2004-06-07 Randolph Chung <tausq@debian.org>
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c
AC
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
c6f0559b
AC
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
31#include "breakpoint.h"
03f2053f 32#include "gdb_wait.h"
c906108c
SS
33#include "gdbcore.h"
34#include "gdbcmd.h"
210661e7 35#include "cli/cli-script.h"
c906108c
SS
36#include "target.h"
37#include "gdbthread.h"
38#include "annotate.h"
1adeb98a 39#include "symfile.h"
7a292a7a 40#include "top.h"
c906108c 41#include <signal.h>
2acceee2 42#include "inf-loop.h"
4e052eda 43#include "regcache.h"
fd0407d6 44#include "value.h"
06600e06 45#include "observer.h"
f636b87d 46#include "language.h"
9f976b41 47#include "gdb_assert.h"
c906108c
SS
48
49/* Prototypes for local functions */
50
96baa820 51static void signals_info (char *, int);
c906108c 52
96baa820 53static void handle_command (char *, int);
c906108c 54
96baa820 55static void sig_print_info (enum target_signal);
c906108c 56
96baa820 57static void sig_print_header (void);
c906108c 58
74b7792f 59static void resume_cleanups (void *);
c906108c 60
96baa820 61static int hook_stop_stub (void *);
c906108c 62
96baa820
JM
63static int restore_selected_frame (void *);
64
65static void build_infrun (void);
66
4ef3f3be 67static int follow_fork (void);
96baa820
JM
68
69static void set_schedlock_func (char *args, int from_tty,
488f131b 70 struct cmd_list_element *c);
96baa820 71
96baa820
JM
72struct execution_control_state;
73
74static int currently_stepping (struct execution_control_state *ecs);
75
76static void xdb_handle_command (char *args, int from_tty);
77
ea67f13b
DJ
78static int prepare_to_proceed (void);
79
96baa820 80void _initialize_infrun (void);
43ff13b4 81
c906108c
SS
82int inferior_ignoring_startup_exec_events = 0;
83int inferior_ignoring_leading_exec_events = 0;
84
5fbbeb29
CF
85/* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88int step_stop_if_no_debug = 0;
89
43ff13b4 90/* In asynchronous mode, but simulating synchronous execution. */
96baa820 91
43ff13b4
JM
92int sync_execution = 0;
93
c906108c
SS
94/* wait_for_inferior and normal_stop use this to notify the user
95 when the inferior stopped in a different thread than it had been
96baa820
JM
96 running in. */
97
39f77062 98static ptid_t previous_inferior_ptid;
7a292a7a
SS
99
100/* This is true for configurations that may follow through execl() and
101 similar functions. At present this is only true for HP-UX native. */
102
103#ifndef MAY_FOLLOW_EXEC
104#define MAY_FOLLOW_EXEC (0)
c906108c
SS
105#endif
106
7a292a7a
SS
107static int may_follow_exec = MAY_FOLLOW_EXEC;
108
d4f3574e
SS
109/* If the program uses ELF-style shared libraries, then calls to
110 functions in shared libraries go through stubs, which live in a
111 table called the PLT (Procedure Linkage Table). The first time the
112 function is called, the stub sends control to the dynamic linker,
113 which looks up the function's real address, patches the stub so
114 that future calls will go directly to the function, and then passes
115 control to the function.
116
117 If we are stepping at the source level, we don't want to see any of
118 this --- we just want to skip over the stub and the dynamic linker.
119 The simple approach is to single-step until control leaves the
120 dynamic linker.
121
ca557f44
AC
122 However, on some systems (e.g., Red Hat's 5.2 distribution) the
123 dynamic linker calls functions in the shared C library, so you
124 can't tell from the PC alone whether the dynamic linker is still
125 running. In this case, we use a step-resume breakpoint to get us
126 past the dynamic linker, as if we were using "next" to step over a
127 function call.
d4f3574e
SS
128
129 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
130 linker code or not. Normally, this means we single-step. However,
131 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
132 address where we can place a step-resume breakpoint to get past the
133 linker's symbol resolution function.
134
135 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
136 pretty portable way, by comparing the PC against the address ranges
137 of the dynamic linker's sections.
138
139 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
140 it depends on internal details of the dynamic linker. It's usually
141 not too hard to figure out where to put a breakpoint, but it
142 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
143 sanity checking. If it can't figure things out, returning zero and
144 getting the (possibly confusing) stepping behavior is better than
145 signalling an error, which will obscure the change in the
146 inferior's state. */
c906108c
SS
147
148#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
149#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
150#endif
151
c906108c
SS
152/* This function returns TRUE if pc is the address of an instruction
153 that lies within the dynamic linker (such as the event hook, or the
154 dld itself).
155
156 This function must be used only when a dynamic linker event has
157 been caught, and the inferior is being stepped out of the hook, or
158 undefined results are guaranteed. */
159
160#ifndef SOLIB_IN_DYNAMIC_LINKER
161#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
162#endif
163
164/* On MIPS16, a function that returns a floating point value may call
165 a library helper function to copy the return value to a floating point
166 register. The IGNORE_HELPER_CALL macro returns non-zero if we
167 should ignore (i.e. step over) this function call. */
168#ifndef IGNORE_HELPER_CALL
169#define IGNORE_HELPER_CALL(pc) 0
170#endif
171
172/* On some systems, the PC may be left pointing at an instruction that won't
173 actually be executed. This is usually indicated by a bit in the PSW. If
174 we find ourselves in such a state, then we step the target beyond the
175 nullified instruction before returning control to the user so as to avoid
176 confusion. */
177
178#ifndef INSTRUCTION_NULLIFIED
179#define INSTRUCTION_NULLIFIED 0
180#endif
181
c2c6d25f
JM
182/* We can't step off a permanent breakpoint in the ordinary way, because we
183 can't remove it. Instead, we have to advance the PC to the next
184 instruction. This macro should expand to a pointer to a function that
185 does that, or zero if we have no such function. If we don't have a
186 definition for it, we have to report an error. */
488f131b 187#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
188#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
189static void
c2d11a7d 190default_skip_permanent_breakpoint (void)
c2c6d25f 191{
255e7dbf 192 error ("\
c2c6d25f
JM
193The program is stopped at a permanent breakpoint, but GDB does not know\n\
194how to step past a permanent breakpoint on this architecture. Try using\n\
255e7dbf 195a command like `return' or `jump' to continue execution.");
c2c6d25f
JM
196}
197#endif
488f131b 198
c2c6d25f 199
7a292a7a
SS
200/* Convert the #defines into values. This is temporary until wfi control
201 flow is completely sorted out. */
202
203#ifndef HAVE_STEPPABLE_WATCHPOINT
204#define HAVE_STEPPABLE_WATCHPOINT 0
205#else
206#undef HAVE_STEPPABLE_WATCHPOINT
207#define HAVE_STEPPABLE_WATCHPOINT 1
208#endif
209
692590c1
MS
210#ifndef CANNOT_STEP_HW_WATCHPOINTS
211#define CANNOT_STEP_HW_WATCHPOINTS 0
212#else
213#undef CANNOT_STEP_HW_WATCHPOINTS
214#define CANNOT_STEP_HW_WATCHPOINTS 1
215#endif
216
c906108c
SS
217/* Tables of how to react to signals; the user sets them. */
218
219static unsigned char *signal_stop;
220static unsigned char *signal_print;
221static unsigned char *signal_program;
222
223#define SET_SIGS(nsigs,sigs,flags) \
224 do { \
225 int signum = (nsigs); \
226 while (signum-- > 0) \
227 if ((sigs)[signum]) \
228 (flags)[signum] = 1; \
229 } while (0)
230
231#define UNSET_SIGS(nsigs,sigs,flags) \
232 do { \
233 int signum = (nsigs); \
234 while (signum-- > 0) \
235 if ((sigs)[signum]) \
236 (flags)[signum] = 0; \
237 } while (0)
238
39f77062
KB
239/* Value to pass to target_resume() to cause all threads to resume */
240
241#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
242
243/* Command list pointer for the "stop" placeholder. */
244
245static struct cmd_list_element *stop_command;
246
247/* Nonzero if breakpoints are now inserted in the inferior. */
248
249static int breakpoints_inserted;
250
251/* Function inferior was in as of last step command. */
252
253static struct symbol *step_start_function;
254
255/* Nonzero if we are expecting a trace trap and should proceed from it. */
256
257static int trap_expected;
258
259#ifdef SOLIB_ADD
260/* Nonzero if we want to give control to the user when we're notified
261 of shared library events by the dynamic linker. */
262static int stop_on_solib_events;
263#endif
264
c906108c
SS
265/* Nonzero means expecting a trace trap
266 and should stop the inferior and return silently when it happens. */
267
268int stop_after_trap;
269
270/* Nonzero means expecting a trap and caller will handle it themselves.
271 It is used after attach, due to attaching to a process;
272 when running in the shell before the child program has been exec'd;
273 and when running some kinds of remote stuff (FIXME?). */
274
c0236d92 275enum stop_kind stop_soon;
c906108c
SS
276
277/* Nonzero if proceed is being used for a "finish" command or a similar
278 situation when stop_registers should be saved. */
279
280int proceed_to_finish;
281
282/* Save register contents here when about to pop a stack dummy frame,
283 if-and-only-if proceed_to_finish is set.
284 Thus this contains the return value from the called function (assuming
285 values are returned in a register). */
286
72cec141 287struct regcache *stop_registers;
c906108c
SS
288
289/* Nonzero if program stopped due to error trying to insert breakpoints. */
290
291static int breakpoints_failed;
292
293/* Nonzero after stop if current stack frame should be printed. */
294
295static int stop_print_frame;
296
297static struct breakpoint *step_resume_breakpoint = NULL;
c906108c
SS
298
299/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
300 interactions with an inferior that is running a kernel function
301 (aka, a system call or "syscall"). wait_for_inferior therefore
302 may have a need to know when the inferior is in a syscall. This
303 is a count of the number of inferior threads which are known to
304 currently be running in a syscall. */
305static int number_of_threads_in_syscalls;
306
e02bc4cc 307/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
308 returned by target_wait()/deprecated_target_wait_hook(). This
309 information is returned by get_last_target_status(). */
39f77062 310static ptid_t target_last_wait_ptid;
e02bc4cc
DS
311static struct target_waitstatus target_last_waitstatus;
312
c906108c
SS
313/* This is used to remember when a fork, vfork or exec event
314 was caught by a catchpoint, and thus the event is to be
315 followed at the next resume of the inferior, and not
316 immediately. */
317static struct
488f131b
JB
318{
319 enum target_waitkind kind;
320 struct
c906108c 321 {
488f131b 322 int parent_pid;
488f131b 323 int child_pid;
c906108c 324 }
488f131b
JB
325 fork_event;
326 char *execd_pathname;
327}
c906108c
SS
328pending_follow;
329
53904c9e
AC
330static const char follow_fork_mode_child[] = "child";
331static const char follow_fork_mode_parent[] = "parent";
332
488f131b 333static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
334 follow_fork_mode_child,
335 follow_fork_mode_parent,
336 NULL
ef346e04 337};
c906108c 338
53904c9e 339static const char *follow_fork_mode_string = follow_fork_mode_parent;
c906108c
SS
340\f
341
6604731b 342static int
4ef3f3be 343follow_fork (void)
c906108c 344{
ea1dd7bc 345 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 346
6604731b 347 return target_follow_fork (follow_child);
c906108c
SS
348}
349
6604731b
DJ
350void
351follow_inferior_reset_breakpoints (void)
c906108c 352{
6604731b
DJ
353 /* Was there a step_resume breakpoint? (There was if the user
354 did a "next" at the fork() call.) If so, explicitly reset its
355 thread number.
356
357 step_resumes are a form of bp that are made to be per-thread.
358 Since we created the step_resume bp when the parent process
359 was being debugged, and now are switching to the child process,
360 from the breakpoint package's viewpoint, that's a switch of
361 "threads". We must update the bp's notion of which thread
362 it is for, or it'll be ignored when it triggers. */
363
364 if (step_resume_breakpoint)
365 breakpoint_re_set_thread (step_resume_breakpoint);
366
367 /* Reinsert all breakpoints in the child. The user may have set
368 breakpoints after catching the fork, in which case those
369 were never set in the child, but only in the parent. This makes
370 sure the inserted breakpoints match the breakpoint list. */
371
372 breakpoint_re_set ();
373 insert_breakpoints ();
c906108c 374}
c906108c 375
1adeb98a
FN
376/* EXECD_PATHNAME is assumed to be non-NULL. */
377
c906108c 378static void
96baa820 379follow_exec (int pid, char *execd_pathname)
c906108c 380{
c906108c 381 int saved_pid = pid;
7a292a7a
SS
382 struct target_ops *tgt;
383
384 if (!may_follow_exec)
385 return;
c906108c 386
c906108c
SS
387 /* This is an exec event that we actually wish to pay attention to.
388 Refresh our symbol table to the newly exec'd program, remove any
389 momentary bp's, etc.
390
391 If there are breakpoints, they aren't really inserted now,
392 since the exec() transformed our inferior into a fresh set
393 of instructions.
394
395 We want to preserve symbolic breakpoints on the list, since
396 we have hopes that they can be reset after the new a.out's
397 symbol table is read.
398
399 However, any "raw" breakpoints must be removed from the list
400 (e.g., the solib bp's), since their address is probably invalid
401 now.
402
403 And, we DON'T want to call delete_breakpoints() here, since
404 that may write the bp's "shadow contents" (the instruction
405 value that was overwritten witha TRAP instruction). Since
406 we now have a new a.out, those shadow contents aren't valid. */
407 update_breakpoints_after_exec ();
408
409 /* If there was one, it's gone now. We cannot truly step-to-next
410 statement through an exec(). */
411 step_resume_breakpoint = NULL;
412 step_range_start = 0;
413 step_range_end = 0;
414
c906108c
SS
415 /* What is this a.out's name? */
416 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
417
418 /* We've followed the inferior through an exec. Therefore, the
419 inferior has essentially been killed & reborn. */
7a292a7a
SS
420
421 /* First collect the run target in effect. */
422 tgt = find_run_target ();
423 /* If we can't find one, things are in a very strange state... */
424 if (tgt == NULL)
425 error ("Could find run target to save before following exec");
426
c906108c
SS
427 gdb_flush (gdb_stdout);
428 target_mourn_inferior ();
39f77062 429 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 430 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 431 push_target (tgt);
c906108c
SS
432
433 /* That a.out is now the one to use. */
434 exec_file_attach (execd_pathname, 0);
435
436 /* And also is where symbols can be found. */
1adeb98a 437 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
438
439 /* Reset the shared library package. This ensures that we get
440 a shlib event when the child reaches "_start", at which point
441 the dld will have had a chance to initialize the child. */
7a292a7a 442#if defined(SOLIB_RESTART)
c906108c 443 SOLIB_RESTART ();
7a292a7a
SS
444#endif
445#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 446 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 447#endif
c906108c
SS
448
449 /* Reinsert all breakpoints. (Those which were symbolic have
450 been reset to the proper address in the new a.out, thanks
451 to symbol_file_command...) */
452 insert_breakpoints ();
453
454 /* The next resume of this inferior should bring it to the shlib
455 startup breakpoints. (If the user had also set bp's on
456 "main" from the old (parent) process, then they'll auto-
457 matically get reset there in the new process.) */
c906108c
SS
458}
459
460/* Non-zero if we just simulating a single-step. This is needed
461 because we cannot remove the breakpoints in the inferior process
462 until after the `wait' in `wait_for_inferior'. */
463static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
464
465/* The thread we inserted single-step breakpoints for. */
466static ptid_t singlestep_ptid;
467
468/* If another thread hit the singlestep breakpoint, we save the original
469 thread here so that we can resume single-stepping it later. */
470static ptid_t saved_singlestep_ptid;
471static int stepping_past_singlestep_breakpoint;
c906108c
SS
472\f
473
474/* Things to clean up if we QUIT out of resume (). */
c906108c 475static void
74b7792f 476resume_cleanups (void *ignore)
c906108c
SS
477{
478 normal_stop ();
479}
480
53904c9e
AC
481static const char schedlock_off[] = "off";
482static const char schedlock_on[] = "on";
483static const char schedlock_step[] = "step";
484static const char *scheduler_mode = schedlock_off;
488f131b 485static const char *scheduler_enums[] = {
ef346e04
AC
486 schedlock_off,
487 schedlock_on,
488 schedlock_step,
489 NULL
490};
c906108c
SS
491
492static void
96baa820 493set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 494{
1868c04e
AC
495 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
496 the set command passed as a parameter. The clone operation will
497 include (BUG?) any ``set'' command callback, if present.
498 Commands like ``info set'' call all the ``show'' command
ce2826aa 499 callbacks. Unfortunately, for ``show'' commands cloned from
1868c04e
AC
500 ``set'', this includes callbacks belonging to ``set'' commands.
501 Making this worse, this only occures if add_show_from_set() is
502 called after add_cmd_sfunc() (BUG?). */
503 if (cmd_type (c) == set_cmd)
c906108c
SS
504 if (!target_can_lock_scheduler)
505 {
506 scheduler_mode = schedlock_off;
488f131b 507 error ("Target '%s' cannot support this command.", target_shortname);
c906108c
SS
508 }
509}
510
511
512/* Resume the inferior, but allow a QUIT. This is useful if the user
513 wants to interrupt some lengthy single-stepping operation
514 (for child processes, the SIGINT goes to the inferior, and so
515 we get a SIGINT random_signal, but for remote debugging and perhaps
516 other targets, that's not true).
