* peXXigen.c (_bfd_XXi_final_link_postscript): Use correct size
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
4c38e0a4 6 2008, 2009, 2010 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
186c406b
TT
48#include "dictionary.h"
49#include "block.h"
9f976b41 50#include "gdb_assert.h"
034dad6f 51#include "mi/mi-common.h"
4f8d22e3 52#include "event-top.h"
96429cc8 53#include "record.h"
edb3359d 54#include "inline-frame.h"
4efc6507 55#include "jit.h"
06cd862c 56#include "tracepoint.h"
c906108c
SS
57
58/* Prototypes for local functions */
59
96baa820 60static void signals_info (char *, int);
c906108c 61
96baa820 62static void handle_command (char *, int);
c906108c 63
96baa820 64static void sig_print_info (enum target_signal);
c906108c 65
96baa820 66static void sig_print_header (void);
c906108c 67
74b7792f 68static void resume_cleanups (void *);
c906108c 69
96baa820 70static int hook_stop_stub (void *);
c906108c 71
96baa820
JM
72static int restore_selected_frame (void *);
73
4ef3f3be 74static int follow_fork (void);
96baa820
JM
75
76static void set_schedlock_func (char *args, int from_tty,
488f131b 77 struct cmd_list_element *c);
96baa820 78
a289b8f6
JK
79static int currently_stepping (struct thread_info *tp);
80
b3444185
PA
81static int currently_stepping_or_nexting_callback (struct thread_info *tp,
82 void *data);
a7212384 83
96baa820
JM
84static void xdb_handle_command (char *args, int from_tty);
85
6a6b96b9 86static int prepare_to_proceed (int);
ea67f13b 87
33d62d64
JK
88static void print_exited_reason (int exitstatus);
89
90static void print_signal_exited_reason (enum target_signal siggnal);
91
92static void print_no_history_reason (void);
93
94static void print_signal_received_reason (enum target_signal siggnal);
95
96static void print_end_stepping_range_reason (void);
97
96baa820 98void _initialize_infrun (void);
43ff13b4 99
e58b0e63
PA
100void nullify_last_target_wait_ptid (void);
101
5fbbeb29
CF
102/* When set, stop the 'step' command if we enter a function which has
103 no line number information. The normal behavior is that we step
104 over such function. */
105int step_stop_if_no_debug = 0;
920d2a44
AC
106static void
107show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109{
110 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
111}
5fbbeb29 112
43ff13b4 113/* In asynchronous mode, but simulating synchronous execution. */
96baa820 114
43ff13b4
JM
115int sync_execution = 0;
116
c906108c
SS
117/* wait_for_inferior and normal_stop use this to notify the user
118 when the inferior stopped in a different thread than it had been
96baa820
JM
119 running in. */
120
39f77062 121static ptid_t previous_inferior_ptid;
7a292a7a 122
6c95b8df
PA
123/* Default behavior is to detach newly forked processes (legacy). */
124int detach_fork = 1;
125
237fc4c9
PA
126int debug_displaced = 0;
127static void
128show_debug_displaced (struct ui_file *file, int from_tty,
129 struct cmd_list_element *c, const char *value)
130{
131 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
132}
133
628fe4e4 134int debug_infrun = 0;
920d2a44
AC
135static void
136show_debug_infrun (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138{
139 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
140}
527159b7 141
d4f3574e
SS
142/* If the program uses ELF-style shared libraries, then calls to
143 functions in shared libraries go through stubs, which live in a
144 table called the PLT (Procedure Linkage Table). The first time the
145 function is called, the stub sends control to the dynamic linker,
146 which looks up the function's real address, patches the stub so
147 that future calls will go directly to the function, and then passes
148 control to the function.
149
150 If we are stepping at the source level, we don't want to see any of
151 this --- we just want to skip over the stub and the dynamic linker.
152 The simple approach is to single-step until control leaves the
153 dynamic linker.
154
ca557f44
AC
155 However, on some systems (e.g., Red Hat's 5.2 distribution) the
156 dynamic linker calls functions in the shared C library, so you
157 can't tell from the PC alone whether the dynamic linker is still
158 running. In this case, we use a step-resume breakpoint to get us
159 past the dynamic linker, as if we were using "next" to step over a
160 function call.
d4f3574e 161
cfd8ab24 162 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
163 linker code or not. Normally, this means we single-step. However,
164 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
165 address where we can place a step-resume breakpoint to get past the
166 linker's symbol resolution function.
167
cfd8ab24 168 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
169 pretty portable way, by comparing the PC against the address ranges
170 of the dynamic linker's sections.
171
172 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
173 it depends on internal details of the dynamic linker. It's usually
174 not too hard to figure out where to put a breakpoint, but it
175 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
176 sanity checking. If it can't figure things out, returning zero and
177 getting the (possibly confusing) stepping behavior is better than
178 signalling an error, which will obscure the change in the
179 inferior's state. */
c906108c 180
c906108c
SS
181/* This function returns TRUE if pc is the address of an instruction
182 that lies within the dynamic linker (such as the event hook, or the
183 dld itself).
184
185 This function must be used only when a dynamic linker event has
186 been caught, and the inferior is being stepped out of the hook, or
187 undefined results are guaranteed. */
188
189#ifndef SOLIB_IN_DYNAMIC_LINKER
190#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
191#endif
192
d914c394
SS
193/* "Observer mode" is somewhat like a more extreme version of
194 non-stop, in which all GDB operations that might affect the
195 target's execution have been disabled. */
196
197static int non_stop_1 = 0;
198
199int observer_mode = 0;
200static int observer_mode_1 = 0;
201
202static void
203set_observer_mode (char *args, int from_tty,
204 struct cmd_list_element *c)
205{
206 extern int pagination_enabled;
207
208 if (target_has_execution)
209 {
210 observer_mode_1 = observer_mode;
211 error (_("Cannot change this setting while the inferior is running."));
212 }
213
214 observer_mode = observer_mode_1;
215
216 may_write_registers = !observer_mode;
217 may_write_memory = !observer_mode;
218 may_insert_breakpoints = !observer_mode;
219 may_insert_tracepoints = !observer_mode;
220 /* We can insert fast tracepoints in or out of observer mode,
221 but enable them if we're going into this mode. */
222 if (observer_mode)
223 may_insert_fast_tracepoints = 1;
224 may_stop = !observer_mode;
225 update_target_permissions ();
226
227 /* Going *into* observer mode we must force non-stop, then
228 going out we leave it that way. */
229 if (observer_mode)
230 {
231 target_async_permitted = 1;
232 pagination_enabled = 0;
233 non_stop = non_stop_1 = 1;
234 }
235
236 if (from_tty)
237 printf_filtered (_("Observer mode is now %s.\n"),
238 (observer_mode ? "on" : "off"));
239}
240
241static void
242show_observer_mode (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244{
245 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
246}
247
248/* This updates the value of observer mode based on changes in
249 permissions. Note that we are deliberately ignoring the values of
250 may-write-registers and may-write-memory, since the user may have
251 reason to enable these during a session, for instance to turn on a
252 debugging-related global. */
253
254void
255update_observer_mode (void)
256{
257 int newval;
258
259 newval = (!may_insert_breakpoints
260 && !may_insert_tracepoints
261 && may_insert_fast_tracepoints
262 && !may_stop
263 && non_stop);
264
265 /* Let the user know if things change. */
266 if (newval != observer_mode)
267 printf_filtered (_("Observer mode is now %s.\n"),
268 (newval ? "on" : "off"));
269
270 observer_mode = observer_mode_1 = newval;
271}
c2c6d25f 272
c906108c
SS
273/* Tables of how to react to signals; the user sets them. */
274
275static unsigned char *signal_stop;
276static unsigned char *signal_print;
277static unsigned char *signal_program;
278
279#define SET_SIGS(nsigs,sigs,flags) \
280 do { \
281 int signum = (nsigs); \
282 while (signum-- > 0) \
283 if ((sigs)[signum]) \
284 (flags)[signum] = 1; \
285 } while (0)
286
287#define UNSET_SIGS(nsigs,sigs,flags) \
288 do { \
289 int signum = (nsigs); \
290 while (signum-- > 0) \
291 if ((sigs)[signum]) \
292 (flags)[signum] = 0; \
293 } while (0)
294
39f77062
KB
295/* Value to pass to target_resume() to cause all threads to resume */
296
edb3359d 297#define RESUME_ALL minus_one_ptid
c906108c
SS
298
299/* Command list pointer for the "stop" placeholder. */
300
301static struct cmd_list_element *stop_command;
302
c906108c
SS
303/* Function inferior was in as of last step command. */
304
305static struct symbol *step_start_function;
306
c906108c
SS
307/* Nonzero if we want to give control to the user when we're notified
308 of shared library events by the dynamic linker. */
628fe4e4 309int stop_on_solib_events;
920d2a44
AC
310static void
311show_stop_on_solib_events (struct ui_file *file, int from_tty,
312 struct cmd_list_element *c, const char *value)
313{
314 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
315 value);
316}
c906108c 317
c906108c
SS
318/* Nonzero means expecting a trace trap
319 and should stop the inferior and return silently when it happens. */
320
321int stop_after_trap;
322
642fd101
DE
323/* Save register contents here when executing a "finish" command or are
324 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
325 Thus this contains the return value from the called function (assuming
326 values are returned in a register). */
327
72cec141 328struct regcache *stop_registers;
c906108c 329
c906108c
SS
330/* Nonzero after stop if current stack frame should be printed. */
331
332static int stop_print_frame;
333
e02bc4cc 334/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
335 returned by target_wait()/deprecated_target_wait_hook(). This
336 information is returned by get_last_target_status(). */
39f77062 337static ptid_t target_last_wait_ptid;
e02bc4cc
DS
338static struct target_waitstatus target_last_waitstatus;
339
0d1e5fa7
PA
340static void context_switch (ptid_t ptid);
341
4e1c45ea 342void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
343
344void init_infwait_state (void);
a474d7c2 345
53904c9e
AC
346static const char follow_fork_mode_child[] = "child";
347static const char follow_fork_mode_parent[] = "parent";
348
488f131b 349static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
350 follow_fork_mode_child,
351 follow_fork_mode_parent,
352 NULL
ef346e04 353};
c906108c 354
53904c9e 355static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
356static void
357show_follow_fork_mode_string (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c, const char *value)
359{
360 fprintf_filtered (file, _("\
361Debugger response to a program call of fork or vfork is \"%s\".\n"),
362 value);
363}
c906108c
SS
364\f
365
e58b0e63
PA
366/* Tell the target to follow the fork we're stopped at. Returns true
367 if the inferior should be resumed; false, if the target for some
368 reason decided it's best not to resume. */
369
6604731b 370static int
4ef3f3be 371follow_fork (void)
c906108c 372{
ea1dd7bc 373 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
374 int should_resume = 1;
375 struct thread_info *tp;
376
377 /* Copy user stepping state to the new inferior thread. FIXME: the
378 followed fork child thread should have a copy of most of the
4e3990f4
DE
379 parent thread structure's run control related fields, not just these.
380 Initialized to avoid "may be used uninitialized" warnings from gcc. */
381 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 382 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
383 CORE_ADDR step_range_start = 0;
384 CORE_ADDR step_range_end = 0;
385 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
386
387 if (!non_stop)
388 {
389 ptid_t wait_ptid;
390 struct target_waitstatus wait_status;
391
392 /* Get the last target status returned by target_wait(). */
393 get_last_target_status (&wait_ptid, &wait_status);
394
395 /* If not stopped at a fork event, then there's nothing else to
396 do. */
397 if (wait_status.kind != TARGET_WAITKIND_FORKED
398 && wait_status.kind != TARGET_WAITKIND_VFORKED)
399 return 1;
400
401 /* Check if we switched over from WAIT_PTID, since the event was
402 reported. */
403 if (!ptid_equal (wait_ptid, minus_one_ptid)
404 && !ptid_equal (inferior_ptid, wait_ptid))
405 {
406 /* We did. Switch back to WAIT_PTID thread, to tell the
407 target to follow it (in either direction). We'll
408 afterwards refuse to resume, and inform the user what
409 happened. */
410 switch_to_thread (wait_ptid);
411 should_resume = 0;
412 }
413 }
414
415 tp = inferior_thread ();
416
417 /* If there were any forks/vforks that were caught and are now to be
418 followed, then do so now. */
419 switch (tp->pending_follow.kind)
420 {
421 case TARGET_WAITKIND_FORKED:
422 case TARGET_WAITKIND_VFORKED:
423 {
424 ptid_t parent, child;
425
426 /* If the user did a next/step, etc, over a fork call,
427 preserve the stepping state in the fork child. */
428 if (follow_child && should_resume)
429 {
8358c15c
JK
430 step_resume_breakpoint = clone_momentary_breakpoint
431 (tp->control.step_resume_breakpoint);
16c381f0
JK
432 step_range_start = tp->control.step_range_start;
433 step_range_end = tp->control.step_range_end;
434 step_frame_id = tp->control.step_frame_id;
186c406b
TT
435 exception_resume_breakpoint
436 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
437
438 /* For now, delete the parent's sr breakpoint, otherwise,
439 parent/child sr breakpoints are considered duplicates,
440 and the child version will not be installed. Remove
441 this when the breakpoints module becomes aware of
442 inferiors and address spaces. */
443 delete_step_resume_breakpoint (tp);
16c381f0
JK
444 tp->control.step_range_start = 0;
445 tp->control.step_range_end = 0;
446 tp->control.step_frame_id = null_frame_id;
186c406b 447 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
448 }
449
450 parent = inferior_ptid;
451 child = tp->pending_follow.value.related_pid;
452
453 /* Tell the target to do whatever is necessary to follow
454 either parent or child. */
455 if (target_follow_fork (follow_child))
456 {
457 /* Target refused to follow, or there's some other reason
458 we shouldn't resume. */
459 should_resume = 0;
460 }
461 else
462 {
463 /* This pending follow fork event is now handled, one way
464 or another. The previous selected thread may be gone
465 from the lists by now, but if it is still around, need
466 to clear the pending follow request. */
e09875d4 467 tp = find_thread_ptid (parent);
e58b0e63
PA
468 if (tp)
469 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
470
471 /* This makes sure we don't try to apply the "Switched
472 over from WAIT_PID" logic above. */
473 nullify_last_target_wait_ptid ();
474
475 /* If we followed the child, switch to it... */
476 if (follow_child)
477 {
478 switch_to_thread (child);
479
480 /* ... and preserve the stepping state, in case the
481 user was stepping over the fork call. */
482 if (should_resume)
483 {
484 tp = inferior_thread ();
8358c15c
JK
485 tp->control.step_resume_breakpoint
486 = step_resume_breakpoint;
16c381f0
JK
487 tp->control.step_range_start = step_range_start;
488 tp->control.step_range_end = step_range_end;
489 tp->control.step_frame_id = step_frame_id;
186c406b
TT
490 tp->control.exception_resume_breakpoint
491 = exception_resume_breakpoint;
e58b0e63
PA
492 }
493 else
494 {
495 /* If we get here, it was because we're trying to
496 resume from a fork catchpoint, but, the user
497 has switched threads away from the thread that
498 forked. In that case, the resume command
499 issued is most likely not applicable to the
500 child, so just warn, and refuse to resume. */
501 warning (_("\
502Not resuming: switched threads before following fork child.\n"));
503 }
504
505 /* Reset breakpoints in the child as appropriate. */
506 follow_inferior_reset_breakpoints ();
507 }
508 else
509 switch_to_thread (parent);
510 }
511 }
512 break;
513 case TARGET_WAITKIND_SPURIOUS:
514 /* Nothing to follow. */
515 break;
516 default:
517 internal_error (__FILE__, __LINE__,
518 "Unexpected pending_follow.kind %d\n",
519 tp->pending_follow.kind);
520 break;
521 }
c906108c 522
e58b0e63 523 return should_resume;
c906108c
SS
524}
525
6604731b
DJ
526void
527follow_inferior_reset_breakpoints (void)
c906108c 528{
4e1c45ea
PA
529 struct thread_info *tp = inferior_thread ();
530
6604731b
DJ
531 /* Was there a step_resume breakpoint? (There was if the user
532 did a "next" at the fork() call.) If so, explicitly reset its
533 thread number.
534
535 step_resumes are a form of bp that are made to be per-thread.
536 Since we created the step_resume bp when the parent process
537 was being debugged, and now are switching to the child process,
538 from the breakpoint package's viewpoint, that's a switch of
539 "threads". We must update the bp's notion of which thread
540 it is for, or it'll be ignored when it triggers. */
541
8358c15c
JK
542 if (tp->control.step_resume_breakpoint)
543 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 544
186c406b
TT
545 if (tp->control.exception_resume_breakpoint)
546 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
547
6604731b
DJ
548 /* Reinsert all breakpoints in the child. The user may have set
549 breakpoints after catching the fork, in which case those
550 were never set in the child, but only in the parent. This makes
551 sure the inserted breakpoints match the breakpoint list. */
552
553 breakpoint_re_set ();
554 insert_breakpoints ();
c906108c 555}
c906108c 556
6c95b8df
PA
557/* The child has exited or execed: resume threads of the parent the
558 user wanted to be executing. */
559
560static int
561proceed_after_vfork_done (struct thread_info *thread,
562 void *arg)
563{
564 int pid = * (int *) arg;
565
566 if (ptid_get_pid (thread->ptid) == pid
567 && is_running (thread->ptid)
568 && !is_executing (thread->ptid)
569 && !thread->stop_requested
16c381f0 570 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
6c95b8df
PA
571 {
572 if (debug_infrun)
573 fprintf_unfiltered (gdb_stdlog,
574 "infrun: resuming vfork parent thread %s\n",
575 target_pid_to_str (thread->ptid));
576
577 switch_to_thread (thread->ptid);
578 clear_proceed_status ();
579 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
580 }
581
582 return 0;
583}
584
585/* Called whenever we notice an exec or exit event, to handle
586 detaching or resuming a vfork parent. */
587
588static void
589handle_vfork_child_exec_or_exit (int exec)
590{
591 struct inferior *inf = current_inferior ();
592
593 if (inf->vfork_parent)
594 {
595 int resume_parent = -1;
596
597 /* This exec or exit marks the end of the shared memory region
598 between the parent and the child. If the user wanted to
599 detach from the parent, now is the time. */
600
601 if (inf->vfork_parent->pending_detach)
602 {
603 struct thread_info *tp;
604 struct cleanup *old_chain;
605 struct program_space *pspace;
606 struct address_space *aspace;
607
608 /* follow-fork child, detach-on-fork on */
609
610 old_chain = make_cleanup_restore_current_thread ();
611
612 /* We're letting loose of the parent. */
613 tp = any_live_thread_of_process (inf->vfork_parent->pid);
614 switch_to_thread (tp->ptid);
615
616 /* We're about to detach from the parent, which implicitly
617 removes breakpoints from its address space. There's a
618 catch here: we want to reuse the spaces for the child,
619 but, parent/child are still sharing the pspace at this
620 point, although the exec in reality makes the kernel give
621 the child a fresh set of new pages. The problem here is
622 that the breakpoints module being unaware of this, would
623 likely chose the child process to write to the parent
624 address space. Swapping the child temporarily away from
625 the spaces has the desired effect. Yes, this is "sort
626 of" a hack. */
627
628 pspace = inf->pspace;
629 aspace = inf->aspace;
630 inf->aspace = NULL;
631 inf->pspace = NULL;
632
633 if (debug_infrun || info_verbose)
634 {
635 target_terminal_ours ();
636
637 if (exec)
638 fprintf_filtered (gdb_stdlog,
639 "Detaching vfork parent process %d after child exec.\n",
640 inf->vfork_parent->pid);
641 else
642 fprintf_filtered (gdb_stdlog,
643 "Detaching vfork parent process %d after child exit.\n",
644 inf->vfork_parent->pid);
645 }
646
647 target_detach (NULL, 0);
648
649 /* Put it back. */
650 inf->pspace = pspace;
651 inf->aspace = aspace;
652
653 do_cleanups (old_chain);
654 }
655 else if (exec)
656 {
657 /* We're staying attached to the parent, so, really give the
658 child a new address space. */
659 inf->pspace = add_program_space (maybe_new_address_space ());
660 inf->aspace = inf->pspace->aspace;
661 inf->removable = 1;
662 set_current_program_space (inf->pspace);
663
664 resume_parent = inf->vfork_parent->pid;
665
666 /* Break the bonds. */
667 inf->vfork_parent->vfork_child = NULL;
668 }
669 else
670 {
671 struct cleanup *old_chain;
672 struct program_space *pspace;
673
674 /* If this is a vfork child exiting, then the pspace and
675 aspaces were shared with the parent. Since we're
676 reporting the process exit, we'll be mourning all that is
677 found in the address space, and switching to null_ptid,
678 preparing to start a new inferior. But, since we don't
679 want to clobber the parent's address/program spaces, we
680 go ahead and create a new one for this exiting
681 inferior. */
682
683 /* Switch to null_ptid, so that clone_program_space doesn't want
684 to read the selected frame of a dead process. */
685 old_chain = save_inferior_ptid ();
686 inferior_ptid = null_ptid;
687
688 /* This inferior is dead, so avoid giving the breakpoints
689 module the option to write through to it (cloning a
690 program space resets breakpoints). */
691 inf->aspace = NULL;
692 inf->pspace = NULL;
693 pspace = add_program_space (maybe_new_address_space ());
694 set_current_program_space (pspace);
695 inf->removable = 1;
696 clone_program_space (pspace, inf->vfork_parent->pspace);
697 inf->pspace = pspace;
698 inf->aspace = pspace->aspace;
699
700 /* Put back inferior_ptid. We'll continue mourning this
701 inferior. */
702 do_cleanups (old_chain);
703
704 resume_parent = inf->vfork_parent->pid;
705 /* Break the bonds. */
706 inf->vfork_parent->vfork_child = NULL;
707 }
708
709 inf->vfork_parent = NULL;
710
711 gdb_assert (current_program_space == inf->pspace);
712
713 if (non_stop && resume_parent != -1)
714 {
715 /* If the user wanted the parent to be running, let it go
716 free now. */
717 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
718
719 if (debug_infrun)
720 fprintf_unfiltered (gdb_stdlog, "infrun: resuming vfork parent process %d\n",
721 resume_parent);
722
723 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
724
725 do_cleanups (old_chain);
726 }
727 }
728}
729
730/* Enum strings for "set|show displaced-stepping". */
731
732static const char follow_exec_mode_new[] = "new";
733static const char follow_exec_mode_same[] = "same";
734static const char *follow_exec_mode_names[] =
735{
736 follow_exec_mode_new,
737 follow_exec_mode_same,
738 NULL,
739};
740
741static const char *follow_exec_mode_string = follow_exec_mode_same;
742static void
743show_follow_exec_mode_string (struct ui_file *file, int from_tty,
744 struct cmd_list_element *c, const char *value)
745{
746 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
747}
748
1adeb98a
FN
749/* EXECD_PATHNAME is assumed to be non-NULL. */
750
c906108c 751static void
3a3e9ee3 752follow_exec (ptid_t pid, char *execd_pathname)
c906108c 753{
4e1c45ea 754 struct thread_info *th = inferior_thread ();
6c95b8df 755 struct inferior *inf = current_inferior ();
7a292a7a 756
c906108c
SS
757 /* This is an exec event that we actually wish to pay attention to.
758 Refresh our symbol table to the newly exec'd program, remove any
759 momentary bp's, etc.
760
761 If there are breakpoints, they aren't really inserted now,
762 since the exec() transformed our inferior into a fresh set
763 of instructions.
764
765 We want to preserve symbolic breakpoints on the list, since
766 we have hopes that they can be reset after the new a.out's
767 symbol table is read.
768
769 However, any "raw" breakpoints must be removed from the list
770 (e.g., the solib bp's), since their address is probably invalid
771 now.
772
773 And, we DON'T want to call delete_breakpoints() here, since
774 that may write the bp's "shadow contents" (the instruction
775 value that was overwritten witha TRAP instruction). Since
776 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
777
778 mark_breakpoints_out ();
779
c906108c
SS
780 update_breakpoints_after_exec ();
781
782 /* If there was one, it's gone now. We cannot truly step-to-next
783 statement through an exec(). */
8358c15c 784 th->control.step_resume_breakpoint = NULL;
186c406b 785 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
786 th->control.step_range_start = 0;
787 th->control.step_range_end = 0;
c906108c 788
a75724bc
PA
789 /* The target reports the exec event to the main thread, even if
790 some other thread does the exec, and even if the main thread was
791 already stopped --- if debugging in non-stop mode, it's possible
792 the user had the main thread held stopped in the previous image
793 --- release it now. This is the same behavior as step-over-exec
794 with scheduler-locking on in all-stop mode. */
795 th->stop_requested = 0;
796
c906108c 797 /* What is this a.out's name? */
6c95b8df
PA
798 printf_unfiltered (_("%s is executing new program: %s\n"),
799 target_pid_to_str (inferior_ptid),
800 execd_pathname);
c906108c
SS
801
802 /* We've followed the inferior through an exec. Therefore, the
803 inferior has essentially been killed & reborn. */
7a292a7a 804
c906108c 805 gdb_flush (gdb_stdout);
6ca15a4b
PA
806
807 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
808
809 if (gdb_sysroot && *gdb_sysroot)
810 {
811 char *name = alloca (strlen (gdb_sysroot)
812 + strlen (execd_pathname)
813 + 1);
abbb1732 814
e85a822c
DJ
815 strcpy (name, gdb_sysroot);
816 strcat (name, execd_pathname);
817 execd_pathname = name;
818 }
c906108c 819
cce9b6bf
PA
820 /* Reset the shared library package. This ensures that we get a
821 shlib event when the child reaches "_start", at which point the
822 dld will have had a chance to initialize the child. */
823 /* Also, loading a symbol file below may trigger symbol lookups, and
824 we don't want those to be satisfied by the libraries of the
825 previous incarnation of this process. */
826 no_shared_libraries (NULL, 0);
827
6c95b8df
PA
828 if (follow_exec_mode_string == follow_exec_mode_new)
829 {
830 struct program_space *pspace;
6c95b8df
PA
831
832 /* The user wants to keep the old inferior and program spaces
833 around. Create a new fresh one, and switch to it. */
834
835 inf = add_inferior (current_inferior ()->pid);
836 pspace = add_program_space (maybe_new_address_space ());
837 inf->pspace = pspace;
838 inf->aspace = pspace->aspace;
839
840 exit_inferior_num_silent (current_inferior ()->num);
841
842 set_current_inferior (inf);
843 set_current_program_space (pspace);
844 }
845
846 gdb_assert (current_program_space == inf->pspace);
847
848 /* That a.out is now the one to use. */
849 exec_file_attach (execd_pathname, 0);
850
c1e56572
JK
851 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
852 (Position Independent Executable) main symbol file will get applied by
853 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
854 the breakpoints with the zero displacement. */
855
856 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
857 NULL, 0);
858
859 set_initial_language ();
c906108c 860
7a292a7a 861#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 862 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 863#else
268a4a75 864 solib_create_inferior_hook (0);
7a292a7a 865#endif
c906108c 866
4efc6507
DE
867 jit_inferior_created_hook ();
868
c1e56572
JK
869 breakpoint_re_set ();
870
c906108c
SS
871 /* Reinsert all breakpoints. (Those which were symbolic have
872 been reset to the proper address in the new a.out, thanks
873 to symbol_file_command...) */
874 insert_breakpoints ();
875
876 /* The next resume of this inferior should bring it to the shlib
877 startup breakpoints. (If the user had also set bp's on
878 "main" from the old (parent) process, then they'll auto-
879 matically get reset there in the new process.) */
c906108c
SS
880}
881
882/* Non-zero if we just simulating a single-step. This is needed
883 because we cannot remove the breakpoints in the inferior process
884 until after the `wait' in `wait_for_inferior'. */
885static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
886
887/* The thread we inserted single-step breakpoints for. */
888static ptid_t singlestep_ptid;
889
fd48f117
DJ
890/* PC when we started this single-step. */
891static CORE_ADDR singlestep_pc;
892
9f976b41
DJ
893/* If another thread hit the singlestep breakpoint, we save the original
894 thread here so that we can resume single-stepping it later. */
895static ptid_t saved_singlestep_ptid;
896static int stepping_past_singlestep_breakpoint;
6a6b96b9 897
ca67fcb8
VP
898/* If not equal to null_ptid, this means that after stepping over breakpoint
899 is finished, we need to switch to deferred_step_ptid, and step it.
900
901 The use case is when one thread has hit a breakpoint, and then the user
902 has switched to another thread and issued 'step'. We need to step over
903 breakpoint in the thread which hit the breakpoint, but then continue
904 stepping the thread user has selected. */
905static ptid_t deferred_step_ptid;
c906108c 906\f
237fc4c9
PA
907/* Displaced stepping. */
908
909/* In non-stop debugging mode, we must take special care to manage
910 breakpoints properly; in particular, the traditional strategy for
911 stepping a thread past a breakpoint it has hit is unsuitable.
912 'Displaced stepping' is a tactic for stepping one thread past a
913 breakpoint it has hit while ensuring that other threads running
914 concurrently will hit the breakpoint as they should.
915
916 The traditional way to step a thread T off a breakpoint in a
917 multi-threaded program in all-stop mode is as follows:
918
919 a0) Initially, all threads are stopped, and breakpoints are not
920 inserted.
921 a1) We single-step T, leaving breakpoints uninserted.
922 a2) We insert breakpoints, and resume all threads.
923
924 In non-stop debugging, however, this strategy is unsuitable: we
925 don't want to have to stop all threads in the system in order to
926 continue or step T past a breakpoint. Instead, we use displaced
927 stepping:
928
929 n0) Initially, T is stopped, other threads are running, and
930 breakpoints are inserted.
931 n1) We copy the instruction "under" the breakpoint to a separate
932 location, outside the main code stream, making any adjustments
933 to the instruction, register, and memory state as directed by
934 T's architecture.
935 n2) We single-step T over the instruction at its new location.
936 n3) We adjust the resulting register and memory state as directed
937 by T's architecture. This includes resetting T's PC to point
938 back into the main instruction stream.
939 n4) We resume T.
940
941 This approach depends on the following gdbarch methods:
942
943 - gdbarch_max_insn_length and gdbarch_displaced_step_location
944 indicate where to copy the instruction, and how much space must
945 be reserved there. We use these in step n1.
946
947 - gdbarch_displaced_step_copy_insn copies a instruction to a new
948 address, and makes any necessary adjustments to the instruction,
949 register contents, and memory. We use this in step n1.
950
951 - gdbarch_displaced_step_fixup adjusts registers and memory after
952 we have successfuly single-stepped the instruction, to yield the
953 same effect the instruction would have had if we had executed it
954 at its original address. We use this in step n3.
