* gdb.base/pie-execl.exp: Fix result test of build_executable.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
32d0add0 4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
c906108c
SS
66
67/* Prototypes for local functions */
68
96baa820 69static void signals_info (char *, int);
c906108c 70
96baa820 71static void handle_command (char *, int);
c906108c 72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
74b7792f 77static void resume_cleanups (void *);
c906108c 78
96baa820 79static int hook_stop_stub (void *);
c906108c 80
96baa820
JM
81static int restore_selected_frame (void *);
82
4ef3f3be 83static int follow_fork (void);
96baa820 84
d83ad864
DB
85static int follow_fork_inferior (int follow_child, int detach_fork);
86
87static void follow_inferior_reset_breakpoints (void);
88
96baa820 89static void set_schedlock_func (char *args, int from_tty,
488f131b 90 struct cmd_list_element *c);
96baa820 91
a289b8f6
JK
92static int currently_stepping (struct thread_info *tp);
93
96baa820 94void _initialize_infrun (void);
43ff13b4 95
e58b0e63
PA
96void nullify_last_target_wait_ptid (void);
97
2c03e5be 98static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
99
100static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
101
2484c66b
UW
102static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
103
8550d3b3
YQ
104static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
105
372316f1
PA
106/* Asynchronous signal handler registered as event loop source for
107 when we have pending events ready to be passed to the core. */
108static struct async_event_handler *infrun_async_inferior_event_token;
109
110/* Stores whether infrun_async was previously enabled or disabled.
111 Starts off as -1, indicating "never enabled/disabled". */
112static int infrun_is_async = -1;
113
114/* See infrun.h. */
115
116void
117infrun_async (int enable)
118{
119 if (infrun_is_async != enable)
120 {
121 infrun_is_async = enable;
122
123 if (debug_infrun)
124 fprintf_unfiltered (gdb_stdlog,
125 "infrun: infrun_async(%d)\n",
126 enable);
127
128 if (enable)
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 else
131 clear_async_event_handler (infrun_async_inferior_event_token);
132 }
133}
134
0b333c5e
PA
135/* See infrun.h. */
136
137void
138mark_infrun_async_event_handler (void)
139{
140 mark_async_event_handler (infrun_async_inferior_event_token);
141}
142
5fbbeb29
CF
143/* When set, stop the 'step' command if we enter a function which has
144 no line number information. The normal behavior is that we step
145 over such function. */
146int step_stop_if_no_debug = 0;
920d2a44
AC
147static void
148show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150{
151 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
152}
5fbbeb29 153
1777feb0 154/* In asynchronous mode, but simulating synchronous execution. */
96baa820 155
43ff13b4
JM
156int sync_execution = 0;
157
b9f437de
PA
158/* proceed and normal_stop use this to notify the user when the
159 inferior stopped in a different thread than it had been running
160 in. */
96baa820 161
39f77062 162static ptid_t previous_inferior_ptid;
7a292a7a 163
07107ca6
LM
164/* If set (default for legacy reasons), when following a fork, GDB
165 will detach from one of the fork branches, child or parent.
166 Exactly which branch is detached depends on 'set follow-fork-mode'
167 setting. */
168
169static int detach_fork = 1;
6c95b8df 170
237fc4c9
PA
171int debug_displaced = 0;
172static void
173show_debug_displaced (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175{
176 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
177}
178
ccce17b0 179unsigned int debug_infrun = 0;
920d2a44
AC
180static void
181show_debug_infrun (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183{
184 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
185}
527159b7 186
03583c20
UW
187
188/* Support for disabling address space randomization. */
189
190int disable_randomization = 1;
191
192static void
193show_disable_randomization (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195{
196 if (target_supports_disable_randomization ())
197 fprintf_filtered (file,
198 _("Disabling randomization of debuggee's "
199 "virtual address space is %s.\n"),
200 value);
201 else
202 fputs_filtered (_("Disabling randomization of debuggee's "
203 "virtual address space is unsupported on\n"
204 "this platform.\n"), file);
205}
206
207static void
208set_disable_randomization (char *args, int from_tty,
209 struct cmd_list_element *c)
210{
211 if (!target_supports_disable_randomization ())
212 error (_("Disabling randomization of debuggee's "
213 "virtual address space is unsupported on\n"
214 "this platform."));
215}
216
d32dc48e
PA
217/* User interface for non-stop mode. */
218
219int non_stop = 0;
220static int non_stop_1 = 0;
221
222static void
223set_non_stop (char *args, int from_tty,
224 struct cmd_list_element *c)
225{
226 if (target_has_execution)
227 {
228 non_stop_1 = non_stop;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 non_stop = non_stop_1;
233}
234
235static void
236show_non_stop (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238{
239 fprintf_filtered (file,
240 _("Controlling the inferior in non-stop mode is %s.\n"),
241 value);
242}
243
d914c394
SS
244/* "Observer mode" is somewhat like a more extreme version of
245 non-stop, in which all GDB operations that might affect the
246 target's execution have been disabled. */
247
d914c394
SS
248int observer_mode = 0;
249static int observer_mode_1 = 0;
250
251static void
252set_observer_mode (char *args, int from_tty,
253 struct cmd_list_element *c)
254{
d914c394
SS
255 if (target_has_execution)
256 {
257 observer_mode_1 = observer_mode;
258 error (_("Cannot change this setting while the inferior is running."));
259 }
260
261 observer_mode = observer_mode_1;
262
263 may_write_registers = !observer_mode;
264 may_write_memory = !observer_mode;
265 may_insert_breakpoints = !observer_mode;
266 may_insert_tracepoints = !observer_mode;
267 /* We can insert fast tracepoints in or out of observer mode,
268 but enable them if we're going into this mode. */
269 if (observer_mode)
270 may_insert_fast_tracepoints = 1;
271 may_stop = !observer_mode;
272 update_target_permissions ();
273
274 /* Going *into* observer mode we must force non-stop, then
275 going out we leave it that way. */
276 if (observer_mode)
277 {
d914c394
SS
278 pagination_enabled = 0;
279 non_stop = non_stop_1 = 1;
280 }
281
282 if (from_tty)
283 printf_filtered (_("Observer mode is now %s.\n"),
284 (observer_mode ? "on" : "off"));
285}
286
287static void
288show_observer_mode (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290{
291 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
292}
293
294/* This updates the value of observer mode based on changes in
295 permissions. Note that we are deliberately ignoring the values of
296 may-write-registers and may-write-memory, since the user may have
297 reason to enable these during a session, for instance to turn on a
298 debugging-related global. */
299
300void
301update_observer_mode (void)
302{
303 int newval;
304
305 newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317}
c2c6d25f 318
c906108c
SS
319/* Tables of how to react to signals; the user sets them. */
320
321static unsigned char *signal_stop;
322static unsigned char *signal_print;
323static unsigned char *signal_program;
324
ab04a2af
TT
325/* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
328 signals. */
329static unsigned char *signal_catch;
330
2455069d
UW
331/* Table of signals that the target may silently handle.
332 This is automatically determined from the flags above,
333 and simply cached here. */
334static unsigned char *signal_pass;
335
c906108c
SS
336#define SET_SIGS(nsigs,sigs,flags) \
337 do { \
338 int signum = (nsigs); \
339 while (signum-- > 0) \
340 if ((sigs)[signum]) \
341 (flags)[signum] = 1; \
342 } while (0)
343
344#define UNSET_SIGS(nsigs,sigs,flags) \
345 do { \
346 int signum = (nsigs); \
347 while (signum-- > 0) \
348 if ((sigs)[signum]) \
349 (flags)[signum] = 0; \
350 } while (0)
351
9b224c5e
PA
352/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
353 this function is to avoid exporting `signal_program'. */
354
355void
356update_signals_program_target (void)
357{
a493e3e2 358 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
359}
360
1777feb0 361/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 362
edb3359d 363#define RESUME_ALL minus_one_ptid
c906108c
SS
364
365/* Command list pointer for the "stop" placeholder. */
366
367static struct cmd_list_element *stop_command;
368
c906108c
SS
369/* Nonzero if we want to give control to the user when we're notified
370 of shared library events by the dynamic linker. */
628fe4e4 371int stop_on_solib_events;
f9e14852
GB
372
373/* Enable or disable optional shared library event breakpoints
374 as appropriate when the above flag is changed. */
375
376static void
377set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
378{
379 update_solib_breakpoints ();
380}
381
920d2a44
AC
382static void
383show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385{
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388}
c906108c 389
c906108c
SS
390/* Nonzero means expecting a trace trap
391 and should stop the inferior and return silently when it happens. */
392
393int stop_after_trap;
394
c906108c
SS
395/* Nonzero after stop if current stack frame should be printed. */
396
397static int stop_print_frame;
398
e02bc4cc 399/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
400 returned by target_wait()/deprecated_target_wait_hook(). This
401 information is returned by get_last_target_status(). */
39f77062 402static ptid_t target_last_wait_ptid;
e02bc4cc
DS
403static struct target_waitstatus target_last_waitstatus;
404
0d1e5fa7
PA
405static void context_switch (ptid_t ptid);
406
4e1c45ea 407void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 408
53904c9e
AC
409static const char follow_fork_mode_child[] = "child";
410static const char follow_fork_mode_parent[] = "parent";
411
40478521 412static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
413 follow_fork_mode_child,
414 follow_fork_mode_parent,
415 NULL
ef346e04 416};
c906108c 417
53904c9e 418static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
419static void
420show_follow_fork_mode_string (struct ui_file *file, int from_tty,
421 struct cmd_list_element *c, const char *value)
422{
3e43a32a
MS
423 fprintf_filtered (file,
424 _("Debugger response to a program "
425 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
426 value);
427}
c906108c
SS
428\f
429
d83ad864
DB
430/* Handle changes to the inferior list based on the type of fork,
431 which process is being followed, and whether the other process
432 should be detached. On entry inferior_ptid must be the ptid of
433 the fork parent. At return inferior_ptid is the ptid of the
434 followed inferior. */
435
436static int
437follow_fork_inferior (int follow_child, int detach_fork)
438{
439 int has_vforked;
79639e11 440 ptid_t parent_ptid, child_ptid;
d83ad864
DB
441
442 has_vforked = (inferior_thread ()->pending_follow.kind
443 == TARGET_WAITKIND_VFORKED);
79639e11
PA
444 parent_ptid = inferior_ptid;
445 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
446
447 if (has_vforked
448 && !non_stop /* Non-stop always resumes both branches. */
449 && (!target_is_async_p () || sync_execution)
450 && !(follow_child || detach_fork || sched_multi))
451 {
452 /* The parent stays blocked inside the vfork syscall until the
453 child execs or exits. If we don't let the child run, then
454 the parent stays blocked. If we're telling the parent to run
455 in the foreground, the user will not be able to ctrl-c to get
456 back the terminal, effectively hanging the debug session. */
457 fprintf_filtered (gdb_stderr, _("\
458Can not resume the parent process over vfork in the foreground while\n\
459holding the child stopped. Try \"set detach-on-fork\" or \
460\"set schedule-multiple\".\n"));
461 /* FIXME output string > 80 columns. */
462 return 1;
463 }
464
465 if (!follow_child)
466 {
467 /* Detach new forked process? */
468 if (detach_fork)
469 {
470 struct cleanup *old_chain;
471
472 /* Before detaching from the child, remove all breakpoints
473 from it. If we forked, then this has already been taken
474 care of by infrun.c. If we vforked however, any
475 breakpoint inserted in the parent is visible in the
476 child, even those added while stopped in a vfork
477 catchpoint. This will remove the breakpoints from the
478 parent also, but they'll be reinserted below. */
479 if (has_vforked)
480 {
481 /* Keep breakpoints list in sync. */
482 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
483 }
484
485 if (info_verbose || debug_infrun)
486 {
8dd06f7a
DB
487 /* Ensure that we have a process ptid. */
488 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
489
6f259a23 490 target_terminal_ours_for_output ();
d83ad864 491 fprintf_filtered (gdb_stdlog,
79639e11 492 _("Detaching after %s from child %s.\n"),
6f259a23 493 has_vforked ? "vfork" : "fork",
8dd06f7a 494 target_pid_to_str (process_ptid));
d83ad864
DB
495 }
496 }
497 else
498 {
499 struct inferior *parent_inf, *child_inf;
500 struct cleanup *old_chain;
501
502 /* Add process to GDB's tables. */
79639e11 503 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
504
505 parent_inf = current_inferior ();
506 child_inf->attach_flag = parent_inf->attach_flag;
507 copy_terminal_info (child_inf, parent_inf);
508 child_inf->gdbarch = parent_inf->gdbarch;
509 copy_inferior_target_desc_info (child_inf, parent_inf);
510
511 old_chain = save_inferior_ptid ();
512 save_current_program_space ();
513
79639e11 514 inferior_ptid = child_ptid;
d83ad864
DB
515 add_thread (inferior_ptid);
516 child_inf->symfile_flags = SYMFILE_NO_READ;
517
518 /* If this is a vfork child, then the address-space is
519 shared with the parent. */
520 if (has_vforked)
521 {
522 child_inf->pspace = parent_inf->pspace;
523 child_inf->aspace = parent_inf->aspace;
524
525 /* The parent will be frozen until the child is done
526 with the shared region. Keep track of the
527 parent. */
528 child_inf->vfork_parent = parent_inf;
529 child_inf->pending_detach = 0;
530 parent_inf->vfork_child = child_inf;
531 parent_inf->pending_detach = 0;
532 }
533 else
534 {
535 child_inf->aspace = new_address_space ();
536 child_inf->pspace = add_program_space (child_inf->aspace);
537 child_inf->removable = 1;
538 set_current_program_space (child_inf->pspace);
539 clone_program_space (child_inf->pspace, parent_inf->pspace);
540
541 /* Let the shared library layer (e.g., solib-svr4) learn
542 about this new process, relocate the cloned exec, pull
543 in shared libraries, and install the solib event
544 breakpoint. If a "cloned-VM" event was propagated
545 better throughout the core, this wouldn't be
546 required. */
547 solib_create_inferior_hook (0);
548 }
549
550 do_cleanups (old_chain);
551 }
552
553 if (has_vforked)
554 {
555 struct inferior *parent_inf;
556
557 parent_inf = current_inferior ();
558
559 /* If we detached from the child, then we have to be careful
560 to not insert breakpoints in the parent until the child
561 is done with the shared memory region. However, if we're
562 staying attached to the child, then we can and should
563 insert breakpoints, so that we can debug it. A
564 subsequent child exec or exit is enough to know when does
565 the child stops using the parent's address space. */
566 parent_inf->waiting_for_vfork_done = detach_fork;
567 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
568 }
569 }
570 else
571 {
572 /* Follow the child. */
573 struct inferior *parent_inf, *child_inf;
574 struct program_space *parent_pspace;
575
576 if (info_verbose || debug_infrun)
577 {
6f259a23
DB
578 target_terminal_ours_for_output ();
579 fprintf_filtered (gdb_stdlog,
79639e11
PA
580 _("Attaching after %s %s to child %s.\n"),
581 target_pid_to_str (parent_ptid),
6f259a23 582 has_vforked ? "vfork" : "fork",
79639e11 583 target_pid_to_str (child_ptid));
d83ad864
DB
584 }
585
586 /* Add the new inferior first, so that the target_detach below
587 doesn't unpush the target. */
588
79639e11 589 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
590
591 parent_inf = current_inferior ();
592 child_inf->attach_flag = parent_inf->attach_flag;
593 copy_terminal_info (child_inf, parent_inf);
594 child_inf->gdbarch = parent_inf->gdbarch;
595 copy_inferior_target_desc_info (child_inf, parent_inf);
596
597 parent_pspace = parent_inf->pspace;
598
599 /* If we're vforking, we want to hold on to the parent until the
600 child exits or execs. At child exec or exit time we can
601 remove the old breakpoints from the parent and detach or
602 resume debugging it. Otherwise, detach the parent now; we'll
603 want to reuse it's program/address spaces, but we can't set
604 them to the child before removing breakpoints from the
605 parent, otherwise, the breakpoints module could decide to
606 remove breakpoints from the wrong process (since they'd be
607 assigned to the same address space). */
608
609 if (has_vforked)
610 {
611 gdb_assert (child_inf->vfork_parent == NULL);
612 gdb_assert (parent_inf->vfork_child == NULL);
613 child_inf->vfork_parent = parent_inf;
614 child_inf->pending_detach = 0;
615 parent_inf->vfork_child = child_inf;
616 parent_inf->pending_detach = detach_fork;
617 parent_inf->waiting_for_vfork_done = 0;
618 }
619 else if (detach_fork)
6f259a23
DB
620 {
621 if (info_verbose || debug_infrun)
622 {
8dd06f7a
DB
623 /* Ensure that we have a process ptid. */
624 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
625
6f259a23
DB
626 target_terminal_ours_for_output ();
627 fprintf_filtered (gdb_stdlog,
628 _("Detaching after fork from "
79639e11 629 "child %s.\n"),
8dd06f7a 630 target_pid_to_str (process_ptid));
6f259a23
DB
631 }
632
633 target_detach (NULL, 0);
634 }
d83ad864
DB
635
636 /* Note that the detach above makes PARENT_INF dangling. */
637
638 /* Add the child thread to the appropriate lists, and switch to
639 this new thread, before cloning the program space, and
640 informing the solib layer about this new process. */
641
79639e11 642 inferior_ptid = child_ptid;
d83ad864
DB
643 add_thread (inferior_ptid);
644
645 /* If this is a vfork child, then the address-space is shared
646 with the parent. If we detached from the parent, then we can
647 reuse the parent's program/address spaces. */
648 if (has_vforked || detach_fork)
649 {
650 child_inf->pspace = parent_pspace;
651 child_inf->aspace = child_inf->pspace->aspace;
652 }
653 else
654 {
655 child_inf->aspace = new_address_space ();
656 child_inf->pspace = add_program_space (child_inf->aspace);
657 child_inf->removable = 1;
658 child_inf->symfile_flags = SYMFILE_NO_READ;
659 set_current_program_space (child_inf->pspace);
660 clone_program_space (child_inf->pspace, parent_pspace);
661
662 /* Let the shared library layer (e.g., solib-svr4) learn
663 about this new process, relocate the cloned exec, pull in
664 shared libraries, and install the solib event breakpoint.
665 If a "cloned-VM" event was propagated better throughout
666 the core, this wouldn't be required. */
667 solib_create_inferior_hook (0);
668 }
669 }
670
671 return target_follow_fork (follow_child, detach_fork);
672}
673
e58b0e63
PA
674/* Tell the target to follow the fork we're stopped at. Returns true
675 if the inferior should be resumed; false, if the target for some
676 reason decided it's best not to resume. */
677
6604731b 678static int
4ef3f3be 679follow_fork (void)
c906108c 680{
ea1dd7bc 681 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
682 int should_resume = 1;
683 struct thread_info *tp;
684
685 /* Copy user stepping state to the new inferior thread. FIXME: the
686 followed fork child thread should have a copy of most of the
4e3990f4
DE
687 parent thread structure's run control related fields, not just these.
688 Initialized to avoid "may be used uninitialized" warnings from gcc. */
689 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 690 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
691 CORE_ADDR step_range_start = 0;
692 CORE_ADDR step_range_end = 0;
693 struct frame_id step_frame_id = { 0 };
17b2616c 694 struct interp *command_interp = NULL;
e58b0e63
PA
695
696 if (!non_stop)
697 {
698 ptid_t wait_ptid;
699 struct target_waitstatus wait_status;
700
701 /* Get the last target status returned by target_wait(). */
702 get_last_target_status (&wait_ptid, &wait_status);
703
704 /* If not stopped at a fork event, then there's nothing else to
705 do. */
706 if (wait_status.kind != TARGET_WAITKIND_FORKED
707 && wait_status.kind != TARGET_WAITKIND_VFORKED)
708 return 1;
709
710 /* Check if we switched over from WAIT_PTID, since the event was
711 reported. */
712 if (!ptid_equal (wait_ptid, minus_one_ptid)
713 && !ptid_equal (inferior_ptid, wait_ptid))
714 {
715 /* We did. Switch back to WAIT_PTID thread, to tell the
716 target to follow it (in either direction). We'll
717 afterwards refuse to resume, and inform the user what
718 happened. */
719 switch_to_thread (wait_ptid);
720 should_resume = 0;
721 }
722 }
723
724 tp = inferior_thread ();
725
726 /* If there were any forks/vforks that were caught and are now to be
727 followed, then do so now. */
728 switch (tp->pending_follow.kind)
729 {
730 case TARGET_WAITKIND_FORKED:
731 case TARGET_WAITKIND_VFORKED:
732 {
733 ptid_t parent, child;
734
735 /* If the user did a next/step, etc, over a fork call,
736 preserve the stepping state in the fork child. */
737 if (follow_child && should_resume)
738 {
8358c15c
JK
739 step_resume_breakpoint = clone_momentary_breakpoint
740 (tp->control.step_resume_breakpoint);
16c381f0
JK
741 step_range_start = tp->control.step_range_start;
742 step_range_end = tp->control.step_range_end;
743 step_frame_id = tp->control.step_frame_id;
186c406b
TT
744 exception_resume_breakpoint
745 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 746 command_interp = tp->control.command_interp;
e58b0e63
PA
747
748 /* For now, delete the parent's sr breakpoint, otherwise,
749 parent/child sr breakpoints are considered duplicates,
750 and the child version will not be installed. Remove
751 this when the breakpoints module becomes aware of
752 inferiors and address spaces. */
753 delete_step_resume_breakpoint (tp);
16c381f0
JK
754 tp->control.step_range_start = 0;
755 tp->control.step_range_end = 0;
756 tp->control.step_frame_id = null_frame_id;
186c406b 757 delete_exception_resume_breakpoint (tp);
17b2616c 758 tp->control.command_interp = NULL;
e58b0e63
PA
759 }
760
761 parent = inferior_ptid;
762 child = tp->pending_follow.value.related_pid;
763
d83ad864
DB
764 /* Set up inferior(s) as specified by the caller, and tell the
765 target to do whatever is necessary to follow either parent
766 or child. */
767 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
768 {
769 /* Target refused to follow, or there's some other reason
770 we shouldn't resume. */
771 should_resume = 0;
772 }
773 else
774 {
775 /* This pending follow fork event is now handled, one way
776 or another. The previous selected thread may be gone
777 from the lists by now, but if it is still around, need
778 to clear the pending follow request. */
e09875d4 779 tp = find_thread_ptid (parent);
e58b0e63
PA
780 if (tp)
781 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
782
783 /* This makes sure we don't try to apply the "Switched
784 over from WAIT_PID" logic above. */
785 nullify_last_target_wait_ptid ();
786
1777feb0 787 /* If we followed the child, switch to it... */
e58b0e63
PA
788 if (follow_child)
789 {
790 switch_to_thread (child);
791
792 /* ... and preserve the stepping state, in case the
793 user was stepping over the fork call. */
794 if (should_resume)
795 {
796 tp = inferior_thread ();
8358c15c
JK
797 tp->control.step_resume_breakpoint
798 = step_resume_breakpoint;
16c381f0
JK
799 tp->control.step_range_start = step_range_start;
800 tp->control.step_range_end = step_range_end;
801 tp->control.step_frame_id = step_frame_id;
186c406b
TT
802 tp->control.exception_resume_breakpoint
803 = exception_resume_breakpoint;
17b2616c 804 tp->control.command_interp = command_interp;
e58b0e63
PA
805 }
806 else
807 {
808 /* If we get here, it was because we're trying to
809 resume from a fork catchpoint, but, the user
810 has switched threads away from the thread that
811 forked. In that case, the resume command
812 issued is most likely not applicable to the
813 child, so just warn, and refuse to resume. */
3e43a32a 814 warning (_("Not resuming: switched threads "
fd7dcb94 815 "before following fork child."));
e58b0e63
PA
816 }
817
818 /* Reset breakpoints in the child as appropriate. */
819 follow_inferior_reset_breakpoints ();
820 }
821 else
822 switch_to_thread (parent);
823 }
824 }
825 break;
826 case TARGET_WAITKIND_SPURIOUS:
827 /* Nothing to follow. */
828 break;
829 default:
830 internal_error (__FILE__, __LINE__,
831 "Unexpected pending_follow.kind %d\n",
832 tp->pending_follow.kind);
833 break;
834 }
c906108c 835
e58b0e63 836 return should_resume;
c906108c
SS
837}
838
d83ad864 839static void
6604731b 840follow_inferior_reset_breakpoints (void)
c906108c 841{
4e1c45ea
PA
842 struct thread_info *tp = inferior_thread ();
843
6604731b
DJ
844 /* Was there a step_resume breakpoint? (There was if the user
845 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
846 thread number. Cloned step_resume breakpoints are disabled on
847 creation, so enable it here now that it is associated with the
848 correct thread.
6604731b
DJ
849
850 step_resumes are a form of bp that are made to be per-thread.
851 Since we created the step_resume bp when the parent process
852 was being debugged, and now are switching to the child process,
853 from the breakpoint package's viewpoint, that's a switch of
854 "threads". We must update the bp's notion of which thread
855 it is for, or it'll be ignored when it triggers. */
856
8358c15c 857 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
858 {
859 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
860 tp->control.step_resume_breakpoint->loc->enabled = 1;
861 }
6604731b 862
a1aa2221 863 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 864 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
865 {
866 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
867 tp->control.exception_resume_breakpoint->loc->enabled = 1;
868 }
186c406b 869
6604731b
DJ
870 /* Reinsert all breakpoints in the child. The user may have set
871 breakpoints after catching the fork, in which case those
872 were never set in the child, but only in the parent. This makes
873 sure the inserted breakpoints match the breakpoint list. */
874
875 breakpoint_re_set ();
876 insert_breakpoints ();
c906108c 877}
c906108c 878
6c95b8df
PA
879/* The child has exited or execed: resume threads of the parent the
880 user wanted to be executing. */
881
882static int
883proceed_after_vfork_done (struct thread_info *thread,
884 void *arg)
885{
886 int pid = * (int *) arg;
887
888 if (ptid_get_pid (thread->ptid) == pid
889 && is_running (thread->ptid)
890 && !is_executing (thread->ptid)
891 && !thread->stop_requested
a493e3e2 892 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
893 {
894 if (debug_infrun)
895 fprintf_unfiltered (gdb_stdlog,
896 "infrun: resuming vfork parent thread %s\n",
897 target_pid_to_str (thread->ptid));
898
899 switch_to_thread (thread->ptid);
70509625 900 clear_proceed_status (0);
64ce06e4 901 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
902 }
903
904 return 0;
905}
906
907/* Called whenever we notice an exec or exit event, to handle
908 detaching or resuming a vfork parent. */
909
910static void
911handle_vfork_child_exec_or_exit (int exec)
912{
913 struct inferior *inf = current_inferior ();
914
915 if (inf->vfork_parent)
916 {
917 int resume_parent = -1;
918
919 /* This exec or exit marks the end of the shared memory region
920 between the parent and the child. If the user wanted to
921 detach from the parent, now is the time. */
922
923 if (inf->vfork_parent->pending_detach)
924 {
925 struct thread_info *tp;
926 struct cleanup *old_chain;
927 struct program_space *pspace;
928 struct address_space *aspace;
929
1777feb0 930 /* follow-fork child, detach-on-fork on. */
6c95b8df 931
68c9da30
PA
932 inf->vfork_parent->pending_detach = 0;
933
f50f4e56
PA
934 if (!exec)
935 {
936 /* If we're handling a child exit, then inferior_ptid
937 points at the inferior's pid, not to a thread. */
938 old_chain = save_inferior_ptid ();
939 save_current_program_space ();
940 save_current_inferior ();
941 }
942 else
943 old_chain = save_current_space_and_thread ();
6c95b8df
PA
944
945 /* We're letting loose of the parent. */
946 tp = any_live_thread_of_process (inf->vfork_parent->pid);
947 switch_to_thread (tp->ptid);
948
949 /* We're about to detach from the parent, which implicitly
950 removes breakpoints from its address space. There's a
951 catch here: we want to reuse the spaces for the child,
952 but, parent/child are still sharing the pspace at this
953 point, although the exec in reality makes the kernel give
954 the child a fresh set of new pages. The problem here is
955 that the breakpoints module being unaware of this, would
956 likely chose the child process to write to the parent
957 address space. Swapping the child temporarily away from
958 the spaces has the desired effect. Yes, this is "sort
959 of" a hack. */
960
961 pspace = inf->pspace;
962 aspace = inf->aspace;
963 inf->aspace = NULL;
964 inf->pspace = NULL;
965
966 if (debug_infrun || info_verbose)
967 {
6f259a23 968 target_terminal_ours_for_output ();
6c95b8df
PA
969
970 if (exec)
6f259a23
DB
971 {
972 fprintf_filtered (gdb_stdlog,
973 _("Detaching vfork parent process "
974 "%d after child exec.\n"),
975 inf->vfork_parent->pid);
976 }
6c95b8df 977 else
6f259a23
DB
978 {
979 fprintf_filtered (gdb_stdlog,
980 _("Detaching vfork parent process "
981 "%d after child exit.\n"),
982 inf->vfork_parent->pid);
983 }
6c95b8df
PA
984 }
985
986 target_detach (NULL, 0);
987
988 /* Put it back. */
989 inf->pspace = pspace;
990 inf->aspace = aspace;
991
992 do_cleanups (old_chain);
993 }
994 else if (exec)
995 {
996 /* We're staying attached to the parent, so, really give the
997 child a new address space. */
998 inf->pspace = add_program_space (maybe_new_address_space ());
999 inf->aspace = inf->pspace->aspace;
1000 inf->removable = 1;
1001 set_current_program_space (inf->pspace);
1002
1003 resume_parent = inf->vfork_parent->pid;
1004
1005 /* Break the bonds. */
1006 inf->vfork_parent->vfork_child = NULL;
1007 }
1008 else
1009 {
1010 struct cleanup *old_chain;
1011 struct program_space *pspace;
1012
1013 /* If this is a vfork child exiting, then the pspace and
1014 aspaces were shared with the parent. Since we're
1015 reporting the process exit, we'll be mourning all that is
1016 found in the address space, and switching to null_ptid,
1017 preparing to start a new inferior. But, since we don't
1018 want to clobber the parent's address/program spaces, we
1019 go ahead and create a new one for this exiting
1020 inferior. */
1021
1022 /* Switch to null_ptid, so that clone_program_space doesn't want
1023 to read the selected frame of a dead process. */
1024 old_chain = save_inferior_ptid ();
1025 inferior_ptid = null_ptid;
1026
1027 /* This inferior is dead, so avoid giving the breakpoints
1028 module the option to write through to it (cloning a
1029 program space resets breakpoints). */
1030 inf->aspace = NULL;
1031 inf->pspace = NULL;
1032 pspace = add_program_space (maybe_new_address_space ());
1033 set_current_program_space (pspace);
1034 inf->removable = 1;
7dcd53a0 1035 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1036 clone_program_space (pspace, inf->vfork_parent->pspace);
1037 inf->pspace = pspace;
1038 inf->aspace = pspace->aspace;
1039
1040 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1041 inferior. */
6c95b8df
PA
1042 do_cleanups (old_chain);
1043
1044 resume_parent = inf->vfork_parent->pid;
1045 /* Break the bonds. */
1046 inf->vfork_parent->vfork_child = NULL;
1047 }
1048
1049 inf->vfork_parent = NULL;
1050
1051 gdb_assert (current_program_space == inf->pspace);
1052
1053 if (non_stop && resume_parent != -1)
1054 {
1055 /* If the user wanted the parent to be running, let it go
1056 free now. */
1057 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1058
1059 if (debug_infrun)
3e43a32a
MS
1060 fprintf_unfiltered (gdb_stdlog,
1061 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1062 resume_parent);
1063
1064 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1065
1066 do_cleanups (old_chain);
1067 }
1068 }
1069}
1070
eb6c553b 1071/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1072
1073static const char follow_exec_mode_new[] = "new";
1074static const char follow_exec_mode_same[] = "same";
40478521 1075static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1076{
1077 follow_exec_mode_new,
1078 follow_exec_mode_same,
1079 NULL,
1080};
1081
1082static const char *follow_exec_mode_string = follow_exec_mode_same;
1083static void
1084show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1085 struct cmd_list_element *c, const char *value)
1086{
1087 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1088}
1089
1777feb0 1090/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1091
c906108c 1092static void
95e50b27 1093follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1094{
95e50b27 1095 struct thread_info *th, *tmp;
6c95b8df 1096 struct inferior *inf = current_inferior ();
95e50b27 1097 int pid = ptid_get_pid (ptid);
7a292a7a 1098
c906108c
SS
1099 /* This is an exec event that we actually wish to pay attention to.
1100 Refresh our symbol table to the newly exec'd program, remove any
1101 momentary bp's, etc.
1102
1103 If there are breakpoints, they aren't really inserted now,
1104 since the exec() transformed our inferior into a fresh set
1105 of instructions.
1106
1107 We want to preserve symbolic breakpoints on the list, since
1108 we have hopes that they can be reset after the new a.out's
1109 symbol table is read.
1110
1111 However, any "raw" breakpoints must be removed from the list
1112 (e.g., the solib bp's), since their address is probably invalid
1113 now.
1114
1115 And, we DON'T want to call delete_breakpoints() here, since
1116 that may write the bp's "shadow contents" (the instruction
1117 value that was overwritten witha TRAP instruction). Since
1777feb0 1118 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1119
1120 mark_breakpoints_out ();
1121
95e50b27
PA
1122 /* The target reports the exec event to the main thread, even if
1123 some other thread does the exec, and even if the main thread was
1124 stopped or already gone. We may still have non-leader threads of
1125 the process on our list. E.g., on targets that don't have thread
1126 exit events (like remote); or on native Linux in non-stop mode if
1127 there were only two threads in the inferior and the non-leader
1128 one is the one that execs (and nothing forces an update of the
1129 thread list up to here). When debugging remotely, it's best to
1130 avoid extra traffic, when possible, so avoid syncing the thread
1131 list with the target, and instead go ahead and delete all threads
1132 of the process but one that reported the event. Note this must
1133 be done before calling update_breakpoints_after_exec, as
1134 otherwise clearing the threads' resources would reference stale
1135 thread breakpoints -- it may have been one of these threads that
1136 stepped across the exec. We could just clear their stepping
1137 states, but as long as we're iterating, might as well delete
1138 them. Deleting them now rather than at the next user-visible
1139 stop provides a nicer sequence of events for user and MI
1140 notifications. */
8a06aea7 1141 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1142 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1143 delete_thread (th->ptid);
1144
1145 /* We also need to clear any left over stale state for the
1146 leader/event thread. E.g., if there was any step-resume
1147 breakpoint or similar, it's gone now. We cannot truly
1148 step-to-next statement through an exec(). */
1149 th = inferior_thread ();
8358c15c 1150 th->control.step_resume_breakpoint = NULL;
186c406b 1151 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1152 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1153 th->control.step_range_start = 0;
1154 th->control.step_range_end = 0;
c906108c 1155
95e50b27
PA
1156 /* The user may have had the main thread held stopped in the
1157 previous image (e.g., schedlock on, or non-stop). Release
1158 it now. */
a75724bc
PA
1159 th->stop_requested = 0;
1160
95e50b27
PA
1161 update_breakpoints_after_exec ();
1162
1777feb0 1163 /* What is this a.out's name? */
6c95b8df
PA
1164 printf_unfiltered (_("%s is executing new program: %s\n"),
1165 target_pid_to_str (inferior_ptid),
1166 execd_pathname);
c906108c
SS
1167
1168 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1169 inferior has essentially been killed & reborn. */
7a292a7a 1170
c906108c 1171 gdb_flush (gdb_stdout);
6ca15a4b
PA
1172
1173 breakpoint_init_inferior (inf_execd);
e85a822c 1174
a3be80c3 1175 if (*gdb_sysroot != '\0')
e85a822c 1176 {
998d2a3e 1177 char *name = exec_file_find (execd_pathname, NULL);
ff862be4
GB
1178
1179 execd_pathname = alloca (strlen (name) + 1);
1180 strcpy (execd_pathname, name);
1181 xfree (name);
e85a822c 1182 }
c906108c 1183
cce9b6bf
PA
1184 /* Reset the shared library package. This ensures that we get a
1185 shlib event when the child reaches "_start", at which point the
1186 dld will have had a chance to initialize the child. */
1187 /* Also, loading a symbol file below may trigger symbol lookups, and
1188 we don't want those to be satisfied by the libraries of the
1189 previous incarnation of this process. */
1190 no_shared_libraries (NULL, 0);
1191
6c95b8df
PA
1192 if (follow_exec_mode_string == follow_exec_mode_new)
1193 {
1194 struct program_space *pspace;
6c95b8df
PA
1195
1196 /* The user wants to keep the old inferior and program spaces
1197 around. Create a new fresh one, and switch to it. */
1198
17d8546e
DB
1199 /* Do exit processing for the original inferior before adding
1200 the new inferior so we don't have two active inferiors with
1201 the same ptid, which can confuse find_inferior_ptid. */
1202 exit_inferior_num_silent (current_inferior ()->num);
1203
1204 inf = add_inferior (pid);
6c95b8df
PA
1205 pspace = add_program_space (maybe_new_address_space ());
1206 inf->pspace = pspace;
1207 inf->aspace = pspace->aspace;
17d8546e 1208 add_thread (ptid);
6c95b8df
PA
1209
1210 set_current_inferior (inf);
1211 set_current_program_space (pspace);
1212 }
9107fc8d
PA
1213 else
1214 {
1215 /* The old description may no longer be fit for the new image.
1216 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1217 old description; we'll read a new one below. No need to do
1218 this on "follow-exec-mode new", as the old inferior stays
1219 around (its description is later cleared/refetched on
1220 restart). */
1221 target_clear_description ();
1222 }
6c95b8df
PA
1223
1224 gdb_assert (current_program_space == inf->pspace);
1225
1777feb0 1226 /* That a.out is now the one to use. */
6c95b8df
PA
1227 exec_file_attach (execd_pathname, 0);
1228
c1e56572
JK
1229 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1230 (Position Independent Executable) main symbol file will get applied by
1231 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1232 the breakpoints with the zero displacement. */
1233
7dcd53a0
TT
1234 symbol_file_add (execd_pathname,
1235 (inf->symfile_flags
1236 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1237 NULL, 0);
1238
7dcd53a0
TT
1239 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1240 set_initial_language ();
c906108c 1241
9107fc8d
PA
1242 /* If the target can specify a description, read it. Must do this
1243 after flipping to the new executable (because the target supplied
1244 description must be compatible with the executable's
1245 architecture, and the old executable may e.g., be 32-bit, while
1246 the new one 64-bit), and before anything involving memory or
1247 registers. */
1248 target_find_description ();
1249
268a4a75 1250 solib_create_inferior_hook (0);
c906108c 1251
4efc6507
DE
1252 jit_inferior_created_hook ();
1253
c1e56572
JK
1254 breakpoint_re_set ();
1255
c906108c
SS
1256 /* Reinsert all breakpoints. (Those which were symbolic have
1257 been reset to the proper address in the new a.out, thanks
1777feb0 1258 to symbol_file_command...). */
c906108c
SS
1259 insert_breakpoints ();
1260
1261 /* The next resume of this inferior should bring it to the shlib
1262 startup breakpoints. (If the user had also set bp's on
1263 "main" from the old (parent) process, then they'll auto-
1777feb0 1264 matically get reset there in the new process.). */
c906108c
SS
1265}
1266
c2829269
PA
1267/* The queue of threads that need to do a step-over operation to get
1268 past e.g., a breakpoint. What technique is used to step over the
1269 breakpoint/watchpoint does not matter -- all threads end up in the
1270 same queue, to maintain rough temporal order of execution, in order
1271 to avoid starvation, otherwise, we could e.g., find ourselves
1272 constantly stepping the same couple threads past their breakpoints
1273 over and over, if the single-step finish fast enough. */
1274struct thread_info *step_over_queue_head;
1275
6c4cfb24
PA
1276/* Bit flags indicating what the thread needs to step over. */
1277
1278enum step_over_what
1279 {
1280 /* Step over a breakpoint. */
1281 STEP_OVER_BREAKPOINT = 1,
1282
1283 /* Step past a non-continuable watchpoint, in order to let the
1284 instruction execute so we can evaluate the watchpoint
1285 expression. */
1286 STEP_OVER_WATCHPOINT = 2
1287 };
1288
963f9c80 1289/* Info about an instruction that is being stepped over. */
31e77af2
PA
1290
1291struct step_over_info
1292{
963f9c80
PA
1293 /* If we're stepping past a breakpoint, this is the address space
1294 and address of the instruction the breakpoint is set at. We'll
1295 skip inserting all breakpoints here. Valid iff ASPACE is
1296 non-NULL. */
31e77af2 1297 struct address_space *aspace;
31e77af2 1298 CORE_ADDR address;
963f9c80
PA
1299
1300 /* The instruction being stepped over triggers a nonsteppable
1301 watchpoint. If true, we'll skip inserting watchpoints. */
1302 int nonsteppable_watchpoint_p;
31e77af2
PA
1303};
1304
1305/* The step-over info of the location that is being stepped over.