517
518 STEP nonzero if we should step (zero to continue instead).
519 SIG is the signal to give the inferior (zero for none). */
520void
96baa820 521resume (int step, enum target_signal sig)
c906108c
SS
522{
523 int should_resume = 1;
74b7792f 524 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
525 QUIT;
526
ef5cf84e
MS
527 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
528
c906108c 529
692590c1
MS
530 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
531 over an instruction that causes a page fault without triggering
532 a hardware watchpoint. The kernel properly notices that it shouldn't
533 stop, because the hardware watchpoint is not triggered, but it forgets
534 the step request and continues the program normally.
535 Work around the problem by removing hardware watchpoints if a step is
536 requested, GDB will check for a hardware watchpoint trigger after the
537 step anyway. */
538 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
539 remove_hw_watchpoints ();
488f131b 540
692590c1 541
c2c6d25f
JM
542 /* Normally, by the time we reach `resume', the breakpoints are either
543 removed or inserted, as appropriate. The exception is if we're sitting
544 at a permanent breakpoint; we need to step over it, but permanent
545 breakpoints can't be removed. So we have to test for it here. */
546 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
547 SKIP_PERMANENT_BREAKPOINT ();
548
b0ed3589 549 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
550 {
551 /* Do it the hard way, w/temp breakpoints */
c5aa993b 552 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
553 /* ...and don't ask hardware to do it. */
554 step = 0;
555 /* and do not pull these breakpoints until after a `wait' in
556 `wait_for_inferior' */
557 singlestep_breakpoints_inserted_p = 1;
9f976b41 558 singlestep_ptid = inferior_ptid;
c906108c
SS
559 }
560
c906108c 561 /* If there were any forks/vforks/execs that were caught and are
6604731b 562 now to be followed, then do so. */
c906108c
SS
563 switch (pending_follow.kind)
564 {
6604731b
DJ
565 case TARGET_WAITKIND_FORKED:
566 case TARGET_WAITKIND_VFORKED:
c906108c 567 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
568 if (follow_fork ())
569 should_resume = 0;
c906108c
SS
570 break;
571
6604731b 572 case TARGET_WAITKIND_EXECD:
c906108c 573 /* follow_exec is called as soon as the exec event is seen. */
6604731b 574 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
575 break;
576
577 default:
578 break;
579 }
c906108c
SS
580
581 /* Install inferior's terminal modes. */
582 target_terminal_inferior ();
583
584 if (should_resume)
585 {
39f77062 586 ptid_t resume_ptid;
dfcd3bfb 587
488f131b 588 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e
MS
589
590 if ((step || singlestep_breakpoints_inserted_p) &&
9f976b41
DJ
591 (stepping_past_singlestep_breakpoint
592 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 593 {
ef5cf84e
MS
594 /* Stepping past a breakpoint without inserting breakpoints.
595 Make sure only the current thread gets to step, so that
596 other threads don't sneak past breakpoints while they are
597 not inserted. */
c906108c 598
ef5cf84e 599 resume_ptid = inferior_ptid;
c906108c 600 }
ef5cf84e
MS
601
602 if ((scheduler_mode == schedlock_on) ||
488f131b 603 (scheduler_mode == schedlock_step &&
ef5cf84e 604 (step || singlestep_breakpoints_inserted_p)))
c906108c 605 {
ef5cf84e 606 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 607 resume_ptid = inferior_ptid;
c906108c 608 }
ef5cf84e 609
c4ed33b9
AC
610 if (CANNOT_STEP_BREAKPOINT)
611 {
612 /* Most targets can step a breakpoint instruction, thus
613 executing it normally. But if this one cannot, just
614 continue and we will hit it anyway. */
615 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
616 step = 0;
617 }
39f77062 618 target_resume (resume_ptid, step, sig);
c906108c
SS
619 }
620
621 discard_cleanups (old_cleanups);
622}
623\f
624
625/* Clear out all variables saying what to do when inferior is continued.
626 First do this, then set the ones you want, then call `proceed'. */
627
628void
96baa820 629clear_proceed_status (void)
c906108c
SS
630{
631 trap_expected = 0;
632 step_range_start = 0;
633 step_range_end = 0;
aa0cd9c1 634 step_frame_id = null_frame_id;
5fbbeb29 635 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 636 stop_after_trap = 0;
c0236d92 637 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
638 proceed_to_finish = 0;
639 breakpoint_proceeded = 1; /* We're about to proceed... */
640
641 /* Discard any remaining commands or status from previous stop. */
642 bpstat_clear (&stop_bpstat);
643}
644
ea67f13b
DJ
645/* This should be suitable for any targets that support threads. */
646
647static int
648prepare_to_proceed (void)
649{
650 ptid_t wait_ptid;
651 struct target_waitstatus wait_status;
652
653 /* Get the last target status returned by target_wait(). */
654 get_last_target_status (&wait_ptid, &wait_status);
655
656 /* Make sure we were stopped either at a breakpoint, or because
657 of a Ctrl-C. */
658 if (wait_status.kind != TARGET_WAITKIND_STOPPED
659 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
660 wait_status.value.sig != TARGET_SIGNAL_INT))
661 {
662 return 0;
663 }
664
665 if (!ptid_equal (wait_ptid, minus_one_ptid)
666 && !ptid_equal (inferior_ptid, wait_ptid))
667 {
668 /* Switched over from WAIT_PID. */
669 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
670
671 if (wait_pc != read_pc ())
672 {
673 /* Switch back to WAIT_PID thread. */
674 inferior_ptid = wait_ptid;
675
676 /* FIXME: This stuff came from switch_to_thread() in
677 thread.c (which should probably be a public function). */
678 flush_cached_frames ();
679 registers_changed ();
680 stop_pc = wait_pc;
681 select_frame (get_current_frame ());
682 }
683
684 /* We return 1 to indicate that there is a breakpoint here,
685 so we need to step over it before continuing to avoid
686 hitting it straight away. */
687 if (breakpoint_here_p (wait_pc))
688 return 1;
689 }
690
691 return 0;
692
693}
e4846b08
JJ
694
695/* Record the pc of the program the last time it stopped. This is
696 just used internally by wait_for_inferior, but need to be preserved
697 over calls to it and cleared when the inferior is started. */
698static CORE_ADDR prev_pc;
699
c906108c
SS
700/* Basic routine for continuing the program in various fashions.
701
702 ADDR is the address to resume at, or -1 for resume where stopped.
703 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 704 or -1 for act according to how it stopped.
c906108c 705 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
706 -1 means return after that and print nothing.
707 You should probably set various step_... variables
708 before calling here, if you are stepping.
c906108c
SS
709
710 You should call clear_proceed_status before calling proceed. */
711
712void
96baa820 713proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
714{
715 int oneproc = 0;
716
717 if (step > 0)
718 step_start_function = find_pc_function (read_pc ());
719 if (step < 0)
720 stop_after_trap = 1;
721
2acceee2 722 if (addr == (CORE_ADDR) -1)
c906108c
SS
723 {
724 /* If there is a breakpoint at the address we will resume at,
c5aa993b
JM
725 step one instruction before inserting breakpoints
726 so that we do not stop right away (and report a second
c906108c
SS
727 hit at this breakpoint). */
728
729 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
730 oneproc = 1;
731
732#ifndef STEP_SKIPS_DELAY
733#define STEP_SKIPS_DELAY(pc) (0)
734#define STEP_SKIPS_DELAY_P (0)
735#endif
736 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
c5aa993b
JM
737 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
738 is slow (it needs to read memory from the target). */
c906108c
SS
739 if (STEP_SKIPS_DELAY_P
740 && breakpoint_here_p (read_pc () + 4)
741 && STEP_SKIPS_DELAY (read_pc ()))
742 oneproc = 1;
743 }
744 else
745 {
746 write_pc (addr);
c906108c
SS
747 }
748
c906108c
SS
749 /* In a multi-threaded task we may select another thread
750 and then continue or step.
751
752 But if the old thread was stopped at a breakpoint, it
753 will immediately cause another breakpoint stop without
754 any execution (i.e. it will report a breakpoint hit
755 incorrectly). So we must step over it first.
756
ea67f13b 757 prepare_to_proceed checks the current thread against the thread
c906108c
SS
758 that reported the most recent event. If a step-over is required
759 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
760 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
761 oneproc = 1;
c906108c 762
c906108c
SS
763 if (oneproc)
764 /* We will get a trace trap after one instruction.
765 Continue it automatically and insert breakpoints then. */
766 trap_expected = 1;
767 else
768 {
81d0cc19
GS
769 insert_breakpoints ();
770 /* If we get here there was no call to error() in
771 insert breakpoints -- so they were inserted. */
c906108c
SS
772 breakpoints_inserted = 1;
773 }
774
775 if (siggnal != TARGET_SIGNAL_DEFAULT)
776 stop_signal = siggnal;
777 /* If this signal should not be seen by program,
778 give it zero. Used for debugging signals. */
779 else if (!signal_program[stop_signal])
780 stop_signal = TARGET_SIGNAL_0;
781
782 annotate_starting ();
783
784 /* Make sure that output from GDB appears before output from the
785 inferior. */
786 gdb_flush (gdb_stdout);
787
e4846b08
JJ
788 /* Refresh prev_pc value just prior to resuming. This used to be
789 done in stop_stepping, however, setting prev_pc there did not handle
790 scenarios such as inferior function calls or returning from
791 a function via the return command. In those cases, the prev_pc
792 value was not set properly for subsequent commands. The prev_pc value
793 is used to initialize the starting line number in the ecs. With an
794 invalid value, the gdb next command ends up stopping at the position
795 represented by the next line table entry past our start position.
796 On platforms that generate one line table entry per line, this
797 is not a problem. However, on the ia64, the compiler generates
798 extraneous line table entries that do not increase the line number.
799 When we issue the gdb next command on the ia64 after an inferior call
800 or a return command, we often end up a few instructions forward, still
801 within the original line we started.
802
803 An attempt was made to have init_execution_control_state () refresh
804 the prev_pc value before calculating the line number. This approach
805 did not work because on platforms that use ptrace, the pc register
806 cannot be read unless the inferior is stopped. At that point, we
807 are not guaranteed the inferior is stopped and so the read_pc ()
808 call can fail. Setting the prev_pc value here ensures the value is
809 updated correctly when the inferior is stopped. */
810 prev_pc = read_pc ();
811
c906108c
SS
812 /* Resume inferior. */
813 resume (oneproc || step || bpstat_should_step (), stop_signal);
814
815 /* Wait for it to stop (if not standalone)
816 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
817 /* Do this only if we are not using the event loop, or if the target
818 does not support asynchronous execution. */
6426a772 819 if (!event_loop_p || !target_can_async_p ())
43ff13b4
JM
820 {
821 wait_for_inferior ();
822 normal_stop ();
823 }
c906108c 824}
c906108c
SS
825\f
826
827/* Start remote-debugging of a machine over a serial link. */
96baa820 828
c906108c 829void
96baa820 830start_remote (void)
c906108c
SS
831{
832 init_thread_list ();
833 init_wait_for_inferior ();
c0236d92 834 stop_soon = STOP_QUIETLY;
c906108c 835 trap_expected = 0;
43ff13b4 836
6426a772
JM
837 /* Always go on waiting for the target, regardless of the mode. */
838 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 839 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
840 nothing is returned (instead of just blocking). Because of this,
841 targets expecting an immediate response need to, internally, set
842 things up so that the target_wait() is forced to eventually
843 timeout. */
844 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
845 differentiate to its caller what the state of the target is after
846 the initial open has been performed. Here we're assuming that
847 the target has stopped. It should be possible to eventually have
848 target_open() return to the caller an indication that the target
849 is currently running and GDB state should be set to the same as
850 for an async run. */
851 wait_for_inferior ();
852 normal_stop ();
c906108c
SS
853}
854
855/* Initialize static vars when a new inferior begins. */
856
857void
96baa820 858init_wait_for_inferior (void)
c906108c
SS
859{
860 /* These are meaningless until the first time through wait_for_inferior. */
861 prev_pc = 0;
c906108c 862
c906108c
SS
863 breakpoints_inserted = 0;
864 breakpoint_init_inferior (inf_starting);
865
866 /* Don't confuse first call to proceed(). */
867 stop_signal = TARGET_SIGNAL_0;
868
869 /* The first resume is not following a fork/vfork/exec. */
870 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c
SS
871
872 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
873 number_of_threads_in_syscalls = 0;
874
875 clear_proceed_status ();
9f976b41
DJ
876
877 stepping_past_singlestep_breakpoint = 0;
c906108c 878}
c906108c 879\f
b83266a0
SS
880/* This enum encodes possible reasons for doing a target_wait, so that
881 wfi can call target_wait in one place. (Ultimately the call will be
882 moved out of the infinite loop entirely.) */
883
c5aa993b
JM
884enum infwait_states
885{
cd0fc7c3
SS
886 infwait_normal_state,
887 infwait_thread_hop_state,
888 infwait_nullified_state,
889 infwait_nonstep_watch_state
b83266a0
SS
890};
891
11cf8741
JM
892/* Why did the inferior stop? Used to print the appropriate messages
893 to the interface from within handle_inferior_event(). */
894enum inferior_stop_reason
895{
896 /* We don't know why. */
897 STOP_UNKNOWN,
898 /* Step, next, nexti, stepi finished. */
899 END_STEPPING_RANGE,
900 /* Found breakpoint. */
901 BREAKPOINT_HIT,
902 /* Inferior terminated by signal. */
903 SIGNAL_EXITED,
904 /* Inferior exited. */
905 EXITED,
906 /* Inferior received signal, and user asked to be notified. */
907 SIGNAL_RECEIVED
908};
909
cd0fc7c3
SS
910/* This structure contains what used to be local variables in
911 wait_for_inferior. Probably many of them can return to being
912 locals in handle_inferior_event. */
913
c5aa993b 914struct execution_control_state
488f131b
JB
915{
916 struct target_waitstatus ws;
917 struct target_waitstatus *wp;
918 int another_trap;
919 int random_signal;
920 CORE_ADDR stop_func_start;
921 CORE_ADDR stop_func_end;
922 char *stop_func_name;
923 struct symtab_and_line sal;
924 int remove_breakpoints_on_following_step;
925 int current_line;
926 struct symtab *current_symtab;
927 int handling_longjmp; /* FIXME */
928 ptid_t ptid;
929 ptid_t saved_inferior_ptid;
488f131b
JB
930 int stepping_through_solib_after_catch;
931 bpstat stepping_through_solib_catchpoints;
932 int enable_hw_watchpoints_after_wait;
933 int stepping_through_sigtramp;
934 int new_thread_event;
935 struct target_waitstatus tmpstatus;
936 enum infwait_states infwait_state;
937 ptid_t waiton_ptid;
938 int wait_some_more;
939};
940
941void init_execution_control_state (struct execution_control_state *ecs);
942
943void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 944
c2c6d25f 945static void step_into_function (struct execution_control_state *ecs);
d303a6c7
AC
946static void insert_step_resume_breakpoint (struct frame_info *step_frame,
947 struct execution_control_state *ecs);
104c1213
JM
948static void stop_stepping (struct execution_control_state *ecs);
949static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 950static void keep_going (struct execution_control_state *ecs);
488f131b
JB
951static void print_stop_reason (enum inferior_stop_reason stop_reason,
952 int stop_info);
104c1213 953
cd0fc7c3
SS
954/* Wait for control to return from inferior to debugger.
955 If inferior gets a signal, we may decide to start it up again
956 instead of returning. That is why there is a loop in this function.
957 When this function actually returns it means the inferior
958 should be left stopped and GDB should read more commands. */
959
960void
96baa820 961wait_for_inferior (void)
cd0fc7c3
SS
962{
963 struct cleanup *old_cleanups;
964 struct execution_control_state ecss;
965 struct execution_control_state *ecs;
c906108c 966
8601f500 967 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 968 &step_resume_breakpoint);
cd0fc7c3
SS
969
970 /* wfi still stays in a loop, so it's OK just to take the address of
971 a local to get the ecs pointer. */
972 ecs = &ecss;
973
974 /* Fill in with reasonable starting values. */
975 init_execution_control_state (ecs);
976
c906108c 977 /* We'll update this if & when we switch to a new thread. */
39f77062 978 previous_inferior_ptid = inferior_ptid;
c906108c 979
cd0fc7c3
SS
980 overlay_cache_invalid = 1;
981
982 /* We have to invalidate the registers BEFORE calling target_wait
983 because they can be loaded from the target while in target_wait.
984 This makes remote debugging a bit more efficient for those
985 targets that provide critical registers as part of their normal
986 status mechanism. */
987
988 registers_changed ();
b83266a0 989
c906108c
SS
990 while (1)
991 {
9a4105ab
AC
992 if (deprecated_target_wait_hook)
993 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 994 else
39f77062 995 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 996
cd0fc7c3
SS
997 /* Now figure out what to do with the result of the result. */
998 handle_inferior_event (ecs);
c906108c 999
cd0fc7c3
SS
1000 if (!ecs->wait_some_more)
1001 break;
1002 }
1003 do_cleanups (old_cleanups);
1004}
c906108c 1005
43ff13b4
JM
1006/* Asynchronous version of wait_for_inferior. It is called by the
1007 event loop whenever a change of state is detected on the file
1008 descriptor corresponding to the target. It can be called more than
1009 once to complete a single execution command. In such cases we need
1010 to keep the state in a global variable ASYNC_ECSS. If it is the
1011 last time that this function is called for a single execution
1012 command, then report to the user that the inferior has stopped, and
1013 do the necessary cleanups. */
1014
1015struct execution_control_state async_ecss;
1016struct execution_control_state *async_ecs;
1017
1018void
fba45db2 1019fetch_inferior_event (void *client_data)
43ff13b4
JM
1020{
1021 static struct cleanup *old_cleanups;
1022
c5aa993b 1023 async_ecs = &async_ecss;
43ff13b4
JM
1024
1025 if (!async_ecs->wait_some_more)
1026 {
488f131b 1027 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1028 &step_resume_breakpoint);
43ff13b4
JM
1029
1030 /* Fill in with reasonable starting values. */
1031 init_execution_control_state (async_ecs);
1032
43ff13b4 1033 /* We'll update this if & when we switch to a new thread. */
39f77062 1034 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1035
1036 overlay_cache_invalid = 1;
1037
1038 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1039 because they can be loaded from the target while in target_wait.
