* linux-low.c (linux_enable_event_reporting): New.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
4c38e0a4 6 2008, 2009, 2010 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
06cd862c 54#include "tracepoint.h"
c906108c
SS
55
56/* Prototypes for local functions */
57
96baa820 58static void signals_info (char *, int);
c906108c 59
96baa820 60static void handle_command (char *, int);
c906108c 61
96baa820 62static void sig_print_info (enum target_signal);
c906108c 63
96baa820 64static void sig_print_header (void);
c906108c 65
74b7792f 66static void resume_cleanups (void *);
c906108c 67
96baa820 68static int hook_stop_stub (void *);
c906108c 69
96baa820
JM
70static int restore_selected_frame (void *);
71
4ef3f3be 72static int follow_fork (void);
96baa820
JM
73
74static void set_schedlock_func (char *args, int from_tty,
488f131b 75 struct cmd_list_element *c);
96baa820 76
4e1c45ea 77static int currently_stepping (struct thread_info *tp);
96baa820 78
b3444185
PA
79static int currently_stepping_or_nexting_callback (struct thread_info *tp,
80 void *data);
a7212384 81
96baa820
JM
82static void xdb_handle_command (char *args, int from_tty);
83
6a6b96b9 84static int prepare_to_proceed (int);
ea67f13b 85
96baa820 86void _initialize_infrun (void);
43ff13b4 87
e58b0e63
PA
88void nullify_last_target_wait_ptid (void);
89
5fbbeb29
CF
90/* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93int step_stop_if_no_debug = 0;
920d2a44
AC
94static void
95show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97{
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99}
5fbbeb29 100
43ff13b4 101/* In asynchronous mode, but simulating synchronous execution. */
96baa820 102
43ff13b4
JM
103int sync_execution = 0;
104
c906108c
SS
105/* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
96baa820
JM
107 running in. */
108
39f77062 109static ptid_t previous_inferior_ptid;
7a292a7a 110
6c95b8df
PA
111/* Default behavior is to detach newly forked processes (legacy). */
112int detach_fork = 1;
113
237fc4c9
PA
114int debug_displaced = 0;
115static void
116show_debug_displaced (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118{
119 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
120}
121
527159b7 122static int debug_infrun = 0;
920d2a44
AC
123static void
124show_debug_infrun (struct ui_file *file, int from_tty,
125 struct cmd_list_element *c, const char *value)
126{
127 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
128}
527159b7 129
d4f3574e
SS
130/* If the program uses ELF-style shared libraries, then calls to
131 functions in shared libraries go through stubs, which live in a
132 table called the PLT (Procedure Linkage Table). The first time the
133 function is called, the stub sends control to the dynamic linker,
134 which looks up the function's real address, patches the stub so
135 that future calls will go directly to the function, and then passes
136 control to the function.
137
138 If we are stepping at the source level, we don't want to see any of
139 this --- we just want to skip over the stub and the dynamic linker.
140 The simple approach is to single-step until control leaves the
141 dynamic linker.
142
ca557f44
AC
143 However, on some systems (e.g., Red Hat's 5.2 distribution) the
144 dynamic linker calls functions in the shared C library, so you
145 can't tell from the PC alone whether the dynamic linker is still
146 running. In this case, we use a step-resume breakpoint to get us
147 past the dynamic linker, as if we were using "next" to step over a
148 function call.
d4f3574e 149
cfd8ab24 150 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
151 linker code or not. Normally, this means we single-step. However,
152 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
153 address where we can place a step-resume breakpoint to get past the
154 linker's symbol resolution function.
155
cfd8ab24 156 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
157 pretty portable way, by comparing the PC against the address ranges
158 of the dynamic linker's sections.
159
160 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
161 it depends on internal details of the dynamic linker. It's usually
162 not too hard to figure out where to put a breakpoint, but it
163 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
164 sanity checking. If it can't figure things out, returning zero and
165 getting the (possibly confusing) stepping behavior is better than
166 signalling an error, which will obscure the change in the
167 inferior's state. */
c906108c 168
c906108c
SS
169/* This function returns TRUE if pc is the address of an instruction
170 that lies within the dynamic linker (such as the event hook, or the
171 dld itself).
172
173 This function must be used only when a dynamic linker event has
174 been caught, and the inferior is being stepped out of the hook, or
175 undefined results are guaranteed. */
176
177#ifndef SOLIB_IN_DYNAMIC_LINKER
178#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
179#endif
180
c2c6d25f 181
c906108c
SS
182/* Tables of how to react to signals; the user sets them. */
183
184static unsigned char *signal_stop;
185static unsigned char *signal_print;
186static unsigned char *signal_program;
187
188#define SET_SIGS(nsigs,sigs,flags) \
189 do { \
190 int signum = (nsigs); \
191 while (signum-- > 0) \
192 if ((sigs)[signum]) \
193 (flags)[signum] = 1; \
194 } while (0)
195
196#define UNSET_SIGS(nsigs,sigs,flags) \
197 do { \
198 int signum = (nsigs); \
199 while (signum-- > 0) \
200 if ((sigs)[signum]) \
201 (flags)[signum] = 0; \
202 } while (0)
203
39f77062
KB
204/* Value to pass to target_resume() to cause all threads to resume */
205
edb3359d 206#define RESUME_ALL minus_one_ptid
c906108c
SS
207
208/* Command list pointer for the "stop" placeholder. */
209
210static struct cmd_list_element *stop_command;
211
c906108c
SS
212/* Function inferior was in as of last step command. */
213
214static struct symbol *step_start_function;
215
c906108c
SS
216/* Nonzero if we want to give control to the user when we're notified
217 of shared library events by the dynamic linker. */
218static int stop_on_solib_events;
920d2a44
AC
219static void
220show_stop_on_solib_events (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222{
223 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
224 value);
225}
c906108c 226
c906108c
SS
227/* Nonzero means expecting a trace trap
228 and should stop the inferior and return silently when it happens. */
229
230int stop_after_trap;
231
642fd101
DE
232/* Save register contents here when executing a "finish" command or are
233 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
234 Thus this contains the return value from the called function (assuming
235 values are returned in a register). */
236
72cec141 237struct regcache *stop_registers;
c906108c 238
c906108c
SS
239/* Nonzero after stop if current stack frame should be printed. */
240
241static int stop_print_frame;
242
e02bc4cc 243/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
244 returned by target_wait()/deprecated_target_wait_hook(). This
245 information is returned by get_last_target_status(). */
39f77062 246static ptid_t target_last_wait_ptid;
e02bc4cc
DS
247static struct target_waitstatus target_last_waitstatus;
248
0d1e5fa7
PA
249static void context_switch (ptid_t ptid);
250
4e1c45ea 251void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
252
253void init_infwait_state (void);
a474d7c2 254
53904c9e
AC
255static const char follow_fork_mode_child[] = "child";
256static const char follow_fork_mode_parent[] = "parent";
257
488f131b 258static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
259 follow_fork_mode_child,
260 follow_fork_mode_parent,
261 NULL
ef346e04 262};
c906108c 263
53904c9e 264static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
265static void
266show_follow_fork_mode_string (struct ui_file *file, int from_tty,
267 struct cmd_list_element *c, const char *value)
268{
269 fprintf_filtered (file, _("\
270Debugger response to a program call of fork or vfork is \"%s\".\n"),
271 value);
272}
c906108c
SS
273\f
274
e58b0e63
PA
275/* Tell the target to follow the fork we're stopped at. Returns true
276 if the inferior should be resumed; false, if the target for some
277 reason decided it's best not to resume. */
278
6604731b 279static int
4ef3f3be 280follow_fork (void)
c906108c 281{
ea1dd7bc 282 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
283 int should_resume = 1;
284 struct thread_info *tp;
285
286 /* Copy user stepping state to the new inferior thread. FIXME: the
287 followed fork child thread should have a copy of most of the
4e3990f4
DE
288 parent thread structure's run control related fields, not just these.
289 Initialized to avoid "may be used uninitialized" warnings from gcc. */
290 struct breakpoint *step_resume_breakpoint = NULL;
291 CORE_ADDR step_range_start = 0;
292 CORE_ADDR step_range_end = 0;
293 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
294
295 if (!non_stop)
296 {
297 ptid_t wait_ptid;
298 struct target_waitstatus wait_status;
299
300 /* Get the last target status returned by target_wait(). */
301 get_last_target_status (&wait_ptid, &wait_status);
302
303 /* If not stopped at a fork event, then there's nothing else to
304 do. */
305 if (wait_status.kind != TARGET_WAITKIND_FORKED
306 && wait_status.kind != TARGET_WAITKIND_VFORKED)
307 return 1;
308
309 /* Check if we switched over from WAIT_PTID, since the event was
310 reported. */
311 if (!ptid_equal (wait_ptid, minus_one_ptid)
312 && !ptid_equal (inferior_ptid, wait_ptid))
313 {
314 /* We did. Switch back to WAIT_PTID thread, to tell the
315 target to follow it (in either direction). We'll
316 afterwards refuse to resume, and inform the user what
317 happened. */
318 switch_to_thread (wait_ptid);
319 should_resume = 0;
320 }
321 }
322
323 tp = inferior_thread ();
324
325 /* If there were any forks/vforks that were caught and are now to be
326 followed, then do so now. */
327 switch (tp->pending_follow.kind)
328 {
329 case TARGET_WAITKIND_FORKED:
330 case TARGET_WAITKIND_VFORKED:
331 {
332 ptid_t parent, child;
333
334 /* If the user did a next/step, etc, over a fork call,
335 preserve the stepping state in the fork child. */
336 if (follow_child && should_resume)
337 {
338 step_resume_breakpoint
339 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
340 step_range_start = tp->step_range_start;
341 step_range_end = tp->step_range_end;
342 step_frame_id = tp->step_frame_id;
343
344 /* For now, delete the parent's sr breakpoint, otherwise,
345 parent/child sr breakpoints are considered duplicates,
346 and the child version will not be installed. Remove
347 this when the breakpoints module becomes aware of
348 inferiors and address spaces. */
349 delete_step_resume_breakpoint (tp);
350 tp->step_range_start = 0;
351 tp->step_range_end = 0;
352 tp->step_frame_id = null_frame_id;
353 }
354
355 parent = inferior_ptid;
356 child = tp->pending_follow.value.related_pid;
357
358 /* Tell the target to do whatever is necessary to follow
359 either parent or child. */
360 if (target_follow_fork (follow_child))
361 {
362 /* Target refused to follow, or there's some other reason
363 we shouldn't resume. */
364 should_resume = 0;
365 }
366 else
367 {
368 /* This pending follow fork event is now handled, one way
369 or another. The previous selected thread may be gone
370 from the lists by now, but if it is still around, need
371 to clear the pending follow request. */
e09875d4 372 tp = find_thread_ptid (parent);
e58b0e63
PA
373 if (tp)
374 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
375
376 /* This makes sure we don't try to apply the "Switched
377 over from WAIT_PID" logic above. */
378 nullify_last_target_wait_ptid ();
379
380 /* If we followed the child, switch to it... */
381 if (follow_child)
382 {
383 switch_to_thread (child);
384
385 /* ... and preserve the stepping state, in case the
386 user was stepping over the fork call. */
387 if (should_resume)
388 {
389 tp = inferior_thread ();
390 tp->step_resume_breakpoint = step_resume_breakpoint;
391 tp->step_range_start = step_range_start;
392 tp->step_range_end = step_range_end;
393 tp->step_frame_id = step_frame_id;
394 }
395 else
396 {
397 /* If we get here, it was because we're trying to
398 resume from a fork catchpoint, but, the user
399 has switched threads away from the thread that
400 forked. In that case, the resume command
401 issued is most likely not applicable to the
402 child, so just warn, and refuse to resume. */
403 warning (_("\
404Not resuming: switched threads before following fork child.\n"));
405 }
406
407 /* Reset breakpoints in the child as appropriate. */
408 follow_inferior_reset_breakpoints ();
409 }
410 else
411 switch_to_thread (parent);
412 }
413 }
414 break;
415 case TARGET_WAITKIND_SPURIOUS:
416 /* Nothing to follow. */
417 break;
418 default:
419 internal_error (__FILE__, __LINE__,
420 "Unexpected pending_follow.kind %d\n",
421 tp->pending_follow.kind);
422 break;
423 }
c906108c 424
e58b0e63 425 return should_resume;
c906108c
SS
426}
427
6604731b
DJ
428void
429follow_inferior_reset_breakpoints (void)
c906108c 430{
4e1c45ea
PA
431 struct thread_info *tp = inferior_thread ();
432
6604731b
DJ
433 /* Was there a step_resume breakpoint? (There was if the user
434 did a "next" at the fork() call.) If so, explicitly reset its
435 thread number.
436
437 step_resumes are a form of bp that are made to be per-thread.
438 Since we created the step_resume bp when the parent process
439 was being debugged, and now are switching to the child process,
440 from the breakpoint package's viewpoint, that's a switch of
441 "threads". We must update the bp's notion of which thread
442 it is for, or it'll be ignored when it triggers. */
443
4e1c45ea
PA
444 if (tp->step_resume_breakpoint)
445 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
446
447 /* Reinsert all breakpoints in the child. The user may have set
448 breakpoints after catching the fork, in which case those
449 were never set in the child, but only in the parent. This makes
450 sure the inserted breakpoints match the breakpoint list. */
451
452 breakpoint_re_set ();
453 insert_breakpoints ();
c906108c 454}
c906108c 455
6c95b8df
PA
456/* The child has exited or execed: resume threads of the parent the
457 user wanted to be executing. */
458
459static int
460proceed_after_vfork_done (struct thread_info *thread,
461 void *arg)
462{
463 int pid = * (int *) arg;
464
465 if (ptid_get_pid (thread->ptid) == pid
466 && is_running (thread->ptid)
467 && !is_executing (thread->ptid)
468 && !thread->stop_requested
469 && thread->stop_signal == TARGET_SIGNAL_0)
470 {
471 if (debug_infrun)
472 fprintf_unfiltered (gdb_stdlog,
473 "infrun: resuming vfork parent thread %s\n",
474 target_pid_to_str (thread->ptid));
475
476 switch_to_thread (thread->ptid);
477 clear_proceed_status ();
478 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
479 }
480
481 return 0;
482}
483
484/* Called whenever we notice an exec or exit event, to handle
485 detaching or resuming a vfork parent. */
486
487static void
488handle_vfork_child_exec_or_exit (int exec)
489{
490 struct inferior *inf = current_inferior ();
491
492 if (inf->vfork_parent)
493 {
494 int resume_parent = -1;
495
496 /* This exec or exit marks the end of the shared memory region
497 between the parent and the child. If the user wanted to
498 detach from the parent, now is the time. */
499
500 if (inf->vfork_parent->pending_detach)
501 {
502 struct thread_info *tp;
503 struct cleanup *old_chain;
504 struct program_space *pspace;
505 struct address_space *aspace;
506
507 /* follow-fork child, detach-on-fork on */
508
509 old_chain = make_cleanup_restore_current_thread ();
510
511 /* We're letting loose of the parent. */
512 tp = any_live_thread_of_process (inf->vfork_parent->pid);
513 switch_to_thread (tp->ptid);
514
515 /* We're about to detach from the parent, which implicitly
516 removes breakpoints from its address space. There's a
517 catch here: we want to reuse the spaces for the child,
518 but, parent/child are still sharing the pspace at this
519 point, although the exec in reality makes the kernel give
520 the child a fresh set of new pages. The problem here is
521 that the breakpoints module being unaware of this, would
522 likely chose the child process to write to the parent
523 address space. Swapping the child temporarily away from
524 the spaces has the desired effect. Yes, this is "sort
525 of" a hack. */
526
527 pspace = inf->pspace;
528 aspace = inf->aspace;
529 inf->aspace = NULL;
530 inf->pspace = NULL;
531
532 if (debug_infrun || info_verbose)
533 {
534 target_terminal_ours ();
535
536 if (exec)
537 fprintf_filtered (gdb_stdlog,
538 "Detaching vfork parent process %d after child exec.\n",
539 inf->vfork_parent->pid);
540 else
541 fprintf_filtered (gdb_stdlog,
542 "Detaching vfork parent process %d after child exit.\n",
543 inf->vfork_parent->pid);
544 }
545
546 target_detach (NULL, 0);
547
548 /* Put it back. */
549 inf->pspace = pspace;
550 inf->aspace = aspace;
551
552 do_cleanups (old_chain);
553 }
554 else if (exec)
555 {
556 /* We're staying attached to the parent, so, really give the
557 child a new address space. */
558 inf->pspace = add_program_space (maybe_new_address_space ());
559 inf->aspace = inf->pspace->aspace;
560 inf->removable = 1;
561 set_current_program_space (inf->pspace);
562
563 resume_parent = inf->vfork_parent->pid;
564
565 /* Break the bonds. */
566 inf->vfork_parent->vfork_child = NULL;
567 }
568 else
569 {
570 struct cleanup *old_chain;
571 struct program_space *pspace;
572
573 /* If this is a vfork child exiting, then the pspace and
574 aspaces were shared with the parent. Since we're
575 reporting the process exit, we'll be mourning all that is
576 found in the address space, and switching to null_ptid,
577 preparing to start a new inferior. But, since we don't
578 want to clobber the parent's address/program spaces, we
579 go ahead and create a new one for this exiting
580 inferior. */
581
582 /* Switch to null_ptid, so that clone_program_space doesn't want
583 to read the selected frame of a dead process. */
584 old_chain = save_inferior_ptid ();
585 inferior_ptid = null_ptid;
586
587 /* This inferior is dead, so avoid giving the breakpoints
588 module the option to write through to it (cloning a
589 program space resets breakpoints). */
590 inf->aspace = NULL;
591 inf->pspace = NULL;
592 pspace = add_program_space (maybe_new_address_space ());
593 set_current_program_space (pspace);
594 inf->removable = 1;
595 clone_program_space (pspace, inf->vfork_parent->pspace);
596 inf->pspace = pspace;
597 inf->aspace = pspace->aspace;
598
599 /* Put back inferior_ptid. We'll continue mourning this
600 inferior. */
601 do_cleanups (old_chain);
602
603 resume_parent = inf->vfork_parent->pid;
604 /* Break the bonds. */
605 inf->vfork_parent->vfork_child = NULL;
606 }
607
608 inf->vfork_parent = NULL;
609
610 gdb_assert (current_program_space == inf->pspace);
611
612 if (non_stop && resume_parent != -1)
613 {
614 /* If the user wanted the parent to be running, let it go
615 free now. */
616 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
617
618 if (debug_infrun)
619 fprintf_unfiltered (gdb_stdlog, "infrun: resuming vfork parent process %d\n",
620 resume_parent);
621
622 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
623
624 do_cleanups (old_chain);
625 }
626 }
627}
628
629/* Enum strings for "set|show displaced-stepping". */
630
631static const char follow_exec_mode_new[] = "new";
632static const char follow_exec_mode_same[] = "same";
633static const char *follow_exec_mode_names[] =
634{
635 follow_exec_mode_new,
636 follow_exec_mode_same,
637 NULL,
638};
639
640static const char *follow_exec_mode_string = follow_exec_mode_same;
641static void
642show_follow_exec_mode_string (struct ui_file *file, int from_tty,
643 struct cmd_list_element *c, const char *value)
644{
645 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
646}
647
1adeb98a
FN
648/* EXECD_PATHNAME is assumed to be non-NULL. */
649
c906108c 650static void
3a3e9ee3 651follow_exec (ptid_t pid, char *execd_pathname)
c906108c 652{
7a292a7a 653 struct target_ops *tgt;
4e1c45ea 654 struct thread_info *th = inferior_thread ();
6c95b8df 655 struct inferior *inf = current_inferior ();
7a292a7a 656
c906108c
SS
657 /* This is an exec event that we actually wish to pay attention to.
658 Refresh our symbol table to the newly exec'd program, remove any
659 momentary bp's, etc.
660
661 If there are breakpoints, they aren't really inserted now,
662 since the exec() transformed our inferior into a fresh set
663 of instructions.
664
665 We want to preserve symbolic breakpoints on the list, since
666 we have hopes that they can be reset after the new a.out's
667 symbol table is read.
668
669 However, any "raw" breakpoints must be removed from the list
670 (e.g., the solib bp's), since their address is probably invalid
671 now.
672
673 And, we DON'T want to call delete_breakpoints() here, since
674 that may write the bp's "shadow contents" (the instruction
675 value that was overwritten witha TRAP instruction). Since
676 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
677
678 mark_breakpoints_out ();
679
c906108c
SS
680 update_breakpoints_after_exec ();
681
682 /* If there was one, it's gone now. We cannot truly step-to-next
683 statement through an exec(). */
4e1c45ea
PA
684 th->step_resume_breakpoint = NULL;
685 th->step_range_start = 0;
686 th->step_range_end = 0;
c906108c 687
a75724bc
PA
688 /* The target reports the exec event to the main thread, even if
689 some other thread does the exec, and even if the main thread was
690 already stopped --- if debugging in non-stop mode, it's possible
691 the user had the main thread held stopped in the previous image
692 --- release it now. This is the same behavior as step-over-exec
693 with scheduler-locking on in all-stop mode. */
694 th->stop_requested = 0;
695
c906108c 696 /* What is this a.out's name? */
6c95b8df
PA
697 printf_unfiltered (_("%s is executing new program: %s\n"),
698 target_pid_to_str (inferior_ptid),
699 execd_pathname);
c906108c
SS
700
701 /* We've followed the inferior through an exec. Therefore, the
702 inferior has essentially been killed & reborn. */
7a292a7a 703
c906108c 704 gdb_flush (gdb_stdout);
6ca15a4b
PA
705
706 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
707
708 if (gdb_sysroot && *gdb_sysroot)
709 {
710 char *name = alloca (strlen (gdb_sysroot)
711 + strlen (execd_pathname)
712 + 1);
713 strcpy (name, gdb_sysroot);
714 strcat (name, execd_pathname);
715 execd_pathname = name;
716 }
c906108c 717
cce9b6bf
PA
718 /* Reset the shared library package. This ensures that we get a
719 shlib event when the child reaches "_start", at which point the
720 dld will have had a chance to initialize the child. */
721 /* Also, loading a symbol file below may trigger symbol lookups, and
722 we don't want those to be satisfied by the libraries of the
723 previous incarnation of this process. */
724 no_shared_libraries (NULL, 0);
725
6c95b8df
PA
726 if (follow_exec_mode_string == follow_exec_mode_new)
727 {
728 struct program_space *pspace;
729 struct inferior *new_inf;
730
731 /* The user wants to keep the old inferior and program spaces
732 around. Create a new fresh one, and switch to it. */
733
734 inf = add_inferior (current_inferior ()->pid);
735 pspace = add_program_space (maybe_new_address_space ());
736 inf->pspace = pspace;
737 inf->aspace = pspace->aspace;
738
739 exit_inferior_num_silent (current_inferior ()->num);
740
741 set_current_inferior (inf);
742 set_current_program_space (pspace);
743 }
744
745 gdb_assert (current_program_space == inf->pspace);
746
747 /* That a.out is now the one to use. */
748 exec_file_attach (execd_pathname, 0);
749
cce9b6bf 750 /* Load the main file's symbols. */
1adeb98a 751 symbol_file_add_main (execd_pathname, 0);
c906108c 752
7a292a7a 753#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 754 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 755#else
268a4a75 756 solib_create_inferior_hook (0);
7a292a7a 757#endif
c906108c 758
4efc6507
DE
759 jit_inferior_created_hook ();
760
c906108c
SS
761 /* Reinsert all breakpoints. (Those which were symbolic have
762 been reset to the proper address in the new a.out, thanks
763 to symbol_file_command...) */
764 insert_breakpoints ();
765
766 /* The next resume of this inferior should bring it to the shlib
767 startup breakpoints. (If the user had also set bp's on
768 "main" from the old (parent) process, then they'll auto-
769 matically get reset there in the new process.) */
c906108c
SS
770}
771
772/* Non-zero if we just simulating a single-step. This is needed
773 because we cannot remove the breakpoints in the inferior process
774 until after the `wait' in `wait_for_inferior'. */
775static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
776
777/* The thread we inserted single-step breakpoints for. */
778static ptid_t singlestep_ptid;
779
fd48f117
DJ
780/* PC when we started this single-step. */
781static CORE_ADDR singlestep_pc;
782
9f976b41
DJ
783/* If another thread hit the singlestep breakpoint, we save the original
784 thread here so that we can resume single-stepping it later. */
785static ptid_t saved_singlestep_ptid;
786static int stepping_past_singlestep_breakpoint;
6a6b96b9 787
ca67fcb8
VP
788/* If not equal to null_ptid, this means that after stepping over breakpoint
789 is finished, we need to switch to deferred_step_ptid, and step it.