1306
1307 Note that with async/breakpoint always-inserted mode, a user might
1308 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1309 being stepped over. As setting a new breakpoint inserts all
1310 breakpoints, we need to make sure the breakpoint being stepped over
1311 isn't inserted then. We do that by only clearing the step-over
1312 info when the step-over is actually finished (or aborted).
1313
1314 Presently GDB can only step over one breakpoint at any given time.
1315 Given threads that can't run code in the same address space as the
1316 breakpoint's can't really miss the breakpoint, GDB could be taught
1317 to step-over at most one breakpoint per address space (so this info
1318 could move to the address space object if/when GDB is extended).
1319 The set of breakpoints being stepped over will normally be much
1320 smaller than the set of all breakpoints, so a flag in the
1321 breakpoint location structure would be wasteful. A separate list
1322 also saves complexity and run-time, as otherwise we'd have to go
1323 through all breakpoint locations clearing their flag whenever we
1324 start a new sequence. Similar considerations weigh against storing
1325 this info in the thread object. Plus, not all step overs actually
1326 have breakpoint locations -- e.g., stepping past a single-step
1327 breakpoint, or stepping to complete a non-continuable
1328 watchpoint. */
1329static struct step_over_info step_over_info;
1330
1331/* Record the address of the breakpoint/instruction we're currently
1332 stepping over. */
1333
1334static void
963f9c80
PA
1335set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1336 int nonsteppable_watchpoint_p)
31e77af2
PA
1337{
1338 step_over_info.aspace = aspace;
1339 step_over_info.address = address;
963f9c80 1340 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1341}
1342
1343/* Called when we're not longer stepping over a breakpoint / an
1344 instruction, so all breakpoints are free to be (re)inserted. */
1345
1346static void
1347clear_step_over_info (void)
1348{
372316f1
PA
1349 if (debug_infrun)
1350 fprintf_unfiltered (gdb_stdlog,
1351 "infrun: clear_step_over_info\n");
31e77af2
PA
1352 step_over_info.aspace = NULL;
1353 step_over_info.address = 0;
963f9c80 1354 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1355}
1356
7f89fd65 1357/* See infrun.h. */
31e77af2
PA
1358
1359int
1360stepping_past_instruction_at (struct address_space *aspace,
1361 CORE_ADDR address)
1362{
1363 return (step_over_info.aspace != NULL
1364 && breakpoint_address_match (aspace, address,
1365 step_over_info.aspace,
1366 step_over_info.address));
1367}
1368
963f9c80
PA
1369/* See infrun.h. */
1370
1371int
1372stepping_past_nonsteppable_watchpoint (void)
1373{
1374 return step_over_info.nonsteppable_watchpoint_p;
1375}
1376
6cc83d2a
PA
1377/* Returns true if step-over info is valid. */
1378
1379static int
1380step_over_info_valid_p (void)
1381{
963f9c80
PA
1382 return (step_over_info.aspace != NULL
1383 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1384}
1385
c906108c 1386\f
237fc4c9
PA
1387/* Displaced stepping. */
1388
1389/* In non-stop debugging mode, we must take special care to manage
1390 breakpoints properly; in particular, the traditional strategy for
1391 stepping a thread past a breakpoint it has hit is unsuitable.
1392 'Displaced stepping' is a tactic for stepping one thread past a
1393 breakpoint it has hit while ensuring that other threads running
1394 concurrently will hit the breakpoint as they should.
1395
1396 The traditional way to step a thread T off a breakpoint in a
1397 multi-threaded program in all-stop mode is as follows:
1398
1399 a0) Initially, all threads are stopped, and breakpoints are not
1400 inserted.
1401 a1) We single-step T, leaving breakpoints uninserted.
1402 a2) We insert breakpoints, and resume all threads.
1403
1404 In non-stop debugging, however, this strategy is unsuitable: we
1405 don't want to have to stop all threads in the system in order to
1406 continue or step T past a breakpoint. Instead, we use displaced
1407 stepping:
1408
1409 n0) Initially, T is stopped, other threads are running, and
1410 breakpoints are inserted.
1411 n1) We copy the instruction "under" the breakpoint to a separate
1412 location, outside the main code stream, making any adjustments
1413 to the instruction, register, and memory state as directed by
1414 T's architecture.
1415 n2) We single-step T over the instruction at its new location.
1416 n3) We adjust the resulting register and memory state as directed
1417 by T's architecture. This includes resetting T's PC to point
1418 back into the main instruction stream.
1419 n4) We resume T.
1420
1421 This approach depends on the following gdbarch methods:
1422
1423 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1424 indicate where to copy the instruction, and how much space must
1425 be reserved there. We use these in step n1.
1426
1427 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1428 address, and makes any necessary adjustments to the instruction,
1429 register contents, and memory. We use this in step n1.
1430
1431 - gdbarch_displaced_step_fixup adjusts registers and memory after
1432 we have successfuly single-stepped the instruction, to yield the
1433 same effect the instruction would have had if we had executed it
1434 at its original address. We use this in step n3.
1435
1436 - gdbarch_displaced_step_free_closure provides cleanup.
1437
1438 The gdbarch_displaced_step_copy_insn and
1439 gdbarch_displaced_step_fixup functions must be written so that
1440 copying an instruction with gdbarch_displaced_step_copy_insn,
1441 single-stepping across the copied instruction, and then applying
1442 gdbarch_displaced_insn_fixup should have the same effects on the
1443 thread's memory and registers as stepping the instruction in place
1444 would have. Exactly which responsibilities fall to the copy and
1445 which fall to the fixup is up to the author of those functions.
1446
1447 See the comments in gdbarch.sh for details.
1448
1449 Note that displaced stepping and software single-step cannot
1450 currently be used in combination, although with some care I think
1451 they could be made to. Software single-step works by placing
1452 breakpoints on all possible subsequent instructions; if the
1453 displaced instruction is a PC-relative jump, those breakpoints
1454 could fall in very strange places --- on pages that aren't
1455 executable, or at addresses that are not proper instruction
1456 boundaries. (We do generally let other threads run while we wait
1457 to hit the software single-step breakpoint, and they might
1458 encounter such a corrupted instruction.) One way to work around
1459 this would be to have gdbarch_displaced_step_copy_insn fully
1460 simulate the effect of PC-relative instructions (and return NULL)
1461 on architectures that use software single-stepping.
1462
1463 In non-stop mode, we can have independent and simultaneous step
1464 requests, so more than one thread may need to simultaneously step
1465 over a breakpoint. The current implementation assumes there is
1466 only one scratch space per process. In this case, we have to
1467 serialize access to the scratch space. If thread A wants to step
1468 over a breakpoint, but we are currently waiting for some other
1469 thread to complete a displaced step, we leave thread A stopped and
1470 place it in the displaced_step_request_queue. Whenever a displaced
1471 step finishes, we pick the next thread in the queue and start a new
1472 displaced step operation on it. See displaced_step_prepare and
1473 displaced_step_fixup for details. */
1474
fc1cf338
PA
1475/* Per-inferior displaced stepping state. */
1476struct displaced_step_inferior_state
1477{
1478 /* Pointer to next in linked list. */
1479 struct displaced_step_inferior_state *next;
1480
1481 /* The process this displaced step state refers to. */
1482 int pid;
1483
3fc8eb30
PA
1484 /* True if preparing a displaced step ever failed. If so, we won't
1485 try displaced stepping for this inferior again. */
1486 int failed_before;
1487
fc1cf338
PA
1488 /* If this is not null_ptid, this is the thread carrying out a
1489 displaced single-step in process PID. This thread's state will
1490 require fixing up once it has completed its step. */
1491 ptid_t step_ptid;
1492
1493 /* The architecture the thread had when we stepped it. */
1494 struct gdbarch *step_gdbarch;
1495
1496 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1497 for post-step cleanup. */
1498 struct displaced_step_closure *step_closure;
1499
1500 /* The address of the original instruction, and the copy we
1501 made. */
1502 CORE_ADDR step_original, step_copy;
1503
1504 /* Saved contents of copy area. */
1505 gdb_byte *step_saved_copy;
1506};
1507
1508/* The list of states of processes involved in displaced stepping
1509 presently. */
1510static struct displaced_step_inferior_state *displaced_step_inferior_states;
1511
1512/* Get the displaced stepping state of process PID. */
1513
1514static struct displaced_step_inferior_state *
1515get_displaced_stepping_state (int pid)
1516{
1517 struct displaced_step_inferior_state *state;
1518
1519 for (state = displaced_step_inferior_states;
1520 state != NULL;
1521 state = state->next)
1522 if (state->pid == pid)
1523 return state;
1524
1525 return NULL;
1526}
1527
372316f1
PA
1528/* Returns true if any inferior has a thread doing a displaced
1529 step. */
1530
1531static int
1532displaced_step_in_progress_any_inferior (void)
1533{
1534 struct displaced_step_inferior_state *state;
1535
1536 for (state = displaced_step_inferior_states;
1537 state != NULL;
1538 state = state->next)
1539 if (!ptid_equal (state->step_ptid, null_ptid))
1540 return 1;
1541
1542 return 0;
1543}
1544
8f572e5c
PA
1545/* Return true if process PID has a thread doing a displaced step. */
1546
1547static int
1548displaced_step_in_progress (int pid)
1549{
1550 struct displaced_step_inferior_state *displaced;
1551
1552 displaced = get_displaced_stepping_state (pid);
1553 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1554 return 1;
1555
1556 return 0;
1557}
1558
fc1cf338
PA
1559/* Add a new displaced stepping state for process PID to the displaced
1560 stepping state list, or return a pointer to an already existing
1561 entry, if it already exists. Never returns NULL. */
1562
1563static struct displaced_step_inferior_state *
1564add_displaced_stepping_state (int pid)
1565{
1566 struct displaced_step_inferior_state *state;
1567
1568 for (state = displaced_step_inferior_states;
1569 state != NULL;
1570 state = state->next)
1571 if (state->pid == pid)
1572 return state;
237fc4c9 1573
8d749320 1574 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1575 state->pid = pid;
1576 state->next = displaced_step_inferior_states;
1577 displaced_step_inferior_states = state;
237fc4c9 1578
fc1cf338
PA
1579 return state;
1580}
1581
a42244db
YQ
1582/* If inferior is in displaced stepping, and ADDR equals to starting address
1583 of copy area, return corresponding displaced_step_closure. Otherwise,
1584 return NULL. */
1585
1586struct displaced_step_closure*
1587get_displaced_step_closure_by_addr (CORE_ADDR addr)
1588{
1589 struct displaced_step_inferior_state *displaced
1590 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1591
1592 /* If checking the mode of displaced instruction in copy area. */
1593 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1594 && (displaced->step_copy == addr))
1595 return displaced->step_closure;
1596
1597 return NULL;
1598}
1599
fc1cf338 1600/* Remove the displaced stepping state of process PID. */
237fc4c9 1601
fc1cf338
PA
1602static void
1603remove_displaced_stepping_state (int pid)
1604{
1605 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1606
fc1cf338
PA
1607 gdb_assert (pid != 0);
1608
1609 it = displaced_step_inferior_states;
1610 prev_next_p = &displaced_step_inferior_states;
1611 while (it)
1612 {
1613 if (it->pid == pid)
1614 {
1615 *prev_next_p = it->next;
1616 xfree (it);
1617 return;
1618 }
1619
1620 prev_next_p = &it->next;
1621 it = *prev_next_p;
1622 }
1623}
1624
1625static void
1626infrun_inferior_exit (struct inferior *inf)
1627{
1628 remove_displaced_stepping_state (inf->pid);
1629}
237fc4c9 1630
fff08868
HZ
1631/* If ON, and the architecture supports it, GDB will use displaced
1632 stepping to step over breakpoints. If OFF, or if the architecture
1633 doesn't support it, GDB will instead use the traditional
1634 hold-and-step approach. If AUTO (which is the default), GDB will
1635 decide which technique to use to step over breakpoints depending on
1636 which of all-stop or non-stop mode is active --- displaced stepping
1637 in non-stop mode; hold-and-step in all-stop mode. */
1638
72d0e2c5 1639static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1640
237fc4c9
PA
1641static void
1642show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1643 struct cmd_list_element *c,
1644 const char *value)
1645{
72d0e2c5 1646 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1647 fprintf_filtered (file,
1648 _("Debugger's willingness to use displaced stepping "
1649 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1650 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1651 else
3e43a32a
MS
1652 fprintf_filtered (file,
1653 _("Debugger's willingness to use displaced stepping "
1654 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1655}
1656
fff08868 1657/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1658 over breakpoints of thread TP. */
fff08868 1659
237fc4c9 1660static int
3fc8eb30 1661use_displaced_stepping (struct thread_info *tp)
237fc4c9 1662{
3fc8eb30
PA
1663 struct regcache *regcache = get_thread_regcache (tp->ptid);
1664 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1665 struct displaced_step_inferior_state *displaced_state;
1666
1667 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1668
fbea99ea
PA
1669 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1670 && target_is_non_stop_p ())
72d0e2c5 1671 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1672 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1673 && find_record_target () == NULL
1674 && (displaced_state == NULL
1675 || !displaced_state->failed_before));
237fc4c9
PA
1676}
1677
1678/* Clean out any stray displaced stepping state. */
1679static void
fc1cf338 1680displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1681{
1682 /* Indicate that there is no cleanup pending. */
fc1cf338 1683 displaced->step_ptid = null_ptid;
237fc4c9 1684
fc1cf338 1685 if (displaced->step_closure)
237fc4c9 1686 {
fc1cf338
PA
1687 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1688 displaced->step_closure);
1689 displaced->step_closure = NULL;
237fc4c9
PA
1690 }
1691}
1692
1693static void
fc1cf338 1694displaced_step_clear_cleanup (void *arg)
237fc4c9 1695{
fc1cf338
PA
1696 struct displaced_step_inferior_state *state = arg;
1697
1698 displaced_step_clear (state);
237fc4c9
PA
1699}
1700
1701/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1702void
1703displaced_step_dump_bytes (struct ui_file *file,
1704 const gdb_byte *buf,
1705 size_t len)
1706{
1707 int i;
1708
1709 for (i = 0; i < len; i++)
1710 fprintf_unfiltered (file, "%02x ", buf[i]);
1711 fputs_unfiltered ("\n", file);
1712}
1713
1714/* Prepare to single-step, using displaced stepping.
1715
1716 Note that we cannot use displaced stepping when we have a signal to
1717 deliver. If we have a signal to deliver and an instruction to step
1718 over, then after the step, there will be no indication from the
1719 target whether the thread entered a signal handler or ignored the
1720 signal and stepped over the instruction successfully --- both cases
1721 result in a simple SIGTRAP. In the first case we mustn't do a
1722 fixup, and in the second case we must --- but we can't tell which.
1723 Comments in the code for 'random signals' in handle_inferior_event
1724 explain how we handle this case instead.
1725
1726 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1727 stepped now; 0 if displaced stepping this thread got queued; or -1
1728 if this instruction can't be displaced stepped. */
1729
237fc4c9 1730static int
3fc8eb30 1731displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1732{
ad53cd71 1733 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1734 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1735 struct regcache *regcache = get_thread_regcache (ptid);
1736 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1737 CORE_ADDR original, copy;
1738 ULONGEST len;
1739 struct displaced_step_closure *closure;
fc1cf338 1740 struct displaced_step_inferior_state *displaced;
9e529e1d 1741 int status;
237fc4c9
PA
1742
1743 /* We should never reach this function if the architecture does not
1744 support displaced stepping. */
1745 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1746
c2829269
PA
1747 /* Nor if the thread isn't meant to step over a breakpoint. */
1748 gdb_assert (tp->control.trap_expected);
1749
c1e36e3e
PA
1750 /* Disable range stepping while executing in the scratch pad. We
1751 want a single-step even if executing the displaced instruction in
1752 the scratch buffer lands within the stepping range (e.g., a
1753 jump/branch). */
1754 tp->control.may_range_step = 0;
1755
fc1cf338
PA
1756 /* We have to displaced step one thread at a time, as we only have
1757 access to a single scratch space per inferior. */
237fc4c9 1758
fc1cf338
PA
1759 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1760
1761 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1762 {
1763 /* Already waiting for a displaced step to finish. Defer this
1764 request and place in queue. */
237fc4c9
PA
1765
1766 if (debug_displaced)
1767 fprintf_unfiltered (gdb_stdlog,
c2829269 1768 "displaced: deferring step of %s\n",
237fc4c9
PA
1769 target_pid_to_str (ptid));
1770
c2829269 1771 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1772 return 0;
1773 }
1774 else
1775 {
1776 if (debug_displaced)
1777 fprintf_unfiltered (gdb_stdlog,
1778 "displaced: stepping %s now\n",
1779 target_pid_to_str (ptid));
1780 }
1781
fc1cf338 1782 displaced_step_clear (displaced);
237fc4c9 1783
ad53cd71
PA
1784 old_cleanups = save_inferior_ptid ();
1785 inferior_ptid = ptid;
1786
515630c5 1787 original = regcache_read_pc (regcache);
237fc4c9
PA
1788
1789 copy = gdbarch_displaced_step_location (gdbarch);
1790 len = gdbarch_max_insn_length (gdbarch);
1791
1792 /* Save the original contents of the copy area. */
fc1cf338 1793 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1794 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1795 &displaced->step_saved_copy);
9e529e1d
JK
1796 status = target_read_memory (copy, displaced->step_saved_copy, len);
1797 if (status != 0)
1798 throw_error (MEMORY_ERROR,
1799 _("Error accessing memory address %s (%s) for "
1800 "displaced-stepping scratch space."),
1801 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1802 if (debug_displaced)
1803 {
5af949e3
UW
1804 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1805 paddress (gdbarch, copy));
fc1cf338
PA
1806 displaced_step_dump_bytes (gdb_stdlog,
1807 displaced->step_saved_copy,
1808 len);
237fc4c9
PA
1809 };
1810
1811 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1812 original, copy, regcache);
7f03bd92
PA
1813 if (closure == NULL)
1814 {
1815 /* The architecture doesn't know how or want to displaced step
1816 this instruction or instruction sequence. Fallback to
1817 stepping over the breakpoint in-line. */
1818 do_cleanups (old_cleanups);
1819 return -1;
1820 }
237fc4c9 1821
9f5a595d
UW
1822 /* Save the information we need to fix things up if the step
1823 succeeds. */
fc1cf338
PA
1824 displaced->step_ptid = ptid;
1825 displaced->step_gdbarch = gdbarch;
1826 displaced->step_closure = closure;
1827 displaced->step_original = original;
1828 displaced->step_copy = copy;
9f5a595d 1829
fc1cf338 1830 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1831
1832 /* Resume execution at the copy. */
515630c5 1833 regcache_write_pc (regcache, copy);
237fc4c9 1834
ad53cd71
PA
1835 discard_cleanups (ignore_cleanups);
1836
1837 do_cleanups (old_cleanups);
237fc4c9
PA
1838
1839 if (debug_displaced)
5af949e3
UW
1840 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1841 paddress (gdbarch, copy));
237fc4c9 1842
237fc4c9
PA
1843 return 1;
1844}
1845
3fc8eb30
PA
1846/* Wrapper for displaced_step_prepare_throw that disabled further
1847 attempts at displaced stepping if we get a memory error. */
1848
1849static int
1850displaced_step_prepare (ptid_t ptid)
1851{
1852 int prepared = -1;
1853
1854 TRY
1855 {
1856 prepared = displaced_step_prepare_throw (ptid);
1857 }
1858 CATCH (ex, RETURN_MASK_ERROR)
1859 {
1860 struct displaced_step_inferior_state *displaced_state;
1861
1862 if (ex.error != MEMORY_ERROR)
1863 throw_exception (ex);
1864
1865 if (debug_infrun)
1866 {
1867 fprintf_unfiltered (gdb_stdlog,
1868 "infrun: disabling displaced stepping: %s\n",
1869 ex.message);
1870 }
1871
1872 /* Be verbose if "set displaced-stepping" is "on", silent if
1873 "auto". */
1874 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1875 {
fd7dcb94 1876 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1877 ex.message);
1878 }
1879
1880 /* Disable further displaced stepping attempts. */
1881 displaced_state
1882 = get_displaced_stepping_state (ptid_get_pid (ptid));
1883 displaced_state->failed_before = 1;
1884 }
1885 END_CATCH
1886
1887 return prepared;
1888}
1889
237fc4c9 1890static void
3e43a32a
MS
1891write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1892 const gdb_byte *myaddr, int len)
237fc4c9
PA
1893{
1894 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1895
237fc4c9
PA
1896 inferior_ptid = ptid;
1897 write_memory (memaddr, myaddr, len);
1898 do_cleanups (ptid_cleanup);
1899}
1900
e2d96639
YQ
1901/* Restore the contents of the copy area for thread PTID. */
1902
1903static void
1904displaced_step_restore (struct displaced_step_inferior_state *displaced,
1905 ptid_t ptid)
1906{
1907 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1908
1909 write_memory_ptid (ptid, displaced->step_copy,
1910 displaced->step_saved_copy, len);
1911 if (debug_displaced)
1912 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1913 target_pid_to_str (ptid),
1914 paddress (displaced->step_gdbarch,
1915 displaced->step_copy));
1916}
1917
372316f1
PA
1918/* If we displaced stepped an instruction successfully, adjust
1919 registers and memory to yield the same effect the instruction would
1920 have had if we had executed it at its original address, and return
1921 1. If the instruction didn't complete, relocate the PC and return
1922 -1. If the thread wasn't displaced stepping, return 0. */
1923
1924static int
2ea28649 1925displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1926{
1927 struct cleanup *old_cleanups;
fc1cf338
PA
1928 struct displaced_step_inferior_state *displaced
1929 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1930 int ret;
fc1cf338
PA
1931
1932 /* Was any thread of this process doing a displaced step? */
1933 if (displaced == NULL)
372316f1 1934 return 0;
237fc4c9
PA
1935
1936 /* Was this event for the pid we displaced? */
fc1cf338
PA
1937 if (ptid_equal (displaced->step_ptid, null_ptid)
1938 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1939 return 0;
237fc4c9 1940
fc1cf338 1941 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1942
e2d96639 1943 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1944
cb71640d
PA
1945 /* Fixup may need to read memory/registers. Switch to the thread
1946 that we're fixing up. Also, target_stopped_by_watchpoint checks
1947 the current thread. */
1948 switch_to_thread (event_ptid);
1949
237fc4c9 1950 /* Did the instruction complete successfully? */
cb71640d
PA
1951 if (signal == GDB_SIGNAL_TRAP
1952 && !(target_stopped_by_watchpoint ()
1953 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1954 || target_have_steppable_watchpoint)))
237fc4c9
PA
1955 {
1956 /* Fix up the resulting state. */
fc1cf338
PA
1957 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1958 displaced->step_closure,
1959 displaced->step_original,
1960 displaced->step_copy,
1961 get_thread_regcache (displaced->step_ptid));
372316f1 1962 ret = 1;
237fc4c9
PA
1963 }
1964 else
1965 {
1966 /* Since the instruction didn't complete, all we can do is
1967 relocate the PC. */
515630c5
UW
1968 struct regcache *regcache = get_thread_regcache (event_ptid);
1969 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1970
fc1cf338 1971 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1972 regcache_write_pc (regcache, pc);
372316f1 1973 ret = -1;
237fc4c9
PA
1974 }
1975
1976 do_cleanups (old_cleanups);
1977
fc1cf338 1978 displaced->step_ptid = null_ptid;
372316f1
PA
1979
1980 return ret;
c2829269 1981}
1c5cfe86 1982
4d9d9d04
PA
1983/* Data to be passed around while handling an event. This data is
1984 discarded between events. */
1985struct execution_control_state
1986{
1987 ptid_t ptid;
1988 /* The thread that got the event, if this was a thread event; NULL
1989 otherwise. */
1990 struct thread_info *event_thread;
1991
1992 struct target_waitstatus ws;
1993 int stop_func_filled_in;
1994 CORE_ADDR stop_func_start;
1995 CORE_ADDR stop_func_end;
1996 const char *stop_func_name;
1997 int wait_some_more;
1998
1999 /* True if the event thread hit the single-step breakpoint of
2000 another thread. Thus the event doesn't cause a stop, the thread
2001 needs to be single-stepped past the single-step breakpoint before
2002 we can switch back to the original stepping thread. */
2003 int hit_singlestep_breakpoint;
2004};
2005
2006/* Clear ECS and set it to point at TP. */
c2829269
PA
2007
2008static void
4d9d9d04
PA
2009reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2010{
2011 memset (ecs, 0, sizeof (*ecs));
2012 ecs->event_thread = tp;
2013 ecs->ptid = tp->ptid;
2014}
2015
2016static void keep_going_pass_signal (struct execution_control_state *ecs);
2017static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2018static int keep_going_stepped_thread (struct thread_info *tp);
4d9d9d04 2019static int thread_still_needs_step_over (struct thread_info *tp);
3fc8eb30 2020static void stop_all_threads (void);
4d9d9d04
PA
2021
2022/* Are there any pending step-over requests? If so, run all we can
2023 now and return true. Otherwise, return false. */
2024
2025static int
c2829269
PA
2026start_step_over (void)
2027{
2028 struct thread_info *tp, *next;
2029
372316f1
PA
2030 /* Don't start a new step-over if we already have an in-line
2031 step-over operation ongoing. */
2032 if (step_over_info_valid_p ())
2033 return 0;
2034
c2829269 2035 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2036 {
4d9d9d04
PA
2037 struct execution_control_state ecss;
2038 struct execution_control_state *ecs = &ecss;
372316f1
PA
2039 enum step_over_what step_what;
2040 int must_be_in_line;
c2829269
PA
2041
2042 next = thread_step_over_chain_next (tp);
237fc4c9 2043
c2829269
PA
2044 /* If this inferior already has a displaced step in process,
2045 don't start a new one. */
4d9d9d04 2046 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2047 continue;
2048
372316f1
PA
2049 step_what = thread_still_needs_step_over (tp);
2050 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2051 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2052 && !use_displaced_stepping (tp)));
372316f1
PA
2053
2054 /* We currently stop all threads of all processes to step-over
2055 in-line. If we need to start a new in-line step-over, let
2056 any pending displaced steps finish first. */
2057 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2058 return 0;
2059
c2829269
PA
2060 thread_step_over_chain_remove (tp);
2061
2062 if (step_over_queue_head == NULL)
2063 {
2064 if (debug_infrun)
2065 fprintf_unfiltered (gdb_stdlog,
2066 "infrun: step-over queue now empty\n");
2067 }
2068
372316f1
PA
2069 if (tp->control.trap_expected
2070 || tp->resumed
2071 || tp->executing)
ad53cd71 2072 {
4d9d9d04
PA
2073 internal_error (__FILE__, __LINE__,
2074 "[%s] has inconsistent state: "
372316f1 2075 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2076 target_pid_to_str (tp->ptid),
2077 tp->control.trap_expected,
372316f1 2078 tp->resumed,
4d9d9d04 2079 tp->executing);
ad53cd71 2080 }
1c5cfe86 2081
4d9d9d04
PA
2082 if (debug_infrun)
2083 fprintf_unfiltered (gdb_stdlog,
2084 "infrun: resuming [%s] for step-over\n",
2085 target_pid_to_str (tp->ptid));
2086
2087 /* keep_going_pass_signal skips the step-over if the breakpoint
2088 is no longer inserted. In all-stop, we want to keep looking
2089 for a thread that needs a step-over instead of resuming TP,
2090 because we wouldn't be able to resume anything else until the
2091 target stops again. In non-stop, the resume always resumes
2092 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2093 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2094 continue;
8550d3b3 2095
4d9d9d04
PA
2096 switch_to_thread (tp->ptid);
2097 reset_ecs (ecs, tp);
2098 keep_going_pass_signal (ecs);
1c5cfe86 2099
4d9d9d04
PA
2100 if (!ecs->wait_some_more)
2101 error (_("Command aborted."));
1c5cfe86 2102
372316f1
PA
2103 gdb_assert (tp->resumed);
2104
2105 /* If we started a new in-line step-over, we're done. */
2106 if (step_over_info_valid_p ())
2107 {
2108 gdb_assert (tp->control.trap_expected);
2109 return 1;
2110 }
2111
fbea99ea 2112 if (!target_is_non_stop_p ())
4d9d9d04
PA
2113 {
2114 /* On all-stop, shouldn't have resumed unless we needed a
2115 step over. */
2116 gdb_assert (tp->control.trap_expected
2117 || tp->step_after_step_resume_breakpoint);
2118
2119 /* With remote targets (at least), in all-stop, we can't
2120 issue any further remote commands until the program stops
2121 again. */
2122 return 1;
1c5cfe86 2123 }
c2829269 2124
4d9d9d04
PA
2125 /* Either the thread no longer needed a step-over, or a new
2126 displaced stepping sequence started. Even in the latter
2127 case, continue looking. Maybe we can also start another
2128 displaced step on a thread of other process. */
237fc4c9 2129 }
4d9d9d04
PA
2130
2131 return 0;
237fc4c9
PA
2132}
2133
5231c1fd
PA
2134/* Update global variables holding ptids to hold NEW_PTID if they were
2135 holding OLD_PTID. */
2136static void
2137infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2138{
2139 struct displaced_step_request *it;
fc1cf338 2140 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2141
2142 if (ptid_equal (inferior_ptid, old_ptid))
2143 inferior_ptid = new_ptid;
2144
fc1cf338
PA
2145 for (displaced = displaced_step_inferior_states;
2146 displaced;
2147 displaced = displaced->next)
2148 {
2149 if (ptid_equal (displaced->step_ptid, old_ptid))
2150 displaced->step_ptid = new_ptid;
fc1cf338 2151 }
5231c1fd
PA
2152}
2153
237fc4c9
PA
2154\f
2155/* Resuming. */
c906108c
SS
2156
2157/* Things to clean up if we QUIT out of resume (). */
c906108c 2158static void
74b7792f 2159resume_cleanups (void *ignore)
c906108c 2160{
34b7e8a6
PA
2161 if (!ptid_equal (inferior_ptid, null_ptid))
2162 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2163
c906108c
SS
2164 normal_stop ();
2165}
2166
53904c9e
AC
2167static const char schedlock_off[] = "off";
2168static const char schedlock_on[] = "on";
2169static const char schedlock_step[] = "step";
40478521 2170static const char *const scheduler_enums[] = {
ef346e04
AC
2171 schedlock_off,
2172 schedlock_on,
2173 schedlock_step,
2174 NULL
2175};
920d2a44
AC
2176static const char *scheduler_mode = schedlock_off;
2177static void
2178show_scheduler_mode (struct ui_file *file, int from_tty,
2179 struct cmd_list_element *c, const char *value)
2180{
3e43a32a
MS
2181 fprintf_filtered (file,
2182 _("Mode for locking scheduler "
2183 "during execution is \"%s\".\n"),
920d2a44
AC
2184 value);
2185}
c906108c
SS
2186
2187static void
96baa820 2188set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2189{
eefe576e
AC
2190 if (!target_can_lock_scheduler)
2191 {
2192 scheduler_mode = schedlock_off;
2193 error (_("Target '%s' cannot support this command."), target_shortname);
2194 }
c906108c
SS
2195}
2196
d4db2f36
PA
2197/* True if execution commands resume all threads of all processes by
2198 default; otherwise, resume only threads of the current inferior
2199 process. */
2200int sched_multi = 0;
2201
2facfe5c
DD
2202/* Try to setup for software single stepping over the specified location.
2203 Return 1 if target_resume() should use hardware single step.
2204
2205 GDBARCH the current gdbarch.
2206 PC the location to step over. */
2207
2208static int
2209maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2210{
2211 int hw_step = 1;
2212
f02253f1
HZ
2213 if (execution_direction == EXEC_FORWARD
2214 && gdbarch_software_single_step_p (gdbarch)
99e40580 2215 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2216 {
99e40580 2217 hw_step = 0;
2facfe5c
DD
2218 }
2219 return hw_step;
2220}
c906108c 2221
f3263aa4
PA
2222/* See infrun.h. */
2223
09cee04b
PA
2224ptid_t
2225user_visible_resume_ptid (int step)
2226{
f3263aa4 2227 ptid_t resume_ptid;
09cee04b 2228
09cee04b
PA
2229 if (non_stop)
2230 {
2231 /* With non-stop mode on, threads are always handled
2232 individually. */
2233 resume_ptid = inferior_ptid;
2234 }
2235 else if ((scheduler_mode == schedlock_on)
03d46957 2236 || (scheduler_mode == schedlock_step && step))
09cee04b 2237 {
f3263aa4
PA
2238 /* User-settable 'scheduler' mode requires solo thread
2239 resume. */
09cee04b
PA
2240 resume_ptid = inferior_ptid;
2241 }
f3263aa4
PA
2242 else if (!sched_multi && target_supports_multi_process ())
2243 {
2244 /* Resume all threads of the current process (and none of other
2245 processes). */
2246 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2247 }
2248 else
2249 {
2250 /* Resume all threads of all processes. */
2251 resume_ptid = RESUME_ALL;
2252 }
09cee04b
PA
2253
2254 return resume_ptid;
2255}
2256
fbea99ea
PA
2257/* Return a ptid representing the set of threads that we will resume,
2258 in the perspective of the target, assuming run control handling
2259 does not require leaving some threads stopped (e.g., stepping past
2260 breakpoint). USER_STEP indicates whether we're about to start the
2261 target for a stepping command. */
2262
2263static ptid_t
2264internal_resume_ptid (int user_step)
2265{
2266 /* In non-stop, we always control threads individually. Note that
2267 the target may always work in non-stop mode even with "set
2268 non-stop off", in which case user_visible_resume_ptid could
2269 return a wildcard ptid. */
2270 if (target_is_non_stop_p ())
2271 return inferior_ptid;
2272 else
2273 return user_visible_resume_ptid (user_step);
2274}
2275
64ce06e4
PA
2276/* Wrapper for target_resume, that handles infrun-specific
2277 bookkeeping. */
2278
2279static void
2280do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2281{
2282 struct thread_info *tp = inferior_thread ();
2283
2284 /* Install inferior's terminal modes. */
2285 target_terminal_inferior ();
2286
2287 /* Avoid confusing the next resume, if the next stop/resume
2288 happens to apply to another thread. */
2289 tp->suspend.stop_signal = GDB_SIGNAL_0;
2290
8f572e5c
PA
2291 /* Advise target which signals may be handled silently.
2292
2293 If we have removed breakpoints because we are stepping over one
2294 in-line (in any thread), we need to receive all signals to avoid
2295 accidentally skipping a breakpoint during execution of a signal
2296 handler.
2297
2298 Likewise if we're displaced stepping, otherwise a trap for a
2299 breakpoint in a signal handler might be confused with the
2300 displaced step finishing. We don't make the displaced_step_fixup
2301 step distinguish the cases instead, because:
2302
2303 - a backtrace while stopped in the signal handler would show the
2304 scratch pad as frame older than the signal handler, instead of
2305 the real mainline code.
2306
2307 - when the thread is later resumed, the signal handler would
2308 return to the scratch pad area, which would no longer be
2309 valid. */
2310 if (step_over_info_valid_p ()
2311 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2312 target_pass_signals (0, NULL);
2313 else
2314 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2315
2316 target_resume (resume_ptid, step, sig);
2317}
2318
c906108c
SS
2319/* Resume the inferior, but allow a QUIT. This is useful if the user
2320 wants to interrupt some lengthy single-stepping operation
2321 (for child processes, the SIGINT goes to the inferior, and so
2322 we get a SIGINT random_signal, but for remote debugging and perhaps
2323 other targets, that's not true).
2324
c906108c
SS
2325 SIG is the signal to give the inferior (zero for none). */
2326void
64ce06e4 2327resume (enum gdb_signal sig)
c906108c 2328{
74b7792f 2329 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2330 struct regcache *regcache = get_current_regcache ();
2331 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2332 struct thread_info *tp = inferior_thread ();
515630c5 2333 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2334 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2335 ptid_t resume_ptid;
856e7dd6
PA
2336 /* This represents the user's step vs continue request. When
2337 deciding whether "set scheduler-locking step" applies, it's the
2338 user's intention that counts. */
2339 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2340 /* This represents what we'll actually request the target to do.
2341 This can decay from a step to a continue, if e.g., we need to
2342 implement single-stepping with breakpoints (software
2343 single-step). */
6b403daa 2344 int step;
c7e8a53c 2345
c2829269
PA
2346 gdb_assert (!thread_is_in_step_over_chain (tp));
2347
c906108c
SS
2348 QUIT;
2349
372316f1
PA
2350 if (tp->suspend.waitstatus_pending_p)
2351 {
2352 if (debug_infrun)
2353 {
2354 char *statstr;
2355
2356 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2357 fprintf_unfiltered (gdb_stdlog,
2358 "infrun: resume: thread %s has pending wait status %s "
2359 "(currently_stepping=%d).\n",
2360 target_pid_to_str (tp->ptid), statstr,
2361 currently_stepping (tp));
2362 xfree (statstr);
2363 }
2364
2365 tp->resumed = 1;
2366
2367 /* FIXME: What should we do if we are supposed to resume this
2368 thread with a signal? Maybe we should maintain a queue of
2369 pending signals to deliver. */
2370 if (sig != GDB_SIGNAL_0)
2371 {
fd7dcb94 2372 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2373 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2374 }
2375
2376 tp->suspend.stop_signal = GDB_SIGNAL_0;
2377 discard_cleanups (old_cleanups);
2378
2379 if (target_can_async_p ())
2380 target_async (1);
2381 return;
2382 }
2383
2384 tp->stepped_breakpoint = 0;
2385
6b403daa
PA
2386 /* Depends on stepped_breakpoint. */
2387 step = currently_stepping (tp);
2388
74609e71
YQ
2389 if (current_inferior ()->waiting_for_vfork_done)
2390 {
48f9886d
PA
2391 /* Don't try to single-step a vfork parent that is waiting for
2392 the child to get out of the shared memory region (by exec'ing
2393 or exiting). This is particularly important on software
2394 single-step archs, as the child process would trip on the
2395 software single step breakpoint inserted for the parent
2396 process. Since the parent will not actually execute any
2397 instruction until the child is out of the shared region (such
2398 are vfork's semantics), it is safe to simply continue it.