955
956 - gdbarch_displaced_step_free_closure provides cleanup.
957
958 The gdbarch_displaced_step_copy_insn and
959 gdbarch_displaced_step_fixup functions must be written so that
960 copying an instruction with gdbarch_displaced_step_copy_insn,
961 single-stepping across the copied instruction, and then applying
962 gdbarch_displaced_insn_fixup should have the same effects on the
963 thread's memory and registers as stepping the instruction in place
964 would have. Exactly which responsibilities fall to the copy and
965 which fall to the fixup is up to the author of those functions.
966
967 See the comments in gdbarch.sh for details.
968
969 Note that displaced stepping and software single-step cannot
970 currently be used in combination, although with some care I think
971 they could be made to. Software single-step works by placing
972 breakpoints on all possible subsequent instructions; if the
973 displaced instruction is a PC-relative jump, those breakpoints
974 could fall in very strange places --- on pages that aren't
975 executable, or at addresses that are not proper instruction
976 boundaries. (We do generally let other threads run while we wait
977 to hit the software single-step breakpoint, and they might
978 encounter such a corrupted instruction.) One way to work around
979 this would be to have gdbarch_displaced_step_copy_insn fully
980 simulate the effect of PC-relative instructions (and return NULL)
981 on architectures that use software single-stepping.
982
983 In non-stop mode, we can have independent and simultaneous step
984 requests, so more than one thread may need to simultaneously step
985 over a breakpoint. The current implementation assumes there is
986 only one scratch space per process. In this case, we have to
987 serialize access to the scratch space. If thread A wants to step
988 over a breakpoint, but we are currently waiting for some other
989 thread to complete a displaced step, we leave thread A stopped and
990 place it in the displaced_step_request_queue. Whenever a displaced
991 step finishes, we pick the next thread in the queue and start a new
992 displaced step operation on it. See displaced_step_prepare and
993 displaced_step_fixup for details. */
994
237fc4c9
PA
995struct displaced_step_request
996{
997 ptid_t ptid;
998 struct displaced_step_request *next;
999};
1000
fc1cf338
PA
1001/* Per-inferior displaced stepping state. */
1002struct displaced_step_inferior_state
1003{
1004 /* Pointer to next in linked list. */
1005 struct displaced_step_inferior_state *next;
1006
1007 /* The process this displaced step state refers to. */
1008 int pid;
1009
1010 /* A queue of pending displaced stepping requests. One entry per
1011 thread that needs to do a displaced step. */
1012 struct displaced_step_request *step_request_queue;
1013
1014 /* If this is not null_ptid, this is the thread carrying out a
1015 displaced single-step in process PID. This thread's state will
1016 require fixing up once it has completed its step. */
1017 ptid_t step_ptid;
1018
1019 /* The architecture the thread had when we stepped it. */
1020 struct gdbarch *step_gdbarch;
1021
1022 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1023 for post-step cleanup. */
1024 struct displaced_step_closure *step_closure;
1025
1026 /* The address of the original instruction, and the copy we
1027 made. */
1028 CORE_ADDR step_original, step_copy;
1029
1030 /* Saved contents of copy area. */
1031 gdb_byte *step_saved_copy;
1032};
1033
1034/* The list of states of processes involved in displaced stepping
1035 presently. */
1036static struct displaced_step_inferior_state *displaced_step_inferior_states;
1037
1038/* Get the displaced stepping state of process PID. */
1039
1040static struct displaced_step_inferior_state *
1041get_displaced_stepping_state (int pid)
1042{
1043 struct displaced_step_inferior_state *state;
1044
1045 for (state = displaced_step_inferior_states;
1046 state != NULL;
1047 state = state->next)
1048 if (state->pid == pid)
1049 return state;
1050
1051 return NULL;
1052}
1053
1054/* Add a new displaced stepping state for process PID to the displaced
1055 stepping state list, or return a pointer to an already existing
1056 entry, if it already exists. Never returns NULL. */
1057
1058static struct displaced_step_inferior_state *
1059add_displaced_stepping_state (int pid)
1060{
1061 struct displaced_step_inferior_state *state;
1062
1063 for (state = displaced_step_inferior_states;
1064 state != NULL;
1065 state = state->next)
1066 if (state->pid == pid)
1067 return state;
237fc4c9 1068
fc1cf338
PA
1069 state = xcalloc (1, sizeof (*state));
1070 state->pid = pid;
1071 state->next = displaced_step_inferior_states;
1072 displaced_step_inferior_states = state;
237fc4c9 1073
fc1cf338
PA
1074 return state;
1075}
1076
1077/* Remove the displaced stepping state of process PID. */
237fc4c9 1078
fc1cf338
PA
1079static void
1080remove_displaced_stepping_state (int pid)
1081{
1082 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1083
fc1cf338
PA
1084 gdb_assert (pid != 0);
1085
1086 it = displaced_step_inferior_states;
1087 prev_next_p = &displaced_step_inferior_states;
1088 while (it)
1089 {
1090 if (it->pid == pid)
1091 {
1092 *prev_next_p = it->next;
1093 xfree (it);
1094 return;
1095 }
1096
1097 prev_next_p = &it->next;
1098 it = *prev_next_p;
1099 }
1100}
1101
1102static void
1103infrun_inferior_exit (struct inferior *inf)
1104{
1105 remove_displaced_stepping_state (inf->pid);
1106}
237fc4c9 1107
fff08868
HZ
1108/* Enum strings for "set|show displaced-stepping". */
1109
1110static const char can_use_displaced_stepping_auto[] = "auto";
1111static const char can_use_displaced_stepping_on[] = "on";
1112static const char can_use_displaced_stepping_off[] = "off";
1113static const char *can_use_displaced_stepping_enum[] =
1114{
1115 can_use_displaced_stepping_auto,
1116 can_use_displaced_stepping_on,
1117 can_use_displaced_stepping_off,
1118 NULL,
1119};
1120
1121/* If ON, and the architecture supports it, GDB will use displaced
1122 stepping to step over breakpoints. If OFF, or if the architecture
1123 doesn't support it, GDB will instead use the traditional
1124 hold-and-step approach. If AUTO (which is the default), GDB will
1125 decide which technique to use to step over breakpoints depending on
1126 which of all-stop or non-stop mode is active --- displaced stepping
1127 in non-stop mode; hold-and-step in all-stop mode. */
1128
1129static const char *can_use_displaced_stepping =
1130 can_use_displaced_stepping_auto;
1131
237fc4c9
PA
1132static void
1133show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1134 struct cmd_list_element *c,
1135 const char *value)
1136{
fff08868
HZ
1137 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1138 fprintf_filtered (file, _("\
1139Debugger's willingness to use displaced stepping to step over \
1140breakpoints is %s (currently %s).\n"),
1141 value, non_stop ? "on" : "off");
1142 else
1143 fprintf_filtered (file, _("\
1144Debugger's willingness to use displaced stepping to step over \
1145breakpoints is %s.\n"), value);
237fc4c9
PA
1146}
1147
fff08868
HZ
1148/* Return non-zero if displaced stepping can/should be used to step
1149 over breakpoints. */
1150
237fc4c9
PA
1151static int
1152use_displaced_stepping (struct gdbarch *gdbarch)
1153{
fff08868
HZ
1154 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1155 && non_stop)
1156 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1157 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1158 && !RECORD_IS_USED);
237fc4c9
PA
1159}
1160
1161/* Clean out any stray displaced stepping state. */
1162static void
fc1cf338 1163displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1164{
1165 /* Indicate that there is no cleanup pending. */
fc1cf338 1166 displaced->step_ptid = null_ptid;
237fc4c9 1167
fc1cf338 1168 if (displaced->step_closure)
237fc4c9 1169 {
fc1cf338
PA
1170 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1171 displaced->step_closure);
1172 displaced->step_closure = NULL;
237fc4c9
PA
1173 }
1174}
1175
1176static void
fc1cf338 1177displaced_step_clear_cleanup (void *arg)
237fc4c9 1178{
fc1cf338
PA
1179 struct displaced_step_inferior_state *state = arg;
1180
1181 displaced_step_clear (state);
237fc4c9
PA
1182}
1183
1184/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1185void
1186displaced_step_dump_bytes (struct ui_file *file,
1187 const gdb_byte *buf,
1188 size_t len)
1189{
1190 int i;
1191
1192 for (i = 0; i < len; i++)
1193 fprintf_unfiltered (file, "%02x ", buf[i]);
1194 fputs_unfiltered ("\n", file);
1195}
1196
1197/* Prepare to single-step, using displaced stepping.
1198
1199 Note that we cannot use displaced stepping when we have a signal to
1200 deliver. If we have a signal to deliver and an instruction to step
1201 over, then after the step, there will be no indication from the
1202 target whether the thread entered a signal handler or ignored the
1203 signal and stepped over the instruction successfully --- both cases
1204 result in a simple SIGTRAP. In the first case we mustn't do a
1205 fixup, and in the second case we must --- but we can't tell which.
1206 Comments in the code for 'random signals' in handle_inferior_event
1207 explain how we handle this case instead.
1208
1209 Returns 1 if preparing was successful -- this thread is going to be
1210 stepped now; or 0 if displaced stepping this thread got queued. */
1211static int
1212displaced_step_prepare (ptid_t ptid)
1213{
ad53cd71 1214 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1215 struct regcache *regcache = get_thread_regcache (ptid);
1216 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1217 CORE_ADDR original, copy;
1218 ULONGEST len;
1219 struct displaced_step_closure *closure;
fc1cf338 1220 struct displaced_step_inferior_state *displaced;
237fc4c9
PA
1221
1222 /* We should never reach this function if the architecture does not
1223 support displaced stepping. */
1224 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1225
fc1cf338
PA
1226 /* We have to displaced step one thread at a time, as we only have
1227 access to a single scratch space per inferior. */
237fc4c9 1228
fc1cf338
PA
1229 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1230
1231 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1232 {
1233 /* Already waiting for a displaced step to finish. Defer this
1234 request and place in queue. */
1235 struct displaced_step_request *req, *new_req;
1236
1237 if (debug_displaced)
1238 fprintf_unfiltered (gdb_stdlog,
1239 "displaced: defering step of %s\n",
1240 target_pid_to_str (ptid));
1241
1242 new_req = xmalloc (sizeof (*new_req));
1243 new_req->ptid = ptid;
1244 new_req->next = NULL;
1245
fc1cf338 1246 if (displaced->step_request_queue)
237fc4c9 1247 {
fc1cf338 1248 for (req = displaced->step_request_queue;
237fc4c9
PA
1249 req && req->next;
1250 req = req->next)
1251 ;
1252 req->next = new_req;
1253 }
1254 else
fc1cf338 1255 displaced->step_request_queue = new_req;
237fc4c9
PA
1256
1257 return 0;
1258 }
1259 else
1260 {
1261 if (debug_displaced)
1262 fprintf_unfiltered (gdb_stdlog,
1263 "displaced: stepping %s now\n",
1264 target_pid_to_str (ptid));
1265 }
1266
fc1cf338 1267 displaced_step_clear (displaced);
237fc4c9 1268
ad53cd71
PA
1269 old_cleanups = save_inferior_ptid ();
1270 inferior_ptid = ptid;
1271
515630c5 1272 original = regcache_read_pc (regcache);
237fc4c9
PA
1273
1274 copy = gdbarch_displaced_step_location (gdbarch);
1275 len = gdbarch_max_insn_length (gdbarch);
1276
1277 /* Save the original contents of the copy area. */
fc1cf338 1278 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1279 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338
PA
1280 &displaced->step_saved_copy);
1281 read_memory (copy, displaced->step_saved_copy, len);
237fc4c9
PA
1282 if (debug_displaced)
1283 {
5af949e3
UW
1284 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1285 paddress (gdbarch, copy));
fc1cf338
PA
1286 displaced_step_dump_bytes (gdb_stdlog,
1287 displaced->step_saved_copy,
1288 len);
237fc4c9
PA
1289 };
1290
1291 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1292 original, copy, regcache);
237fc4c9
PA
1293
1294 /* We don't support the fully-simulated case at present. */
1295 gdb_assert (closure);
1296
9f5a595d
UW
1297 /* Save the information we need to fix things up if the step
1298 succeeds. */
fc1cf338
PA
1299 displaced->step_ptid = ptid;
1300 displaced->step_gdbarch = gdbarch;
1301 displaced->step_closure = closure;
1302 displaced->step_original = original;
1303 displaced->step_copy = copy;
9f5a595d 1304
fc1cf338 1305 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1306
1307 /* Resume execution at the copy. */
515630c5 1308 regcache_write_pc (regcache, copy);
237fc4c9 1309
ad53cd71
PA
1310 discard_cleanups (ignore_cleanups);
1311
1312 do_cleanups (old_cleanups);
237fc4c9
PA
1313
1314 if (debug_displaced)
5af949e3
UW
1315 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1316 paddress (gdbarch, copy));
237fc4c9 1317
237fc4c9
PA
1318 return 1;
1319}
1320
237fc4c9
PA
1321static void
1322write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1323{
1324 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1325
237fc4c9
PA
1326 inferior_ptid = ptid;
1327 write_memory (memaddr, myaddr, len);
1328 do_cleanups (ptid_cleanup);
1329}
1330
1331static void
1332displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1333{
1334 struct cleanup *old_cleanups;
fc1cf338
PA
1335 struct displaced_step_inferior_state *displaced
1336 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1337
1338 /* Was any thread of this process doing a displaced step? */
1339 if (displaced == NULL)
1340 return;
237fc4c9
PA
1341
1342 /* Was this event for the pid we displaced? */
fc1cf338
PA
1343 if (ptid_equal (displaced->step_ptid, null_ptid)
1344 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1345 return;
1346
fc1cf338 1347 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1348
1349 /* Restore the contents of the copy area. */
1350 {
fc1cf338 1351 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
abbb1732 1352
fc1cf338
PA
1353 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1354 displaced->step_saved_copy, len);
237fc4c9 1355 if (debug_displaced)
5af949e3 1356 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
fc1cf338
PA
1357 paddress (displaced->step_gdbarch,
1358 displaced->step_copy));
237fc4c9
PA
1359 }
1360
1361 /* Did the instruction complete successfully? */
1362 if (signal == TARGET_SIGNAL_TRAP)
1363 {
1364 /* Fix up the resulting state. */
fc1cf338
PA
1365 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1366 displaced->step_closure,
1367 displaced->step_original,
1368 displaced->step_copy,
1369 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1370 }
1371 else
1372 {
1373 /* Since the instruction didn't complete, all we can do is
1374 relocate the PC. */
515630c5
UW
1375 struct regcache *regcache = get_thread_regcache (event_ptid);
1376 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1377
fc1cf338 1378 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1379 regcache_write_pc (regcache, pc);
237fc4c9
PA
1380 }
1381
1382 do_cleanups (old_cleanups);
1383
fc1cf338 1384 displaced->step_ptid = null_ptid;
1c5cfe86 1385
237fc4c9 1386 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1387 one now. Leave the state object around, since we're likely to
1388 need it again soon. */
1389 while (displaced->step_request_queue)
237fc4c9
PA
1390 {
1391 struct displaced_step_request *head;
1392 ptid_t ptid;
5af949e3 1393 struct regcache *regcache;
929dfd4f 1394 struct gdbarch *gdbarch;
1c5cfe86 1395 CORE_ADDR actual_pc;
6c95b8df 1396 struct address_space *aspace;
237fc4c9 1397
fc1cf338 1398 head = displaced->step_request_queue;
237fc4c9 1399 ptid = head->ptid;
fc1cf338 1400 displaced->step_request_queue = head->next;
237fc4c9
PA
1401 xfree (head);
1402
ad53cd71
PA
1403 context_switch (ptid);
1404
5af949e3
UW
1405 regcache = get_thread_regcache (ptid);
1406 actual_pc = regcache_read_pc (regcache);
6c95b8df 1407 aspace = get_regcache_aspace (regcache);
1c5cfe86 1408
6c95b8df 1409 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1410 {
1c5cfe86
PA
1411 if (debug_displaced)
1412 fprintf_unfiltered (gdb_stdlog,
1413 "displaced: stepping queued %s now\n",
1414 target_pid_to_str (ptid));
1415
1416 displaced_step_prepare (ptid);
1417
929dfd4f
JB
1418 gdbarch = get_regcache_arch (regcache);
1419
1c5cfe86
PA
1420 if (debug_displaced)
1421 {
929dfd4f 1422 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1423 gdb_byte buf[4];
1424
5af949e3
UW
1425 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1426 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1427 read_memory (actual_pc, buf, sizeof (buf));
1428 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1429 }
1430
fc1cf338
PA
1431 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1432 displaced->step_closure))
929dfd4f 1433 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1434 else
1435 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1436
1437 /* Done, we're stepping a thread. */
1438 break;
ad53cd71 1439 }
1c5cfe86
PA
1440 else
1441 {
1442 int step;
1443 struct thread_info *tp = inferior_thread ();
1444
1445 /* The breakpoint we were sitting under has since been
1446 removed. */
16c381f0 1447 tp->control.trap_expected = 0;
1c5cfe86
PA
1448
1449 /* Go back to what we were trying to do. */
1450 step = currently_stepping (tp);
ad53cd71 1451
1c5cfe86
PA
1452 if (debug_displaced)
1453 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1454 target_pid_to_str (tp->ptid), step);
1455
1456 target_resume (ptid, step, TARGET_SIGNAL_0);
16c381f0 1457 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1c5cfe86
PA
1458
1459 /* This request was discarded. See if there's any other
1460 thread waiting for its turn. */
1461 }
237fc4c9
PA
1462 }
1463}
1464
5231c1fd
PA
1465/* Update global variables holding ptids to hold NEW_PTID if they were
1466 holding OLD_PTID. */
1467static void
1468infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1469{
1470 struct displaced_step_request *it;
fc1cf338 1471 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1472
1473 if (ptid_equal (inferior_ptid, old_ptid))
1474 inferior_ptid = new_ptid;
1475
1476 if (ptid_equal (singlestep_ptid, old_ptid))
1477 singlestep_ptid = new_ptid;
1478
5231c1fd
PA
1479 if (ptid_equal (deferred_step_ptid, old_ptid))
1480 deferred_step_ptid = new_ptid;
1481
fc1cf338
PA
1482 for (displaced = displaced_step_inferior_states;
1483 displaced;
1484 displaced = displaced->next)
1485 {
1486 if (ptid_equal (displaced->step_ptid, old_ptid))
1487 displaced->step_ptid = new_ptid;
1488
1489 for (it = displaced->step_request_queue; it; it = it->next)
1490 if (ptid_equal (it->ptid, old_ptid))
1491 it->ptid = new_ptid;
1492 }
5231c1fd
PA
1493}
1494
237fc4c9
PA
1495\f
1496/* Resuming. */
c906108c
SS
1497
1498/* Things to clean up if we QUIT out of resume (). */
c906108c 1499static void
74b7792f 1500resume_cleanups (void *ignore)
c906108c
SS
1501{
1502 normal_stop ();
1503}
1504
53904c9e
AC
1505static const char schedlock_off[] = "off";
1506static const char schedlock_on[] = "on";
1507static const char schedlock_step[] = "step";
488f131b 1508static const char *scheduler_enums[] = {
ef346e04
AC
1509 schedlock_off,
1510 schedlock_on,
1511 schedlock_step,
1512 NULL
1513};
920d2a44
AC
1514static const char *scheduler_mode = schedlock_off;
1515static void
1516show_scheduler_mode (struct ui_file *file, int from_tty,
1517 struct cmd_list_element *c, const char *value)
1518{
1519 fprintf_filtered (file, _("\
1520Mode for locking scheduler during execution is \"%s\".\n"),
1521 value);
1522}
c906108c
SS
1523
1524static void
96baa820 1525set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1526{
eefe576e
AC
1527 if (!target_can_lock_scheduler)
1528 {
1529 scheduler_mode = schedlock_off;
1530 error (_("Target '%s' cannot support this command."), target_shortname);
1531 }
c906108c
SS
1532}
1533
d4db2f36
PA
1534/* True if execution commands resume all threads of all processes by
1535 default; otherwise, resume only threads of the current inferior
1536 process. */
1537int sched_multi = 0;
1538
2facfe5c
DD
1539/* Try to setup for software single stepping over the specified location.
1540 Return 1 if target_resume() should use hardware single step.
1541
1542 GDBARCH the current gdbarch.
1543 PC the location to step over. */
1544
1545static int
1546maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1547{
1548 int hw_step = 1;
1549
f02253f1
HZ
1550 if (execution_direction == EXEC_FORWARD
1551 && gdbarch_software_single_step_p (gdbarch)
99e40580 1552 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1553 {
99e40580
UW
1554 hw_step = 0;
1555 /* Do not pull these breakpoints until after a `wait' in
1556 `wait_for_inferior' */
1557 singlestep_breakpoints_inserted_p = 1;
1558 singlestep_ptid = inferior_ptid;
1559 singlestep_pc = pc;
2facfe5c
DD
1560 }
1561 return hw_step;
1562}
c906108c
SS
1563
1564/* Resume the inferior, but allow a QUIT. This is useful if the user
1565 wants to interrupt some lengthy single-stepping operation
1566 (for child processes, the SIGINT goes to the inferior, and so
1567 we get a SIGINT random_signal, but for remote debugging and perhaps
1568 other targets, that's not true).
1569
1570 STEP nonzero if we should step (zero to continue instead).
1571 SIG is the signal to give the inferior (zero for none). */
1572void
96baa820 1573resume (int step, enum target_signal sig)
c906108c
SS
1574{
1575 int should_resume = 1;
74b7792f 1576 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1577 struct regcache *regcache = get_current_regcache ();
1578 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1579 struct thread_info *tp = inferior_thread ();
515630c5 1580 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1581 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1582
c906108c
SS
1583 QUIT;
1584
74609e71
YQ
1585 if (current_inferior ()->waiting_for_vfork_done)
1586 {
48f9886d
PA
1587 /* Don't try to single-step a vfork parent that is waiting for
1588 the child to get out of the shared memory region (by exec'ing
1589 or exiting). This is particularly important on software
1590 single-step archs, as the child process would trip on the
1591 software single step breakpoint inserted for the parent
1592 process. Since the parent will not actually execute any
1593 instruction until the child is out of the shared region (such
1594 are vfork's semantics), it is safe to simply continue it.
1595 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1596 the parent, and tell it to `keep_going', which automatically
1597 re-sets it stepping. */
74609e71
YQ
1598 if (debug_infrun)
1599 fprintf_unfiltered (gdb_stdlog,
1600 "infrun: resume : clear step\n");
1601 step = 0;
1602 }
1603
527159b7 1604 if (debug_infrun)
237fc4c9
PA
1605 fprintf_unfiltered (gdb_stdlog,
1606 "infrun: resume (step=%d, signal=%d), "
4e1c45ea 1607 "trap_expected=%d\n",
16c381f0 1608 step, sig, tp->control.trap_expected);
c906108c 1609
c2c6d25f
JM
1610 /* Normally, by the time we reach `resume', the breakpoints are either
1611 removed or inserted, as appropriate. The exception is if we're sitting
1612 at a permanent breakpoint; we need to step over it, but permanent
1613 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1614 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1615 {
515630c5
UW
1616 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1617 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
1618 else
1619 error (_("\
1620The program is stopped at a permanent breakpoint, but GDB does not know\n\
1621how to step past a permanent breakpoint on this architecture. Try using\n\
1622a command like `return' or `jump' to continue execution."));
1623 }
c2c6d25f 1624
237fc4c9
PA
1625 /* If enabled, step over breakpoints by executing a copy of the
1626 instruction at a different address.
1627
1628 We can't use displaced stepping when we have a signal to deliver;
1629 the comments for displaced_step_prepare explain why. The
1630 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1631 signals' explain what we do instead.
1632
1633 We can't use displaced stepping when we are waiting for vfork_done
1634 event, displaced stepping breaks the vfork child similarly as single
1635 step software breakpoint. */
515630c5 1636 if (use_displaced_stepping (gdbarch)
16c381f0 1637 && (tp->control.trap_expected
929dfd4f 1638 || (step && gdbarch_software_single_step_p (gdbarch)))
74609e71
YQ
1639 && sig == TARGET_SIGNAL_0
1640 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1641 {
fc1cf338
PA
1642 struct displaced_step_inferior_state *displaced;
1643
237fc4c9 1644 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1645 {
1646 /* Got placed in displaced stepping queue. Will be resumed
1647 later when all the currently queued displaced stepping
7f7efbd9
VP
1648 requests finish. The thread is not executing at this point,
1649 and the call to set_executing will be made later. But we
1650 need to call set_running here, since from frontend point of view,
1651 the thread is running. */
1652 set_running (inferior_ptid, 1);
d56b7306
VP
1653 discard_cleanups (old_cleanups);
1654 return;
1655 }
99e40580 1656
fc1cf338
PA
1657 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1658 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1659 displaced->step_closure);
237fc4c9
PA
1660 }
1661
2facfe5c 1662 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1663 else if (step)
2facfe5c 1664 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1665
c906108c
SS
1666 if (should_resume)
1667 {
39f77062 1668 ptid_t resume_ptid;
dfcd3bfb 1669
cd76b0b7
VP
1670 /* If STEP is set, it's a request to use hardware stepping
1671 facilities. But in that case, we should never
1672 use singlestep breakpoint. */
1673 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1674
d4db2f36
PA
1675 /* Decide the set of threads to ask the target to resume. Start
1676 by assuming everything will be resumed, than narrow the set
1677 by applying increasingly restricting conditions. */
1678
1679 /* By default, resume all threads of all processes. */
1680 resume_ptid = RESUME_ALL;
1681
1682 /* Maybe resume only all threads of the current process. */
1683 if (!sched_multi && target_supports_multi_process ())
1684 {
1685 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1686 }
1687
1688 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1689 if (singlestep_breakpoints_inserted_p
1690 && stepping_past_singlestep_breakpoint)
c906108c 1691 {
cd76b0b7
VP
1692 /* The situation here is as follows. In thread T1 we wanted to
1693 single-step. Lacking hardware single-stepping we've
1694 set breakpoint at the PC of the next instruction -- call it
1695 P. After resuming, we've hit that breakpoint in thread T2.
1696 Now we've removed original breakpoint, inserted breakpoint
1697 at P+1, and try to step to advance T2 past breakpoint.
1698 We need to step only T2, as if T1 is allowed to freely run,
1699 it can run past P, and if other threads are allowed to run,
1700 they can hit breakpoint at P+1, and nested hits of single-step
1701 breakpoints is not something we'd want -- that's complicated
1702 to support, and has no value. */
1703 resume_ptid = inferior_ptid;
1704 }
d4db2f36 1705 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1706 && tp->control.trap_expected)
cd76b0b7 1707 {
74960c60
VP
1708 /* We're allowing a thread to run past a breakpoint it has
1709 hit, by single-stepping the thread with the breakpoint
1710 removed. In which case, we need to single-step only this
1711 thread, and keep others stopped, as they can miss this
1712 breakpoint if allowed to run.
1713
1714 The current code actually removes all breakpoints when
1715 doing this, not just the one being stepped over, so if we
1716 let other threads run, we can actually miss any
1717 breakpoint, not just the one at PC. */
ef5cf84e 1718 resume_ptid = inferior_ptid;
c906108c 1719 }
d4db2f36 1720 else if (non_stop)
94cc34af
PA
1721 {
1722 /* With non-stop mode on, threads are always handled
1723 individually. */
1724 resume_ptid = inferior_ptid;
1725 }
1726 else if ((scheduler_mode == schedlock_on)
1727 || (scheduler_mode == schedlock_step
1728 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1729 {
ef5cf84e 1730 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1731 resume_ptid = inferior_ptid;
c906108c 1732 }
ef5cf84e 1733
515630c5 1734 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1735 {
1736 /* Most targets can step a breakpoint instruction, thus
1737 executing it normally. But if this one cannot, just
1738 continue and we will hit it anyway. */
6c95b8df 1739 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1740 step = 0;
1741 }
237fc4c9
PA
1742
1743 if (debug_displaced
515630c5 1744 && use_displaced_stepping (gdbarch)
16c381f0 1745 && tp->control.trap_expected)
237fc4c9 1746 {
515630c5 1747 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1748 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1749 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1750 gdb_byte buf[4];
1751
5af949e3
UW
1752 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1753 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1754 read_memory (actual_pc, buf, sizeof (buf));
1755 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1756 }
1757
e58b0e63
PA
1758 /* Install inferior's terminal modes. */
1759 target_terminal_inferior ();
1760
2020b7ab
PA
1761 /* Avoid confusing the next resume, if the next stop/resume
1762 happens to apply to another thread. */
16c381f0 1763 tp->suspend.stop_signal = TARGET_SIGNAL_0;
607cecd2
PA
1764
1765 target_resume (resume_ptid, step, sig);
c906108c
SS
1766 }
1767
1768 discard_cleanups (old_cleanups);
1769}
1770\f
237fc4c9 1771/* Proceeding. */
c906108c
SS
1772
1773/* Clear out all variables saying what to do when inferior is continued.
1774 First do this, then set the ones you want, then call `proceed'. */
1775
a7212384
UW
1776static void
1777clear_proceed_status_thread (struct thread_info *tp)
c906108c 1778{
a7212384
UW
1779 if (debug_infrun)
1780 fprintf_unfiltered (gdb_stdlog,
1781 "infrun: clear_proceed_status_thread (%s)\n",
1782 target_pid_to_str (tp->ptid));
d6b48e9c 1783
16c381f0
JK
1784 tp->control.trap_expected = 0;
1785 tp->control.step_range_start = 0;
1786 tp->control.step_range_end = 0;
1787 tp->control.step_frame_id = null_frame_id;
1788 tp->control.step_stack_frame_id = null_frame_id;
1789 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1790 tp->stop_requested = 0;
4e1c45ea 1791
16c381f0 1792 tp->control.stop_step = 0;
32400beb 1793
16c381f0 1794 tp->control.proceed_to_finish = 0;
414c69f7 1795
a7212384 1796 /* Discard any remaining commands or status from previous stop. */
16c381f0 1797 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1798}
32400beb 1799
a7212384
UW
1800static int
1801clear_proceed_status_callback (struct thread_info *tp, void *data)
1802{
1803 if (is_exited (tp->ptid))
1804 return 0;
d6b48e9c 1805
a7212384
UW
1806 clear_proceed_status_thread (tp);
1807 return 0;
1808}
1809
1810void
1811clear_proceed_status (void)
1812{
6c95b8df
PA
1813 if (!non_stop)
1814 {
1815 /* In all-stop mode, delete the per-thread status of all
1816 threads, even if inferior_ptid is null_ptid, there may be
1817 threads on the list. E.g., we may be launching a new
1818 process, while selecting the executable. */
1819 iterate_over_threads (clear_proceed_status_callback, NULL);
1820 }
1821
a7212384
UW
1822 if (!ptid_equal (inferior_ptid, null_ptid))
1823 {
1824 struct inferior *inferior;
1825
1826 if (non_stop)
1827 {
6c95b8df
PA
1828 /* If in non-stop mode, only delete the per-thread status of
1829 the current thread. */
a7212384
UW
1830 clear_proceed_status_thread (inferior_thread ());
1831 }
6c95b8df 1832
d6b48e9c 1833 inferior = current_inferior ();
16c381f0 1834 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1835 }
1836
c906108c 1837 stop_after_trap = 0;
f3b1572e
PA
1838
1839 observer_notify_about_to_proceed ();
c906108c 1840
d5c31457
UW
1841 if (stop_registers)
1842 {
1843 regcache_xfree (stop_registers);
1844 stop_registers = NULL;
1845 }
c906108c
SS
1846}
1847
5a437975
DE
1848/* Check the current thread against the thread that reported the most recent
1849 event. If a step-over is required return TRUE and set the current thread
1850 to the old thread. Otherwise return FALSE.
