* signame.c: Include defs.h and param.h.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
bd5635a1
RP
1/* Start (run) and stop the inferior process, for GDB.
2 Copyright (C) 1986, 1987, 1988, 1989, 1991 Free Software Foundation, Inc.
3
4This file is part of GDB.
5
6GDB is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 1, or (at your option)
9any later version.
10
11GDB is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GDB; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20/* Notes on the algorithm used in wait_for_inferior to determine if we
21 just did a subroutine call when stepping. We have the following
22 information at that point:
23
24 Current and previous (just before this step) pc.
25 Current and previous sp.
26 Current and previous start of current function.
27
28 If the start's of the functions don't match, then
29
30 a) We did a subroutine call.
31
32 In this case, the pc will be at the beginning of a function.
33
34 b) We did a subroutine return.
35
36 Otherwise.
37
38 c) We did a longjmp.
39
40 If we did a longjump, we were doing "nexti", since a next would
41 have attempted to skip over the assembly language routine in which
42 the longjmp is coded and would have simply been the equivalent of a
43 continue. I consider this ok behaivior. We'd like one of two
44 things to happen if we are doing a nexti through the longjmp()
45 routine: 1) It behaves as a stepi, or 2) It acts like a continue as
46 above. Given that this is a special case, and that anybody who
47 thinks that the concept of sub calls is meaningful in the context
48 of a longjmp, I'll take either one. Let's see what happens.
49
50 Acts like a subroutine return. I can handle that with no problem
51 at all.
52
53 -->So: If the current and previous beginnings of the current
54 function don't match, *and* the pc is at the start of a function,
55 we've done a subroutine call. If the pc is not at the start of a
56 function, we *didn't* do a subroutine call.
57
58 -->If the beginnings of the current and previous function do match,
59 either:
60
61 a) We just did a recursive call.
62
63 In this case, we would be at the very beginning of a
64 function and 1) it will have a prologue (don't jump to
65 before prologue, or 2) (we assume here that it doesn't have
66 a prologue) there will have been a change in the stack
67 pointer over the last instruction. (Ie. it's got to put
68 the saved pc somewhere. The stack is the usual place. In
69 a recursive call a register is only an option if there's a
70 prologue to do something with it. This is even true on
71 register window machines; the prologue sets up the new
72 window. It might not be true on a register window machine
73 where the call instruction moved the register window
74 itself. Hmmm. One would hope that the stack pointer would
75 also change. If it doesn't, somebody send me a note, and
76 I'll work out a more general theory.
77 bug-gdb@prep.ai.mit.edu). This is true (albeit slipperly
78 so) on all machines I'm aware of:
79
80 m68k: Call changes stack pointer. Regular jumps don't.
81
82 sparc: Recursive calls must have frames and therefor,
83 prologues.
84
85 vax: All calls have frames and hence change the
86 stack pointer.
87
88 b) We did a return from a recursive call. I don't see that we
89 have either the ability or the need to distinguish this
90 from an ordinary jump. The stack frame will be printed
91 when and if the frame pointer changes; if we are in a
92 function without a frame pointer, it's the users own
93 lookout.
94
95 c) We did a jump within a function. We assume that this is
96 true if we didn't do a recursive call.
97
98 d) We are in no-man's land ("I see no symbols here"). We
99 don't worry about this; it will make calls look like simple
100 jumps (and the stack frames will be printed when the frame
101 pointer moves), which is a reasonably non-violent response.
102
103#if 0
104 We skip this; it causes more problems than it's worth.
105#ifdef SUN4_COMPILER_FEATURE
106 We do a special ifdef for the sun 4, forcing it to single step
107 into calls which don't have prologues. This means that we can't
108 nexti over leaf nodes, we can probably next over them (since they
109 won't have debugging symbols, usually), and we can next out of
110 functions returning structures (with a "call .stret4" at the end).
111#endif
112#endif
113*/
114
115
116
117
118
119#include <stdio.h>
120#include <string.h>
121#include "defs.h"
122#include "param.h"
123#include "symtab.h"
124#include "frame.h"
125#include "inferior.h"
126#include "breakpoint.h"
127#include "wait.h"
128#include "gdbcore.h"
129#include "signame.h"
130#include "command.h"
131#include "terminal.h" /* For #ifdef TIOCGPGRP and new_tty */
132#include "target.h"
133
134#include <signal.h>
135
136/* unistd.h is needed to #define X_OK */
137#ifdef USG
138#include <unistd.h>
139#else
140#include <sys/file.h>
141#endif
142
143#ifdef SET_STACK_LIMIT_HUGE
79043f9e
JK
144#include <sys/time.h>
145#include <sys/resource.h>
146
bd5635a1
RP
147extern int original_stack_limit;
148#endif /* SET_STACK_LIMIT_HUGE */
149
bd5635a1
RP
150extern char *getenv ();
151
152extern struct target_ops child_ops; /* In inftarg.c */
153
154/* Copy of inferior_io_terminal when inferior was last started. */
155
156extern char *inferior_thisrun_terminal;
157
158
159/* Sigtramp is a routine that the kernel calls (which then calls the
160 signal handler). On most machines it is a library routine that
161 is linked into the executable.
162
163 This macro, given a program counter value and the name of the
164 function in which that PC resides (which can be null if the
165 name is not known), returns nonzero if the PC and name show
166 that we are in sigtramp.
167
168 On most machines just see if the name is sigtramp (and if we have
169 no name, assume we are not in sigtramp). */
170#if !defined (IN_SIGTRAMP)
171#define IN_SIGTRAMP(pc, name) \
172 name && !strcmp ("_sigtramp", name)
173#endif
174
175/* Tables of how to react to signals; the user sets them. */
176
177static char signal_stop[NSIG];
178static char signal_print[NSIG];
179static char signal_program[NSIG];
180
181/* Nonzero if breakpoints are now inserted in the inferior. */
182/* Nonstatic for initialization during xxx_create_inferior. FIXME. */
183
184/*static*/ int breakpoints_inserted;
185
186/* Function inferior was in as of last step command. */
187
188static struct symbol *step_start_function;
189
190/* Nonzero => address for special breakpoint for resuming stepping. */
191
192static CORE_ADDR step_resume_break_address;
193
194/* Pointer to orig contents of the byte where the special breakpoint is. */
195
196static char step_resume_break_shadow[BREAKPOINT_MAX];
197
198/* Nonzero means the special breakpoint is a duplicate
199 so it has not itself been inserted. */
200
201static int step_resume_break_duplicate;
202
203/* Nonzero if we are expecting a trace trap and should proceed from it. */
204
205static int trap_expected;
206
207/* Nonzero if the next time we try to continue the inferior, it will
208 step one instruction and generate a spurious trace trap.
209 This is used to compensate for a bug in HP-UX. */
210
211static int trap_expected_after_continue;
212
213/* Nonzero means expecting a trace trap
214 and should stop the inferior and return silently when it happens. */
215
216int stop_after_trap;
217
218/* Nonzero means expecting a trap and caller will handle it themselves.
219 It is used after attach, due to attaching to a process;
220 when running in the shell before the child program has been exec'd;
221 and when running some kinds of remote stuff (FIXME?). */
222
223int stop_soon_quietly;
224
225/* Nonzero if pc has been changed by the debugger
226 since the inferior stopped. */
227
228int pc_changed;
229
230/* Nonzero if proceed is being used for a "finish" command or a similar
231 situation when stop_registers should be saved. */
232
233int proceed_to_finish;
234
235/* Save register contents here when about to pop a stack dummy frame,
236 if-and-only-if proceed_to_finish is set.
