906108c
SS
36#include "target.h"
37#include "gdbthread.h"
38#include "annotate.h"
1adeb98a 39#include "symfile.h"
7a292a7a 40#include "top.h"
c906108c 41#include <signal.h>
2acceee2 42#include "inf-loop.h"
4e052eda 43#include "regcache.h"
fd0407d6 44#include "value.h"
06600e06 45#include "observer.h"
f636b87d 46#include "language.h"
9f976b41 47#include "gdb_assert.h"
c906108c
SS
48
49/* Prototypes for local functions */
50
96baa820 51static void signals_info (char *, int);
c906108c 52
96baa820 53static void handle_command (char *, int);
c906108c 54
96baa820 55static void sig_print_info (enum target_signal);
c906108c 56
96baa820 57static void sig_print_header (void);
c906108c 58
74b7792f 59static void resume_cleanups (void *);
c906108c 60
96baa820 61static int hook_stop_stub (void *);
c906108c 62
96baa820
JM
63static int restore_selected_frame (void *);
64
65static void build_infrun (void);
66
4ef3f3be 67static int follow_fork (void);
96baa820
JM
68
69static void set_schedlock_func (char *args, int from_tty,
488f131b 70 struct cmd_list_element *c);
96baa820 71
96baa820
JM
72struct execution_control_state;
73
74static int currently_stepping (struct execution_control_state *ecs);
75
76static void xdb_handle_command (char *args, int from_tty);
77
ea67f13b
DJ
78static int prepare_to_proceed (void);
79
96baa820 80void _initialize_infrun (void);
43ff13b4 81
c906108c
SS
82int inferior_ignoring_startup_exec_events = 0;
83int inferior_ignoring_leading_exec_events = 0;
84
5fbbeb29
CF
85/* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88int step_stop_if_no_debug = 0;
89
43ff13b4 90/* In asynchronous mode, but simulating synchronous execution. */
96baa820 91
43ff13b4
JM
92int sync_execution = 0;
93
c906108c
SS
94/* wait_for_inferior and normal_stop use this to notify the user
95 when the inferior stopped in a different thread than it had been
96baa820
JM
96 running in. */
97
39f77062 98static ptid_t previous_inferior_ptid;
7a292a7a
SS
99
100/* This is true for configurations that may follow through execl() and
101 similar functions. At present this is only true for HP-UX native. */
102
103#ifndef MAY_FOLLOW_EXEC
104#define MAY_FOLLOW_EXEC (0)
c906108c
SS
105#endif
106
7a292a7a
SS
107static int may_follow_exec = MAY_FOLLOW_EXEC;
108
527159b7
RC
109static int debug_infrun = 0;
110
d4f3574e
SS
111/* If the program uses ELF-style shared libraries, then calls to
112 functions in shared libraries go through stubs, which live in a
113 table called the PLT (Procedure Linkage Table). The first time the
114 function is called, the stub sends control to the dynamic linker,
115 which looks up the function's real address, patches the stub so
116 that future calls will go directly to the function, and then passes
117 control to the function.
118
119 If we are stepping at the source level, we don't want to see any of
120 this --- we just want to skip over the stub and the dynamic linker.
121 The simple approach is to single-step until control leaves the
122 dynamic linker.
123
ca557f44
AC
124 However, on some systems (e.g., Red Hat's 5.2 distribution) the
125 dynamic linker calls functions in the shared C library, so you
126 can't tell from the PC alone whether the dynamic linker is still
127 running. In this case, we use a step-resume breakpoint to get us
128 past the dynamic linker, as if we were using "next" to step over a
129 function call.
d4f3574e
SS
130
131 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
132 linker code or not. Normally, this means we single-step. However,
133 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
134 address where we can place a step-resume breakpoint to get past the
135 linker's symbol resolution function.
136
137 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
138 pretty portable way, by comparing the PC against the address ranges
139 of the dynamic linker's sections.
140
141 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
142 it depends on internal details of the dynamic linker. It's usually
143 not too hard to figure out where to put a breakpoint, but it
144 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
145 sanity checking. If it can't figure things out, returning zero and
146 getting the (possibly confusing) stepping behavior is better than
147 signalling an error, which will obscure the change in the
148 inferior's state. */
c906108c
SS
149
150#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
151#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
152#endif
153
c906108c
SS
154/* This function returns TRUE if pc is the address of an instruction
155 that lies within the dynamic linker (such as the event hook, or the
156 dld itself).
157
158 This function must be used only when a dynamic linker event has
159 been caught, and the inferior is being stepped out of the hook, or
160 undefined results are guaranteed. */
161
162#ifndef SOLIB_IN_DYNAMIC_LINKER
163#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
164#endif
165
c906108c
SS
166/* On some systems, the PC may be left pointing at an instruction that won't
167 actually be executed. This is usually indicated by a bit in the PSW. If
168 we find ourselves in such a state, then we step the target beyond the
169 nullified instruction before returning control to the user so as to avoid
170 confusion. */
171
172#ifndef INSTRUCTION_NULLIFIED
173#define INSTRUCTION_NULLIFIED 0
174#endif
175
c2c6d25f
JM
176/* We can't step off a permanent breakpoint in the ordinary way, because we
177 can't remove it. Instead, we have to advance the PC to the next
178 instruction. This macro should expand to a pointer to a function that
179 does that, or zero if we have no such function. If we don't have a
180 definition for it, we have to report an error. */
488f131b 181#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
182#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
183static void
c2d11a7d 184default_skip_permanent_breakpoint (void)
c2c6d25f 185{
255e7dbf 186 error ("\
c2c6d25f
JM
187The program is stopped at a permanent breakpoint, but GDB does not know\n\
188how to step past a permanent breakpoint on this architecture. Try using\n\
255e7dbf 189a command like `return' or `jump' to continue execution.");
c2c6d25f
JM
190}
191#endif
488f131b 192
c2c6d25f 193
7a292a7a
SS
194/* Convert the #defines into values. This is temporary until wfi control
195 flow is completely sorted out. */
196
197#ifndef HAVE_STEPPABLE_WATCHPOINT
198#define HAVE_STEPPABLE_WATCHPOINT 0
199#else
200#undef HAVE_STEPPABLE_WATCHPOINT
201#define HAVE_STEPPABLE_WATCHPOINT 1
202#endif
203
692590c1
MS
204#ifndef CANNOT_STEP_HW_WATCHPOINTS
205#define CANNOT_STEP_HW_WATCHPOINTS 0
206#else
207#undef CANNOT_STEP_HW_WATCHPOINTS
208#define CANNOT_STEP_HW_WATCHPOINTS 1
209#endif
210
c906108c
SS
211/* Tables of how to react to signals; the user sets them. */
212
213static unsigned char *signal_stop;
214static unsigned char *signal_print;
215static unsigned char *signal_program;
216
217#define SET_SIGS(nsigs,sigs,flags) \
218 do { \
219 int signum = (nsigs); \
220 while (signum-- > 0) \
221 if ((sigs)[signum]) \
222 (flags)[signum] = 1; \
223 } while (0)
224
225#define UNSET_SIGS(nsigs,sigs,flags) \
226 do { \
227 int signum = (nsigs); \
228 while (signum-- > 0) \
229 if ((sigs)[signum]) \
230 (flags)[signum] = 0; \
231 } while (0)
232
39f77062
KB
233/* Value to pass to target_resume() to cause all threads to resume */
234
235#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
236
237/* Command list pointer for the "stop" placeholder. */
238
239static struct cmd_list_element *stop_command;
240
241/* Nonzero if breakpoints are now inserted in the inferior. */
242
243static int breakpoints_inserted;
244
245/* Function inferior was in as of last step command. */
246
247static struct symbol *step_start_function;
248
249/* Nonzero if we are expecting a trace trap and should proceed from it. */
250
251static int trap_expected;
252
253#ifdef SOLIB_ADD
254/* Nonzero if we want to give control to the user when we're notified
255 of shared library events by the dynamic linker. */
256static int stop_on_solib_events;
257#endif
258
c906108c
SS
259/* Nonzero means expecting a trace trap
260 and should stop the inferior and return silently when it happens. */
261
262int stop_after_trap;
263
264/* Nonzero means expecting a trap and caller will handle it themselves.
265 It is used after attach, due to attaching to a process;
266 when running in the shell before the child program has been exec'd;
267 and when running some kinds of remote stuff (FIXME?). */
268
c0236d92 269enum stop_kind stop_soon;
c906108c
SS
270
271/* Nonzero if proceed is being used for a "finish" command or a similar
272 situation when stop_registers should be saved. */
273
274int proceed_to_finish;
275
276/* Save register contents here when about to pop a stack dummy frame,
277 if-and-only-if proceed_to_finish is set.
278 Thus this contains the return value from the called function (assuming
279 values are returned in a register). */
280
72cec141 281struct regcache *stop_registers;
c906108c
SS
282
283/* Nonzero if program stopped due to error trying to insert breakpoints. */
284
285static int breakpoints_failed;
286
287/* Nonzero after stop if current stack frame should be printed. */
288
289static int stop_print_frame;
290
291static struct breakpoint *step_resume_breakpoint = NULL;
c906108c
SS
292
293/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
294 interactions with an inferior that is running a kernel function
295 (aka, a system call or "syscall"). wait_for_inferior therefore
296 may have a need to know when the inferior is in a syscall. This
297 is a count of the number of inferior threads which are known to
298 currently be running in a syscall. */
299static int number_of_threads_in_syscalls;
300
e02bc4cc 301/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
302 returned by target_wait()/deprecated_target_wait_hook(). This
303 information is returned by get_last_target_status(). */
39f77062 304static ptid_t target_last_wait_ptid;
e02bc4cc
DS
305static struct target_waitstatus target_last_waitstatus;
306
c906108c
SS
307/* This is used to remember when a fork, vfork or exec event
308 was caught by a catchpoint, and thus the event is to be
309 followed at the next resume of the inferior, and not
310 immediately. */
311static struct
488f131b
JB
312{
313 enum target_waitkind kind;
314 struct
c906108c 315 {
488f131b 316 int parent_pid;
488f131b 317 int child_pid;
c906108c 318 }
488f131b
JB
319 fork_event;
320 char *execd_pathname;
321}
c906108c
SS
322pending_follow;
323
53904c9e
AC
324static const char follow_fork_mode_child[] = "child";
325static const char follow_fork_mode_parent[] = "parent";
326
488f131b 327static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
328 follow_fork_mode_child,
329 follow_fork_mode_parent,
330 NULL
ef346e04 331};
c906108c 332
53904c9e 333static const char *follow_fork_mode_string = follow_fork_mode_parent;
c906108c
SS
334\f
335
6604731b 336static int
4ef3f3be 337follow_fork (void)
c906108c 338{
ea1dd7bc 339 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 340
6604731b 341 return target_follow_fork (follow_child);
c906108c
SS
342}
343
6604731b
DJ
344void
345follow_inferior_reset_breakpoints (void)
c906108c 346{
6604731b
DJ
347 /* Was there a step_resume breakpoint? (There was if the user
348 did a "next" at the fork() call.) If so, explicitly reset its
349 thread number.
350
351 step_resumes are a form of bp that are made to be per-thread.
352 Since we created the step_resume bp when the parent process
353 was being debugged, and now are switching to the child process,
354 from the breakpoint package's viewpoint, that's a switch of
355 "threads". We must update the bp's notion of which thread
356 it is for, or it'll be ignored when it triggers. */
357
358 if (step_resume_breakpoint)
359 breakpoint_re_set_thread (step_resume_breakpoint);
360
361 /* Reinsert all breakpoints in the child. The user may have set
362 breakpoints after catching the fork, in which case those
363 were never set in the child, but only in the parent. This makes
364 sure the inserted breakpoints match the breakpoint list. */
365
366 breakpoint_re_set ();
367 insert_breakpoints ();
c906108c 368}
c906108c 369
1adeb98a
FN
370/* EXECD_PATHNAME is assumed to be non-NULL. */
371
c906108c 372static void
96baa820 373follow_exec (int pid, char *execd_pathname)
c906108c 374{
c906108c 375 int saved_pid = pid;
7a292a7a
SS
376 struct target_ops *tgt;
377
378 if (!may_follow_exec)
379 return;
c906108c 380
c906108c
SS
381 /* This is an exec event that we actually wish to pay attention to.
382 Refresh our symbol table to the newly exec'd program, remove any
383 momentary bp's, etc.
384
385 If there are breakpoints, they aren't really inserted now,
386 since the exec() transformed our inferior into a fresh set
387 of instructions.
388
389 We want to preserve symbolic breakpoints on the list, since
390 we have hopes that they can be reset after the new a.out's
391 symbol table is read.
392
393 However, any "raw" breakpoints must be removed from the list
394 (e.g., the solib bp's), since their address is probably invalid
395 now.
396
397 And, we DON'T want to call delete_breakpoints() here, since
398 that may write the bp's "shadow contents" (the instruction
399 value that was overwritten witha TRAP instruction). Since
400 we now have a new a.out, those shadow contents aren't valid. */
401 update_breakpoints_after_exec ();
402
403 /* If there was one, it's gone now. We cannot truly step-to-next
404 statement through an exec(). */
405 step_resume_breakpoint = NULL;
406 step_range_start = 0;
407 step_range_end = 0;
408
c906108c
SS
409 /* What is this a.out's name? */
410 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
411
412 /* We've followed the inferior through an exec. Therefore, the
413 inferior has essentially been killed & reborn. */
7a292a7a
SS
414
415 /* First collect the run target in effect. */
416 tgt = find_run_target ();
417 /* If we can't find one, things are in a very strange state... */
418 if (tgt == NULL)
419 error ("Could find run target to save before following exec");
420
c906108c
SS
421 gdb_flush (gdb_stdout);
422 target_mourn_inferior ();
39f77062 423 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 424 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 425 push_target (tgt);
c906108c
SS
426
427 /* That a.out is now the one to use. */
428 exec_file_attach (execd_pathname, 0);
429
430 /* And also is where symbols can be found. */
1adeb98a 431 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
432
433 /* Reset the shared library package. This ensures that we get
434 a shlib event when the child reaches "_start", at which point
435 the dld will have had a chance to initialize the child. */
7a292a7a 436#if defined(SOLIB_RESTART)
c906108c 437 SOLIB_RESTART ();
7a292a7a
SS
438#endif
439#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 440 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 441#endif
c906108c
SS
442
443 /* Reinsert all breakpoints. (Those which were symbolic have
444 been reset to the proper address in the new a.out, thanks
445 to symbol_file_command...) */
446 insert_breakpoints ();
447
448 /* The next resume of this inferior should bring it to the shlib
449 startup breakpoints. (If the user had also set bp's on
450 "main" from the old (parent) process, then they'll auto-
451 matically get reset there in the new process.) */
c906108c
SS
452}
453
454/* Non-zero if we just simulating a single-step. This is needed
455 because we cannot remove the breakpoints in the inferior process
456 until after the `wait' in `wait_for_inferior'. */
457static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
458
459/* The thread we inserted single-step breakpoints for. */
460static ptid_t singlestep_ptid;
461
462/* If another thread hit the singlestep breakpoint, we save the original
463 thread here so that we can resume single-stepping it later. */
464static ptid_t saved_singlestep_ptid;
465static int stepping_past_singlestep_breakpoint;
c906108c
SS
466\f
467
468/* Things to clean up if we QUIT out of resume (). */
c906108c 469static void
74b7792f 470resume_cleanups (void *ignore)
c906108c
SS
471{
472 normal_stop ();
473}
474
53904c9e
AC
475static const char schedlock_off[] = "off";
476static const char schedlock_on[] = "on";
477static const char schedlock_step[] = "step";
478static const char *scheduler_mode = schedlock_off;
488f131b 479static const char *scheduler_enums[] = {
ef346e04
AC
480 schedlock_off,
481 schedlock_on,
482 schedlock_step,
483 NULL
484};
c906108c
SS
485
486static void
96baa820 487set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 488{
cb1a6d5f
AC
489 /* NOTE: cagney/2002-03-17: The deprecated_add_show_from_set()
490 function clones the set command passed as a parameter. The clone
491 operation will include (BUG?) any ``set'' command callback, if
492 present. Commands like ``info set'' call all the ``show''
493 command callbacks. Unfortunately, for ``show'' commands cloned
494 from ``set'', this includes callbacks belonging to ``set''
495 commands. Making this worse, this only occures if
496 deprecated_add_show_from_set() is called after add_cmd_sfunc()
497 (BUG?). */
1868c04e 498 if (cmd_type (c) == set_cmd)
c906108c
SS
499 if (!target_can_lock_scheduler)
500 {
501 scheduler_mode = schedlock_off;
488f131b 502 error ("Target '%s' cannot support this command.", target_shortname);
c906108c
SS
503 }
504}
505
506
507/* Resume the inferior, but allow a QUIT. This is useful if the user
508 wants to interrupt some lengthy single-stepping operation
509 (for child processes, the SIGINT goes to the inferior, and so
510 we get a SIGINT random_signal, but for remote debugging and perhaps
511 other targets, that's not true).
512
513 STEP nonzero if we should step (zero to continue instead).
514 SIG is the signal to give the inferior (zero for none). */
515void
96baa820 516resume (int step, enum target_signal sig)
c906108c
SS
517{
518 int should_resume = 1;
74b7792f 519 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
520 QUIT;
521
527159b7
RC
522 if (debug_infrun)
523 printf_unfiltered ("infrun: resume (step=%d, signal=%d)\n", step, sig);
524
ef5cf84e
MS
525 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
526
c906108c 527
692590c1
MS
528 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
529 over an instruction that causes a page fault without triggering
530 a hardware watchpoint. The kernel properly notices that it shouldn't
531 stop, because the hardware watchpoint is not triggered, but it forgets
532 the step request and continues the program normally.