1851
1852 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1853
1854static int
6a6b96b9 1855prepare_to_proceed (int step)
ea67f13b
DJ
1856{
1857 ptid_t wait_ptid;
1858 struct target_waitstatus wait_status;
5a437975
DE
1859 int schedlock_enabled;
1860
1861 /* With non-stop mode on, threads are always handled individually. */
1862 gdb_assert (! non_stop);
ea67f13b
DJ
1863
1864 /* Get the last target status returned by target_wait(). */
1865 get_last_target_status (&wait_ptid, &wait_status);
1866
6a6b96b9 1867 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1868 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
1869 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1870 && wait_status.value.sig != TARGET_SIGNAL_ILL
1871 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1872 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
1873 {
1874 return 0;
1875 }
1876
5a437975
DE
1877 schedlock_enabled = (scheduler_mode == schedlock_on
1878 || (scheduler_mode == schedlock_step
1879 && step));
1880
d4db2f36
PA
1881 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1882 if (schedlock_enabled)
1883 return 0;
1884
1885 /* Don't switch over if we're about to resume some other process
1886 other than WAIT_PTID's, and schedule-multiple is off. */
1887 if (!sched_multi
1888 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1889 return 0;
1890
6a6b96b9 1891 /* Switched over from WAIT_PID. */
ea67f13b 1892 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 1893 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1894 {
515630c5
UW
1895 struct regcache *regcache = get_thread_regcache (wait_ptid);
1896
6c95b8df
PA
1897 if (breakpoint_here_p (get_regcache_aspace (regcache),
1898 regcache_read_pc (regcache)))
ea67f13b 1899 {
515630c5
UW
1900 /* If stepping, remember current thread to switch back to. */
1901 if (step)
1902 deferred_step_ptid = inferior_ptid;
ea67f13b 1903
515630c5
UW
1904 /* Switch back to WAIT_PID thread. */
1905 switch_to_thread (wait_ptid);
6a6b96b9 1906
515630c5
UW
1907 /* We return 1 to indicate that there is a breakpoint here,
1908 so we need to step over it before continuing to avoid
1909 hitting it straight away. */
1910 return 1;
1911 }
ea67f13b
DJ
1912 }
1913
1914 return 0;
ea67f13b 1915}
e4846b08 1916
c906108c
SS
1917/* Basic routine for continuing the program in various fashions.
1918
1919 ADDR is the address to resume at, or -1 for resume where stopped.
1920 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1921 or -1 for act according to how it stopped.
c906108c 1922 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1923 -1 means return after that and print nothing.
1924 You should probably set various step_... variables
1925 before calling here, if you are stepping.
c906108c
SS
1926
1927 You should call clear_proceed_status before calling proceed. */
1928
1929void
96baa820 1930proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1931{
e58b0e63
PA
1932 struct regcache *regcache;
1933 struct gdbarch *gdbarch;
4e1c45ea 1934 struct thread_info *tp;
e58b0e63 1935 CORE_ADDR pc;
6c95b8df 1936 struct address_space *aspace;
c906108c
SS
1937 int oneproc = 0;
1938
e58b0e63
PA
1939 /* If we're stopped at a fork/vfork, follow the branch set by the
1940 "set follow-fork-mode" command; otherwise, we'll just proceed
1941 resuming the current thread. */
1942 if (!follow_fork ())
1943 {
1944 /* The target for some reason decided not to resume. */
1945 normal_stop ();
1946 return;
1947 }
1948
1949 regcache = get_current_regcache ();
1950 gdbarch = get_regcache_arch (regcache);
6c95b8df 1951 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
1952 pc = regcache_read_pc (regcache);
1953
c906108c 1954 if (step > 0)
515630c5 1955 step_start_function = find_pc_function (pc);
c906108c
SS
1956 if (step < 0)
1957 stop_after_trap = 1;
1958
2acceee2 1959 if (addr == (CORE_ADDR) -1)
c906108c 1960 {
6c95b8df 1961 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 1962 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1963 /* There is a breakpoint at the address we will resume at,
1964 step one instruction before inserting breakpoints so that
1965 we do not stop right away (and report a second hit at this
b2175913
MS
1966 breakpoint).
1967
1968 Note, we don't do this in reverse, because we won't
1969 actually be executing the breakpoint insn anyway.
1970 We'll be (un-)executing the previous instruction. */
1971
c906108c 1972 oneproc = 1;
515630c5
UW
1973 else if (gdbarch_single_step_through_delay_p (gdbarch)
1974 && gdbarch_single_step_through_delay (gdbarch,
1975 get_current_frame ()))
3352ef37
AC
1976 /* We stepped onto an instruction that needs to be stepped
1977 again before re-inserting the breakpoint, do so. */
c906108c
SS
1978 oneproc = 1;
1979 }
1980 else
1981 {
515630c5 1982 regcache_write_pc (regcache, addr);
c906108c
SS
1983 }
1984
527159b7 1985 if (debug_infrun)
8a9de0e4 1986 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1987 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
1988 paddress (gdbarch, addr), siggnal, step);
527159b7 1989
06cd862c
PA
1990 /* We're handling a live event, so make sure we're doing live
1991 debugging. If we're looking at traceframes while the target is
1992 running, we're going to need to get back to that mode after
1993 handling the event. */
1994 if (non_stop)
1995 {
1996 make_cleanup_restore_current_traceframe ();
1997 set_traceframe_number (-1);
1998 }
1999
94cc34af
PA
2000 if (non_stop)
2001 /* In non-stop, each thread is handled individually. The context
2002 must already be set to the right thread here. */
2003 ;
2004 else
2005 {
2006 /* In a multi-threaded task we may select another thread and
2007 then continue or step.
c906108c 2008
94cc34af
PA
2009 But if the old thread was stopped at a breakpoint, it will
2010 immediately cause another breakpoint stop without any
2011 execution (i.e. it will report a breakpoint hit incorrectly).
2012 So we must step over it first.
c906108c 2013
94cc34af
PA
2014 prepare_to_proceed checks the current thread against the
2015 thread that reported the most recent event. If a step-over
2016 is required it returns TRUE and sets the current thread to
2017 the old thread. */
2018 if (prepare_to_proceed (step))
2019 oneproc = 1;
2020 }
c906108c 2021
4e1c45ea
PA
2022 /* prepare_to_proceed may change the current thread. */
2023 tp = inferior_thread ();
2024
c906108c 2025 if (oneproc)
74960c60 2026 {
16c381f0 2027 tp->control.trap_expected = 1;
237fc4c9
PA
2028 /* If displaced stepping is enabled, we can step over the
2029 breakpoint without hitting it, so leave all breakpoints
2030 inserted. Otherwise we need to disable all breakpoints, step
2031 one instruction, and then re-add them when that step is
2032 finished. */
515630c5 2033 if (!use_displaced_stepping (gdbarch))
237fc4c9 2034 remove_breakpoints ();
74960c60 2035 }
237fc4c9
PA
2036
2037 /* We can insert breakpoints if we're not trying to step over one,
2038 or if we are stepping over one but we're using displaced stepping
2039 to do so. */
16c381f0 2040 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
c36b740a 2041 insert_breakpoints ();
c906108c 2042
2020b7ab
PA
2043 if (!non_stop)
2044 {
2045 /* Pass the last stop signal to the thread we're resuming,
2046 irrespective of whether the current thread is the thread that
2047 got the last event or not. This was historically GDB's
2048 behaviour before keeping a stop_signal per thread. */
2049
2050 struct thread_info *last_thread;
2051 ptid_t last_ptid;
2052 struct target_waitstatus last_status;
2053
2054 get_last_target_status (&last_ptid, &last_status);
2055 if (!ptid_equal (inferior_ptid, last_ptid)
2056 && !ptid_equal (last_ptid, null_ptid)
2057 && !ptid_equal (last_ptid, minus_one_ptid))
2058 {
e09875d4 2059 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2060 if (last_thread)
2061 {
16c381f0
JK
2062 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2063 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2020b7ab
PA
2064 }
2065 }
2066 }
2067
c906108c 2068 if (siggnal != TARGET_SIGNAL_DEFAULT)
16c381f0 2069 tp->suspend.stop_signal = siggnal;
c906108c
SS
2070 /* If this signal should not be seen by program,
2071 give it zero. Used for debugging signals. */
16c381f0
JK
2072 else if (!signal_program[tp->suspend.stop_signal])
2073 tp->suspend.stop_signal = TARGET_SIGNAL_0;
c906108c
SS
2074
2075 annotate_starting ();
2076
2077 /* Make sure that output from GDB appears before output from the
2078 inferior. */
2079 gdb_flush (gdb_stdout);
2080
e4846b08
JJ
2081 /* Refresh prev_pc value just prior to resuming. This used to be
2082 done in stop_stepping, however, setting prev_pc there did not handle
2083 scenarios such as inferior function calls or returning from
2084 a function via the return command. In those cases, the prev_pc
2085 value was not set properly for subsequent commands. The prev_pc value
2086 is used to initialize the starting line number in the ecs. With an
2087 invalid value, the gdb next command ends up stopping at the position
2088 represented by the next line table entry past our start position.
2089 On platforms that generate one line table entry per line, this
2090 is not a problem. However, on the ia64, the compiler generates
2091 extraneous line table entries that do not increase the line number.
2092 When we issue the gdb next command on the ia64 after an inferior call
2093 or a return command, we often end up a few instructions forward, still
2094 within the original line we started.
2095
d5cd6034
JB
2096 An attempt was made to refresh the prev_pc at the same time the
2097 execution_control_state is initialized (for instance, just before
2098 waiting for an inferior event). But this approach did not work
2099 because of platforms that use ptrace, where the pc register cannot
2100 be read unless the inferior is stopped. At that point, we are not
2101 guaranteed the inferior is stopped and so the regcache_read_pc() call
2102 can fail. Setting the prev_pc value here ensures the value is updated
2103 correctly when the inferior is stopped. */
4e1c45ea 2104 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2105
59f0d5d9 2106 /* Fill in with reasonable starting values. */
4e1c45ea 2107 init_thread_stepping_state (tp);
59f0d5d9 2108
59f0d5d9
PA
2109 /* Reset to normal state. */
2110 init_infwait_state ();
2111
c906108c 2112 /* Resume inferior. */
16c381f0 2113 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2114
2115 /* Wait for it to stop (if not standalone)
2116 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
2117 /* Do this only if we are not using the event loop, or if the target
2118 does not support asynchronous execution. */
362646f5 2119 if (!target_can_async_p ())
43ff13b4 2120 {
ae123ec6 2121 wait_for_inferior (0);
43ff13b4
JM
2122 normal_stop ();
2123 }
c906108c 2124}
c906108c
SS
2125\f
2126
2127/* Start remote-debugging of a machine over a serial link. */
96baa820 2128
c906108c 2129void
8621d6a9 2130start_remote (int from_tty)
c906108c 2131{
d6b48e9c 2132 struct inferior *inferior;
d6b48e9c 2133
abbb1732 2134 init_wait_for_inferior ();
d6b48e9c 2135 inferior = current_inferior ();
16c381f0 2136 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2137
6426a772
JM
2138 /* Always go on waiting for the target, regardless of the mode. */
2139 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2140 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2141 nothing is returned (instead of just blocking). Because of this,
2142 targets expecting an immediate response need to, internally, set
2143 things up so that the target_wait() is forced to eventually
2144 timeout. */
2145 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2146 differentiate to its caller what the state of the target is after
2147 the initial open has been performed. Here we're assuming that
2148 the target has stopped. It should be possible to eventually have
2149 target_open() return to the caller an indication that the target
2150 is currently running and GDB state should be set to the same as
2151 for an async run. */
ae123ec6 2152 wait_for_inferior (0);
8621d6a9
DJ
2153
2154 /* Now that the inferior has stopped, do any bookkeeping like
2155 loading shared libraries. We want to do this before normal_stop,
2156 so that the displayed frame is up to date. */
2157 post_create_inferior (&current_target, from_tty);
2158
6426a772 2159 normal_stop ();
c906108c
SS
2160}
2161
2162/* Initialize static vars when a new inferior begins. */
2163
2164void
96baa820 2165init_wait_for_inferior (void)
c906108c
SS
2166{
2167 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2168
c906108c
SS
2169 breakpoint_init_inferior (inf_starting);
2170
c906108c 2171 clear_proceed_status ();
9f976b41
DJ
2172
2173 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2174 deferred_step_ptid = null_ptid;
ca005067
DJ
2175
2176 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2177
0d1e5fa7
PA
2178 previous_inferior_ptid = null_ptid;
2179 init_infwait_state ();
2180
edb3359d
DJ
2181 /* Discard any skipped inlined frames. */
2182 clear_inline_frame_state (minus_one_ptid);
c906108c 2183}
237fc4c9 2184
c906108c 2185\f
b83266a0
SS
2186/* This enum encodes possible reasons for doing a target_wait, so that
2187 wfi can call target_wait in one place. (Ultimately the call will be
2188 moved out of the infinite loop entirely.) */
2189
c5aa993b
JM
2190enum infwait_states
2191{
cd0fc7c3
SS
2192 infwait_normal_state,
2193 infwait_thread_hop_state,
d983da9c 2194 infwait_step_watch_state,
cd0fc7c3 2195 infwait_nonstep_watch_state
b83266a0
SS
2196};
2197
0d1e5fa7
PA
2198/* The PTID we'll do a target_wait on.*/
2199ptid_t waiton_ptid;
2200
2201/* Current inferior wait state. */
2202enum infwait_states infwait_state;
cd0fc7c3 2203
0d1e5fa7
PA
2204/* Data to be passed around while handling an event. This data is
2205 discarded between events. */
c5aa993b 2206struct execution_control_state
488f131b 2207{
0d1e5fa7 2208 ptid_t ptid;
4e1c45ea
PA
2209 /* The thread that got the event, if this was a thread event; NULL
2210 otherwise. */
2211 struct thread_info *event_thread;
2212
488f131b 2213 struct target_waitstatus ws;
488f131b
JB
2214 int random_signal;
2215 CORE_ADDR stop_func_start;
2216 CORE_ADDR stop_func_end;
2217 char *stop_func_name;
488f131b 2218 int new_thread_event;
488f131b
JB
2219 int wait_some_more;
2220};
2221
ec9499be 2222static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2223
568d6575
UW
2224static void handle_step_into_function (struct gdbarch *gdbarch,
2225 struct execution_control_state *ecs);
2226static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2227 struct execution_control_state *ecs);
44cbf7b5 2228static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 2229static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
a6d9a66e
UW
2230static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
2231 struct symtab_and_line sr_sal,
44cbf7b5 2232 struct frame_id sr_id);
a6d9a66e 2233static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
186c406b
TT
2234static void check_exception_resume (struct execution_control_state *,
2235 struct frame_info *, struct symbol *);
611c83ae 2236
104c1213
JM
2237static void stop_stepping (struct execution_control_state *ecs);
2238static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2239static void keep_going (struct execution_control_state *ecs);
104c1213 2240
252fbfc8
PA
2241/* Callback for iterate over threads. If the thread is stopped, but
2242 the user/frontend doesn't know about that yet, go through
2243 normal_stop, as if the thread had just stopped now. ARG points at
2244 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2245 ptid_is_pid(PTID) is true, applies to all threads of the process
2246 pointed at by PTID. Otherwise, apply only to the thread pointed by
2247 PTID. */
2248
2249static int
2250infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2251{
2252 ptid_t ptid = * (ptid_t *) arg;
2253
2254 if ((ptid_equal (info->ptid, ptid)
2255 || ptid_equal (minus_one_ptid, ptid)
2256 || (ptid_is_pid (ptid)
2257 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2258 && is_running (info->ptid)
2259 && !is_executing (info->ptid))
2260 {
2261 struct cleanup *old_chain;
2262 struct execution_control_state ecss;
2263 struct execution_control_state *ecs = &ecss;
2264
2265 memset (ecs, 0, sizeof (*ecs));
2266
2267 old_chain = make_cleanup_restore_current_thread ();
2268
2269 switch_to_thread (info->ptid);
2270
2271 /* Go through handle_inferior_event/normal_stop, so we always
2272 have consistent output as if the stop event had been
2273 reported. */
2274 ecs->ptid = info->ptid;
e09875d4 2275 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2276 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2277 ecs->ws.value.sig = TARGET_SIGNAL_0;
2278
2279 handle_inferior_event (ecs);
2280
2281 if (!ecs->wait_some_more)
2282 {
2283 struct thread_info *tp;
2284
2285 normal_stop ();
2286
2287 /* Finish off the continuations. The continations
2288 themselves are responsible for realising the thread
2289 didn't finish what it was supposed to do. */
2290 tp = inferior_thread ();
2291 do_all_intermediate_continuations_thread (tp);
2292 do_all_continuations_thread (tp);
2293 }
2294
2295 do_cleanups (old_chain);
2296 }
2297
2298 return 0;
2299}
2300
2301/* This function is attached as a "thread_stop_requested" observer.
2302 Cleanup local state that assumed the PTID was to be resumed, and
2303 report the stop to the frontend. */
2304
2c0b251b 2305static void
252fbfc8
PA
2306infrun_thread_stop_requested (ptid_t ptid)
2307{
fc1cf338 2308 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2309
2310 /* PTID was requested to stop. Remove it from the displaced
2311 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2312
2313 for (displaced = displaced_step_inferior_states;
2314 displaced;
2315 displaced = displaced->next)
252fbfc8 2316 {
fc1cf338 2317 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2318
fc1cf338
PA
2319 it = displaced->step_request_queue;
2320 prev_next_p = &displaced->step_request_queue;
2321 while (it)
252fbfc8 2322 {
fc1cf338
PA
2323 if (ptid_match (it->ptid, ptid))
2324 {
2325 *prev_next_p = it->next;
2326 it->next = NULL;
2327 xfree (it);
2328 }
252fbfc8 2329 else
fc1cf338
PA
2330 {
2331 prev_next_p = &it->next;
2332 }
252fbfc8 2333
fc1cf338 2334 it = *prev_next_p;
252fbfc8 2335 }
252fbfc8
PA
2336 }
2337
2338 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2339}
2340
a07daef3
PA
2341static void
2342infrun_thread_thread_exit (struct thread_info *tp, int silent)
2343{
2344 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2345 nullify_last_target_wait_ptid ();
2346}
2347
4e1c45ea
PA
2348/* Callback for iterate_over_threads. */
2349
2350static int
2351delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2352{
2353 if (is_exited (info->ptid))
2354 return 0;
2355
2356 delete_step_resume_breakpoint (info);
186c406b 2357 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2358 return 0;
2359}
2360
2361/* In all-stop, delete the step resume breakpoint of any thread that
2362 had one. In non-stop, delete the step resume breakpoint of the
2363 thread that just stopped. */
2364
2365static void
2366delete_step_thread_step_resume_breakpoint (void)
2367{
2368 if (!target_has_execution
2369 || ptid_equal (inferior_ptid, null_ptid))
2370 /* If the inferior has exited, we have already deleted the step
2371 resume breakpoints out of GDB's lists. */
2372 return;
2373
2374 if (non_stop)
2375 {
2376 /* If in non-stop mode, only delete the step-resume or
2377 longjmp-resume breakpoint of the thread that just stopped
2378 stepping. */
2379 struct thread_info *tp = inferior_thread ();
abbb1732 2380
4e1c45ea 2381 delete_step_resume_breakpoint (tp);
186c406b 2382 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2383 }
2384 else
2385 /* In all-stop mode, delete all step-resume and longjmp-resume
2386 breakpoints of any thread that had them. */
2387 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2388}
2389
2390/* A cleanup wrapper. */
2391
2392static void
2393delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2394{
2395 delete_step_thread_step_resume_breakpoint ();
2396}
2397
223698f8
DE
2398/* Pretty print the results of target_wait, for debugging purposes. */
2399
2400static void
2401print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2402 const struct target_waitstatus *ws)
2403{
2404 char *status_string = target_waitstatus_to_string (ws);
2405 struct ui_file *tmp_stream = mem_fileopen ();
2406 char *text;
223698f8
DE
2407
2408 /* The text is split over several lines because it was getting too long.
2409 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2410 output as a unit; we want only one timestamp printed if debug_timestamp
2411 is set. */
2412
2413 fprintf_unfiltered (tmp_stream,
2414 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2415 if (PIDGET (waiton_ptid) != -1)
2416 fprintf_unfiltered (tmp_stream,
2417 " [%s]", target_pid_to_str (waiton_ptid));
2418 fprintf_unfiltered (tmp_stream, ", status) =\n");
2419 fprintf_unfiltered (tmp_stream,
2420 "infrun: %d [%s],\n",
2421 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2422 fprintf_unfiltered (tmp_stream,
2423 "infrun: %s\n",
2424 status_string);
2425
759ef836 2426 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2427
2428 /* This uses %s in part to handle %'s in the text, but also to avoid
2429 a gcc error: the format attribute requires a string literal. */
2430 fprintf_unfiltered (gdb_stdlog, "%s", text);
2431
2432 xfree (status_string);
2433 xfree (text);
2434 ui_file_delete (tmp_stream);
2435}
2436
24291992
PA
2437/* Prepare and stabilize the inferior for detaching it. E.g.,
2438 detaching while a thread is displaced stepping is a recipe for
2439 crashing it, as nothing would readjust the PC out of the scratch
2440 pad. */
2441
2442void
2443prepare_for_detach (void)
2444{
2445 struct inferior *inf = current_inferior ();
2446 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2447 struct cleanup *old_chain_1;
2448 struct displaced_step_inferior_state *displaced;
2449
2450 displaced = get_displaced_stepping_state (inf->pid);
2451
2452 /* Is any thread of this process displaced stepping? If not,
2453 there's nothing else to do. */
2454 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2455 return;
2456
2457 if (debug_infrun)
2458 fprintf_unfiltered (gdb_stdlog,
2459 "displaced-stepping in-process while detaching");
2460
2461 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2462 inf->detaching = 1;
2463
2464 while (!ptid_equal (displaced->step_ptid, null_ptid))
2465 {
2466 struct cleanup *old_chain_2;
2467 struct execution_control_state ecss;
2468 struct execution_control_state *ecs;
2469
2470 ecs = &ecss;
2471 memset (ecs, 0, sizeof (*ecs));
2472
2473 overlay_cache_invalid = 1;
2474
2475 /* We have to invalidate the registers BEFORE calling
2476 target_wait because they can be loaded from the target while
2477 in target_wait. This makes remote debugging a bit more
2478 efficient for those targets that provide critical registers
2479 as part of their normal status mechanism. */
2480
2481 registers_changed ();
2482
2483 if (deprecated_target_wait_hook)
2484 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2485 else
2486 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2487
2488 if (debug_infrun)
2489 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2490
2491 /* If an error happens while handling the event, propagate GDB's
2492 knowledge of the executing state to the frontend/user running
2493 state. */
2494 old_chain_2 = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2495
4d533103
PA
2496 /* In non-stop mode, each thread is handled individually.
2497 Switch early, so the global state is set correctly for this
2498 thread. */
2499 if (non_stop
2500 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2501 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2502 context_switch (ecs->ptid);
2503
24291992
PA
2504 /* Now figure out what to do with the result of the result. */
2505 handle_inferior_event (ecs);
2506
2507 /* No error, don't finish the state yet. */
2508 discard_cleanups (old_chain_2);
2509
2510 /* Breakpoints and watchpoints are not installed on the target
2511 at this point, and signals are passed directly to the
2512 inferior, so this must mean the process is gone. */
2513 if (!ecs->wait_some_more)
2514 {
2515 discard_cleanups (old_chain_1);
2516 error (_("Program exited while detaching"));
2517 }
2518 }
2519
2520 discard_cleanups (old_chain_1);
2521}
2522
cd0fc7c3 2523/* Wait for control to return from inferior to debugger.
ae123ec6
JB
2524
2525 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
2526 as if they were SIGTRAP signals. This can be useful during
2527 the startup sequence on some targets such as HP/UX, where
2528 we receive an EXEC event instead of the expected SIGTRAP.
2529
cd0fc7c3
SS
2530 If inferior gets a signal, we may decide to start it up again
2531 instead of returning. That is why there is a loop in this function.
2532 When this function actually returns it means the inferior
2533 should be left stopped and GDB should read more commands. */
2534
2535void
ae123ec6 2536wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
2537{
2538 struct cleanup *old_cleanups;
0d1e5fa7 2539 struct execution_control_state ecss;
cd0fc7c3 2540 struct execution_control_state *ecs;
c906108c 2541
527159b7 2542 if (debug_infrun)
ae123ec6
JB
2543 fprintf_unfiltered
2544 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
2545 treat_exec_as_sigtrap);
527159b7 2546
4e1c45ea
PA
2547 old_cleanups =
2548 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2549
cd0fc7c3 2550 ecs = &ecss;
0d1e5fa7
PA
2551 memset (ecs, 0, sizeof (*ecs));
2552
e0bb1c1c
PA
2553 /* We'll update this if & when we switch to a new thread. */
2554 previous_inferior_ptid = inferior_ptid;
2555
c906108c
SS
2556 while (1)
2557 {
29f49a6a
PA
2558 struct cleanup *old_chain;
2559
ec9499be
UW
2560 /* We have to invalidate the registers BEFORE calling target_wait
2561 because they can be loaded from the target while in target_wait.
2562 This makes remote debugging a bit more efficient for those
2563 targets that provide critical registers as part of their normal
2564 status mechanism. */
2565
2566 overlay_cache_invalid = 1;
2567 registers_changed ();
2568
9a4105ab 2569 if (deprecated_target_wait_hook)
47608cb1 2570 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2571 else
47608cb1 2572 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2573
f00150c9 2574 if (debug_infrun)
223698f8 2575 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2576
ae123ec6
JB
2577 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2578 {
2579 xfree (ecs->ws.value.execd_pathname);
2580 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2581 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2582 }
2583
29f49a6a
PA
2584 /* If an error happens while handling the event, propagate GDB's
2585 knowledge of the executing state to the frontend/user running
2586 state. */
2587 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2588
a96d9b2e
SDJ
2589 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2590 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2591 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2592
cd0fc7c3
SS
2593 /* Now figure out what to do with the result of the result. */
2594 handle_inferior_event (ecs);
c906108c 2595
29f49a6a
PA
2596 /* No error, don't finish the state yet. */
2597 discard_cleanups (old_chain);
2598
cd0fc7c3
SS
2599 if (!ecs->wait_some_more)
2600 break;
2601 }
4e1c45ea 2602
cd0fc7c3
SS
2603 do_cleanups (old_cleanups);
2604}
c906108c 2605
43ff13b4
JM
2606/* Asynchronous version of wait_for_inferior. It is called by the
2607 event loop whenever a change of state is detected on the file
2608 descriptor corresponding to the target. It can be called more than
2609 once to complete a single execution command. In such cases we need
a474d7c2
PA
2610 to keep the state in a global variable ECSS. If it is the last time
2611 that this function is called for a single execution command, then
2612 report to the user that the inferior has stopped, and do the
2613 necessary cleanups. */
43ff13b4
JM
2614
2615void
fba45db2 2616fetch_inferior_event (void *client_data)
43ff13b4 2617{
0d1e5fa7 2618 struct execution_control_state ecss;
a474d7c2 2619 struct execution_control_state *ecs = &ecss;
4f8d22e3 2620 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2621 struct cleanup *ts_old_chain;
4f8d22e3 2622 int was_sync = sync_execution;
43ff13b4 2623
0d1e5fa7
PA
2624 memset (ecs, 0, sizeof (*ecs));
2625
ec9499be
UW
2626 /* We'll update this if & when we switch to a new thread. */
2627 previous_inferior_ptid = inferior_ptid;
e0bb1c1c 2628
4f8d22e3
PA
2629 if (non_stop)
2630 /* In non-stop mode, the user/frontend should not notice a thread
2631 switch due to internal events. Make sure we reverse to the
2632 user selected thread and frame after handling the event and
2633 running any breakpoint commands. */
2634 make_cleanup_restore_current_thread ();
2635
59f0d5d9
PA
2636 /* We have to invalidate the registers BEFORE calling target_wait
2637 because they can be loaded from the target while in target_wait.
