Remove make_cleanup_restore_current_ui
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
618f726f 4 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
c906108c
SS
67
68/* Prototypes for local functions */
69
96baa820 70static void signals_info (char *, int);
c906108c 71
96baa820 72static void handle_command (char *, int);
c906108c 73
2ea28649 74static void sig_print_info (enum gdb_signal);
c906108c 75
96baa820 76static void sig_print_header (void);
c906108c 77
74b7792f 78static void resume_cleanups (void *);
c906108c 79
96baa820 80static int hook_stop_stub (void *);
c906108c 81
96baa820
JM
82static int restore_selected_frame (void *);
83
4ef3f3be 84static int follow_fork (void);
96baa820 85
d83ad864
DB
86static int follow_fork_inferior (int follow_child, int detach_fork);
87
88static void follow_inferior_reset_breakpoints (void);
89
96baa820 90static void set_schedlock_func (char *args, int from_tty,
488f131b 91 struct cmd_list_element *c);
96baa820 92
a289b8f6
JK
93static int currently_stepping (struct thread_info *tp);
94
96baa820 95void _initialize_infrun (void);
43ff13b4 96
e58b0e63
PA
97void nullify_last_target_wait_ptid (void);
98
2c03e5be 99static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
100
101static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
2484c66b
UW
103static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
8550d3b3
YQ
105static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
372316f1
PA
107/* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109static struct async_event_handler *infrun_async_inferior_event_token;
110
111/* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113static int infrun_is_async = -1;
114
115/* See infrun.h. */
116
117void
118infrun_async (int enable)
119{
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134}
135
0b333c5e
PA
136/* See infrun.h. */
137
138void
139mark_infrun_async_event_handler (void)
140{
141 mark_async_event_handler (infrun_async_inferior_event_token);
142}
143
5fbbeb29
CF
144/* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147int step_stop_if_no_debug = 0;
920d2a44
AC
148static void
149show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151{
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153}
5fbbeb29 154
b9f437de
PA
155/* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
96baa820 158
39f77062 159static ptid_t previous_inferior_ptid;
7a292a7a 160
07107ca6
LM
161/* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166static int detach_fork = 1;
6c95b8df 167
237fc4c9
PA
168int debug_displaced = 0;
169static void
170show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172{
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174}
175
ccce17b0 176unsigned int debug_infrun = 0;
920d2a44
AC
177static void
178show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182}
527159b7 183
03583c20
UW
184
185/* Support for disabling address space randomization. */
186
187int disable_randomization = 1;
188
189static void
190show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192{
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202}
203
204static void
205set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207{
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212}
213
d32dc48e
PA
214/* User interface for non-stop mode. */
215
216int non_stop = 0;
217static int non_stop_1 = 0;
218
219static void
220set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222{
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230}
231
232static void
233show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235{
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239}
240
d914c394
SS
241/* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
d914c394
SS
245int observer_mode = 0;
246static int observer_mode_1 = 0;
247
248static void
249set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251{
d914c394
SS
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
d914c394
SS
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282}
283
284static void
285show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287{
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289}
290
291/* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297void
298update_observer_mode (void)
299{
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314}
c2c6d25f 315
c906108c
SS
316/* Tables of how to react to signals; the user sets them. */
317
318static unsigned char *signal_stop;
319static unsigned char *signal_print;
320static unsigned char *signal_program;
321
ab04a2af
TT
322/* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326static unsigned char *signal_catch;
327
2455069d
UW
328/* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331static unsigned char *signal_pass;
332
c906108c
SS
333#define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341#define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
9b224c5e
PA
349/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352void
353update_signals_program_target (void)
354{
a493e3e2 355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
356}
357
1777feb0 358/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 359
edb3359d 360#define RESUME_ALL minus_one_ptid
c906108c
SS
361
362/* Command list pointer for the "stop" placeholder. */
363
364static struct cmd_list_element *stop_command;
365
c906108c
SS
366/* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
628fe4e4 368int stop_on_solib_events;
f9e14852
GB
369
370/* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373static void
374set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375{
376 update_solib_breakpoints ();
377}
378
920d2a44
AC
379static void
380show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382{
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385}
c906108c 386
c906108c
SS
387/* Nonzero after stop if current stack frame should be printed. */
388
389static int stop_print_frame;
390
e02bc4cc 391/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
39f77062 394static ptid_t target_last_wait_ptid;
e02bc4cc
DS
395static struct target_waitstatus target_last_waitstatus;
396
0d1e5fa7
PA
397static void context_switch (ptid_t ptid);
398
4e1c45ea 399void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 400
53904c9e
AC
401static const char follow_fork_mode_child[] = "child";
402static const char follow_fork_mode_parent[] = "parent";
403
40478521 404static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
ef346e04 408};
c906108c 409
53904c9e 410static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
411static void
412show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414{
3e43a32a
MS
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
418 value);
419}
c906108c
SS
420\f
421
d83ad864
DB
422/* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428static int
429follow_fork_inferior (int follow_child, int detach_fork)
430{
431 int has_vforked;
79639e11 432 ptid_t parent_ptid, child_ptid;
d83ad864
DB
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
79639e11
PA
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 441 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450Can not resume the parent process over vfork in the foreground while\n\
451holding the child stopped. Try \"set detach-on-fork\" or \
452\"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
d83ad864
DB
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
8dd06f7a
DB
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
6f259a23 480 target_terminal_ours_for_output ();
d83ad864 481 fprintf_filtered (gdb_stdlog,
79639e11 482 _("Detaching after %s from child %s.\n"),
6f259a23 483 has_vforked ? "vfork" : "fork",
8dd06f7a 484 target_pid_to_str (process_ptid));
d83ad864
DB
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
79639e11 493 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_inferior_ptid ();
502 save_current_program_space ();
503
79639e11 504 inferior_ptid = child_ptid;
d83ad864
DB
505 add_thread (inferior_ptid);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
6f259a23
DB
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
79639e11
PA
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
6f259a23 572 has_vforked ? "vfork" : "fork",
79639e11 573 target_pid_to_str (child_ptid));
d83ad864
DB
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
79639e11 579 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
6f259a23
DB
610 {
611 if (info_verbose || debug_infrun)
612 {
8dd06f7a
DB
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
6f259a23
DB
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
79639e11 619 "child %s.\n"),
8dd06f7a 620 target_pid_to_str (process_ptid));
6f259a23
DB
621 }
622
623 target_detach (NULL, 0);
624 }
d83ad864
DB
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
79639e11 632 inferior_ptid = child_ptid;
d83ad864
DB
633 add_thread (inferior_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662}
663
e58b0e63
PA
664/* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
6604731b 668static int
4ef3f3be 669follow_fork (void)
c906108c 670{
ea1dd7bc 671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
4e3990f4
DE
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 680 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
8980e177 684 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
8358c15c
JK
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
16c381f0
JK
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
186c406b
TT
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 736 thread_fsm = tp->thread_fsm;
e58b0e63
PA
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
16c381f0
JK
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
186c406b 747 delete_exception_resume_breakpoint (tp);
8980e177 748 tp->thread_fsm = NULL;
e58b0e63
PA
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
d83ad864
DB
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
e09875d4 769 tp = find_thread_ptid (parent);
e58b0e63
PA
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
1777feb0 777 /* If we followed the child, switch to it... */
e58b0e63
PA
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
8358c15c
JK
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
16c381f0
JK
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
186c406b
TT
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
8980e177 794 tp->thread_fsm = thread_fsm;
e58b0e63
PA
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
3e43a32a 804 warning (_("Not resuming: switched threads "
fd7dcb94 805 "before following fork child."));
e58b0e63
PA
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
c906108c 825
e58b0e63 826 return should_resume;
c906108c
SS
827}
828
d83ad864 829static void
6604731b 830follow_inferior_reset_breakpoints (void)
c906108c 831{
4e1c45ea
PA
832 struct thread_info *tp = inferior_thread ();
833
6604731b
DJ
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
6604731b
DJ
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
8358c15c 847 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
6604731b 852
a1aa2221 853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 854 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
186c406b 859
6604731b
DJ
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
c906108c 867}
c906108c 868
6c95b8df
PA
869/* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872static int
873proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875{
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
a493e3e2 882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
70509625 890 clear_proceed_status (0);
64ce06e4 891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
892 }
893
894 return 0;
895}
896
897/* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900static void
901handle_vfork_child_exec_or_exit (int exec)
902{
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. If the user wanted to
911 detach from the parent, now is the time. */
912
913 if (inf->vfork_parent->pending_detach)
914 {
915 struct thread_info *tp;
916 struct cleanup *old_chain;
917 struct program_space *pspace;
918 struct address_space *aspace;
919
1777feb0 920 /* follow-fork child, detach-on-fork on. */
6c95b8df 921
68c9da30
PA
922 inf->vfork_parent->pending_detach = 0;
923
f50f4e56
PA
924 if (!exec)
925 {
926 /* If we're handling a child exit, then inferior_ptid
927 points at the inferior's pid, not to a thread. */
928 old_chain = save_inferior_ptid ();
929 save_current_program_space ();
930 save_current_inferior ();
931 }
932 else
933 old_chain = save_current_space_and_thread ();
6c95b8df
PA
934
935 /* We're letting loose of the parent. */
936 tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 switch_to_thread (tp->ptid);
938
939 /* We're about to detach from the parent, which implicitly
940 removes breakpoints from its address space. There's a
941 catch here: we want to reuse the spaces for the child,
942 but, parent/child are still sharing the pspace at this
943 point, although the exec in reality makes the kernel give
944 the child a fresh set of new pages. The problem here is
945 that the breakpoints module being unaware of this, would
946 likely chose the child process to write to the parent
947 address space. Swapping the child temporarily away from
948 the spaces has the desired effect. Yes, this is "sort
949 of" a hack. */
950
951 pspace = inf->pspace;
952 aspace = inf->aspace;
953 inf->aspace = NULL;
954 inf->pspace = NULL;
955
956 if (debug_infrun || info_verbose)
957 {
6f259a23 958 target_terminal_ours_for_output ();
6c95b8df
PA
959
960 if (exec)
6f259a23
DB
961 {
962 fprintf_filtered (gdb_stdlog,
963 _("Detaching vfork parent process "
964 "%d after child exec.\n"),
965 inf->vfork_parent->pid);
966 }
6c95b8df 967 else
6f259a23
DB
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("Detaching vfork parent process "
971 "%d after child exit.\n"),
972 inf->vfork_parent->pid);
973 }
6c95b8df
PA
974 }
975
976 target_detach (NULL, 0);
977
978 /* Put it back. */
979 inf->pspace = pspace;
980 inf->aspace = aspace;
981
982 do_cleanups (old_chain);
983 }
984 else if (exec)
985 {
986 /* We're staying attached to the parent, so, really give the
987 child a new address space. */
988 inf->pspace = add_program_space (maybe_new_address_space ());
989 inf->aspace = inf->pspace->aspace;
990 inf->removable = 1;
991 set_current_program_space (inf->pspace);
992
993 resume_parent = inf->vfork_parent->pid;
994
995 /* Break the bonds. */
996 inf->vfork_parent->vfork_child = NULL;
997 }
998 else
999 {
1000 struct cleanup *old_chain;
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid, so that clone_program_space doesn't want
1013 to read the selected frame of a dead process. */
1014 old_chain = save_inferior_ptid ();
1015 inferior_ptid = null_ptid;
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = add_program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
7dcd53a0 1025 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1026 clone_program_space (pspace, inf->vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1031 inferior. */
6c95b8df
PA
1032 do_cleanups (old_chain);
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048
1049 if (debug_infrun)
3e43a32a
MS
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055
1056 do_cleanups (old_chain);
1057 }
1058 }
1059}
1060
eb6c553b 1061/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1062
1063static const char follow_exec_mode_new[] = "new";
1064static const char follow_exec_mode_same[] = "same";
40478521 1065static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1066{
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070};
1071
1072static const char *follow_exec_mode_string = follow_exec_mode_same;
1073static void
1074show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076{
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078}
1079
1777feb0 1080/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1081
c906108c 1082static void
95e50b27 1083follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1084{
95e50b27 1085 struct thread_info *th, *tmp;
6c95b8df 1086 struct inferior *inf = current_inferior ();
95e50b27 1087 int pid = ptid_get_pid (ptid);
94585166 1088 ptid_t process_ptid;
7a292a7a 1089
c906108c
SS
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1777feb0 1109 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1110
1111 mark_breakpoints_out ();
1112
95e50b27
PA
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
8a06aea7 1132 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1133 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1134 delete_thread (th->ptid);
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
1140 th = inferior_thread ();
8358c15c 1141 th->control.step_resume_breakpoint = NULL;
186c406b 1142 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1143 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
c906108c 1146
95e50b27
PA
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
a75724bc
PA
1150 th->stop_requested = 0;
1151
95e50b27
PA
1152 update_breakpoints_after_exec ();
1153
1777feb0 1154 /* What is this a.out's name? */
94585166 1155 process_ptid = pid_to_ptid (pid);
6c95b8df 1156 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1157 target_pid_to_str (process_ptid),
6c95b8df 1158 execd_pathname);
c906108c
SS
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1161 inferior has essentially been killed & reborn. */
7a292a7a 1162
c906108c 1163 gdb_flush (gdb_stdout);
6ca15a4b
PA
1164
1165 breakpoint_init_inferior (inf_execd);
e85a822c 1166
a3be80c3 1167 if (*gdb_sysroot != '\0')
e85a822c 1168 {
998d2a3e 1169 char *name = exec_file_find (execd_pathname, NULL);
ff862be4 1170
224c3ddb 1171 execd_pathname = (char *) alloca (strlen (name) + 1);
ff862be4
GB
1172 strcpy (execd_pathname, name);
1173 xfree (name);
e85a822c 1174 }
c906108c 1175
cce9b6bf
PA
1176 /* Reset the shared library package. This ensures that we get a
1177 shlib event when the child reaches "_start", at which point the
1178 dld will have had a chance to initialize the child. */
1179 /* Also, loading a symbol file below may trigger symbol lookups, and
1180 we don't want those to be satisfied by the libraries of the
1181 previous incarnation of this process. */
1182 no_shared_libraries (NULL, 0);
1183
6c95b8df
PA
1184 if (follow_exec_mode_string == follow_exec_mode_new)
1185 {
6c95b8df
PA
1186 /* The user wants to keep the old inferior and program spaces
1187 around. Create a new fresh one, and switch to it. */
1188
17d8546e
DB
1189 /* Do exit processing for the original inferior before adding
1190 the new inferior so we don't have two active inferiors with
1191 the same ptid, which can confuse find_inferior_ptid. */
1192 exit_inferior_num_silent (current_inferior ()->num);
1193
94585166
DB
1194 inf = add_inferior_with_spaces ();
1195 inf->pid = pid;
1196 target_follow_exec (inf, execd_pathname);
6c95b8df
PA
1197
1198 set_current_inferior (inf);
94585166
DB
1199 set_current_program_space (inf->pspace);
1200 add_thread (ptid);
6c95b8df 1201 }
9107fc8d
PA
1202 else
1203 {
1204 /* The old description may no longer be fit for the new image.
1205 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1206 old description; we'll read a new one below. No need to do
1207 this on "follow-exec-mode new", as the old inferior stays
1208 around (its description is later cleared/refetched on
1209 restart). */
1210 target_clear_description ();
1211 }
6c95b8df
PA
1212
1213 gdb_assert (current_program_space == inf->pspace);
1214
1777feb0 1215 /* That a.out is now the one to use. */
6c95b8df
PA
1216 exec_file_attach (execd_pathname, 0);
1217
c1e56572
JK
1218 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1219 (Position Independent Executable) main symbol file will get applied by
1220 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1221 the breakpoints with the zero displacement. */
1222
7dcd53a0
TT
1223 symbol_file_add (execd_pathname,
1224 (inf->symfile_flags
1225 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1226 NULL, 0);
1227
7dcd53a0
TT
1228 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1229 set_initial_language ();
c906108c 1230
9107fc8d
PA
1231 /* If the target can specify a description, read it. Must do this
1232 after flipping to the new executable (because the target supplied
1233 description must be compatible with the executable's
1234 architecture, and the old executable may e.g., be 32-bit, while
1235 the new one 64-bit), and before anything involving memory or
1236 registers. */
1237 target_find_description ();
1238
268a4a75 1239 solib_create_inferior_hook (0);
c906108c 1240
4efc6507
DE
1241 jit_inferior_created_hook ();
1242
c1e56572
JK
1243 breakpoint_re_set ();
1244
c906108c
SS
1245 /* Reinsert all breakpoints. (Those which were symbolic have
1246 been reset to the proper address in the new a.out, thanks
1777feb0 1247 to symbol_file_command...). */
c906108c
SS
1248 insert_breakpoints ();
1249
1250 /* The next resume of this inferior should bring it to the shlib
1251 startup breakpoints. (If the user had also set bp's on
1252 "main" from the old (parent) process, then they'll auto-
1777feb0 1253 matically get reset there in the new process.). */
c906108c
SS
1254}
1255
c2829269
PA
1256/* The queue of threads that need to do a step-over operation to get
1257 past e.g., a breakpoint. What technique is used to step over the
1258 breakpoint/watchpoint does not matter -- all threads end up in the
1259 same queue, to maintain rough temporal order of execution, in order
1260 to avoid starvation, otherwise, we could e.g., find ourselves
1261 constantly stepping the same couple threads past their breakpoints
1262 over and over, if the single-step finish fast enough. */
1263struct thread_info *step_over_queue_head;
1264
6c4cfb24
PA
1265/* Bit flags indicating what the thread needs to step over. */
1266
8d297bbf 1267enum step_over_what_flag
6c4cfb24
PA
1268 {
1269 /* Step over a breakpoint. */
1270 STEP_OVER_BREAKPOINT = 1,
1271
1272 /* Step past a non-continuable watchpoint, in order to let the
1273 instruction execute so we can evaluate the watchpoint
1274 expression. */
1275 STEP_OVER_WATCHPOINT = 2
1276 };
8d297bbf 1277DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1278
963f9c80 1279/* Info about an instruction that is being stepped over. */
31e77af2
PA
1280
1281struct step_over_info
1282{
963f9c80
PA
1283 /* If we're stepping past a breakpoint, this is the address space
1284 and address of the instruction the breakpoint is set at. We'll
1285 skip inserting all breakpoints here. Valid iff ASPACE is
1286 non-NULL. */
31e77af2 1287 struct address_space *aspace;
31e77af2 1288 CORE_ADDR address;
963f9c80
PA
1289
1290 /* The instruction being stepped over triggers a nonsteppable
1291 watchpoint. If true, we'll skip inserting watchpoints. */
1292 int nonsteppable_watchpoint_p;
21edc42f
YQ
1293
1294 /* The thread's global number. */
1295 int thread;
31e77af2
PA
1296};
1297
1298/* The step-over info of the location that is being stepped over.
1299
1300 Note that with async/breakpoint always-inserted mode, a user might
1301 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1302 being stepped over. As setting a new breakpoint inserts all
1303 breakpoints, we need to make sure the breakpoint being stepped over
1304 isn't inserted then. We do that by only clearing the step-over
1305 info when the step-over is actually finished (or aborted).
1306
1307 Presently GDB can only step over one breakpoint at any given time.
1308 Given threads that can't run code in the same address space as the
1309 breakpoint's can't really miss the breakpoint, GDB could be taught
1310 to step-over at most one breakpoint per address space (so this info
1311 could move to the address space object if/when GDB is extended).
1312 The set of breakpoints being stepped over will normally be much
1313 smaller than the set of all breakpoints, so a flag in the
1314 breakpoint location structure would be wasteful. A separate list
1315 also saves complexity and run-time, as otherwise we'd have to go
1316 through all breakpoint locations clearing their flag whenever we
1317 start a new sequence. Similar considerations weigh against storing
1318 this info in the thread object. Plus, not all step overs actually
1319 have breakpoint locations -- e.g., stepping past a single-step
1320 breakpoint, or stepping to complete a non-continuable
1321 watchpoint. */
1322static struct step_over_info step_over_info;
1323
1324/* Record the address of the breakpoint/instruction we're currently
1325 stepping over. */
1326
1327static void
963f9c80 1328set_step_over_info (struct address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1329 int nonsteppable_watchpoint_p,
1330 int thread)
31e77af2
PA
1331{
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
963f9c80 1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1335 step_over_info.thread = thread;
31e77af2
PA
1336}
1337
1338/* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341static void
1342clear_step_over_info (void)
1343{
372316f1
PA
1344 if (debug_infrun)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "infrun: clear_step_over_info\n");
31e77af2
PA
1347 step_over_info.aspace = NULL;
1348 step_over_info.address = 0;
963f9c80 1349 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1350 step_over_info.thread = -1;
31e77af2
PA
1351}
1352
7f89fd65 1353/* See infrun.h. */
31e77af2
PA
1354
1355int
1356stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358{
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363}
1364
963f9c80
PA
1365/* See infrun.h. */
1366
21edc42f
YQ
1367int
1368thread_is_stepping_over_breakpoint (int thread)
1369{
1370 return (step_over_info.thread != -1
1371 && thread == step_over_info.thread);
1372}
1373
1374/* See infrun.h. */
1375
963f9c80
PA
1376int
1377stepping_past_nonsteppable_watchpoint (void)
1378{
1379 return step_over_info.nonsteppable_watchpoint_p;
1380}
1381
6cc83d2a
PA
1382/* Returns true if step-over info is valid. */
1383
1384static int
1385step_over_info_valid_p (void)
1386{
963f9c80
PA
1387 return (step_over_info.aspace != NULL
1388 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1389}
1390
c906108c 1391\f
237fc4c9
PA
1392/* Displaced stepping. */
1393
1394/* In non-stop debugging mode, we must take special care to manage
1395 breakpoints properly; in particular, the traditional strategy for
1396 stepping a thread past a breakpoint it has hit is unsuitable.
1397 'Displaced stepping' is a tactic for stepping one thread past a
1398 breakpoint it has hit while ensuring that other threads running
1399 concurrently will hit the breakpoint as they should.
1400
1401 The traditional way to step a thread T off a breakpoint in a
1402 multi-threaded program in all-stop mode is as follows:
1403
1404 a0) Initially, all threads are stopped, and breakpoints are not
1405 inserted.
1406 a1) We single-step T, leaving breakpoints uninserted.
1407 a2) We insert breakpoints, and resume all threads.
1408
1409 In non-stop debugging, however, this strategy is unsuitable: we
1410 don't want to have to stop all threads in the system in order to
1411 continue or step T past a breakpoint. Instead, we use displaced
1412 stepping:
1413
1414 n0) Initially, T is stopped, other threads are running, and
1415 breakpoints are inserted.
1416 n1) We copy the instruction "under" the breakpoint to a separate
1417 location, outside the main code stream, making any adjustments
1418 to the instruction, register, and memory state as directed by
1419 T's architecture.
1420 n2) We single-step T over the instruction at its new location.
1421 n3) We adjust the resulting register and memory state as directed
1422 by T's architecture. This includes resetting T's PC to point
1423 back into the main instruction stream.
1424 n4) We resume T.
1425
1426 This approach depends on the following gdbarch methods:
1427
1428 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1429 indicate where to copy the instruction, and how much space must
1430 be reserved there. We use these in step n1.
1431
1432 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1433 address, and makes any necessary adjustments to the instruction,
1434 register contents, and memory. We use this in step n1.
1435
1436 - gdbarch_displaced_step_fixup adjusts registers and memory after
1437 we have successfuly single-stepped the instruction, to yield the
1438 same effect the instruction would have had if we had executed it
1439 at its original address. We use this in step n3.
1440
1441 - gdbarch_displaced_step_free_closure provides cleanup.
1442
1443 The gdbarch_displaced_step_copy_insn and
1444 gdbarch_displaced_step_fixup functions must be written so that
1445 copying an instruction with gdbarch_displaced_step_copy_insn,
1446 single-stepping across the copied instruction, and then applying
1447 gdbarch_displaced_insn_fixup should have the same effects on the
1448 thread's memory and registers as stepping the instruction in place
1449 would have. Exactly which responsibilities fall to the copy and
1450 which fall to the fixup is up to the author of those functions.
1451
1452 See the comments in gdbarch.sh for details.
1453
1454 Note that displaced stepping and software single-step cannot
1455 currently be used in combination, although with some care I think
1456 they could be made to. Software single-step works by placing
1457 breakpoints on all possible subsequent instructions; if the
1458 displaced instruction is a PC-relative jump, those breakpoints
1459 could fall in very strange places --- on pages that aren't
1460 executable, or at addresses that are not proper instruction
1461 boundaries. (We do generally let other threads run while we wait
1462 to hit the software single-step breakpoint, and they might
1463 encounter such a corrupted instruction.) One way to work around
1464 this would be to have gdbarch_displaced_step_copy_insn fully
1465 simulate the effect of PC-relative instructions (and return NULL)
1466 on architectures that use software single-stepping.
1467
1468 In non-stop mode, we can have independent and simultaneous step
1469 requests, so more than one thread may need to simultaneously step
1470 over a breakpoint. The current implementation assumes there is
1471 only one scratch space per process. In this case, we have to
1472 serialize access to the scratch space. If thread A wants to step
1473 over a breakpoint, but we are currently waiting for some other
1474 thread to complete a displaced step, we leave thread A stopped and
1475 place it in the displaced_step_request_queue. Whenever a displaced
1476 step finishes, we pick the next thread in the queue and start a new
1477 displaced step operation on it. See displaced_step_prepare and
1478 displaced_step_fixup for details. */
1479
fc1cf338
PA
1480/* Per-inferior displaced stepping state. */
1481struct displaced_step_inferior_state
1482{
1483 /* Pointer to next in linked list. */
1484 struct displaced_step_inferior_state *next;
1485
1486 /* The process this displaced step state refers to. */
1487 int pid;
1488
3fc8eb30
PA
1489 /* True if preparing a displaced step ever failed. If so, we won't
1490 try displaced stepping for this inferior again. */
1491 int failed_before;
1492
fc1cf338
PA
1493 /* If this is not null_ptid, this is the thread carrying out a
1494 displaced single-step in process PID. This thread's state will
1495 require fixing up once it has completed its step. */
1496 ptid_t step_ptid;
1497
1498 /* The architecture the thread had when we stepped it. */
1499 struct gdbarch *step_gdbarch;
1500
1501 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1502 for post-step cleanup. */
1503 struct displaced_step_closure *step_closure;
1504
1505 /* The address of the original instruction, and the copy we
1506 made. */
1507 CORE_ADDR step_original, step_copy;
1508
1509 /* Saved contents of copy area. */
1510 gdb_byte *step_saved_copy;
1511};
1512
1513/* The list of states of processes involved in displaced stepping
1514 presently. */
1515static struct displaced_step_inferior_state *displaced_step_inferior_states;
1516
1517/* Get the displaced stepping state of process PID. */
1518
1519static struct displaced_step_inferior_state *
1520get_displaced_stepping_state (int pid)
1521{
1522 struct displaced_step_inferior_state *state;
1523
1524 for (state = displaced_step_inferior_states;
1525 state != NULL;
1526 state = state->next)
1527 if (state->pid == pid)
1528 return state;
1529
1530 return NULL;
1531}
1532
372316f1
PA
1533/* Returns true if any inferior has a thread doing a displaced
1534 step. */
1535
1536static int
1537displaced_step_in_progress_any_inferior (void)
1538{
1539 struct displaced_step_inferior_state *state;
1540
1541 for (state = displaced_step_inferior_states;
1542 state != NULL;
1543 state = state->next)
1544 if (!ptid_equal (state->step_ptid, null_ptid))
1545 return 1;
1546
1547 return 0;
1548}
1549
c0987663
YQ
1550/* Return true if thread represented by PTID is doing a displaced
1551 step. */
1552
1553static int
1554displaced_step_in_progress_thread (ptid_t ptid)
1555{
1556 struct displaced_step_inferior_state *displaced;
1557
1558 gdb_assert (!ptid_equal (ptid, null_ptid));
1559
1560 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1561
1562 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1563}
1564
8f572e5c
PA
1565/* Return true if process PID has a thread doing a displaced step. */
1566
1567static int
1568displaced_step_in_progress (int pid)
1569{
1570 struct displaced_step_inferior_state *displaced;
1571
1572 displaced = get_displaced_stepping_state (pid);
1573 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1574 return 1;
1575
1576 return 0;
1577}
1578
fc1cf338
PA
1579/* Add a new displaced stepping state for process PID to the displaced
1580 stepping state list, or return a pointer to an already existing
1581 entry, if it already exists. Never returns NULL. */
1582
1583static struct displaced_step_inferior_state *
1584add_displaced_stepping_state (int pid)
1585{
1586 struct displaced_step_inferior_state *state;
1587
1588 for (state = displaced_step_inferior_states;
1589 state != NULL;
1590 state = state->next)
1591 if (state->pid == pid)
1592 return state;
237fc4c9 1593
8d749320 1594 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1595 state->pid = pid;
1596 state->next = displaced_step_inferior_states;
1597 displaced_step_inferior_states = state;
237fc4c9 1598
fc1cf338
PA
1599 return state;
1600}
1601
a42244db
YQ
1602/* If inferior is in displaced stepping, and ADDR equals to starting address
1603 of copy area, return corresponding displaced_step_closure. Otherwise,
1604 return NULL. */
1605
1606struct displaced_step_closure*
1607get_displaced_step_closure_by_addr (CORE_ADDR addr)
1608{
1609 struct displaced_step_inferior_state *displaced
1610 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1611
1612 /* If checking the mode of displaced instruction in copy area. */
1613 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1614 && (displaced->step_copy == addr))
1615 return displaced->step_closure;
1616
1617 return NULL;
1618}
1619
fc1cf338 1620/* Remove the displaced stepping state of process PID. */
237fc4c9 1621
fc1cf338
PA
1622static void
1623remove_displaced_stepping_state (int pid)
1624{
1625 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1626
fc1cf338
PA
1627 gdb_assert (pid != 0);
1628
1629 it = displaced_step_inferior_states;
1630 prev_next_p = &displaced_step_inferior_states;
1631 while (it)
1632 {
1633 if (it->pid == pid)
1634 {
1635 *prev_next_p = it->next;
1636 xfree (it);
1637 return;
1638 }
1639
1640 prev_next_p = &it->next;
1641 it = *prev_next_p;
1642 }
1643}
1644
1645static void
1646infrun_inferior_exit (struct inferior *inf)
1647{
1648 remove_displaced_stepping_state (inf->pid);
1649}
237fc4c9 1650
fff08868
HZ
1651/* If ON, and the architecture supports it, GDB will use displaced
1652 stepping to step over breakpoints. If OFF, or if the architecture
1653 doesn't support it, GDB will instead use the traditional
1654 hold-and-step approach. If AUTO (which is the default), GDB will
1655 decide which technique to use to step over breakpoints depending on
1656 which of all-stop or non-stop mode is active --- displaced stepping
1657 in non-stop mode; hold-and-step in all-stop mode. */
1658
72d0e2c5 1659static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1660
237fc4c9
PA
1661static void
1662show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1663 struct cmd_list_element *c,
1664 const char *value)
1665{
72d0e2c5 1666 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1667 fprintf_filtered (file,
1668 _("Debugger's willingness to use displaced stepping "
1669 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1670 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1671 else
3e43a32a
MS
1672 fprintf_filtered (file,
1673 _("Debugger's willingness to use displaced stepping "
1674 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1675}
1676
fff08868 1677/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1678 over breakpoints of thread TP. */
fff08868 1679
237fc4c9 1680static int
3fc8eb30 1681use_displaced_stepping (struct thread_info *tp)
237fc4c9 1682{
3fc8eb30
PA
1683 struct regcache *regcache = get_thread_regcache (tp->ptid);
1684 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1685 struct displaced_step_inferior_state *displaced_state;
1686
1687 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1688
fbea99ea
PA
1689 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1690 && target_is_non_stop_p ())
72d0e2c5 1691 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1692 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1693 && find_record_target () == NULL
1694 && (displaced_state == NULL
1695 || !displaced_state->failed_before));
237fc4c9
PA
1696}
1697
1698/* Clean out any stray displaced stepping state. */
1699static void
fc1cf338 1700displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1701{
1702 /* Indicate that there is no cleanup pending. */
fc1cf338 1703 displaced->step_ptid = null_ptid;
237fc4c9 1704
fc1cf338 1705 if (displaced->step_closure)
237fc4c9 1706 {
fc1cf338
PA
1707 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1708 displaced->step_closure);
1709 displaced->step_closure = NULL;
237fc4c9
PA
1710 }
1711}
1712
1713static void
fc1cf338 1714displaced_step_clear_cleanup (void *arg)
237fc4c9 1715{
9a3c8263
SM
1716 struct displaced_step_inferior_state *state
1717 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1718
1719 displaced_step_clear (state);
237fc4c9
PA
1720}
1721
1722/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1723void
1724displaced_step_dump_bytes (struct ui_file *file,
1725 const gdb_byte *buf,
1726 size_t len)
1727{
1728 int i;
1729
1730 for (i = 0; i < len; i++)
1731 fprintf_unfiltered (file, "%02x ", buf[i]);
1732 fputs_unfiltered ("\n", file);
1733}
1734
1735/* Prepare to single-step, using displaced stepping.
1736
1737 Note that we cannot use displaced stepping when we have a signal to
1738 deliver. If we have a signal to deliver and an instruction to step
1739 over, then after the step, there will be no indication from the
1740 target whether the thread entered a signal handler or ignored the
1741 signal and stepped over the instruction successfully --- both cases
1742 result in a simple SIGTRAP. In the first case we mustn't do a
1743 fixup, and in the second case we must --- but we can't tell which.
1744 Comments in the code for 'random signals' in handle_inferior_event
1745 explain how we handle this case instead.