1040 This makes remote debugging a bit more efficient for those
1041 targets that provide critical registers as part of their normal
1042 status mechanism. */
43ff13b4
JM
1043
1044 registers_changed ();
1045 }
1046
9a4105ab 1047 if (deprecated_target_wait_hook)
488f131b 1048 async_ecs->ptid =
9a4105ab 1049 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1050 else
39f77062 1051 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1052
1053 /* Now figure out what to do with the result of the result. */
1054 handle_inferior_event (async_ecs);
1055
1056 if (!async_ecs->wait_some_more)
1057 {
adf40b2e 1058 /* Do only the cleanups that have been added by this
488f131b
JB
1059 function. Let the continuations for the commands do the rest,
1060 if there are any. */
43ff13b4
JM
1061 do_exec_cleanups (old_cleanups);
1062 normal_stop ();
c2d11a7d
JM
1063 if (step_multi && stop_step)
1064 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1065 else
1066 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1067 }
1068}
1069
cd0fc7c3
SS
1070/* Prepare an execution control state for looping through a
1071 wait_for_inferior-type loop. */
1072
1073void
96baa820 1074init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1075{
c2d11a7d 1076 /* ecs->another_trap? */
cd0fc7c3
SS
1077 ecs->random_signal = 0;
1078 ecs->remove_breakpoints_on_following_step = 0;
1079 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1080 ecs->stepping_through_solib_after_catch = 0;
1081 ecs->stepping_through_solib_catchpoints = NULL;
1082 ecs->enable_hw_watchpoints_after_wait = 0;
1083 ecs->stepping_through_sigtramp = 0;
1084 ecs->sal = find_pc_line (prev_pc, 0);
1085 ecs->current_line = ecs->sal.line;
1086 ecs->current_symtab = ecs->sal.symtab;
1087 ecs->infwait_state = infwait_normal_state;
39f77062 1088 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1089 ecs->wp = &(ecs->ws);
1090}
1091
a0b3c4fd 1092/* Call this function before setting step_resume_breakpoint, as a
53a5351d
JM
1093 sanity check. There should never be more than one step-resume
1094 breakpoint per thread, so we should never be setting a new
1095 step_resume_breakpoint when one is already active. */
a0b3c4fd 1096static void
96baa820 1097check_for_old_step_resume_breakpoint (void)
a0b3c4fd
JM
1098{
1099 if (step_resume_breakpoint)
488f131b
JB
1100 warning
1101 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
a0b3c4fd
JM
1102}
1103
e02bc4cc 1104/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1105 target_wait()/deprecated_target_wait_hook(). The data is actually
1106 cached by handle_inferior_event(), which gets called immediately
1107 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1108
1109void
488f131b 1110get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1111{
39f77062 1112 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1113 *status = target_last_waitstatus;
1114}
1115
dd80620e
MS
1116/* Switch thread contexts, maintaining "infrun state". */
1117
1118static void
1119context_switch (struct execution_control_state *ecs)
1120{
1121 /* Caution: it may happen that the new thread (or the old one!)
1122 is not in the thread list. In this case we must not attempt
1123 to "switch context", or we run the risk that our context may
1124 be lost. This may happen as a result of the target module
1125 mishandling thread creation. */
1126
1127 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1128 { /* Perform infrun state context switch: */
dd80620e 1129 /* Save infrun state for the old thread. */
0ce3d317 1130 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1131 trap_expected, step_resume_breakpoint,
15960608 1132 step_range_start,
aa0cd9c1 1133 step_range_end, &step_frame_id,
dd80620e
MS
1134 ecs->handling_longjmp, ecs->another_trap,
1135 ecs->stepping_through_solib_after_catch,
1136 ecs->stepping_through_solib_catchpoints,
1137 ecs->stepping_through_sigtramp,
f2c9ca08 1138 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1139
1140 /* Load infrun state for the new thread. */
0ce3d317 1141 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1142 &trap_expected, &step_resume_breakpoint,
15960608 1143 &step_range_start,
aa0cd9c1 1144 &step_range_end, &step_frame_id,
dd80620e
MS
1145 &ecs->handling_longjmp, &ecs->another_trap,
1146 &ecs->stepping_through_solib_after_catch,
1147 &ecs->stepping_through_solib_catchpoints,
488f131b 1148 &ecs->stepping_through_sigtramp,
f2c9ca08 1149 &ecs->current_line, &ecs->current_symtab);
dd80620e
MS
1150 }
1151 inferior_ptid = ecs->ptid;
1152}
1153
4fa8626c
DJ
1154static void
1155adjust_pc_after_break (struct execution_control_state *ecs)
1156{
8aad930b 1157 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1158
1159 /* If this target does not decrement the PC after breakpoints, then
1160 we have nothing to do. */
1161 if (DECR_PC_AFTER_BREAK == 0)
1162 return;
1163
1164 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1165 we aren't, just return.
9709f61c
DJ
1166
1167 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1168 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1169 by software breakpoints should be handled through the normal breakpoint
1170 layer.
4fa8626c
DJ
1171
1172 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1173 different signals (SIGILL or SIGEMT for instance), but it is less
1174 clear where the PC is pointing afterwards. It may not match
1175 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1176 these signals at breakpoints (the code has been in GDB since at least
1177 1992) so I can not guess how to handle them here.
1178
1179 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1180 would have the PC after hitting a watchpoint affected by
1181 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1182 in GDB history, and it seems unlikely to be correct, so
1183 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1184
1185 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1186 return;
1187
1188 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1189 return;
1190
8aad930b
AC
1191 /* Find the location where (if we've hit a breakpoint) the
1192 breakpoint would be. */
1193 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1194
1195 if (SOFTWARE_SINGLE_STEP_P ())
1196 {
1197 /* When using software single-step, a SIGTRAP can only indicate
1198 an inserted breakpoint. This actually makes things
1199 easier. */
1200 if (singlestep_breakpoints_inserted_p)
1201 /* When software single stepping, the instruction at [prev_pc]
1202 is never a breakpoint, but the instruction following
1203 [prev_pc] (in program execution order) always is. Assume
1204 that following instruction was reached and hence a software
1205 breakpoint was hit. */
1206 write_pc_pid (breakpoint_pc, ecs->ptid);
1207 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1208 /* The inferior was free running (i.e., no single-step
1209 breakpoints inserted) and it hit a software breakpoint. */
1210 write_pc_pid (breakpoint_pc, ecs->ptid);
1211 }
1212 else
1213 {
1214 /* When using hardware single-step, a SIGTRAP is reported for
1215 both a completed single-step and a software breakpoint. Need
1216 to differentiate between the two as the latter needs
1217 adjusting but the former does not. */
1218 if (currently_stepping (ecs))
1219 {
1220 if (prev_pc == breakpoint_pc
1221 && software_breakpoint_inserted_here_p (breakpoint_pc))
1222 /* Hardware single-stepped a software breakpoint (as
1223 occures when the inferior is resumed with PC pointing
1224 at not-yet-hit software breakpoint). Since the
1225 breakpoint really is executed, the inferior needs to be
1226 backed up to the breakpoint address. */
1227 write_pc_pid (breakpoint_pc, ecs->ptid);
1228 }
1229 else
1230 {
1231 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1232 /* The inferior was free running (i.e., no hardware
1233 single-step and no possibility of a false SIGTRAP) and
1234 hit a software breakpoint. */
1235 write_pc_pid (breakpoint_pc, ecs->ptid);
1236 }
1237 }
4fa8626c
DJ
1238}
1239
cd0fc7c3
SS
1240/* Given an execution control state that has been freshly filled in
1241 by an event from the inferior, figure out what it means and take
1242 appropriate action. */
c906108c 1243
7270d8f2
OF
1244int stepped_after_stopped_by_watchpoint;
1245
cd0fc7c3 1246void
96baa820 1247handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1248{
65e82032
AC
1249 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1250 thinking that the variable stepped_after_stopped_by_watchpoint
1251 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1252 defined in the file "config/pa/nm-hppah.h", accesses the variable
1253 indirectly. Mutter something rude about the HP merge. */
c8edd8b4 1254 int sw_single_step_trap_p = 0;
00d4360e 1255 int stopped_by_watchpoint = 0;
cd0fc7c3 1256
e02bc4cc 1257 /* Cache the last pid/waitstatus. */
39f77062 1258 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1259 target_last_waitstatus = *ecs->wp;
1260
4fa8626c
DJ
1261 adjust_pc_after_break (ecs);
1262
488f131b
JB
1263 switch (ecs->infwait_state)
1264 {
1265 case infwait_thread_hop_state:
1266 /* Cancel the waiton_ptid. */
1267 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032
AC
1268 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1269 is serviced in this loop, below. */
1270 if (ecs->enable_hw_watchpoints_after_wait)
1271 {
1272 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1273 ecs->enable_hw_watchpoints_after_wait = 0;
1274 }
1275 stepped_after_stopped_by_watchpoint = 0;
1276 break;
b83266a0 1277
488f131b
JB
1278 case infwait_normal_state:
1279 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1280 is serviced in this loop, below. */
1281 if (ecs->enable_hw_watchpoints_after_wait)
1282 {
1283 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1284 ecs->enable_hw_watchpoints_after_wait = 0;
1285 }
1286 stepped_after_stopped_by_watchpoint = 0;
1287 break;
b83266a0 1288
488f131b 1289 case infwait_nullified_state:
65e82032 1290 stepped_after_stopped_by_watchpoint = 0;
488f131b 1291 break;
b83266a0 1292
488f131b
JB
1293 case infwait_nonstep_watch_state:
1294 insert_breakpoints ();
c906108c 1295
488f131b
JB
1296 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1297 handle things like signals arriving and other things happening
1298 in combination correctly? */
1299 stepped_after_stopped_by_watchpoint = 1;
1300 break;
65e82032
AC
1301
1302 default:
1303 internal_error (__FILE__, __LINE__, "bad switch");
488f131b
JB
1304 }
1305 ecs->infwait_state = infwait_normal_state;
c906108c 1306
488f131b 1307 flush_cached_frames ();
c906108c 1308
488f131b 1309 /* If it's a new process, add it to the thread database */
c906108c 1310
488f131b 1311 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
b9b5d7ea 1312 && !ptid_equal (ecs->ptid, minus_one_ptid)
488f131b
JB
1313 && !in_thread_list (ecs->ptid));
1314
1315 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1316 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1317 {
1318 add_thread (ecs->ptid);
c906108c 1319
488f131b
JB
1320 ui_out_text (uiout, "[New ");
1321 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1322 ui_out_text (uiout, "]\n");
c906108c
SS
1323
1324#if 0
488f131b
JB
1325 /* NOTE: This block is ONLY meant to be invoked in case of a
1326 "thread creation event"! If it is invoked for any other
1327 sort of event (such as a new thread landing on a breakpoint),
1328 the event will be discarded, which is almost certainly
1329 a bad thing!
1330
1331 To avoid this, the low-level module (eg. target_wait)
1332 should call in_thread_list and add_thread, so that the
1333 new thread is known by the time we get here. */
1334
1335 /* We may want to consider not doing a resume here in order
1336 to give the user a chance to play with the new thread.
1337 It might be good to make that a user-settable option. */
1338
1339 /* At this point, all threads are stopped (happens
1340 automatically in either the OS or the native code).
1341 Therefore we need to continue all threads in order to
1342 make progress. */
1343
1344 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1345 prepare_to_wait (ecs);
1346 return;
c906108c 1347#endif
488f131b 1348 }
c906108c 1349
488f131b
JB
1350 switch (ecs->ws.kind)
1351 {
1352 case TARGET_WAITKIND_LOADED:
1353 /* Ignore gracefully during startup of the inferior, as it
1354 might be the shell which has just loaded some objects,
1355 otherwise add the symbols for the newly loaded objects. */
c906108c 1356#ifdef SOLIB_ADD
c0236d92 1357 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1358 {
1359 /* Remove breakpoints, SOLIB_ADD might adjust
1360 breakpoint addresses via breakpoint_re_set. */
1361 if (breakpoints_inserted)
1362 remove_breakpoints ();
c906108c 1363
488f131b
JB
1364 /* Check for any newly added shared libraries if we're
1365 supposed to be adding them automatically. Switch
1366 terminal for any messages produced by
1367 breakpoint_re_set. */
1368 target_terminal_ours_for_output ();
aff6338a
AC
1369 /* NOTE: cagney/2003-11-25: Make certain that the target
1370 stack's section table is kept up-to-date. Architectures,
1371 (e.g., PPC64), use the section table to perform
1372 operations such as address => section name and hence
1373 require the table to contain all sections (including
1374 those found in shared libraries). */
1375 /* NOTE: cagney/2003-11-25: Pass current_target and not
1376 exec_ops to SOLIB_ADD. This is because current GDB is
1377 only tooled to propagate section_table changes out from
1378 the "current_target" (see target_resize_to_sections), and
1379 not up from the exec stratum. This, of course, isn't
1380 right. "infrun.c" should only interact with the
1381 exec/process stratum, instead relying on the target stack
1382 to propagate relevant changes (stop, section table
1383 changed, ...) up to other layers. */
1384 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
1385 target_terminal_inferior ();
1386
1387 /* Reinsert breakpoints and continue. */
1388 if (breakpoints_inserted)
1389 insert_breakpoints ();
1390 }
c906108c 1391#endif
488f131b
JB
1392 resume (0, TARGET_SIGNAL_0);
1393 prepare_to_wait (ecs);
1394 return;
c5aa993b 1395
488f131b
JB
1396 case TARGET_WAITKIND_SPURIOUS:
1397 resume (0, TARGET_SIGNAL_0);
1398 prepare_to_wait (ecs);
1399 return;
c5aa993b 1400
488f131b
JB
1401 case TARGET_WAITKIND_EXITED:
1402 target_terminal_ours (); /* Must do this before mourn anyway */
1403 print_stop_reason (EXITED, ecs->ws.value.integer);
1404
1405 /* Record the exit code in the convenience variable $_exitcode, so
1406 that the user can inspect this again later. */
1407 set_internalvar (lookup_internalvar ("_exitcode"),
1408 value_from_longest (builtin_type_int,
1409 (LONGEST) ecs->ws.value.integer));
1410 gdb_flush (gdb_stdout);
1411 target_mourn_inferior ();
1412 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1413 stop_print_frame = 0;
1414 stop_stepping (ecs);
1415 return;
c5aa993b 1416
488f131b
JB
1417 case TARGET_WAITKIND_SIGNALLED:
1418 stop_print_frame = 0;
1419 stop_signal = ecs->ws.value.sig;
1420 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1421
488f131b
JB
1422 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1423 reach here unless the inferior is dead. However, for years
1424 target_kill() was called here, which hints that fatal signals aren't
1425 really fatal on some systems. If that's true, then some changes
1426 may be needed. */
1427 target_mourn_inferior ();
c906108c 1428
488f131b
JB
1429 print_stop_reason (SIGNAL_EXITED, stop_signal);
1430 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1431 stop_stepping (ecs);
1432 return;
c906108c 1433
488f131b
JB
1434 /* The following are the only cases in which we keep going;
1435 the above cases end in a continue or goto. */
1436 case TARGET_WAITKIND_FORKED:
deb3b17b 1437 case TARGET_WAITKIND_VFORKED:
488f131b
JB
1438 stop_signal = TARGET_SIGNAL_TRAP;
1439 pending_follow.kind = ecs->ws.kind;
1440
8e7d2c16
DJ
1441 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1442 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1443
488f131b 1444 stop_pc = read_pc ();
675bf4cb 1445
00d4360e 1446 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1447
488f131b 1448 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1449
1450 /* If no catchpoint triggered for this, then keep going. */
1451 if (ecs->random_signal)
1452 {
1453 stop_signal = TARGET_SIGNAL_0;
1454 keep_going (ecs);
1455 return;
1456 }
488f131b
JB
1457 goto process_event_stop_test;
1458
1459 case TARGET_WAITKIND_EXECD:
1460 stop_signal = TARGET_SIGNAL_TRAP;
1461
7d2830a3
DJ
1462 /* NOTE drow/2002-12-05: This code should be pushed down into the
1463 target_wait function. Until then following vfork on HP/UX 10.20
1464 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1465 /* Is this a target which reports multiple exec events per actual
1466 call to exec()? (HP-UX using ptrace does, for example.) If so,
1467 ignore all but the last one. Just resume the exec'r, and wait
1468 for the next exec event. */
1469 if (inferior_ignoring_leading_exec_events)
1470 {
1471 inferior_ignoring_leading_exec_events--;
1472 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1473 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1474 parent_pid);
1475 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1476 prepare_to_wait (ecs);
1477 return;
1478 }
1479 inferior_ignoring_leading_exec_events =
1480 target_reported_exec_events_per_exec_call () - 1;
1481
1482 pending_follow.execd_pathname =
1483 savestring (ecs->ws.value.execd_pathname,
1484 strlen (ecs->ws.value.execd_pathname));
1485
488f131b
JB
1486 /* This causes the eventpoints and symbol table to be reset. Must
1487 do this now, before trying to determine whether to stop. */
1488 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1489 xfree (pending_follow.execd_pathname);
c906108c 1490
488f131b
JB
1491 stop_pc = read_pc_pid (ecs->ptid);
1492 ecs->saved_inferior_ptid = inferior_ptid;
1493 inferior_ptid = ecs->ptid;
675bf4cb 1494
00d4360e 1495 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1496
488f131b
JB
1497 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1498 inferior_ptid = ecs->saved_inferior_ptid;
04e68871
DJ
1499
1500 /* If no catchpoint triggered for this, then keep going. */
1501 if (ecs->random_signal)
1502 {
1503 stop_signal = TARGET_SIGNAL_0;
1504 keep_going (ecs);
1505 return;
1506 }
488f131b
JB
1507 goto process_event_stop_test;
1508
1509 /* These syscall events are returned on HP-UX, as part of its
1510 implementation of page-protection-based "hardware" watchpoints.