2638 This makes remote debugging a bit more efficient for those
2639 targets that provide critical registers as part of their normal
2640 status mechanism. */
43ff13b4 2641
ec9499be 2642 overlay_cache_invalid = 1;
59f0d5d9 2643 registers_changed ();
43ff13b4 2644
9a4105ab 2645 if (deprecated_target_wait_hook)
a474d7c2 2646 ecs->ptid =
47608cb1 2647 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2648 else
47608cb1 2649 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2650
f00150c9 2651 if (debug_infrun)
223698f8 2652 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2653
94cc34af
PA
2654 if (non_stop
2655 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2656 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2657 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2658 /* In non-stop mode, each thread is handled individually. Switch
2659 early, so the global state is set correctly for this
2660 thread. */
2661 context_switch (ecs->ptid);
2662
29f49a6a
PA
2663 /* If an error happens while handling the event, propagate GDB's
2664 knowledge of the executing state to the frontend/user running
2665 state. */
2666 if (!non_stop)
2667 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2668 else
2669 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2670
43ff13b4 2671 /* Now figure out what to do with the result of the result. */
a474d7c2 2672 handle_inferior_event (ecs);
43ff13b4 2673
a474d7c2 2674 if (!ecs->wait_some_more)
43ff13b4 2675 {
d6b48e9c
PA
2676 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2677
4e1c45ea 2678 delete_step_thread_step_resume_breakpoint ();
f107f563 2679
d6b48e9c 2680 /* We may not find an inferior if this was a process exit. */
16c381f0 2681 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2682 normal_stop ();
2683
af679fd0
PA
2684 if (target_has_execution
2685 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2686 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2687 && ecs->event_thread->step_multi
16c381f0 2688 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2689 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2690 else
2691 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2692 }
4f8d22e3 2693
29f49a6a
PA
2694 /* No error, don't finish the thread states yet. */
2695 discard_cleanups (ts_old_chain);
2696
4f8d22e3
PA
2697 /* Revert thread and frame. */
2698 do_cleanups (old_chain);
2699
2700 /* If the inferior was in sync execution mode, and now isn't,
2701 restore the prompt. */
2702 if (was_sync && !sync_execution)
2703 display_gdb_prompt (0);
43ff13b4
JM
2704}
2705
edb3359d
DJ
2706/* Record the frame and location we're currently stepping through. */
2707void
2708set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2709{
2710 struct thread_info *tp = inferior_thread ();
2711
16c381f0
JK
2712 tp->control.step_frame_id = get_frame_id (frame);
2713 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2714
2715 tp->current_symtab = sal.symtab;
2716 tp->current_line = sal.line;
2717}
2718
0d1e5fa7
PA
2719/* Clear context switchable stepping state. */
2720
2721void
4e1c45ea 2722init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2723{
2724 tss->stepping_over_breakpoint = 0;
2725 tss->step_after_step_resume_breakpoint = 0;
2726 tss->stepping_through_solib_after_catch = 0;
2727 tss->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
2728}
2729
e02bc4cc 2730/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2731 target_wait()/deprecated_target_wait_hook(). The data is actually
2732 cached by handle_inferior_event(), which gets called immediately
2733 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2734
2735void
488f131b 2736get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2737{
39f77062 2738 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2739 *status = target_last_waitstatus;
2740}
2741
ac264b3b
MS
2742void
2743nullify_last_target_wait_ptid (void)
2744{
2745 target_last_wait_ptid = minus_one_ptid;
2746}
2747
dcf4fbde 2748/* Switch thread contexts. */
dd80620e
MS
2749
2750static void
0d1e5fa7 2751context_switch (ptid_t ptid)
dd80620e 2752{
fd48f117
DJ
2753 if (debug_infrun)
2754 {
2755 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2756 target_pid_to_str (inferior_ptid));
2757 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2758 target_pid_to_str (ptid));
fd48f117
DJ
2759 }
2760
0d1e5fa7 2761 switch_to_thread (ptid);
dd80620e
MS
2762}
2763
4fa8626c
DJ
2764static void
2765adjust_pc_after_break (struct execution_control_state *ecs)
2766{
24a73cce
UW
2767 struct regcache *regcache;
2768 struct gdbarch *gdbarch;
6c95b8df 2769 struct address_space *aspace;
8aad930b 2770 CORE_ADDR breakpoint_pc;
4fa8626c 2771
4fa8626c
DJ
2772 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2773 we aren't, just return.
9709f61c
DJ
2774
2775 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2776 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2777 implemented by software breakpoints should be handled through the normal
2778 breakpoint layer.
8fb3e588 2779
4fa8626c
DJ
2780 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2781 different signals (SIGILL or SIGEMT for instance), but it is less
2782 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2783 gdbarch_decr_pc_after_break. I don't know any specific target that
2784 generates these signals at breakpoints (the code has been in GDB since at
2785 least 1992) so I can not guess how to handle them here.
8fb3e588 2786
e6cf7916
UW
2787 In earlier versions of GDB, a target with
2788 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2789 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2790 target with both of these set in GDB history, and it seems unlikely to be
2791 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2792
2793 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2794 return;
2795
2796 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2797 return;
2798
4058b839
PA
2799 /* In reverse execution, when a breakpoint is hit, the instruction
2800 under it has already been de-executed. The reported PC always
2801 points at the breakpoint address, so adjusting it further would
2802 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2803 architecture:
2804
2805 B1 0x08000000 : INSN1
2806 B2 0x08000001 : INSN2
2807 0x08000002 : INSN3
2808 PC -> 0x08000003 : INSN4
2809
2810 Say you're stopped at 0x08000003 as above. Reverse continuing
2811 from that point should hit B2 as below. Reading the PC when the
2812 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2813 been de-executed already.
2814
2815 B1 0x08000000 : INSN1
2816 B2 PC -> 0x08000001 : INSN2
2817 0x08000002 : INSN3
2818 0x08000003 : INSN4
2819
2820 We can't apply the same logic as for forward execution, because
2821 we would wrongly adjust the PC to 0x08000000, since there's a
2822 breakpoint at PC - 1. We'd then report a hit on B1, although
2823 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2824 behaviour. */
2825 if (execution_direction == EXEC_REVERSE)
2826 return;
2827
24a73cce
UW
2828 /* If this target does not decrement the PC after breakpoints, then
2829 we have nothing to do. */
2830 regcache = get_thread_regcache (ecs->ptid);
2831 gdbarch = get_regcache_arch (regcache);
2832 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2833 return;
2834
6c95b8df
PA
2835 aspace = get_regcache_aspace (regcache);
2836
8aad930b
AC
2837 /* Find the location where (if we've hit a breakpoint) the
2838 breakpoint would be. */
515630c5
UW
2839 breakpoint_pc = regcache_read_pc (regcache)
2840 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2841
1c5cfe86
PA
2842 /* Check whether there actually is a software breakpoint inserted at
2843 that location.
2844
2845 If in non-stop mode, a race condition is possible where we've
2846 removed a breakpoint, but stop events for that breakpoint were
2847 already queued and arrive later. To suppress those spurious
2848 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2849 and retire them after a number of stop events are reported. */
6c95b8df
PA
2850 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2851 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2852 {
96429cc8 2853 struct cleanup *old_cleanups = NULL;
abbb1732 2854
96429cc8
HZ
2855 if (RECORD_IS_USED)
2856 old_cleanups = record_gdb_operation_disable_set ();
2857
1c0fdd0e
UW
2858 /* When using hardware single-step, a SIGTRAP is reported for both
2859 a completed single-step and a software breakpoint. Need to
2860 differentiate between the two, as the latter needs adjusting
2861 but the former does not.
2862
2863 The SIGTRAP can be due to a completed hardware single-step only if
2864 - we didn't insert software single-step breakpoints
2865 - the thread to be examined is still the current thread
2866 - this thread is currently being stepped
2867
2868 If any of these events did not occur, we must have stopped due
2869 to hitting a software breakpoint, and have to back up to the
2870 breakpoint address.
2871
2872 As a special case, we could have hardware single-stepped a
2873 software breakpoint. In this case (prev_pc == breakpoint_pc),
2874 we also need to back up to the breakpoint address. */
2875
2876 if (singlestep_breakpoints_inserted_p
2877 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2878 || !currently_stepping (ecs->event_thread)
2879 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2880 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2881
2882 if (RECORD_IS_USED)
2883 do_cleanups (old_cleanups);
8aad930b 2884 }
4fa8626c
DJ
2885}
2886
0d1e5fa7
PA
2887void
2888init_infwait_state (void)
2889{
2890 waiton_ptid = pid_to_ptid (-1);
2891 infwait_state = infwait_normal_state;
2892}
2893
94cc34af
PA
2894void
2895error_is_running (void)
2896{
2897 error (_("\
2898Cannot execute this command while the selected thread is running."));
2899}
2900
2901void
2902ensure_not_running (void)
2903{
2904 if (is_running (inferior_ptid))
2905 error_is_running ();
2906}
2907
edb3359d
DJ
2908static int
2909stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2910{
2911 for (frame = get_prev_frame (frame);
2912 frame != NULL;
2913 frame = get_prev_frame (frame))
2914 {
2915 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2916 return 1;
2917 if (get_frame_type (frame) != INLINE_FRAME)
2918 break;
2919 }
2920
2921 return 0;
2922}
2923
a96d9b2e
SDJ
2924/* Auxiliary function that handles syscall entry/return events.
2925 It returns 1 if the inferior should keep going (and GDB
2926 should ignore the event), or 0 if the event deserves to be
2927 processed. */
ca2163eb 2928
a96d9b2e 2929static int
ca2163eb 2930handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 2931{
ca2163eb
PA
2932 struct regcache *regcache;
2933 struct gdbarch *gdbarch;
2934 int syscall_number;
2935
2936 if (!ptid_equal (ecs->ptid, inferior_ptid))
2937 context_switch (ecs->ptid);
2938
2939 regcache = get_thread_regcache (ecs->ptid);
2940 gdbarch = get_regcache_arch (regcache);
2941 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
2942 stop_pc = regcache_read_pc (regcache);
2943
a96d9b2e
SDJ
2944 target_last_waitstatus.value.syscall_number = syscall_number;
2945
2946 if (catch_syscall_enabled () > 0
2947 && catching_syscall_number (syscall_number) > 0)
2948 {
2949 if (debug_infrun)
2950 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
2951 syscall_number);
a96d9b2e 2952
16c381f0 2953 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
2954 = bpstat_stop_status (get_regcache_aspace (regcache),
2955 stop_pc, ecs->ptid);
16c381f0
JK
2956 ecs->random_signal
2957 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 2958
ca2163eb
PA
2959 if (!ecs->random_signal)
2960 {
2961 /* Catchpoint hit. */
16c381f0 2962 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
ca2163eb
PA
2963 return 0;
2964 }
a96d9b2e 2965 }
ca2163eb
PA
2966
2967 /* If no catchpoint triggered for this, then keep going. */
16c381f0 2968 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
ca2163eb
PA
2969 keep_going (ecs);
2970 return 1;
a96d9b2e
SDJ
2971}
2972
cd0fc7c3
SS
2973/* Given an execution control state that has been freshly filled in
2974 by an event from the inferior, figure out what it means and take
2975 appropriate action. */
c906108c 2976
ec9499be 2977static void
96baa820 2978handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 2979{
568d6575
UW
2980 struct frame_info *frame;
2981 struct gdbarch *gdbarch;
c8edd8b4 2982 int sw_single_step_trap_p = 0;
d983da9c
DJ
2983 int stopped_by_watchpoint;
2984 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 2985 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
2986 enum stop_kind stop_soon;
2987
28736962
PA
2988 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
2989 {
2990 /* We had an event in the inferior, but we are not interested in
2991 handling it at this level. The lower layers have already
2992 done what needs to be done, if anything.
2993
2994 One of the possible circumstances for this is when the
2995 inferior produces output for the console. The inferior has
2996 not stopped, and we are ignoring the event. Another possible
2997 circumstance is any event which the lower level knows will be
2998 reported multiple times without an intervening resume. */
2999 if (debug_infrun)
3000 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3001 prepare_to_wait (ecs);
3002 return;
3003 }
3004
d6b48e9c 3005 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
28736962 3006 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
d6b48e9c
PA
3007 {
3008 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3009
d6b48e9c 3010 gdb_assert (inf);
16c381f0 3011 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3012 }
3013 else
3014 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3015
e02bc4cc 3016 /* Cache the last pid/waitstatus. */
39f77062 3017 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3018 target_last_waitstatus = ecs->ws;
e02bc4cc 3019
ca005067 3020 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3021 stop_stack_dummy = STOP_NONE;
ca005067 3022
8c90c137
LM
3023 /* If it's a new process, add it to the thread database */
3024
3025 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3026 && !ptid_equal (ecs->ptid, minus_one_ptid)
3027 && !in_thread_list (ecs->ptid));
3028
3029 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3030 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3031 add_thread (ecs->ptid);
3032
e09875d4 3033 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
3034
3035 /* Dependent on valid ECS->EVENT_THREAD. */
3036 adjust_pc_after_break (ecs);
3037
3038 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3039 reinit_frame_cache ();
3040
28736962
PA
3041 breakpoint_retire_moribund ();
3042
2b009048
DJ
3043 /* First, distinguish signals caused by the debugger from signals
3044 that have to do with the program's own actions. Note that
3045 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3046 on the operating system version. Here we detect when a SIGILL or
3047 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3048 something similar for SIGSEGV, since a SIGSEGV will be generated
3049 when we're trying to execute a breakpoint instruction on a
3050 non-executable stack. This happens for call dummy breakpoints
3051 for architectures like SPARC that place call dummies on the
3052 stack. */
2b009048
DJ
3053 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3054 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3055 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 3056 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 3057 {
de0a0249
UW
3058 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3059
3060 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3061 regcache_read_pc (regcache)))
3062 {
3063 if (debug_infrun)
3064 fprintf_unfiltered (gdb_stdlog,
3065 "infrun: Treating signal as SIGTRAP\n");
3066 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3067 }
2b009048
DJ
3068 }
3069
28736962
PA
3070 /* Mark the non-executing threads accordingly. In all-stop, all
3071 threads of all processes are stopped when we get any event
3072 reported. In non-stop mode, only the event thread stops. If
3073 we're handling a process exit in non-stop mode, there's nothing
3074 to do, as threads of the dead process are gone, and threads of
3075 any other process were left running. */
3076 if (!non_stop)
3077 set_executing (minus_one_ptid, 0);
3078 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3079 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3080 set_executing (inferior_ptid, 0);
8c90c137 3081
0d1e5fa7 3082 switch (infwait_state)
488f131b
JB
3083 {
3084 case infwait_thread_hop_state:
527159b7 3085 if (debug_infrun)
8a9de0e4 3086 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3087 break;
b83266a0 3088
488f131b 3089 case infwait_normal_state:
527159b7 3090 if (debug_infrun)
8a9de0e4 3091 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3092 break;
3093
3094 case infwait_step_watch_state:
3095 if (debug_infrun)
3096 fprintf_unfiltered (gdb_stdlog,
3097 "infrun: infwait_step_watch_state\n");
3098
3099 stepped_after_stopped_by_watchpoint = 1;
488f131b 3100 break;
b83266a0 3101
488f131b 3102 case infwait_nonstep_watch_state:
527159b7 3103 if (debug_infrun)
8a9de0e4
AC
3104 fprintf_unfiltered (gdb_stdlog,
3105 "infrun: infwait_nonstep_watch_state\n");
488f131b 3106 insert_breakpoints ();
c906108c 3107
488f131b
JB
3108 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3109 handle things like signals arriving and other things happening
3110 in combination correctly? */
3111 stepped_after_stopped_by_watchpoint = 1;
3112 break;
65e82032
AC
3113
3114 default:
e2e0b3e5 3115 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3116 }
ec9499be 3117
0d1e5fa7 3118 infwait_state = infwait_normal_state;
ec9499be 3119 waiton_ptid = pid_to_ptid (-1);
c906108c 3120
488f131b
JB
3121 switch (ecs->ws.kind)
3122 {
3123 case TARGET_WAITKIND_LOADED:
527159b7 3124 if (debug_infrun)
8a9de0e4 3125 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3126 /* Ignore gracefully during startup of the inferior, as it might
3127 be the shell which has just loaded some objects, otherwise
3128 add the symbols for the newly loaded objects. Also ignore at
3129 the beginning of an attach or remote session; we will query
3130 the full list of libraries once the connection is
3131 established. */
c0236d92 3132 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3133 {
488f131b
JB
3134 /* Check for any newly added shared libraries if we're
3135 supposed to be adding them automatically. Switch
3136 terminal for any messages produced by
3137 breakpoint_re_set. */
3138 target_terminal_ours_for_output ();
aff6338a 3139 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3140 stack's section table is kept up-to-date. Architectures,
3141 (e.g., PPC64), use the section table to perform
3142 operations such as address => section name and hence
3143 require the table to contain all sections (including
3144 those found in shared libraries). */
b0f4b84b 3145#ifdef SOLIB_ADD
aff6338a 3146 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
3147#else
3148 solib_add (NULL, 0, &current_target, auto_solib_add);
3149#endif
488f131b
JB
3150 target_terminal_inferior ();
3151
b0f4b84b
DJ
3152 /* If requested, stop when the dynamic linker notifies
3153 gdb of events. This allows the user to get control
3154 and place breakpoints in initializer routines for
3155 dynamically loaded objects (among other things). */
3156 if (stop_on_solib_events)
3157 {
55409f9d
DJ
3158 /* Make sure we print "Stopped due to solib-event" in
3159 normal_stop. */
3160 stop_print_frame = 1;
3161
b0f4b84b
DJ
3162 stop_stepping (ecs);
3163 return;
3164 }
3165
3166 /* NOTE drow/2007-05-11: This might be a good place to check
3167 for "catch load". */
488f131b 3168 }
b0f4b84b
DJ
3169
3170 /* If we are skipping through a shell, or through shared library
3171 loading that we aren't interested in, resume the program. If
3172 we're running the program normally, also resume. But stop if
3173 we're attaching or setting up a remote connection. */
3174 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3175 {
74960c60
VP
3176 /* Loading of shared libraries might have changed breakpoint
3177 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3178 if (stop_soon == NO_STOP_QUIETLY
3179 && !breakpoints_always_inserted_mode ())
74960c60 3180 insert_breakpoints ();
b0f4b84b
DJ
3181 resume (0, TARGET_SIGNAL_0);
3182 prepare_to_wait (ecs);
3183 return;
3184 }
3185
3186 break;
c5aa993b 3187
488f131b 3188 case TARGET_WAITKIND_SPURIOUS:
527159b7 3189 if (debug_infrun)
8a9de0e4 3190 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
3191 resume (0, TARGET_SIGNAL_0);
3192 prepare_to_wait (ecs);
3193 return;
c5aa993b 3194
488f131b 3195 case TARGET_WAITKIND_EXITED:
527159b7 3196 if (debug_infrun)
8a9de0e4 3197 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3198 inferior_ptid = ecs->ptid;
6c95b8df
PA
3199 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3200 set_current_program_space (current_inferior ()->pspace);
3201 handle_vfork_child_exec_or_exit (0);
488f131b 3202 target_terminal_ours (); /* Must do this before mourn anyway */
33d62d64 3203 print_exited_reason (ecs->ws.value.integer);
488f131b
JB
3204
3205 /* Record the exit code in the convenience variable $_exitcode, so
3206 that the user can inspect this again later. */
4fa62494
UW
3207 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3208 (LONGEST) ecs->ws.value.integer);
488f131b
JB
3209 gdb_flush (gdb_stdout);
3210 target_mourn_inferior ();
1c0fdd0e 3211 singlestep_breakpoints_inserted_p = 0;
d03285ec 3212 cancel_single_step_breakpoints ();
488f131b
JB
3213 stop_print_frame = 0;
3214 stop_stepping (ecs);
3215 return;
c5aa993b 3216
488f131b 3217 case TARGET_WAITKIND_SIGNALLED:
527159b7 3218 if (debug_infrun)
8a9de0e4 3219 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3220 inferior_ptid = ecs->ptid;
6c95b8df
PA
3221 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3222 set_current_program_space (current_inferior ()->pspace);
3223 handle_vfork_child_exec_or_exit (0);
488f131b 3224 stop_print_frame = 0;
488f131b 3225 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 3226
488f131b
JB
3227 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3228 reach here unless the inferior is dead. However, for years
3229 target_kill() was called here, which hints that fatal signals aren't
3230 really fatal on some systems. If that's true, then some changes
3231 may be needed. */
3232 target_mourn_inferior ();
c906108c 3233
33d62d64 3234 print_signal_exited_reason (ecs->ws.value.sig);
1c0fdd0e 3235 singlestep_breakpoints_inserted_p = 0;
d03285ec 3236 cancel_single_step_breakpoints ();
488f131b
JB
3237 stop_stepping (ecs);
3238 return;
c906108c 3239
488f131b
JB
3240 /* The following are the only cases in which we keep going;
3241 the above cases end in a continue or goto. */
3242 case TARGET_WAITKIND_FORKED:
deb3b17b 3243 case TARGET_WAITKIND_VFORKED:
527159b7 3244 if (debug_infrun)
8a9de0e4 3245 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3246
5a2901d9
DJ
3247 if (!ptid_equal (ecs->ptid, inferior_ptid))
3248 {
0d1e5fa7 3249 context_switch (ecs->ptid);
35f196d9 3250 reinit_frame_cache ();
5a2901d9
DJ
3251 }
3252
b242c3c2
PA
3253 /* Immediately detach breakpoints from the child before there's
3254 any chance of letting the user delete breakpoints from the
3255 breakpoint lists. If we don't do this early, it's easy to
3256 leave left over traps in the child, vis: "break foo; catch
3257 fork; c; <fork>; del; c; <child calls foo>". We only follow
3258 the fork on the last `continue', and by that time the
3259 breakpoint at "foo" is long gone from the breakpoint table.
3260 If we vforked, then we don't need to unpatch here, since both
3261 parent and child are sharing the same memory pages; we'll
3262 need to unpatch at follow/detach time instead to be certain
3263 that new breakpoints added between catchpoint hit time and
3264 vfork follow are detached. */
3265 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3266 {
3267 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3268
3269 /* This won't actually modify the breakpoint list, but will
3270 physically remove the breakpoints from the child. */
3271 detach_breakpoints (child_pid);
3272 }
3273
d03285ec
UW
3274 if (singlestep_breakpoints_inserted_p)
3275 {
3276 /* Pull the single step breakpoints out of the target. */
3277 remove_single_step_breakpoints ();
3278 singlestep_breakpoints_inserted_p = 0;
3279 }
3280
e58b0e63
PA
3281 /* In case the event is caught by a catchpoint, remember that
3282 the event is to be followed at the next resume of the thread,
3283 and not immediately. */
3284 ecs->event_thread->pending_follow = ecs->ws;
3285
fb14de7b 3286 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3287
16c381f0 3288 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3289 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3290 stop_pc, ecs->ptid);
675bf4cb 3291
67822962
PA
3292 /* Note that we're interested in knowing the bpstat actually
3293 causes a stop, not just if it may explain the signal.
3294 Software watchpoints, for example, always appear in the
3295 bpstat. */
16c381f0
JK
3296 ecs->random_signal
3297 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3298
3299 /* If no catchpoint triggered for this, then keep going. */
3300 if (ecs->random_signal)
3301 {
6c95b8df
PA
3302 ptid_t parent;
3303 ptid_t child;
e58b0e63 3304 int should_resume;
6c95b8df 3305 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3306
16c381f0 3307 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
3308
3309 should_resume = follow_fork ();
3310
6c95b8df
PA
3311 parent = ecs->ptid;
3312 child = ecs->ws.value.related_pid;
3313
3314 /* In non-stop mode, also resume the other branch. */
3315 if (non_stop && !detach_fork)
3316 {
3317 if (follow_child)
3318 switch_to_thread (parent);
3319 else
3320 switch_to_thread (child);
3321
3322 ecs->event_thread = inferior_thread ();
3323 ecs->ptid = inferior_ptid;
3324 keep_going (ecs);
3325 }
3326
3327 if (follow_child)
3328 switch_to_thread (child);
3329 else
3330 switch_to_thread (parent);
3331
e58b0e63
PA
3332 ecs->event_thread = inferior_thread ();
3333 ecs->ptid = inferior_ptid;
3334
3335 if (should_resume)
3336 keep_going (ecs);
3337 else
3338 stop_stepping (ecs);
04e68871
DJ
3339 return;
3340 }
16c381f0 3341 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3342 goto process_event_stop_test;
3343
6c95b8df
PA
3344 case TARGET_WAITKIND_VFORK_DONE:
3345 /* Done with the shared memory region. Re-insert breakpoints in
3346 the parent, and keep going. */
3347
3348 if (debug_infrun)
3349 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3350
3351 if (!ptid_equal (ecs->ptid, inferior_ptid))
3352 context_switch (ecs->ptid);
3353
3354 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3355 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3356 /* This also takes care of reinserting breakpoints in the
3357 previously locked inferior. */
3358 keep_going (ecs);
3359 return;
3360
488f131b 3361 case TARGET_WAITKIND_EXECD:
527159b7 3362 if (debug_infrun)
fc5261f2 3363 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3364
5a2901d9
DJ
3365 if (!ptid_equal (ecs->ptid, inferior_ptid))
3366 {
0d1e5fa7 3367 context_switch (ecs->ptid);
35f196d9 3368 reinit_frame_cache ();
5a2901d9
DJ
3369 }
3370
d03285ec
UW
3371 singlestep_breakpoints_inserted_p = 0;
3372 cancel_single_step_breakpoints ();
3373
fb14de7b 3374 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3375
6c95b8df
PA
3376 /* Do whatever is necessary to the parent branch of the vfork. */
3377 handle_vfork_child_exec_or_exit (1);
3378
795e548f
PA
3379 /* This causes the eventpoints and symbol table to be reset.
3380 Must do this now, before trying to determine whether to
3381 stop. */
71b43ef8 3382 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3383
16c381f0 3384 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3385 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3386 stop_pc, ecs->ptid);
16c381f0
JK
3387 ecs->random_signal
3388 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3389
71b43ef8
PA
3390 /* Note that this may be referenced from inside
3391 bpstat_stop_status above, through inferior_has_execd. */
3392 xfree (ecs->ws.value.execd_pathname);
3393 ecs->ws.value.execd_pathname = NULL;
3394
04e68871
DJ
3395 /* If no catchpoint triggered for this, then keep going. */
3396 if (ecs->random_signal)
3397 {
16c381f0 3398 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3399 keep_going (ecs);
3400 return;
3401 }
16c381f0 3402 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3403 goto process_event_stop_test;
3404
b4dc5ffa
MK
3405 /* Be careful not to try to gather much state about a thread
3406 that's in a syscall. It's frequently a losing proposition. */
488f131b 3407 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3408 if (debug_infrun)
8a9de0e4 3409 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
a96d9b2e 3410 /* Getting the current syscall number */
ca2163eb 3411 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3412 return;
3413 goto process_event_stop_test;
c906108c 3414
488f131b
JB
3415 /* Before examining the threads further, step this thread to
3416 get it entirely out of the syscall. (We get notice of the
3417 event when the thread is just on the verge of exiting a
3418 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3419 into user code.) */
488f131b 3420 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3421 if (debug_infrun)
8a9de0e4 3422 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3423 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3424 return;
3425 goto process_event_stop_test;
c906108c 3426
488f131b 3427 case TARGET_WAITKIND_STOPPED:
527159b7 3428 if (debug_infrun)
8a9de0e4 3429 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3430 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3431 break;
c906108c 3432
b2175913
MS
3433 case TARGET_WAITKIND_NO_HISTORY:
3434 /* Reverse execution: target ran out of history info. */
fb14de7b 3435 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3436 print_no_history_reason ();
b2175913
MS
3437 stop_stepping (ecs);
3438 return;
488f131b 3439 }
c906108c 3440
488f131b
JB
3441 if (ecs->new_thread_event)
3442 {
94cc34af
PA
3443 if (non_stop)
3444 /* Non-stop assumes that the target handles adding new threads
3445 to the thread list. */
3446 internal_error (__FILE__, __LINE__, "\
3447targets should add new threads to the thread list themselves in non-stop mode.");
3448
3449 /* We may want to consider not doing a resume here in order to
3450 give the user a chance to play with the new thread. It might
3451 be good to make that a user-settable option. */
3452
3453 /* At this point, all threads are stopped (happens automatically
3454 in either the OS or the native code). Therefore we need to
3455 continue all threads in order to make progress. */
3456
173853dc
PA
3457 if (!ptid_equal (ecs->ptid, inferior_ptid))
3458 context_switch (ecs->ptid);
488f131b
JB
3459 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3460 prepare_to_wait (ecs);
3461 return;
3462 }
c906108c 3463
2020b7ab 3464 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3465 {
3466 /* Do we need to clean up the state of a thread that has
3467 completed a displaced single-step? (Doing so usually affects
3468 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3469 displaced_step_fixup (ecs->ptid,
3470 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3471
3472 /* If we either finished a single-step or hit a breakpoint, but
3473 the user wanted this thread to be stopped, pretend we got a
3474 SIG0 (generic unsignaled stop). */
3475
3476 if (ecs->event_thread->stop_requested
16c381f0
JK
3477 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3478 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
252fbfc8 3479 }
237fc4c9 3480
515630c5 3481 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3482
527159b7 3483 if (debug_infrun)
237fc4c9 3484 {
5af949e3
UW
3485 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3486 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3487 struct cleanup *old_chain = save_inferior_ptid ();
3488
3489 inferior_ptid = ecs->ptid;
5af949e3
UW
3490
3491 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3492 paddress (gdbarch, stop_pc));
d92524f1 3493 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3494 {
3495 CORE_ADDR addr;
abbb1732 3496
237fc4c9
PA
3497 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3498
3499 if (target_stopped_data_address (&current_target, &addr))
3500 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3501 "infrun: stopped data address = %s\n",
3502 paddress (gdbarch, addr));
237fc4c9
PA
3503 else
3504 fprintf_unfiltered (gdb_stdlog,
3505 "infrun: (no data address available)\n");
3506 }
7f82dfc7
JK
3507
3508 do_cleanups (old_chain);
237fc4c9 3509 }
527159b7 3510
9f976b41
DJ
3511 if (stepping_past_singlestep_breakpoint)
3512 {
1c0fdd0e 3513 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3514 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3515 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3516
3517 stepping_past_singlestep_breakpoint = 0;
3518
3519 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3520 breakpoint, or stopped for some other reason. It would be nice if
3521 we could tell, but we can't reliably. */
16c381f0 3522 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3523 {
527159b7 3524 if (debug_infrun)
8a9de0e4 3525 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 3526 /* Pull the single step breakpoints out of the target. */
e0cd558a 3527 remove_single_step_breakpoints ();
9f976b41
DJ
3528 singlestep_breakpoints_inserted_p = 0;
3529
3530 ecs->random_signal = 0;
16c381f0 3531 ecs->event_thread->control.trap_expected = 0;
9f976b41 3532
0d1e5fa7 3533 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3534 if (deprecated_context_hook)
3535 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3536
3537 resume (1, TARGET_SIGNAL_0);
3538 prepare_to_wait (ecs);
3539 return;
3540 }
3541 }
3542
ca67fcb8 3543 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3544 {
94cc34af
PA
3545 /* In non-stop mode, there's never a deferred_step_ptid set. */
3546 gdb_assert (!non_stop);
3547
6a6b96b9
UW
3548 /* If we stopped for some other reason than single-stepping, ignore
3549 the fact that we were supposed to switch back. */
16c381f0 3550 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3551 {
3552 if (debug_infrun)
3553 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3554 "infrun: handling deferred step\n");
6a6b96b9
UW
3555
3556 /* Pull the single step breakpoints out of the target. */
3557 if (singlestep_breakpoints_inserted_p)
3558 {
3559 remove_single_step_breakpoints ();
3560 singlestep_breakpoints_inserted_p = 0;
3561 }
3562
3563 /* Note: We do not call context_switch at this point, as the
3564 context is already set up for stepping the original thread. */
ca67fcb8
VP
3565 switch_to_thread (deferred_step_ptid);
3566 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3567 /* Suppress spurious "Switching to ..." message. */
3568 previous_inferior_ptid = inferior_ptid;
3569
3570 resume (1, TARGET_SIGNAL_0);
3571 prepare_to_wait (ecs);
3572 return;
3573 }
ca67fcb8
VP
3574
3575 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3576 }
3577
488f131b
JB
3578 /* See if a thread hit a thread-specific breakpoint that was meant for
3579 another thread. If so, then step that thread past the breakpoint,
3580 and continue it. */
3581
16c381f0 3582 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3583 {
9f976b41 3584 int thread_hop_needed = 0;
cf00dfa7
VP
3585 struct address_space *aspace =
3586 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3587
f8d40ec8
JB
3588 /* Check if a regular breakpoint has been hit before checking
3589 for a potential single step breakpoint. Otherwise, GDB will
3590 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3591 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3592 {
c5aa993b 3593 ecs->random_signal = 0;
6c95b8df 3594 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3595 thread_hop_needed = 1;
3596 }
1c0fdd0e 3597 else if (singlestep_breakpoints_inserted_p)
9f976b41 3598 {
fd48f117
DJ
3599 /* We have not context switched yet, so this should be true
3600 no matter which thread hit the singlestep breakpoint. */
3601 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3602 if (debug_infrun)
3603 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3604 "trap for %s\n",
3605 target_pid_to_str (ecs->ptid));
3606
9f976b41
DJ
3607 ecs->random_signal = 0;
3608 /* The call to in_thread_list is necessary because PTIDs sometimes
3609 change when we go from single-threaded to multi-threaded. If
3610 the singlestep_ptid is still in the list, assume that it is
3611 really different from ecs->ptid. */
3612 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3613 && in_thread_list (singlestep_ptid))
3614 {
fd48f117
DJ
3615 /* If the PC of the thread we were trying to single-step
3616 has changed, discard this event (which we were going
3617 to ignore anyway), and pretend we saw that thread
3618 trap. This prevents us continuously moving the
3619 single-step breakpoint forward, one instruction at a
3620 time. If the PC has changed, then the thread we were
3621 trying to single-step has trapped or been signalled,
3622 but the event has not been reported to GDB yet.