2399 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2400 the parent, and tell it to `keep_going', which automatically
2401 re-sets it stepping. */
74609e71
YQ
2402 if (debug_infrun)
2403 fprintf_unfiltered (gdb_stdlog,
2404 "infrun: resume : clear step\n");
a09dd441 2405 step = 0;
74609e71
YQ
2406 }
2407
527159b7 2408 if (debug_infrun)
237fc4c9 2409 fprintf_unfiltered (gdb_stdlog,
c9737c08 2410 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2411 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2412 step, gdb_signal_to_symbol_string (sig),
2413 tp->control.trap_expected,
0d9a9a5f
PA
2414 target_pid_to_str (inferior_ptid),
2415 paddress (gdbarch, pc));
c906108c 2416
c2c6d25f
JM
2417 /* Normally, by the time we reach `resume', the breakpoints are either
2418 removed or inserted, as appropriate. The exception is if we're sitting
2419 at a permanent breakpoint; we need to step over it, but permanent
2420 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2421 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2422 {
af48d08f
PA
2423 if (sig != GDB_SIGNAL_0)
2424 {
2425 /* We have a signal to pass to the inferior. The resume
2426 may, or may not take us to the signal handler. If this
2427 is a step, we'll need to stop in the signal handler, if
2428 there's one, (if the target supports stepping into
2429 handlers), or in the next mainline instruction, if
2430 there's no handler. If this is a continue, we need to be
2431 sure to run the handler with all breakpoints inserted.
2432 In all cases, set a breakpoint at the current address
2433 (where the handler returns to), and once that breakpoint
2434 is hit, resume skipping the permanent breakpoint. If
2435 that breakpoint isn't hit, then we've stepped into the
2436 signal handler (or hit some other event). We'll delete
2437 the step-resume breakpoint then. */
2438
2439 if (debug_infrun)
2440 fprintf_unfiltered (gdb_stdlog,
2441 "infrun: resume: skipping permanent breakpoint, "
2442 "deliver signal first\n");
2443
2444 clear_step_over_info ();
2445 tp->control.trap_expected = 0;
2446
2447 if (tp->control.step_resume_breakpoint == NULL)
2448 {
2449 /* Set a "high-priority" step-resume, as we don't want
2450 user breakpoints at PC to trigger (again) when this
2451 hits. */
2452 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2453 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2454
2455 tp->step_after_step_resume_breakpoint = step;
2456 }
2457
2458 insert_breakpoints ();
2459 }
2460 else
2461 {
2462 /* There's no signal to pass, we can go ahead and skip the
2463 permanent breakpoint manually. */
2464 if (debug_infrun)
2465 fprintf_unfiltered (gdb_stdlog,
2466 "infrun: resume: skipping permanent breakpoint\n");
2467 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2468 /* Update pc to reflect the new address from which we will
2469 execute instructions. */
2470 pc = regcache_read_pc (regcache);
2471
2472 if (step)
2473 {
2474 /* We've already advanced the PC, so the stepping part
2475 is done. Now we need to arrange for a trap to be
2476 reported to handle_inferior_event. Set a breakpoint
2477 at the current PC, and run to it. Don't update
2478 prev_pc, because if we end in
44a1ee51
PA
2479 switch_back_to_stepped_thread, we want the "expected
2480 thread advanced also" branch to be taken. IOW, we
2481 don't want this thread to step further from PC
af48d08f 2482 (overstep). */
1ac806b8 2483 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2484 insert_single_step_breakpoint (gdbarch, aspace, pc);
2485 insert_breakpoints ();
2486
fbea99ea 2487 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2488 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2489 discard_cleanups (old_cleanups);
372316f1 2490 tp->resumed = 1;
af48d08f
PA
2491 return;
2492 }
2493 }
6d350bb5 2494 }
c2c6d25f 2495
c1e36e3e
PA
2496 /* If we have a breakpoint to step over, make sure to do a single
2497 step only. Same if we have software watchpoints. */
2498 if (tp->control.trap_expected || bpstat_should_step ())
2499 tp->control.may_range_step = 0;
2500
237fc4c9
PA
2501 /* If enabled, step over breakpoints by executing a copy of the
2502 instruction at a different address.
2503
2504 We can't use displaced stepping when we have a signal to deliver;
2505 the comments for displaced_step_prepare explain why. The
2506 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2507 signals' explain what we do instead.
2508
2509 We can't use displaced stepping when we are waiting for vfork_done
2510 event, displaced stepping breaks the vfork child similarly as single
2511 step software breakpoint. */
3fc8eb30
PA
2512 if (tp->control.trap_expected
2513 && use_displaced_stepping (tp)
cb71640d 2514 && !step_over_info_valid_p ()
a493e3e2 2515 && sig == GDB_SIGNAL_0
74609e71 2516 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2517 {
3fc8eb30 2518 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2519
3fc8eb30 2520 if (prepared == 0)
d56b7306 2521 {
4d9d9d04
PA
2522 if (debug_infrun)
2523 fprintf_unfiltered (gdb_stdlog,
2524 "Got placed in step-over queue\n");
2525
2526 tp->control.trap_expected = 0;
d56b7306
VP
2527 discard_cleanups (old_cleanups);
2528 return;
2529 }
3fc8eb30
PA
2530 else if (prepared < 0)
2531 {
2532 /* Fallback to stepping over the breakpoint in-line. */
2533
2534 if (target_is_non_stop_p ())
2535 stop_all_threads ();
2536
2537 set_step_over_info (get_regcache_aspace (regcache),
2538 regcache_read_pc (regcache), 0);
2539
2540 step = maybe_software_singlestep (gdbarch, pc);
2541
2542 insert_breakpoints ();
2543 }
2544 else if (prepared > 0)
2545 {
2546 struct displaced_step_inferior_state *displaced;
99e40580 2547
3fc8eb30
PA
2548 /* Update pc to reflect the new address from which we will
2549 execute instructions due to displaced stepping. */
2550 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2551
3fc8eb30
PA
2552 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2553 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2554 displaced->step_closure);
2555 }
237fc4c9
PA
2556 }
2557
2facfe5c 2558 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2559 else if (step)
2facfe5c 2560 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2561
30852783
UW
2562 /* Currently, our software single-step implementation leads to different
2563 results than hardware single-stepping in one situation: when stepping
2564 into delivering a signal which has an associated signal handler,
2565 hardware single-step will stop at the first instruction of the handler,
2566 while software single-step will simply skip execution of the handler.
2567
2568 For now, this difference in behavior is accepted since there is no
2569 easy way to actually implement single-stepping into a signal handler
2570 without kernel support.
2571
2572 However, there is one scenario where this difference leads to follow-on
2573 problems: if we're stepping off a breakpoint by removing all breakpoints
2574 and then single-stepping. In this case, the software single-step
2575 behavior means that even if there is a *breakpoint* in the signal
2576 handler, GDB still would not stop.
2577
2578 Fortunately, we can at least fix this particular issue. We detect
2579 here the case where we are about to deliver a signal while software
2580 single-stepping with breakpoints removed. In this situation, we
2581 revert the decisions to remove all breakpoints and insert single-
2582 step breakpoints, and instead we install a step-resume breakpoint
2583 at the current address, deliver the signal without stepping, and
2584 once we arrive back at the step-resume breakpoint, actually step
2585 over the breakpoint we originally wanted to step over. */
34b7e8a6 2586 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2587 && sig != GDB_SIGNAL_0
2588 && step_over_info_valid_p ())
30852783
UW
2589 {
2590 /* If we have nested signals or a pending signal is delivered
2591 immediately after a handler returns, might might already have
2592 a step-resume breakpoint set on the earlier handler. We cannot
2593 set another step-resume breakpoint; just continue on until the
2594 original breakpoint is hit. */
2595 if (tp->control.step_resume_breakpoint == NULL)
2596 {
2c03e5be 2597 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2598 tp->step_after_step_resume_breakpoint = 1;
2599 }
2600
34b7e8a6 2601 delete_single_step_breakpoints (tp);
30852783 2602
31e77af2 2603 clear_step_over_info ();
30852783 2604 tp->control.trap_expected = 0;
31e77af2
PA
2605
2606 insert_breakpoints ();
30852783
UW
2607 }
2608
b0f16a3e
SM
2609 /* If STEP is set, it's a request to use hardware stepping
2610 facilities. But in that case, we should never
2611 use singlestep breakpoint. */
34b7e8a6 2612 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2613
fbea99ea 2614 /* Decide the set of threads to ask the target to resume. */
34b7e8a6 2615 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2616 && tp->control.trap_expected)
2617 {
2618 /* We're allowing a thread to run past a breakpoint it has
2619 hit, by single-stepping the thread with the breakpoint
2620 removed. In which case, we need to single-step only this
2621 thread, and keep others stopped, as they can miss this
2622 breakpoint if allowed to run. */
2623 resume_ptid = inferior_ptid;
2624 }
fbea99ea
PA
2625 else
2626 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2627
7f5ef605
PA
2628 if (execution_direction != EXEC_REVERSE
2629 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2630 {
372316f1
PA
2631 /* There are two cases where we currently need to step a
2632 breakpoint instruction when we have a signal to deliver:
2633
2634 - See handle_signal_stop where we handle random signals that
2635 could take out us out of the stepping range. Normally, in
2636 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2637 signal handler with a breakpoint at PC, but there are cases
2638 where we should _always_ single-step, even if we have a
2639 step-resume breakpoint, like when a software watchpoint is
2640 set. Assuming single-stepping and delivering a signal at the
2641 same time would takes us to the signal handler, then we could
2642 have removed the breakpoint at PC to step over it. However,
2643 some hardware step targets (like e.g., Mac OS) can't step
2644 into signal handlers, and for those, we need to leave the
2645 breakpoint at PC inserted, as otherwise if the handler
2646 recurses and executes PC again, it'll miss the breakpoint.
2647 So we leave the breakpoint inserted anyway, but we need to
2648 record that we tried to step a breakpoint instruction, so
372316f1
PA
2649 that adjust_pc_after_break doesn't end up confused.
2650
2651 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2652 in one thread after another thread that was stepping had been
2653 momentarily paused for a step-over. When we re-resume the
2654 stepping thread, it may be resumed from that address with a
2655 breakpoint that hasn't trapped yet. Seen with
2656 gdb.threads/non-stop-fair-events.exp, on targets that don't
2657 do displaced stepping. */
2658
2659 if (debug_infrun)
2660 fprintf_unfiltered (gdb_stdlog,
2661 "infrun: resume: [%s] stepped breakpoint\n",
2662 target_pid_to_str (tp->ptid));
7f5ef605
PA
2663
2664 tp->stepped_breakpoint = 1;
2665
b0f16a3e
SM
2666 /* Most targets can step a breakpoint instruction, thus
2667 executing it normally. But if this one cannot, just
2668 continue and we will hit it anyway. */
7f5ef605 2669 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2670 step = 0;
2671 }
ef5cf84e 2672
b0f16a3e 2673 if (debug_displaced
cb71640d 2674 && tp->control.trap_expected
3fc8eb30 2675 && use_displaced_stepping (tp)
cb71640d 2676 && !step_over_info_valid_p ())
b0f16a3e 2677 {
d9b67d9f 2678 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2679 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2680 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2681 gdb_byte buf[4];
2682
2683 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2684 paddress (resume_gdbarch, actual_pc));
2685 read_memory (actual_pc, buf, sizeof (buf));
2686 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2687 }
237fc4c9 2688
b0f16a3e
SM
2689 if (tp->control.may_range_step)
2690 {
2691 /* If we're resuming a thread with the PC out of the step
2692 range, then we're doing some nested/finer run control
2693 operation, like stepping the thread out of the dynamic
2694 linker or the displaced stepping scratch pad. We
2695 shouldn't have allowed a range step then. */
2696 gdb_assert (pc_in_thread_step_range (pc, tp));
2697 }
c1e36e3e 2698
64ce06e4 2699 do_target_resume (resume_ptid, step, sig);
372316f1 2700 tp->resumed = 1;
c906108c
SS
2701 discard_cleanups (old_cleanups);
2702}
2703\f
237fc4c9 2704/* Proceeding. */
c906108c
SS
2705
2706/* Clear out all variables saying what to do when inferior is continued.
2707 First do this, then set the ones you want, then call `proceed'. */
2708
a7212384
UW
2709static void
2710clear_proceed_status_thread (struct thread_info *tp)
c906108c 2711{
a7212384
UW
2712 if (debug_infrun)
2713 fprintf_unfiltered (gdb_stdlog,
2714 "infrun: clear_proceed_status_thread (%s)\n",
2715 target_pid_to_str (tp->ptid));
d6b48e9c 2716
372316f1
PA
2717 /* If we're starting a new sequence, then the previous finished
2718 single-step is no longer relevant. */
2719 if (tp->suspend.waitstatus_pending_p)
2720 {
2721 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2722 {
2723 if (debug_infrun)
2724 fprintf_unfiltered (gdb_stdlog,
2725 "infrun: clear_proceed_status: pending "
2726 "event of %s was a finished step. "
2727 "Discarding.\n",
2728 target_pid_to_str (tp->ptid));
2729
2730 tp->suspend.waitstatus_pending_p = 0;
2731 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2732 }
2733 else if (debug_infrun)
2734 {
2735 char *statstr;
2736
2737 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2738 fprintf_unfiltered (gdb_stdlog,
2739 "infrun: clear_proceed_status_thread: thread %s "
2740 "has pending wait status %s "
2741 "(currently_stepping=%d).\n",
2742 target_pid_to_str (tp->ptid), statstr,
2743 currently_stepping (tp));
2744 xfree (statstr);
2745 }
2746 }
2747
70509625
PA
2748 /* If this signal should not be seen by program, give it zero.
2749 Used for debugging signals. */
2750 if (!signal_pass_state (tp->suspend.stop_signal))
2751 tp->suspend.stop_signal = GDB_SIGNAL_0;
2752
243a9253
PA
2753 thread_fsm_delete (tp->thread_fsm);
2754 tp->thread_fsm = NULL;
2755
16c381f0
JK
2756 tp->control.trap_expected = 0;
2757 tp->control.step_range_start = 0;
2758 tp->control.step_range_end = 0;
c1e36e3e 2759 tp->control.may_range_step = 0;
16c381f0
JK
2760 tp->control.step_frame_id = null_frame_id;
2761 tp->control.step_stack_frame_id = null_frame_id;
2762 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2763 tp->control.step_start_function = NULL;
a7212384 2764 tp->stop_requested = 0;
4e1c45ea 2765
16c381f0 2766 tp->control.stop_step = 0;
32400beb 2767
16c381f0 2768 tp->control.proceed_to_finish = 0;
414c69f7 2769
17b2616c 2770 tp->control.command_interp = NULL;
856e7dd6 2771 tp->control.stepping_command = 0;
17b2616c 2772
a7212384 2773 /* Discard any remaining commands or status from previous stop. */
16c381f0 2774 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2775}
32400beb 2776
a7212384 2777void
70509625 2778clear_proceed_status (int step)
a7212384 2779{
6c95b8df
PA
2780 if (!non_stop)
2781 {
70509625
PA
2782 struct thread_info *tp;
2783 ptid_t resume_ptid;
2784
2785 resume_ptid = user_visible_resume_ptid (step);
2786
2787 /* In all-stop mode, delete the per-thread status of all threads
2788 we're about to resume, implicitly and explicitly. */
2789 ALL_NON_EXITED_THREADS (tp)
2790 {
2791 if (!ptid_match (tp->ptid, resume_ptid))
2792 continue;
2793 clear_proceed_status_thread (tp);
2794 }
6c95b8df
PA
2795 }
2796
a7212384
UW
2797 if (!ptid_equal (inferior_ptid, null_ptid))
2798 {
2799 struct inferior *inferior;
2800
2801 if (non_stop)
2802 {
6c95b8df
PA
2803 /* If in non-stop mode, only delete the per-thread status of
2804 the current thread. */
a7212384
UW
2805 clear_proceed_status_thread (inferior_thread ());
2806 }
6c95b8df 2807
d6b48e9c 2808 inferior = current_inferior ();
16c381f0 2809 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2810 }
2811
c906108c 2812 stop_after_trap = 0;
f3b1572e
PA
2813
2814 observer_notify_about_to_proceed ();
c906108c
SS
2815}
2816
99619bea
PA
2817/* Returns true if TP is still stopped at a breakpoint that needs
2818 stepping-over in order to make progress. If the breakpoint is gone
2819 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2820
2821static int
6c4cfb24 2822thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2823{
2824 if (tp->stepping_over_breakpoint)
2825 {
2826 struct regcache *regcache = get_thread_regcache (tp->ptid);
2827
2828 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2829 regcache_read_pc (regcache))
2830 == ordinary_breakpoint_here)
99619bea
PA
2831 return 1;
2832
2833 tp->stepping_over_breakpoint = 0;
2834 }
2835
2836 return 0;
2837}
2838
6c4cfb24
PA
2839/* Check whether thread TP still needs to start a step-over in order
2840 to make progress when resumed. Returns an bitwise or of enum
2841 step_over_what bits, indicating what needs to be stepped over. */
2842
2843static int
2844thread_still_needs_step_over (struct thread_info *tp)
2845{
2846 struct inferior *inf = find_inferior_ptid (tp->ptid);
2847 int what = 0;
2848
2849 if (thread_still_needs_step_over_bp (tp))
2850 what |= STEP_OVER_BREAKPOINT;
2851
2852 if (tp->stepping_over_watchpoint
2853 && !target_have_steppable_watchpoint)
2854 what |= STEP_OVER_WATCHPOINT;
2855
2856 return what;
2857}
2858
483805cf
PA
2859/* Returns true if scheduler locking applies. STEP indicates whether
2860 we're about to do a step/next-like command to a thread. */
2861
2862static int
856e7dd6 2863schedlock_applies (struct thread_info *tp)
483805cf
PA
2864{
2865 return (scheduler_mode == schedlock_on
2866 || (scheduler_mode == schedlock_step
856e7dd6 2867 && tp->control.stepping_command));
483805cf
PA
2868}
2869
c906108c
SS
2870/* Basic routine for continuing the program in various fashions.
2871
2872 ADDR is the address to resume at, or -1 for resume where stopped.
2873 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2874 or -1 for act according to how it stopped.
c906108c 2875 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2876 -1 means return after that and print nothing.
2877 You should probably set various step_... variables
2878 before calling here, if you are stepping.
c906108c
SS
2879
2880 You should call clear_proceed_status before calling proceed. */
2881
2882void
64ce06e4 2883proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2884{
e58b0e63
PA
2885 struct regcache *regcache;
2886 struct gdbarch *gdbarch;
4e1c45ea 2887 struct thread_info *tp;
e58b0e63 2888 CORE_ADDR pc;
6c95b8df 2889 struct address_space *aspace;
4d9d9d04
PA
2890 ptid_t resume_ptid;
2891 struct execution_control_state ecss;
2892 struct execution_control_state *ecs = &ecss;
2893 struct cleanup *old_chain;
2894 int started;
c906108c 2895
e58b0e63
PA
2896 /* If we're stopped at a fork/vfork, follow the branch set by the
2897 "set follow-fork-mode" command; otherwise, we'll just proceed
2898 resuming the current thread. */
2899 if (!follow_fork ())
2900 {
2901 /* The target for some reason decided not to resume. */
2902 normal_stop ();
f148b27e
PA
2903 if (target_can_async_p ())
2904 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2905 return;
2906 }
2907
842951eb
PA
2908 /* We'll update this if & when we switch to a new thread. */
2909 previous_inferior_ptid = inferior_ptid;
2910
e58b0e63
PA
2911 regcache = get_current_regcache ();
2912 gdbarch = get_regcache_arch (regcache);
6c95b8df 2913 aspace = get_regcache_aspace (regcache);
e58b0e63 2914 pc = regcache_read_pc (regcache);
2adfaa28 2915 tp = inferior_thread ();
e58b0e63 2916
99619bea
PA
2917 /* Fill in with reasonable starting values. */
2918 init_thread_stepping_state (tp);
2919
c2829269
PA
2920 gdb_assert (!thread_is_in_step_over_chain (tp));
2921
2acceee2 2922 if (addr == (CORE_ADDR) -1)
c906108c 2923 {
af48d08f
PA
2924 if (pc == stop_pc
2925 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2926 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2927 /* There is a breakpoint at the address we will resume at,
2928 step one instruction before inserting breakpoints so that
2929 we do not stop right away (and report a second hit at this
b2175913
MS
2930 breakpoint).
2931
2932 Note, we don't do this in reverse, because we won't
2933 actually be executing the breakpoint insn anyway.
2934 We'll be (un-)executing the previous instruction. */
99619bea 2935 tp->stepping_over_breakpoint = 1;
515630c5
UW
2936 else if (gdbarch_single_step_through_delay_p (gdbarch)
2937 && gdbarch_single_step_through_delay (gdbarch,
2938 get_current_frame ()))
3352ef37
AC
2939 /* We stepped onto an instruction that needs to be stepped
2940 again before re-inserting the breakpoint, do so. */
99619bea 2941 tp->stepping_over_breakpoint = 1;
c906108c
SS
2942 }
2943 else
2944 {
515630c5 2945 regcache_write_pc (regcache, addr);
c906108c
SS
2946 }
2947
70509625
PA
2948 if (siggnal != GDB_SIGNAL_DEFAULT)
2949 tp->suspend.stop_signal = siggnal;
2950
17b2616c
PA
2951 /* Record the interpreter that issued the execution command that
2952 caused this thread to resume. If the top level interpreter is
2953 MI/async, and the execution command was a CLI command
2954 (next/step/etc.), we'll want to print stop event output to the MI
2955 console channel (the stepped-to line, etc.), as if the user
2956 entered the execution command on a real GDB console. */
4d9d9d04
PA
2957 tp->control.command_interp = command_interp ();
2958
2959 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
2960
2961 /* If an exception is thrown from this point on, make sure to
2962 propagate GDB's knowledge of the executing state to the
2963 frontend/user running state. */
2964 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
2965
2966 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2967 threads (e.g., we might need to set threads stepping over
2968 breakpoints first), from the user/frontend's point of view, all
2969 threads in RESUME_PTID are now running. Unless we're calling an
2970 inferior function, as in that case we pretend the inferior
2971 doesn't run at all. */
2972 if (!tp->control.in_infcall)
2973 set_running (resume_ptid, 1);
17b2616c 2974
527159b7 2975 if (debug_infrun)
8a9de0e4 2976 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2977 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2978 paddress (gdbarch, addr),
64ce06e4 2979 gdb_signal_to_symbol_string (siggnal));
527159b7 2980
4d9d9d04
PA
2981 annotate_starting ();
2982
2983 /* Make sure that output from GDB appears before output from the
2984 inferior. */
2985 gdb_flush (gdb_stdout);
2986
2987 /* In a multi-threaded task we may select another thread and
2988 then continue or step.
2989
2990 But if a thread that we're resuming had stopped at a breakpoint,
2991 it will immediately cause another breakpoint stop without any
2992 execution (i.e. it will report a breakpoint hit incorrectly). So
2993 we must step over it first.
2994
2995 Look for threads other than the current (TP) that reported a
2996 breakpoint hit and haven't been resumed yet since. */
2997
2998 /* If scheduler locking applies, we can avoid iterating over all
2999 threads. */
3000 if (!non_stop && !schedlock_applies (tp))
94cc34af 3001 {
4d9d9d04
PA
3002 struct thread_info *current = tp;
3003
3004 ALL_NON_EXITED_THREADS (tp)
3005 {
3006 /* Ignore the current thread here. It's handled
3007 afterwards. */
3008 if (tp == current)
3009 continue;
99619bea 3010
4d9d9d04
PA
3011 /* Ignore threads of processes we're not resuming. */
3012 if (!ptid_match (tp->ptid, resume_ptid))
3013 continue;
c906108c 3014
4d9d9d04
PA
3015 if (!thread_still_needs_step_over (tp))
3016 continue;
3017
3018 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3019
99619bea
PA
3020 if (debug_infrun)
3021 fprintf_unfiltered (gdb_stdlog,
3022 "infrun: need to step-over [%s] first\n",
4d9d9d04 3023 target_pid_to_str (tp->ptid));
99619bea 3024
4d9d9d04 3025 thread_step_over_chain_enqueue (tp);
2adfaa28 3026 }
31e77af2 3027
4d9d9d04 3028 tp = current;
30852783
UW
3029 }
3030
4d9d9d04
PA
3031 /* Enqueue the current thread last, so that we move all other
3032 threads over their breakpoints first. */
3033 if (tp->stepping_over_breakpoint)
3034 thread_step_over_chain_enqueue (tp);
30852783 3035
4d9d9d04
PA
3036 /* If the thread isn't started, we'll still need to set its prev_pc,
3037 so that switch_back_to_stepped_thread knows the thread hasn't
3038 advanced. Must do this before resuming any thread, as in
3039 all-stop/remote, once we resume we can't send any other packet
3040 until the target stops again. */
3041 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3042
4d9d9d04 3043 started = start_step_over ();
c906108c 3044
4d9d9d04
PA
3045 if (step_over_info_valid_p ())
3046 {
3047 /* Either this thread started a new in-line step over, or some
3048 other thread was already doing one. In either case, don't
3049 resume anything else until the step-over is finished. */
3050 }
fbea99ea 3051 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3052 {
3053 /* A new displaced stepping sequence was started. In all-stop,
3054 we can't talk to the target anymore until it next stops. */
3055 }
fbea99ea
PA
3056 else if (!non_stop && target_is_non_stop_p ())
3057 {
3058 /* In all-stop, but the target is always in non-stop mode.
3059 Start all other threads that are implicitly resumed too. */
3060 ALL_NON_EXITED_THREADS (tp)
3061 {
3062 /* Ignore threads of processes we're not resuming. */
3063 if (!ptid_match (tp->ptid, resume_ptid))
3064 continue;
3065
3066 if (tp->resumed)
3067 {
3068 if (debug_infrun)
3069 fprintf_unfiltered (gdb_stdlog,
3070 "infrun: proceed: [%s] resumed\n",
3071 target_pid_to_str (tp->ptid));
3072 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3073 continue;
3074 }
3075
3076 if (thread_is_in_step_over_chain (tp))
3077 {
3078 if (debug_infrun)
3079 fprintf_unfiltered (gdb_stdlog,
3080 "infrun: proceed: [%s] needs step-over\n",
3081 target_pid_to_str (tp->ptid));
3082 continue;
3083 }
3084
3085 if (debug_infrun)
3086 fprintf_unfiltered (gdb_stdlog,
3087 "infrun: proceed: resuming %s\n",
3088 target_pid_to_str (tp->ptid));
3089
3090 reset_ecs (ecs, tp);
3091 switch_to_thread (tp->ptid);
3092 keep_going_pass_signal (ecs);
3093 if (!ecs->wait_some_more)
fd7dcb94 3094 error (_("Command aborted."));
fbea99ea
PA
3095 }
3096 }
372316f1 3097 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3098 {
3099 /* The thread wasn't started, and isn't queued, run it now. */
3100 reset_ecs (ecs, tp);
3101 switch_to_thread (tp->ptid);
3102 keep_going_pass_signal (ecs);
3103 if (!ecs->wait_some_more)
fd7dcb94 3104 error (_("Command aborted."));
4d9d9d04 3105 }
c906108c 3106
4d9d9d04 3107 discard_cleanups (old_chain);
c906108c 3108
0b333c5e
PA
3109 /* Tell the event loop to wait for it to stop. If the target
3110 supports asynchronous execution, it'll do this from within
3111 target_resume. */
362646f5 3112 if (!target_can_async_p ())
0b333c5e 3113 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3114}
c906108c
SS
3115\f
3116
3117/* Start remote-debugging of a machine over a serial link. */
96baa820 3118
c906108c 3119void
8621d6a9 3120start_remote (int from_tty)
c906108c 3121{
d6b48e9c 3122 struct inferior *inferior;
d6b48e9c
PA
3123
3124 inferior = current_inferior ();
16c381f0 3125 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3126
1777feb0 3127 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3128 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3129 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3130 nothing is returned (instead of just blocking). Because of this,
3131 targets expecting an immediate response need to, internally, set
3132 things up so that the target_wait() is forced to eventually
1777feb0 3133 timeout. */
6426a772
JM
3134 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3135 differentiate to its caller what the state of the target is after
3136 the initial open has been performed. Here we're assuming that
3137 the target has stopped. It should be possible to eventually have
3138 target_open() return to the caller an indication that the target
3139 is currently running and GDB state should be set to the same as
1777feb0 3140 for an async run. */
e4c8541f 3141 wait_for_inferior ();
8621d6a9
DJ
3142
3143 /* Now that the inferior has stopped, do any bookkeeping like
3144 loading shared libraries. We want to do this before normal_stop,
3145 so that the displayed frame is up to date. */
3146 post_create_inferior (&current_target, from_tty);
3147
6426a772 3148 normal_stop ();
c906108c
SS
3149}
3150
3151/* Initialize static vars when a new inferior begins. */
3152
3153void
96baa820 3154init_wait_for_inferior (void)
c906108c
SS
3155{
3156 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3157
c906108c
SS
3158 breakpoint_init_inferior (inf_starting);
3159
70509625 3160 clear_proceed_status (0);
9f976b41 3161
ca005067 3162 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3163
842951eb 3164 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3165
edb3359d
DJ
3166 /* Discard any skipped inlined frames. */
3167 clear_inline_frame_state (minus_one_ptid);
c906108c 3168}
237fc4c9 3169
c906108c 3170\f
488f131b 3171
ec9499be 3172static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3173
568d6575
UW
3174static void handle_step_into_function (struct gdbarch *gdbarch,
3175 struct execution_control_state *ecs);
3176static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3177 struct execution_control_state *ecs);
4f5d7f63 3178static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3179static void check_exception_resume (struct execution_control_state *,
28106bc2 3180 struct frame_info *);
611c83ae 3181
bdc36728 3182static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3183static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3184static void keep_going (struct execution_control_state *ecs);
94c57d6a 3185static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3186static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3187
252fbfc8
PA
3188/* Callback for iterate over threads. If the thread is stopped, but
3189 the user/frontend doesn't know about that yet, go through
3190 normal_stop, as if the thread had just stopped now. ARG points at
3191 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3192 ptid_is_pid(PTID) is true, applies to all threads of the process
3193 pointed at by PTID. Otherwise, apply only to the thread pointed by
3194 PTID. */
3195
3196static int
3197infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3198{
3199 ptid_t ptid = * (ptid_t *) arg;
3200
3201 if ((ptid_equal (info->ptid, ptid)
3202 || ptid_equal (minus_one_ptid, ptid)
3203 || (ptid_is_pid (ptid)
3204 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3205 && is_running (info->ptid)
3206 && !is_executing (info->ptid))
3207 {
3208 struct cleanup *old_chain;
3209 struct execution_control_state ecss;
3210 struct execution_control_state *ecs = &ecss;
3211
3212 memset (ecs, 0, sizeof (*ecs));
3213
3214 old_chain = make_cleanup_restore_current_thread ();
3215
f15cb84a
YQ
3216 overlay_cache_invalid = 1;
3217 /* Flush target cache before starting to handle each event.
3218 Target was running and cache could be stale. This is just a
3219 heuristic. Running threads may modify target memory, but we
3220 don't get any event. */
3221 target_dcache_invalidate ();
3222
252fbfc8
PA
3223 /* Go through handle_inferior_event/normal_stop, so we always
3224 have consistent output as if the stop event had been
3225 reported. */
3226 ecs->ptid = info->ptid;
243a9253 3227 ecs->event_thread = info;
252fbfc8 3228 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3229 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3230
3231 handle_inferior_event (ecs);
3232
3233 if (!ecs->wait_some_more)
3234 {
243a9253
PA
3235 /* Cancel any running execution command. */
3236 thread_cancel_execution_command (info);
3237
252fbfc8 3238 normal_stop ();
252fbfc8
PA
3239 }
3240
3241 do_cleanups (old_chain);
3242 }
3243
3244 return 0;
3245}
3246
3247/* This function is attached as a "thread_stop_requested" observer.
3248 Cleanup local state that assumed the PTID was to be resumed, and
3249 report the stop to the frontend. */
3250
2c0b251b 3251static void
252fbfc8
PA
3252infrun_thread_stop_requested (ptid_t ptid)
3253{
c2829269 3254 struct thread_info *tp;
252fbfc8 3255
c2829269
PA
3256 /* PTID was requested to stop. Remove matching threads from the
3257 step-over queue, so we don't try to resume them
3258 automatically. */
3259 ALL_NON_EXITED_THREADS (tp)
3260 if (ptid_match (tp->ptid, ptid))
3261 {
3262 if (thread_is_in_step_over_chain (tp))
3263 thread_step_over_chain_remove (tp);
3264 }
252fbfc8
PA
3265
3266 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3267}
3268
a07daef3
PA
3269static void
3270infrun_thread_thread_exit (struct thread_info *tp, int silent)
3271{
3272 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3273 nullify_last_target_wait_ptid ();
3274}
3275
0cbcdb96
PA
3276/* Delete the step resume, single-step and longjmp/exception resume
3277 breakpoints of TP. */
4e1c45ea 3278
0cbcdb96
PA
3279static void
3280delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3281{
0cbcdb96
PA
3282 delete_step_resume_breakpoint (tp);
3283 delete_exception_resume_breakpoint (tp);
34b7e8a6 3284 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3285}
3286
0cbcdb96
PA
3287/* If the target still has execution, call FUNC for each thread that
3288 just stopped. In all-stop, that's all the non-exited threads; in
3289 non-stop, that's the current thread, only. */
3290
3291typedef void (*for_each_just_stopped_thread_callback_func)
3292 (struct thread_info *tp);
4e1c45ea
PA
3293
3294static void
0cbcdb96 3295for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3296{
0cbcdb96 3297 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3298 return;
3299
fbea99ea 3300 if (target_is_non_stop_p ())
4e1c45ea 3301 {
0cbcdb96
PA
3302 /* If in non-stop mode, only the current thread stopped. */
3303 func (inferior_thread ());
4e1c45ea
PA
3304 }
3305 else
0cbcdb96
PA
3306 {
3307 struct thread_info *tp;
3308
3309 /* In all-stop mode, all threads have stopped. */
3310 ALL_NON_EXITED_THREADS (tp)
3311 {
3312 func (tp);
3313 }
3314 }
3315}
3316
3317/* Delete the step resume and longjmp/exception resume breakpoints of
3318 the threads that just stopped. */
3319
3320static void
3321delete_just_stopped_threads_infrun_breakpoints (void)
3322{
3323 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3324}
3325
3326/* Delete the single-step breakpoints of the threads that just
3327 stopped. */
7c16b83e 3328
34b7e8a6
PA
3329static void
3330delete_just_stopped_threads_single_step_breakpoints (void)
3331{
3332 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3333}
3334
1777feb0 3335/* A cleanup wrapper. */
4e1c45ea
PA
3336
3337static void
0cbcdb96 3338delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3339{
0cbcdb96 3340 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3341}
3342
221e1a37 3343/* See infrun.h. */
223698f8 3344
221e1a37 3345void
223698f8
DE
3346print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3347 const struct target_waitstatus *ws)
3348{
3349 char *status_string = target_waitstatus_to_string (ws);
3350 struct ui_file *tmp_stream = mem_fileopen ();
3351 char *text;
223698f8
DE
3352
3353 /* The text is split over several lines because it was getting too long.