533 Work around the problem by removing hardware watchpoints if a step is
534 requested, GDB will check for a hardware watchpoint trigger after the
535 step anyway. */
536 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
537 remove_hw_watchpoints ();
488f131b 538
692590c1 539
c2c6d25f
JM
540 /* Normally, by the time we reach `resume', the breakpoints are either
541 removed or inserted, as appropriate. The exception is if we're sitting
542 at a permanent breakpoint; we need to step over it, but permanent
543 breakpoints can't be removed. So we have to test for it here. */
544 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
545 SKIP_PERMANENT_BREAKPOINT ();
546
b0ed3589 547 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
548 {
549 /* Do it the hard way, w/temp breakpoints */
c5aa993b 550 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
551 /* ...and don't ask hardware to do it. */
552 step = 0;
553 /* and do not pull these breakpoints until after a `wait' in
554 `wait_for_inferior' */
555 singlestep_breakpoints_inserted_p = 1;
9f976b41 556 singlestep_ptid = inferior_ptid;
c906108c
SS
557 }
558
c906108c 559 /* If there were any forks/vforks/execs that were caught and are
6604731b 560 now to be followed, then do so. */
c906108c
SS
561 switch (pending_follow.kind)
562 {
6604731b
DJ
563 case TARGET_WAITKIND_FORKED:
564 case TARGET_WAITKIND_VFORKED:
c906108c 565 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
566 if (follow_fork ())
567 should_resume = 0;
c906108c
SS
568 break;
569
6604731b 570 case TARGET_WAITKIND_EXECD:
c906108c 571 /* follow_exec is called as soon as the exec event is seen. */
6604731b 572 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
573 break;
574
575 default:
576 break;
577 }
c906108c
SS
578
579 /* Install inferior's terminal modes. */
580 target_terminal_inferior ();
581
582 if (should_resume)
583 {
39f77062 584 ptid_t resume_ptid;
dfcd3bfb 585
488f131b 586 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 587
8fb3e588
AC
588 if ((step || singlestep_breakpoints_inserted_p)
589 && (stepping_past_singlestep_breakpoint
590 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 591 {
ef5cf84e
MS
592 /* Stepping past a breakpoint without inserting breakpoints.
593 Make sure only the current thread gets to step, so that
594 other threads don't sneak past breakpoints while they are
595 not inserted. */
c906108c 596
ef5cf84e 597 resume_ptid = inferior_ptid;
c906108c 598 }
ef5cf84e 599
8fb3e588
AC
600 if ((scheduler_mode == schedlock_on)
601 || (scheduler_mode == schedlock_step
602 && (step || singlestep_breakpoints_inserted_p)))
c906108c 603 {
ef5cf84e 604 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 605 resume_ptid = inferior_ptid;
c906108c 606 }
ef5cf84e 607
c4ed33b9
AC
608 if (CANNOT_STEP_BREAKPOINT)
609 {
610 /* Most targets can step a breakpoint instruction, thus
611 executing it normally. But if this one cannot, just
612 continue and we will hit it anyway. */
613 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
614 step = 0;
615 }
39f77062 616 target_resume (resume_ptid, step, sig);
c906108c
SS
617 }
618
619 discard_cleanups (old_cleanups);
620}
621\f
622
623/* Clear out all variables saying what to do when inferior is continued.
624 First do this, then set the ones you want, then call `proceed'. */
625
626void
96baa820 627clear_proceed_status (void)
c906108c
SS
628{
629 trap_expected = 0;
630 step_range_start = 0;
631 step_range_end = 0;
aa0cd9c1 632 step_frame_id = null_frame_id;
5fbbeb29 633 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 634 stop_after_trap = 0;
c0236d92 635 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
636 proceed_to_finish = 0;
637 breakpoint_proceeded = 1; /* We're about to proceed... */
638
639 /* Discard any remaining commands or status from previous stop. */
640 bpstat_clear (&stop_bpstat);
641}
642
ea67f13b
DJ
643/* This should be suitable for any targets that support threads. */
644
645static int
646prepare_to_proceed (void)
647{
648 ptid_t wait_ptid;
649 struct target_waitstatus wait_status;
650
651 /* Get the last target status returned by target_wait(). */
652 get_last_target_status (&wait_ptid, &wait_status);
653
654 /* Make sure we were stopped either at a breakpoint, or because
655 of a Ctrl-C. */
656 if (wait_status.kind != TARGET_WAITKIND_STOPPED
8fb3e588
AC
657 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
658 && wait_status.value.sig != TARGET_SIGNAL_INT))
ea67f13b
DJ
659 {
660 return 0;
661 }
662
663 if (!ptid_equal (wait_ptid, minus_one_ptid)
664 && !ptid_equal (inferior_ptid, wait_ptid))
665 {
666 /* Switched over from WAIT_PID. */
667 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
668
669 if (wait_pc != read_pc ())
670 {
671 /* Switch back to WAIT_PID thread. */
672 inferior_ptid = wait_ptid;
673
674 /* FIXME: This stuff came from switch_to_thread() in
675 thread.c (which should probably be a public function). */
676 flush_cached_frames ();
677 registers_changed ();
678 stop_pc = wait_pc;
679 select_frame (get_current_frame ());
680 }
681
8fb3e588
AC
682 /* We return 1 to indicate that there is a breakpoint here,
683 so we need to step over it before continuing to avoid
684 hitting it straight away. */
685 if (breakpoint_here_p (wait_pc))
686 return 1;
ea67f13b
DJ
687 }
688
689 return 0;
8fb3e588 690
ea67f13b 691}
e4846b08
JJ
692
693/* Record the pc of the program the last time it stopped. This is
694 just used internally by wait_for_inferior, but need to be preserved
695 over calls to it and cleared when the inferior is started. */
696static CORE_ADDR prev_pc;
697
c906108c
SS
698/* Basic routine for continuing the program in various fashions.
699
700 ADDR is the address to resume at, or -1 for resume where stopped.
701 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 702 or -1 for act according to how it stopped.
c906108c 703 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
704 -1 means return after that and print nothing.
705 You should probably set various step_... variables
706 before calling here, if you are stepping.
c906108c
SS
707
708 You should call clear_proceed_status before calling proceed. */
709
710void
96baa820 711proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
712{
713 int oneproc = 0;
714
715 if (step > 0)
716 step_start_function = find_pc_function (read_pc ());
717 if (step < 0)
718 stop_after_trap = 1;
719
2acceee2 720 if (addr == (CORE_ADDR) -1)
c906108c 721 {
c906108c 722 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
3352ef37
AC
723 /* There is a breakpoint at the address we will resume at,
724 step one instruction before inserting breakpoints so that
725 we do not stop right away (and report a second hit at this
726 breakpoint). */
c906108c 727 oneproc = 1;
3352ef37
AC
728 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
729 && gdbarch_single_step_through_delay (current_gdbarch,
730 get_current_frame ()))
731 /* We stepped onto an instruction that needs to be stepped
732 again before re-inserting the breakpoint, do so. */
c906108c
SS
733 oneproc = 1;
734 }
735 else
736 {
737 write_pc (addr);
c906108c
SS
738 }
739
527159b7
RC
740 if (debug_infrun)
741 printf_unfiltered ("infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
742 paddr_nz (addr), siggnal, step);
743
c906108c
SS
744 /* In a multi-threaded task we may select another thread
745 and then continue or step.
746
747 But if the old thread was stopped at a breakpoint, it
748 will immediately cause another breakpoint stop without
749 any execution (i.e. it will report a breakpoint hit
750 incorrectly). So we must step over it first.
751
ea67f13b 752 prepare_to_proceed checks the current thread against the thread
c906108c
SS
753 that reported the most recent event. If a step-over is required
754 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
755 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
756 oneproc = 1;
c906108c 757
c906108c
SS
758 if (oneproc)
759 /* We will get a trace trap after one instruction.
760 Continue it automatically and insert breakpoints then. */
761 trap_expected = 1;
762 else
763 {
81d0cc19
GS
764 insert_breakpoints ();
765 /* If we get here there was no call to error() in
8fb3e588 766 insert breakpoints -- so they were inserted. */
c906108c
SS
767 breakpoints_inserted = 1;
768 }
769
770 if (siggnal != TARGET_SIGNAL_DEFAULT)
771 stop_signal = siggnal;
772 /* If this signal should not be seen by program,
773 give it zero. Used for debugging signals. */
774 else if (!signal_program[stop_signal])
775 stop_signal = TARGET_SIGNAL_0;
776
777 annotate_starting ();
778
779 /* Make sure that output from GDB appears before output from the
780 inferior. */
781 gdb_flush (gdb_stdout);
782
e4846b08
JJ
783 /* Refresh prev_pc value just prior to resuming. This used to be
784 done in stop_stepping, however, setting prev_pc there did not handle
785 scenarios such as inferior function calls or returning from
786 a function via the return command. In those cases, the prev_pc
787 value was not set properly for subsequent commands. The prev_pc value
788 is used to initialize the starting line number in the ecs. With an
789 invalid value, the gdb next command ends up stopping at the position
790 represented by the next line table entry past our start position.
791 On platforms that generate one line table entry per line, this
792 is not a problem. However, on the ia64, the compiler generates
793 extraneous line table entries that do not increase the line number.
794 When we issue the gdb next command on the ia64 after an inferior call
795 or a return command, we often end up a few instructions forward, still
796 within the original line we started.
797
798 An attempt was made to have init_execution_control_state () refresh
799 the prev_pc value before calculating the line number. This approach
800 did not work because on platforms that use ptrace, the pc register
801 cannot be read unless the inferior is stopped. At that point, we
802 are not guaranteed the inferior is stopped and so the read_pc ()
803 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 804 updated correctly when the inferior is stopped. */
e4846b08
JJ
805 prev_pc = read_pc ();
806
c906108c
SS
807 /* Resume inferior. */
808 resume (oneproc || step || bpstat_should_step (), stop_signal);
809
810 /* Wait for it to stop (if not standalone)
811 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
812 /* Do this only if we are not using the event loop, or if the target
813 does not support asynchronous execution. */
362646f5 814 if (!target_can_async_p ())
43ff13b4
JM
815 {
816 wait_for_inferior ();
817 normal_stop ();
818 }
c906108c 819}
c906108c
SS
820\f
821
822/* Start remote-debugging of a machine over a serial link. */
96baa820 823
c906108c 824void
96baa820 825start_remote (void)
c906108c
SS
826{
827 init_thread_list ();
828 init_wait_for_inferior ();
c0236d92 829 stop_soon = STOP_QUIETLY;
c906108c 830 trap_expected = 0;
43ff13b4 831
6426a772
JM
832 /* Always go on waiting for the target, regardless of the mode. */
833 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 834 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
835 nothing is returned (instead of just blocking). Because of this,
836 targets expecting an immediate response need to, internally, set
837 things up so that the target_wait() is forced to eventually
838 timeout. */
839 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
840 differentiate to its caller what the state of the target is after
841 the initial open has been performed. Here we're assuming that
842 the target has stopped. It should be possible to eventually have
843 target_open() return to the caller an indication that the target
844 is currently running and GDB state should be set to the same as
845 for an async run. */
846 wait_for_inferior ();
847 normal_stop ();
c906108c
SS
848}
849
850/* Initialize static vars when a new inferior begins. */
851
852void
96baa820 853init_wait_for_inferior (void)
c906108c
SS
854{
855 /* These are meaningless until the first time through wait_for_inferior. */
856 prev_pc = 0;
c906108c 857
c906108c
SS
858 breakpoints_inserted = 0;
859 breakpoint_init_inferior (inf_starting);
860
861 /* Don't confuse first call to proceed(). */
862 stop_signal = TARGET_SIGNAL_0;
863
864 /* The first resume is not following a fork/vfork/exec. */
865 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c
SS
866
867 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
868 number_of_threads_in_syscalls = 0;
869
870 clear_proceed_status ();
9f976b41
DJ
871
872 stepping_past_singlestep_breakpoint = 0;
c906108c 873}
c906108c 874\f
b83266a0
SS
875/* This enum encodes possible reasons for doing a target_wait, so that
876 wfi can call target_wait in one place. (Ultimately the call will be
877 moved out of the infinite loop entirely.) */
878
c5aa993b
JM
879enum infwait_states
880{
cd0fc7c3
SS
881 infwait_normal_state,
882 infwait_thread_hop_state,
883 infwait_nullified_state,
884 infwait_nonstep_watch_state
b83266a0
SS
885};
886
11cf8741
JM
887/* Why did the inferior stop? Used to print the appropriate messages
888 to the interface from within handle_inferior_event(). */
889enum inferior_stop_reason
890{
891 /* We don't know why. */
892 STOP_UNKNOWN,
893 /* Step, next, nexti, stepi finished. */
894 END_STEPPING_RANGE,
895 /* Found breakpoint. */
896 BREAKPOINT_HIT,
897 /* Inferior terminated by signal. */
898 SIGNAL_EXITED,
899 /* Inferior exited. */
900 EXITED,
901 /* Inferior received signal, and user asked to be notified. */
902 SIGNAL_RECEIVED
903};
904
cd0fc7c3
SS
905/* This structure contains what used to be local variables in
906 wait_for_inferior. Probably many of them can return to being
907 locals in handle_inferior_event. */
908
c5aa993b 909struct execution_control_state
488f131b
JB
910{
911 struct target_waitstatus ws;
912 struct target_waitstatus *wp;
913 int another_trap;
914 int random_signal;
915 CORE_ADDR stop_func_start;
916 CORE_ADDR stop_func_end;
917 char *stop_func_name;
918 struct symtab_and_line sal;
488f131b
JB
919 int current_line;
920 struct symtab *current_symtab;
921 int handling_longjmp; /* FIXME */
922 ptid_t ptid;
923 ptid_t saved_inferior_ptid;
68f53502 924 int step_after_step_resume_breakpoint;
488f131b
JB
925 int stepping_through_solib_after_catch;
926 bpstat stepping_through_solib_catchpoints;
927 int enable_hw_watchpoints_after_wait;
488f131b
JB
928 int new_thread_event;
929 struct target_waitstatus tmpstatus;
930 enum infwait_states infwait_state;
931 ptid_t waiton_ptid;
932 int wait_some_more;
933};
934
935void init_execution_control_state (struct execution_control_state *ecs);
936
937void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 938
c2c6d25f 939static void step_into_function (struct execution_control_state *ecs);
44cbf7b5
AC
940static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
941static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
942 struct frame_id sr_id);
104c1213
JM
943static void stop_stepping (struct execution_control_state *ecs);
944static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 945static void keep_going (struct execution_control_state *ecs);
488f131b
JB
946static void print_stop_reason (enum inferior_stop_reason stop_reason,
947 int stop_info);
104c1213 948
cd0fc7c3
SS
949/* Wait for control to return from inferior to debugger.
950 If inferior gets a signal, we may decide to start it up again
951 instead of returning. That is why there is a loop in this function.
952 When this function actually returns it means the inferior
953 should be left stopped and GDB should read more commands. */
954
955void
96baa820 956wait_for_inferior (void)
cd0fc7c3
SS
957{
958 struct cleanup *old_cleanups;
959 struct execution_control_state ecss;
960 struct execution_control_state *ecs;
c906108c 961
527159b7
RC
962 if (debug_infrun)
963 printf_unfiltered ("infrun: wait_for_inferior\n");
964
8601f500 965 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 966 &step_resume_breakpoint);
cd0fc7c3
SS
967
968 /* wfi still stays in a loop, so it's OK just to take the address of
969 a local to get the ecs pointer. */
970 ecs = &ecss;
971
972 /* Fill in with reasonable starting values. */
973 init_execution_control_state (ecs);
974
c906108c 975 /* We'll update this if & when we switch to a new thread. */
39f77062 976 previous_inferior_ptid = inferior_ptid;
c906108c 977
cd0fc7c3
SS
978 overlay_cache_invalid = 1;
979
980 /* We have to invalidate the registers BEFORE calling target_wait
981 because they can be loaded from the target while in target_wait.
982 This makes remote debugging a bit more efficient for those
983 targets that provide critical registers as part of their normal
984 status mechanism. */
985
986 registers_changed ();
b83266a0 987
c906108c
SS
988 while (1)
989 {
9a4105ab
AC
990 if (deprecated_target_wait_hook)
991 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 992 else
39f77062 993 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 994
cd0fc7c3
SS
995 /* Now figure out what to do with the result of the result. */
996 handle_inferior_event (ecs);
c906108c 997
cd0fc7c3
SS
998 if (!ecs->wait_some_more)
999 break;
1000 }
1001 do_cleanups (old_cleanups);
1002}
c906108c 1003
43ff13b4
JM
1004/* Asynchronous version of wait_for_inferior. It is called by the
1005 event loop whenever a change of state is detected on the file
1006 descriptor corresponding to the target. It can be called more than
1007 once to complete a single execution command. In such cases we need
1008 to keep the state in a global variable ASYNC_ECSS. If it is the
1009 last time that this function is called for a single execution
1010 command, then report to the user that the inferior has stopped, and
1011 do the necessary cleanups. */
1012
1013struct execution_control_state async_ecss;
1014struct execution_control_state *async_ecs;
1015
1016void
fba45db2 1017fetch_inferior_event (void *client_data)
43ff13b4
JM
1018{
1019 static struct cleanup *old_cleanups;
1020
c5aa993b 1021 async_ecs = &async_ecss;
43ff13b4
JM
1022
1023 if (!async_ecs->wait_some_more)
1024 {
488f131b 1025 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1026 &step_resume_breakpoint);
43ff13b4
JM
1027
1028 /* Fill in with reasonable starting values. */
1029 init_execution_control_state (async_ecs);
1030
43ff13b4 1031 /* We'll update this if & when we switch to a new thread. */
39f77062 1032 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1033
1034 overlay_cache_invalid = 1;
1035
1036 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1037 because they can be loaded from the target while in target_wait.