790
791 The use case is when one thread has hit a breakpoint, and then the user
792 has switched to another thread and issued 'step'. We need to step over
793 breakpoint in the thread which hit the breakpoint, but then continue
794 stepping the thread user has selected. */
795static ptid_t deferred_step_ptid;
c906108c 796\f
237fc4c9
PA
797/* Displaced stepping. */
798
799/* In non-stop debugging mode, we must take special care to manage
800 breakpoints properly; in particular, the traditional strategy for
801 stepping a thread past a breakpoint it has hit is unsuitable.
802 'Displaced stepping' is a tactic for stepping one thread past a
803 breakpoint it has hit while ensuring that other threads running
804 concurrently will hit the breakpoint as they should.
805
806 The traditional way to step a thread T off a breakpoint in a
807 multi-threaded program in all-stop mode is as follows:
808
809 a0) Initially, all threads are stopped, and breakpoints are not
810 inserted.
811 a1) We single-step T, leaving breakpoints uninserted.
812 a2) We insert breakpoints, and resume all threads.
813
814 In non-stop debugging, however, this strategy is unsuitable: we
815 don't want to have to stop all threads in the system in order to
816 continue or step T past a breakpoint. Instead, we use displaced
817 stepping:
818
819 n0) Initially, T is stopped, other threads are running, and
820 breakpoints are inserted.
821 n1) We copy the instruction "under" the breakpoint to a separate
822 location, outside the main code stream, making any adjustments
823 to the instruction, register, and memory state as directed by
824 T's architecture.
825 n2) We single-step T over the instruction at its new location.
826 n3) We adjust the resulting register and memory state as directed
827 by T's architecture. This includes resetting T's PC to point
828 back into the main instruction stream.
829 n4) We resume T.
830
831 This approach depends on the following gdbarch methods:
832
833 - gdbarch_max_insn_length and gdbarch_displaced_step_location
834 indicate where to copy the instruction, and how much space must
835 be reserved there. We use these in step n1.
836
837 - gdbarch_displaced_step_copy_insn copies a instruction to a new
838 address, and makes any necessary adjustments to the instruction,
839 register contents, and memory. We use this in step n1.
840
841 - gdbarch_displaced_step_fixup adjusts registers and memory after
842 we have successfuly single-stepped the instruction, to yield the
843 same effect the instruction would have had if we had executed it
844 at its original address. We use this in step n3.
845
846 - gdbarch_displaced_step_free_closure provides cleanup.
847
848 The gdbarch_displaced_step_copy_insn and
849 gdbarch_displaced_step_fixup functions must be written so that
850 copying an instruction with gdbarch_displaced_step_copy_insn,
851 single-stepping across the copied instruction, and then applying
852 gdbarch_displaced_insn_fixup should have the same effects on the
853 thread's memory and registers as stepping the instruction in place
854 would have. Exactly which responsibilities fall to the copy and
855 which fall to the fixup is up to the author of those functions.
856
857 See the comments in gdbarch.sh for details.
858
859 Note that displaced stepping and software single-step cannot
860 currently be used in combination, although with some care I think
861 they could be made to. Software single-step works by placing
862 breakpoints on all possible subsequent instructions; if the
863 displaced instruction is a PC-relative jump, those breakpoints
864 could fall in very strange places --- on pages that aren't
865 executable, or at addresses that are not proper instruction
866 boundaries. (We do generally let other threads run while we wait
867 to hit the software single-step breakpoint, and they might
868 encounter such a corrupted instruction.) One way to work around
869 this would be to have gdbarch_displaced_step_copy_insn fully
870 simulate the effect of PC-relative instructions (and return NULL)
871 on architectures that use software single-stepping.
872
873 In non-stop mode, we can have independent and simultaneous step
874 requests, so more than one thread may need to simultaneously step
875 over a breakpoint. The current implementation assumes there is
876 only one scratch space per process. In this case, we have to
877 serialize access to the scratch space. If thread A wants to step
878 over a breakpoint, but we are currently waiting for some other
879 thread to complete a displaced step, we leave thread A stopped and
880 place it in the displaced_step_request_queue. Whenever a displaced
881 step finishes, we pick the next thread in the queue and start a new
882 displaced step operation on it. See displaced_step_prepare and
883 displaced_step_fixup for details. */
884
237fc4c9
PA
885struct displaced_step_request
886{
887 ptid_t ptid;
888 struct displaced_step_request *next;
889};
890
fc1cf338
PA
891/* Per-inferior displaced stepping state. */
892struct displaced_step_inferior_state
893{
894 /* Pointer to next in linked list. */
895 struct displaced_step_inferior_state *next;
896
897 /* The process this displaced step state refers to. */
898 int pid;
899
900 /* A queue of pending displaced stepping requests. One entry per
901 thread that needs to do a displaced step. */
902 struct displaced_step_request *step_request_queue;
903
904 /* If this is not null_ptid, this is the thread carrying out a
905 displaced single-step in process PID. This thread's state will
906 require fixing up once it has completed its step. */
907 ptid_t step_ptid;
908
909 /* The architecture the thread had when we stepped it. */
910 struct gdbarch *step_gdbarch;
911
912 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
913 for post-step cleanup. */
914 struct displaced_step_closure *step_closure;
915
916 /* The address of the original instruction, and the copy we
917 made. */
918 CORE_ADDR step_original, step_copy;
919
920 /* Saved contents of copy area. */
921 gdb_byte *step_saved_copy;
922};
923
924/* The list of states of processes involved in displaced stepping
925 presently. */
926static struct displaced_step_inferior_state *displaced_step_inferior_states;
927
928/* Get the displaced stepping state of process PID. */
929
930static struct displaced_step_inferior_state *
931get_displaced_stepping_state (int pid)
932{
933 struct displaced_step_inferior_state *state;
934
935 for (state = displaced_step_inferior_states;
936 state != NULL;
937 state = state->next)
938 if (state->pid == pid)
939 return state;
940
941 return NULL;
942}
943
944/* Add a new displaced stepping state for process PID to the displaced
945 stepping state list, or return a pointer to an already existing
946 entry, if it already exists. Never returns NULL. */
947
948static struct displaced_step_inferior_state *
949add_displaced_stepping_state (int pid)
950{
951 struct displaced_step_inferior_state *state;
952
953 for (state = displaced_step_inferior_states;
954 state != NULL;
955 state = state->next)
956 if (state->pid == pid)
957 return state;
237fc4c9 958
fc1cf338
PA
959 state = xcalloc (1, sizeof (*state));
960 state->pid = pid;
961 state->next = displaced_step_inferior_states;
962 displaced_step_inferior_states = state;
237fc4c9 963
fc1cf338
PA
964 return state;
965}
966
967/* Remove the displaced stepping state of process PID. */
237fc4c9 968
fc1cf338
PA
969static void
970remove_displaced_stepping_state (int pid)
971{
972 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 973
fc1cf338
PA
974 gdb_assert (pid != 0);
975
976 it = displaced_step_inferior_states;
977 prev_next_p = &displaced_step_inferior_states;
978 while (it)
979 {
980 if (it->pid == pid)
981 {
982 *prev_next_p = it->next;
983 xfree (it);
984 return;
985 }
986
987 prev_next_p = &it->next;
988 it = *prev_next_p;
989 }
990}
991
992static void
993infrun_inferior_exit (struct inferior *inf)
994{
995 remove_displaced_stepping_state (inf->pid);
996}
237fc4c9 997
fff08868
HZ
998/* Enum strings for "set|show displaced-stepping". */
999
1000static const char can_use_displaced_stepping_auto[] = "auto";
1001static const char can_use_displaced_stepping_on[] = "on";
1002static const char can_use_displaced_stepping_off[] = "off";
1003static const char *can_use_displaced_stepping_enum[] =
1004{
1005 can_use_displaced_stepping_auto,
1006 can_use_displaced_stepping_on,
1007 can_use_displaced_stepping_off,
1008 NULL,
1009};
1010
1011/* If ON, and the architecture supports it, GDB will use displaced
1012 stepping to step over breakpoints. If OFF, or if the architecture
1013 doesn't support it, GDB will instead use the traditional
1014 hold-and-step approach. If AUTO (which is the default), GDB will
1015 decide which technique to use to step over breakpoints depending on
1016 which of all-stop or non-stop mode is active --- displaced stepping
1017 in non-stop mode; hold-and-step in all-stop mode. */
1018
1019static const char *can_use_displaced_stepping =
1020 can_use_displaced_stepping_auto;
1021
237fc4c9
PA
1022static void
1023show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1024 struct cmd_list_element *c,
1025 const char *value)
1026{
fff08868
HZ
1027 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1028 fprintf_filtered (file, _("\
1029Debugger's willingness to use displaced stepping to step over \
1030breakpoints is %s (currently %s).\n"),
1031 value, non_stop ? "on" : "off");
1032 else
1033 fprintf_filtered (file, _("\
1034Debugger's willingness to use displaced stepping to step over \
1035breakpoints is %s.\n"), value);
237fc4c9
PA
1036}
1037
fff08868
HZ
1038/* Return non-zero if displaced stepping can/should be used to step
1039 over breakpoints. */
1040
237fc4c9
PA
1041static int
1042use_displaced_stepping (struct gdbarch *gdbarch)
1043{
fff08868
HZ
1044 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1045 && non_stop)
1046 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1047 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1048 && !RECORD_IS_USED);
237fc4c9
PA
1049}
1050
1051/* Clean out any stray displaced stepping state. */
1052static void
fc1cf338 1053displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1054{
1055 /* Indicate that there is no cleanup pending. */
fc1cf338 1056 displaced->step_ptid = null_ptid;
237fc4c9 1057
fc1cf338 1058 if (displaced->step_closure)
237fc4c9 1059 {
fc1cf338
PA
1060 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1061 displaced->step_closure);
1062 displaced->step_closure = NULL;
237fc4c9
PA
1063 }
1064}
1065
1066static void
fc1cf338 1067displaced_step_clear_cleanup (void *arg)
237fc4c9 1068{
fc1cf338
PA
1069 struct displaced_step_inferior_state *state = arg;
1070
1071 displaced_step_clear (state);
237fc4c9
PA
1072}
1073
1074/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1075void
1076displaced_step_dump_bytes (struct ui_file *file,
1077 const gdb_byte *buf,
1078 size_t len)
1079{
1080 int i;
1081
1082 for (i = 0; i < len; i++)
1083 fprintf_unfiltered (file, "%02x ", buf[i]);
1084 fputs_unfiltered ("\n", file);
1085}
1086
1087/* Prepare to single-step, using displaced stepping.
1088
1089 Note that we cannot use displaced stepping when we have a signal to
1090 deliver. If we have a signal to deliver and an instruction to step
1091 over, then after the step, there will be no indication from the
1092 target whether the thread entered a signal handler or ignored the
1093 signal and stepped over the instruction successfully --- both cases
1094 result in a simple SIGTRAP. In the first case we mustn't do a
1095 fixup, and in the second case we must --- but we can't tell which.
1096 Comments in the code for 'random signals' in handle_inferior_event
1097 explain how we handle this case instead.
1098
1099 Returns 1 if preparing was successful -- this thread is going to be
1100 stepped now; or 0 if displaced stepping this thread got queued. */
1101static int
1102displaced_step_prepare (ptid_t ptid)
1103{
ad53cd71 1104 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1105 struct regcache *regcache = get_thread_regcache (ptid);
1106 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1107 CORE_ADDR original, copy;
1108 ULONGEST len;
1109 struct displaced_step_closure *closure;
fc1cf338 1110 struct displaced_step_inferior_state *displaced;
237fc4c9
PA
1111
1112 /* We should never reach this function if the architecture does not
1113 support displaced stepping. */
1114 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1115
fc1cf338
PA
1116 /* We have to displaced step one thread at a time, as we only have
1117 access to a single scratch space per inferior. */
237fc4c9 1118
fc1cf338
PA
1119 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1120
1121 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1122 {
1123 /* Already waiting for a displaced step to finish. Defer this
1124 request and place in queue. */
1125 struct displaced_step_request *req, *new_req;
1126
1127 if (debug_displaced)
1128 fprintf_unfiltered (gdb_stdlog,
1129 "displaced: defering step of %s\n",
1130 target_pid_to_str (ptid));
1131
1132 new_req = xmalloc (sizeof (*new_req));
1133 new_req->ptid = ptid;
1134 new_req->next = NULL;
1135
fc1cf338 1136 if (displaced->step_request_queue)
237fc4c9 1137 {
fc1cf338 1138 for (req = displaced->step_request_queue;
237fc4c9
PA
1139 req && req->next;
1140 req = req->next)
1141 ;
1142 req->next = new_req;
1143 }
1144 else
fc1cf338 1145 displaced->step_request_queue = new_req;
237fc4c9
PA
1146
1147 return 0;
1148 }
1149 else
1150 {
1151 if (debug_displaced)
1152 fprintf_unfiltered (gdb_stdlog,
1153 "displaced: stepping %s now\n",
1154 target_pid_to_str (ptid));
1155 }
1156
fc1cf338 1157 displaced_step_clear (displaced);
237fc4c9 1158
ad53cd71
PA
1159 old_cleanups = save_inferior_ptid ();
1160 inferior_ptid = ptid;
1161
515630c5 1162 original = regcache_read_pc (regcache);
237fc4c9
PA
1163
1164 copy = gdbarch_displaced_step_location (gdbarch);
1165 len = gdbarch_max_insn_length (gdbarch);
1166
1167 /* Save the original contents of the copy area. */
fc1cf338 1168 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1169 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338
PA
1170 &displaced->step_saved_copy);
1171 read_memory (copy, displaced->step_saved_copy, len);
237fc4c9
PA
1172 if (debug_displaced)
1173 {
5af949e3
UW
1174 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1175 paddress (gdbarch, copy));
fc1cf338
PA
1176 displaced_step_dump_bytes (gdb_stdlog,
1177 displaced->step_saved_copy,
1178 len);
237fc4c9
PA
1179 };
1180
1181 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1182 original, copy, regcache);
237fc4c9
PA
1183
1184 /* We don't support the fully-simulated case at present. */
1185 gdb_assert (closure);
1186
9f5a595d
UW
1187 /* Save the information we need to fix things up if the step
1188 succeeds. */
fc1cf338
PA
1189 displaced->step_ptid = ptid;
1190 displaced->step_gdbarch = gdbarch;
1191 displaced->step_closure = closure;
1192 displaced->step_original = original;
1193 displaced->step_copy = copy;
9f5a595d 1194
fc1cf338 1195 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1196
1197 /* Resume execution at the copy. */
515630c5 1198 regcache_write_pc (regcache, copy);
237fc4c9 1199
ad53cd71
PA
1200 discard_cleanups (ignore_cleanups);
1201
1202 do_cleanups (old_cleanups);
237fc4c9
PA
1203
1204 if (debug_displaced)
5af949e3
UW
1205 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1206 paddress (gdbarch, copy));
237fc4c9 1207
237fc4c9
PA
1208 return 1;
1209}
1210
237fc4c9
PA
1211static void
1212write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1213{
1214 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1215 inferior_ptid = ptid;
1216 write_memory (memaddr, myaddr, len);
1217 do_cleanups (ptid_cleanup);
1218}
1219
1220static void
1221displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1222{
1223 struct cleanup *old_cleanups;
fc1cf338
PA
1224 struct displaced_step_inferior_state *displaced
1225 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1226
1227 /* Was any thread of this process doing a displaced step? */
1228 if (displaced == NULL)
1229 return;
237fc4c9
PA
1230
1231 /* Was this event for the pid we displaced? */
fc1cf338
PA
1232 if (ptid_equal (displaced->step_ptid, null_ptid)
1233 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1234 return;
1235
fc1cf338 1236 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1237
1238 /* Restore the contents of the copy area. */
1239 {
fc1cf338
PA
1240 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1241 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1242 displaced->step_saved_copy, len);
237fc4c9 1243 if (debug_displaced)
5af949e3 1244 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
fc1cf338
PA
1245 paddress (displaced->step_gdbarch,
1246 displaced->step_copy));
237fc4c9
PA
1247 }
1248
1249 /* Did the instruction complete successfully? */
1250 if (signal == TARGET_SIGNAL_TRAP)
1251 {
1252 /* Fix up the resulting state. */
fc1cf338
PA
1253 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1254 displaced->step_closure,
1255 displaced->step_original,
1256 displaced->step_copy,
1257 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1258 }
1259 else
1260 {
1261 /* Since the instruction didn't complete, all we can do is
1262 relocate the PC. */
515630c5
UW
1263 struct regcache *regcache = get_thread_regcache (event_ptid);
1264 CORE_ADDR pc = regcache_read_pc (regcache);
fc1cf338 1265 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1266 regcache_write_pc (regcache, pc);
237fc4c9
PA
1267 }
1268
1269 do_cleanups (old_cleanups);
1270
fc1cf338 1271 displaced->step_ptid = null_ptid;
1c5cfe86 1272
237fc4c9 1273 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1274 one now. Leave the state object around, since we're likely to
1275 need it again soon. */
1276 while (displaced->step_request_queue)
237fc4c9
PA
1277 {
1278 struct displaced_step_request *head;
1279 ptid_t ptid;
5af949e3 1280 struct regcache *regcache;
929dfd4f 1281 struct gdbarch *gdbarch;
1c5cfe86 1282 CORE_ADDR actual_pc;
6c95b8df 1283 struct address_space *aspace;
237fc4c9 1284
fc1cf338 1285 head = displaced->step_request_queue;
237fc4c9 1286 ptid = head->ptid;
fc1cf338 1287 displaced->step_request_queue = head->next;
237fc4c9
PA
1288 xfree (head);
1289
ad53cd71
PA
1290 context_switch (ptid);
1291
5af949e3
UW
1292 regcache = get_thread_regcache (ptid);
1293 actual_pc = regcache_read_pc (regcache);
6c95b8df 1294 aspace = get_regcache_aspace (regcache);
1c5cfe86 1295
6c95b8df 1296 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1297 {
1c5cfe86
PA
1298 if (debug_displaced)
1299 fprintf_unfiltered (gdb_stdlog,
1300 "displaced: stepping queued %s now\n",
1301 target_pid_to_str (ptid));
1302
1303 displaced_step_prepare (ptid);
1304
929dfd4f
JB
1305 gdbarch = get_regcache_arch (regcache);
1306
1c5cfe86
PA
1307 if (debug_displaced)
1308 {
929dfd4f 1309 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1310 gdb_byte buf[4];
1311
5af949e3
UW
1312 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1313 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1314 read_memory (actual_pc, buf, sizeof (buf));
1315 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1316 }
1317
fc1cf338
PA
1318 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1319 displaced->step_closure))
929dfd4f 1320 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1321 else
1322 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1323
1324 /* Done, we're stepping a thread. */
1325 break;
ad53cd71 1326 }
1c5cfe86
PA
1327 else
1328 {
1329 int step;
1330 struct thread_info *tp = inferior_thread ();
1331
1332 /* The breakpoint we were sitting under has since been
1333 removed. */
1334 tp->trap_expected = 0;
1335
1336 /* Go back to what we were trying to do. */
1337 step = currently_stepping (tp);
ad53cd71 1338
1c5cfe86
PA
1339 if (debug_displaced)
1340 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1341 target_pid_to_str (tp->ptid), step);
1342
1343 target_resume (ptid, step, TARGET_SIGNAL_0);
1344 tp->stop_signal = TARGET_SIGNAL_0;
1345
1346 /* This request was discarded. See if there's any other
1347 thread waiting for its turn. */
1348 }
237fc4c9
PA
1349 }
1350}
1351
5231c1fd
PA
1352/* Update global variables holding ptids to hold NEW_PTID if they were
1353 holding OLD_PTID. */
1354static void
1355infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1356{
1357 struct displaced_step_request *it;
fc1cf338 1358 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1359
1360 if (ptid_equal (inferior_ptid, old_ptid))
1361 inferior_ptid = new_ptid;
1362
1363 if (ptid_equal (singlestep_ptid, old_ptid))
1364 singlestep_ptid = new_ptid;
1365
5231c1fd
PA
1366 if (ptid_equal (deferred_step_ptid, old_ptid))
1367 deferred_step_ptid = new_ptid;
1368
fc1cf338
PA
1369 for (displaced = displaced_step_inferior_states;
1370 displaced;
1371 displaced = displaced->next)
1372 {
1373 if (ptid_equal (displaced->step_ptid, old_ptid))
1374 displaced->step_ptid = new_ptid;
1375
1376 for (it = displaced->step_request_queue; it; it = it->next)
1377 if (ptid_equal (it->ptid, old_ptid))
1378 it->ptid = new_ptid;
1379 }
5231c1fd
PA
1380}
1381
237fc4c9
PA
1382\f
1383/* Resuming. */
c906108c
SS
1384
1385/* Things to clean up if we QUIT out of resume (). */
c906108c 1386static void
74b7792f 1387resume_cleanups (void *ignore)
c906108c
SS
1388{
1389 normal_stop ();
1390}
1391
53904c9e
AC
1392static const char schedlock_off[] = "off";
1393static const char schedlock_on[] = "on";
1394static const char schedlock_step[] = "step";
488f131b 1395static const char *scheduler_enums[] = {
ef346e04
AC
1396 schedlock_off,
1397 schedlock_on,
1398 schedlock_step,
1399 NULL
1400};
920d2a44
AC
1401static const char *scheduler_mode = schedlock_off;
1402static void
1403show_scheduler_mode (struct ui_file *file, int from_tty,
1404 struct cmd_list_element *c, const char *value)
1405{
1406 fprintf_filtered (file, _("\
1407Mode for locking scheduler during execution is \"%s\".\n"),
1408 value);
1409}
c906108c
SS
1410
1411static void
96baa820 1412set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1413{
eefe576e
AC
1414 if (!target_can_lock_scheduler)
1415 {
1416 scheduler_mode = schedlock_off;
1417 error (_("Target '%s' cannot support this command."), target_shortname);
1418 }
c906108c
SS
1419}
1420
d4db2f36
PA
1421/* True if execution commands resume all threads of all processes by
1422 default; otherwise, resume only threads of the current inferior
1423 process. */
1424int sched_multi = 0;
1425
2facfe5c
DD
1426/* Try to setup for software single stepping over the specified location.
1427 Return 1 if target_resume() should use hardware single step.
1428
1429 GDBARCH the current gdbarch.
1430 PC the location to step over. */
1431
1432static int
1433maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1434{
1435 int hw_step = 1;
1436
99e40580
UW
1437 if (gdbarch_software_single_step_p (gdbarch)
1438 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1439 {
99e40580
UW
1440 hw_step = 0;
1441 /* Do not pull these breakpoints until after a `wait' in
1442 `wait_for_inferior' */
1443 singlestep_breakpoints_inserted_p = 1;
1444 singlestep_ptid = inferior_ptid;
1445 singlestep_pc = pc;
2facfe5c
DD
1446 }
1447 return hw_step;
1448}
c906108c
SS
1449
1450/* Resume the inferior, but allow a QUIT. This is useful if the user
1451 wants to interrupt some lengthy single-stepping operation
1452 (for child processes, the SIGINT goes to the inferior, and so
1453 we get a SIGINT random_signal, but for remote debugging and perhaps
1454 other targets, that's not true).