3354 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3355 output as a unit; we want only one timestamp printed if debug_timestamp
3356 is set. */
3357
3358 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3359 "infrun: target_wait (%d.%ld.%ld",
3360 ptid_get_pid (waiton_ptid),
3361 ptid_get_lwp (waiton_ptid),
3362 ptid_get_tid (waiton_ptid));
dfd4cc63 3363 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3364 fprintf_unfiltered (tmp_stream,
3365 " [%s]", target_pid_to_str (waiton_ptid));
3366 fprintf_unfiltered (tmp_stream, ", status) =\n");
3367 fprintf_unfiltered (tmp_stream,
1176ecec 3368 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3369 ptid_get_pid (result_ptid),
1176ecec
PA
3370 ptid_get_lwp (result_ptid),
3371 ptid_get_tid (result_ptid),
dfd4cc63 3372 target_pid_to_str (result_ptid));
223698f8
DE
3373 fprintf_unfiltered (tmp_stream,
3374 "infrun: %s\n",
3375 status_string);
3376
759ef836 3377 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3378
3379 /* This uses %s in part to handle %'s in the text, but also to avoid
3380 a gcc error: the format attribute requires a string literal. */
3381 fprintf_unfiltered (gdb_stdlog, "%s", text);
3382
3383 xfree (status_string);
3384 xfree (text);
3385 ui_file_delete (tmp_stream);
3386}
3387
372316f1
PA
3388/* Select a thread at random, out of those which are resumed and have
3389 had events. */
3390
3391static struct thread_info *
3392random_pending_event_thread (ptid_t waiton_ptid)
3393{
3394 struct thread_info *event_tp;
3395 int num_events = 0;
3396 int random_selector;
3397
3398 /* First see how many events we have. Count only resumed threads
3399 that have an event pending. */
3400 ALL_NON_EXITED_THREADS (event_tp)
3401 if (ptid_match (event_tp->ptid, waiton_ptid)
3402 && event_tp->resumed
3403 && event_tp->suspend.waitstatus_pending_p)
3404 num_events++;
3405
3406 if (num_events == 0)
3407 return NULL;
3408
3409 /* Now randomly pick a thread out of those that have had events. */
3410 random_selector = (int)
3411 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3412
3413 if (debug_infrun && num_events > 1)
3414 fprintf_unfiltered (gdb_stdlog,
3415 "infrun: Found %d events, selecting #%d\n",
3416 num_events, random_selector);
3417
3418 /* Select the Nth thread that has had an event. */
3419 ALL_NON_EXITED_THREADS (event_tp)
3420 if (ptid_match (event_tp->ptid, waiton_ptid)
3421 && event_tp->resumed
3422 && event_tp->suspend.waitstatus_pending_p)
3423 if (random_selector-- == 0)
3424 break;
3425
3426 return event_tp;
3427}
3428
3429/* Wrapper for target_wait that first checks whether threads have
3430 pending statuses to report before actually asking the target for
3431 more events. */
3432
3433static ptid_t
3434do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3435{
3436 ptid_t event_ptid;
3437 struct thread_info *tp;
3438
3439 /* First check if there is a resumed thread with a wait status
3440 pending. */
3441 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3442 {
3443 tp = random_pending_event_thread (ptid);
3444 }
3445 else
3446 {
3447 if (debug_infrun)
3448 fprintf_unfiltered (gdb_stdlog,
3449 "infrun: Waiting for specific thread %s.\n",
3450 target_pid_to_str (ptid));
3451
3452 /* We have a specific thread to check. */
3453 tp = find_thread_ptid (ptid);
3454 gdb_assert (tp != NULL);
3455 if (!tp->suspend.waitstatus_pending_p)
3456 tp = NULL;
3457 }
3458
3459 if (tp != NULL
3460 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3461 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3462 {
3463 struct regcache *regcache = get_thread_regcache (tp->ptid);
3464 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3465 CORE_ADDR pc;
3466 int discard = 0;
3467
3468 pc = regcache_read_pc (regcache);
3469
3470 if (pc != tp->suspend.stop_pc)
3471 {
3472 if (debug_infrun)
3473 fprintf_unfiltered (gdb_stdlog,
3474 "infrun: PC of %s changed. was=%s, now=%s\n",
3475 target_pid_to_str (tp->ptid),
3476 paddress (gdbarch, tp->prev_pc),
3477 paddress (gdbarch, pc));
3478 discard = 1;
3479 }
3480 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3481 {
3482 if (debug_infrun)
3483 fprintf_unfiltered (gdb_stdlog,
3484 "infrun: previous breakpoint of %s, at %s gone\n",
3485 target_pid_to_str (tp->ptid),
3486 paddress (gdbarch, pc));
3487
3488 discard = 1;
3489 }
3490
3491 if (discard)
3492 {
3493 if (debug_infrun)
3494 fprintf_unfiltered (gdb_stdlog,
3495 "infrun: pending event of %s cancelled.\n",
3496 target_pid_to_str (tp->ptid));
3497
3498 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3499 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3500 }
3501 }
3502
3503 if (tp != NULL)
3504 {
3505 if (debug_infrun)
3506 {
3507 char *statstr;
3508
3509 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3510 fprintf_unfiltered (gdb_stdlog,
3511 "infrun: Using pending wait status %s for %s.\n",
3512 statstr,
3513 target_pid_to_str (tp->ptid));
3514 xfree (statstr);
3515 }
3516
3517 /* Now that we've selected our final event LWP, un-adjust its PC
3518 if it was a software breakpoint (and the target doesn't
3519 always adjust the PC itself). */
3520 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3521 && !target_supports_stopped_by_sw_breakpoint ())
3522 {
3523 struct regcache *regcache;
3524 struct gdbarch *gdbarch;
3525 int decr_pc;
3526
3527 regcache = get_thread_regcache (tp->ptid);
3528 gdbarch = get_regcache_arch (regcache);
3529
3530 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3531 if (decr_pc != 0)
3532 {
3533 CORE_ADDR pc;
3534
3535 pc = regcache_read_pc (regcache);
3536 regcache_write_pc (regcache, pc + decr_pc);
3537 }
3538 }
3539
3540 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3541 *status = tp->suspend.waitstatus;
3542 tp->suspend.waitstatus_pending_p = 0;
3543
3544 /* Wake up the event loop again, until all pending events are
3545 processed. */
3546 if (target_is_async_p ())
3547 mark_async_event_handler (infrun_async_inferior_event_token);
3548 return tp->ptid;
3549 }
3550
3551 /* But if we don't find one, we'll have to wait. */
3552
3553 if (deprecated_target_wait_hook)
3554 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3555 else
3556 event_ptid = target_wait (ptid, status, options);
3557
3558 return event_ptid;
3559}
3560
24291992
PA
3561/* Prepare and stabilize the inferior for detaching it. E.g.,
3562 detaching while a thread is displaced stepping is a recipe for
3563 crashing it, as nothing would readjust the PC out of the scratch
3564 pad. */
3565
3566void
3567prepare_for_detach (void)
3568{
3569 struct inferior *inf = current_inferior ();
3570 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3571 struct cleanup *old_chain_1;
3572 struct displaced_step_inferior_state *displaced;
3573
3574 displaced = get_displaced_stepping_state (inf->pid);
3575
3576 /* Is any thread of this process displaced stepping? If not,
3577 there's nothing else to do. */
3578 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3579 return;
3580
3581 if (debug_infrun)
3582 fprintf_unfiltered (gdb_stdlog,
3583 "displaced-stepping in-process while detaching");
3584
3585 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3586 inf->detaching = 1;
3587
3588 while (!ptid_equal (displaced->step_ptid, null_ptid))
3589 {
3590 struct cleanup *old_chain_2;
3591 struct execution_control_state ecss;
3592 struct execution_control_state *ecs;
3593
3594 ecs = &ecss;
3595 memset (ecs, 0, sizeof (*ecs));
3596
3597 overlay_cache_invalid = 1;
f15cb84a
YQ
3598 /* Flush target cache before starting to handle each event.
3599 Target was running and cache could be stale. This is just a
3600 heuristic. Running threads may modify target memory, but we
3601 don't get any event. */
3602 target_dcache_invalidate ();
24291992 3603
372316f1 3604 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3605
3606 if (debug_infrun)
3607 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3608
3609 /* If an error happens while handling the event, propagate GDB's
3610 knowledge of the executing state to the frontend/user running
3611 state. */
3e43a32a
MS
3612 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3613 &minus_one_ptid);
24291992
PA
3614
3615 /* Now figure out what to do with the result of the result. */
3616 handle_inferior_event (ecs);
3617
3618 /* No error, don't finish the state yet. */
3619 discard_cleanups (old_chain_2);
3620
3621 /* Breakpoints and watchpoints are not installed on the target
3622 at this point, and signals are passed directly to the
3623 inferior, so this must mean the process is gone. */
3624 if (!ecs->wait_some_more)
3625 {
3626 discard_cleanups (old_chain_1);
3627 error (_("Program exited while detaching"));
3628 }
3629 }
3630
3631 discard_cleanups (old_chain_1);
3632}
3633
cd0fc7c3 3634/* Wait for control to return from inferior to debugger.
ae123ec6 3635
cd0fc7c3
SS
3636 If inferior gets a signal, we may decide to start it up again
3637 instead of returning. That is why there is a loop in this function.
3638 When this function actually returns it means the inferior
3639 should be left stopped and GDB should read more commands. */
3640
3641void
e4c8541f 3642wait_for_inferior (void)
cd0fc7c3
SS
3643{
3644 struct cleanup *old_cleanups;
e6f5c25b 3645 struct cleanup *thread_state_chain;
c906108c 3646
527159b7 3647 if (debug_infrun)
ae123ec6 3648 fprintf_unfiltered
e4c8541f 3649 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3650
0cbcdb96
PA
3651 old_cleanups
3652 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3653 NULL);
cd0fc7c3 3654
e6f5c25b
PA
3655 /* If an error happens while handling the event, propagate GDB's
3656 knowledge of the executing state to the frontend/user running
3657 state. */
3658 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3659
c906108c
SS
3660 while (1)
3661 {
ae25568b
PA
3662 struct execution_control_state ecss;
3663 struct execution_control_state *ecs = &ecss;
963f9c80 3664 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3665
ae25568b
PA
3666 memset (ecs, 0, sizeof (*ecs));
3667
ec9499be 3668 overlay_cache_invalid = 1;
ec9499be 3669
f15cb84a
YQ
3670 /* Flush target cache before starting to handle each event.
3671 Target was running and cache could be stale. This is just a
3672 heuristic. Running threads may modify target memory, but we
3673 don't get any event. */
3674 target_dcache_invalidate ();
3675
372316f1 3676 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3677
f00150c9 3678 if (debug_infrun)
223698f8 3679 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3680
cd0fc7c3
SS
3681 /* Now figure out what to do with the result of the result. */
3682 handle_inferior_event (ecs);
c906108c 3683
cd0fc7c3
SS
3684 if (!ecs->wait_some_more)
3685 break;
3686 }
4e1c45ea 3687
e6f5c25b
PA
3688 /* No error, don't finish the state yet. */
3689 discard_cleanups (thread_state_chain);
3690
cd0fc7c3
SS
3691 do_cleanups (old_cleanups);
3692}
c906108c 3693
d3d4baed
PA
3694/* Cleanup that reinstalls the readline callback handler, if the
3695 target is running in the background. If while handling the target
3696 event something triggered a secondary prompt, like e.g., a
3697 pagination prompt, we'll have removed the callback handler (see
3698 gdb_readline_wrapper_line). Need to do this as we go back to the
3699 event loop, ready to process further input. Note this has no
3700 effect if the handler hasn't actually been removed, because calling
3701 rl_callback_handler_install resets the line buffer, thus losing
3702 input. */
3703
3704static void
3705reinstall_readline_callback_handler_cleanup (void *arg)
3706{
6c400b59
PA
3707 if (!interpreter_async)
3708 {
3709 /* We're not going back to the top level event loop yet. Don't
3710 install the readline callback, as it'd prep the terminal,
3711 readline-style (raw, noecho) (e.g., --batch). We'll install
3712 it the next time the prompt is displayed, when we're ready
3713 for input. */
3714 return;
3715 }
3716
d3d4baed
PA
3717 if (async_command_editing_p && !sync_execution)
3718 gdb_rl_callback_handler_reinstall ();
3719}
3720
243a9253
PA
3721/* Clean up the FSMs of threads that are now stopped. In non-stop,
3722 that's just the event thread. In all-stop, that's all threads. */
3723
3724static void
3725clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3726{
3727 struct thread_info *thr = ecs->event_thread;
3728
3729 if (thr != NULL && thr->thread_fsm != NULL)
3730 thread_fsm_clean_up (thr->thread_fsm);
3731
3732 if (!non_stop)
3733 {
3734 ALL_NON_EXITED_THREADS (thr)
3735 {
3736 if (thr->thread_fsm == NULL)
3737 continue;
3738 if (thr == ecs->event_thread)
3739 continue;
3740
3741 switch_to_thread (thr->ptid);
3742 thread_fsm_clean_up (thr->thread_fsm);
3743 }
3744
3745 if (ecs->event_thread != NULL)
3746 switch_to_thread (ecs->event_thread->ptid);
3747 }
3748}
3749
1777feb0 3750/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3751 event loop whenever a change of state is detected on the file
1777feb0
MS
3752 descriptor corresponding to the target. It can be called more than
3753 once to complete a single execution command. In such cases we need
3754 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3755 that this function is called for a single execution command, then
3756 report to the user that the inferior has stopped, and do the
1777feb0 3757 necessary cleanups. */
43ff13b4
JM
3758
3759void
fba45db2 3760fetch_inferior_event (void *client_data)
43ff13b4 3761{
0d1e5fa7 3762 struct execution_control_state ecss;
a474d7c2 3763 struct execution_control_state *ecs = &ecss;
4f8d22e3 3764 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3765 struct cleanup *ts_old_chain;
4f8d22e3 3766 int was_sync = sync_execution;
0f641c01 3767 int cmd_done = 0;
963f9c80 3768 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3769
0d1e5fa7
PA
3770 memset (ecs, 0, sizeof (*ecs));
3771
d3d4baed
PA
3772 /* End up with readline processing input, if necessary. */
3773 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3774
c5187ac6
PA
3775 /* We're handling a live event, so make sure we're doing live
3776 debugging. If we're looking at traceframes while the target is
3777 running, we're going to need to get back to that mode after
3778 handling the event. */
3779 if (non_stop)
3780 {
3781 make_cleanup_restore_current_traceframe ();
e6e4e701 3782 set_current_traceframe (-1);
c5187ac6
PA
3783 }
3784
4f8d22e3
PA
3785 if (non_stop)
3786 /* In non-stop mode, the user/frontend should not notice a thread
3787 switch due to internal events. Make sure we reverse to the
3788 user selected thread and frame after handling the event and
3789 running any breakpoint commands. */
3790 make_cleanup_restore_current_thread ();
3791
ec9499be 3792 overlay_cache_invalid = 1;
f15cb84a
YQ
3793 /* Flush target cache before starting to handle each event. Target
3794 was running and cache could be stale. This is just a heuristic.
3795 Running threads may modify target memory, but we don't get any
3796 event. */
3797 target_dcache_invalidate ();
3dd5b83d 3798
32231432
PA
3799 make_cleanup_restore_integer (&execution_direction);
3800 execution_direction = target_execution_direction ();
3801
0b333c5e
PA
3802 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3803 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3804
f00150c9 3805 if (debug_infrun)
223698f8 3806 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3807
29f49a6a
PA
3808 /* If an error happens while handling the event, propagate GDB's
3809 knowledge of the executing state to the frontend/user running
3810 state. */
fbea99ea 3811 if (!target_is_non_stop_p ())
29f49a6a
PA
3812 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3813 else
3814 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3815
353d1d73
JK
3816 /* Get executed before make_cleanup_restore_current_thread above to apply
3817 still for the thread which has thrown the exception. */
3818 make_bpstat_clear_actions_cleanup ();
3819
7c16b83e
PA
3820 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3821
43ff13b4 3822 /* Now figure out what to do with the result of the result. */
a474d7c2 3823 handle_inferior_event (ecs);
43ff13b4 3824
a474d7c2 3825 if (!ecs->wait_some_more)
43ff13b4 3826 {
c9657e70 3827 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3828 int should_stop = 1;
3829 struct thread_info *thr = ecs->event_thread;
388a7084 3830 int should_notify_stop = 1;
d6b48e9c 3831
0cbcdb96 3832 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3833
243a9253
PA
3834 if (thr != NULL)
3835 {
3836 struct thread_fsm *thread_fsm = thr->thread_fsm;
3837
3838 if (thread_fsm != NULL)
3839 should_stop = thread_fsm_should_stop (thread_fsm);
3840 }
3841
3842 if (!should_stop)
3843 {
3844 keep_going (ecs);
3845 }
c2d11a7d 3846 else
0f641c01 3847 {
243a9253
PA
3848 clean_up_just_stopped_threads_fsms (ecs);
3849
388a7084
PA
3850 if (thr != NULL && thr->thread_fsm != NULL)
3851 {
3852 should_notify_stop
3853 = thread_fsm_should_notify_stop (thr->thread_fsm);
3854 }
3855
3856 if (should_notify_stop)
3857 {
3858 /* We may not find an inferior if this was a process exit. */
3859 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3860 normal_stop ();
243a9253 3861
388a7084
PA
3862 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3863 cmd_done = 1;
3864 }
0f641c01 3865 }
43ff13b4 3866 }
4f8d22e3 3867
29f49a6a
PA
3868 /* No error, don't finish the thread states yet. */
3869 discard_cleanups (ts_old_chain);
3870
4f8d22e3
PA
3871 /* Revert thread and frame. */
3872 do_cleanups (old_chain);
3873
3874 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3875 restore the prompt (a synchronous execution command has finished,
3876 and we're ready for input). */
b4a14fd0 3877 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3878 observer_notify_sync_execution_done ();
0f641c01
PA
3879
3880 if (cmd_done
3881 && !was_sync
3882 && exec_done_display_p
3883 && (ptid_equal (inferior_ptid, null_ptid)
3884 || !is_running (inferior_ptid)))
3885 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3886}
3887
edb3359d
DJ
3888/* Record the frame and location we're currently stepping through. */
3889void
3890set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3891{
3892 struct thread_info *tp = inferior_thread ();
3893
16c381f0
JK
3894 tp->control.step_frame_id = get_frame_id (frame);
3895 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3896
3897 tp->current_symtab = sal.symtab;
3898 tp->current_line = sal.line;
3899}
3900
0d1e5fa7
PA
3901/* Clear context switchable stepping state. */
3902
3903void
4e1c45ea 3904init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3905{
7f5ef605 3906 tss->stepped_breakpoint = 0;
0d1e5fa7 3907 tss->stepping_over_breakpoint = 0;
963f9c80 3908 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3909 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3910}
3911
c32c64b7
DE
3912/* Set the cached copy of the last ptid/waitstatus. */
3913
3914static void
3915set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3916{
3917 target_last_wait_ptid = ptid;
3918 target_last_waitstatus = status;
3919}
3920
e02bc4cc 3921/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3922 target_wait()/deprecated_target_wait_hook(). The data is actually
3923 cached by handle_inferior_event(), which gets called immediately
3924 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3925
3926void
488f131b 3927get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3928{
39f77062 3929 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3930 *status = target_last_waitstatus;
3931}
3932
ac264b3b
MS
3933void
3934nullify_last_target_wait_ptid (void)
3935{
3936 target_last_wait_ptid = minus_one_ptid;
3937}
3938
dcf4fbde 3939/* Switch thread contexts. */
dd80620e
MS
3940
3941static void
0d1e5fa7 3942context_switch (ptid_t ptid)
dd80620e 3943{
4b51d87b 3944 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
3945 {
3946 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3947 target_pid_to_str (inferior_ptid));
3948 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 3949 target_pid_to_str (ptid));
fd48f117
DJ
3950 }
3951
0d1e5fa7 3952 switch_to_thread (ptid);
dd80620e
MS
3953}
3954
d8dd4d5f
PA
3955/* If the target can't tell whether we've hit breakpoints
3956 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3957 check whether that could have been caused by a breakpoint. If so,
3958 adjust the PC, per gdbarch_decr_pc_after_break. */
3959
4fa8626c 3960static void
d8dd4d5f
PA
3961adjust_pc_after_break (struct thread_info *thread,
3962 struct target_waitstatus *ws)
4fa8626c 3963{
24a73cce
UW
3964 struct regcache *regcache;
3965 struct gdbarch *gdbarch;
6c95b8df 3966 struct address_space *aspace;
118e6252 3967 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3968
4fa8626c
DJ
3969 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3970 we aren't, just return.
9709f61c
DJ
3971
3972 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3973 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3974 implemented by software breakpoints should be handled through the normal
3975 breakpoint layer.
8fb3e588 3976
4fa8626c
DJ
3977 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3978 different signals (SIGILL or SIGEMT for instance), but it is less
3979 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3980 gdbarch_decr_pc_after_break. I don't know any specific target that
3981 generates these signals at breakpoints (the code has been in GDB since at
3982 least 1992) so I can not guess how to handle them here.
8fb3e588 3983
e6cf7916
UW
3984 In earlier versions of GDB, a target with
3985 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3986 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3987 target with both of these set in GDB history, and it seems unlikely to be
3988 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3989
d8dd4d5f 3990 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3991 return;
3992
d8dd4d5f 3993 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3994 return;
3995
4058b839
PA
3996 /* In reverse execution, when a breakpoint is hit, the instruction
3997 under it has already been de-executed. The reported PC always
3998 points at the breakpoint address, so adjusting it further would
3999 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4000 architecture:
4001
4002 B1 0x08000000 : INSN1
4003 B2 0x08000001 : INSN2
4004 0x08000002 : INSN3
4005 PC -> 0x08000003 : INSN4
4006
4007 Say you're stopped at 0x08000003 as above. Reverse continuing
4008 from that point should hit B2 as below. Reading the PC when the
4009 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4010 been de-executed already.
4011
4012 B1 0x08000000 : INSN1
4013 B2 PC -> 0x08000001 : INSN2
4014 0x08000002 : INSN3
4015 0x08000003 : INSN4
4016
4017 We can't apply the same logic as for forward execution, because
4018 we would wrongly adjust the PC to 0x08000000, since there's a
4019 breakpoint at PC - 1. We'd then report a hit on B1, although
4020 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4021 behaviour. */
4022 if (execution_direction == EXEC_REVERSE)
4023 return;
4024
1cf4d951
PA
4025 /* If the target can tell whether the thread hit a SW breakpoint,
4026 trust it. Targets that can tell also adjust the PC
4027 themselves. */
4028 if (target_supports_stopped_by_sw_breakpoint ())
4029 return;
4030
4031 /* Note that relying on whether a breakpoint is planted in memory to
4032 determine this can fail. E.g,. the breakpoint could have been
4033 removed since. Or the thread could have been told to step an
4034 instruction the size of a breakpoint instruction, and only
4035 _after_ was a breakpoint inserted at its address. */
4036
24a73cce
UW
4037 /* If this target does not decrement the PC after breakpoints, then
4038 we have nothing to do. */
d8dd4d5f 4039 regcache = get_thread_regcache (thread->ptid);
24a73cce 4040 gdbarch = get_regcache_arch (regcache);
118e6252 4041
527a273a 4042 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4043 if (decr_pc == 0)
24a73cce
UW
4044 return;
4045
6c95b8df
PA
4046 aspace = get_regcache_aspace (regcache);
4047
8aad930b
AC
4048 /* Find the location where (if we've hit a breakpoint) the
4049 breakpoint would be. */
118e6252 4050 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4051
1cf4d951
PA
4052 /* If the target can't tell whether a software breakpoint triggered,
4053 fallback to figuring it out based on breakpoints we think were
4054 inserted in the target, and on whether the thread was stepped or
4055 continued. */
4056
1c5cfe86
PA
4057 /* Check whether there actually is a software breakpoint inserted at
4058 that location.
4059
4060 If in non-stop mode, a race condition is possible where we've
4061 removed a breakpoint, but stop events for that breakpoint were
4062 already queued and arrive later. To suppress those spurious
4063 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4064 and retire them after a number of stop events are reported. Note
4065 this is an heuristic and can thus get confused. The real fix is
4066 to get the "stopped by SW BP and needs adjustment" info out of
4067 the target/kernel (and thus never reach here; see above). */
6c95b8df 4068 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4069 || (target_is_non_stop_p ()
4070 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4071 {
77f9e713 4072 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4073
8213266a 4074 if (record_full_is_used ())
77f9e713 4075 record_full_gdb_operation_disable_set ();
96429cc8 4076
1c0fdd0e
UW
4077 /* When using hardware single-step, a SIGTRAP is reported for both
4078 a completed single-step and a software breakpoint. Need to
4079 differentiate between the two, as the latter needs adjusting
4080 but the former does not.
4081
4082 The SIGTRAP can be due to a completed hardware single-step only if
4083 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4084 - this thread is currently being stepped
4085
4086 If any of these events did not occur, we must have stopped due
4087 to hitting a software breakpoint, and have to back up to the
4088 breakpoint address.
4089
4090 As a special case, we could have hardware single-stepped a
4091 software breakpoint. In this case (prev_pc == breakpoint_pc),
4092 we also need to back up to the breakpoint address. */
4093
d8dd4d5f
PA
4094 if (thread_has_single_step_breakpoints_set (thread)
4095 || !currently_stepping (thread)
4096 || (thread->stepped_breakpoint
4097 && thread->prev_pc == breakpoint_pc))
515630c5 4098 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4099
77f9e713 4100 do_cleanups (old_cleanups);
8aad930b 4101 }
4fa8626c
DJ
4102}
4103
edb3359d
DJ
4104static int
4105stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4106{
4107 for (frame = get_prev_frame (frame);
4108 frame != NULL;
4109 frame = get_prev_frame (frame))
4110 {
4111 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4112 return 1;
4113 if (get_frame_type (frame) != INLINE_FRAME)
4114 break;
4115 }
4116
4117 return 0;
4118}
4119
a96d9b2e
SDJ
4120/* Auxiliary function that handles syscall entry/return events.
4121 It returns 1 if the inferior should keep going (and GDB
4122 should ignore the event), or 0 if the event deserves to be
4123 processed. */
ca2163eb 4124
a96d9b2e 4125static int
ca2163eb 4126handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4127{
ca2163eb 4128 struct regcache *regcache;
ca2163eb
PA
4129 int syscall_number;
4130
4131 if (!ptid_equal (ecs->ptid, inferior_ptid))
4132 context_switch (ecs->ptid);
4133
4134 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4135 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4136 stop_pc = regcache_read_pc (regcache);
4137
a96d9b2e
SDJ
4138 if (catch_syscall_enabled () > 0
4139 && catching_syscall_number (syscall_number) > 0)
4140 {
4141 if (debug_infrun)
4142 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4143 syscall_number);
a96d9b2e 4144
16c381f0 4145 ecs->event_thread->control.stop_bpstat
6c95b8df 4146 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4147 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4148
ce12b012 4149 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4150 {
4151 /* Catchpoint hit. */
ca2163eb
PA
4152 return 0;
4153 }
a96d9b2e 4154 }
ca2163eb
PA
4155
4156 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4157 keep_going (ecs);
4158 return 1;
a96d9b2e
SDJ
4159}
4160
7e324e48
GB
4161/* Lazily fill in the execution_control_state's stop_func_* fields. */
4162
4163static void
4164fill_in_stop_func (struct gdbarch *gdbarch,
4165 struct execution_control_state *ecs)
4166{
4167 if (!ecs->stop_func_filled_in)
4168 {
4169 /* Don't care about return value; stop_func_start and stop_func_name
4170 will both be 0 if it doesn't work. */
4171 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4172 &ecs->stop_func_start, &ecs->stop_func_end);
4173 ecs->stop_func_start
4174 += gdbarch_deprecated_function_start_offset (gdbarch);
4175
591a12a1
UW
4176 if (gdbarch_skip_entrypoint_p (gdbarch))
4177 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4178 ecs->stop_func_start);
4179
7e324e48
GB
4180 ecs->stop_func_filled_in = 1;
4181 }
4182}
4183
4f5d7f63
PA
4184
4185/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4186
4187static enum stop_kind
4188get_inferior_stop_soon (ptid_t ptid)
4189{
c9657e70 4190 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4191
4192 gdb_assert (inf != NULL);
4193 return inf->control.stop_soon;
4194}
4195
372316f1
PA
4196/* Wait for one event. Store the resulting waitstatus in WS, and
4197 return the event ptid. */
4198
4199static ptid_t
4200wait_one (struct target_waitstatus *ws)
4201{
4202 ptid_t event_ptid;
4203 ptid_t wait_ptid = minus_one_ptid;
4204
4205 overlay_cache_invalid = 1;
4206
4207 /* Flush target cache before starting to handle each event.
4208 Target was running and cache could be stale. This is just a
4209 heuristic. Running threads may modify target memory, but we
4210 don't get any event. */
4211 target_dcache_invalidate ();
4212
4213 if (deprecated_target_wait_hook)
4214 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4215 else
4216 event_ptid = target_wait (wait_ptid, ws, 0);
4217
4218 if (debug_infrun)
4219 print_target_wait_results (wait_ptid, event_ptid, ws);
4220
4221 return event_ptid;
4222}
4223
4224/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4225 instead of the current thread. */
4226#define THREAD_STOPPED_BY(REASON) \
4227static int \
4228thread_stopped_by_ ## REASON (ptid_t ptid) \
4229{ \
4230 struct cleanup *old_chain; \
4231 int res; \
4232 \
4233 old_chain = save_inferior_ptid (); \
4234 inferior_ptid = ptid; \
4235 \
4236 res = target_stopped_by_ ## REASON (); \
4237 \
4238 do_cleanups (old_chain); \
4239 \
4240 return res; \
4241}
4242
4243/* Generate thread_stopped_by_watchpoint. */
4244THREAD_STOPPED_BY (watchpoint)
4245/* Generate thread_stopped_by_sw_breakpoint. */
4246THREAD_STOPPED_BY (sw_breakpoint)
4247/* Generate thread_stopped_by_hw_breakpoint. */
4248THREAD_STOPPED_BY (hw_breakpoint)
4249
4250/* Cleanups that switches to the PTID pointed at by PTID_P. */
4251
4252static void
4253switch_to_thread_cleanup (void *ptid_p)
4254{
4255 ptid_t ptid = *(ptid_t *) ptid_p;
4256
4257 switch_to_thread (ptid);
4258}
4259
4260/* Save the thread's event and stop reason to process it later. */
4261
4262static void
4263save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4264{
4265 struct regcache *regcache;
4266 struct address_space *aspace;
4267
4268 if (debug_infrun)
4269 {
4270 char *statstr;
4271
4272 statstr = target_waitstatus_to_string (ws);
4273 fprintf_unfiltered (gdb_stdlog,
4274 "infrun: saving status %s for %d.%ld.%ld\n",
4275 statstr,
4276 ptid_get_pid (tp->ptid),
4277 ptid_get_lwp (tp->ptid),
4278 ptid_get_tid (tp->ptid));
4279 xfree (statstr);
4280 }
4281
4282 /* Record for later. */
4283 tp->suspend.waitstatus = *ws;
4284 tp->suspend.waitstatus_pending_p = 1;
4285
4286 regcache = get_thread_regcache (tp->ptid);
4287 aspace = get_regcache_aspace (regcache);
4288
4289 if (ws->kind == TARGET_WAITKIND_STOPPED
4290 && ws->value.sig == GDB_SIGNAL_TRAP)
4291 {
4292 CORE_ADDR pc = regcache_read_pc (regcache);
4293
4294 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4295
4296 if (thread_stopped_by_watchpoint (tp->ptid))
4297 {
4298 tp->suspend.stop_reason
4299 = TARGET_STOPPED_BY_WATCHPOINT;
4300 }
4301 else if (target_supports_stopped_by_sw_breakpoint ()
4302 && thread_stopped_by_sw_breakpoint (tp->ptid))
4303 {
4304 tp->suspend.stop_reason
4305 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4306 }
4307 else if (target_supports_stopped_by_hw_breakpoint ()
4308 && thread_stopped_by_hw_breakpoint (tp->ptid))
4309 {
4310 tp->suspend.stop_reason
4311 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4312 }
4313 else if (!target_supports_stopped_by_hw_breakpoint ()
4314 && hardware_breakpoint_inserted_here_p (aspace,
4315 pc))
4316 {
4317 tp->suspend.stop_reason
4318 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4319 }
4320 else if (!target_supports_stopped_by_sw_breakpoint ()
4321 && software_breakpoint_inserted_here_p (aspace,
4322 pc))
4323 {
4324 tp->suspend.stop_reason
4325 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4326 }
4327 else if (!thread_has_single_step_breakpoints_set (tp)
4328 && currently_stepping (tp))
4329 {
4330 tp->suspend.stop_reason
4331 = TARGET_STOPPED_BY_SINGLE_STEP;
4332 }
4333 }
4334}
4335
4336/* Stop all threads. */
4337
4338static void
4339stop_all_threads (void)
4340{
4341 /* We may need multiple passes to discover all threads. */
4342 int pass;
4343 int iterations = 0;
4344 ptid_t entry_ptid;
4345 struct cleanup *old_chain;
4346
fbea99ea 4347 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4348
4349 if (debug_infrun)
4350 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4351
4352 entry_ptid = inferior_ptid;
4353 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4354
4355 /* Request threads to stop, and then wait for the stops. Because
4356 threads we already know about can spawn more threads while we're
4357 trying to stop them, and we only learn about new threads when we
4358 update the thread list, do this in a loop, and keep iterating
4359 until two passes find no threads that need to be stopped. */
4360 for (pass = 0; pass < 2; pass++, iterations++)
4361 {
4362 if (debug_infrun)
4363 fprintf_unfiltered (gdb_stdlog,
4364 "infrun: stop_all_threads, pass=%d, "
4365 "iterations=%d\n", pass, iterations);
4366 while (1)
4367 {
4368 ptid_t event_ptid;
4369 struct target_waitstatus ws;
4370 int need_wait = 0;
4371 struct thread_info *t;
4372
4373 update_thread_list ();
4374
4375 /* Go through all threads looking for threads that we need
4376 to tell the target to stop. */
4377 ALL_NON_EXITED_THREADS (t)
4378 {
4379 if (t->executing)
4380 {
4381 /* If already stopping, don't request a stop again.
4382 We just haven't seen the notification yet. */
4383 if (!t->stop_requested)
4384 {
4385 if (debug_infrun)
4386 fprintf_unfiltered (gdb_stdlog,
4387 "infrun: %s executing, "
4388 "need stop\n",
4389 target_pid_to_str (t->ptid));
4390 target_stop (t->ptid);
4391 t->stop_requested = 1;
4392 }
4393 else
4394 {
4395 if (debug_infrun)
4396 fprintf_unfiltered (gdb_stdlog,
4397 "infrun: %s executing, "
4398 "already stopping\n",
4399 target_pid_to_str (t->ptid));
4400 }
4401
4402 if (t->stop_requested)
4403 need_wait = 1;
4404 }
4405 else
4406 {
4407 if (debug_infrun)
4408 fprintf_unfiltered (gdb_stdlog,
4409 "infrun: %s not executing\n",
4410 target_pid_to_str (t->ptid));
4411
4412 /* The thread may be not executing, but still be
4413 resumed with a pending status to process. */
4414 t->resumed = 0;
4415 }
4416 }
4417
4418 if (!need_wait)
4419 break;
4420
4421 /* If we find new threads on the second iteration, restart
4422 over. We want to see two iterations in a row with all
4423 threads stopped. */
4424 if (pass > 0)
4425 pass = -1;
4426
4427 event_ptid = wait_one (&ws);
4428 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4429 {
4430 /* All resumed threads exited. */
4431 }
4432 else if (ws.kind == TARGET_WAITKIND_EXITED
4433 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4434 {
4435 if (debug_infrun)
4436 {
4437 ptid_t ptid = pid_to_ptid (ws.value.integer);
4438
4439 fprintf_unfiltered (gdb_stdlog,
4440 "infrun: %s exited while "
4441 "stopping threads\n",
4442 target_pid_to_str (ptid));
4443 }
4444 }
4445 else
4446 {
4447 t = find_thread_ptid (event_ptid);
4448 if (t == NULL)
4449 t = add_thread (event_ptid);
4450
4451 t->stop_requested = 0;
4452 t->executing = 0;
4453 t->resumed = 0;
4454 t->control.may_range_step = 0;
4455
4456 if (ws.kind == TARGET_WAITKIND_STOPPED
4457 && ws.value.sig == GDB_SIGNAL_0)
4458 {
4459 /* We caught the event that we intended to catch, so
4460 there's no event pending. */
4461 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4462 t->suspend.waitstatus_pending_p = 0;
4463
4464 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4465 {
4466 /* Add it back to the step-over queue. */
4467 if (debug_infrun)
4468 {
4469 fprintf_unfiltered (gdb_stdlog,
4470 "infrun: displaced-step of %s "
4471 "canceled: adding back to the "
4472 "step-over queue\n",
4473 target_pid_to_str (t->ptid));
4474 }
4475 t->control.trap_expected = 0;
4476 thread_step_over_chain_enqueue (t);
4477 }
4478 }
4479 else
4480 {
4481 enum gdb_signal sig;
4482 struct regcache *regcache;
4483 struct address_space *aspace;
4484
4485 if (debug_infrun)
4486 {
4487 char *statstr;
4488
4489 statstr = target_waitstatus_to_string (&ws);
4490 fprintf_unfiltered (gdb_stdlog,
4491 "infrun: target_wait %s, saving "
4492 "status for %d.%ld.%ld\n",
4493 statstr,
4494 ptid_get_pid (t->ptid),
4495 ptid_get_lwp (t->ptid),
4496 ptid_get_tid (t->ptid));
4497 xfree (statstr);
4498 }
4499
4500 /* Record for later. */
4501 save_waitstatus (t, &ws);
4502
4503 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4504 ? ws.value.sig : GDB_SIGNAL_0);
4505
4506 if (displaced_step_fixup (t->ptid, sig) < 0)
4507 {
4508 /* Add it back to the step-over queue. */
4509 t->control.trap_expected = 0;
4510 thread_step_over_chain_enqueue (t);
4511 }
4512
4513 regcache = get_thread_regcache (t->ptid);
4514 t->suspend.stop_pc = regcache_read_pc (regcache);
4515
4516 if (debug_infrun)
4517 {
4518 fprintf_unfiltered (gdb_stdlog,
4519 "infrun: saved stop_pc=%s for %s "
4520 "(currently_stepping=%d)\n",
4521 paddress (target_gdbarch (),
4522 t->suspend.stop_pc),
4523 target_pid_to_str (t->ptid),
4524 currently_stepping (t));
4525 }
4526 }
4527 }
4528 }
4529 }
4530
4531 do_cleanups (old_chain);
4532
4533 if (debug_infrun)
4534 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4535}
4536
05ba8510
PA
4537/* Given an execution control state that has been freshly filled in by
4538 an event from the inferior, figure out what it means and take
4539 appropriate action.
4540
4541 The alternatives are:
4542
22bcd14b 4543 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4544 debugger.
4545
4546 2) keep_going and return; to wait for the next event (set
4547 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4548 once). */
c906108c 4549
ec9499be 4550static void
0b6e5e10 4551handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4552{
d6b48e9c
PA
4553 enum stop_kind stop_soon;
4554
28736962
PA
4555 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4556 {
4557 /* We had an event in the inferior, but we are not interested in
4558 handling it at this level. The lower layers have already
4559 done what needs to be done, if anything.