1038 This makes remote debugging a bit more efficient for those
1039 targets that provide critical registers as part of their normal
1040 status mechanism. */
43ff13b4
JM
1041
1042 registers_changed ();
1043 }
1044
9a4105ab 1045 if (deprecated_target_wait_hook)
488f131b 1046 async_ecs->ptid =
9a4105ab 1047 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1048 else
39f77062 1049 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1050
1051 /* Now figure out what to do with the result of the result. */
1052 handle_inferior_event (async_ecs);
1053
1054 if (!async_ecs->wait_some_more)
1055 {
adf40b2e 1056 /* Do only the cleanups that have been added by this
488f131b
JB
1057 function. Let the continuations for the commands do the rest,
1058 if there are any. */
43ff13b4
JM
1059 do_exec_cleanups (old_cleanups);
1060 normal_stop ();
c2d11a7d
JM
1061 if (step_multi && stop_step)
1062 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1063 else
1064 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1065 }
1066}
1067
cd0fc7c3
SS
1068/* Prepare an execution control state for looping through a
1069 wait_for_inferior-type loop. */
1070
1071void
96baa820 1072init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1073{
c2d11a7d 1074 /* ecs->another_trap? */
cd0fc7c3 1075 ecs->random_signal = 0;
68f53502 1076 ecs->step_after_step_resume_breakpoint = 0;
cd0fc7c3 1077 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1078 ecs->stepping_through_solib_after_catch = 0;
1079 ecs->stepping_through_solib_catchpoints = NULL;
1080 ecs->enable_hw_watchpoints_after_wait = 0;
cd0fc7c3
SS
1081 ecs->sal = find_pc_line (prev_pc, 0);
1082 ecs->current_line = ecs->sal.line;
1083 ecs->current_symtab = ecs->sal.symtab;
1084 ecs->infwait_state = infwait_normal_state;
39f77062 1085 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1086 ecs->wp = &(ecs->ws);
1087}
1088
e02bc4cc 1089/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1090 target_wait()/deprecated_target_wait_hook(). The data is actually
1091 cached by handle_inferior_event(), which gets called immediately
1092 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1093
1094void
488f131b 1095get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1096{
39f77062 1097 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1098 *status = target_last_waitstatus;
1099}
1100
dd80620e
MS
1101/* Switch thread contexts, maintaining "infrun state". */
1102
1103static void
1104context_switch (struct execution_control_state *ecs)
1105{
1106 /* Caution: it may happen that the new thread (or the old one!)
1107 is not in the thread list. In this case we must not attempt
1108 to "switch context", or we run the risk that our context may
1109 be lost. This may happen as a result of the target module
1110 mishandling thread creation. */
1111
1112 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1113 { /* Perform infrun state context switch: */
dd80620e 1114 /* Save infrun state for the old thread. */
0ce3d317 1115 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1116 trap_expected, step_resume_breakpoint,
15960608 1117 step_range_start,
aa0cd9c1 1118 step_range_end, &step_frame_id,
dd80620e
MS
1119 ecs->handling_longjmp, ecs->another_trap,
1120 ecs->stepping_through_solib_after_catch,
1121 ecs->stepping_through_solib_catchpoints,
f2c9ca08 1122 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1123
1124 /* Load infrun state for the new thread. */
0ce3d317 1125 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1126 &trap_expected, &step_resume_breakpoint,
15960608 1127 &step_range_start,
aa0cd9c1 1128 &step_range_end, &step_frame_id,
dd80620e
MS
1129 &ecs->handling_longjmp, &ecs->another_trap,
1130 &ecs->stepping_through_solib_after_catch,
1131 &ecs->stepping_through_solib_catchpoints,
f2c9ca08 1132 &ecs->current_line, &ecs->current_symtab);
dd80620e
MS
1133 }
1134 inferior_ptid = ecs->ptid;
1135}
1136
4fa8626c
DJ
1137static void
1138adjust_pc_after_break (struct execution_control_state *ecs)
1139{
8aad930b 1140 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1141
1142 /* If this target does not decrement the PC after breakpoints, then
1143 we have nothing to do. */
1144 if (DECR_PC_AFTER_BREAK == 0)
1145 return;
1146
1147 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1148 we aren't, just return.
9709f61c
DJ
1149
1150 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1151 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1152 by software breakpoints should be handled through the normal breakpoint
1153 layer.
8fb3e588 1154
4fa8626c
DJ
1155 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1156 different signals (SIGILL or SIGEMT for instance), but it is less
1157 clear where the PC is pointing afterwards. It may not match
1158 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1159 these signals at breakpoints (the code has been in GDB since at least
1160 1992) so I can not guess how to handle them here.
8fb3e588 1161
4fa8626c
DJ
1162 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1163 would have the PC after hitting a watchpoint affected by
1164 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1165 in GDB history, and it seems unlikely to be correct, so
1166 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1167
1168 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1169 return;
1170
1171 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1172 return;
1173
8aad930b
AC
1174 /* Find the location where (if we've hit a breakpoint) the
1175 breakpoint would be. */
1176 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1177
1178 if (SOFTWARE_SINGLE_STEP_P ())
1179 {
1180 /* When using software single-step, a SIGTRAP can only indicate
8fb3e588
AC
1181 an inserted breakpoint. This actually makes things
1182 easier. */
8aad930b
AC
1183 if (singlestep_breakpoints_inserted_p)
1184 /* When software single stepping, the instruction at [prev_pc]
1185 is never a breakpoint, but the instruction following
1186 [prev_pc] (in program execution order) always is. Assume
1187 that following instruction was reached and hence a software
1188 breakpoint was hit. */
1189 write_pc_pid (breakpoint_pc, ecs->ptid);
1190 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1191 /* The inferior was free running (i.e., no single-step
1192 breakpoints inserted) and it hit a software breakpoint. */
1193 write_pc_pid (breakpoint_pc, ecs->ptid);
1194 }
1195 else
1196 {
1197 /* When using hardware single-step, a SIGTRAP is reported for
8fb3e588
AC
1198 both a completed single-step and a software breakpoint. Need
1199 to differentiate between the two as the latter needs
1200 adjusting but the former does not. */
8aad930b
AC
1201 if (currently_stepping (ecs))
1202 {
1203 if (prev_pc == breakpoint_pc
1204 && software_breakpoint_inserted_here_p (breakpoint_pc))
1205 /* Hardware single-stepped a software breakpoint (as
1206 occures when the inferior is resumed with PC pointing
1207 at not-yet-hit software breakpoint). Since the
1208 breakpoint really is executed, the inferior needs to be
1209 backed up to the breakpoint address. */
1210 write_pc_pid (breakpoint_pc, ecs->ptid);
1211 }
1212 else
1213 {
1214 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1215 /* The inferior was free running (i.e., no hardware
1216 single-step and no possibility of a false SIGTRAP) and
1217 hit a software breakpoint. */
1218 write_pc_pid (breakpoint_pc, ecs->ptid);
1219 }
1220 }
4fa8626c
DJ
1221}
1222
cd0fc7c3
SS
1223/* Given an execution control state that has been freshly filled in
1224 by an event from the inferior, figure out what it means and take
1225 appropriate action. */
c906108c 1226
7270d8f2
OF
1227int stepped_after_stopped_by_watchpoint;
1228
cd0fc7c3 1229void
96baa820 1230handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1231{
65e82032
AC
1232 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1233 thinking that the variable stepped_after_stopped_by_watchpoint
1234 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1235 defined in the file "config/pa/nm-hppah.h", accesses the variable
1236 indirectly. Mutter something rude about the HP merge. */
c8edd8b4 1237 int sw_single_step_trap_p = 0;
8fb3e588 1238 int stopped_by_watchpoint = -1; /* Mark as unknown. */
cd0fc7c3 1239
e02bc4cc 1240 /* Cache the last pid/waitstatus. */
39f77062 1241 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1242 target_last_waitstatus = *ecs->wp;
1243
4fa8626c
DJ
1244 adjust_pc_after_break (ecs);
1245
488f131b
JB
1246 switch (ecs->infwait_state)
1247 {
1248 case infwait_thread_hop_state:
527159b7
RC
1249 if (debug_infrun)
1250 printf_unfiltered ("infrun: infwait_thread_hop_state\n");
488f131b
JB
1251 /* Cancel the waiton_ptid. */
1252 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032
AC
1253 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1254 is serviced in this loop, below. */
1255 if (ecs->enable_hw_watchpoints_after_wait)
1256 {
1257 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1258 ecs->enable_hw_watchpoints_after_wait = 0;
1259 }
1260 stepped_after_stopped_by_watchpoint = 0;
1261 break;
b83266a0 1262
488f131b 1263 case infwait_normal_state:
527159b7
RC
1264 if (debug_infrun)
1265 printf_unfiltered ("infrun: infwait_normal_state\n");
488f131b
JB
1266 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1267 is serviced in this loop, below. */
1268 if (ecs->enable_hw_watchpoints_after_wait)
1269 {
1270 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1271 ecs->enable_hw_watchpoints_after_wait = 0;
1272 }
1273 stepped_after_stopped_by_watchpoint = 0;
1274 break;
b83266a0 1275
488f131b 1276 case infwait_nullified_state:
527159b7
RC
1277 if (debug_infrun)
1278 printf_unfiltered ("infrun: infwait_nullified_state\n");
65e82032 1279 stepped_after_stopped_by_watchpoint = 0;
488f131b 1280 break;
b83266a0 1281
488f131b 1282 case infwait_nonstep_watch_state:
527159b7
RC
1283 if (debug_infrun)
1284 printf_unfiltered ("infrun: infwait_nonstep_watch_state\n");
488f131b 1285 insert_breakpoints ();
c906108c 1286
488f131b
JB
1287 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1288 handle things like signals arriving and other things happening
1289 in combination correctly? */
1290 stepped_after_stopped_by_watchpoint = 1;
1291 break;
65e82032
AC
1292
1293 default:
1294 internal_error (__FILE__, __LINE__, "bad switch");
488f131b
JB
1295 }
1296 ecs->infwait_state = infwait_normal_state;
c906108c 1297
488f131b 1298 flush_cached_frames ();
c906108c 1299
488f131b 1300 /* If it's a new process, add it to the thread database */
c906108c 1301
488f131b 1302 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
b9b5d7ea 1303 && !ptid_equal (ecs->ptid, minus_one_ptid)
488f131b
JB
1304 && !in_thread_list (ecs->ptid));
1305
1306 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1307 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1308 {
1309 add_thread (ecs->ptid);
c906108c 1310
488f131b
JB
1311 ui_out_text (uiout, "[New ");
1312 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1313 ui_out_text (uiout, "]\n");
488f131b 1314 }
c906108c 1315
488f131b
JB
1316 switch (ecs->ws.kind)
1317 {
1318 case TARGET_WAITKIND_LOADED:
527159b7
RC
1319 if (debug_infrun)
1320 printf_unfiltered ("infrun: TARGET_WAITKIND_LOADED\n");
488f131b
JB
1321 /* Ignore gracefully during startup of the inferior, as it
1322 might be the shell which has just loaded some objects,
1323 otherwise add the symbols for the newly loaded objects. */
c906108c 1324#ifdef SOLIB_ADD
c0236d92 1325 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1326 {
1327 /* Remove breakpoints, SOLIB_ADD might adjust
1328 breakpoint addresses via breakpoint_re_set. */
1329 if (breakpoints_inserted)
1330 remove_breakpoints ();
c906108c 1331
488f131b
JB
1332 /* Check for any newly added shared libraries if we're
1333 supposed to be adding them automatically. Switch
1334 terminal for any messages produced by
1335 breakpoint_re_set. */
1336 target_terminal_ours_for_output ();
aff6338a 1337 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1338 stack's section table is kept up-to-date. Architectures,
1339 (e.g., PPC64), use the section table to perform
1340 operations such as address => section name and hence
1341 require the table to contain all sections (including
1342 those found in shared libraries). */
aff6338a 1343 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1344 exec_ops to SOLIB_ADD. This is because current GDB is
1345 only tooled to propagate section_table changes out from
1346 the "current_target" (see target_resize_to_sections), and
1347 not up from the exec stratum. This, of course, isn't
1348 right. "infrun.c" should only interact with the
1349 exec/process stratum, instead relying on the target stack
1350 to propagate relevant changes (stop, section table
1351 changed, ...) up to other layers. */
aff6338a 1352 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
1353 target_terminal_inferior ();
1354
1355 /* Reinsert breakpoints and continue. */
1356 if (breakpoints_inserted)
1357 insert_breakpoints ();
1358 }
c906108c 1359#endif
488f131b
JB
1360 resume (0, TARGET_SIGNAL_0);
1361 prepare_to_wait (ecs);
1362 return;
c5aa993b 1363
488f131b 1364 case TARGET_WAITKIND_SPURIOUS:
527159b7
RC
1365 if (debug_infrun)
1366 printf_unfiltered ("infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1367 resume (0, TARGET_SIGNAL_0);
1368 prepare_to_wait (ecs);
1369 return;
c5aa993b 1370
488f131b 1371 case TARGET_WAITKIND_EXITED:
527159b7
RC
1372 if (debug_infrun)
1373 printf_unfiltered ("infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
1374 target_terminal_ours (); /* Must do this before mourn anyway */
1375 print_stop_reason (EXITED, ecs->ws.value.integer);
1376
1377 /* Record the exit code in the convenience variable $_exitcode, so
1378 that the user can inspect this again later. */
1379 set_internalvar (lookup_internalvar ("_exitcode"),
1380 value_from_longest (builtin_type_int,
1381 (LONGEST) ecs->ws.value.integer));
1382 gdb_flush (gdb_stdout);
1383 target_mourn_inferior ();
1384 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1385 stop_print_frame = 0;
1386 stop_stepping (ecs);
1387 return;
c5aa993b 1388
488f131b 1389 case TARGET_WAITKIND_SIGNALLED:
527159b7
RC
1390 if (debug_infrun)
1391 printf_unfiltered ("infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
1392 stop_print_frame = 0;
1393 stop_signal = ecs->ws.value.sig;
1394 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1395
488f131b
JB
1396 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1397 reach here unless the inferior is dead. However, for years
1398 target_kill() was called here, which hints that fatal signals aren't
1399 really fatal on some systems. If that's true, then some changes
1400 may be needed. */
1401 target_mourn_inferior ();
c906108c 1402
488f131b
JB
1403 print_stop_reason (SIGNAL_EXITED, stop_signal);
1404 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1405 stop_stepping (ecs);
1406 return;
c906108c 1407
488f131b
JB
1408 /* The following are the only cases in which we keep going;
1409 the above cases end in a continue or goto. */
1410 case TARGET_WAITKIND_FORKED:
deb3b17b 1411 case TARGET_WAITKIND_VFORKED:
527159b7
RC
1412 if (debug_infrun)
1413 printf_unfiltered ("infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
1414 stop_signal = TARGET_SIGNAL_TRAP;
1415 pending_follow.kind = ecs->ws.kind;
1416
8e7d2c16
DJ
1417 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1418 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1419
488f131b 1420 stop_pc = read_pc ();
675bf4cb 1421
00d4360e 1422 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1423
488f131b 1424 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1425
1426 /* If no catchpoint triggered for this, then keep going. */
1427 if (ecs->random_signal)
1428 {
1429 stop_signal = TARGET_SIGNAL_0;
1430 keep_going (ecs);
1431 return;
1432 }
488f131b
JB
1433 goto process_event_stop_test;
1434
1435 case TARGET_WAITKIND_EXECD:
527159b7
RC
1436 if (debug_infrun)
1437 printf_unfiltered ("infrun: TARGET_WAITKIND_EXECED\n");
488f131b
JB
1438 stop_signal = TARGET_SIGNAL_TRAP;
1439
7d2830a3 1440 /* NOTE drow/2002-12-05: This code should be pushed down into the
8fb3e588
AC
1441 target_wait function. Until then following vfork on HP/UX 10.20
1442 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1443 /* Is this a target which reports multiple exec events per actual
1444 call to exec()? (HP-UX using ptrace does, for example.) If so,
1445 ignore all but the last one. Just resume the exec'r, and wait
1446 for the next exec event. */
1447 if (inferior_ignoring_leading_exec_events)
1448 {
1449 inferior_ignoring_leading_exec_events--;
1450 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1451 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1452 parent_pid);
1453 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1454 prepare_to_wait (ecs);
1455 return;
1456 }
1457 inferior_ignoring_leading_exec_events =
1458 target_reported_exec_events_per_exec_call () - 1;
1459
1460 pending_follow.execd_pathname =
1461 savestring (ecs->ws.value.execd_pathname,
1462 strlen (ecs->ws.value.execd_pathname));
1463
488f131b
JB
1464 /* This causes the eventpoints and symbol table to be reset. Must
1465 do this now, before trying to determine whether to stop. */
1466 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1467 xfree (pending_follow.execd_pathname);
c906108c 1468
488f131b
JB
1469 stop_pc = read_pc_pid (ecs->ptid);
1470 ecs->saved_inferior_ptid = inferior_ptid;
1471 inferior_ptid = ecs->ptid;
675bf4cb 1472
00d4360e 1473 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1474
488f131b
JB
1475 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1476 inferior_ptid = ecs->saved_inferior_ptid;
04e68871
DJ
1477
1478 /* If no catchpoint triggered for this, then keep going. */
1479 if (ecs->random_signal)
1480 {
1481 stop_signal = TARGET_SIGNAL_0;
1482 keep_going (ecs);
1483 return;
1484 }
488f131b
JB
1485 goto process_event_stop_test;
1486
1487 /* These syscall events are returned on HP-UX, as part of its
1488 implementation of page-protection-based "hardware" watchpoints.
1489 HP-UX has unfortunate interactions between page-protections and
1490 some system calls. Our solution is to disable hardware watches
1491 when a system call is entered, and reenable them when the syscall
1492 completes. The downside of this is that we may miss the precise
1493 point at which a watched piece of memory is modified. "Oh well."
1494
1495 Note that we may have multiple threads running, which may each
1496 enter syscalls at roughly the same time. Since we don't have a
1497 good notion currently of whether a watched piece of memory is
1498 thread-private, we'd best not have any page-protections active
1499 when any thread is in a syscall. Thus, we only want to reenable
1500 hardware watches when no threads are in a syscall.