237 Thus this contains the return value from the called function (assuming
238 values are returned in a register). */
239
240char stop_registers[REGISTER_BYTES];
241
242/* Nonzero if program stopped due to error trying to insert breakpoints. */
243
244static int breakpoints_failed;
245
246/* Nonzero after stop if current stack frame should be printed. */
247
248static int stop_print_frame;
249
250#ifdef NO_SINGLE_STEP
251extern int one_stepped; /* From machine dependent code */
252extern void single_step (); /* Same. */
253#endif /* NO_SINGLE_STEP */
254
255static void insert_step_breakpoint ();
256static void remove_step_breakpoint ();
257/*static*/ void wait_for_inferior ();
258void init_wait_for_inferior ();
259void normal_stop ();
260
a71d17b1
JK
261\f
262/* Things to clean up if we QUIT out of resume (). */
263static void
264resume_cleanups (arg)
265 int arg;
266{
267 normal_stop ();
268}
269
270/* Resume the inferior, but allow a QUIT. This is useful if the user
271 wants to interrupt some lengthy single-stepping operation
272 (for child processes, the SIGINT goes to the inferior, and so
273 we get a SIGINT random_signal, but for remote debugging and perhaps
274 other targets, that's not true).
275
276 STEP nonzero if we should step (zero to continue instead).
277 SIG is the signal to give the inferior (zero for none). */
278static void
279resume (step, sig)
280 int step;
281 int sig;
282{
283 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
284 QUIT;
285 target_resume (step, sig);
286 discard_cleanups (old_cleanups);
287}
288
bd5635a1
RP
289\f
290/* Clear out all variables saying what to do when inferior is continued.
291 First do this, then set the ones you want, then call `proceed'. */
292
293void
294clear_proceed_status ()
295{
296 trap_expected = 0;
297 step_range_start = 0;
298 step_range_end = 0;
299 step_frame_address = 0;
300 step_over_calls = -1;
301 step_resume_break_address = 0;
302 stop_after_trap = 0;
303 stop_soon_quietly = 0;
304 proceed_to_finish = 0;
305 breakpoint_proceeded = 1; /* We're about to proceed... */
306
307 /* Discard any remaining commands or status from previous stop. */
308 bpstat_clear (&stop_bpstat);
309}
310
311/* Basic routine for continuing the program in various fashions.
312
313 ADDR is the address to resume at, or -1 for resume where stopped.
314 SIGGNAL is the signal to give it, or 0 for none,
315 or -1 for act according to how it stopped.
316 STEP is nonzero if should trap after one instruction.
317 -1 means return after that and print nothing.
318 You should probably set various step_... variables
319 before calling here, if you are stepping.
320
321 You should call clear_proceed_status before calling proceed. */
322
323void
324proceed (addr, siggnal, step)
325 CORE_ADDR addr;
326 int siggnal;
327 int step;
328{
329 int oneproc = 0;
330
331 if (step > 0)
332 step_start_function = find_pc_function (read_pc ());
333 if (step < 0)
334 stop_after_trap = 1;
335
336 if (addr == -1)
337 {
338 /* If there is a breakpoint at the address we will resume at,
339 step one instruction before inserting breakpoints
340 so that we do not stop right away. */
341
342 if (!pc_changed && breakpoint_here_p (read_pc ()))
343 oneproc = 1;
344 }
345 else
346 {
347 write_register (PC_REGNUM, addr);
348#ifdef NPC_REGNUM
349 write_register (NPC_REGNUM, addr + 4);
350#ifdef NNPC_REGNUM
351 write_register (NNPC_REGNUM, addr + 8);
352#endif
353#endif
354 }
355
356 if (trap_expected_after_continue)
357 {
358 /* If (step == 0), a trap will be automatically generated after
359 the first instruction is executed. Force step one
360 instruction to clear this condition. This should not occur
361 if step is nonzero, but it is harmless in that case. */
362 oneproc = 1;
363 trap_expected_after_continue = 0;
364 }
365
366 if (oneproc)
367 /* We will get a trace trap after one instruction.
368 Continue it automatically and insert breakpoints then. */
369 trap_expected = 1;
370 else
371 {
372 int temp = insert_breakpoints ();
373 if (temp)
374 {
375 print_sys_errmsg ("ptrace", temp);
376 error ("Cannot insert breakpoints.\n\
377The same program may be running in another process.");
378 }
379 breakpoints_inserted = 1;
380 }
381
382 /* Install inferior's terminal modes. */
383 target_terminal_inferior ();
384
385 if (siggnal >= 0)
386 stop_signal = siggnal;
387 /* If this signal should not be seen by program,
388 give it zero. Used for debugging signals. */
389 else if (stop_signal < NSIG && !signal_program[stop_signal])
390 stop_signal= 0;
391
392 /* Handle any optimized stores to the inferior NOW... */
393#ifdef DO_DEFERRED_STORES
394 DO_DEFERRED_STORES;
395#endif
396
397 /* Resume inferior. */
a71d17b1 398 resume (oneproc || step || bpstat_should_step (), stop_signal);
bd5635a1
RP
399
400 /* Wait for it to stop (if not standalone)
401 and in any case decode why it stopped, and act accordingly. */
402
403 wait_for_inferior ();
404 normal_stop ();
405}
406
407#if 0
408/* This might be useful (not sure), but isn't currently used. See also
409 write_pc(). */
410/* Writing the inferior pc as a register calls this function
411 to inform infrun that the pc has been set in the debugger. */
412
413void
414writing_pc (val)
415 CORE_ADDR val;
416{
417 stop_pc = val;
418 pc_changed = 1;
419}
420#endif
421
422/* Record the pc and sp of the program the last time it stopped.
423 These are just used internally by wait_for_inferior, but need
424 to be preserved over calls to it and cleared when the inferior
425 is started. */
426static CORE_ADDR prev_pc;
427static CORE_ADDR prev_sp;
428static CORE_ADDR prev_func_start;
429static char *prev_func_name;
430
a71d17b1 431\f
bd5635a1
RP
432/* Start an inferior Unix child process and sets inferior_pid to its pid.
433 EXEC_FILE is the file to run.
434 ALLARGS is a string containing the arguments to the program.
435 ENV is the environment vector to pass. Errors reported with error(). */
436
437#ifndef SHELL_FILE
438#define SHELL_FILE "/bin/sh"
439#endif
440
441void
442child_create_inferior (exec_file, allargs, env)
443 char *exec_file;
444 char *allargs;
445 char **env;
446{
447 int pid;
448 char *shell_command;
449 extern int sys_nerr;
450 extern char *sys_errlist[];
451 char *shell_file;
452 static char default_shell_file[] = SHELL_FILE;
453 int len;
454 int pending_execs;
455 /* Set debug_fork then attach to the child while it sleeps, to debug. */
456 static int debug_fork = 0;
457 /* This is set to the result of setpgrp, which if vforked, will be visible
458 to you in the parent process. It's only used by humans for debugging. */
459 static int debug_setpgrp = 657473;
460
461 /* The user might want tilde-expansion, and in general probably wants
462 the program to behave the same way as if run from
463 his/her favorite shell. So we let the shell run it for us.