1746
1747 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1748 stepped now; 0 if displaced stepping this thread got queued; or -1
1749 if this instruction can't be displaced stepped. */
1750
237fc4c9 1751static int
3fc8eb30 1752displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1753{
ad53cd71 1754 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1755 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1756 struct regcache *regcache = get_thread_regcache (ptid);
1757 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d35ae833 1758 struct address_space *aspace = get_regcache_aspace (regcache);
237fc4c9
PA
1759 CORE_ADDR original, copy;
1760 ULONGEST len;
1761 struct displaced_step_closure *closure;
fc1cf338 1762 struct displaced_step_inferior_state *displaced;
9e529e1d 1763 int status;
237fc4c9
PA
1764
1765 /* We should never reach this function if the architecture does not
1766 support displaced stepping. */
1767 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1768
c2829269
PA
1769 /* Nor if the thread isn't meant to step over a breakpoint. */
1770 gdb_assert (tp->control.trap_expected);
1771
c1e36e3e
PA
1772 /* Disable range stepping while executing in the scratch pad. We
1773 want a single-step even if executing the displaced instruction in
1774 the scratch buffer lands within the stepping range (e.g., a
1775 jump/branch). */
1776 tp->control.may_range_step = 0;
1777
fc1cf338
PA
1778 /* We have to displaced step one thread at a time, as we only have
1779 access to a single scratch space per inferior. */
237fc4c9 1780
fc1cf338
PA
1781 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1782
1783 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1784 {
1785 /* Already waiting for a displaced step to finish. Defer this
1786 request and place in queue. */
237fc4c9
PA
1787
1788 if (debug_displaced)
1789 fprintf_unfiltered (gdb_stdlog,
c2829269 1790 "displaced: deferring step of %s\n",
237fc4c9
PA
1791 target_pid_to_str (ptid));
1792
c2829269 1793 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1794 return 0;
1795 }
1796 else
1797 {
1798 if (debug_displaced)
1799 fprintf_unfiltered (gdb_stdlog,
1800 "displaced: stepping %s now\n",
1801 target_pid_to_str (ptid));
1802 }
1803
fc1cf338 1804 displaced_step_clear (displaced);
237fc4c9 1805
ad53cd71
PA
1806 old_cleanups = save_inferior_ptid ();
1807 inferior_ptid = ptid;
1808
515630c5 1809 original = regcache_read_pc (regcache);
237fc4c9
PA
1810
1811 copy = gdbarch_displaced_step_location (gdbarch);
1812 len = gdbarch_max_insn_length (gdbarch);
1813
d35ae833
PA
1814 if (breakpoint_in_range_p (aspace, copy, len))
1815 {
1816 /* There's a breakpoint set in the scratch pad location range
1817 (which is usually around the entry point). We'd either
1818 install it before resuming, which would overwrite/corrupt the
1819 scratch pad, or if it was already inserted, this displaced
1820 step would overwrite it. The latter is OK in the sense that
1821 we already assume that no thread is going to execute the code
1822 in the scratch pad range (after initial startup) anyway, but
1823 the former is unacceptable. Simply punt and fallback to
1824 stepping over this breakpoint in-line. */
1825 if (debug_displaced)
1826 {
1827 fprintf_unfiltered (gdb_stdlog,
1828 "displaced: breakpoint set in scratch pad. "
1829 "Stepping over breakpoint in-line instead.\n");
1830 }
1831
1832 do_cleanups (old_cleanups);
1833 return -1;
1834 }
1835
237fc4c9 1836 /* Save the original contents of the copy area. */
224c3ddb 1837 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1838 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1839 &displaced->step_saved_copy);
9e529e1d
JK
1840 status = target_read_memory (copy, displaced->step_saved_copy, len);
1841 if (status != 0)
1842 throw_error (MEMORY_ERROR,
1843 _("Error accessing memory address %s (%s) for "
1844 "displaced-stepping scratch space."),
1845 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1846 if (debug_displaced)
1847 {
5af949e3
UW
1848 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1849 paddress (gdbarch, copy));
fc1cf338
PA
1850 displaced_step_dump_bytes (gdb_stdlog,
1851 displaced->step_saved_copy,
1852 len);
237fc4c9
PA
1853 };
1854
1855 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1856 original, copy, regcache);
7f03bd92
PA
1857 if (closure == NULL)
1858 {
1859 /* The architecture doesn't know how or want to displaced step
1860 this instruction or instruction sequence. Fallback to
1861 stepping over the breakpoint in-line. */
1862 do_cleanups (old_cleanups);
1863 return -1;
1864 }
237fc4c9 1865
9f5a595d
UW
1866 /* Save the information we need to fix things up if the step
1867 succeeds. */
fc1cf338
PA
1868 displaced->step_ptid = ptid;
1869 displaced->step_gdbarch = gdbarch;
1870 displaced->step_closure = closure;
1871 displaced->step_original = original;
1872 displaced->step_copy = copy;
9f5a595d 1873
fc1cf338 1874 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1875
1876 /* Resume execution at the copy. */
515630c5 1877 regcache_write_pc (regcache, copy);
237fc4c9 1878
ad53cd71
PA
1879 discard_cleanups (ignore_cleanups);
1880
1881 do_cleanups (old_cleanups);
237fc4c9
PA
1882
1883 if (debug_displaced)
5af949e3
UW
1884 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1885 paddress (gdbarch, copy));
237fc4c9 1886
237fc4c9
PA
1887 return 1;
1888}
1889
3fc8eb30
PA
1890/* Wrapper for displaced_step_prepare_throw that disabled further
1891 attempts at displaced stepping if we get a memory error. */
1892
1893static int
1894displaced_step_prepare (ptid_t ptid)
1895{
1896 int prepared = -1;
1897
1898 TRY
1899 {
1900 prepared = displaced_step_prepare_throw (ptid);
1901 }
1902 CATCH (ex, RETURN_MASK_ERROR)
1903 {
1904 struct displaced_step_inferior_state *displaced_state;
1905
16b41842
PA
1906 if (ex.error != MEMORY_ERROR
1907 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1908 throw_exception (ex);
1909
1910 if (debug_infrun)
1911 {
1912 fprintf_unfiltered (gdb_stdlog,
1913 "infrun: disabling displaced stepping: %s\n",
1914 ex.message);
1915 }
1916
1917 /* Be verbose if "set displaced-stepping" is "on", silent if
1918 "auto". */
1919 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1920 {
fd7dcb94 1921 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1922 ex.message);
1923 }
1924
1925 /* Disable further displaced stepping attempts. */
1926 displaced_state
1927 = get_displaced_stepping_state (ptid_get_pid (ptid));
1928 displaced_state->failed_before = 1;
1929 }
1930 END_CATCH
1931
1932 return prepared;
1933}
1934
237fc4c9 1935static void
3e43a32a
MS
1936write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1937 const gdb_byte *myaddr, int len)
237fc4c9
PA
1938{
1939 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1940
237fc4c9
PA
1941 inferior_ptid = ptid;
1942 write_memory (memaddr, myaddr, len);
1943 do_cleanups (ptid_cleanup);
1944}
1945
e2d96639
YQ
1946/* Restore the contents of the copy area for thread PTID. */
1947
1948static void
1949displaced_step_restore (struct displaced_step_inferior_state *displaced,
1950 ptid_t ptid)
1951{
1952 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1953
1954 write_memory_ptid (ptid, displaced->step_copy,
1955 displaced->step_saved_copy, len);
1956 if (debug_displaced)
1957 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1958 target_pid_to_str (ptid),
1959 paddress (displaced->step_gdbarch,
1960 displaced->step_copy));
1961}
1962
372316f1
PA
1963/* If we displaced stepped an instruction successfully, adjust
1964 registers and memory to yield the same effect the instruction would
1965 have had if we had executed it at its original address, and return
1966 1. If the instruction didn't complete, relocate the PC and return
1967 -1. If the thread wasn't displaced stepping, return 0. */
1968
1969static int
2ea28649 1970displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1971{
1972 struct cleanup *old_cleanups;
fc1cf338
PA
1973 struct displaced_step_inferior_state *displaced
1974 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1975 int ret;
fc1cf338
PA
1976
1977 /* Was any thread of this process doing a displaced step? */
1978 if (displaced == NULL)
372316f1 1979 return 0;
237fc4c9
PA
1980
1981 /* Was this event for the pid we displaced? */
fc1cf338
PA
1982 if (ptid_equal (displaced->step_ptid, null_ptid)
1983 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1984 return 0;
237fc4c9 1985
fc1cf338 1986 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1987
e2d96639 1988 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1989
cb71640d
PA
1990 /* Fixup may need to read memory/registers. Switch to the thread
1991 that we're fixing up. Also, target_stopped_by_watchpoint checks
1992 the current thread. */
1993 switch_to_thread (event_ptid);
1994
237fc4c9 1995 /* Did the instruction complete successfully? */
cb71640d
PA
1996 if (signal == GDB_SIGNAL_TRAP
1997 && !(target_stopped_by_watchpoint ()
1998 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1999 || target_have_steppable_watchpoint)))
237fc4c9
PA
2000 {
2001 /* Fix up the resulting state. */
fc1cf338
PA
2002 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2003 displaced->step_closure,
2004 displaced->step_original,
2005 displaced->step_copy,
2006 get_thread_regcache (displaced->step_ptid));
372316f1 2007 ret = 1;
237fc4c9
PA
2008 }
2009 else
2010 {
2011 /* Since the instruction didn't complete, all we can do is
2012 relocate the PC. */
515630c5
UW
2013 struct regcache *regcache = get_thread_regcache (event_ptid);
2014 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2015
fc1cf338 2016 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2017 regcache_write_pc (regcache, pc);
372316f1 2018 ret = -1;
237fc4c9
PA
2019 }
2020
2021 do_cleanups (old_cleanups);
2022
fc1cf338 2023 displaced->step_ptid = null_ptid;
372316f1
PA
2024
2025 return ret;
c2829269 2026}
1c5cfe86 2027
4d9d9d04
PA
2028/* Data to be passed around while handling an event. This data is
2029 discarded between events. */
2030struct execution_control_state
2031{
2032 ptid_t ptid;
2033 /* The thread that got the event, if this was a thread event; NULL
2034 otherwise. */
2035 struct thread_info *event_thread;
2036
2037 struct target_waitstatus ws;
2038 int stop_func_filled_in;
2039 CORE_ADDR stop_func_start;
2040 CORE_ADDR stop_func_end;
2041 const char *stop_func_name;
2042 int wait_some_more;
2043
2044 /* True if the event thread hit the single-step breakpoint of
2045 another thread. Thus the event doesn't cause a stop, the thread
2046 needs to be single-stepped past the single-step breakpoint before
2047 we can switch back to the original stepping thread. */
2048 int hit_singlestep_breakpoint;
2049};
2050
2051/* Clear ECS and set it to point at TP. */
c2829269
PA
2052
2053static void
4d9d9d04
PA
2054reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2055{
2056 memset (ecs, 0, sizeof (*ecs));
2057 ecs->event_thread = tp;
2058 ecs->ptid = tp->ptid;
2059}
2060
2061static void keep_going_pass_signal (struct execution_control_state *ecs);
2062static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2063static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2064static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2065
2066/* Are there any pending step-over requests? If so, run all we can
2067 now and return true. Otherwise, return false. */
2068
2069static int
c2829269
PA
2070start_step_over (void)
2071{
2072 struct thread_info *tp, *next;
2073
372316f1
PA
2074 /* Don't start a new step-over if we already have an in-line
2075 step-over operation ongoing. */
2076 if (step_over_info_valid_p ())
2077 return 0;
2078
c2829269 2079 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2080 {
4d9d9d04
PA
2081 struct execution_control_state ecss;
2082 struct execution_control_state *ecs = &ecss;
8d297bbf 2083 step_over_what step_what;
372316f1 2084 int must_be_in_line;
c2829269
PA
2085
2086 next = thread_step_over_chain_next (tp);
237fc4c9 2087
c2829269
PA
2088 /* If this inferior already has a displaced step in process,
2089 don't start a new one. */
4d9d9d04 2090 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2091 continue;
2092
372316f1
PA
2093 step_what = thread_still_needs_step_over (tp);
2094 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2095 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2096 && !use_displaced_stepping (tp)));
372316f1
PA
2097
2098 /* We currently stop all threads of all processes to step-over
2099 in-line. If we need to start a new in-line step-over, let
2100 any pending displaced steps finish first. */
2101 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2102 return 0;
2103
c2829269
PA
2104 thread_step_over_chain_remove (tp);
2105
2106 if (step_over_queue_head == NULL)
2107 {
2108 if (debug_infrun)
2109 fprintf_unfiltered (gdb_stdlog,
2110 "infrun: step-over queue now empty\n");
2111 }
2112
372316f1
PA
2113 if (tp->control.trap_expected
2114 || tp->resumed
2115 || tp->executing)
ad53cd71 2116 {
4d9d9d04
PA
2117 internal_error (__FILE__, __LINE__,
2118 "[%s] has inconsistent state: "
372316f1 2119 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2120 target_pid_to_str (tp->ptid),
2121 tp->control.trap_expected,
372316f1 2122 tp->resumed,
4d9d9d04 2123 tp->executing);
ad53cd71 2124 }
1c5cfe86 2125
4d9d9d04
PA
2126 if (debug_infrun)
2127 fprintf_unfiltered (gdb_stdlog,
2128 "infrun: resuming [%s] for step-over\n",
2129 target_pid_to_str (tp->ptid));
2130
2131 /* keep_going_pass_signal skips the step-over if the breakpoint
2132 is no longer inserted. In all-stop, we want to keep looking
2133 for a thread that needs a step-over instead of resuming TP,
2134 because we wouldn't be able to resume anything else until the
2135 target stops again. In non-stop, the resume always resumes
2136 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2137 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2138 continue;
8550d3b3 2139
4d9d9d04
PA
2140 switch_to_thread (tp->ptid);
2141 reset_ecs (ecs, tp);
2142 keep_going_pass_signal (ecs);
1c5cfe86 2143
4d9d9d04
PA
2144 if (!ecs->wait_some_more)
2145 error (_("Command aborted."));
1c5cfe86 2146
372316f1
PA
2147 gdb_assert (tp->resumed);
2148
2149 /* If we started a new in-line step-over, we're done. */
2150 if (step_over_info_valid_p ())
2151 {
2152 gdb_assert (tp->control.trap_expected);
2153 return 1;
2154 }
2155
fbea99ea 2156 if (!target_is_non_stop_p ())
4d9d9d04
PA
2157 {
2158 /* On all-stop, shouldn't have resumed unless we needed a
2159 step over. */
2160 gdb_assert (tp->control.trap_expected
2161 || tp->step_after_step_resume_breakpoint);
2162
2163 /* With remote targets (at least), in all-stop, we can't
2164 issue any further remote commands until the program stops
2165 again. */
2166 return 1;
1c5cfe86 2167 }
c2829269 2168
4d9d9d04
PA
2169 /* Either the thread no longer needed a step-over, or a new
2170 displaced stepping sequence started. Even in the latter
2171 case, continue looking. Maybe we can also start another
2172 displaced step on a thread of other process. */
237fc4c9 2173 }
4d9d9d04
PA
2174
2175 return 0;
237fc4c9
PA
2176}
2177
5231c1fd
PA
2178/* Update global variables holding ptids to hold NEW_PTID if they were
2179 holding OLD_PTID. */
2180static void
2181infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2182{
fc1cf338 2183 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2184
2185 if (ptid_equal (inferior_ptid, old_ptid))
2186 inferior_ptid = new_ptid;
2187
fc1cf338
PA
2188 for (displaced = displaced_step_inferior_states;
2189 displaced;
2190 displaced = displaced->next)
2191 {
2192 if (ptid_equal (displaced->step_ptid, old_ptid))
2193 displaced->step_ptid = new_ptid;
fc1cf338 2194 }
5231c1fd
PA
2195}
2196
237fc4c9
PA
2197\f
2198/* Resuming. */
c906108c
SS
2199
2200/* Things to clean up if we QUIT out of resume (). */
c906108c 2201static void
74b7792f 2202resume_cleanups (void *ignore)
c906108c 2203{
34b7e8a6
PA
2204 if (!ptid_equal (inferior_ptid, null_ptid))
2205 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2206
c906108c
SS
2207 normal_stop ();
2208}
2209
53904c9e
AC
2210static const char schedlock_off[] = "off";
2211static const char schedlock_on[] = "on";
2212static const char schedlock_step[] = "step";
f2665db5 2213static const char schedlock_replay[] = "replay";
40478521 2214static const char *const scheduler_enums[] = {
ef346e04
AC
2215 schedlock_off,
2216 schedlock_on,
2217 schedlock_step,
f2665db5 2218 schedlock_replay,
ef346e04
AC
2219 NULL
2220};
f2665db5 2221static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2222static void
2223show_scheduler_mode (struct ui_file *file, int from_tty,
2224 struct cmd_list_element *c, const char *value)
2225{
3e43a32a
MS
2226 fprintf_filtered (file,
2227 _("Mode for locking scheduler "
2228 "during execution is \"%s\".\n"),
920d2a44
AC
2229 value);
2230}
c906108c
SS
2231
2232static void
96baa820 2233set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2234{
eefe576e
AC
2235 if (!target_can_lock_scheduler)
2236 {
2237 scheduler_mode = schedlock_off;
2238 error (_("Target '%s' cannot support this command."), target_shortname);
2239 }
c906108c
SS
2240}
2241
d4db2f36
PA
2242/* True if execution commands resume all threads of all processes by
2243 default; otherwise, resume only threads of the current inferior
2244 process. */
2245int sched_multi = 0;
2246
2facfe5c
DD
2247/* Try to setup for software single stepping over the specified location.
2248 Return 1 if target_resume() should use hardware single step.
2249
2250 GDBARCH the current gdbarch.
2251 PC the location to step over. */
2252
2253static int
2254maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2255{
2256 int hw_step = 1;
2257
f02253f1
HZ
2258 if (execution_direction == EXEC_FORWARD
2259 && gdbarch_software_single_step_p (gdbarch)
99e40580 2260 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2261 {
99e40580 2262 hw_step = 0;
2facfe5c
DD
2263 }
2264 return hw_step;
2265}
c906108c 2266
f3263aa4
PA
2267/* See infrun.h. */
2268
09cee04b
PA
2269ptid_t
2270user_visible_resume_ptid (int step)
2271{
f3263aa4 2272 ptid_t resume_ptid;
09cee04b 2273
09cee04b
PA
2274 if (non_stop)
2275 {
2276 /* With non-stop mode on, threads are always handled
2277 individually. */
2278 resume_ptid = inferior_ptid;
2279 }
2280 else if ((scheduler_mode == schedlock_on)
03d46957 2281 || (scheduler_mode == schedlock_step && step))
09cee04b 2282 {
f3263aa4
PA
2283 /* User-settable 'scheduler' mode requires solo thread
2284 resume. */
09cee04b
PA
2285 resume_ptid = inferior_ptid;
2286 }
f2665db5
MM
2287 else if ((scheduler_mode == schedlock_replay)
2288 && target_record_will_replay (minus_one_ptid, execution_direction))
2289 {
2290 /* User-settable 'scheduler' mode requires solo thread resume in replay
2291 mode. */
2292 resume_ptid = inferior_ptid;
2293 }
f3263aa4
PA
2294 else if (!sched_multi && target_supports_multi_process ())
2295 {
2296 /* Resume all threads of the current process (and none of other
2297 processes). */
2298 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2299 }
2300 else
2301 {
2302 /* Resume all threads of all processes. */
2303 resume_ptid = RESUME_ALL;
2304 }
09cee04b
PA
2305
2306 return resume_ptid;
2307}
2308
fbea99ea
PA
2309/* Return a ptid representing the set of threads that we will resume,
2310 in the perspective of the target, assuming run control handling
2311 does not require leaving some threads stopped (e.g., stepping past
2312 breakpoint). USER_STEP indicates whether we're about to start the
2313 target for a stepping command. */
2314
2315static ptid_t
2316internal_resume_ptid (int user_step)
2317{
2318 /* In non-stop, we always control threads individually. Note that
2319 the target may always work in non-stop mode even with "set
2320 non-stop off", in which case user_visible_resume_ptid could
2321 return a wildcard ptid. */
2322 if (target_is_non_stop_p ())
2323 return inferior_ptid;
2324 else
2325 return user_visible_resume_ptid (user_step);
2326}
2327
64ce06e4
PA
2328/* Wrapper for target_resume, that handles infrun-specific
2329 bookkeeping. */
2330
2331static void
2332do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2333{
2334 struct thread_info *tp = inferior_thread ();
2335
2336 /* Install inferior's terminal modes. */
2337 target_terminal_inferior ();
2338
2339 /* Avoid confusing the next resume, if the next stop/resume
2340 happens to apply to another thread. */
2341 tp->suspend.stop_signal = GDB_SIGNAL_0;
2342
8f572e5c
PA
2343 /* Advise target which signals may be handled silently.
2344
2345 If we have removed breakpoints because we are stepping over one
2346 in-line (in any thread), we need to receive all signals to avoid
2347 accidentally skipping a breakpoint during execution of a signal
2348 handler.
2349
2350 Likewise if we're displaced stepping, otherwise a trap for a
2351 breakpoint in a signal handler might be confused with the
2352 displaced step finishing. We don't make the displaced_step_fixup
2353 step distinguish the cases instead, because:
2354
2355 - a backtrace while stopped in the signal handler would show the
2356 scratch pad as frame older than the signal handler, instead of
2357 the real mainline code.
2358
2359 - when the thread is later resumed, the signal handler would
2360 return to the scratch pad area, which would no longer be
2361 valid. */
2362 if (step_over_info_valid_p ()
2363 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2364 target_pass_signals (0, NULL);
2365 else
2366 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2367
2368 target_resume (resume_ptid, step, sig);
2369}
2370
c906108c
SS
2371/* Resume the inferior, but allow a QUIT. This is useful if the user
2372 wants to interrupt some lengthy single-stepping operation
2373 (for child processes, the SIGINT goes to the inferior, and so
2374 we get a SIGINT random_signal, but for remote debugging and perhaps
2375 other targets, that's not true).
2376
c906108c
SS
2377 SIG is the signal to give the inferior (zero for none). */
2378void
64ce06e4 2379resume (enum gdb_signal sig)
c906108c 2380{
74b7792f 2381 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2382 struct regcache *regcache = get_current_regcache ();
2383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2384 struct thread_info *tp = inferior_thread ();
515630c5 2385 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2386 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2387 ptid_t resume_ptid;
856e7dd6
PA
2388 /* This represents the user's step vs continue request. When
2389 deciding whether "set scheduler-locking step" applies, it's the
2390 user's intention that counts. */
2391 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2392 /* This represents what we'll actually request the target to do.
2393 This can decay from a step to a continue, if e.g., we need to
2394 implement single-stepping with breakpoints (software
2395 single-step). */
6b403daa 2396 int step;
c7e8a53c 2397
c2829269
PA
2398 gdb_assert (!thread_is_in_step_over_chain (tp));
2399
c906108c
SS
2400 QUIT;
2401
372316f1
PA
2402 if (tp->suspend.waitstatus_pending_p)
2403 {
2404 if (debug_infrun)
2405 {
2406 char *statstr;
2407
2408 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2409 fprintf_unfiltered (gdb_stdlog,
2410 "infrun: resume: thread %s has pending wait status %s "
2411 "(currently_stepping=%d).\n",
2412 target_pid_to_str (tp->ptid), statstr,
2413 currently_stepping (tp));
2414 xfree (statstr);
2415 }
2416
2417 tp->resumed = 1;
2418
2419 /* FIXME: What should we do if we are supposed to resume this
2420 thread with a signal? Maybe we should maintain a queue of
2421 pending signals to deliver. */
2422 if (sig != GDB_SIGNAL_0)
2423 {
fd7dcb94 2424 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2425 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2426 }
2427
2428 tp->suspend.stop_signal = GDB_SIGNAL_0;
2429 discard_cleanups (old_cleanups);
2430
2431 if (target_can_async_p ())
2432 target_async (1);
2433 return;
2434 }
2435
2436 tp->stepped_breakpoint = 0;
2437
6b403daa
PA
2438 /* Depends on stepped_breakpoint. */
2439 step = currently_stepping (tp);
2440
74609e71
YQ
2441 if (current_inferior ()->waiting_for_vfork_done)
2442 {
48f9886d
PA
2443 /* Don't try to single-step a vfork parent that is waiting for
2444 the child to get out of the shared memory region (by exec'ing
2445 or exiting). This is particularly important on software
2446 single-step archs, as the child process would trip on the
2447 software single step breakpoint inserted for the parent
2448 process. Since the parent will not actually execute any
2449 instruction until the child is out of the shared region (such
2450 are vfork's semantics), it is safe to simply continue it.
2451 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2452 the parent, and tell it to `keep_going', which automatically
2453 re-sets it stepping. */
74609e71
YQ
2454 if (debug_infrun)
2455 fprintf_unfiltered (gdb_stdlog,
2456 "infrun: resume : clear step\n");
a09dd441 2457 step = 0;
74609e71
YQ
2458 }
2459
527159b7 2460 if (debug_infrun)
237fc4c9 2461 fprintf_unfiltered (gdb_stdlog,
c9737c08 2462 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2463 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2464 step, gdb_signal_to_symbol_string (sig),
2465 tp->control.trap_expected,
0d9a9a5f
PA
2466 target_pid_to_str (inferior_ptid),
2467 paddress (gdbarch, pc));
c906108c 2468
c2c6d25f
JM
2469 /* Normally, by the time we reach `resume', the breakpoints are either
2470 removed or inserted, as appropriate. The exception is if we're sitting
2471 at a permanent breakpoint; we need to step over it, but permanent
2472 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2473 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2474 {
af48d08f
PA
2475 if (sig != GDB_SIGNAL_0)
2476 {
2477 /* We have a signal to pass to the inferior. The resume
2478 may, or may not take us to the signal handler. If this
2479 is a step, we'll need to stop in the signal handler, if
2480 there's one, (if the target supports stepping into
2481 handlers), or in the next mainline instruction, if
2482 there's no handler. If this is a continue, we need to be
2483 sure to run the handler with all breakpoints inserted.
2484 In all cases, set a breakpoint at the current address
2485 (where the handler returns to), and once that breakpoint
2486 is hit, resume skipping the permanent breakpoint. If
2487 that breakpoint isn't hit, then we've stepped into the
2488 signal handler (or hit some other event). We'll delete
2489 the step-resume breakpoint then. */
2490
2491 if (debug_infrun)
2492 fprintf_unfiltered (gdb_stdlog,
2493 "infrun: resume: skipping permanent breakpoint, "
2494 "deliver signal first\n");
2495
2496 clear_step_over_info ();
2497 tp->control.trap_expected = 0;
2498
2499 if (tp->control.step_resume_breakpoint == NULL)
2500 {
2501 /* Set a "high-priority" step-resume, as we don't want
2502 user breakpoints at PC to trigger (again) when this
2503 hits. */
2504 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2505 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2506
2507 tp->step_after_step_resume_breakpoint = step;
2508 }
2509
2510 insert_breakpoints ();
2511 }
2512 else
2513 {
2514 /* There's no signal to pass, we can go ahead and skip the
2515 permanent breakpoint manually. */
2516 if (debug_infrun)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "infrun: resume: skipping permanent breakpoint\n");
2519 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2520 /* Update pc to reflect the new address from which we will
2521 execute instructions. */
2522 pc = regcache_read_pc (regcache);
2523
2524 if (step)
2525 {
2526 /* We've already advanced the PC, so the stepping part
2527 is done. Now we need to arrange for a trap to be
2528 reported to handle_inferior_event. Set a breakpoint
2529 at the current PC, and run to it. Don't update
2530 prev_pc, because if we end in
44a1ee51
PA
2531 switch_back_to_stepped_thread, we want the "expected
2532 thread advanced also" branch to be taken. IOW, we
2533 don't want this thread to step further from PC
af48d08f 2534 (overstep). */
1ac806b8 2535 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2536 insert_single_step_breakpoint (gdbarch, aspace, pc);
2537 insert_breakpoints ();
2538
fbea99ea 2539 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2540 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2541 discard_cleanups (old_cleanups);
372316f1 2542 tp->resumed = 1;
af48d08f
PA
2543 return;
2544 }
2545 }
6d350bb5 2546 }
c2c6d25f 2547
c1e36e3e
PA
2548 /* If we have a breakpoint to step over, make sure to do a single
2549 step only. Same if we have software watchpoints. */
2550 if (tp->control.trap_expected || bpstat_should_step ())
2551 tp->control.may_range_step = 0;
2552
237fc4c9
PA
2553 /* If enabled, step over breakpoints by executing a copy of the
2554 instruction at a different address.
2555
2556 We can't use displaced stepping when we have a signal to deliver;
2557 the comments for displaced_step_prepare explain why. The
2558 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2559 signals' explain what we do instead.
2560
2561 We can't use displaced stepping when we are waiting for vfork_done
2562 event, displaced stepping breaks the vfork child similarly as single
2563 step software breakpoint. */
3fc8eb30
PA
2564 if (tp->control.trap_expected
2565 && use_displaced_stepping (tp)
cb71640d 2566 && !step_over_info_valid_p ()
a493e3e2 2567 && sig == GDB_SIGNAL_0
74609e71 2568 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2569 {
3fc8eb30 2570 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2571
3fc8eb30 2572 if (prepared == 0)
d56b7306 2573 {
4d9d9d04
PA
2574 if (debug_infrun)
2575 fprintf_unfiltered (gdb_stdlog,
2576 "Got placed in step-over queue\n");
2577
2578 tp->control.trap_expected = 0;
d56b7306
VP
2579 discard_cleanups (old_cleanups);
2580 return;
2581 }
3fc8eb30
PA
2582 else if (prepared < 0)
2583 {
2584 /* Fallback to stepping over the breakpoint in-line. */
2585
2586 if (target_is_non_stop_p ())
2587 stop_all_threads ();
2588
2589 set_step_over_info (get_regcache_aspace (regcache),
21edc42f 2590 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2591
2592 step = maybe_software_singlestep (gdbarch, pc);
2593
2594 insert_breakpoints ();
2595 }
2596 else if (prepared > 0)
2597 {
2598 struct displaced_step_inferior_state *displaced;
99e40580 2599
3fc8eb30
PA
2600 /* Update pc to reflect the new address from which we will
2601 execute instructions due to displaced stepping. */
2602 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2603
3fc8eb30
PA
2604 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2605 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2606 displaced->step_closure);
2607 }
237fc4c9
PA
2608 }
2609
2facfe5c 2610 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2611 else if (step)
2facfe5c 2612 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2613
30852783
UW
2614 /* Currently, our software single-step implementation leads to different
2615 results than hardware single-stepping in one situation: when stepping
2616 into delivering a signal which has an associated signal handler,
2617 hardware single-step will stop at the first instruction of the handler,
2618 while software single-step will simply skip execution of the handler.
2619
2620 For now, this difference in behavior is accepted since there is no
2621 easy way to actually implement single-stepping into a signal handler
2622 without kernel support.
2623
2624 However, there is one scenario where this difference leads to follow-on
2625 problems: if we're stepping off a breakpoint by removing all breakpoints
2626 and then single-stepping. In this case, the software single-step
2627 behavior means that even if there is a *breakpoint* in the signal
2628 handler, GDB still would not stop.
2629
2630 Fortunately, we can at least fix this particular issue. We detect
2631 here the case where we are about to deliver a signal while software
2632 single-stepping with breakpoints removed. In this situation, we
2633 revert the decisions to remove all breakpoints and insert single-
2634 step breakpoints, and instead we install a step-resume breakpoint
2635 at the current address, deliver the signal without stepping, and
2636 once we arrive back at the step-resume breakpoint, actually step
2637 over the breakpoint we originally wanted to step over. */
34b7e8a6 2638 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2639 && sig != GDB_SIGNAL_0
2640 && step_over_info_valid_p ())
30852783
UW
2641 {
2642 /* If we have nested signals or a pending signal is delivered
2643 immediately after a handler returns, might might already have
2644 a step-resume breakpoint set on the earlier handler. We cannot
2645 set another step-resume breakpoint; just continue on until the
2646 original breakpoint is hit. */
2647 if (tp->control.step_resume_breakpoint == NULL)
2648 {
2c03e5be 2649 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2650 tp->step_after_step_resume_breakpoint = 1;
2651 }
2652
34b7e8a6 2653 delete_single_step_breakpoints (tp);
30852783 2654
31e77af2 2655 clear_step_over_info ();
30852783 2656 tp->control.trap_expected = 0;
31e77af2
PA
2657
2658 insert_breakpoints ();
30852783
UW
2659 }
2660
b0f16a3e
SM
2661 /* If STEP is set, it's a request to use hardware stepping
2662 facilities. But in that case, we should never
2663 use singlestep breakpoint. */
34b7e8a6 2664 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2665
fbea99ea 2666 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2667 if (tp->control.trap_expected)
b0f16a3e
SM
2668 {
2669 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2670 hit, either by single-stepping the thread with the breakpoint
2671 removed, or by displaced stepping, with the breakpoint inserted.
2672 In the former case, we need to single-step only this thread,
2673 and keep others stopped, as they can miss this breakpoint if
2674 allowed to run. That's not really a problem for displaced
2675 stepping, but, we still keep other threads stopped, in case
2676 another thread is also stopped for a breakpoint waiting for
2677 its turn in the displaced stepping queue. */
b0f16a3e
SM
2678 resume_ptid = inferior_ptid;
2679 }
fbea99ea
PA
2680 else
2681 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2682
7f5ef605
PA
2683 if (execution_direction != EXEC_REVERSE
2684 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2685 {
372316f1
PA
2686 /* There are two cases where we currently need to step a
2687 breakpoint instruction when we have a signal to deliver:
2688
2689 - See handle_signal_stop where we handle random signals that
2690 could take out us out of the stepping range. Normally, in
2691 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2692 signal handler with a breakpoint at PC, but there are cases
2693 where we should _always_ single-step, even if we have a
2694 step-resume breakpoint, like when a software watchpoint is
2695 set. Assuming single-stepping and delivering a signal at the
2696 same time would takes us to the signal handler, then we could
2697 have removed the breakpoint at PC to step over it. However,
2698 some hardware step targets (like e.g., Mac OS) can't step
2699 into signal handlers, and for those, we need to leave the
2700 breakpoint at PC inserted, as otherwise if the handler
2701 recurses and executes PC again, it'll miss the breakpoint.
2702 So we leave the breakpoint inserted anyway, but we need to
2703 record that we tried to step a breakpoint instruction, so
372316f1
PA
2704 that adjust_pc_after_break doesn't end up confused.
2705
2706 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2707 in one thread after another thread that was stepping had been
2708 momentarily paused for a step-over. When we re-resume the
2709 stepping thread, it may be resumed from that address with a
2710 breakpoint that hasn't trapped yet. Seen with
2711 gdb.threads/non-stop-fair-events.exp, on targets that don't
2712 do displaced stepping. */
2713
2714 if (debug_infrun)
2715 fprintf_unfiltered (gdb_stdlog,
2716 "infrun: resume: [%s] stepped breakpoint\n",
2717 target_pid_to_str (tp->ptid));
7f5ef605
PA
2718
2719 tp->stepped_breakpoint = 1;
2720
b0f16a3e
SM
2721 /* Most targets can step a breakpoint instruction, thus
2722 executing it normally. But if this one cannot, just
2723 continue and we will hit it anyway. */
7f5ef605 2724 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2725 step = 0;
2726 }
ef5cf84e 2727
b0f16a3e 2728 if (debug_displaced
cb71640d 2729 && tp->control.trap_expected
3fc8eb30 2730 && use_displaced_stepping (tp)
cb71640d 2731 && !step_over_info_valid_p ())
b0f16a3e 2732 {
d9b67d9f 2733 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2734 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2735 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2736 gdb_byte buf[4];
2737
2738 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2739 paddress (resume_gdbarch, actual_pc));
2740 read_memory (actual_pc, buf, sizeof (buf));
2741 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2742 }
237fc4c9 2743
b0f16a3e
SM
2744 if (tp->control.may_range_step)
2745 {
2746 /* If we're resuming a thread with the PC out of the step
2747 range, then we're doing some nested/finer run control
2748 operation, like stepping the thread out of the dynamic
2749 linker or the displaced stepping scratch pad. We
2750 shouldn't have allowed a range step then. */
2751 gdb_assert (pc_in_thread_step_range (pc, tp));
2752 }
c1e36e3e 2753
64ce06e4 2754 do_target_resume (resume_ptid, step, sig);
372316f1 2755 tp->resumed = 1;
c906108c
SS
2756 discard_cleanups (old_cleanups);
2757}
2758\f
237fc4c9 2759/* Proceeding. */
c906108c 2760
4c2f2a79
PA
2761/* See infrun.h. */
2762
2763/* Counter that tracks number of user visible stops. This can be used
2764 to tell whether a command has proceeded the inferior past the
2765 current location. This allows e.g., inferior function calls in
2766 breakpoint commands to not interrupt the command list. When the
2767 call finishes successfully, the inferior is standing at the same
2768 breakpoint as if nothing happened (and so we don't call
2769 normal_stop). */
2770static ULONGEST current_stop_id;
2771
2772/* See infrun.h. */
2773
2774ULONGEST
2775get_stop_id (void)
2776{
2777 return current_stop_id;
2778}
2779
2780/* Called when we report a user visible stop. */
2781
2782static void
2783new_stop_id (void)
2784{
2785 current_stop_id++;
2786}
2787
c906108c
SS
2788/* Clear out all variables saying what to do when inferior is continued.
2789 First do this, then set the ones you want, then call `proceed'. */
2790
a7212384
UW
2791static void
2792clear_proceed_status_thread (struct thread_info *tp)
c906108c 2793{
a7212384
UW
2794 if (debug_infrun)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "infrun: clear_proceed_status_thread (%s)\n",
2797 target_pid_to_str (tp->ptid));
d6b48e9c 2798
372316f1
PA
2799 /* If we're starting a new sequence, then the previous finished
2800 single-step is no longer relevant. */
2801 if (tp->suspend.waitstatus_pending_p)
2802 {
2803 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2804 {
2805 if (debug_infrun)
2806 fprintf_unfiltered (gdb_stdlog,
2807 "infrun: clear_proceed_status: pending "
2808 "event of %s was a finished step. "
2809 "Discarding.\n",
2810 target_pid_to_str (tp->ptid));
2811
2812 tp->suspend.waitstatus_pending_p = 0;
2813 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2814 }
2815 else if (debug_infrun)
2816 {
2817 char *statstr;
2818
2819 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2820 fprintf_unfiltered (gdb_stdlog,
2821 "infrun: clear_proceed_status_thread: thread %s "
2822 "has pending wait status %s "
2823 "(currently_stepping=%d).\n",
2824 target_pid_to_str (tp->ptid), statstr,
2825 currently_stepping (tp));
2826 xfree (statstr);
2827 }
2828 }
2829
70509625
PA
2830 /* If this signal should not be seen by program, give it zero.
2831 Used for debugging signals. */
2832 if (!signal_pass_state (tp->suspend.stop_signal))
2833 tp->suspend.stop_signal = GDB_SIGNAL_0;
2834
243a9253
PA
2835 thread_fsm_delete (tp->thread_fsm);
2836 tp->thread_fsm = NULL;
2837
16c381f0
JK
2838 tp->control.trap_expected = 0;
2839 tp->control.step_range_start = 0;
2840 tp->control.step_range_end = 0;
c1e36e3e 2841 tp->control.may_range_step = 0;
16c381f0
JK
2842 tp->control.step_frame_id = null_frame_id;
2843 tp->control.step_stack_frame_id = null_frame_id;
2844 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2845 tp->control.step_start_function = NULL;
a7212384 2846 tp->stop_requested = 0;
4e1c45ea 2847
16c381f0 2848 tp->control.stop_step = 0;
32400beb 2849
16c381f0 2850 tp->control.proceed_to_finish = 0;
414c69f7 2851
856e7dd6 2852 tp->control.stepping_command = 0;
17b2616c 2853
a7212384 2854 /* Discard any remaining commands or status from previous stop. */
16c381f0 2855 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2856}
32400beb 2857
a7212384 2858void
70509625 2859clear_proceed_status (int step)
a7212384 2860{
f2665db5
MM
2861 /* With scheduler-locking replay, stop replaying other threads if we're
2862 not replaying the user-visible resume ptid.