1501
1502 Also, be careful not to try to gather much state about a thread
1503 that's in a syscall. It's frequently a losing proposition. */
1504 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7
RC
1505 if (debug_infrun)
1506 printf_unfiltered ("infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
1507 number_of_threads_in_syscalls++;
1508 if (number_of_threads_in_syscalls == 1)
1509 {
1510 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1511 }
1512 resume (0, TARGET_SIGNAL_0);
1513 prepare_to_wait (ecs);
1514 return;
c906108c 1515
488f131b
JB
1516 /* Before examining the threads further, step this thread to
1517 get it entirely out of the syscall. (We get notice of the
1518 event when the thread is just on the verge of exiting a
1519 syscall. Stepping one instruction seems to get it back
1520 into user code.)
c906108c 1521
488f131b
JB
1522 Note that although the logical place to reenable h/w watches
1523 is here, we cannot. We cannot reenable them before stepping
1524 the thread (this causes the next wait on the thread to hang).
c4093a6a 1525
488f131b
JB
1526 Nor can we enable them after stepping until we've done a wait.
1527 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1528 here, which will be serviced immediately after the target
1529 is waited on. */
1530 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7
RC
1531 if (debug_infrun)
1532 printf_unfiltered ("infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b
JB
1533 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1534
1535 if (number_of_threads_in_syscalls > 0)
1536 {
1537 number_of_threads_in_syscalls--;
1538 ecs->enable_hw_watchpoints_after_wait =
1539 (number_of_threads_in_syscalls == 0);
1540 }
1541 prepare_to_wait (ecs);
1542 return;
c906108c 1543
488f131b 1544 case TARGET_WAITKIND_STOPPED:
527159b7
RC
1545 if (debug_infrun)
1546 printf_unfiltered ("infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
1547 stop_signal = ecs->ws.value.sig;
1548 break;
c906108c 1549
488f131b
JB
1550 /* We had an event in the inferior, but we are not interested
1551 in handling it at this level. The lower layers have already
8e7d2c16 1552 done what needs to be done, if anything.
8fb3e588
AC
1553
1554 One of the possible circumstances for this is when the
1555 inferior produces output for the console. The inferior has
1556 not stopped, and we are ignoring the event. Another possible
1557 circumstance is any event which the lower level knows will be
1558 reported multiple times without an intervening resume. */
488f131b 1559 case TARGET_WAITKIND_IGNORE:
527159b7
RC
1560 if (debug_infrun)
1561 printf_unfiltered ("infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 1562 prepare_to_wait (ecs);
488f131b
JB
1563 return;
1564 }
c906108c 1565
488f131b
JB
1566 /* We may want to consider not doing a resume here in order to give
1567 the user a chance to play with the new thread. It might be good
1568 to make that a user-settable option. */
c906108c 1569
488f131b
JB
1570 /* At this point, all threads are stopped (happens automatically in
1571 either the OS or the native code). Therefore we need to continue
1572 all threads in order to make progress. */
1573 if (ecs->new_thread_event)
1574 {
1575 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1576 prepare_to_wait (ecs);
1577 return;
1578 }
c906108c 1579
488f131b
JB
1580 stop_pc = read_pc_pid (ecs->ptid);
1581
527159b7
RC
1582 if (debug_infrun)
1583 printf_unfiltered ("infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1584
9f976b41
DJ
1585 if (stepping_past_singlestep_breakpoint)
1586 {
8fb3e588
AC
1587 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1588 && singlestep_breakpoints_inserted_p);
9f976b41
DJ
1589 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1590 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1591
1592 stepping_past_singlestep_breakpoint = 0;
1593
1594 /* We've either finished single-stepping past the single-step
8fb3e588
AC
1595 breakpoint, or stopped for some other reason. It would be nice if
1596 we could tell, but we can't reliably. */
9f976b41 1597 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 1598 {
527159b7
RC
1599 if (debug_infrun)
1600 printf_unfiltered ("infrun: stepping_past_singlestep_breakpoint\n");
9f976b41
DJ
1601 /* Pull the single step breakpoints out of the target. */
1602 SOFTWARE_SINGLE_STEP (0, 0);
1603 singlestep_breakpoints_inserted_p = 0;
1604
1605 ecs->random_signal = 0;
1606
1607 ecs->ptid = saved_singlestep_ptid;
1608 context_switch (ecs);
9a4105ab
AC
1609 if (deprecated_context_hook)
1610 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1611
1612 resume (1, TARGET_SIGNAL_0);
1613 prepare_to_wait (ecs);
1614 return;
1615 }
1616 }
1617
1618 stepping_past_singlestep_breakpoint = 0;
1619
488f131b
JB
1620 /* See if a thread hit a thread-specific breakpoint that was meant for
1621 another thread. If so, then step that thread past the breakpoint,
1622 and continue it. */
1623
1624 if (stop_signal == TARGET_SIGNAL_TRAP)
1625 {
9f976b41
DJ
1626 int thread_hop_needed = 0;
1627
f8d40ec8
JB
1628 /* Check if a regular breakpoint has been hit before checking
1629 for a potential single step breakpoint. Otherwise, GDB will
1630 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1631 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1632 {
c5aa993b 1633 ecs->random_signal = 0;
4fa8626c 1634 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1635 thread_hop_needed = 1;
1636 }
1637 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1638 {
1639 ecs->random_signal = 0;
1640 /* The call to in_thread_list is necessary because PTIDs sometimes
1641 change when we go from single-threaded to multi-threaded. If
1642 the singlestep_ptid is still in the list, assume that it is
1643 really different from ecs->ptid. */
1644 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1645 && in_thread_list (singlestep_ptid))
1646 {
1647 thread_hop_needed = 1;
1648 stepping_past_singlestep_breakpoint = 1;
1649 saved_singlestep_ptid = singlestep_ptid;
1650 }
1651 }
1652
1653 if (thread_hop_needed)
8fb3e588
AC
1654 {
1655 int remove_status;
1656
527159b7
RC
1657 if (debug_infrun)
1658 printf_unfiltered ("infrun: thread_hop_needed\n");
1659
8fb3e588
AC
1660 /* Saw a breakpoint, but it was hit by the wrong thread.
1661 Just continue. */
1662
1663 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
488f131b 1664 {
8fb3e588
AC
1665 /* Pull the single step breakpoints out of the target. */
1666 SOFTWARE_SINGLE_STEP (0, 0);
1667 singlestep_breakpoints_inserted_p = 0;
1668 }
1669
1670 remove_status = remove_breakpoints ();
1671 /* Did we fail to remove breakpoints? If so, try
1672 to set the PC past the bp. (There's at least
1673 one situation in which we can fail to remove
1674 the bp's: On HP-UX's that use ttrace, we can't
1675 change the address space of a vforking child
1676 process until the child exits (well, okay, not
1677 then either :-) or execs. */
1678 if (remove_status != 0)
1679 {
1680 /* FIXME! This is obviously non-portable! */
1681 write_pc_pid (stop_pc + 4, ecs->ptid);
1682 /* We need to restart all the threads now,
1683 * unles we're running in scheduler-locked mode.
1684 * Use currently_stepping to determine whether to
1685 * step or continue.
1686 */
1687 /* FIXME MVS: is there any reason not to call resume()? */
1688 if (scheduler_mode == schedlock_on)
1689 target_resume (ecs->ptid,
1690 currently_stepping (ecs), TARGET_SIGNAL_0);
488f131b 1691 else
8fb3e588
AC
1692 target_resume (RESUME_ALL,
1693 currently_stepping (ecs), TARGET_SIGNAL_0);
1694 prepare_to_wait (ecs);
1695 return;
1696 }
1697 else
1698 { /* Single step */
1699 breakpoints_inserted = 0;
1700 if (!ptid_equal (inferior_ptid, ecs->ptid))
1701 context_switch (ecs);
1702 ecs->waiton_ptid = ecs->ptid;
1703 ecs->wp = &(ecs->ws);
1704 ecs->another_trap = 1;
1705
1706 ecs->infwait_state = infwait_thread_hop_state;
1707 keep_going (ecs);
1708 registers_changed ();
1709 return;
1710 }
488f131b 1711 }
f8d40ec8 1712 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
8fb3e588
AC
1713 {
1714 sw_single_step_trap_p = 1;
1715 ecs->random_signal = 0;
1716 }
488f131b
JB
1717 }
1718 else
1719 ecs->random_signal = 1;
c906108c 1720
488f131b 1721 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1722 so, then switch to that thread. */
1723 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1724 {
527159b7
RC
1725 if (debug_infrun)
1726 printf_unfiltered ("infrun: context switch\n");
1727
488f131b 1728 context_switch (ecs);
c5aa993b 1729
9a4105ab
AC
1730 if (deprecated_context_hook)
1731 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1732
488f131b
JB
1733 flush_cached_frames ();
1734 }
c906108c 1735
488f131b
JB
1736 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1737 {
1738 /* Pull the single step breakpoints out of the target. */
1739 SOFTWARE_SINGLE_STEP (0, 0);
1740 singlestep_breakpoints_inserted_p = 0;
1741 }
c906108c 1742
488f131b
JB
1743 /* If PC is pointing at a nullified instruction, then step beyond
1744 it so that the user won't be confused when GDB appears to be ready
1745 to execute it. */
c906108c 1746
488f131b
JB
1747 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1748 if (INSTRUCTION_NULLIFIED)
1749 {
527159b7
RC
1750 if (debug_infrun)
1751 printf_unfiltered ("infrun: INSTRUCTION_NULLIFIED\n");
488f131b
JB
1752 registers_changed ();
1753 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c906108c 1754
488f131b
JB
1755 /* We may have received a signal that we want to pass to
1756 the inferior; therefore, we must not clobber the waitstatus
1757 in WS. */
c906108c 1758
488f131b
JB
1759 ecs->infwait_state = infwait_nullified_state;
1760 ecs->waiton_ptid = ecs->ptid;
1761 ecs->wp = &(ecs->tmpstatus);
1762 prepare_to_wait (ecs);
1763 return;
1764 }
c906108c 1765
488f131b
JB
1766 /* It may not be necessary to disable the watchpoint to stop over
1767 it. For example, the PA can (with some kernel cooperation)
1768 single step over a watchpoint without disabling the watchpoint. */
1769 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1770 {
527159b7
RC
1771 if (debug_infrun)
1772 printf_unfiltered ("infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1773 resume (1, 0);
1774 prepare_to_wait (ecs);
1775 return;
1776 }
c906108c 1777
488f131b
JB
1778 /* It is far more common to need to disable a watchpoint to step
1779 the inferior over it. FIXME. What else might a debug
1780 register or page protection watchpoint scheme need here? */
1781 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1782 {
1783 /* At this point, we are stopped at an instruction which has
1784 attempted to write to a piece of memory under control of
1785 a watchpoint. The instruction hasn't actually executed
1786 yet. If we were to evaluate the watchpoint expression
1787 now, we would get the old value, and therefore no change
1788 would seem to have occurred.
1789
1790 In order to make watchpoints work `right', we really need
1791 to complete the memory write, and then evaluate the
1792 watchpoint expression. The following code does that by
1793 removing the watchpoint (actually, all watchpoints and
1794 breakpoints), single-stepping the target, re-inserting
1795 watchpoints, and then falling through to let normal
1796 single-step processing handle proceed. Since this
1797 includes evaluating watchpoints, things will come to a
1798 stop in the correct manner. */
1799
527159b7
RC
1800 if (debug_infrun)
1801 printf_unfiltered ("infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1802 remove_breakpoints ();
1803 registers_changed ();
1804 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1805
488f131b
JB
1806 ecs->waiton_ptid = ecs->ptid;
1807 ecs->wp = &(ecs->ws);
1808 ecs->infwait_state = infwait_nonstep_watch_state;
1809 prepare_to_wait (ecs);
1810 return;
1811 }
1812
1813 /* It may be possible to simply continue after a watchpoint. */
1814 if (HAVE_CONTINUABLE_WATCHPOINT)
00d4360e 1815 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
488f131b
JB
1816
1817 ecs->stop_func_start = 0;
1818 ecs->stop_func_end = 0;
1819 ecs->stop_func_name = 0;
1820 /* Don't care about return value; stop_func_start and stop_func_name
1821 will both be 0 if it doesn't work. */
1822 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1823 &ecs->stop_func_start, &ecs->stop_func_end);
782263ab 1824 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
488f131b
JB
1825 ecs->another_trap = 0;
1826 bpstat_clear (&stop_bpstat);
1827 stop_step = 0;
1828 stop_stack_dummy = 0;
1829 stop_print_frame = 1;
1830 ecs->random_signal = 0;
1831 stopped_by_random_signal = 0;
1832 breakpoints_failed = 0;
1833
3352ef37
AC
1834 if (stop_signal == TARGET_SIGNAL_TRAP
1835 && trap_expected
1836 && gdbarch_single_step_through_delay_p (current_gdbarch)
1837 && currently_stepping (ecs))
1838 {
1839 /* We're trying to step of a breakpoint. Turns out that we're
1840 also on an instruction that needs to be stepped multiple
1841 times before it's been fully executing. E.g., architectures
1842 with a delay slot. It needs to be stepped twice, once for
1843 the instruction and once for the delay slot. */
1844 int step_through_delay
1845 = gdbarch_single_step_through_delay (current_gdbarch,
1846 get_current_frame ());
527159b7
RC
1847 if (debug_infrun && step_through_delay)
1848 printf_unfiltered ("infrun: step through delay\n");
3352ef37
AC
1849 if (step_range_end == 0 && step_through_delay)
1850 {
1851 /* The user issued a continue when stopped at a breakpoint.
1852 Set up for another trap and get out of here. */
1853 ecs->another_trap = 1;
1854 keep_going (ecs);
1855 return;
1856 }
1857 else if (step_through_delay)
1858 {
1859 /* The user issued a step when stopped at a breakpoint.
1860 Maybe we should stop, maybe we should not - the delay
1861 slot *might* correspond to a line of source. In any
1862 case, don't decide that here, just set ecs->another_trap,
1863 making sure we single-step again before breakpoints are
1864 re-inserted. */
1865 ecs->another_trap = 1;
1866 }
1867 }
1868
488f131b
JB
1869 /* Look at the cause of the stop, and decide what to do.
1870 The alternatives are:
1871 1) break; to really stop and return to the debugger,
1872 2) drop through to start up again
1873 (set ecs->another_trap to 1 to single step once)
1874 3) set ecs->random_signal to 1, and the decision between 1 and 2
1875 will be made according to the signal handling tables. */
1876
1877 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1878 that have to do with the program's own actions. Note that
1879 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1880 on the operating system version. Here we detect when a SIGILL or
1881 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1882 something similar for SIGSEGV, since a SIGSEGV will be generated
1883 when we're trying to execute a breakpoint instruction on a
1884 non-executable stack. This happens for call dummy breakpoints
1885 for architectures like SPARC that place call dummies on the
1886 stack. */
488f131b
JB
1887
1888 if (stop_signal == TARGET_SIGNAL_TRAP
8fb3e588
AC
1889 || (breakpoints_inserted
1890 && (stop_signal == TARGET_SIGNAL_ILL
1891 || stop_signal == TARGET_SIGNAL_SEGV
1892 || stop_signal == TARGET_SIGNAL_EMT))
1893 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1894 {
1895 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1896 {
527159b7
RC
1897 if (debug_infrun)
1898 printf_unfiltered ("infrun: stopped\n");
488f131b
JB
1899 stop_print_frame = 0;
1900 stop_stepping (ecs);
1901 return;
1902 }
c54cfec8
EZ
1903
1904 /* This is originated from start_remote(), start_inferior() and
1905 shared libraries hook functions. */
c0236d92 1906 if (stop_soon == STOP_QUIETLY)
488f131b 1907 {
527159b7
RC
1908 if (debug_infrun)
1909 printf_unfiltered ("infrun: quietly stopped\n");
488f131b
JB
1910 stop_stepping (ecs);
1911 return;
1912 }
1913
c54cfec8
EZ
1914 /* This originates from attach_command(). We need to overwrite
1915 the stop_signal here, because some kernels don't ignore a
1916 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1917 See more comments in inferior.h. */
c0236d92 1918 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1919 {
1920 stop_stepping (ecs);
1921 if (stop_signal == TARGET_SIGNAL_STOP)
1922 stop_signal = TARGET_SIGNAL_0;
1923 return;
1924 }
1925
d303a6c7
AC
1926 /* Don't even think about breakpoints if just proceeded over a
1927 breakpoint. */
1928 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
527159b7
RC
1929 {
1930 if (debug_infrun)
1931 printf_unfiltered ("infrun: trap expected\n");
1932 bpstat_clear (&stop_bpstat);
1933 }
488f131b
JB
1934 else
1935 {
1936 /* See if there is a breakpoint at the current PC. */
8fb3e588 1937 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
00d4360e 1938 stopped_by_watchpoint);
488f131b 1939
488f131b
JB
1940 /* Following in case break condition called a
1941 function. */
1942 stop_print_frame = 1;
1943 }
1944
73dd234f 1945 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
1946 at one stage in the past included checks for an inferior
1947 function call's call dummy's return breakpoint. The original
1948 comment, that went with the test, read:
73dd234f 1949
8fb3e588
AC
1950 ``End of a stack dummy. Some systems (e.g. Sony news) give
1951 another signal besides SIGTRAP, so check here as well as
1952 above.''
73dd234f
AC
1953
1954 If someone ever tries to get get call dummys on a
1955 non-executable stack to work (where the target would stop
03cebad2
MK
1956 with something like a SIGSEGV), then those tests might need
1957 to be re-instated. Given, however, that the tests were only
73dd234f 1958 enabled when momentary breakpoints were not being used, I
03cebad2
MK
1959 suspect that it won't be the case.
1960
8fb3e588
AC
1961 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1962 be necessary for call dummies on a non-executable stack on
1963 SPARC. */
73dd234f 1964
488f131b
JB
1965 if (stop_signal == TARGET_SIGNAL_TRAP)
1966 ecs->random_signal
1967 = !(bpstat_explains_signal (stop_bpstat)
1968 || trap_expected
488f131b 1969 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
1970 else
1971 {
73dd234f 1972 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
1973 if (!ecs->random_signal)
1974 stop_signal = TARGET_SIGNAL_TRAP;
1975 }
1976 }
1977
1978 /* When we reach this point, we've pretty much decided
1979 that the reason for stopping must've been a random
1980 (unexpected) signal. */
1981
1982 else
1983 ecs->random_signal = 1;
488f131b 1984
04e68871 1985process_event_stop_test:
488f131b
JB
1986 /* For the program's own signals, act according to
1987 the signal handling tables. */
1988
1989 if (ecs->random_signal)
1990 {
1991 /* Signal not for debugging purposes. */
1992 int printed = 0;
1993
527159b7
RC
1994 if (debug_infrun)
1995 printf_unfiltered ("infrun: random signal %d\n", stop_signal);
1996
488f131b
JB
1997 stopped_by_random_signal = 1;
1998
1999 if (signal_print[stop_signal])
2000 {
2001 printed = 1;
2002 target_terminal_ours_for_output ();
2003 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2004 }
2005 if (signal_stop[stop_signal])
2006 {
2007 stop_stepping (ecs);
2008 return;
2009 }
2010 /* If not going to stop, give terminal back
2011 if we took it away. */
2012 else if (printed)
2013 target_terminal_inferior ();
2014
2015 /* Clear the signal if it should not be passed. */
2016 if (signal_program[stop_signal] == 0)
2017 stop_signal = TARGET_SIGNAL_0;
2018
68f53502
AC
2019 if (prev_pc == read_pc ()
2020 && !breakpoints_inserted
2021 && breakpoint_here_p (read_pc ())
2022 && step_resume_breakpoint == NULL)
2023 {
2024 /* We were just starting a new sequence, attempting to
2025 single-step off of a breakpoint and expecting a SIGTRAP.