3623
3624 There might be some cases where this loses signal
3625 information, if a signal has arrived at exactly the
3626 same time that the PC changed, but this is the best
3627 we can do with the information available. Perhaps we
3628 should arrange to report all events for all threads
3629 when they stop, or to re-poll the remote looking for
3630 this particular thread (i.e. temporarily enable
3631 schedlock). */
515630c5
UW
3632
3633 CORE_ADDR new_singlestep_pc
3634 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3635
3636 if (new_singlestep_pc != singlestep_pc)
fd48f117 3637 {
2020b7ab
PA
3638 enum target_signal stop_signal;
3639
fd48f117
DJ
3640 if (debug_infrun)
3641 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3642 " but expected thread advanced also\n");
3643
3644 /* The current context still belongs to
3645 singlestep_ptid. Don't swap here, since that's
3646 the context we want to use. Just fudge our
3647 state and continue. */
16c381f0
JK
3648 stop_signal = ecs->event_thread->suspend.stop_signal;
3649 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
fd48f117 3650 ecs->ptid = singlestep_ptid;
e09875d4 3651 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3652 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3653 stop_pc = new_singlestep_pc;
fd48f117
DJ
3654 }
3655 else
3656 {
3657 if (debug_infrun)
3658 fprintf_unfiltered (gdb_stdlog,
3659 "infrun: unexpected thread\n");
3660
3661 thread_hop_needed = 1;
3662 stepping_past_singlestep_breakpoint = 1;
3663 saved_singlestep_ptid = singlestep_ptid;
3664 }
9f976b41
DJ
3665 }
3666 }
3667
3668 if (thread_hop_needed)
8fb3e588 3669 {
9f5a595d 3670 struct regcache *thread_regcache;
237fc4c9 3671 int remove_status = 0;
8fb3e588 3672
527159b7 3673 if (debug_infrun)
8a9de0e4 3674 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3675
b3444185
PA
3676 /* Switch context before touching inferior memory, the
3677 previous thread may have exited. */
3678 if (!ptid_equal (inferior_ptid, ecs->ptid))
3679 context_switch (ecs->ptid);
3680
8fb3e588
AC
3681 /* Saw a breakpoint, but it was hit by the wrong thread.
3682 Just continue. */
3683
1c0fdd0e 3684 if (singlestep_breakpoints_inserted_p)
488f131b 3685 {
8fb3e588 3686 /* Pull the single step breakpoints out of the target. */
e0cd558a 3687 remove_single_step_breakpoints ();
8fb3e588
AC
3688 singlestep_breakpoints_inserted_p = 0;
3689 }
3690
237fc4c9
PA
3691 /* If the arch can displace step, don't remove the
3692 breakpoints. */
9f5a595d
UW
3693 thread_regcache = get_thread_regcache (ecs->ptid);
3694 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3695 remove_status = remove_breakpoints ();
3696
8fb3e588
AC
3697 /* Did we fail to remove breakpoints? If so, try
3698 to set the PC past the bp. (There's at least
3699 one situation in which we can fail to remove
3700 the bp's: On HP-UX's that use ttrace, we can't
3701 change the address space of a vforking child
3702 process until the child exits (well, okay, not
3703 then either :-) or execs. */
3704 if (remove_status != 0)
9d9cd7ac 3705 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3706 else
3707 { /* Single step */
94cc34af
PA
3708 if (!non_stop)
3709 {
3710 /* Only need to require the next event from this
3711 thread in all-stop mode. */
3712 waiton_ptid = ecs->ptid;
3713 infwait_state = infwait_thread_hop_state;
3714 }
8fb3e588 3715
4e1c45ea 3716 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3717 keep_going (ecs);
8fb3e588
AC
3718 return;
3719 }
488f131b 3720 }
1c0fdd0e 3721 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
3722 {
3723 sw_single_step_trap_p = 1;
3724 ecs->random_signal = 0;
3725 }
488f131b
JB
3726 }
3727 else
3728 ecs->random_signal = 1;
c906108c 3729
488f131b 3730 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3731 so, then switch to that thread. */
3732 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3733 {
527159b7 3734 if (debug_infrun)
8a9de0e4 3735 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3736
0d1e5fa7 3737 context_switch (ecs->ptid);
c5aa993b 3738
9a4105ab
AC
3739 if (deprecated_context_hook)
3740 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3741 }
c906108c 3742
568d6575
UW
3743 /* At this point, get hold of the now-current thread's frame. */
3744 frame = get_current_frame ();
3745 gdbarch = get_frame_arch (frame);
3746
1c0fdd0e 3747 if (singlestep_breakpoints_inserted_p)
488f131b
JB
3748 {
3749 /* Pull the single step breakpoints out of the target. */
e0cd558a 3750 remove_single_step_breakpoints ();
488f131b
JB
3751 singlestep_breakpoints_inserted_p = 0;
3752 }
c906108c 3753
d983da9c
DJ
3754 if (stepped_after_stopped_by_watchpoint)
3755 stopped_by_watchpoint = 0;
3756 else
3757 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3758
3759 /* If necessary, step over this watchpoint. We'll be back to display
3760 it in a moment. */
3761 if (stopped_by_watchpoint
d92524f1 3762 && (target_have_steppable_watchpoint
568d6575 3763 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3764 {
488f131b
JB
3765 /* At this point, we are stopped at an instruction which has
3766 attempted to write to a piece of memory under control of
3767 a watchpoint. The instruction hasn't actually executed
3768 yet. If we were to evaluate the watchpoint expression
3769 now, we would get the old value, and therefore no change
3770 would seem to have occurred.
3771
3772 In order to make watchpoints work `right', we really need
3773 to complete the memory write, and then evaluate the
d983da9c
DJ
3774 watchpoint expression. We do this by single-stepping the
3775 target.
3776
3777 It may not be necessary to disable the watchpoint to stop over
3778 it. For example, the PA can (with some kernel cooperation)
3779 single step over a watchpoint without disabling the watchpoint.
3780
3781 It is far more common to need to disable a watchpoint to step
3782 the inferior over it. If we have non-steppable watchpoints,
3783 we must disable the current watchpoint; it's simplest to
3784 disable all watchpoints and breakpoints. */
2facfe5c
DD
3785 int hw_step = 1;
3786
d92524f1 3787 if (!target_have_steppable_watchpoint)
d983da9c 3788 remove_breakpoints ();
2facfe5c 3789 /* Single step */
568d6575 3790 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 3791 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 3792 waiton_ptid = ecs->ptid;
d92524f1 3793 if (target_have_steppable_watchpoint)
0d1e5fa7 3794 infwait_state = infwait_step_watch_state;
d983da9c 3795 else
0d1e5fa7 3796 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3797 prepare_to_wait (ecs);
3798 return;
3799 }
3800
488f131b
JB
3801 ecs->stop_func_start = 0;
3802 ecs->stop_func_end = 0;
3803 ecs->stop_func_name = 0;
3804 /* Don't care about return value; stop_func_start and stop_func_name
3805 will both be 0 if it doesn't work. */
3806 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3807 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a 3808 ecs->stop_func_start
568d6575 3809 += gdbarch_deprecated_function_start_offset (gdbarch);
4e1c45ea 3810 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
3811 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
3812 ecs->event_thread->control.stop_step = 0;
488f131b
JB
3813 stop_print_frame = 1;
3814 ecs->random_signal = 0;
3815 stopped_by_random_signal = 0;
488f131b 3816
edb3359d
DJ
3817 /* Hide inlined functions starting here, unless we just performed stepi or
3818 nexti. After stepi and nexti, always show the innermost frame (not any
3819 inline function call sites). */
16c381f0 3820 if (ecs->event_thread->control.step_range_end != 1)
edb3359d
DJ
3821 skip_inline_frames (ecs->ptid);
3822
16c381f0
JK
3823 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3824 && ecs->event_thread->control.trap_expected
568d6575 3825 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 3826 && currently_stepping (ecs->event_thread))
3352ef37 3827 {
b50d7442 3828 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
3829 also on an instruction that needs to be stepped multiple
3830 times before it's been fully executing. E.g., architectures
3831 with a delay slot. It needs to be stepped twice, once for
3832 the instruction and once for the delay slot. */
3833 int step_through_delay
568d6575 3834 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 3835
527159b7 3836 if (debug_infrun && step_through_delay)
8a9de0e4 3837 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
3838 if (ecs->event_thread->control.step_range_end == 0
3839 && step_through_delay)
3352ef37
AC
3840 {
3841 /* The user issued a continue when stopped at a breakpoint.
3842 Set up for another trap and get out of here. */
4e1c45ea 3843 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3844 keep_going (ecs);
3845 return;
3846 }
3847 else if (step_through_delay)
3848 {
3849 /* The user issued a step when stopped at a breakpoint.
3850 Maybe we should stop, maybe we should not - the delay
3851 slot *might* correspond to a line of source. In any
ca67fcb8
VP
3852 case, don't decide that here, just set
3853 ecs->stepping_over_breakpoint, making sure we
3854 single-step again before breakpoints are re-inserted. */
4e1c45ea 3855 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3856 }
3857 }
3858
488f131b
JB
3859 /* Look at the cause of the stop, and decide what to do.
3860 The alternatives are:
0d1e5fa7
PA
3861 1) stop_stepping and return; to really stop and return to the debugger,
3862 2) keep_going and return to start up again
4e1c45ea 3863 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
3864 3) set ecs->random_signal to 1, and the decision between 1 and 2
3865 will be made according to the signal handling tables. */
3866
16c381f0 3867 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
3868 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3869 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3870 {
16c381f0
JK
3871 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3872 && stop_after_trap)
488f131b 3873 {
527159b7 3874 if (debug_infrun)
8a9de0e4 3875 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
3876 stop_print_frame = 0;
3877 stop_stepping (ecs);
3878 return;
3879 }
c54cfec8
EZ
3880
3881 /* This is originated from start_remote(), start_inferior() and
3882 shared libraries hook functions. */
b0f4b84b 3883 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3884 {
527159b7 3885 if (debug_infrun)
8a9de0e4 3886 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
3887 stop_stepping (ecs);
3888 return;
3889 }
3890
c54cfec8 3891 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
3892 the stop_signal here, because some kernels don't ignore a
3893 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3894 See more comments in inferior.h. On the other hand, if we
a0ef4274 3895 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
3896 will handle the SIGSTOP if it should show up later.
3897
3898 Also consider that the attach is complete when we see a
3899 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3900 target extended-remote report it instead of a SIGSTOP
3901 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
3902 signal, so this is no exception.
3903
3904 Also consider that the attach is complete when we see a
3905 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3906 the target to stop all threads of the inferior, in case the
3907 low level attach operation doesn't stop them implicitly. If
3908 they weren't stopped implicitly, then the stub will report a
3909 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3910 other than GDB's request. */
a0ef4274 3911 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
16c381f0
JK
3912 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
3913 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3914 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
3915 {
3916 stop_stepping (ecs);
16c381f0 3917 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
3918 return;
3919 }
3920
fba57f8f 3921 /* See if there is a breakpoint at the current PC. */
16c381f0 3922 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3923 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3924 stop_pc, ecs->ptid);
3925
fba57f8f
VP
3926 /* Following in case break condition called a
3927 function. */
3928 stop_print_frame = 1;
488f131b 3929
db82e815
PA
3930 /* This is where we handle "moribund" watchpoints. Unlike
3931 software breakpoints traps, hardware watchpoint traps are
3932 always distinguishable from random traps. If no high-level
3933 watchpoint is associated with the reported stop data address
3934 anymore, then the bpstat does not explain the signal ---
3935 simply make sure to ignore it if `stopped_by_watchpoint' is
3936 set. */
3937
3938 if (debug_infrun
16c381f0
JK
3939 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3940 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815
PA
3941 && stopped_by_watchpoint)
3942 fprintf_unfiltered (gdb_stdlog, "\
3943infrun: no user watchpoint explains watchpoint SIGTRAP, ignoring\n");
3944
73dd234f 3945 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
3946 at one stage in the past included checks for an inferior
3947 function call's call dummy's return breakpoint. The original
3948 comment, that went with the test, read:
73dd234f 3949
8fb3e588
AC
3950 ``End of a stack dummy. Some systems (e.g. Sony news) give
3951 another signal besides SIGTRAP, so check here as well as
3952 above.''
73dd234f 3953
8002d778 3954 If someone ever tries to get call dummys on a
73dd234f 3955 non-executable stack to work (where the target would stop
03cebad2
MK
3956 with something like a SIGSEGV), then those tests might need
3957 to be re-instated. Given, however, that the tests were only
73dd234f 3958 enabled when momentary breakpoints were not being used, I
03cebad2
MK
3959 suspect that it won't be the case.
3960
8fb3e588
AC
3961 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3962 be necessary for call dummies on a non-executable stack on
3963 SPARC. */
73dd234f 3964
16c381f0 3965 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3966 ecs->random_signal
16c381f0 3967 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 3968 || stopped_by_watchpoint
16c381f0
JK
3969 || ecs->event_thread->control.trap_expected
3970 || (ecs->event_thread->control.step_range_end
8358c15c
JK
3971 && (ecs->event_thread->control.step_resume_breakpoint
3972 == NULL)));
488f131b
JB
3973 else
3974 {
16c381f0
JK
3975 ecs->random_signal = !bpstat_explains_signal
3976 (ecs->event_thread->control.stop_bpstat);
488f131b 3977 if (!ecs->random_signal)
16c381f0 3978 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3979 }
3980 }
3981
3982 /* When we reach this point, we've pretty much decided
3983 that the reason for stopping must've been a random
3984 (unexpected) signal. */
3985
3986 else
3987 ecs->random_signal = 1;
488f131b 3988
04e68871 3989process_event_stop_test:
568d6575
UW
3990
3991 /* Re-fetch current thread's frame in case we did a
3992 "goto process_event_stop_test" above. */
3993 frame = get_current_frame ();
3994 gdbarch = get_frame_arch (frame);
3995
488f131b
JB
3996 /* For the program's own signals, act according to
3997 the signal handling tables. */
3998
3999 if (ecs->random_signal)
4000 {
4001 /* Signal not for debugging purposes. */
4002 int printed = 0;
24291992 4003 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4004
527159b7 4005 if (debug_infrun)
2020b7ab 4006 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4007 ecs->event_thread->suspend.stop_signal);
527159b7 4008
488f131b
JB
4009 stopped_by_random_signal = 1;
4010
16c381f0 4011 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4012 {
4013 printed = 1;
4014 target_terminal_ours_for_output ();
16c381f0
JK
4015 print_signal_received_reason
4016 (ecs->event_thread->suspend.stop_signal);
488f131b 4017 }
252fbfc8
PA
4018 /* Always stop on signals if we're either just gaining control
4019 of the program, or the user explicitly requested this thread
4020 to remain stopped. */
d6b48e9c 4021 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4022 || ecs->event_thread->stop_requested
24291992 4023 || (!inf->detaching
16c381f0 4024 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4025 {
4026 stop_stepping (ecs);
4027 return;
4028 }
4029 /* If not going to stop, give terminal back
4030 if we took it away. */
4031 else if (printed)
4032 target_terminal_inferior ();
4033
4034 /* Clear the signal if it should not be passed. */
16c381f0
JK
4035 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4036 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
488f131b 4037
fb14de7b 4038 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4039 && ecs->event_thread->control.trap_expected
8358c15c 4040 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4041 {
4042 /* We were just starting a new sequence, attempting to
4043 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4044 Instead this signal arrives. This signal will take us out
68f53502
AC
4045 of the stepping range so GDB needs to remember to, when
4046 the signal handler returns, resume stepping off that
4047 breakpoint. */
4048 /* To simplify things, "continue" is forced to use the same
4049 code paths as single-step - set a breakpoint at the
4050 signal return address and then, once hit, step off that
4051 breakpoint. */
237fc4c9
PA
4052 if (debug_infrun)
4053 fprintf_unfiltered (gdb_stdlog,
4054 "infrun: signal arrived while stepping over "
4055 "breakpoint\n");
d3169d93 4056
568d6575 4057 insert_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4058 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
4059 keep_going (ecs);
4060 return;
68f53502 4061 }
9d799f85 4062
16c381f0
JK
4063 if (ecs->event_thread->control.step_range_end != 0
4064 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4065 && (ecs->event_thread->control.step_range_start <= stop_pc
4066 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4067 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4068 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4069 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4070 {
4071 /* The inferior is about to take a signal that will take it
4072 out of the single step range. Set a breakpoint at the
4073 current PC (which is presumably where the signal handler
4074 will eventually return) and then allow the inferior to
4075 run free.
4076
4077 Note that this is only needed for a signal delivered
4078 while in the single-step range. Nested signals aren't a
4079 problem as they eventually all return. */
237fc4c9
PA
4080 if (debug_infrun)
4081 fprintf_unfiltered (gdb_stdlog,
4082 "infrun: signal may take us out of "
4083 "single-step range\n");
4084
568d6575 4085 insert_step_resume_breakpoint_at_frame (frame);
9d799f85
AC
4086 keep_going (ecs);
4087 return;
d303a6c7 4088 }
9d799f85
AC
4089
4090 /* Note: step_resume_breakpoint may be non-NULL. This occures
4091 when either there's a nested signal, or when there's a
4092 pending signal enabled just as the signal handler returns
4093 (leaving the inferior at the step-resume-breakpoint without
4094 actually executing it). Either way continue until the
4095 breakpoint is really hit. */
488f131b
JB
4096 keep_going (ecs);
4097 return;
4098 }
4099
4100 /* Handle cases caused by hitting a breakpoint. */
4101 {
4102 CORE_ADDR jmp_buf_pc;
4103 struct bpstat_what what;
4104
16c381f0 4105 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
488f131b
JB
4106
4107 if (what.call_dummy)
4108 {
aa7d318d 4109 stop_stack_dummy = what.call_dummy;
c5aa993b 4110 }
c906108c 4111
628fe4e4
JK
4112 /* If we hit an internal event that triggers symbol changes, the
4113 current frame will be invalidated within bpstat_what (e.g., if
4114 we hit an internal solib event). Re-fetch it. */
4115 frame = get_current_frame ();
4116 gdbarch = get_frame_arch (frame);
4117
488f131b 4118 switch (what.main_action)
c5aa993b 4119 {
488f131b 4120 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
4121 /* If we hit the breakpoint at longjmp while stepping, we
4122 install a momentary breakpoint at the target of the
4123 jmp_buf. */
4124
4125 if (debug_infrun)
4126 fprintf_unfiltered (gdb_stdlog,
4127 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4128
4e1c45ea 4129 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4130
186c406b 4131 if (what.is_longjmp)
c5aa993b 4132 {
186c406b
TT
4133 if (!gdbarch_get_longjmp_target_p (gdbarch)
4134 || !gdbarch_get_longjmp_target (gdbarch,
4135 frame, &jmp_buf_pc))
4136 {
4137 if (debug_infrun)
4138 fprintf_unfiltered (gdb_stdlog, "\
611c83ae 4139infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
186c406b
TT
4140 keep_going (ecs);
4141 return;
4142 }
488f131b 4143
186c406b
TT
4144 /* We're going to replace the current step-resume breakpoint
4145 with a longjmp-resume breakpoint. */
4146 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 4147
186c406b
TT
4148 /* Insert a breakpoint at resume address. */
4149 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4150 }
4151 else
4152 {
4153 struct symbol *func = get_frame_function (frame);
c906108c 4154
186c406b
TT
4155 if (func)
4156 check_exception_resume (ecs, frame, func);
4157 }
488f131b
JB
4158 keep_going (ecs);
4159 return;
c906108c 4160
488f131b 4161 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 4162 if (debug_infrun)
611c83ae
PA
4163 fprintf_unfiltered (gdb_stdlog,
4164 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4165
186c406b
TT
4166 if (what.is_longjmp)
4167 {
4168 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4169 != NULL);
4170 delete_step_resume_breakpoint (ecs->event_thread);
4171 }
4172 else
4173 {
4174 /* There are several cases to consider.
4175
4176 1. The initiating frame no longer exists. In this case
4177 we must stop, because the exception has gone too far.
4178
4179 2. The initiating frame exists, and is the same as the
4180 current frame. We stop, because the exception has been
4181 caught.
4182
4183 3. The initiating frame exists and is different from
4184 the current frame. This means the exception has been
4185 caught beneath the initiating frame, so keep going. */
4186 struct frame_info *init_frame
4187 = frame_find_by_id (ecs->event_thread->initiating_frame);
4188
4189 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4190 != NULL);
4191 delete_exception_resume_breakpoint (ecs->event_thread);
4192
4193 if (init_frame)
4194 {
4195 struct frame_id current_id
4196 = get_frame_id (get_current_frame ());
4197 if (frame_id_eq (current_id,
4198 ecs->event_thread->initiating_frame))
4199 {
4200 /* Case 2. Fall through. */
4201 }
4202 else
4203 {
4204 /* Case 3. */
4205 keep_going (ecs);
4206 return;
4207 }
4208 }
4209
4210 /* For Cases 1 and 2, remove the step-resume breakpoint,
4211 if it exists. */
4212 delete_step_resume_breakpoint (ecs->event_thread);
4213 }
611c83ae 4214
16c381f0 4215 ecs->event_thread->control.stop_step = 1;
33d62d64 4216 print_end_stepping_range_reason ();
611c83ae
PA
4217 stop_stepping (ecs);
4218 return;
488f131b
JB
4219
4220 case BPSTAT_WHAT_SINGLE:
527159b7 4221 if (debug_infrun)
8802d8ed 4222 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4223 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4224 /* Still need to check other stuff, at least the case
4225 where we are stepping and step out of the right range. */
4226 break;
c906108c 4227
488f131b 4228 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4229 if (debug_infrun)
8802d8ed 4230 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4231 stop_print_frame = 1;
c906108c 4232
d303a6c7
AC
4233 /* We are about to nuke the step_resume_breakpointt via the
4234 cleanup chain, so no need to worry about it here. */
c5aa993b 4235
488f131b
JB
4236 stop_stepping (ecs);
4237 return;
c5aa993b 4238
488f131b 4239 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4240 if (debug_infrun)
8802d8ed 4241 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4242 stop_print_frame = 0;
c5aa993b 4243
d303a6c7
AC
4244 /* We are about to nuke the step_resume_breakpoin via the
4245 cleanup chain, so no need to worry about it here. */
c5aa993b 4246
488f131b 4247 stop_stepping (ecs);
e441088d 4248 return;
c5aa993b 4249
488f131b 4250 case BPSTAT_WHAT_STEP_RESUME:
527159b7 4251 if (debug_infrun)
8802d8ed 4252 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 4253
4e1c45ea
PA
4254 delete_step_resume_breakpoint (ecs->event_thread);
4255 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4256 {
4257 /* Back when the step-resume breakpoint was inserted, we
4258 were trying to single-step off a breakpoint. Go back
4259 to doing that. */
4e1c45ea
PA
4260 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4261 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4262 keep_going (ecs);
4263 return;
4264 }
b2175913
MS
4265 if (stop_pc == ecs->stop_func_start
4266 && execution_direction == EXEC_REVERSE)
4267 {
4268 /* We are stepping over a function call in reverse, and
4269 just hit the step-resume breakpoint at the start
4270 address of the function. Go back to single-stepping,
4271 which should take us back to the function call. */
4272 ecs->event_thread->stepping_over_breakpoint = 1;
4273 keep_going (ecs);
4274 return;
4275 }
488f131b
JB
4276 break;
4277
488f131b
JB
4278 case BPSTAT_WHAT_KEEP_CHECKING:
4279 break;
4280 }
4281 }
c906108c 4282
488f131b
JB
4283 /* We come here if we hit a breakpoint but should not
4284 stop for it. Possibly we also were stepping
4285 and should stop for that. So fall through and
4286 test for stepping. But, if not stepping,
4287 do not stop. */
c906108c 4288
a7212384
UW
4289 /* In all-stop mode, if we're currently stepping but have stopped in
4290 some other thread, we need to switch back to the stepped thread. */
4291 if (!non_stop)
4292 {
4293 struct thread_info *tp;
abbb1732 4294
b3444185 4295 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4296 ecs->event_thread);
4297 if (tp)
4298 {
4299 /* However, if the current thread is blocked on some internal
4300 breakpoint, and we simply need to step over that breakpoint
4301 to get it going again, do that first. */
16c381f0
JK
4302 if ((ecs->event_thread->control.trap_expected
4303 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
a7212384
UW
4304 || ecs->event_thread->stepping_over_breakpoint)
4305 {
4306 keep_going (ecs);
4307 return;
4308 }
4309
66852e9c
PA
4310 /* If the stepping thread exited, then don't try to switch
4311 back and resume it, which could fail in several different
4312 ways depending on the target. Instead, just keep going.
4313
4314 We can find a stepping dead thread in the thread list in
4315 two cases:
4316
4317 - The target supports thread exit events, and when the
4318 target tries to delete the thread from the thread list,
4319 inferior_ptid pointed at the exiting thread. In such
4320 case, calling delete_thread does not really remove the
4321 thread from the list; instead, the thread is left listed,
4322 with 'exited' state.
4323
4324 - The target's debug interface does not support thread
4325 exit events, and so we have no idea whatsoever if the
4326 previously stepping thread is still alive. For that
4327 reason, we need to synchronously query the target
4328 now. */
b3444185
PA
4329 if (is_exited (tp->ptid)
4330 || !target_thread_alive (tp->ptid))
4331 {
4332 if (debug_infrun)
4333 fprintf_unfiltered (gdb_stdlog, "\
4334infrun: not switching back to stepped thread, it has vanished\n");
4335
4336 delete_thread (tp->ptid);
4337 keep_going (ecs);
4338 return;
4339 }
4340
a7212384
UW
4341 /* Otherwise, we no longer expect a trap in the current thread.
4342 Clear the trap_expected flag before switching back -- this is
4343 what keep_going would do as well, if we called it. */
16c381f0 4344 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4345
4346 if (debug_infrun)
4347 fprintf_unfiltered (gdb_stdlog,
4348 "infrun: switching back to stepped thread\n");
4349
4350 ecs->event_thread = tp;
4351 ecs->ptid = tp->ptid;
4352 context_switch (ecs->ptid);
4353 keep_going (ecs);
4354 return;
4355 }
4356 }
4357
9d1ff73f
MS
4358 /* Are we stepping to get the inferior out of the dynamic linker's
4359 hook (and possibly the dld itself) after catching a shlib
4360 event? */
4e1c45ea 4361 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
4362 {
4363#if defined(SOLIB_ADD)
4364 /* Have we reached our destination? If not, keep going. */
4365 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4366 {
527159b7 4367 if (debug_infrun)
8a9de0e4 4368 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 4369 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 4370 keep_going (ecs);
104c1213 4371 return;
488f131b
JB
4372 }
4373#endif
527159b7 4374 if (debug_infrun)
8a9de0e4 4375 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
4376 /* Else, stop and report the catchpoint(s) whose triggering
4377 caused us to begin stepping. */
4e1c45ea 4378 ecs->event_thread->stepping_through_solib_after_catch = 0;
16c381f0
JK
4379 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4380 ecs->event_thread->control.stop_bpstat
347bddb7 4381 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 4382 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
4383 stop_print_frame = 1;
4384 stop_stepping (ecs);
4385 return;
4386 }
c906108c 4387
8358c15c 4388 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4389 {
527159b7 4390 if (debug_infrun)
d3169d93
DJ
4391 fprintf_unfiltered (gdb_stdlog,
4392 "infrun: step-resume breakpoint is inserted\n");
527159b7 4393
488f131b
JB
4394 /* Having a step-resume breakpoint overrides anything
4395 else having to do with stepping commands until
4396 that breakpoint is reached. */
488f131b
JB
4397 keep_going (ecs);
4398 return;
4399 }
c5aa993b 4400
16c381f0 4401 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4402 {
527159b7 4403 if (debug_infrun)
8a9de0e4 4404 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4405 /* Likewise if we aren't even stepping. */
488f131b
JB
4406 keep_going (ecs);
4407 return;
4408 }
c5aa993b 4409
4b7703ad
JB
4410 /* Re-fetch current thread's frame in case the code above caused
4411 the frame cache to be re-initialized, making our FRAME variable
4412 a dangling pointer. */
4413 frame = get_current_frame ();
628fe4e4 4414 gdbarch = get_frame_arch (frame);
4b7703ad 4415
488f131b 4416 /* If stepping through a line, keep going if still within it.
c906108c 4417
488f131b
JB
4418 Note that step_range_end is the address of the first instruction
4419 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4420 within it!