2863
2864 This is a convenience feature to not require the user to explicitly
2865 stop replaying the other threads. We're assuming that the user's
2866 intent is to resume tracing the recorded process. */
2867 if (!non_stop && scheduler_mode == schedlock_replay
2868 && target_record_is_replaying (minus_one_ptid)
2869 && !target_record_will_replay (user_visible_resume_ptid (step),
2870 execution_direction))
2871 target_record_stop_replaying ();
2872
6c95b8df
PA
2873 if (!non_stop)
2874 {
70509625
PA
2875 struct thread_info *tp;
2876 ptid_t resume_ptid;
2877
2878 resume_ptid = user_visible_resume_ptid (step);
2879
2880 /* In all-stop mode, delete the per-thread status of all threads
2881 we're about to resume, implicitly and explicitly. */
2882 ALL_NON_EXITED_THREADS (tp)
2883 {
2884 if (!ptid_match (tp->ptid, resume_ptid))
2885 continue;
2886 clear_proceed_status_thread (tp);
2887 }
6c95b8df
PA
2888 }
2889
a7212384
UW
2890 if (!ptid_equal (inferior_ptid, null_ptid))
2891 {
2892 struct inferior *inferior;
2893
2894 if (non_stop)
2895 {
6c95b8df
PA
2896 /* If in non-stop mode, only delete the per-thread status of
2897 the current thread. */
a7212384
UW
2898 clear_proceed_status_thread (inferior_thread ());
2899 }
6c95b8df 2900
d6b48e9c 2901 inferior = current_inferior ();
16c381f0 2902 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2903 }
2904
f3b1572e 2905 observer_notify_about_to_proceed ();
c906108c
SS
2906}
2907
99619bea
PA
2908/* Returns true if TP is still stopped at a breakpoint that needs
2909 stepping-over in order to make progress. If the breakpoint is gone
2910 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2911
2912static int
6c4cfb24 2913thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2914{
2915 if (tp->stepping_over_breakpoint)
2916 {
2917 struct regcache *regcache = get_thread_regcache (tp->ptid);
2918
2919 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2920 regcache_read_pc (regcache))
2921 == ordinary_breakpoint_here)
99619bea
PA
2922 return 1;
2923
2924 tp->stepping_over_breakpoint = 0;
2925 }
2926
2927 return 0;
2928}
2929
6c4cfb24
PA
2930/* Check whether thread TP still needs to start a step-over in order
2931 to make progress when resumed. Returns an bitwise or of enum
2932 step_over_what bits, indicating what needs to be stepped over. */
2933
8d297bbf 2934static step_over_what
6c4cfb24
PA
2935thread_still_needs_step_over (struct thread_info *tp)
2936{
8d297bbf 2937 step_over_what what = 0;
6c4cfb24
PA
2938
2939 if (thread_still_needs_step_over_bp (tp))
2940 what |= STEP_OVER_BREAKPOINT;
2941
2942 if (tp->stepping_over_watchpoint
2943 && !target_have_steppable_watchpoint)
2944 what |= STEP_OVER_WATCHPOINT;
2945
2946 return what;
2947}
2948
483805cf
PA
2949/* Returns true if scheduler locking applies. STEP indicates whether
2950 we're about to do a step/next-like command to a thread. */
2951
2952static int
856e7dd6 2953schedlock_applies (struct thread_info *tp)
483805cf
PA
2954{
2955 return (scheduler_mode == schedlock_on
2956 || (scheduler_mode == schedlock_step
f2665db5
MM
2957 && tp->control.stepping_command)
2958 || (scheduler_mode == schedlock_replay
2959 && target_record_will_replay (minus_one_ptid,
2960 execution_direction)));
483805cf
PA
2961}
2962
c906108c
SS
2963/* Basic routine for continuing the program in various fashions.
2964
2965 ADDR is the address to resume at, or -1 for resume where stopped.
2966 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2967 or -1 for act according to how it stopped.
c906108c 2968 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2969 -1 means return after that and print nothing.
2970 You should probably set various step_... variables
2971 before calling here, if you are stepping.
c906108c
SS
2972
2973 You should call clear_proceed_status before calling proceed. */
2974
2975void
64ce06e4 2976proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2977{
e58b0e63
PA
2978 struct regcache *regcache;
2979 struct gdbarch *gdbarch;
4e1c45ea 2980 struct thread_info *tp;
e58b0e63 2981 CORE_ADDR pc;
6c95b8df 2982 struct address_space *aspace;
4d9d9d04
PA
2983 ptid_t resume_ptid;
2984 struct execution_control_state ecss;
2985 struct execution_control_state *ecs = &ecss;
2986 struct cleanup *old_chain;
2987 int started;
c906108c 2988
e58b0e63
PA
2989 /* If we're stopped at a fork/vfork, follow the branch set by the
2990 "set follow-fork-mode" command; otherwise, we'll just proceed
2991 resuming the current thread. */
2992 if (!follow_fork ())
2993 {
2994 /* The target for some reason decided not to resume. */
2995 normal_stop ();
f148b27e
PA
2996 if (target_can_async_p ())
2997 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2998 return;
2999 }
3000
842951eb
PA
3001 /* We'll update this if & when we switch to a new thread. */
3002 previous_inferior_ptid = inferior_ptid;
3003
e58b0e63
PA
3004 regcache = get_current_regcache ();
3005 gdbarch = get_regcache_arch (regcache);
6c95b8df 3006 aspace = get_regcache_aspace (regcache);
e58b0e63 3007 pc = regcache_read_pc (regcache);
2adfaa28 3008 tp = inferior_thread ();
e58b0e63 3009
99619bea
PA
3010 /* Fill in with reasonable starting values. */
3011 init_thread_stepping_state (tp);
3012
c2829269
PA
3013 gdb_assert (!thread_is_in_step_over_chain (tp));
3014
2acceee2 3015 if (addr == (CORE_ADDR) -1)
c906108c 3016 {
af48d08f
PA
3017 if (pc == stop_pc
3018 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3019 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3020 /* There is a breakpoint at the address we will resume at,
3021 step one instruction before inserting breakpoints so that
3022 we do not stop right away (and report a second hit at this
b2175913
MS
3023 breakpoint).
3024
3025 Note, we don't do this in reverse, because we won't
3026 actually be executing the breakpoint insn anyway.
3027 We'll be (un-)executing the previous instruction. */
99619bea 3028 tp->stepping_over_breakpoint = 1;
515630c5
UW
3029 else if (gdbarch_single_step_through_delay_p (gdbarch)
3030 && gdbarch_single_step_through_delay (gdbarch,
3031 get_current_frame ()))
3352ef37
AC
3032 /* We stepped onto an instruction that needs to be stepped
3033 again before re-inserting the breakpoint, do so. */
99619bea 3034 tp->stepping_over_breakpoint = 1;
c906108c
SS
3035 }
3036 else
3037 {
515630c5 3038 regcache_write_pc (regcache, addr);
c906108c
SS
3039 }
3040
70509625
PA
3041 if (siggnal != GDB_SIGNAL_DEFAULT)
3042 tp->suspend.stop_signal = siggnal;
3043
4d9d9d04
PA
3044 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3045
3046 /* If an exception is thrown from this point on, make sure to
3047 propagate GDB's knowledge of the executing state to the
3048 frontend/user running state. */
3049 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3050
3051 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3052 threads (e.g., we might need to set threads stepping over
3053 breakpoints first), from the user/frontend's point of view, all
3054 threads in RESUME_PTID are now running. Unless we're calling an
3055 inferior function, as in that case we pretend the inferior
3056 doesn't run at all. */
3057 if (!tp->control.in_infcall)
3058 set_running (resume_ptid, 1);
17b2616c 3059
527159b7 3060 if (debug_infrun)
8a9de0e4 3061 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3062 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3063 paddress (gdbarch, addr),
64ce06e4 3064 gdb_signal_to_symbol_string (siggnal));
527159b7 3065
4d9d9d04
PA
3066 annotate_starting ();
3067
3068 /* Make sure that output from GDB appears before output from the
3069 inferior. */
3070 gdb_flush (gdb_stdout);
3071
3072 /* In a multi-threaded task we may select another thread and
3073 then continue or step.
3074
3075 But if a thread that we're resuming had stopped at a breakpoint,
3076 it will immediately cause another breakpoint stop without any
3077 execution (i.e. it will report a breakpoint hit incorrectly). So
3078 we must step over it first.
3079
3080 Look for threads other than the current (TP) that reported a
3081 breakpoint hit and haven't been resumed yet since. */
3082
3083 /* If scheduler locking applies, we can avoid iterating over all
3084 threads. */
3085 if (!non_stop && !schedlock_applies (tp))
94cc34af 3086 {
4d9d9d04
PA
3087 struct thread_info *current = tp;
3088
3089 ALL_NON_EXITED_THREADS (tp)
3090 {
3091 /* Ignore the current thread here. It's handled
3092 afterwards. */
3093 if (tp == current)
3094 continue;
99619bea 3095
4d9d9d04
PA
3096 /* Ignore threads of processes we're not resuming. */
3097 if (!ptid_match (tp->ptid, resume_ptid))
3098 continue;
c906108c 3099
4d9d9d04
PA
3100 if (!thread_still_needs_step_over (tp))
3101 continue;
3102
3103 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3104
99619bea
PA
3105 if (debug_infrun)
3106 fprintf_unfiltered (gdb_stdlog,
3107 "infrun: need to step-over [%s] first\n",
4d9d9d04 3108 target_pid_to_str (tp->ptid));
99619bea 3109
4d9d9d04 3110 thread_step_over_chain_enqueue (tp);
2adfaa28 3111 }
31e77af2 3112
4d9d9d04 3113 tp = current;
30852783
UW
3114 }
3115
4d9d9d04
PA
3116 /* Enqueue the current thread last, so that we move all other
3117 threads over their breakpoints first. */
3118 if (tp->stepping_over_breakpoint)
3119 thread_step_over_chain_enqueue (tp);
30852783 3120
4d9d9d04
PA
3121 /* If the thread isn't started, we'll still need to set its prev_pc,
3122 so that switch_back_to_stepped_thread knows the thread hasn't
3123 advanced. Must do this before resuming any thread, as in
3124 all-stop/remote, once we resume we can't send any other packet
3125 until the target stops again. */
3126 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3127
4d9d9d04 3128 started = start_step_over ();
c906108c 3129
4d9d9d04
PA
3130 if (step_over_info_valid_p ())
3131 {
3132 /* Either this thread started a new in-line step over, or some
3133 other thread was already doing one. In either case, don't
3134 resume anything else until the step-over is finished. */
3135 }
fbea99ea 3136 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3137 {
3138 /* A new displaced stepping sequence was started. In all-stop,
3139 we can't talk to the target anymore until it next stops. */
3140 }
fbea99ea
PA
3141 else if (!non_stop && target_is_non_stop_p ())
3142 {
3143 /* In all-stop, but the target is always in non-stop mode.
3144 Start all other threads that are implicitly resumed too. */
3145 ALL_NON_EXITED_THREADS (tp)
3146 {
3147 /* Ignore threads of processes we're not resuming. */
3148 if (!ptid_match (tp->ptid, resume_ptid))
3149 continue;
3150
3151 if (tp->resumed)
3152 {
3153 if (debug_infrun)
3154 fprintf_unfiltered (gdb_stdlog,
3155 "infrun: proceed: [%s] resumed\n",
3156 target_pid_to_str (tp->ptid));
3157 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3158 continue;
3159 }
3160
3161 if (thread_is_in_step_over_chain (tp))
3162 {
3163 if (debug_infrun)
3164 fprintf_unfiltered (gdb_stdlog,
3165 "infrun: proceed: [%s] needs step-over\n",
3166 target_pid_to_str (tp->ptid));
3167 continue;
3168 }
3169
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: proceed: resuming %s\n",
3173 target_pid_to_str (tp->ptid));
3174
3175 reset_ecs (ecs, tp);
3176 switch_to_thread (tp->ptid);
3177 keep_going_pass_signal (ecs);
3178 if (!ecs->wait_some_more)
fd7dcb94 3179 error (_("Command aborted."));
fbea99ea
PA
3180 }
3181 }
372316f1 3182 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3183 {
3184 /* The thread wasn't started, and isn't queued, run it now. */
3185 reset_ecs (ecs, tp);
3186 switch_to_thread (tp->ptid);
3187 keep_going_pass_signal (ecs);
3188 if (!ecs->wait_some_more)
fd7dcb94 3189 error (_("Command aborted."));
4d9d9d04 3190 }
c906108c 3191
4d9d9d04 3192 discard_cleanups (old_chain);
c906108c 3193
0b333c5e
PA
3194 /* Tell the event loop to wait for it to stop. If the target
3195 supports asynchronous execution, it'll do this from within
3196 target_resume. */
362646f5 3197 if (!target_can_async_p ())
0b333c5e 3198 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3199}
c906108c
SS
3200\f
3201
3202/* Start remote-debugging of a machine over a serial link. */
96baa820 3203
c906108c 3204void
8621d6a9 3205start_remote (int from_tty)
c906108c 3206{
d6b48e9c 3207 struct inferior *inferior;
d6b48e9c
PA
3208
3209 inferior = current_inferior ();
16c381f0 3210 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3211
1777feb0 3212 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3213 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3214 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3215 nothing is returned (instead of just blocking). Because of this,
3216 targets expecting an immediate response need to, internally, set
3217 things up so that the target_wait() is forced to eventually
1777feb0 3218 timeout. */
6426a772
JM
3219 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3220 differentiate to its caller what the state of the target is after
3221 the initial open has been performed. Here we're assuming that
3222 the target has stopped. It should be possible to eventually have
3223 target_open() return to the caller an indication that the target
3224 is currently running and GDB state should be set to the same as
1777feb0 3225 for an async run. */
e4c8541f 3226 wait_for_inferior ();
8621d6a9
DJ
3227
3228 /* Now that the inferior has stopped, do any bookkeeping like
3229 loading shared libraries. We want to do this before normal_stop,
3230 so that the displayed frame is up to date. */
3231 post_create_inferior (&current_target, from_tty);
3232
6426a772 3233 normal_stop ();
c906108c
SS
3234}
3235
3236/* Initialize static vars when a new inferior begins. */
3237
3238void
96baa820 3239init_wait_for_inferior (void)
c906108c
SS
3240{
3241 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3242
c906108c
SS
3243 breakpoint_init_inferior (inf_starting);
3244
70509625 3245 clear_proceed_status (0);
9f976b41 3246
ca005067 3247 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3248
842951eb 3249 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3250
edb3359d
DJ
3251 /* Discard any skipped inlined frames. */
3252 clear_inline_frame_state (minus_one_ptid);
c906108c 3253}
237fc4c9 3254
c906108c 3255\f
488f131b 3256
ec9499be 3257static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3258
568d6575
UW
3259static void handle_step_into_function (struct gdbarch *gdbarch,
3260 struct execution_control_state *ecs);
3261static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3262 struct execution_control_state *ecs);
4f5d7f63 3263static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3264static void check_exception_resume (struct execution_control_state *,
28106bc2 3265 struct frame_info *);
611c83ae 3266
bdc36728 3267static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3268static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3269static void keep_going (struct execution_control_state *ecs);
94c57d6a 3270static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3271static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3272
252fbfc8
PA
3273/* Callback for iterate over threads. If the thread is stopped, but
3274 the user/frontend doesn't know about that yet, go through
3275 normal_stop, as if the thread had just stopped now. ARG points at
3276 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3277 ptid_is_pid(PTID) is true, applies to all threads of the process
3278 pointed at by PTID. Otherwise, apply only to the thread pointed by
3279 PTID. */
3280
3281static int
3282infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3283{
3284 ptid_t ptid = * (ptid_t *) arg;
3285
3286 if ((ptid_equal (info->ptid, ptid)
3287 || ptid_equal (minus_one_ptid, ptid)
3288 || (ptid_is_pid (ptid)
3289 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3290 && is_running (info->ptid)
3291 && !is_executing (info->ptid))
3292 {
3293 struct cleanup *old_chain;
3294 struct execution_control_state ecss;
3295 struct execution_control_state *ecs = &ecss;
3296
3297 memset (ecs, 0, sizeof (*ecs));
3298
3299 old_chain = make_cleanup_restore_current_thread ();
3300
f15cb84a
YQ
3301 overlay_cache_invalid = 1;
3302 /* Flush target cache before starting to handle each event.
3303 Target was running and cache could be stale. This is just a
3304 heuristic. Running threads may modify target memory, but we
3305 don't get any event. */
3306 target_dcache_invalidate ();
3307
252fbfc8
PA
3308 /* Go through handle_inferior_event/normal_stop, so we always
3309 have consistent output as if the stop event had been
3310 reported. */
3311 ecs->ptid = info->ptid;
243a9253 3312 ecs->event_thread = info;
252fbfc8 3313 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3314 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3315
3316 handle_inferior_event (ecs);
3317
3318 if (!ecs->wait_some_more)
3319 {
243a9253
PA
3320 /* Cancel any running execution command. */
3321 thread_cancel_execution_command (info);
3322
252fbfc8 3323 normal_stop ();
252fbfc8
PA
3324 }
3325
3326 do_cleanups (old_chain);
3327 }
3328
3329 return 0;
3330}
3331
3332/* This function is attached as a "thread_stop_requested" observer.
3333 Cleanup local state that assumed the PTID was to be resumed, and
3334 report the stop to the frontend. */
3335
2c0b251b 3336static void
252fbfc8
PA
3337infrun_thread_stop_requested (ptid_t ptid)
3338{
c2829269 3339 struct thread_info *tp;
252fbfc8 3340
c2829269
PA
3341 /* PTID was requested to stop. Remove matching threads from the
3342 step-over queue, so we don't try to resume them
3343 automatically. */
3344 ALL_NON_EXITED_THREADS (tp)
3345 if (ptid_match (tp->ptid, ptid))
3346 {
3347 if (thread_is_in_step_over_chain (tp))
3348 thread_step_over_chain_remove (tp);
3349 }
252fbfc8
PA
3350
3351 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3352}
3353
a07daef3
PA
3354static void
3355infrun_thread_thread_exit (struct thread_info *tp, int silent)
3356{
3357 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3358 nullify_last_target_wait_ptid ();
3359}
3360
0cbcdb96
PA
3361/* Delete the step resume, single-step and longjmp/exception resume
3362 breakpoints of TP. */
4e1c45ea 3363
0cbcdb96
PA
3364static void
3365delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3366{
0cbcdb96
PA
3367 delete_step_resume_breakpoint (tp);
3368 delete_exception_resume_breakpoint (tp);
34b7e8a6 3369 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3370}
3371
0cbcdb96
PA
3372/* If the target still has execution, call FUNC for each thread that
3373 just stopped. In all-stop, that's all the non-exited threads; in
3374 non-stop, that's the current thread, only. */
3375
3376typedef void (*for_each_just_stopped_thread_callback_func)
3377 (struct thread_info *tp);
4e1c45ea
PA
3378
3379static void
0cbcdb96 3380for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3381{
0cbcdb96 3382 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3383 return;
3384
fbea99ea 3385 if (target_is_non_stop_p ())
4e1c45ea 3386 {
0cbcdb96
PA
3387 /* If in non-stop mode, only the current thread stopped. */
3388 func (inferior_thread ());
4e1c45ea
PA
3389 }
3390 else
0cbcdb96
PA
3391 {
3392 struct thread_info *tp;
3393
3394 /* In all-stop mode, all threads have stopped. */
3395 ALL_NON_EXITED_THREADS (tp)
3396 {
3397 func (tp);
3398 }
3399 }
3400}
3401
3402/* Delete the step resume and longjmp/exception resume breakpoints of
3403 the threads that just stopped. */
3404
3405static void
3406delete_just_stopped_threads_infrun_breakpoints (void)
3407{
3408 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3409}
3410
3411/* Delete the single-step breakpoints of the threads that just
3412 stopped. */
7c16b83e 3413
34b7e8a6
PA
3414static void
3415delete_just_stopped_threads_single_step_breakpoints (void)
3416{
3417 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3418}
3419
1777feb0 3420/* A cleanup wrapper. */
4e1c45ea
PA
3421
3422static void
0cbcdb96 3423delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3424{
0cbcdb96 3425 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3426}
3427
221e1a37 3428/* See infrun.h. */
223698f8 3429
221e1a37 3430void
223698f8
DE
3431print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3432 const struct target_waitstatus *ws)
3433{
3434 char *status_string = target_waitstatus_to_string (ws);
3435 struct ui_file *tmp_stream = mem_fileopen ();
3436 char *text;
223698f8
DE
3437
3438 /* The text is split over several lines because it was getting too long.
3439 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3440 output as a unit; we want only one timestamp printed if debug_timestamp
3441 is set. */
3442
3443 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3444 "infrun: target_wait (%d.%ld.%ld",
3445 ptid_get_pid (waiton_ptid),
3446 ptid_get_lwp (waiton_ptid),
3447 ptid_get_tid (waiton_ptid));
dfd4cc63 3448 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3449 fprintf_unfiltered (tmp_stream,
3450 " [%s]", target_pid_to_str (waiton_ptid));
3451 fprintf_unfiltered (tmp_stream, ", status) =\n");
3452 fprintf_unfiltered (tmp_stream,
1176ecec 3453 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3454 ptid_get_pid (result_ptid),
1176ecec
PA
3455 ptid_get_lwp (result_ptid),
3456 ptid_get_tid (result_ptid),
dfd4cc63 3457 target_pid_to_str (result_ptid));
223698f8
DE
3458 fprintf_unfiltered (tmp_stream,
3459 "infrun: %s\n",
3460 status_string);
3461
759ef836 3462 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3463
3464 /* This uses %s in part to handle %'s in the text, but also to avoid
3465 a gcc error: the format attribute requires a string literal. */
3466 fprintf_unfiltered (gdb_stdlog, "%s", text);
3467
3468 xfree (status_string);
3469 xfree (text);
3470 ui_file_delete (tmp_stream);
3471}
3472
372316f1
PA
3473/* Select a thread at random, out of those which are resumed and have
3474 had events. */
3475
3476static struct thread_info *
3477random_pending_event_thread (ptid_t waiton_ptid)
3478{
3479 struct thread_info *event_tp;
3480 int num_events = 0;
3481 int random_selector;
3482
3483 /* First see how many events we have. Count only resumed threads
3484 that have an event pending. */
3485 ALL_NON_EXITED_THREADS (event_tp)
3486 if (ptid_match (event_tp->ptid, waiton_ptid)
3487 && event_tp->resumed
3488 && event_tp->suspend.waitstatus_pending_p)
3489 num_events++;
3490
3491 if (num_events == 0)
3492 return NULL;
3493
3494 /* Now randomly pick a thread out of those that have had events. */
3495 random_selector = (int)
3496 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3497
3498 if (debug_infrun && num_events > 1)
3499 fprintf_unfiltered (gdb_stdlog,
3500 "infrun: Found %d events, selecting #%d\n",
3501 num_events, random_selector);
3502
3503 /* Select the Nth thread that has had an event. */
3504 ALL_NON_EXITED_THREADS (event_tp)
3505 if (ptid_match (event_tp->ptid, waiton_ptid)
3506 && event_tp->resumed
3507 && event_tp->suspend.waitstatus_pending_p)
3508 if (random_selector-- == 0)
3509 break;
3510
3511 return event_tp;
3512}
3513
3514/* Wrapper for target_wait that first checks whether threads have
3515 pending statuses to report before actually asking the target for
3516 more events. */
3517
3518static ptid_t
3519do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3520{
3521 ptid_t event_ptid;
3522 struct thread_info *tp;
3523
3524 /* First check if there is a resumed thread with a wait status
3525 pending. */
3526 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3527 {
3528 tp = random_pending_event_thread (ptid);
3529 }
3530 else
3531 {
3532 if (debug_infrun)
3533 fprintf_unfiltered (gdb_stdlog,
3534 "infrun: Waiting for specific thread %s.\n",
3535 target_pid_to_str (ptid));
3536
3537 /* We have a specific thread to check. */
3538 tp = find_thread_ptid (ptid);
3539 gdb_assert (tp != NULL);
3540 if (!tp->suspend.waitstatus_pending_p)
3541 tp = NULL;
3542 }
3543
3544 if (tp != NULL
3545 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3546 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3547 {
3548 struct regcache *regcache = get_thread_regcache (tp->ptid);
3549 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3550 CORE_ADDR pc;
3551 int discard = 0;
3552
3553 pc = regcache_read_pc (regcache);
3554
3555 if (pc != tp->suspend.stop_pc)
3556 {
3557 if (debug_infrun)
3558 fprintf_unfiltered (gdb_stdlog,
3559 "infrun: PC of %s changed. was=%s, now=%s\n",
3560 target_pid_to_str (tp->ptid),
3561 paddress (gdbarch, tp->prev_pc),
3562 paddress (gdbarch, pc));
3563 discard = 1;
3564 }
3565 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3566 {
3567 if (debug_infrun)
3568 fprintf_unfiltered (gdb_stdlog,
3569 "infrun: previous breakpoint of %s, at %s gone\n",
3570 target_pid_to_str (tp->ptid),
3571 paddress (gdbarch, pc));
3572
3573 discard = 1;
3574 }
3575
3576 if (discard)
3577 {
3578 if (debug_infrun)
3579 fprintf_unfiltered (gdb_stdlog,
3580 "infrun: pending event of %s cancelled.\n",
3581 target_pid_to_str (tp->ptid));
3582
3583 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3584 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3585 }
3586 }
3587
3588 if (tp != NULL)
3589 {
3590 if (debug_infrun)
3591 {
3592 char *statstr;
3593
3594 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3595 fprintf_unfiltered (gdb_stdlog,
3596 "infrun: Using pending wait status %s for %s.\n",
3597 statstr,
3598 target_pid_to_str (tp->ptid));
3599 xfree (statstr);
3600 }
3601
3602 /* Now that we've selected our final event LWP, un-adjust its PC
3603 if it was a software breakpoint (and the target doesn't
3604 always adjust the PC itself). */
3605 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3606 && !target_supports_stopped_by_sw_breakpoint ())
3607 {
3608 struct regcache *regcache;
3609 struct gdbarch *gdbarch;
3610 int decr_pc;
3611
3612 regcache = get_thread_regcache (tp->ptid);
3613 gdbarch = get_regcache_arch (regcache);
3614
3615 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3616 if (decr_pc != 0)
3617 {
3618 CORE_ADDR pc;
3619
3620 pc = regcache_read_pc (regcache);
3621 regcache_write_pc (regcache, pc + decr_pc);
3622 }
3623 }
3624
3625 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3626 *status = tp->suspend.waitstatus;
3627 tp->suspend.waitstatus_pending_p = 0;
3628
3629 /* Wake up the event loop again, until all pending events are
3630 processed. */
3631 if (target_is_async_p ())
3632 mark_async_event_handler (infrun_async_inferior_event_token);
3633 return tp->ptid;
3634 }
3635
3636 /* But if we don't find one, we'll have to wait. */
3637
3638 if (deprecated_target_wait_hook)
3639 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3640 else
3641 event_ptid = target_wait (ptid, status, options);
3642
3643 return event_ptid;
3644}
3645
24291992
PA
3646/* Prepare and stabilize the inferior for detaching it. E.g.,
3647 detaching while a thread is displaced stepping is a recipe for
3648 crashing it, as nothing would readjust the PC out of the scratch
3649 pad. */
3650
3651void
3652prepare_for_detach (void)
3653{
3654 struct inferior *inf = current_inferior ();
3655 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3656 struct cleanup *old_chain_1;
3657 struct displaced_step_inferior_state *displaced;
3658
3659 displaced = get_displaced_stepping_state (inf->pid);
3660
3661 /* Is any thread of this process displaced stepping? If not,
3662 there's nothing else to do. */
3663 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3664 return;
3665
3666 if (debug_infrun)
3667 fprintf_unfiltered (gdb_stdlog,
3668 "displaced-stepping in-process while detaching");
3669
3670 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3671 inf->detaching = 1;
3672
3673 while (!ptid_equal (displaced->step_ptid, null_ptid))
3674 {
3675 struct cleanup *old_chain_2;
3676 struct execution_control_state ecss;
3677 struct execution_control_state *ecs;
3678
3679 ecs = &ecss;
3680 memset (ecs, 0, sizeof (*ecs));
3681
3682 overlay_cache_invalid = 1;
f15cb84a
YQ
3683 /* Flush target cache before starting to handle each event.
3684 Target was running and cache could be stale. This is just a
3685 heuristic. Running threads may modify target memory, but we
3686 don't get any event. */
3687 target_dcache_invalidate ();
24291992 3688
372316f1 3689 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3690
3691 if (debug_infrun)
3692 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3693
3694 /* If an error happens while handling the event, propagate GDB's
3695 knowledge of the executing state to the frontend/user running
3696 state. */
3e43a32a
MS
3697 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3698 &minus_one_ptid);
24291992
PA
3699
3700 /* Now figure out what to do with the result of the result. */
3701 handle_inferior_event (ecs);
3702
3703 /* No error, don't finish the state yet. */
3704 discard_cleanups (old_chain_2);
3705
3706 /* Breakpoints and watchpoints are not installed on the target
3707 at this point, and signals are passed directly to the
3708 inferior, so this must mean the process is gone. */
3709 if (!ecs->wait_some_more)
3710 {
3711 discard_cleanups (old_chain_1);
3712 error (_("Program exited while detaching"));
3713 }
3714 }
3715
3716 discard_cleanups (old_chain_1);
3717}
3718
cd0fc7c3 3719/* Wait for control to return from inferior to debugger.
ae123ec6 3720
cd0fc7c3
SS
3721 If inferior gets a signal, we may decide to start it up again
3722 instead of returning. That is why there is a loop in this function.
3723 When this function actually returns it means the inferior
3724 should be left stopped and GDB should read more commands. */
3725
3726void
e4c8541f 3727wait_for_inferior (void)
cd0fc7c3
SS
3728{
3729 struct cleanup *old_cleanups;
e6f5c25b 3730 struct cleanup *thread_state_chain;
c906108c 3731
527159b7 3732 if (debug_infrun)
ae123ec6 3733 fprintf_unfiltered
e4c8541f 3734 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3735
0cbcdb96
PA
3736 old_cleanups
3737 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3738 NULL);
cd0fc7c3 3739
e6f5c25b
PA
3740 /* If an error happens while handling the event, propagate GDB's
3741 knowledge of the executing state to the frontend/user running
3742 state. */
3743 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3744
c906108c
SS
3745 while (1)
3746 {
ae25568b
PA
3747 struct execution_control_state ecss;
3748 struct execution_control_state *ecs = &ecss;
963f9c80 3749 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3750
ae25568b
PA
3751 memset (ecs, 0, sizeof (*ecs));
3752
ec9499be 3753 overlay_cache_invalid = 1;
ec9499be 3754
f15cb84a
YQ
3755 /* Flush target cache before starting to handle each event.
3756 Target was running and cache could be stale. This is just a
3757 heuristic. Running threads may modify target memory, but we
3758 don't get any event. */
3759 target_dcache_invalidate ();
3760
372316f1 3761 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3762
f00150c9 3763 if (debug_infrun)
223698f8 3764 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3765
cd0fc7c3
SS
3766 /* Now figure out what to do with the result of the result. */
3767 handle_inferior_event (ecs);
c906108c 3768
cd0fc7c3
SS
3769 if (!ecs->wait_some_more)
3770 break;
3771 }
4e1c45ea 3772
e6f5c25b
PA
3773 /* No error, don't finish the state yet. */
3774 discard_cleanups (thread_state_chain);
3775
cd0fc7c3
SS
3776 do_cleanups (old_cleanups);
3777}
c906108c 3778
d3d4baed
PA
3779/* Cleanup that reinstalls the readline callback handler, if the
3780 target is running in the background. If while handling the target
3781 event something triggered a secondary prompt, like e.g., a
3782 pagination prompt, we'll have removed the callback handler (see
3783 gdb_readline_wrapper_line). Need to do this as we go back to the
3784 event loop, ready to process further input. Note this has no
3785 effect if the handler hasn't actually been removed, because calling
3786 rl_callback_handler_install resets the line buffer, thus losing
3787 input. */
3788
3789static void
3790reinstall_readline_callback_handler_cleanup (void *arg)
3791{
3b12939d
PA
3792 struct ui *ui = current_ui;
3793
3794 if (!ui->async)
6c400b59
PA
3795 {
3796 /* We're not going back to the top level event loop yet. Don't
3797 install the readline callback, as it'd prep the terminal,
3798 readline-style (raw, noecho) (e.g., --batch). We'll install
3799 it the next time the prompt is displayed, when we're ready
3800 for input. */
3801 return;
3802 }
3803
3b12939d 3804 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3805 gdb_rl_callback_handler_reinstall ();
3806}
3807
243a9253
PA
3808/* Clean up the FSMs of threads that are now stopped. In non-stop,
3809 that's just the event thread. In all-stop, that's all threads. */
3810
3811static void
3812clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3813{
3814 struct thread_info *thr = ecs->event_thread;
3815
3816 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3817 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3818
3819 if (!non_stop)
3820 {
3821 ALL_NON_EXITED_THREADS (thr)
3822 {
3823 if (thr->thread_fsm == NULL)
3824 continue;
3825 if (thr == ecs->event_thread)
3826 continue;
3827
3828 switch_to_thread (thr->ptid);
8980e177 3829 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3830 }
3831
3832 if (ecs->event_thread != NULL)
3833 switch_to_thread (ecs->event_thread->ptid);
3834 }
3835}
3836
3b12939d
PA
3837/* Helper for all_uis_check_sync_execution_done that works on the
3838 current UI. */
3839
3840static void
3841check_curr_ui_sync_execution_done (void)
3842{
3843 struct ui *ui = current_ui;
3844
3845 if (ui->prompt_state == PROMPT_NEEDED
3846 && ui->async
3847 && !gdb_in_secondary_prompt_p (ui))
3848 {
3849 target_terminal_ours ();
3850 observer_notify_sync_execution_done ();
3eb7562a 3851 ui_register_input_event_handler (ui);
3b12939d
PA
3852 }
3853}
3854
3855/* See infrun.h. */
3856
3857void
3858all_uis_check_sync_execution_done (void)
3859{
0e454242 3860 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3861 {
3862 check_curr_ui_sync_execution_done ();
3863 }
3864}
3865
a8836c93
PA
3866/* See infrun.h. */
3867
3868void
3869all_uis_on_sync_execution_starting (void)
3870{
0e454242 3871 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3872 {
3873 if (current_ui->prompt_state == PROMPT_NEEDED)
3874 async_disable_stdin ();
3875 }
3876}
3877
1777feb0 3878/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3879 event loop whenever a change of state is detected on the file
1777feb0
MS
3880 descriptor corresponding to the target. It can be called more than
3881 once to complete a single execution command. In such cases we need
3882 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3883 that this function is called for a single execution command, then
3884 report to the user that the inferior has stopped, and do the
1777feb0 3885 necessary cleanups. */
43ff13b4
JM
3886
3887void
fba45db2 3888fetch_inferior_event (void *client_data)
43ff13b4 3889{
0d1e5fa7 3890 struct execution_control_state ecss;
a474d7c2 3891 struct execution_control_state *ecs = &ecss;
4f8d22e3 3892 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3893 struct cleanup *ts_old_chain;
0f641c01 3894 int cmd_done = 0;
963f9c80 3895 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3896
0d1e5fa7
PA
3897 memset (ecs, 0, sizeof (*ecs));
3898
c61db772
PA
3899 /* Events are always processed with the main UI as current UI. This
3900 way, warnings, debug output, etc. are always consistently sent to
3901 the main console. */
4b6749b9 3902 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3903
d3d4baed
PA
3904 /* End up with readline processing input, if necessary. */
3905 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3906
c5187ac6
PA
3907 /* We're handling a live event, so make sure we're doing live
3908 debugging. If we're looking at traceframes while the target is
3909 running, we're going to need to get back to that mode after
3910 handling the event. */
3911 if (non_stop)
3912 {
3913 make_cleanup_restore_current_traceframe ();
e6e4e701 3914 set_current_traceframe (-1);
c5187ac6
PA
3915 }
3916
4f8d22e3
PA
3917 if (non_stop)
3918 /* In non-stop mode, the user/frontend should not notice a thread
3919 switch due to internal events. Make sure we reverse to the
3920 user selected thread and frame after handling the event and
3921 running any breakpoint commands. */
3922 make_cleanup_restore_current_thread ();
3923
ec9499be 3924 overlay_cache_invalid = 1;
f15cb84a
YQ
3925 /* Flush target cache before starting to handle each event. Target
3926 was running and cache could be stale. This is just a heuristic.