1511 HP-UX has unfortunate interactions between page-protections and
1512 some system calls. Our solution is to disable hardware watches
1513 when a system call is entered, and reenable them when the syscall
1514 completes. The downside of this is that we may miss the precise
1515 point at which a watched piece of memory is modified. "Oh well."
1516
1517 Note that we may have multiple threads running, which may each
1518 enter syscalls at roughly the same time. Since we don't have a
1519 good notion currently of whether a watched piece of memory is
1520 thread-private, we'd best not have any page-protections active
1521 when any thread is in a syscall. Thus, we only want to reenable
1522 hardware watches when no threads are in a syscall.
1523
1524 Also, be careful not to try to gather much state about a thread
1525 that's in a syscall. It's frequently a losing proposition. */
1526 case TARGET_WAITKIND_SYSCALL_ENTRY:
1527 number_of_threads_in_syscalls++;
1528 if (number_of_threads_in_syscalls == 1)
1529 {
1530 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1531 }
1532 resume (0, TARGET_SIGNAL_0);
1533 prepare_to_wait (ecs);
1534 return;
c906108c 1535
488f131b
JB
1536 /* Before examining the threads further, step this thread to
1537 get it entirely out of the syscall. (We get notice of the
1538 event when the thread is just on the verge of exiting a
1539 syscall. Stepping one instruction seems to get it back
1540 into user code.)
c906108c 1541
488f131b
JB
1542 Note that although the logical place to reenable h/w watches
1543 is here, we cannot. We cannot reenable them before stepping
1544 the thread (this causes the next wait on the thread to hang).
c4093a6a 1545
488f131b
JB
1546 Nor can we enable them after stepping until we've done a wait.
1547 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1548 here, which will be serviced immediately after the target
1549 is waited on. */
1550 case TARGET_WAITKIND_SYSCALL_RETURN:
1551 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1552
1553 if (number_of_threads_in_syscalls > 0)
1554 {
1555 number_of_threads_in_syscalls--;
1556 ecs->enable_hw_watchpoints_after_wait =
1557 (number_of_threads_in_syscalls == 0);
1558 }
1559 prepare_to_wait (ecs);
1560 return;
c906108c 1561
488f131b
JB
1562 case TARGET_WAITKIND_STOPPED:
1563 stop_signal = ecs->ws.value.sig;
1564 break;
c906108c 1565
488f131b
JB
1566 /* We had an event in the inferior, but we are not interested
1567 in handling it at this level. The lower layers have already
8e7d2c16
DJ
1568 done what needs to be done, if anything.
1569
1570 One of the possible circumstances for this is when the
1571 inferior produces output for the console. The inferior has
1572 not stopped, and we are ignoring the event. Another possible
1573 circumstance is any event which the lower level knows will be
1574 reported multiple times without an intervening resume. */
488f131b 1575 case TARGET_WAITKIND_IGNORE:
8e7d2c16 1576 prepare_to_wait (ecs);
488f131b
JB
1577 return;
1578 }
c906108c 1579
488f131b
JB
1580 /* We may want to consider not doing a resume here in order to give
1581 the user a chance to play with the new thread. It might be good
1582 to make that a user-settable option. */
c906108c 1583
488f131b
JB
1584 /* At this point, all threads are stopped (happens automatically in
1585 either the OS or the native code). Therefore we need to continue
1586 all threads in order to make progress. */
1587 if (ecs->new_thread_event)
1588 {
1589 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1590 prepare_to_wait (ecs);
1591 return;
1592 }
c906108c 1593
488f131b
JB
1594 stop_pc = read_pc_pid (ecs->ptid);
1595
9f976b41
DJ
1596 if (stepping_past_singlestep_breakpoint)
1597 {
1598 gdb_assert (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p);
1599 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1600 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1601
1602 stepping_past_singlestep_breakpoint = 0;
1603
1604 /* We've either finished single-stepping past the single-step
1605 breakpoint, or stopped for some other reason. It would be nice if
1606 we could tell, but we can't reliably. */
1607 if (stop_signal == TARGET_SIGNAL_TRAP)
1608 {
1609 /* Pull the single step breakpoints out of the target. */
1610 SOFTWARE_SINGLE_STEP (0, 0);
1611 singlestep_breakpoints_inserted_p = 0;
1612
1613 ecs->random_signal = 0;
1614
1615 ecs->ptid = saved_singlestep_ptid;
1616 context_switch (ecs);
9a4105ab
AC
1617 if (deprecated_context_hook)
1618 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1619
1620 resume (1, TARGET_SIGNAL_0);
1621 prepare_to_wait (ecs);
1622 return;
1623 }
1624 }
1625
1626 stepping_past_singlestep_breakpoint = 0;
1627
488f131b
JB
1628 /* See if a thread hit a thread-specific breakpoint that was meant for
1629 another thread. If so, then step that thread past the breakpoint,
1630 and continue it. */
1631
1632 if (stop_signal == TARGET_SIGNAL_TRAP)
1633 {
9f976b41
DJ
1634 int thread_hop_needed = 0;
1635
f8d40ec8
JB
1636 /* Check if a regular breakpoint has been hit before checking
1637 for a potential single step breakpoint. Otherwise, GDB will
1638 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1639 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1640 {
c5aa993b 1641 ecs->random_signal = 0;
4fa8626c 1642 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1643 thread_hop_needed = 1;
1644 }
1645 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1646 {
1647 ecs->random_signal = 0;
1648 /* The call to in_thread_list is necessary because PTIDs sometimes
1649 change when we go from single-threaded to multi-threaded. If
1650 the singlestep_ptid is still in the list, assume that it is
1651 really different from ecs->ptid. */
1652 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1653 && in_thread_list (singlestep_ptid))
1654 {
1655 thread_hop_needed = 1;
1656 stepping_past_singlestep_breakpoint = 1;
1657 saved_singlestep_ptid = singlestep_ptid;
1658 }
1659 }
1660
1661 if (thread_hop_needed)
488f131b
JB
1662 {
1663 int remove_status;
1664
1665 /* Saw a breakpoint, but it was hit by the wrong thread.
1666 Just continue. */
488f131b 1667
9f976b41
DJ
1668 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1669 {
1670 /* Pull the single step breakpoints out of the target. */
1671 SOFTWARE_SINGLE_STEP (0, 0);
1672 singlestep_breakpoints_inserted_p = 0;
1673 }
1674
488f131b
JB
1675 remove_status = remove_breakpoints ();
1676 /* Did we fail to remove breakpoints? If so, try
1677 to set the PC past the bp. (There's at least
1678 one situation in which we can fail to remove
1679 the bp's: On HP-UX's that use ttrace, we can't
1680 change the address space of a vforking child
1681 process until the child exits (well, okay, not
1682 then either :-) or execs. */
1683 if (remove_status != 0)
1684 {
1685 /* FIXME! This is obviously non-portable! */
4fa8626c 1686 write_pc_pid (stop_pc + 4, ecs->ptid);
488f131b
JB
1687 /* We need to restart all the threads now,
1688 * unles we're running in scheduler-locked mode.
1689 * Use currently_stepping to determine whether to
1690 * step or continue.
1691 */
1692 /* FIXME MVS: is there any reason not to call resume()? */
1693 if (scheduler_mode == schedlock_on)
1694 target_resume (ecs->ptid,
1695 currently_stepping (ecs), TARGET_SIGNAL_0);
1696 else
1697 target_resume (RESUME_ALL,
1698 currently_stepping (ecs), TARGET_SIGNAL_0);
1699 prepare_to_wait (ecs);
1700 return;
1701 }
1702 else
1703 { /* Single step */
1704 breakpoints_inserted = 0;
1705 if (!ptid_equal (inferior_ptid, ecs->ptid))
1706 context_switch (ecs);
1707 ecs->waiton_ptid = ecs->ptid;
1708 ecs->wp = &(ecs->ws);
1709 ecs->another_trap = 1;
1710
1711 ecs->infwait_state = infwait_thread_hop_state;
1712 keep_going (ecs);
1713 registers_changed ();
1714 return;
1715 }
488f131b 1716 }
f8d40ec8
JB
1717 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1718 {
c8edd8b4 1719 sw_single_step_trap_p = 1;
f8d40ec8
JB
1720 ecs->random_signal = 0;
1721 }
488f131b
JB
1722 }
1723 else
1724 ecs->random_signal = 1;
c906108c 1725
488f131b 1726 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1727 so, then switch to that thread. */
1728 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1729 {
488f131b 1730 context_switch (ecs);
c5aa993b 1731
9a4105ab
AC
1732 if (deprecated_context_hook)
1733 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1734
488f131b
JB
1735 flush_cached_frames ();
1736 }
c906108c 1737
488f131b
JB
1738 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1739 {
1740 /* Pull the single step breakpoints out of the target. */
1741 SOFTWARE_SINGLE_STEP (0, 0);
1742 singlestep_breakpoints_inserted_p = 0;
1743 }
c906108c 1744
488f131b
JB
1745 /* If PC is pointing at a nullified instruction, then step beyond
1746 it so that the user won't be confused when GDB appears to be ready
1747 to execute it. */
c906108c 1748
488f131b
JB
1749 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1750 if (INSTRUCTION_NULLIFIED)
1751 {
1752 registers_changed ();
1753 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c906108c 1754
488f131b
JB
1755 /* We may have received a signal that we want to pass to
1756 the inferior; therefore, we must not clobber the waitstatus
1757 in WS. */
c906108c 1758
488f131b
JB
1759 ecs->infwait_state = infwait_nullified_state;
1760 ecs->waiton_ptid = ecs->ptid;
1761 ecs->wp = &(ecs->tmpstatus);
1762 prepare_to_wait (ecs);
1763 return;
1764 }
c906108c 1765
488f131b
JB
1766 /* It may not be necessary to disable the watchpoint to stop over
1767 it. For example, the PA can (with some kernel cooperation)
1768 single step over a watchpoint without disabling the watchpoint. */
1769 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1770 {
1771 resume (1, 0);
1772 prepare_to_wait (ecs);
1773 return;
1774 }
c906108c 1775
488f131b
JB
1776 /* It is far more common to need to disable a watchpoint to step
1777 the inferior over it. FIXME. What else might a debug
1778 register or page protection watchpoint scheme need here? */
1779 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1780 {
1781 /* At this point, we are stopped at an instruction which has
1782 attempted to write to a piece of memory under control of
1783 a watchpoint. The instruction hasn't actually executed
1784 yet. If we were to evaluate the watchpoint expression
1785 now, we would get the old value, and therefore no change
1786 would seem to have occurred.
1787
1788 In order to make watchpoints work `right', we really need
1789 to complete the memory write, and then evaluate the
1790 watchpoint expression. The following code does that by
1791 removing the watchpoint (actually, all watchpoints and
1792 breakpoints), single-stepping the target, re-inserting
1793 watchpoints, and then falling through to let normal
1794 single-step processing handle proceed. Since this
1795 includes evaluating watchpoints, things will come to a
1796 stop in the correct manner. */
1797
488f131b
JB
1798 remove_breakpoints ();
1799 registers_changed ();
1800 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1801
488f131b
JB
1802 ecs->waiton_ptid = ecs->ptid;
1803 ecs->wp = &(ecs->ws);
1804 ecs->infwait_state = infwait_nonstep_watch_state;
1805 prepare_to_wait (ecs);
1806 return;
1807 }
1808
1809 /* It may be possible to simply continue after a watchpoint. */
1810 if (HAVE_CONTINUABLE_WATCHPOINT)
00d4360e 1811 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
488f131b
JB
1812
1813 ecs->stop_func_start = 0;
1814 ecs->stop_func_end = 0;
1815 ecs->stop_func_name = 0;
1816 /* Don't care about return value; stop_func_start and stop_func_name
1817 will both be 0 if it doesn't work. */
1818 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1819 &ecs->stop_func_start, &ecs->stop_func_end);
1820 ecs->stop_func_start += FUNCTION_START_OFFSET;
1821 ecs->another_trap = 0;
1822 bpstat_clear (&stop_bpstat);
1823 stop_step = 0;
1824 stop_stack_dummy = 0;
1825 stop_print_frame = 1;
1826 ecs->random_signal = 0;
1827 stopped_by_random_signal = 0;
1828 breakpoints_failed = 0;
1829
1830 /* Look at the cause of the stop, and decide what to do.
1831 The alternatives are:
1832 1) break; to really stop and return to the debugger,
1833 2) drop through to start up again
1834 (set ecs->another_trap to 1 to single step once)
1835 3) set ecs->random_signal to 1, and the decision between 1 and 2
1836 will be made according to the signal handling tables. */
1837
1838 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1839 that have to do with the program's own actions. Note that
1840 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1841 on the operating system version. Here we detect when a SIGILL or
1842 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1843 something similar for SIGSEGV, since a SIGSEGV will be generated
1844 when we're trying to execute a breakpoint instruction on a
1845 non-executable stack. This happens for call dummy breakpoints
1846 for architectures like SPARC that place call dummies on the
1847 stack. */
488f131b
JB
1848
1849 if (stop_signal == TARGET_SIGNAL_TRAP
1850 || (breakpoints_inserted &&
1851 (stop_signal == TARGET_SIGNAL_ILL
03cebad2 1852 || stop_signal == TARGET_SIGNAL_SEGV
c54cfec8 1853 || stop_signal == TARGET_SIGNAL_EMT))
c0236d92
EZ
1854 || stop_soon == STOP_QUIETLY
1855 || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1856 {
1857 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1858 {
1859 stop_print_frame = 0;
1860 stop_stepping (ecs);
1861 return;
1862 }
c54cfec8
EZ
1863
1864 /* This is originated from start_remote(), start_inferior() and
1865 shared libraries hook functions. */
c0236d92 1866 if (stop_soon == STOP_QUIETLY)
488f131b
JB
1867 {
1868 stop_stepping (ecs);
1869 return;
1870 }
1871
c54cfec8
EZ
1872 /* This originates from attach_command(). We need to overwrite
1873 the stop_signal here, because some kernels don't ignore a
1874 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1875 See more comments in inferior.h. */
c0236d92 1876 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1877 {
1878 stop_stepping (ecs);
1879 if (stop_signal == TARGET_SIGNAL_STOP)
1880 stop_signal = TARGET_SIGNAL_0;
1881 return;
1882 }
1883
d303a6c7
AC
1884 /* Don't even think about breakpoints if just proceeded over a
1885 breakpoint. */
1886 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
488f131b
JB
1887 bpstat_clear (&stop_bpstat);
1888 else
1889 {
1890 /* See if there is a breakpoint at the current PC. */
00d4360e
UW
1891 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1892 stopped_by_watchpoint);
488f131b 1893
488f131b
JB
1894 /* Following in case break condition called a
1895 function. */
1896 stop_print_frame = 1;
1897 }
1898
73dd234f
AC
1899 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1900 at one stage in the past included checks for an inferior
1901 function call's call dummy's return breakpoint. The original
1902 comment, that went with the test, read:
1903
1904 ``End of a stack dummy. Some systems (e.g. Sony news) give
1905 another signal besides SIGTRAP, so check here as well as
1906 above.''
1907
1908 If someone ever tries to get get call dummys on a
1909 non-executable stack to work (where the target would stop
03cebad2
MK
1910 with something like a SIGSEGV), then those tests might need
1911 to be re-instated. Given, however, that the tests were only
73dd234f 1912 enabled when momentary breakpoints were not being used, I
03cebad2
MK
1913 suspect that it won't be the case.