4421
4422 Note also that during reverse execution, we may be stepping
4423 through a function epilogue and therefore must detect when
4424 the current-frame changes in the middle of a line. */
4425
16c381f0
JK
4426 if (stop_pc >= ecs->event_thread->control.step_range_start
4427 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4428 && (execution_direction != EXEC_REVERSE
388a8562 4429 || frame_id_eq (get_frame_id (frame),
16c381f0 4430 ecs->event_thread->control.step_frame_id)))
488f131b 4431 {
527159b7 4432 if (debug_infrun)
5af949e3
UW
4433 fprintf_unfiltered
4434 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4435 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4436 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4437
4438 /* When stepping backward, stop at beginning of line range
4439 (unless it's the function entry point, in which case
4440 keep going back to the call point). */
16c381f0 4441 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4442 && stop_pc != ecs->stop_func_start
4443 && execution_direction == EXEC_REVERSE)
4444 {
16c381f0 4445 ecs->event_thread->control.stop_step = 1;
33d62d64 4446 print_end_stepping_range_reason ();
b2175913
MS
4447 stop_stepping (ecs);
4448 }
4449 else
4450 keep_going (ecs);
4451
488f131b
JB
4452 return;
4453 }
c5aa993b 4454
488f131b 4455 /* We stepped out of the stepping range. */
c906108c 4456
488f131b 4457 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4458 loader dynamic symbol resolution code...
4459
4460 EXEC_FORWARD: we keep on single stepping until we exit the run
4461 time loader code and reach the callee's address.
4462
4463 EXEC_REVERSE: we've already executed the callee (backward), and
4464 the runtime loader code is handled just like any other
4465 undebuggable function call. Now we need only keep stepping
4466 backward through the trampoline code, and that's handled further
4467 down, so there is nothing for us to do here. */
4468
4469 if (execution_direction != EXEC_REVERSE
16c381f0 4470 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4471 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4472 {
4c8c40e6 4473 CORE_ADDR pc_after_resolver =
568d6575 4474 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4475
527159b7 4476 if (debug_infrun)
8a9de0e4 4477 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 4478
488f131b
JB
4479 if (pc_after_resolver)
4480 {
4481 /* Set up a step-resume breakpoint at the address
4482 indicated by SKIP_SOLIB_RESOLVER. */
4483 struct symtab_and_line sr_sal;
abbb1732 4484
fe39c653 4485 init_sal (&sr_sal);
488f131b 4486 sr_sal.pc = pc_after_resolver;
6c95b8df 4487 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4488
a6d9a66e
UW
4489 insert_step_resume_breakpoint_at_sal (gdbarch,
4490 sr_sal, null_frame_id);
c5aa993b 4491 }
c906108c 4492
488f131b
JB
4493 keep_going (ecs);
4494 return;
4495 }
c906108c 4496
16c381f0
JK
4497 if (ecs->event_thread->control.step_range_end != 1
4498 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4499 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4500 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4501 {
527159b7 4502 if (debug_infrun)
8a9de0e4 4503 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 4504 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4505 a signal trampoline (either by a signal being delivered or by
4506 the signal handler returning). Just single-step until the
4507 inferior leaves the trampoline (either by calling the handler
4508 or returning). */
488f131b
JB
4509 keep_going (ecs);
4510 return;
4511 }
c906108c 4512
c17eaafe
DJ
4513 /* Check for subroutine calls. The check for the current frame
4514 equalling the step ID is not necessary - the check of the
4515 previous frame's ID is sufficient - but it is a common case and
4516 cheaper than checking the previous frame's ID.
14e60db5
DJ
4517
4518 NOTE: frame_id_eq will never report two invalid frame IDs as
4519 being equal, so to get into this block, both the current and
4520 previous frame must have valid frame IDs. */
005ca36a
JB
4521 /* The outer_frame_id check is a heuristic to detect stepping
4522 through startup code. If we step over an instruction which
4523 sets the stack pointer from an invalid value to a valid value,
4524 we may detect that as a subroutine call from the mythical
4525 "outermost" function. This could be fixed by marking
4526 outermost frames as !stack_p,code_p,special_p. Then the
4527 initial outermost frame, before sp was valid, would
ce6cca6d 4528 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4529 for more. */
edb3359d 4530 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4531 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4532 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4533 ecs->event_thread->control.step_stack_frame_id)
4534 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4535 outer_frame_id)
4536 || step_start_function != find_pc_function (stop_pc))))
488f131b 4537 {
95918acb 4538 CORE_ADDR real_stop_pc;
8fb3e588 4539
527159b7 4540 if (debug_infrun)
8a9de0e4 4541 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4542
16c381f0
JK
4543 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4544 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4545 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4546 ecs->stop_func_start)))
95918acb
AC
4547 {
4548 /* I presume that step_over_calls is only 0 when we're
4549 supposed to be stepping at the assembly language level
4550 ("stepi"). Just stop. */
4551 /* Also, maybe we just did a "nexti" inside a prolog, so we
4552 thought it was a subroutine call but it was not. Stop as
4553 well. FENN */
388a8562 4554 /* And this works the same backward as frontward. MVS */
16c381f0 4555 ecs->event_thread->control.stop_step = 1;
33d62d64 4556 print_end_stepping_range_reason ();
95918acb
AC
4557 stop_stepping (ecs);
4558 return;
4559 }
8fb3e588 4560
388a8562
MS
4561 /* Reverse stepping through solib trampolines. */
4562
4563 if (execution_direction == EXEC_REVERSE
16c381f0 4564 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4565 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4566 || (ecs->stop_func_start == 0
4567 && in_solib_dynsym_resolve_code (stop_pc))))
4568 {
4569 /* Any solib trampoline code can be handled in reverse
4570 by simply continuing to single-step. We have already
4571 executed the solib function (backwards), and a few
4572 steps will take us back through the trampoline to the
4573 caller. */
4574 keep_going (ecs);
4575 return;
4576 }
4577
16c381f0 4578 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4579 {
b2175913
MS
4580 /* We're doing a "next".
4581
4582 Normal (forward) execution: set a breakpoint at the
4583 callee's return address (the address at which the caller
4584 will resume).
4585
4586 Reverse (backward) execution. set the step-resume
4587 breakpoint at the start of the function that we just
4588 stepped into (backwards), and continue to there. When we
6130d0b7 4589 get there, we'll need to single-step back to the caller. */
b2175913
MS
4590
4591 if (execution_direction == EXEC_REVERSE)
4592 {
4593 struct symtab_and_line sr_sal;
3067f6e5 4594
388a8562
MS
4595 /* Normal function call return (static or dynamic). */
4596 init_sal (&sr_sal);
4597 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4598 sr_sal.pspace = get_frame_program_space (frame);
4599 insert_step_resume_breakpoint_at_sal (gdbarch,
4600 sr_sal, null_frame_id);
b2175913
MS
4601 }
4602 else
568d6575 4603 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4604
8567c30f
AC
4605 keep_going (ecs);
4606 return;
4607 }
a53c66de 4608
95918acb 4609 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4610 calling routine and the real function), locate the real
4611 function. That's what tells us (a) whether we want to step
4612 into it at all, and (b) what prologue we want to run to the
4613 end of, if we do step into it. */
568d6575 4614 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4615 if (real_stop_pc == 0)
568d6575 4616 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4617 if (real_stop_pc != 0)
4618 ecs->stop_func_start = real_stop_pc;
8fb3e588 4619
db5f024e 4620 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4621 {
4622 struct symtab_and_line sr_sal;
abbb1732 4623
1b2bfbb9
RC
4624 init_sal (&sr_sal);
4625 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4626 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4627
a6d9a66e
UW
4628 insert_step_resume_breakpoint_at_sal (gdbarch,
4629 sr_sal, null_frame_id);
8fb3e588
AC
4630 keep_going (ecs);
4631 return;
1b2bfbb9
RC
4632 }
4633
95918acb 4634 /* If we have line number information for the function we are
8fb3e588 4635 thinking of stepping into, step into it.
95918acb 4636
8fb3e588
AC
4637 If there are several symtabs at that PC (e.g. with include
4638 files), just want to know whether *any* of them have line
4639 numbers. find_pc_line handles this. */
95918acb
AC
4640 {
4641 struct symtab_and_line tmp_sal;
8fb3e588 4642
95918acb 4643 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
9d1807c3 4644 tmp_sal.pspace = get_frame_program_space (frame);
95918acb
AC
4645 if (tmp_sal.line != 0)
4646 {
b2175913 4647 if (execution_direction == EXEC_REVERSE)
568d6575 4648 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4649 else
568d6575 4650 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4651 return;
4652 }
4653 }
4654
4655 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4656 set, we stop the step so that the user has a chance to switch
4657 in assembly mode. */
16c381f0 4658 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4659 && step_stop_if_no_debug)
95918acb 4660 {
16c381f0 4661 ecs->event_thread->control.stop_step = 1;
33d62d64 4662 print_end_stepping_range_reason ();
95918acb
AC
4663 stop_stepping (ecs);
4664 return;
4665 }
4666
b2175913
MS
4667 if (execution_direction == EXEC_REVERSE)
4668 {
4669 /* Set a breakpoint at callee's start address.
4670 From there we can step once and be back in the caller. */
4671 struct symtab_and_line sr_sal;
abbb1732 4672
b2175913
MS
4673 init_sal (&sr_sal);
4674 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4675 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4676 insert_step_resume_breakpoint_at_sal (gdbarch,
4677 sr_sal, null_frame_id);
b2175913
MS
4678 }
4679 else
4680 /* Set a breakpoint at callee's return address (the address
4681 at which the caller will resume). */
568d6575 4682 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4683
95918acb 4684 keep_going (ecs);
488f131b 4685 return;
488f131b 4686 }
c906108c 4687
fdd654f3
MS
4688 /* Reverse stepping through solib trampolines. */
4689
4690 if (execution_direction == EXEC_REVERSE
16c381f0 4691 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
4692 {
4693 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4694 || (ecs->stop_func_start == 0
4695 && in_solib_dynsym_resolve_code (stop_pc)))
4696 {
4697 /* Any solib trampoline code can be handled in reverse
4698 by simply continuing to single-step. We have already
4699 executed the solib function (backwards), and a few
4700 steps will take us back through the trampoline to the
4701 caller. */
4702 keep_going (ecs);
4703 return;
4704 }
4705 else if (in_solib_dynsym_resolve_code (stop_pc))
4706 {
4707 /* Stepped backward into the solib dynsym resolver.
4708 Set a breakpoint at its start and continue, then
4709 one more step will take us out. */
4710 struct symtab_and_line sr_sal;
abbb1732 4711
fdd654f3
MS
4712 init_sal (&sr_sal);
4713 sr_sal.pc = ecs->stop_func_start;
9d1807c3 4714 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
4715 insert_step_resume_breakpoint_at_sal (gdbarch,
4716 sr_sal, null_frame_id);
4717 keep_going (ecs);
4718 return;
4719 }
4720 }
4721
488f131b
JB
4722 /* If we're in the return path from a shared library trampoline,
4723 we want to proceed through the trampoline when stepping. */
568d6575 4724 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 4725 stop_pc, ecs->stop_func_name))
488f131b 4726 {
488f131b 4727 /* Determine where this trampoline returns. */
52f729a7 4728 CORE_ADDR real_stop_pc;
abbb1732 4729
568d6575 4730 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 4731
527159b7 4732 if (debug_infrun)
8a9de0e4 4733 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 4734
488f131b 4735 /* Only proceed through if we know where it's going. */
d764a824 4736 if (real_stop_pc)
488f131b
JB
4737 {
4738 /* And put the step-breakpoint there and go until there. */
4739 struct symtab_and_line sr_sal;
4740
fe39c653 4741 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 4742 sr_sal.pc = real_stop_pc;
488f131b 4743 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4744 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
4745
4746 /* Do not specify what the fp should be when we stop since
4747 on some machines the prologue is where the new fp value
4748 is established. */
a6d9a66e
UW
4749 insert_step_resume_breakpoint_at_sal (gdbarch,
4750 sr_sal, null_frame_id);
c906108c 4751
488f131b
JB
4752 /* Restart without fiddling with the step ranges or
4753 other state. */
4754 keep_going (ecs);
4755 return;
4756 }
4757 }
c906108c 4758
2afb61aa 4759 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 4760
1b2bfbb9
RC
4761 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4762 the trampoline processing logic, however, there are some trampolines
4763 that have no names, so we should do trampoline handling first. */
16c381f0 4764 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 4765 && ecs->stop_func_name == NULL
2afb61aa 4766 && stop_pc_sal.line == 0)
1b2bfbb9 4767 {
527159b7 4768 if (debug_infrun)
8a9de0e4 4769 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 4770
1b2bfbb9 4771 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
4772 undebuggable function (where there is no debugging information
4773 and no line number corresponding to the address where the
1b2bfbb9
RC
4774 inferior stopped). Since we want to skip this kind of code,
4775 we keep going until the inferior returns from this
14e60db5
DJ
4776 function - unless the user has asked us not to (via
4777 set step-mode) or we no longer know how to get back
4778 to the call site. */
4779 if (step_stop_if_no_debug
c7ce8faa 4780 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
4781 {
4782 /* If we have no line number and the step-stop-if-no-debug
4783 is set, we stop the step so that the user has a chance to
4784 switch in assembly mode. */
16c381f0 4785 ecs->event_thread->control.stop_step = 1;
33d62d64 4786 print_end_stepping_range_reason ();
1b2bfbb9
RC
4787 stop_stepping (ecs);
4788 return;
4789 }
4790 else
4791 {
4792 /* Set a breakpoint at callee's return address (the address
4793 at which the caller will resume). */
568d6575 4794 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
4795 keep_going (ecs);
4796 return;
4797 }
4798 }
4799
16c381f0 4800 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
4801 {
4802 /* It is stepi or nexti. We always want to stop stepping after
4803 one instruction. */
527159b7 4804 if (debug_infrun)
8a9de0e4 4805 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 4806 ecs->event_thread->control.stop_step = 1;
33d62d64 4807 print_end_stepping_range_reason ();
1b2bfbb9
RC
4808 stop_stepping (ecs);
4809 return;
4810 }
4811
2afb61aa 4812 if (stop_pc_sal.line == 0)
488f131b
JB
4813 {
4814 /* We have no line number information. That means to stop
4815 stepping (does this always happen right after one instruction,
4816 when we do "s" in a function with no line numbers,
4817 or can this happen as a result of a return or longjmp?). */
527159b7 4818 if (debug_infrun)
8a9de0e4 4819 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 4820 ecs->event_thread->control.stop_step = 1;
33d62d64 4821 print_end_stepping_range_reason ();
488f131b
JB
4822 stop_stepping (ecs);
4823 return;
4824 }
c906108c 4825
edb3359d
DJ
4826 /* Look for "calls" to inlined functions, part one. If the inline
4827 frame machinery detected some skipped call sites, we have entered
4828 a new inline function. */
4829
4830 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 4831 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
4832 && inline_skipped_frames (ecs->ptid))
4833 {
4834 struct symtab_and_line call_sal;
4835
4836 if (debug_infrun)
4837 fprintf_unfiltered (gdb_stdlog,
4838 "infrun: stepped into inlined function\n");
4839
4840 find_frame_sal (get_current_frame (), &call_sal);
4841
16c381f0 4842 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
4843 {
4844 /* For "step", we're going to stop. But if the call site
4845 for this inlined function is on the same source line as
4846 we were previously stepping, go down into the function
4847 first. Otherwise stop at the call site. */
4848
4849 if (call_sal.line == ecs->event_thread->current_line
4850 && call_sal.symtab == ecs->event_thread->current_symtab)
4851 step_into_inline_frame (ecs->ptid);
4852
16c381f0 4853 ecs->event_thread->control.stop_step = 1;
33d62d64 4854 print_end_stepping_range_reason ();
edb3359d
DJ
4855 stop_stepping (ecs);
4856 return;
4857 }
4858 else
4859 {
4860 /* For "next", we should stop at the call site if it is on a
4861 different source line. Otherwise continue through the
4862 inlined function. */
4863 if (call_sal.line == ecs->event_thread->current_line
4864 && call_sal.symtab == ecs->event_thread->current_symtab)
4865 keep_going (ecs);
4866 else
4867 {
16c381f0 4868 ecs->event_thread->control.stop_step = 1;
33d62d64 4869 print_end_stepping_range_reason ();
edb3359d
DJ
4870 stop_stepping (ecs);
4871 }
4872 return;
4873 }
4874 }
4875
4876 /* Look for "calls" to inlined functions, part two. If we are still
4877 in the same real function we were stepping through, but we have
4878 to go further up to find the exact frame ID, we are stepping
4879 through a more inlined call beyond its call site. */
4880
4881 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4882 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 4883 ecs->event_thread->control.step_frame_id)
edb3359d 4884 && stepped_in_from (get_current_frame (),
16c381f0 4885 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
4886 {
4887 if (debug_infrun)
4888 fprintf_unfiltered (gdb_stdlog,
4889 "infrun: stepping through inlined function\n");
4890
16c381f0 4891 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
4892 keep_going (ecs);
4893 else
4894 {
16c381f0 4895 ecs->event_thread->control.stop_step = 1;
33d62d64 4896 print_end_stepping_range_reason ();
edb3359d
DJ
4897 stop_stepping (ecs);
4898 }
4899 return;
4900 }
4901
2afb61aa 4902 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
4903 && (ecs->event_thread->current_line != stop_pc_sal.line
4904 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
4905 {
4906 /* We are at the start of a different line. So stop. Note that
4907 we don't stop if we step into the middle of a different line.
4908 That is said to make things like for (;;) statements work
4909 better. */
527159b7 4910 if (debug_infrun)
8a9de0e4 4911 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
16c381f0 4912 ecs->event_thread->control.stop_step = 1;
33d62d64 4913 print_end_stepping_range_reason ();
488f131b
JB
4914 stop_stepping (ecs);
4915 return;
4916 }
c906108c 4917
488f131b 4918 /* We aren't done stepping.
c906108c 4919
488f131b
JB
4920 Optimize by setting the stepping range to the line.
4921 (We might not be in the original line, but if we entered a
4922 new line in mid-statement, we continue stepping. This makes
4923 things like for(;;) statements work better.) */
c906108c 4924
16c381f0
JK
4925 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
4926 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 4927 set_step_info (frame, stop_pc_sal);
488f131b 4928
527159b7 4929 if (debug_infrun)
8a9de0e4 4930 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 4931 keep_going (ecs);
104c1213
JM
4932}
4933
b3444185 4934/* Is thread TP in the middle of single-stepping? */
104c1213 4935
a289b8f6 4936static int
b3444185 4937currently_stepping (struct thread_info *tp)
a7212384 4938{
8358c15c
JK
4939 return ((tp->control.step_range_end
4940 && tp->control.step_resume_breakpoint == NULL)
4941 || tp->control.trap_expected
4942 || tp->stepping_through_solib_after_catch
4943 || bpstat_should_step ());
a7212384
UW
4944}
4945
b3444185
PA
4946/* Returns true if any thread *but* the one passed in "data" is in the
4947 middle of stepping or of handling a "next". */
a7212384 4948
104c1213 4949static int
b3444185 4950currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 4951{
b3444185
PA
4952 if (tp == data)
4953 return 0;
4954
16c381f0
JK
4955 return (tp->control.step_range_end
4956 || tp->control.trap_expected
b3444185 4957 || tp->stepping_through_solib_after_catch);
104c1213 4958}
c906108c 4959
b2175913
MS
4960/* Inferior has stepped into a subroutine call with source code that
4961 we should not step over. Do step to the first line of code in
4962 it. */
c2c6d25f
JM
4963
4964static void
568d6575
UW
4965handle_step_into_function (struct gdbarch *gdbarch,
4966 struct execution_control_state *ecs)
c2c6d25f
JM
4967{
4968 struct symtab *s;
2afb61aa 4969 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
4970
4971 s = find_pc_symtab (stop_pc);
4972 if (s && s->language != language_asm)
568d6575 4973 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 4974 ecs->stop_func_start);
c2c6d25f 4975
2afb61aa 4976 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
4977 /* Use the step_resume_break to step until the end of the prologue,
4978 even if that involves jumps (as it seems to on the vax under
4979 4.2). */
4980 /* If the prologue ends in the middle of a source line, continue to
4981 the end of that source line (if it is still within the function).
4982 Otherwise, just go to end of prologue. */
2afb61aa
PA
4983 if (stop_func_sal.end
4984 && stop_func_sal.pc != ecs->stop_func_start
4985 && stop_func_sal.end < ecs->stop_func_end)
4986 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 4987
2dbd5e30
KB
4988 /* Architectures which require breakpoint adjustment might not be able
4989 to place a breakpoint at the computed address. If so, the test
4990 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4991 ecs->stop_func_start to an address at which a breakpoint may be
4992 legitimately placed.
8fb3e588 4993
2dbd5e30
KB
4994 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4995 made, GDB will enter an infinite loop when stepping through
4996 optimized code consisting of VLIW instructions which contain
4997 subinstructions corresponding to different source lines. On
4998 FR-V, it's not permitted to place a breakpoint on any but the
4999 first subinstruction of a VLIW instruction. When a breakpoint is
5000 set, GDB will adjust the breakpoint address to the beginning of
5001 the VLIW instruction. Thus, we need to make the corresponding
5002 adjustment here when computing the stop address. */
8fb3e588 5003
568d6575 5004 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5005 {
5006 ecs->stop_func_start
568d6575 5007 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5008 ecs->stop_func_start);
2dbd5e30
KB
5009 }
5010
c2c6d25f
JM
5011 if (ecs->stop_func_start == stop_pc)
5012 {
5013 /* We are already there: stop now. */
16c381f0 5014 ecs->event_thread->control.stop_step = 1;
33d62d64 5015 print_end_stepping_range_reason ();
c2c6d25f
JM
5016 stop_stepping (ecs);
5017 return;
5018 }
5019 else
5020 {
5021 /* Put the step-breakpoint there and go until there. */
fe39c653 5022 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5023 sr_sal.pc = ecs->stop_func_start;
5024 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5025 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5026
c2c6d25f 5027 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5028 some machines the prologue is where the new fp value is
5029 established. */
a6d9a66e 5030 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5031
5032 /* And make sure stepping stops right away then. */
16c381f0
JK
5033 ecs->event_thread->control.step_range_end
5034 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5035 }
5036 keep_going (ecs);
5037}
d4f3574e 5038
b2175913
MS
5039/* Inferior has stepped backward into a subroutine call with source
5040 code that we should not step over. Do step to the beginning of the
5041 last line of code in it. */
5042
5043static void
568d6575
UW
5044handle_step_into_function_backward (struct gdbarch *gdbarch,
5045 struct execution_control_state *ecs)
b2175913
MS
5046{
5047 struct symtab *s;
167e4384 5048 struct symtab_and_line stop_func_sal;
b2175913
MS
5049
5050 s = find_pc_symtab (stop_pc);
5051 if (s && s->language != language_asm)
568d6575 5052 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5053 ecs->stop_func_start);
5054
5055 stop_func_sal = find_pc_line (stop_pc, 0);
5056
5057 /* OK, we're just going to keep stepping here. */
5058 if (stop_func_sal.pc == stop_pc)
5059 {
5060 /* We're there already. Just stop stepping now. */
16c381f0 5061 ecs->event_thread->control.stop_step = 1;
33d62d64 5062 print_end_stepping_range_reason ();
b2175913
MS
5063 stop_stepping (ecs);
5064 }
5065 else
5066 {
5067 /* Else just reset the step range and keep going.
5068 No step-resume breakpoint, they don't work for
5069 epilogues, which can have multiple entry paths. */
16c381f0
JK
5070 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5071 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5072 keep_going (ecs);
5073 }
5074 return;
5075}
5076
d3169d93 5077/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5078 This is used to both functions and to skip over code. */
5079
5080static void
a6d9a66e
UW
5081insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5082 struct symtab_and_line sr_sal,
44cbf7b5
AC
5083 struct frame_id sr_id)
5084{
611c83ae
PA
5085 /* There should never be more than one step-resume or longjmp-resume
5086 breakpoint per thread, so we should never be setting a new
44cbf7b5 5087 step_resume_breakpoint when one is already active. */
8358c15c 5088 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
d3169d93
DJ
5089
5090 if (debug_infrun)
5091 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5092 "infrun: inserting step-resume breakpoint at %s\n",
5093 paddress (gdbarch, sr_sal.pc));
d3169d93 5094
8358c15c 5095 inferior_thread ()->control.step_resume_breakpoint
a6d9a66e 5096 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
44cbf7b5 5097}
7ce450bd 5098
d3169d93 5099/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 5100 to skip a potential signal handler.
7ce450bd 5101
14e60db5
DJ
5102 This is called with the interrupted function's frame. The signal
5103 handler, when it returns, will resume the interrupted function at
5104 RETURN_FRAME.pc. */
d303a6c7
AC
5105
5106static void
44cbf7b5 5107insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5108{
5109 struct symtab_and_line sr_sal;
a6d9a66e 5110 struct gdbarch *gdbarch;
d303a6c7 5111
f4c1edd8 5112 gdb_assert (return_frame != NULL);
d303a6c7
AC
5113 init_sal (&sr_sal); /* initialize to zeros */
5114
a6d9a66e 5115 gdbarch = get_frame_arch (return_frame);
568d6575 5116 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5117 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5118 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5119
a6d9a66e
UW
5120 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5121 get_stack_frame_id (return_frame));
d303a6c7
AC
5122}
5123
14e60db5
DJ
5124/* Similar to insert_step_resume_breakpoint_at_frame, except
5125 but a breakpoint at the previous frame's PC. This is used to
5126 skip a function after stepping into it (for "next" or if the called
5127 function has no debugging information).
5128
5129 The current function has almost always been reached by single
5130 stepping a call or return instruction. NEXT_FRAME belongs to the
5131 current function, and the breakpoint will be set at the caller's
5132 resume address.
5133
5134 This is a separate function rather than reusing
5135 insert_step_resume_breakpoint_at_frame in order to avoid
5136 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5137 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5138
5139static void
5140insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5141{
5142 struct symtab_and_line sr_sal;
a6d9a66e 5143 struct gdbarch *gdbarch;
14e60db5
DJ
5144
5145 /* We shouldn't have gotten here if we don't know where the call site
5146 is. */
c7ce8faa 5147 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5148
5149 init_sal (&sr_sal); /* initialize to zeros */
5150
a6d9a66e 5151 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5152 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5153 frame_unwind_caller_pc (next_frame));
14e60db5 5154 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5155 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5156
a6d9a66e 5157 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5158 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5159}
5160
611c83ae
PA
5161/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5162 new breakpoint at the target of a jmp_buf. The handling of
5163 longjmp-resume uses the same mechanisms used for handling
5164 "step-resume" breakpoints. */
5165
5166static void
a6d9a66e 5167insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
5168{
5169 /* There should never be more than one step-resume or longjmp-resume
5170 breakpoint per thread, so we should never be setting a new
5171 longjmp_resume_breakpoint when one is already active. */
8358c15c 5172 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
611c83ae
PA
5173
5174 if (debug_infrun)
5175 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5176 "infrun: inserting longjmp-resume breakpoint at %s\n",
5177 paddress (gdbarch, pc));
611c83ae 5178
8358c15c 5179 inferior_thread ()->control.step_resume_breakpoint =
a6d9a66e 5180 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5181}
5182
186c406b
TT
5183/* Insert an exception resume breakpoint. TP is the thread throwing
5184 the exception. The block B is the block of the unwinder debug hook
5185 function. FRAME is the frame corresponding to the call to this
5186 function. SYM is the symbol of the function argument holding the
5187 target PC of the exception. */
5188
5189static void
5190insert_exception_resume_breakpoint (struct thread_info *tp,
5191 struct block *b,
5192 struct frame_info *frame,
5193 struct symbol *sym)
5194{
5195 struct gdb_exception e;
5196
5197 /* We want to ignore errors here. */
5198 TRY_CATCH (e, RETURN_MASK_ERROR)
5199 {
5200 struct symbol *vsym;
5201 struct value *value;
5202 CORE_ADDR handler;
5203 struct breakpoint *bp;
5204
5205 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5206 value = read_var_value (vsym, frame);
5207 /* If the value was optimized out, revert to the old behavior. */
5208 if (! value_optimized_out (value))
5209 {
5210 handler = value_as_address (value);
5211
5212 if (debug_infrun)
5213 fprintf_unfiltered (gdb_stdlog,
5214 "infrun: exception resume at %lx\n",
5215 (unsigned long) handler);
5216
5217 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5218 handler, bp_exception_resume);
5219 bp->thread = tp->num;
5220 inferior_thread ()->control.exception_resume_breakpoint = bp;
5221 }
5222 }
5223}
5224
5225/* This is called when an exception has been intercepted. Check to
5226 see whether the exception's destination is of interest, and if so,
5227 set an exception resume breakpoint there. */
5228
5229static void
5230check_exception_resume (struct execution_control_state *ecs,
5231 struct frame_info *frame, struct symbol *func)
5232{
5233 struct gdb_exception e;
5234
5235 TRY_CATCH (e, RETURN_MASK_ERROR)
5236 {
5237 struct block *b;
5238 struct dict_iterator iter;
5239 struct symbol *sym;
5240 int argno = 0;
5241
5242 /* The exception breakpoint is a thread-specific breakpoint on
5243 the unwinder's debug hook, declared as:
5244
5245 void _Unwind_DebugHook (void *cfa, void *handler);
5246
5247 The CFA argument indicates the frame to which control is
5248 about to be transferred. HANDLER is the destination PC.