464 FIXME, this should probably search the local environment (as
465 modified by the setenv command), not the env gdb inherited. */
466 shell_file = getenv ("SHELL");
467 if (shell_file == NULL)
468 shell_file = default_shell_file;
469
470 len = 5 + strlen (exec_file) + 1 + strlen (allargs) + 1 + /*slop*/ 10;
471 /* If desired, concat something onto the front of ALLARGS.
472 SHELL_COMMAND is the result. */
473#ifdef SHELL_COMMAND_CONCAT
474 shell_command = (char *) alloca (strlen (SHELL_COMMAND_CONCAT) + len);
475 strcpy (shell_command, SHELL_COMMAND_CONCAT);
476#else
477 shell_command = (char *) alloca (len);
478 shell_command[0] = '\0';
479#endif
480 strcat (shell_command, "exec ");
481 strcat (shell_command, exec_file);
482 strcat (shell_command, " ");
483 strcat (shell_command, allargs);
484
485 /* exec is said to fail if the executable is open. */
486 close_exec_file ();
487
488#if defined(USG) && !defined(HAVE_VFORK)
489 pid = fork ();
490#else
491 if (debug_fork)
492 pid = fork ();
493 else
494 pid = vfork ();
495#endif
496
497 if (pid < 0)
498 perror_with_name ("vfork");
499
500 if (pid == 0)
501 {
502 if (debug_fork)
503 sleep (debug_fork);
504
505#ifdef TIOCGPGRP
506 /* Run inferior in a separate process group. */
507 debug_setpgrp = setpgrp (getpid (), getpid ());
508 if (0 != debug_setpgrp)
509 perror("setpgrp failed in child");
510#endif /* TIOCGPGRP */
511
512#ifdef SET_STACK_LIMIT_HUGE
513 /* Reset the stack limit back to what it was. */
514 {
515 struct rlimit rlim;
516
517 getrlimit (RLIMIT_STACK, &rlim);
518 rlim.rlim_cur = original_stack_limit;
519 setrlimit (RLIMIT_STACK, &rlim);
520 }
521#endif /* SET_STACK_LIMIT_HUGE */
522
523 /* Tell the terminal handling subsystem what tty we plan to run on;
524 it will now switch to that one if non-null. */
525
526 new_tty (inferior_io_terminal);
527
528 /* Changing the signal handlers for the inferior after
529 a vfork can also change them for the superior, so we don't mess
530 with signals here. See comments in
531 initialize_signals for how we get the right signal handlers
532 for the inferior. */
533
534 call_ptrace (0, 0, 0, 0); /* "Trace me, Dr. Memory!" */
535 execle (shell_file, shell_file, "-c", shell_command, (char *)0, env);
536
537 fprintf (stderr, "Cannot exec %s: %s.\n", shell_file,
538 errno < sys_nerr ? sys_errlist[errno] : "unknown error");
539 fflush (stderr);
540 _exit (0177);
541 }
542
543 /* Now that we have a child process, make it our target. */
544 push_target (&child_ops);
545
546#ifdef CREATE_INFERIOR_HOOK
547 CREATE_INFERIOR_HOOK (pid);
548#endif
549
550/* The process was started by the fork that created it,
551 but it will have stopped one instruction after execing the shell.
552 Here we must get it up to actual execution of the real program. */
553
554 inferior_pid = pid; /* Needed for wait_for_inferior stuff below */
555
556 clear_proceed_status ();
557
558#if defined (START_INFERIOR_HOOK)
559 START_INFERIOR_HOOK ();
560#endif
561
562 /* We will get a trace trap after one instruction.
563 Continue it automatically. Eventually (after shell does an exec)
564 it will get another trace trap. Then insert breakpoints and continue. */
565
566#ifdef START_INFERIOR_TRAPS_EXPECTED
567 pending_execs = START_INFERIOR_TRAPS_EXPECTED;
568#else
569 pending_execs = 2;
570#endif
571
572 init_wait_for_inferior ();
573
574 /* Set up the "saved terminal modes" of the inferior
575 based on what modes we are starting it with. */
576 target_terminal_init ();
577
578 /* Install inferior's terminal modes. */
579 target_terminal_inferior ();
580
581 while (1)
582 {
583 stop_soon_quietly = 1; /* Make wait_for_inferior be quiet */
584 wait_for_inferior ();
585 if (stop_signal != SIGTRAP)
586 {
587 /* Let shell child handle its own signals in its own way */
588 /* FIXME, what if child has exit()ed? Must exit loop somehow */
a71d17b1 589 resume (0, stop_signal);
bd5635a1
RP
590 }
591 else
592 {
593 /* We handle SIGTRAP, however; it means child did an exec. */
594 if (0 == --pending_execs)
595 break;
a71d17b1 596 resume (0, 0); /* Just make it go on */
bd5635a1
RP
597 }
598 }
599 stop_soon_quietly = 0;
600
601 /* Should this perhaps just be a "proceed" call? FIXME */
602 insert_step_breakpoint ();
603 breakpoints_failed = insert_breakpoints ();
604 if (!breakpoints_failed)
605 {
606 breakpoints_inserted = 1;
607 target_terminal_inferior();
608 /* Start the child program going on its first instruction, single-
609 stepping if we need to. */
a71d17b1 610 resume (bpstat_should_step (), 0);
bd5635a1
RP
611 wait_for_inferior ();
612 normal_stop ();
613 }
614}
615
616/* Start remote-debugging of a machine over a serial link. */
617
618void
619start_remote ()
620{
621 init_wait_for_inferior ();
622 clear_proceed_status ();
623 stop_soon_quietly = 1;
624 trap_expected = 0;
98885d76
JK
625 wait_for_inferior ();
626 normal_stop ();
bd5635a1
RP
627}
628
629/* Initialize static vars when a new inferior begins. */
630
631void
632init_wait_for_inferior ()
633{
634 /* These are meaningless until the first time through wait_for_inferior. */
635 prev_pc = 0;
636 prev_sp = 0;
637 prev_func_start = 0;
638 prev_func_name = NULL;
639
640 trap_expected_after_continue = 0;
641 breakpoints_inserted = 0;
642 mark_breakpoints_out ();
643 stop_signal = 0; /* Don't confuse first call to proceed(). */
644}
645
646
647/* Attach to process PID, then initialize for debugging it
648 and wait for the trace-trap that results from attaching. */
649
650void
651child_attach (args, from_tty)
652 char *args;
653 int from_tty;
654{
655 char *exec_file;
656 int pid;
657
658 dont_repeat();
659
660 if (!args)
661 error_no_arg ("process-id to attach");
662
663#ifndef ATTACH_DETACH
664 error ("Can't attach to a process on this machine.");
665#else
666 pid = atoi (args);
667
668 if (target_has_execution)
669 {
670 if (query ("A program is being debugged already. Kill it? "))
671 target_kill ((char *)0, from_tty);
672 else
673 error ("Inferior not killed.");
674 }
675
676 exec_file = (char *) get_exec_file (1);
677
678 if (from_tty)
679 {
680 printf ("Attaching program: %s pid %d\n",
681 exec_file, pid);
682 fflush (stdout);
683 }
684
685 attach (pid);
686 inferior_pid = pid;
687 push_target (&child_ops);
688
689 mark_breakpoints_out ();
690 target_terminal_init ();
691 clear_proceed_status ();
692 stop_soon_quietly = 1;
693 /*proceed (-1, 0, -2);*/
694 target_terminal_inferior ();
695 wait_for_inferior ();
696 normal_stop ();
697#endif /* ATTACH_DETACH */
698}
699\f
700/* Wait for control to return from inferior to debugger.