2026 Intead this signal arrives. This signal will take us out
2027 of the stepping range so GDB needs to remember to, when
2028 the signal handler returns, resume stepping off that
2029 breakpoint. */
2030 /* To simplify things, "continue" is forced to use the same
2031 code paths as single-step - set a breakpoint at the
2032 signal return address and then, once hit, step off that
2033 breakpoint. */
44cbf7b5 2034 insert_step_resume_breakpoint_at_frame (get_current_frame ());
68f53502
AC
2035 ecs->step_after_step_resume_breakpoint = 1;
2036 }
2037 else if (step_range_end != 0
2038 && stop_signal != TARGET_SIGNAL_0
2039 && stop_pc >= step_range_start && stop_pc < step_range_end
2040 && frame_id_eq (get_frame_id (get_current_frame ()),
2041 step_frame_id))
d303a6c7
AC
2042 {
2043 /* The inferior is about to take a signal that will take it
2044 out of the single step range. Set a breakpoint at the
2045 current PC (which is presumably where the signal handler
2046 will eventually return) and then allow the inferior to
2047 run free.
2048
2049 Note that this is only needed for a signal delivered
2050 while in the single-step range. Nested signals aren't a
2051 problem as they eventually all return. */
44cbf7b5 2052 insert_step_resume_breakpoint_at_frame (get_current_frame ());
d303a6c7 2053 }
488f131b
JB
2054 keep_going (ecs);
2055 return;
2056 }
2057
2058 /* Handle cases caused by hitting a breakpoint. */
2059 {
2060 CORE_ADDR jmp_buf_pc;
2061 struct bpstat_what what;
2062
2063 what = bpstat_what (stop_bpstat);
2064
2065 if (what.call_dummy)
2066 {
2067 stop_stack_dummy = 1;
c5aa993b 2068 }
c906108c 2069
488f131b 2070 switch (what.main_action)
c5aa993b 2071 {
488f131b
JB
2072 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2073 /* If we hit the breakpoint at longjmp, disable it for the
2074 duration of this command. Then, install a temporary
2075 breakpoint at the target of the jmp_buf. */
527159b7
RC
2076 if (debug_infrun)
2077 printf_unfiltered ("infrun: BPSTATE_WHAT_SET_LONGJMP_RESUME\n");
488f131b
JB
2078 disable_longjmp_breakpoint ();
2079 remove_breakpoints ();
2080 breakpoints_inserted = 0;
2081 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2082 {
488f131b 2083 keep_going (ecs);
104c1213 2084 return;
c5aa993b 2085 }
488f131b
JB
2086
2087 /* Need to blow away step-resume breakpoint, as it
2088 interferes with us */
2089 if (step_resume_breakpoint != NULL)
104c1213 2090 {
488f131b 2091 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2092 }
c906108c 2093
8fb3e588 2094 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2095 ecs->handling_longjmp = 1; /* FIXME */
2096 keep_going (ecs);
2097 return;
c906108c 2098
488f131b
JB
2099 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2100 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
527159b7
RC
2101 if (debug_infrun)
2102 printf_unfiltered ("infrun: BPSTATE_WHAT_CLEAR_LONGJMP_RESUME\n");
488f131b
JB
2103 remove_breakpoints ();
2104 breakpoints_inserted = 0;
488f131b
JB
2105 disable_longjmp_breakpoint ();
2106 ecs->handling_longjmp = 0; /* FIXME */
2107 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2108 break;
2109 /* else fallthrough */
2110
2111 case BPSTAT_WHAT_SINGLE:
527159b7
RC
2112 if (debug_infrun)
2113 printf_unfiltered ("infrun: BPSTATE_WHAT_SINGLE\n");
488f131b 2114 if (breakpoints_inserted)
c5aa993b 2115 {
488f131b 2116 remove_breakpoints ();
c5aa993b 2117 }
488f131b
JB
2118 breakpoints_inserted = 0;
2119 ecs->another_trap = 1;
2120 /* Still need to check other stuff, at least the case
2121 where we are stepping and step out of the right range. */
2122 break;
c906108c 2123
488f131b 2124 case BPSTAT_WHAT_STOP_NOISY:
527159b7
RC
2125 if (debug_infrun)
2126 printf_unfiltered ("infrun: BPSTATE_WHAT_STOP_NOISY\n");
488f131b 2127 stop_print_frame = 1;
c906108c 2128
d303a6c7
AC
2129 /* We are about to nuke the step_resume_breakpointt via the
2130 cleanup chain, so no need to worry about it here. */
c5aa993b 2131
488f131b
JB
2132 stop_stepping (ecs);
2133 return;
c5aa993b 2134
488f131b 2135 case BPSTAT_WHAT_STOP_SILENT:
527159b7
RC
2136 if (debug_infrun)
2137 printf_unfiltered ("infrun: BPSTATE_WHAT_STOP_SILENT\n");
488f131b 2138 stop_print_frame = 0;
c5aa993b 2139
d303a6c7
AC
2140 /* We are about to nuke the step_resume_breakpoin via the
2141 cleanup chain, so no need to worry about it here. */
c5aa993b 2142
488f131b 2143 stop_stepping (ecs);
e441088d 2144 return;
c5aa993b 2145
488f131b
JB
2146 case BPSTAT_WHAT_STEP_RESUME:
2147 /* This proably demands a more elegant solution, but, yeah
2148 right...
c5aa993b 2149
488f131b
JB
2150 This function's use of the simple variable
2151 step_resume_breakpoint doesn't seem to accomodate
2152 simultaneously active step-resume bp's, although the
2153 breakpoint list certainly can.
c5aa993b 2154
488f131b
JB
2155 If we reach here and step_resume_breakpoint is already
2156 NULL, then apparently we have multiple active
2157 step-resume bp's. We'll just delete the breakpoint we
2158 stopped at, and carry on.
2159
2160 Correction: what the code currently does is delete a
2161 step-resume bp, but it makes no effort to ensure that
2162 the one deleted is the one currently stopped at. MVS */
c5aa993b 2163
527159b7
RC
2164 if (debug_infrun)
2165 printf_unfiltered ("infrun: BPSTATE_WHAT_STEP_RESUME\n");
2166
488f131b
JB
2167 if (step_resume_breakpoint == NULL)
2168 {
2169 step_resume_breakpoint =
2170 bpstat_find_step_resume_breakpoint (stop_bpstat);
2171 }
2172 delete_step_resume_breakpoint (&step_resume_breakpoint);
68f53502
AC
2173 if (ecs->step_after_step_resume_breakpoint)
2174 {
2175 /* Back when the step-resume breakpoint was inserted, we
2176 were trying to single-step off a breakpoint. Go back
2177 to doing that. */
2178 ecs->step_after_step_resume_breakpoint = 0;
2179 remove_breakpoints ();
2180 breakpoints_inserted = 0;
2181 ecs->another_trap = 1;
2182 keep_going (ecs);
2183 return;
2184 }
488f131b
JB
2185 break;
2186
2187 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
527159b7
RC
2188 if (debug_infrun)
2189 printf_unfiltered ("infrun: BPSTATE_WHAT_THROUGH_SIGTRAMP\n");
488f131b
JB
2190 /* If were waiting for a trap, hitting the step_resume_break
2191 doesn't count as getting it. */
2192 if (trap_expected)
2193 ecs->another_trap = 1;
2194 break;
2195
2196 case BPSTAT_WHAT_CHECK_SHLIBS:
2197 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2198#ifdef SOLIB_ADD
c906108c 2199 {
527159b7
RC
2200 if (debug_infrun)
2201 printf_unfiltered ("infrun: BPSTATE_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2202 /* Remove breakpoints, we eventually want to step over the
2203 shlib event breakpoint, and SOLIB_ADD might adjust
2204 breakpoint addresses via breakpoint_re_set. */
2205 if (breakpoints_inserted)
2206 remove_breakpoints ();
c5aa993b 2207 breakpoints_inserted = 0;
488f131b
JB
2208
2209 /* Check for any newly added shared libraries if we're
2210 supposed to be adding them automatically. Switch
2211 terminal for any messages produced by
2212 breakpoint_re_set. */
2213 target_terminal_ours_for_output ();
aff6338a 2214 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2215 stack's section table is kept up-to-date. Architectures,
2216 (e.g., PPC64), use the section table to perform
2217 operations such as address => section name and hence
2218 require the table to contain all sections (including
2219 those found in shared libraries). */
aff6338a 2220 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2221 exec_ops to SOLIB_ADD. This is because current GDB is
2222 only tooled to propagate section_table changes out from
2223 the "current_target" (see target_resize_to_sections), and
2224 not up from the exec stratum. This, of course, isn't
2225 right. "infrun.c" should only interact with the
2226 exec/process stratum, instead relying on the target stack
2227 to propagate relevant changes (stop, section table
2228 changed, ...) up to other layers. */
aff6338a 2229 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
2230 target_terminal_inferior ();
2231
2232 /* Try to reenable shared library breakpoints, additional
2233 code segments in shared libraries might be mapped in now. */
2234 re_enable_breakpoints_in_shlibs ();
2235
2236 /* If requested, stop when the dynamic linker notifies
2237 gdb of events. This allows the user to get control
2238 and place breakpoints in initializer routines for
2239 dynamically loaded objects (among other things). */
877522db 2240 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2241 {
488f131b 2242 stop_stepping (ecs);
d4f3574e
SS
2243 return;
2244 }
c5aa993b 2245
488f131b
JB
2246 /* If we stopped due to an explicit catchpoint, then the
2247 (see above) call to SOLIB_ADD pulled in any symbols
2248 from a newly-loaded library, if appropriate.
2249
2250 We do want the inferior to stop, but not where it is
2251 now, which is in the dynamic linker callback. Rather,
2252 we would like it stop in the user's program, just after
2253 the call that caused this catchpoint to trigger. That
2254 gives the user a more useful vantage from which to
2255 examine their program's state. */
8fb3e588
AC
2256 else if (what.main_action
2257 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2258 {
488f131b
JB
2259 /* ??rehrauer: If I could figure out how to get the
2260 right return PC from here, we could just set a temp
2261 breakpoint and resume. I'm not sure we can without
2262 cracking open the dld's shared libraries and sniffing
2263 their unwind tables and text/data ranges, and that's
2264 not a terribly portable notion.
2265
2266 Until that time, we must step the inferior out of the
2267 dld callback, and also out of the dld itself (and any
2268 code or stubs in libdld.sl, such as "shl_load" and
2269 friends) until we reach non-dld code. At that point,
2270 we can stop stepping. */
2271 bpstat_get_triggered_catchpoints (stop_bpstat,
2272 &ecs->
2273 stepping_through_solib_catchpoints);
2274 ecs->stepping_through_solib_after_catch = 1;
2275
2276 /* Be sure to lift all breakpoints, so the inferior does
2277 actually step past this point... */
2278 ecs->another_trap = 1;
2279 break;
c906108c 2280 }
c5aa993b 2281 else
c5aa993b 2282 {
488f131b 2283 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2284 ecs->another_trap = 1;
488f131b 2285 break;
c5aa993b 2286 }
488f131b
JB
2287 }
2288#endif
2289 break;
c906108c 2290
488f131b
JB
2291 case BPSTAT_WHAT_LAST:
2292 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2293
488f131b
JB
2294 case BPSTAT_WHAT_KEEP_CHECKING:
2295 break;
2296 }
2297 }
c906108c 2298
488f131b
JB
2299 /* We come here if we hit a breakpoint but should not
2300 stop for it. Possibly we also were stepping
2301 and should stop for that. So fall through and
2302 test for stepping. But, if not stepping,
2303 do not stop. */
c906108c 2304
488f131b
JB
2305 /* Are we stepping to get the inferior out of the dynamic
2306 linker's hook (and possibly the dld itself) after catching
2307 a shlib event? */
2308 if (ecs->stepping_through_solib_after_catch)
2309 {
2310#if defined(SOLIB_ADD)
2311 /* Have we reached our destination? If not, keep going. */
2312 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2313 {
527159b7
RC
2314 if (debug_infrun)
2315 printf_unfiltered ("infrun: stepping in dynamic linker\n");
488f131b
JB
2316 ecs->another_trap = 1;
2317 keep_going (ecs);
104c1213 2318 return;
488f131b
JB
2319 }
2320#endif
527159b7
RC
2321 if (debug_infrun)
2322 printf_unfiltered ("infrun: step past dynamic linker\n");
488f131b
JB
2323 /* Else, stop and report the catchpoint(s) whose triggering
2324 caused us to begin stepping. */
2325 ecs->stepping_through_solib_after_catch = 0;
2326 bpstat_clear (&stop_bpstat);
2327 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2328 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2329 stop_print_frame = 1;
2330 stop_stepping (ecs);
2331 return;
2332 }
c906108c 2333
488f131b
JB
2334 if (step_resume_breakpoint)
2335 {
527159b7
RC
2336 if (debug_infrun)
2337 printf_unfiltered ("infrun: step-resume breakpoint\n");
2338
488f131b
JB
2339 /* Having a step-resume breakpoint overrides anything
2340 else having to do with stepping commands until
2341 that breakpoint is reached. */
488f131b
JB
2342 keep_going (ecs);
2343 return;
2344 }
c5aa993b 2345
488f131b
JB
2346 if (step_range_end == 0)
2347 {
527159b7
RC
2348 if (debug_infrun)
2349 printf_unfiltered ("infrun: no stepping, continue\n");
488f131b 2350 /* Likewise if we aren't even stepping. */
488f131b
JB
2351 keep_going (ecs);
2352 return;
2353 }
c5aa993b 2354
488f131b 2355 /* If stepping through a line, keep going if still within it.
c906108c 2356
488f131b
JB
2357 Note that step_range_end is the address of the first instruction
2358 beyond the step range, and NOT the address of the last instruction
2359 within it! */
2360 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2361 {
527159b7
RC
2362 if (debug_infrun)
2363 printf_unfiltered ("infrun: stepping inside range [0x%s-0x%s]\n",
2364 paddr_nz (step_range_start),
2365 paddr_nz (step_range_end));
488f131b
JB
2366 keep_going (ecs);
2367 return;
2368 }
c5aa993b 2369
488f131b 2370 /* We stepped out of the stepping range. */
c906108c 2371
488f131b
JB
2372 /* If we are stepping at the source level and entered the runtime
2373 loader dynamic symbol resolution code, we keep on single stepping
2374 until we exit the run time loader code and reach the callee's
2375 address. */
2376 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2377 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2378 {
4c8c40e6
MK
2379 CORE_ADDR pc_after_resolver =
2380 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2381
527159b7
RC
2382 if (debug_infrun)
2383 printf_unfiltered ("infrun: stepped into dynsym resolve code\n");
2384
488f131b
JB
2385 if (pc_after_resolver)
2386 {
2387 /* Set up a step-resume breakpoint at the address
2388 indicated by SKIP_SOLIB_RESOLVER. */
2389 struct symtab_and_line sr_sal;
fe39c653 2390 init_sal (&sr_sal);
488f131b
JB
2391 sr_sal.pc = pc_after_resolver;
2392
44cbf7b5 2393 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 2394 }
c906108c 2395
488f131b
JB
2396 keep_going (ecs);
2397 return;
2398 }
c906108c 2399
42edda50
AC
2400 if (step_range_end != 1
2401 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2402 || step_over_calls == STEP_OVER_ALL)
2403 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2404 {
527159b7
RC
2405 if (debug_infrun)
2406 printf_unfiltered ("infrun: stepped into signal trampoline\n");
42edda50 2407 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
2408 a signal trampoline (either by a signal being delivered or by
2409 the signal handler returning). Just single-step until the
2410 inferior leaves the trampoline (either by calling the handler
2411 or returning). */
488f131b
JB
2412 keep_going (ecs);
2413 return;
2414 }
c906108c 2415
8fb3e588 2416 if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b
JB
2417 {
2418 /* It's a subroutine call. */
95918acb 2419 CORE_ADDR real_stop_pc;
8fb3e588 2420
527159b7
RC
2421 if (debug_infrun)
2422 printf_unfiltered ("infrun: stepped into subroutine\n");
2423
95918acb
AC
2424 if ((step_over_calls == STEP_OVER_NONE)
2425 || ((step_range_end == 1)
2426 && in_prologue (prev_pc, ecs->stop_func_start)))
2427 {
2428 /* I presume that step_over_calls is only 0 when we're
2429 supposed to be stepping at the assembly language level
2430 ("stepi"). Just stop. */
2431 /* Also, maybe we just did a "nexti" inside a prolog, so we
2432 thought it was a subroutine call but it was not. Stop as
2433 well. FENN */
2434 stop_step = 1;
2435 print_stop_reason (END_STEPPING_RANGE, 0);
2436 stop_stepping (ecs);
2437 return;
2438 }
8fb3e588 2439
8567c30f
AC
2440 if (step_over_calls == STEP_OVER_ALL)
2441 {
2442 /* We're doing a "next", set a breakpoint at callee's return
2443 address (the address at which the caller will
2444 resume). */
44cbf7b5 2445 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
8567c30f
AC
2446 keep_going (ecs);
2447 return;
2448 }
a53c66de 2449
95918acb 2450 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
2451 calling routine and the real function), locate the real
2452 function. That's what tells us (a) whether we want to step
2453 into it at all, and (b) what prologue we want to run to the
2454 end of, if we do step into it. */
95918acb
AC
2455 real_stop_pc = skip_language_trampoline (stop_pc);
2456 if (real_stop_pc == 0)
2457 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2458 if (real_stop_pc != 0)
2459 ecs->stop_func_start = real_stop_pc;
8fb3e588 2460
1b2bfbb9
RC
2461 if (IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start))
2462 {
2463 struct symtab_and_line sr_sal;
2464 init_sal (&sr_sal);
2465 sr_sal.pc = ecs->stop_func_start;
2466
44cbf7b5 2467 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
2468 keep_going (ecs);
2469 return;
1b2bfbb9
RC
2470 }
2471
95918acb 2472 /* If we have line number information for the function we are
8fb3e588 2473 thinking of stepping into, step into it.