1914
1915 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1916 be necessary for call dummies on a non-executable stack on
1917 SPARC. */
73dd234f 1918
488f131b
JB
1919 if (stop_signal == TARGET_SIGNAL_TRAP)
1920 ecs->random_signal
1921 = !(bpstat_explains_signal (stop_bpstat)
1922 || trap_expected
488f131b 1923 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
1924 else
1925 {
73dd234f 1926 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
1927 if (!ecs->random_signal)
1928 stop_signal = TARGET_SIGNAL_TRAP;
1929 }
1930 }
1931
1932 /* When we reach this point, we've pretty much decided
1933 that the reason for stopping must've been a random
1934 (unexpected) signal. */
1935
1936 else
1937 ecs->random_signal = 1;
488f131b 1938
04e68871 1939process_event_stop_test:
488f131b
JB
1940 /* For the program's own signals, act according to
1941 the signal handling tables. */
1942
1943 if (ecs->random_signal)
1944 {
1945 /* Signal not for debugging purposes. */
1946 int printed = 0;
1947
1948 stopped_by_random_signal = 1;
1949
1950 if (signal_print[stop_signal])
1951 {
1952 printed = 1;
1953 target_terminal_ours_for_output ();
1954 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1955 }
1956 if (signal_stop[stop_signal])
1957 {
1958 stop_stepping (ecs);
1959 return;
1960 }
1961 /* If not going to stop, give terminal back
1962 if we took it away. */
1963 else if (printed)
1964 target_terminal_inferior ();
1965
1966 /* Clear the signal if it should not be passed. */
1967 if (signal_program[stop_signal] == 0)
1968 stop_signal = TARGET_SIGNAL_0;
1969
d303a6c7
AC
1970 if (step_range_end != 0
1971 && stop_signal != TARGET_SIGNAL_0
1972 && stop_pc >= step_range_start && stop_pc < step_range_end
1973 && frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id))
1974 {
1975 /* The inferior is about to take a signal that will take it
1976 out of the single step range. Set a breakpoint at the
1977 current PC (which is presumably where the signal handler
1978 will eventually return) and then allow the inferior to
1979 run free.
1980
1981 Note that this is only needed for a signal delivered
1982 while in the single-step range. Nested signals aren't a
1983 problem as they eventually all return. */
1984 insert_step_resume_breakpoint (get_current_frame (), ecs);
1985 }
488f131b
JB
1986 keep_going (ecs);
1987 return;
1988 }
1989
1990 /* Handle cases caused by hitting a breakpoint. */
1991 {
1992 CORE_ADDR jmp_buf_pc;
1993 struct bpstat_what what;
1994
1995 what = bpstat_what (stop_bpstat);
1996
1997 if (what.call_dummy)
1998 {
1999 stop_stack_dummy = 1;
c5aa993b 2000 }
c906108c 2001
488f131b 2002 switch (what.main_action)
c5aa993b 2003 {
488f131b
JB
2004 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2005 /* If we hit the breakpoint at longjmp, disable it for the
2006 duration of this command. Then, install a temporary
2007 breakpoint at the target of the jmp_buf. */
2008 disable_longjmp_breakpoint ();
2009 remove_breakpoints ();
2010 breakpoints_inserted = 0;
2011 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2012 {
488f131b 2013 keep_going (ecs);
104c1213 2014 return;
c5aa993b 2015 }
488f131b
JB
2016
2017 /* Need to blow away step-resume breakpoint, as it
2018 interferes with us */
2019 if (step_resume_breakpoint != NULL)
104c1213 2020 {
488f131b 2021 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2022 }
c906108c 2023
488f131b
JB
2024#if 0
2025 /* FIXME - Need to implement nested temporary breakpoints */
2026 if (step_over_calls > 0)
2027 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
c5aa993b 2028 else
488f131b 2029#endif /* 0 */
818dd999 2030 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2031 ecs->handling_longjmp = 1; /* FIXME */
2032 keep_going (ecs);
2033 return;
c906108c 2034
488f131b
JB
2035 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2036 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2037 remove_breakpoints ();
2038 breakpoints_inserted = 0;
2039#if 0
2040 /* FIXME - Need to implement nested temporary breakpoints */
2041 if (step_over_calls
aa0cd9c1
AC
2042 && (frame_id_inner (get_frame_id (get_current_frame ()),
2043 step_frame_id)))
c5aa993b 2044 {
488f131b 2045 ecs->another_trap = 1;
d4f3574e
SS
2046 keep_going (ecs);
2047 return;
c5aa993b 2048 }
488f131b
JB
2049#endif /* 0 */
2050 disable_longjmp_breakpoint ();
2051 ecs->handling_longjmp = 0; /* FIXME */
2052 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2053 break;
2054 /* else fallthrough */
2055
2056 case BPSTAT_WHAT_SINGLE:
2057 if (breakpoints_inserted)
c5aa993b 2058 {
488f131b 2059 remove_breakpoints ();
c5aa993b 2060 }
488f131b
JB
2061 breakpoints_inserted = 0;
2062 ecs->another_trap = 1;
2063 /* Still need to check other stuff, at least the case
2064 where we are stepping and step out of the right range. */
2065 break;
c906108c 2066
488f131b
JB
2067 case BPSTAT_WHAT_STOP_NOISY:
2068 stop_print_frame = 1;
c906108c 2069
d303a6c7
AC
2070 /* We are about to nuke the step_resume_breakpointt via the
2071 cleanup chain, so no need to worry about it here. */
c5aa993b 2072
488f131b
JB
2073 stop_stepping (ecs);
2074 return;
c5aa993b 2075
488f131b
JB
2076 case BPSTAT_WHAT_STOP_SILENT:
2077 stop_print_frame = 0;
c5aa993b 2078
d303a6c7
AC
2079 /* We are about to nuke the step_resume_breakpoin via the
2080 cleanup chain, so no need to worry about it here. */
c5aa993b 2081
488f131b 2082 stop_stepping (ecs);
e441088d 2083 return;
c5aa993b 2084
488f131b
JB
2085 case BPSTAT_WHAT_STEP_RESUME:
2086 /* This proably demands a more elegant solution, but, yeah
2087 right...
c5aa993b 2088
488f131b
JB
2089 This function's use of the simple variable
2090 step_resume_breakpoint doesn't seem to accomodate
2091 simultaneously active step-resume bp's, although the
2092 breakpoint list certainly can.
c5aa993b 2093
488f131b
JB
2094 If we reach here and step_resume_breakpoint is already
2095 NULL, then apparently we have multiple active
2096 step-resume bp's. We'll just delete the breakpoint we
2097 stopped at, and carry on.
2098
2099 Correction: what the code currently does is delete a
2100 step-resume bp, but it makes no effort to ensure that
2101 the one deleted is the one currently stopped at. MVS */
c5aa993b 2102
488f131b
JB
2103 if (step_resume_breakpoint == NULL)
2104 {
2105 step_resume_breakpoint =
2106 bpstat_find_step_resume_breakpoint (stop_bpstat);
2107 }
2108 delete_step_resume_breakpoint (&step_resume_breakpoint);
2109 break;
2110
2111 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
488f131b
JB
2112 /* If were waiting for a trap, hitting the step_resume_break
2113 doesn't count as getting it. */
2114 if (trap_expected)
2115 ecs->another_trap = 1;
2116 break;
2117
2118 case BPSTAT_WHAT_CHECK_SHLIBS:
2119 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2120#ifdef SOLIB_ADD
c906108c 2121 {
488f131b
JB
2122 /* Remove breakpoints, we eventually want to step over the
2123 shlib event breakpoint, and SOLIB_ADD might adjust
2124 breakpoint addresses via breakpoint_re_set. */
2125 if (breakpoints_inserted)
2126 remove_breakpoints ();
c5aa993b 2127 breakpoints_inserted = 0;
488f131b
JB
2128
2129 /* Check for any newly added shared libraries if we're
2130 supposed to be adding them automatically. Switch
2131 terminal for any messages produced by
2132 breakpoint_re_set. */
2133 target_terminal_ours_for_output ();
aff6338a
AC
2134 /* NOTE: cagney/2003-11-25: Make certain that the target
2135 stack's section table is kept up-to-date. Architectures,
2136 (e.g., PPC64), use the section table to perform
2137 operations such as address => section name and hence
2138 require the table to contain all sections (including
2139 those found in shared libraries). */
2140 /* NOTE: cagney/2003-11-25: Pass current_target and not
2141 exec_ops to SOLIB_ADD. This is because current GDB is
2142 only tooled to propagate section_table changes out from
2143 the "current_target" (see target_resize_to_sections), and
2144 not up from the exec stratum. This, of course, isn't
2145 right. "infrun.c" should only interact with the
2146 exec/process stratum, instead relying on the target stack
2147 to propagate relevant changes (stop, section table
2148 changed, ...) up to other layers. */
2149 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
2150 target_terminal_inferior ();
2151
2152 /* Try to reenable shared library breakpoints, additional
2153 code segments in shared libraries might be mapped in now. */
2154 re_enable_breakpoints_in_shlibs ();
2155
2156 /* If requested, stop when the dynamic linker notifies
2157 gdb of events. This allows the user to get control
2158 and place breakpoints in initializer routines for
2159 dynamically loaded objects (among other things). */
877522db 2160 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2161 {
488f131b 2162 stop_stepping (ecs);
d4f3574e
SS
2163 return;
2164 }
c5aa993b 2165
488f131b
JB
2166 /* If we stopped due to an explicit catchpoint, then the
2167 (see above) call to SOLIB_ADD pulled in any symbols
2168 from a newly-loaded library, if appropriate.
2169
2170 We do want the inferior to stop, but not where it is
2171 now, which is in the dynamic linker callback. Rather,
2172 we would like it stop in the user's program, just after
2173 the call that caused this catchpoint to trigger. That
2174 gives the user a more useful vantage from which to
2175 examine their program's state. */
2176 else if (what.main_action ==
2177 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2178 {
488f131b
JB
2179 /* ??rehrauer: If I could figure out how to get the
2180 right return PC from here, we could just set a temp
2181 breakpoint and resume. I'm not sure we can without
2182 cracking open the dld's shared libraries and sniffing
2183 their unwind tables and text/data ranges, and that's
2184 not a terribly portable notion.
2185
2186 Until that time, we must step the inferior out of the
2187 dld callback, and also out of the dld itself (and any
2188 code or stubs in libdld.sl, such as "shl_load" and
2189 friends) until we reach non-dld code. At that point,
2190 we can stop stepping. */
2191 bpstat_get_triggered_catchpoints (stop_bpstat,
2192 &ecs->
2193 stepping_through_solib_catchpoints);
2194 ecs->stepping_through_solib_after_catch = 1;
2195
2196 /* Be sure to lift all breakpoints, so the inferior does
2197 actually step past this point... */
2198 ecs->another_trap = 1;
2199 break;
c906108c 2200 }
c5aa993b 2201 else
c5aa993b 2202 {
488f131b 2203 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2204 ecs->another_trap = 1;
488f131b 2205 break;
c5aa993b 2206 }
488f131b
JB
2207 }
2208#endif
2209 break;
c906108c 2210
488f131b
JB
2211 case BPSTAT_WHAT_LAST:
2212 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2213
488f131b
JB
2214 case BPSTAT_WHAT_KEEP_CHECKING:
2215 break;
2216 }
2217 }
c906108c 2218
488f131b
JB
2219 /* We come here if we hit a breakpoint but should not
2220 stop for it. Possibly we also were stepping
2221 and should stop for that. So fall through and
2222 test for stepping. But, if not stepping,
2223 do not stop. */
c906108c 2224
488f131b
JB
2225 /* Are we stepping to get the inferior out of the dynamic
2226 linker's hook (and possibly the dld itself) after catching
2227 a shlib event? */
2228 if (ecs->stepping_through_solib_after_catch)
2229 {
2230#if defined(SOLIB_ADD)
2231 /* Have we reached our destination? If not, keep going. */
2232 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2233 {
2234 ecs->another_trap = 1;
2235 keep_going (ecs);
104c1213 2236 return;
488f131b
JB
2237 }
2238#endif
2239 /* Else, stop and report the catchpoint(s) whose triggering
2240 caused us to begin stepping. */
2241 ecs->stepping_through_solib_after_catch = 0;
2242 bpstat_clear (&stop_bpstat);
2243 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2244 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2245 stop_print_frame = 1;
2246 stop_stepping (ecs);
2247 return;
2248 }
c906108c 2249
488f131b
JB
2250 if (step_resume_breakpoint)
2251 {
2252 /* Having a step-resume breakpoint overrides anything
2253 else having to do with stepping commands until
2254 that breakpoint is reached. */
488f131b
JB
2255 keep_going (ecs);
2256 return;
2257 }
c5aa993b 2258
488f131b
JB
2259 if (step_range_end == 0)
2260 {
2261 /* Likewise if we aren't even stepping. */
488f131b
JB
2262 keep_going (ecs);
2263 return;
2264 }
c5aa993b 2265
488f131b 2266 /* If stepping through a line, keep going if still within it.
c906108c 2267
488f131b
JB
2268 Note that step_range_end is the address of the first instruction
2269 beyond the step range, and NOT the address of the last instruction
2270 within it! */
2271 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2272 {
488f131b
JB
2273 keep_going (ecs);
2274 return;
2275 }
c5aa993b 2276
488f131b 2277 /* We stepped out of the stepping range. */
c906108c 2278
488f131b
JB
2279 /* If we are stepping at the source level and entered the runtime
2280 loader dynamic symbol resolution code, we keep on single stepping
2281 until we exit the run time loader code and reach the callee's
2282 address. */
2283 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2284 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2285 {
4c8c40e6
MK
2286 CORE_ADDR pc_after_resolver =
2287 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2288
488f131b
JB
2289 if (pc_after_resolver)
2290 {
2291 /* Set up a step-resume breakpoint at the address
2292 indicated by SKIP_SOLIB_RESOLVER. */
2293 struct symtab_and_line sr_sal;
fe39c653 2294 init_sal (&sr_sal);
488f131b
JB
2295 sr_sal.pc = pc_after_resolver;
2296
2297 check_for_old_step_resume_breakpoint ();
2298 step_resume_breakpoint =
818dd999 2299 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2300 if (breakpoints_inserted)
2301 insert_breakpoints ();
c5aa993b 2302 }
c906108c 2303
488f131b
JB
2304 keep_going (ecs);
2305 return;
2306 }
c906108c 2307
42edda50
AC
2308 if (step_range_end != 1
2309 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2310 || step_over_calls == STEP_OVER_ALL)
2311 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2312 {
42edda50
AC
2313 /* The inferior, while doing a "step" or "next", has ended up in
2314 a signal trampoline (either by a signal being delivered or by
2315 the signal handler returning). Just single-step until the
2316 inferior leaves the trampoline (either by calling the handler
2317 or returning). */
488f131b
JB
2318 keep_going (ecs);
2319 return;
2320 }
c906108c 2321
0b30808c
AC
2322 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2323 && ecs->stop_func_name == NULL)
2324 {
2325 /* The inferior just stepped into, or returned to, an
2326 undebuggable function (where there is no symbol, not even a
2327 minimal symbol, corresponding to the address where the
2328 inferior stopped). Since we want to skip this kind of code,
2329 we keep going until the inferior returns from this
2330 function. */
06f32659 2331 if (step_stop_if_no_debug)
95918acb 2332 {
06f32659
AC
2333 /* If we have no line number and the step-stop-if-no-debug
2334 is set, we stop the step so that the user has a chance to
2335 switch in assembly mode. */
95918acb
AC
2336 stop_step = 1;
2337 print_stop_reason (END_STEPPING_RANGE, 0);
2338 stop_stepping (ecs);
2339 return;
2340 }
06f32659 2341 else
95918acb 2342 {
06f32659
AC
2343 /* Set a breakpoint at callee's return address (the address
2344 at which the caller will resume). */
95918acb
AC
2345 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()),
2346 ecs);
2347 keep_going (ecs);
2348 return;
2349 }
0b30808c
AC
2350 }
2351
4a72a2a6 2352 if (frame_id_eq (frame_unwind_id (get_current_frame ()),
a587af0b 2353 step_frame_id))
488f131b
JB
2354 {
2355 /* It's a subroutine call. */
95918acb
AC
2356 CORE_ADDR real_stop_pc;
2357
2358 if ((step_over_calls == STEP_OVER_NONE)
2359 || ((step_range_end == 1)
2360 && in_prologue (prev_pc, ecs->stop_func_start)))
2361 {
2362 /* I presume that step_over_calls is only 0 when we're
2363 supposed to be stepping at the assembly language level
2364 ("stepi"). Just stop. */
2365 /* Also, maybe we just did a "nexti" inside a prolog, so we
2366 thought it was a subroutine call but it was not. Stop as
2367 well. FENN */
2368 stop_step = 1;
2369 print_stop_reason (END_STEPPING_RANGE, 0);
2370 stop_stepping (ecs);
2371 return;
2372 }
2373
2374 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
2375 {
2376 /* We're doing a "next", set a breakpoint at callee's return
2377 address (the address at which the caller will
2378 resume). */
2379 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()),
2380 ecs);
2381 keep_going (ecs);
2382 return;
2383 }
2384
2385 /* If we are in a function call trampoline (a stub between the
2386 calling routine and the real function), locate the real
2387 function. That's what tells us (a) whether we want to step
2388 into it at all, and (b) what prologue we want to run to the
2389 end of, if we do step into it. */
2390 real_stop_pc = skip_language_trampoline (stop_pc);
2391 if (real_stop_pc == 0)
2392 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2393 if (real_stop_pc != 0)
2394 ecs->stop_func_start = real_stop_pc;
2395
2396 /* If we have line number information for the function we are
2397 thinking of stepping into, step into it.