4560
4561 One of the possible circumstances for this is when the
4562 inferior produces output for the console. The inferior has
4563 not stopped, and we are ignoring the event. Another possible
4564 circumstance is any event which the lower level knows will be
4565 reported multiple times without an intervening resume. */
4566 if (debug_infrun)
4567 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4568 prepare_to_wait (ecs);
4569 return;
4570 }
4571
0e5bf2a8
PA
4572 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4573 && target_can_async_p () && !sync_execution)
4574 {
4575 /* There were no unwaited-for children left in the target, but,
4576 we're not synchronously waiting for events either. Just
4577 ignore. Otherwise, if we were running a synchronous
4578 execution command, we need to cancel it and give the user
4579 back the terminal. */
4580 if (debug_infrun)
4581 fprintf_unfiltered (gdb_stdlog,
4582 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4583 prepare_to_wait (ecs);
4584 return;
4585 }
4586
1777feb0 4587 /* Cache the last pid/waitstatus. */
c32c64b7 4588 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4589
ca005067 4590 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4591 stop_stack_dummy = STOP_NONE;
ca005067 4592
0e5bf2a8
PA
4593 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4594 {
4595 /* No unwaited-for children left. IOW, all resumed children
4596 have exited. */
4597 if (debug_infrun)
4598 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4599
4600 stop_print_frame = 0;
22bcd14b 4601 stop_waiting (ecs);
0e5bf2a8
PA
4602 return;
4603 }
4604
8c90c137 4605 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4606 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4607 {
4608 ecs->event_thread = find_thread_ptid (ecs->ptid);
4609 /* If it's a new thread, add it to the thread database. */
4610 if (ecs->event_thread == NULL)
4611 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4612
4613 /* Disable range stepping. If the next step request could use a
4614 range, this will be end up re-enabled then. */
4615 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4616 }
88ed393a
JK
4617
4618 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4619 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4620
4621 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4622 reinit_frame_cache ();
4623
28736962
PA
4624 breakpoint_retire_moribund ();
4625
2b009048
DJ
4626 /* First, distinguish signals caused by the debugger from signals
4627 that have to do with the program's own actions. Note that
4628 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4629 on the operating system version. Here we detect when a SIGILL or
4630 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4631 something similar for SIGSEGV, since a SIGSEGV will be generated
4632 when we're trying to execute a breakpoint instruction on a
4633 non-executable stack. This happens for call dummy breakpoints
4634 for architectures like SPARC that place call dummies on the
4635 stack. */
2b009048 4636 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4637 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4638 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4639 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4640 {
de0a0249
UW
4641 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4642
4643 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4644 regcache_read_pc (regcache)))
4645 {
4646 if (debug_infrun)
4647 fprintf_unfiltered (gdb_stdlog,
4648 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4649 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4650 }
2b009048
DJ
4651 }
4652
28736962
PA
4653 /* Mark the non-executing threads accordingly. In all-stop, all
4654 threads of all processes are stopped when we get any event
e1316e60 4655 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4656 {
4657 ptid_t mark_ptid;
4658
fbea99ea 4659 if (!target_is_non_stop_p ())
372316f1
PA
4660 mark_ptid = minus_one_ptid;
4661 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4662 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4663 {
4664 /* If we're handling a process exit in non-stop mode, even
4665 though threads haven't been deleted yet, one would think
4666 that there is nothing to do, as threads of the dead process
4667 will be soon deleted, and threads of any other process were
4668 left running. However, on some targets, threads survive a
4669 process exit event. E.g., for the "checkpoint" command,
4670 when the current checkpoint/fork exits, linux-fork.c
4671 automatically switches to another fork from within
4672 target_mourn_inferior, by associating the same
4673 inferior/thread to another fork. We haven't mourned yet at
4674 this point, but we must mark any threads left in the
4675 process as not-executing so that finish_thread_state marks
4676 them stopped (in the user's perspective) if/when we present
4677 the stop to the user. */
4678 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4679 }
4680 else
4681 mark_ptid = ecs->ptid;
4682
4683 set_executing (mark_ptid, 0);
4684
4685 /* Likewise the resumed flag. */
4686 set_resumed (mark_ptid, 0);
4687 }
8c90c137 4688
488f131b
JB
4689 switch (ecs->ws.kind)
4690 {
4691 case TARGET_WAITKIND_LOADED:
527159b7 4692 if (debug_infrun)
8a9de0e4 4693 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4694 if (!ptid_equal (ecs->ptid, inferior_ptid))
4695 context_switch (ecs->ptid);
b0f4b84b
DJ
4696 /* Ignore gracefully during startup of the inferior, as it might
4697 be the shell which has just loaded some objects, otherwise
4698 add the symbols for the newly loaded objects. Also ignore at
4699 the beginning of an attach or remote session; we will query
4700 the full list of libraries once the connection is
4701 established. */
4f5d7f63
PA
4702
4703 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4704 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4705 {
edcc5120
TT
4706 struct regcache *regcache;
4707
edcc5120
TT
4708 regcache = get_thread_regcache (ecs->ptid);
4709
4710 handle_solib_event ();
4711
4712 ecs->event_thread->control.stop_bpstat
4713 = bpstat_stop_status (get_regcache_aspace (regcache),
4714 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4715
ce12b012 4716 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4717 {
4718 /* A catchpoint triggered. */
94c57d6a
PA
4719 process_event_stop_test (ecs);
4720 return;
edcc5120 4721 }
488f131b 4722
b0f4b84b
DJ
4723 /* If requested, stop when the dynamic linker notifies
4724 gdb of events. This allows the user to get control
4725 and place breakpoints in initializer routines for
4726 dynamically loaded objects (among other things). */
a493e3e2 4727 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4728 if (stop_on_solib_events)
4729 {
55409f9d
DJ
4730 /* Make sure we print "Stopped due to solib-event" in
4731 normal_stop. */
4732 stop_print_frame = 1;
4733
22bcd14b 4734 stop_waiting (ecs);
b0f4b84b
DJ
4735 return;
4736 }
488f131b 4737 }
b0f4b84b
DJ
4738
4739 /* If we are skipping through a shell, or through shared library
4740 loading that we aren't interested in, resume the program. If
5c09a2c5 4741 we're running the program normally, also resume. */
b0f4b84b
DJ
4742 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4743 {
74960c60
VP
4744 /* Loading of shared libraries might have changed breakpoint
4745 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4746 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4747 insert_breakpoints ();
64ce06e4 4748 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4749 prepare_to_wait (ecs);
4750 return;
4751 }
4752
5c09a2c5
PA
4753 /* But stop if we're attaching or setting up a remote
4754 connection. */
4755 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4756 || stop_soon == STOP_QUIETLY_REMOTE)
4757 {
4758 if (debug_infrun)
4759 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4760 stop_waiting (ecs);
5c09a2c5
PA
4761 return;
4762 }
4763
4764 internal_error (__FILE__, __LINE__,
4765 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4766
488f131b 4767 case TARGET_WAITKIND_SPURIOUS:
527159b7 4768 if (debug_infrun)
8a9de0e4 4769 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 4770 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 4771 context_switch (ecs->ptid);
64ce06e4 4772 resume (GDB_SIGNAL_0);
488f131b
JB
4773 prepare_to_wait (ecs);
4774 return;
c5aa993b 4775
488f131b 4776 case TARGET_WAITKIND_EXITED:
940c3c06 4777 case TARGET_WAITKIND_SIGNALLED:
527159b7 4778 if (debug_infrun)
940c3c06
PA
4779 {
4780 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4781 fprintf_unfiltered (gdb_stdlog,
4782 "infrun: TARGET_WAITKIND_EXITED\n");
4783 else
4784 fprintf_unfiltered (gdb_stdlog,
4785 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4786 }
4787
fb66883a 4788 inferior_ptid = ecs->ptid;
c9657e70 4789 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4790 set_current_program_space (current_inferior ()->pspace);
4791 handle_vfork_child_exec_or_exit (0);
1777feb0 4792 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 4793
0c557179
SDJ
4794 /* Clearing any previous state of convenience variables. */
4795 clear_exit_convenience_vars ();
4796
940c3c06
PA
4797 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4798 {
4799 /* Record the exit code in the convenience variable $_exitcode, so
4800 that the user can inspect this again later. */
4801 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4802 (LONGEST) ecs->ws.value.integer);
4803
4804 /* Also record this in the inferior itself. */
4805 current_inferior ()->has_exit_code = 1;
4806 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4807
98eb56a4
PA
4808 /* Support the --return-child-result option. */
4809 return_child_result_value = ecs->ws.value.integer;
4810
fd664c91 4811 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
4812 }
4813 else
0c557179
SDJ
4814 {
4815 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4816 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4817
4818 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4819 {
4820 /* Set the value of the internal variable $_exitsignal,
4821 which holds the signal uncaught by the inferior. */
4822 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4823 gdbarch_gdb_signal_to_target (gdbarch,
4824 ecs->ws.value.sig));
4825 }
4826 else
4827 {
4828 /* We don't have access to the target's method used for
4829 converting between signal numbers (GDB's internal
4830 representation <-> target's representation).
4831 Therefore, we cannot do a good job at displaying this
4832 information to the user. It's better to just warn
4833 her about it (if infrun debugging is enabled), and
4834 give up. */
4835 if (debug_infrun)
4836 fprintf_filtered (gdb_stdlog, _("\
4837Cannot fill $_exitsignal with the correct signal number.\n"));
4838 }
4839
fd664c91 4840 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 4841 }
8cf64490 4842
488f131b
JB
4843 gdb_flush (gdb_stdout);
4844 target_mourn_inferior ();
488f131b 4845 stop_print_frame = 0;
22bcd14b 4846 stop_waiting (ecs);
488f131b 4847 return;
c5aa993b 4848
488f131b 4849 /* The following are the only cases in which we keep going;
1777feb0 4850 the above cases end in a continue or goto. */
488f131b 4851 case TARGET_WAITKIND_FORKED:
deb3b17b 4852 case TARGET_WAITKIND_VFORKED:
527159b7 4853 if (debug_infrun)
fed708ed
PA
4854 {
4855 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4856 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4857 else
4858 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4859 }
c906108c 4860
e2d96639
YQ
4861 /* Check whether the inferior is displaced stepping. */
4862 {
4863 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4864 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4865 struct displaced_step_inferior_state *displaced
4866 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4867
4868 /* If checking displaced stepping is supported, and thread
4869 ecs->ptid is displaced stepping. */
4870 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
4871 {
4872 struct inferior *parent_inf
c9657e70 4873 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4874 struct regcache *child_regcache;
4875 CORE_ADDR parent_pc;
4876
4877 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4878 indicating that the displaced stepping of syscall instruction
4879 has been done. Perform cleanup for parent process here. Note
4880 that this operation also cleans up the child process for vfork,
4881 because their pages are shared. */
a493e3e2 4882 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
4883 /* Start a new step-over in another thread if there's one
4884 that needs it. */
4885 start_step_over ();
e2d96639
YQ
4886
4887 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4888 {
4889 /* Restore scratch pad for child process. */
4890 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4891 }
4892
4893 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4894 the child's PC is also within the scratchpad. Set the child's PC
4895 to the parent's PC value, which has already been fixed up.
4896 FIXME: we use the parent's aspace here, although we're touching
4897 the child, because the child hasn't been added to the inferior
4898 list yet at this point. */
4899
4900 child_regcache
4901 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4902 gdbarch,
4903 parent_inf->aspace);
4904 /* Read PC value of parent process. */
4905 parent_pc = regcache_read_pc (regcache);
4906
4907 if (debug_displaced)
4908 fprintf_unfiltered (gdb_stdlog,
4909 "displaced: write child pc from %s to %s\n",
4910 paddress (gdbarch,
4911 regcache_read_pc (child_regcache)),
4912 paddress (gdbarch, parent_pc));
4913
4914 regcache_write_pc (child_regcache, parent_pc);
4915 }
4916 }
4917
5a2901d9 4918 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 4919 context_switch (ecs->ptid);
5a2901d9 4920
b242c3c2
PA
4921 /* Immediately detach breakpoints from the child before there's
4922 any chance of letting the user delete breakpoints from the
4923 breakpoint lists. If we don't do this early, it's easy to
4924 leave left over traps in the child, vis: "break foo; catch
4925 fork; c; <fork>; del; c; <child calls foo>". We only follow
4926 the fork on the last `continue', and by that time the
4927 breakpoint at "foo" is long gone from the breakpoint table.
4928 If we vforked, then we don't need to unpatch here, since both
4929 parent and child are sharing the same memory pages; we'll
4930 need to unpatch at follow/detach time instead to be certain
4931 that new breakpoints added between catchpoint hit time and
4932 vfork follow are detached. */
4933 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4934 {
b242c3c2
PA
4935 /* This won't actually modify the breakpoint list, but will
4936 physically remove the breakpoints from the child. */
d80ee84f 4937 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4938 }
4939
34b7e8a6 4940 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 4941
e58b0e63
PA
4942 /* In case the event is caught by a catchpoint, remember that
4943 the event is to be followed at the next resume of the thread,
4944 and not immediately. */
4945 ecs->event_thread->pending_follow = ecs->ws;
4946
fb14de7b 4947 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 4948
16c381f0 4949 ecs->event_thread->control.stop_bpstat
6c95b8df 4950 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4951 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 4952
ce12b012
PA
4953 /* If no catchpoint triggered for this, then keep going. Note
4954 that we're interested in knowing the bpstat actually causes a
4955 stop, not just if it may explain the signal. Software
4956 watchpoints, for example, always appear in the bpstat. */
4957 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4958 {
6c95b8df
PA
4959 ptid_t parent;
4960 ptid_t child;
e58b0e63 4961 int should_resume;
3e43a32a
MS
4962 int follow_child
4963 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 4964
a493e3e2 4965 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
4966
4967 should_resume = follow_fork ();
4968
6c95b8df
PA
4969 parent = ecs->ptid;
4970 child = ecs->ws.value.related_pid;
4971
4972 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
4973 if (!detach_fork && (non_stop
4974 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
4975 {
4976 if (follow_child)
4977 switch_to_thread (parent);
4978 else
4979 switch_to_thread (child);
4980
4981 ecs->event_thread = inferior_thread ();
4982 ecs->ptid = inferior_ptid;
4983 keep_going (ecs);
4984 }
4985
4986 if (follow_child)
4987 switch_to_thread (child);
4988 else
4989 switch_to_thread (parent);
4990
e58b0e63
PA
4991 ecs->event_thread = inferior_thread ();
4992 ecs->ptid = inferior_ptid;
4993
4994 if (should_resume)
4995 keep_going (ecs);
4996 else
22bcd14b 4997 stop_waiting (ecs);
04e68871
DJ
4998 return;
4999 }
94c57d6a
PA
5000 process_event_stop_test (ecs);
5001 return;
488f131b 5002
6c95b8df
PA
5003 case TARGET_WAITKIND_VFORK_DONE:
5004 /* Done with the shared memory region. Re-insert breakpoints in
5005 the parent, and keep going. */
5006
5007 if (debug_infrun)
3e43a32a
MS
5008 fprintf_unfiltered (gdb_stdlog,
5009 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5010
5011 if (!ptid_equal (ecs->ptid, inferior_ptid))
5012 context_switch (ecs->ptid);
5013
5014 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5015 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5016 /* This also takes care of reinserting breakpoints in the
5017 previously locked inferior. */
5018 keep_going (ecs);
5019 return;
5020
488f131b 5021 case TARGET_WAITKIND_EXECD:
527159b7 5022 if (debug_infrun)
fc5261f2 5023 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5024
5a2901d9 5025 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5026 context_switch (ecs->ptid);
5a2901d9 5027
fb14de7b 5028 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5029
6c95b8df
PA
5030 /* Do whatever is necessary to the parent branch of the vfork. */
5031 handle_vfork_child_exec_or_exit (1);
5032
795e548f
PA
5033 /* This causes the eventpoints and symbol table to be reset.
5034 Must do this now, before trying to determine whether to
5035 stop. */
71b43ef8 5036 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5037
17d8546e
DB
5038 /* In follow_exec we may have deleted the original thread and
5039 created a new one. Make sure that the event thread is the
5040 execd thread for that case (this is a nop otherwise). */
5041 ecs->event_thread = inferior_thread ();
5042
16c381f0 5043 ecs->event_thread->control.stop_bpstat
6c95b8df 5044 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5045 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5046
71b43ef8
PA
5047 /* Note that this may be referenced from inside
5048 bpstat_stop_status above, through inferior_has_execd. */
5049 xfree (ecs->ws.value.execd_pathname);
5050 ecs->ws.value.execd_pathname = NULL;
5051
04e68871 5052 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5053 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5054 {
a493e3e2 5055 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5056 keep_going (ecs);
5057 return;
5058 }
94c57d6a
PA
5059 process_event_stop_test (ecs);
5060 return;
488f131b 5061
b4dc5ffa
MK
5062 /* Be careful not to try to gather much state about a thread
5063 that's in a syscall. It's frequently a losing proposition. */
488f131b 5064 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5065 if (debug_infrun)
3e43a32a
MS
5066 fprintf_unfiltered (gdb_stdlog,
5067 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5068 /* Getting the current syscall number. */
94c57d6a
PA
5069 if (handle_syscall_event (ecs) == 0)
5070 process_event_stop_test (ecs);
5071 return;
c906108c 5072
488f131b
JB
5073 /* Before examining the threads further, step this thread to
5074 get it entirely out of the syscall. (We get notice of the
5075 event when the thread is just on the verge of exiting a
5076 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5077 into user code.) */
488f131b 5078 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5079 if (debug_infrun)
3e43a32a
MS
5080 fprintf_unfiltered (gdb_stdlog,
5081 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5082 if (handle_syscall_event (ecs) == 0)
5083 process_event_stop_test (ecs);
5084 return;
c906108c 5085
488f131b 5086 case TARGET_WAITKIND_STOPPED:
527159b7 5087 if (debug_infrun)
8a9de0e4 5088 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5089 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5090 handle_signal_stop (ecs);
5091 return;
c906108c 5092
b2175913 5093 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5094 if (debug_infrun)
5095 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5096 /* Reverse execution: target ran out of history info. */
eab402df 5097
34b7e8a6 5098 delete_just_stopped_threads_single_step_breakpoints ();
fb14de7b 5099 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
fd664c91 5100 observer_notify_no_history ();
22bcd14b 5101 stop_waiting (ecs);
b2175913 5102 return;
488f131b 5103 }
4f5d7f63
PA
5104}
5105
0b6e5e10
JB
5106/* A wrapper around handle_inferior_event_1, which also makes sure
5107 that all temporary struct value objects that were created during
5108 the handling of the event get deleted at the end. */
5109
5110static void
5111handle_inferior_event (struct execution_control_state *ecs)
5112{
5113 struct value *mark = value_mark ();
5114
5115 handle_inferior_event_1 (ecs);
5116 /* Purge all temporary values created during the event handling,
5117 as it could be a long time before we return to the command level
5118 where such values would otherwise be purged. */
5119 value_free_to_mark (mark);
5120}
5121
372316f1
PA
5122/* Restart threads back to what they were trying to do back when we
5123 paused them for an in-line step-over. The EVENT_THREAD thread is
5124 ignored. */
4d9d9d04
PA
5125
5126static void
372316f1
PA
5127restart_threads (struct thread_info *event_thread)
5128{
5129 struct thread_info *tp;
5130 struct thread_info *step_over = NULL;
5131
5132 /* In case the instruction just stepped spawned a new thread. */
5133 update_thread_list ();
5134
5135 ALL_NON_EXITED_THREADS (tp)
5136 {
5137 if (tp == event_thread)
5138 {
5139 if (debug_infrun)
5140 fprintf_unfiltered (gdb_stdlog,
5141 "infrun: restart threads: "
5142 "[%s] is event thread\n",
5143 target_pid_to_str (tp->ptid));
5144 continue;
5145 }
5146
5147 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5148 {
5149 if (debug_infrun)
5150 fprintf_unfiltered (gdb_stdlog,
5151 "infrun: restart threads: "
5152 "[%s] not meant to be running\n",
5153 target_pid_to_str (tp->ptid));
5154 continue;
5155 }
5156
5157 if (tp->resumed)
5158 {
5159 if (debug_infrun)
5160 fprintf_unfiltered (gdb_stdlog,
5161 "infrun: restart threads: [%s] resumed\n",
5162 target_pid_to_str (tp->ptid));
5163 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5164 continue;
5165 }
5166
5167 if (thread_is_in_step_over_chain (tp))
5168 {
5169 if (debug_infrun)
5170 fprintf_unfiltered (gdb_stdlog,
5171 "infrun: restart threads: "
5172 "[%s] needs step-over\n",
5173 target_pid_to_str (tp->ptid));
5174 gdb_assert (!tp->resumed);
5175 continue;
5176 }
5177
5178
5179 if (tp->suspend.waitstatus_pending_p)
5180 {
5181 if (debug_infrun)
5182 fprintf_unfiltered (gdb_stdlog,
5183 "infrun: restart threads: "
5184 "[%s] has pending status\n",
5185 target_pid_to_str (tp->ptid));
5186 tp->resumed = 1;
5187 continue;
5188 }
5189
5190 /* If some thread needs to start a step-over at this point, it
5191 should still be in the step-over queue, and thus skipped
5192 above. */
5193 if (thread_still_needs_step_over (tp))
5194 {
5195 internal_error (__FILE__, __LINE__,
5196 "thread [%s] needs a step-over, but not in "
5197 "step-over queue\n",
5198 target_pid_to_str (tp->ptid));
5199 }
5200
5201 if (currently_stepping (tp))
5202 {
5203 if (debug_infrun)
5204 fprintf_unfiltered (gdb_stdlog,
5205 "infrun: restart threads: [%s] was stepping\n",
5206 target_pid_to_str (tp->ptid));
5207 keep_going_stepped_thread (tp);
5208 }
5209 else
5210 {
5211 struct execution_control_state ecss;
5212 struct execution_control_state *ecs = &ecss;
5213
5214 if (debug_infrun)
5215 fprintf_unfiltered (gdb_stdlog,
5216 "infrun: restart threads: [%s] continuing\n",
5217 target_pid_to_str (tp->ptid));
5218 reset_ecs (ecs, tp);
5219 switch_to_thread (tp->ptid);
5220 keep_going_pass_signal (ecs);
5221 }
5222 }
5223}
5224
5225/* Callback for iterate_over_threads. Find a resumed thread that has
5226 a pending waitstatus. */
5227
5228static int
5229resumed_thread_with_pending_status (struct thread_info *tp,
5230 void *arg)
5231{
5232 return (tp->resumed
5233 && tp->suspend.waitstatus_pending_p);
5234}
5235
5236/* Called when we get an event that may finish an in-line or
5237 out-of-line (displaced stepping) step-over started previously.
5238 Return true if the event is processed and we should go back to the
5239 event loop; false if the caller should continue processing the
5240 event. */
5241
5242static int
4d9d9d04
PA
5243finish_step_over (struct execution_control_state *ecs)
5244{
372316f1
PA
5245 int had_step_over_info;
5246
4d9d9d04
PA
5247 displaced_step_fixup (ecs->ptid,
5248 ecs->event_thread->suspend.stop_signal);
5249
372316f1
PA
5250 had_step_over_info = step_over_info_valid_p ();
5251
5252 if (had_step_over_info)
4d9d9d04
PA
5253 {
5254 /* If we're stepping over a breakpoint with all threads locked,
5255 then only the thread that was stepped should be reporting
5256 back an event. */
5257 gdb_assert (ecs->event_thread->control.trap_expected);
5258
5259 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5260 clear_step_over_info ();
5261 }
5262
fbea99ea 5263 if (!target_is_non_stop_p ())
372316f1 5264 return 0;
4d9d9d04
PA
5265
5266 /* Start a new step-over in another thread if there's one that
5267 needs it. */
5268 start_step_over ();
372316f1
PA
5269
5270 /* If we were stepping over a breakpoint before, and haven't started
5271 a new in-line step-over sequence, then restart all other threads
5272 (except the event thread). We can't do this in all-stop, as then
5273 e.g., we wouldn't be able to issue any other remote packet until
5274 these other threads stop. */
5275 if (had_step_over_info && !step_over_info_valid_p ())
5276 {
5277 struct thread_info *pending;
5278
5279 /* If we only have threads with pending statuses, the restart
5280 below won't restart any thread and so nothing re-inserts the
5281 breakpoint we just stepped over. But we need it inserted
5282 when we later process the pending events, otherwise if
5283 another thread has a pending event for this breakpoint too,
5284 we'd discard its event (because the breakpoint that
5285 originally caused the event was no longer inserted). */
5286 context_switch (ecs->ptid);
5287 insert_breakpoints ();
5288
5289 restart_threads (ecs->event_thread);
5290
5291 /* If we have events pending, go through handle_inferior_event
5292 again, picking up a pending event at random. This avoids
5293 thread starvation. */
5294
5295 /* But not if we just stepped over a watchpoint in order to let
5296 the instruction execute so we can evaluate its expression.
5297 The set of watchpoints that triggered is recorded in the
5298 breakpoint objects themselves (see bp->watchpoint_triggered).
5299 If we processed another event first, that other event could
5300 clobber this info. */
5301 if (ecs->event_thread->stepping_over_watchpoint)
5302 return 0;
5303
5304 pending = iterate_over_threads (resumed_thread_with_pending_status,
5305 NULL);
5306 if (pending != NULL)
5307 {
5308 struct thread_info *tp = ecs->event_thread;
5309 struct regcache *regcache;
5310
5311 if (debug_infrun)
5312 {
5313 fprintf_unfiltered (gdb_stdlog,
5314 "infrun: found resumed threads with "
5315 "pending events, saving status\n");
5316 }
5317
5318 gdb_assert (pending != tp);
5319
5320 /* Record the event thread's event for later. */
5321 save_waitstatus (tp, &ecs->ws);
5322 /* This was cleared early, by handle_inferior_event. Set it
5323 so this pending event is considered by
5324 do_target_wait. */
5325 tp->resumed = 1;
5326
5327 gdb_assert (!tp->executing);
5328
5329 regcache = get_thread_regcache (tp->ptid);
5330 tp->suspend.stop_pc = regcache_read_pc (regcache);
5331
5332 if (debug_infrun)
5333 {
5334 fprintf_unfiltered (gdb_stdlog,
5335 "infrun: saved stop_pc=%s for %s "
5336 "(currently_stepping=%d)\n",
5337 paddress (target_gdbarch (),
5338 tp->suspend.stop_pc),
5339 target_pid_to_str (tp->ptid),
5340 currently_stepping (tp));
5341 }
5342
5343 /* This in-line step-over finished; clear this so we won't
5344 start a new one. This is what handle_signal_stop would
5345 do, if we returned false. */
5346 tp->stepping_over_breakpoint = 0;
5347
5348 /* Wake up the event loop again. */
5349 mark_async_event_handler (infrun_async_inferior_event_token);
5350
5351 prepare_to_wait (ecs);
5352 return 1;
5353 }
5354 }
5355
5356 return 0;
4d9d9d04
PA
5357}
5358
4f5d7f63
PA
5359/* Come here when the program has stopped with a signal. */
5360
5361static void
5362handle_signal_stop (struct execution_control_state *ecs)
5363{
5364 struct frame_info *frame;
5365 struct gdbarch *gdbarch;
5366 int stopped_by_watchpoint;
5367 enum stop_kind stop_soon;
5368 int random_signal;
c906108c 5369
f0407826
DE
5370 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5371
5372 /* Do we need to clean up the state of a thread that has
5373 completed a displaced single-step? (Doing so usually affects
5374 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5375 if (finish_step_over (ecs))
5376 return;
f0407826
DE
5377
5378 /* If we either finished a single-step or hit a breakpoint, but
5379 the user wanted this thread to be stopped, pretend we got a
5380 SIG0 (generic unsignaled stop). */
5381 if (ecs->event_thread->stop_requested
5382 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5383 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5384
515630c5 5385 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5386
527159b7 5387 if (debug_infrun)
237fc4c9 5388 {
5af949e3
UW
5389 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5390 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5391 struct cleanup *old_chain = save_inferior_ptid ();
5392
5393 inferior_ptid = ecs->ptid;
5af949e3
UW
5394
5395 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5396 paddress (gdbarch, stop_pc));
d92524f1 5397 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5398 {
5399 CORE_ADDR addr;
abbb1732 5400
237fc4c9
PA
5401 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5402
5403 if (target_stopped_data_address (&current_target, &addr))
5404 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5405 "infrun: stopped data address = %s\n",
5406 paddress (gdbarch, addr));
237fc4c9
PA
5407 else
5408 fprintf_unfiltered (gdb_stdlog,
5409 "infrun: (no data address available)\n");
5410 }
7f82dfc7
JK
5411
5412 do_cleanups (old_chain);
237fc4c9 5413 }
527159b7 5414
36fa8042
PA
5415 /* This is originated from start_remote(), start_inferior() and
5416 shared libraries hook functions. */
5417 stop_soon = get_inferior_stop_soon (ecs->ptid);
5418 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5419 {
5420 if (!ptid_equal (ecs->ptid, inferior_ptid))
5421 context_switch (ecs->ptid);
5422 if (debug_infrun)
5423 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5424 stop_print_frame = 1;
22bcd14b 5425 stop_waiting (ecs);
36fa8042
PA
5426 return;
5427 }
5428
5429 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5430 && stop_after_trap)
5431 {
5432 if (!ptid_equal (ecs->ptid, inferior_ptid))
5433 context_switch (ecs->ptid);
5434 if (debug_infrun)
5435 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5436 stop_print_frame = 0;
22bcd14b 5437 stop_waiting (ecs);
36fa8042
PA
5438 return;
5439 }
5440
5441 /* This originates from attach_command(). We need to overwrite
5442 the stop_signal here, because some kernels don't ignore a
5443 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5444 See more comments in inferior.h. On the other hand, if we
5445 get a non-SIGSTOP, report it to the user - assume the backend
5446 will handle the SIGSTOP if it should show up later.
5447
5448 Also consider that the attach is complete when we see a
5449 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5450 target extended-remote report it instead of a SIGSTOP
5451 (e.g. gdbserver). We already rely on SIGTRAP being our
5452 signal, so this is no exception.
5453
5454 Also consider that the attach is complete when we see a
5455 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5456 the target to stop all threads of the inferior, in case the
5457 low level attach operation doesn't stop them implicitly. If
5458 they weren't stopped implicitly, then the stub will report a
5459 GDB_SIGNAL_0, meaning: stopped for no particular reason
5460 other than GDB's request. */
5461 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5462 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5463 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5464 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5465 {
5466 stop_print_frame = 1;
22bcd14b 5467 stop_waiting (ecs);
36fa8042
PA
5468 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5469 return;
5470 }
5471
488f131b 5472 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5473 so, then switch to that thread. */
5474 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5475 {
527159b7 5476 if (debug_infrun)
8a9de0e4 5477 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5478
0d1e5fa7 5479 context_switch (ecs->ptid);
c5aa993b 5480
9a4105ab
AC
5481 if (deprecated_context_hook)
5482 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 5483 }
c906108c 5484
568d6575
UW
5485 /* At this point, get hold of the now-current thread's frame. */
5486 frame = get_current_frame ();
5487 gdbarch = get_frame_arch (frame);
5488
2adfaa28 5489 /* Pull the single step breakpoints out of the target. */
af48d08f 5490 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5491 {
af48d08f
PA
5492 struct regcache *regcache;
5493 struct address_space *aspace;
5494 CORE_ADDR pc;
2adfaa28 5495
af48d08f
PA
5496 regcache = get_thread_regcache (ecs->ptid);
5497 aspace = get_regcache_aspace (regcache);
5498 pc = regcache_read_pc (regcache);
34b7e8a6 5499
af48d08f
PA
5500 /* However, before doing so, if this single-step breakpoint was
5501 actually for another thread, set this thread up for moving
5502 past it. */
5503 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5504 aspace, pc))
5505 {
5506 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5507 {
5508 if (debug_infrun)
5509 {
5510 fprintf_unfiltered (gdb_stdlog,
af48d08f 5511 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5512 "single-step breakpoint\n",
5513 target_pid_to_str (ecs->ptid));
2adfaa28 5514 }
af48d08f
PA
5515 ecs->hit_singlestep_breakpoint = 1;
5516 }
5517 }
5518 else
5519 {
5520 if (debug_infrun)
5521 {
5522 fprintf_unfiltered (gdb_stdlog,
5523 "infrun: [%s] hit its "
5524 "single-step breakpoint\n",
5525 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5526 }
5527 }
488f131b 5528 }
af48d08f 5529 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5530
963f9c80
PA
5531 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5532 && ecs->event_thread->control.trap_expected
5533 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5534 stopped_by_watchpoint = 0;
5535 else
5536 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5537
5538 /* If necessary, step over this watchpoint. We'll be back to display
5539 it in a moment. */
5540 if (stopped_by_watchpoint
d92524f1 5541 && (target_have_steppable_watchpoint
568d6575 5542 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5543 {
488f131b
JB
5544 /* At this point, we are stopped at an instruction which has
5545 attempted to write to a piece of memory under control of
5546 a watchpoint. The instruction hasn't actually executed
5547 yet. If we were to evaluate the watchpoint expression
5548 now, we would get the old value, and therefore no change
5549 would seem to have occurred.
5550
5551 In order to make watchpoints work `right', we really need
5552 to complete the memory write, and then evaluate the
d983da9c
DJ
5553 watchpoint expression. We do this by single-stepping the
5554 target.
5555
7f89fd65 5556 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5557 it. For example, the PA can (with some kernel cooperation)
5558 single step over a watchpoint without disabling the watchpoint.
5559
5560 It is far more common to need to disable a watchpoint to step
5561 the inferior over it. If we have non-steppable watchpoints,
5562 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5563 disable all watchpoints.
5564
5565 Any breakpoint at PC must also be stepped over -- if there's
5566 one, it will have already triggered before the watchpoint
5567 triggered, and we either already reported it to the user, or
5568 it didn't cause a stop and we called keep_going. In either
5569 case, if there was a breakpoint at PC, we must be trying to
5570 step past it. */
5571 ecs->event_thread->stepping_over_watchpoint = 1;
5572 keep_going (ecs);
488f131b
JB
5573 return;
5574 }
5575
4e1c45ea 5576 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5577 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5578 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5579 ecs->event_thread->control.stop_step = 0;
488f131b 5580 stop_print_frame = 1;
488f131b 5581 stopped_by_random_signal = 0;
488f131b 5582
edb3359d
DJ
5583 /* Hide inlined functions starting here, unless we just performed stepi or
5584 nexti. After stepi and nexti, always show the innermost frame (not any
5585 inline function call sites). */
16c381f0 5586 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5587 {
5588 struct address_space *aspace =
5589 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5590
5591 /* skip_inline_frames is expensive, so we avoid it if we can
5592 determine that the address is one where functions cannot have
5593 been inlined. This improves performance with inferiors that
5594 load a lot of shared libraries, because the solib event
5595 breakpoint is defined as the address of a function (i.e. not
5596 inline). Note that we have to check the previous PC as well
5597 as the current one to catch cases when we have just
5598 single-stepped off a breakpoint prior to reinstating it.
5599 Note that we're assuming that the code we single-step to is
5600 not inline, but that's not definitive: there's nothing
5601 preventing the event breakpoint function from containing
5602 inlined code, and the single-step ending up there. If the
5603 user had set a breakpoint on that inlined code, the missing
5604 skip_inline_frames call would break things. Fortunately
5605 that's an extremely unlikely scenario. */
09ac7c10 5606 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5607 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5608 && ecs->event_thread->control.trap_expected
5609 && pc_at_non_inline_function (aspace,
5610 ecs->event_thread->prev_pc,
09ac7c10 5611 &ecs->ws)))
1c5a993e
MR
5612 {
5613 skip_inline_frames (ecs->ptid);
5614
5615 /* Re-fetch current thread's frame in case that invalidated
5616 the frame cache. */
5617 frame = get_current_frame ();
5618 gdbarch = get_frame_arch (frame);
5619 }
0574c78f 5620 }
edb3359d 5621
a493e3e2 5622 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5623 && ecs->event_thread->control.trap_expected
568d6575 5624 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5625 && currently_stepping (ecs->event_thread))
3352ef37 5626 {
b50d7442 5627 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5628 also on an instruction that needs to be stepped multiple
1777feb0 5629 times before it's been fully executing. E.g., architectures
3352ef37
AC
5630 with a delay slot. It needs to be stepped twice, once for
5631 the instruction and once for the delay slot. */
5632 int step_through_delay
568d6575 5633 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5634
527159b7 5635 if (debug_infrun && step_through_delay)
8a9de0e4 5636 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5637 if (ecs->event_thread->control.step_range_end == 0
5638 && step_through_delay)
3352ef37
AC
5639 {
5640 /* The user issued a continue when stopped at a breakpoint.
5641 Set up for another trap and get out of here. */
4e1c45ea 5642 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5643 keep_going (ecs);
5644 return;
5645 }
5646 else if (step_through_delay)
5647 {
5648 /* The user issued a step when stopped at a breakpoint.
5649 Maybe we should stop, maybe we should not - the delay
5650 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5651 case, don't decide that here, just set
5652 ecs->stepping_over_breakpoint, making sure we
5653 single-step again before breakpoints are re-inserted. */
4e1c45ea 5654 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5655 }
5656 }
5657
ab04a2af
TT
5658 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5659 handles this event. */
5660 ecs->event_thread->control.stop_bpstat
5661 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5662 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5663
ab04a2af
TT
5664 /* Following in case break condition called a
5665 function. */
5666 stop_print_frame = 1;
73dd234f 5667
ab04a2af
TT
5668 /* This is where we handle "moribund" watchpoints. Unlike
5669 software breakpoints traps, hardware watchpoint traps are
5670 always distinguishable from random traps. If no high-level
5671 watchpoint is associated with the reported stop data address
5672 anymore, then the bpstat does not explain the signal ---
5673 simply make sure to ignore it if `stopped_by_watchpoint' is
5674 set. */
5675
5676 if (debug_infrun
5677 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5678 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5679 GDB_SIGNAL_TRAP)
ab04a2af
TT
5680 && stopped_by_watchpoint)
5681 fprintf_unfiltered (gdb_stdlog,
5682 "infrun: no user watchpoint explains "
5683 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5684
bac7d97b 5685 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5686 at one stage in the past included checks for an inferior
5687 function call's call dummy's return breakpoint. The original
5688 comment, that went with the test, read:
03cebad2 5689
ab04a2af
TT
5690 ``End of a stack dummy. Some systems (e.g. Sony news) give
5691 another signal besides SIGTRAP, so check here as well as
5692 above.''
73dd234f 5693
ab04a2af
TT
5694 If someone ever tries to get call dummys on a
5695 non-executable stack to work (where the target would stop
5696 with something like a SIGSEGV), then those tests might need
5697 to be re-instated. Given, however, that the tests were only
5698 enabled when momentary breakpoints were not being used, I
5699 suspect that it won't be the case.
488f131b 5700
ab04a2af
TT
5701 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5702 be necessary for call dummies on a non-executable stack on
5703 SPARC. */
488f131b 5704
bac7d97b 5705 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5706 random_signal
5707 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5708 ecs->event_thread->suspend.stop_signal);
bac7d97b 5709
1cf4d951
PA
5710 /* Maybe this was a trap for a software breakpoint that has since
5711 been removed. */
5712 if (random_signal && target_stopped_by_sw_breakpoint ())
5713 {
5714 if (program_breakpoint_here_p (gdbarch, stop_pc))
5715 {
5716 struct regcache *regcache;
5717 int decr_pc;
5718
5719 /* Re-adjust PC to what the program would see if GDB was not
5720 debugging it. */
5721 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 5722 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5723 if (decr_pc != 0)
5724 {
5725 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5726
5727 if (record_full_is_used ())
5728 record_full_gdb_operation_disable_set ();
5729
5730 regcache_write_pc (regcache, stop_pc + decr_pc);
5731
5732 do_cleanups (old_cleanups);
5733 }
5734 }
5735 else
5736 {
5737 /* A delayed software breakpoint event. Ignore the trap. */
5738 if (debug_infrun)
5739 fprintf_unfiltered (gdb_stdlog,
5740 "infrun: delayed software breakpoint "
5741 "trap, ignoring\n");
5742 random_signal = 0;
5743 }
5744 }
5745
5746 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5747 has since been removed. */
5748 if (random_signal && target_stopped_by_hw_breakpoint ())
5749 {
5750 /* A delayed hardware breakpoint event. Ignore the trap. */
5751 if (debug_infrun)
5752 fprintf_unfiltered (gdb_stdlog,
5753 "infrun: delayed hardware breakpoint/watchpoint "
5754 "trap, ignoring\n");
5755 random_signal = 0;
5756 }
5757
bac7d97b
PA
5758 /* If not, perhaps stepping/nexting can. */
5759 if (random_signal)
5760 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5761 && currently_stepping (ecs->event_thread));
ab04a2af 5762
2adfaa28
PA
5763 /* Perhaps the thread hit a single-step breakpoint of _another_
5764 thread. Single-step breakpoints are transparent to the
5765 breakpoints module. */
5766 if (random_signal)
5767 random_signal = !ecs->hit_singlestep_breakpoint;
5768
bac7d97b
PA
5769 /* No? Perhaps we got a moribund watchpoint. */
5770 if (random_signal)
5771 random_signal = !stopped_by_watchpoint;
ab04a2af 5772
488f131b
JB
5773 /* For the program's own signals, act according to
5774 the signal handling tables. */
5775
ce12b012 5776 if (random_signal)
488f131b
JB
5777 {
5778 /* Signal not for debugging purposes. */
c9657e70 5779 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5780 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5781
527159b7 5782 if (debug_infrun)
c9737c08
PA
5783 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5784 gdb_signal_to_symbol_string (stop_signal));
527159b7 5785
488f131b
JB
5786 stopped_by_random_signal = 1;
5787
252fbfc8
PA
5788 /* Always stop on signals if we're either just gaining control
5789 of the program, or the user explicitly requested this thread
5790 to remain stopped. */
d6b48e9c 5791 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5792 || ecs->event_thread->stop_requested
24291992 5793 || (!inf->detaching
16c381f0 5794 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5795 {
22bcd14b 5796 stop_waiting (ecs);
488f131b
JB
5797 return;
5798 }
b57bacec
PA
5799
5800 /* Notify observers the signal has "handle print" set. Note we
5801 returned early above if stopping; normal_stop handles the
5802 printing in that case. */
5803 if (signal_print[ecs->event_thread->suspend.stop_signal])
5804 {
5805 /* The signal table tells us to print about this signal. */
5806 target_terminal_ours_for_output ();
5807 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5808 target_terminal_inferior ();
5809 }
488f131b
JB
5810
5811 /* Clear the signal if it should not be passed. */
16c381f0 5812 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5813 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5814
fb14de7b 5815 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 5816 && ecs->event_thread->control.trap_expected
8358c15c 5817 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 5818 {
372316f1
PA
5819 int was_in_line;
5820
68f53502
AC
5821 /* We were just starting a new sequence, attempting to
5822 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5823 Instead this signal arrives. This signal will take us out
68f53502
AC
5824 of the stepping range so GDB needs to remember to, when
5825 the signal handler returns, resume stepping off that
5826 breakpoint. */
5827 /* To simplify things, "continue" is forced to use the same
5828 code paths as single-step - set a breakpoint at the
5829 signal return address and then, once hit, step off that
5830 breakpoint. */
237fc4c9
PA
5831 if (debug_infrun)
5832 fprintf_unfiltered (gdb_stdlog,
5833 "infrun: signal arrived while stepping over "
5834 "breakpoint\n");
d3169d93 5835
372316f1
PA
5836 was_in_line = step_over_info_valid_p ();
5837 clear_step_over_info ();
2c03e5be 5838 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5839 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5840 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5841 ecs->event_thread->control.trap_expected = 0;
d137e6dc 5842
fbea99ea 5843 if (target_is_non_stop_p ())
372316f1 5844 {
fbea99ea
PA
5845 /* Either "set non-stop" is "on", or the target is
5846 always in non-stop mode. In this case, we have a bit
5847 more work to do. Resume the current thread, and if
5848 we had paused all threads, restart them while the
5849 signal handler runs. */
372316f1
PA
5850 keep_going (ecs);
5851
372316f1
PA
5852 if (was_in_line)
5853 {
372316f1
PA
5854 restart_threads (ecs->event_thread);
5855 }
5856 else if (debug_infrun)
5857 {
5858 fprintf_unfiltered (gdb_stdlog,
5859 "infrun: no need to restart threads\n");
5860 }
5861 return;
5862 }
5863
d137e6dc
PA
5864 /* If we were nexting/stepping some other thread, switch to
5865 it, so that we don't continue it, losing control. */
5866 if (!switch_back_to_stepped_thread (ecs))
5867 keep_going (ecs);
9d799f85 5868 return;
68f53502 5869 }
9d799f85 5870
e5f8a7cc
PA
5871 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5872 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5873 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5874 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5875 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5876 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5877 {
5878 /* The inferior is about to take a signal that will take it
5879 out of the single step range. Set a breakpoint at the
5880 current PC (which is presumably where the signal handler
5881 will eventually return) and then allow the inferior to
5882 run free.