5249
5250 We ignore the CFA and set a temporary breakpoint at HANDLER.
5251 This is not extremely efficient but it avoids issues in gdb
5252 with computing the DWARF CFA, and it also works even in weird
5253 cases such as throwing an exception from inside a signal
5254 handler. */
5255
5256 b = SYMBOL_BLOCK_VALUE (func);
5257 ALL_BLOCK_SYMBOLS (b, iter, sym)
5258 {
5259 if (!SYMBOL_IS_ARGUMENT (sym))
5260 continue;
5261
5262 if (argno == 0)
5263 ++argno;
5264 else
5265 {
5266 insert_exception_resume_breakpoint (ecs->event_thread,
5267 b, frame, sym);
5268 break;
5269 }
5270 }
5271 }
5272}
5273
104c1213
JM
5274static void
5275stop_stepping (struct execution_control_state *ecs)
5276{
527159b7 5277 if (debug_infrun)
8a9de0e4 5278 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5279
cd0fc7c3
SS
5280 /* Let callers know we don't want to wait for the inferior anymore. */
5281 ecs->wait_some_more = 0;
5282}
5283
d4f3574e
SS
5284/* This function handles various cases where we need to continue
5285 waiting for the inferior. */
5286/* (Used to be the keep_going: label in the old wait_for_inferior) */
5287
5288static void
5289keep_going (struct execution_control_state *ecs)
5290{
c4dbc9af
PA
5291 /* Make sure normal_stop is called if we get a QUIT handled before
5292 reaching resume. */
5293 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5294
d4f3574e 5295 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5296 ecs->event_thread->prev_pc
5297 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5298
d4f3574e
SS
5299 /* If we did not do break;, it means we should keep running the
5300 inferior and not return to debugger. */
5301
16c381f0
JK
5302 if (ecs->event_thread->control.trap_expected
5303 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
5304 {
5305 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5306 the inferior, else we'd not get here) and we haven't yet
5307 gotten our trap. Simply continue. */
c4dbc9af
PA
5308
5309 discard_cleanups (old_cleanups);
2020b7ab 5310 resume (currently_stepping (ecs->event_thread),
16c381f0 5311 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5312 }
5313 else
5314 {
5315 /* Either the trap was not expected, but we are continuing
488f131b
JB
5316 anyway (the user asked that this signal be passed to the
5317 child)
5318 -- or --
5319 The signal was SIGTRAP, e.g. it was our signal, but we
5320 decided we should resume from it.
d4f3574e 5321
c36b740a 5322 We're going to run this baby now!
d4f3574e 5323
c36b740a
VP
5324 Note that insert_breakpoints won't try to re-insert
5325 already inserted breakpoints. Therefore, we don't
5326 care if breakpoints were already inserted, or not. */
5327
4e1c45ea 5328 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5329 {
9f5a595d 5330 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5331
9f5a595d 5332 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5333 /* Since we can't do a displaced step, we have to remove
5334 the breakpoint while we step it. To keep things
5335 simple, we remove them all. */
5336 remove_breakpoints ();
45e8c884
VP
5337 }
5338 else
d4f3574e 5339 {
e236ba44 5340 struct gdb_exception e;
abbb1732 5341
569631c6
UW
5342 /* Stop stepping when inserting breakpoints
5343 has failed. */
e236ba44
VP
5344 TRY_CATCH (e, RETURN_MASK_ERROR)
5345 {
5346 insert_breakpoints ();
5347 }
5348 if (e.reason < 0)
d4f3574e 5349 {
97bd5475 5350 exception_print (gdb_stderr, e);
d4f3574e
SS
5351 stop_stepping (ecs);
5352 return;
5353 }
d4f3574e
SS
5354 }
5355
16c381f0
JK
5356 ecs->event_thread->control.trap_expected
5357 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5358
5359 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5360 specifies that such a signal should be delivered to the
5361 target program).
5362
5363 Typically, this would occure when a user is debugging a
5364 target monitor on a simulator: the target monitor sets a
5365 breakpoint; the simulator encounters this break-point and
5366 halts the simulation handing control to GDB; GDB, noteing
5367 that the break-point isn't valid, returns control back to the
5368 simulator; the simulator then delivers the hardware
5369 equivalent of a SIGNAL_TRAP to the program being debugged. */
5370
16c381f0
JK
5371 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5372 && !signal_program[ecs->event_thread->suspend.stop_signal])
5373 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
d4f3574e 5374
c4dbc9af 5375 discard_cleanups (old_cleanups);
2020b7ab 5376 resume (currently_stepping (ecs->event_thread),
16c381f0 5377 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5378 }
5379
488f131b 5380 prepare_to_wait (ecs);
d4f3574e
SS
5381}
5382
104c1213
JM
5383/* This function normally comes after a resume, before
5384 handle_inferior_event exits. It takes care of any last bits of
5385 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5386
104c1213
JM
5387static void
5388prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5389{
527159b7 5390 if (debug_infrun)
8a9de0e4 5391 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5392
104c1213
JM
5393 /* This is the old end of the while loop. Let everybody know we
5394 want to wait for the inferior some more and get called again
5395 soon. */
5396 ecs->wait_some_more = 1;
c906108c 5397}
11cf8741 5398
33d62d64
JK
5399/* Several print_*_reason functions to print why the inferior has stopped.
5400 We always print something when the inferior exits, or receives a signal.
5401 The rest of the cases are dealt with later on in normal_stop and
5402 print_it_typical. Ideally there should be a call to one of these
5403 print_*_reason functions functions from handle_inferior_event each time
5404 stop_stepping is called. */
5405
5406/* Print why the inferior has stopped.
5407 We are done with a step/next/si/ni command, print why the inferior has
5408 stopped. For now print nothing. Print a message only if not in the middle
5409 of doing a "step n" operation for n > 1. */
5410
5411static void
5412print_end_stepping_range_reason (void)
5413{
16c381f0
JK
5414 if ((!inferior_thread ()->step_multi
5415 || !inferior_thread ()->control.stop_step)
33d62d64
JK
5416 && ui_out_is_mi_like_p (uiout))
5417 ui_out_field_string (uiout, "reason",
5418 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5419}
5420
5421/* The inferior was terminated by a signal, print why it stopped. */
5422
11cf8741 5423static void
33d62d64 5424print_signal_exited_reason (enum target_signal siggnal)
11cf8741 5425{
33d62d64
JK
5426 annotate_signalled ();
5427 if (ui_out_is_mi_like_p (uiout))
5428 ui_out_field_string
5429 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5430 ui_out_text (uiout, "\nProgram terminated with signal ");
5431 annotate_signal_name ();
5432 ui_out_field_string (uiout, "signal-name",
5433 target_signal_to_name (siggnal));
5434 annotate_signal_name_end ();
5435 ui_out_text (uiout, ", ");
5436 annotate_signal_string ();
5437 ui_out_field_string (uiout, "signal-meaning",
5438 target_signal_to_string (siggnal));
5439 annotate_signal_string_end ();
5440 ui_out_text (uiout, ".\n");
5441 ui_out_text (uiout, "The program no longer exists.\n");
5442}
5443
5444/* The inferior program is finished, print why it stopped. */
5445
5446static void
5447print_exited_reason (int exitstatus)
5448{
5449 annotate_exited (exitstatus);
5450 if (exitstatus)
5451 {
5452 if (ui_out_is_mi_like_p (uiout))
5453 ui_out_field_string (uiout, "reason",
5454 async_reason_lookup (EXEC_ASYNC_EXITED));
5455 ui_out_text (uiout, "\nProgram exited with code ");
5456 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5457 ui_out_text (uiout, ".\n");
5458 }
5459 else
11cf8741 5460 {
9dc5e2a9 5461 if (ui_out_is_mi_like_p (uiout))
034dad6f 5462 ui_out_field_string
33d62d64
JK
5463 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5464 ui_out_text (uiout, "\nProgram exited normally.\n");
5465 }
5466 /* Support the --return-child-result option. */
5467 return_child_result_value = exitstatus;
5468}
5469
5470/* Signal received, print why the inferior has stopped. The signal table
5471 tells us to print about it. */
5472
5473static void
5474print_signal_received_reason (enum target_signal siggnal)
5475{
5476 annotate_signal ();
5477
5478 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5479 {
5480 struct thread_info *t = inferior_thread ();
5481
5482 ui_out_text (uiout, "\n[");
5483 ui_out_field_string (uiout, "thread-name",
5484 target_pid_to_str (t->ptid));
5485 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5486 ui_out_text (uiout, " stopped");
5487 }
5488 else
5489 {
5490 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5491 annotate_signal_name ();
33d62d64
JK
5492 if (ui_out_is_mi_like_p (uiout))
5493 ui_out_field_string
5494 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5495 ui_out_field_string (uiout, "signal-name",
33d62d64 5496 target_signal_to_name (siggnal));
8b93c638
JM
5497 annotate_signal_name_end ();
5498 ui_out_text (uiout, ", ");
5499 annotate_signal_string ();
488f131b 5500 ui_out_field_string (uiout, "signal-meaning",
33d62d64 5501 target_signal_to_string (siggnal));
8b93c638 5502 annotate_signal_string_end ();
33d62d64
JK
5503 }
5504 ui_out_text (uiout, ".\n");
5505}
252fbfc8 5506
33d62d64
JK
5507/* Reverse execution: target ran out of history info, print why the inferior
5508 has stopped. */
252fbfc8 5509
33d62d64
JK
5510static void
5511print_no_history_reason (void)
5512{
5513 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 5514}
43ff13b4 5515
c906108c
SS
5516/* Here to return control to GDB when the inferior stops for real.
5517 Print appropriate messages, remove breakpoints, give terminal our modes.
5518
5519 STOP_PRINT_FRAME nonzero means print the executing frame
5520 (pc, function, args, file, line number and line text).
5521 BREAKPOINTS_FAILED nonzero means stop was due to error
5522 attempting to insert breakpoints. */
5523
5524void
96baa820 5525normal_stop (void)
c906108c 5526{
73b65bb0
DJ
5527 struct target_waitstatus last;
5528 ptid_t last_ptid;
29f49a6a 5529 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5530
5531 get_last_target_status (&last_ptid, &last);
5532
29f49a6a
PA
5533 /* If an exception is thrown from this point on, make sure to
5534 propagate GDB's knowledge of the executing state to the
5535 frontend/user running state. A QUIT is an easy exception to see
5536 here, so do this before any filtered output. */
c35b1492
PA
5537 if (!non_stop)
5538 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5539 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5540 && last.kind != TARGET_WAITKIND_EXITED)
5541 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5542
4f8d22e3
PA
5543 /* In non-stop mode, we don't want GDB to switch threads behind the
5544 user's back, to avoid races where the user is typing a command to
5545 apply to thread x, but GDB switches to thread y before the user
5546 finishes entering the command. */
5547
c906108c
SS
5548 /* As with the notification of thread events, we want to delay
5549 notifying the user that we've switched thread context until
5550 the inferior actually stops.
5551
73b65bb0
DJ
5552 There's no point in saying anything if the inferior has exited.
5553 Note that SIGNALLED here means "exited with a signal", not
5554 "received a signal". */
4f8d22e3
PA
5555 if (!non_stop
5556 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5557 && target_has_execution
5558 && last.kind != TARGET_WAITKIND_SIGNALLED
5559 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
5560 {
5561 target_terminal_ours_for_output ();
a3f17187 5562 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5563 target_pid_to_str (inferior_ptid));
b8fa951a 5564 annotate_thread_changed ();
39f77062 5565 previous_inferior_ptid = inferior_ptid;
c906108c 5566 }
c906108c 5567
74960c60 5568 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5569 {
5570 if (remove_breakpoints ())
5571 {
5572 target_terminal_ours_for_output ();
a3f17187
AC
5573 printf_filtered (_("\
5574Cannot remove breakpoints because program is no longer writable.\n\
a3f17187 5575Further execution is probably impossible.\n"));
c906108c
SS
5576 }
5577 }
c906108c 5578
c906108c
SS
5579 /* If an auto-display called a function and that got a signal,
5580 delete that auto-display to avoid an infinite recursion. */
5581
5582 if (stopped_by_random_signal)
5583 disable_current_display ();
5584
5585 /* Don't print a message if in the middle of doing a "step n"
5586 operation for n > 1 */
af679fd0
PA
5587 if (target_has_execution
5588 && last.kind != TARGET_WAITKIND_SIGNALLED
5589 && last.kind != TARGET_WAITKIND_EXITED
5590 && inferior_thread ()->step_multi
16c381f0 5591 && inferior_thread ()->control.stop_step)
c906108c
SS
5592 goto done;
5593
5594 target_terminal_ours ();
5595
7abfe014
DJ
5596 /* Set the current source location. This will also happen if we
5597 display the frame below, but the current SAL will be incorrect
5598 during a user hook-stop function. */
d729566a 5599 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5600 set_current_sal_from_frame (get_current_frame (), 1);
5601
dd7e2d2b
PA
5602 /* Let the user/frontend see the threads as stopped. */
5603 do_cleanups (old_chain);
5604
5605 /* Look up the hook_stop and run it (CLI internally handles problem
5606 of stop_command's pre-hook not existing). */
5607 if (stop_command)
5608 catch_errors (hook_stop_stub, stop_command,
5609 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5610
d729566a 5611 if (!has_stack_frames ())
d51fd4c8 5612 goto done;
c906108c 5613
32400beb
PA
5614 if (last.kind == TARGET_WAITKIND_SIGNALLED
5615 || last.kind == TARGET_WAITKIND_EXITED)
5616 goto done;
5617
c906108c
SS
5618 /* Select innermost stack frame - i.e., current frame is frame 0,
5619 and current location is based on that.
5620 Don't do this on return from a stack dummy routine,
5621 or if the program has exited. */
5622
5623 if (!stop_stack_dummy)
5624 {
0f7d239c 5625 select_frame (get_current_frame ());
c906108c
SS
5626
5627 /* Print current location without a level number, if
c5aa993b
JM
5628 we have changed functions or hit a breakpoint.
5629 Print source line if we have one.
5630 bpstat_print() contains the logic deciding in detail
5631 what to print, based on the event(s) that just occurred. */
c906108c 5632
d01a8610
AS
5633 /* If --batch-silent is enabled then there's no need to print the current
5634 source location, and to try risks causing an error message about
5635 missing source files. */
5636 if (stop_print_frame && !batch_silent)
c906108c
SS
5637 {
5638 int bpstat_ret;
5639 int source_flag;
917317f4 5640 int do_frame_printing = 1;
347bddb7 5641 struct thread_info *tp = inferior_thread ();
c906108c 5642
16c381f0 5643 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
917317f4
JM
5644 switch (bpstat_ret)
5645 {
5646 case PRINT_UNKNOWN:
b0f4b84b
DJ
5647 /* If we had hit a shared library event breakpoint,
5648 bpstat_print would print out this message. If we hit
5649 an OS-level shared library event, do the same
5650 thing. */
5651 if (last.kind == TARGET_WAITKIND_LOADED)
5652 {
5653 printf_filtered (_("Stopped due to shared library event\n"));
5654 source_flag = SRC_LINE; /* something bogus */
5655 do_frame_printing = 0;
5656 break;
5657 }
5658
aa0cd9c1 5659 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5660 (or should) carry around the function and does (or
5661 should) use that when doing a frame comparison. */
16c381f0
JK
5662 if (tp->control.stop_step
5663 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 5664 get_frame_id (get_current_frame ()))
917317f4 5665 && step_start_function == find_pc_function (stop_pc))
488f131b 5666 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 5667 else
488f131b 5668 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
5669 break;
5670 case PRINT_SRC_AND_LOC:
488f131b 5671 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
5672 break;
5673 case PRINT_SRC_ONLY:
c5394b80 5674 source_flag = SRC_LINE;
917317f4
JM
5675 break;
5676 case PRINT_NOTHING:
488f131b 5677 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
5678 do_frame_printing = 0;
5679 break;
5680 default:
e2e0b3e5 5681 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 5682 }
c906108c
SS
5683
5684 /* The behavior of this routine with respect to the source
5685 flag is:
c5394b80
JM
5686 SRC_LINE: Print only source line
5687 LOCATION: Print only location
5688 SRC_AND_LOC: Print location and source line */
917317f4 5689 if (do_frame_printing)
b04f3ab4 5690 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
5691
5692 /* Display the auto-display expressions. */
5693 do_displays ();
5694 }
5695 }
5696
5697 /* Save the function value return registers, if we care.
5698 We might be about to restore their previous contents. */
16c381f0 5699 if (inferior_thread ()->control.proceed_to_finish)
d5c31457
UW
5700 {
5701 /* This should not be necessary. */
5702 if (stop_registers)
5703 regcache_xfree (stop_registers);
5704
5705 /* NB: The copy goes through to the target picking up the value of
5706 all the registers. */
5707 stop_registers = regcache_dup (get_current_regcache ());
5708 }
c906108c 5709
aa7d318d 5710 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 5711 {
b89667eb
DE
5712 /* Pop the empty frame that contains the stack dummy.
5713 This also restores inferior state prior to the call
16c381f0 5714 (struct infcall_suspend_state). */
b89667eb 5715 struct frame_info *frame = get_current_frame ();
abbb1732 5716
b89667eb
DE
5717 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5718 frame_pop (frame);
5719 /* frame_pop() calls reinit_frame_cache as the last thing it does
5720 which means there's currently no selected frame. We don't need
5721 to re-establish a selected frame if the dummy call returns normally,
16c381f0 5722 that will be done by restore_infcall_control_state. However, we do have
b89667eb
DE
5723 to handle the case where the dummy call is returning after being
5724 stopped (e.g. the dummy call previously hit a breakpoint). We
5725 can't know which case we have so just always re-establish a
5726 selected frame here. */
0f7d239c 5727 select_frame (get_current_frame ());
c906108c
SS
5728 }
5729
c906108c
SS
5730done:
5731 annotate_stopped ();
41d2bdb4
PA
5732
5733 /* Suppress the stop observer if we're in the middle of:
5734
5735 - a step n (n > 1), as there still more steps to be done.
5736
5737 - a "finish" command, as the observer will be called in
5738 finish_command_continuation, so it can include the inferior
5739 function's return value.
5740
5741 - calling an inferior function, as we pretend we inferior didn't
5742 run at all. The return value of the call is handled by the
5743 expression evaluator, through call_function_by_hand. */
5744
5745 if (!target_has_execution
5746 || last.kind == TARGET_WAITKIND_SIGNALLED
5747 || last.kind == TARGET_WAITKIND_EXITED
5748 || (!inferior_thread ()->step_multi
16c381f0
JK
5749 && !(inferior_thread ()->control.stop_bpstat
5750 && inferior_thread ()->control.proceed_to_finish)
5751 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
5752 {
5753 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 5754 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 5755 stop_print_frame);
347bddb7 5756 else
1d33d6ba 5757 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 5758 }
347bddb7 5759
48844aa6
PA
5760 if (target_has_execution)
5761 {
5762 if (last.kind != TARGET_WAITKIND_SIGNALLED
5763 && last.kind != TARGET_WAITKIND_EXITED)
5764 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5765 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 5766 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 5767 }
6c95b8df
PA
5768
5769 /* Try to get rid of automatically added inferiors that are no
5770 longer needed. Keeping those around slows down things linearly.
5771 Note that this never removes the current inferior. */
5772 prune_inferiors ();
c906108c
SS
5773}
5774
5775static int
96baa820 5776hook_stop_stub (void *cmd)
c906108c 5777{
5913bcb0 5778 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
5779 return (0);
5780}
5781\f
c5aa993b 5782int
96baa820 5783signal_stop_state (int signo)
c906108c 5784{
d6b48e9c 5785 return signal_stop[signo];
c906108c
SS
5786}
5787
c5aa993b 5788int
96baa820 5789signal_print_state (int signo)
c906108c
SS
5790{
5791 return signal_print[signo];
5792}
5793
c5aa993b 5794int
96baa820 5795signal_pass_state (int signo)
c906108c
SS
5796{
5797 return signal_program[signo];
5798}
5799
488f131b 5800int
7bda5e4a 5801signal_stop_update (int signo, int state)
d4f3574e
SS
5802{
5803 int ret = signal_stop[signo];
abbb1732 5804
d4f3574e
SS
5805 signal_stop[signo] = state;
5806 return ret;
5807}
5808
488f131b 5809int
7bda5e4a 5810signal_print_update (int signo, int state)
d4f3574e
SS
5811{
5812 int ret = signal_print[signo];
abbb1732 5813
d4f3574e
SS
5814 signal_print[signo] = state;
5815 return ret;
5816}
5817
488f131b 5818int
7bda5e4a 5819signal_pass_update (int signo, int state)
d4f3574e
SS
5820{
5821 int ret = signal_program[signo];
abbb1732 5822
d4f3574e
SS
5823 signal_program[signo] = state;
5824 return ret;
5825}
5826
c906108c 5827static void
96baa820 5828sig_print_header (void)
c906108c 5829{
a3f17187
AC
5830 printf_filtered (_("\
5831Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
5832}
5833
5834static void
96baa820 5835sig_print_info (enum target_signal oursig)
c906108c 5836{
54363045 5837 const char *name = target_signal_to_name (oursig);
c906108c 5838 int name_padding = 13 - strlen (name);
96baa820 5839
c906108c
SS
5840 if (name_padding <= 0)
5841 name_padding = 0;
5842
5843 printf_filtered ("%s", name);
488f131b 5844 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
5845 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
5846 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
5847 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
5848 printf_filtered ("%s\n", target_signal_to_string (oursig));
5849}
5850
5851/* Specify how various signals in the inferior should be handled. */
5852
5853static void
96baa820 5854handle_command (char *args, int from_tty)
c906108c
SS
5855{
5856 char **argv;
5857 int digits, wordlen;
5858 int sigfirst, signum, siglast;
5859 enum target_signal oursig;
5860 int allsigs;
5861 int nsigs;
5862 unsigned char *sigs;
5863 struct cleanup *old_chain;
5864
5865 if (args == NULL)
5866 {
e2e0b3e5 5867 error_no_arg (_("signal to handle"));
c906108c
SS
5868 }
5869
5870 /* Allocate and zero an array of flags for which signals to handle. */
5871
5872 nsigs = (int) TARGET_SIGNAL_LAST;
5873 sigs = (unsigned char *) alloca (nsigs);
5874 memset (sigs, 0, nsigs);
5875
5876 /* Break the command line up into args. */
5877
d1a41061 5878 argv = gdb_buildargv (args);
7a292a7a 5879 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5880
5881 /* Walk through the args, looking for signal oursigs, signal names, and
5882 actions. Signal numbers and signal names may be interspersed with
5883 actions, with the actions being performed for all signals cumulatively
5884 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
5885
5886 while (*argv != NULL)
5887 {
5888 wordlen = strlen (*argv);
5889 for (digits = 0; isdigit ((*argv)[digits]); digits++)
5890 {;
5891 }
5892 allsigs = 0;
5893 sigfirst = siglast = -1;
5894
5895 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5896 {
5897 /* Apply action to all signals except those used by the
5898 debugger. Silently skip those. */
5899 allsigs = 1;
5900 sigfirst = 0;
5901 siglast = nsigs - 1;
5902 }
5903 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5904 {
5905 SET_SIGS (nsigs, sigs, signal_stop);
5906 SET_SIGS (nsigs, sigs, signal_print);
5907 }
5908 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5909 {
5910 UNSET_SIGS (nsigs, sigs, signal_program);
5911 }
5912 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5913 {
5914 SET_SIGS (nsigs, sigs, signal_print);
5915 }
5916 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5917 {
5918 SET_SIGS (nsigs, sigs, signal_program);
5919 }
5920 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5921 {
5922 UNSET_SIGS (nsigs, sigs, signal_stop);
5923 }
5924 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5925 {
5926 SET_SIGS (nsigs, sigs, signal_program);
5927 }
5928 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5929 {
5930 UNSET_SIGS (nsigs, sigs, signal_print);
5931 UNSET_SIGS (nsigs, sigs, signal_stop);
5932 }
5933 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5934 {
5935 UNSET_SIGS (nsigs, sigs, signal_program);
5936 }
5937 else if (digits > 0)
5938 {
5939 /* It is numeric. The numeric signal refers to our own
5940 internal signal numbering from target.h, not to host/target
5941 signal number. This is a feature; users really should be
5942 using symbolic names anyway, and the common ones like
5943 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5944
5945 sigfirst = siglast = (int)
5946 target_signal_from_command (atoi (*argv));
5947 if ((*argv)[digits] == '-')
5948 {
5949 siglast = (int)
5950 target_signal_from_command (atoi ((*argv) + digits + 1));
5951 }
5952 if (sigfirst > siglast)
5953 {
5954 /* Bet he didn't figure we'd think of this case... */
5955 signum = sigfirst;
5956 sigfirst = siglast;
5957 siglast = signum;
5958 }
5959 }
5960 else
5961 {
5962 oursig = target_signal_from_name (*argv);
5963 if (oursig != TARGET_SIGNAL_UNKNOWN)
5964 {
5965 sigfirst = siglast = (int) oursig;
5966 }
5967 else
5968 {
5969 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 5970 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
5971 }
5972 }
5973
5974 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 5975 which signals to apply actions to. */
c906108c
SS
5976
5977 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
5978 {
5979 switch ((enum target_signal) signum)
5980 {
5981 case TARGET_SIGNAL_TRAP:
5982 case TARGET_SIGNAL_INT:
5983 if (!allsigs && !sigs[signum])
5984 {
9e2f0ad4
HZ
5985 if (query (_("%s is used by the debugger.\n\
5986Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
5987 {
5988 sigs[signum] = 1;
5989 }
5990 else
5991 {
a3f17187 5992 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
5993 gdb_flush (gdb_stdout);
5994 }
5995 }
5996 break;
5997 case TARGET_SIGNAL_0:
5998 case TARGET_SIGNAL_DEFAULT:
5999 case TARGET_SIGNAL_UNKNOWN:
6000 /* Make sure that "all" doesn't print these. */
6001 break;
6002 default:
6003 sigs[signum] = 1;
6004 break;
6005 }
6006 }
6007
6008 argv++;
6009 }
6010
3a031f65
PA
6011 for (signum = 0; signum < nsigs; signum++)
6012 if (sigs[signum])
6013 {
6014 target_notice_signals (inferior_ptid);
c906108c 6015
3a031f65
PA
6016 if (from_tty)
6017 {
6018 /* Show the results. */
6019 sig_print_header ();
6020 for (; signum < nsigs; signum++)
6021 if (sigs[signum])
6022 sig_print_info (signum);
6023 }
6024
6025 break;
6026 }
c906108c
SS
6027
6028 do_cleanups (old_chain);
6029}
6030
6031static void
96baa820 6032xdb_handle_command (char *args, int from_tty)
c906108c
SS
6033{
6034 char **argv;
6035 struct cleanup *old_chain;
6036
d1a41061
PP
6037 if (args == NULL)
6038 error_no_arg (_("xdb command"));
6039
c906108c
SS
6040 /* Break the command line up into args. */
6041
d1a41061 6042 argv = gdb_buildargv (args);
7a292a7a 6043 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6044 if (argv[1] != (char *) NULL)
6045 {
6046 char *argBuf;
6047 int bufLen;
6048
6049 bufLen = strlen (argv[0]) + 20;
6050 argBuf = (char *) xmalloc (bufLen);
6051 if (argBuf)
6052 {
6053 int validFlag = 1;
6054 enum target_signal oursig;
6055
6056 oursig = target_signal_from_name (argv[0]);
6057 memset (argBuf, 0, bufLen);
6058 if (strcmp (argv[1], "Q") == 0)
6059 sprintf (argBuf, "%s %s", argv[0], "noprint");
6060 else
6061 {
6062 if (strcmp (argv[1], "s") == 0)
6063 {
6064 if (!signal_stop[oursig])
6065 sprintf (argBuf, "%s %s", argv[0], "stop");
6066 else
6067 sprintf (argBuf, "%s %s", argv[0], "nostop");
6068 }
6069 else if (strcmp (argv[1], "i") == 0)
6070 {
6071 if (!signal_program[oursig])
6072 sprintf (argBuf, "%s %s", argv[0], "pass");
6073 else
6074 sprintf (argBuf, "%s %s", argv[0], "nopass");
6075 }
6076 else if (strcmp (argv[1], "r") == 0)
6077 {
6078 if (!signal_print[oursig])
6079 sprintf (argBuf, "%s %s", argv[0], "print");
6080 else
6081 sprintf (argBuf, "%s %s", argv[0], "noprint");
6082 }
6083 else
6084 validFlag = 0;
6085 }
6086 if (validFlag)
6087 handle_command (argBuf, from_tty);
6088 else
a3f17187 6089 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6090 if (argBuf)
b8c9b27d 6091 xfree (argBuf);
c906108c
SS
6092 }
6093 }
6094 do_cleanups (old_chain);
6095}
6096
6097/* Print current contents of the tables set by the handle command.
6098 It is possible we should just be printing signals actually used
6099 by the current target (but for things to work right when switching
6100 targets, all signals should be in the signal tables). */
6101
6102static void
96baa820 6103signals_info (char *signum_exp, int from_tty)
c906108c
SS
6104{
6105 enum target_signal oursig;
abbb1732 6106
c906108c
SS
6107 sig_print_header ();
6108
6109 if (signum_exp)
6110 {
6111 /* First see if this is a symbol name. */
6112 oursig = target_signal_from_name (signum_exp);
6113 if (oursig == TARGET_SIGNAL_UNKNOWN)
6114 {
6115 /* No, try numeric. */
6116 oursig =
bb518678 6117 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6118 }
6119 sig_print_info (oursig);
6120 return;
6121 }
6122
6123 printf_filtered ("\n");
6124 /* These ugly casts brought to you by the native VAX compiler. */
6125 for (oursig = TARGET_SIGNAL_FIRST;
6126 (int) oursig < (int) TARGET_SIGNAL_LAST;
6127 oursig = (enum target_signal) ((int) oursig + 1))
6128 {
6129 QUIT;
6130
6131 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 6132 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
6133 sig_print_info (oursig);
6134 }
6135
a3f17187 6136 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c 6137}
4aa995e1
PA
6138
6139/* The $_siginfo convenience variable is a bit special. We don't know
6140 for sure the type of the value until we actually have a chance to
6141 fetch the data. The type can change depending on gdbarch, so it it
6142 also dependent on which thread you have selected.
6143
6144 1. making $_siginfo be an internalvar that creates a new value on
6145 access.
6146
6147 2. making the value of $_siginfo be an lval_computed value. */
6148
6149/* This function implements the lval_computed support for reading a
6150 $_siginfo value. */
6151
6152static void
6153siginfo_value_read (struct value *v)
6154{
6155 LONGEST transferred;
6156
6157 transferred =
6158 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6159 NULL,
6160 value_contents_all_raw (v),
6161 value_offset (v),
6162 TYPE_LENGTH (value_type (v)));
6163
6164 if (transferred != TYPE_LENGTH (value_type (v)))
6165 error (_("Unable to read siginfo"));
6166}
6167
6168/* This function implements the lval_computed support for writing a
6169 $_siginfo value. */
6170
6171static void
6172siginfo_value_write (struct value *v, struct value *fromval)
6173{
6174 LONGEST transferred;
6175
6176 transferred = target_write (&current_target,
6177 TARGET_OBJECT_SIGNAL_INFO,
6178 NULL,
6179 value_contents_all_raw (fromval),
6180 value_offset (v),
6181 TYPE_LENGTH (value_type (fromval)));
6182
6183 if (transferred != TYPE_LENGTH (value_type (fromval)))
6184 error (_("Unable to write siginfo"));
6185}
6186
6187static struct lval_funcs siginfo_value_funcs =
6188 {
6189 siginfo_value_read,
6190 siginfo_value_write
6191 };
6192
6193/* Return a new value with the correct type for the siginfo object of
78267919
UW
6194 the current thread using architecture GDBARCH. Return a void value
6195 if there's no object available. */
4aa995e1 6196
2c0b251b 6197static struct value *
78267919 6198siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 6199{
4aa995e1 6200 if (target_has_stack
78267919
UW
6201 && !ptid_equal (inferior_ptid, null_ptid)
6202 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6203 {
78267919 6204 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6205
78267919 6206 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6207 }
6208
78267919 6209 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6210}
6211
c906108c 6212\f
16c381f0
JK
6213/* infcall_suspend_state contains state about the program itself like its
6214 registers and any signal it received when it last stopped.