1455
1456 STEP nonzero if we should step (zero to continue instead).
1457 SIG is the signal to give the inferior (zero for none). */
1458void
96baa820 1459resume (int step, enum target_signal sig)
c906108c
SS
1460{
1461 int should_resume = 1;
74b7792f 1462 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1463 struct regcache *regcache = get_current_regcache ();
1464 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1465 struct thread_info *tp = inferior_thread ();
515630c5 1466 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1467 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1468
c906108c
SS
1469 QUIT;
1470
527159b7 1471 if (debug_infrun)
237fc4c9
PA
1472 fprintf_unfiltered (gdb_stdlog,
1473 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
1474 "trap_expected=%d\n",
1475 step, sig, tp->trap_expected);
c906108c 1476
c2c6d25f
JM
1477 /* Normally, by the time we reach `resume', the breakpoints are either
1478 removed or inserted, as appropriate. The exception is if we're sitting
1479 at a permanent breakpoint; we need to step over it, but permanent
1480 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1481 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1482 {
515630c5
UW
1483 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1484 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
1485 else
1486 error (_("\
1487The program is stopped at a permanent breakpoint, but GDB does not know\n\
1488how to step past a permanent breakpoint on this architecture. Try using\n\
1489a command like `return' or `jump' to continue execution."));
1490 }
c2c6d25f 1491
237fc4c9
PA
1492 /* If enabled, step over breakpoints by executing a copy of the
1493 instruction at a different address.
1494
1495 We can't use displaced stepping when we have a signal to deliver;
1496 the comments for displaced_step_prepare explain why. The
1497 comments in the handle_inferior event for dealing with 'random
1498 signals' explain what we do instead. */
515630c5 1499 if (use_displaced_stepping (gdbarch)
929dfd4f
JB
1500 && (tp->trap_expected
1501 || (step && gdbarch_software_single_step_p (gdbarch)))
237fc4c9
PA
1502 && sig == TARGET_SIGNAL_0)
1503 {
fc1cf338
PA
1504 struct displaced_step_inferior_state *displaced;
1505
237fc4c9 1506 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1507 {
1508 /* Got placed in displaced stepping queue. Will be resumed
1509 later when all the currently queued displaced stepping
7f7efbd9
VP
1510 requests finish. The thread is not executing at this point,
1511 and the call to set_executing will be made later. But we
1512 need to call set_running here, since from frontend point of view,
1513 the thread is running. */
1514 set_running (inferior_ptid, 1);
d56b7306
VP
1515 discard_cleanups (old_cleanups);
1516 return;
1517 }
99e40580 1518
fc1cf338
PA
1519 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1520 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1521 displaced->step_closure);
237fc4c9
PA
1522 }
1523
2facfe5c 1524 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1525 else if (step)
2facfe5c 1526 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1527
c906108c
SS
1528 if (should_resume)
1529 {
39f77062 1530 ptid_t resume_ptid;
dfcd3bfb 1531
cd76b0b7
VP
1532 /* If STEP is set, it's a request to use hardware stepping
1533 facilities. But in that case, we should never
1534 use singlestep breakpoint. */
1535 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1536
d4db2f36
PA
1537 /* Decide the set of threads to ask the target to resume. Start
1538 by assuming everything will be resumed, than narrow the set
1539 by applying increasingly restricting conditions. */
1540
1541 /* By default, resume all threads of all processes. */
1542 resume_ptid = RESUME_ALL;
1543
1544 /* Maybe resume only all threads of the current process. */
1545 if (!sched_multi && target_supports_multi_process ())
1546 {
1547 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1548 }
1549
1550 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1551 if (singlestep_breakpoints_inserted_p
1552 && stepping_past_singlestep_breakpoint)
c906108c 1553 {
cd76b0b7
VP
1554 /* The situation here is as follows. In thread T1 we wanted to
1555 single-step. Lacking hardware single-stepping we've
1556 set breakpoint at the PC of the next instruction -- call it
1557 P. After resuming, we've hit that breakpoint in thread T2.
1558 Now we've removed original breakpoint, inserted breakpoint
1559 at P+1, and try to step to advance T2 past breakpoint.
1560 We need to step only T2, as if T1 is allowed to freely run,
1561 it can run past P, and if other threads are allowed to run,
1562 they can hit breakpoint at P+1, and nested hits of single-step
1563 breakpoints is not something we'd want -- that's complicated
1564 to support, and has no value. */
1565 resume_ptid = inferior_ptid;
1566 }
d4db2f36
PA
1567 else if ((step || singlestep_breakpoints_inserted_p)
1568 && tp->trap_expected)
cd76b0b7 1569 {
74960c60
VP
1570 /* We're allowing a thread to run past a breakpoint it has
1571 hit, by single-stepping the thread with the breakpoint
1572 removed. In which case, we need to single-step only this
1573 thread, and keep others stopped, as they can miss this
1574 breakpoint if allowed to run.
1575
1576 The current code actually removes all breakpoints when
1577 doing this, not just the one being stepped over, so if we
1578 let other threads run, we can actually miss any
1579 breakpoint, not just the one at PC. */
ef5cf84e 1580 resume_ptid = inferior_ptid;
c906108c 1581 }
d4db2f36 1582 else if (non_stop)
94cc34af
PA
1583 {
1584 /* With non-stop mode on, threads are always handled
1585 individually. */
1586 resume_ptid = inferior_ptid;
1587 }
1588 else if ((scheduler_mode == schedlock_on)
1589 || (scheduler_mode == schedlock_step
1590 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1591 {
ef5cf84e 1592 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1593 resume_ptid = inferior_ptid;
c906108c 1594 }
ef5cf84e 1595
515630c5 1596 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1597 {
1598 /* Most targets can step a breakpoint instruction, thus
1599 executing it normally. But if this one cannot, just
1600 continue and we will hit it anyway. */
6c95b8df 1601 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1602 step = 0;
1603 }
237fc4c9
PA
1604
1605 if (debug_displaced
515630c5 1606 && use_displaced_stepping (gdbarch)
4e1c45ea 1607 && tp->trap_expected)
237fc4c9 1608 {
515630c5 1609 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1610 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1611 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1612 gdb_byte buf[4];
1613
5af949e3
UW
1614 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1615 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1616 read_memory (actual_pc, buf, sizeof (buf));
1617 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1618 }
1619
e58b0e63
PA
1620 /* Install inferior's terminal modes. */
1621 target_terminal_inferior ();
1622
2020b7ab
PA
1623 /* Avoid confusing the next resume, if the next stop/resume
1624 happens to apply to another thread. */
1625 tp->stop_signal = TARGET_SIGNAL_0;
607cecd2
PA
1626
1627 target_resume (resume_ptid, step, sig);
c906108c
SS
1628 }
1629
1630 discard_cleanups (old_cleanups);
1631}
1632\f
237fc4c9 1633/* Proceeding. */
c906108c
SS
1634
1635/* Clear out all variables saying what to do when inferior is continued.
1636 First do this, then set the ones you want, then call `proceed'. */
1637
a7212384
UW
1638static void
1639clear_proceed_status_thread (struct thread_info *tp)
c906108c 1640{
a7212384
UW
1641 if (debug_infrun)
1642 fprintf_unfiltered (gdb_stdlog,
1643 "infrun: clear_proceed_status_thread (%s)\n",
1644 target_pid_to_str (tp->ptid));
d6b48e9c 1645
a7212384
UW
1646 tp->trap_expected = 0;
1647 tp->step_range_start = 0;
1648 tp->step_range_end = 0;
1649 tp->step_frame_id = null_frame_id;
edb3359d 1650 tp->step_stack_frame_id = null_frame_id;
a7212384
UW
1651 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1652 tp->stop_requested = 0;
4e1c45ea 1653
a7212384 1654 tp->stop_step = 0;
32400beb 1655
a7212384 1656 tp->proceed_to_finish = 0;
414c69f7 1657
a7212384
UW
1658 /* Discard any remaining commands or status from previous stop. */
1659 bpstat_clear (&tp->stop_bpstat);
1660}
32400beb 1661
a7212384
UW
1662static int
1663clear_proceed_status_callback (struct thread_info *tp, void *data)
1664{
1665 if (is_exited (tp->ptid))
1666 return 0;
d6b48e9c 1667
a7212384
UW
1668 clear_proceed_status_thread (tp);
1669 return 0;
1670}
1671
1672void
1673clear_proceed_status (void)
1674{
6c95b8df
PA
1675 if (!non_stop)
1676 {
1677 /* In all-stop mode, delete the per-thread status of all
1678 threads, even if inferior_ptid is null_ptid, there may be
1679 threads on the list. E.g., we may be launching a new
1680 process, while selecting the executable. */
1681 iterate_over_threads (clear_proceed_status_callback, NULL);
1682 }
1683
a7212384
UW
1684 if (!ptid_equal (inferior_ptid, null_ptid))
1685 {
1686 struct inferior *inferior;
1687
1688 if (non_stop)
1689 {
6c95b8df
PA
1690 /* If in non-stop mode, only delete the per-thread status of
1691 the current thread. */
a7212384
UW
1692 clear_proceed_status_thread (inferior_thread ());
1693 }
6c95b8df 1694
d6b48e9c
PA
1695 inferior = current_inferior ();
1696 inferior->stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1697 }
1698
c906108c 1699 stop_after_trap = 0;
f3b1572e
PA
1700
1701 observer_notify_about_to_proceed ();
c906108c 1702
d5c31457
UW
1703 if (stop_registers)
1704 {
1705 regcache_xfree (stop_registers);
1706 stop_registers = NULL;
1707 }
c906108c
SS
1708}
1709
5a437975
DE
1710/* Check the current thread against the thread that reported the most recent
1711 event. If a step-over is required return TRUE and set the current thread
1712 to the old thread. Otherwise return FALSE.
1713
1714 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1715
1716static int
6a6b96b9 1717prepare_to_proceed (int step)
ea67f13b
DJ
1718{
1719 ptid_t wait_ptid;
1720 struct target_waitstatus wait_status;
5a437975
DE
1721 int schedlock_enabled;
1722
1723 /* With non-stop mode on, threads are always handled individually. */
1724 gdb_assert (! non_stop);
ea67f13b
DJ
1725
1726 /* Get the last target status returned by target_wait(). */
1727 get_last_target_status (&wait_ptid, &wait_status);
1728
6a6b96b9 1729 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1730 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
1731 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1732 && wait_status.value.sig != TARGET_SIGNAL_ILL
1733 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1734 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
1735 {
1736 return 0;
1737 }
1738
5a437975
DE
1739 schedlock_enabled = (scheduler_mode == schedlock_on
1740 || (scheduler_mode == schedlock_step
1741 && step));
1742
d4db2f36
PA
1743 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1744 if (schedlock_enabled)
1745 return 0;
1746
1747 /* Don't switch over if we're about to resume some other process
1748 other than WAIT_PTID's, and schedule-multiple is off. */
1749 if (!sched_multi
1750 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1751 return 0;
1752
6a6b96b9 1753 /* Switched over from WAIT_PID. */
ea67f13b 1754 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 1755 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1756 {
515630c5
UW
1757 struct regcache *regcache = get_thread_regcache (wait_ptid);
1758
6c95b8df
PA
1759 if (breakpoint_here_p (get_regcache_aspace (regcache),
1760 regcache_read_pc (regcache)))
ea67f13b 1761 {
515630c5
UW
1762 /* If stepping, remember current thread to switch back to. */
1763 if (step)
1764 deferred_step_ptid = inferior_ptid;
ea67f13b 1765
515630c5
UW
1766 /* Switch back to WAIT_PID thread. */
1767 switch_to_thread (wait_ptid);
6a6b96b9 1768
515630c5
UW
1769 /* We return 1 to indicate that there is a breakpoint here,
1770 so we need to step over it before continuing to avoid
1771 hitting it straight away. */
1772 return 1;
1773 }
ea67f13b
DJ
1774 }
1775
1776 return 0;
ea67f13b 1777}
e4846b08 1778
c906108c
SS
1779/* Basic routine for continuing the program in various fashions.
1780
1781 ADDR is the address to resume at, or -1 for resume where stopped.
1782 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1783 or -1 for act according to how it stopped.
c906108c 1784 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1785 -1 means return after that and print nothing.
1786 You should probably set various step_... variables
1787 before calling here, if you are stepping.
c906108c
SS
1788
1789 You should call clear_proceed_status before calling proceed. */
1790
1791void
96baa820 1792proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1793{
e58b0e63
PA
1794 struct regcache *regcache;
1795 struct gdbarch *gdbarch;
4e1c45ea 1796 struct thread_info *tp;
e58b0e63 1797 CORE_ADDR pc;
6c95b8df 1798 struct address_space *aspace;
c906108c
SS
1799 int oneproc = 0;
1800
e58b0e63
PA
1801 /* If we're stopped at a fork/vfork, follow the branch set by the
1802 "set follow-fork-mode" command; otherwise, we'll just proceed
1803 resuming the current thread. */
1804 if (!follow_fork ())
1805 {
1806 /* The target for some reason decided not to resume. */
1807 normal_stop ();
1808 return;
1809 }
1810
1811 regcache = get_current_regcache ();
1812 gdbarch = get_regcache_arch (regcache);
6c95b8df 1813 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
1814 pc = regcache_read_pc (regcache);
1815
c906108c 1816 if (step > 0)
515630c5 1817 step_start_function = find_pc_function (pc);
c906108c
SS
1818 if (step < 0)
1819 stop_after_trap = 1;
1820
2acceee2 1821 if (addr == (CORE_ADDR) -1)
c906108c 1822 {
6c95b8df 1823 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 1824 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1825 /* There is a breakpoint at the address we will resume at,
1826 step one instruction before inserting breakpoints so that
1827 we do not stop right away (and report a second hit at this
b2175913
MS
1828 breakpoint).
1829
1830 Note, we don't do this in reverse, because we won't
1831 actually be executing the breakpoint insn anyway.
1832 We'll be (un-)executing the previous instruction. */
1833
c906108c 1834 oneproc = 1;
515630c5
UW
1835 else if (gdbarch_single_step_through_delay_p (gdbarch)
1836 && gdbarch_single_step_through_delay (gdbarch,
1837 get_current_frame ()))
3352ef37
AC
1838 /* We stepped onto an instruction that needs to be stepped
1839 again before re-inserting the breakpoint, do so. */
c906108c
SS
1840 oneproc = 1;
1841 }
1842 else
1843 {
515630c5 1844 regcache_write_pc (regcache, addr);
c906108c
SS
1845 }
1846
527159b7 1847 if (debug_infrun)
8a9de0e4 1848 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1849 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
1850 paddress (gdbarch, addr), siggnal, step);
527159b7 1851
06cd862c
PA
1852 /* We're handling a live event, so make sure we're doing live
1853 debugging. If we're looking at traceframes while the target is
1854 running, we're going to need to get back to that mode after
1855 handling the event. */
1856 if (non_stop)
1857 {
1858 make_cleanup_restore_current_traceframe ();
1859 set_traceframe_number (-1);
1860 }
1861
94cc34af
PA
1862 if (non_stop)
1863 /* In non-stop, each thread is handled individually. The context
1864 must already be set to the right thread here. */
1865 ;
1866 else
1867 {
1868 /* In a multi-threaded task we may select another thread and
1869 then continue or step.
c906108c 1870
94cc34af
PA
1871 But if the old thread was stopped at a breakpoint, it will
1872 immediately cause another breakpoint stop without any
1873 execution (i.e. it will report a breakpoint hit incorrectly).
1874 So we must step over it first.
c906108c 1875
94cc34af
PA
1876 prepare_to_proceed checks the current thread against the
1877 thread that reported the most recent event. If a step-over
1878 is required it returns TRUE and sets the current thread to
1879 the old thread. */
1880 if (prepare_to_proceed (step))
1881 oneproc = 1;
1882 }
c906108c 1883
4e1c45ea
PA
1884 /* prepare_to_proceed may change the current thread. */
1885 tp = inferior_thread ();
1886
c906108c 1887 if (oneproc)
74960c60 1888 {
4e1c45ea 1889 tp->trap_expected = 1;
237fc4c9
PA
1890 /* If displaced stepping is enabled, we can step over the
1891 breakpoint without hitting it, so leave all breakpoints
1892 inserted. Otherwise we need to disable all breakpoints, step
1893 one instruction, and then re-add them when that step is
1894 finished. */
515630c5 1895 if (!use_displaced_stepping (gdbarch))
237fc4c9 1896 remove_breakpoints ();
74960c60 1897 }
237fc4c9
PA
1898
1899 /* We can insert breakpoints if we're not trying to step over one,
1900 or if we are stepping over one but we're using displaced stepping
1901 to do so. */
4e1c45ea 1902 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1903 insert_breakpoints ();
c906108c 1904
2020b7ab
PA
1905 if (!non_stop)
1906 {
1907 /* Pass the last stop signal to the thread we're resuming,
1908 irrespective of whether the current thread is the thread that
1909 got the last event or not. This was historically GDB's
1910 behaviour before keeping a stop_signal per thread. */
1911
1912 struct thread_info *last_thread;
1913 ptid_t last_ptid;
1914 struct target_waitstatus last_status;
1915
1916 get_last_target_status (&last_ptid, &last_status);
1917 if (!ptid_equal (inferior_ptid, last_ptid)
1918 && !ptid_equal (last_ptid, null_ptid)
1919 && !ptid_equal (last_ptid, minus_one_ptid))
1920 {
e09875d4 1921 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
1922 if (last_thread)
1923 {
1924 tp->stop_signal = last_thread->stop_signal;
1925 last_thread->stop_signal = TARGET_SIGNAL_0;
1926 }
1927 }
1928 }
1929
c906108c 1930 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 1931 tp->stop_signal = siggnal;
c906108c
SS
1932 /* If this signal should not be seen by program,
1933 give it zero. Used for debugging signals. */
2020b7ab
PA
1934 else if (!signal_program[tp->stop_signal])
1935 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1936
1937 annotate_starting ();
1938
1939 /* Make sure that output from GDB appears before output from the
1940 inferior. */
1941 gdb_flush (gdb_stdout);
1942
e4846b08
JJ
1943 /* Refresh prev_pc value just prior to resuming. This used to be
1944 done in stop_stepping, however, setting prev_pc there did not handle
1945 scenarios such as inferior function calls or returning from
1946 a function via the return command. In those cases, the prev_pc
1947 value was not set properly for subsequent commands. The prev_pc value
1948 is used to initialize the starting line number in the ecs. With an
1949 invalid value, the gdb next command ends up stopping at the position
1950 represented by the next line table entry past our start position.
1951 On platforms that generate one line table entry per line, this
1952 is not a problem. However, on the ia64, the compiler generates
1953 extraneous line table entries that do not increase the line number.
1954 When we issue the gdb next command on the ia64 after an inferior call
1955 or a return command, we often end up a few instructions forward, still
1956 within the original line we started.
1957
d5cd6034
JB
1958 An attempt was made to refresh the prev_pc at the same time the
1959 execution_control_state is initialized (for instance, just before
1960 waiting for an inferior event). But this approach did not work
1961 because of platforms that use ptrace, where the pc register cannot
1962 be read unless the inferior is stopped. At that point, we are not
1963 guaranteed the inferior is stopped and so the regcache_read_pc() call
1964 can fail. Setting the prev_pc value here ensures the value is updated
1965 correctly when the inferior is stopped. */
4e1c45ea 1966 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1967
59f0d5d9 1968 /* Fill in with reasonable starting values. */
4e1c45ea 1969 init_thread_stepping_state (tp);
59f0d5d9 1970
59f0d5d9
PA
1971 /* Reset to normal state. */
1972 init_infwait_state ();
1973
c906108c 1974 /* Resume inferior. */
2020b7ab 1975 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
1976
1977 /* Wait for it to stop (if not standalone)
1978 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1979 /* Do this only if we are not using the event loop, or if the target
1980 does not support asynchronous execution. */
362646f5 1981 if (!target_can_async_p ())
43ff13b4 1982 {
ae123ec6 1983 wait_for_inferior (0);
43ff13b4
JM
1984 normal_stop ();
1985 }
c906108c 1986}
c906108c
SS
1987\f
1988
1989/* Start remote-debugging of a machine over a serial link. */
96baa820 1990
c906108c 1991void
8621d6a9 1992start_remote (int from_tty)
c906108c 1993{
d6b48e9c 1994 struct inferior *inferior;
c906108c 1995 init_wait_for_inferior ();
d6b48e9c
PA
1996
1997 inferior = current_inferior ();
1998 inferior->stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 1999
6426a772
JM
2000 /* Always go on waiting for the target, regardless of the mode. */
2001 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2002 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2003 nothing is returned (instead of just blocking). Because of this,
2004 targets expecting an immediate response need to, internally, set
2005 things up so that the target_wait() is forced to eventually
2006 timeout. */
2007 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2008 differentiate to its caller what the state of the target is after
2009 the initial open has been performed. Here we're assuming that
2010 the target has stopped. It should be possible to eventually have
2011 target_open() return to the caller an indication that the target
2012 is currently running and GDB state should be set to the same as
2013 for an async run. */
ae123ec6 2014 wait_for_inferior (0);
8621d6a9
DJ
2015
2016 /* Now that the inferior has stopped, do any bookkeeping like
2017 loading shared libraries. We want to do this before normal_stop,
2018 so that the displayed frame is up to date. */
2019 post_create_inferior (&current_target, from_tty);
2020
6426a772 2021 normal_stop ();
c906108c
SS
2022}
2023
2024/* Initialize static vars when a new inferior begins. */
2025
2026void
96baa820 2027init_wait_for_inferior (void)
c906108c
SS
2028{
2029 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2030
c906108c
SS
2031 breakpoint_init_inferior (inf_starting);
2032
c906108c 2033 clear_proceed_status ();
9f976b41
DJ
2034
2035 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2036 deferred_step_ptid = null_ptid;
ca005067
DJ
2037
2038 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2039
0d1e5fa7
PA
2040 previous_inferior_ptid = null_ptid;
2041 init_infwait_state ();
2042
edb3359d
DJ
2043 /* Discard any skipped inlined frames. */
2044 clear_inline_frame_state (minus_one_ptid);
c906108c 2045}
237fc4c9 2046
c906108c 2047\f
b83266a0
SS
2048/* This enum encodes possible reasons for doing a target_wait, so that
2049 wfi can call target_wait in one place. (Ultimately the call will be
2050 moved out of the infinite loop entirely.) */
2051
c5aa993b
JM
2052enum infwait_states
2053{
cd0fc7c3
SS
2054 infwait_normal_state,
2055 infwait_thread_hop_state,
d983da9c 2056 infwait_step_watch_state,
cd0fc7c3 2057 infwait_nonstep_watch_state
b83266a0
SS
2058};
2059
11cf8741
JM
2060/* Why did the inferior stop? Used to print the appropriate messages
2061 to the interface from within handle_inferior_event(). */
2062enum inferior_stop_reason
2063{
11cf8741
JM
2064 /* Step, next, nexti, stepi finished. */
2065 END_STEPPING_RANGE,
11cf8741
JM
2066 /* Inferior terminated by signal. */
2067 SIGNAL_EXITED,
2068 /* Inferior exited. */
2069 EXITED,
2070 /* Inferior received signal, and user asked to be notified. */
b2175913
MS
2071 SIGNAL_RECEIVED,
2072 /* Reverse execution -- target ran out of history info. */
2073 NO_HISTORY
11cf8741
JM
2074};
2075
0d1e5fa7
PA
2076/* The PTID we'll do a target_wait on.*/
2077ptid_t waiton_ptid;
2078
2079/* Current inferior wait state. */
2080enum infwait_states infwait_state;
cd0fc7c3 2081
0d1e5fa7
PA
2082/* Data to be passed around while handling an event. This data is
2083 discarded between events. */
c5aa993b 2084struct execution_control_state
488f131b 2085{
0d1e5fa7 2086 ptid_t ptid;
4e1c45ea
PA
2087 /* The thread that got the event, if this was a thread event; NULL
2088 otherwise. */
2089 struct thread_info *event_thread;
2090
488f131b 2091 struct target_waitstatus ws;
488f131b
JB
2092 int random_signal;
2093 CORE_ADDR stop_func_start;
2094 CORE_ADDR stop_func_end;
2095 char *stop_func_name;
488f131b 2096 int new_thread_event;
488f131b
JB
2097 int wait_some_more;
2098};
2099
ec9499be 2100static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2101
568d6575
UW
2102static void handle_step_into_function (struct gdbarch *gdbarch,
2103 struct execution_control_state *ecs);
2104static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2105 struct execution_control_state *ecs);
44cbf7b5 2106static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 2107static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
a6d9a66e
UW
2108static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
2109 struct symtab_and_line sr_sal,
44cbf7b5 2110 struct frame_id sr_id);
a6d9a66e 2111static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
611c83ae 2112
104c1213
JM
2113static void stop_stepping (struct execution_control_state *ecs);
2114static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2115static void keep_going (struct execution_control_state *ecs);
488f131b
JB
2116static void print_stop_reason (enum inferior_stop_reason stop_reason,
2117 int stop_info);
104c1213 2118
252fbfc8
PA
2119/* Callback for iterate over threads. If the thread is stopped, but
2120 the user/frontend doesn't know about that yet, go through
2121 normal_stop, as if the thread had just stopped now. ARG points at
2122 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2123 ptid_is_pid(PTID) is true, applies to all threads of the process
2124 pointed at by PTID. Otherwise, apply only to the thread pointed by
2125 PTID. */
2126
2127static int
2128infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2129{
2130 ptid_t ptid = * (ptid_t *) arg;
2131
2132 if ((ptid_equal (info->ptid, ptid)
2133 || ptid_equal (minus_one_ptid, ptid)
2134 || (ptid_is_pid (ptid)
2135 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2136 && is_running (info->ptid)
2137 && !is_executing (info->ptid))
2138 {
2139 struct cleanup *old_chain;
2140 struct execution_control_state ecss;
2141 struct execution_control_state *ecs = &ecss;
2142
2143 memset (ecs, 0, sizeof (*ecs));
2144
2145 old_chain = make_cleanup_restore_current_thread ();
2146
2147 switch_to_thread (info->ptid);
2148
2149 /* Go through handle_inferior_event/normal_stop, so we always
2150 have consistent output as if the stop event had been
2151 reported. */
2152 ecs->ptid = info->ptid;
e09875d4 2153 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2154 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2155 ecs->ws.value.sig = TARGET_SIGNAL_0;
2156
2157 handle_inferior_event (ecs);
2158
2159 if (!ecs->wait_some_more)
2160 {
2161 struct thread_info *tp;
2162
2163 normal_stop ();
2164
2165 /* Finish off the continuations. The continations
2166 themselves are responsible for realising the thread
2167 didn't finish what it was supposed to do. */
2168 tp = inferior_thread ();
2169 do_all_intermediate_continuations_thread (tp);
2170 do_all_continuations_thread (tp);
2171 }
2172
2173 do_cleanups (old_chain);
2174 }
2175
2176 return 0;
2177}
2178
2179/* This function is attached as a "thread_stop_requested" observer.