3927 Running threads may modify target memory, but we don't get any
3928 event. */
3929 target_dcache_invalidate ();
3dd5b83d 3930
b7b633e9
TT
3931 scoped_restore save_exec_dir
3932 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3933
0b333c5e
PA
3934 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3935 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3936
f00150c9 3937 if (debug_infrun)
223698f8 3938 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3939
29f49a6a
PA
3940 /* If an error happens while handling the event, propagate GDB's
3941 knowledge of the executing state to the frontend/user running
3942 state. */
fbea99ea 3943 if (!target_is_non_stop_p ())
29f49a6a
PA
3944 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3945 else
3946 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3947
353d1d73
JK
3948 /* Get executed before make_cleanup_restore_current_thread above to apply
3949 still for the thread which has thrown the exception. */
3950 make_bpstat_clear_actions_cleanup ();
3951
7c16b83e
PA
3952 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3953
43ff13b4 3954 /* Now figure out what to do with the result of the result. */
a474d7c2 3955 handle_inferior_event (ecs);
43ff13b4 3956
a474d7c2 3957 if (!ecs->wait_some_more)
43ff13b4 3958 {
c9657e70 3959 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3960 int should_stop = 1;
3961 struct thread_info *thr = ecs->event_thread;
388a7084 3962 int should_notify_stop = 1;
d6b48e9c 3963
0cbcdb96 3964 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3965
243a9253
PA
3966 if (thr != NULL)
3967 {
3968 struct thread_fsm *thread_fsm = thr->thread_fsm;
3969
3970 if (thread_fsm != NULL)
8980e177 3971 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3972 }
3973
3974 if (!should_stop)
3975 {
3976 keep_going (ecs);
3977 }
c2d11a7d 3978 else
0f641c01 3979 {
243a9253
PA
3980 clean_up_just_stopped_threads_fsms (ecs);
3981
388a7084
PA
3982 if (thr != NULL && thr->thread_fsm != NULL)
3983 {
3984 should_notify_stop
3985 = thread_fsm_should_notify_stop (thr->thread_fsm);
3986 }
3987
3988 if (should_notify_stop)
3989 {
4c2f2a79
PA
3990 int proceeded = 0;
3991
388a7084
PA
3992 /* We may not find an inferior if this was a process exit. */
3993 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3994 proceeded = normal_stop ();
243a9253 3995
4c2f2a79
PA
3996 if (!proceeded)
3997 {
3998 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3999 cmd_done = 1;
4000 }
388a7084 4001 }
0f641c01 4002 }
43ff13b4 4003 }
4f8d22e3 4004
29f49a6a
PA
4005 /* No error, don't finish the thread states yet. */
4006 discard_cleanups (ts_old_chain);
4007
4f8d22e3
PA
4008 /* Revert thread and frame. */
4009 do_cleanups (old_chain);
4010
3b12939d
PA
4011 /* If a UI was in sync execution mode, and now isn't, restore its
4012 prompt (a synchronous execution command has finished, and we're
4013 ready for input). */
4014 all_uis_check_sync_execution_done ();
0f641c01
PA
4015
4016 if (cmd_done
0f641c01
PA
4017 && exec_done_display_p
4018 && (ptid_equal (inferior_ptid, null_ptid)
4019 || !is_running (inferior_ptid)))
4020 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4021}
4022
edb3359d
DJ
4023/* Record the frame and location we're currently stepping through. */
4024void
4025set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4026{
4027 struct thread_info *tp = inferior_thread ();
4028
16c381f0
JK
4029 tp->control.step_frame_id = get_frame_id (frame);
4030 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4031
4032 tp->current_symtab = sal.symtab;
4033 tp->current_line = sal.line;
4034}
4035
0d1e5fa7
PA
4036/* Clear context switchable stepping state. */
4037
4038void
4e1c45ea 4039init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4040{
7f5ef605 4041 tss->stepped_breakpoint = 0;
0d1e5fa7 4042 tss->stepping_over_breakpoint = 0;
963f9c80 4043 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4044 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4045}
4046
c32c64b7
DE
4047/* Set the cached copy of the last ptid/waitstatus. */
4048
6efcd9a8 4049void
c32c64b7
DE
4050set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4051{
4052 target_last_wait_ptid = ptid;
4053 target_last_waitstatus = status;
4054}
4055
e02bc4cc 4056/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4057 target_wait()/deprecated_target_wait_hook(). The data is actually
4058 cached by handle_inferior_event(), which gets called immediately
4059 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4060
4061void
488f131b 4062get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4063{
39f77062 4064 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4065 *status = target_last_waitstatus;
4066}
4067
ac264b3b
MS
4068void
4069nullify_last_target_wait_ptid (void)
4070{
4071 target_last_wait_ptid = minus_one_ptid;
4072}
4073
dcf4fbde 4074/* Switch thread contexts. */
dd80620e
MS
4075
4076static void
0d1e5fa7 4077context_switch (ptid_t ptid)
dd80620e 4078{
4b51d87b 4079 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4080 {
4081 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4082 target_pid_to_str (inferior_ptid));
4083 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4084 target_pid_to_str (ptid));
fd48f117
DJ
4085 }
4086
0d1e5fa7 4087 switch_to_thread (ptid);
dd80620e
MS
4088}
4089
d8dd4d5f
PA
4090/* If the target can't tell whether we've hit breakpoints
4091 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4092 check whether that could have been caused by a breakpoint. If so,
4093 adjust the PC, per gdbarch_decr_pc_after_break. */
4094
4fa8626c 4095static void
d8dd4d5f
PA
4096adjust_pc_after_break (struct thread_info *thread,
4097 struct target_waitstatus *ws)
4fa8626c 4098{
24a73cce
UW
4099 struct regcache *regcache;
4100 struct gdbarch *gdbarch;
6c95b8df 4101 struct address_space *aspace;
118e6252 4102 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4103
4fa8626c
DJ
4104 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4105 we aren't, just return.
9709f61c
DJ
4106
4107 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4108 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4109 implemented by software breakpoints should be handled through the normal
4110 breakpoint layer.
8fb3e588 4111
4fa8626c
DJ
4112 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4113 different signals (SIGILL or SIGEMT for instance), but it is less
4114 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4115 gdbarch_decr_pc_after_break. I don't know any specific target that
4116 generates these signals at breakpoints (the code has been in GDB since at
4117 least 1992) so I can not guess how to handle them here.
8fb3e588 4118
e6cf7916
UW
4119 In earlier versions of GDB, a target with
4120 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4121 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4122 target with both of these set in GDB history, and it seems unlikely to be
4123 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4124
d8dd4d5f 4125 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4126 return;
4127
d8dd4d5f 4128 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4129 return;
4130
4058b839
PA
4131 /* In reverse execution, when a breakpoint is hit, the instruction
4132 under it has already been de-executed. The reported PC always
4133 points at the breakpoint address, so adjusting it further would
4134 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4135 architecture:
4136
4137 B1 0x08000000 : INSN1
4138 B2 0x08000001 : INSN2
4139 0x08000002 : INSN3
4140 PC -> 0x08000003 : INSN4
4141
4142 Say you're stopped at 0x08000003 as above. Reverse continuing
4143 from that point should hit B2 as below. Reading the PC when the
4144 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4145 been de-executed already.
4146
4147 B1 0x08000000 : INSN1
4148 B2 PC -> 0x08000001 : INSN2
4149 0x08000002 : INSN3
4150 0x08000003 : INSN4
4151
4152 We can't apply the same logic as for forward execution, because
4153 we would wrongly adjust the PC to 0x08000000, since there's a
4154 breakpoint at PC - 1. We'd then report a hit on B1, although
4155 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4156 behaviour. */
4157 if (execution_direction == EXEC_REVERSE)
4158 return;
4159
1cf4d951
PA
4160 /* If the target can tell whether the thread hit a SW breakpoint,
4161 trust it. Targets that can tell also adjust the PC
4162 themselves. */
4163 if (target_supports_stopped_by_sw_breakpoint ())
4164 return;
4165
4166 /* Note that relying on whether a breakpoint is planted in memory to
4167 determine this can fail. E.g,. the breakpoint could have been
4168 removed since. Or the thread could have been told to step an
4169 instruction the size of a breakpoint instruction, and only
4170 _after_ was a breakpoint inserted at its address. */
4171
24a73cce
UW
4172 /* If this target does not decrement the PC after breakpoints, then
4173 we have nothing to do. */
d8dd4d5f 4174 regcache = get_thread_regcache (thread->ptid);
24a73cce 4175 gdbarch = get_regcache_arch (regcache);
118e6252 4176
527a273a 4177 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4178 if (decr_pc == 0)
24a73cce
UW
4179 return;
4180
6c95b8df
PA
4181 aspace = get_regcache_aspace (regcache);
4182
8aad930b
AC
4183 /* Find the location where (if we've hit a breakpoint) the
4184 breakpoint would be. */
118e6252 4185 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4186
1cf4d951
PA
4187 /* If the target can't tell whether a software breakpoint triggered,
4188 fallback to figuring it out based on breakpoints we think were
4189 inserted in the target, and on whether the thread was stepped or
4190 continued. */
4191
1c5cfe86
PA
4192 /* Check whether there actually is a software breakpoint inserted at
4193 that location.
4194
4195 If in non-stop mode, a race condition is possible where we've
4196 removed a breakpoint, but stop events for that breakpoint were
4197 already queued and arrive later. To suppress those spurious
4198 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4199 and retire them after a number of stop events are reported. Note
4200 this is an heuristic and can thus get confused. The real fix is
4201 to get the "stopped by SW BP and needs adjustment" info out of
4202 the target/kernel (and thus never reach here; see above). */
6c95b8df 4203 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4204 || (target_is_non_stop_p ()
4205 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4206 {
77f9e713 4207 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4208
8213266a 4209 if (record_full_is_used ())
77f9e713 4210 record_full_gdb_operation_disable_set ();
96429cc8 4211
1c0fdd0e
UW
4212 /* When using hardware single-step, a SIGTRAP is reported for both
4213 a completed single-step and a software breakpoint. Need to
4214 differentiate between the two, as the latter needs adjusting
4215 but the former does not.
4216
4217 The SIGTRAP can be due to a completed hardware single-step only if
4218 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4219 - this thread is currently being stepped
4220
4221 If any of these events did not occur, we must have stopped due
4222 to hitting a software breakpoint, and have to back up to the
4223 breakpoint address.
4224
4225 As a special case, we could have hardware single-stepped a
4226 software breakpoint. In this case (prev_pc == breakpoint_pc),
4227 we also need to back up to the breakpoint address. */
4228
d8dd4d5f
PA
4229 if (thread_has_single_step_breakpoints_set (thread)
4230 || !currently_stepping (thread)
4231 || (thread->stepped_breakpoint
4232 && thread->prev_pc == breakpoint_pc))
515630c5 4233 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4234
77f9e713 4235 do_cleanups (old_cleanups);
8aad930b 4236 }
4fa8626c
DJ
4237}
4238
edb3359d
DJ
4239static int
4240stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4241{
4242 for (frame = get_prev_frame (frame);
4243 frame != NULL;
4244 frame = get_prev_frame (frame))
4245 {
4246 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4247 return 1;
4248 if (get_frame_type (frame) != INLINE_FRAME)
4249 break;
4250 }
4251
4252 return 0;
4253}
4254
a96d9b2e
SDJ
4255/* Auxiliary function that handles syscall entry/return events.
4256 It returns 1 if the inferior should keep going (and GDB
4257 should ignore the event), or 0 if the event deserves to be
4258 processed. */
ca2163eb 4259
a96d9b2e 4260static int
ca2163eb 4261handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4262{
ca2163eb 4263 struct regcache *regcache;
ca2163eb
PA
4264 int syscall_number;
4265
4266 if (!ptid_equal (ecs->ptid, inferior_ptid))
4267 context_switch (ecs->ptid);
4268
4269 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4270 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4271 stop_pc = regcache_read_pc (regcache);
4272
a96d9b2e
SDJ
4273 if (catch_syscall_enabled () > 0
4274 && catching_syscall_number (syscall_number) > 0)
4275 {
4276 if (debug_infrun)
4277 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4278 syscall_number);
a96d9b2e 4279
16c381f0 4280 ecs->event_thread->control.stop_bpstat
6c95b8df 4281 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4282 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4283
ce12b012 4284 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4285 {
4286 /* Catchpoint hit. */
ca2163eb
PA
4287 return 0;
4288 }
a96d9b2e 4289 }
ca2163eb
PA
4290
4291 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4292 keep_going (ecs);
4293 return 1;
a96d9b2e
SDJ
4294}
4295
7e324e48
GB
4296/* Lazily fill in the execution_control_state's stop_func_* fields. */
4297
4298static void
4299fill_in_stop_func (struct gdbarch *gdbarch,
4300 struct execution_control_state *ecs)
4301{
4302 if (!ecs->stop_func_filled_in)
4303 {
4304 /* Don't care about return value; stop_func_start and stop_func_name
4305 will both be 0 if it doesn't work. */
4306 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4307 &ecs->stop_func_start, &ecs->stop_func_end);
4308 ecs->stop_func_start
4309 += gdbarch_deprecated_function_start_offset (gdbarch);
4310
591a12a1
UW
4311 if (gdbarch_skip_entrypoint_p (gdbarch))
4312 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4313 ecs->stop_func_start);
4314
7e324e48
GB
4315 ecs->stop_func_filled_in = 1;
4316 }
4317}
4318
4f5d7f63
PA
4319
4320/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4321
4322static enum stop_kind
4323get_inferior_stop_soon (ptid_t ptid)
4324{
c9657e70 4325 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4326
4327 gdb_assert (inf != NULL);
4328 return inf->control.stop_soon;
4329}
4330
372316f1
PA
4331/* Wait for one event. Store the resulting waitstatus in WS, and
4332 return the event ptid. */
4333
4334static ptid_t
4335wait_one (struct target_waitstatus *ws)
4336{
4337 ptid_t event_ptid;
4338 ptid_t wait_ptid = minus_one_ptid;
4339
4340 overlay_cache_invalid = 1;
4341
4342 /* Flush target cache before starting to handle each event.
4343 Target was running and cache could be stale. This is just a
4344 heuristic. Running threads may modify target memory, but we
4345 don't get any event. */
4346 target_dcache_invalidate ();
4347
4348 if (deprecated_target_wait_hook)
4349 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4350 else
4351 event_ptid = target_wait (wait_ptid, ws, 0);
4352
4353 if (debug_infrun)
4354 print_target_wait_results (wait_ptid, event_ptid, ws);
4355
4356 return event_ptid;
4357}
4358
4359/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4360 instead of the current thread. */
4361#define THREAD_STOPPED_BY(REASON) \
4362static int \
4363thread_stopped_by_ ## REASON (ptid_t ptid) \
4364{ \
4365 struct cleanup *old_chain; \
4366 int res; \
4367 \
4368 old_chain = save_inferior_ptid (); \
4369 inferior_ptid = ptid; \
4370 \
4371 res = target_stopped_by_ ## REASON (); \
4372 \
4373 do_cleanups (old_chain); \
4374 \
4375 return res; \
4376}
4377
4378/* Generate thread_stopped_by_watchpoint. */
4379THREAD_STOPPED_BY (watchpoint)
4380/* Generate thread_stopped_by_sw_breakpoint. */
4381THREAD_STOPPED_BY (sw_breakpoint)
4382/* Generate thread_stopped_by_hw_breakpoint. */
4383THREAD_STOPPED_BY (hw_breakpoint)
4384
4385/* Cleanups that switches to the PTID pointed at by PTID_P. */
4386
4387static void
4388switch_to_thread_cleanup (void *ptid_p)
4389{
4390 ptid_t ptid = *(ptid_t *) ptid_p;
4391
4392 switch_to_thread (ptid);
4393}
4394
4395/* Save the thread's event and stop reason to process it later. */
4396
4397static void
4398save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4399{
4400 struct regcache *regcache;
4401 struct address_space *aspace;
4402
4403 if (debug_infrun)
4404 {
4405 char *statstr;
4406
4407 statstr = target_waitstatus_to_string (ws);
4408 fprintf_unfiltered (gdb_stdlog,
4409 "infrun: saving status %s for %d.%ld.%ld\n",
4410 statstr,
4411 ptid_get_pid (tp->ptid),
4412 ptid_get_lwp (tp->ptid),
4413 ptid_get_tid (tp->ptid));
4414 xfree (statstr);
4415 }
4416
4417 /* Record for later. */
4418 tp->suspend.waitstatus = *ws;
4419 tp->suspend.waitstatus_pending_p = 1;
4420
4421 regcache = get_thread_regcache (tp->ptid);
4422 aspace = get_regcache_aspace (regcache);
4423
4424 if (ws->kind == TARGET_WAITKIND_STOPPED
4425 && ws->value.sig == GDB_SIGNAL_TRAP)
4426 {
4427 CORE_ADDR pc = regcache_read_pc (regcache);
4428
4429 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4430
4431 if (thread_stopped_by_watchpoint (tp->ptid))
4432 {
4433 tp->suspend.stop_reason
4434 = TARGET_STOPPED_BY_WATCHPOINT;
4435 }
4436 else if (target_supports_stopped_by_sw_breakpoint ()
4437 && thread_stopped_by_sw_breakpoint (tp->ptid))
4438 {
4439 tp->suspend.stop_reason
4440 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4441 }
4442 else if (target_supports_stopped_by_hw_breakpoint ()
4443 && thread_stopped_by_hw_breakpoint (tp->ptid))
4444 {
4445 tp->suspend.stop_reason
4446 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4447 }
4448 else if (!target_supports_stopped_by_hw_breakpoint ()
4449 && hardware_breakpoint_inserted_here_p (aspace,
4450 pc))
4451 {
4452 tp->suspend.stop_reason
4453 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4454 }
4455 else if (!target_supports_stopped_by_sw_breakpoint ()
4456 && software_breakpoint_inserted_here_p (aspace,
4457 pc))
4458 {
4459 tp->suspend.stop_reason
4460 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4461 }
4462 else if (!thread_has_single_step_breakpoints_set (tp)
4463 && currently_stepping (tp))
4464 {
4465 tp->suspend.stop_reason
4466 = TARGET_STOPPED_BY_SINGLE_STEP;
4467 }
4468 }
4469}
4470
65706a29
PA
4471/* A cleanup that disables thread create/exit events. */
4472
4473static void
4474disable_thread_events (void *arg)
4475{
4476 target_thread_events (0);
4477}
4478
6efcd9a8 4479/* See infrun.h. */
372316f1 4480
6efcd9a8 4481void
372316f1
PA
4482stop_all_threads (void)
4483{
4484 /* We may need multiple passes to discover all threads. */
4485 int pass;
4486 int iterations = 0;
4487 ptid_t entry_ptid;
4488 struct cleanup *old_chain;
4489
fbea99ea 4490 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4491
4492 if (debug_infrun)
4493 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4494
4495 entry_ptid = inferior_ptid;
4496 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4497
65706a29
PA
4498 target_thread_events (1);
4499 make_cleanup (disable_thread_events, NULL);
4500
372316f1
PA
4501 /* Request threads to stop, and then wait for the stops. Because
4502 threads we already know about can spawn more threads while we're
4503 trying to stop them, and we only learn about new threads when we
4504 update the thread list, do this in a loop, and keep iterating
4505 until two passes find no threads that need to be stopped. */
4506 for (pass = 0; pass < 2; pass++, iterations++)
4507 {
4508 if (debug_infrun)
4509 fprintf_unfiltered (gdb_stdlog,
4510 "infrun: stop_all_threads, pass=%d, "
4511 "iterations=%d\n", pass, iterations);
4512 while (1)
4513 {
4514 ptid_t event_ptid;
4515 struct target_waitstatus ws;
4516 int need_wait = 0;
4517 struct thread_info *t;
4518
4519 update_thread_list ();
4520
4521 /* Go through all threads looking for threads that we need
4522 to tell the target to stop. */
4523 ALL_NON_EXITED_THREADS (t)
4524 {
4525 if (t->executing)
4526 {
4527 /* If already stopping, don't request a stop again.
4528 We just haven't seen the notification yet. */
4529 if (!t->stop_requested)
4530 {
4531 if (debug_infrun)
4532 fprintf_unfiltered (gdb_stdlog,
4533 "infrun: %s executing, "
4534 "need stop\n",
4535 target_pid_to_str (t->ptid));
4536 target_stop (t->ptid);
4537 t->stop_requested = 1;
4538 }
4539 else
4540 {
4541 if (debug_infrun)
4542 fprintf_unfiltered (gdb_stdlog,
4543 "infrun: %s executing, "
4544 "already stopping\n",
4545 target_pid_to_str (t->ptid));
4546 }
4547
4548 if (t->stop_requested)
4549 need_wait = 1;
4550 }
4551 else
4552 {
4553 if (debug_infrun)
4554 fprintf_unfiltered (gdb_stdlog,
4555 "infrun: %s not executing\n",
4556 target_pid_to_str (t->ptid));
4557
4558 /* The thread may be not executing, but still be
4559 resumed with a pending status to process. */
4560 t->resumed = 0;
4561 }
4562 }
4563
4564 if (!need_wait)
4565 break;
4566
4567 /* If we find new threads on the second iteration, restart
4568 over. We want to see two iterations in a row with all
4569 threads stopped. */
4570 if (pass > 0)
4571 pass = -1;
4572
4573 event_ptid = wait_one (&ws);
4574 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4575 {
4576 /* All resumed threads exited. */
4577 }
65706a29
PA
4578 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4579 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4580 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4581 {
4582 if (debug_infrun)
4583 {
4584 ptid_t ptid = pid_to_ptid (ws.value.integer);
4585
4586 fprintf_unfiltered (gdb_stdlog,
4587 "infrun: %s exited while "
4588 "stopping threads\n",
4589 target_pid_to_str (ptid));
4590 }
4591 }
4592 else
4593 {
6efcd9a8
PA
4594 struct inferior *inf;
4595
372316f1
PA
4596 t = find_thread_ptid (event_ptid);
4597 if (t == NULL)
4598 t = add_thread (event_ptid);
4599
4600 t->stop_requested = 0;
4601 t->executing = 0;
4602 t->resumed = 0;
4603 t->control.may_range_step = 0;
4604
6efcd9a8
PA
4605 /* This may be the first time we see the inferior report
4606 a stop. */
4607 inf = find_inferior_ptid (event_ptid);
4608 if (inf->needs_setup)
4609 {
4610 switch_to_thread_no_regs (t);
4611 setup_inferior (0);
4612 }
4613
372316f1
PA
4614 if (ws.kind == TARGET_WAITKIND_STOPPED
4615 && ws.value.sig == GDB_SIGNAL_0)
4616 {
4617 /* We caught the event that we intended to catch, so
4618 there's no event pending. */
4619 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4620 t->suspend.waitstatus_pending_p = 0;
4621
4622 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4623 {
4624 /* Add it back to the step-over queue. */
4625 if (debug_infrun)
4626 {
4627 fprintf_unfiltered (gdb_stdlog,
4628 "infrun: displaced-step of %s "
4629 "canceled: adding back to the "
4630 "step-over queue\n",
4631 target_pid_to_str (t->ptid));
4632 }
4633 t->control.trap_expected = 0;
4634 thread_step_over_chain_enqueue (t);
4635 }
4636 }
4637 else
4638 {
4639 enum gdb_signal sig;
4640 struct regcache *regcache;
372316f1
PA
4641
4642 if (debug_infrun)
4643 {
4644 char *statstr;
4645
4646 statstr = target_waitstatus_to_string (&ws);
4647 fprintf_unfiltered (gdb_stdlog,
4648 "infrun: target_wait %s, saving "
4649 "status for %d.%ld.%ld\n",
4650 statstr,
4651 ptid_get_pid (t->ptid),
4652 ptid_get_lwp (t->ptid),
4653 ptid_get_tid (t->ptid));
4654 xfree (statstr);
4655 }
4656
4657 /* Record for later. */
4658 save_waitstatus (t, &ws);
4659
4660 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4661 ? ws.value.sig : GDB_SIGNAL_0);
4662
4663 if (displaced_step_fixup (t->ptid, sig) < 0)
4664 {
4665 /* Add it back to the step-over queue. */
4666 t->control.trap_expected = 0;
4667 thread_step_over_chain_enqueue (t);
4668 }
4669
4670 regcache = get_thread_regcache (t->ptid);
4671 t->suspend.stop_pc = regcache_read_pc (regcache);
4672
4673 if (debug_infrun)
4674 {
4675 fprintf_unfiltered (gdb_stdlog,
4676 "infrun: saved stop_pc=%s for %s "
4677 "(currently_stepping=%d)\n",
4678 paddress (target_gdbarch (),
4679 t->suspend.stop_pc),
4680 target_pid_to_str (t->ptid),
4681 currently_stepping (t));
4682 }
4683 }
4684 }
4685 }
4686 }
4687
4688 do_cleanups (old_chain);
4689
4690 if (debug_infrun)
4691 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4692}
4693
f4836ba9
PA
4694/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4695
4696static int
4697handle_no_resumed (struct execution_control_state *ecs)
4698{
4699 struct inferior *inf;
4700 struct thread_info *thread;
4701
3b12939d 4702 if (target_can_async_p ())
f4836ba9 4703 {
3b12939d
PA
4704 struct ui *ui;
4705 int any_sync = 0;
f4836ba9 4706
3b12939d
PA
4707 ALL_UIS (ui)
4708 {
4709 if (ui->prompt_state == PROMPT_BLOCKED)
4710 {
4711 any_sync = 1;
4712 break;
4713 }
4714 }
4715 if (!any_sync)
4716 {
4717 /* There were no unwaited-for children left in the target, but,
4718 we're not synchronously waiting for events either. Just
4719 ignore. */
4720
4721 if (debug_infrun)
4722 fprintf_unfiltered (gdb_stdlog,
4723 "infrun: TARGET_WAITKIND_NO_RESUMED "
4724 "(ignoring: bg)\n");
4725 prepare_to_wait (ecs);
4726 return 1;
4727 }
f4836ba9
PA
4728 }
4729
4730 /* Otherwise, if we were running a synchronous execution command, we
4731 may need to cancel it and give the user back the terminal.
4732
4733 In non-stop mode, the target can't tell whether we've already
4734 consumed previous stop events, so it can end up sending us a
4735 no-resumed event like so:
4736
4737 #0 - thread 1 is left stopped
4738
4739 #1 - thread 2 is resumed and hits breakpoint
4740 -> TARGET_WAITKIND_STOPPED
4741
4742 #2 - thread 3 is resumed and exits
4743 this is the last resumed thread, so
4744 -> TARGET_WAITKIND_NO_RESUMED
4745
4746 #3 - gdb processes stop for thread 2 and decides to re-resume
4747 it.
4748
4749 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4750 thread 2 is now resumed, so the event should be ignored.
4751
4752 IOW, if the stop for thread 2 doesn't end a foreground command,
4753 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4754 event. But it could be that the event meant that thread 2 itself
4755 (or whatever other thread was the last resumed thread) exited.
4756
4757 To address this we refresh the thread list and check whether we
4758 have resumed threads _now_. In the example above, this removes
4759 thread 3 from the thread list. If thread 2 was re-resumed, we
4760 ignore this event. If we find no thread resumed, then we cancel
4761 the synchronous command show "no unwaited-for " to the user. */
4762 update_thread_list ();
4763
4764 ALL_NON_EXITED_THREADS (thread)
4765 {
4766 if (thread->executing
4767 || thread->suspend.waitstatus_pending_p)
4768 {
4769 /* There were no unwaited-for children left in the target at
4770 some point, but there are now. Just ignore. */
4771 if (debug_infrun)
4772 fprintf_unfiltered (gdb_stdlog,
4773 "infrun: TARGET_WAITKIND_NO_RESUMED "
4774 "(ignoring: found resumed)\n");
4775 prepare_to_wait (ecs);
4776 return 1;
4777 }
4778 }
4779
4780 /* Note however that we may find no resumed thread because the whole
4781 process exited meanwhile (thus updating the thread list results
4782 in an empty thread list). In this case we know we'll be getting
4783 a process exit event shortly. */
4784 ALL_INFERIORS (inf)
4785 {
4786 if (inf->pid == 0)
4787 continue;
4788
4789 thread = any_live_thread_of_process (inf->pid);
4790 if (thread == NULL)
4791 {
4792 if (debug_infrun)
4793 fprintf_unfiltered (gdb_stdlog,
4794 "infrun: TARGET_WAITKIND_NO_RESUMED "
4795 "(expect process exit)\n");
4796 prepare_to_wait (ecs);
4797 return 1;
4798 }
4799 }
4800
4801 /* Go ahead and report the event. */
4802 return 0;
4803}
4804
05ba8510
PA
4805/* Given an execution control state that has been freshly filled in by
4806 an event from the inferior, figure out what it means and take
4807 appropriate action.
4808
4809 The alternatives are:
4810
22bcd14b 4811 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4812 debugger.
4813
4814 2) keep_going and return; to wait for the next event (set
4815 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4816 once). */
c906108c 4817
ec9499be 4818static void
0b6e5e10 4819handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4820{
d6b48e9c
PA
4821 enum stop_kind stop_soon;
4822
28736962
PA
4823 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4824 {
4825 /* We had an event in the inferior, but we are not interested in
4826 handling it at this level. The lower layers have already
4827 done what needs to be done, if anything.
4828
4829 One of the possible circumstances for this is when the
4830 inferior produces output for the console. The inferior has
4831 not stopped, and we are ignoring the event. Another possible
4832 circumstance is any event which the lower level knows will be
4833 reported multiple times without an intervening resume. */
4834 if (debug_infrun)
4835 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4836 prepare_to_wait (ecs);
4837 return;
4838 }
4839
65706a29
PA
4840 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4841 {
4842 if (debug_infrun)
4843 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4844 prepare_to_wait (ecs);
4845 return;
4846 }
4847
0e5bf2a8 4848 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4849 && handle_no_resumed (ecs))
4850 return;
0e5bf2a8 4851
1777feb0 4852 /* Cache the last pid/waitstatus. */
c32c64b7 4853 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4854
ca005067 4855 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4856 stop_stack_dummy = STOP_NONE;
ca005067 4857
0e5bf2a8
PA
4858 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4859 {
4860 /* No unwaited-for children left. IOW, all resumed children
4861 have exited. */
4862 if (debug_infrun)
4863 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4864
4865 stop_print_frame = 0;
22bcd14b 4866 stop_waiting (ecs);
0e5bf2a8
PA
4867 return;
4868 }
4869
8c90c137 4870 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4871 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4872 {
4873 ecs->event_thread = find_thread_ptid (ecs->ptid);
4874 /* If it's a new thread, add it to the thread database. */
4875 if (ecs->event_thread == NULL)
4876 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4877
4878 /* Disable range stepping. If the next step request could use a
4879 range, this will be end up re-enabled then. */
4880 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4881 }
88ed393a
JK
4882
4883 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4884 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4885
4886 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4887 reinit_frame_cache ();
4888
28736962
PA
4889 breakpoint_retire_moribund ();
4890
2b009048
DJ
4891 /* First, distinguish signals caused by the debugger from signals
4892 that have to do with the program's own actions. Note that
4893 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4894 on the operating system version. Here we detect when a SIGILL or
4895 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4896 something similar for SIGSEGV, since a SIGSEGV will be generated
4897 when we're trying to execute a breakpoint instruction on a
4898 non-executable stack. This happens for call dummy breakpoints
4899 for architectures like SPARC that place call dummies on the
4900 stack. */
2b009048 4901 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4902 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4903 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4904 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4905 {
de0a0249
UW
4906 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4907
4908 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4909 regcache_read_pc (regcache)))
4910 {
4911 if (debug_infrun)
4912 fprintf_unfiltered (gdb_stdlog,
4913 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4914 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4915 }
2b009048
DJ
4916 }
4917
28736962
PA
4918 /* Mark the non-executing threads accordingly. In all-stop, all
4919 threads of all processes are stopped when we get any event
e1316e60 4920 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4921 {
4922 ptid_t mark_ptid;
4923
fbea99ea 4924 if (!target_is_non_stop_p ())
372316f1
PA
4925 mark_ptid = minus_one_ptid;
4926 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4927 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4928 {
4929 /* If we're handling a process exit in non-stop mode, even
4930 though threads haven't been deleted yet, one would think
4931 that there is nothing to do, as threads of the dead process
4932 will be soon deleted, and threads of any other process were
4933 left running. However, on some targets, threads survive a
4934 process exit event. E.g., for the "checkpoint" command,
4935 when the current checkpoint/fork exits, linux-fork.c
4936 automatically switches to another fork from within
4937 target_mourn_inferior, by associating the same
4938 inferior/thread to another fork. We haven't mourned yet at
4939 this point, but we must mark any threads left in the
4940 process as not-executing so that finish_thread_state marks
4941 them stopped (in the user's perspective) if/when we present
4942 the stop to the user. */
4943 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4944 }
4945 else
4946 mark_ptid = ecs->ptid;
4947
4948 set_executing (mark_ptid, 0);
4949
4950 /* Likewise the resumed flag. */
4951 set_resumed (mark_ptid, 0);
4952 }
8c90c137 4953
488f131b
JB
4954 switch (ecs->ws.kind)
4955 {
4956 case TARGET_WAITKIND_LOADED:
527159b7 4957 if (debug_infrun)
8a9de0e4 4958 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4959 if (!ptid_equal (ecs->ptid, inferior_ptid))
4960 context_switch (ecs->ptid);
b0f4b84b
DJ
4961 /* Ignore gracefully during startup of the inferior, as it might
4962 be the shell which has just loaded some objects, otherwise
4963 add the symbols for the newly loaded objects. Also ignore at
4964 the beginning of an attach or remote session; we will query
4965 the full list of libraries once the connection is
4966 established. */
4f5d7f63
PA
4967
4968 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4969 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4970 {
edcc5120
TT
4971 struct regcache *regcache;
4972
edcc5120
TT
4973 regcache = get_thread_regcache (ecs->ptid);
4974
4975 handle_solib_event ();
4976
4977 ecs->event_thread->control.stop_bpstat
4978 = bpstat_stop_status (get_regcache_aspace (regcache),
4979 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4980
ce12b012 4981 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4982 {
4983 /* A catchpoint triggered. */
94c57d6a
PA
4984 process_event_stop_test (ecs);
4985 return;
edcc5120 4986 }
488f131b 4987
b0f4b84b
DJ
4988 /* If requested, stop when the dynamic linker notifies
4989 gdb of events. This allows the user to get control
4990 and place breakpoints in initializer routines for
4991 dynamically loaded objects (among other things). */
a493e3e2 4992 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4993 if (stop_on_solib_events)
4994 {
55409f9d
DJ
4995 /* Make sure we print "Stopped due to solib-event" in
4996 normal_stop. */
4997 stop_print_frame = 1;
4998
22bcd14b 4999 stop_waiting (ecs);
b0f4b84b
DJ
5000 return;
5001 }
488f131b 5002 }
b0f4b84b
DJ
5003
5004 /* If we are skipping through a shell, or through shared library
5005 loading that we aren't interested in, resume the program. If
5c09a2c5 5006 we're running the program normally, also resume. */
b0f4b84b
DJ
5007 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5008 {
74960c60
VP
5009 /* Loading of shared libraries might have changed breakpoint
5010 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5011 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5012 insert_breakpoints ();
64ce06e4 5013 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5014 prepare_to_wait (ecs);
5015 return;
5016 }
5017
5c09a2c5
PA
5018 /* But stop if we're attaching or setting up a remote
5019 connection. */
5020 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5021 || stop_soon == STOP_QUIETLY_REMOTE)
5022 {
5023 if (debug_infrun)
5024 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5025 stop_waiting (ecs);
5c09a2c5
PA
5026 return;
5027 }
5028
5029 internal_error (__FILE__, __LINE__,
5030 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5031
488f131b 5032 case TARGET_WAITKIND_SPURIOUS:
527159b7 5033 if (debug_infrun)
8a9de0e4 5034 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 5035 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 5036 context_switch (ecs->ptid);
64ce06e4 5037 resume (GDB_SIGNAL_0);
488f131b
JB
5038 prepare_to_wait (ecs);
5039 return;
c5aa993b 5040
65706a29
PA
5041 case TARGET_WAITKIND_THREAD_CREATED:
5042 if (debug_infrun)
5043 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5044 if (!ptid_equal (ecs->ptid, inferior_ptid))
5045 context_switch (ecs->ptid);
5046 if (!switch_back_to_stepped_thread (ecs))
5047 keep_going (ecs);
5048 return;
5049
488f131b 5050 case TARGET_WAITKIND_EXITED:
940c3c06 5051 case TARGET_WAITKIND_SIGNALLED:
527159b7 5052 if (debug_infrun)
940c3c06
PA
5053 {
5054 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5055 fprintf_unfiltered (gdb_stdlog,
5056 "infrun: TARGET_WAITKIND_EXITED\n");
5057 else
5058 fprintf_unfiltered (gdb_stdlog,
5059 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5060 }
5061
fb66883a 5062 inferior_ptid = ecs->ptid;
c9657e70 5063 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5064 set_current_program_space (current_inferior ()->pspace);
5065 handle_vfork_child_exec_or_exit (0);
1777feb0 5066 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 5067
0c557179
SDJ
5068 /* Clearing any previous state of convenience variables. */
5069 clear_exit_convenience_vars ();
5070
940c3c06
PA
5071 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5072 {
5073 /* Record the exit code in the convenience variable $_exitcode, so
5074 that the user can inspect this again later. */
5075 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5076 (LONGEST) ecs->ws.value.integer);
5077
5078 /* Also record this in the inferior itself. */
5079 current_inferior ()->has_exit_code = 1;
5080 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5081
98eb56a4
PA
5082 /* Support the --return-child-result option. */
5083 return_child_result_value = ecs->ws.value.integer;
5084
fd664c91 5085 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
5086 }
5087 else
0c557179
SDJ
5088 {
5089 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5090 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5091
5092 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5093 {
5094 /* Set the value of the internal variable $_exitsignal,
5095 which holds the signal uncaught by the inferior. */
5096 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5097 gdbarch_gdb_signal_to_target (gdbarch,
5098 ecs->ws.value.sig));
5099 }
5100 else
5101 {
5102 /* We don't have access to the target's method used for
5103 converting between signal numbers (GDB's internal
5104 representation <-> target's representation).
5105 Therefore, we cannot do a good job at displaying this
5106 information to the user. It's better to just warn
5107 her about it (if infrun debugging is enabled), and
5108 give up. */
5109 if (debug_infrun)
5110 fprintf_filtered (gdb_stdlog, _("\
5111Cannot fill $_exitsignal with the correct signal number.\n"));
5112 }
5113
fd664c91 5114 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 5115 }
8cf64490 5116
488f131b 5117 gdb_flush (gdb_stdout);
bc1e6c81 5118 target_mourn_inferior (inferior_ptid);
488f131b 5119 stop_print_frame = 0;
22bcd14b 5120 stop_waiting (ecs);
488f131b 5121 return;
c5aa993b 5122
488f131b 5123 /* The following are the only cases in which we keep going;
1777feb0 5124 the above cases end in a continue or goto. */
488f131b 5125 case TARGET_WAITKIND_FORKED:
deb3b17b 5126 case TARGET_WAITKIND_VFORKED:
527159b7 5127 if (debug_infrun)
fed708ed
PA
5128 {
5129 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5130 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5131 else
5132 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5133 }
c906108c 5134
e2d96639
YQ
5135 /* Check whether the inferior is displaced stepping. */
5136 {
5137 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5138 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e2d96639
YQ
5139
5140 /* If checking displaced stepping is supported, and thread
5141 ecs->ptid is displaced stepping. */
c0987663 5142 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5143 {
5144 struct inferior *parent_inf
c9657e70 5145 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5146 struct regcache *child_regcache;
5147 CORE_ADDR parent_pc;
5148
5149 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5150 indicating that the displaced stepping of syscall instruction
5151 has been done. Perform cleanup for parent process here. Note
5152 that this operation also cleans up the child process for vfork,
5153 because their pages are shared. */
a493e3e2 5154 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5155 /* Start a new step-over in another thread if there's one
5156 that needs it. */
5157 start_step_over ();
e2d96639
YQ
5158
5159 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5160 {
c0987663
YQ
5161 struct displaced_step_inferior_state *displaced
5162 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5163
e2d96639
YQ
5164 /* Restore scratch pad for child process. */
5165 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5166 }
5167
5168 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5169 the child's PC is also within the scratchpad. Set the child's PC
5170 to the parent's PC value, which has already been fixed up.