701 If inferior gets a signal, we may decide to start it up again
702 instead of returning. That is why there is a loop in this function.
703 When this function actually returns it means the inferior
704 should be left stopped and GDB should read more commands. */
705
706void
707wait_for_inferior ()
708{
709 WAITTYPE w;
710 int another_trap;
711 int random_signal;
712 CORE_ADDR stop_sp;
713 CORE_ADDR stop_func_start;
714 char *stop_func_name;
715 CORE_ADDR prologue_pc;
716 int stop_step_resume_break;
717 struct symtab_and_line sal;
718 int remove_breakpoints_on_following_step = 0;
719
720#if 0
721 /* This no longer works now that read_register is lazy;
722 it might try to ptrace when the process is not stopped. */
723 prev_pc = read_pc ();
724 (void) find_pc_partial_function (prev_pc, &prev_func_name,
725 &prev_func_start);
726 prev_func_start += FUNCTION_START_OFFSET;
727 prev_sp = read_register (SP_REGNUM);
728#endif /* 0 */
729
730 while (1)
731 {
732 /* Clean up saved state that will become invalid. */
733 pc_changed = 0;
734 flush_cached_frames ();
735 registers_changed ();
736
737 target_wait (&w);
738
739 /* See if the process still exists; clean up if it doesn't. */
740 if (WIFEXITED (w))
741 {
742 target_terminal_ours (); /* Must do this before mourn anyway */
743 if (WEXITSTATUS (w))
744 printf ("\nProgram exited with code 0%o.\n",
745 (unsigned int)WEXITSTATUS (w));
746 else
747 if (!batch_mode())
748 printf ("\nProgram exited normally.\n");
749 fflush (stdout);
750 target_mourn_inferior ();
751#ifdef NO_SINGLE_STEP
752 one_stepped = 0;
753#endif
754 stop_print_frame = 0;
755 break;
756 }
757 else if (!WIFSTOPPED (w))
758 {
759 stop_print_frame = 0;
760 stop_signal = WTERMSIG (w);
761 target_terminal_ours (); /* Must do this before mourn anyway */
762 target_kill ((char *)0, 0); /* kill mourns as well */
763#ifdef PRINT_RANDOM_SIGNAL
764 printf ("\nProgram terminated: ");
765 PRINT_RANDOM_SIGNAL (stop_signal);
766#else
767 printf ("\nProgram terminated with signal %d, %s\n",
768 stop_signal,
769 stop_signal < NSIG
770 ? sys_siglist[stop_signal]
771 : "(undocumented)");
772#endif
773 printf ("The inferior process no longer exists.\n");
774 fflush (stdout);
775#ifdef NO_SINGLE_STEP
776 one_stepped = 0;
777#endif
778 break;
779 }
780
781#ifdef NO_SINGLE_STEP
782 if (one_stepped)
783 single_step (0); /* This actually cleans up the ss */
784#endif /* NO_SINGLE_STEP */
785
786 stop_pc = read_pc ();
787 set_current_frame ( create_new_frame (read_register (FP_REGNUM),
788 read_pc ()));
789
790 stop_frame_address = FRAME_FP (get_current_frame ());
791 stop_sp = read_register (SP_REGNUM);
792 stop_func_start = 0;
793 stop_func_name = 0;
794 /* Don't care about return value; stop_func_start and stop_func_name
795 will both be 0 if it doesn't work. */
796 (void) find_pc_partial_function (stop_pc, &stop_func_name,
797 &stop_func_start);
798 stop_func_start += FUNCTION_START_OFFSET;
799 another_trap = 0;
800 bpstat_clear (&stop_bpstat);
801 stop_step = 0;
802 stop_stack_dummy = 0;
803 stop_print_frame = 1;
804 stop_step_resume_break = 0;
805 random_signal = 0;
806 stopped_by_random_signal = 0;
807 breakpoints_failed = 0;
808
809 /* Look at the cause of the stop, and decide what to do.
810 The alternatives are:
811 1) break; to really stop and return to the debugger,
812 2) drop through to start up again
813 (set another_trap to 1 to single step once)
814 3) set random_signal to 1, and the decision between 1 and 2
815 will be made according to the signal handling tables. */
816
817 stop_signal = WSTOPSIG (w);
818
819 /* First, distinguish signals caused by the debugger from signals
820 that have to do with the program's own actions.
821 Note that breakpoint insns may cause SIGTRAP or SIGILL
822 or SIGEMT, depending on the operating system version.
823 Here we detect when a SIGILL or SIGEMT is really a breakpoint
824 and change it to SIGTRAP. */
825
826 if (stop_signal == SIGTRAP
827 || (breakpoints_inserted &&
828 (stop_signal == SIGILL
829 || stop_signal == SIGEMT))
830 || stop_soon_quietly)
831 {
832 if (stop_signal == SIGTRAP && stop_after_trap)
833 {
834 stop_print_frame = 0;
835 break;
836 }
837 if (stop_soon_quietly)
838 break;
839
840 /* Don't even think about breakpoints
841 if just proceeded over a breakpoint.
842
843 However, if we are trying to proceed over a breakpoint
844 and end up in sigtramp, then step_resume_break_address
845 will be set and we should check whether we've hit the
846 step breakpoint. */
847 if (stop_signal == SIGTRAP && trap_expected
848 && step_resume_break_address == NULL)
849 bpstat_clear (&stop_bpstat);
850 else
851 {
852 /* See if there is a breakpoint at the current PC. */
853#if DECR_PC_AFTER_BREAK
854 /* Notice the case of stepping through a jump
855 that leads just after a breakpoint.