2180 Cleanup local state that assumed the PTID was to be resumed, and
2181 report the stop to the frontend. */
2182
2c0b251b 2183static void
252fbfc8
PA
2184infrun_thread_stop_requested (ptid_t ptid)
2185{
fc1cf338 2186 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2187
2188 /* PTID was requested to stop. Remove it from the displaced
2189 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2190
2191 for (displaced = displaced_step_inferior_states;
2192 displaced;
2193 displaced = displaced->next)
252fbfc8 2194 {
fc1cf338 2195 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2196
fc1cf338
PA
2197 it = displaced->step_request_queue;
2198 prev_next_p = &displaced->step_request_queue;
2199 while (it)
252fbfc8 2200 {
fc1cf338
PA
2201 if (ptid_match (it->ptid, ptid))
2202 {
2203 *prev_next_p = it->next;
2204 it->next = NULL;
2205 xfree (it);
2206 }
252fbfc8 2207 else
fc1cf338
PA
2208 {
2209 prev_next_p = &it->next;
2210 }
252fbfc8 2211
fc1cf338 2212 it = *prev_next_p;
252fbfc8 2213 }
252fbfc8
PA
2214 }
2215
2216 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2217}
2218
a07daef3
PA
2219static void
2220infrun_thread_thread_exit (struct thread_info *tp, int silent)
2221{
2222 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2223 nullify_last_target_wait_ptid ();
2224}
2225
4e1c45ea
PA
2226/* Callback for iterate_over_threads. */
2227
2228static int
2229delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2230{
2231 if (is_exited (info->ptid))
2232 return 0;
2233
2234 delete_step_resume_breakpoint (info);
2235 return 0;
2236}
2237
2238/* In all-stop, delete the step resume breakpoint of any thread that
2239 had one. In non-stop, delete the step resume breakpoint of the
2240 thread that just stopped. */
2241
2242static void
2243delete_step_thread_step_resume_breakpoint (void)
2244{
2245 if (!target_has_execution
2246 || ptid_equal (inferior_ptid, null_ptid))
2247 /* If the inferior has exited, we have already deleted the step
2248 resume breakpoints out of GDB's lists. */
2249 return;
2250
2251 if (non_stop)
2252 {
2253 /* If in non-stop mode, only delete the step-resume or
2254 longjmp-resume breakpoint of the thread that just stopped
2255 stepping. */
2256 struct thread_info *tp = inferior_thread ();
2257 delete_step_resume_breakpoint (tp);
2258 }
2259 else
2260 /* In all-stop mode, delete all step-resume and longjmp-resume
2261 breakpoints of any thread that had them. */
2262 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2263}
2264
2265/* A cleanup wrapper. */
2266
2267static void
2268delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2269{
2270 delete_step_thread_step_resume_breakpoint ();
2271}
2272
223698f8
DE
2273/* Pretty print the results of target_wait, for debugging purposes. */
2274
2275static void
2276print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2277 const struct target_waitstatus *ws)
2278{
2279 char *status_string = target_waitstatus_to_string (ws);
2280 struct ui_file *tmp_stream = mem_fileopen ();
2281 char *text;
223698f8
DE
2282
2283 /* The text is split over several lines because it was getting too long.
2284 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2285 output as a unit; we want only one timestamp printed if debug_timestamp
2286 is set. */
2287
2288 fprintf_unfiltered (tmp_stream,
2289 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2290 if (PIDGET (waiton_ptid) != -1)
2291 fprintf_unfiltered (tmp_stream,
2292 " [%s]", target_pid_to_str (waiton_ptid));
2293 fprintf_unfiltered (tmp_stream, ", status) =\n");
2294 fprintf_unfiltered (tmp_stream,
2295 "infrun: %d [%s],\n",
2296 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2297 fprintf_unfiltered (tmp_stream,
2298 "infrun: %s\n",
2299 status_string);
2300
759ef836 2301 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2302
2303 /* This uses %s in part to handle %'s in the text, but also to avoid
2304 a gcc error: the format attribute requires a string literal. */
2305 fprintf_unfiltered (gdb_stdlog, "%s", text);
2306
2307 xfree (status_string);
2308 xfree (text);
2309 ui_file_delete (tmp_stream);
2310}
2311
24291992
PA
2312/* Prepare and stabilize the inferior for detaching it. E.g.,
2313 detaching while a thread is displaced stepping is a recipe for
2314 crashing it, as nothing would readjust the PC out of the scratch
2315 pad. */
2316
2317void
2318prepare_for_detach (void)
2319{
2320 struct inferior *inf = current_inferior ();
2321 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2322 struct cleanup *old_chain_1;
2323 struct displaced_step_inferior_state *displaced;
2324
2325 displaced = get_displaced_stepping_state (inf->pid);
2326
2327 /* Is any thread of this process displaced stepping? If not,
2328 there's nothing else to do. */
2329 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2330 return;
2331
2332 if (debug_infrun)
2333 fprintf_unfiltered (gdb_stdlog,
2334 "displaced-stepping in-process while detaching");
2335
2336 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2337 inf->detaching = 1;
2338
2339 while (!ptid_equal (displaced->step_ptid, null_ptid))
2340 {
2341 struct cleanup *old_chain_2;
2342 struct execution_control_state ecss;
2343 struct execution_control_state *ecs;
2344
2345 ecs = &ecss;
2346 memset (ecs, 0, sizeof (*ecs));
2347
2348 overlay_cache_invalid = 1;
2349
2350 /* We have to invalidate the registers BEFORE calling
2351 target_wait because they can be loaded from the target while
2352 in target_wait. This makes remote debugging a bit more
2353 efficient for those targets that provide critical registers
2354 as part of their normal status mechanism. */
2355
2356 registers_changed ();
2357
2358 if (deprecated_target_wait_hook)
2359 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2360 else
2361 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2362
2363 if (debug_infrun)
2364 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2365
2366 /* If an error happens while handling the event, propagate GDB's
2367 knowledge of the executing state to the frontend/user running
2368 state. */
2369 old_chain_2 = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2370
2371 /* Now figure out what to do with the result of the result. */
2372 handle_inferior_event (ecs);
2373
2374 /* No error, don't finish the state yet. */
2375 discard_cleanups (old_chain_2);
2376
2377 /* Breakpoints and watchpoints are not installed on the target
2378 at this point, and signals are passed directly to the
2379 inferior, so this must mean the process is gone. */
2380 if (!ecs->wait_some_more)
2381 {
2382 discard_cleanups (old_chain_1);
2383 error (_("Program exited while detaching"));
2384 }
2385 }
2386
2387 discard_cleanups (old_chain_1);
2388}
2389
cd0fc7c3 2390/* Wait for control to return from inferior to debugger.
ae123ec6
JB
2391
2392 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
2393 as if they were SIGTRAP signals. This can be useful during
2394 the startup sequence on some targets such as HP/UX, where
2395 we receive an EXEC event instead of the expected SIGTRAP.
2396
cd0fc7c3
SS
2397 If inferior gets a signal, we may decide to start it up again
2398 instead of returning. That is why there is a loop in this function.
2399 When this function actually returns it means the inferior
2400 should be left stopped and GDB should read more commands. */
2401
2402void
ae123ec6 2403wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
2404{
2405 struct cleanup *old_cleanups;
0d1e5fa7 2406 struct execution_control_state ecss;
cd0fc7c3 2407 struct execution_control_state *ecs;
c906108c 2408
527159b7 2409 if (debug_infrun)
ae123ec6
JB
2410 fprintf_unfiltered
2411 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
2412 treat_exec_as_sigtrap);
527159b7 2413
4e1c45ea
PA
2414 old_cleanups =
2415 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2416
cd0fc7c3 2417 ecs = &ecss;
0d1e5fa7
PA
2418 memset (ecs, 0, sizeof (*ecs));
2419
e0bb1c1c
PA
2420 /* We'll update this if & when we switch to a new thread. */
2421 previous_inferior_ptid = inferior_ptid;
2422
c906108c
SS
2423 while (1)
2424 {
29f49a6a
PA
2425 struct cleanup *old_chain;
2426
ec9499be
UW
2427 /* We have to invalidate the registers BEFORE calling target_wait
2428 because they can be loaded from the target while in target_wait.
2429 This makes remote debugging a bit more efficient for those
2430 targets that provide critical registers as part of their normal
2431 status mechanism. */
2432
2433 overlay_cache_invalid = 1;
2434 registers_changed ();
2435
9a4105ab 2436 if (deprecated_target_wait_hook)
47608cb1 2437 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2438 else
47608cb1 2439 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2440
f00150c9 2441 if (debug_infrun)
223698f8 2442 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2443
ae123ec6
JB
2444 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2445 {
2446 xfree (ecs->ws.value.execd_pathname);
2447 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2448 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2449 }
2450
29f49a6a
PA
2451 /* If an error happens while handling the event, propagate GDB's
2452 knowledge of the executing state to the frontend/user running
2453 state. */
2454 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2455
a96d9b2e
SDJ
2456 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2457 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2458 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2459
cd0fc7c3
SS
2460 /* Now figure out what to do with the result of the result. */
2461 handle_inferior_event (ecs);
c906108c 2462
29f49a6a
PA
2463 /* No error, don't finish the state yet. */
2464 discard_cleanups (old_chain);
2465
cd0fc7c3
SS
2466 if (!ecs->wait_some_more)
2467 break;
2468 }
4e1c45ea 2469
cd0fc7c3
SS
2470 do_cleanups (old_cleanups);
2471}
c906108c 2472
43ff13b4
JM
2473/* Asynchronous version of wait_for_inferior. It is called by the
2474 event loop whenever a change of state is detected on the file
2475 descriptor corresponding to the target. It can be called more than
2476 once to complete a single execution command. In such cases we need
a474d7c2
PA
2477 to keep the state in a global variable ECSS. If it is the last time
2478 that this function is called for a single execution command, then
2479 report to the user that the inferior has stopped, and do the
2480 necessary cleanups. */
43ff13b4
JM
2481
2482void
fba45db2 2483fetch_inferior_event (void *client_data)
43ff13b4 2484{
0d1e5fa7 2485 struct execution_control_state ecss;
a474d7c2 2486 struct execution_control_state *ecs = &ecss;
4f8d22e3 2487 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2488 struct cleanup *ts_old_chain;
4f8d22e3 2489 int was_sync = sync_execution;
43ff13b4 2490
0d1e5fa7
PA
2491 memset (ecs, 0, sizeof (*ecs));
2492
ec9499be
UW
2493 /* We'll update this if & when we switch to a new thread. */
2494 previous_inferior_ptid = inferior_ptid;
e0bb1c1c 2495
4f8d22e3
PA
2496 if (non_stop)
2497 /* In non-stop mode, the user/frontend should not notice a thread
2498 switch due to internal events. Make sure we reverse to the
2499 user selected thread and frame after handling the event and
2500 running any breakpoint commands. */
2501 make_cleanup_restore_current_thread ();
2502
59f0d5d9
PA
2503 /* We have to invalidate the registers BEFORE calling target_wait
2504 because they can be loaded from the target while in target_wait.
2505 This makes remote debugging a bit more efficient for those
2506 targets that provide critical registers as part of their normal
2507 status mechanism. */
43ff13b4 2508
ec9499be 2509 overlay_cache_invalid = 1;
59f0d5d9 2510 registers_changed ();
43ff13b4 2511
9a4105ab 2512 if (deprecated_target_wait_hook)
a474d7c2 2513 ecs->ptid =
47608cb1 2514 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2515 else
47608cb1 2516 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2517
f00150c9 2518 if (debug_infrun)
223698f8 2519 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2520
94cc34af
PA
2521 if (non_stop
2522 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2523 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2524 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2525 /* In non-stop mode, each thread is handled individually. Switch
2526 early, so the global state is set correctly for this
2527 thread. */
2528 context_switch (ecs->ptid);
2529
29f49a6a
PA
2530 /* If an error happens while handling the event, propagate GDB's
2531 knowledge of the executing state to the frontend/user running
2532 state. */
2533 if (!non_stop)
2534 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2535 else
2536 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2537
43ff13b4 2538 /* Now figure out what to do with the result of the result. */
a474d7c2 2539 handle_inferior_event (ecs);
43ff13b4 2540
a474d7c2 2541 if (!ecs->wait_some_more)
43ff13b4 2542 {
d6b48e9c
PA
2543 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2544
4e1c45ea 2545 delete_step_thread_step_resume_breakpoint ();
f107f563 2546
d6b48e9c
PA
2547 /* We may not find an inferior if this was a process exit. */
2548 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2549 normal_stop ();
2550
af679fd0
PA
2551 if (target_has_execution
2552 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2553 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2554 && ecs->event_thread->step_multi
414c69f7 2555 && ecs->event_thread->stop_step)
c2d11a7d
JM
2556 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2557 else
2558 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2559 }
4f8d22e3 2560
29f49a6a
PA
2561 /* No error, don't finish the thread states yet. */
2562 discard_cleanups (ts_old_chain);
2563
4f8d22e3
PA
2564 /* Revert thread and frame. */
2565 do_cleanups (old_chain);
2566
2567 /* If the inferior was in sync execution mode, and now isn't,
2568 restore the prompt. */
2569 if (was_sync && !sync_execution)
2570 display_gdb_prompt (0);
43ff13b4
JM
2571}
2572
edb3359d
DJ
2573/* Record the frame and location we're currently stepping through. */
2574void
2575set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2576{
2577 struct thread_info *tp = inferior_thread ();
2578
2579 tp->step_frame_id = get_frame_id (frame);
2580 tp->step_stack_frame_id = get_stack_frame_id (frame);
2581
2582 tp->current_symtab = sal.symtab;
2583 tp->current_line = sal.line;
2584}
2585
0d1e5fa7
PA
2586/* Clear context switchable stepping state. */
2587
2588void
4e1c45ea 2589init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2590{
2591 tss->stepping_over_breakpoint = 0;
2592 tss->step_after_step_resume_breakpoint = 0;
2593 tss->stepping_through_solib_after_catch = 0;
2594 tss->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
2595}
2596
e02bc4cc 2597/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2598 target_wait()/deprecated_target_wait_hook(). The data is actually
2599 cached by handle_inferior_event(), which gets called immediately
2600 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2601
2602void
488f131b 2603get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2604{
39f77062 2605 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2606 *status = target_last_waitstatus;
2607}
2608
ac264b3b
MS
2609void
2610nullify_last_target_wait_ptid (void)
2611{
2612 target_last_wait_ptid = minus_one_ptid;
2613}
2614
dcf4fbde 2615/* Switch thread contexts. */
dd80620e
MS
2616
2617static void
0d1e5fa7 2618context_switch (ptid_t ptid)
dd80620e 2619{
fd48f117
DJ
2620 if (debug_infrun)
2621 {
2622 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2623 target_pid_to_str (inferior_ptid));
2624 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2625 target_pid_to_str (ptid));
fd48f117
DJ
2626 }
2627
0d1e5fa7 2628 switch_to_thread (ptid);
dd80620e
MS
2629}
2630
4fa8626c
DJ
2631static void
2632adjust_pc_after_break (struct execution_control_state *ecs)
2633{
24a73cce
UW
2634 struct regcache *regcache;
2635 struct gdbarch *gdbarch;
6c95b8df 2636 struct address_space *aspace;
8aad930b 2637 CORE_ADDR breakpoint_pc;
4fa8626c 2638
4fa8626c
DJ
2639 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2640 we aren't, just return.
9709f61c
DJ
2641
2642 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2643 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2644 implemented by software breakpoints should be handled through the normal
2645 breakpoint layer.
8fb3e588 2646
4fa8626c
DJ
2647 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2648 different signals (SIGILL or SIGEMT for instance), but it is less
2649 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2650 gdbarch_decr_pc_after_break. I don't know any specific target that
2651 generates these signals at breakpoints (the code has been in GDB since at
2652 least 1992) so I can not guess how to handle them here.
8fb3e588 2653
e6cf7916
UW
2654 In earlier versions of GDB, a target with
2655 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2656 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2657 target with both of these set in GDB history, and it seems unlikely to be
2658 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2659
2660 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2661 return;
2662
2663 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2664 return;
2665
4058b839
PA
2666 /* In reverse execution, when a breakpoint is hit, the instruction
2667 under it has already been de-executed. The reported PC always
2668 points at the breakpoint address, so adjusting it further would
2669 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2670 architecture:
2671
2672 B1 0x08000000 : INSN1
2673 B2 0x08000001 : INSN2
2674 0x08000002 : INSN3
2675 PC -> 0x08000003 : INSN4
2676
2677 Say you're stopped at 0x08000003 as above. Reverse continuing
2678 from that point should hit B2 as below. Reading the PC when the
2679 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2680 been de-executed already.
2681
2682 B1 0x08000000 : INSN1
2683 B2 PC -> 0x08000001 : INSN2
2684 0x08000002 : INSN3
2685 0x08000003 : INSN4
2686
2687 We can't apply the same logic as for forward execution, because
2688 we would wrongly adjust the PC to 0x08000000, since there's a
2689 breakpoint at PC - 1. We'd then report a hit on B1, although
2690 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2691 behaviour. */
2692 if (execution_direction == EXEC_REVERSE)
2693 return;
2694
24a73cce
UW
2695 /* If this target does not decrement the PC after breakpoints, then
2696 we have nothing to do. */
2697 regcache = get_thread_regcache (ecs->ptid);
2698 gdbarch = get_regcache_arch (regcache);
2699 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2700 return;
2701
6c95b8df
PA
2702 aspace = get_regcache_aspace (regcache);
2703
8aad930b
AC
2704 /* Find the location where (if we've hit a breakpoint) the
2705 breakpoint would be. */
515630c5
UW
2706 breakpoint_pc = regcache_read_pc (regcache)
2707 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2708
1c5cfe86
PA
2709 /* Check whether there actually is a software breakpoint inserted at
2710 that location.
2711
2712 If in non-stop mode, a race condition is possible where we've
2713 removed a breakpoint, but stop events for that breakpoint were
2714 already queued and arrive later. To suppress those spurious
2715 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2716 and retire them after a number of stop events are reported. */
6c95b8df
PA
2717 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2718 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2719 {
96429cc8
HZ
2720 struct cleanup *old_cleanups = NULL;
2721 if (RECORD_IS_USED)
2722 old_cleanups = record_gdb_operation_disable_set ();
2723
1c0fdd0e
UW
2724 /* When using hardware single-step, a SIGTRAP is reported for both
2725 a completed single-step and a software breakpoint. Need to
2726 differentiate between the two, as the latter needs adjusting
2727 but the former does not.
2728
2729 The SIGTRAP can be due to a completed hardware single-step only if
2730 - we didn't insert software single-step breakpoints
2731 - the thread to be examined is still the current thread
2732 - this thread is currently being stepped
2733
2734 If any of these events did not occur, we must have stopped due
2735 to hitting a software breakpoint, and have to back up to the
2736 breakpoint address.
2737
2738 As a special case, we could have hardware single-stepped a
2739 software breakpoint. In this case (prev_pc == breakpoint_pc),
2740 we also need to back up to the breakpoint address. */
2741
2742 if (singlestep_breakpoints_inserted_p
2743 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2744 || !currently_stepping (ecs->event_thread)
2745 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2746 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2747
2748 if (RECORD_IS_USED)
2749 do_cleanups (old_cleanups);
8aad930b 2750 }
4fa8626c
DJ
2751}
2752
0d1e5fa7
PA
2753void
2754init_infwait_state (void)
2755{
2756 waiton_ptid = pid_to_ptid (-1);
2757 infwait_state = infwait_normal_state;
2758}
2759
94cc34af
PA
2760void
2761error_is_running (void)
2762{
2763 error (_("\
2764Cannot execute this command while the selected thread is running."));
2765}
2766
2767void
2768ensure_not_running (void)
2769{
2770 if (is_running (inferior_ptid))
2771 error_is_running ();
2772}
2773
edb3359d
DJ
2774static int
2775stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2776{
2777 for (frame = get_prev_frame (frame);
2778 frame != NULL;
2779 frame = get_prev_frame (frame))
2780 {
2781 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2782 return 1;
2783 if (get_frame_type (frame) != INLINE_FRAME)
2784 break;
2785 }
2786
2787 return 0;
2788}
2789
a96d9b2e
SDJ
2790/* Auxiliary function that handles syscall entry/return events.