5171 FIXME: we use the parent's aspace here, although we're touching
5172 the child, because the child hasn't been added to the inferior
5173 list yet at this point. */
5174
5175 child_regcache
5176 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5177 gdbarch,
5178 parent_inf->aspace);
5179 /* Read PC value of parent process. */
5180 parent_pc = regcache_read_pc (regcache);
5181
5182 if (debug_displaced)
5183 fprintf_unfiltered (gdb_stdlog,
5184 "displaced: write child pc from %s to %s\n",
5185 paddress (gdbarch,
5186 regcache_read_pc (child_regcache)),
5187 paddress (gdbarch, parent_pc));
5188
5189 regcache_write_pc (child_regcache, parent_pc);
5190 }
5191 }
5192
5a2901d9 5193 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5194 context_switch (ecs->ptid);
5a2901d9 5195
b242c3c2
PA
5196 /* Immediately detach breakpoints from the child before there's
5197 any chance of letting the user delete breakpoints from the
5198 breakpoint lists. If we don't do this early, it's easy to
5199 leave left over traps in the child, vis: "break foo; catch
5200 fork; c; <fork>; del; c; <child calls foo>". We only follow
5201 the fork on the last `continue', and by that time the
5202 breakpoint at "foo" is long gone from the breakpoint table.
5203 If we vforked, then we don't need to unpatch here, since both
5204 parent and child are sharing the same memory pages; we'll
5205 need to unpatch at follow/detach time instead to be certain
5206 that new breakpoints added between catchpoint hit time and
5207 vfork follow are detached. */
5208 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5209 {
b242c3c2
PA
5210 /* This won't actually modify the breakpoint list, but will
5211 physically remove the breakpoints from the child. */
d80ee84f 5212 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5213 }
5214
34b7e8a6 5215 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5216
e58b0e63
PA
5217 /* In case the event is caught by a catchpoint, remember that
5218 the event is to be followed at the next resume of the thread,
5219 and not immediately. */
5220 ecs->event_thread->pending_follow = ecs->ws;
5221
fb14de7b 5222 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5223
16c381f0 5224 ecs->event_thread->control.stop_bpstat
6c95b8df 5225 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5226 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5227
ce12b012
PA
5228 /* If no catchpoint triggered for this, then keep going. Note
5229 that we're interested in knowing the bpstat actually causes a
5230 stop, not just if it may explain the signal. Software
5231 watchpoints, for example, always appear in the bpstat. */
5232 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5233 {
6c95b8df
PA
5234 ptid_t parent;
5235 ptid_t child;
e58b0e63 5236 int should_resume;
3e43a32a
MS
5237 int follow_child
5238 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5239
a493e3e2 5240 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5241
5242 should_resume = follow_fork ();
5243
6c95b8df
PA
5244 parent = ecs->ptid;
5245 child = ecs->ws.value.related_pid;
5246
a2077e25
PA
5247 /* At this point, the parent is marked running, and the
5248 child is marked stopped. */
5249
5250 /* If not resuming the parent, mark it stopped. */
5251 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5252 set_running (parent, 0);
5253
5254 /* If resuming the child, mark it running. */
5255 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5256 set_running (child, 1);
5257
6c95b8df 5258 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5259 if (!detach_fork && (non_stop
5260 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5261 {
5262 if (follow_child)
5263 switch_to_thread (parent);
5264 else
5265 switch_to_thread (child);
5266
5267 ecs->event_thread = inferior_thread ();
5268 ecs->ptid = inferior_ptid;
5269 keep_going (ecs);
5270 }
5271
5272 if (follow_child)
5273 switch_to_thread (child);
5274 else
5275 switch_to_thread (parent);
5276
e58b0e63
PA
5277 ecs->event_thread = inferior_thread ();
5278 ecs->ptid = inferior_ptid;
5279
5280 if (should_resume)
5281 keep_going (ecs);
5282 else
22bcd14b 5283 stop_waiting (ecs);
04e68871
DJ
5284 return;
5285 }
94c57d6a
PA
5286 process_event_stop_test (ecs);
5287 return;
488f131b 5288
6c95b8df
PA
5289 case TARGET_WAITKIND_VFORK_DONE:
5290 /* Done with the shared memory region. Re-insert breakpoints in
5291 the parent, and keep going. */
5292
5293 if (debug_infrun)
3e43a32a
MS
5294 fprintf_unfiltered (gdb_stdlog,
5295 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5296
5297 if (!ptid_equal (ecs->ptid, inferior_ptid))
5298 context_switch (ecs->ptid);
5299
5300 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5301 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5302 /* This also takes care of reinserting breakpoints in the
5303 previously locked inferior. */
5304 keep_going (ecs);
5305 return;
5306
488f131b 5307 case TARGET_WAITKIND_EXECD:
527159b7 5308 if (debug_infrun)
fc5261f2 5309 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5310
5a2901d9 5311 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5312 context_switch (ecs->ptid);
5a2901d9 5313
fb14de7b 5314 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5315
6c95b8df
PA
5316 /* Do whatever is necessary to the parent branch of the vfork. */
5317 handle_vfork_child_exec_or_exit (1);
5318
795e548f
PA
5319 /* This causes the eventpoints and symbol table to be reset.
5320 Must do this now, before trying to determine whether to
5321 stop. */
71b43ef8 5322 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5323
17d8546e
DB
5324 /* In follow_exec we may have deleted the original thread and
5325 created a new one. Make sure that the event thread is the
5326 execd thread for that case (this is a nop otherwise). */
5327 ecs->event_thread = inferior_thread ();
5328
16c381f0 5329 ecs->event_thread->control.stop_bpstat
6c95b8df 5330 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5331 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5332
71b43ef8
PA
5333 /* Note that this may be referenced from inside
5334 bpstat_stop_status above, through inferior_has_execd. */
5335 xfree (ecs->ws.value.execd_pathname);
5336 ecs->ws.value.execd_pathname = NULL;
5337
04e68871 5338 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5339 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5340 {
a493e3e2 5341 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5342 keep_going (ecs);
5343 return;
5344 }
94c57d6a
PA
5345 process_event_stop_test (ecs);
5346 return;
488f131b 5347
b4dc5ffa
MK
5348 /* Be careful not to try to gather much state about a thread
5349 that's in a syscall. It's frequently a losing proposition. */
488f131b 5350 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5351 if (debug_infrun)
3e43a32a
MS
5352 fprintf_unfiltered (gdb_stdlog,
5353 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5354 /* Getting the current syscall number. */
94c57d6a
PA
5355 if (handle_syscall_event (ecs) == 0)
5356 process_event_stop_test (ecs);
5357 return;
c906108c 5358
488f131b
JB
5359 /* Before examining the threads further, step this thread to
5360 get it entirely out of the syscall. (We get notice of the
5361 event when the thread is just on the verge of exiting a
5362 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5363 into user code.) */
488f131b 5364 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5365 if (debug_infrun)
3e43a32a
MS
5366 fprintf_unfiltered (gdb_stdlog,
5367 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5368 if (handle_syscall_event (ecs) == 0)
5369 process_event_stop_test (ecs);
5370 return;
c906108c 5371
488f131b 5372 case TARGET_WAITKIND_STOPPED:
527159b7 5373 if (debug_infrun)
8a9de0e4 5374 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5375 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5376 handle_signal_stop (ecs);
5377 return;
c906108c 5378
b2175913 5379 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5380 if (debug_infrun)
5381 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5382 /* Reverse execution: target ran out of history info. */
eab402df 5383
d1988021
MM
5384 /* Switch to the stopped thread. */
5385 if (!ptid_equal (ecs->ptid, inferior_ptid))
5386 context_switch (ecs->ptid);
5387 if (debug_infrun)
5388 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5389
34b7e8a6 5390 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5391 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
fd664c91 5392 observer_notify_no_history ();
22bcd14b 5393 stop_waiting (ecs);
b2175913 5394 return;
488f131b 5395 }
4f5d7f63
PA
5396}
5397
0b6e5e10
JB
5398/* A wrapper around handle_inferior_event_1, which also makes sure
5399 that all temporary struct value objects that were created during
5400 the handling of the event get deleted at the end. */
5401
5402static void
5403handle_inferior_event (struct execution_control_state *ecs)
5404{
5405 struct value *mark = value_mark ();
5406
5407 handle_inferior_event_1 (ecs);
5408 /* Purge all temporary values created during the event handling,
5409 as it could be a long time before we return to the command level
5410 where such values would otherwise be purged. */
5411 value_free_to_mark (mark);
5412}
5413
372316f1
PA
5414/* Restart threads back to what they were trying to do back when we
5415 paused them for an in-line step-over. The EVENT_THREAD thread is
5416 ignored. */
4d9d9d04
PA
5417
5418static void
372316f1
PA
5419restart_threads (struct thread_info *event_thread)
5420{
5421 struct thread_info *tp;
372316f1
PA
5422
5423 /* In case the instruction just stepped spawned a new thread. */
5424 update_thread_list ();
5425
5426 ALL_NON_EXITED_THREADS (tp)
5427 {
5428 if (tp == event_thread)
5429 {
5430 if (debug_infrun)
5431 fprintf_unfiltered (gdb_stdlog,
5432 "infrun: restart threads: "
5433 "[%s] is event thread\n",
5434 target_pid_to_str (tp->ptid));
5435 continue;
5436 }
5437
5438 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5439 {
5440 if (debug_infrun)
5441 fprintf_unfiltered (gdb_stdlog,
5442 "infrun: restart threads: "
5443 "[%s] not meant to be running\n",
5444 target_pid_to_str (tp->ptid));
5445 continue;
5446 }
5447
5448 if (tp->resumed)
5449 {
5450 if (debug_infrun)
5451 fprintf_unfiltered (gdb_stdlog,
5452 "infrun: restart threads: [%s] resumed\n",
5453 target_pid_to_str (tp->ptid));
5454 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5455 continue;
5456 }
5457
5458 if (thread_is_in_step_over_chain (tp))
5459 {
5460 if (debug_infrun)
5461 fprintf_unfiltered (gdb_stdlog,
5462 "infrun: restart threads: "
5463 "[%s] needs step-over\n",
5464 target_pid_to_str (tp->ptid));
5465 gdb_assert (!tp->resumed);
5466 continue;
5467 }
5468
5469
5470 if (tp->suspend.waitstatus_pending_p)
5471 {
5472 if (debug_infrun)
5473 fprintf_unfiltered (gdb_stdlog,
5474 "infrun: restart threads: "
5475 "[%s] has pending status\n",
5476 target_pid_to_str (tp->ptid));
5477 tp->resumed = 1;
5478 continue;
5479 }
5480
5481 /* If some thread needs to start a step-over at this point, it
5482 should still be in the step-over queue, and thus skipped
5483 above. */
5484 if (thread_still_needs_step_over (tp))
5485 {
5486 internal_error (__FILE__, __LINE__,
5487 "thread [%s] needs a step-over, but not in "
5488 "step-over queue\n",
5489 target_pid_to_str (tp->ptid));
5490 }
5491
5492 if (currently_stepping (tp))
5493 {
5494 if (debug_infrun)
5495 fprintf_unfiltered (gdb_stdlog,
5496 "infrun: restart threads: [%s] was stepping\n",
5497 target_pid_to_str (tp->ptid));
5498 keep_going_stepped_thread (tp);
5499 }
5500 else
5501 {
5502 struct execution_control_state ecss;
5503 struct execution_control_state *ecs = &ecss;
5504
5505 if (debug_infrun)
5506 fprintf_unfiltered (gdb_stdlog,
5507 "infrun: restart threads: [%s] continuing\n",
5508 target_pid_to_str (tp->ptid));
5509 reset_ecs (ecs, tp);
5510 switch_to_thread (tp->ptid);
5511 keep_going_pass_signal (ecs);
5512 }
5513 }
5514}
5515
5516/* Callback for iterate_over_threads. Find a resumed thread that has
5517 a pending waitstatus. */
5518
5519static int
5520resumed_thread_with_pending_status (struct thread_info *tp,
5521 void *arg)
5522{
5523 return (tp->resumed
5524 && tp->suspend.waitstatus_pending_p);
5525}
5526
5527/* Called when we get an event that may finish an in-line or
5528 out-of-line (displaced stepping) step-over started previously.
5529 Return true if the event is processed and we should go back to the
5530 event loop; false if the caller should continue processing the
5531 event. */
5532
5533static int
4d9d9d04
PA
5534finish_step_over (struct execution_control_state *ecs)
5535{
372316f1
PA
5536 int had_step_over_info;
5537
4d9d9d04
PA
5538 displaced_step_fixup (ecs->ptid,
5539 ecs->event_thread->suspend.stop_signal);
5540
372316f1
PA
5541 had_step_over_info = step_over_info_valid_p ();
5542
5543 if (had_step_over_info)
4d9d9d04
PA
5544 {
5545 /* If we're stepping over a breakpoint with all threads locked,
5546 then only the thread that was stepped should be reporting
5547 back an event. */
5548 gdb_assert (ecs->event_thread->control.trap_expected);
5549
5550 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5551 clear_step_over_info ();
5552 }
5553
fbea99ea 5554 if (!target_is_non_stop_p ())
372316f1 5555 return 0;
4d9d9d04
PA
5556
5557 /* Start a new step-over in another thread if there's one that
5558 needs it. */
5559 start_step_over ();
372316f1
PA
5560
5561 /* If we were stepping over a breakpoint before, and haven't started
5562 a new in-line step-over sequence, then restart all other threads
5563 (except the event thread). We can't do this in all-stop, as then
5564 e.g., we wouldn't be able to issue any other remote packet until
5565 these other threads stop. */
5566 if (had_step_over_info && !step_over_info_valid_p ())
5567 {
5568 struct thread_info *pending;
5569
5570 /* If we only have threads with pending statuses, the restart
5571 below won't restart any thread and so nothing re-inserts the
5572 breakpoint we just stepped over. But we need it inserted
5573 when we later process the pending events, otherwise if
5574 another thread has a pending event for this breakpoint too,
5575 we'd discard its event (because the breakpoint that
5576 originally caused the event was no longer inserted). */
5577 context_switch (ecs->ptid);
5578 insert_breakpoints ();
5579
5580 restart_threads (ecs->event_thread);
5581
5582 /* If we have events pending, go through handle_inferior_event
5583 again, picking up a pending event at random. This avoids
5584 thread starvation. */
5585
5586 /* But not if we just stepped over a watchpoint in order to let
5587 the instruction execute so we can evaluate its expression.
5588 The set of watchpoints that triggered is recorded in the
5589 breakpoint objects themselves (see bp->watchpoint_triggered).
5590 If we processed another event first, that other event could
5591 clobber this info. */
5592 if (ecs->event_thread->stepping_over_watchpoint)
5593 return 0;
5594
5595 pending = iterate_over_threads (resumed_thread_with_pending_status,
5596 NULL);
5597 if (pending != NULL)
5598 {
5599 struct thread_info *tp = ecs->event_thread;
5600 struct regcache *regcache;
5601
5602 if (debug_infrun)
5603 {
5604 fprintf_unfiltered (gdb_stdlog,
5605 "infrun: found resumed threads with "
5606 "pending events, saving status\n");
5607 }
5608
5609 gdb_assert (pending != tp);
5610
5611 /* Record the event thread's event for later. */
5612 save_waitstatus (tp, &ecs->ws);
5613 /* This was cleared early, by handle_inferior_event. Set it
5614 so this pending event is considered by
5615 do_target_wait. */
5616 tp->resumed = 1;
5617
5618 gdb_assert (!tp->executing);
5619
5620 regcache = get_thread_regcache (tp->ptid);
5621 tp->suspend.stop_pc = regcache_read_pc (regcache);
5622
5623 if (debug_infrun)
5624 {
5625 fprintf_unfiltered (gdb_stdlog,
5626 "infrun: saved stop_pc=%s for %s "
5627 "(currently_stepping=%d)\n",
5628 paddress (target_gdbarch (),
5629 tp->suspend.stop_pc),
5630 target_pid_to_str (tp->ptid),
5631 currently_stepping (tp));
5632 }
5633
5634 /* This in-line step-over finished; clear this so we won't
5635 start a new one. This is what handle_signal_stop would
5636 do, if we returned false. */
5637 tp->stepping_over_breakpoint = 0;
5638
5639 /* Wake up the event loop again. */
5640 mark_async_event_handler (infrun_async_inferior_event_token);
5641
5642 prepare_to_wait (ecs);
5643 return 1;
5644 }
5645 }
5646
5647 return 0;
4d9d9d04
PA
5648}
5649
4f5d7f63
PA
5650/* Come here when the program has stopped with a signal. */
5651
5652static void
5653handle_signal_stop (struct execution_control_state *ecs)
5654{
5655 struct frame_info *frame;
5656 struct gdbarch *gdbarch;
5657 int stopped_by_watchpoint;
5658 enum stop_kind stop_soon;
5659 int random_signal;
c906108c 5660
f0407826
DE
5661 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5662
5663 /* Do we need to clean up the state of a thread that has
5664 completed a displaced single-step? (Doing so usually affects
5665 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5666 if (finish_step_over (ecs))
5667 return;
f0407826
DE
5668
5669 /* If we either finished a single-step or hit a breakpoint, but
5670 the user wanted this thread to be stopped, pretend we got a
5671 SIG0 (generic unsignaled stop). */
5672 if (ecs->event_thread->stop_requested
5673 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5674 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5675
515630c5 5676 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5677
527159b7 5678 if (debug_infrun)
237fc4c9 5679 {
5af949e3
UW
5680 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5681 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5682 struct cleanup *old_chain = save_inferior_ptid ();
5683
5684 inferior_ptid = ecs->ptid;
5af949e3
UW
5685
5686 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5687 paddress (gdbarch, stop_pc));
d92524f1 5688 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5689 {
5690 CORE_ADDR addr;
abbb1732 5691
237fc4c9
PA
5692 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5693
5694 if (target_stopped_data_address (&current_target, &addr))
5695 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5696 "infrun: stopped data address = %s\n",
5697 paddress (gdbarch, addr));
237fc4c9
PA
5698 else
5699 fprintf_unfiltered (gdb_stdlog,
5700 "infrun: (no data address available)\n");
5701 }
7f82dfc7
JK
5702
5703 do_cleanups (old_chain);
237fc4c9 5704 }
527159b7 5705
36fa8042
PA
5706 /* This is originated from start_remote(), start_inferior() and
5707 shared libraries hook functions. */
5708 stop_soon = get_inferior_stop_soon (ecs->ptid);
5709 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5710 {
5711 if (!ptid_equal (ecs->ptid, inferior_ptid))
5712 context_switch (ecs->ptid);
5713 if (debug_infrun)
5714 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5715 stop_print_frame = 1;
22bcd14b 5716 stop_waiting (ecs);
36fa8042
PA
5717 return;
5718 }
5719
36fa8042
PA
5720 /* This originates from attach_command(). We need to overwrite
5721 the stop_signal here, because some kernels don't ignore a
5722 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5723 See more comments in inferior.h. On the other hand, if we
5724 get a non-SIGSTOP, report it to the user - assume the backend
5725 will handle the SIGSTOP if it should show up later.
5726
5727 Also consider that the attach is complete when we see a
5728 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5729 target extended-remote report it instead of a SIGSTOP
5730 (e.g. gdbserver). We already rely on SIGTRAP being our
5731 signal, so this is no exception.
5732
5733 Also consider that the attach is complete when we see a
5734 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5735 the target to stop all threads of the inferior, in case the
5736 low level attach operation doesn't stop them implicitly. If
5737 they weren't stopped implicitly, then the stub will report a
5738 GDB_SIGNAL_0, meaning: stopped for no particular reason
5739 other than GDB's request. */
5740 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5741 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5742 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5743 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5744 {
5745 stop_print_frame = 1;
22bcd14b 5746 stop_waiting (ecs);
36fa8042
PA
5747 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5748 return;
5749 }
5750
488f131b 5751 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5752 so, then switch to that thread. */
5753 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5754 {
527159b7 5755 if (debug_infrun)
8a9de0e4 5756 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5757
0d1e5fa7 5758 context_switch (ecs->ptid);
c5aa993b 5759
9a4105ab 5760 if (deprecated_context_hook)
5d5658a1 5761 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
488f131b 5762 }
c906108c 5763
568d6575
UW
5764 /* At this point, get hold of the now-current thread's frame. */
5765 frame = get_current_frame ();
5766 gdbarch = get_frame_arch (frame);
5767
2adfaa28 5768 /* Pull the single step breakpoints out of the target. */
af48d08f 5769 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5770 {
af48d08f
PA
5771 struct regcache *regcache;
5772 struct address_space *aspace;
5773 CORE_ADDR pc;
2adfaa28 5774
af48d08f
PA
5775 regcache = get_thread_regcache (ecs->ptid);
5776 aspace = get_regcache_aspace (regcache);
5777 pc = regcache_read_pc (regcache);
34b7e8a6 5778
af48d08f
PA
5779 /* However, before doing so, if this single-step breakpoint was
5780 actually for another thread, set this thread up for moving
5781 past it. */
5782 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5783 aspace, pc))
5784 {
5785 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5786 {
5787 if (debug_infrun)
5788 {
5789 fprintf_unfiltered (gdb_stdlog,
af48d08f 5790 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5791 "single-step breakpoint\n",
5792 target_pid_to_str (ecs->ptid));
2adfaa28 5793 }
af48d08f
PA
5794 ecs->hit_singlestep_breakpoint = 1;
5795 }
5796 }
5797 else
5798 {
5799 if (debug_infrun)
5800 {
5801 fprintf_unfiltered (gdb_stdlog,
5802 "infrun: [%s] hit its "
5803 "single-step breakpoint\n",
5804 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5805 }
5806 }
488f131b 5807 }
af48d08f 5808 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5809
963f9c80
PA
5810 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5811 && ecs->event_thread->control.trap_expected
5812 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5813 stopped_by_watchpoint = 0;
5814 else
5815 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5816
5817 /* If necessary, step over this watchpoint. We'll be back to display
5818 it in a moment. */
5819 if (stopped_by_watchpoint
d92524f1 5820 && (target_have_steppable_watchpoint
568d6575 5821 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5822 {
488f131b
JB
5823 /* At this point, we are stopped at an instruction which has
5824 attempted to write to a piece of memory under control of
5825 a watchpoint. The instruction hasn't actually executed
5826 yet. If we were to evaluate the watchpoint expression
5827 now, we would get the old value, and therefore no change
5828 would seem to have occurred.
5829
5830 In order to make watchpoints work `right', we really need
5831 to complete the memory write, and then evaluate the
d983da9c
DJ
5832 watchpoint expression. We do this by single-stepping the
5833 target.
5834
7f89fd65 5835 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5836 it. For example, the PA can (with some kernel cooperation)
5837 single step over a watchpoint without disabling the watchpoint.
5838
5839 It is far more common to need to disable a watchpoint to step
5840 the inferior over it. If we have non-steppable watchpoints,
5841 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5842 disable all watchpoints.
5843
5844 Any breakpoint at PC must also be stepped over -- if there's
5845 one, it will have already triggered before the watchpoint
5846 triggered, and we either already reported it to the user, or
5847 it didn't cause a stop and we called keep_going. In either
5848 case, if there was a breakpoint at PC, we must be trying to
5849 step past it. */
5850 ecs->event_thread->stepping_over_watchpoint = 1;
5851 keep_going (ecs);
488f131b
JB
5852 return;
5853 }
5854
4e1c45ea 5855 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5856 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5857 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5858 ecs->event_thread->control.stop_step = 0;
488f131b 5859 stop_print_frame = 1;
488f131b 5860 stopped_by_random_signal = 0;
488f131b 5861
edb3359d
DJ
5862 /* Hide inlined functions starting here, unless we just performed stepi or
5863 nexti. After stepi and nexti, always show the innermost frame (not any
5864 inline function call sites). */
16c381f0 5865 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5866 {
5867 struct address_space *aspace =
5868 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5869
5870 /* skip_inline_frames is expensive, so we avoid it if we can
5871 determine that the address is one where functions cannot have
5872 been inlined. This improves performance with inferiors that
5873 load a lot of shared libraries, because the solib event
5874 breakpoint is defined as the address of a function (i.e. not
5875 inline). Note that we have to check the previous PC as well
5876 as the current one to catch cases when we have just
5877 single-stepped off a breakpoint prior to reinstating it.
5878 Note that we're assuming that the code we single-step to is
5879 not inline, but that's not definitive: there's nothing
5880 preventing the event breakpoint function from containing
5881 inlined code, and the single-step ending up there. If the
5882 user had set a breakpoint on that inlined code, the missing
5883 skip_inline_frames call would break things. Fortunately
5884 that's an extremely unlikely scenario. */
09ac7c10 5885 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5886 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5887 && ecs->event_thread->control.trap_expected
5888 && pc_at_non_inline_function (aspace,
5889 ecs->event_thread->prev_pc,
09ac7c10 5890 &ecs->ws)))
1c5a993e
MR
5891 {
5892 skip_inline_frames (ecs->ptid);
5893
5894 /* Re-fetch current thread's frame in case that invalidated
5895 the frame cache. */
5896 frame = get_current_frame ();
5897 gdbarch = get_frame_arch (frame);
5898 }
0574c78f 5899 }
edb3359d 5900
a493e3e2 5901 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5902 && ecs->event_thread->control.trap_expected
568d6575 5903 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5904 && currently_stepping (ecs->event_thread))
3352ef37 5905 {
b50d7442 5906 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5907 also on an instruction that needs to be stepped multiple
1777feb0 5908 times before it's been fully executing. E.g., architectures
3352ef37
AC
5909 with a delay slot. It needs to be stepped twice, once for
5910 the instruction and once for the delay slot. */
5911 int step_through_delay
568d6575 5912 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5913
527159b7 5914 if (debug_infrun && step_through_delay)
8a9de0e4 5915 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5916 if (ecs->event_thread->control.step_range_end == 0
5917 && step_through_delay)
3352ef37
AC
5918 {
5919 /* The user issued a continue when stopped at a breakpoint.
5920 Set up for another trap and get out of here. */
4e1c45ea 5921 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5922 keep_going (ecs);
5923 return;
5924 }
5925 else if (step_through_delay)
5926 {
5927 /* The user issued a step when stopped at a breakpoint.
5928 Maybe we should stop, maybe we should not - the delay
5929 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5930 case, don't decide that here, just set
5931 ecs->stepping_over_breakpoint, making sure we
5932 single-step again before breakpoints are re-inserted. */
4e1c45ea 5933 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5934 }
5935 }
5936
ab04a2af
TT
5937 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5938 handles this event. */
5939 ecs->event_thread->control.stop_bpstat
5940 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5941 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5942
ab04a2af
TT
5943 /* Following in case break condition called a
5944 function. */
5945 stop_print_frame = 1;
73dd234f 5946
ab04a2af
TT
5947 /* This is where we handle "moribund" watchpoints. Unlike
5948 software breakpoints traps, hardware watchpoint traps are
5949 always distinguishable from random traps. If no high-level
5950 watchpoint is associated with the reported stop data address
5951 anymore, then the bpstat does not explain the signal ---
5952 simply make sure to ignore it if `stopped_by_watchpoint' is
5953 set. */
5954
5955 if (debug_infrun
5956 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5957 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5958 GDB_SIGNAL_TRAP)
ab04a2af
TT
5959 && stopped_by_watchpoint)
5960 fprintf_unfiltered (gdb_stdlog,
5961 "infrun: no user watchpoint explains "
5962 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5963
bac7d97b 5964 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5965 at one stage in the past included checks for an inferior
5966 function call's call dummy's return breakpoint. The original
5967 comment, that went with the test, read:
03cebad2 5968
ab04a2af
TT
5969 ``End of a stack dummy. Some systems (e.g. Sony news) give
5970 another signal besides SIGTRAP, so check here as well as
5971 above.''
73dd234f 5972
ab04a2af
TT
5973 If someone ever tries to get call dummys on a
5974 non-executable stack to work (where the target would stop
5975 with something like a SIGSEGV), then those tests might need
5976 to be re-instated. Given, however, that the tests were only
5977 enabled when momentary breakpoints were not being used, I
5978 suspect that it won't be the case.
488f131b 5979
ab04a2af
TT
5980 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5981 be necessary for call dummies on a non-executable stack on
5982 SPARC. */
488f131b 5983
bac7d97b 5984 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5985 random_signal
5986 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5987 ecs->event_thread->suspend.stop_signal);
bac7d97b 5988
1cf4d951
PA
5989 /* Maybe this was a trap for a software breakpoint that has since
5990 been removed. */
5991 if (random_signal && target_stopped_by_sw_breakpoint ())
5992 {
5993 if (program_breakpoint_here_p (gdbarch, stop_pc))
5994 {
5995 struct regcache *regcache;
5996 int decr_pc;
5997
5998 /* Re-adjust PC to what the program would see if GDB was not
5999 debugging it. */
6000 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 6001 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6002 if (decr_pc != 0)
6003 {
6004 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6005
6006 if (record_full_is_used ())
6007 record_full_gdb_operation_disable_set ();
6008
6009 regcache_write_pc (regcache, stop_pc + decr_pc);
6010
6011 do_cleanups (old_cleanups);
6012 }
6013 }
6014 else
6015 {
6016 /* A delayed software breakpoint event. Ignore the trap. */
6017 if (debug_infrun)
6018 fprintf_unfiltered (gdb_stdlog,
6019 "infrun: delayed software breakpoint "
6020 "trap, ignoring\n");
6021 random_signal = 0;
6022 }
6023 }
6024
6025 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6026 has since been removed. */
6027 if (random_signal && target_stopped_by_hw_breakpoint ())
6028 {
6029 /* A delayed hardware breakpoint event. Ignore the trap. */
6030 if (debug_infrun)
6031 fprintf_unfiltered (gdb_stdlog,
6032 "infrun: delayed hardware breakpoint/watchpoint "
6033 "trap, ignoring\n");
6034 random_signal = 0;
6035 }
6036
bac7d97b
PA
6037 /* If not, perhaps stepping/nexting can. */
6038 if (random_signal)
6039 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6040 && currently_stepping (ecs->event_thread));
ab04a2af 6041
2adfaa28
PA
6042 /* Perhaps the thread hit a single-step breakpoint of _another_
6043 thread. Single-step breakpoints are transparent to the
6044 breakpoints module. */
6045 if (random_signal)
6046 random_signal = !ecs->hit_singlestep_breakpoint;
6047
bac7d97b
PA
6048 /* No? Perhaps we got a moribund watchpoint. */
6049 if (random_signal)
6050 random_signal = !stopped_by_watchpoint;
ab04a2af 6051
488f131b
JB
6052 /* For the program's own signals, act according to
6053 the signal handling tables. */
6054
ce12b012 6055 if (random_signal)
488f131b
JB
6056 {
6057 /* Signal not for debugging purposes. */
c9657e70 6058 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6059 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6060
527159b7 6061 if (debug_infrun)
c9737c08
PA
6062 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6063 gdb_signal_to_symbol_string (stop_signal));
527159b7 6064
488f131b
JB
6065 stopped_by_random_signal = 1;
6066
252fbfc8
PA
6067 /* Always stop on signals if we're either just gaining control
6068 of the program, or the user explicitly requested this thread
6069 to remain stopped. */
d6b48e9c 6070 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6071 || ecs->event_thread->stop_requested
24291992 6072 || (!inf->detaching
16c381f0 6073 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6074 {
22bcd14b 6075 stop_waiting (ecs);
488f131b
JB
6076 return;
6077 }
b57bacec
PA
6078
6079 /* Notify observers the signal has "handle print" set. Note we
6080 returned early above if stopping; normal_stop handles the
6081 printing in that case. */
6082 if (signal_print[ecs->event_thread->suspend.stop_signal])
6083 {
6084 /* The signal table tells us to print about this signal. */
6085 target_terminal_ours_for_output ();
6086 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6087 target_terminal_inferior ();
6088 }
488f131b
JB
6089
6090 /* Clear the signal if it should not be passed. */
16c381f0 6091 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6092 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6093
fb14de7b 6094 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6095 && ecs->event_thread->control.trap_expected
8358c15c 6096 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 6097 {
372316f1
PA
6098 int was_in_line;
6099
68f53502
AC
6100 /* We were just starting a new sequence, attempting to
6101 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6102 Instead this signal arrives. This signal will take us out
68f53502
AC
6103 of the stepping range so GDB needs to remember to, when
6104 the signal handler returns, resume stepping off that
6105 breakpoint. */
6106 /* To simplify things, "continue" is forced to use the same
6107 code paths as single-step - set a breakpoint at the
6108 signal return address and then, once hit, step off that
6109 breakpoint. */
237fc4c9
PA
6110 if (debug_infrun)
6111 fprintf_unfiltered (gdb_stdlog,
6112 "infrun: signal arrived while stepping over "
6113 "breakpoint\n");
d3169d93 6114
372316f1
PA
6115 was_in_line = step_over_info_valid_p ();
6116 clear_step_over_info ();
2c03e5be 6117 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6118 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6119 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6120 ecs->event_thread->control.trap_expected = 0;
d137e6dc 6121
fbea99ea 6122 if (target_is_non_stop_p ())
372316f1 6123 {
fbea99ea
PA
6124 /* Either "set non-stop" is "on", or the target is
6125 always in non-stop mode. In this case, we have a bit
6126 more work to do. Resume the current thread, and if
6127 we had paused all threads, restart them while the
6128 signal handler runs. */
372316f1
PA
6129 keep_going (ecs);
6130
372316f1
PA
6131 if (was_in_line)
6132 {
372316f1
PA
6133 restart_threads (ecs->event_thread);
6134 }
6135 else if (debug_infrun)
6136 {
6137 fprintf_unfiltered (gdb_stdlog,
6138 "infrun: no need to restart threads\n");
6139 }
6140 return;
6141 }
6142
d137e6dc
PA
6143 /* If we were nexting/stepping some other thread, switch to
6144 it, so that we don't continue it, losing control. */
6145 if (!switch_back_to_stepped_thread (ecs))
6146 keep_going (ecs);
9d799f85 6147 return;
68f53502 6148 }
9d799f85 6149
e5f8a7cc
PA
6150 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6151 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6152 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6153 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6154 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6155 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6156 {
6157 /* The inferior is about to take a signal that will take it
6158 out of the single step range. Set a breakpoint at the
6159 current PC (which is presumably where the signal handler
6160 will eventually return) and then allow the inferior to
6161 run free.
6162
6163 Note that this is only needed for a signal delivered
6164 while in the single-step range. Nested signals aren't a
6165 problem as they eventually all return. */
237fc4c9
PA
6166 if (debug_infrun)
6167 fprintf_unfiltered (gdb_stdlog,
6168 "infrun: signal may take us out of "
6169 "single-step range\n");
6170
372316f1 6171 clear_step_over_info ();
2c03e5be 6172 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6173 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6174 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6175 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6176 keep_going (ecs);
6177 return;
d303a6c7 6178 }
9d799f85
AC
6179
6180 /* Note: step_resume_breakpoint may be non-NULL. This occures
6181 when either there's a nested signal, or when there's a
6182 pending signal enabled just as the signal handler returns
6183 (leaving the inferior at the step-resume-breakpoint without
6184 actually executing it). Either way continue until the
6185 breakpoint is really hit. */
c447ac0b
PA
6186
6187 if (!switch_back_to_stepped_thread (ecs))
6188 {
6189 if (debug_infrun)
6190 fprintf_unfiltered (gdb_stdlog,
6191 "infrun: random signal, keep going\n");
6192
6193 keep_going (ecs);
6194 }
6195 return;
488f131b 6196 }
94c57d6a
PA
6197
6198 process_event_stop_test (ecs);
6199}
6200
6201/* Come here when we've got some debug event / signal we can explain
6202 (IOW, not a random signal), and test whether it should cause a
6203 stop, or whether we should resume the inferior (transparently).
6204 E.g., could be a breakpoint whose condition evaluates false; we
6205 could be still stepping within the line; etc. */
6206
6207static void
6208process_event_stop_test (struct execution_control_state *ecs)
6209{
6210 struct symtab_and_line stop_pc_sal;
6211 struct frame_info *frame;
6212 struct gdbarch *gdbarch;
cdaa5b73
PA
6213 CORE_ADDR jmp_buf_pc;
6214 struct bpstat_what what;
94c57d6a 6215
cdaa5b73 6216 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6217
cdaa5b73
PA
6218 frame = get_current_frame ();
6219 gdbarch = get_frame_arch (frame);
fcf3daef 6220
cdaa5b73 6221 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6222
cdaa5b73
PA
6223 if (what.call_dummy)
6224 {
6225 stop_stack_dummy = what.call_dummy;
6226 }
186c406b 6227
243a9253
PA
6228 /* A few breakpoint types have callbacks associated (e.g.,
6229 bp_jit_event). Run them now. */
6230 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6231
cdaa5b73
PA
6232 /* If we hit an internal event that triggers symbol changes, the
6233 current frame will be invalidated within bpstat_what (e.g., if we
6234 hit an internal solib event). Re-fetch it. */
6235 frame = get_current_frame ();
6236 gdbarch = get_frame_arch (frame);
e2e4d78b 6237
cdaa5b73
PA
6238 switch (what.main_action)
6239 {
6240 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6241 /* If we hit the breakpoint at longjmp while stepping, we
6242 install a momentary breakpoint at the target of the
6243 jmp_buf. */
186c406b 6244
cdaa5b73
PA
6245 if (debug_infrun)
6246 fprintf_unfiltered (gdb_stdlog,
6247 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6248
cdaa5b73 6249 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6250
cdaa5b73
PA
6251 if (what.is_longjmp)
6252 {
6253 struct value *arg_value;
6254
6255 /* If we set the longjmp breakpoint via a SystemTap probe,
6256 then use it to extract the arguments. The destination PC
6257 is the third argument to the probe. */
6258 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6259 if (arg_value)
8fa0c4f8
AA
6260 {
6261 jmp_buf_pc = value_as_address (arg_value);
6262 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6263 }
cdaa5b73
PA
6264 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6265 || !gdbarch_get_longjmp_target (gdbarch,
6266 frame, &jmp_buf_pc))
e2e4d78b 6267 {
cdaa5b73
PA
6268 if (debug_infrun)
6269 fprintf_unfiltered (gdb_stdlog,
6270 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6271 "(!gdbarch_get_longjmp_target)\n");
6272 keep_going (ecs);
6273 return;
e2e4d78b 6274 }
e2e4d78b 6275
cdaa5b73
PA
6276 /* Insert a breakpoint at resume address. */
6277 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6278 }
6279 else
6280 check_exception_resume (ecs, frame);
6281 keep_going (ecs);
6282 return;
e81a37f7 6283
cdaa5b73
PA
6284 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6285 {
6286 struct frame_info *init_frame;
e81a37f7 6287
cdaa5b73 6288 /* There are several cases to consider.
c906108c 6289
cdaa5b73
PA
6290 1. The initiating frame no longer exists. In this case we
6291 must stop, because the exception or longjmp has gone too
6292 far.