856 Don't confuse that with hitting the breakpoint.
857 What we check for is that 1) stepping is going on
858 and 2) the pc before the last insn does not match
859 the address of the breakpoint before the current pc. */
860 if (!(prev_pc != stop_pc - DECR_PC_AFTER_BREAK
861 && step_range_end && !step_resume_break_address))
862#endif /* DECR_PC_AFTER_BREAK not zero */
863 {
864 /* See if we stopped at the special breakpoint for
865 stepping over a subroutine call. If both are zero,
866 this wasn't the reason for the stop. */
867 if (stop_pc - DECR_PC_AFTER_BREAK
868 == step_resume_break_address
869 && step_resume_break_address)
870 {
871 stop_step_resume_break = 1;
872 if (DECR_PC_AFTER_BREAK)
873 {
874 stop_pc -= DECR_PC_AFTER_BREAK;
875 write_register (PC_REGNUM, stop_pc);
876 pc_changed = 0;
877 }
878 }
879 else
880 {
881 stop_bpstat =
882 bpstat_stop_status (&stop_pc, stop_frame_address);
883 /* Following in case break condition called a
884 function. */
885 stop_print_frame = 1;
886 }
887 }
888 }
889
890 if (stop_signal == SIGTRAP)
891 random_signal
892 = !(bpstat_explains_signal (stop_bpstat)
893 || trap_expected
894 || stop_step_resume_break
895 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
896 || (step_range_end && !step_resume_break_address));
897 else
898 {
899 random_signal
900 = !(bpstat_explains_signal (stop_bpstat)
901 || stop_step_resume_break
902 /* End of a stack dummy. Some systems (e.g. Sony
903 news) give another signal besides SIGTRAP,
904 so check here as well as above. */
905 || (stop_sp INNER_THAN stop_pc
906 && stop_pc INNER_THAN stop_frame_address)
907 );
908 if (!random_signal)
909 stop_signal = SIGTRAP;
910 }
911 }
912 else
913 random_signal = 1;
914
915 /* For the program's own signals, act according to
916 the signal handling tables. */
917
918 if (random_signal)
919 {
920 /* Signal not for debugging purposes. */
921 int printed = 0;
922
923 stopped_by_random_signal = 1;
924
925 if (stop_signal >= NSIG
926 || signal_print[stop_signal])
927 {
928 printed = 1;
929 target_terminal_ours_for_output ();
930#ifdef PRINT_RANDOM_SIGNAL
931 PRINT_RANDOM_SIGNAL (stop_signal);
932#else
933 printf ("\nProgram received signal %d, %s\n",
934 stop_signal,
935 stop_signal < NSIG
936 ? sys_siglist[stop_signal]
937 : "(undocumented)");
938#endif /* PRINT_RANDOM_SIGNAL */
939 fflush (stdout);
940 }
941 if (stop_signal >= NSIG
942 || signal_stop[stop_signal])
943 break;
944 /* If not going to stop, give terminal back
945 if we took it away. */
946 else if (printed)
947 target_terminal_inferior ();
948 }
949
950 /* Handle cases caused by hitting a breakpoint. */
951
952 if (!random_signal
953 && (bpstat_explains_signal (stop_bpstat) || stop_step_resume_break))
954 {
955 /* Does a breakpoint want us to stop? */
956 if (bpstat_stop (stop_bpstat))
957 {
958 stop_print_frame = bpstat_should_print (stop_bpstat);
959 break;
960 }
961 /* But if we have hit the step-resumption breakpoint,
962 remove it. It has done its job getting us here.
963 The sp test is to make sure that we don't get hung
964 up in recursive calls in functions without frame
965 pointers. If the stack pointer isn't outside of
966 where the breakpoint was set (within a routine to be
967 stepped over), we're in the middle of a recursive
968 call. Not true for reg window machines (sparc)
969 because the must change frames to call things and
970 the stack pointer doesn't have to change if it
971 the bp was set in a routine without a frame (pc can
972 be stored in some other window).
973
974 The removal of the sp test is to allow calls to
975 alloca. Nasty things were happening. Oh, well,
976 gdb can only handle one level deep of lack of
977 frame pointer. */
978 if (stop_step_resume_break
979 && (step_frame_address == 0
980 || (stop_frame_address == step_frame_address)))
981 {
982 remove_step_breakpoint ();
983 step_resume_break_address = 0;
984
985 /* If were waiting for a trap, hitting the step_resume_break
986 doesn't count as getting it. */
987 if (trap_expected)
988 another_trap = 1;
989 }
990 /* Otherwise, must remove breakpoints and single-step
991 to get us past the one we hit. */
992 else
993 {
994 remove_breakpoints ();
995 remove_step_breakpoint ();
996 breakpoints_inserted = 0;
997 another_trap = 1;
998 }
999
1000 /* We come here if we hit a breakpoint but should not
1001 stop for it. Possibly we also were stepping
1002 and should stop for that. So fall through and
1003 test for stepping. But, if not stepping,
1004 do not stop. */
1005 }
1006
1007 /* If this is the breakpoint at the end of a stack dummy,
1008 just stop silently. */
1009 if (PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address))
1010 {
1011 stop_print_frame = 0;
1012 stop_stack_dummy = 1;
1013#ifdef HP_OS_BUG
1014 trap_expected_after_continue = 1;
1015#endif
1016 break;
1017 }
1018
1019 if (step_resume_break_address)
1020 /* Having a step-resume breakpoint overrides anything
1021 else having to do with stepping commands until
1022 that breakpoint is reached. */
1023 ;
1024 /* If stepping through a line, keep going if still within it. */
1025 else if (!random_signal
1026 && step_range_end
1027 && stop_pc >= step_range_start
1028 && stop_pc < step_range_end
1029 /* The step range might include the start of the
1030 function, so if we are at the start of the
1031 step range and either the stack or frame pointers
1032 just changed, we've stepped outside */
1033 && !(stop_pc == step_range_start
1034 && stop_frame_address
1035 && (stop_sp INNER_THAN prev_sp
1036 || stop_frame_address != step_frame_address)))
1037 {
1038#if 0
1039 /* When "next"ing through a function,
1040 This causes an extra stop at the end.
1041 Is there any reason for this?
1042 It's confusing to the user. */
1043 /* Don't step through the return from a function
1044 unless that is the first instruction stepped through. */
1045 if (ABOUT_TO_RETURN (stop_pc))
1046 {
1047 stop_step = 1;
1048 break;
1049 }
1050#endif
1051 }
1052
1053 /* We stepped out of the stepping range. See if that was due
1054 to a subroutine call that we should proceed to the end of. */
1055 else if (!random_signal && step_range_end)
1056 {
1057 if (stop_func_start)
1058 {
1059 prologue_pc = stop_func_start;
1060 SKIP_PROLOGUE (prologue_pc);
1061 }
1062
1063 /* Did we just take a signal? */
1064 if (IN_SIGTRAMP (stop_pc, stop_func_name)
1065 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1066 {
1067 /* This code is needed at least in the following case:
1068 The user types "next" and then a signal arrives (before
1069 the "next" is done). */
1070 /* We've just taken a signal; go until we are back to
1071 the point where we took it and one more. */
1072 step_resume_break_address = prev_pc;
1073 step_resume_break_duplicate =
1074 breakpoint_here_p (step_resume_break_address);
1075 if (breakpoints_inserted)
1076 insert_step_breakpoint ();
1077 /* Make sure that the stepping range gets us past
1078 that instruction. */
1079 if (step_range_end == 1)
1080 step_range_end = (step_range_start = prev_pc) + 1;
1081 remove_breakpoints_on_following_step = 1;
1082 }
1083
1084 /* ==> See comments at top of file on this algorithm. <==*/
1085
1086 else if (stop_pc == stop_func_start
1087 && (stop_func_start != prev_func_start
1088 || prologue_pc != stop_func_start
1089 || stop_sp != prev_sp))
1090 {
1091 /* It's a subroutine call */
1092 if (step_over_calls > 0
1093 || (step_over_calls && find_pc_function (stop_pc) == 0))
1094 {
1095 /* A subroutine call has happened. */
1096 /* Set a special breakpoint after the return */
1097 step_resume_break_address =
1098 ADDR_BITS_REMOVE
1099 (SAVED_PC_AFTER_CALL (get_current_frame ()));
1100 step_resume_break_duplicate
1101 = breakpoint_here_p (step_resume_break_address);
1102 if (breakpoints_inserted)
1103 insert_step_breakpoint ();
1104 }
1105 /* Subroutine call with source code we should not step over.
1106 Do step to the first line of code in it. */
1107 else if (step_over_calls)
1108 {
1109 SKIP_PROLOGUE (stop_func_start);
1110 sal = find_pc_line (stop_func_start, 0);
1111 /* Use the step_resume_break to step until
1112 the end of the prologue, even if that involves jumps
1113 (as it seems to on the vax under 4.2). */
1114 /* If the prologue ends in the middle of a source line,
1115 continue to the end of that source line.