95918acb 2474
8fb3e588
AC
2475 If there are several symtabs at that PC (e.g. with include
2476 files), just want to know whether *any* of them have line
2477 numbers. find_pc_line handles this. */
95918acb
AC
2478 {
2479 struct symtab_and_line tmp_sal;
8fb3e588 2480
95918acb
AC
2481 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2482 if (tmp_sal.line != 0)
2483 {
2484 step_into_function (ecs);
2485 return;
2486 }
2487 }
2488
2489 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
2490 set, we stop the step so that the user has a chance to switch
2491 in assembly mode. */
95918acb
AC
2492 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2493 {
2494 stop_step = 1;
2495 print_stop_reason (END_STEPPING_RANGE, 0);
2496 stop_stepping (ecs);
2497 return;
2498 }
2499
2500 /* Set a breakpoint at callee's return address (the address at
8fb3e588 2501 which the caller will resume). */
44cbf7b5 2502 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
95918acb 2503 keep_going (ecs);
488f131b 2504 return;
488f131b 2505 }
c906108c 2506
488f131b
JB
2507 /* If we're in the return path from a shared library trampoline,
2508 we want to proceed through the trampoline when stepping. */
2509 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2510 {
488f131b 2511 /* Determine where this trampoline returns. */
5cf4d23a 2512 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2513
527159b7
RC
2514 if (debug_infrun)
2515 printf_unfiltered ("infrun: stepped into solib return tramp\n");
2516
488f131b 2517 /* Only proceed through if we know where it's going. */
d764a824 2518 if (real_stop_pc)
488f131b
JB
2519 {
2520 /* And put the step-breakpoint there and go until there. */
2521 struct symtab_and_line sr_sal;
2522
fe39c653 2523 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2524 sr_sal.pc = real_stop_pc;
488f131b 2525 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
2526
2527 /* Do not specify what the fp should be when we stop since
2528 on some machines the prologue is where the new fp value
2529 is established. */
2530 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 2531
488f131b
JB
2532 /* Restart without fiddling with the step ranges or
2533 other state. */
2534 keep_going (ecs);
2535 return;
2536 }
2537 }
c906108c 2538
1b2bfbb9
RC
2539 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2540 the trampoline processing logic, however, there are some trampolines
2541 that have no names, so we should do trampoline handling first. */
2542 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2543 && ecs->stop_func_name == NULL)
2544 {
527159b7
RC
2545 if (debug_infrun)
2546 printf_unfiltered ("infrun: stepped into undebuggable function\n");
2547
1b2bfbb9
RC
2548 /* The inferior just stepped into, or returned to, an
2549 undebuggable function (where there is no symbol, not even a
2550 minimal symbol, corresponding to the address where the
2551 inferior stopped). Since we want to skip this kind of code,
2552 we keep going until the inferior returns from this
2553 function. */
2554 if (step_stop_if_no_debug)
2555 {
2556 /* If we have no line number and the step-stop-if-no-debug
2557 is set, we stop the step so that the user has a chance to
2558 switch in assembly mode. */
2559 stop_step = 1;
2560 print_stop_reason (END_STEPPING_RANGE, 0);
2561 stop_stepping (ecs);
2562 return;
2563 }
2564 else
2565 {
2566 /* Set a breakpoint at callee's return address (the address
2567 at which the caller will resume). */
44cbf7b5 2568 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
1b2bfbb9
RC
2569 keep_going (ecs);
2570 return;
2571 }
2572 }
2573
2574 if (step_range_end == 1)
2575 {
2576 /* It is stepi or nexti. We always want to stop stepping after
2577 one instruction. */
527159b7
RC
2578 if (debug_infrun)
2579 printf_unfiltered ("infrun: stepi/nexti\n");
1b2bfbb9
RC
2580 stop_step = 1;
2581 print_stop_reason (END_STEPPING_RANGE, 0);
2582 stop_stepping (ecs);
2583 return;
2584 }
2585
2586 ecs->sal = find_pc_line (stop_pc, 0);
2587
488f131b
JB
2588 if (ecs->sal.line == 0)
2589 {
2590 /* We have no line number information. That means to stop
2591 stepping (does this always happen right after one instruction,
2592 when we do "s" in a function with no line numbers,
2593 or can this happen as a result of a return or longjmp?). */
527159b7
RC
2594 if (debug_infrun)
2595 printf_unfiltered ("infrun: no line number info\n");
488f131b
JB
2596 stop_step = 1;
2597 print_stop_reason (END_STEPPING_RANGE, 0);
2598 stop_stepping (ecs);
2599 return;
2600 }
c906108c 2601
488f131b
JB
2602 if ((stop_pc == ecs->sal.pc)
2603 && (ecs->current_line != ecs->sal.line
2604 || ecs->current_symtab != ecs->sal.symtab))
2605 {
2606 /* We are at the start of a different line. So stop. Note that
2607 we don't stop if we step into the middle of a different line.
2608 That is said to make things like for (;;) statements work
2609 better. */
527159b7
RC
2610 if (debug_infrun)
2611 printf_unfiltered ("infrun: stepped to a different line\n");
488f131b
JB
2612 stop_step = 1;
2613 print_stop_reason (END_STEPPING_RANGE, 0);
2614 stop_stepping (ecs);
2615 return;
2616 }
c906108c 2617
488f131b 2618 /* We aren't done stepping.
c906108c 2619
488f131b
JB
2620 Optimize by setting the stepping range to the line.
2621 (We might not be in the original line, but if we entered a
2622 new line in mid-statement, we continue stepping. This makes
2623 things like for(;;) statements work better.) */
c906108c 2624
488f131b 2625 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2626 {
488f131b
JB
2627 /* If this is the last line of the function, don't keep stepping
2628 (it would probably step us out of the function).
2629 This is particularly necessary for a one-line function,
2630 in which after skipping the prologue we better stop even though
2631 we will be in mid-line. */
527159b7
RC
2632 if (debug_infrun)
2633 printf_unfiltered ("infrun: stepped to a different function\n");
488f131b
JB
2634 stop_step = 1;
2635 print_stop_reason (END_STEPPING_RANGE, 0);
2636 stop_stepping (ecs);
2637 return;
c5aa993b 2638 }
488f131b
JB
2639 step_range_start = ecs->sal.pc;
2640 step_range_end = ecs->sal.end;
aa0cd9c1 2641 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2642 ecs->current_line = ecs->sal.line;
2643 ecs->current_symtab = ecs->sal.symtab;
2644
aa0cd9c1
AC
2645 /* In the case where we just stepped out of a function into the
2646 middle of a line of the caller, continue stepping, but
2647 step_frame_id must be modified to current frame */
65815ea1
AC
2648#if 0
2649 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2650 generous. It will trigger on things like a step into a frameless
2651 stackless leaf function. I think the logic should instead look
2652 at the unwound frame ID has that should give a more robust
2653 indication of what happened. */
8fb3e588
AC
2654 if (step - ID == current - ID)
2655 still stepping in same function;
2656 else if (step - ID == unwind (current - ID))
2657 stepped into a function;
2658 else
2659 stepped out of a function;
2660 /* Of course this assumes that the frame ID unwind code is robust
2661 and we're willing to introduce frame unwind logic into this
2662 function. Fortunately, those days are nearly upon us. */
65815ea1 2663#endif
488f131b 2664 {
aa0cd9c1
AC
2665 struct frame_id current_frame = get_frame_id (get_current_frame ());
2666 if (!(frame_id_inner (current_frame, step_frame_id)))
2667 step_frame_id = current_frame;
488f131b 2668 }
c906108c 2669
527159b7
RC
2670 if (debug_infrun)
2671 printf_unfiltered ("infrun: keep going\n");
488f131b 2672 keep_going (ecs);
104c1213
JM
2673}
2674
2675/* Are we in the middle of stepping? */
2676
2677static int
2678currently_stepping (struct execution_control_state *ecs)
2679{
d303a6c7 2680 return ((!ecs->handling_longjmp
104c1213
JM
2681 && ((step_range_end && step_resume_breakpoint == NULL)
2682 || trap_expected))
2683 || ecs->stepping_through_solib_after_catch
2684 || bpstat_should_step ());
2685}
c906108c 2686
c2c6d25f
JM
2687/* Subroutine call with source code we should not step over. Do step
2688 to the first line of code in it. */
2689
2690static void
2691step_into_function (struct execution_control_state *ecs)
2692{
2693 struct symtab *s;
2694 struct symtab_and_line sr_sal;
2695
2696 s = find_pc_symtab (stop_pc);
2697 if (s && s->language != language_asm)
2698 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2699
2700 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2701 /* Use the step_resume_break to step until the end of the prologue,
2702 even if that involves jumps (as it seems to on the vax under
2703 4.2). */
2704 /* If the prologue ends in the middle of a source line, continue to
2705 the end of that source line (if it is still within the function).
2706 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2707 if (ecs->sal.end
2708 && ecs->sal.pc != ecs->stop_func_start
2709 && ecs->sal.end < ecs->stop_func_end)
2710 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2711
2dbd5e30
KB
2712 /* Architectures which require breakpoint adjustment might not be able
2713 to place a breakpoint at the computed address. If so, the test
2714 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2715 ecs->stop_func_start to an address at which a breakpoint may be
2716 legitimately placed.
8fb3e588 2717
2dbd5e30
KB
2718 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2719 made, GDB will enter an infinite loop when stepping through
2720 optimized code consisting of VLIW instructions which contain
2721 subinstructions corresponding to different source lines. On
2722 FR-V, it's not permitted to place a breakpoint on any but the
2723 first subinstruction of a VLIW instruction. When a breakpoint is
2724 set, GDB will adjust the breakpoint address to the beginning of
2725 the VLIW instruction. Thus, we need to make the corresponding
2726 adjustment here when computing the stop address. */
8fb3e588 2727
2dbd5e30
KB
2728 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2729 {
2730 ecs->stop_func_start
2731 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 2732 ecs->stop_func_start);
2dbd5e30
KB
2733 }
2734
c2c6d25f
JM
2735 if (ecs->stop_func_start == stop_pc)
2736 {
2737 /* We are already there: stop now. */
2738 stop_step = 1;
488f131b 2739 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2740 stop_stepping (ecs);
2741 return;
2742 }
2743 else
2744 {
2745 /* Put the step-breakpoint there and go until there. */
fe39c653 2746 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2747 sr_sal.pc = ecs->stop_func_start;
2748 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 2749
c2c6d25f 2750 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2751 some machines the prologue is where the new fp value is
2752 established. */
44cbf7b5 2753 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
2754
2755 /* And make sure stepping stops right away then. */
2756 step_range_end = step_range_start;
2757 }
2758 keep_going (ecs);
2759}
d4f3574e 2760
44cbf7b5
AC
2761/* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2762 This is used to both functions and to skip over code. */
2763
2764static void
2765insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2766 struct frame_id sr_id)
2767{
2768 /* There should never be more than one step-resume breakpoint per
2769 thread, so we should never be setting a new
2770 step_resume_breakpoint when one is already active. */
2771 gdb_assert (step_resume_breakpoint == NULL);
2772 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2773 bp_step_resume);
2774 if (breakpoints_inserted)
2775 insert_breakpoints ();
2776}
2777
7ce450bd
AC
2778/* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2779 to skip a function (next, skip-no-debug) or signal. It's assumed
2780 that the function/signal handler being skipped eventually returns
2781 to the breakpoint inserted at RETURN_FRAME.pc.
2782
2783 For the skip-function case, the function may have been reached by
2784 either single stepping a call / return / signal-return instruction,
2785 or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs
2786 to the skip-function's caller.
2787
2788 For the signals case, this is called with the interrupted
2789 function's frame. The signal handler, when it returns, will resume
2790 the interrupted function at RETURN_FRAME.pc. */
d303a6c7
AC
2791
2792static void
44cbf7b5 2793insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
2794{
2795 struct symtab_and_line sr_sal;
2796
d303a6c7
AC
2797 init_sal (&sr_sal); /* initialize to zeros */
2798
7ce450bd 2799 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
d303a6c7
AC
2800 sr_sal.section = find_pc_overlay (sr_sal.pc);
2801
44cbf7b5 2802 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
2803}
2804
104c1213
JM
2805static void
2806stop_stepping (struct execution_control_state *ecs)
2807{
527159b7
RC
2808 if (debug_infrun)
2809 printf_unfiltered ("infrun: stop_stepping\n");
2810
cd0fc7c3
SS
2811 /* Let callers know we don't want to wait for the inferior anymore. */
2812 ecs->wait_some_more = 0;
2813}
2814
d4f3574e
SS
2815/* This function handles various cases where we need to continue
2816 waiting for the inferior. */
2817/* (Used to be the keep_going: label in the old wait_for_inferior) */
2818
2819static void
2820keep_going (struct execution_control_state *ecs)
2821{
d4f3574e 2822 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2823 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2824
d4f3574e
SS
2825 /* If we did not do break;, it means we should keep running the
2826 inferior and not return to debugger. */
2827
2828 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2829 {
2830 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2831 the inferior, else we'd have done a break above) and we
2832 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2833 resume (currently_stepping (ecs), stop_signal);
2834 }
2835 else
2836 {
2837 /* Either the trap was not expected, but we are continuing
488f131b
JB
2838 anyway (the user asked that this signal be passed to the
2839 child)
2840 -- or --
2841 The signal was SIGTRAP, e.g. it was our signal, but we
2842 decided we should resume from it.
d4f3574e 2843
68f53502 2844 We're going to run this baby now! */
d4f3574e 2845
68f53502 2846 if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e
SS
2847 {
2848 breakpoints_failed = insert_breakpoints ();
2849 if (breakpoints_failed)
2850 {
2851 stop_stepping (ecs);
2852 return;
2853 }
2854 breakpoints_inserted = 1;
2855 }
2856
2857 trap_expected = ecs->another_trap;
2858
2859 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2860 specifies that such a signal should be delivered to the
2861 target program).
2862
2863 Typically, this would occure when a user is debugging a
2864 target monitor on a simulator: the target monitor sets a
2865 breakpoint; the simulator encounters this break-point and
2866 halts the simulation handing control to GDB; GDB, noteing
2867 that the break-point isn't valid, returns control back to the
2868 simulator; the simulator then delivers the hardware
2869 equivalent of a SIGNAL_TRAP to the program being debugged. */
2870
2871 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2872 stop_signal = TARGET_SIGNAL_0;
2873
d4f3574e
SS
2874
2875 resume (currently_stepping (ecs), stop_signal);
2876 }
2877
488f131b 2878 prepare_to_wait (ecs);
d4f3574e
SS
2879}
2880
104c1213
JM
2881/* This function normally comes after a resume, before
2882 handle_inferior_event exits. It takes care of any last bits of
2883 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2884
104c1213
JM
2885static void
2886prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2887{
527159b7
RC
2888 if (debug_infrun)
2889 printf_unfiltered ("infrun: prepare_to_wait\n");
104c1213
JM
2890 if (ecs->infwait_state == infwait_normal_state)
2891 {
2892 overlay_cache_invalid = 1;
2893
2894 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2895 target_wait because they can be loaded from the target while
2896 in target_wait. This makes remote debugging a bit more
2897 efficient for those targets that provide critical registers
2898 as part of their normal status mechanism. */
104c1213
JM
2899
2900 registers_changed ();
39f77062 2901 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2902 ecs->wp = &(ecs->ws);
2903 }
2904 /* This is the old end of the while loop. Let everybody know we
2905 want to wait for the inferior some more and get called again
2906 soon. */
2907 ecs->wait_some_more = 1;
c906108c 2908}
11cf8741
JM
2909
2910/* Print why the inferior has stopped. We always print something when
2911 the inferior exits, or receives a signal. The rest of the cases are
2912 dealt with later on in normal_stop() and print_it_typical(). Ideally
2913 there should be a call to this function from handle_inferior_event()
2914 each time stop_stepping() is called.*/
2915static void
2916print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2917{
2918 switch (stop_reason)
2919 {
2920 case STOP_UNKNOWN:
2921 /* We don't deal with these cases from handle_inferior_event()
2922 yet. */
2923 break;
2924 case END_STEPPING_RANGE:
2925 /* We are done with a step/next/si/ni command. */
2926 /* For now print nothing. */
fb40c209 2927 /* Print a message only if not in the middle of doing a "step n"
488f131b 2928 operation for n > 1 */
fb40c209 2929 if (!step_multi || !stop_step)
9dc5e2a9 2930 if (ui_out_is_mi_like_p (uiout))
fb40c209 2931 ui_out_field_string (uiout, "reason", "end-stepping-range");
11cf8741
JM
2932 break;
2933 case BREAKPOINT_HIT:
2934 /* We found a breakpoint. */
2935 /* For now print nothing. */
2936 break;
2937 case SIGNAL_EXITED:
2938 /* The inferior was terminated by a signal. */
8b93c638 2939 annotate_signalled ();
9dc5e2a9 2940 if (ui_out_is_mi_like_p (uiout))
fb40c209 2941 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
2942 ui_out_text (uiout, "\nProgram terminated with signal ");
2943 annotate_signal_name ();
488f131b
JB
2944 ui_out_field_string (uiout, "signal-name",
2945 target_signal_to_name (stop_info));
8b93c638
JM
2946 annotate_signal_name_end ();
2947 ui_out_text (uiout, ", ");
2948 annotate_signal_string ();
488f131b
JB
2949 ui_out_field_string (uiout, "signal-meaning",
2950 target_signal_to_string (stop_info));
8b93c638
JM
2951 annotate_signal_string_end ();
2952 ui_out_text (uiout, ".\n");
2953 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
2954 break;
2955 case EXITED:
2956 /* The inferior program is finished. */
8b93c638
JM
2957 annotate_exited (stop_info);
2958 if (stop_info)
2959 {
9dc5e2a9 2960 if (ui_out_is_mi_like_p (uiout))
fb40c209 2961 ui_out_field_string (uiout, "reason", "exited");
8b93c638 2962 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
2963 ui_out_field_fmt (uiout, "exit-code", "0%o",
2964 (unsigned int) stop_info);
8b93c638
JM
2965 ui_out_text (uiout, ".\n");
2966 }
2967 else
2968 {
9dc5e2a9 2969 if (ui_out_is_mi_like_p (uiout))
fb40c209 2970 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
2971 ui_out_text (uiout, "\nProgram exited normally.\n");
2972 }
11cf8741
JM
2973 break;
2974 case SIGNAL_RECEIVED:
2975 /* Signal received. The signal table tells us to print about
2976 it. */
8b93c638
JM
2977 annotate_signal ();
2978 ui_out_text (uiout, "\nProgram received signal ");
2979 annotate_signal_name ();
84c6c83c
KS
2980 if (ui_out_is_mi_like_p (uiout))
2981 ui_out_field_string (uiout, "reason", "signal-received");
488f131b
JB
2982 ui_out_field_string (uiout, "signal-name",
2983 target_signal_to_name (stop_info));
8b93c638
JM
2984 annotate_signal_name_end ();
2985 ui_out_text (uiout, ", ");
2986 annotate_signal_string ();
488f131b
JB
2987 ui_out_field_string (uiout, "signal-meaning",
2988 target_signal_to_string (stop_info));
8b93c638
JM
2989 annotate_signal_string_end ();
2990 ui_out_text (uiout, ".\n");
11cf8741
JM
2991 break;
2992 default:
8e65ff28
AC
2993 internal_error (__FILE__, __LINE__,
2994 "print_stop_reason: unrecognized enum value");
11cf8741
JM
2995 break;
2996 }
2997}
c906108c 2998\f
43ff13b4 2999
c906108c
SS
3000/* Here to return control to GDB when the inferior stops for real.