2c03e5be 6293
cdaa5b73
PA
6294 2. The initiating frame exists, and is the same as the
6295 current frame. We stop, because the exception or longjmp
6296 has been caught.
2c03e5be 6297
cdaa5b73
PA
6298 3. The initiating frame exists and is different from the
6299 current frame. This means the exception or longjmp has
6300 been caught beneath the initiating frame, so keep going.
c906108c 6301
cdaa5b73
PA
6302 4. longjmp breakpoint has been placed just to protect
6303 against stale dummy frames and user is not interested in
6304 stopping around longjmps. */
c5aa993b 6305
cdaa5b73
PA
6306 if (debug_infrun)
6307 fprintf_unfiltered (gdb_stdlog,
6308 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6309
cdaa5b73
PA
6310 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6311 != NULL);
6312 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6313
cdaa5b73
PA
6314 if (what.is_longjmp)
6315 {
b67a2c6f 6316 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6317
cdaa5b73 6318 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6319 {
cdaa5b73
PA
6320 /* Case 4. */
6321 keep_going (ecs);
6322 return;
e5ef252a 6323 }
cdaa5b73 6324 }
c5aa993b 6325
cdaa5b73 6326 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6327
cdaa5b73
PA
6328 if (init_frame)
6329 {
6330 struct frame_id current_id
6331 = get_frame_id (get_current_frame ());
6332 if (frame_id_eq (current_id,
6333 ecs->event_thread->initiating_frame))
6334 {
6335 /* Case 2. Fall through. */
6336 }
6337 else
6338 {
6339 /* Case 3. */
6340 keep_going (ecs);
6341 return;
6342 }
68f53502 6343 }
488f131b 6344
cdaa5b73
PA
6345 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6346 exists. */
6347 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6348
bdc36728 6349 end_stepping_range (ecs);
cdaa5b73
PA
6350 }
6351 return;
e5ef252a 6352
cdaa5b73
PA
6353 case BPSTAT_WHAT_SINGLE:
6354 if (debug_infrun)
6355 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6356 ecs->event_thread->stepping_over_breakpoint = 1;
6357 /* Still need to check other stuff, at least the case where we
6358 are stepping and step out of the right range. */
6359 break;
e5ef252a 6360
cdaa5b73
PA
6361 case BPSTAT_WHAT_STEP_RESUME:
6362 if (debug_infrun)
6363 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6364
cdaa5b73
PA
6365 delete_step_resume_breakpoint (ecs->event_thread);
6366 if (ecs->event_thread->control.proceed_to_finish
6367 && execution_direction == EXEC_REVERSE)
6368 {
6369 struct thread_info *tp = ecs->event_thread;
6370
6371 /* We are finishing a function in reverse, and just hit the
6372 step-resume breakpoint at the start address of the
6373 function, and we're almost there -- just need to back up
6374 by one more single-step, which should take us back to the
6375 function call. */
6376 tp->control.step_range_start = tp->control.step_range_end = 1;
6377 keep_going (ecs);
e5ef252a 6378 return;
cdaa5b73
PA
6379 }
6380 fill_in_stop_func (gdbarch, ecs);
6381 if (stop_pc == ecs->stop_func_start
6382 && execution_direction == EXEC_REVERSE)
6383 {
6384 /* We are stepping over a function call in reverse, and just
6385 hit the step-resume breakpoint at the start address of
6386 the function. Go back to single-stepping, which should
6387 take us back to the function call. */
6388 ecs->event_thread->stepping_over_breakpoint = 1;
6389 keep_going (ecs);
6390 return;
6391 }
6392 break;
e5ef252a 6393
cdaa5b73
PA
6394 case BPSTAT_WHAT_STOP_NOISY:
6395 if (debug_infrun)
6396 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6397 stop_print_frame = 1;
e5ef252a 6398
99619bea
PA
6399 /* Assume the thread stopped for a breapoint. We'll still check
6400 whether a/the breakpoint is there when the thread is next
6401 resumed. */
6402 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6403
22bcd14b 6404 stop_waiting (ecs);
cdaa5b73 6405 return;
e5ef252a 6406
cdaa5b73
PA
6407 case BPSTAT_WHAT_STOP_SILENT:
6408 if (debug_infrun)
6409 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6410 stop_print_frame = 0;
e5ef252a 6411
99619bea
PA
6412 /* Assume the thread stopped for a breapoint. We'll still check
6413 whether a/the breakpoint is there when the thread is next
6414 resumed. */
6415 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6416 stop_waiting (ecs);
cdaa5b73
PA
6417 return;
6418
6419 case BPSTAT_WHAT_HP_STEP_RESUME:
6420 if (debug_infrun)
6421 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6422
6423 delete_step_resume_breakpoint (ecs->event_thread);
6424 if (ecs->event_thread->step_after_step_resume_breakpoint)
6425 {
6426 /* Back when the step-resume breakpoint was inserted, we
6427 were trying to single-step off a breakpoint. Go back to
6428 doing that. */
6429 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6430 ecs->event_thread->stepping_over_breakpoint = 1;
6431 keep_going (ecs);
6432 return;
e5ef252a 6433 }
cdaa5b73
PA
6434 break;
6435
6436 case BPSTAT_WHAT_KEEP_CHECKING:
6437 break;
e5ef252a 6438 }
c906108c 6439
af48d08f
PA
6440 /* If we stepped a permanent breakpoint and we had a high priority
6441 step-resume breakpoint for the address we stepped, but we didn't
6442 hit it, then we must have stepped into the signal handler. The
6443 step-resume was only necessary to catch the case of _not_
6444 stepping into the handler, so delete it, and fall through to
6445 checking whether the step finished. */
6446 if (ecs->event_thread->stepped_breakpoint)
6447 {
6448 struct breakpoint *sr_bp
6449 = ecs->event_thread->control.step_resume_breakpoint;
6450
8d707a12
PA
6451 if (sr_bp != NULL
6452 && sr_bp->loc->permanent
af48d08f
PA
6453 && sr_bp->type == bp_hp_step_resume
6454 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6455 {
6456 if (debug_infrun)
6457 fprintf_unfiltered (gdb_stdlog,
6458 "infrun: stepped permanent breakpoint, stopped in "
6459 "handler\n");
6460 delete_step_resume_breakpoint (ecs->event_thread);
6461 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6462 }
6463 }
6464
cdaa5b73
PA
6465 /* We come here if we hit a breakpoint but should not stop for it.
6466 Possibly we also were stepping and should stop for that. So fall
6467 through and test for stepping. But, if not stepping, do not
6468 stop. */
c906108c 6469
a7212384
UW
6470 /* In all-stop mode, if we're currently stepping but have stopped in
6471 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6472 if (switch_back_to_stepped_thread (ecs))
6473 return;
776f04fa 6474
8358c15c 6475 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6476 {
527159b7 6477 if (debug_infrun)
d3169d93
DJ
6478 fprintf_unfiltered (gdb_stdlog,
6479 "infrun: step-resume breakpoint is inserted\n");
527159b7 6480
488f131b
JB
6481 /* Having a step-resume breakpoint overrides anything
6482 else having to do with stepping commands until
6483 that breakpoint is reached. */
488f131b
JB
6484 keep_going (ecs);
6485 return;
6486 }
c5aa993b 6487
16c381f0 6488 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6489 {
527159b7 6490 if (debug_infrun)
8a9de0e4 6491 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6492 /* Likewise if we aren't even stepping. */
488f131b
JB
6493 keep_going (ecs);
6494 return;
6495 }
c5aa993b 6496
4b7703ad
JB
6497 /* Re-fetch current thread's frame in case the code above caused
6498 the frame cache to be re-initialized, making our FRAME variable
6499 a dangling pointer. */
6500 frame = get_current_frame ();
628fe4e4 6501 gdbarch = get_frame_arch (frame);
7e324e48 6502 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6503
488f131b 6504 /* If stepping through a line, keep going if still within it.
c906108c 6505
488f131b
JB
6506 Note that step_range_end is the address of the first instruction
6507 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6508 within it!
6509
6510 Note also that during reverse execution, we may be stepping
6511 through a function epilogue and therefore must detect when
6512 the current-frame changes in the middle of a line. */
6513
ce4c476a 6514 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6515 && (execution_direction != EXEC_REVERSE
388a8562 6516 || frame_id_eq (get_frame_id (frame),
16c381f0 6517 ecs->event_thread->control.step_frame_id)))
488f131b 6518 {
527159b7 6519 if (debug_infrun)
5af949e3
UW
6520 fprintf_unfiltered
6521 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6522 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6523 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6524
c1e36e3e
PA
6525 /* Tentatively re-enable range stepping; `resume' disables it if
6526 necessary (e.g., if we're stepping over a breakpoint or we
6527 have software watchpoints). */
6528 ecs->event_thread->control.may_range_step = 1;
6529
b2175913
MS
6530 /* When stepping backward, stop at beginning of line range
6531 (unless it's the function entry point, in which case
6532 keep going back to the call point). */
16c381f0 6533 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6534 && stop_pc != ecs->stop_func_start
6535 && execution_direction == EXEC_REVERSE)
bdc36728 6536 end_stepping_range (ecs);
b2175913
MS
6537 else
6538 keep_going (ecs);
6539
488f131b
JB
6540 return;
6541 }
c5aa993b 6542
488f131b 6543 /* We stepped out of the stepping range. */
c906108c 6544
488f131b 6545 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6546 loader dynamic symbol resolution code...
6547
6548 EXEC_FORWARD: we keep on single stepping until we exit the run
6549 time loader code and reach the callee's address.
6550
6551 EXEC_REVERSE: we've already executed the callee (backward), and
6552 the runtime loader code is handled just like any other
6553 undebuggable function call. Now we need only keep stepping
6554 backward through the trampoline code, and that's handled further
6555 down, so there is nothing for us to do here. */
6556
6557 if (execution_direction != EXEC_REVERSE
16c381f0 6558 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6559 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6560 {
4c8c40e6 6561 CORE_ADDR pc_after_resolver =
568d6575 6562 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6563
527159b7 6564 if (debug_infrun)
3e43a32a
MS
6565 fprintf_unfiltered (gdb_stdlog,
6566 "infrun: stepped into dynsym resolve code\n");
527159b7 6567
488f131b
JB
6568 if (pc_after_resolver)
6569 {
6570 /* Set up a step-resume breakpoint at the address
6571 indicated by SKIP_SOLIB_RESOLVER. */
6572 struct symtab_and_line sr_sal;
abbb1732 6573
fe39c653 6574 init_sal (&sr_sal);
488f131b 6575 sr_sal.pc = pc_after_resolver;
6c95b8df 6576 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6577
a6d9a66e
UW
6578 insert_step_resume_breakpoint_at_sal (gdbarch,
6579 sr_sal, null_frame_id);
c5aa993b 6580 }
c906108c 6581
488f131b
JB
6582 keep_going (ecs);
6583 return;
6584 }
c906108c 6585
16c381f0
JK
6586 if (ecs->event_thread->control.step_range_end != 1
6587 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6588 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6589 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6590 {
527159b7 6591 if (debug_infrun)
3e43a32a
MS
6592 fprintf_unfiltered (gdb_stdlog,
6593 "infrun: stepped into signal trampoline\n");
42edda50 6594 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6595 a signal trampoline (either by a signal being delivered or by
6596 the signal handler returning). Just single-step until the
6597 inferior leaves the trampoline (either by calling the handler
6598 or returning). */
488f131b
JB
6599 keep_going (ecs);
6600 return;
6601 }
c906108c 6602
14132e89
MR
6603 /* If we're in the return path from a shared library trampoline,
6604 we want to proceed through the trampoline when stepping. */
6605 /* macro/2012-04-25: This needs to come before the subroutine
6606 call check below as on some targets return trampolines look
6607 like subroutine calls (MIPS16 return thunks). */
6608 if (gdbarch_in_solib_return_trampoline (gdbarch,
6609 stop_pc, ecs->stop_func_name)
6610 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6611 {
6612 /* Determine where this trampoline returns. */
6613 CORE_ADDR real_stop_pc;
6614
6615 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6616
6617 if (debug_infrun)
6618 fprintf_unfiltered (gdb_stdlog,
6619 "infrun: stepped into solib return tramp\n");
6620
6621 /* Only proceed through if we know where it's going. */
6622 if (real_stop_pc)
6623 {
6624 /* And put the step-breakpoint there and go until there. */
6625 struct symtab_and_line sr_sal;
6626
6627 init_sal (&sr_sal); /* initialize to zeroes */
6628 sr_sal.pc = real_stop_pc;
6629 sr_sal.section = find_pc_overlay (sr_sal.pc);
6630 sr_sal.pspace = get_frame_program_space (frame);
6631
6632 /* Do not specify what the fp should be when we stop since
6633 on some machines the prologue is where the new fp value
6634 is established. */
6635 insert_step_resume_breakpoint_at_sal (gdbarch,
6636 sr_sal, null_frame_id);
6637
6638 /* Restart without fiddling with the step ranges or
6639 other state. */
6640 keep_going (ecs);
6641 return;
6642 }
6643 }
6644
c17eaafe
DJ
6645 /* Check for subroutine calls. The check for the current frame
6646 equalling the step ID is not necessary - the check of the
6647 previous frame's ID is sufficient - but it is a common case and
6648 cheaper than checking the previous frame's ID.
14e60db5
DJ
6649
6650 NOTE: frame_id_eq will never report two invalid frame IDs as
6651 being equal, so to get into this block, both the current and
6652 previous frame must have valid frame IDs. */
005ca36a
JB
6653 /* The outer_frame_id check is a heuristic to detect stepping
6654 through startup code. If we step over an instruction which
6655 sets the stack pointer from an invalid value to a valid value,
6656 we may detect that as a subroutine call from the mythical
6657 "outermost" function. This could be fixed by marking
6658 outermost frames as !stack_p,code_p,special_p. Then the
6659 initial outermost frame, before sp was valid, would
ce6cca6d 6660 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6661 for more. */
edb3359d 6662 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6663 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6664 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6665 ecs->event_thread->control.step_stack_frame_id)
6666 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6667 outer_frame_id)
885eeb5b
PA
6668 || (ecs->event_thread->control.step_start_function
6669 != find_pc_function (stop_pc)))))
488f131b 6670 {
95918acb 6671 CORE_ADDR real_stop_pc;
8fb3e588 6672
527159b7 6673 if (debug_infrun)
8a9de0e4 6674 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6675
b7a084be 6676 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6677 {
6678 /* I presume that step_over_calls is only 0 when we're
6679 supposed to be stepping at the assembly language level
6680 ("stepi"). Just stop. */
388a8562 6681 /* And this works the same backward as frontward. MVS */
bdc36728 6682 end_stepping_range (ecs);
95918acb
AC
6683 return;
6684 }
8fb3e588 6685
388a8562
MS
6686 /* Reverse stepping through solib trampolines. */
6687
6688 if (execution_direction == EXEC_REVERSE
16c381f0 6689 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6690 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6691 || (ecs->stop_func_start == 0
6692 && in_solib_dynsym_resolve_code (stop_pc))))
6693 {
6694 /* Any solib trampoline code can be handled in reverse
6695 by simply continuing to single-step. We have already
6696 executed the solib function (backwards), and a few
6697 steps will take us back through the trampoline to the
6698 caller. */
6699 keep_going (ecs);
6700 return;
6701 }
6702
16c381f0 6703 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6704 {
b2175913
MS
6705 /* We're doing a "next".
6706
6707 Normal (forward) execution: set a breakpoint at the
6708 callee's return address (the address at which the caller
6709 will resume).
6710
6711 Reverse (backward) execution. set the step-resume
6712 breakpoint at the start of the function that we just
6713 stepped into (backwards), and continue to there. When we
6130d0b7 6714 get there, we'll need to single-step back to the caller. */
b2175913
MS
6715
6716 if (execution_direction == EXEC_REVERSE)
6717 {
acf9414f
JK
6718 /* If we're already at the start of the function, we've either
6719 just stepped backward into a single instruction function,
6720 or stepped back out of a signal handler to the first instruction
6721 of the function. Just keep going, which will single-step back
6722 to the caller. */
58c48e72 6723 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6724 {
6725 struct symtab_and_line sr_sal;
6726
6727 /* Normal function call return (static or dynamic). */
6728 init_sal (&sr_sal);
6729 sr_sal.pc = ecs->stop_func_start;
6730 sr_sal.pspace = get_frame_program_space (frame);
6731 insert_step_resume_breakpoint_at_sal (gdbarch,
6732 sr_sal, null_frame_id);
6733 }
b2175913
MS
6734 }
6735 else
568d6575 6736 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6737
8567c30f
AC
6738 keep_going (ecs);
6739 return;
6740 }
a53c66de 6741
95918acb 6742 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6743 calling routine and the real function), locate the real
6744 function. That's what tells us (a) whether we want to step
6745 into it at all, and (b) what prologue we want to run to the
6746 end of, if we do step into it. */
568d6575 6747 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6748 if (real_stop_pc == 0)
568d6575 6749 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6750 if (real_stop_pc != 0)
6751 ecs->stop_func_start = real_stop_pc;
8fb3e588 6752
db5f024e 6753 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6754 {
6755 struct symtab_and_line sr_sal;
abbb1732 6756
1b2bfbb9
RC
6757 init_sal (&sr_sal);
6758 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6759 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6760
a6d9a66e
UW
6761 insert_step_resume_breakpoint_at_sal (gdbarch,
6762 sr_sal, null_frame_id);
8fb3e588
AC
6763 keep_going (ecs);
6764 return;
1b2bfbb9
RC
6765 }
6766
95918acb 6767 /* If we have line number information for the function we are
1bfeeb0f
JL
6768 thinking of stepping into and the function isn't on the skip
6769 list, step into it.
95918acb 6770
8fb3e588
AC
6771 If there are several symtabs at that PC (e.g. with include
6772 files), just want to know whether *any* of them have line
6773 numbers. find_pc_line handles this. */
95918acb
AC
6774 {
6775 struct symtab_and_line tmp_sal;
8fb3e588 6776
95918acb 6777 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6778 if (tmp_sal.line != 0
85817405
JK
6779 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6780 &tmp_sal))
95918acb 6781 {
b2175913 6782 if (execution_direction == EXEC_REVERSE)
568d6575 6783 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6784 else
568d6575 6785 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6786 return;
6787 }
6788 }
6789
6790 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6791 set, we stop the step so that the user has a chance to switch
6792 in assembly mode. */
16c381f0 6793 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6794 && step_stop_if_no_debug)
95918acb 6795 {
bdc36728 6796 end_stepping_range (ecs);
95918acb
AC
6797 return;
6798 }
6799
b2175913
MS
6800 if (execution_direction == EXEC_REVERSE)
6801 {
acf9414f
JK
6802 /* If we're already at the start of the function, we've either just
6803 stepped backward into a single instruction function without line
6804 number info, or stepped back out of a signal handler to the first
6805 instruction of the function without line number info. Just keep
6806 going, which will single-step back to the caller. */
6807 if (ecs->stop_func_start != stop_pc)
6808 {
6809 /* Set a breakpoint at callee's start address.
6810 From there we can step once and be back in the caller. */
6811 struct symtab_and_line sr_sal;
abbb1732 6812
acf9414f
JK
6813 init_sal (&sr_sal);
6814 sr_sal.pc = ecs->stop_func_start;
6815 sr_sal.pspace = get_frame_program_space (frame);
6816 insert_step_resume_breakpoint_at_sal (gdbarch,
6817 sr_sal, null_frame_id);
6818 }
b2175913
MS
6819 }
6820 else
6821 /* Set a breakpoint at callee's return address (the address
6822 at which the caller will resume). */
568d6575 6823 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6824
95918acb 6825 keep_going (ecs);
488f131b 6826 return;
488f131b 6827 }
c906108c 6828
fdd654f3
MS
6829 /* Reverse stepping through solib trampolines. */
6830
6831 if (execution_direction == EXEC_REVERSE
16c381f0 6832 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6833 {
6834 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6835 || (ecs->stop_func_start == 0
6836 && in_solib_dynsym_resolve_code (stop_pc)))
6837 {
6838 /* Any solib trampoline code can be handled in reverse
6839 by simply continuing to single-step. We have already
6840 executed the solib function (backwards), and a few
6841 steps will take us back through the trampoline to the
6842 caller. */
6843 keep_going (ecs);
6844 return;
6845 }
6846 else if (in_solib_dynsym_resolve_code (stop_pc))
6847 {
6848 /* Stepped backward into the solib dynsym resolver.
6849 Set a breakpoint at its start and continue, then
6850 one more step will take us out. */
6851 struct symtab_and_line sr_sal;
abbb1732 6852
fdd654f3
MS
6853 init_sal (&sr_sal);
6854 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6855 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6856 insert_step_resume_breakpoint_at_sal (gdbarch,
6857 sr_sal, null_frame_id);
6858 keep_going (ecs);
6859 return;
6860 }
6861 }
6862
2afb61aa 6863 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6864
1b2bfbb9
RC
6865 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6866 the trampoline processing logic, however, there are some trampolines
6867 that have no names, so we should do trampoline handling first. */
16c381f0 6868 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6869 && ecs->stop_func_name == NULL
2afb61aa 6870 && stop_pc_sal.line == 0)
1b2bfbb9 6871 {
527159b7 6872 if (debug_infrun)
3e43a32a
MS
6873 fprintf_unfiltered (gdb_stdlog,
6874 "infrun: stepped into undebuggable function\n");
527159b7 6875
1b2bfbb9 6876 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6877 undebuggable function (where there is no debugging information
6878 and no line number corresponding to the address where the
1b2bfbb9
RC
6879 inferior stopped). Since we want to skip this kind of code,
6880 we keep going until the inferior returns from this
14e60db5
DJ
6881 function - unless the user has asked us not to (via
6882 set step-mode) or we no longer know how to get back
6883 to the call site. */
6884 if (step_stop_if_no_debug
c7ce8faa 6885 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6886 {
6887 /* If we have no line number and the step-stop-if-no-debug
6888 is set, we stop the step so that the user has a chance to
6889 switch in assembly mode. */
bdc36728 6890 end_stepping_range (ecs);
1b2bfbb9
RC
6891 return;
6892 }
6893 else
6894 {
6895 /* Set a breakpoint at callee's return address (the address
6896 at which the caller will resume). */
568d6575 6897 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6898 keep_going (ecs);
6899 return;
6900 }
6901 }
6902
16c381f0 6903 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6904 {
6905 /* It is stepi or nexti. We always want to stop stepping after
6906 one instruction. */
527159b7 6907 if (debug_infrun)
8a9de0e4 6908 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6909 end_stepping_range (ecs);
1b2bfbb9
RC
6910 return;
6911 }
6912
2afb61aa 6913 if (stop_pc_sal.line == 0)
488f131b
JB
6914 {
6915 /* We have no line number information. That means to stop
6916 stepping (does this always happen right after one instruction,
6917 when we do "s" in a function with no line numbers,
6918 or can this happen as a result of a return or longjmp?). */
527159b7 6919 if (debug_infrun)
8a9de0e4 6920 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6921 end_stepping_range (ecs);
488f131b
JB
6922 return;
6923 }
c906108c 6924
edb3359d
DJ
6925 /* Look for "calls" to inlined functions, part one. If the inline
6926 frame machinery detected some skipped call sites, we have entered
6927 a new inline function. */
6928
6929 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6930 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6931 && inline_skipped_frames (ecs->ptid))
6932 {
6933 struct symtab_and_line call_sal;
6934
6935 if (debug_infrun)
6936 fprintf_unfiltered (gdb_stdlog,
6937 "infrun: stepped into inlined function\n");
6938
6939 find_frame_sal (get_current_frame (), &call_sal);
6940
16c381f0 6941 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6942 {
6943 /* For "step", we're going to stop. But if the call site
6944 for this inlined function is on the same source line as
6945 we were previously stepping, go down into the function
6946 first. Otherwise stop at the call site. */
6947
6948 if (call_sal.line == ecs->event_thread->current_line
6949 && call_sal.symtab == ecs->event_thread->current_symtab)
6950 step_into_inline_frame (ecs->ptid);
6951
bdc36728 6952 end_stepping_range (ecs);
edb3359d
DJ
6953 return;
6954 }
6955 else
6956 {
6957 /* For "next", we should stop at the call site if it is on a
6958 different source line. Otherwise continue through the
6959 inlined function. */
6960 if (call_sal.line == ecs->event_thread->current_line
6961 && call_sal.symtab == ecs->event_thread->current_symtab)
6962 keep_going (ecs);
6963 else
bdc36728 6964 end_stepping_range (ecs);
edb3359d
DJ
6965 return;
6966 }
6967 }
6968
6969 /* Look for "calls" to inlined functions, part two. If we are still
6970 in the same real function we were stepping through, but we have
6971 to go further up to find the exact frame ID, we are stepping
6972 through a more inlined call beyond its call site. */
6973
6974 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6975 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6976 ecs->event_thread->control.step_frame_id)
edb3359d 6977 && stepped_in_from (get_current_frame (),
16c381f0 6978 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6979 {
6980 if (debug_infrun)
6981 fprintf_unfiltered (gdb_stdlog,
6982 "infrun: stepping through inlined function\n");
6983
16c381f0 6984 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6985 keep_going (ecs);
6986 else
bdc36728 6987 end_stepping_range (ecs);
edb3359d
DJ
6988 return;
6989 }
6990
2afb61aa 6991 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6992 && (ecs->event_thread->current_line != stop_pc_sal.line
6993 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6994 {
6995 /* We are at the start of a different line. So stop. Note that
6996 we don't stop if we step into the middle of a different line.
6997 That is said to make things like for (;;) statements work
6998 better. */
527159b7 6999 if (debug_infrun)
3e43a32a
MS
7000 fprintf_unfiltered (gdb_stdlog,
7001 "infrun: stepped to a different line\n");
bdc36728 7002 end_stepping_range (ecs);
488f131b
JB
7003 return;
7004 }
c906108c 7005
488f131b 7006 /* We aren't done stepping.
c906108c 7007
488f131b
JB
7008 Optimize by setting the stepping range to the line.
7009 (We might not be in the original line, but if we entered a
7010 new line in mid-statement, we continue stepping. This makes
7011 things like for(;;) statements work better.) */
c906108c 7012
16c381f0
JK
7013 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7014 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7015 ecs->event_thread->control.may_range_step = 1;
edb3359d 7016 set_step_info (frame, stop_pc_sal);
488f131b 7017
527159b7 7018 if (debug_infrun)
8a9de0e4 7019 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7020 keep_going (ecs);
104c1213
JM
7021}
7022
c447ac0b
PA
7023/* In all-stop mode, if we're currently stepping but have stopped in
7024 some other thread, we may need to switch back to the stepped
7025 thread. Returns true we set the inferior running, false if we left
7026 it stopped (and the event needs further processing). */
7027
7028static int
7029switch_back_to_stepped_thread (struct execution_control_state *ecs)
7030{
fbea99ea 7031 if (!target_is_non_stop_p ())
c447ac0b
PA
7032 {
7033 struct thread_info *tp;
99619bea
PA
7034 struct thread_info *stepping_thread;
7035
7036 /* If any thread is blocked on some internal breakpoint, and we
7037 simply need to step over that breakpoint to get it going
7038 again, do that first. */
7039
7040 /* However, if we see an event for the stepping thread, then we
7041 know all other threads have been moved past their breakpoints
7042 already. Let the caller check whether the step is finished,
7043 etc., before deciding to move it past a breakpoint. */
7044 if (ecs->event_thread->control.step_range_end != 0)
7045 return 0;
7046
7047 /* Check if the current thread is blocked on an incomplete
7048 step-over, interrupted by a random signal. */
7049 if (ecs->event_thread->control.trap_expected
7050 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7051 {
99619bea
PA
7052 if (debug_infrun)
7053 {
7054 fprintf_unfiltered (gdb_stdlog,
7055 "infrun: need to finish step-over of [%s]\n",
7056 target_pid_to_str (ecs->event_thread->ptid));
7057 }
7058 keep_going (ecs);
7059 return 1;
7060 }
2adfaa28 7061
99619bea
PA
7062 /* Check if the current thread is blocked by a single-step
7063 breakpoint of another thread. */
7064 if (ecs->hit_singlestep_breakpoint)
7065 {
7066 if (debug_infrun)
7067 {
7068 fprintf_unfiltered (gdb_stdlog,
7069 "infrun: need to step [%s] over single-step "
7070 "breakpoint\n",
7071 target_pid_to_str (ecs->ptid));
7072 }
7073 keep_going (ecs);
7074 return 1;
7075 }
7076
4d9d9d04
PA
7077 /* If this thread needs yet another step-over (e.g., stepping
7078 through a delay slot), do it first before moving on to
7079 another thread. */
7080 if (thread_still_needs_step_over (ecs->event_thread))
7081 {
7082 if (debug_infrun)
7083 {
7084 fprintf_unfiltered (gdb_stdlog,
7085 "infrun: thread [%s] still needs step-over\n",
7086 target_pid_to_str (ecs->event_thread->ptid));
7087 }
7088 keep_going (ecs);
7089 return 1;
7090 }
70509625 7091
483805cf
PA
7092 /* If scheduler locking applies even if not stepping, there's no
7093 need to walk over threads. Above we've checked whether the
7094 current thread is stepping. If some other thread not the
7095 event thread is stepping, then it must be that scheduler
7096 locking is not in effect. */
856e7dd6 7097 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7098 return 0;
7099
4d9d9d04
PA
7100 /* Otherwise, we no longer expect a trap in the current thread.
7101 Clear the trap_expected flag before switching back -- this is
7102 what keep_going does as well, if we call it. */
7103 ecs->event_thread->control.trap_expected = 0;
7104
7105 /* Likewise, clear the signal if it should not be passed. */
7106 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7107 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7108
7109 /* Do all pending step-overs before actually proceeding with
483805cf 7110 step/next/etc. */
4d9d9d04
PA
7111 if (start_step_over ())
7112 {
7113 prepare_to_wait (ecs);
7114 return 1;
7115 }
7116
7117 /* Look for the stepping/nexting thread. */
483805cf 7118 stepping_thread = NULL;
4d9d9d04 7119
034f788c 7120 ALL_NON_EXITED_THREADS (tp)
483805cf 7121 {
fbea99ea
PA
7122 /* Ignore threads of processes the caller is not
7123 resuming. */
483805cf 7124 if (!sched_multi
1afd5965 7125 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7126 continue;
7127
7128 /* When stepping over a breakpoint, we lock all threads
7129 except the one that needs to move past the breakpoint.
7130 If a non-event thread has this set, the "incomplete
7131 step-over" check above should have caught it earlier. */
372316f1
PA
7132 if (tp->control.trap_expected)
7133 {
7134 internal_error (__FILE__, __LINE__,
7135 "[%s] has inconsistent state: "
7136 "trap_expected=%d\n",
7137 target_pid_to_str (tp->ptid),
7138 tp->control.trap_expected);
7139 }
483805cf
PA
7140
7141 /* Did we find the stepping thread? */
7142 if (tp->control.step_range_end)
7143 {
7144 /* Yep. There should only one though. */
7145 gdb_assert (stepping_thread == NULL);
7146
7147 /* The event thread is handled at the top, before we
7148 enter this loop. */
7149 gdb_assert (tp != ecs->event_thread);
7150
7151 /* If some thread other than the event thread is
7152 stepping, then scheduler locking can't be in effect,
7153 otherwise we wouldn't have resumed the current event
7154 thread in the first place. */
856e7dd6 7155 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7156
7157 stepping_thread = tp;
7158 }
99619bea
PA
7159 }
7160
483805cf 7161 if (stepping_thread != NULL)
99619bea 7162 {
c447ac0b
PA
7163 if (debug_infrun)
7164 fprintf_unfiltered (gdb_stdlog,
7165 "infrun: switching back to stepped thread\n");
7166
2ac7589c
PA
7167 if (keep_going_stepped_thread (stepping_thread))
7168 {
7169 prepare_to_wait (ecs);
7170 return 1;
7171 }
7172 }
7173 }
2adfaa28 7174
2ac7589c
PA
7175 return 0;
7176}
2adfaa28 7177
2ac7589c
PA
7178/* Set a previously stepped thread back to stepping. Returns true on
7179 success, false if the resume is not possible (e.g., the thread
7180 vanished). */
7181
7182static int
7183keep_going_stepped_thread (struct thread_info *tp)
7184{
7185 struct frame_info *frame;
2ac7589c
PA
7186 struct execution_control_state ecss;
7187 struct execution_control_state *ecs = &ecss;
2adfaa28 7188
2ac7589c
PA
7189 /* If the stepping thread exited, then don't try to switch back and
7190 resume it, which could fail in several different ways depending
7191 on the target. Instead, just keep going.
2adfaa28 7192
2ac7589c
PA
7193 We can find a stepping dead thread in the thread list in two
7194 cases:
2adfaa28 7195
2ac7589c
PA
7196 - The target supports thread exit events, and when the target
7197 tries to delete the thread from the thread list, inferior_ptid
7198 pointed at the exiting thread. In such case, calling
7199 delete_thread does not really remove the thread from the list;
7200 instead, the thread is left listed, with 'exited' state.
64ce06e4 7201
2ac7589c
PA
7202 - The target's debug interface does not support thread exit
7203 events, and so we have no idea whatsoever if the previously
7204 stepping thread is still alive. For that reason, we need to
7205 synchronously query the target now. */
2adfaa28 7206
2ac7589c
PA
7207 if (is_exited (tp->ptid)
7208 || !target_thread_alive (tp->ptid))
7209 {
7210 if (debug_infrun)
7211 fprintf_unfiltered (gdb_stdlog,
7212 "infrun: not resuming previously "
7213 "stepped thread, it has vanished\n");
7214
7215 delete_thread (tp->ptid);
7216 return 0;
c447ac0b 7217 }
2ac7589c
PA
7218
7219 if (debug_infrun)
7220 fprintf_unfiltered (gdb_stdlog,
7221 "infrun: resuming previously stepped thread\n");
7222
7223 reset_ecs (ecs, tp);
7224 switch_to_thread (tp->ptid);
7225
7226 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7227 frame = get_current_frame ();
2ac7589c
PA
7228
7229 /* If the PC of the thread we were trying to single-step has
7230 changed, then that thread has trapped or been signaled, but the
7231 event has not been reported to GDB yet. Re-poll the target
7232 looking for this particular thread's event (i.e. temporarily
7233 enable schedlock) by:
7234
7235 - setting a break at the current PC
7236 - resuming that particular thread, only (by setting trap
7237 expected)
7238
7239 This prevents us continuously moving the single-step breakpoint
7240 forward, one instruction at a time, overstepping. */
7241
7242 if (stop_pc != tp->prev_pc)
7243 {
7244 ptid_t resume_ptid;
7245
7246 if (debug_infrun)
7247 fprintf_unfiltered (gdb_stdlog,
7248 "infrun: expected thread advanced also (%s -> %s)\n",
7249 paddress (target_gdbarch (), tp->prev_pc),
7250 paddress (target_gdbarch (), stop_pc));
7251
7252 /* Clear the info of the previous step-over, as it's no longer
7253 valid (if the thread was trying to step over a breakpoint, it
7254 has already succeeded). It's what keep_going would do too,
7255 if we called it. Do this before trying to insert the sss
7256 breakpoint, otherwise if we were previously trying to step
7257 over this exact address in another thread, the breakpoint is
7258 skipped. */
7259 clear_step_over_info ();
7260 tp->control.trap_expected = 0;
7261
7262 insert_single_step_breakpoint (get_frame_arch (frame),
7263 get_frame_address_space (frame),
7264 stop_pc);
7265
372316f1 7266 tp->resumed = 1;
fbea99ea 7267 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7268 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7269 }
7270 else
7271 {
7272 if (debug_infrun)
7273 fprintf_unfiltered (gdb_stdlog,
7274 "infrun: expected thread still hasn't advanced\n");
7275
7276 keep_going_pass_signal (ecs);
7277 }
7278 return 1;
c447ac0b
PA
7279}
7280
8b061563
PA
7281/* Is thread TP in the middle of (software or hardware)
7282 single-stepping? (Note the result of this function must never be
7283 passed directly as target_resume's STEP parameter.) */
104c1213 7284
a289b8f6 7285static int
b3444185 7286currently_stepping (struct thread_info *tp)
a7212384 7287{
8358c15c
JK
7288 return ((tp->control.step_range_end
7289 && tp->control.step_resume_breakpoint == NULL)
7290 || tp->control.trap_expected
af48d08f 7291 || tp->stepped_breakpoint
8358c15c 7292 || bpstat_should_step ());
a7212384
UW
7293}
7294
b2175913
MS
7295/* Inferior has stepped into a subroutine call with source code that
7296 we should not step over. Do step to the first line of code in
7297 it. */
c2c6d25f
JM
7298
7299static void
568d6575
UW
7300handle_step_into_function (struct gdbarch *gdbarch,
7301 struct execution_control_state *ecs)
c2c6d25f 7302{
43f3e411 7303 struct compunit_symtab *cust;
2afb61aa 7304 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7305
7e324e48
GB
7306 fill_in_stop_func (gdbarch, ecs);
7307
43f3e411
DE
7308 cust = find_pc_compunit_symtab (stop_pc);
7309 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7310 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7311 ecs->stop_func_start);
c2c6d25f 7312
2afb61aa 7313 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7314 /* Use the step_resume_break to step until the end of the prologue,
7315 even if that involves jumps (as it seems to on the vax under
7316 4.2). */
7317 /* If the prologue ends in the middle of a source line, continue to
7318 the end of that source line (if it is still within the function).