1116 Otherwise, just go to end of prologue. */
1117#ifdef PROLOGUE_FIRSTLINE_OVERLAP
1118 /* no, don't either. It skips any code that's
1119 legitimately on the first line. */
1120#else
1121 if (sal.end && sal.pc != stop_func_start)
1122 stop_func_start = sal.end;
1123#endif
1124
1125 if (stop_func_start == stop_pc)
1126 {
1127 /* We are already there: stop now. */
1128 stop_step = 1;
1129 break;
1130 }
1131 else
1132 /* Put the step-breakpoint there and go until there. */
1133 {
1134 step_resume_break_address = stop_func_start;
1135
1136 step_resume_break_duplicate
1137 = breakpoint_here_p (step_resume_break_address);
1138 if (breakpoints_inserted)
1139 insert_step_breakpoint ();
1140 /* Do not specify what the fp should be when we stop
1141 since on some machines the prologue
1142 is where the new fp value is established. */
1143 step_frame_address = 0;
1144 /* And make sure stepping stops right away then. */
1145 step_range_end = step_range_start;
1146 }
1147 }
1148 else
1149 {
1150 /* We get here only if step_over_calls is 0 and we
1151 just stepped into a subroutine. I presume
1152 that step_over_calls is only 0 when we're
1153 supposed to be stepping at the assembly
1154 language level.*/
1155 stop_step = 1;
1156 break;
1157 }
1158 }
1159 /* No subroutince call; stop now. */
1160 else
1161 {
1162 stop_step = 1;
1163 break;
1164 }
1165 }
1166
1167 else if (trap_expected
1168 && IN_SIGTRAMP (stop_pc, stop_func_name)
1169 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1170 {
1171 /* What has happened here is that we have just stepped the inferior
1172 with a signal (because it is a signal which shouldn't make
1173 us stop), thus stepping into sigtramp.
1174
1175 So we need to set a step_resume_break_address breakpoint
1176 and continue until we hit it, and then step. */
1177 step_resume_break_address = prev_pc;
1178 /* Always 1, I think, but it's probably easier to have
1179 the step_resume_break as usual rather than trying to
1180 re-use the breakpoint which is already there. */
1181 step_resume_break_duplicate =
1182 breakpoint_here_p (step_resume_break_address);
1183 if (breakpoints_inserted)
1184 insert_step_breakpoint ();
1185 remove_breakpoints_on_following_step = 1;
1186 another_trap = 1;
1187 }
1188
1189 /* Save the pc before execution, to compare with pc after stop. */
1190 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
1191 prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
1192 BREAK is defined, the
1193 original pc would not have
1194 been at the start of a
1195 function. */
1196 prev_func_name = stop_func_name;
1197 prev_sp = stop_sp;
1198
1199 /* If we did not do break;, it means we should keep
1200 running the inferior and not return to debugger. */
1201
1202 if (trap_expected && stop_signal != SIGTRAP)
1203 {
1204 /* We took a signal (which we are supposed to pass through to
1205 the inferior, else we'd have done a break above) and we
1206 haven't yet gotten our trap. Simply continue. */
a71d17b1 1207 resume ((step_range_end && !step_resume_break_address)
bd5635a1
RP
1208 || (trap_expected && !step_resume_break_address)
1209 || bpstat_should_step (),
1210 stop_signal);
1211 }
1212 else
1213 {
1214 /* Either the trap was not expected, but we are continuing
1215 anyway (the user asked that this signal be passed to the
1216 child)
1217 -- or --
1218 The signal was SIGTRAP, e.g. it was our signal, but we
1219 decided we should resume from it.
1220
1221 We're going to run this baby now!
1222
1223 Insert breakpoints now, unless we are trying
1224 to one-proceed past a breakpoint. */
1225 /* If we've just finished a special step resume and we don't
1226 want to hit a breakpoint, pull em out. */
1227 if (!step_resume_break_address &&
1228 remove_breakpoints_on_following_step)
1229 {
1230 remove_breakpoints_on_following_step = 0;
1231 remove_breakpoints ();
1232 breakpoints_inserted = 0;
1233 }
1234 else if (!breakpoints_inserted &&
1235 (step_resume_break_address != NULL || !another_trap))
1236 {
1237 insert_step_breakpoint ();
1238 breakpoints_failed = insert_breakpoints ();
1239 if (breakpoints_failed)
1240 break;
1241 breakpoints_inserted = 1;
1242 }
1243
1244 trap_expected = another_trap;
1245
1246 if (stop_signal == SIGTRAP)
1247 stop_signal = 0;
1248
1249#ifdef SHIFT_INST_REGS
1250 /* I'm not sure when this following segment applies. I do know, now,
1251 that we shouldn't rewrite the regs when we were stopped by a
1252 random signal from the inferior process. */
1253
1254 if (!stop_breakpoint && (stop_signal != SIGCLD)
1255 && !stopped_by_random_signal)
1256 {
1257 CORE_ADDR pc_contents = read_register (PC_REGNUM);
1258 CORE_ADDR npc_contents = read_register (NPC_REGNUM);
1259 if (pc_contents != npc_contents)
1260 {
1261 write_register (NNPC_REGNUM, npc_contents);
1262 write_register (NPC_REGNUM, pc_contents);
1263 }
1264 }
1265#endif /* SHIFT_INST_REGS */
1266
a71d17b1 1267 resume ((step_range_end && !step_resume_break_address)
bd5635a1
RP
1268 || (trap_expected && !step_resume_break_address)
1269 || bpstat_should_step (),
1270 stop_signal);
1271 }
1272 }
1273 if (target_has_execution)
1274 {
1275 /* Assuming the inferior still exists, set these up for next
1276 time, just like we did above if we didn't break out of the
1277 loop. */
1278 prev_pc = read_pc ();
1279 prev_func_start = stop_func_start;
1280 prev_func_name = stop_func_name;
1281 prev_sp = stop_sp;
1282 }
1283}
1284\f
1285/* Here to return control to GDB when the inferior stops for real.
1286 Print appropriate messages, remove breakpoints, give terminal our modes.
1287
1288 STOP_PRINT_FRAME nonzero means print the executing frame
1289 (pc, function, args, file, line number and line text).
1290 BREAKPOINTS_FAILED nonzero means stop was due to error
1291 attempting to insert breakpoints. */
1292
1293void
1294normal_stop ()
1295{
1296 /* Make sure that the current_frame's pc is correct. This
1297 is a correction for setting up the frame info before doing
1298 DECR_PC_AFTER_BREAK */
1299 if (target_has_execution)
1300 (get_current_frame ())->pc = read_pc ();
1301
1302 if (breakpoints_failed)
1303 {
1304 target_terminal_ours_for_output ();
1305 print_sys_errmsg ("ptrace", breakpoints_failed);
1306 printf ("Stopped; cannot insert breakpoints.\n\
1307The same program may be running in another process.\n");
1308 }
1309
1310 if (target_has_execution)
1311 remove_step_breakpoint ();
1312
1313 if (target_has_execution && breakpoints_inserted)
1314 if (remove_breakpoints ())
1315 {
1316 target_terminal_ours_for_output ();
1317 printf ("Cannot remove breakpoints because program is no longer writable.\n\
1318It might be running in another process.\n\
1319Further execution is probably impossible.\n");
1320 }
1321
1322 breakpoints_inserted = 0;
1323
1324 /* Delete the breakpoint we stopped at, if it wants to be deleted.