2791 It returns 1 if the inferior should keep going (and GDB
2792 should ignore the event), or 0 if the event deserves to be
2793 processed. */
ca2163eb 2794
a96d9b2e 2795static int
ca2163eb 2796handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 2797{
ca2163eb
PA
2798 struct regcache *regcache;
2799 struct gdbarch *gdbarch;
2800 int syscall_number;
2801
2802 if (!ptid_equal (ecs->ptid, inferior_ptid))
2803 context_switch (ecs->ptid);
2804
2805 regcache = get_thread_regcache (ecs->ptid);
2806 gdbarch = get_regcache_arch (regcache);
2807 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
2808 stop_pc = regcache_read_pc (regcache);
2809
a96d9b2e
SDJ
2810 target_last_waitstatus.value.syscall_number = syscall_number;
2811
2812 if (catch_syscall_enabled () > 0
2813 && catching_syscall_number (syscall_number) > 0)
2814 {
2815 if (debug_infrun)
2816 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
2817 syscall_number);
a96d9b2e 2818
6c95b8df
PA
2819 ecs->event_thread->stop_bpstat
2820 = bpstat_stop_status (get_regcache_aspace (regcache),
2821 stop_pc, ecs->ptid);
a96d9b2e
SDJ
2822 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2823
ca2163eb
PA
2824 if (!ecs->random_signal)
2825 {
2826 /* Catchpoint hit. */
2827 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2828 return 0;
2829 }
a96d9b2e 2830 }
ca2163eb
PA
2831
2832 /* If no catchpoint triggered for this, then keep going. */
2833 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2834 keep_going (ecs);
2835 return 1;
a96d9b2e
SDJ
2836}
2837
cd0fc7c3
SS
2838/* Given an execution control state that has been freshly filled in
2839 by an event from the inferior, figure out what it means and take
2840 appropriate action. */
c906108c 2841
ec9499be 2842static void
96baa820 2843handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 2844{
568d6575
UW
2845 struct frame_info *frame;
2846 struct gdbarch *gdbarch;
c8edd8b4 2847 int sw_single_step_trap_p = 0;
d983da9c
DJ
2848 int stopped_by_watchpoint;
2849 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 2850 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
2851 enum stop_kind stop_soon;
2852
28736962
PA
2853 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
2854 {
2855 /* We had an event in the inferior, but we are not interested in
2856 handling it at this level. The lower layers have already
2857 done what needs to be done, if anything.
2858
2859 One of the possible circumstances for this is when the
2860 inferior produces output for the console. The inferior has
2861 not stopped, and we are ignoring the event. Another possible
2862 circumstance is any event which the lower level knows will be
2863 reported multiple times without an intervening resume. */
2864 if (debug_infrun)
2865 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2866 prepare_to_wait (ecs);
2867 return;
2868 }
2869
d6b48e9c 2870 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
28736962 2871 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
d6b48e9c
PA
2872 {
2873 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2874 gdb_assert (inf);
2875 stop_soon = inf->stop_soon;
2876 }
2877 else
2878 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 2879
e02bc4cc 2880 /* Cache the last pid/waitstatus. */
39f77062 2881 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 2882 target_last_waitstatus = ecs->ws;
e02bc4cc 2883
ca005067 2884 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 2885 stop_stack_dummy = STOP_NONE;
ca005067 2886
8c90c137
LM
2887 /* If it's a new process, add it to the thread database */
2888
2889 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2890 && !ptid_equal (ecs->ptid, minus_one_ptid)
2891 && !in_thread_list (ecs->ptid));
2892
2893 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2894 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2895 add_thread (ecs->ptid);
2896
e09875d4 2897 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
2898
2899 /* Dependent on valid ECS->EVENT_THREAD. */
2900 adjust_pc_after_break (ecs);
2901
2902 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2903 reinit_frame_cache ();
2904
28736962
PA
2905 breakpoint_retire_moribund ();
2906
2b009048
DJ
2907 /* First, distinguish signals caused by the debugger from signals
2908 that have to do with the program's own actions. Note that
2909 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2910 on the operating system version. Here we detect when a SIGILL or
2911 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2912 something similar for SIGSEGV, since a SIGSEGV will be generated
2913 when we're trying to execute a breakpoint instruction on a
2914 non-executable stack. This happens for call dummy breakpoints
2915 for architectures like SPARC that place call dummies on the
2916 stack. */
2b009048
DJ
2917 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
2918 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
2919 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 2920 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 2921 {
de0a0249
UW
2922 struct regcache *regcache = get_thread_regcache (ecs->ptid);
2923
2924 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2925 regcache_read_pc (regcache)))
2926 {
2927 if (debug_infrun)
2928 fprintf_unfiltered (gdb_stdlog,
2929 "infrun: Treating signal as SIGTRAP\n");
2930 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2931 }
2b009048
DJ
2932 }
2933
28736962
PA
2934 /* Mark the non-executing threads accordingly. In all-stop, all
2935 threads of all processes are stopped when we get any event
2936 reported. In non-stop mode, only the event thread stops. If
2937 we're handling a process exit in non-stop mode, there's nothing
2938 to do, as threads of the dead process are gone, and threads of
2939 any other process were left running. */
2940 if (!non_stop)
2941 set_executing (minus_one_ptid, 0);
2942 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2943 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2944 set_executing (inferior_ptid, 0);
8c90c137 2945
0d1e5fa7 2946 switch (infwait_state)
488f131b
JB
2947 {
2948 case infwait_thread_hop_state:
527159b7 2949 if (debug_infrun)
8a9de0e4 2950 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 2951 break;
b83266a0 2952
488f131b 2953 case infwait_normal_state:
527159b7 2954 if (debug_infrun)
8a9de0e4 2955 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
2956 break;
2957
2958 case infwait_step_watch_state:
2959 if (debug_infrun)
2960 fprintf_unfiltered (gdb_stdlog,
2961 "infrun: infwait_step_watch_state\n");
2962
2963 stepped_after_stopped_by_watchpoint = 1;
488f131b 2964 break;
b83266a0 2965
488f131b 2966 case infwait_nonstep_watch_state:
527159b7 2967 if (debug_infrun)
8a9de0e4
AC
2968 fprintf_unfiltered (gdb_stdlog,
2969 "infrun: infwait_nonstep_watch_state\n");
488f131b 2970 insert_breakpoints ();
c906108c 2971
488f131b
JB
2972 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2973 handle things like signals arriving and other things happening
2974 in combination correctly? */
2975 stepped_after_stopped_by_watchpoint = 1;
2976 break;
65e82032
AC
2977
2978 default:
e2e0b3e5 2979 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 2980 }
ec9499be 2981
0d1e5fa7 2982 infwait_state = infwait_normal_state;
ec9499be 2983 waiton_ptid = pid_to_ptid (-1);
c906108c 2984
488f131b
JB
2985 switch (ecs->ws.kind)
2986 {
2987 case TARGET_WAITKIND_LOADED:
527159b7 2988 if (debug_infrun)
8a9de0e4 2989 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
2990 /* Ignore gracefully during startup of the inferior, as it might
2991 be the shell which has just loaded some objects, otherwise
2992 add the symbols for the newly loaded objects. Also ignore at
2993 the beginning of an attach or remote session; we will query
2994 the full list of libraries once the connection is
2995 established. */
c0236d92 2996 if (stop_soon == NO_STOP_QUIETLY)
488f131b 2997 {
488f131b
JB
2998 /* Check for any newly added shared libraries if we're
2999 supposed to be adding them automatically. Switch
3000 terminal for any messages produced by
3001 breakpoint_re_set. */
3002 target_terminal_ours_for_output ();
aff6338a 3003 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3004 stack's section table is kept up-to-date. Architectures,
3005 (e.g., PPC64), use the section table to perform
3006 operations such as address => section name and hence
3007 require the table to contain all sections (including
3008 those found in shared libraries). */
b0f4b84b 3009#ifdef SOLIB_ADD
aff6338a 3010 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
3011#else
3012 solib_add (NULL, 0, &current_target, auto_solib_add);
3013#endif
488f131b
JB
3014 target_terminal_inferior ();
3015
b0f4b84b
DJ
3016 /* If requested, stop when the dynamic linker notifies
3017 gdb of events. This allows the user to get control
3018 and place breakpoints in initializer routines for
3019 dynamically loaded objects (among other things). */
3020 if (stop_on_solib_events)
3021 {
55409f9d
DJ
3022 /* Make sure we print "Stopped due to solib-event" in
3023 normal_stop. */
3024 stop_print_frame = 1;
3025
b0f4b84b
DJ
3026 stop_stepping (ecs);
3027 return;
3028 }
3029
3030 /* NOTE drow/2007-05-11: This might be a good place to check
3031 for "catch load". */
488f131b 3032 }
b0f4b84b
DJ
3033
3034 /* If we are skipping through a shell, or through shared library
3035 loading that we aren't interested in, resume the program. If
3036 we're running the program normally, also resume. But stop if
3037 we're attaching or setting up a remote connection. */
3038 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3039 {
74960c60
VP
3040 /* Loading of shared libraries might have changed breakpoint
3041 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3042 if (stop_soon == NO_STOP_QUIETLY
3043 && !breakpoints_always_inserted_mode ())
74960c60 3044 insert_breakpoints ();
b0f4b84b
DJ
3045 resume (0, TARGET_SIGNAL_0);
3046 prepare_to_wait (ecs);
3047 return;
3048 }
3049
3050 break;
c5aa993b 3051
488f131b 3052 case TARGET_WAITKIND_SPURIOUS:
527159b7 3053 if (debug_infrun)
8a9de0e4 3054 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
3055 resume (0, TARGET_SIGNAL_0);
3056 prepare_to_wait (ecs);
3057 return;
c5aa993b 3058
488f131b 3059 case TARGET_WAITKIND_EXITED:
527159b7 3060 if (debug_infrun)
8a9de0e4 3061 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3062 inferior_ptid = ecs->ptid;
6c95b8df
PA
3063 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3064 set_current_program_space (current_inferior ()->pspace);
3065 handle_vfork_child_exec_or_exit (0);
488f131b
JB
3066 target_terminal_ours (); /* Must do this before mourn anyway */
3067 print_stop_reason (EXITED, ecs->ws.value.integer);
3068
3069 /* Record the exit code in the convenience variable $_exitcode, so
3070 that the user can inspect this again later. */
4fa62494
UW
3071 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3072 (LONGEST) ecs->ws.value.integer);
488f131b
JB
3073 gdb_flush (gdb_stdout);
3074 target_mourn_inferior ();
1c0fdd0e 3075 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
3076 stop_print_frame = 0;
3077 stop_stepping (ecs);
3078 return;
c5aa993b 3079
488f131b 3080 case TARGET_WAITKIND_SIGNALLED:
527159b7 3081 if (debug_infrun)
8a9de0e4 3082 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3083 inferior_ptid = ecs->ptid;
6c95b8df
PA
3084 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3085 set_current_program_space (current_inferior ()->pspace);
3086 handle_vfork_child_exec_or_exit (0);
488f131b 3087 stop_print_frame = 0;
488f131b 3088 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 3089
488f131b
JB
3090 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3091 reach here unless the inferior is dead. However, for years
3092 target_kill() was called here, which hints that fatal signals aren't
3093 really fatal on some systems. If that's true, then some changes
3094 may be needed. */
3095 target_mourn_inferior ();
c906108c 3096
2020b7ab 3097 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 3098 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
3099 stop_stepping (ecs);
3100 return;
c906108c 3101
488f131b
JB
3102 /* The following are the only cases in which we keep going;
3103 the above cases end in a continue or goto. */
3104 case TARGET_WAITKIND_FORKED:
deb3b17b 3105 case TARGET_WAITKIND_VFORKED:
527159b7 3106 if (debug_infrun)
8a9de0e4 3107 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3108
5a2901d9
DJ
3109 if (!ptid_equal (ecs->ptid, inferior_ptid))
3110 {
0d1e5fa7 3111 context_switch (ecs->ptid);
35f196d9 3112 reinit_frame_cache ();
5a2901d9
DJ
3113 }
3114
b242c3c2
PA
3115 /* Immediately detach breakpoints from the child before there's
3116 any chance of letting the user delete breakpoints from the
3117 breakpoint lists. If we don't do this early, it's easy to
3118 leave left over traps in the child, vis: "break foo; catch
3119 fork; c; <fork>; del; c; <child calls foo>". We only follow
3120 the fork on the last `continue', and by that time the
3121 breakpoint at "foo" is long gone from the breakpoint table.
3122 If we vforked, then we don't need to unpatch here, since both
3123 parent and child are sharing the same memory pages; we'll
3124 need to unpatch at follow/detach time instead to be certain
3125 that new breakpoints added between catchpoint hit time and
3126 vfork follow are detached. */
3127 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3128 {
3129 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3130
3131 /* This won't actually modify the breakpoint list, but will
3132 physically remove the breakpoints from the child. */
3133 detach_breakpoints (child_pid);
3134 }
3135
e58b0e63
PA
3136 /* In case the event is caught by a catchpoint, remember that
3137 the event is to be followed at the next resume of the thread,
3138 and not immediately. */
3139 ecs->event_thread->pending_follow = ecs->ws;
3140
fb14de7b 3141 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3142
6c95b8df
PA
3143 ecs->event_thread->stop_bpstat
3144 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3145 stop_pc, ecs->ptid);
675bf4cb 3146
67822962
PA
3147 /* Note that we're interested in knowing the bpstat actually
3148 causes a stop, not just if it may explain the signal.
3149 Software watchpoints, for example, always appear in the
3150 bpstat. */
3151 ecs->random_signal = !bpstat_causes_stop (ecs->event_thread->stop_bpstat);
04e68871
DJ
3152
3153 /* If no catchpoint triggered for this, then keep going. */
3154 if (ecs->random_signal)
3155 {
6c95b8df
PA
3156 ptid_t parent;
3157 ptid_t child;
e58b0e63 3158 int should_resume;
6c95b8df 3159 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3160
2020b7ab 3161 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
3162
3163 should_resume = follow_fork ();
3164
6c95b8df
PA
3165 parent = ecs->ptid;
3166 child = ecs->ws.value.related_pid;
3167
3168 /* In non-stop mode, also resume the other branch. */
3169 if (non_stop && !detach_fork)
3170 {
3171 if (follow_child)
3172 switch_to_thread (parent);
3173 else
3174 switch_to_thread (child);
3175
3176 ecs->event_thread = inferior_thread ();
3177 ecs->ptid = inferior_ptid;
3178 keep_going (ecs);
3179 }
3180
3181 if (follow_child)
3182 switch_to_thread (child);
3183 else
3184 switch_to_thread (parent);
3185
e58b0e63
PA
3186 ecs->event_thread = inferior_thread ();
3187 ecs->ptid = inferior_ptid;
3188
3189 if (should_resume)
3190 keep_going (ecs);
3191 else
3192 stop_stepping (ecs);
04e68871
DJ
3193 return;
3194 }
2020b7ab 3195 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3196 goto process_event_stop_test;
3197
6c95b8df
PA
3198 case TARGET_WAITKIND_VFORK_DONE:
3199 /* Done with the shared memory region. Re-insert breakpoints in
3200 the parent, and keep going. */
3201
3202 if (debug_infrun)
3203 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3204
3205 if (!ptid_equal (ecs->ptid, inferior_ptid))
3206 context_switch (ecs->ptid);
3207
3208 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3209 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3210 /* This also takes care of reinserting breakpoints in the
3211 previously locked inferior. */
3212 keep_going (ecs);
3213 return;
3214
488f131b 3215 case TARGET_WAITKIND_EXECD:
527159b7 3216 if (debug_infrun)
fc5261f2 3217 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3218
5a2901d9
DJ
3219 if (!ptid_equal (ecs->ptid, inferior_ptid))
3220 {
0d1e5fa7 3221 context_switch (ecs->ptid);
35f196d9 3222 reinit_frame_cache ();
5a2901d9
DJ
3223 }
3224
fb14de7b 3225 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3226
6c95b8df
PA
3227 /* Do whatever is necessary to the parent branch of the vfork. */
3228 handle_vfork_child_exec_or_exit (1);
3229
795e548f
PA
3230 /* This causes the eventpoints and symbol table to be reset.
3231 Must do this now, before trying to determine whether to
3232 stop. */
71b43ef8 3233 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3234
6c95b8df
PA
3235 ecs->event_thread->stop_bpstat
3236 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3237 stop_pc, ecs->ptid);
795e548f
PA
3238 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3239
71b43ef8
PA
3240 /* Note that this may be referenced from inside
3241 bpstat_stop_status above, through inferior_has_execd. */
3242 xfree (ecs->ws.value.execd_pathname);
3243 ecs->ws.value.execd_pathname = NULL;
3244
04e68871
DJ
3245 /* If no catchpoint triggered for this, then keep going. */
3246 if (ecs->random_signal)
3247 {
2020b7ab 3248 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3249 keep_going (ecs);
3250 return;
3251 }
2020b7ab 3252 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3253 goto process_event_stop_test;
3254
b4dc5ffa
MK
3255 /* Be careful not to try to gather much state about a thread
3256 that's in a syscall. It's frequently a losing proposition. */
488f131b 3257 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3258 if (debug_infrun)
8a9de0e4 3259 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
a96d9b2e 3260 /* Getting the current syscall number */
ca2163eb 3261 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3262 return;
3263 goto process_event_stop_test;
c906108c 3264
488f131b
JB
3265 /* Before examining the threads further, step this thread to
3266 get it entirely out of the syscall. (We get notice of the
3267 event when the thread is just on the verge of exiting a
3268 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3269 into user code.) */
488f131b 3270 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3271 if (debug_infrun)
8a9de0e4 3272 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3273 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3274 return;
3275 goto process_event_stop_test;
c906108c 3276
488f131b 3277 case TARGET_WAITKIND_STOPPED:
527159b7 3278 if (debug_infrun)
8a9de0e4 3279 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 3280 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 3281 break;
c906108c 3282
b2175913
MS
3283 case TARGET_WAITKIND_NO_HISTORY:
3284 /* Reverse execution: target ran out of history info. */
fb14de7b 3285 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
b2175913
MS
3286 print_stop_reason (NO_HISTORY, 0);
3287 stop_stepping (ecs);
3288 return;
488f131b 3289 }
c906108c 3290
488f131b
JB
3291 if (ecs->new_thread_event)
3292 {
94cc34af
PA
3293 if (non_stop)
3294 /* Non-stop assumes that the target handles adding new threads
3295 to the thread list. */
3296 internal_error (__FILE__, __LINE__, "\
3297targets should add new threads to the thread list themselves in non-stop mode.");
3298
3299 /* We may want to consider not doing a resume here in order to
3300 give the user a chance to play with the new thread. It might
3301 be good to make that a user-settable option. */
3302
3303 /* At this point, all threads are stopped (happens automatically
3304 in either the OS or the native code). Therefore we need to
3305 continue all threads in order to make progress. */
3306
173853dc
PA
3307 if (!ptid_equal (ecs->ptid, inferior_ptid))
3308 context_switch (ecs->ptid);
488f131b
JB
3309 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3310 prepare_to_wait (ecs);
3311 return;
3312 }
c906108c 3313
2020b7ab 3314 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3315 {
3316 /* Do we need to clean up the state of a thread that has
3317 completed a displaced single-step? (Doing so usually affects
3318 the PC, so do it here, before we set stop_pc.) */
3319 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
3320
3321 /* If we either finished a single-step or hit a breakpoint, but
3322 the user wanted this thread to be stopped, pretend we got a
3323 SIG0 (generic unsignaled stop). */
3324
3325 if (ecs->event_thread->stop_requested
3326 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3327 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3328 }
237fc4c9 3329
515630c5 3330 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3331
527159b7 3332 if (debug_infrun)
237fc4c9 3333 {
5af949e3
UW
3334 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3335 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3336 struct cleanup *old_chain = save_inferior_ptid ();
3337
3338 inferior_ptid = ecs->ptid;
5af949e3
UW
3339
3340 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3341 paddress (gdbarch, stop_pc));
d92524f1 3342 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3343 {
3344 CORE_ADDR addr;
3345 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3346
3347 if (target_stopped_data_address (&current_target, &addr))
3348 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3349 "infrun: stopped data address = %s\n",
3350 paddress (gdbarch, addr));
237fc4c9
PA
3351 else
3352 fprintf_unfiltered (gdb_stdlog,
3353 "infrun: (no data address available)\n");
3354 }
7f82dfc7
JK
3355
3356 do_cleanups (old_chain);
237fc4c9 3357 }
527159b7 3358
9f976b41
DJ
3359 if (stepping_past_singlestep_breakpoint)
3360 {
1c0fdd0e 3361 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3362 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3363 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3364
3365 stepping_past_singlestep_breakpoint = 0;
3366
3367 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3368 breakpoint, or stopped for some other reason. It would be nice if
3369 we could tell, but we can't reliably. */
2020b7ab 3370 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3371 {
527159b7 3372 if (debug_infrun)
8a9de0e4 3373 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 3374 /* Pull the single step breakpoints out of the target. */
e0cd558a 3375 remove_single_step_breakpoints ();
9f976b41
DJ
3376 singlestep_breakpoints_inserted_p = 0;
3377
3378 ecs->random_signal = 0;
79626f8a 3379 ecs->event_thread->trap_expected = 0;
9f976b41 3380
0d1e5fa7 3381 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3382 if (deprecated_context_hook)
3383 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3384
3385 resume (1, TARGET_SIGNAL_0);
3386 prepare_to_wait (ecs);
3387 return;
3388 }
3389 }
3390
ca67fcb8 3391 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3392 {
94cc34af
PA
3393 /* In non-stop mode, there's never a deferred_step_ptid set. */
3394 gdb_assert (!non_stop);
3395
6a6b96b9
UW
3396 /* If we stopped for some other reason than single-stepping, ignore
3397 the fact that we were supposed to switch back. */
2020b7ab 3398 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3399 {
3400 if (debug_infrun)
3401 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3402 "infrun: handling deferred step\n");
6a6b96b9
UW
3403
3404 /* Pull the single step breakpoints out of the target. */
3405 if (singlestep_breakpoints_inserted_p)
3406 {
3407 remove_single_step_breakpoints ();
3408 singlestep_breakpoints_inserted_p = 0;
3409 }
3410
3411 /* Note: We do not call context_switch at this point, as the
3412 context is already set up for stepping the original thread. */
ca67fcb8
VP
3413 switch_to_thread (deferred_step_ptid);
3414 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3415 /* Suppress spurious "Switching to ..." message. */
3416 previous_inferior_ptid = inferior_ptid;
3417
3418 resume (1, TARGET_SIGNAL_0);
3419 prepare_to_wait (ecs);
3420 return;
3421 }
ca67fcb8
VP
3422
3423 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3424 }
3425
488f131b
JB
3426 /* See if a thread hit a thread-specific breakpoint that was meant for
3427 another thread. If so, then step that thread past the breakpoint,
3428 and continue it. */
3429
2020b7ab 3430 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3431 {
9f976b41 3432 int thread_hop_needed = 0;
cf00dfa7
VP
3433 struct address_space *aspace =
3434 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3435
f8d40ec8
JB
3436 /* Check if a regular breakpoint has been hit before checking
3437 for a potential single step breakpoint. Otherwise, GDB will
3438 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3439 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3440 {
c5aa993b 3441 ecs->random_signal = 0;
6c95b8df 3442 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3443 thread_hop_needed = 1;
3444 }
1c0fdd0e 3445 else if (singlestep_breakpoints_inserted_p)
9f976b41 3446 {
fd48f117
DJ
3447 /* We have not context switched yet, so this should be true
3448 no matter which thread hit the singlestep breakpoint. */
3449 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3450 if (debug_infrun)
3451 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3452 "trap for %s\n",
3453 target_pid_to_str (ecs->ptid));
3454
9f976b41
DJ
3455 ecs->random_signal = 0;
3456 /* The call to in_thread_list is necessary because PTIDs sometimes
3457 change when we go from single-threaded to multi-threaded. If
3458 the singlestep_ptid is still in the list, assume that it is
3459 really different from ecs->ptid. */
3460 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3461 && in_thread_list (singlestep_ptid))
3462 {
fd48f117
DJ
3463 /* If the PC of the thread we were trying to single-step
3464 has changed, discard this event (which we were going
3465 to ignore anyway), and pretend we saw that thread
3466 trap. This prevents us continuously moving the
3467 single-step breakpoint forward, one instruction at a
3468 time. If the PC has changed, then the thread we were
3469 trying to single-step has trapped or been signalled,
3470 but the event has not been reported to GDB yet.