7319 Otherwise, just go to end of prologue. */
2afb61aa
PA
7320 if (stop_func_sal.end
7321 && stop_func_sal.pc != ecs->stop_func_start
7322 && stop_func_sal.end < ecs->stop_func_end)
7323 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7324
2dbd5e30
KB
7325 /* Architectures which require breakpoint adjustment might not be able
7326 to place a breakpoint at the computed address. If so, the test
7327 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7328 ecs->stop_func_start to an address at which a breakpoint may be
7329 legitimately placed.
8fb3e588 7330
2dbd5e30
KB
7331 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7332 made, GDB will enter an infinite loop when stepping through
7333 optimized code consisting of VLIW instructions which contain
7334 subinstructions corresponding to different source lines. On
7335 FR-V, it's not permitted to place a breakpoint on any but the
7336 first subinstruction of a VLIW instruction. When a breakpoint is
7337 set, GDB will adjust the breakpoint address to the beginning of
7338 the VLIW instruction. Thus, we need to make the corresponding
7339 adjustment here when computing the stop address. */
8fb3e588 7340
568d6575 7341 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7342 {
7343 ecs->stop_func_start
568d6575 7344 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7345 ecs->stop_func_start);
2dbd5e30
KB
7346 }
7347
c2c6d25f
JM
7348 if (ecs->stop_func_start == stop_pc)
7349 {
7350 /* We are already there: stop now. */
bdc36728 7351 end_stepping_range (ecs);
c2c6d25f
JM
7352 return;
7353 }
7354 else
7355 {
7356 /* Put the step-breakpoint there and go until there. */
fe39c653 7357 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7358 sr_sal.pc = ecs->stop_func_start;
7359 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7360 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7361
c2c6d25f 7362 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7363 some machines the prologue is where the new fp value is
7364 established. */
a6d9a66e 7365 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7366
7367 /* And make sure stepping stops right away then. */
16c381f0
JK
7368 ecs->event_thread->control.step_range_end
7369 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7370 }
7371 keep_going (ecs);
7372}
d4f3574e 7373
b2175913
MS
7374/* Inferior has stepped backward into a subroutine call with source
7375 code that we should not step over. Do step to the beginning of the
7376 last line of code in it. */
7377
7378static void
568d6575
UW
7379handle_step_into_function_backward (struct gdbarch *gdbarch,
7380 struct execution_control_state *ecs)
b2175913 7381{
43f3e411 7382 struct compunit_symtab *cust;
167e4384 7383 struct symtab_and_line stop_func_sal;
b2175913 7384
7e324e48
GB
7385 fill_in_stop_func (gdbarch, ecs);
7386
43f3e411
DE
7387 cust = find_pc_compunit_symtab (stop_pc);
7388 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7389 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7390 ecs->stop_func_start);
7391
7392 stop_func_sal = find_pc_line (stop_pc, 0);
7393
7394 /* OK, we're just going to keep stepping here. */
7395 if (stop_func_sal.pc == stop_pc)
7396 {
7397 /* We're there already. Just stop stepping now. */
bdc36728 7398 end_stepping_range (ecs);
b2175913
MS
7399 }
7400 else
7401 {
7402 /* Else just reset the step range and keep going.
7403 No step-resume breakpoint, they don't work for
7404 epilogues, which can have multiple entry paths. */
16c381f0
JK
7405 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7406 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7407 keep_going (ecs);
7408 }
7409 return;
7410}
7411
d3169d93 7412/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7413 This is used to both functions and to skip over code. */
7414
7415static void
2c03e5be
PA
7416insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7417 struct symtab_and_line sr_sal,
7418 struct frame_id sr_id,
7419 enum bptype sr_type)
44cbf7b5 7420{
611c83ae
PA
7421 /* There should never be more than one step-resume or longjmp-resume
7422 breakpoint per thread, so we should never be setting a new
44cbf7b5 7423 step_resume_breakpoint when one is already active. */
8358c15c 7424 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7425 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7426
7427 if (debug_infrun)
7428 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7429 "infrun: inserting step-resume breakpoint at %s\n",
7430 paddress (gdbarch, sr_sal.pc));
d3169d93 7431
8358c15c 7432 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7433 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7434}
7435
9da8c2a0 7436void
2c03e5be
PA
7437insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7438 struct symtab_and_line sr_sal,
7439 struct frame_id sr_id)
7440{
7441 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7442 sr_sal, sr_id,
7443 bp_step_resume);
44cbf7b5 7444}
7ce450bd 7445
2c03e5be
PA
7446/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7447 This is used to skip a potential signal handler.
7ce450bd 7448
14e60db5
DJ
7449 This is called with the interrupted function's frame. The signal
7450 handler, when it returns, will resume the interrupted function at
7451 RETURN_FRAME.pc. */
d303a6c7
AC
7452
7453static void
2c03e5be 7454insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7455{
7456 struct symtab_and_line sr_sal;
a6d9a66e 7457 struct gdbarch *gdbarch;
d303a6c7 7458
f4c1edd8 7459 gdb_assert (return_frame != NULL);
d303a6c7
AC
7460 init_sal (&sr_sal); /* initialize to zeros */
7461
a6d9a66e 7462 gdbarch = get_frame_arch (return_frame);
568d6575 7463 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7464 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7465 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7466
2c03e5be
PA
7467 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7468 get_stack_frame_id (return_frame),
7469 bp_hp_step_resume);
d303a6c7
AC
7470}
7471
2c03e5be
PA
7472/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7473 is used to skip a function after stepping into it (for "next" or if
7474 the called function has no debugging information).
14e60db5
DJ
7475
7476 The current function has almost always been reached by single
7477 stepping a call or return instruction. NEXT_FRAME belongs to the
7478 current function, and the breakpoint will be set at the caller's
7479 resume address.
7480
7481 This is a separate function rather than reusing
2c03e5be 7482 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7483 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7484 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7485
7486static void
7487insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7488{
7489 struct symtab_and_line sr_sal;
a6d9a66e 7490 struct gdbarch *gdbarch;
14e60db5
DJ
7491
7492 /* We shouldn't have gotten here if we don't know where the call site
7493 is. */
c7ce8faa 7494 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7495
7496 init_sal (&sr_sal); /* initialize to zeros */
7497
a6d9a66e 7498 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7499 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7500 frame_unwind_caller_pc (next_frame));
14e60db5 7501 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7502 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7503
a6d9a66e 7504 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7505 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7506}
7507
611c83ae
PA
7508/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7509 new breakpoint at the target of a jmp_buf. The handling of
7510 longjmp-resume uses the same mechanisms used for handling
7511 "step-resume" breakpoints. */
7512
7513static void
a6d9a66e 7514insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7515{
e81a37f7
TT
7516 /* There should never be more than one longjmp-resume breakpoint per
7517 thread, so we should never be setting a new
611c83ae 7518 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7519 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7520
7521 if (debug_infrun)
7522 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7523 "infrun: inserting longjmp-resume breakpoint at %s\n",
7524 paddress (gdbarch, pc));
611c83ae 7525
e81a37f7 7526 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7527 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7528}
7529
186c406b
TT
7530/* Insert an exception resume breakpoint. TP is the thread throwing
7531 the exception. The block B is the block of the unwinder debug hook
7532 function. FRAME is the frame corresponding to the call to this
7533 function. SYM is the symbol of the function argument holding the
7534 target PC of the exception. */
7535
7536static void
7537insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7538 const struct block *b,
186c406b
TT
7539 struct frame_info *frame,
7540 struct symbol *sym)
7541{
492d29ea 7542 TRY
186c406b 7543 {
63e43d3a 7544 struct block_symbol vsym;
186c406b
TT
7545 struct value *value;
7546 CORE_ADDR handler;
7547 struct breakpoint *bp;
7548
63e43d3a
PMR
7549 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7550 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7551 /* If the value was optimized out, revert to the old behavior. */
7552 if (! value_optimized_out (value))
7553 {
7554 handler = value_as_address (value);
7555
7556 if (debug_infrun)
7557 fprintf_unfiltered (gdb_stdlog,
7558 "infrun: exception resume at %lx\n",
7559 (unsigned long) handler);
7560
7561 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7562 handler, bp_exception_resume);
c70a6932
JK
7563
7564 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7565 frame = NULL;
7566
5d5658a1 7567 bp->thread = tp->global_num;
186c406b
TT
7568 inferior_thread ()->control.exception_resume_breakpoint = bp;
7569 }
7570 }
492d29ea
PA
7571 CATCH (e, RETURN_MASK_ERROR)
7572 {
7573 /* We want to ignore errors here. */
7574 }
7575 END_CATCH
186c406b
TT
7576}
7577
28106bc2
SDJ
7578/* A helper for check_exception_resume that sets an
7579 exception-breakpoint based on a SystemTap probe. */
7580
7581static void
7582insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7583 const struct bound_probe *probe,
28106bc2
SDJ
7584 struct frame_info *frame)
7585{
7586 struct value *arg_value;
7587 CORE_ADDR handler;
7588 struct breakpoint *bp;
7589
7590 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7591 if (!arg_value)
7592 return;
7593
7594 handler = value_as_address (arg_value);
7595
7596 if (debug_infrun)
7597 fprintf_unfiltered (gdb_stdlog,
7598 "infrun: exception resume at %s\n",
6bac7473 7599 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7600 handler));
7601
7602 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7603 handler, bp_exception_resume);
5d5658a1 7604 bp->thread = tp->global_num;
28106bc2
SDJ
7605 inferior_thread ()->control.exception_resume_breakpoint = bp;
7606}
7607
186c406b
TT
7608/* This is called when an exception has been intercepted. Check to
7609 see whether the exception's destination is of interest, and if so,
7610 set an exception resume breakpoint there. */
7611
7612static void
7613check_exception_resume (struct execution_control_state *ecs,
28106bc2 7614 struct frame_info *frame)
186c406b 7615{
729662a5 7616 struct bound_probe probe;
28106bc2
SDJ
7617 struct symbol *func;
7618
7619 /* First see if this exception unwinding breakpoint was set via a
7620 SystemTap probe point. If so, the probe has two arguments: the
7621 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7622 set a breakpoint there. */
6bac7473 7623 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7624 if (probe.probe)
28106bc2 7625 {
729662a5 7626 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7627 return;
7628 }
7629
7630 func = get_frame_function (frame);
7631 if (!func)
7632 return;
186c406b 7633
492d29ea 7634 TRY
186c406b 7635 {
3977b71f 7636 const struct block *b;
8157b174 7637 struct block_iterator iter;
186c406b
TT
7638 struct symbol *sym;
7639 int argno = 0;
7640
7641 /* The exception breakpoint is a thread-specific breakpoint on
7642 the unwinder's debug hook, declared as:
7643
7644 void _Unwind_DebugHook (void *cfa, void *handler);
7645
7646 The CFA argument indicates the frame to which control is
7647 about to be transferred. HANDLER is the destination PC.
7648
7649 We ignore the CFA and set a temporary breakpoint at HANDLER.
7650 This is not extremely efficient but it avoids issues in gdb
7651 with computing the DWARF CFA, and it also works even in weird
7652 cases such as throwing an exception from inside a signal
7653 handler. */
7654
7655 b = SYMBOL_BLOCK_VALUE (func);
7656 ALL_BLOCK_SYMBOLS (b, iter, sym)
7657 {
7658 if (!SYMBOL_IS_ARGUMENT (sym))
7659 continue;
7660
7661 if (argno == 0)
7662 ++argno;
7663 else
7664 {
7665 insert_exception_resume_breakpoint (ecs->event_thread,
7666 b, frame, sym);
7667 break;
7668 }
7669 }
7670 }
492d29ea
PA
7671 CATCH (e, RETURN_MASK_ERROR)
7672 {
7673 }
7674 END_CATCH
186c406b
TT
7675}
7676
104c1213 7677static void
22bcd14b 7678stop_waiting (struct execution_control_state *ecs)
104c1213 7679{
527159b7 7680 if (debug_infrun)
22bcd14b 7681 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7682
31e77af2
PA
7683 clear_step_over_info ();
7684
cd0fc7c3
SS
7685 /* Let callers know we don't want to wait for the inferior anymore. */
7686 ecs->wait_some_more = 0;
fbea99ea
PA
7687
7688 /* If all-stop, but the target is always in non-stop mode, stop all
7689 threads now that we're presenting the stop to the user. */
7690 if (!non_stop && target_is_non_stop_p ())
7691 stop_all_threads ();
cd0fc7c3
SS
7692}
7693
4d9d9d04
PA
7694/* Like keep_going, but passes the signal to the inferior, even if the
7695 signal is set to nopass. */
d4f3574e
SS
7696
7697static void
4d9d9d04 7698keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7699{
c4dbc9af
PA
7700 /* Make sure normal_stop is called if we get a QUIT handled before
7701 reaching resume. */
7702 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7703
4d9d9d04 7704 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7705 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7706
d4f3574e 7707 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7708 ecs->event_thread->prev_pc
7709 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7710
4d9d9d04 7711 if (ecs->event_thread->control.trap_expected)
d4f3574e 7712 {
4d9d9d04
PA
7713 struct thread_info *tp = ecs->event_thread;
7714
7715 if (debug_infrun)
7716 fprintf_unfiltered (gdb_stdlog,
7717 "infrun: %s has trap_expected set, "
7718 "resuming to collect trap\n",
7719 target_pid_to_str (tp->ptid));
7720
a9ba6bae
PA
7721 /* We haven't yet gotten our trap, and either: intercepted a
7722 non-signal event (e.g., a fork); or took a signal which we
7723 are supposed to pass through to the inferior. Simply
7724 continue. */
c4dbc9af 7725 discard_cleanups (old_cleanups);
64ce06e4 7726 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7727 }
372316f1
PA
7728 else if (step_over_info_valid_p ())
7729 {
7730 /* Another thread is stepping over a breakpoint in-line. If
7731 this thread needs a step-over too, queue the request. In
7732 either case, this resume must be deferred for later. */
7733 struct thread_info *tp = ecs->event_thread;
7734
7735 if (ecs->hit_singlestep_breakpoint
7736 || thread_still_needs_step_over (tp))
7737 {
7738 if (debug_infrun)
7739 fprintf_unfiltered (gdb_stdlog,
7740 "infrun: step-over already in progress: "
7741 "step-over for %s deferred\n",
7742 target_pid_to_str (tp->ptid));
7743 thread_step_over_chain_enqueue (tp);
7744 }
7745 else
7746 {
7747 if (debug_infrun)
7748 fprintf_unfiltered (gdb_stdlog,
7749 "infrun: step-over in progress: "
7750 "resume of %s deferred\n",
7751 target_pid_to_str (tp->ptid));
7752 }
7753
7754 discard_cleanups (old_cleanups);
7755 }
d4f3574e
SS
7756 else
7757 {
31e77af2 7758 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7759 int remove_bp;
7760 int remove_wps;
8d297bbf 7761 step_over_what step_what;
31e77af2 7762
d4f3574e 7763 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7764 anyway (if we got a signal, the user asked it be passed to
7765 the child)
7766 -- or --
7767 We got our expected trap, but decided we should resume from
7768 it.
d4f3574e 7769
a9ba6bae 7770 We're going to run this baby now!
d4f3574e 7771
c36b740a
VP
7772 Note that insert_breakpoints won't try to re-insert
7773 already inserted breakpoints. Therefore, we don't
7774 care if breakpoints were already inserted, or not. */
a9ba6bae 7775
31e77af2
PA
7776 /* If we need to step over a breakpoint, and we're not using
7777 displaced stepping to do so, insert all breakpoints
7778 (watchpoints, etc.) but the one we're stepping over, step one
7779 instruction, and then re-insert the breakpoint when that step
7780 is finished. */
963f9c80 7781
6c4cfb24
PA
7782 step_what = thread_still_needs_step_over (ecs->event_thread);
7783
963f9c80 7784 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7785 || (step_what & STEP_OVER_BREAKPOINT));
7786 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7787
cb71640d
PA
7788 /* We can't use displaced stepping if we need to step past a
7789 watchpoint. The instruction copied to the scratch pad would
7790 still trigger the watchpoint. */
7791 if (remove_bp
3fc8eb30 7792 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7793 {
31e77af2 7794 set_step_over_info (get_regcache_aspace (regcache),
21edc42f
YQ
7795 regcache_read_pc (regcache), remove_wps,
7796 ecs->event_thread->global_num);
45e8c884 7797 }
963f9c80 7798 else if (remove_wps)
21edc42f 7799 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7800
7801 /* If we now need to do an in-line step-over, we need to stop
7802 all other threads. Note this must be done before
7803 insert_breakpoints below, because that removes the breakpoint
7804 we're about to step over, otherwise other threads could miss
7805 it. */
fbea99ea 7806 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7807 stop_all_threads ();
abbb1732 7808
31e77af2 7809 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7810 TRY
31e77af2
PA
7811 {
7812 insert_breakpoints ();
7813 }
492d29ea 7814 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7815 {
7816 exception_print (gdb_stderr, e);
22bcd14b 7817 stop_waiting (ecs);
de1fe8c8 7818 discard_cleanups (old_cleanups);
31e77af2 7819 return;
d4f3574e 7820 }
492d29ea 7821 END_CATCH
d4f3574e 7822
963f9c80 7823 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7824
c4dbc9af 7825 discard_cleanups (old_cleanups);
64ce06e4 7826 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7827 }
7828
488f131b 7829 prepare_to_wait (ecs);
d4f3574e
SS
7830}
7831
4d9d9d04
PA
7832/* Called when we should continue running the inferior, because the
7833 current event doesn't cause a user visible stop. This does the
7834 resuming part; waiting for the next event is done elsewhere. */
7835
7836static void
7837keep_going (struct execution_control_state *ecs)
7838{
7839 if (ecs->event_thread->control.trap_expected
7840 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7841 ecs->event_thread->control.trap_expected = 0;
7842
7843 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7844 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7845 keep_going_pass_signal (ecs);
7846}
7847
104c1213
JM
7848/* This function normally comes after a resume, before
7849 handle_inferior_event exits. It takes care of any last bits of
7850 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7851
104c1213
JM
7852static void
7853prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7854{
527159b7 7855 if (debug_infrun)
8a9de0e4 7856 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7857
104c1213 7858 ecs->wait_some_more = 1;
0b333c5e
PA
7859
7860 if (!target_is_async_p ())
7861 mark_infrun_async_event_handler ();
c906108c 7862}
11cf8741 7863
fd664c91 7864/* We are done with the step range of a step/next/si/ni command.
b57bacec 7865 Called once for each n of a "step n" operation. */
fd664c91
PA
7866
7867static void
bdc36728 7868end_stepping_range (struct execution_control_state *ecs)
fd664c91 7869{
bdc36728 7870 ecs->event_thread->control.stop_step = 1;
bdc36728 7871 stop_waiting (ecs);
fd664c91
PA
7872}
7873
33d62d64
JK
7874/* Several print_*_reason functions to print why the inferior has stopped.
7875 We always print something when the inferior exits, or receives a signal.
7876 The rest of the cases are dealt with later on in normal_stop and
7877 print_it_typical. Ideally there should be a call to one of these
7878 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7879 stop_waiting is called.
33d62d64 7880
fd664c91
PA
7881 Note that we don't call these directly, instead we delegate that to
7882 the interpreters, through observers. Interpreters then call these
7883 with whatever uiout is right. */
33d62d64 7884
fd664c91
PA
7885void
7886print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7887{
fd664c91 7888 /* For CLI-like interpreters, print nothing. */
33d62d64 7889
fd664c91
PA
7890 if (ui_out_is_mi_like_p (uiout))
7891 {
7892 ui_out_field_string (uiout, "reason",
7893 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7894 }
7895}
33d62d64 7896
fd664c91
PA
7897void
7898print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7899{
33d62d64
JK
7900 annotate_signalled ();
7901 if (ui_out_is_mi_like_p (uiout))
7902 ui_out_field_string
7903 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7904 ui_out_text (uiout, "\nProgram terminated with signal ");
7905 annotate_signal_name ();
7906 ui_out_field_string (uiout, "signal-name",
2ea28649 7907 gdb_signal_to_name (siggnal));
33d62d64
JK
7908 annotate_signal_name_end ();
7909 ui_out_text (uiout, ", ");
7910 annotate_signal_string ();
7911 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7912 gdb_signal_to_string (siggnal));
33d62d64
JK
7913 annotate_signal_string_end ();
7914 ui_out_text (uiout, ".\n");
7915 ui_out_text (uiout, "The program no longer exists.\n");
7916}
7917
fd664c91
PA
7918void
7919print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7920{
fda326dd
TT
7921 struct inferior *inf = current_inferior ();
7922 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7923
33d62d64
JK
7924 annotate_exited (exitstatus);
7925 if (exitstatus)
7926 {
7927 if (ui_out_is_mi_like_p (uiout))
7928 ui_out_field_string (uiout, "reason",
7929 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7930 ui_out_text (uiout, "[Inferior ");
7931 ui_out_text (uiout, plongest (inf->num));
7932 ui_out_text (uiout, " (");
7933 ui_out_text (uiout, pidstr);
7934 ui_out_text (uiout, ") exited with code ");
33d62d64 7935 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7936 ui_out_text (uiout, "]\n");
33d62d64
JK
7937 }
7938 else
11cf8741 7939 {
9dc5e2a9 7940 if (ui_out_is_mi_like_p (uiout))
034dad6f 7941 ui_out_field_string
33d62d64 7942 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7943 ui_out_text (uiout, "[Inferior ");
7944 ui_out_text (uiout, plongest (inf->num));
7945 ui_out_text (uiout, " (");
7946 ui_out_text (uiout, pidstr);
7947 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7948 }
33d62d64
JK
7949}
7950
012b3a21
WT
7951/* Some targets/architectures can do extra processing/display of
7952 segmentation faults. E.g., Intel MPX boundary faults.
7953 Call the architecture dependent function to handle the fault. */
7954
7955static void
7956handle_segmentation_fault (struct ui_out *uiout)
7957{
7958 struct regcache *regcache = get_current_regcache ();
7959 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7960
7961 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7962 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7963}
7964
fd664c91
PA
7965void
7966print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7967{
f303dbd6
PA
7968 struct thread_info *thr = inferior_thread ();
7969
33d62d64
JK
7970 annotate_signal ();
7971
f303dbd6
PA
7972 if (ui_out_is_mi_like_p (uiout))
7973 ;
7974 else if (show_thread_that_caused_stop ())
33d62d64 7975 {
f303dbd6 7976 const char *name;
33d62d64 7977
f303dbd6
PA
7978 ui_out_text (uiout, "\nThread ");
7979 ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr));
7980
7981 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7982 if (name != NULL)
7983 {
7984 ui_out_text (uiout, " \"");
7985 ui_out_field_fmt (uiout, "name", "%s", name);
7986 ui_out_text (uiout, "\"");
7987 }
33d62d64 7988 }
f303dbd6
PA
7989 else
7990 ui_out_text (uiout, "\nProgram");
7991
7992 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
7993 ui_out_text (uiout, " stopped");
33d62d64
JK
7994 else
7995 {
f303dbd6 7996 ui_out_text (uiout, " received signal ");
8b93c638 7997 annotate_signal_name ();
33d62d64
JK
7998 if (ui_out_is_mi_like_p (uiout))
7999 ui_out_field_string
8000 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 8001 ui_out_field_string (uiout, "signal-name",
2ea28649 8002 gdb_signal_to_name (siggnal));
8b93c638
JM
8003 annotate_signal_name_end ();
8004 ui_out_text (uiout, ", ");
8005 annotate_signal_string ();
488f131b 8006 ui_out_field_string (uiout, "signal-meaning",
2ea28649 8007 gdb_signal_to_string (siggnal));
012b3a21
WT
8008
8009 if (siggnal == GDB_SIGNAL_SEGV)
8010 handle_segmentation_fault (uiout);
8011
8b93c638 8012 annotate_signal_string_end ();
33d62d64
JK
8013 }
8014 ui_out_text (uiout, ".\n");
8015}
252fbfc8 8016
fd664c91
PA
8017void
8018print_no_history_reason (struct ui_out *uiout)
33d62d64 8019{
fd664c91 8020 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 8021}
43ff13b4 8022
0c7e1a46
PA
8023/* Print current location without a level number, if we have changed
8024 functions or hit a breakpoint. Print source line if we have one.
8025 bpstat_print contains the logic deciding in detail what to print,
8026 based on the event(s) that just occurred. */
8027
243a9253
PA
8028static void
8029print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8030{
8031 int bpstat_ret;
f486487f 8032 enum print_what source_flag;
0c7e1a46
PA
8033 int do_frame_printing = 1;
8034 struct thread_info *tp = inferior_thread ();
8035
8036 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8037 switch (bpstat_ret)
8038 {
8039 case PRINT_UNKNOWN:
8040 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8041 should) carry around the function and does (or should) use
8042 that when doing a frame comparison. */
8043 if (tp->control.stop_step
8044 && frame_id_eq (tp->control.step_frame_id,
8045 get_frame_id (get_current_frame ()))
885eeb5b 8046 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
8047 {
8048 /* Finished step, just print source line. */
8049 source_flag = SRC_LINE;
8050 }
8051 else
8052 {
8053 /* Print location and source line. */
8054 source_flag = SRC_AND_LOC;
8055 }
8056 break;
8057 case PRINT_SRC_AND_LOC:
8058 /* Print location and source line. */
8059 source_flag = SRC_AND_LOC;
8060 break;
8061 case PRINT_SRC_ONLY:
8062 source_flag = SRC_LINE;
8063 break;
8064 case PRINT_NOTHING:
8065 /* Something bogus. */
8066 source_flag = SRC_LINE;
8067 do_frame_printing = 0;
8068 break;
8069 default:
8070 internal_error (__FILE__, __LINE__, _("Unknown value."));
8071 }
8072
8073 /* The behavior of this routine with respect to the source
8074 flag is:
8075 SRC_LINE: Print only source line
8076 LOCATION: Print only location
8077 SRC_AND_LOC: Print location and source line. */
8078 if (do_frame_printing)
8079 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8080}
8081
243a9253
PA
8082/* See infrun.h. */
8083
8084void
8085print_stop_event (struct ui_out *uiout)
8086{
8087 struct cleanup *old_chain;
8088 struct target_waitstatus last;
8089 ptid_t last_ptid;
8090 struct thread_info *tp;
8091
8092 get_last_target_status (&last_ptid, &last);
8093
cd94f6d5 8094 old_chain = make_cleanup_restore_current_uiout ();
243a9253
PA
8095 current_uiout = uiout;
8096
8097 print_stop_location (&last);
0c7e1a46
PA
8098
8099 /* Display the auto-display expressions. */
8100 do_displays ();
243a9253
PA
8101
8102 do_cleanups (old_chain);
8103
8104 tp = inferior_thread ();
8105 if (tp->thread_fsm != NULL
8106 && thread_fsm_finished_p (tp->thread_fsm))
8107 {
8108 struct return_value_info *rv;
8109
8110 rv = thread_fsm_return_value (tp->thread_fsm);
8111 if (rv != NULL)
8112 print_return_value (uiout, rv);
8113 }
0c7e1a46
PA
8114}
8115
388a7084
PA
8116/* See infrun.h. */
8117
8118void
8119maybe_remove_breakpoints (void)
8120{
8121 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8122 {
8123 if (remove_breakpoints ())
8124 {
8125 target_terminal_ours_for_output ();
8126 printf_filtered (_("Cannot remove breakpoints because "
8127 "program is no longer writable.\nFurther "
8128 "execution is probably impossible.\n"));
8129 }
8130 }
8131}
8132
4c2f2a79
PA
8133/* The execution context that just caused a normal stop. */
8134
8135struct stop_context
8136{
8137 /* The stop ID. */
8138 ULONGEST stop_id;
c906108c 8139
4c2f2a79 8140 /* The event PTID. */
c906108c 8141
4c2f2a79
PA
8142 ptid_t ptid;
8143
8144 /* If stopp for a thread event, this is the thread that caused the
8145 stop. */
8146 struct thread_info *thread;
8147
8148 /* The inferior that caused the stop. */
8149 int inf_num;
8150};
8151
8152/* Returns a new stop context. If stopped for a thread event, this
8153 takes a strong reference to the thread. */
8154
8155static struct stop_context *
8156save_stop_context (void)
8157{
224c3ddb 8158 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8159
8160 sc->stop_id = get_stop_id ();
8161 sc->ptid = inferior_ptid;
8162 sc->inf_num = current_inferior ()->num;
8163
8164 if (!ptid_equal (inferior_ptid, null_ptid))
8165 {
8166 /* Take a strong reference so that the thread can't be deleted
8167 yet. */
8168 sc->thread = inferior_thread ();
8169 sc->thread->refcount++;
8170 }
8171 else
8172 sc->thread = NULL;
8173
8174 return sc;
8175}
8176
8177/* Release a stop context previously created with save_stop_context.
8178 Releases the strong reference to the thread as well. */
8179
8180static void
8181release_stop_context_cleanup (void *arg)
8182{
9a3c8263 8183 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8184
8185 if (sc->thread != NULL)
8186 sc->thread->refcount--;
8187 xfree (sc);
8188}
8189
8190/* Return true if the current context no longer matches the saved stop
8191 context. */
8192
8193static int
8194stop_context_changed (struct stop_context *prev)
8195{
8196 if (!ptid_equal (prev->ptid, inferior_ptid))
8197 return 1;
8198 if (prev->inf_num != current_inferior ()->num)
8199 return 1;
8200 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8201 return 1;
8202 if (get_stop_id () != prev->stop_id)
8203 return 1;
8204 return 0;
8205}
8206
8207/* See infrun.h. */
8208
8209int
96baa820 8210normal_stop (void)
c906108c 8211{
73b65bb0
DJ
8212 struct target_waitstatus last;
8213 ptid_t last_ptid;
29f49a6a 8214 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8215 ptid_t pid_ptid;
73b65bb0
DJ
8216
8217 get_last_target_status (&last_ptid, &last);
8218
4c2f2a79
PA
8219 new_stop_id ();
8220
29f49a6a
PA
8221 /* If an exception is thrown from this point on, make sure to
8222 propagate GDB's knowledge of the executing state to the
8223 frontend/user running state. A QUIT is an easy exception to see
8224 here, so do this before any filtered output. */
c35b1492
PA
8225 if (!non_stop)
8226 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8227 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8228 || last.kind == TARGET_WAITKIND_EXITED)
8229 {
8230 /* On some targets, we may still have live threads in the
8231 inferior when we get a process exit event. E.g., for
8232 "checkpoint", when the current checkpoint/fork exits,
8233 linux-fork.c automatically switches to another fork from
8234 within target_mourn_inferior. */
8235 if (!ptid_equal (inferior_ptid, null_ptid))
8236 {
8237 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8238 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8239 }
8240 }
8241 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8242 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8243
b57bacec
PA
8244 /* As we're presenting a stop, and potentially removing breakpoints,
8245 update the thread list so we can tell whether there are threads
8246 running on the target. With target remote, for example, we can
8247 only learn about new threads when we explicitly update the thread
8248 list. Do this before notifying the interpreters about signal
8249 stops, end of stepping ranges, etc., so that the "new thread"
8250 output is emitted before e.g., "Program received signal FOO",
8251 instead of after. */
8252 update_thread_list ();
8253
8254 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8255 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8256
c906108c
SS
8257 /* As with the notification of thread events, we want to delay
8258 notifying the user that we've switched thread context until
8259 the inferior actually stops.
8260
73b65bb0
DJ
8261 There's no point in saying anything if the inferior has exited.
8262 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8263 "received a signal".
8264
8265 Also skip saying anything in non-stop mode. In that mode, as we
8266 don't want GDB to switch threads behind the user's back, to avoid
8267 races where the user is typing a command to apply to thread x,
8268 but GDB switches to thread y before the user finishes entering
8269 the command, fetch_inferior_event installs a cleanup to restore
8270 the current thread back to the thread the user had selected right
8271 after this event is handled, so we're not really switching, only
8272 informing of a stop. */
4f8d22e3
PA
8273 if (!non_stop
8274 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8275 && target_has_execution
8276 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8277 && last.kind != TARGET_WAITKIND_EXITED
8278 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8279 {
0e454242 8280 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8281 {
8282 target_terminal_ours_for_output ();
8283 printf_filtered (_("[Switching to %s]\n"),
8284 target_pid_to_str (inferior_ptid));
8285 annotate_thread_changed ();
8286 }
39f77062 8287 previous_inferior_ptid = inferior_ptid;
c906108c 8288 }
c906108c 8289
0e5bf2a8
PA
8290 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8291 {
0e454242 8292 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8293 if (current_ui->prompt_state == PROMPT_BLOCKED)
8294 {
8295 target_terminal_ours_for_output ();
8296 printf_filtered (_("No unwaited-for children left.\n"));
8297 }
0e5bf2a8
PA
8298 }
8299
b57bacec 8300 /* Note: this depends on the update_thread_list call above. */
388a7084 8301 maybe_remove_breakpoints ();
c906108c 8302
c906108c
SS
8303 /* If an auto-display called a function and that got a signal,
8304 delete that auto-display to avoid an infinite recursion. */
8305
8306 if (stopped_by_random_signal)
8307 disable_current_display ();
8308
0e454242 8309 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8310 {
8311 async_enable_stdin ();
8312 }
c906108c 8313
388a7084
PA
8314 /* Let the user/frontend see the threads as stopped. */
8315 do_cleanups (old_chain);
8316
8317 /* Select innermost stack frame - i.e., current frame is frame 0,
8318 and current location is based on that. Handle the case where the
8319 dummy call is returning after being stopped. E.g. the dummy call
8320 previously hit a breakpoint. (If the dummy call returns
8321 normally, we won't reach here.) Do this before the stop hook is
8322 run, so that it doesn't get to see the temporary dummy frame,
8323 which is not where we'll present the stop. */
8324 if (has_stack_frames ())
8325 {
8326 if (stop_stack_dummy == STOP_STACK_DUMMY)
8327 {
8328 /* Pop the empty frame that contains the stack dummy. This
8329 also restores inferior state prior to the call (struct
8330 infcall_suspend_state). */
8331 struct frame_info *frame = get_current_frame ();
8332
8333 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8334 frame_pop (frame);
8335 /* frame_pop calls reinit_frame_cache as the last thing it
8336 does which means there's now no selected frame. */
8337 }
8338
8339 select_frame (get_current_frame ());
8340
8341 /* Set the current source location. */
8342 set_current_sal_from_frame (get_current_frame ());
8343 }
dd7e2d2b
PA
8344
8345 /* Look up the hook_stop and run it (CLI internally handles problem
8346 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8347 if (stop_command != NULL)
8348 {
8349 struct stop_context *saved_context = save_stop_context ();
8350 struct cleanup *old_chain
8351 = make_cleanup (release_stop_context_cleanup, saved_context);
8352
8353 catch_errors (hook_stop_stub, stop_command,
8354 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8355
8356 /* If the stop hook resumes the target, then there's no point in
8357 trying to notify about the previous stop; its context is
8358 gone. Likewise if the command switches thread or inferior --
8359 the observers would print a stop for the wrong
8360 thread/inferior. */
8361 if (stop_context_changed (saved_context))
8362 {
8363 do_cleanups (old_chain);
8364 return 1;
8365 }
8366 do_cleanups (old_chain);
8367 }
dd7e2d2b 8368
388a7084
PA
8369 /* Notify observers about the stop. This is where the interpreters
8370 print the stop event. */
8371 if (!ptid_equal (inferior_ptid, null_ptid))
8372 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8373 stop_print_frame);
8374 else
8375 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8376
243a9253
PA
8377 annotate_stopped ();
8378
48844aa6
PA
8379 if (target_has_execution)
8380 {
8381 if (last.kind != TARGET_WAITKIND_SIGNALLED
8382 && last.kind != TARGET_WAITKIND_EXITED)
8383 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8384 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8385 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8386 }
6c95b8df
PA
8387
8388 /* Try to get rid of automatically added inferiors that are no
8389 longer needed. Keeping those around slows down things linearly.