1325 Delete any breakpoint that is to be deleted at the next stop. */
1326
1327 breakpoint_auto_delete (stop_bpstat);
1328
1329 /* If an auto-display called a function and that got a signal,
1330 delete that auto-display to avoid an infinite recursion. */
1331
1332 if (stopped_by_random_signal)
1333 disable_current_display ();
1334
1335 if (step_multi && stop_step)
1336 return;
1337
1338 target_terminal_ours ();
1339
1340 if (!target_has_stack)
1341 return;
1342
1343 /* Select innermost stack frame except on return from a stack dummy routine,
1344 or if the program has exited. */
1345 if (!stop_stack_dummy)
1346 {
1347 select_frame (get_current_frame (), 0);
1348
1349 if (stop_print_frame)
1350 {
1351 int source_only = bpstat_print (stop_bpstat);
1352 print_sel_frame
1353 (source_only
1354 || (stop_step
1355 && step_frame_address == stop_frame_address
1356 && step_start_function == find_pc_function (stop_pc)));
1357
1358 /* Display the auto-display expressions. */
1359 do_displays ();
1360 }
1361 }
1362
1363 /* Save the function value return registers, if we care.
1364 We might be about to restore their previous contents. */
1365 if (proceed_to_finish)
1366 read_register_bytes (0, stop_registers, REGISTER_BYTES);
1367
1368 if (stop_stack_dummy)
1369 {
1370 /* Pop the empty frame that contains the stack dummy.
1371 POP_FRAME ends with a setting of the current frame, so we
1372 can use that next. */
1373 POP_FRAME;
1374 select_frame (get_current_frame (), 0);
1375 }
1376}
1377\f
1378static void
1379insert_step_breakpoint ()
1380{
1381 if (step_resume_break_address && !step_resume_break_duplicate)
1382 target_insert_breakpoint (step_resume_break_address,
1383 step_resume_break_shadow);
1384}
1385
1386static void
1387remove_step_breakpoint ()
1388{
1389 if (step_resume_break_address && !step_resume_break_duplicate)
1390 target_remove_breakpoint (step_resume_break_address,
1391 step_resume_break_shadow);
1392}
1393\f
1394static void
1395sig_print_header ()
1396{
1397 printf_filtered ("Signal\t\tStop\tPrint\tPass to program\tDescription\n");
1398}
1399
1400static void
1401sig_print_info (number)
1402 int number;
1403{
1404 char *abbrev = sig_abbrev(number);
1405 if (abbrev == NULL)
1406 printf_filtered ("%d\t\t", number);
1407 else
1408 printf_filtered ("SIG%s (%d)\t", abbrev, number);
1409 printf_filtered ("%s\t", signal_stop[number] ? "Yes" : "No");
1410 printf_filtered ("%s\t", signal_print[number] ? "Yes" : "No");
1411 printf_filtered ("%s\t\t", signal_program[number] ? "Yes" : "No");
1412 printf_filtered ("%s\n", sys_siglist[number]);
1413}
1414
1415/* Specify how various signals in the inferior should be handled. */
1416
1417static void
1418handle_command (args, from_tty)
1419 char *args;
1420 int from_tty;
1421{
1422 register char *p = args;
1423 int signum = 0;
1424 register int digits, wordlen;
1425 char *nextarg;
1426
1427 if (!args)
1428 error_no_arg ("signal to handle");
1429
1430 while (*p)
1431 {
1432 /* Find the end of the next word in the args. */
1433 for (wordlen = 0;
1434 p[wordlen] && p[wordlen] != ' ' && p[wordlen] != '\t';
1435 wordlen++);
1436 /* Set nextarg to the start of the word after the one we just
1437 found, and null-terminate this one. */
1438 if (p[wordlen] == '\0')
1439 nextarg = p + wordlen;
1440 else
1441 {
1442 p[wordlen] = '\0';
1443 nextarg = p + wordlen + 1;
1444 }
1445
1446
1447 for (digits = 0; p[digits] >= '0' && p[digits] <= '9'; digits++);
1448
1449 if (signum == 0)
1450 {
1451 /* It is the first argument--must be the signal to operate on. */
1452 if (digits == wordlen)
1453 {
1454 /* Numeric. */
1455 signum = atoi (p);
1456 if (signum <= 0 || signum >= NSIG)
1457 {
1458 p[wordlen] = '\0';
1459 error ("Invalid signal %s given as argument to \"handle\".", p);
1460 }
1461 }
1462 else
1463 {
1464 /* Symbolic. */
1465 signum = sig_number (p);
1466 if (signum == -1)
1467 error ("No such signal \"%s\"", p);
1468 }
1469
1470 if (signum == SIGTRAP || signum == SIGINT)
1471 {
1472 if (!query ("SIG%s is used by the debugger.\nAre you sure you want to change it? ", sig_abbrev (signum)))
1473 error ("Not confirmed.");
1474 }
1475 }
1476 /* Else, if already got a signal number, look for flag words
1477 saying what to do for it. */
1478 else if (!strncmp (p, "stop", wordlen))
1479 {
1480 signal_stop[signum] = 1;
1481 signal_print[signum] = 1;
1482 }
1483 else if (wordlen >= 2 && !strncmp (p, "print", wordlen))
1484 signal_print[signum] = 1;
1485 else if (wordlen >= 2 && !strncmp (p, "pass", wordlen))
1486 signal_program[signum] = 1;
1487 else if (!strncmp (p, "ignore", wordlen))
1488 signal_program[signum] = 0;
1489 else if (wordlen >= 3 && !strncmp (p, "nostop", wordlen))
1490 signal_stop[signum] = 0;
1491 else if (wordlen >= 4 && !strncmp (p, "noprint", wordlen))
1492 {
1493 signal_print[signum] = 0;
1494 signal_stop[signum] = 0;
1495 }
1496 else if (wordlen >= 4 && !strncmp (p, "nopass", wordlen))
1497 signal_program[signum] = 0;
1498 else if (wordlen >= 3 && !strncmp (p, "noignore", wordlen))
1499 signal_program[signum] = 1;
1500 /* Not a number and not a recognized flag word => complain. */
1501 else
1502 {
1503 error ("Unrecognized flag word: \"%s\".", p);
1504 }
1505
1506 /* Find start of next word. */
1507 p = nextarg;
1508 while (*p == ' ' || *p == '\t') p++;
1509 }
1510
1511 if (from_tty)
1512 {
1513 /* Show the results. */
1514 sig_print_header ();
1515 sig_print_info (signum);
1516 }
1517}
1518
1519/* Print current contents of the tables set by the handle command. */
1520
1521static void
1522signals_info (signum_exp)
1523 char *signum_exp;
1524{
1525 register int i;
1526 sig_print_header ();
1527
1528 if (signum_exp)
1529 {
1530 /* First see if this is a symbol name. */
1531 i = sig_number (signum_exp);
1532 if (i == -1)
1533 {
1534 /* Nope, maybe it's an address which evaluates to a signal
1535 number. */
1536 i = parse_and_eval_address (signum_exp);
1537 if (i >= NSIG || i < 0)
1538 error ("Signal number out of bounds.");
1539 }
1540 sig_print_info (i);
1541 return;
1542 }
1543
1544 printf_filtered ("\n");
1545 for (i = 0; i < NSIG; i++)
1546 {
1547 QUIT;
1548
1549 sig_print_info (i);
1550 }
1551
1552 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
1553}
1554\f
1555/* Save all of the information associated with the inferior<==>gdb
1556 connection. INF_STATUS is a pointer to a "struct inferior_status"
1557 (defined in inferior.h). */
1558
1559void
1560save_inferior_status (inf_status, restore_stack_info)
1561 struct inferior_status *inf_status;
1562 int restore_stack_info;
1563{
1564 inf_status->pc_changed = pc_changed;
1565 inf_status->stop_signal = stop_signal;
1566 inf_status->stop_pc = stop_pc;
1567 inf_status->stop_frame_address = stop_frame_address;
1568 inf_status->stop_step = stop_step;
1569 inf_status->stop_stack_dummy = stop_stack_dummy;
1570 inf_status->stopped_by_random_signal = stopped_by_random_signal;
1571 inf_status->trap_expected = trap_expected;
1572 inf_status->step_range_start = step_range_start;
1573 inf_status->step_range_end = step_range_end;
1574 inf_status->step_frame_address = step_frame_address;
1575 inf_status->step_over_calls = step_over_calls;
1576 inf_status->step_resume_break_address = step_resume_break_address;
1577 inf_status->stop_after_trap = stop_after_trap;
1578 inf_status->stop_soon_quietly = stop_soon_quietly;
1579 /* Save original bpstat chain here; replace it with copy of chain.