6215 This state must be restored regardless of how the inferior function call
6216 ends (either successfully, or after it hits a breakpoint or signal)
6217 if the program is to properly continue where it left off. */
6218
6219struct infcall_suspend_state
7a292a7a 6220{
16c381f0
JK
6221 struct thread_suspend_state thread_suspend;
6222 struct inferior_suspend_state inferior_suspend;
6223
6224 /* Other fields: */
7a292a7a 6225 CORE_ADDR stop_pc;
b89667eb 6226 struct regcache *registers;
1736ad11 6227
35515841 6228 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6229 struct gdbarch *siginfo_gdbarch;
6230
6231 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6232 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6233 content would be invalid. */
6234 gdb_byte *siginfo_data;
b89667eb
DE
6235};
6236
16c381f0
JK
6237struct infcall_suspend_state *
6238save_infcall_suspend_state (void)
b89667eb 6239{
16c381f0 6240 struct infcall_suspend_state *inf_state;
b89667eb 6241 struct thread_info *tp = inferior_thread ();
16c381f0 6242 struct inferior *inf = current_inferior ();
1736ad11
JK
6243 struct regcache *regcache = get_current_regcache ();
6244 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6245 gdb_byte *siginfo_data = NULL;
6246
6247 if (gdbarch_get_siginfo_type_p (gdbarch))
6248 {
6249 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6250 size_t len = TYPE_LENGTH (type);
6251 struct cleanup *back_to;
6252
6253 siginfo_data = xmalloc (len);
6254 back_to = make_cleanup (xfree, siginfo_data);
6255
6256 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6257 siginfo_data, 0, len) == len)
6258 discard_cleanups (back_to);
6259 else
6260 {
6261 /* Errors ignored. */
6262 do_cleanups (back_to);
6263 siginfo_data = NULL;
6264 }
6265 }
6266
16c381f0 6267 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6268
6269 if (siginfo_data)
6270 {
6271 inf_state->siginfo_gdbarch = gdbarch;
6272 inf_state->siginfo_data = siginfo_data;
6273 }
b89667eb 6274
16c381f0
JK
6275 inf_state->thread_suspend = tp->suspend;
6276 inf_state->inferior_suspend = inf->suspend;
6277
35515841
JK
6278 /* run_inferior_call will not use the signal due to its `proceed' call with
6279 TARGET_SIGNAL_0 anyway. */
16c381f0 6280 tp->suspend.stop_signal = TARGET_SIGNAL_0;
35515841 6281
b89667eb
DE
6282 inf_state->stop_pc = stop_pc;
6283
1736ad11 6284 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6285
6286 return inf_state;
6287}
6288
6289/* Restore inferior session state to INF_STATE. */
6290
6291void
16c381f0 6292restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6293{
6294 struct thread_info *tp = inferior_thread ();
16c381f0 6295 struct inferior *inf = current_inferior ();
1736ad11
JK
6296 struct regcache *regcache = get_current_regcache ();
6297 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6298
16c381f0
JK
6299 tp->suspend = inf_state->thread_suspend;
6300 inf->suspend = inf_state->inferior_suspend;
6301
b89667eb
DE
6302 stop_pc = inf_state->stop_pc;
6303
1736ad11
JK
6304 if (inf_state->siginfo_gdbarch == gdbarch)
6305 {
6306 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6307 size_t len = TYPE_LENGTH (type);
6308
6309 /* Errors ignored. */
6310 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6311 inf_state->siginfo_data, 0, len);
6312 }
6313
b89667eb
DE
6314 /* The inferior can be gone if the user types "print exit(0)"
6315 (and perhaps other times). */
6316 if (target_has_execution)
6317 /* NB: The register write goes through to the target. */
1736ad11 6318 regcache_cpy (regcache, inf_state->registers);
803b5f95 6319
16c381f0 6320 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6321}
6322
6323static void
16c381f0 6324do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6325{
16c381f0 6326 restore_infcall_suspend_state (state);
b89667eb
DE
6327}
6328
6329struct cleanup *
16c381f0
JK
6330make_cleanup_restore_infcall_suspend_state
6331 (struct infcall_suspend_state *inf_state)
b89667eb 6332{
16c381f0 6333 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6334}
6335
6336void
16c381f0 6337discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6338{
6339 regcache_xfree (inf_state->registers);
803b5f95 6340 xfree (inf_state->siginfo_data);
b89667eb
DE
6341 xfree (inf_state);
6342}
6343
6344struct regcache *
16c381f0 6345get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6346{
6347 return inf_state->registers;
6348}
6349
16c381f0
JK
6350/* infcall_control_state contains state regarding gdb's control of the
6351 inferior itself like stepping control. It also contains session state like
6352 the user's currently selected frame. */
b89667eb 6353
16c381f0 6354struct infcall_control_state
b89667eb 6355{
16c381f0
JK
6356 struct thread_control_state thread_control;
6357 struct inferior_control_state inferior_control;
d82142e2
JK
6358
6359 /* Other fields: */
6360 enum stop_stack_kind stop_stack_dummy;
6361 int stopped_by_random_signal;
7a292a7a 6362 int stop_after_trap;
7a292a7a 6363
b89667eb 6364 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6365 struct frame_id selected_frame_id;
7a292a7a
SS
6366};
6367
c906108c 6368/* Save all of the information associated with the inferior<==>gdb
b89667eb 6369 connection. */
c906108c 6370
16c381f0
JK
6371struct infcall_control_state *
6372save_infcall_control_state (void)
c906108c 6373{
16c381f0 6374 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6375 struct thread_info *tp = inferior_thread ();
d6b48e9c 6376 struct inferior *inf = current_inferior ();
7a292a7a 6377
16c381f0
JK
6378 inf_status->thread_control = tp->control;
6379 inf_status->inferior_control = inf->control;
d82142e2 6380
8358c15c 6381 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6382 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6383
16c381f0
JK
6384 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6385 chain. If caller's caller is walking the chain, they'll be happier if we
6386 hand them back the original chain when restore_infcall_control_state is
6387 called. */
6388 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6389
6390 /* Other fields: */
6391 inf_status->stop_stack_dummy = stop_stack_dummy;
6392 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6393 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6394
206415a3 6395 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6396
7a292a7a 6397 return inf_status;
c906108c
SS
6398}
6399
c906108c 6400static int
96baa820 6401restore_selected_frame (void *args)
c906108c 6402{
488f131b 6403 struct frame_id *fid = (struct frame_id *) args;
c906108c 6404 struct frame_info *frame;
c906108c 6405
101dcfbe 6406 frame = frame_find_by_id (*fid);
c906108c 6407
aa0cd9c1
AC
6408 /* If inf_status->selected_frame_id is NULL, there was no previously
6409 selected frame. */
101dcfbe 6410 if (frame == NULL)
c906108c 6411 {
8a3fe4f8 6412 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6413 return 0;
6414 }
6415
0f7d239c 6416 select_frame (frame);
c906108c
SS
6417
6418 return (1);
6419}
6420
b89667eb
DE
6421/* Restore inferior session state to INF_STATUS. */
6422
c906108c 6423void
16c381f0 6424restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6425{
4e1c45ea 6426 struct thread_info *tp = inferior_thread ();
d6b48e9c 6427 struct inferior *inf = current_inferior ();
4e1c45ea 6428
8358c15c
JK
6429 if (tp->control.step_resume_breakpoint)
6430 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6431
5b79abe7
TT
6432 if (tp->control.exception_resume_breakpoint)
6433 tp->control.exception_resume_breakpoint->disposition
6434 = disp_del_at_next_stop;
6435
d82142e2 6436 /* Handle the bpstat_copy of the chain. */
16c381f0 6437 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6438
16c381f0
JK
6439 tp->control = inf_status->thread_control;
6440 inf->control = inf_status->inferior_control;
d82142e2
JK
6441
6442 /* Other fields: */
6443 stop_stack_dummy = inf_status->stop_stack_dummy;
6444 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6445 stop_after_trap = inf_status->stop_after_trap;
c906108c 6446
b89667eb 6447 if (target_has_stack)
c906108c 6448 {
c906108c 6449 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6450 walking the stack might encounter a garbage pointer and
6451 error() trying to dereference it. */
488f131b
JB
6452 if (catch_errors
6453 (restore_selected_frame, &inf_status->selected_frame_id,
6454 "Unable to restore previously selected frame:\n",
6455 RETURN_MASK_ERROR) == 0)
c906108c
SS
6456 /* Error in restoring the selected frame. Select the innermost
6457 frame. */
0f7d239c 6458 select_frame (get_current_frame ());
c906108c 6459 }
c906108c 6460
72cec141 6461 xfree (inf_status);
7a292a7a 6462}
c906108c 6463
74b7792f 6464static void
16c381f0 6465do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6466{
16c381f0 6467 restore_infcall_control_state (sts);
74b7792f
AC
6468}
6469
6470struct cleanup *
16c381f0
JK
6471make_cleanup_restore_infcall_control_state
6472 (struct infcall_control_state *inf_status)
74b7792f 6473{
16c381f0 6474 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6475}
6476
c906108c 6477void
16c381f0 6478discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6479{
8358c15c
JK
6480 if (inf_status->thread_control.step_resume_breakpoint)
6481 inf_status->thread_control.step_resume_breakpoint->disposition
6482 = disp_del_at_next_stop;
6483
5b79abe7
TT
6484 if (inf_status->thread_control.exception_resume_breakpoint)
6485 inf_status->thread_control.exception_resume_breakpoint->disposition
6486 = disp_del_at_next_stop;
6487
16c381f0
JK
6488 /* See save_infcall_control_state for info on stop_bpstat. */
6489 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6490
72cec141 6491 xfree (inf_status);
7a292a7a 6492}
b89667eb 6493\f
47932f85 6494int
3a3e9ee3 6495inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6496{
6497 struct target_waitstatus last;
6498 ptid_t last_ptid;
6499
6500 get_last_target_status (&last_ptid, &last);
6501
6502 if (last.kind != TARGET_WAITKIND_FORKED)
6503 return 0;
6504
3a3e9ee3 6505 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6506 return 0;
6507
6508 *child_pid = last.value.related_pid;
6509 return 1;
6510}
6511
6512int
3a3e9ee3 6513inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6514{
6515 struct target_waitstatus last;
6516 ptid_t last_ptid;
6517
6518 get_last_target_status (&last_ptid, &last);
6519
6520 if (last.kind != TARGET_WAITKIND_VFORKED)
6521 return 0;
6522
3a3e9ee3 6523 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6524 return 0;
6525
6526 *child_pid = last.value.related_pid;
6527 return 1;
6528}
6529
6530int
3a3e9ee3 6531inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
6532{
6533 struct target_waitstatus last;
6534 ptid_t last_ptid;
6535
6536 get_last_target_status (&last_ptid, &last);
6537
6538 if (last.kind != TARGET_WAITKIND_EXECD)
6539 return 0;
6540
3a3e9ee3 6541 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6542 return 0;
6543
6544 *execd_pathname = xstrdup (last.value.execd_pathname);
6545 return 1;
6546}
6547
a96d9b2e
SDJ
6548int
6549inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6550{
6551 struct target_waitstatus last;
6552 ptid_t last_ptid;
6553
6554 get_last_target_status (&last_ptid, &last);
6555
6556 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6557 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6558 return 0;
6559
6560 if (!ptid_equal (last_ptid, pid))
6561 return 0;
6562
6563 *syscall_number = last.value.syscall_number;
6564 return 1;
6565}
6566
ca6724c1
KB
6567/* Oft used ptids */
6568ptid_t null_ptid;
6569ptid_t minus_one_ptid;
6570
6571/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 6572
ca6724c1
KB
6573ptid_t
6574ptid_build (int pid, long lwp, long tid)
6575{
6576 ptid_t ptid;
6577
6578 ptid.pid = pid;
6579 ptid.lwp = lwp;
6580 ptid.tid = tid;
6581 return ptid;
6582}
6583
6584/* Create a ptid from just a pid. */
6585
6586ptid_t
6587pid_to_ptid (int pid)
6588{
6589 return ptid_build (pid, 0, 0);
6590}
6591
6592/* Fetch the pid (process id) component from a ptid. */
6593
6594int
6595ptid_get_pid (ptid_t ptid)
6596{
6597 return ptid.pid;
6598}
6599
6600/* Fetch the lwp (lightweight process) component from a ptid. */
6601
6602long
6603ptid_get_lwp (ptid_t ptid)
6604{
6605 return ptid.lwp;
6606}
6607
6608/* Fetch the tid (thread id) component from a ptid. */
6609
6610long
6611ptid_get_tid (ptid_t ptid)
6612{
6613 return ptid.tid;
6614}
6615
6616/* ptid_equal() is used to test equality of two ptids. */
6617
6618int
6619ptid_equal (ptid_t ptid1, ptid_t ptid2)
6620{
6621 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 6622 && ptid1.tid == ptid2.tid);
ca6724c1
KB
6623}
6624
252fbfc8
PA
6625/* Returns true if PTID represents a process. */
6626
6627int
6628ptid_is_pid (ptid_t ptid)
6629{
6630 if (ptid_equal (minus_one_ptid, ptid))
6631 return 0;
6632 if (ptid_equal (null_ptid, ptid))
6633 return 0;
6634
6635 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6636}
6637
0723dbf5
PA
6638int
6639ptid_match (ptid_t ptid, ptid_t filter)
6640{
6641 /* Since both parameters have the same type, prevent easy mistakes
6642 from happening. */
6643 gdb_assert (!ptid_equal (ptid, minus_one_ptid)
5f25d77d 6644 && !ptid_equal (ptid, null_ptid));
0723dbf5
PA
6645
6646 if (ptid_equal (filter, minus_one_ptid))
6647 return 1;
6648 if (ptid_is_pid (filter)
6649 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6650 return 1;
6651 else if (ptid_equal (ptid, filter))
6652 return 1;
6653
6654 return 0;
6655}
6656
ca6724c1
KB
6657/* restore_inferior_ptid() will be used by the cleanup machinery
6658 to restore the inferior_ptid value saved in a call to
6659 save_inferior_ptid(). */
ce696e05
KB
6660
6661static void
6662restore_inferior_ptid (void *arg)
6663{
6664 ptid_t *saved_ptid_ptr = arg;
abbb1732 6665
ce696e05
KB
6666 inferior_ptid = *saved_ptid_ptr;
6667 xfree (arg);
6668}
6669
6670/* Save the value of inferior_ptid so that it may be restored by a
6671 later call to do_cleanups(). Returns the struct cleanup pointer
6672 needed for later doing the cleanup. */
6673
6674struct cleanup *
6675save_inferior_ptid (void)
6676{
6677 ptid_t *saved_ptid_ptr;
6678
6679 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6680 *saved_ptid_ptr = inferior_ptid;
6681 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6682}
c5aa993b 6683\f
488f131b 6684
b2175913
MS
6685/* User interface for reverse debugging:
6686 Set exec-direction / show exec-direction commands
6687 (returns error unless target implements to_set_exec_direction method). */
6688
6689enum exec_direction_kind execution_direction = EXEC_FORWARD;
6690static const char exec_forward[] = "forward";
6691static const char exec_reverse[] = "reverse";
6692static const char *exec_direction = exec_forward;
6693static const char *exec_direction_names[] = {
6694 exec_forward,
6695 exec_reverse,
6696 NULL
6697};
6698
6699static void
6700set_exec_direction_func (char *args, int from_tty,
6701 struct cmd_list_element *cmd)
6702{
6703 if (target_can_execute_reverse)
6704 {
6705 if (!strcmp (exec_direction, exec_forward))
6706 execution_direction = EXEC_FORWARD;
6707 else if (!strcmp (exec_direction, exec_reverse))
6708 execution_direction = EXEC_REVERSE;
6709 }
8bbed405
MS
6710 else
6711 {
6712 exec_direction = exec_forward;
6713 error (_("Target does not support this operation."));
6714 }
b2175913
MS
6715}
6716
6717static void
6718show_exec_direction_func (struct ui_file *out, int from_tty,
6719 struct cmd_list_element *cmd, const char *value)
6720{
6721 switch (execution_direction) {
6722 case EXEC_FORWARD:
6723 fprintf_filtered (out, _("Forward.\n"));
6724 break;
6725 case EXEC_REVERSE:
6726 fprintf_filtered (out, _("Reverse.\n"));
6727 break;
6728 case EXEC_ERROR:
6729 default:
6730 fprintf_filtered (out,
6731 _("Forward (target `%s' does not support exec-direction).\n"),
6732 target_shortname);
6733 break;
6734 }
6735}
6736
6737/* User interface for non-stop mode. */
6738
ad52ddc6 6739int non_stop = 0;
ad52ddc6
PA
6740
6741static void
6742set_non_stop (char *args, int from_tty,
6743 struct cmd_list_element *c)
6744{
6745 if (target_has_execution)
6746 {
6747 non_stop_1 = non_stop;
6748 error (_("Cannot change this setting while the inferior is running."));
6749 }
6750
6751 non_stop = non_stop_1;
6752}
6753
6754static void
6755show_non_stop (struct ui_file *file, int from_tty,
6756 struct cmd_list_element *c, const char *value)
6757{
6758 fprintf_filtered (file,
6759 _("Controlling the inferior in non-stop mode is %s.\n"),
6760 value);
6761}
6762
d4db2f36
PA
6763static void
6764show_schedule_multiple (struct ui_file *file, int from_tty,
6765 struct cmd_list_element *c, const char *value)
6766{
6767 fprintf_filtered (file, _("\
6768Resuming the execution of threads of all processes is %s.\n"), value);
6769}
ad52ddc6 6770
c906108c 6771void
96baa820 6772_initialize_infrun (void)
c906108c 6773{
52f0bd74
AC
6774 int i;
6775 int numsigs;
c906108c 6776
1bedd215
AC
6777 add_info ("signals", signals_info, _("\
6778What debugger does when program gets various signals.\n\
6779Specify a signal as argument to print info on that signal only."));
c906108c
SS
6780 add_info_alias ("handle", "signals", 0);
6781
1bedd215
AC
6782 add_com ("handle", class_run, handle_command, _("\
6783Specify how to handle a signal.\n\
c906108c
SS
6784Args are signals and actions to apply to those signals.\n\
6785Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6786from 1-15 are allowed for compatibility with old versions of GDB.\n\
6787Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6788The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
6789used by the debugger, typically SIGTRAP and SIGINT.\n\
6790Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
6791\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6792Stop means reenter debugger if this signal happens (implies print).\n\
6793Print means print a message if this signal happens.\n\
6794Pass means let program see this signal; otherwise program doesn't know.\n\
6795Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6796Pass and Stop may be combined."));
c906108c
SS
6797 if (xdb_commands)
6798 {
1bedd215
AC
6799 add_com ("lz", class_info, signals_info, _("\
6800What debugger does when program gets various signals.\n\
6801Specify a signal as argument to print info on that signal only."));
6802 add_com ("z", class_run, xdb_handle_command, _("\
6803Specify how to handle a signal.\n\
c906108c
SS
6804Args are signals and actions to apply to those signals.\n\
6805Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6806from 1-15 are allowed for compatibility with old versions of GDB.\n\
6807Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6808The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 6809used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 6810Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
6811\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6812nopass), \"Q\" (noprint)\n\
6813Stop means reenter debugger if this signal happens (implies print).\n\
6814Print means print a message if this signal happens.\n\
6815Pass means let program see this signal; otherwise program doesn't know.\n\
6816Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6817Pass and Stop may be combined."));
c906108c
SS
6818 }
6819
6820 if (!dbx_commands)
1a966eab
AC
6821 stop_command = add_cmd ("stop", class_obscure,
6822 not_just_help_class_command, _("\
6823There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 6824This allows you to set a list of commands to be run each time execution\n\
1a966eab 6825of the program stops."), &cmdlist);
c906108c 6826
85c07804
AC
6827 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6828Set inferior debugging."), _("\
6829Show inferior debugging."), _("\
6830When non-zero, inferior specific debugging is enabled."),
6831 NULL,
920d2a44 6832 show_debug_infrun,
85c07804 6833 &setdebuglist, &showdebuglist);
527159b7 6834
237fc4c9
PA
6835 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
6836Set displaced stepping debugging."), _("\
6837Show displaced stepping debugging."), _("\
6838When non-zero, displaced stepping specific debugging is enabled."),
6839 NULL,
6840 show_debug_displaced,
6841 &setdebuglist, &showdebuglist);
6842
ad52ddc6
PA
6843 add_setshow_boolean_cmd ("non-stop", no_class,
6844 &non_stop_1, _("\
6845Set whether gdb controls the inferior in non-stop mode."), _("\
6846Show whether gdb controls the inferior in non-stop mode."), _("\
6847When debugging a multi-threaded program and this setting is\n\
6848off (the default, also called all-stop mode), when one thread stops\n\
6849(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
6850all other threads in the program while you interact with the thread of\n\
6851interest. When you continue or step a thread, you can allow the other\n\
6852threads to run, or have them remain stopped, but while you inspect any\n\
6853thread's state, all threads stop.\n\
6854\n\
6855In non-stop mode, when one thread stops, other threads can continue\n\
6856to run freely. You'll be able to step each thread independently,\n\
6857leave it stopped or free to run as needed."),
6858 set_non_stop,
6859 show_non_stop,
6860 &setlist,
6861 &showlist);
6862
c906108c 6863 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 6864 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
6865 signal_print = (unsigned char *)
6866 xmalloc (sizeof (signal_print[0]) * numsigs);
6867 signal_program = (unsigned char *)
6868 xmalloc (sizeof (signal_program[0]) * numsigs);
6869 for (i = 0; i < numsigs; i++)
6870 {
6871 signal_stop[i] = 1;
6872 signal_print[i] = 1;
6873 signal_program[i] = 1;
6874 }
6875
6876 /* Signals caused by debugger's own actions
6877 should not be given to the program afterwards. */
6878 signal_program[TARGET_SIGNAL_TRAP] = 0;
6879 signal_program[TARGET_SIGNAL_INT] = 0;
6880
6881 /* Signals that are not errors should not normally enter the debugger. */
6882 signal_stop[TARGET_SIGNAL_ALRM] = 0;
6883 signal_print[TARGET_SIGNAL_ALRM] = 0;
6884 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
6885 signal_print[TARGET_SIGNAL_VTALRM] = 0;
6886 signal_stop[TARGET_SIGNAL_PROF] = 0;
6887 signal_print[TARGET_SIGNAL_PROF] = 0;
6888 signal_stop[TARGET_SIGNAL_CHLD] = 0;
6889 signal_print[TARGET_SIGNAL_CHLD] = 0;
6890 signal_stop[TARGET_SIGNAL_IO] = 0;
6891 signal_print[TARGET_SIGNAL_IO] = 0;
6892 signal_stop[TARGET_SIGNAL_POLL] = 0;
6893 signal_print[TARGET_SIGNAL_POLL] = 0;
6894 signal_stop[TARGET_SIGNAL_URG] = 0;
6895 signal_print[TARGET_SIGNAL_URG] = 0;
6896 signal_stop[TARGET_SIGNAL_WINCH] = 0;
6897 signal_print[TARGET_SIGNAL_WINCH] = 0;
6898
cd0fc7c3
SS
6899 /* These signals are used internally by user-level thread
6900 implementations. (See signal(5) on Solaris.) Like the above
6901 signals, a healthy program receives and handles them as part of
6902 its normal operation. */
6903 signal_stop[TARGET_SIGNAL_LWP] = 0;
6904 signal_print[TARGET_SIGNAL_LWP] = 0;
6905 signal_stop[TARGET_SIGNAL_WAITING] = 0;
6906 signal_print[TARGET_SIGNAL_WAITING] = 0;
6907 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
6908 signal_print[TARGET_SIGNAL_CANCEL] = 0;
6909
85c07804
AC
6910 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
6911 &stop_on_solib_events, _("\
6912Set stopping for shared library events."), _("\
6913Show stopping for shared library events."), _("\
c906108c
SS
6914If nonzero, gdb will give control to the user when the dynamic linker\n\
6915notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
6916to the user would be loading/unloading of a new library."),
6917 NULL,
920d2a44 6918 show_stop_on_solib_events,
85c07804 6919 &setlist, &showlist);
c906108c 6920
7ab04401
AC
6921 add_setshow_enum_cmd ("follow-fork-mode", class_run,
6922 follow_fork_mode_kind_names,
6923 &follow_fork_mode_string, _("\
6924Set debugger response to a program call of fork or vfork."), _("\
6925Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
6926A fork or vfork creates a new process. follow-fork-mode can be:\n\
6927 parent - the original process is debugged after a fork\n\
6928 child - the new process is debugged after a fork\n\
ea1dd7bc 6929The unfollowed process will continue to run.\n\
7ab04401
AC
6930By default, the debugger will follow the parent process."),
6931 NULL,
920d2a44 6932 show_follow_fork_mode_string,
7ab04401
AC
6933 &setlist, &showlist);
6934
6c95b8df
PA
6935 add_setshow_enum_cmd ("follow-exec-mode", class_run,
6936 follow_exec_mode_names,
6937 &follow_exec_mode_string, _("\
6938Set debugger response to a program call of exec."), _("\
6939Show debugger response to a program call of exec."), _("\
6940An exec call replaces the program image of a process.\n\
6941\n\
6942follow-exec-mode can be:\n\
6943\n\
cce7e648 6944 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
6945to this new inferior. The program the process was running before\n\
6946the exec call can be restarted afterwards by restarting the original\n\
6947inferior.\n\
6948\n\
6949 same - the debugger keeps the process bound to the same inferior.\n\
6950The new executable image replaces the previous executable loaded in\n\
6951the inferior. Restarting the inferior after the exec call restarts\n\
6952the executable the process was running after the exec call.\n\
6953\n\
6954By default, the debugger will use the same inferior."),
6955 NULL,
6956 show_follow_exec_mode_string,
6957 &setlist, &showlist);
6958
7ab04401
AC
6959 add_setshow_enum_cmd ("scheduler-locking", class_run,
6960 scheduler_enums, &scheduler_mode, _("\
6961Set mode for locking scheduler during execution."), _("\
6962Show mode for locking scheduler during execution."), _("\
c906108c
SS
6963off == no locking (threads may preempt at any time)\n\
6964on == full locking (no thread except the current thread may run)\n\
6965step == scheduler locked during every single-step operation.\n\
6966 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
6967 Other threads may run while stepping over a function call ('next')."),
6968 set_schedlock_func, /* traps on target vector */
920d2a44 6969 show_scheduler_mode,
7ab04401 6970 &setlist, &showlist);
5fbbeb29 6971
d4db2f36
PA
6972 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
6973Set mode for resuming threads of all processes."), _("\
6974Show mode for resuming threads of all processes."), _("\
6975When on, execution commands (such as 'continue' or 'next') resume all\n\
6976threads of all processes. When off (which is the default), execution\n\
6977commands only resume the threads of the current process. The set of\n\
6978threads that are resumed is further refined by the scheduler-locking\n\
6979mode (see help set scheduler-locking)."),
6980 NULL,
6981 show_schedule_multiple,
6982 &setlist, &showlist);
6983
5bf193a2
AC
6984 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
6985Set mode of the step operation."), _("\
6986Show mode of the step operation."), _("\
6987When set, doing a step over a function without debug line information\n\
6988will stop at the first instruction of that function. Otherwise, the\n\
6989function is skipped and the step command stops at a different source line."),
6990 NULL,
920d2a44 6991 show_step_stop_if_no_debug,
5bf193a2 6992 &setlist, &showlist);
ca6724c1 6993
fff08868
HZ
6994 add_setshow_enum_cmd ("displaced-stepping", class_run,
6995 can_use_displaced_stepping_enum,
6996 &can_use_displaced_stepping, _("\
237fc4c9
PA
6997Set debugger's willingness to use displaced stepping."), _("\
6998Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
6999If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7000supported by the target architecture. If off, gdb will not use displaced\n\
7001stepping to step over breakpoints, even if such is supported by the target\n\
7002architecture. If auto (which is the default), gdb will use displaced stepping\n\
7003if the target architecture supports it and non-stop mode is active, but will not\n\
7004use it in all-stop mode (see help set non-stop)."),
7005 NULL,
7006 show_can_use_displaced_stepping,
7007 &setlist, &showlist);
237fc4c9 7008
b2175913
MS
7009 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7010 &exec_direction, _("Set direction of execution.\n\
7011Options are 'forward' or 'reverse'."),
7012 _("Show direction of execution (forward/reverse)."),
7013 _("Tells gdb whether to execute forward or backward."),
7014 set_exec_direction_func, show_exec_direction_func,
7015 &setlist, &showlist);
7016
6c95b8df
PA
7017 /* Set/show detach-on-fork: user-settable mode. */
7018
7019 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7020Set whether gdb will detach the child of a fork."), _("\
7021Show whether gdb will detach the child of a fork."), _("\
7022Tells gdb whether to detach the child of a fork."),
7023 NULL, NULL, &setlist, &showlist);
7024
ca6724c1
KB
7025 /* ptid initializations */
7026 null_ptid = ptid_build (0, 0, 0);
7027 minus_one_ptid = ptid_build (-1, 0, 0);
7028 inferior_ptid = null_ptid;
7029 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7030
7031 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7032 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7033 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7034 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7035
7036 /* Explicitly create without lookup, since that tries to create a
7037 value with a void typed value, and when we get here, gdbarch
7038 isn't initialized yet. At this point, we're quite sure there
7039 isn't another convenience variable of the same name. */
7040 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
d914c394
SS
7041
7042 add_setshow_boolean_cmd ("observer", no_class,
7043 &observer_mode_1, _("\
7044Set whether gdb controls the inferior in observer mode."), _("\
7045Show whether gdb controls the inferior in observer mode."), _("\
7046In observer mode, GDB can get data from the inferior, but not\n\
7047affect its execution. Registers and memory may not be changed,\n\
7048breakpoints may not be set, and the program cannot be interrupted\n\
7049or signalled."),
7050 set_observer_mode,
7051 show_observer_mode,
7052 &setlist,
7053 &showlist);
c906108c 7054}
This page took 1.367497 seconds and 4 git commands to generate.