8390 Note that this never removes the current inferior. */
8391 prune_inferiors ();
4c2f2a79
PA
8392
8393 return 0;
c906108c
SS
8394}
8395
8396static int
96baa820 8397hook_stop_stub (void *cmd)
c906108c 8398{
5913bcb0 8399 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8400 return (0);
8401}
8402\f
c5aa993b 8403int
96baa820 8404signal_stop_state (int signo)
c906108c 8405{
d6b48e9c 8406 return signal_stop[signo];
c906108c
SS
8407}
8408
c5aa993b 8409int
96baa820 8410signal_print_state (int signo)
c906108c
SS
8411{
8412 return signal_print[signo];
8413}
8414
c5aa993b 8415int
96baa820 8416signal_pass_state (int signo)
c906108c
SS
8417{
8418 return signal_program[signo];
8419}
8420
2455069d
UW
8421static void
8422signal_cache_update (int signo)
8423{
8424 if (signo == -1)
8425 {
a493e3e2 8426 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8427 signal_cache_update (signo);
8428
8429 return;
8430 }
8431
8432 signal_pass[signo] = (signal_stop[signo] == 0
8433 && signal_print[signo] == 0
ab04a2af
TT
8434 && signal_program[signo] == 1
8435 && signal_catch[signo] == 0);
2455069d
UW
8436}
8437
488f131b 8438int
7bda5e4a 8439signal_stop_update (int signo, int state)
d4f3574e
SS
8440{
8441 int ret = signal_stop[signo];
abbb1732 8442
d4f3574e 8443 signal_stop[signo] = state;
2455069d 8444 signal_cache_update (signo);
d4f3574e
SS
8445 return ret;
8446}
8447
488f131b 8448int
7bda5e4a 8449signal_print_update (int signo, int state)
d4f3574e
SS
8450{
8451 int ret = signal_print[signo];
abbb1732 8452
d4f3574e 8453 signal_print[signo] = state;
2455069d 8454 signal_cache_update (signo);
d4f3574e
SS
8455 return ret;
8456}
8457
488f131b 8458int
7bda5e4a 8459signal_pass_update (int signo, int state)
d4f3574e
SS
8460{
8461 int ret = signal_program[signo];
abbb1732 8462
d4f3574e 8463 signal_program[signo] = state;
2455069d 8464 signal_cache_update (signo);
d4f3574e
SS
8465 return ret;
8466}
8467
ab04a2af
TT
8468/* Update the global 'signal_catch' from INFO and notify the
8469 target. */
8470
8471void
8472signal_catch_update (const unsigned int *info)
8473{
8474 int i;
8475
8476 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8477 signal_catch[i] = info[i] > 0;
8478 signal_cache_update (-1);
8479 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8480}
8481
c906108c 8482static void
96baa820 8483sig_print_header (void)
c906108c 8484{
3e43a32a
MS
8485 printf_filtered (_("Signal Stop\tPrint\tPass "
8486 "to program\tDescription\n"));
c906108c
SS
8487}
8488
8489static void
2ea28649 8490sig_print_info (enum gdb_signal oursig)
c906108c 8491{
2ea28649 8492 const char *name = gdb_signal_to_name (oursig);
c906108c 8493 int name_padding = 13 - strlen (name);
96baa820 8494
c906108c
SS
8495 if (name_padding <= 0)
8496 name_padding = 0;
8497
8498 printf_filtered ("%s", name);
488f131b 8499 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8500 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8501 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8502 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8503 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8504}
8505
8506/* Specify how various signals in the inferior should be handled. */
8507
8508static void
96baa820 8509handle_command (char *args, int from_tty)
c906108c
SS
8510{
8511 char **argv;
8512 int digits, wordlen;
8513 int sigfirst, signum, siglast;
2ea28649 8514 enum gdb_signal oursig;
c906108c
SS
8515 int allsigs;
8516 int nsigs;
8517 unsigned char *sigs;
8518 struct cleanup *old_chain;
8519
8520 if (args == NULL)
8521 {
e2e0b3e5 8522 error_no_arg (_("signal to handle"));
c906108c
SS
8523 }
8524
1777feb0 8525 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8526
a493e3e2 8527 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8528 sigs = (unsigned char *) alloca (nsigs);
8529 memset (sigs, 0, nsigs);
8530
1777feb0 8531 /* Break the command line up into args. */
c906108c 8532
d1a41061 8533 argv = gdb_buildargv (args);
7a292a7a 8534 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8535
8536 /* Walk through the args, looking for signal oursigs, signal names, and
8537 actions. Signal numbers and signal names may be interspersed with
8538 actions, with the actions being performed for all signals cumulatively
1777feb0 8539 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8540
8541 while (*argv != NULL)
8542 {
8543 wordlen = strlen (*argv);
8544 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8545 {;
8546 }
8547 allsigs = 0;
8548 sigfirst = siglast = -1;
8549
8550 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8551 {
8552 /* Apply action to all signals except those used by the
1777feb0 8553 debugger. Silently skip those. */
c906108c
SS
8554 allsigs = 1;
8555 sigfirst = 0;
8556 siglast = nsigs - 1;
8557 }
8558 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8559 {
8560 SET_SIGS (nsigs, sigs, signal_stop);
8561 SET_SIGS (nsigs, sigs, signal_print);
8562 }
8563 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8564 {
8565 UNSET_SIGS (nsigs, sigs, signal_program);
8566 }
8567 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8568 {
8569 SET_SIGS (nsigs, sigs, signal_print);
8570 }
8571 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8572 {
8573 SET_SIGS (nsigs, sigs, signal_program);
8574 }
8575 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8576 {
8577 UNSET_SIGS (nsigs, sigs, signal_stop);
8578 }
8579 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8580 {
8581 SET_SIGS (nsigs, sigs, signal_program);
8582 }
8583 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8584 {
8585 UNSET_SIGS (nsigs, sigs, signal_print);
8586 UNSET_SIGS (nsigs, sigs, signal_stop);
8587 }
8588 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8589 {
8590 UNSET_SIGS (nsigs, sigs, signal_program);
8591 }
8592 else if (digits > 0)
8593 {
8594 /* It is numeric. The numeric signal refers to our own
8595 internal signal numbering from target.h, not to host/target
8596 signal number. This is a feature; users really should be
8597 using symbolic names anyway, and the common ones like
8598 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8599
8600 sigfirst = siglast = (int)
2ea28649 8601 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8602 if ((*argv)[digits] == '-')
8603 {
8604 siglast = (int)
2ea28649 8605 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8606 }
8607 if (sigfirst > siglast)
8608 {
1777feb0 8609 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8610 signum = sigfirst;
8611 sigfirst = siglast;
8612 siglast = signum;
8613 }
8614 }
8615 else
8616 {
2ea28649 8617 oursig = gdb_signal_from_name (*argv);
a493e3e2 8618 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8619 {
8620 sigfirst = siglast = (int) oursig;
8621 }
8622 else
8623 {
8624 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8625 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8626 }
8627 }
8628
8629 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8630 which signals to apply actions to. */
c906108c
SS
8631
8632 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8633 {
2ea28649 8634 switch ((enum gdb_signal) signum)
c906108c 8635 {
a493e3e2
PA
8636 case GDB_SIGNAL_TRAP:
8637 case GDB_SIGNAL_INT:
c906108c
SS
8638 if (!allsigs && !sigs[signum])
8639 {
9e2f0ad4 8640 if (query (_("%s is used by the debugger.\n\
3e43a32a 8641Are you sure you want to change it? "),
2ea28649 8642 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8643 {
8644 sigs[signum] = 1;
8645 }
8646 else
8647 {
a3f17187 8648 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8649 gdb_flush (gdb_stdout);
8650 }
8651 }
8652 break;
a493e3e2
PA
8653 case GDB_SIGNAL_0:
8654 case GDB_SIGNAL_DEFAULT:
8655 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8656 /* Make sure that "all" doesn't print these. */
8657 break;
8658 default:
8659 sigs[signum] = 1;
8660 break;
8661 }
8662 }
8663
8664 argv++;
8665 }
8666
3a031f65
PA
8667 for (signum = 0; signum < nsigs; signum++)
8668 if (sigs[signum])
8669 {
2455069d 8670 signal_cache_update (-1);
a493e3e2
PA
8671 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8672 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8673
3a031f65
PA
8674 if (from_tty)
8675 {
8676 /* Show the results. */
8677 sig_print_header ();
8678 for (; signum < nsigs; signum++)
8679 if (sigs[signum])
aead7601 8680 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8681 }
8682
8683 break;
8684 }
c906108c
SS
8685
8686 do_cleanups (old_chain);
8687}
8688
de0bea00
MF
8689/* Complete the "handle" command. */
8690
8691static VEC (char_ptr) *
8692handle_completer (struct cmd_list_element *ignore,
6f937416 8693 const char *text, const char *word)
de0bea00
MF
8694{
8695 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8696 static const char * const keywords[] =
8697 {
8698 "all",
8699 "stop",
8700 "ignore",
8701 "print",
8702 "pass",
8703 "nostop",
8704 "noignore",
8705 "noprint",
8706 "nopass",
8707 NULL,
8708 };
8709
8710 vec_signals = signal_completer (ignore, text, word);
8711 vec_keywords = complete_on_enum (keywords, word, word);
8712
8713 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8714 VEC_free (char_ptr, vec_signals);
8715 VEC_free (char_ptr, vec_keywords);
8716 return return_val;
8717}
8718
2ea28649
PA
8719enum gdb_signal
8720gdb_signal_from_command (int num)
ed01b82c
PA
8721{
8722 if (num >= 1 && num <= 15)
2ea28649 8723 return (enum gdb_signal) num;
ed01b82c
PA
8724 error (_("Only signals 1-15 are valid as numeric signals.\n\
8725Use \"info signals\" for a list of symbolic signals."));
8726}
8727
c906108c
SS
8728/* Print current contents of the tables set by the handle command.
8729 It is possible we should just be printing signals actually used
8730 by the current target (but for things to work right when switching
8731 targets, all signals should be in the signal tables). */
8732
8733static void
96baa820 8734signals_info (char *signum_exp, int from_tty)
c906108c 8735{
2ea28649 8736 enum gdb_signal oursig;
abbb1732 8737
c906108c
SS
8738 sig_print_header ();
8739
8740 if (signum_exp)
8741 {
8742 /* First see if this is a symbol name. */
2ea28649 8743 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8744 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8745 {
8746 /* No, try numeric. */
8747 oursig =
2ea28649 8748 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8749 }
8750 sig_print_info (oursig);
8751 return;
8752 }
8753
8754 printf_filtered ("\n");
8755 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8756 for (oursig = GDB_SIGNAL_FIRST;
8757 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8758 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8759 {
8760 QUIT;
8761
a493e3e2
PA
8762 if (oursig != GDB_SIGNAL_UNKNOWN
8763 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8764 sig_print_info (oursig);
8765 }
8766
3e43a32a
MS
8767 printf_filtered (_("\nUse the \"handle\" command "
8768 "to change these tables.\n"));
c906108c 8769}
4aa995e1
PA
8770
8771/* The $_siginfo convenience variable is a bit special. We don't know
8772 for sure the type of the value until we actually have a chance to
7a9dd1b2 8773 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8774 also dependent on which thread you have selected.
8775
8776 1. making $_siginfo be an internalvar that creates a new value on
8777 access.
8778
8779 2. making the value of $_siginfo be an lval_computed value. */
8780
8781/* This function implements the lval_computed support for reading a
8782 $_siginfo value. */
8783
8784static void
8785siginfo_value_read (struct value *v)
8786{
8787 LONGEST transferred;
8788
a911d87a
PA
8789 /* If we can access registers, so can we access $_siginfo. Likewise
8790 vice versa. */
8791 validate_registers_access ();
c709acd1 8792
4aa995e1
PA
8793 transferred =
8794 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8795 NULL,
8796 value_contents_all_raw (v),
8797 value_offset (v),
8798 TYPE_LENGTH (value_type (v)));
8799
8800 if (transferred != TYPE_LENGTH (value_type (v)))
8801 error (_("Unable to read siginfo"));
8802}
8803
8804/* This function implements the lval_computed support for writing a
8805 $_siginfo value. */
8806
8807static void
8808siginfo_value_write (struct value *v, struct value *fromval)
8809{
8810 LONGEST transferred;
8811
a911d87a
PA
8812 /* If we can access registers, so can we access $_siginfo. Likewise
8813 vice versa. */
8814 validate_registers_access ();
c709acd1 8815
4aa995e1
PA
8816 transferred = target_write (&current_target,
8817 TARGET_OBJECT_SIGNAL_INFO,
8818 NULL,
8819 value_contents_all_raw (fromval),
8820 value_offset (v),
8821 TYPE_LENGTH (value_type (fromval)));
8822
8823 if (transferred != TYPE_LENGTH (value_type (fromval)))
8824 error (_("Unable to write siginfo"));
8825}
8826
c8f2448a 8827static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8828 {
8829 siginfo_value_read,
8830 siginfo_value_write
8831 };
8832
8833/* Return a new value with the correct type for the siginfo object of
78267919
UW
8834 the current thread using architecture GDBARCH. Return a void value
8835 if there's no object available. */
4aa995e1 8836
2c0b251b 8837static struct value *
22d2b532
SDJ
8838siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8839 void *ignore)
4aa995e1 8840{
4aa995e1 8841 if (target_has_stack
78267919
UW
8842 && !ptid_equal (inferior_ptid, null_ptid)
8843 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8844 {
78267919 8845 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8846
78267919 8847 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8848 }
8849
78267919 8850 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8851}
8852
c906108c 8853\f
16c381f0
JK
8854/* infcall_suspend_state contains state about the program itself like its
8855 registers and any signal it received when it last stopped.
8856 This state must be restored regardless of how the inferior function call
8857 ends (either successfully, or after it hits a breakpoint or signal)
8858 if the program is to properly continue where it left off. */
8859
8860struct infcall_suspend_state
7a292a7a 8861{
16c381f0 8862 struct thread_suspend_state thread_suspend;
16c381f0
JK
8863
8864 /* Other fields: */
7a292a7a 8865 CORE_ADDR stop_pc;
b89667eb 8866 struct regcache *registers;
1736ad11 8867
35515841 8868 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8869 struct gdbarch *siginfo_gdbarch;
8870
8871 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8872 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8873 content would be invalid. */
8874 gdb_byte *siginfo_data;
b89667eb
DE
8875};
8876
16c381f0
JK
8877struct infcall_suspend_state *
8878save_infcall_suspend_state (void)
b89667eb 8879{
16c381f0 8880 struct infcall_suspend_state *inf_state;
b89667eb 8881 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8882 struct regcache *regcache = get_current_regcache ();
8883 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8884 gdb_byte *siginfo_data = NULL;
8885
8886 if (gdbarch_get_siginfo_type_p (gdbarch))
8887 {
8888 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8889 size_t len = TYPE_LENGTH (type);
8890 struct cleanup *back_to;
8891
224c3ddb 8892 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8893 back_to = make_cleanup (xfree, siginfo_data);
8894
8895 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8896 siginfo_data, 0, len) == len)
8897 discard_cleanups (back_to);
8898 else
8899 {
8900 /* Errors ignored. */
8901 do_cleanups (back_to);
8902 siginfo_data = NULL;
8903 }
8904 }
8905
41bf6aca 8906 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8907
8908 if (siginfo_data)
8909 {
8910 inf_state->siginfo_gdbarch = gdbarch;
8911 inf_state->siginfo_data = siginfo_data;
8912 }
b89667eb 8913
16c381f0 8914 inf_state->thread_suspend = tp->suspend;
16c381f0 8915
35515841 8916 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8917 GDB_SIGNAL_0 anyway. */
8918 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8919
b89667eb
DE
8920 inf_state->stop_pc = stop_pc;
8921
1736ad11 8922 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8923
8924 return inf_state;
8925}
8926
8927/* Restore inferior session state to INF_STATE. */
8928
8929void
16c381f0 8930restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8931{
8932 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8933 struct regcache *regcache = get_current_regcache ();
8934 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8935
16c381f0 8936 tp->suspend = inf_state->thread_suspend;
16c381f0 8937
b89667eb
DE
8938 stop_pc = inf_state->stop_pc;
8939
1736ad11
JK
8940 if (inf_state->siginfo_gdbarch == gdbarch)
8941 {
8942 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8943
8944 /* Errors ignored. */
8945 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8946 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8947 }
8948
b89667eb
DE
8949 /* The inferior can be gone if the user types "print exit(0)"
8950 (and perhaps other times). */
8951 if (target_has_execution)
8952 /* NB: The register write goes through to the target. */
1736ad11 8953 regcache_cpy (regcache, inf_state->registers);
803b5f95 8954
16c381f0 8955 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8956}
8957
8958static void
16c381f0 8959do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8960{
9a3c8263 8961 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8962}
8963
8964struct cleanup *
16c381f0
JK
8965make_cleanup_restore_infcall_suspend_state
8966 (struct infcall_suspend_state *inf_state)
b89667eb 8967{
16c381f0 8968 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8969}
8970
8971void
16c381f0 8972discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8973{
8974 regcache_xfree (inf_state->registers);
803b5f95 8975 xfree (inf_state->siginfo_data);
b89667eb
DE
8976 xfree (inf_state);
8977}
8978
8979struct regcache *
16c381f0 8980get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8981{
8982 return inf_state->registers;
8983}
8984
16c381f0
JK
8985/* infcall_control_state contains state regarding gdb's control of the
8986 inferior itself like stepping control. It also contains session state like
8987 the user's currently selected frame. */
b89667eb 8988
16c381f0 8989struct infcall_control_state
b89667eb 8990{
16c381f0
JK
8991 struct thread_control_state thread_control;
8992 struct inferior_control_state inferior_control;
d82142e2
JK
8993
8994 /* Other fields: */
8995 enum stop_stack_kind stop_stack_dummy;
8996 int stopped_by_random_signal;
7a292a7a 8997
b89667eb 8998 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8999 struct frame_id selected_frame_id;
7a292a7a
SS
9000};
9001
c906108c 9002/* Save all of the information associated with the inferior<==>gdb
b89667eb 9003 connection. */
c906108c 9004
16c381f0
JK
9005struct infcall_control_state *
9006save_infcall_control_state (void)
c906108c 9007{
8d749320
SM
9008 struct infcall_control_state *inf_status =
9009 XNEW (struct infcall_control_state);
4e1c45ea 9010 struct thread_info *tp = inferior_thread ();
d6b48e9c 9011 struct inferior *inf = current_inferior ();
7a292a7a 9012
16c381f0
JK
9013 inf_status->thread_control = tp->control;
9014 inf_status->inferior_control = inf->control;
d82142e2 9015
8358c15c 9016 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9017 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9018
16c381f0
JK
9019 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9020 chain. If caller's caller is walking the chain, they'll be happier if we
9021 hand them back the original chain when restore_infcall_control_state is
9022 called. */
9023 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9024
9025 /* Other fields: */
9026 inf_status->stop_stack_dummy = stop_stack_dummy;
9027 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9028
206415a3 9029 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9030
7a292a7a 9031 return inf_status;
c906108c
SS
9032}
9033
c906108c 9034static int
96baa820 9035restore_selected_frame (void *args)
c906108c 9036{
488f131b 9037 struct frame_id *fid = (struct frame_id *) args;
c906108c 9038 struct frame_info *frame;
c906108c 9039
101dcfbe 9040 frame = frame_find_by_id (*fid);
c906108c 9041
aa0cd9c1
AC
9042 /* If inf_status->selected_frame_id is NULL, there was no previously
9043 selected frame. */
101dcfbe 9044 if (frame == NULL)
c906108c 9045 {
8a3fe4f8 9046 warning (_("Unable to restore previously selected frame."));
c906108c
SS
9047 return 0;
9048 }
9049
0f7d239c 9050 select_frame (frame);
c906108c
SS
9051
9052 return (1);
9053}
9054
b89667eb
DE
9055/* Restore inferior session state to INF_STATUS. */
9056
c906108c 9057void
16c381f0 9058restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9059{
4e1c45ea 9060 struct thread_info *tp = inferior_thread ();
d6b48e9c 9061 struct inferior *inf = current_inferior ();
4e1c45ea 9062
8358c15c
JK
9063 if (tp->control.step_resume_breakpoint)
9064 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9065
5b79abe7
TT
9066 if (tp->control.exception_resume_breakpoint)
9067 tp->control.exception_resume_breakpoint->disposition
9068 = disp_del_at_next_stop;
9069
d82142e2 9070 /* Handle the bpstat_copy of the chain. */
16c381f0 9071 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9072
16c381f0
JK
9073 tp->control = inf_status->thread_control;
9074 inf->control = inf_status->inferior_control;
d82142e2
JK
9075
9076 /* Other fields: */
9077 stop_stack_dummy = inf_status->stop_stack_dummy;
9078 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9079
b89667eb 9080 if (target_has_stack)
c906108c 9081 {
c906108c 9082 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
9083 walking the stack might encounter a garbage pointer and
9084 error() trying to dereference it. */
488f131b
JB
9085 if (catch_errors
9086 (restore_selected_frame, &inf_status->selected_frame_id,
9087 "Unable to restore previously selected frame:\n",
9088 RETURN_MASK_ERROR) == 0)
c906108c
SS
9089 /* Error in restoring the selected frame. Select the innermost
9090 frame. */
0f7d239c 9091 select_frame (get_current_frame ());
c906108c 9092 }
c906108c 9093
72cec141 9094 xfree (inf_status);
7a292a7a 9095}
c906108c 9096
74b7792f 9097static void
16c381f0 9098do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9099{
9a3c8263 9100 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9101}
9102
9103struct cleanup *
16c381f0
JK
9104make_cleanup_restore_infcall_control_state
9105 (struct infcall_control_state *inf_status)
74b7792f 9106{
16c381f0 9107 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9108}
9109
c906108c 9110void
16c381f0 9111discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9112{
8358c15c
JK
9113 if (inf_status->thread_control.step_resume_breakpoint)
9114 inf_status->thread_control.step_resume_breakpoint->disposition
9115 = disp_del_at_next_stop;
9116
5b79abe7
TT
9117 if (inf_status->thread_control.exception_resume_breakpoint)
9118 inf_status->thread_control.exception_resume_breakpoint->disposition
9119 = disp_del_at_next_stop;
9120
1777feb0 9121 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9122 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9123
72cec141 9124 xfree (inf_status);
7a292a7a 9125}
b89667eb 9126\f
ca6724c1
KB
9127/* restore_inferior_ptid() will be used by the cleanup machinery
9128 to restore the inferior_ptid value saved in a call to
9129 save_inferior_ptid(). */
ce696e05
KB
9130
9131static void
9132restore_inferior_ptid (void *arg)
9133{
9a3c8263 9134 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
abbb1732 9135
ce696e05
KB
9136 inferior_ptid = *saved_ptid_ptr;
9137 xfree (arg);
9138}
9139
9140/* Save the value of inferior_ptid so that it may be restored by a
9141 later call to do_cleanups(). Returns the struct cleanup pointer
9142 needed for later doing the cleanup. */
9143
9144struct cleanup *
9145save_inferior_ptid (void)
9146{
8d749320 9147 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 9148
ce696e05
KB
9149 *saved_ptid_ptr = inferior_ptid;
9150 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9151}
0c557179 9152
7f89fd65 9153/* See infrun.h. */
0c557179
SDJ
9154
9155void
9156clear_exit_convenience_vars (void)
9157{
9158 clear_internalvar (lookup_internalvar ("_exitsignal"));
9159 clear_internalvar (lookup_internalvar ("_exitcode"));
9160}
c5aa993b 9161\f
488f131b 9162
b2175913
MS
9163/* User interface for reverse debugging:
9164 Set exec-direction / show exec-direction commands
9165 (returns error unless target implements to_set_exec_direction method). */
9166
170742de 9167enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9168static const char exec_forward[] = "forward";
9169static const char exec_reverse[] = "reverse";
9170static const char *exec_direction = exec_forward;
40478521 9171static const char *const exec_direction_names[] = {
b2175913
MS
9172 exec_forward,
9173 exec_reverse,
9174 NULL
9175};
9176
9177static void
9178set_exec_direction_func (char *args, int from_tty,
9179 struct cmd_list_element *cmd)
9180{
9181 if (target_can_execute_reverse)
9182 {
9183 if (!strcmp (exec_direction, exec_forward))
9184 execution_direction = EXEC_FORWARD;
9185 else if (!strcmp (exec_direction, exec_reverse))
9186 execution_direction = EXEC_REVERSE;
9187 }
8bbed405
MS
9188 else
9189 {
9190 exec_direction = exec_forward;
9191 error (_("Target does not support this operation."));
9192 }
b2175913
MS
9193}
9194
9195static void
9196show_exec_direction_func (struct ui_file *out, int from_tty,
9197 struct cmd_list_element *cmd, const char *value)
9198{
9199 switch (execution_direction) {
9200 case EXEC_FORWARD:
9201 fprintf_filtered (out, _("Forward.\n"));
9202 break;
9203 case EXEC_REVERSE:
9204 fprintf_filtered (out, _("Reverse.\n"));
9205 break;
b2175913 9206 default:
d8b34453
PA
9207 internal_error (__FILE__, __LINE__,
9208 _("bogus execution_direction value: %d"),
9209 (int) execution_direction);
b2175913
MS
9210 }
9211}
9212
d4db2f36
PA
9213static void
9214show_schedule_multiple (struct ui_file *file, int from_tty,
9215 struct cmd_list_element *c, const char *value)
9216{
3e43a32a
MS
9217 fprintf_filtered (file, _("Resuming the execution of threads "
9218 "of all processes is %s.\n"), value);
d4db2f36 9219}
ad52ddc6 9220
22d2b532
SDJ
9221/* Implementation of `siginfo' variable. */
9222
9223static const struct internalvar_funcs siginfo_funcs =
9224{
9225 siginfo_make_value,
9226 NULL,
9227 NULL
9228};
9229
372316f1
PA
9230/* Callback for infrun's target events source. This is marked when a
9231 thread has a pending status to process. */
9232
9233static void
9234infrun_async_inferior_event_handler (gdb_client_data data)
9235{
372316f1
PA
9236 inferior_event_handler (INF_REG_EVENT, NULL);
9237}
9238
c906108c 9239void
96baa820 9240_initialize_infrun (void)
c906108c 9241{
52f0bd74
AC
9242 int i;
9243 int numsigs;
de0bea00 9244 struct cmd_list_element *c;
c906108c 9245
372316f1
PA
9246 /* Register extra event sources in the event loop. */
9247 infrun_async_inferior_event_token
9248 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9249
1bedd215
AC
9250 add_info ("signals", signals_info, _("\
9251What debugger does when program gets various signals.\n\
9252Specify a signal as argument to print info on that signal only."));
c906108c
SS
9253 add_info_alias ("handle", "signals", 0);
9254
de0bea00 9255 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9256Specify how to handle signals.\n\
486c7739 9257Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9258Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9259If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9260will be displayed instead.\n\
9261\n\
c906108c
SS
9262Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9263from 1-15 are allowed for compatibility with old versions of GDB.\n\
9264Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9265The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9266used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9267\n\
1bedd215 9268Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9269\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9270Stop means reenter debugger if this signal happens (implies print).\n\
9271Print means print a message if this signal happens.\n\
9272Pass means let program see this signal; otherwise program doesn't know.\n\
9273Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9274Pass and Stop may be combined.\n\
9275\n\
9276Multiple signals may be specified. Signal numbers and signal names\n\
9277may be interspersed with actions, with the actions being performed for\n\
9278all signals cumulatively specified."));
de0bea00 9279 set_cmd_completer (c, handle_completer);
486c7739 9280
c906108c 9281 if (!dbx_commands)
1a966eab
AC
9282 stop_command = add_cmd ("stop", class_obscure,
9283 not_just_help_class_command, _("\
9284There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9285This allows you to set a list of commands to be run each time execution\n\
1a966eab 9286of the program stops."), &cmdlist);
c906108c 9287
ccce17b0 9288 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9289Set inferior debugging."), _("\
9290Show inferior debugging."), _("\
9291When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9292 NULL,
9293 show_debug_infrun,
9294 &setdebuglist, &showdebuglist);
527159b7 9295
3e43a32a
MS
9296 add_setshow_boolean_cmd ("displaced", class_maintenance,
9297 &debug_displaced, _("\
237fc4c9
PA
9298Set displaced stepping debugging."), _("\
9299Show displaced stepping debugging."), _("\
9300When non-zero, displaced stepping specific debugging is enabled."),
9301 NULL,
9302 show_debug_displaced,
9303 &setdebuglist, &showdebuglist);
9304
ad52ddc6
PA
9305 add_setshow_boolean_cmd ("non-stop", no_class,
9306 &non_stop_1, _("\
9307Set whether gdb controls the inferior in non-stop mode."), _("\
9308Show whether gdb controls the inferior in non-stop mode."), _("\
9309When debugging a multi-threaded program and this setting is\n\
9310off (the default, also called all-stop mode), when one thread stops\n\
9311(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9312all other threads in the program while you interact with the thread of\n\
9313interest. When you continue or step a thread, you can allow the other\n\
9314threads to run, or have them remain stopped, but while you inspect any\n\
9315thread's state, all threads stop.\n\
9316\n\
9317In non-stop mode, when one thread stops, other threads can continue\n\
9318to run freely. You'll be able to step each thread independently,\n\
9319leave it stopped or free to run as needed."),
9320 set_non_stop,
9321 show_non_stop,
9322 &setlist,
9323 &showlist);
9324
a493e3e2 9325 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9326 signal_stop = XNEWVEC (unsigned char, numsigs);
9327 signal_print = XNEWVEC (unsigned char, numsigs);
9328 signal_program = XNEWVEC (unsigned char, numsigs);
9329 signal_catch = XNEWVEC (unsigned char, numsigs);
9330 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9331 for (i = 0; i < numsigs; i++)
9332 {
9333 signal_stop[i] = 1;
9334 signal_print[i] = 1;
9335 signal_program[i] = 1;
ab04a2af 9336 signal_catch[i] = 0;
c906108c
SS
9337 }
9338
4d9d9d04
PA
9339 /* Signals caused by debugger's own actions should not be given to
9340 the program afterwards.
9341
9342 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9343 explicitly specifies that it should be delivered to the target
9344 program. Typically, that would occur when a user is debugging a
9345 target monitor on a simulator: the target monitor sets a
9346 breakpoint; the simulator encounters this breakpoint and halts
9347 the simulation handing control to GDB; GDB, noting that the stop
9348 address doesn't map to any known breakpoint, returns control back
9349 to the simulator; the simulator then delivers the hardware
9350 equivalent of a GDB_SIGNAL_TRAP to the program being
9351 debugged. */
a493e3e2
PA
9352 signal_program[GDB_SIGNAL_TRAP] = 0;
9353 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9354
9355 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9356 signal_stop[GDB_SIGNAL_ALRM] = 0;
9357 signal_print[GDB_SIGNAL_ALRM] = 0;
9358 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9359 signal_print[GDB_SIGNAL_VTALRM] = 0;
9360 signal_stop[GDB_SIGNAL_PROF] = 0;
9361 signal_print[GDB_SIGNAL_PROF] = 0;
9362 signal_stop[GDB_SIGNAL_CHLD] = 0;
9363 signal_print[GDB_SIGNAL_CHLD] = 0;
9364 signal_stop[GDB_SIGNAL_IO] = 0;
9365 signal_print[GDB_SIGNAL_IO] = 0;
9366 signal_stop[GDB_SIGNAL_POLL] = 0;
9367 signal_print[GDB_SIGNAL_POLL] = 0;
9368 signal_stop[GDB_SIGNAL_URG] = 0;
9369 signal_print[GDB_SIGNAL_URG] = 0;
9370 signal_stop[GDB_SIGNAL_WINCH] = 0;
9371 signal_print[GDB_SIGNAL_WINCH] = 0;
9372 signal_stop[GDB_SIGNAL_PRIO] = 0;
9373 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9374
cd0fc7c3
SS
9375 /* These signals are used internally by user-level thread
9376 implementations. (See signal(5) on Solaris.) Like the above
9377 signals, a healthy program receives and handles them as part of
9378 its normal operation. */
a493e3e2
PA
9379 signal_stop[GDB_SIGNAL_LWP] = 0;
9380 signal_print[GDB_SIGNAL_LWP] = 0;
9381 signal_stop[GDB_SIGNAL_WAITING] = 0;
9382 signal_print[GDB_SIGNAL_WAITING] = 0;
9383 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9384 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9385 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9386 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9387
2455069d
UW
9388 /* Update cached state. */
9389 signal_cache_update (-1);
9390
85c07804
AC
9391 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9392 &stop_on_solib_events, _("\
9393Set stopping for shared library events."), _("\
9394Show stopping for shared library events."), _("\
c906108c
SS
9395If nonzero, gdb will give control to the user when the dynamic linker\n\
9396notifies gdb of shared library events. The most common event of interest\n\
85c07804 9397to the user would be loading/unloading of a new library."),
f9e14852 9398 set_stop_on_solib_events,
920d2a44 9399 show_stop_on_solib_events,
85c07804 9400 &setlist, &showlist);
c906108c 9401
7ab04401
AC
9402 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9403 follow_fork_mode_kind_names,
9404 &follow_fork_mode_string, _("\
9405Set debugger response to a program call of fork or vfork."), _("\
9406Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9407A fork or vfork creates a new process. follow-fork-mode can be:\n\
9408 parent - the original process is debugged after a fork\n\
9409 child - the new process is debugged after a fork\n\
ea1dd7bc 9410The unfollowed process will continue to run.\n\
7ab04401
AC
9411By default, the debugger will follow the parent process."),
9412 NULL,
920d2a44 9413 show_follow_fork_mode_string,
7ab04401
AC
9414 &setlist, &showlist);
9415
6c95b8df
PA
9416 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9417 follow_exec_mode_names,
9418 &follow_exec_mode_string, _("\
9419Set debugger response to a program call of exec."), _("\
9420Show debugger response to a program call of exec."), _("\
9421An exec call replaces the program image of a process.\n\
9422\n\
9423follow-exec-mode can be:\n\
9424\n\
cce7e648 9425 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9426to this new inferior. The program the process was running before\n\
9427the exec call can be restarted afterwards by restarting the original\n\
9428inferior.\n\
9429\n\
9430 same - the debugger keeps the process bound to the same inferior.\n\
9431The new executable image replaces the previous executable loaded in\n\
9432the inferior. Restarting the inferior after the exec call restarts\n\
9433the executable the process was running after the exec call.\n\
9434\n\
9435By default, the debugger will use the same inferior."),
9436 NULL,
9437 show_follow_exec_mode_string,
9438 &setlist, &showlist);
9439
7ab04401
AC
9440 add_setshow_enum_cmd ("scheduler-locking", class_run,
9441 scheduler_enums, &scheduler_mode, _("\
9442Set mode for locking scheduler during execution."), _("\
9443Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9444off == no locking (threads may preempt at any time)\n\
9445on == full locking (no thread except the current thread may run)\n\
9446 This applies to both normal execution and replay mode.\n\
9447step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9448 In this mode, other threads may run during other commands.\n\
9449 This applies to both normal execution and replay mode.\n\
9450replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9451 set_schedlock_func, /* traps on target vector */
920d2a44 9452 show_scheduler_mode,
7ab04401 9453 &setlist, &showlist);
5fbbeb29 9454
d4db2f36
PA
9455 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9456Set mode for resuming threads of all processes."), _("\
9457Show mode for resuming threads of all processes."), _("\
9458When on, execution commands (such as 'continue' or 'next') resume all\n\
9459threads of all processes. When off (which is the default), execution\n\
9460commands only resume the threads of the current process. The set of\n\
9461threads that are resumed is further refined by the scheduler-locking\n\
9462mode (see help set scheduler-locking)."),
9463 NULL,
9464 show_schedule_multiple,
9465 &setlist, &showlist);
9466
5bf193a2
AC
9467 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9468Set mode of the step operation."), _("\
9469Show mode of the step operation."), _("\
9470When set, doing a step over a function without debug line information\n\
9471will stop at the first instruction of that function. Otherwise, the\n\
9472function is skipped and the step command stops at a different source line."),
9473 NULL,
920d2a44 9474 show_step_stop_if_no_debug,
5bf193a2 9475 &setlist, &showlist);
ca6724c1 9476
72d0e2c5
YQ
9477 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9478 &can_use_displaced_stepping, _("\
237fc4c9
PA
9479Set debugger's willingness to use displaced stepping."), _("\
9480Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9481If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9482supported by the target architecture. If off, gdb will not use displaced\n\
9483stepping to step over breakpoints, even if such is supported by the target\n\
9484architecture. If auto (which is the default), gdb will use displaced stepping\n\
9485if the target architecture supports it and non-stop mode is active, but will not\n\
9486use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9487 NULL,
9488 show_can_use_displaced_stepping,
9489 &setlist, &showlist);
237fc4c9 9490
b2175913
MS
9491 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9492 &exec_direction, _("Set direction of execution.\n\
9493Options are 'forward' or 'reverse'."),
9494 _("Show direction of execution (forward/reverse)."),
9495 _("Tells gdb whether to execute forward or backward."),
9496 set_exec_direction_func, show_exec_direction_func,
9497 &setlist, &showlist);
9498
6c95b8df
PA
9499 /* Set/show detach-on-fork: user-settable mode. */
9500
9501 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9502Set whether gdb will detach the child of a fork."), _("\
9503Show whether gdb will detach the child of a fork."), _("\
9504Tells gdb whether to detach the child of a fork."),
9505 NULL, NULL, &setlist, &showlist);
9506
03583c20
UW
9507 /* Set/show disable address space randomization mode. */
9508
9509 add_setshow_boolean_cmd ("disable-randomization", class_support,
9510 &disable_randomization, _("\
9511Set disabling of debuggee's virtual address space randomization."), _("\
9512Show disabling of debuggee's virtual address space randomization."), _("\
9513When this mode is on (which is the default), randomization of the virtual\n\
9514address space is disabled. Standalone programs run with the randomization\n\
9515enabled by default on some platforms."),
9516 &set_disable_randomization,
9517 &show_disable_randomization,
9518 &setlist, &showlist);
9519
ca6724c1 9520 /* ptid initializations */
ca6724c1
KB
9521 inferior_ptid = null_ptid;
9522 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9523
9524 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9525 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9526 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9527 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9528
9529 /* Explicitly create without lookup, since that tries to create a
9530 value with a void typed value, and when we get here, gdbarch
9531 isn't initialized yet. At this point, we're quite sure there
9532 isn't another convenience variable of the same name. */
22d2b532 9533 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9534
9535 add_setshow_boolean_cmd ("observer", no_class,
9536 &observer_mode_1, _("\
9537Set whether gdb controls the inferior in observer mode."), _("\
9538Show whether gdb controls the inferior in observer mode."), _("\
9539In observer mode, GDB can get data from the inferior, but not\n\
9540affect its execution. Registers and memory may not be changed,\n\
9541breakpoints may not be set, and the program cannot be interrupted\n\
9542or signalled."),
9543 set_observer_mode,
9544 show_observer_mode,
9545 &setlist,
9546 &showlist);
c906108c 9547}
This page took 2.151187 seconds and 4 git commands to generate.