3471
3472 There might be some cases where this loses signal
3473 information, if a signal has arrived at exactly the
3474 same time that the PC changed, but this is the best
3475 we can do with the information available. Perhaps we
3476 should arrange to report all events for all threads
3477 when they stop, or to re-poll the remote looking for
3478 this particular thread (i.e. temporarily enable
3479 schedlock). */
515630c5
UW
3480
3481 CORE_ADDR new_singlestep_pc
3482 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3483
3484 if (new_singlestep_pc != singlestep_pc)
fd48f117 3485 {
2020b7ab
PA
3486 enum target_signal stop_signal;
3487
fd48f117
DJ
3488 if (debug_infrun)
3489 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3490 " but expected thread advanced also\n");
3491
3492 /* The current context still belongs to
3493 singlestep_ptid. Don't swap here, since that's
3494 the context we want to use. Just fudge our
3495 state and continue. */
2020b7ab
PA
3496 stop_signal = ecs->event_thread->stop_signal;
3497 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 3498 ecs->ptid = singlestep_ptid;
e09875d4 3499 ecs->event_thread = find_thread_ptid (ecs->ptid);
2020b7ab 3500 ecs->event_thread->stop_signal = stop_signal;
515630c5 3501 stop_pc = new_singlestep_pc;
fd48f117
DJ
3502 }
3503 else
3504 {
3505 if (debug_infrun)
3506 fprintf_unfiltered (gdb_stdlog,
3507 "infrun: unexpected thread\n");
3508
3509 thread_hop_needed = 1;
3510 stepping_past_singlestep_breakpoint = 1;
3511 saved_singlestep_ptid = singlestep_ptid;
3512 }
9f976b41
DJ
3513 }
3514 }
3515
3516 if (thread_hop_needed)
8fb3e588 3517 {
9f5a595d 3518 struct regcache *thread_regcache;
237fc4c9 3519 int remove_status = 0;
8fb3e588 3520
527159b7 3521 if (debug_infrun)
8a9de0e4 3522 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3523
b3444185
PA
3524 /* Switch context before touching inferior memory, the
3525 previous thread may have exited. */
3526 if (!ptid_equal (inferior_ptid, ecs->ptid))
3527 context_switch (ecs->ptid);
3528
8fb3e588
AC
3529 /* Saw a breakpoint, but it was hit by the wrong thread.
3530 Just continue. */
3531
1c0fdd0e 3532 if (singlestep_breakpoints_inserted_p)
488f131b 3533 {
8fb3e588 3534 /* Pull the single step breakpoints out of the target. */
e0cd558a 3535 remove_single_step_breakpoints ();
8fb3e588
AC
3536 singlestep_breakpoints_inserted_p = 0;
3537 }
3538
237fc4c9
PA
3539 /* If the arch can displace step, don't remove the
3540 breakpoints. */
9f5a595d
UW
3541 thread_regcache = get_thread_regcache (ecs->ptid);
3542 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3543 remove_status = remove_breakpoints ();
3544
8fb3e588
AC
3545 /* Did we fail to remove breakpoints? If so, try
3546 to set the PC past the bp. (There's at least
3547 one situation in which we can fail to remove
3548 the bp's: On HP-UX's that use ttrace, we can't
3549 change the address space of a vforking child
3550 process until the child exits (well, okay, not
3551 then either :-) or execs. */
3552 if (remove_status != 0)
9d9cd7ac 3553 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3554 else
3555 { /* Single step */
94cc34af
PA
3556 if (!non_stop)
3557 {
3558 /* Only need to require the next event from this
3559 thread in all-stop mode. */
3560 waiton_ptid = ecs->ptid;
3561 infwait_state = infwait_thread_hop_state;
3562 }
8fb3e588 3563
4e1c45ea 3564 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3565 keep_going (ecs);
8fb3e588
AC
3566 return;
3567 }
488f131b 3568 }
1c0fdd0e 3569 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
3570 {
3571 sw_single_step_trap_p = 1;
3572 ecs->random_signal = 0;
3573 }
488f131b
JB
3574 }
3575 else
3576 ecs->random_signal = 1;
c906108c 3577
488f131b 3578 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3579 so, then switch to that thread. */
3580 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3581 {
527159b7 3582 if (debug_infrun)
8a9de0e4 3583 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3584
0d1e5fa7 3585 context_switch (ecs->ptid);
c5aa993b 3586
9a4105ab
AC
3587 if (deprecated_context_hook)
3588 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3589 }
c906108c 3590
568d6575
UW
3591 /* At this point, get hold of the now-current thread's frame. */
3592 frame = get_current_frame ();
3593 gdbarch = get_frame_arch (frame);
3594
1c0fdd0e 3595 if (singlestep_breakpoints_inserted_p)
488f131b
JB
3596 {
3597 /* Pull the single step breakpoints out of the target. */
e0cd558a 3598 remove_single_step_breakpoints ();
488f131b
JB
3599 singlestep_breakpoints_inserted_p = 0;
3600 }
c906108c 3601
d983da9c
DJ
3602 if (stepped_after_stopped_by_watchpoint)
3603 stopped_by_watchpoint = 0;
3604 else
3605 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3606
3607 /* If necessary, step over this watchpoint. We'll be back to display
3608 it in a moment. */
3609 if (stopped_by_watchpoint
d92524f1 3610 && (target_have_steppable_watchpoint
568d6575 3611 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3612 {
488f131b
JB
3613 /* At this point, we are stopped at an instruction which has
3614 attempted to write to a piece of memory under control of
3615 a watchpoint. The instruction hasn't actually executed
3616 yet. If we were to evaluate the watchpoint expression
3617 now, we would get the old value, and therefore no change
3618 would seem to have occurred.
3619
3620 In order to make watchpoints work `right', we really need
3621 to complete the memory write, and then evaluate the
d983da9c
DJ
3622 watchpoint expression. We do this by single-stepping the
3623 target.
3624
3625 It may not be necessary to disable the watchpoint to stop over
3626 it. For example, the PA can (with some kernel cooperation)
3627 single step over a watchpoint without disabling the watchpoint.
3628
3629 It is far more common to need to disable a watchpoint to step
3630 the inferior over it. If we have non-steppable watchpoints,
3631 we must disable the current watchpoint; it's simplest to
3632 disable all watchpoints and breakpoints. */
2facfe5c
DD
3633 int hw_step = 1;
3634
d92524f1 3635 if (!target_have_steppable_watchpoint)
d983da9c 3636 remove_breakpoints ();
2facfe5c 3637 /* Single step */
568d6575 3638 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 3639 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 3640 waiton_ptid = ecs->ptid;
d92524f1 3641 if (target_have_steppable_watchpoint)
0d1e5fa7 3642 infwait_state = infwait_step_watch_state;
d983da9c 3643 else
0d1e5fa7 3644 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3645 prepare_to_wait (ecs);
3646 return;
3647 }
3648
488f131b
JB
3649 ecs->stop_func_start = 0;
3650 ecs->stop_func_end = 0;
3651 ecs->stop_func_name = 0;
3652 /* Don't care about return value; stop_func_start and stop_func_name
3653 will both be 0 if it doesn't work. */
3654 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3655 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a 3656 ecs->stop_func_start
568d6575 3657 += gdbarch_deprecated_function_start_offset (gdbarch);
4e1c45ea 3658 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 3659 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 3660 ecs->event_thread->stop_step = 0;
488f131b
JB
3661 stop_print_frame = 1;
3662 ecs->random_signal = 0;
3663 stopped_by_random_signal = 0;
488f131b 3664
edb3359d
DJ
3665 /* Hide inlined functions starting here, unless we just performed stepi or
3666 nexti. After stepi and nexti, always show the innermost frame (not any
3667 inline function call sites). */
3668 if (ecs->event_thread->step_range_end != 1)
3669 skip_inline_frames (ecs->ptid);
3670
2020b7ab 3671 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3672 && ecs->event_thread->trap_expected
568d6575 3673 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 3674 && currently_stepping (ecs->event_thread))
3352ef37 3675 {
b50d7442 3676 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
3677 also on an instruction that needs to be stepped multiple
3678 times before it's been fully executing. E.g., architectures
3679 with a delay slot. It needs to be stepped twice, once for
3680 the instruction and once for the delay slot. */
3681 int step_through_delay
568d6575 3682 = gdbarch_single_step_through_delay (gdbarch, frame);
527159b7 3683 if (debug_infrun && step_through_delay)
8a9de0e4 3684 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 3685 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
3686 {
3687 /* The user issued a continue when stopped at a breakpoint.
3688 Set up for another trap and get out of here. */
4e1c45ea 3689 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3690 keep_going (ecs);
3691 return;
3692 }
3693 else if (step_through_delay)
3694 {
3695 /* The user issued a step when stopped at a breakpoint.
3696 Maybe we should stop, maybe we should not - the delay
3697 slot *might* correspond to a line of source. In any
ca67fcb8
VP
3698 case, don't decide that here, just set
3699 ecs->stepping_over_breakpoint, making sure we
3700 single-step again before breakpoints are re-inserted. */
4e1c45ea 3701 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3702 }
3703 }
3704
488f131b
JB
3705 /* Look at the cause of the stop, and decide what to do.
3706 The alternatives are:
0d1e5fa7
PA
3707 1) stop_stepping and return; to really stop and return to the debugger,
3708 2) keep_going and return to start up again
4e1c45ea 3709 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
3710 3) set ecs->random_signal to 1, and the decision between 1 and 2
3711 will be made according to the signal handling tables. */
3712
2020b7ab 3713 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
3714 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3715 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3716 {
2020b7ab 3717 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 3718 {
527159b7 3719 if (debug_infrun)
8a9de0e4 3720 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
3721 stop_print_frame = 0;
3722 stop_stepping (ecs);
3723 return;
3724 }
c54cfec8
EZ
3725
3726 /* This is originated from start_remote(), start_inferior() and
3727 shared libraries hook functions. */
b0f4b84b 3728 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3729 {
527159b7 3730 if (debug_infrun)
8a9de0e4 3731 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
3732 stop_stepping (ecs);
3733 return;
3734 }
3735
c54cfec8 3736 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
3737 the stop_signal here, because some kernels don't ignore a
3738 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3739 See more comments in inferior.h. On the other hand, if we
a0ef4274 3740 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
3741 will handle the SIGSTOP if it should show up later.
3742
3743 Also consider that the attach is complete when we see a
3744 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3745 target extended-remote report it instead of a SIGSTOP
3746 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
3747 signal, so this is no exception.
3748
3749 Also consider that the attach is complete when we see a
3750 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3751 the target to stop all threads of the inferior, in case the
3752 low level attach operation doesn't stop them implicitly. If
3753 they weren't stopped implicitly, then the stub will report a
3754 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3755 other than GDB's request. */
a0ef4274 3756 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab 3757 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
e0ba6746
PA
3758 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3759 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
3760 {
3761 stop_stepping (ecs);
2020b7ab 3762 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
3763 return;
3764 }
3765
fba57f8f 3766 /* See if there is a breakpoint at the current PC. */
6c95b8df
PA
3767 ecs->event_thread->stop_bpstat
3768 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3769 stop_pc, ecs->ptid);
3770
fba57f8f
VP
3771 /* Following in case break condition called a
3772 function. */
3773 stop_print_frame = 1;
488f131b 3774
db82e815
PA
3775 /* This is where we handle "moribund" watchpoints. Unlike
3776 software breakpoints traps, hardware watchpoint traps are
3777 always distinguishable from random traps. If no high-level
3778 watchpoint is associated with the reported stop data address
3779 anymore, then the bpstat does not explain the signal ---
3780 simply make sure to ignore it if `stopped_by_watchpoint' is
3781 set. */
3782
3783 if (debug_infrun
3784 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3785 && !bpstat_explains_signal (ecs->event_thread->stop_bpstat)
3786 && stopped_by_watchpoint)
3787 fprintf_unfiltered (gdb_stdlog, "\
3788infrun: no user watchpoint explains watchpoint SIGTRAP, ignoring\n");
3789
73dd234f 3790 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
3791 at one stage in the past included checks for an inferior
3792 function call's call dummy's return breakpoint. The original
3793 comment, that went with the test, read:
73dd234f 3794
8fb3e588
AC
3795 ``End of a stack dummy. Some systems (e.g. Sony news) give
3796 another signal besides SIGTRAP, so check here as well as
3797 above.''
73dd234f 3798
8002d778 3799 If someone ever tries to get call dummys on a
73dd234f 3800 non-executable stack to work (where the target would stop
03cebad2
MK
3801 with something like a SIGSEGV), then those tests might need
3802 to be re-instated. Given, however, that the tests were only
73dd234f 3803 enabled when momentary breakpoints were not being used, I
03cebad2
MK
3804 suspect that it won't be the case.
3805
8fb3e588
AC
3806 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3807 be necessary for call dummies on a non-executable stack on
3808 SPARC. */
73dd234f 3809
2020b7ab 3810 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3811 ecs->random_signal
347bddb7 3812 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
db82e815 3813 || stopped_by_watchpoint
4e1c45ea
PA
3814 || ecs->event_thread->trap_expected
3815 || (ecs->event_thread->step_range_end
3816 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
3817 else
3818 {
347bddb7 3819 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 3820 if (!ecs->random_signal)
2020b7ab 3821 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3822 }
3823 }
3824
3825 /* When we reach this point, we've pretty much decided
3826 that the reason for stopping must've been a random
3827 (unexpected) signal. */
3828
3829 else
3830 ecs->random_signal = 1;
488f131b 3831
04e68871 3832process_event_stop_test:
568d6575
UW
3833
3834 /* Re-fetch current thread's frame in case we did a
3835 "goto process_event_stop_test" above. */
3836 frame = get_current_frame ();
3837 gdbarch = get_frame_arch (frame);
3838
488f131b
JB
3839 /* For the program's own signals, act according to
3840 the signal handling tables. */
3841
3842 if (ecs->random_signal)
3843 {
3844 /* Signal not for debugging purposes. */
3845 int printed = 0;
24291992 3846 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 3847
527159b7 3848 if (debug_infrun)
2020b7ab
PA
3849 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3850 ecs->event_thread->stop_signal);
527159b7 3851
488f131b
JB
3852 stopped_by_random_signal = 1;
3853
2020b7ab 3854 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
3855 {
3856 printed = 1;
3857 target_terminal_ours_for_output ();
2020b7ab 3858 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 3859 }
252fbfc8
PA
3860 /* Always stop on signals if we're either just gaining control
3861 of the program, or the user explicitly requested this thread
3862 to remain stopped. */
d6b48e9c 3863 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 3864 || ecs->event_thread->stop_requested
24291992
PA
3865 || (!inf->detaching
3866 && signal_stop_state (ecs->event_thread->stop_signal)))
488f131b
JB
3867 {
3868 stop_stepping (ecs);
3869 return;
3870 }
3871 /* If not going to stop, give terminal back
3872 if we took it away. */
3873 else if (printed)
3874 target_terminal_inferior ();
3875
3876 /* Clear the signal if it should not be passed. */
2020b7ab
PA
3877 if (signal_program[ecs->event_thread->stop_signal] == 0)
3878 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 3879
fb14de7b 3880 if (ecs->event_thread->prev_pc == stop_pc
4e1c45ea
PA
3881 && ecs->event_thread->trap_expected
3882 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
3883 {
3884 /* We were just starting a new sequence, attempting to
3885 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 3886 Instead this signal arrives. This signal will take us out
68f53502
AC
3887 of the stepping range so GDB needs to remember to, when
3888 the signal handler returns, resume stepping off that
3889 breakpoint. */
3890 /* To simplify things, "continue" is forced to use the same
3891 code paths as single-step - set a breakpoint at the
3892 signal return address and then, once hit, step off that
3893 breakpoint. */
237fc4c9
PA
3894 if (debug_infrun)
3895 fprintf_unfiltered (gdb_stdlog,
3896 "infrun: signal arrived while stepping over "
3897 "breakpoint\n");
d3169d93 3898
568d6575 3899 insert_step_resume_breakpoint_at_frame (frame);
4e1c45ea 3900 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
3901 keep_going (ecs);
3902 return;
68f53502 3903 }
9d799f85 3904
4e1c45ea 3905 if (ecs->event_thread->step_range_end != 0
2020b7ab 3906 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
3907 && (ecs->event_thread->step_range_start <= stop_pc
3908 && stop_pc < ecs->event_thread->step_range_end)
edb3359d
DJ
3909 && frame_id_eq (get_stack_frame_id (frame),
3910 ecs->event_thread->step_stack_frame_id)
4e1c45ea 3911 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
3912 {
3913 /* The inferior is about to take a signal that will take it
3914 out of the single step range. Set a breakpoint at the
3915 current PC (which is presumably where the signal handler
3916 will eventually return) and then allow the inferior to
3917 run free.
3918
3919 Note that this is only needed for a signal delivered
3920 while in the single-step range. Nested signals aren't a
3921 problem as they eventually all return. */
237fc4c9
PA
3922 if (debug_infrun)
3923 fprintf_unfiltered (gdb_stdlog,
3924 "infrun: signal may take us out of "
3925 "single-step range\n");
3926
568d6575 3927 insert_step_resume_breakpoint_at_frame (frame);
9d799f85
AC
3928 keep_going (ecs);
3929 return;
d303a6c7 3930 }
9d799f85
AC
3931
3932 /* Note: step_resume_breakpoint may be non-NULL. This occures
3933 when either there's a nested signal, or when there's a
3934 pending signal enabled just as the signal handler returns
3935 (leaving the inferior at the step-resume-breakpoint without
3936 actually executing it). Either way continue until the
3937 breakpoint is really hit. */
488f131b
JB
3938 keep_going (ecs);
3939 return;
3940 }
3941
3942 /* Handle cases caused by hitting a breakpoint. */
3943 {
3944 CORE_ADDR jmp_buf_pc;
3945 struct bpstat_what what;
3946
347bddb7 3947 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
3948
3949 if (what.call_dummy)
3950 {
aa7d318d 3951 stop_stack_dummy = what.call_dummy;
c5aa993b 3952 }
c906108c 3953
488f131b 3954 switch (what.main_action)
c5aa993b 3955 {
488f131b 3956 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
3957 /* If we hit the breakpoint at longjmp while stepping, we
3958 install a momentary breakpoint at the target of the
3959 jmp_buf. */
3960
3961 if (debug_infrun)
3962 fprintf_unfiltered (gdb_stdlog,
3963 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3964
4e1c45ea 3965 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 3966
568d6575
UW
3967 if (!gdbarch_get_longjmp_target_p (gdbarch)
3968 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
c5aa993b 3969 {
611c83ae
PA
3970 if (debug_infrun)
3971 fprintf_unfiltered (gdb_stdlog, "\
3972infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 3973 keep_going (ecs);
104c1213 3974 return;
c5aa993b 3975 }
488f131b 3976
611c83ae
PA
3977 /* We're going to replace the current step-resume breakpoint
3978 with a longjmp-resume breakpoint. */
4e1c45ea 3979 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
3980
3981 /* Insert a breakpoint at resume address. */
a6d9a66e 3982 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
c906108c 3983
488f131b
JB
3984 keep_going (ecs);
3985 return;
c906108c 3986
488f131b 3987 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 3988 if (debug_infrun)
611c83ae
PA
3989 fprintf_unfiltered (gdb_stdlog,
3990 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3991
4e1c45ea
PA
3992 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3993 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 3994
414c69f7 3995 ecs->event_thread->stop_step = 1;
611c83ae
PA
3996 print_stop_reason (END_STEPPING_RANGE, 0);
3997 stop_stepping (ecs);
3998 return;
488f131b
JB
3999
4000 case BPSTAT_WHAT_SINGLE:
527159b7 4001 if (debug_infrun)
8802d8ed 4002 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4003 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4004 /* Still need to check other stuff, at least the case
4005 where we are stepping and step out of the right range. */
4006 break;
c906108c 4007
488f131b 4008 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4009 if (debug_infrun)
8802d8ed 4010 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4011 stop_print_frame = 1;
c906108c 4012
d303a6c7
AC
4013 /* We are about to nuke the step_resume_breakpointt via the
4014 cleanup chain, so no need to worry about it here. */
c5aa993b 4015
488f131b
JB
4016 stop_stepping (ecs);
4017 return;
c5aa993b 4018
488f131b 4019 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4020 if (debug_infrun)
8802d8ed 4021 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4022 stop_print_frame = 0;
c5aa993b 4023
d303a6c7
AC
4024 /* We are about to nuke the step_resume_breakpoin via the
4025 cleanup chain, so no need to worry about it here. */
c5aa993b 4026
488f131b 4027 stop_stepping (ecs);
e441088d 4028 return;
c5aa993b 4029
488f131b 4030 case BPSTAT_WHAT_STEP_RESUME:
527159b7 4031 if (debug_infrun)
8802d8ed 4032 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 4033
4e1c45ea
PA
4034 delete_step_resume_breakpoint (ecs->event_thread);
4035 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4036 {
4037 /* Back when the step-resume breakpoint was inserted, we
4038 were trying to single-step off a breakpoint. Go back
4039 to doing that. */
4e1c45ea
PA
4040 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4041 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4042 keep_going (ecs);
4043 return;
4044 }
b2175913
MS
4045 if (stop_pc == ecs->stop_func_start
4046 && execution_direction == EXEC_REVERSE)
4047 {
4048 /* We are stepping over a function call in reverse, and
4049 just hit the step-resume breakpoint at the start
4050 address of the function. Go back to single-stepping,
4051 which should take us back to the function call. */
4052 ecs->event_thread->stepping_over_breakpoint = 1;
4053 keep_going (ecs);
4054 return;
4055 }
488f131b
JB
4056 break;
4057
488f131b 4058 case BPSTAT_WHAT_CHECK_SHLIBS:
c906108c 4059 {
527159b7 4060 if (debug_infrun)
8802d8ed 4061 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
4062
4063 /* Check for any newly added shared libraries if we're
4064 supposed to be adding them automatically. Switch
4065 terminal for any messages produced by
4066 breakpoint_re_set. */
4067 target_terminal_ours_for_output ();
aff6338a 4068 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
4069 stack's section table is kept up-to-date. Architectures,
4070 (e.g., PPC64), use the section table to perform
4071 operations such as address => section name and hence
4072 require the table to contain all sections (including
4073 those found in shared libraries). */
a77053c2 4074#ifdef SOLIB_ADD
aff6338a 4075 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
4076#else
4077 solib_add (NULL, 0, &current_target, auto_solib_add);
4078#endif
488f131b
JB
4079 target_terminal_inferior ();
4080
488f131b
JB
4081 /* If requested, stop when the dynamic linker notifies
4082 gdb of events. This allows the user to get control
4083 and place breakpoints in initializer routines for
4084 dynamically loaded objects (among other things). */
877522db 4085 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 4086 {
488f131b 4087 stop_stepping (ecs);
d4f3574e
SS
4088 return;
4089 }
c5aa993b 4090 else
c5aa993b 4091 {
488f131b 4092 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 4093 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 4094 break;
c5aa993b 4095 }
488f131b 4096 }
488f131b 4097 break;
4efc6507
DE
4098
4099 case BPSTAT_WHAT_CHECK_JIT:
4100 if (debug_infrun)
4101 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_JIT\n");
4102
4103 /* Switch terminal for any messages produced by breakpoint_re_set. */
4104 target_terminal_ours_for_output ();
4105
0756c555 4106 jit_event_handler (gdbarch);
4efc6507
DE
4107
4108 target_terminal_inferior ();
4109
4110 /* We want to step over this breakpoint, then keep going. */
4111 ecs->event_thread->stepping_over_breakpoint = 1;
4112
4113 break;
c906108c 4114
488f131b
JB
4115 case BPSTAT_WHAT_LAST:
4116 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 4117
488f131b
JB
4118 case BPSTAT_WHAT_KEEP_CHECKING:
4119 break;
4120 }
4121 }
c906108c 4122
488f131b
JB
4123 /* We come here if we hit a breakpoint but should not
4124 stop for it. Possibly we also were stepping
4125 and should stop for that. So fall through and
4126 test for stepping. But, if not stepping,
4127 do not stop. */
c906108c 4128
a7212384
UW
4129 /* In all-stop mode, if we're currently stepping but have stopped in
4130 some other thread, we need to switch back to the stepped thread. */
4131 if (!non_stop)
4132 {
4133 struct thread_info *tp;
b3444185 4134 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4135 ecs->event_thread);
4136 if (tp)
4137 {
4138 /* However, if the current thread is blocked on some internal
4139 breakpoint, and we simply need to step over that breakpoint
4140 to get it going again, do that first. */
4141 if ((ecs->event_thread->trap_expected
4142 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
4143 || ecs->event_thread->stepping_over_breakpoint)
4144 {
4145 keep_going (ecs);
4146 return;
4147 }
4148
66852e9c
PA
4149 /* If the stepping thread exited, then don't try to switch
4150 back and resume it, which could fail in several different
4151 ways depending on the target. Instead, just keep going.