1580 If caller's caller is walking the chain, they'll be happier if we
1581 hand them back the original chain when restore_i_s is called. */
1582 inf_status->stop_bpstat = stop_bpstat;
1583 stop_bpstat = bpstat_copy (stop_bpstat);
1584 inf_status->breakpoint_proceeded = breakpoint_proceeded;
1585 inf_status->restore_stack_info = restore_stack_info;
1586 inf_status->proceed_to_finish = proceed_to_finish;
1587
1588 bcopy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
1589
1590 record_selected_frame (&(inf_status->selected_frame_address),
1591 &(inf_status->selected_level));
1592 return;
1593}
1594
1595void
1596restore_inferior_status (inf_status)
1597 struct inferior_status *inf_status;
1598{
1599 FRAME fid;
1600 int level = inf_status->selected_level;
1601
1602 pc_changed = inf_status->pc_changed;
1603 stop_signal = inf_status->stop_signal;
1604 stop_pc = inf_status->stop_pc;
1605 stop_frame_address = inf_status->stop_frame_address;
1606 stop_step = inf_status->stop_step;
1607 stop_stack_dummy = inf_status->stop_stack_dummy;
1608 stopped_by_random_signal = inf_status->stopped_by_random_signal;
1609 trap_expected = inf_status->trap_expected;
1610 step_range_start = inf_status->step_range_start;
1611 step_range_end = inf_status->step_range_end;
1612 step_frame_address = inf_status->step_frame_address;
1613 step_over_calls = inf_status->step_over_calls;
1614 step_resume_break_address = inf_status->step_resume_break_address;
1615 stop_after_trap = inf_status->stop_after_trap;
1616 stop_soon_quietly = inf_status->stop_soon_quietly;
1617 bpstat_clear (&stop_bpstat);
1618 stop_bpstat = inf_status->stop_bpstat;
1619 breakpoint_proceeded = inf_status->breakpoint_proceeded;
1620 proceed_to_finish = inf_status->proceed_to_finish;
1621
1622 bcopy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
1623
1624 /* The inferior can be gone if the user types "print exit(0)"
1625 (and perhaps other times). */
1626 if (target_has_stack && inf_status->restore_stack_info)
1627 {
1628 fid = find_relative_frame (get_current_frame (),
1629 &level);
1630
777bef06
JK
1631 /* If inf_status->selected_frame_address is NULL, there was no
1632 previously selected frame. */
bd5635a1
RP
1633 if (fid == 0 ||
1634 FRAME_FP (fid) != inf_status->selected_frame_address ||
1635 level != 0)
1636 {
1637#if 0
1638 /* I'm not sure this error message is a good idea. I have
1639 only seen it occur after "Can't continue previously
1640 requested operation" (we get called from do_cleanups), in
1641 which case it just adds insult to injury (one confusing
1642 error message after another. Besides which, does the
1643 user really care if we can't restore the previously
1644 selected frame? */
1645 fprintf (stderr, "Unable to restore previously selected frame.\n");
1646#endif
1647 select_frame (get_current_frame (), 0);
1648 return;
1649 }
1650
1651 select_frame (fid, inf_status->selected_level);
1652 }
1653}
1654
1655\f
1656void
1657_initialize_infrun ()
1658{
1659 register int i;
1660
1661 add_info ("signals", signals_info,
1662 "What debugger does when program gets various signals.\n\
1663Specify a signal number as argument to print info on that signal only.");
1664
1665 add_com ("handle", class_run, handle_command,
1666 "Specify how to handle a signal.\n\
1667Args are signal number followed by flags.\n\
1668Flags allowed are \"stop\", \"print\", \"pass\",\n\
1669 \"nostop\", \"noprint\" or \"nopass\".\n\
1670Print means print a message if this signal happens.\n\
1671Stop means reenter debugger if this signal happens (implies print).\n\
1672Pass means let program see this signal; otherwise program doesn't know.\n\
1673Pass and Stop may be combined.");
1674
1675 for (i = 0; i < NSIG; i++)
1676 {
1677 signal_stop[i] = 1;
1678 signal_print[i] = 1;
1679 signal_program[i] = 1;
1680 }
1681
1682 /* Signals caused by debugger's own actions
1683 should not be given to the program afterwards. */
1684 signal_program[SIGTRAP] = 0;
1685 signal_program[SIGINT] = 0;
1686
1687 /* Signals that are not errors should not normally enter the debugger. */
1688#ifdef SIGALRM
1689 signal_stop[SIGALRM] = 0;
1690 signal_print[SIGALRM] = 0;
1691#endif /* SIGALRM */
1692#ifdef SIGVTALRM
1693 signal_stop[SIGVTALRM] = 0;
1694 signal_print[SIGVTALRM] = 0;
1695#endif /* SIGVTALRM */
1696#ifdef SIGPROF
1697 signal_stop[SIGPROF] = 0;
1698 signal_print[SIGPROF] = 0;
1699#endif /* SIGPROF */
1700#ifdef SIGCHLD
1701 signal_stop[SIGCHLD] = 0;
1702 signal_print[SIGCHLD] = 0;
1703#endif /* SIGCHLD */
1704#ifdef SIGCLD
1705 signal_stop[SIGCLD] = 0;
1706 signal_print[SIGCLD] = 0;
1707#endif /* SIGCLD */
1708#ifdef SIGIO
1709 signal_stop[SIGIO] = 0;
1710 signal_print[SIGIO] = 0;
1711#endif /* SIGIO */
1712#ifdef SIGURG
1713 signal_stop[SIGURG] = 0;
1714 signal_print[SIGURG] = 0;
1715#endif /* SIGURG */
1716}
1717
This page took 0.262061 seconds and 4 git commands to generate.