5883
5884 Note that this is only needed for a signal delivered
5885 while in the single-step range. Nested signals aren't a
5886 problem as they eventually all return. */
237fc4c9
PA
5887 if (debug_infrun)
5888 fprintf_unfiltered (gdb_stdlog,
5889 "infrun: signal may take us out of "
5890 "single-step range\n");
5891
372316f1 5892 clear_step_over_info ();
2c03e5be 5893 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5894 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5895 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5896 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5897 keep_going (ecs);
5898 return;
d303a6c7 5899 }
9d799f85
AC
5900
5901 /* Note: step_resume_breakpoint may be non-NULL. This occures
5902 when either there's a nested signal, or when there's a
5903 pending signal enabled just as the signal handler returns
5904 (leaving the inferior at the step-resume-breakpoint without
5905 actually executing it). Either way continue until the
5906 breakpoint is really hit. */
c447ac0b
PA
5907
5908 if (!switch_back_to_stepped_thread (ecs))
5909 {
5910 if (debug_infrun)
5911 fprintf_unfiltered (gdb_stdlog,
5912 "infrun: random signal, keep going\n");
5913
5914 keep_going (ecs);
5915 }
5916 return;
488f131b 5917 }
94c57d6a
PA
5918
5919 process_event_stop_test (ecs);
5920}
5921
5922/* Come here when we've got some debug event / signal we can explain
5923 (IOW, not a random signal), and test whether it should cause a
5924 stop, or whether we should resume the inferior (transparently).
5925 E.g., could be a breakpoint whose condition evaluates false; we
5926 could be still stepping within the line; etc. */
5927
5928static void
5929process_event_stop_test (struct execution_control_state *ecs)
5930{
5931 struct symtab_and_line stop_pc_sal;
5932 struct frame_info *frame;
5933 struct gdbarch *gdbarch;
cdaa5b73
PA
5934 CORE_ADDR jmp_buf_pc;
5935 struct bpstat_what what;
94c57d6a 5936
cdaa5b73 5937 /* Handle cases caused by hitting a breakpoint. */
611c83ae 5938
cdaa5b73
PA
5939 frame = get_current_frame ();
5940 gdbarch = get_frame_arch (frame);
fcf3daef 5941
cdaa5b73 5942 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 5943
cdaa5b73
PA
5944 if (what.call_dummy)
5945 {
5946 stop_stack_dummy = what.call_dummy;
5947 }
186c406b 5948
243a9253
PA
5949 /* A few breakpoint types have callbacks associated (e.g.,
5950 bp_jit_event). Run them now. */
5951 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
5952
cdaa5b73
PA
5953 /* If we hit an internal event that triggers symbol changes, the
5954 current frame will be invalidated within bpstat_what (e.g., if we
5955 hit an internal solib event). Re-fetch it. */
5956 frame = get_current_frame ();
5957 gdbarch = get_frame_arch (frame);
e2e4d78b 5958
cdaa5b73
PA
5959 switch (what.main_action)
5960 {
5961 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
5962 /* If we hit the breakpoint at longjmp while stepping, we
5963 install a momentary breakpoint at the target of the
5964 jmp_buf. */
186c406b 5965
cdaa5b73
PA
5966 if (debug_infrun)
5967 fprintf_unfiltered (gdb_stdlog,
5968 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 5969
cdaa5b73 5970 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 5971
cdaa5b73
PA
5972 if (what.is_longjmp)
5973 {
5974 struct value *arg_value;
5975
5976 /* If we set the longjmp breakpoint via a SystemTap probe,
5977 then use it to extract the arguments. The destination PC
5978 is the third argument to the probe. */
5979 arg_value = probe_safe_evaluate_at_pc (frame, 2);
5980 if (arg_value)
8fa0c4f8
AA
5981 {
5982 jmp_buf_pc = value_as_address (arg_value);
5983 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
5984 }
cdaa5b73
PA
5985 else if (!gdbarch_get_longjmp_target_p (gdbarch)
5986 || !gdbarch_get_longjmp_target (gdbarch,
5987 frame, &jmp_buf_pc))
e2e4d78b 5988 {
cdaa5b73
PA
5989 if (debug_infrun)
5990 fprintf_unfiltered (gdb_stdlog,
5991 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
5992 "(!gdbarch_get_longjmp_target)\n");
5993 keep_going (ecs);
5994 return;
e2e4d78b 5995 }
e2e4d78b 5996
cdaa5b73
PA
5997 /* Insert a breakpoint at resume address. */
5998 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
5999 }
6000 else
6001 check_exception_resume (ecs, frame);
6002 keep_going (ecs);
6003 return;
e81a37f7 6004
cdaa5b73
PA
6005 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6006 {
6007 struct frame_info *init_frame;
e81a37f7 6008
cdaa5b73 6009 /* There are several cases to consider.
c906108c 6010
cdaa5b73
PA
6011 1. The initiating frame no longer exists. In this case we
6012 must stop, because the exception or longjmp has gone too
6013 far.
2c03e5be 6014
cdaa5b73
PA
6015 2. The initiating frame exists, and is the same as the
6016 current frame. We stop, because the exception or longjmp
6017 has been caught.
2c03e5be 6018
cdaa5b73
PA
6019 3. The initiating frame exists and is different from the
6020 current frame. This means the exception or longjmp has
6021 been caught beneath the initiating frame, so keep going.
c906108c 6022
cdaa5b73
PA
6023 4. longjmp breakpoint has been placed just to protect
6024 against stale dummy frames and user is not interested in
6025 stopping around longjmps. */
c5aa993b 6026
cdaa5b73
PA
6027 if (debug_infrun)
6028 fprintf_unfiltered (gdb_stdlog,
6029 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6030
cdaa5b73
PA
6031 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6032 != NULL);
6033 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6034
cdaa5b73
PA
6035 if (what.is_longjmp)
6036 {
b67a2c6f 6037 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6038
cdaa5b73 6039 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6040 {
cdaa5b73
PA
6041 /* Case 4. */
6042 keep_going (ecs);
6043 return;
e5ef252a 6044 }
cdaa5b73 6045 }
c5aa993b 6046
cdaa5b73 6047 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6048
cdaa5b73
PA
6049 if (init_frame)
6050 {
6051 struct frame_id current_id
6052 = get_frame_id (get_current_frame ());
6053 if (frame_id_eq (current_id,
6054 ecs->event_thread->initiating_frame))
6055 {
6056 /* Case 2. Fall through. */
6057 }
6058 else
6059 {
6060 /* Case 3. */
6061 keep_going (ecs);
6062 return;
6063 }
68f53502 6064 }
488f131b 6065
cdaa5b73
PA
6066 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6067 exists. */
6068 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6069
bdc36728 6070 end_stepping_range (ecs);
cdaa5b73
PA
6071 }
6072 return;
e5ef252a 6073
cdaa5b73
PA
6074 case BPSTAT_WHAT_SINGLE:
6075 if (debug_infrun)
6076 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6077 ecs->event_thread->stepping_over_breakpoint = 1;
6078 /* Still need to check other stuff, at least the case where we
6079 are stepping and step out of the right range. */
6080 break;
e5ef252a 6081
cdaa5b73
PA
6082 case BPSTAT_WHAT_STEP_RESUME:
6083 if (debug_infrun)
6084 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6085
cdaa5b73
PA
6086 delete_step_resume_breakpoint (ecs->event_thread);
6087 if (ecs->event_thread->control.proceed_to_finish
6088 && execution_direction == EXEC_REVERSE)
6089 {
6090 struct thread_info *tp = ecs->event_thread;
6091
6092 /* We are finishing a function in reverse, and just hit the
6093 step-resume breakpoint at the start address of the
6094 function, and we're almost there -- just need to back up
6095 by one more single-step, which should take us back to the
6096 function call. */
6097 tp->control.step_range_start = tp->control.step_range_end = 1;
6098 keep_going (ecs);
e5ef252a 6099 return;
cdaa5b73
PA
6100 }
6101 fill_in_stop_func (gdbarch, ecs);
6102 if (stop_pc == ecs->stop_func_start
6103 && execution_direction == EXEC_REVERSE)
6104 {
6105 /* We are stepping over a function call in reverse, and just
6106 hit the step-resume breakpoint at the start address of
6107 the function. Go back to single-stepping, which should
6108 take us back to the function call. */
6109 ecs->event_thread->stepping_over_breakpoint = 1;
6110 keep_going (ecs);
6111 return;
6112 }
6113 break;
e5ef252a 6114
cdaa5b73
PA
6115 case BPSTAT_WHAT_STOP_NOISY:
6116 if (debug_infrun)
6117 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6118 stop_print_frame = 1;
e5ef252a 6119
99619bea
PA
6120 /* Assume the thread stopped for a breapoint. We'll still check
6121 whether a/the breakpoint is there when the thread is next
6122 resumed. */
6123 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6124
22bcd14b 6125 stop_waiting (ecs);
cdaa5b73 6126 return;
e5ef252a 6127
cdaa5b73
PA
6128 case BPSTAT_WHAT_STOP_SILENT:
6129 if (debug_infrun)
6130 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6131 stop_print_frame = 0;
e5ef252a 6132
99619bea
PA
6133 /* Assume the thread stopped for a breapoint. We'll still check
6134 whether a/the breakpoint is there when the thread is next
6135 resumed. */
6136 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6137 stop_waiting (ecs);
cdaa5b73
PA
6138 return;
6139
6140 case BPSTAT_WHAT_HP_STEP_RESUME:
6141 if (debug_infrun)
6142 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6143
6144 delete_step_resume_breakpoint (ecs->event_thread);
6145 if (ecs->event_thread->step_after_step_resume_breakpoint)
6146 {
6147 /* Back when the step-resume breakpoint was inserted, we
6148 were trying to single-step off a breakpoint. Go back to
6149 doing that. */
6150 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6151 ecs->event_thread->stepping_over_breakpoint = 1;
6152 keep_going (ecs);
6153 return;
e5ef252a 6154 }
cdaa5b73
PA
6155 break;
6156
6157 case BPSTAT_WHAT_KEEP_CHECKING:
6158 break;
e5ef252a 6159 }
c906108c 6160
af48d08f
PA
6161 /* If we stepped a permanent breakpoint and we had a high priority
6162 step-resume breakpoint for the address we stepped, but we didn't
6163 hit it, then we must have stepped into the signal handler. The
6164 step-resume was only necessary to catch the case of _not_
6165 stepping into the handler, so delete it, and fall through to
6166 checking whether the step finished. */
6167 if (ecs->event_thread->stepped_breakpoint)
6168 {
6169 struct breakpoint *sr_bp
6170 = ecs->event_thread->control.step_resume_breakpoint;
6171
8d707a12
PA
6172 if (sr_bp != NULL
6173 && sr_bp->loc->permanent
af48d08f
PA
6174 && sr_bp->type == bp_hp_step_resume
6175 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6176 {
6177 if (debug_infrun)
6178 fprintf_unfiltered (gdb_stdlog,
6179 "infrun: stepped permanent breakpoint, stopped in "
6180 "handler\n");
6181 delete_step_resume_breakpoint (ecs->event_thread);
6182 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6183 }
6184 }
6185
cdaa5b73
PA
6186 /* We come here if we hit a breakpoint but should not stop for it.
6187 Possibly we also were stepping and should stop for that. So fall
6188 through and test for stepping. But, if not stepping, do not
6189 stop. */
c906108c 6190
a7212384
UW
6191 /* In all-stop mode, if we're currently stepping but have stopped in
6192 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6193 if (switch_back_to_stepped_thread (ecs))
6194 return;
776f04fa 6195
8358c15c 6196 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6197 {
527159b7 6198 if (debug_infrun)
d3169d93
DJ
6199 fprintf_unfiltered (gdb_stdlog,
6200 "infrun: step-resume breakpoint is inserted\n");
527159b7 6201
488f131b
JB
6202 /* Having a step-resume breakpoint overrides anything
6203 else having to do with stepping commands until
6204 that breakpoint is reached. */
488f131b
JB
6205 keep_going (ecs);
6206 return;
6207 }
c5aa993b 6208
16c381f0 6209 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6210 {
527159b7 6211 if (debug_infrun)
8a9de0e4 6212 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6213 /* Likewise if we aren't even stepping. */
488f131b
JB
6214 keep_going (ecs);
6215 return;
6216 }
c5aa993b 6217
4b7703ad
JB
6218 /* Re-fetch current thread's frame in case the code above caused
6219 the frame cache to be re-initialized, making our FRAME variable
6220 a dangling pointer. */
6221 frame = get_current_frame ();
628fe4e4 6222 gdbarch = get_frame_arch (frame);
7e324e48 6223 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6224
488f131b 6225 /* If stepping through a line, keep going if still within it.
c906108c 6226
488f131b
JB
6227 Note that step_range_end is the address of the first instruction
6228 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6229 within it!
6230
6231 Note also that during reverse execution, we may be stepping
6232 through a function epilogue and therefore must detect when
6233 the current-frame changes in the middle of a line. */
6234
ce4c476a 6235 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6236 && (execution_direction != EXEC_REVERSE
388a8562 6237 || frame_id_eq (get_frame_id (frame),
16c381f0 6238 ecs->event_thread->control.step_frame_id)))
488f131b 6239 {
527159b7 6240 if (debug_infrun)
5af949e3
UW
6241 fprintf_unfiltered
6242 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6243 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6244 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6245
c1e36e3e
PA
6246 /* Tentatively re-enable range stepping; `resume' disables it if
6247 necessary (e.g., if we're stepping over a breakpoint or we
6248 have software watchpoints). */
6249 ecs->event_thread->control.may_range_step = 1;
6250
b2175913
MS
6251 /* When stepping backward, stop at beginning of line range
6252 (unless it's the function entry point, in which case
6253 keep going back to the call point). */
16c381f0 6254 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6255 && stop_pc != ecs->stop_func_start
6256 && execution_direction == EXEC_REVERSE)
bdc36728 6257 end_stepping_range (ecs);
b2175913
MS
6258 else
6259 keep_going (ecs);
6260
488f131b
JB
6261 return;
6262 }
c5aa993b 6263
488f131b 6264 /* We stepped out of the stepping range. */
c906108c 6265
488f131b 6266 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6267 loader dynamic symbol resolution code...
6268
6269 EXEC_FORWARD: we keep on single stepping until we exit the run
6270 time loader code and reach the callee's address.
6271
6272 EXEC_REVERSE: we've already executed the callee (backward), and
6273 the runtime loader code is handled just like any other
6274 undebuggable function call. Now we need only keep stepping
6275 backward through the trampoline code, and that's handled further
6276 down, so there is nothing for us to do here. */
6277
6278 if (execution_direction != EXEC_REVERSE
16c381f0 6279 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6280 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6281 {
4c8c40e6 6282 CORE_ADDR pc_after_resolver =
568d6575 6283 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6284
527159b7 6285 if (debug_infrun)
3e43a32a
MS
6286 fprintf_unfiltered (gdb_stdlog,
6287 "infrun: stepped into dynsym resolve code\n");
527159b7 6288
488f131b
JB
6289 if (pc_after_resolver)
6290 {
6291 /* Set up a step-resume breakpoint at the address
6292 indicated by SKIP_SOLIB_RESOLVER. */
6293 struct symtab_and_line sr_sal;
abbb1732 6294
fe39c653 6295 init_sal (&sr_sal);
488f131b 6296 sr_sal.pc = pc_after_resolver;
6c95b8df 6297 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6298
a6d9a66e
UW
6299 insert_step_resume_breakpoint_at_sal (gdbarch,
6300 sr_sal, null_frame_id);
c5aa993b 6301 }
c906108c 6302
488f131b
JB
6303 keep_going (ecs);
6304 return;
6305 }
c906108c 6306
16c381f0
JK
6307 if (ecs->event_thread->control.step_range_end != 1
6308 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6309 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6310 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6311 {
527159b7 6312 if (debug_infrun)
3e43a32a
MS
6313 fprintf_unfiltered (gdb_stdlog,
6314 "infrun: stepped into signal trampoline\n");
42edda50 6315 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6316 a signal trampoline (either by a signal being delivered or by
6317 the signal handler returning). Just single-step until the
6318 inferior leaves the trampoline (either by calling the handler
6319 or returning). */
488f131b
JB
6320 keep_going (ecs);
6321 return;
6322 }
c906108c 6323
14132e89
MR
6324 /* If we're in the return path from a shared library trampoline,
6325 we want to proceed through the trampoline when stepping. */
6326 /* macro/2012-04-25: This needs to come before the subroutine
6327 call check below as on some targets return trampolines look
6328 like subroutine calls (MIPS16 return thunks). */
6329 if (gdbarch_in_solib_return_trampoline (gdbarch,
6330 stop_pc, ecs->stop_func_name)
6331 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6332 {
6333 /* Determine where this trampoline returns. */
6334 CORE_ADDR real_stop_pc;
6335
6336 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6337
6338 if (debug_infrun)
6339 fprintf_unfiltered (gdb_stdlog,
6340 "infrun: stepped into solib return tramp\n");
6341
6342 /* Only proceed through if we know where it's going. */
6343 if (real_stop_pc)
6344 {
6345 /* And put the step-breakpoint there and go until there. */
6346 struct symtab_and_line sr_sal;
6347
6348 init_sal (&sr_sal); /* initialize to zeroes */
6349 sr_sal.pc = real_stop_pc;
6350 sr_sal.section = find_pc_overlay (sr_sal.pc);
6351 sr_sal.pspace = get_frame_program_space (frame);
6352
6353 /* Do not specify what the fp should be when we stop since
6354 on some machines the prologue is where the new fp value
6355 is established. */
6356 insert_step_resume_breakpoint_at_sal (gdbarch,
6357 sr_sal, null_frame_id);
6358
6359 /* Restart without fiddling with the step ranges or
6360 other state. */
6361 keep_going (ecs);
6362 return;
6363 }
6364 }
6365
c17eaafe
DJ
6366 /* Check for subroutine calls. The check for the current frame
6367 equalling the step ID is not necessary - the check of the
6368 previous frame's ID is sufficient - but it is a common case and
6369 cheaper than checking the previous frame's ID.
14e60db5
DJ
6370
6371 NOTE: frame_id_eq will never report two invalid frame IDs as
6372 being equal, so to get into this block, both the current and
6373 previous frame must have valid frame IDs. */
005ca36a
JB
6374 /* The outer_frame_id check is a heuristic to detect stepping
6375 through startup code. If we step over an instruction which
6376 sets the stack pointer from an invalid value to a valid value,
6377 we may detect that as a subroutine call from the mythical
6378 "outermost" function. This could be fixed by marking
6379 outermost frames as !stack_p,code_p,special_p. Then the
6380 initial outermost frame, before sp was valid, would
ce6cca6d 6381 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6382 for more. */
edb3359d 6383 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6384 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6385 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6386 ecs->event_thread->control.step_stack_frame_id)
6387 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6388 outer_frame_id)
885eeb5b
PA
6389 || (ecs->event_thread->control.step_start_function
6390 != find_pc_function (stop_pc)))))
488f131b 6391 {
95918acb 6392 CORE_ADDR real_stop_pc;
8fb3e588 6393
527159b7 6394 if (debug_infrun)
8a9de0e4 6395 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6396
b7a084be 6397 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6398 {
6399 /* I presume that step_over_calls is only 0 when we're
6400 supposed to be stepping at the assembly language level
6401 ("stepi"). Just stop. */
388a8562 6402 /* And this works the same backward as frontward. MVS */
bdc36728 6403 end_stepping_range (ecs);
95918acb
AC
6404 return;
6405 }
8fb3e588 6406
388a8562
MS
6407 /* Reverse stepping through solib trampolines. */
6408
6409 if (execution_direction == EXEC_REVERSE
16c381f0 6410 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6411 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6412 || (ecs->stop_func_start == 0
6413 && in_solib_dynsym_resolve_code (stop_pc))))
6414 {
6415 /* Any solib trampoline code can be handled in reverse
6416 by simply continuing to single-step. We have already
6417 executed the solib function (backwards), and a few
6418 steps will take us back through the trampoline to the
6419 caller. */
6420 keep_going (ecs);
6421 return;
6422 }
6423
16c381f0 6424 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6425 {
b2175913
MS
6426 /* We're doing a "next".
6427
6428 Normal (forward) execution: set a breakpoint at the
6429 callee's return address (the address at which the caller
6430 will resume).
6431
6432 Reverse (backward) execution. set the step-resume
6433 breakpoint at the start of the function that we just
6434 stepped into (backwards), and continue to there. When we
6130d0b7 6435 get there, we'll need to single-step back to the caller. */
b2175913
MS
6436
6437 if (execution_direction == EXEC_REVERSE)
6438 {
acf9414f
JK
6439 /* If we're already at the start of the function, we've either
6440 just stepped backward into a single instruction function,
6441 or stepped back out of a signal handler to the first instruction
6442 of the function. Just keep going, which will single-step back
6443 to the caller. */
58c48e72 6444 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6445 {
6446 struct symtab_and_line sr_sal;
6447
6448 /* Normal function call return (static or dynamic). */
6449 init_sal (&sr_sal);
6450 sr_sal.pc = ecs->stop_func_start;
6451 sr_sal.pspace = get_frame_program_space (frame);
6452 insert_step_resume_breakpoint_at_sal (gdbarch,
6453 sr_sal, null_frame_id);
6454 }
b2175913
MS
6455 }
6456 else
568d6575 6457 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6458
8567c30f
AC
6459 keep_going (ecs);
6460 return;
6461 }
a53c66de 6462
95918acb 6463 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6464 calling routine and the real function), locate the real
6465 function. That's what tells us (a) whether we want to step
6466 into it at all, and (b) what prologue we want to run to the
6467 end of, if we do step into it. */
568d6575 6468 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6469 if (real_stop_pc == 0)
568d6575 6470 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6471 if (real_stop_pc != 0)
6472 ecs->stop_func_start = real_stop_pc;
8fb3e588 6473
db5f024e 6474 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6475 {
6476 struct symtab_and_line sr_sal;
abbb1732 6477
1b2bfbb9
RC
6478 init_sal (&sr_sal);
6479 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6480 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6481
a6d9a66e
UW
6482 insert_step_resume_breakpoint_at_sal (gdbarch,
6483 sr_sal, null_frame_id);
8fb3e588
AC
6484 keep_going (ecs);
6485 return;
1b2bfbb9
RC
6486 }
6487
95918acb 6488 /* If we have line number information for the function we are
1bfeeb0f
JL
6489 thinking of stepping into and the function isn't on the skip
6490 list, step into it.
95918acb 6491
8fb3e588
AC
6492 If there are several symtabs at that PC (e.g. with include
6493 files), just want to know whether *any* of them have line
6494 numbers. find_pc_line handles this. */
95918acb
AC
6495 {
6496 struct symtab_and_line tmp_sal;
8fb3e588 6497
95918acb 6498 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6499 if (tmp_sal.line != 0
85817405
JK
6500 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6501 &tmp_sal))
95918acb 6502 {
b2175913 6503 if (execution_direction == EXEC_REVERSE)
568d6575 6504 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6505 else
568d6575 6506 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6507 return;
6508 }
6509 }
6510
6511 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6512 set, we stop the step so that the user has a chance to switch
6513 in assembly mode. */
16c381f0 6514 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6515 && step_stop_if_no_debug)
95918acb 6516 {
bdc36728 6517 end_stepping_range (ecs);
95918acb
AC
6518 return;
6519 }
6520
b2175913
MS
6521 if (execution_direction == EXEC_REVERSE)
6522 {
acf9414f
JK
6523 /* If we're already at the start of the function, we've either just
6524 stepped backward into a single instruction function without line
6525 number info, or stepped back out of a signal handler to the first
6526 instruction of the function without line number info. Just keep
6527 going, which will single-step back to the caller. */
6528 if (ecs->stop_func_start != stop_pc)
6529 {
6530 /* Set a breakpoint at callee's start address.
6531 From there we can step once and be back in the caller. */
6532 struct symtab_and_line sr_sal;
abbb1732 6533
acf9414f
JK
6534 init_sal (&sr_sal);
6535 sr_sal.pc = ecs->stop_func_start;
6536 sr_sal.pspace = get_frame_program_space (frame);
6537 insert_step_resume_breakpoint_at_sal (gdbarch,
6538 sr_sal, null_frame_id);
6539 }
b2175913
MS
6540 }
6541 else
6542 /* Set a breakpoint at callee's return address (the address
6543 at which the caller will resume). */
568d6575 6544 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6545
95918acb 6546 keep_going (ecs);
488f131b 6547 return;
488f131b 6548 }
c906108c 6549
fdd654f3
MS
6550 /* Reverse stepping through solib trampolines. */
6551
6552 if (execution_direction == EXEC_REVERSE
16c381f0 6553 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6554 {
6555 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6556 || (ecs->stop_func_start == 0
6557 && in_solib_dynsym_resolve_code (stop_pc)))
6558 {
6559 /* Any solib trampoline code can be handled in reverse
6560 by simply continuing to single-step. We have already
6561 executed the solib function (backwards), and a few
6562 steps will take us back through the trampoline to the
6563 caller. */
6564 keep_going (ecs);
6565 return;
6566 }
6567 else if (in_solib_dynsym_resolve_code (stop_pc))
6568 {
6569 /* Stepped backward into the solib dynsym resolver.
6570 Set a breakpoint at its start and continue, then
6571 one more step will take us out. */
6572 struct symtab_and_line sr_sal;
abbb1732 6573
fdd654f3
MS
6574 init_sal (&sr_sal);
6575 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6576 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6577 insert_step_resume_breakpoint_at_sal (gdbarch,
6578 sr_sal, null_frame_id);
6579 keep_going (ecs);
6580 return;
6581 }
6582 }
6583
2afb61aa 6584 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6585
1b2bfbb9
RC
6586 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6587 the trampoline processing logic, however, there are some trampolines
6588 that have no names, so we should do trampoline handling first. */
16c381f0 6589 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6590 && ecs->stop_func_name == NULL
2afb61aa 6591 && stop_pc_sal.line == 0)
1b2bfbb9 6592 {
527159b7 6593 if (debug_infrun)
3e43a32a
MS
6594 fprintf_unfiltered (gdb_stdlog,
6595 "infrun: stepped into undebuggable function\n");
527159b7 6596
1b2bfbb9 6597 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6598 undebuggable function (where there is no debugging information
6599 and no line number corresponding to the address where the
1b2bfbb9
RC
6600 inferior stopped). Since we want to skip this kind of code,
6601 we keep going until the inferior returns from this
14e60db5
DJ
6602 function - unless the user has asked us not to (via
6603 set step-mode) or we no longer know how to get back
6604 to the call site. */
6605 if (step_stop_if_no_debug
c7ce8faa 6606 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6607 {
6608 /* If we have no line number and the step-stop-if-no-debug
6609 is set, we stop the step so that the user has a chance to
6610 switch in assembly mode. */
bdc36728 6611 end_stepping_range (ecs);
1b2bfbb9
RC
6612 return;
6613 }
6614 else
6615 {
6616 /* Set a breakpoint at callee's return address (the address
6617 at which the caller will resume). */
568d6575 6618 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6619 keep_going (ecs);
6620 return;
6621 }
6622 }
6623
16c381f0 6624 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6625 {
6626 /* It is stepi or nexti. We always want to stop stepping after
6627 one instruction. */
527159b7 6628 if (debug_infrun)
8a9de0e4 6629 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6630 end_stepping_range (ecs);
1b2bfbb9
RC
6631 return;
6632 }
6633
2afb61aa 6634 if (stop_pc_sal.line == 0)
488f131b
JB
6635 {
6636 /* We have no line number information. That means to stop
6637 stepping (does this always happen right after one instruction,
6638 when we do "s" in a function with no line numbers,
6639 or can this happen as a result of a return or longjmp?). */
527159b7 6640 if (debug_infrun)
8a9de0e4 6641 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6642 end_stepping_range (ecs);
488f131b
JB
6643 return;
6644 }
c906108c 6645
edb3359d
DJ
6646 /* Look for "calls" to inlined functions, part one. If the inline
6647 frame machinery detected some skipped call sites, we have entered
6648 a new inline function. */
6649
6650 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6651 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6652 && inline_skipped_frames (ecs->ptid))
6653 {
6654 struct symtab_and_line call_sal;
6655
6656 if (debug_infrun)
6657 fprintf_unfiltered (gdb_stdlog,
6658 "infrun: stepped into inlined function\n");
6659
6660 find_frame_sal (get_current_frame (), &call_sal);
6661
16c381f0 6662 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6663 {
6664 /* For "step", we're going to stop. But if the call site
6665 for this inlined function is on the same source line as
6666 we were previously stepping, go down into the function
6667 first. Otherwise stop at the call site. */
6668
6669 if (call_sal.line == ecs->event_thread->current_line
6670 && call_sal.symtab == ecs->event_thread->current_symtab)
6671 step_into_inline_frame (ecs->ptid);
6672
bdc36728 6673 end_stepping_range (ecs);
edb3359d
DJ
6674 return;
6675 }
6676 else
6677 {
6678 /* For "next", we should stop at the call site if it is on a
6679 different source line. Otherwise continue through the
6680 inlined function. */
6681 if (call_sal.line == ecs->event_thread->current_line
6682 && call_sal.symtab == ecs->event_thread->current_symtab)
6683 keep_going (ecs);
6684 else
bdc36728 6685 end_stepping_range (ecs);
edb3359d
DJ
6686 return;
6687 }
6688 }
6689
6690 /* Look for "calls" to inlined functions, part two. If we are still
6691 in the same real function we were stepping through, but we have
6692 to go further up to find the exact frame ID, we are stepping
6693 through a more inlined call beyond its call site. */
6694
6695 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6696 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6697 ecs->event_thread->control.step_frame_id)
edb3359d 6698 && stepped_in_from (get_current_frame (),
16c381f0 6699 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6700 {
6701 if (debug_infrun)
6702 fprintf_unfiltered (gdb_stdlog,
6703 "infrun: stepping through inlined function\n");
6704
16c381f0 6705 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6706 keep_going (ecs);
6707 else
bdc36728 6708 end_stepping_range (ecs);
edb3359d
DJ
6709 return;
6710 }
6711
2afb61aa 6712 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6713 && (ecs->event_thread->current_line != stop_pc_sal.line
6714 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6715 {
6716 /* We are at the start of a different line. So stop. Note that
6717 we don't stop if we step into the middle of a different line.
6718 That is said to make things like for (;;) statements work
6719 better. */
527159b7 6720 if (debug_infrun)
3e43a32a
MS
6721 fprintf_unfiltered (gdb_stdlog,
6722 "infrun: stepped to a different line\n");
bdc36728 6723 end_stepping_range (ecs);
488f131b
JB
6724 return;
6725 }
c906108c 6726
488f131b 6727 /* We aren't done stepping.
c906108c 6728
488f131b
JB
6729 Optimize by setting the stepping range to the line.
6730 (We might not be in the original line, but if we entered a
6731 new line in mid-statement, we continue stepping. This makes
6732 things like for(;;) statements work better.) */
c906108c 6733
16c381f0
JK
6734 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6735 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6736 ecs->event_thread->control.may_range_step = 1;
edb3359d 6737 set_step_info (frame, stop_pc_sal);
488f131b 6738
527159b7 6739 if (debug_infrun)
8a9de0e4 6740 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6741 keep_going (ecs);
104c1213
JM
6742}
6743
c447ac0b
PA
6744/* In all-stop mode, if we're currently stepping but have stopped in
6745 some other thread, we may need to switch back to the stepped
6746 thread. Returns true we set the inferior running, false if we left
6747 it stopped (and the event needs further processing). */
6748
6749static int
6750switch_back_to_stepped_thread (struct execution_control_state *ecs)
6751{
fbea99ea 6752 if (!target_is_non_stop_p ())
c447ac0b
PA
6753 {
6754 struct thread_info *tp;
99619bea
PA
6755 struct thread_info *stepping_thread;
6756
6757 /* If any thread is blocked on some internal breakpoint, and we
6758 simply need to step over that breakpoint to get it going
6759 again, do that first. */
6760
6761 /* However, if we see an event for the stepping thread, then we
6762 know all other threads have been moved past their breakpoints
6763 already. Let the caller check whether the step is finished,
6764 etc., before deciding to move it past a breakpoint. */
6765 if (ecs->event_thread->control.step_range_end != 0)
6766 return 0;
6767
6768 /* Check if the current thread is blocked on an incomplete
6769 step-over, interrupted by a random signal. */
6770 if (ecs->event_thread->control.trap_expected
6771 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6772 {
99619bea
PA
6773 if (debug_infrun)
6774 {
6775 fprintf_unfiltered (gdb_stdlog,
6776 "infrun: need to finish step-over of [%s]\n",
6777 target_pid_to_str (ecs->event_thread->ptid));
6778 }
6779 keep_going (ecs);
6780 return 1;
6781 }
2adfaa28 6782
99619bea
PA
6783 /* Check if the current thread is blocked by a single-step
6784 breakpoint of another thread. */
6785 if (ecs->hit_singlestep_breakpoint)
6786 {
6787 if (debug_infrun)
6788 {
6789 fprintf_unfiltered (gdb_stdlog,
6790 "infrun: need to step [%s] over single-step "
6791 "breakpoint\n",
6792 target_pid_to_str (ecs->ptid));
6793 }
6794 keep_going (ecs);
6795 return 1;
6796 }
6797
4d9d9d04
PA
6798 /* If this thread needs yet another step-over (e.g., stepping
6799 through a delay slot), do it first before moving on to
6800 another thread. */
6801 if (thread_still_needs_step_over (ecs->event_thread))
6802 {
6803 if (debug_infrun)
6804 {
6805 fprintf_unfiltered (gdb_stdlog,
6806 "infrun: thread [%s] still needs step-over\n",
6807 target_pid_to_str (ecs->event_thread->ptid));
6808 }
6809 keep_going (ecs);
6810 return 1;
6811 }
70509625 6812
483805cf
PA
6813 /* If scheduler locking applies even if not stepping, there's no
6814 need to walk over threads. Above we've checked whether the
6815 current thread is stepping. If some other thread not the
6816 event thread is stepping, then it must be that scheduler
6817 locking is not in effect. */
856e7dd6 6818 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6819 return 0;
6820
4d9d9d04
PA
6821 /* Otherwise, we no longer expect a trap in the current thread.
6822 Clear the trap_expected flag before switching back -- this is
6823 what keep_going does as well, if we call it. */
6824 ecs->event_thread->control.trap_expected = 0;
6825
6826 /* Likewise, clear the signal if it should not be passed. */
6827 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6828 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6829
6830 /* Do all pending step-overs before actually proceeding with
483805cf 6831 step/next/etc. */
4d9d9d04
PA
6832 if (start_step_over ())
6833 {
6834 prepare_to_wait (ecs);
6835 return 1;
6836 }
6837
6838 /* Look for the stepping/nexting thread. */
483805cf 6839 stepping_thread = NULL;
4d9d9d04 6840
034f788c 6841 ALL_NON_EXITED_THREADS (tp)
483805cf 6842 {
fbea99ea
PA
6843 /* Ignore threads of processes the caller is not
6844 resuming. */
483805cf 6845 if (!sched_multi
1afd5965 6846 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
6847 continue;
6848
6849 /* When stepping over a breakpoint, we lock all threads
6850 except the one that needs to move past the breakpoint.
6851 If a non-event thread has this set, the "incomplete
6852 step-over" check above should have caught it earlier. */
372316f1
PA
6853 if (tp->control.trap_expected)
6854 {
6855 internal_error (__FILE__, __LINE__,
6856 "[%s] has inconsistent state: "
6857 "trap_expected=%d\n",
6858 target_pid_to_str (tp->ptid),
6859 tp->control.trap_expected);
6860 }
483805cf
PA
6861
6862 /* Did we find the stepping thread? */
6863 if (tp->control.step_range_end)
6864 {
6865 /* Yep. There should only one though. */
6866 gdb_assert (stepping_thread == NULL);
6867
6868 /* The event thread is handled at the top, before we
6869 enter this loop. */
6870 gdb_assert (tp != ecs->event_thread);
6871
6872 /* If some thread other than the event thread is
6873 stepping, then scheduler locking can't be in effect,
6874 otherwise we wouldn't have resumed the current event
6875 thread in the first place. */
856e7dd6 6876 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6877
6878 stepping_thread = tp;
6879 }
99619bea
PA
6880 }
6881
483805cf 6882 if (stepping_thread != NULL)
99619bea 6883 {
c447ac0b
PA
6884 if (debug_infrun)
6885 fprintf_unfiltered (gdb_stdlog,
6886 "infrun: switching back to stepped thread\n");
6887
2ac7589c
PA
6888 if (keep_going_stepped_thread (stepping_thread))
6889 {
6890 prepare_to_wait (ecs);
6891 return 1;
6892 }
6893 }
6894 }
2adfaa28 6895
2ac7589c
PA
6896 return 0;
6897}
2adfaa28 6898
2ac7589c
PA
6899/* Set a previously stepped thread back to stepping. Returns true on
6900 success, false if the resume is not possible (e.g., the thread
6901 vanished). */
6902
6903static int
6904keep_going_stepped_thread (struct thread_info *tp)
6905{
6906 struct frame_info *frame;
6907 struct gdbarch *gdbarch;
6908 struct execution_control_state ecss;
6909 struct execution_control_state *ecs = &ecss;
2adfaa28 6910
2ac7589c
PA
6911 /* If the stepping thread exited, then don't try to switch back and
6912 resume it, which could fail in several different ways depending
6913 on the target. Instead, just keep going.