4152
4153 We can find a stepping dead thread in the thread list in
4154 two cases:
4155
4156 - The target supports thread exit events, and when the
4157 target tries to delete the thread from the thread list,
4158 inferior_ptid pointed at the exiting thread. In such
4159 case, calling delete_thread does not really remove the
4160 thread from the list; instead, the thread is left listed,
4161 with 'exited' state.
4162
4163 - The target's debug interface does not support thread
4164 exit events, and so we have no idea whatsoever if the
4165 previously stepping thread is still alive. For that
4166 reason, we need to synchronously query the target
4167 now. */
b3444185
PA
4168 if (is_exited (tp->ptid)
4169 || !target_thread_alive (tp->ptid))
4170 {
4171 if (debug_infrun)
4172 fprintf_unfiltered (gdb_stdlog, "\
4173infrun: not switching back to stepped thread, it has vanished\n");
4174
4175 delete_thread (tp->ptid);
4176 keep_going (ecs);
4177 return;
4178 }
4179
a7212384
UW
4180 /* Otherwise, we no longer expect a trap in the current thread.
4181 Clear the trap_expected flag before switching back -- this is
4182 what keep_going would do as well, if we called it. */
4183 ecs->event_thread->trap_expected = 0;
4184
4185 if (debug_infrun)
4186 fprintf_unfiltered (gdb_stdlog,
4187 "infrun: switching back to stepped thread\n");
4188
4189 ecs->event_thread = tp;
4190 ecs->ptid = tp->ptid;
4191 context_switch (ecs->ptid);
4192 keep_going (ecs);
4193 return;
4194 }
4195 }
4196
9d1ff73f
MS
4197 /* Are we stepping to get the inferior out of the dynamic linker's
4198 hook (and possibly the dld itself) after catching a shlib
4199 event? */
4e1c45ea 4200 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
4201 {
4202#if defined(SOLIB_ADD)
4203 /* Have we reached our destination? If not, keep going. */
4204 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4205 {
527159b7 4206 if (debug_infrun)
8a9de0e4 4207 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 4208 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 4209 keep_going (ecs);
104c1213 4210 return;
488f131b
JB
4211 }
4212#endif
527159b7 4213 if (debug_infrun)
8a9de0e4 4214 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
4215 /* Else, stop and report the catchpoint(s) whose triggering
4216 caused us to begin stepping. */
4e1c45ea 4217 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
4218 bpstat_clear (&ecs->event_thread->stop_bpstat);
4219 ecs->event_thread->stop_bpstat
4220 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 4221 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
4222 stop_print_frame = 1;
4223 stop_stepping (ecs);
4224 return;
4225 }
c906108c 4226
4e1c45ea 4227 if (ecs->event_thread->step_resume_breakpoint)
488f131b 4228 {
527159b7 4229 if (debug_infrun)
d3169d93
DJ
4230 fprintf_unfiltered (gdb_stdlog,
4231 "infrun: step-resume breakpoint is inserted\n");
527159b7 4232
488f131b
JB
4233 /* Having a step-resume breakpoint overrides anything
4234 else having to do with stepping commands until
4235 that breakpoint is reached. */
488f131b
JB
4236 keep_going (ecs);
4237 return;
4238 }
c5aa993b 4239
4e1c45ea 4240 if (ecs->event_thread->step_range_end == 0)
488f131b 4241 {
527159b7 4242 if (debug_infrun)
8a9de0e4 4243 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4244 /* Likewise if we aren't even stepping. */
488f131b
JB
4245 keep_going (ecs);
4246 return;
4247 }
c5aa993b 4248
4b7703ad
JB
4249 /* Re-fetch current thread's frame in case the code above caused
4250 the frame cache to be re-initialized, making our FRAME variable
4251 a dangling pointer. */
4252 frame = get_current_frame ();
4253
488f131b 4254 /* If stepping through a line, keep going if still within it.
c906108c 4255
488f131b
JB
4256 Note that step_range_end is the address of the first instruction
4257 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4258 within it!
4259
4260 Note also that during reverse execution, we may be stepping
4261 through a function epilogue and therefore must detect when
4262 the current-frame changes in the middle of a line. */
4263
4e1c45ea 4264 if (stop_pc >= ecs->event_thread->step_range_start
31410e84
MS
4265 && stop_pc < ecs->event_thread->step_range_end
4266 && (execution_direction != EXEC_REVERSE
388a8562 4267 || frame_id_eq (get_frame_id (frame),
31410e84 4268 ecs->event_thread->step_frame_id)))
488f131b 4269 {
527159b7 4270 if (debug_infrun)
5af949e3
UW
4271 fprintf_unfiltered
4272 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4273 paddress (gdbarch, ecs->event_thread->step_range_start),
4274 paddress (gdbarch, ecs->event_thread->step_range_end));
b2175913
MS
4275
4276 /* When stepping backward, stop at beginning of line range
4277 (unless it's the function entry point, in which case
4278 keep going back to the call point). */
4279 if (stop_pc == ecs->event_thread->step_range_start
4280 && stop_pc != ecs->stop_func_start
4281 && execution_direction == EXEC_REVERSE)
4282 {
4283 ecs->event_thread->stop_step = 1;
4284 print_stop_reason (END_STEPPING_RANGE, 0);
4285 stop_stepping (ecs);
4286 }
4287 else
4288 keep_going (ecs);
4289
488f131b
JB
4290 return;
4291 }
c5aa993b 4292
488f131b 4293 /* We stepped out of the stepping range. */
c906108c 4294
488f131b 4295 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4296 loader dynamic symbol resolution code...
4297
4298 EXEC_FORWARD: we keep on single stepping until we exit the run
4299 time loader code and reach the callee's address.
4300
4301 EXEC_REVERSE: we've already executed the callee (backward), and
4302 the runtime loader code is handled just like any other
4303 undebuggable function call. Now we need only keep stepping
4304 backward through the trampoline code, and that's handled further
4305 down, so there is nothing for us to do here. */
4306
4307 if (execution_direction != EXEC_REVERSE
4308 && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4309 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4310 {
4c8c40e6 4311 CORE_ADDR pc_after_resolver =
568d6575 4312 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4313
527159b7 4314 if (debug_infrun)
8a9de0e4 4315 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 4316
488f131b
JB
4317 if (pc_after_resolver)
4318 {
4319 /* Set up a step-resume breakpoint at the address
4320 indicated by SKIP_SOLIB_RESOLVER. */
4321 struct symtab_and_line sr_sal;
fe39c653 4322 init_sal (&sr_sal);
488f131b 4323 sr_sal.pc = pc_after_resolver;
6c95b8df 4324 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4325
a6d9a66e
UW
4326 insert_step_resume_breakpoint_at_sal (gdbarch,
4327 sr_sal, null_frame_id);
c5aa993b 4328 }
c906108c 4329
488f131b
JB
4330 keep_going (ecs);
4331 return;
4332 }
c906108c 4333
4e1c45ea 4334 if (ecs->event_thread->step_range_end != 1
078130d0
PA
4335 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4336 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
568d6575 4337 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4338 {
527159b7 4339 if (debug_infrun)
8a9de0e4 4340 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 4341 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4342 a signal trampoline (either by a signal being delivered or by
4343 the signal handler returning). Just single-step until the
4344 inferior leaves the trampoline (either by calling the handler
4345 or returning). */
488f131b
JB
4346 keep_going (ecs);
4347 return;
4348 }
c906108c 4349
c17eaafe
DJ
4350 /* Check for subroutine calls. The check for the current frame
4351 equalling the step ID is not necessary - the check of the
4352 previous frame's ID is sufficient - but it is a common case and
4353 cheaper than checking the previous frame's ID.
14e60db5
DJ
4354
4355 NOTE: frame_id_eq will never report two invalid frame IDs as
4356 being equal, so to get into this block, both the current and
4357 previous frame must have valid frame IDs. */
005ca36a
JB
4358 /* The outer_frame_id check is a heuristic to detect stepping
4359 through startup code. If we step over an instruction which
4360 sets the stack pointer from an invalid value to a valid value,
4361 we may detect that as a subroutine call from the mythical
4362 "outermost" function. This could be fixed by marking
4363 outermost frames as !stack_p,code_p,special_p. Then the
4364 initial outermost frame, before sp was valid, would
ce6cca6d 4365 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4366 for more. */
edb3359d
DJ
4367 if (!frame_id_eq (get_stack_frame_id (frame),
4368 ecs->event_thread->step_stack_frame_id)
005ca36a
JB
4369 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4370 ecs->event_thread->step_stack_frame_id)
4371 && (!frame_id_eq (ecs->event_thread->step_stack_frame_id,
4372 outer_frame_id)
4373 || step_start_function != find_pc_function (stop_pc))))
488f131b 4374 {
95918acb 4375 CORE_ADDR real_stop_pc;
8fb3e588 4376
527159b7 4377 if (debug_infrun)
8a9de0e4 4378 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4379
078130d0 4380 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea 4381 || ((ecs->event_thread->step_range_end == 1)
d80b854b 4382 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4383 ecs->stop_func_start)))
95918acb
AC
4384 {
4385 /* I presume that step_over_calls is only 0 when we're
4386 supposed to be stepping at the assembly language level
4387 ("stepi"). Just stop. */
4388 /* Also, maybe we just did a "nexti" inside a prolog, so we
4389 thought it was a subroutine call but it was not. Stop as
4390 well. FENN */
388a8562 4391 /* And this works the same backward as frontward. MVS */
414c69f7 4392 ecs->event_thread->stop_step = 1;
95918acb
AC
4393 print_stop_reason (END_STEPPING_RANGE, 0);
4394 stop_stepping (ecs);
4395 return;
4396 }
8fb3e588 4397
388a8562
MS
4398 /* Reverse stepping through solib trampolines. */
4399
4400 if (execution_direction == EXEC_REVERSE
fdd654f3 4401 && ecs->event_thread->step_over_calls != STEP_OVER_NONE
388a8562
MS
4402 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4403 || (ecs->stop_func_start == 0
4404 && in_solib_dynsym_resolve_code (stop_pc))))
4405 {
4406 /* Any solib trampoline code can be handled in reverse
4407 by simply continuing to single-step. We have already
4408 executed the solib function (backwards), and a few
4409 steps will take us back through the trampoline to the
4410 caller. */
4411 keep_going (ecs);
4412 return;
4413 }
4414
078130d0 4415 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f 4416 {
b2175913
MS
4417 /* We're doing a "next".
4418
4419 Normal (forward) execution: set a breakpoint at the
4420 callee's return address (the address at which the caller
4421 will resume).
4422
4423 Reverse (backward) execution. set the step-resume
4424 breakpoint at the start of the function that we just
4425 stepped into (backwards), and continue to there. When we
6130d0b7 4426 get there, we'll need to single-step back to the caller. */
b2175913
MS
4427
4428 if (execution_direction == EXEC_REVERSE)
4429 {
4430 struct symtab_and_line sr_sal;
3067f6e5 4431
388a8562
MS
4432 /* Normal function call return (static or dynamic). */
4433 init_sal (&sr_sal);
4434 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4435 sr_sal.pspace = get_frame_program_space (frame);
4436 insert_step_resume_breakpoint_at_sal (gdbarch,
4437 sr_sal, null_frame_id);
b2175913
MS
4438 }
4439 else
568d6575 4440 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4441
8567c30f
AC
4442 keep_going (ecs);
4443 return;
4444 }
a53c66de 4445
95918acb 4446 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4447 calling routine and the real function), locate the real
4448 function. That's what tells us (a) whether we want to step
4449 into it at all, and (b) what prologue we want to run to the
4450 end of, if we do step into it. */
568d6575 4451 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4452 if (real_stop_pc == 0)
568d6575 4453 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4454 if (real_stop_pc != 0)
4455 ecs->stop_func_start = real_stop_pc;
8fb3e588 4456
db5f024e 4457 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4458 {
4459 struct symtab_and_line sr_sal;
4460 init_sal (&sr_sal);
4461 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4462 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4463
a6d9a66e
UW
4464 insert_step_resume_breakpoint_at_sal (gdbarch,
4465 sr_sal, null_frame_id);
8fb3e588
AC
4466 keep_going (ecs);
4467 return;
1b2bfbb9
RC
4468 }
4469
95918acb 4470 /* If we have line number information for the function we are
8fb3e588 4471 thinking of stepping into, step into it.
95918acb 4472
8fb3e588
AC
4473 If there are several symtabs at that PC (e.g. with include
4474 files), just want to know whether *any* of them have line
4475 numbers. find_pc_line handles this. */
95918acb
AC
4476 {
4477 struct symtab_and_line tmp_sal;
8fb3e588 4478
95918acb 4479 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
9d1807c3 4480 tmp_sal.pspace = get_frame_program_space (frame);
95918acb
AC
4481 if (tmp_sal.line != 0)
4482 {
b2175913 4483 if (execution_direction == EXEC_REVERSE)
568d6575 4484 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4485 else
568d6575 4486 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4487 return;
4488 }
4489 }
4490
4491 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4492 set, we stop the step so that the user has a chance to switch
4493 in assembly mode. */
078130d0
PA
4494 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4495 && step_stop_if_no_debug)
95918acb 4496 {
414c69f7 4497 ecs->event_thread->stop_step = 1;
95918acb
AC
4498 print_stop_reason (END_STEPPING_RANGE, 0);
4499 stop_stepping (ecs);
4500 return;
4501 }
4502
b2175913
MS
4503 if (execution_direction == EXEC_REVERSE)
4504 {
4505 /* Set a breakpoint at callee's start address.
4506 From there we can step once and be back in the caller. */
4507 struct symtab_and_line sr_sal;
4508 init_sal (&sr_sal);
4509 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4510 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4511 insert_step_resume_breakpoint_at_sal (gdbarch,
4512 sr_sal, null_frame_id);
b2175913
MS
4513 }
4514 else
4515 /* Set a breakpoint at callee's return address (the address
4516 at which the caller will resume). */
568d6575 4517 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4518
95918acb 4519 keep_going (ecs);
488f131b 4520 return;
488f131b 4521 }
c906108c 4522
fdd654f3
MS
4523 /* Reverse stepping through solib trampolines. */
4524
4525 if (execution_direction == EXEC_REVERSE
4526 && ecs->event_thread->step_over_calls != STEP_OVER_NONE)
4527 {
4528 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4529 || (ecs->stop_func_start == 0
4530 && in_solib_dynsym_resolve_code (stop_pc)))
4531 {
4532 /* Any solib trampoline code can be handled in reverse
4533 by simply continuing to single-step. We have already
4534 executed the solib function (backwards), and a few
4535 steps will take us back through the trampoline to the
4536 caller. */
4537 keep_going (ecs);
4538 return;
4539 }
4540 else if (in_solib_dynsym_resolve_code (stop_pc))
4541 {
4542 /* Stepped backward into the solib dynsym resolver.
4543 Set a breakpoint at its start and continue, then
4544 one more step will take us out. */
4545 struct symtab_and_line sr_sal;
4546 init_sal (&sr_sal);
4547 sr_sal.pc = ecs->stop_func_start;
9d1807c3 4548 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
4549 insert_step_resume_breakpoint_at_sal (gdbarch,
4550 sr_sal, null_frame_id);
4551 keep_going (ecs);
4552 return;
4553 }
4554 }
4555
488f131b
JB
4556 /* If we're in the return path from a shared library trampoline,
4557 we want to proceed through the trampoline when stepping. */
568d6575 4558 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 4559 stop_pc, ecs->stop_func_name))
488f131b 4560 {
488f131b 4561 /* Determine where this trampoline returns. */
52f729a7 4562 CORE_ADDR real_stop_pc;
568d6575 4563 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 4564
527159b7 4565 if (debug_infrun)
8a9de0e4 4566 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 4567
488f131b 4568 /* Only proceed through if we know where it's going. */
d764a824 4569 if (real_stop_pc)
488f131b
JB
4570 {
4571 /* And put the step-breakpoint there and go until there. */
4572 struct symtab_and_line sr_sal;
4573
fe39c653 4574 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 4575 sr_sal.pc = real_stop_pc;
488f131b 4576 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4577 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
4578
4579 /* Do not specify what the fp should be when we stop since
4580 on some machines the prologue is where the new fp value
4581 is established. */
a6d9a66e
UW
4582 insert_step_resume_breakpoint_at_sal (gdbarch,
4583 sr_sal, null_frame_id);
c906108c 4584
488f131b
JB
4585 /* Restart without fiddling with the step ranges or
4586 other state. */
4587 keep_going (ecs);
4588 return;
4589 }
4590 }
c906108c 4591
2afb61aa 4592 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 4593
1b2bfbb9
RC
4594 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4595 the trampoline processing logic, however, there are some trampolines
4596 that have no names, so we should do trampoline handling first. */
078130d0 4597 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 4598 && ecs->stop_func_name == NULL
2afb61aa 4599 && stop_pc_sal.line == 0)
1b2bfbb9 4600 {
527159b7 4601 if (debug_infrun)
8a9de0e4 4602 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 4603
1b2bfbb9 4604 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
4605 undebuggable function (where there is no debugging information
4606 and no line number corresponding to the address where the
1b2bfbb9
RC
4607 inferior stopped). Since we want to skip this kind of code,
4608 we keep going until the inferior returns from this
14e60db5
DJ
4609 function - unless the user has asked us not to (via
4610 set step-mode) or we no longer know how to get back
4611 to the call site. */
4612 if (step_stop_if_no_debug
c7ce8faa 4613 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
4614 {
4615 /* If we have no line number and the step-stop-if-no-debug
4616 is set, we stop the step so that the user has a chance to
4617 switch in assembly mode. */
414c69f7 4618 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
4619 print_stop_reason (END_STEPPING_RANGE, 0);
4620 stop_stepping (ecs);
4621 return;
4622 }
4623 else
4624 {
4625 /* Set a breakpoint at callee's return address (the address
4626 at which the caller will resume). */
568d6575 4627 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
4628 keep_going (ecs);
4629 return;
4630 }
4631 }
4632
4e1c45ea 4633 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
4634 {
4635 /* It is stepi or nexti. We always want to stop stepping after
4636 one instruction. */
527159b7 4637 if (debug_infrun)
8a9de0e4 4638 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 4639 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
4640 print_stop_reason (END_STEPPING_RANGE, 0);
4641 stop_stepping (ecs);
4642 return;
4643 }
4644
2afb61aa 4645 if (stop_pc_sal.line == 0)
488f131b
JB
4646 {
4647 /* We have no line number information. That means to stop
4648 stepping (does this always happen right after one instruction,
4649 when we do "s" in a function with no line numbers,
4650 or can this happen as a result of a return or longjmp?). */
527159b7 4651 if (debug_infrun)
8a9de0e4 4652 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 4653 ecs->event_thread->stop_step = 1;
488f131b
JB
4654 print_stop_reason (END_STEPPING_RANGE, 0);
4655 stop_stepping (ecs);
4656 return;
4657 }
c906108c 4658
edb3359d
DJ
4659 /* Look for "calls" to inlined functions, part one. If the inline
4660 frame machinery detected some skipped call sites, we have entered
4661 a new inline function. */
4662
4663 if (frame_id_eq (get_frame_id (get_current_frame ()),
4664 ecs->event_thread->step_frame_id)
4665 && inline_skipped_frames (ecs->ptid))
4666 {
4667 struct symtab_and_line call_sal;
4668
4669 if (debug_infrun)
4670 fprintf_unfiltered (gdb_stdlog,
4671 "infrun: stepped into inlined function\n");
4672
4673 find_frame_sal (get_current_frame (), &call_sal);
4674
4675 if (ecs->event_thread->step_over_calls != STEP_OVER_ALL)
4676 {
4677 /* For "step", we're going to stop. But if the call site
4678 for this inlined function is on the same source line as
4679 we were previously stepping, go down into the function
4680 first. Otherwise stop at the call site. */
4681
4682 if (call_sal.line == ecs->event_thread->current_line
4683 && call_sal.symtab == ecs->event_thread->current_symtab)
4684 step_into_inline_frame (ecs->ptid);
4685
4686 ecs->event_thread->stop_step = 1;
4687 print_stop_reason (END_STEPPING_RANGE, 0);
4688 stop_stepping (ecs);
4689 return;
4690 }
4691 else
4692 {
4693 /* For "next", we should stop at the call site if it is on a
4694 different source line. Otherwise continue through the
4695 inlined function. */
4696 if (call_sal.line == ecs->event_thread->current_line
4697 && call_sal.symtab == ecs->event_thread->current_symtab)
4698 keep_going (ecs);
4699 else
4700 {
4701 ecs->event_thread->stop_step = 1;
4702 print_stop_reason (END_STEPPING_RANGE, 0);
4703 stop_stepping (ecs);
4704 }
4705 return;
4706 }
4707 }
4708
4709 /* Look for "calls" to inlined functions, part two. If we are still
4710 in the same real function we were stepping through, but we have
4711 to go further up to find the exact frame ID, we are stepping
4712 through a more inlined call beyond its call site. */
4713
4714 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4715 && !frame_id_eq (get_frame_id (get_current_frame ()),
4716 ecs->event_thread->step_frame_id)
4717 && stepped_in_from (get_current_frame (),
4718 ecs->event_thread->step_frame_id))
4719 {
4720 if (debug_infrun)
4721 fprintf_unfiltered (gdb_stdlog,
4722 "infrun: stepping through inlined function\n");
4723
4724 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4725 keep_going (ecs);
4726 else
4727 {
4728 ecs->event_thread->stop_step = 1;
4729 print_stop_reason (END_STEPPING_RANGE, 0);
4730 stop_stepping (ecs);
4731 }
4732 return;
4733 }
4734
2afb61aa 4735 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
4736 && (ecs->event_thread->current_line != stop_pc_sal.line
4737 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
4738 {
4739 /* We are at the start of a different line. So stop. Note that
4740 we don't stop if we step into the middle of a different line.