2398
2399 If there are several symtabs at that PC (e.g. with include
2400 files), just want to know whether *any* of them have line
2401 numbers. find_pc_line handles this. */
2402 {
2403 struct symtab_and_line tmp_sal;
2404
2405 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2406 if (tmp_sal.line != 0)
2407 {
2408 step_into_function (ecs);
2409 return;
2410 }
2411 }
2412
2413 /* If we have no line number and the step-stop-if-no-debug is
2414 set, we stop the step so that the user has a chance to switch
2415 in assembly mode. */
2416 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2417 {
2418 stop_step = 1;
2419 print_stop_reason (END_STEPPING_RANGE, 0);
2420 stop_stepping (ecs);
2421 return;
2422 }
2423
2424 /* Set a breakpoint at callee's return address (the address at
2425 which the caller will resume). */
2426 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()), ecs);
2427 keep_going (ecs);
488f131b 2428 return;
488f131b 2429 }
c906108c 2430
488f131b 2431 /* We've wandered out of the step range. */
c906108c 2432
488f131b 2433 ecs->sal = find_pc_line (stop_pc, 0);
c906108c 2434
488f131b
JB
2435 if (step_range_end == 1)
2436 {
2437 /* It is stepi or nexti. We always want to stop stepping after
2438 one instruction. */
2439 stop_step = 1;
2440 print_stop_reason (END_STEPPING_RANGE, 0);
2441 stop_stepping (ecs);
2442 return;
2443 }
c906108c 2444
488f131b
JB
2445 /* If we're in the return path from a shared library trampoline,
2446 we want to proceed through the trampoline when stepping. */
2447 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2448 {
488f131b 2449 /* Determine where this trampoline returns. */
5cf4d23a 2450 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2451
488f131b 2452 /* Only proceed through if we know where it's going. */
d764a824 2453 if (real_stop_pc)
488f131b
JB
2454 {
2455 /* And put the step-breakpoint there and go until there. */
2456 struct symtab_and_line sr_sal;
2457
fe39c653 2458 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2459 sr_sal.pc = real_stop_pc;
488f131b
JB
2460 sr_sal.section = find_pc_overlay (sr_sal.pc);
2461 /* Do not specify what the fp should be when we stop
2462 since on some machines the prologue
2463 is where the new fp value is established. */
2464 check_for_old_step_resume_breakpoint ();
2465 step_resume_breakpoint =
818dd999 2466 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2467 if (breakpoints_inserted)
2468 insert_breakpoints ();
c906108c 2469
488f131b
JB
2470 /* Restart without fiddling with the step ranges or
2471 other state. */
2472 keep_going (ecs);
2473 return;
2474 }
2475 }
c906108c 2476
488f131b
JB
2477 if (ecs->sal.line == 0)
2478 {
2479 /* We have no line number information. That means to stop
2480 stepping (does this always happen right after one instruction,
2481 when we do "s" in a function with no line numbers,
2482 or can this happen as a result of a return or longjmp?). */
2483 stop_step = 1;
2484 print_stop_reason (END_STEPPING_RANGE, 0);
2485 stop_stepping (ecs);
2486 return;
2487 }
c906108c 2488
488f131b
JB
2489 if ((stop_pc == ecs->sal.pc)
2490 && (ecs->current_line != ecs->sal.line
2491 || ecs->current_symtab != ecs->sal.symtab))
2492 {
2493 /* We are at the start of a different line. So stop. Note that
2494 we don't stop if we step into the middle of a different line.
2495 That is said to make things like for (;;) statements work
2496 better. */
2497 stop_step = 1;
2498 print_stop_reason (END_STEPPING_RANGE, 0);
2499 stop_stepping (ecs);
2500 return;
2501 }
c906108c 2502
488f131b 2503 /* We aren't done stepping.
c906108c 2504
488f131b
JB
2505 Optimize by setting the stepping range to the line.
2506 (We might not be in the original line, but if we entered a
2507 new line in mid-statement, we continue stepping. This makes
2508 things like for(;;) statements work better.) */
c906108c 2509
488f131b 2510 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2511 {
488f131b
JB
2512 /* If this is the last line of the function, don't keep stepping
2513 (it would probably step us out of the function).
2514 This is particularly necessary for a one-line function,
2515 in which after skipping the prologue we better stop even though
2516 we will be in mid-line. */
2517 stop_step = 1;
2518 print_stop_reason (END_STEPPING_RANGE, 0);
2519 stop_stepping (ecs);
2520 return;
c5aa993b 2521 }
488f131b
JB
2522 step_range_start = ecs->sal.pc;
2523 step_range_end = ecs->sal.end;
aa0cd9c1 2524 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2525 ecs->current_line = ecs->sal.line;
2526 ecs->current_symtab = ecs->sal.symtab;
2527
aa0cd9c1
AC
2528 /* In the case where we just stepped out of a function into the
2529 middle of a line of the caller, continue stepping, but
2530 step_frame_id must be modified to current frame */
65815ea1
AC
2531#if 0
2532 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2533 generous. It will trigger on things like a step into a frameless
2534 stackless leaf function. I think the logic should instead look
2535 at the unwound frame ID has that should give a more robust
2536 indication of what happened. */
2537 if (step-ID == current-ID)
2538 still stepping in same function;
2539 else if (step-ID == unwind (current-ID))
2540 stepped into a function;
2541 else
2542 stepped out of a function;
2543 /* Of course this assumes that the frame ID unwind code is robust
2544 and we're willing to introduce frame unwind logic into this
ce2826aa 2545 function. Fortunately, those days are nearly upon us. */
65815ea1 2546#endif
488f131b 2547 {
aa0cd9c1
AC
2548 struct frame_id current_frame = get_frame_id (get_current_frame ());
2549 if (!(frame_id_inner (current_frame, step_frame_id)))
2550 step_frame_id = current_frame;
488f131b 2551 }
c906108c 2552
488f131b 2553 keep_going (ecs);
104c1213
JM
2554}
2555
2556/* Are we in the middle of stepping? */
2557
2558static int
2559currently_stepping (struct execution_control_state *ecs)
2560{
d303a6c7 2561 return ((!ecs->handling_longjmp
104c1213
JM
2562 && ((step_range_end && step_resume_breakpoint == NULL)
2563 || trap_expected))
2564 || ecs->stepping_through_solib_after_catch
2565 || bpstat_should_step ());
2566}
c906108c 2567
c2c6d25f
JM
2568/* Subroutine call with source code we should not step over. Do step
2569 to the first line of code in it. */
2570
2571static void
2572step_into_function (struct execution_control_state *ecs)
2573{
2574 struct symtab *s;
2575 struct symtab_and_line sr_sal;
2576
2577 s = find_pc_symtab (stop_pc);
2578 if (s && s->language != language_asm)
2579 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2580
2581 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2582 /* Use the step_resume_break to step until the end of the prologue,
2583 even if that involves jumps (as it seems to on the vax under
2584 4.2). */
2585 /* If the prologue ends in the middle of a source line, continue to
2586 the end of that source line (if it is still within the function).
2587 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2588 if (ecs->sal.end
2589 && ecs->sal.pc != ecs->stop_func_start
2590 && ecs->sal.end < ecs->stop_func_end)
2591 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2592
2dbd5e30
KB
2593 /* Architectures which require breakpoint adjustment might not be able
2594 to place a breakpoint at the computed address. If so, the test
2595 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2596 ecs->stop_func_start to an address at which a breakpoint may be
2597 legitimately placed.
2598
2599 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2600 made, GDB will enter an infinite loop when stepping through
2601 optimized code consisting of VLIW instructions which contain
2602 subinstructions corresponding to different source lines. On
2603 FR-V, it's not permitted to place a breakpoint on any but the
2604 first subinstruction of a VLIW instruction. When a breakpoint is
2605 set, GDB will adjust the breakpoint address to the beginning of
2606 the VLIW instruction. Thus, we need to make the corresponding
2607 adjustment here when computing the stop address. */
2608
2609 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2610 {
2611 ecs->stop_func_start
2612 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2613 ecs->stop_func_start);
2614 }
2615
c2c6d25f
JM
2616 if (ecs->stop_func_start == stop_pc)
2617 {
2618 /* We are already there: stop now. */
2619 stop_step = 1;
488f131b 2620 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2621 stop_stepping (ecs);
2622 return;
2623 }
2624 else
2625 {
2626 /* Put the step-breakpoint there and go until there. */
fe39c653 2627 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2628 sr_sal.pc = ecs->stop_func_start;
2629 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2630 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2631 some machines the prologue is where the new fp value is
2632 established. */
c2c6d25f
JM
2633 check_for_old_step_resume_breakpoint ();
2634 step_resume_breakpoint =
818dd999 2635 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
c2c6d25f
JM
2636 if (breakpoints_inserted)
2637 insert_breakpoints ();
2638
2639 /* And make sure stepping stops right away then. */
2640 step_range_end = step_range_start;
2641 }
2642 keep_going (ecs);
2643}
d4f3574e 2644
d303a6c7
AC
2645/* The inferior, as a result of a function call (has left) or signal
2646 (about to leave) the single-step range. Set a momentary breakpoint
2647 within the step range where the inferior is expected to later
2648 return. */
2649
2650static void
2651insert_step_resume_breakpoint (struct frame_info *step_frame,
2652 struct execution_control_state *ecs)
2653{
2654 struct symtab_and_line sr_sal;
2655
2656 /* This is only used within the step-resume range/frame. */
2657 gdb_assert (frame_id_eq (step_frame_id, get_frame_id (step_frame)));
2658 gdb_assert (step_range_end != 0);
922d5ae0
AC
2659 /* Remember, if the call instruction is the last in the step range,
2660 the breakpoint will land just beyond that. Hence ``<=
2661 step_range_end''. Also, ignore check when "nexti". */
2662 gdb_assert (step_range_start == step_range_end
2663 || (get_frame_pc (step_frame) >= step_range_start
2664 && get_frame_pc (step_frame) <= step_range_end));
d303a6c7
AC
2665
2666 init_sal (&sr_sal); /* initialize to zeros */
2667
2668 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (step_frame));
2669 sr_sal.section = find_pc_overlay (sr_sal.pc);
2670
2671 check_for_old_step_resume_breakpoint ();
2672
2673 step_resume_breakpoint
2674 = set_momentary_breakpoint (sr_sal, get_frame_id (step_frame),
2675 bp_step_resume);
2676
2677 if (breakpoints_inserted)
2678 insert_breakpoints ();
2679}
2680
104c1213
JM
2681static void
2682stop_stepping (struct execution_control_state *ecs)
2683{
cd0fc7c3
SS
2684 /* Let callers know we don't want to wait for the inferior anymore. */
2685 ecs->wait_some_more = 0;
2686}
2687
d4f3574e
SS
2688/* This function handles various cases where we need to continue
2689 waiting for the inferior. */
2690/* (Used to be the keep_going: label in the old wait_for_inferior) */
2691
2692static void
2693keep_going (struct execution_control_state *ecs)
2694{
d4f3574e 2695 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2696 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2697
d4f3574e
SS
2698 /* If we did not do break;, it means we should keep running the
2699 inferior and not return to debugger. */
2700
2701 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2702 {
2703 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2704 the inferior, else we'd have done a break above) and we
2705 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2706 resume (currently_stepping (ecs), stop_signal);
2707 }
2708 else
2709 {
2710 /* Either the trap was not expected, but we are continuing
488f131b
JB
2711 anyway (the user asked that this signal be passed to the
2712 child)
2713 -- or --
2714 The signal was SIGTRAP, e.g. it was our signal, but we
2715 decided we should resume from it.
d4f3574e 2716
488f131b 2717 We're going to run this baby now!
d4f3574e 2718
488f131b
JB
2719 Insert breakpoints now, unless we are trying to one-proceed
2720 past a breakpoint. */
d4f3574e 2721 /* If we've just finished a special step resume and we don't
488f131b 2722 want to hit a breakpoint, pull em out. */
d4f3574e 2723 if (step_resume_breakpoint == NULL
d4f3574e
SS
2724 && ecs->remove_breakpoints_on_following_step)
2725 {
2726 ecs->remove_breakpoints_on_following_step = 0;
2727 remove_breakpoints ();
2728 breakpoints_inserted = 0;
2729 }
d303a6c7 2730 else if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e
SS
2731 {
2732 breakpoints_failed = insert_breakpoints ();
2733 if (breakpoints_failed)
2734 {
2735 stop_stepping (ecs);
2736 return;
2737 }
2738 breakpoints_inserted = 1;
2739 }
2740
2741 trap_expected = ecs->another_trap;
2742
2743 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2744 specifies that such a signal should be delivered to the
2745 target program).
2746
2747 Typically, this would occure when a user is debugging a
2748 target monitor on a simulator: the target monitor sets a
2749 breakpoint; the simulator encounters this break-point and
2750 halts the simulation handing control to GDB; GDB, noteing
2751 that the break-point isn't valid, returns control back to the
2752 simulator; the simulator then delivers the hardware
2753 equivalent of a SIGNAL_TRAP to the program being debugged. */
2754
2755 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2756 stop_signal = TARGET_SIGNAL_0;
2757
d4f3574e
SS
2758
2759 resume (currently_stepping (ecs), stop_signal);
2760 }
2761
488f131b 2762 prepare_to_wait (ecs);
d4f3574e
SS
2763}
2764
104c1213
JM
2765/* This function normally comes after a resume, before
2766 handle_inferior_event exits. It takes care of any last bits of
2767 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2768
104c1213
JM
2769static void
2770prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2771{
104c1213
JM
2772 if (ecs->infwait_state == infwait_normal_state)
2773 {
2774 overlay_cache_invalid = 1;
2775
2776 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2777 target_wait because they can be loaded from the target while
2778 in target_wait. This makes remote debugging a bit more
2779 efficient for those targets that provide critical registers
2780 as part of their normal status mechanism. */
104c1213
JM
2781
2782 registers_changed ();
39f77062 2783 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2784 ecs->wp = &(ecs->ws);
2785 }
2786 /* This is the old end of the while loop. Let everybody know we
2787 want to wait for the inferior some more and get called again
2788 soon. */
2789 ecs->wait_some_more = 1;
c906108c 2790}
11cf8741
JM
2791
2792/* Print why the inferior has stopped. We always print something when
2793 the inferior exits, or receives a signal. The rest of the cases are
2794 dealt with later on in normal_stop() and print_it_typical(). Ideally
2795 there should be a call to this function from handle_inferior_event()
2796 each time stop_stepping() is called.*/
2797static void
2798print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2799{
2800 switch (stop_reason)
2801 {
2802 case STOP_UNKNOWN:
2803 /* We don't deal with these cases from handle_inferior_event()
2804 yet. */
2805 break;
2806 case END_STEPPING_RANGE:
2807 /* We are done with a step/next/si/ni command. */
2808 /* For now print nothing. */
fb40c209 2809 /* Print a message only if not in the middle of doing a "step n"
488f131b 2810 operation for n > 1 */
fb40c209 2811 if (!step_multi || !stop_step)
9dc5e2a9 2812 if (ui_out_is_mi_like_p (uiout))
fb40c209 2813 ui_out_field_string (uiout, "reason", "end-stepping-range");
11cf8741
JM
2814 break;
2815 case BREAKPOINT_HIT:
2816 /* We found a breakpoint. */
2817 /* For now print nothing. */
2818 break;
2819 case SIGNAL_EXITED:
2820 /* The inferior was terminated by a signal. */
8b93c638 2821 annotate_signalled ();
9dc5e2a9 2822 if (ui_out_is_mi_like_p (uiout))
fb40c209 2823 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
2824 ui_out_text (uiout, "\nProgram terminated with signal ");
2825 annotate_signal_name ();
488f131b
JB
2826 ui_out_field_string (uiout, "signal-name",
2827 target_signal_to_name (stop_info));
8b93c638
JM
2828 annotate_signal_name_end ();
2829 ui_out_text (uiout, ", ");
2830 annotate_signal_string ();
488f131b
JB
2831 ui_out_field_string (uiout, "signal-meaning",
2832 target_signal_to_string (stop_info));
8b93c638
JM
2833 annotate_signal_string_end ();
2834 ui_out_text (uiout, ".\n");
2835 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
2836 break;
2837 case EXITED:
2838 /* The inferior program is finished. */
8b93c638
JM
2839 annotate_exited (stop_info);
2840 if (stop_info)
2841 {
9dc5e2a9 2842 if (ui_out_is_mi_like_p (uiout))
fb40c209 2843 ui_out_field_string (uiout, "reason", "exited");
8b93c638 2844 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
2845 ui_out_field_fmt (uiout, "exit-code", "0%o",
2846 (unsigned int) stop_info);
8b93c638
JM
2847 ui_out_text (uiout, ".\n");
2848 }
2849 else
2850 {
9dc5e2a9 2851 if (ui_out_is_mi_like_p (uiout))
fb40c209 2852 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
2853 ui_out_text (uiout, "\nProgram exited normally.\n");
2854 }
11cf8741
JM
2855 break;
2856 case SIGNAL_RECEIVED:
2857 /* Signal received. The signal table tells us to print about
2858 it. */
8b93c638
JM
2859 annotate_signal ();
2860 ui_out_text (uiout, "\nProgram received signal ");
2861 annotate_signal_name ();
84c6c83c
KS
2862 if (ui_out_is_mi_like_p (uiout))
2863 ui_out_field_string (uiout, "reason", "signal-received");
488f131b
JB
2864 ui_out_field_string (uiout, "signal-name",
2865 target_signal_to_name (stop_info));
8b93c638
JM
2866 annotate_signal_name_end ();
2867 ui_out_text (uiout, ", ");
2868 annotate_signal_string ();
488f131b
JB
2869 ui_out_field_string (uiout, "signal-meaning",
2870 target_signal_to_string (stop_info));
8b93c638
JM
2871 annotate_signal_string_end ();
2872 ui_out_text (uiout, ".\n");
11cf8741
JM
2873 break;
2874 default:
8e65ff28
AC
2875 internal_error (__FILE__, __LINE__,
2876 "print_stop_reason: unrecognized enum value");
11cf8741
JM
2877 break;
2878 }
2879}
c906108c 2880\f
43ff13b4 2881
c906108c
SS
2882/* Here to return control to GDB when the inferior stops for real.