2adfaa28 6914
2ac7589c
PA
6915 We can find a stepping dead thread in the thread list in two
6916 cases:
2adfaa28 6917
2ac7589c
PA
6918 - The target supports thread exit events, and when the target
6919 tries to delete the thread from the thread list, inferior_ptid
6920 pointed at the exiting thread. In such case, calling
6921 delete_thread does not really remove the thread from the list;
6922 instead, the thread is left listed, with 'exited' state.
64ce06e4 6923
2ac7589c
PA
6924 - The target's debug interface does not support thread exit
6925 events, and so we have no idea whatsoever if the previously
6926 stepping thread is still alive. For that reason, we need to
6927 synchronously query the target now. */
2adfaa28 6928
2ac7589c
PA
6929 if (is_exited (tp->ptid)
6930 || !target_thread_alive (tp->ptid))
6931 {
6932 if (debug_infrun)
6933 fprintf_unfiltered (gdb_stdlog,
6934 "infrun: not resuming previously "
6935 "stepped thread, it has vanished\n");
6936
6937 delete_thread (tp->ptid);
6938 return 0;
c447ac0b 6939 }
2ac7589c
PA
6940
6941 if (debug_infrun)
6942 fprintf_unfiltered (gdb_stdlog,
6943 "infrun: resuming previously stepped thread\n");
6944
6945 reset_ecs (ecs, tp);
6946 switch_to_thread (tp->ptid);
6947
6948 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
6949 frame = get_current_frame ();
6950 gdbarch = get_frame_arch (frame);
6951
6952 /* If the PC of the thread we were trying to single-step has
6953 changed, then that thread has trapped or been signaled, but the
6954 event has not been reported to GDB yet. Re-poll the target
6955 looking for this particular thread's event (i.e. temporarily
6956 enable schedlock) by:
6957
6958 - setting a break at the current PC
6959 - resuming that particular thread, only (by setting trap
6960 expected)
6961
6962 This prevents us continuously moving the single-step breakpoint
6963 forward, one instruction at a time, overstepping. */
6964
6965 if (stop_pc != tp->prev_pc)
6966 {
6967 ptid_t resume_ptid;
6968
6969 if (debug_infrun)
6970 fprintf_unfiltered (gdb_stdlog,
6971 "infrun: expected thread advanced also (%s -> %s)\n",
6972 paddress (target_gdbarch (), tp->prev_pc),
6973 paddress (target_gdbarch (), stop_pc));
6974
6975 /* Clear the info of the previous step-over, as it's no longer
6976 valid (if the thread was trying to step over a breakpoint, it
6977 has already succeeded). It's what keep_going would do too,
6978 if we called it. Do this before trying to insert the sss
6979 breakpoint, otherwise if we were previously trying to step
6980 over this exact address in another thread, the breakpoint is
6981 skipped. */
6982 clear_step_over_info ();
6983 tp->control.trap_expected = 0;
6984
6985 insert_single_step_breakpoint (get_frame_arch (frame),
6986 get_frame_address_space (frame),
6987 stop_pc);
6988
372316f1 6989 tp->resumed = 1;
fbea99ea 6990 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
6991 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
6992 }
6993 else
6994 {
6995 if (debug_infrun)
6996 fprintf_unfiltered (gdb_stdlog,
6997 "infrun: expected thread still hasn't advanced\n");
6998
6999 keep_going_pass_signal (ecs);
7000 }
7001 return 1;
c447ac0b
PA
7002}
7003
8b061563
PA
7004/* Is thread TP in the middle of (software or hardware)
7005 single-stepping? (Note the result of this function must never be
7006 passed directly as target_resume's STEP parameter.) */
104c1213 7007
a289b8f6 7008static int
b3444185 7009currently_stepping (struct thread_info *tp)
a7212384 7010{
8358c15c
JK
7011 return ((tp->control.step_range_end
7012 && tp->control.step_resume_breakpoint == NULL)
7013 || tp->control.trap_expected
af48d08f 7014 || tp->stepped_breakpoint
8358c15c 7015 || bpstat_should_step ());
a7212384
UW
7016}
7017
b2175913
MS
7018/* Inferior has stepped into a subroutine call with source code that
7019 we should not step over. Do step to the first line of code in
7020 it. */
c2c6d25f
JM
7021
7022static void
568d6575
UW
7023handle_step_into_function (struct gdbarch *gdbarch,
7024 struct execution_control_state *ecs)
c2c6d25f 7025{
43f3e411 7026 struct compunit_symtab *cust;
2afb61aa 7027 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7028
7e324e48
GB
7029 fill_in_stop_func (gdbarch, ecs);
7030
43f3e411
DE
7031 cust = find_pc_compunit_symtab (stop_pc);
7032 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7033 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7034 ecs->stop_func_start);
c2c6d25f 7035
2afb61aa 7036 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7037 /* Use the step_resume_break to step until the end of the prologue,
7038 even if that involves jumps (as it seems to on the vax under
7039 4.2). */
7040 /* If the prologue ends in the middle of a source line, continue to
7041 the end of that source line (if it is still within the function).
7042 Otherwise, just go to end of prologue. */
2afb61aa
PA
7043 if (stop_func_sal.end
7044 && stop_func_sal.pc != ecs->stop_func_start
7045 && stop_func_sal.end < ecs->stop_func_end)
7046 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7047
2dbd5e30
KB
7048 /* Architectures which require breakpoint adjustment might not be able
7049 to place a breakpoint at the computed address. If so, the test
7050 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7051 ecs->stop_func_start to an address at which a breakpoint may be
7052 legitimately placed.
8fb3e588 7053
2dbd5e30
KB
7054 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7055 made, GDB will enter an infinite loop when stepping through
7056 optimized code consisting of VLIW instructions which contain
7057 subinstructions corresponding to different source lines. On
7058 FR-V, it's not permitted to place a breakpoint on any but the
7059 first subinstruction of a VLIW instruction. When a breakpoint is
7060 set, GDB will adjust the breakpoint address to the beginning of
7061 the VLIW instruction. Thus, we need to make the corresponding
7062 adjustment here when computing the stop address. */
8fb3e588 7063
568d6575 7064 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7065 {
7066 ecs->stop_func_start
568d6575 7067 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7068 ecs->stop_func_start);
2dbd5e30
KB
7069 }
7070
c2c6d25f
JM
7071 if (ecs->stop_func_start == stop_pc)
7072 {
7073 /* We are already there: stop now. */
bdc36728 7074 end_stepping_range (ecs);
c2c6d25f
JM
7075 return;
7076 }
7077 else
7078 {
7079 /* Put the step-breakpoint there and go until there. */
fe39c653 7080 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7081 sr_sal.pc = ecs->stop_func_start;
7082 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7083 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7084
c2c6d25f 7085 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7086 some machines the prologue is where the new fp value is
7087 established. */
a6d9a66e 7088 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7089
7090 /* And make sure stepping stops right away then. */
16c381f0
JK
7091 ecs->event_thread->control.step_range_end
7092 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7093 }
7094 keep_going (ecs);
7095}
d4f3574e 7096
b2175913
MS
7097/* Inferior has stepped backward into a subroutine call with source
7098 code that we should not step over. Do step to the beginning of the
7099 last line of code in it. */
7100
7101static void
568d6575
UW
7102handle_step_into_function_backward (struct gdbarch *gdbarch,
7103 struct execution_control_state *ecs)
b2175913 7104{
43f3e411 7105 struct compunit_symtab *cust;
167e4384 7106 struct symtab_and_line stop_func_sal;
b2175913 7107
7e324e48
GB
7108 fill_in_stop_func (gdbarch, ecs);
7109
43f3e411
DE
7110 cust = find_pc_compunit_symtab (stop_pc);
7111 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7112 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7113 ecs->stop_func_start);
7114
7115 stop_func_sal = find_pc_line (stop_pc, 0);
7116
7117 /* OK, we're just going to keep stepping here. */
7118 if (stop_func_sal.pc == stop_pc)
7119 {
7120 /* We're there already. Just stop stepping now. */
bdc36728 7121 end_stepping_range (ecs);
b2175913
MS
7122 }
7123 else
7124 {
7125 /* Else just reset the step range and keep going.
7126 No step-resume breakpoint, they don't work for
7127 epilogues, which can have multiple entry paths. */
16c381f0
JK
7128 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7129 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7130 keep_going (ecs);
7131 }
7132 return;
7133}
7134
d3169d93 7135/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7136 This is used to both functions and to skip over code. */
7137
7138static void
2c03e5be
PA
7139insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7140 struct symtab_and_line sr_sal,
7141 struct frame_id sr_id,
7142 enum bptype sr_type)
44cbf7b5 7143{
611c83ae
PA
7144 /* There should never be more than one step-resume or longjmp-resume
7145 breakpoint per thread, so we should never be setting a new
44cbf7b5 7146 step_resume_breakpoint when one is already active. */
8358c15c 7147 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7148 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7149
7150 if (debug_infrun)
7151 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7152 "infrun: inserting step-resume breakpoint at %s\n",
7153 paddress (gdbarch, sr_sal.pc));
d3169d93 7154
8358c15c 7155 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7156 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7157}
7158
9da8c2a0 7159void
2c03e5be
PA
7160insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7161 struct symtab_and_line sr_sal,
7162 struct frame_id sr_id)
7163{
7164 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7165 sr_sal, sr_id,
7166 bp_step_resume);
44cbf7b5 7167}
7ce450bd 7168
2c03e5be
PA
7169/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7170 This is used to skip a potential signal handler.
7ce450bd 7171
14e60db5
DJ
7172 This is called with the interrupted function's frame. The signal
7173 handler, when it returns, will resume the interrupted function at
7174 RETURN_FRAME.pc. */
d303a6c7
AC
7175
7176static void
2c03e5be 7177insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7178{
7179 struct symtab_and_line sr_sal;
a6d9a66e 7180 struct gdbarch *gdbarch;
d303a6c7 7181
f4c1edd8 7182 gdb_assert (return_frame != NULL);
d303a6c7
AC
7183 init_sal (&sr_sal); /* initialize to zeros */
7184
a6d9a66e 7185 gdbarch = get_frame_arch (return_frame);
568d6575 7186 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7187 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7188 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7189
2c03e5be
PA
7190 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7191 get_stack_frame_id (return_frame),
7192 bp_hp_step_resume);
d303a6c7
AC
7193}
7194
2c03e5be
PA
7195/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7196 is used to skip a function after stepping into it (for "next" or if
7197 the called function has no debugging information).
14e60db5
DJ
7198
7199 The current function has almost always been reached by single
7200 stepping a call or return instruction. NEXT_FRAME belongs to the
7201 current function, and the breakpoint will be set at the caller's
7202 resume address.
7203
7204 This is a separate function rather than reusing
2c03e5be 7205 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7206 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7207 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7208
7209static void
7210insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7211{
7212 struct symtab_and_line sr_sal;
a6d9a66e 7213 struct gdbarch *gdbarch;
14e60db5
DJ
7214
7215 /* We shouldn't have gotten here if we don't know where the call site
7216 is. */
c7ce8faa 7217 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7218
7219 init_sal (&sr_sal); /* initialize to zeros */
7220
a6d9a66e 7221 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7222 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7223 frame_unwind_caller_pc (next_frame));
14e60db5 7224 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7225 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7226
a6d9a66e 7227 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7228 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7229}
7230
611c83ae
PA
7231/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7232 new breakpoint at the target of a jmp_buf. The handling of
7233 longjmp-resume uses the same mechanisms used for handling
7234 "step-resume" breakpoints. */
7235
7236static void
a6d9a66e 7237insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7238{
e81a37f7
TT
7239 /* There should never be more than one longjmp-resume breakpoint per
7240 thread, so we should never be setting a new
611c83ae 7241 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7242 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7243
7244 if (debug_infrun)
7245 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7246 "infrun: inserting longjmp-resume breakpoint at %s\n",
7247 paddress (gdbarch, pc));
611c83ae 7248
e81a37f7 7249 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7250 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7251}
7252
186c406b
TT
7253/* Insert an exception resume breakpoint. TP is the thread throwing
7254 the exception. The block B is the block of the unwinder debug hook
7255 function. FRAME is the frame corresponding to the call to this
7256 function. SYM is the symbol of the function argument holding the
7257 target PC of the exception. */
7258
7259static void
7260insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7261 const struct block *b,
186c406b
TT
7262 struct frame_info *frame,
7263 struct symbol *sym)
7264{
492d29ea 7265 TRY
186c406b 7266 {
63e43d3a 7267 struct block_symbol vsym;
186c406b
TT
7268 struct value *value;
7269 CORE_ADDR handler;
7270 struct breakpoint *bp;
7271
63e43d3a
PMR
7272 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7273 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7274 /* If the value was optimized out, revert to the old behavior. */
7275 if (! value_optimized_out (value))
7276 {
7277 handler = value_as_address (value);
7278
7279 if (debug_infrun)
7280 fprintf_unfiltered (gdb_stdlog,
7281 "infrun: exception resume at %lx\n",
7282 (unsigned long) handler);
7283
7284 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7285 handler, bp_exception_resume);
c70a6932
JK
7286
7287 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7288 frame = NULL;
7289
186c406b
TT
7290 bp->thread = tp->num;
7291 inferior_thread ()->control.exception_resume_breakpoint = bp;
7292 }
7293 }
492d29ea
PA
7294 CATCH (e, RETURN_MASK_ERROR)
7295 {
7296 /* We want to ignore errors here. */
7297 }
7298 END_CATCH
186c406b
TT
7299}
7300
28106bc2
SDJ
7301/* A helper for check_exception_resume that sets an
7302 exception-breakpoint based on a SystemTap probe. */
7303
7304static void
7305insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7306 const struct bound_probe *probe,
28106bc2
SDJ
7307 struct frame_info *frame)
7308{
7309 struct value *arg_value;
7310 CORE_ADDR handler;
7311 struct breakpoint *bp;
7312
7313 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7314 if (!arg_value)
7315 return;
7316
7317 handler = value_as_address (arg_value);
7318
7319 if (debug_infrun)
7320 fprintf_unfiltered (gdb_stdlog,
7321 "infrun: exception resume at %s\n",
6bac7473 7322 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7323 handler));
7324
7325 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7326 handler, bp_exception_resume);
7327 bp->thread = tp->num;
7328 inferior_thread ()->control.exception_resume_breakpoint = bp;
7329}
7330
186c406b
TT
7331/* This is called when an exception has been intercepted. Check to
7332 see whether the exception's destination is of interest, and if so,
7333 set an exception resume breakpoint there. */
7334
7335static void
7336check_exception_resume (struct execution_control_state *ecs,
28106bc2 7337 struct frame_info *frame)
186c406b 7338{
729662a5 7339 struct bound_probe probe;
28106bc2
SDJ
7340 struct symbol *func;
7341
7342 /* First see if this exception unwinding breakpoint was set via a
7343 SystemTap probe point. If so, the probe has two arguments: the
7344 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7345 set a breakpoint there. */
6bac7473 7346 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7347 if (probe.probe)
28106bc2 7348 {
729662a5 7349 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7350 return;
7351 }
7352
7353 func = get_frame_function (frame);
7354 if (!func)
7355 return;
186c406b 7356
492d29ea 7357 TRY
186c406b 7358 {
3977b71f 7359 const struct block *b;
8157b174 7360 struct block_iterator iter;
186c406b
TT
7361 struct symbol *sym;
7362 int argno = 0;
7363
7364 /* The exception breakpoint is a thread-specific breakpoint on
7365 the unwinder's debug hook, declared as:
7366
7367 void _Unwind_DebugHook (void *cfa, void *handler);
7368
7369 The CFA argument indicates the frame to which control is
7370 about to be transferred. HANDLER is the destination PC.
7371
7372 We ignore the CFA and set a temporary breakpoint at HANDLER.
7373 This is not extremely efficient but it avoids issues in gdb
7374 with computing the DWARF CFA, and it also works even in weird
7375 cases such as throwing an exception from inside a signal
7376 handler. */
7377
7378 b = SYMBOL_BLOCK_VALUE (func);
7379 ALL_BLOCK_SYMBOLS (b, iter, sym)
7380 {
7381 if (!SYMBOL_IS_ARGUMENT (sym))
7382 continue;
7383
7384 if (argno == 0)
7385 ++argno;
7386 else
7387 {
7388 insert_exception_resume_breakpoint (ecs->event_thread,
7389 b, frame, sym);
7390 break;
7391 }
7392 }
7393 }
492d29ea
PA
7394 CATCH (e, RETURN_MASK_ERROR)
7395 {
7396 }
7397 END_CATCH
186c406b
TT
7398}
7399
104c1213 7400static void
22bcd14b 7401stop_waiting (struct execution_control_state *ecs)
104c1213 7402{
527159b7 7403 if (debug_infrun)
22bcd14b 7404 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7405
31e77af2
PA
7406 clear_step_over_info ();
7407
cd0fc7c3
SS
7408 /* Let callers know we don't want to wait for the inferior anymore. */
7409 ecs->wait_some_more = 0;
fbea99ea
PA
7410
7411 /* If all-stop, but the target is always in non-stop mode, stop all
7412 threads now that we're presenting the stop to the user. */
7413 if (!non_stop && target_is_non_stop_p ())
7414 stop_all_threads ();
cd0fc7c3
SS
7415}
7416
4d9d9d04
PA
7417/* Like keep_going, but passes the signal to the inferior, even if the
7418 signal is set to nopass. */
d4f3574e
SS
7419
7420static void
4d9d9d04 7421keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7422{
c4dbc9af
PA
7423 /* Make sure normal_stop is called if we get a QUIT handled before
7424 reaching resume. */
7425 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7426
4d9d9d04 7427 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7428 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7429
d4f3574e 7430 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7431 ecs->event_thread->prev_pc
7432 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7433
4d9d9d04 7434 if (ecs->event_thread->control.trap_expected)
d4f3574e 7435 {
4d9d9d04
PA
7436 struct thread_info *tp = ecs->event_thread;
7437
7438 if (debug_infrun)
7439 fprintf_unfiltered (gdb_stdlog,
7440 "infrun: %s has trap_expected set, "
7441 "resuming to collect trap\n",
7442 target_pid_to_str (tp->ptid));
7443
a9ba6bae
PA
7444 /* We haven't yet gotten our trap, and either: intercepted a
7445 non-signal event (e.g., a fork); or took a signal which we
7446 are supposed to pass through to the inferior. Simply
7447 continue. */
c4dbc9af 7448 discard_cleanups (old_cleanups);
64ce06e4 7449 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7450 }
372316f1
PA
7451 else if (step_over_info_valid_p ())
7452 {
7453 /* Another thread is stepping over a breakpoint in-line. If
7454 this thread needs a step-over too, queue the request. In
7455 either case, this resume must be deferred for later. */
7456 struct thread_info *tp = ecs->event_thread;
7457
7458 if (ecs->hit_singlestep_breakpoint
7459 || thread_still_needs_step_over (tp))
7460 {
7461 if (debug_infrun)
7462 fprintf_unfiltered (gdb_stdlog,
7463 "infrun: step-over already in progress: "
7464 "step-over for %s deferred\n",
7465 target_pid_to_str (tp->ptid));
7466 thread_step_over_chain_enqueue (tp);
7467 }
7468 else
7469 {
7470 if (debug_infrun)
7471 fprintf_unfiltered (gdb_stdlog,
7472 "infrun: step-over in progress: "
7473 "resume of %s deferred\n",
7474 target_pid_to_str (tp->ptid));
7475 }
7476
7477 discard_cleanups (old_cleanups);
7478 }
d4f3574e
SS
7479 else
7480 {
31e77af2 7481 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7482 int remove_bp;
7483 int remove_wps;
6c4cfb24 7484 enum step_over_what step_what;
31e77af2 7485
d4f3574e 7486 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7487 anyway (if we got a signal, the user asked it be passed to
7488 the child)
7489 -- or --
7490 We got our expected trap, but decided we should resume from
7491 it.
d4f3574e 7492
a9ba6bae 7493 We're going to run this baby now!
d4f3574e 7494
c36b740a
VP
7495 Note that insert_breakpoints won't try to re-insert
7496 already inserted breakpoints. Therefore, we don't
7497 care if breakpoints were already inserted, or not. */
a9ba6bae 7498
31e77af2
PA
7499 /* If we need to step over a breakpoint, and we're not using
7500 displaced stepping to do so, insert all breakpoints
7501 (watchpoints, etc.) but the one we're stepping over, step one
7502 instruction, and then re-insert the breakpoint when that step
7503 is finished. */
963f9c80 7504
6c4cfb24
PA
7505 step_what = thread_still_needs_step_over (ecs->event_thread);
7506
963f9c80 7507 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7508 || (step_what & STEP_OVER_BREAKPOINT));
7509 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7510
cb71640d
PA
7511 /* We can't use displaced stepping if we need to step past a
7512 watchpoint. The instruction copied to the scratch pad would
7513 still trigger the watchpoint. */
7514 if (remove_bp
3fc8eb30 7515 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7516 {
31e77af2 7517 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 7518 regcache_read_pc (regcache), remove_wps);
45e8c884 7519 }
963f9c80
PA
7520 else if (remove_wps)
7521 set_step_over_info (NULL, 0, remove_wps);
372316f1
PA
7522
7523 /* If we now need to do an in-line step-over, we need to stop
7524 all other threads. Note this must be done before
7525 insert_breakpoints below, because that removes the breakpoint
7526 we're about to step over, otherwise other threads could miss
7527 it. */
fbea99ea 7528 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7529 stop_all_threads ();
abbb1732 7530
31e77af2 7531 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7532 TRY
31e77af2
PA
7533 {
7534 insert_breakpoints ();
7535 }
492d29ea 7536 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7537 {
7538 exception_print (gdb_stderr, e);
22bcd14b 7539 stop_waiting (ecs);
de1fe8c8 7540 discard_cleanups (old_cleanups);
31e77af2 7541 return;
d4f3574e 7542 }
492d29ea 7543 END_CATCH
d4f3574e 7544
963f9c80 7545 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7546
c4dbc9af 7547 discard_cleanups (old_cleanups);
64ce06e4 7548 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7549 }
7550
488f131b 7551 prepare_to_wait (ecs);
d4f3574e
SS
7552}
7553
4d9d9d04
PA
7554/* Called when we should continue running the inferior, because the
7555 current event doesn't cause a user visible stop. This does the
7556 resuming part; waiting for the next event is done elsewhere. */
7557
7558static void
7559keep_going (struct execution_control_state *ecs)
7560{
7561 if (ecs->event_thread->control.trap_expected
7562 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7563 ecs->event_thread->control.trap_expected = 0;
7564
7565 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7566 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7567 keep_going_pass_signal (ecs);
7568}
7569
104c1213
JM
7570/* This function normally comes after a resume, before
7571 handle_inferior_event exits. It takes care of any last bits of
7572 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7573
104c1213
JM
7574static void
7575prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7576{
527159b7 7577 if (debug_infrun)
8a9de0e4 7578 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7579
104c1213 7580 ecs->wait_some_more = 1;
0b333c5e
PA
7581
7582 if (!target_is_async_p ())
7583 mark_infrun_async_event_handler ();
c906108c 7584}
11cf8741 7585
fd664c91 7586/* We are done with the step range of a step/next/si/ni command.
b57bacec 7587 Called once for each n of a "step n" operation. */
fd664c91
PA
7588
7589static void
bdc36728 7590end_stepping_range (struct execution_control_state *ecs)
fd664c91 7591{
bdc36728 7592 ecs->event_thread->control.stop_step = 1;
bdc36728 7593 stop_waiting (ecs);
fd664c91
PA
7594}
7595
33d62d64
JK
7596/* Several print_*_reason functions to print why the inferior has stopped.
7597 We always print something when the inferior exits, or receives a signal.
7598 The rest of the cases are dealt with later on in normal_stop and
7599 print_it_typical. Ideally there should be a call to one of these
7600 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7601 stop_waiting is called.
33d62d64 7602
fd664c91
PA
7603 Note that we don't call these directly, instead we delegate that to
7604 the interpreters, through observers. Interpreters then call these
7605 with whatever uiout is right. */
33d62d64 7606
fd664c91
PA
7607void
7608print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7609{
fd664c91 7610 /* For CLI-like interpreters, print nothing. */
33d62d64 7611
fd664c91
PA
7612 if (ui_out_is_mi_like_p (uiout))
7613 {
7614 ui_out_field_string (uiout, "reason",
7615 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7616 }
7617}
33d62d64 7618
fd664c91
PA
7619void
7620print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7621{
33d62d64
JK
7622 annotate_signalled ();
7623 if (ui_out_is_mi_like_p (uiout))
7624 ui_out_field_string
7625 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7626 ui_out_text (uiout, "\nProgram terminated with signal ");
7627 annotate_signal_name ();
7628 ui_out_field_string (uiout, "signal-name",
2ea28649 7629 gdb_signal_to_name (siggnal));
33d62d64
JK
7630 annotate_signal_name_end ();
7631 ui_out_text (uiout, ", ");
7632 annotate_signal_string ();
7633 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7634 gdb_signal_to_string (siggnal));
33d62d64
JK
7635 annotate_signal_string_end ();
7636 ui_out_text (uiout, ".\n");
7637 ui_out_text (uiout, "The program no longer exists.\n");
7638}
7639
fd664c91
PA
7640void
7641print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7642{
fda326dd
TT
7643 struct inferior *inf = current_inferior ();
7644 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7645
33d62d64
JK
7646 annotate_exited (exitstatus);
7647 if (exitstatus)
7648 {
7649 if (ui_out_is_mi_like_p (uiout))
7650 ui_out_field_string (uiout, "reason",
7651 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7652 ui_out_text (uiout, "[Inferior ");
7653 ui_out_text (uiout, plongest (inf->num));
7654 ui_out_text (uiout, " (");
7655 ui_out_text (uiout, pidstr);
7656 ui_out_text (uiout, ") exited with code ");
33d62d64 7657 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7658 ui_out_text (uiout, "]\n");
33d62d64
JK
7659 }
7660 else
11cf8741 7661 {
9dc5e2a9 7662 if (ui_out_is_mi_like_p (uiout))
034dad6f 7663 ui_out_field_string
33d62d64 7664 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7665 ui_out_text (uiout, "[Inferior ");
7666 ui_out_text (uiout, plongest (inf->num));
7667 ui_out_text (uiout, " (");
7668 ui_out_text (uiout, pidstr);
7669 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7670 }
33d62d64
JK
7671}
7672
fd664c91
PA
7673void
7674print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
7675{
7676 annotate_signal ();
7677
a493e3e2 7678 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
7679 {
7680 struct thread_info *t = inferior_thread ();
7681
7682 ui_out_text (uiout, "\n[");
7683 ui_out_field_string (uiout, "thread-name",
7684 target_pid_to_str (t->ptid));
7685 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7686 ui_out_text (uiout, " stopped");
7687 }
7688 else
7689 {
7690 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 7691 annotate_signal_name ();
33d62d64
JK
7692 if (ui_out_is_mi_like_p (uiout))
7693 ui_out_field_string
7694 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 7695 ui_out_field_string (uiout, "signal-name",
2ea28649 7696 gdb_signal_to_name (siggnal));
8b93c638
JM
7697 annotate_signal_name_end ();
7698 ui_out_text (uiout, ", ");
7699 annotate_signal_string ();
488f131b 7700 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7701 gdb_signal_to_string (siggnal));
8b93c638 7702 annotate_signal_string_end ();
33d62d64
JK
7703 }
7704 ui_out_text (uiout, ".\n");
7705}
252fbfc8 7706
fd664c91
PA
7707void
7708print_no_history_reason (struct ui_out *uiout)
33d62d64 7709{
fd664c91 7710 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 7711}
43ff13b4 7712
0c7e1a46
PA
7713/* Print current location without a level number, if we have changed
7714 functions or hit a breakpoint. Print source line if we have one.
7715 bpstat_print contains the logic deciding in detail what to print,
7716 based on the event(s) that just occurred. */
7717
243a9253
PA
7718static void
7719print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7720{
7721 int bpstat_ret;
f486487f 7722 enum print_what source_flag;
0c7e1a46
PA
7723 int do_frame_printing = 1;
7724 struct thread_info *tp = inferior_thread ();
7725
7726 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7727 switch (bpstat_ret)
7728 {
7729 case PRINT_UNKNOWN:
7730 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7731 should) carry around the function and does (or should) use
7732 that when doing a frame comparison. */
7733 if (tp->control.stop_step
7734 && frame_id_eq (tp->control.step_frame_id,
7735 get_frame_id (get_current_frame ()))
885eeb5b 7736 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
7737 {
7738 /* Finished step, just print source line. */
7739 source_flag = SRC_LINE;
7740 }
7741 else
7742 {
7743 /* Print location and source line. */
7744 source_flag = SRC_AND_LOC;
7745 }
7746 break;
7747 case PRINT_SRC_AND_LOC:
7748 /* Print location and source line. */
7749 source_flag = SRC_AND_LOC;
7750 break;
7751 case PRINT_SRC_ONLY:
7752 source_flag = SRC_LINE;
7753 break;
7754 case PRINT_NOTHING:
7755 /* Something bogus. */
7756 source_flag = SRC_LINE;
7757 do_frame_printing = 0;
7758 break;
7759 default:
7760 internal_error (__FILE__, __LINE__, _("Unknown value."));
7761 }
7762
7763 /* The behavior of this routine with respect to the source
7764 flag is:
7765 SRC_LINE: Print only source line
7766 LOCATION: Print only location
7767 SRC_AND_LOC: Print location and source line. */
7768 if (do_frame_printing)
7769 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7770}
7771
7772/* Cleanup that restores a previous current uiout. */
7773
7774static void
7775restore_current_uiout_cleanup (void *arg)
7776{
7777 struct ui_out *saved_uiout = arg;
7778
7779 current_uiout = saved_uiout;
7780}
7781
7782/* See infrun.h. */
7783
7784void
7785print_stop_event (struct ui_out *uiout)
7786{
7787 struct cleanup *old_chain;
7788 struct target_waitstatus last;
7789 ptid_t last_ptid;
7790 struct thread_info *tp;
7791
7792 get_last_target_status (&last_ptid, &last);
7793
7794 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
7795 current_uiout = uiout;
7796
7797 print_stop_location (&last);
0c7e1a46
PA
7798
7799 /* Display the auto-display expressions. */
7800 do_displays ();
243a9253
PA
7801
7802 do_cleanups (old_chain);
7803
7804 tp = inferior_thread ();
7805 if (tp->thread_fsm != NULL
7806 && thread_fsm_finished_p (tp->thread_fsm))
7807 {
7808 struct return_value_info *rv;
7809
7810 rv = thread_fsm_return_value (tp->thread_fsm);
7811 if (rv != NULL)
7812 print_return_value (uiout, rv);
7813 }
0c7e1a46
PA
7814}
7815
388a7084
PA
7816/* See infrun.h. */
7817
7818void
7819maybe_remove_breakpoints (void)
7820{
7821 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7822 {
7823 if (remove_breakpoints ())
7824 {
7825 target_terminal_ours_for_output ();
7826 printf_filtered (_("Cannot remove breakpoints because "
7827 "program is no longer writable.\nFurther "
7828 "execution is probably impossible.\n"));
7829 }
7830 }
7831}
7832
c906108c
SS
7833/* Here to return control to GDB when the inferior stops for real.
7834 Print appropriate messages, remove breakpoints, give terminal our modes.
7835
7836 STOP_PRINT_FRAME nonzero means print the executing frame
7837 (pc, function, args, file, line number and line text).
7838 BREAKPOINTS_FAILED nonzero means stop was due to error
7839 attempting to insert breakpoints. */
7840
7841void
96baa820 7842normal_stop (void)
c906108c 7843{
73b65bb0
DJ
7844 struct target_waitstatus last;
7845 ptid_t last_ptid;
29f49a6a 7846 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 7847 ptid_t pid_ptid;
73b65bb0
DJ
7848
7849 get_last_target_status (&last_ptid, &last);
7850
29f49a6a
PA
7851 /* If an exception is thrown from this point on, make sure to
7852 propagate GDB's knowledge of the executing state to the
7853 frontend/user running state. A QUIT is an easy exception to see
7854 here, so do this before any filtered output. */
c35b1492
PA
7855 if (!non_stop)
7856 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
7857 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7858 || last.kind == TARGET_WAITKIND_EXITED)
7859 {
7860 /* On some targets, we may still have live threads in the
7861 inferior when we get a process exit event. E.g., for
7862 "checkpoint", when the current checkpoint/fork exits,
7863 linux-fork.c automatically switches to another fork from
7864 within target_mourn_inferior. */
7865 if (!ptid_equal (inferior_ptid, null_ptid))
7866 {
7867 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
7868 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
7869 }
7870 }
7871 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 7872 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 7873
b57bacec
PA
7874 /* As we're presenting a stop, and potentially removing breakpoints,
7875 update the thread list so we can tell whether there are threads
7876 running on the target. With target remote, for example, we can
7877 only learn about new threads when we explicitly update the thread
7878 list. Do this before notifying the interpreters about signal
7879 stops, end of stepping ranges, etc., so that the "new thread"
7880 output is emitted before e.g., "Program received signal FOO",
7881 instead of after. */
7882 update_thread_list ();
7883
7884 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
7885 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
7886
c906108c
SS
7887 /* As with the notification of thread events, we want to delay
7888 notifying the user that we've switched thread context until
7889 the inferior actually stops.
7890
73b65bb0
DJ
7891 There's no point in saying anything if the inferior has exited.
7892 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
7893 "received a signal".
7894
7895 Also skip saying anything in non-stop mode. In that mode, as we
7896 don't want GDB to switch threads behind the user's back, to avoid
7897 races where the user is typing a command to apply to thread x,
7898 but GDB switches to thread y before the user finishes entering
7899 the command, fetch_inferior_event installs a cleanup to restore
7900 the current thread back to the thread the user had selected right
7901 after this event is handled, so we're not really switching, only
7902 informing of a stop. */
4f8d22e3
PA
7903 if (!non_stop
7904 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
7905 && target_has_execution
7906 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
7907 && last.kind != TARGET_WAITKIND_EXITED
7908 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
7909 {
7910 target_terminal_ours_for_output ();
a3f17187 7911 printf_filtered (_("[Switching to %s]\n"),
c95310c6 7912 target_pid_to_str (inferior_ptid));
b8fa951a 7913 annotate_thread_changed ();
39f77062 7914 previous_inferior_ptid = inferior_ptid;
c906108c 7915 }
c906108c 7916
0e5bf2a8
PA
7917 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
7918 {
7919 gdb_assert (sync_execution || !target_can_async_p ());
7920
7921 target_terminal_ours_for_output ();
7922 printf_filtered (_("No unwaited-for children left.\n"));
7923 }
7924
b57bacec 7925 /* Note: this depends on the update_thread_list call above. */
388a7084 7926 maybe_remove_breakpoints ();
c906108c 7927
c906108c
SS
7928 /* If an auto-display called a function and that got a signal,
7929 delete that auto-display to avoid an infinite recursion. */
7930
7931 if (stopped_by_random_signal)
7932 disable_current_display ();
7933
c906108c 7934 target_terminal_ours ();
0f641c01 7935 async_enable_stdin ();
c906108c 7936
388a7084
PA
7937 /* Let the user/frontend see the threads as stopped. */
7938 do_cleanups (old_chain);
7939
7940 /* Select innermost stack frame - i.e., current frame is frame 0,
7941 and current location is based on that. Handle the case where the
7942 dummy call is returning after being stopped. E.g. the dummy call
7943 previously hit a breakpoint. (If the dummy call returns
7944 normally, we won't reach here.) Do this before the stop hook is
7945 run, so that it doesn't get to see the temporary dummy frame,
7946 which is not where we'll present the stop. */
7947 if (has_stack_frames ())
7948 {
7949 if (stop_stack_dummy == STOP_STACK_DUMMY)
7950 {
7951 /* Pop the empty frame that contains the stack dummy. This
7952 also restores inferior state prior to the call (struct
7953 infcall_suspend_state). */
7954 struct frame_info *frame = get_current_frame ();
7955
7956 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
7957 frame_pop (frame);
7958 /* frame_pop calls reinit_frame_cache as the last thing it
7959 does which means there's now no selected frame. */
7960 }
7961
7962 select_frame (get_current_frame ());
7963
7964 /* Set the current source location. */
7965 set_current_sal_from_frame (get_current_frame ());
7966 }
dd7e2d2b
PA
7967
7968 /* Look up the hook_stop and run it (CLI internally handles problem
7969 of stop_command's pre-hook not existing). */
7970 if (stop_command)
7971 catch_errors (hook_stop_stub, stop_command,
7972 "Error while running hook_stop:\n", RETURN_MASK_ALL);
7973
388a7084
PA
7974 /* Notify observers about the stop. This is where the interpreters
7975 print the stop event. */
7976 if (!ptid_equal (inferior_ptid, null_ptid))
7977 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
7978 stop_print_frame);
7979 else
7980 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 7981
243a9253
PA
7982 annotate_stopped ();
7983
48844aa6
PA
7984 if (target_has_execution)
7985 {
7986 if (last.kind != TARGET_WAITKIND_SIGNALLED
7987 && last.kind != TARGET_WAITKIND_EXITED)
7988 /* Delete the breakpoint we stopped at, if it wants to be deleted.
7989 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 7990 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 7991 }
6c95b8df
PA
7992
7993 /* Try to get rid of automatically added inferiors that are no
7994 longer needed. Keeping those around slows down things linearly.