3001 Print appropriate messages, remove breakpoints, give terminal our modes.
3002
3003 STOP_PRINT_FRAME nonzero means print the executing frame
3004 (pc, function, args, file, line number and line text).
3005 BREAKPOINTS_FAILED nonzero means stop was due to error
3006 attempting to insert breakpoints. */
3007
3008void
96baa820 3009normal_stop (void)
c906108c 3010{
73b65bb0
DJ
3011 struct target_waitstatus last;
3012 ptid_t last_ptid;
3013
3014 get_last_target_status (&last_ptid, &last);
3015
c906108c
SS
3016 /* As with the notification of thread events, we want to delay
3017 notifying the user that we've switched thread context until
3018 the inferior actually stops.
3019
73b65bb0
DJ
3020 There's no point in saying anything if the inferior has exited.
3021 Note that SIGNALLED here means "exited with a signal", not
3022 "received a signal". */
488f131b 3023 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3024 && target_has_execution
3025 && last.kind != TARGET_WAITKIND_SIGNALLED
3026 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3027 {
3028 target_terminal_ours_for_output ();
c3f6f71d 3029 printf_filtered ("[Switching to %s]\n",
39f77062
KB
3030 target_pid_or_tid_to_str (inferior_ptid));
3031 previous_inferior_ptid = inferior_ptid;
c906108c 3032 }
c906108c 3033
4fa8626c 3034 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3035 /* Make sure that the current_frame's pc is correct. This
3036 is a correction for setting up the frame info before doing
3037 DECR_PC_AFTER_BREAK */
b87efeee
AC
3038 if (target_has_execution)
3039 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3040 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3041 frame code to check for this and sort out any resultant mess.
3042 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 3043 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3044
c906108c
SS
3045 if (target_has_execution && breakpoints_inserted)
3046 {
3047 if (remove_breakpoints ())
3048 {
3049 target_terminal_ours_for_output ();
3050 printf_filtered ("Cannot remove breakpoints because ");
3051 printf_filtered ("program is no longer writable.\n");
3052 printf_filtered ("It might be running in another process.\n");
3053 printf_filtered ("Further execution is probably impossible.\n");
3054 }
3055 }
3056 breakpoints_inserted = 0;
3057
3058 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3059 Delete any breakpoint that is to be deleted at the next stop. */
3060
3061 breakpoint_auto_delete (stop_bpstat);
3062
3063 /* If an auto-display called a function and that got a signal,
3064 delete that auto-display to avoid an infinite recursion. */
3065
3066 if (stopped_by_random_signal)
3067 disable_current_display ();
3068
3069 /* Don't print a message if in the middle of doing a "step n"
3070 operation for n > 1 */
3071 if (step_multi && stop_step)
3072 goto done;
3073
3074 target_terminal_ours ();
3075
5913bcb0
AC
3076 /* Look up the hook_stop and run it (CLI internally handles problem
3077 of stop_command's pre-hook not existing). */
3078 if (stop_command)
3079 catch_errors (hook_stop_stub, stop_command,
3080 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3081
3082 if (!target_has_stack)
3083 {
3084
3085 goto done;
3086 }
3087
3088 /* Select innermost stack frame - i.e., current frame is frame 0,
3089 and current location is based on that.
3090 Don't do this on return from a stack dummy routine,
3091 or if the program has exited. */
3092
3093 if (!stop_stack_dummy)
3094 {
0f7d239c 3095 select_frame (get_current_frame ());
c906108c
SS
3096
3097 /* Print current location without a level number, if
c5aa993b
JM
3098 we have changed functions or hit a breakpoint.
3099 Print source line if we have one.
3100 bpstat_print() contains the logic deciding in detail
3101 what to print, based on the event(s) that just occurred. */
c906108c 3102
6e7f8b9c 3103 if (stop_print_frame && deprecated_selected_frame)
c906108c
SS
3104 {
3105 int bpstat_ret;
3106 int source_flag;
917317f4 3107 int do_frame_printing = 1;
c906108c
SS
3108
3109 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3110 switch (bpstat_ret)
3111 {
3112 case PRINT_UNKNOWN:
aa0cd9c1 3113 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3114 (or should) carry around the function and does (or
3115 should) use that when doing a frame comparison. */
917317f4 3116 if (stop_step
aa0cd9c1
AC
3117 && frame_id_eq (step_frame_id,
3118 get_frame_id (get_current_frame ()))
917317f4 3119 && step_start_function == find_pc_function (stop_pc))
488f131b 3120 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3121 else
488f131b 3122 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3123 break;
3124 case PRINT_SRC_AND_LOC:
488f131b 3125 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3126 break;
3127 case PRINT_SRC_ONLY:
c5394b80 3128 source_flag = SRC_LINE;
917317f4
JM
3129 break;
3130 case PRINT_NOTHING:
488f131b 3131 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3132 do_frame_printing = 0;
3133 break;
3134 default:
488f131b 3135 internal_error (__FILE__, __LINE__, "Unknown value.");
917317f4 3136 }
fb40c209 3137 /* For mi, have the same behavior every time we stop:
488f131b 3138 print everything but the source line. */
9dc5e2a9 3139 if (ui_out_is_mi_like_p (uiout))
fb40c209 3140 source_flag = LOC_AND_ADDRESS;
c906108c 3141
9dc5e2a9 3142 if (ui_out_is_mi_like_p (uiout))
39f77062 3143 ui_out_field_int (uiout, "thread-id",
488f131b 3144 pid_to_thread_id (inferior_ptid));
c906108c
SS
3145 /* The behavior of this routine with respect to the source
3146 flag is:
c5394b80
JM
3147 SRC_LINE: Print only source line
3148 LOCATION: Print only location
3149 SRC_AND_LOC: Print location and source line */
917317f4 3150 if (do_frame_printing)
b04f3ab4 3151 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3152
3153 /* Display the auto-display expressions. */
3154 do_displays ();
3155 }
3156 }
3157
3158 /* Save the function value return registers, if we care.
3159 We might be about to restore their previous contents. */
3160 if (proceed_to_finish)
72cec141
AC
3161 /* NB: The copy goes through to the target picking up the value of
3162 all the registers. */
3163 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3164
3165 if (stop_stack_dummy)
3166 {
dbe9fe58
AC
3167 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3168 ends with a setting of the current frame, so we can use that
3169 next. */
3170 frame_pop (get_current_frame ());
c906108c 3171 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3172 Can't rely on restore_inferior_status because that only gets
3173 called if we don't stop in the called function. */
c906108c 3174 stop_pc = read_pc ();
0f7d239c 3175 select_frame (get_current_frame ());
c906108c
SS
3176 }
3177
c906108c
SS
3178done:
3179 annotate_stopped ();
7a464420 3180 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3181}
3182
3183static int
96baa820 3184hook_stop_stub (void *cmd)
c906108c 3185{
5913bcb0 3186 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3187 return (0);
3188}
3189\f
c5aa993b 3190int
96baa820 3191signal_stop_state (int signo)
c906108c
SS
3192{
3193 return signal_stop[signo];
3194}
3195
c5aa993b 3196int
96baa820 3197signal_print_state (int signo)
c906108c
SS
3198{
3199 return signal_print[signo];
3200}
3201
c5aa993b 3202int
96baa820 3203signal_pass_state (int signo)
c906108c
SS
3204{
3205 return signal_program[signo];
3206}
3207
488f131b 3208int
7bda5e4a 3209signal_stop_update (int signo, int state)
d4f3574e
SS
3210{
3211 int ret = signal_stop[signo];
3212 signal_stop[signo] = state;
3213 return ret;
3214}
3215
488f131b 3216int
7bda5e4a 3217signal_print_update (int signo, int state)
d4f3574e
SS
3218{
3219 int ret = signal_print[signo];
3220 signal_print[signo] = state;
3221 return ret;
3222}
3223
488f131b 3224int
7bda5e4a 3225signal_pass_update (int signo, int state)
d4f3574e
SS
3226{
3227 int ret = signal_program[signo];
3228 signal_program[signo] = state;
3229 return ret;
3230}
3231
c906108c 3232static void
96baa820 3233sig_print_header (void)
c906108c
SS
3234{
3235 printf_filtered ("\
3236Signal Stop\tPrint\tPass to program\tDescription\n");
3237}
3238
3239static void
96baa820 3240sig_print_info (enum target_signal oursig)
c906108c
SS
3241{
3242 char *name = target_signal_to_name (oursig);
3243 int name_padding = 13 - strlen (name);
96baa820 3244
c906108c
SS
3245 if (name_padding <= 0)
3246 name_padding = 0;
3247
3248 printf_filtered ("%s", name);
488f131b 3249 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3250 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3251 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3252 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3253 printf_filtered ("%s\n", target_signal_to_string (oursig));
3254}
3255
3256/* Specify how various signals in the inferior should be handled. */
3257
3258static void
96baa820 3259handle_command (char *args, int from_tty)
c906108c
SS
3260{
3261 char **argv;
3262 int digits, wordlen;
3263 int sigfirst, signum, siglast;
3264 enum target_signal oursig;
3265 int allsigs;
3266 int nsigs;
3267 unsigned char *sigs;
3268 struct cleanup *old_chain;
3269
3270 if (args == NULL)
3271 {
3272 error_no_arg ("signal to handle");
3273 }
3274
3275 /* Allocate and zero an array of flags for which signals to handle. */
3276
3277 nsigs = (int) TARGET_SIGNAL_LAST;
3278 sigs = (unsigned char *) alloca (nsigs);
3279 memset (sigs, 0, nsigs);
3280
3281 /* Break the command line up into args. */
3282
3283 argv = buildargv (args);
3284 if (argv == NULL)
3285 {
3286 nomem (0);
3287 }
7a292a7a 3288 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3289
3290 /* Walk through the args, looking for signal oursigs, signal names, and
3291 actions. Signal numbers and signal names may be interspersed with
3292 actions, with the actions being performed for all signals cumulatively
3293 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3294
3295 while (*argv != NULL)
3296 {
3297 wordlen = strlen (*argv);
3298 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3299 {;
3300 }
3301 allsigs = 0;
3302 sigfirst = siglast = -1;
3303
3304 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3305 {
3306 /* Apply action to all signals except those used by the
3307 debugger. Silently skip those. */
3308 allsigs = 1;
3309 sigfirst = 0;
3310 siglast = nsigs - 1;
3311 }
3312 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3313 {
3314 SET_SIGS (nsigs, sigs, signal_stop);
3315 SET_SIGS (nsigs, sigs, signal_print);
3316 }
3317 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3318 {
3319 UNSET_SIGS (nsigs, sigs, signal_program);
3320 }
3321 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3322 {
3323 SET_SIGS (nsigs, sigs, signal_print);
3324 }
3325 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3326 {
3327 SET_SIGS (nsigs, sigs, signal_program);
3328 }
3329 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3330 {
3331 UNSET_SIGS (nsigs, sigs, signal_stop);
3332 }
3333 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3334 {
3335 SET_SIGS (nsigs, sigs, signal_program);
3336 }
3337 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3338 {
3339 UNSET_SIGS (nsigs, sigs, signal_print);
3340 UNSET_SIGS (nsigs, sigs, signal_stop);
3341 }
3342 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3343 {
3344 UNSET_SIGS (nsigs, sigs, signal_program);
3345 }
3346 else if (digits > 0)
3347 {
3348 /* It is numeric. The numeric signal refers to our own
3349 internal signal numbering from target.h, not to host/target
3350 signal number. This is a feature; users really should be
3351 using symbolic names anyway, and the common ones like
3352 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3353
3354 sigfirst = siglast = (int)
3355 target_signal_from_command (atoi (*argv));
3356 if ((*argv)[digits] == '-')
3357 {
3358 siglast = (int)
3359 target_signal_from_command (atoi ((*argv) + digits + 1));
3360 }
3361 if (sigfirst > siglast)
3362 {
3363 /* Bet he didn't figure we'd think of this case... */
3364 signum = sigfirst;
3365 sigfirst = siglast;
3366 siglast = signum;
3367 }
3368 }
3369 else
3370 {
3371 oursig = target_signal_from_name (*argv);
3372 if (oursig != TARGET_SIGNAL_UNKNOWN)
3373 {
3374 sigfirst = siglast = (int) oursig;
3375 }
3376 else
3377 {
3378 /* Not a number and not a recognized flag word => complain. */
3379 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3380 }
3381 }
3382
3383 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3384 which signals to apply actions to. */
c906108c
SS
3385
3386 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3387 {
3388 switch ((enum target_signal) signum)
3389 {
3390 case TARGET_SIGNAL_TRAP:
3391 case TARGET_SIGNAL_INT:
3392 if (!allsigs && !sigs[signum])
3393 {
3394 if (query ("%s is used by the debugger.\n\
488f131b 3395Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3396 {
3397 sigs[signum] = 1;
3398 }
3399 else
3400 {
3401 printf_unfiltered ("Not confirmed, unchanged.\n");
3402 gdb_flush (gdb_stdout);
3403 }
3404 }
3405 break;
3406 case TARGET_SIGNAL_0:
3407 case TARGET_SIGNAL_DEFAULT:
3408 case TARGET_SIGNAL_UNKNOWN:
3409 /* Make sure that "all" doesn't print these. */
3410 break;
3411 default:
3412 sigs[signum] = 1;
3413 break;
3414 }
3415 }
3416
3417 argv++;
3418 }
3419
39f77062 3420 target_notice_signals (inferior_ptid);
c906108c
SS
3421
3422 if (from_tty)
3423 {
3424 /* Show the results. */
3425 sig_print_header ();
3426 for (signum = 0; signum < nsigs; signum++)
3427 {
3428 if (sigs[signum])
3429 {
3430 sig_print_info (signum);
3431 }
3432 }
3433 }
3434
3435 do_cleanups (old_chain);
3436}
3437
3438static void
96baa820 3439xdb_handle_command (char *args, int from_tty)
c906108c
SS
3440{
3441 char **argv;
3442 struct cleanup *old_chain;
3443
3444 /* Break the command line up into args. */
3445
3446 argv = buildargv (args);
3447 if (argv == NULL)
3448 {
3449 nomem (0);
3450 }
7a292a7a 3451 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3452 if (argv[1] != (char *) NULL)
3453 {
3454 char *argBuf;
3455 int bufLen;
3456
3457 bufLen = strlen (argv[0]) + 20;
3458 argBuf = (char *) xmalloc (bufLen);
3459 if (argBuf)
3460 {
3461 int validFlag = 1;
3462 enum target_signal oursig;
3463
3464 oursig = target_signal_from_name (argv[0]);
3465 memset (argBuf, 0, bufLen);
3466 if (strcmp (argv[1], "Q") == 0)
3467 sprintf (argBuf, "%s %s", argv[0], "noprint");
3468 else
3469 {
3470 if (strcmp (argv[1], "s") == 0)
3471 {
3472 if (!signal_stop[oursig])
3473 sprintf (argBuf, "%s %s", argv[0], "stop");
3474 else
3475 sprintf (argBuf, "%s %s", argv[0], "nostop");
3476 }
3477 else if (strcmp (argv[1], "i") == 0)
3478 {
3479 if (!signal_program[oursig])
3480 sprintf (argBuf, "%s %s", argv[0], "pass");
3481 else
3482 sprintf (argBuf, "%s %s", argv[0], "nopass");
3483 }
3484 else if (strcmp (argv[1], "r") == 0)
3485 {
3486 if (!signal_print[oursig])
3487 sprintf (argBuf, "%s %s", argv[0], "print");
3488 else
3489 sprintf (argBuf, "%s %s", argv[0], "noprint");
3490 }
3491 else
3492 validFlag = 0;
3493 }
3494 if (validFlag)
3495 handle_command (argBuf, from_tty);
3496 else
3497 printf_filtered ("Invalid signal handling flag.\n");
3498 if (argBuf)
b8c9b27d 3499 xfree (argBuf);
c906108c
SS
3500 }
3501 }
3502 do_cleanups (old_chain);
3503}
3504
3505/* Print current contents of the tables set by the handle command.