2883 Print appropriate messages, remove breakpoints, give terminal our modes.
2884
2885 STOP_PRINT_FRAME nonzero means print the executing frame
2886 (pc, function, args, file, line number and line text).
2887 BREAKPOINTS_FAILED nonzero means stop was due to error
2888 attempting to insert breakpoints. */
2889
2890void
96baa820 2891normal_stop (void)
c906108c 2892{
73b65bb0
DJ
2893 struct target_waitstatus last;
2894 ptid_t last_ptid;
2895
2896 get_last_target_status (&last_ptid, &last);
2897
c906108c
SS
2898 /* As with the notification of thread events, we want to delay
2899 notifying the user that we've switched thread context until
2900 the inferior actually stops.
2901
73b65bb0
DJ
2902 There's no point in saying anything if the inferior has exited.
2903 Note that SIGNALLED here means "exited with a signal", not
2904 "received a signal". */
488f131b 2905 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
2906 && target_has_execution
2907 && last.kind != TARGET_WAITKIND_SIGNALLED
2908 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
2909 {
2910 target_terminal_ours_for_output ();
c3f6f71d 2911 printf_filtered ("[Switching to %s]\n",
39f77062
KB
2912 target_pid_or_tid_to_str (inferior_ptid));
2913 previous_inferior_ptid = inferior_ptid;
c906108c 2914 }
c906108c 2915
4fa8626c 2916 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
2917 /* Make sure that the current_frame's pc is correct. This
2918 is a correction for setting up the frame info before doing
2919 DECR_PC_AFTER_BREAK */
b87efeee
AC
2920 if (target_has_execution)
2921 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2922 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2923 frame code to check for this and sort out any resultant mess.
2924 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 2925 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 2926
c906108c
SS
2927 if (target_has_execution && breakpoints_inserted)
2928 {
2929 if (remove_breakpoints ())
2930 {
2931 target_terminal_ours_for_output ();
2932 printf_filtered ("Cannot remove breakpoints because ");
2933 printf_filtered ("program is no longer writable.\n");
2934 printf_filtered ("It might be running in another process.\n");
2935 printf_filtered ("Further execution is probably impossible.\n");
2936 }
2937 }
2938 breakpoints_inserted = 0;
2939
2940 /* Delete the breakpoint we stopped at, if it wants to be deleted.
2941 Delete any breakpoint that is to be deleted at the next stop. */
2942
2943 breakpoint_auto_delete (stop_bpstat);
2944
2945 /* If an auto-display called a function and that got a signal,
2946 delete that auto-display to avoid an infinite recursion. */
2947
2948 if (stopped_by_random_signal)
2949 disable_current_display ();
2950
2951 /* Don't print a message if in the middle of doing a "step n"
2952 operation for n > 1 */
2953 if (step_multi && stop_step)
2954 goto done;
2955
2956 target_terminal_ours ();
2957
5913bcb0
AC
2958 /* Look up the hook_stop and run it (CLI internally handles problem
2959 of stop_command's pre-hook not existing). */
2960 if (stop_command)
2961 catch_errors (hook_stop_stub, stop_command,
2962 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
2963
2964 if (!target_has_stack)
2965 {
2966
2967 goto done;
2968 }
2969
2970 /* Select innermost stack frame - i.e., current frame is frame 0,
2971 and current location is based on that.
2972 Don't do this on return from a stack dummy routine,
2973 or if the program has exited. */
2974
2975 if (!stop_stack_dummy)
2976 {
0f7d239c 2977 select_frame (get_current_frame ());
c906108c
SS
2978
2979 /* Print current location without a level number, if
c5aa993b
JM
2980 we have changed functions or hit a breakpoint.
2981 Print source line if we have one.
2982 bpstat_print() contains the logic deciding in detail
2983 what to print, based on the event(s) that just occurred. */
c906108c 2984
6e7f8b9c 2985 if (stop_print_frame && deprecated_selected_frame)
c906108c
SS
2986 {
2987 int bpstat_ret;
2988 int source_flag;
917317f4 2989 int do_frame_printing = 1;
c906108c
SS
2990
2991 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
2992 switch (bpstat_ret)
2993 {
2994 case PRINT_UNKNOWN:
aa0cd9c1
AC
2995 /* FIXME: cagney/2002-12-01: Given that a frame ID does
2996 (or should) carry around the function and does (or
2997 should) use that when doing a frame comparison. */
917317f4 2998 if (stop_step
aa0cd9c1
AC
2999 && frame_id_eq (step_frame_id,
3000 get_frame_id (get_current_frame ()))
917317f4 3001 && step_start_function == find_pc_function (stop_pc))
488f131b 3002 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3003 else
488f131b 3004 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3005 break;
3006 case PRINT_SRC_AND_LOC:
488f131b 3007 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3008 break;
3009 case PRINT_SRC_ONLY:
c5394b80 3010 source_flag = SRC_LINE;
917317f4
JM
3011 break;
3012 case PRINT_NOTHING:
488f131b 3013 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3014 do_frame_printing = 0;
3015 break;
3016 default:
488f131b 3017 internal_error (__FILE__, __LINE__, "Unknown value.");
917317f4 3018 }
fb40c209 3019 /* For mi, have the same behavior every time we stop:
488f131b 3020 print everything but the source line. */
9dc5e2a9 3021 if (ui_out_is_mi_like_p (uiout))
fb40c209 3022 source_flag = LOC_AND_ADDRESS;
c906108c 3023
9dc5e2a9 3024 if (ui_out_is_mi_like_p (uiout))
39f77062 3025 ui_out_field_int (uiout, "thread-id",
488f131b 3026 pid_to_thread_id (inferior_ptid));
c906108c
SS
3027 /* The behavior of this routine with respect to the source
3028 flag is:
c5394b80
JM
3029 SRC_LINE: Print only source line
3030 LOCATION: Print only location
3031 SRC_AND_LOC: Print location and source line */
917317f4 3032 if (do_frame_printing)
0faf0076 3033 print_stack_frame (get_selected_frame (), 0, source_flag);
c906108c
SS
3034
3035 /* Display the auto-display expressions. */
3036 do_displays ();
3037 }
3038 }
3039
3040 /* Save the function value return registers, if we care.
3041 We might be about to restore their previous contents. */
3042 if (proceed_to_finish)
72cec141
AC
3043 /* NB: The copy goes through to the target picking up the value of
3044 all the registers. */
3045 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3046
3047 if (stop_stack_dummy)
3048 {
dbe9fe58
AC
3049 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3050 ends with a setting of the current frame, so we can use that
3051 next. */
3052 frame_pop (get_current_frame ());
c906108c 3053 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3054 Can't rely on restore_inferior_status because that only gets
3055 called if we don't stop in the called function. */
c906108c 3056 stop_pc = read_pc ();
0f7d239c 3057 select_frame (get_current_frame ());
c906108c
SS
3058 }
3059
c906108c
SS
3060done:
3061 annotate_stopped ();
7a464420 3062 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3063}
3064
3065static int
96baa820 3066hook_stop_stub (void *cmd)
c906108c 3067{
5913bcb0 3068 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3069 return (0);
3070}
3071\f
c5aa993b 3072int
96baa820 3073signal_stop_state (int signo)
c906108c
SS
3074{
3075 return signal_stop[signo];
3076}
3077
c5aa993b 3078int
96baa820 3079signal_print_state (int signo)
c906108c
SS
3080{
3081 return signal_print[signo];
3082}
3083
c5aa993b 3084int
96baa820 3085signal_pass_state (int signo)
c906108c
SS
3086{
3087 return signal_program[signo];
3088}
3089
488f131b 3090int
7bda5e4a 3091signal_stop_update (int signo, int state)
d4f3574e
SS
3092{
3093 int ret = signal_stop[signo];
3094 signal_stop[signo] = state;
3095 return ret;
3096}
3097
488f131b 3098int
7bda5e4a 3099signal_print_update (int signo, int state)
d4f3574e
SS
3100{
3101 int ret = signal_print[signo];
3102 signal_print[signo] = state;
3103 return ret;
3104}
3105
488f131b 3106int
7bda5e4a 3107signal_pass_update (int signo, int state)
d4f3574e
SS
3108{
3109 int ret = signal_program[signo];
3110 signal_program[signo] = state;
3111 return ret;
3112}
3113
c906108c 3114static void
96baa820 3115sig_print_header (void)
c906108c
SS
3116{
3117 printf_filtered ("\
3118Signal Stop\tPrint\tPass to program\tDescription\n");
3119}
3120
3121static void
96baa820 3122sig_print_info (enum target_signal oursig)
c906108c
SS
3123{
3124 char *name = target_signal_to_name (oursig);
3125 int name_padding = 13 - strlen (name);
96baa820 3126
c906108c
SS
3127 if (name_padding <= 0)
3128 name_padding = 0;
3129
3130 printf_filtered ("%s", name);
488f131b 3131 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3132 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3133 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3134 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3135 printf_filtered ("%s\n", target_signal_to_string (oursig));
3136}
3137
3138/* Specify how various signals in the inferior should be handled. */
3139
3140static void
96baa820 3141handle_command (char *args, int from_tty)
c906108c
SS
3142{
3143 char **argv;
3144 int digits, wordlen;
3145 int sigfirst, signum, siglast;
3146 enum target_signal oursig;
3147 int allsigs;
3148 int nsigs;
3149 unsigned char *sigs;
3150 struct cleanup *old_chain;
3151
3152 if (args == NULL)
3153 {
3154 error_no_arg ("signal to handle");
3155 }
3156
3157 /* Allocate and zero an array of flags for which signals to handle. */
3158
3159 nsigs = (int) TARGET_SIGNAL_LAST;
3160 sigs = (unsigned char *) alloca (nsigs);
3161 memset (sigs, 0, nsigs);
3162
3163 /* Break the command line up into args. */
3164
3165 argv = buildargv (args);
3166 if (argv == NULL)
3167 {
3168 nomem (0);
3169 }
7a292a7a 3170 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3171
3172 /* Walk through the args, looking for signal oursigs, signal names, and
3173 actions. Signal numbers and signal names may be interspersed with
3174 actions, with the actions being performed for all signals cumulatively
3175 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3176
3177 while (*argv != NULL)
3178 {
3179 wordlen = strlen (*argv);
3180 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3181 {;
3182 }
3183 allsigs = 0;
3184 sigfirst = siglast = -1;
3185
3186 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3187 {
3188 /* Apply action to all signals except those used by the
3189 debugger. Silently skip those. */
3190 allsigs = 1;
3191 sigfirst = 0;
3192 siglast = nsigs - 1;
3193 }
3194 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3195 {
3196 SET_SIGS (nsigs, sigs, signal_stop);
3197 SET_SIGS (nsigs, sigs, signal_print);
3198 }
3199 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3200 {
3201 UNSET_SIGS (nsigs, sigs, signal_program);
3202 }
3203 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3204 {
3205 SET_SIGS (nsigs, sigs, signal_print);
3206 }
3207 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3208 {
3209 SET_SIGS (nsigs, sigs, signal_program);
3210 }
3211 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3212 {
3213 UNSET_SIGS (nsigs, sigs, signal_stop);
3214 }
3215 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3216 {
3217 SET_SIGS (nsigs, sigs, signal_program);
3218 }
3219 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3220 {
3221 UNSET_SIGS (nsigs, sigs, signal_print);
3222 UNSET_SIGS (nsigs, sigs, signal_stop);
3223 }
3224 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3225 {
3226 UNSET_SIGS (nsigs, sigs, signal_program);
3227 }
3228 else if (digits > 0)
3229 {
3230 /* It is numeric. The numeric signal refers to our own
3231 internal signal numbering from target.h, not to host/target
3232 signal number. This is a feature; users really should be
3233 using symbolic names anyway, and the common ones like
3234 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3235
3236 sigfirst = siglast = (int)
3237 target_signal_from_command (atoi (*argv));
3238 if ((*argv)[digits] == '-')
3239 {
3240 siglast = (int)
3241 target_signal_from_command (atoi ((*argv) + digits + 1));
3242 }
3243 if (sigfirst > siglast)
3244 {
3245 /* Bet he didn't figure we'd think of this case... */
3246 signum = sigfirst;
3247 sigfirst = siglast;
3248 siglast = signum;
3249 }
3250 }
3251 else
3252 {
3253 oursig = target_signal_from_name (*argv);
3254 if (oursig != TARGET_SIGNAL_UNKNOWN)
3255 {
3256 sigfirst = siglast = (int) oursig;
3257 }
3258 else
3259 {
3260 /* Not a number and not a recognized flag word => complain. */
3261 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3262 }
3263 }
3264
3265 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3266 which signals to apply actions to. */
c906108c
SS
3267
3268 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3269 {
3270 switch ((enum target_signal) signum)
3271 {
3272 case TARGET_SIGNAL_TRAP:
3273 case TARGET_SIGNAL_INT:
3274 if (!allsigs && !sigs[signum])
3275 {
3276 if (query ("%s is used by the debugger.\n\
488f131b 3277Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3278 {
3279 sigs[signum] = 1;
3280 }
3281 else
3282 {
3283 printf_unfiltered ("Not confirmed, unchanged.\n");
3284 gdb_flush (gdb_stdout);
3285 }
3286 }
3287 break;
3288 case TARGET_SIGNAL_0:
3289 case TARGET_SIGNAL_DEFAULT:
3290 case TARGET_SIGNAL_UNKNOWN:
3291 /* Make sure that "all" doesn't print these. */
3292 break;
3293 default:
3294 sigs[signum] = 1;
3295 break;
3296 }
3297 }
3298
3299 argv++;
3300 }
3301
39f77062 3302 target_notice_signals (inferior_ptid);
c906108c
SS
3303
3304 if (from_tty)
3305 {
3306 /* Show the results. */
3307 sig_print_header ();
3308 for (signum = 0; signum < nsigs; signum++)
3309 {
3310 if (sigs[signum])
3311 {
3312 sig_print_info (signum);
3313 }
3314 }
3315 }
3316
3317 do_cleanups (old_chain);
3318}
3319
3320static void
96baa820 3321xdb_handle_command (char *args, int from_tty)
c906108c
SS
3322{
3323 char **argv;
3324 struct cleanup *old_chain;
3325
3326 /* Break the command line up into args. */
3327
3328 argv = buildargv (args);
3329 if (argv == NULL)
3330 {
3331 nomem (0);
3332 }
7a292a7a 3333 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3334 if (argv[1] != (char *) NULL)
3335 {
3336 char *argBuf;
3337 int bufLen;
3338
3339 bufLen = strlen (argv[0]) + 20;
3340 argBuf = (char *) xmalloc (bufLen);
3341 if (argBuf)
3342 {
3343 int validFlag = 1;
3344 enum target_signal oursig;
3345
3346 oursig = target_signal_from_name (argv[0]);
3347 memset (argBuf, 0, bufLen);
3348 if (strcmp (argv[1], "Q") == 0)
3349 sprintf (argBuf, "%s %s", argv[0], "noprint");
3350 else
3351 {
3352 if (strcmp (argv[1], "s") == 0)
3353 {
3354 if (!signal_stop[oursig])
3355 sprintf (argBuf, "%s %s", argv[0], "stop");
3356 else
3357 sprintf (argBuf, "%s %s", argv[0], "nostop");
3358 }
3359 else if (strcmp (argv[1], "i") == 0)
3360 {
3361 if (!signal_program[oursig])
3362 sprintf (argBuf, "%s %s", argv[0], "pass");
3363 else
3364 sprintf (argBuf, "%s %s", argv[0], "nopass");
3365 }
3366 else if (strcmp (argv[1], "r") == 0)
3367 {
3368 if (!signal_print[oursig])
3369 sprintf (argBuf, "%s %s", argv[0], "print");
3370 else
3371 sprintf (argBuf, "%s %s", argv[0], "noprint");
3372 }
3373 else
3374 validFlag = 0;
3375 }
3376 if (validFlag)
3377 handle_command (argBuf, from_tty);
3378 else
3379 printf_filtered ("Invalid signal handling flag.\n");
3380 if (argBuf)
b8c9b27d 3381 xfree (argBuf);
c906108c
SS
3382 }
3383 }
3384 do_cleanups (old_chain);
3385}
3386
3387/* Print current contents of the tables set by the handle command.