7995 Note that this never removes the current inferior. */
7996 prune_inferiors ();
c906108c
SS
7997}
7998
7999static int
96baa820 8000hook_stop_stub (void *cmd)
c906108c 8001{
5913bcb0 8002 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8003 return (0);
8004}
8005\f
c5aa993b 8006int
96baa820 8007signal_stop_state (int signo)
c906108c 8008{
d6b48e9c 8009 return signal_stop[signo];
c906108c
SS
8010}
8011
c5aa993b 8012int
96baa820 8013signal_print_state (int signo)
c906108c
SS
8014{
8015 return signal_print[signo];
8016}
8017
c5aa993b 8018int
96baa820 8019signal_pass_state (int signo)
c906108c
SS
8020{
8021 return signal_program[signo];
8022}
8023
2455069d
UW
8024static void
8025signal_cache_update (int signo)
8026{
8027 if (signo == -1)
8028 {
a493e3e2 8029 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8030 signal_cache_update (signo);
8031
8032 return;
8033 }
8034
8035 signal_pass[signo] = (signal_stop[signo] == 0
8036 && signal_print[signo] == 0
ab04a2af
TT
8037 && signal_program[signo] == 1
8038 && signal_catch[signo] == 0);
2455069d
UW
8039}
8040
488f131b 8041int
7bda5e4a 8042signal_stop_update (int signo, int state)
d4f3574e
SS
8043{
8044 int ret = signal_stop[signo];
abbb1732 8045
d4f3574e 8046 signal_stop[signo] = state;
2455069d 8047 signal_cache_update (signo);
d4f3574e
SS
8048 return ret;
8049}
8050
488f131b 8051int
7bda5e4a 8052signal_print_update (int signo, int state)
d4f3574e
SS
8053{
8054 int ret = signal_print[signo];
abbb1732 8055
d4f3574e 8056 signal_print[signo] = state;
2455069d 8057 signal_cache_update (signo);
d4f3574e
SS
8058 return ret;
8059}
8060
488f131b 8061int
7bda5e4a 8062signal_pass_update (int signo, int state)
d4f3574e
SS
8063{
8064 int ret = signal_program[signo];
abbb1732 8065
d4f3574e 8066 signal_program[signo] = state;
2455069d 8067 signal_cache_update (signo);
d4f3574e
SS
8068 return ret;
8069}
8070
ab04a2af
TT
8071/* Update the global 'signal_catch' from INFO and notify the
8072 target. */
8073
8074void
8075signal_catch_update (const unsigned int *info)
8076{
8077 int i;
8078
8079 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8080 signal_catch[i] = info[i] > 0;
8081 signal_cache_update (-1);
8082 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8083}
8084
c906108c 8085static void
96baa820 8086sig_print_header (void)
c906108c 8087{
3e43a32a
MS
8088 printf_filtered (_("Signal Stop\tPrint\tPass "
8089 "to program\tDescription\n"));
c906108c
SS
8090}
8091
8092static void
2ea28649 8093sig_print_info (enum gdb_signal oursig)
c906108c 8094{
2ea28649 8095 const char *name = gdb_signal_to_name (oursig);
c906108c 8096 int name_padding = 13 - strlen (name);
96baa820 8097
c906108c
SS
8098 if (name_padding <= 0)
8099 name_padding = 0;
8100
8101 printf_filtered ("%s", name);
488f131b 8102 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8103 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8104 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8105 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8106 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8107}
8108
8109/* Specify how various signals in the inferior should be handled. */
8110
8111static void
96baa820 8112handle_command (char *args, int from_tty)
c906108c
SS
8113{
8114 char **argv;
8115 int digits, wordlen;
8116 int sigfirst, signum, siglast;
2ea28649 8117 enum gdb_signal oursig;
c906108c
SS
8118 int allsigs;
8119 int nsigs;
8120 unsigned char *sigs;
8121 struct cleanup *old_chain;
8122
8123 if (args == NULL)
8124 {
e2e0b3e5 8125 error_no_arg (_("signal to handle"));
c906108c
SS
8126 }
8127
1777feb0 8128 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8129
a493e3e2 8130 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8131 sigs = (unsigned char *) alloca (nsigs);
8132 memset (sigs, 0, nsigs);
8133
1777feb0 8134 /* Break the command line up into args. */
c906108c 8135
d1a41061 8136 argv = gdb_buildargv (args);
7a292a7a 8137 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8138
8139 /* Walk through the args, looking for signal oursigs, signal names, and
8140 actions. Signal numbers and signal names may be interspersed with
8141 actions, with the actions being performed for all signals cumulatively
1777feb0 8142 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8143
8144 while (*argv != NULL)
8145 {
8146 wordlen = strlen (*argv);
8147 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8148 {;
8149 }
8150 allsigs = 0;
8151 sigfirst = siglast = -1;
8152
8153 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8154 {
8155 /* Apply action to all signals except those used by the
1777feb0 8156 debugger. Silently skip those. */
c906108c
SS
8157 allsigs = 1;
8158 sigfirst = 0;
8159 siglast = nsigs - 1;
8160 }
8161 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8162 {
8163 SET_SIGS (nsigs, sigs, signal_stop);
8164 SET_SIGS (nsigs, sigs, signal_print);
8165 }
8166 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8167 {
8168 UNSET_SIGS (nsigs, sigs, signal_program);
8169 }
8170 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8171 {
8172 SET_SIGS (nsigs, sigs, signal_print);
8173 }
8174 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8175 {
8176 SET_SIGS (nsigs, sigs, signal_program);
8177 }
8178 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8179 {
8180 UNSET_SIGS (nsigs, sigs, signal_stop);
8181 }
8182 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8183 {
8184 SET_SIGS (nsigs, sigs, signal_program);
8185 }
8186 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8187 {
8188 UNSET_SIGS (nsigs, sigs, signal_print);
8189 UNSET_SIGS (nsigs, sigs, signal_stop);
8190 }
8191 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8192 {
8193 UNSET_SIGS (nsigs, sigs, signal_program);
8194 }
8195 else if (digits > 0)
8196 {
8197 /* It is numeric. The numeric signal refers to our own
8198 internal signal numbering from target.h, not to host/target
8199 signal number. This is a feature; users really should be
8200 using symbolic names anyway, and the common ones like
8201 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8202
8203 sigfirst = siglast = (int)
2ea28649 8204 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8205 if ((*argv)[digits] == '-')
8206 {
8207 siglast = (int)
2ea28649 8208 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8209 }
8210 if (sigfirst > siglast)
8211 {
1777feb0 8212 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8213 signum = sigfirst;
8214 sigfirst = siglast;
8215 siglast = signum;
8216 }
8217 }
8218 else
8219 {
2ea28649 8220 oursig = gdb_signal_from_name (*argv);
a493e3e2 8221 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8222 {
8223 sigfirst = siglast = (int) oursig;
8224 }
8225 else
8226 {
8227 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8228 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8229 }
8230 }
8231
8232 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8233 which signals to apply actions to. */
c906108c
SS
8234
8235 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8236 {
2ea28649 8237 switch ((enum gdb_signal) signum)
c906108c 8238 {
a493e3e2
PA
8239 case GDB_SIGNAL_TRAP:
8240 case GDB_SIGNAL_INT:
c906108c
SS
8241 if (!allsigs && !sigs[signum])
8242 {
9e2f0ad4 8243 if (query (_("%s is used by the debugger.\n\
3e43a32a 8244Are you sure you want to change it? "),
2ea28649 8245 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8246 {
8247 sigs[signum] = 1;
8248 }
8249 else
8250 {
a3f17187 8251 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8252 gdb_flush (gdb_stdout);
8253 }
8254 }
8255 break;
a493e3e2
PA
8256 case GDB_SIGNAL_0:
8257 case GDB_SIGNAL_DEFAULT:
8258 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8259 /* Make sure that "all" doesn't print these. */
8260 break;
8261 default:
8262 sigs[signum] = 1;
8263 break;
8264 }
8265 }
8266
8267 argv++;
8268 }
8269
3a031f65
PA
8270 for (signum = 0; signum < nsigs; signum++)
8271 if (sigs[signum])
8272 {
2455069d 8273 signal_cache_update (-1);
a493e3e2
PA
8274 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8275 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8276
3a031f65
PA
8277 if (from_tty)
8278 {
8279 /* Show the results. */
8280 sig_print_header ();
8281 for (; signum < nsigs; signum++)
8282 if (sigs[signum])
aead7601 8283 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8284 }
8285
8286 break;
8287 }
c906108c
SS
8288
8289 do_cleanups (old_chain);
8290}
8291
de0bea00
MF
8292/* Complete the "handle" command. */
8293
8294static VEC (char_ptr) *
8295handle_completer (struct cmd_list_element *ignore,
6f937416 8296 const char *text, const char *word)
de0bea00
MF
8297{
8298 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8299 static const char * const keywords[] =
8300 {
8301 "all",
8302 "stop",
8303 "ignore",
8304 "print",
8305 "pass",
8306 "nostop",
8307 "noignore",
8308 "noprint",
8309 "nopass",
8310 NULL,
8311 };
8312
8313 vec_signals = signal_completer (ignore, text, word);
8314 vec_keywords = complete_on_enum (keywords, word, word);
8315
8316 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8317 VEC_free (char_ptr, vec_signals);
8318 VEC_free (char_ptr, vec_keywords);
8319 return return_val;
8320}
8321
2ea28649
PA
8322enum gdb_signal
8323gdb_signal_from_command (int num)
ed01b82c
PA
8324{
8325 if (num >= 1 && num <= 15)
2ea28649 8326 return (enum gdb_signal) num;
ed01b82c
PA
8327 error (_("Only signals 1-15 are valid as numeric signals.\n\
8328Use \"info signals\" for a list of symbolic signals."));
8329}
8330
c906108c
SS
8331/* Print current contents of the tables set by the handle command.
8332 It is possible we should just be printing signals actually used
8333 by the current target (but for things to work right when switching
8334 targets, all signals should be in the signal tables). */
8335
8336static void
96baa820 8337signals_info (char *signum_exp, int from_tty)
c906108c 8338{
2ea28649 8339 enum gdb_signal oursig;
abbb1732 8340
c906108c
SS
8341 sig_print_header ();
8342
8343 if (signum_exp)
8344 {
8345 /* First see if this is a symbol name. */
2ea28649 8346 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8347 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8348 {
8349 /* No, try numeric. */
8350 oursig =
2ea28649 8351 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8352 }
8353 sig_print_info (oursig);
8354 return;
8355 }
8356
8357 printf_filtered ("\n");
8358 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8359 for (oursig = GDB_SIGNAL_FIRST;
8360 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8361 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8362 {
8363 QUIT;
8364
a493e3e2
PA
8365 if (oursig != GDB_SIGNAL_UNKNOWN
8366 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8367 sig_print_info (oursig);
8368 }
8369
3e43a32a
MS
8370 printf_filtered (_("\nUse the \"handle\" command "
8371 "to change these tables.\n"));
c906108c 8372}
4aa995e1 8373
c709acd1
PA
8374/* Check if it makes sense to read $_siginfo from the current thread
8375 at this point. If not, throw an error. */
8376
8377static void
8378validate_siginfo_access (void)
8379{
8380 /* No current inferior, no siginfo. */
8381 if (ptid_equal (inferior_ptid, null_ptid))
8382 error (_("No thread selected."));
8383
8384 /* Don't try to read from a dead thread. */
8385 if (is_exited (inferior_ptid))
8386 error (_("The current thread has terminated"));
8387
8388 /* ... or from a spinning thread. */
8389 if (is_running (inferior_ptid))
8390 error (_("Selected thread is running."));
8391}
8392
4aa995e1
PA
8393/* The $_siginfo convenience variable is a bit special. We don't know
8394 for sure the type of the value until we actually have a chance to
7a9dd1b2 8395 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8396 also dependent on which thread you have selected.
8397
8398 1. making $_siginfo be an internalvar that creates a new value on
8399 access.
8400
8401 2. making the value of $_siginfo be an lval_computed value. */
8402
8403/* This function implements the lval_computed support for reading a
8404 $_siginfo value. */
8405
8406static void
8407siginfo_value_read (struct value *v)
8408{
8409 LONGEST transferred;
8410
c709acd1
PA
8411 validate_siginfo_access ();
8412
4aa995e1
PA
8413 transferred =
8414 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8415 NULL,
8416 value_contents_all_raw (v),
8417 value_offset (v),
8418 TYPE_LENGTH (value_type (v)));
8419
8420 if (transferred != TYPE_LENGTH (value_type (v)))
8421 error (_("Unable to read siginfo"));
8422}
8423
8424/* This function implements the lval_computed support for writing a
8425 $_siginfo value. */
8426
8427static void
8428siginfo_value_write (struct value *v, struct value *fromval)
8429{
8430 LONGEST transferred;
8431
c709acd1
PA
8432 validate_siginfo_access ();
8433
4aa995e1
PA
8434 transferred = target_write (&current_target,
8435 TARGET_OBJECT_SIGNAL_INFO,
8436 NULL,
8437 value_contents_all_raw (fromval),
8438 value_offset (v),
8439 TYPE_LENGTH (value_type (fromval)));
8440
8441 if (transferred != TYPE_LENGTH (value_type (fromval)))
8442 error (_("Unable to write siginfo"));
8443}
8444
c8f2448a 8445static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8446 {
8447 siginfo_value_read,
8448 siginfo_value_write
8449 };
8450
8451/* Return a new value with the correct type for the siginfo object of
78267919
UW
8452 the current thread using architecture GDBARCH. Return a void value
8453 if there's no object available. */
4aa995e1 8454
2c0b251b 8455static struct value *
22d2b532
SDJ
8456siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8457 void *ignore)
4aa995e1 8458{
4aa995e1 8459 if (target_has_stack
78267919
UW
8460 && !ptid_equal (inferior_ptid, null_ptid)
8461 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8462 {
78267919 8463 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8464
78267919 8465 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8466 }
8467
78267919 8468 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8469}
8470
c906108c 8471\f
16c381f0
JK
8472/* infcall_suspend_state contains state about the program itself like its
8473 registers and any signal it received when it last stopped.
8474 This state must be restored regardless of how the inferior function call
8475 ends (either successfully, or after it hits a breakpoint or signal)
8476 if the program is to properly continue where it left off. */
8477
8478struct infcall_suspend_state
7a292a7a 8479{
16c381f0 8480 struct thread_suspend_state thread_suspend;
16c381f0
JK
8481
8482 /* Other fields: */
7a292a7a 8483 CORE_ADDR stop_pc;
b89667eb 8484 struct regcache *registers;
1736ad11 8485
35515841 8486 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8487 struct gdbarch *siginfo_gdbarch;
8488
8489 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8490 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8491 content would be invalid. */
8492 gdb_byte *siginfo_data;
b89667eb
DE
8493};
8494
16c381f0
JK
8495struct infcall_suspend_state *
8496save_infcall_suspend_state (void)
b89667eb 8497{
16c381f0 8498 struct infcall_suspend_state *inf_state;
b89667eb 8499 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8500 struct regcache *regcache = get_current_regcache ();
8501 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8502 gdb_byte *siginfo_data = NULL;
8503
8504 if (gdbarch_get_siginfo_type_p (gdbarch))
8505 {
8506 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8507 size_t len = TYPE_LENGTH (type);
8508 struct cleanup *back_to;
8509
8510 siginfo_data = xmalloc (len);
8511 back_to = make_cleanup (xfree, siginfo_data);
8512
8513 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8514 siginfo_data, 0, len) == len)
8515 discard_cleanups (back_to);
8516 else
8517 {
8518 /* Errors ignored. */
8519 do_cleanups (back_to);
8520 siginfo_data = NULL;
8521 }
8522 }
8523
41bf6aca 8524 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8525
8526 if (siginfo_data)
8527 {
8528 inf_state->siginfo_gdbarch = gdbarch;
8529 inf_state->siginfo_data = siginfo_data;
8530 }
b89667eb 8531
16c381f0 8532 inf_state->thread_suspend = tp->suspend;
16c381f0 8533
35515841 8534 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8535 GDB_SIGNAL_0 anyway. */
8536 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8537
b89667eb
DE
8538 inf_state->stop_pc = stop_pc;
8539
1736ad11 8540 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8541
8542 return inf_state;
8543}
8544
8545/* Restore inferior session state to INF_STATE. */
8546
8547void
16c381f0 8548restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8549{
8550 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8551 struct regcache *regcache = get_current_regcache ();
8552 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8553
16c381f0 8554 tp->suspend = inf_state->thread_suspend;
16c381f0 8555
b89667eb
DE
8556 stop_pc = inf_state->stop_pc;
8557
1736ad11
JK
8558 if (inf_state->siginfo_gdbarch == gdbarch)
8559 {
8560 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8561
8562 /* Errors ignored. */
8563 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8564 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8565 }
8566
b89667eb
DE
8567 /* The inferior can be gone if the user types "print exit(0)"
8568 (and perhaps other times). */
8569 if (target_has_execution)
8570 /* NB: The register write goes through to the target. */
1736ad11 8571 regcache_cpy (regcache, inf_state->registers);
803b5f95 8572
16c381f0 8573 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8574}
8575
8576static void
16c381f0 8577do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8578{
16c381f0 8579 restore_infcall_suspend_state (state);
b89667eb
DE
8580}
8581
8582struct cleanup *
16c381f0
JK
8583make_cleanup_restore_infcall_suspend_state
8584 (struct infcall_suspend_state *inf_state)
b89667eb 8585{
16c381f0 8586 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8587}
8588
8589void
16c381f0 8590discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8591{
8592 regcache_xfree (inf_state->registers);
803b5f95 8593 xfree (inf_state->siginfo_data);
b89667eb
DE
8594 xfree (inf_state);
8595}
8596
8597struct regcache *
16c381f0 8598get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8599{
8600 return inf_state->registers;
8601}
8602
16c381f0
JK
8603/* infcall_control_state contains state regarding gdb's control of the
8604 inferior itself like stepping control. It also contains session state like
8605 the user's currently selected frame. */
b89667eb 8606
16c381f0 8607struct infcall_control_state
b89667eb 8608{
16c381f0
JK
8609 struct thread_control_state thread_control;
8610 struct inferior_control_state inferior_control;
d82142e2
JK
8611
8612 /* Other fields: */
8613 enum stop_stack_kind stop_stack_dummy;
8614 int stopped_by_random_signal;
7a292a7a 8615 int stop_after_trap;
7a292a7a 8616
b89667eb 8617 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8618 struct frame_id selected_frame_id;
7a292a7a
SS
8619};
8620
c906108c 8621/* Save all of the information associated with the inferior<==>gdb
b89667eb 8622 connection. */
c906108c 8623
16c381f0
JK
8624struct infcall_control_state *
8625save_infcall_control_state (void)
c906108c 8626{
8d749320
SM
8627 struct infcall_control_state *inf_status =
8628 XNEW (struct infcall_control_state);
4e1c45ea 8629 struct thread_info *tp = inferior_thread ();
d6b48e9c 8630 struct inferior *inf = current_inferior ();
7a292a7a 8631
16c381f0
JK
8632 inf_status->thread_control = tp->control;
8633 inf_status->inferior_control = inf->control;
d82142e2 8634
8358c15c 8635 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8636 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8637
16c381f0
JK
8638 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8639 chain. If caller's caller is walking the chain, they'll be happier if we
8640 hand them back the original chain when restore_infcall_control_state is
8641 called. */
8642 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8643
8644 /* Other fields: */
8645 inf_status->stop_stack_dummy = stop_stack_dummy;
8646 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8647 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 8648
206415a3 8649 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8650
7a292a7a 8651 return inf_status;
c906108c
SS
8652}
8653
c906108c 8654static int
96baa820 8655restore_selected_frame (void *args)
c906108c 8656{
488f131b 8657 struct frame_id *fid = (struct frame_id *) args;
c906108c 8658 struct frame_info *frame;
c906108c 8659
101dcfbe 8660 frame = frame_find_by_id (*fid);
c906108c 8661
aa0cd9c1
AC
8662 /* If inf_status->selected_frame_id is NULL, there was no previously
8663 selected frame. */
101dcfbe 8664 if (frame == NULL)
c906108c 8665 {
8a3fe4f8 8666 warning (_("Unable to restore previously selected frame."));
c906108c
SS
8667 return 0;
8668 }
8669
0f7d239c 8670 select_frame (frame);
c906108c
SS
8671
8672 return (1);
8673}
8674
b89667eb
DE
8675/* Restore inferior session state to INF_STATUS. */
8676
c906108c 8677void
16c381f0 8678restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8679{
4e1c45ea 8680 struct thread_info *tp = inferior_thread ();
d6b48e9c 8681 struct inferior *inf = current_inferior ();
4e1c45ea 8682
8358c15c
JK
8683 if (tp->control.step_resume_breakpoint)
8684 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8685
5b79abe7
TT
8686 if (tp->control.exception_resume_breakpoint)
8687 tp->control.exception_resume_breakpoint->disposition
8688 = disp_del_at_next_stop;
8689
d82142e2 8690 /* Handle the bpstat_copy of the chain. */
16c381f0 8691 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8692
16c381f0
JK
8693 tp->control = inf_status->thread_control;
8694 inf->control = inf_status->inferior_control;
d82142e2
JK
8695
8696 /* Other fields: */
8697 stop_stack_dummy = inf_status->stop_stack_dummy;
8698 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8699 stop_after_trap = inf_status->stop_after_trap;
c906108c 8700
b89667eb 8701 if (target_has_stack)
c906108c 8702 {
c906108c 8703 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
8704 walking the stack might encounter a garbage pointer and
8705 error() trying to dereference it. */
488f131b
JB
8706 if (catch_errors
8707 (restore_selected_frame, &inf_status->selected_frame_id,
8708 "Unable to restore previously selected frame:\n",
8709 RETURN_MASK_ERROR) == 0)
c906108c
SS
8710 /* Error in restoring the selected frame. Select the innermost
8711 frame. */
0f7d239c 8712 select_frame (get_current_frame ());
c906108c 8713 }
c906108c 8714
72cec141 8715 xfree (inf_status);
7a292a7a 8716}
c906108c 8717
74b7792f 8718static void
16c381f0 8719do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 8720{
16c381f0 8721 restore_infcall_control_state (sts);
74b7792f
AC
8722}
8723
8724struct cleanup *
16c381f0
JK
8725make_cleanup_restore_infcall_control_state
8726 (struct infcall_control_state *inf_status)
74b7792f 8727{
16c381f0 8728 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
8729}
8730
c906108c 8731void
16c381f0 8732discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8733{
8358c15c
JK
8734 if (inf_status->thread_control.step_resume_breakpoint)
8735 inf_status->thread_control.step_resume_breakpoint->disposition
8736 = disp_del_at_next_stop;
8737
5b79abe7
TT
8738 if (inf_status->thread_control.exception_resume_breakpoint)
8739 inf_status->thread_control.exception_resume_breakpoint->disposition
8740 = disp_del_at_next_stop;
8741
1777feb0 8742 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8743 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8744
72cec141 8745 xfree (inf_status);
7a292a7a 8746}
b89667eb 8747\f
ca6724c1
KB
8748/* restore_inferior_ptid() will be used by the cleanup machinery
8749 to restore the inferior_ptid value saved in a call to
8750 save_inferior_ptid(). */
ce696e05
KB
8751
8752static void
8753restore_inferior_ptid (void *arg)
8754{
8755 ptid_t *saved_ptid_ptr = arg;
abbb1732 8756
ce696e05
KB
8757 inferior_ptid = *saved_ptid_ptr;
8758 xfree (arg);
8759}
8760
8761/* Save the value of inferior_ptid so that it may be restored by a
8762 later call to do_cleanups(). Returns the struct cleanup pointer
8763 needed for later doing the cleanup. */
8764
8765struct cleanup *
8766save_inferior_ptid (void)
8767{
8d749320 8768 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 8769
ce696e05
KB
8770 *saved_ptid_ptr = inferior_ptid;
8771 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8772}
0c557179 8773
7f89fd65 8774/* See infrun.h. */
0c557179
SDJ
8775
8776void
8777clear_exit_convenience_vars (void)
8778{
8779 clear_internalvar (lookup_internalvar ("_exitsignal"));
8780 clear_internalvar (lookup_internalvar ("_exitcode"));
8781}
c5aa993b 8782\f
488f131b 8783
b2175913
MS
8784/* User interface for reverse debugging:
8785 Set exec-direction / show exec-direction commands
8786 (returns error unless target implements to_set_exec_direction method). */
8787
32231432 8788int execution_direction = EXEC_FORWARD;
b2175913
MS
8789static const char exec_forward[] = "forward";
8790static const char exec_reverse[] = "reverse";
8791static const char *exec_direction = exec_forward;
40478521 8792static const char *const exec_direction_names[] = {
b2175913
MS
8793 exec_forward,
8794 exec_reverse,
8795 NULL
8796};
8797
8798static void
8799set_exec_direction_func (char *args, int from_tty,
8800 struct cmd_list_element *cmd)
8801{
8802 if (target_can_execute_reverse)
8803 {
8804 if (!strcmp (exec_direction, exec_forward))
8805 execution_direction = EXEC_FORWARD;
8806 else if (!strcmp (exec_direction, exec_reverse))
8807 execution_direction = EXEC_REVERSE;
8808 }
8bbed405
MS
8809 else
8810 {
8811 exec_direction = exec_forward;
8812 error (_("Target does not support this operation."));
8813 }
b2175913
MS
8814}
8815
8816static void
8817show_exec_direction_func (struct ui_file *out, int from_tty,
8818 struct cmd_list_element *cmd, const char *value)
8819{
8820 switch (execution_direction) {
8821 case EXEC_FORWARD:
8822 fprintf_filtered (out, _("Forward.\n"));
8823 break;
8824 case EXEC_REVERSE:
8825 fprintf_filtered (out, _("Reverse.\n"));
8826 break;
b2175913 8827 default:
d8b34453
PA
8828 internal_error (__FILE__, __LINE__,
8829 _("bogus execution_direction value: %d"),
8830 (int) execution_direction);
b2175913
MS
8831 }
8832}
8833
d4db2f36
PA
8834static void
8835show_schedule_multiple (struct ui_file *file, int from_tty,
8836 struct cmd_list_element *c, const char *value)
8837{
3e43a32a
MS
8838 fprintf_filtered (file, _("Resuming the execution of threads "
8839 "of all processes is %s.\n"), value);
d4db2f36 8840}
ad52ddc6 8841
22d2b532
SDJ
8842/* Implementation of `siginfo' variable. */
8843
8844static const struct internalvar_funcs siginfo_funcs =
8845{
8846 siginfo_make_value,
8847 NULL,
8848 NULL
8849};
8850
372316f1
PA
8851/* Callback for infrun's target events source. This is marked when a
8852 thread has a pending status to process. */
8853
8854static void
8855infrun_async_inferior_event_handler (gdb_client_data data)
8856{
372316f1
PA
8857 inferior_event_handler (INF_REG_EVENT, NULL);
8858}
8859
c906108c 8860void
96baa820 8861_initialize_infrun (void)
c906108c 8862{
52f0bd74
AC
8863 int i;
8864 int numsigs;
de0bea00 8865 struct cmd_list_element *c;
c906108c 8866
372316f1
PA
8867 /* Register extra event sources in the event loop. */
8868 infrun_async_inferior_event_token
8869 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8870
1bedd215
AC
8871 add_info ("signals", signals_info, _("\
8872What debugger does when program gets various signals.\n\
8873Specify a signal as argument to print info on that signal only."));
c906108c
SS
8874 add_info_alias ("handle", "signals", 0);
8875
de0bea00 8876 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 8877Specify how to handle signals.\n\
486c7739 8878Usage: handle SIGNAL [ACTIONS]\n\
c906108c 8879Args are signals and actions to apply to those signals.\n\
dfbd5e7b 8880If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
8881will be displayed instead.\n\
8882\n\
c906108c
SS
8883Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8884from 1-15 are allowed for compatibility with old versions of GDB.\n\
8885Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8886The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 8887used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 8888\n\
1bedd215 8889Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
8890\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8891Stop means reenter debugger if this signal happens (implies print).\n\
8892Print means print a message if this signal happens.\n\
8893Pass means let program see this signal; otherwise program doesn't know.\n\
8894Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
8895Pass and Stop may be combined.\n\
8896\n\
8897Multiple signals may be specified. Signal numbers and signal names\n\
8898may be interspersed with actions, with the actions being performed for\n\
8899all signals cumulatively specified."));
de0bea00 8900 set_cmd_completer (c, handle_completer);
486c7739 8901
c906108c 8902 if (!dbx_commands)
1a966eab
AC
8903 stop_command = add_cmd ("stop", class_obscure,
8904 not_just_help_class_command, _("\
8905There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 8906This allows you to set a list of commands to be run each time execution\n\
1a966eab 8907of the program stops."), &cmdlist);
c906108c 8908
ccce17b0 8909 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
8910Set inferior debugging."), _("\
8911Show inferior debugging."), _("\
8912When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
8913 NULL,
8914 show_debug_infrun,
8915 &setdebuglist, &showdebuglist);
527159b7 8916
3e43a32a
MS
8917 add_setshow_boolean_cmd ("displaced", class_maintenance,
8918 &debug_displaced, _("\
237fc4c9
PA
8919Set displaced stepping debugging."), _("\
8920Show displaced stepping debugging."), _("\
8921When non-zero, displaced stepping specific debugging is enabled."),
8922 NULL,
8923 show_debug_displaced,
8924 &setdebuglist, &showdebuglist);
8925
ad52ddc6
PA
8926 add_setshow_boolean_cmd ("non-stop", no_class,
8927 &non_stop_1, _("\
8928Set whether gdb controls the inferior in non-stop mode."), _("\
8929Show whether gdb controls the inferior in non-stop mode."), _("\
8930When debugging a multi-threaded program and this setting is\n\
8931off (the default, also called all-stop mode), when one thread stops\n\
8932(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
8933all other threads in the program while you interact with the thread of\n\
8934interest. When you continue or step a thread, you can allow the other\n\
8935threads to run, or have them remain stopped, but while you inspect any\n\
8936thread's state, all threads stop.\n\
8937\n\
8938In non-stop mode, when one thread stops, other threads can continue\n\
8939to run freely. You'll be able to step each thread independently,\n\
8940leave it stopped or free to run as needed."),
8941 set_non_stop,
8942 show_non_stop,
8943 &setlist,
8944 &showlist);
8945
a493e3e2 8946 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
8947 signal_stop = XNEWVEC (unsigned char, numsigs);
8948 signal_print = XNEWVEC (unsigned char, numsigs);
8949 signal_program = XNEWVEC (unsigned char, numsigs);
8950 signal_catch = XNEWVEC (unsigned char, numsigs);
8951 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
8952 for (i = 0; i < numsigs; i++)
8953 {
8954 signal_stop[i] = 1;
8955 signal_print[i] = 1;
8956 signal_program[i] = 1;
ab04a2af 8957 signal_catch[i] = 0;
c906108c
SS
8958 }
8959
4d9d9d04
PA
8960 /* Signals caused by debugger's own actions should not be given to
8961 the program afterwards.
8962
8963 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
8964 explicitly specifies that it should be delivered to the target
8965 program. Typically, that would occur when a user is debugging a
8966 target monitor on a simulator: the target monitor sets a
8967 breakpoint; the simulator encounters this breakpoint and halts
8968 the simulation handing control to GDB; GDB, noting that the stop
8969 address doesn't map to any known breakpoint, returns control back
8970 to the simulator; the simulator then delivers the hardware
8971 equivalent of a GDB_SIGNAL_TRAP to the program being
8972 debugged. */
a493e3e2
PA
8973 signal_program[GDB_SIGNAL_TRAP] = 0;
8974 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
8975
8976 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
8977 signal_stop[GDB_SIGNAL_ALRM] = 0;
8978 signal_print[GDB_SIGNAL_ALRM] = 0;
8979 signal_stop[GDB_SIGNAL_VTALRM] = 0;
8980 signal_print[GDB_SIGNAL_VTALRM] = 0;
8981 signal_stop[GDB_SIGNAL_PROF] = 0;
8982 signal_print[GDB_SIGNAL_PROF] = 0;
8983 signal_stop[GDB_SIGNAL_CHLD] = 0;
8984 signal_print[GDB_SIGNAL_CHLD] = 0;
8985 signal_stop[GDB_SIGNAL_IO] = 0;
8986 signal_print[GDB_SIGNAL_IO] = 0;
8987 signal_stop[GDB_SIGNAL_POLL] = 0;
8988 signal_print[GDB_SIGNAL_POLL] = 0;
8989 signal_stop[GDB_SIGNAL_URG] = 0;
8990 signal_print[GDB_SIGNAL_URG] = 0;
8991 signal_stop[GDB_SIGNAL_WINCH] = 0;
8992 signal_print[GDB_SIGNAL_WINCH] = 0;
8993 signal_stop[GDB_SIGNAL_PRIO] = 0;
8994 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 8995
cd0fc7c3
SS
8996 /* These signals are used internally by user-level thread
8997 implementations. (See signal(5) on Solaris.) Like the above
8998 signals, a healthy program receives and handles them as part of
8999 its normal operation. */
a493e3e2
PA
9000 signal_stop[GDB_SIGNAL_LWP] = 0;
9001 signal_print[GDB_SIGNAL_LWP] = 0;
9002 signal_stop[GDB_SIGNAL_WAITING] = 0;
9003 signal_print[GDB_SIGNAL_WAITING] = 0;
9004 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9005 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 9006
2455069d
UW
9007 /* Update cached state. */
9008 signal_cache_update (-1);
9009
85c07804
AC
9010 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9011 &stop_on_solib_events, _("\
9012Set stopping for shared library events."), _("\
9013Show stopping for shared library events."), _("\
c906108c
SS
9014If nonzero, gdb will give control to the user when the dynamic linker\n\
9015notifies gdb of shared library events. The most common event of interest\n\
85c07804 9016to the user would be loading/unloading of a new library."),
f9e14852 9017 set_stop_on_solib_events,
920d2a44 9018 show_stop_on_solib_events,
85c07804 9019 &setlist, &showlist);
c906108c 9020
7ab04401
AC
9021 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9022 follow_fork_mode_kind_names,
9023 &follow_fork_mode_string, _("\
9024Set debugger response to a program call of fork or vfork."), _("\
9025Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9026A fork or vfork creates a new process. follow-fork-mode can be:\n\
9027 parent - the original process is debugged after a fork\n\
9028 child - the new process is debugged after a fork\n\
ea1dd7bc 9029The unfollowed process will continue to run.\n\
7ab04401
AC
9030By default, the debugger will follow the parent process."),
9031 NULL,
920d2a44 9032 show_follow_fork_mode_string,
7ab04401
AC
9033 &setlist, &showlist);
9034
6c95b8df
PA
9035 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9036 follow_exec_mode_names,
9037 &follow_exec_mode_string, _("\
9038Set debugger response to a program call of exec."), _("\
9039Show debugger response to a program call of exec."), _("\
9040An exec call replaces the program image of a process.\n\
9041\n\
9042follow-exec-mode can be:\n\
9043\n\
cce7e648 9044 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9045to this new inferior. The program the process was running before\n\
9046the exec call can be restarted afterwards by restarting the original\n\
9047inferior.\n\
9048\n\
9049 same - the debugger keeps the process bound to the same inferior.\n\
9050The new executable image replaces the previous executable loaded in\n\
9051the inferior. Restarting the inferior after the exec call restarts\n\
9052the executable the process was running after the exec call.\n\
9053\n\
9054By default, the debugger will use the same inferior."),
9055 NULL,
9056 show_follow_exec_mode_string,
9057 &setlist, &showlist);
9058
7ab04401
AC
9059 add_setshow_enum_cmd ("scheduler-locking", class_run,
9060 scheduler_enums, &scheduler_mode, _("\
9061Set mode for locking scheduler during execution."), _("\
9062Show mode for locking scheduler during execution."), _("\
c906108c
SS
9063off == no locking (threads may preempt at any time)\n\
9064on == full locking (no thread except the current thread may run)\n\
856e7dd6
PA
9065step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9066 In this mode, other threads may run during other commands."),
7ab04401 9067 set_schedlock_func, /* traps on target vector */
920d2a44 9068 show_scheduler_mode,
7ab04401 9069 &setlist, &showlist);
5fbbeb29 9070
d4db2f36
PA
9071 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9072Set mode for resuming threads of all processes."), _("\
9073Show mode for resuming threads of all processes."), _("\
9074When on, execution commands (such as 'continue' or 'next') resume all\n\
9075threads of all processes. When off (which is the default), execution\n\
9076commands only resume the threads of the current process. The set of\n\
9077threads that are resumed is further refined by the scheduler-locking\n\
9078mode (see help set scheduler-locking)."),
9079 NULL,
9080 show_schedule_multiple,
9081 &setlist, &showlist);
9082
5bf193a2
AC
9083 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9084Set mode of the step operation."), _("\
9085Show mode of the step operation."), _("\
9086When set, doing a step over a function without debug line information\n\
9087will stop at the first instruction of that function. Otherwise, the\n\
9088function is skipped and the step command stops at a different source line."),
9089 NULL,
920d2a44 9090 show_step_stop_if_no_debug,
5bf193a2 9091 &setlist, &showlist);
ca6724c1 9092
72d0e2c5
YQ
9093 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9094 &can_use_displaced_stepping, _("\
237fc4c9
PA
9095Set debugger's willingness to use displaced stepping."), _("\
9096Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9097If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9098supported by the target architecture. If off, gdb will not use displaced\n\
9099stepping to step over breakpoints, even if such is supported by the target\n\
9100architecture. If auto (which is the default), gdb will use displaced stepping\n\
9101if the target architecture supports it and non-stop mode is active, but will not\n\
9102use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9103 NULL,
9104 show_can_use_displaced_stepping,
9105 &setlist, &showlist);
237fc4c9 9106
b2175913
MS
9107 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9108 &exec_direction, _("Set direction of execution.\n\
9109Options are 'forward' or 'reverse'."),
9110 _("Show direction of execution (forward/reverse)."),
9111 _("Tells gdb whether to execute forward or backward."),
9112 set_exec_direction_func, show_exec_direction_func,
9113 &setlist, &showlist);
9114
6c95b8df
PA
9115 /* Set/show detach-on-fork: user-settable mode. */
9116
9117 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9118Set whether gdb will detach the child of a fork."), _("\
9119Show whether gdb will detach the child of a fork."), _("\
9120Tells gdb whether to detach the child of a fork."),
9121 NULL, NULL, &setlist, &showlist);
9122
03583c20
UW
9123 /* Set/show disable address space randomization mode. */
9124
9125 add_setshow_boolean_cmd ("disable-randomization", class_support,
9126 &disable_randomization, _("\
9127Set disabling of debuggee's virtual address space randomization."), _("\
9128Show disabling of debuggee's virtual address space randomization."), _("\
9129When this mode is on (which is the default), randomization of the virtual\n\
9130address space is disabled. Standalone programs run with the randomization\n\
9131enabled by default on some platforms."),
9132 &set_disable_randomization,
9133 &show_disable_randomization,
9134 &setlist, &showlist);
9135
ca6724c1 9136 /* ptid initializations */
ca6724c1
KB
9137 inferior_ptid = null_ptid;
9138 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9139
9140 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9141 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9142 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9143 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9144
9145 /* Explicitly create without lookup, since that tries to create a
9146 value with a void typed value, and when we get here, gdbarch
9147 isn't initialized yet. At this point, we're quite sure there
9148 isn't another convenience variable of the same name. */
22d2b532 9149 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9150
9151 add_setshow_boolean_cmd ("observer", no_class,
9152 &observer_mode_1, _("\
9153Set whether gdb controls the inferior in observer mode."), _("\
9154Show whether gdb controls the inferior in observer mode."), _("\
9155In observer mode, GDB can get data from the inferior, but not\n\
9156affect its execution. Registers and memory may not be changed,\n\
9157breakpoints may not be set, and the program cannot be interrupted\n\
9158or signalled."),
9159 set_observer_mode,
9160 show_observer_mode,
9161 &setlist,
9162 &showlist);
c906108c 9163}
This page took 2.13387 seconds and 4 git commands to generate.