3506 It is possible we should just be printing signals actually used
3507 by the current target (but for things to work right when switching
3508 targets, all signals should be in the signal tables). */
3509
3510static void
96baa820 3511signals_info (char *signum_exp, int from_tty)
c906108c
SS
3512{
3513 enum target_signal oursig;
3514 sig_print_header ();
3515
3516 if (signum_exp)
3517 {
3518 /* First see if this is a symbol name. */
3519 oursig = target_signal_from_name (signum_exp);
3520 if (oursig == TARGET_SIGNAL_UNKNOWN)
3521 {
3522 /* No, try numeric. */
3523 oursig =
bb518678 3524 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3525 }
3526 sig_print_info (oursig);
3527 return;
3528 }
3529
3530 printf_filtered ("\n");
3531 /* These ugly casts brought to you by the native VAX compiler. */
3532 for (oursig = TARGET_SIGNAL_FIRST;
3533 (int) oursig < (int) TARGET_SIGNAL_LAST;
3534 oursig = (enum target_signal) ((int) oursig + 1))
3535 {
3536 QUIT;
3537
3538 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3539 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3540 sig_print_info (oursig);
3541 }
3542
3543 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3544}
3545\f
7a292a7a
SS
3546struct inferior_status
3547{
3548 enum target_signal stop_signal;
3549 CORE_ADDR stop_pc;
3550 bpstat stop_bpstat;
3551 int stop_step;
3552 int stop_stack_dummy;
3553 int stopped_by_random_signal;
3554 int trap_expected;
3555 CORE_ADDR step_range_start;
3556 CORE_ADDR step_range_end;
aa0cd9c1 3557 struct frame_id step_frame_id;
5fbbeb29 3558 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3559 CORE_ADDR step_resume_break_address;
3560 int stop_after_trap;
c0236d92 3561 int stop_soon;
72cec141 3562 struct regcache *stop_registers;
7a292a7a
SS
3563
3564 /* These are here because if call_function_by_hand has written some
3565 registers and then decides to call error(), we better not have changed
3566 any registers. */
72cec141 3567 struct regcache *registers;
7a292a7a 3568
101dcfbe
AC
3569 /* A frame unique identifier. */
3570 struct frame_id selected_frame_id;
3571
7a292a7a
SS
3572 int breakpoint_proceeded;
3573 int restore_stack_info;
3574 int proceed_to_finish;
3575};
3576
7a292a7a 3577void
96baa820
JM
3578write_inferior_status_register (struct inferior_status *inf_status, int regno,
3579 LONGEST val)
7a292a7a 3580{
3acba339 3581 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
3582 void *buf = alloca (size);
3583 store_signed_integer (buf, size, val);
0818c12a 3584 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3585}
3586
c906108c
SS
3587/* Save all of the information associated with the inferior<==>gdb
3588 connection. INF_STATUS is a pointer to a "struct inferior_status"
3589 (defined in inferior.h). */
3590
7a292a7a 3591struct inferior_status *
96baa820 3592save_inferior_status (int restore_stack_info)
c906108c 3593{
72cec141 3594 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3595
c906108c
SS
3596 inf_status->stop_signal = stop_signal;
3597 inf_status->stop_pc = stop_pc;
3598 inf_status->stop_step = stop_step;
3599 inf_status->stop_stack_dummy = stop_stack_dummy;
3600 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3601 inf_status->trap_expected = trap_expected;
3602 inf_status->step_range_start = step_range_start;
3603 inf_status->step_range_end = step_range_end;
aa0cd9c1 3604 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3605 inf_status->step_over_calls = step_over_calls;
3606 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3607 inf_status->stop_soon = stop_soon;
c906108c
SS
3608 /* Save original bpstat chain here; replace it with copy of chain.
3609 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3610 hand them back the original chain when restore_inferior_status is
3611 called. */
c906108c
SS
3612 inf_status->stop_bpstat = stop_bpstat;
3613 stop_bpstat = bpstat_copy (stop_bpstat);
3614 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3615 inf_status->restore_stack_info = restore_stack_info;
3616 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3617
72cec141 3618 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3619
72cec141 3620 inf_status->registers = regcache_dup (current_regcache);
c906108c 3621
7a424e99 3622 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
7a292a7a 3623 return inf_status;
c906108c
SS
3624}
3625
c906108c 3626static int
96baa820 3627restore_selected_frame (void *args)
c906108c 3628{
488f131b 3629 struct frame_id *fid = (struct frame_id *) args;
c906108c 3630 struct frame_info *frame;
c906108c 3631
101dcfbe 3632 frame = frame_find_by_id (*fid);
c906108c 3633
aa0cd9c1
AC
3634 /* If inf_status->selected_frame_id is NULL, there was no previously
3635 selected frame. */
101dcfbe 3636 if (frame == NULL)
c906108c
SS
3637 {
3638 warning ("Unable to restore previously selected frame.\n");
3639 return 0;
3640 }
3641
0f7d239c 3642 select_frame (frame);
c906108c
SS
3643
3644 return (1);
3645}
3646
3647void
96baa820 3648restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3649{
3650 stop_signal = inf_status->stop_signal;
3651 stop_pc = inf_status->stop_pc;
3652 stop_step = inf_status->stop_step;
3653 stop_stack_dummy = inf_status->stop_stack_dummy;
3654 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3655 trap_expected = inf_status->trap_expected;
3656 step_range_start = inf_status->step_range_start;
3657 step_range_end = inf_status->step_range_end;
aa0cd9c1 3658 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3659 step_over_calls = inf_status->step_over_calls;
3660 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3661 stop_soon = inf_status->stop_soon;
c906108c
SS
3662 bpstat_clear (&stop_bpstat);
3663 stop_bpstat = inf_status->stop_bpstat;
3664 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3665 proceed_to_finish = inf_status->proceed_to_finish;
3666
72cec141
AC
3667 /* FIXME: Is the restore of stop_registers always needed. */
3668 regcache_xfree (stop_registers);
3669 stop_registers = inf_status->stop_registers;
c906108c
SS
3670
3671 /* The inferior can be gone if the user types "print exit(0)"
3672 (and perhaps other times). */
3673 if (target_has_execution)
72cec141
AC
3674 /* NB: The register write goes through to the target. */
3675 regcache_cpy (current_regcache, inf_status->registers);
3676 regcache_xfree (inf_status->registers);
c906108c 3677
c906108c
SS
3678 /* FIXME: If we are being called after stopping in a function which
3679 is called from gdb, we should not be trying to restore the
3680 selected frame; it just prints a spurious error message (The
3681 message is useful, however, in detecting bugs in gdb (like if gdb
3682 clobbers the stack)). In fact, should we be restoring the
3683 inferior status at all in that case? . */
3684
3685 if (target_has_stack && inf_status->restore_stack_info)
3686 {
c906108c 3687 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3688 walking the stack might encounter a garbage pointer and
3689 error() trying to dereference it. */
488f131b
JB
3690 if (catch_errors
3691 (restore_selected_frame, &inf_status->selected_frame_id,
3692 "Unable to restore previously selected frame:\n",
3693 RETURN_MASK_ERROR) == 0)
c906108c
SS
3694 /* Error in restoring the selected frame. Select the innermost
3695 frame. */
0f7d239c 3696 select_frame (get_current_frame ());
c906108c
SS
3697
3698 }
c906108c 3699
72cec141 3700 xfree (inf_status);
7a292a7a 3701}
c906108c 3702
74b7792f
AC
3703static void
3704do_restore_inferior_status_cleanup (void *sts)
3705{
3706 restore_inferior_status (sts);
3707}
3708
3709struct cleanup *
3710make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3711{
3712 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3713}
3714
c906108c 3715void
96baa820 3716discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3717{
3718 /* See save_inferior_status for info on stop_bpstat. */
3719 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3720 regcache_xfree (inf_status->registers);
3721 regcache_xfree (inf_status->stop_registers);
3722 xfree (inf_status);
7a292a7a
SS
3723}
3724
47932f85
DJ
3725int
3726inferior_has_forked (int pid, int *child_pid)
3727{
3728 struct target_waitstatus last;
3729 ptid_t last_ptid;
3730
3731 get_last_target_status (&last_ptid, &last);
3732
3733 if (last.kind != TARGET_WAITKIND_FORKED)
3734 return 0;
3735
3736 if (ptid_get_pid (last_ptid) != pid)
3737 return 0;
3738
3739 *child_pid = last.value.related_pid;
3740 return 1;
3741}
3742
3743int
3744inferior_has_vforked (int pid, int *child_pid)
3745{
3746 struct target_waitstatus last;
3747 ptid_t last_ptid;
3748
3749 get_last_target_status (&last_ptid, &last);
3750
3751 if (last.kind != TARGET_WAITKIND_VFORKED)
3752 return 0;
3753
3754 if (ptid_get_pid (last_ptid) != pid)
3755 return 0;
3756
3757 *child_pid = last.value.related_pid;
3758 return 1;
3759}
3760
3761int
3762inferior_has_execd (int pid, char **execd_pathname)
3763{
3764 struct target_waitstatus last;
3765 ptid_t last_ptid;
3766
3767 get_last_target_status (&last_ptid, &last);
3768
3769 if (last.kind != TARGET_WAITKIND_EXECD)
3770 return 0;
3771
3772 if (ptid_get_pid (last_ptid) != pid)
3773 return 0;
3774
3775 *execd_pathname = xstrdup (last.value.execd_pathname);
3776 return 1;
3777}
3778
ca6724c1
KB
3779/* Oft used ptids */
3780ptid_t null_ptid;
3781ptid_t minus_one_ptid;
3782
3783/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3784
ca6724c1
KB
3785ptid_t
3786ptid_build (int pid, long lwp, long tid)
3787{
3788 ptid_t ptid;
3789
3790 ptid.pid = pid;
3791 ptid.lwp = lwp;
3792 ptid.tid = tid;
3793 return ptid;
3794}
3795
3796/* Create a ptid from just a pid. */
3797
3798ptid_t
3799pid_to_ptid (int pid)
3800{
3801 return ptid_build (pid, 0, 0);
3802}
3803
3804/* Fetch the pid (process id) component from a ptid. */
3805
3806int
3807ptid_get_pid (ptid_t ptid)
3808{
3809 return ptid.pid;
3810}
3811
3812/* Fetch the lwp (lightweight process) component from a ptid. */
3813
3814long
3815ptid_get_lwp (ptid_t ptid)
3816{
3817 return ptid.lwp;
3818}
3819
3820/* Fetch the tid (thread id) component from a ptid. */
3821
3822long
3823ptid_get_tid (ptid_t ptid)
3824{
3825 return ptid.tid;
3826}
3827
3828/* ptid_equal() is used to test equality of two ptids. */
3829
3830int
3831ptid_equal (ptid_t ptid1, ptid_t ptid2)
3832{
3833 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3834 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3835}
3836
3837/* restore_inferior_ptid() will be used by the cleanup machinery
3838 to restore the inferior_ptid value saved in a call to
3839 save_inferior_ptid(). */
ce696e05
KB
3840
3841static void
3842restore_inferior_ptid (void *arg)
3843{
3844 ptid_t *saved_ptid_ptr = arg;
3845 inferior_ptid = *saved_ptid_ptr;
3846 xfree (arg);
3847}
3848
3849/* Save the value of inferior_ptid so that it may be restored by a
3850 later call to do_cleanups(). Returns the struct cleanup pointer
3851 needed for later doing the cleanup. */
3852
3853struct cleanup *
3854save_inferior_ptid (void)
3855{
3856 ptid_t *saved_ptid_ptr;
3857
3858 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3859 *saved_ptid_ptr = inferior_ptid;
3860 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3861}
c5aa993b 3862\f
488f131b 3863
7a292a7a 3864static void
96baa820 3865build_infrun (void)
7a292a7a 3866{
72cec141 3867 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3868}
c906108c 3869
c906108c 3870void
96baa820 3871_initialize_infrun (void)
c906108c 3872{
52f0bd74
AC
3873 int i;
3874 int numsigs;
c906108c
SS
3875 struct cmd_list_element *c;
3876
046a4708
AC
3877 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3878 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
0f71a2f6 3879
c906108c
SS
3880 add_info ("signals", signals_info,
3881 "What debugger does when program gets various signals.\n\
3882Specify a signal as argument to print info on that signal only.");
3883 add_info_alias ("handle", "signals", 0);
3884
3885 add_com ("handle", class_run, handle_command,
3886 concat ("Specify how to handle a signal.\n\
3887Args are signals and actions to apply to those signals.\n\
3888Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3889from 1-15 are allowed for compatibility with old versions of GDB.\n\
3890Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3891The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3892used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3893\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3894Stop means reenter debugger if this signal happens (implies print).\n\
3895Print means print a message if this signal happens.\n\
3896Pass means let program see this signal; otherwise program doesn't know.\n\
3897Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3898Pass and Stop may be combined.", NULL));
3899 if (xdb_commands)
3900 {
3901 add_com ("lz", class_info, signals_info,
3902 "What debugger does when program gets various signals.\n\
3903Specify a signal as argument to print info on that signal only.");
3904 add_com ("z", class_run, xdb_handle_command,
3905 concat ("Specify how to handle a signal.\n\
3906Args are signals and actions to apply to those signals.\n\
3907Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3908from 1-15 are allowed for compatibility with old versions of GDB.\n\
3909Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3910The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3911used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3912\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3913nopass), \"Q\" (noprint)\n\
3914Stop means reenter debugger if this signal happens (implies print).\n\
3915Print means print a message if this signal happens.\n\
3916Pass means let program see this signal; otherwise program doesn't know.\n\
3917Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3918Pass and Stop may be combined.", NULL));
3919 }
3920
3921 if (!dbx_commands)
488f131b
JB
3922 stop_command =
3923 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c
SS
3924This allows you to set a list of commands to be run each time execution\n\
3925of the program stops.", &cmdlist);
3926
527159b7
RC
3927 add_set_cmd ("infrun", class_maintenance, var_zinteger,
3928 &debug_infrun, "Set inferior debugging.\n\
3929When non-zero, inferior specific debugging is enabled.", &setdebuglist);
3930
c906108c 3931 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 3932 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
3933 signal_print = (unsigned char *)
3934 xmalloc (sizeof (signal_print[0]) * numsigs);
3935 signal_program = (unsigned char *)
3936 xmalloc (sizeof (signal_program[0]) * numsigs);
3937 for (i = 0; i < numsigs; i++)
3938 {
3939 signal_stop[i] = 1;
3940 signal_print[i] = 1;
3941 signal_program[i] = 1;
3942 }
3943
3944 /* Signals caused by debugger's own actions
3945 should not be given to the program afterwards. */
3946 signal_program[TARGET_SIGNAL_TRAP] = 0;
3947 signal_program[TARGET_SIGNAL_INT] = 0;
3948
3949 /* Signals that are not errors should not normally enter the debugger. */
3950 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3951 signal_print[TARGET_SIGNAL_ALRM] = 0;
3952 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3953 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3954 signal_stop[TARGET_SIGNAL_PROF] = 0;
3955 signal_print[TARGET_SIGNAL_PROF] = 0;
3956 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3957 signal_print[TARGET_SIGNAL_CHLD] = 0;
3958 signal_stop[TARGET_SIGNAL_IO] = 0;
3959 signal_print[TARGET_SIGNAL_IO] = 0;
3960 signal_stop[TARGET_SIGNAL_POLL] = 0;
3961 signal_print[TARGET_SIGNAL_POLL] = 0;
3962 signal_stop[TARGET_SIGNAL_URG] = 0;
3963 signal_print[TARGET_SIGNAL_URG] = 0;
3964 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3965 signal_print[TARGET_SIGNAL_WINCH] = 0;
3966
cd0fc7c3
SS
3967 /* These signals are used internally by user-level thread
3968 implementations. (See signal(5) on Solaris.) Like the above
3969 signals, a healthy program receives and handles them as part of
3970 its normal operation. */
3971 signal_stop[TARGET_SIGNAL_LWP] = 0;
3972 signal_print[TARGET_SIGNAL_LWP] = 0;
3973 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3974 signal_print[TARGET_SIGNAL_WAITING] = 0;
3975 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3976 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3977
c906108c 3978#ifdef SOLIB_ADD
cb1a6d5f 3979 deprecated_add_show_from_set
c906108c
SS
3980 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3981 (char *) &stop_on_solib_events,
3982 "Set stopping for shared library events.\n\
3983If nonzero, gdb will give control to the user when the dynamic linker\n\
3984notifies gdb of shared library events. The most common event of interest\n\
488f131b 3985to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
c906108c
SS
3986#endif
3987
3988 c = add_set_enum_cmd ("follow-fork-mode",
3989 class_run,
488f131b 3990 follow_fork_mode_kind_names, &follow_fork_mode_string,
c906108c
SS
3991 "Set debugger response to a program call of fork \
3992or vfork.\n\
3993A fork or vfork creates a new process. follow-fork-mode can be:\n\
3994 parent - the original process is debugged after a fork\n\
3995 child - the new process is debugged after a fork\n\
ea1dd7bc 3996The unfollowed process will continue to run.\n\
488f131b 3997By default, the debugger will follow the parent process.", &setlist);
cb1a6d5f 3998 deprecated_add_show_from_set (c, &showlist);
c906108c 3999
488f131b 4000 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
1ed2a135 4001 &scheduler_mode, /* current mode */
c906108c
SS
4002 "Set mode for locking scheduler during execution.\n\
4003off == no locking (threads may preempt at any time)\n\
4004on == full locking (no thread except the current thread may run)\n\
4005step == scheduler locked during every single-step operation.\n\
4006 In this mode, no other thread may run during a step command.\n\
488f131b 4007 Other threads may run while stepping over a function call ('next').", &setlist);
c906108c 4008
9f60d481 4009 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
cb1a6d5f 4010 deprecated_add_show_from_set (c, &showlist);
5fbbeb29
CF
4011
4012 c = add_set_cmd ("step-mode", class_run,
488f131b
JB
4013 var_boolean, (char *) &step_stop_if_no_debug,
4014 "Set mode of the step operation. When set, doing a step over a\n\
5fbbeb29
CF
4015function without debug line information will stop at the first\n\
4016instruction of that function. Otherwise, the function is skipped and\n\
488f131b 4017the step command stops at a different source line.", &setlist);
cb1a6d5f 4018 deprecated_add_show_from_set (c, &showlist);
ca6724c1
KB
4019
4020 /* ptid initializations */
4021 null_ptid = ptid_build (0, 0, 0);
4022 minus_one_ptid = ptid_build (-1, 0, 0);
4023 inferior_ptid = null_ptid;
4024 target_last_wait_ptid = minus_one_ptid;
c906108c 4025}
This page took 0.661312 seconds and 4 git commands to generate.