3388 It is possible we should just be printing signals actually used
3389 by the current target (but for things to work right when switching
3390 targets, all signals should be in the signal tables). */
3391
3392static void
96baa820 3393signals_info (char *signum_exp, int from_tty)
c906108c
SS
3394{
3395 enum target_signal oursig;
3396 sig_print_header ();
3397
3398 if (signum_exp)
3399 {
3400 /* First see if this is a symbol name. */
3401 oursig = target_signal_from_name (signum_exp);
3402 if (oursig == TARGET_SIGNAL_UNKNOWN)
3403 {
3404 /* No, try numeric. */
3405 oursig =
bb518678 3406 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3407 }
3408 sig_print_info (oursig);
3409 return;
3410 }
3411
3412 printf_filtered ("\n");
3413 /* These ugly casts brought to you by the native VAX compiler. */
3414 for (oursig = TARGET_SIGNAL_FIRST;
3415 (int) oursig < (int) TARGET_SIGNAL_LAST;
3416 oursig = (enum target_signal) ((int) oursig + 1))
3417 {
3418 QUIT;
3419
3420 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3421 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3422 sig_print_info (oursig);
3423 }
3424
3425 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3426}
3427\f
7a292a7a
SS
3428struct inferior_status
3429{
3430 enum target_signal stop_signal;
3431 CORE_ADDR stop_pc;
3432 bpstat stop_bpstat;
3433 int stop_step;
3434 int stop_stack_dummy;
3435 int stopped_by_random_signal;
3436 int trap_expected;
3437 CORE_ADDR step_range_start;
3438 CORE_ADDR step_range_end;
aa0cd9c1 3439 struct frame_id step_frame_id;
5fbbeb29 3440 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3441 CORE_ADDR step_resume_break_address;
3442 int stop_after_trap;
c0236d92 3443 int stop_soon;
72cec141 3444 struct regcache *stop_registers;
7a292a7a
SS
3445
3446 /* These are here because if call_function_by_hand has written some
3447 registers and then decides to call error(), we better not have changed
3448 any registers. */
72cec141 3449 struct regcache *registers;
7a292a7a 3450
101dcfbe
AC
3451 /* A frame unique identifier. */
3452 struct frame_id selected_frame_id;
3453
7a292a7a
SS
3454 int breakpoint_proceeded;
3455 int restore_stack_info;
3456 int proceed_to_finish;
3457};
3458
7a292a7a 3459void
96baa820
JM
3460write_inferior_status_register (struct inferior_status *inf_status, int regno,
3461 LONGEST val)
7a292a7a 3462{
12c266ea 3463 int size = DEPRECATED_REGISTER_RAW_SIZE (regno);
7a292a7a
SS
3464 void *buf = alloca (size);
3465 store_signed_integer (buf, size, val);
0818c12a 3466 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3467}
3468
c906108c
SS
3469/* Save all of the information associated with the inferior<==>gdb
3470 connection. INF_STATUS is a pointer to a "struct inferior_status"
3471 (defined in inferior.h). */
3472
7a292a7a 3473struct inferior_status *
96baa820 3474save_inferior_status (int restore_stack_info)
c906108c 3475{
72cec141 3476 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3477
c906108c
SS
3478 inf_status->stop_signal = stop_signal;
3479 inf_status->stop_pc = stop_pc;
3480 inf_status->stop_step = stop_step;
3481 inf_status->stop_stack_dummy = stop_stack_dummy;
3482 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3483 inf_status->trap_expected = trap_expected;
3484 inf_status->step_range_start = step_range_start;
3485 inf_status->step_range_end = step_range_end;
aa0cd9c1 3486 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3487 inf_status->step_over_calls = step_over_calls;
3488 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3489 inf_status->stop_soon = stop_soon;
c906108c
SS
3490 /* Save original bpstat chain here; replace it with copy of chain.
3491 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3492 hand them back the original chain when restore_inferior_status is
3493 called. */
c906108c
SS
3494 inf_status->stop_bpstat = stop_bpstat;
3495 stop_bpstat = bpstat_copy (stop_bpstat);
3496 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3497 inf_status->restore_stack_info = restore_stack_info;
3498 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3499
72cec141 3500 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3501
72cec141 3502 inf_status->registers = regcache_dup (current_regcache);
c906108c 3503
7a424e99 3504 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
7a292a7a 3505 return inf_status;
c906108c
SS
3506}
3507
c906108c 3508static int
96baa820 3509restore_selected_frame (void *args)
c906108c 3510{
488f131b 3511 struct frame_id *fid = (struct frame_id *) args;
c906108c 3512 struct frame_info *frame;
c906108c 3513
101dcfbe 3514 frame = frame_find_by_id (*fid);
c906108c 3515
aa0cd9c1
AC
3516 /* If inf_status->selected_frame_id is NULL, there was no previously
3517 selected frame. */
101dcfbe 3518 if (frame == NULL)
c906108c
SS
3519 {
3520 warning ("Unable to restore previously selected frame.\n");
3521 return 0;
3522 }
3523
0f7d239c 3524 select_frame (frame);
c906108c
SS
3525
3526 return (1);
3527}
3528
3529void
96baa820 3530restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3531{
3532 stop_signal = inf_status->stop_signal;
3533 stop_pc = inf_status->stop_pc;
3534 stop_step = inf_status->stop_step;
3535 stop_stack_dummy = inf_status->stop_stack_dummy;
3536 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3537 trap_expected = inf_status->trap_expected;
3538 step_range_start = inf_status->step_range_start;
3539 step_range_end = inf_status->step_range_end;
aa0cd9c1 3540 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3541 step_over_calls = inf_status->step_over_calls;
3542 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3543 stop_soon = inf_status->stop_soon;
c906108c
SS
3544 bpstat_clear (&stop_bpstat);
3545 stop_bpstat = inf_status->stop_bpstat;
3546 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3547 proceed_to_finish = inf_status->proceed_to_finish;
3548
72cec141
AC
3549 /* FIXME: Is the restore of stop_registers always needed. */
3550 regcache_xfree (stop_registers);
3551 stop_registers = inf_status->stop_registers;
c906108c
SS
3552
3553 /* The inferior can be gone if the user types "print exit(0)"
3554 (and perhaps other times). */
3555 if (target_has_execution)
72cec141
AC
3556 /* NB: The register write goes through to the target. */
3557 regcache_cpy (current_regcache, inf_status->registers);
3558 regcache_xfree (inf_status->registers);
c906108c 3559
c906108c
SS
3560 /* FIXME: If we are being called after stopping in a function which
3561 is called from gdb, we should not be trying to restore the
3562 selected frame; it just prints a spurious error message (The
3563 message is useful, however, in detecting bugs in gdb (like if gdb
3564 clobbers the stack)). In fact, should we be restoring the
3565 inferior status at all in that case? . */
3566
3567 if (target_has_stack && inf_status->restore_stack_info)
3568 {
c906108c 3569 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3570 walking the stack might encounter a garbage pointer and
3571 error() trying to dereference it. */
488f131b
JB
3572 if (catch_errors
3573 (restore_selected_frame, &inf_status->selected_frame_id,
3574 "Unable to restore previously selected frame:\n",
3575 RETURN_MASK_ERROR) == 0)
c906108c
SS
3576 /* Error in restoring the selected frame. Select the innermost
3577 frame. */
0f7d239c 3578 select_frame (get_current_frame ());
c906108c
SS
3579
3580 }
c906108c 3581
72cec141 3582 xfree (inf_status);
7a292a7a 3583}
c906108c 3584
74b7792f
AC
3585static void
3586do_restore_inferior_status_cleanup (void *sts)
3587{
3588 restore_inferior_status (sts);
3589}
3590
3591struct cleanup *
3592make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3593{
3594 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3595}
3596
c906108c 3597void
96baa820 3598discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3599{
3600 /* See save_inferior_status for info on stop_bpstat. */
3601 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3602 regcache_xfree (inf_status->registers);
3603 regcache_xfree (inf_status->stop_registers);
3604 xfree (inf_status);
7a292a7a
SS
3605}
3606
47932f85
DJ
3607int
3608inferior_has_forked (int pid, int *child_pid)
3609{
3610 struct target_waitstatus last;
3611 ptid_t last_ptid;
3612
3613 get_last_target_status (&last_ptid, &last);
3614
3615 if (last.kind != TARGET_WAITKIND_FORKED)
3616 return 0;
3617
3618 if (ptid_get_pid (last_ptid) != pid)
3619 return 0;
3620
3621 *child_pid = last.value.related_pid;
3622 return 1;
3623}
3624
3625int
3626inferior_has_vforked (int pid, int *child_pid)
3627{
3628 struct target_waitstatus last;
3629 ptid_t last_ptid;
3630
3631 get_last_target_status (&last_ptid, &last);
3632
3633 if (last.kind != TARGET_WAITKIND_VFORKED)
3634 return 0;
3635
3636 if (ptid_get_pid (last_ptid) != pid)
3637 return 0;
3638
3639 *child_pid = last.value.related_pid;
3640 return 1;
3641}
3642
3643int
3644inferior_has_execd (int pid, char **execd_pathname)
3645{
3646 struct target_waitstatus last;
3647 ptid_t last_ptid;
3648
3649 get_last_target_status (&last_ptid, &last);
3650
3651 if (last.kind != TARGET_WAITKIND_EXECD)
3652 return 0;
3653
3654 if (ptid_get_pid (last_ptid) != pid)
3655 return 0;
3656
3657 *execd_pathname = xstrdup (last.value.execd_pathname);
3658 return 1;
3659}
3660
ca6724c1
KB
3661/* Oft used ptids */
3662ptid_t null_ptid;
3663ptid_t minus_one_ptid;
3664
3665/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3666
ca6724c1
KB
3667ptid_t
3668ptid_build (int pid, long lwp, long tid)
3669{
3670 ptid_t ptid;
3671
3672 ptid.pid = pid;
3673 ptid.lwp = lwp;
3674 ptid.tid = tid;
3675 return ptid;
3676}
3677
3678/* Create a ptid from just a pid. */
3679
3680ptid_t
3681pid_to_ptid (int pid)
3682{
3683 return ptid_build (pid, 0, 0);
3684}
3685
3686/* Fetch the pid (process id) component from a ptid. */
3687
3688int
3689ptid_get_pid (ptid_t ptid)
3690{
3691 return ptid.pid;
3692}
3693
3694/* Fetch the lwp (lightweight process) component from a ptid. */
3695
3696long
3697ptid_get_lwp (ptid_t ptid)
3698{
3699 return ptid.lwp;
3700}
3701
3702/* Fetch the tid (thread id) component from a ptid. */
3703
3704long
3705ptid_get_tid (ptid_t ptid)
3706{
3707 return ptid.tid;
3708}
3709
3710/* ptid_equal() is used to test equality of two ptids. */
3711
3712int
3713ptid_equal (ptid_t ptid1, ptid_t ptid2)
3714{
3715 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3716 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3717}
3718
3719/* restore_inferior_ptid() will be used by the cleanup machinery
3720 to restore the inferior_ptid value saved in a call to
3721 save_inferior_ptid(). */
ce696e05
KB
3722
3723static void
3724restore_inferior_ptid (void *arg)
3725{
3726 ptid_t *saved_ptid_ptr = arg;
3727 inferior_ptid = *saved_ptid_ptr;
3728 xfree (arg);
3729}
3730
3731/* Save the value of inferior_ptid so that it may be restored by a
3732 later call to do_cleanups(). Returns the struct cleanup pointer
3733 needed for later doing the cleanup. */
3734
3735struct cleanup *
3736save_inferior_ptid (void)
3737{
3738 ptid_t *saved_ptid_ptr;
3739
3740 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3741 *saved_ptid_ptr = inferior_ptid;
3742 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3743}
c5aa993b 3744\f
488f131b 3745
7a292a7a 3746static void
96baa820 3747build_infrun (void)
7a292a7a 3748{
72cec141 3749 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3750}
c906108c 3751
c906108c 3752void
96baa820 3753_initialize_infrun (void)
c906108c 3754{
52f0bd74
AC
3755 int i;
3756 int numsigs;
c906108c
SS
3757 struct cmd_list_element *c;
3758
046a4708
AC
3759 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3760 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
0f71a2f6 3761
c906108c
SS
3762 add_info ("signals", signals_info,
3763 "What debugger does when program gets various signals.\n\
3764Specify a signal as argument to print info on that signal only.");
3765 add_info_alias ("handle", "signals", 0);
3766
3767 add_com ("handle", class_run, handle_command,
3768 concat ("Specify how to handle a signal.\n\
3769Args are signals and actions to apply to those signals.\n\
3770Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3771from 1-15 are allowed for compatibility with old versions of GDB.\n\
3772Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3773The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3774used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3775\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3776Stop means reenter debugger if this signal happens (implies print).\n\
3777Print means print a message if this signal happens.\n\
3778Pass means let program see this signal; otherwise program doesn't know.\n\
3779Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3780Pass and Stop may be combined.", NULL));
3781 if (xdb_commands)
3782 {
3783 add_com ("lz", class_info, signals_info,
3784 "What debugger does when program gets various signals.\n\
3785Specify a signal as argument to print info on that signal only.");
3786 add_com ("z", class_run, xdb_handle_command,
3787 concat ("Specify how to handle a signal.\n\
3788Args are signals and actions to apply to those signals.\n\
3789Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3790from 1-15 are allowed for compatibility with old versions of GDB.\n\
3791Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3792The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3793used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3794\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3795nopass), \"Q\" (noprint)\n\
3796Stop means reenter debugger if this signal happens (implies print).\n\
3797Print means print a message if this signal happens.\n\
3798Pass means let program see this signal; otherwise program doesn't know.\n\
3799Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3800Pass and Stop may be combined.", NULL));
3801 }
3802
3803 if (!dbx_commands)
488f131b
JB
3804 stop_command =
3805 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c
SS
3806This allows you to set a list of commands to be run each time execution\n\
3807of the program stops.", &cmdlist);
3808
3809 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 3810 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
3811 signal_print = (unsigned char *)
3812 xmalloc (sizeof (signal_print[0]) * numsigs);
3813 signal_program = (unsigned char *)
3814 xmalloc (sizeof (signal_program[0]) * numsigs);
3815 for (i = 0; i < numsigs; i++)
3816 {
3817 signal_stop[i] = 1;
3818 signal_print[i] = 1;
3819 signal_program[i] = 1;
3820 }
3821
3822 /* Signals caused by debugger's own actions
3823 should not be given to the program afterwards. */
3824 signal_program[TARGET_SIGNAL_TRAP] = 0;
3825 signal_program[TARGET_SIGNAL_INT] = 0;
3826
3827 /* Signals that are not errors should not normally enter the debugger. */
3828 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3829 signal_print[TARGET_SIGNAL_ALRM] = 0;
3830 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3831 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3832 signal_stop[TARGET_SIGNAL_PROF] = 0;
3833 signal_print[TARGET_SIGNAL_PROF] = 0;
3834 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3835 signal_print[TARGET_SIGNAL_CHLD] = 0;
3836 signal_stop[TARGET_SIGNAL_IO] = 0;
3837 signal_print[TARGET_SIGNAL_IO] = 0;
3838 signal_stop[TARGET_SIGNAL_POLL] = 0;
3839 signal_print[TARGET_SIGNAL_POLL] = 0;
3840 signal_stop[TARGET_SIGNAL_URG] = 0;
3841 signal_print[TARGET_SIGNAL_URG] = 0;
3842 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3843 signal_print[TARGET_SIGNAL_WINCH] = 0;
3844
cd0fc7c3
SS
3845 /* These signals are used internally by user-level thread
3846 implementations. (See signal(5) on Solaris.) Like the above
3847 signals, a healthy program receives and handles them as part of
3848 its normal operation. */
3849 signal_stop[TARGET_SIGNAL_LWP] = 0;
3850 signal_print[TARGET_SIGNAL_LWP] = 0;
3851 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3852 signal_print[TARGET_SIGNAL_WAITING] = 0;
3853 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3854 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3855
c906108c
SS
3856#ifdef SOLIB_ADD
3857 add_show_from_set
3858 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3859 (char *) &stop_on_solib_events,
3860 "Set stopping for shared library events.\n\
3861If nonzero, gdb will give control to the user when the dynamic linker\n\
3862notifies gdb of shared library events. The most common event of interest\n\
488f131b 3863to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
c906108c
SS
3864#endif
3865
3866 c = add_set_enum_cmd ("follow-fork-mode",
3867 class_run,
488f131b 3868 follow_fork_mode_kind_names, &follow_fork_mode_string,
c906108c
SS
3869 "Set debugger response to a program call of fork \
3870or vfork.\n\
3871A fork or vfork creates a new process. follow-fork-mode can be:\n\
3872 parent - the original process is debugged after a fork\n\
3873 child - the new process is debugged after a fork\n\
ea1dd7bc 3874The unfollowed process will continue to run.\n\
488f131b 3875By default, the debugger will follow the parent process.", &setlist);
c906108c
SS
3876 add_show_from_set (c, &showlist);
3877
488f131b 3878 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
1ed2a135 3879 &scheduler_mode, /* current mode */
c906108c
SS
3880 "Set mode for locking scheduler during execution.\n\
3881off == no locking (threads may preempt at any time)\n\
3882on == full locking (no thread except the current thread may run)\n\
3883step == scheduler locked during every single-step operation.\n\
3884 In this mode, no other thread may run during a step command.\n\
488f131b 3885 Other threads may run while stepping over a function call ('next').", &setlist);
c906108c 3886
9f60d481 3887 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
c906108c 3888 add_show_from_set (c, &showlist);
5fbbeb29
CF
3889
3890 c = add_set_cmd ("step-mode", class_run,
488f131b
JB
3891 var_boolean, (char *) &step_stop_if_no_debug,
3892 "Set mode of the step operation. When set, doing a step over a\n\
5fbbeb29
CF
3893function without debug line information will stop at the first\n\
3894instruction of that function. Otherwise, the function is skipped and\n\
488f131b 3895the step command stops at a different source line.", &setlist);
5fbbeb29 3896 add_show_from_set (c, &showlist);
ca6724c1
KB
3897
3898 /* ptid initializations */
3899 null_ptid = ptid_build (0, 0, 0);
3900 minus_one_ptid = ptid_build (-1, 0, 0);
3901 inferior_ptid = null_ptid;
3902 target_last_wait_ptid = minus_one_ptid;
c906108c 3903}
This page took 0.594579 seconds and 4 git commands to generate.