4741 That is said to make things like for (;;) statements work
4742 better. */
527159b7 4743 if (debug_infrun)
8a9de0e4 4744 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 4745 ecs->event_thread->stop_step = 1;
488f131b
JB
4746 print_stop_reason (END_STEPPING_RANGE, 0);
4747 stop_stepping (ecs);
4748 return;
4749 }
c906108c 4750
488f131b 4751 /* We aren't done stepping.
c906108c 4752
488f131b
JB
4753 Optimize by setting the stepping range to the line.
4754 (We might not be in the original line, but if we entered a
4755 new line in mid-statement, we continue stepping. This makes
4756 things like for(;;) statements work better.) */
c906108c 4757
4e1c45ea
PA
4758 ecs->event_thread->step_range_start = stop_pc_sal.pc;
4759 ecs->event_thread->step_range_end = stop_pc_sal.end;
edb3359d 4760 set_step_info (frame, stop_pc_sal);
488f131b 4761
527159b7 4762 if (debug_infrun)
8a9de0e4 4763 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 4764 keep_going (ecs);
104c1213
JM
4765}
4766
b3444185 4767/* Is thread TP in the middle of single-stepping? */
104c1213 4768
a7212384 4769static int
b3444185 4770currently_stepping (struct thread_info *tp)
a7212384 4771{
b3444185
PA
4772 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
4773 || tp->trap_expected
4774 || tp->stepping_through_solib_after_catch
4775 || bpstat_should_step ());
a7212384
UW
4776}
4777
b3444185
PA
4778/* Returns true if any thread *but* the one passed in "data" is in the
4779 middle of stepping or of handling a "next". */
a7212384 4780
104c1213 4781static int
b3444185 4782currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 4783{
b3444185
PA
4784 if (tp == data)
4785 return 0;
4786
4787 return (tp->step_range_end
4788 || tp->trap_expected
4789 || tp->stepping_through_solib_after_catch);
104c1213 4790}
c906108c 4791
b2175913
MS
4792/* Inferior has stepped into a subroutine call with source code that
4793 we should not step over. Do step to the first line of code in
4794 it. */
c2c6d25f
JM
4795
4796static void
568d6575
UW
4797handle_step_into_function (struct gdbarch *gdbarch,
4798 struct execution_control_state *ecs)
c2c6d25f
JM
4799{
4800 struct symtab *s;
2afb61aa 4801 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
4802
4803 s = find_pc_symtab (stop_pc);
4804 if (s && s->language != language_asm)
568d6575 4805 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 4806 ecs->stop_func_start);
c2c6d25f 4807
2afb61aa 4808 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
4809 /* Use the step_resume_break to step until the end of the prologue,
4810 even if that involves jumps (as it seems to on the vax under
4811 4.2). */
4812 /* If the prologue ends in the middle of a source line, continue to
4813 the end of that source line (if it is still within the function).
4814 Otherwise, just go to end of prologue. */
2afb61aa
PA
4815 if (stop_func_sal.end
4816 && stop_func_sal.pc != ecs->stop_func_start
4817 && stop_func_sal.end < ecs->stop_func_end)
4818 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 4819
2dbd5e30
KB
4820 /* Architectures which require breakpoint adjustment might not be able
4821 to place a breakpoint at the computed address. If so, the test
4822 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4823 ecs->stop_func_start to an address at which a breakpoint may be
4824 legitimately placed.
8fb3e588 4825
2dbd5e30
KB
4826 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4827 made, GDB will enter an infinite loop when stepping through
4828 optimized code consisting of VLIW instructions which contain
4829 subinstructions corresponding to different source lines. On
4830 FR-V, it's not permitted to place a breakpoint on any but the
4831 first subinstruction of a VLIW instruction. When a breakpoint is
4832 set, GDB will adjust the breakpoint address to the beginning of
4833 the VLIW instruction. Thus, we need to make the corresponding
4834 adjustment here when computing the stop address. */
8fb3e588 4835
568d6575 4836 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
4837 {
4838 ecs->stop_func_start
568d6575 4839 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 4840 ecs->stop_func_start);
2dbd5e30
KB
4841 }
4842
c2c6d25f
JM
4843 if (ecs->stop_func_start == stop_pc)
4844 {
4845 /* We are already there: stop now. */
414c69f7 4846 ecs->event_thread->stop_step = 1;
488f131b 4847 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
4848 stop_stepping (ecs);
4849 return;
4850 }
4851 else
4852 {
4853 /* Put the step-breakpoint there and go until there. */
fe39c653 4854 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
4855 sr_sal.pc = ecs->stop_func_start;
4856 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 4857 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 4858
c2c6d25f 4859 /* Do not specify what the fp should be when we stop since on
488f131b
JB
4860 some machines the prologue is where the new fp value is
4861 established. */
a6d9a66e 4862 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
4863
4864 /* And make sure stepping stops right away then. */
4e1c45ea 4865 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
4866 }
4867 keep_going (ecs);
4868}
d4f3574e 4869
b2175913
MS
4870/* Inferior has stepped backward into a subroutine call with source
4871 code that we should not step over. Do step to the beginning of the
4872 last line of code in it. */
4873
4874static void
568d6575
UW
4875handle_step_into_function_backward (struct gdbarch *gdbarch,
4876 struct execution_control_state *ecs)
b2175913
MS
4877{
4878 struct symtab *s;
4879 struct symtab_and_line stop_func_sal, sr_sal;
4880
4881 s = find_pc_symtab (stop_pc);
4882 if (s && s->language != language_asm)
568d6575 4883 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
4884 ecs->stop_func_start);
4885
4886 stop_func_sal = find_pc_line (stop_pc, 0);
4887
4888 /* OK, we're just going to keep stepping here. */
4889 if (stop_func_sal.pc == stop_pc)
4890 {
4891 /* We're there already. Just stop stepping now. */
4892 ecs->event_thread->stop_step = 1;
4893 print_stop_reason (END_STEPPING_RANGE, 0);
4894 stop_stepping (ecs);
4895 }
4896 else
4897 {
4898 /* Else just reset the step range and keep going.
4899 No step-resume breakpoint, they don't work for
4900 epilogues, which can have multiple entry paths. */
4901 ecs->event_thread->step_range_start = stop_func_sal.pc;
4902 ecs->event_thread->step_range_end = stop_func_sal.end;
4903 keep_going (ecs);
4904 }
4905 return;
4906}
4907
d3169d93 4908/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
4909 This is used to both functions and to skip over code. */
4910
4911static void
a6d9a66e
UW
4912insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
4913 struct symtab_and_line sr_sal,
44cbf7b5
AC
4914 struct frame_id sr_id)
4915{
611c83ae
PA
4916 /* There should never be more than one step-resume or longjmp-resume
4917 breakpoint per thread, so we should never be setting a new
44cbf7b5 4918 step_resume_breakpoint when one is already active. */
4e1c45ea 4919 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
4920
4921 if (debug_infrun)
4922 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4923 "infrun: inserting step-resume breakpoint at %s\n",
4924 paddress (gdbarch, sr_sal.pc));
d3169d93 4925
4e1c45ea 4926 inferior_thread ()->step_resume_breakpoint
a6d9a66e 4927 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
44cbf7b5 4928}
7ce450bd 4929
d3169d93 4930/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 4931 to skip a potential signal handler.
7ce450bd 4932
14e60db5
DJ
4933 This is called with the interrupted function's frame. The signal
4934 handler, when it returns, will resume the interrupted function at
4935 RETURN_FRAME.pc. */
d303a6c7
AC
4936
4937static void
44cbf7b5 4938insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
4939{
4940 struct symtab_and_line sr_sal;
a6d9a66e 4941 struct gdbarch *gdbarch;
d303a6c7 4942
f4c1edd8 4943 gdb_assert (return_frame != NULL);
d303a6c7
AC
4944 init_sal (&sr_sal); /* initialize to zeros */
4945
a6d9a66e 4946 gdbarch = get_frame_arch (return_frame);
568d6575 4947 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 4948 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4949 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 4950
a6d9a66e
UW
4951 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
4952 get_stack_frame_id (return_frame));
d303a6c7
AC
4953}
4954
14e60db5
DJ
4955/* Similar to insert_step_resume_breakpoint_at_frame, except
4956 but a breakpoint at the previous frame's PC. This is used to
4957 skip a function after stepping into it (for "next" or if the called
4958 function has no debugging information).
4959
4960 The current function has almost always been reached by single
4961 stepping a call or return instruction. NEXT_FRAME belongs to the
4962 current function, and the breakpoint will be set at the caller's
4963 resume address.
4964
4965 This is a separate function rather than reusing
4966 insert_step_resume_breakpoint_at_frame in order to avoid
4967 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 4968 of frame_unwind_caller_id for an example). */
14e60db5
DJ
4969
4970static void
4971insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4972{
4973 struct symtab_and_line sr_sal;
a6d9a66e 4974 struct gdbarch *gdbarch;
14e60db5
DJ
4975
4976 /* We shouldn't have gotten here if we don't know where the call site
4977 is. */
c7ce8faa 4978 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
4979
4980 init_sal (&sr_sal); /* initialize to zeros */
4981
a6d9a66e 4982 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
4983 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
4984 frame_unwind_caller_pc (next_frame));
14e60db5 4985 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4986 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 4987
a6d9a66e 4988 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 4989 frame_unwind_caller_id (next_frame));
14e60db5
DJ
4990}
4991
611c83ae
PA
4992/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4993 new breakpoint at the target of a jmp_buf. The handling of
4994 longjmp-resume uses the same mechanisms used for handling
4995 "step-resume" breakpoints. */
4996
4997static void
a6d9a66e 4998insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
4999{
5000 /* There should never be more than one step-resume or longjmp-resume
5001 breakpoint per thread, so we should never be setting a new
5002 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 5003 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
5004
5005 if (debug_infrun)
5006 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5007 "infrun: inserting longjmp-resume breakpoint at %s\n",
5008 paddress (gdbarch, pc));
611c83ae 5009
4e1c45ea 5010 inferior_thread ()->step_resume_breakpoint =
a6d9a66e 5011 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5012}
5013
104c1213
JM
5014static void
5015stop_stepping (struct execution_control_state *ecs)
5016{
527159b7 5017 if (debug_infrun)
8a9de0e4 5018 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5019
cd0fc7c3
SS
5020 /* Let callers know we don't want to wait for the inferior anymore. */
5021 ecs->wait_some_more = 0;
5022}
5023
d4f3574e
SS
5024/* This function handles various cases where we need to continue
5025 waiting for the inferior. */
5026/* (Used to be the keep_going: label in the old wait_for_inferior) */
5027
5028static void
5029keep_going (struct execution_control_state *ecs)
5030{
c4dbc9af
PA
5031 /* Make sure normal_stop is called if we get a QUIT handled before
5032 reaching resume. */
5033 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5034
d4f3574e 5035 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5036 ecs->event_thread->prev_pc
5037 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5038
d4f3574e
SS
5039 /* If we did not do break;, it means we should keep running the
5040 inferior and not return to debugger. */
5041
2020b7ab
PA
5042 if (ecs->event_thread->trap_expected
5043 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
5044 {
5045 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5046 the inferior, else we'd not get here) and we haven't yet
5047 gotten our trap. Simply continue. */
c4dbc9af
PA
5048
5049 discard_cleanups (old_cleanups);
2020b7ab
PA
5050 resume (currently_stepping (ecs->event_thread),
5051 ecs->event_thread->stop_signal);
d4f3574e
SS
5052 }
5053 else
5054 {
5055 /* Either the trap was not expected, but we are continuing
488f131b
JB
5056 anyway (the user asked that this signal be passed to the
5057 child)
5058 -- or --
5059 The signal was SIGTRAP, e.g. it was our signal, but we
5060 decided we should resume from it.
d4f3574e 5061
c36b740a 5062 We're going to run this baby now!
d4f3574e 5063
c36b740a
VP
5064 Note that insert_breakpoints won't try to re-insert
5065 already inserted breakpoints. Therefore, we don't
5066 care if breakpoints were already inserted, or not. */
5067
4e1c45ea 5068 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5069 {
9f5a595d
UW
5070 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5071 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5072 /* Since we can't do a displaced step, we have to remove
5073 the breakpoint while we step it. To keep things
5074 simple, we remove them all. */
5075 remove_breakpoints ();
45e8c884
VP
5076 }
5077 else
d4f3574e 5078 {
e236ba44 5079 struct gdb_exception e;
569631c6
UW
5080 /* Stop stepping when inserting breakpoints
5081 has failed. */
e236ba44
VP
5082 TRY_CATCH (e, RETURN_MASK_ERROR)
5083 {
5084 insert_breakpoints ();
5085 }
5086 if (e.reason < 0)
d4f3574e 5087 {
97bd5475 5088 exception_print (gdb_stderr, e);
d4f3574e
SS
5089 stop_stepping (ecs);
5090 return;
5091 }
d4f3574e
SS
5092 }
5093
4e1c45ea 5094 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5095
5096 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5097 specifies that such a signal should be delivered to the
5098 target program).
5099
5100 Typically, this would occure when a user is debugging a
5101 target monitor on a simulator: the target monitor sets a
5102 breakpoint; the simulator encounters this break-point and
5103 halts the simulation handing control to GDB; GDB, noteing
5104 that the break-point isn't valid, returns control back to the
5105 simulator; the simulator then delivers the hardware
5106 equivalent of a SIGNAL_TRAP to the program being debugged. */
5107
2020b7ab
PA
5108 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
5109 && !signal_program[ecs->event_thread->stop_signal])
5110 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 5111
c4dbc9af 5112 discard_cleanups (old_cleanups);
2020b7ab
PA
5113 resume (currently_stepping (ecs->event_thread),
5114 ecs->event_thread->stop_signal);
d4f3574e
SS
5115 }
5116
488f131b 5117 prepare_to_wait (ecs);
d4f3574e
SS
5118}
5119
104c1213
JM
5120/* This function normally comes after a resume, before
5121 handle_inferior_event exits. It takes care of any last bits of
5122 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5123
104c1213
JM
5124static void
5125prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5126{
527159b7 5127 if (debug_infrun)
8a9de0e4 5128 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5129
104c1213
JM
5130 /* This is the old end of the while loop. Let everybody know we
5131 want to wait for the inferior some more and get called again
5132 soon. */
5133 ecs->wait_some_more = 1;
c906108c 5134}
11cf8741
JM
5135
5136/* Print why the inferior has stopped. We always print something when
5137 the inferior exits, or receives a signal. The rest of the cases are
5138 dealt with later on in normal_stop() and print_it_typical(). Ideally
5139 there should be a call to this function from handle_inferior_event()
5140 each time stop_stepping() is called.*/
5141static void
5142print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
5143{
5144 switch (stop_reason)
5145 {
11cf8741
JM
5146 case END_STEPPING_RANGE:
5147 /* We are done with a step/next/si/ni command. */
5148 /* For now print nothing. */
fb40c209 5149 /* Print a message only if not in the middle of doing a "step n"
488f131b 5150 operation for n > 1 */
414c69f7
PA
5151 if (!inferior_thread ()->step_multi
5152 || !inferior_thread ()->stop_step)
9dc5e2a9 5153 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
5154 ui_out_field_string
5155 (uiout, "reason",
5156 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 5157 break;
11cf8741
JM
5158 case SIGNAL_EXITED:
5159 /* The inferior was terminated by a signal. */
8b93c638 5160 annotate_signalled ();
9dc5e2a9 5161 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
5162 ui_out_field_string
5163 (uiout, "reason",
5164 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
5165 ui_out_text (uiout, "\nProgram terminated with signal ");
5166 annotate_signal_name ();
488f131b
JB
5167 ui_out_field_string (uiout, "signal-name",
5168 target_signal_to_name (stop_info));
8b93c638
JM
5169 annotate_signal_name_end ();
5170 ui_out_text (uiout, ", ");
5171 annotate_signal_string ();
488f131b
JB
5172 ui_out_field_string (uiout, "signal-meaning",
5173 target_signal_to_string (stop_info));
8b93c638
JM
5174 annotate_signal_string_end ();
5175 ui_out_text (uiout, ".\n");
5176 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
5177 break;
5178 case EXITED:
5179 /* The inferior program is finished. */
8b93c638
JM
5180 annotate_exited (stop_info);
5181 if (stop_info)
5182 {
9dc5e2a9 5183 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
5184 ui_out_field_string (uiout, "reason",
5185 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 5186 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
5187 ui_out_field_fmt (uiout, "exit-code", "0%o",
5188 (unsigned int) stop_info);
8b93c638
JM
5189 ui_out_text (uiout, ".\n");
5190 }
5191 else
5192 {
9dc5e2a9 5193 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
5194 ui_out_field_string
5195 (uiout, "reason",
5196 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
5197 ui_out_text (uiout, "\nProgram exited normally.\n");
5198 }
f17517ea
AS
5199 /* Support the --return-child-result option. */
5200 return_child_result_value = stop_info;
11cf8741
JM
5201 break;
5202 case SIGNAL_RECEIVED:
252fbfc8
PA
5203 /* Signal received. The signal table tells us to print about
5204 it. */
8b93c638 5205 annotate_signal ();
252fbfc8
PA
5206
5207 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5208 {
5209 struct thread_info *t = inferior_thread ();
5210
5211 ui_out_text (uiout, "\n[");
5212 ui_out_field_string (uiout, "thread-name",
5213 target_pid_to_str (t->ptid));
5214 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5215 ui_out_text (uiout, " stopped");
5216 }
5217 else
5218 {
5219 ui_out_text (uiout, "\nProgram received signal ");
5220 annotate_signal_name ();
5221 if (ui_out_is_mi_like_p (uiout))
5222 ui_out_field_string
5223 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5224 ui_out_field_string (uiout, "signal-name",
5225 target_signal_to_name (stop_info));
5226 annotate_signal_name_end ();
5227 ui_out_text (uiout, ", ");
5228 annotate_signal_string ();
5229 ui_out_field_string (uiout, "signal-meaning",
5230 target_signal_to_string (stop_info));
5231 annotate_signal_string_end ();
5232 }
8b93c638 5233 ui_out_text (uiout, ".\n");
11cf8741 5234 break;
b2175913
MS
5235 case NO_HISTORY:
5236 /* Reverse execution: target ran out of history info. */
5237 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
5238 break;
11cf8741 5239 default:
8e65ff28 5240 internal_error (__FILE__, __LINE__,
e2e0b3e5 5241 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
5242 break;
5243 }
5244}
c906108c 5245\f
43ff13b4 5246
c906108c
SS
5247/* Here to return control to GDB when the inferior stops for real.
5248 Print appropriate messages, remove breakpoints, give terminal our modes.
5249
5250 STOP_PRINT_FRAME nonzero means print the executing frame
5251 (pc, function, args, file, line number and line text).
5252 BREAKPOINTS_FAILED nonzero means stop was due to error
5253 attempting to insert breakpoints. */
5254
5255void
96baa820 5256normal_stop (void)
c906108c 5257{
73b65bb0
DJ
5258 struct target_waitstatus last;
5259 ptid_t last_ptid;
29f49a6a 5260 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5261
5262 get_last_target_status (&last_ptid, &last);
5263
29f49a6a
PA
5264 /* If an exception is thrown from this point on, make sure to
5265 propagate GDB's knowledge of the executing state to the
5266 frontend/user running state. A QUIT is an easy exception to see
5267 here, so do this before any filtered output. */
c35b1492
PA
5268 if (!non_stop)
5269 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5270 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5271 && last.kind != TARGET_WAITKIND_EXITED)
5272 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5273
4f8d22e3
PA
5274 /* In non-stop mode, we don't want GDB to switch threads behind the
5275 user's back, to avoid races where the user is typing a command to
5276 apply to thread x, but GDB switches to thread y before the user
5277 finishes entering the command. */
5278
c906108c
SS
5279 /* As with the notification of thread events, we want to delay
5280 notifying the user that we've switched thread context until
5281 the inferior actually stops.
5282
73b65bb0
DJ
5283 There's no point in saying anything if the inferior has exited.
5284 Note that SIGNALLED here means "exited with a signal", not
5285 "received a signal". */
4f8d22e3
PA
5286 if (!non_stop
5287 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5288 && target_has_execution
5289 && last.kind != TARGET_WAITKIND_SIGNALLED
5290 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
5291 {
5292 target_terminal_ours_for_output ();
a3f17187 5293 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5294 target_pid_to_str (inferior_ptid));
b8fa951a 5295 annotate_thread_changed ();
39f77062 5296 previous_inferior_ptid = inferior_ptid;
c906108c 5297 }
c906108c 5298
74960c60 5299 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5300 {
5301 if (remove_breakpoints ())
5302 {
5303 target_terminal_ours_for_output ();
a3f17187
AC
5304 printf_filtered (_("\
5305Cannot remove breakpoints because program is no longer writable.\n\
a3f17187 5306Further execution is probably impossible.\n"));
c906108c
SS
5307 }
5308 }
c906108c 5309
c906108c
SS
5310 /* If an auto-display called a function and that got a signal,
5311 delete that auto-display to avoid an infinite recursion. */
5312
5313 if (stopped_by_random_signal)
5314 disable_current_display ();
5315
5316 /* Don't print a message if in the middle of doing a "step n"
5317 operation for n > 1 */
af679fd0
PA
5318 if (target_has_execution
5319 && last.kind != TARGET_WAITKIND_SIGNALLED
5320 && last.kind != TARGET_WAITKIND_EXITED
5321 && inferior_thread ()->step_multi
414c69f7 5322 && inferior_thread ()->stop_step)
c906108c
SS
5323 goto done;
5324
5325 target_terminal_ours ();
5326
7abfe014
DJ
5327 /* Set the current source location. This will also happen if we
5328 display the frame below, but the current SAL will be incorrect
5329 during a user hook-stop function. */
d729566a 5330 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5331 set_current_sal_from_frame (get_current_frame (), 1);
5332
dd7e2d2b
PA
5333 /* Let the user/frontend see the threads as stopped. */
5334 do_cleanups (old_chain);
5335
5336 /* Look up the hook_stop and run it (CLI internally handles problem
5337 of stop_command's pre-hook not existing). */
5338 if (stop_command)
5339 catch_errors (hook_stop_stub, stop_command,
5340 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5341
d729566a 5342 if (!has_stack_frames ())
d51fd4c8 5343 goto done;
c906108c 5344
32400beb
PA
5345 if (last.kind == TARGET_WAITKIND_SIGNALLED
5346 || last.kind == TARGET_WAITKIND_EXITED)
5347 goto done;
5348
c906108c
SS
5349 /* Select innermost stack frame - i.e., current frame is frame 0,
5350 and current location is based on that.
5351 Don't do this on return from a stack dummy routine,
5352 or if the program has exited. */
5353
5354 if (!stop_stack_dummy)
5355 {
0f7d239c 5356 select_frame (get_current_frame ());
c906108c
SS
5357
5358 /* Print current location without a level number, if
c5aa993b
JM
5359 we have changed functions or hit a breakpoint.
5360 Print source line if we have one.
5361 bpstat_print() contains the logic deciding in detail
5362 what to print, based on the event(s) that just occurred. */
c906108c 5363
d01a8610
AS
5364 /* If --batch-silent is enabled then there's no need to print the current
5365 source location, and to try risks causing an error message about
5366 missing source files. */
5367 if (stop_print_frame && !batch_silent)
c906108c
SS
5368 {
5369 int bpstat_ret;
5370 int source_flag;
917317f4 5371 int do_frame_printing = 1;
347bddb7 5372 struct thread_info *tp = inferior_thread ();
c906108c 5373
347bddb7 5374 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
5375 switch (bpstat_ret)
5376 {
5377 case PRINT_UNKNOWN:
b0f4b84b
DJ
5378 /* If we had hit a shared library event breakpoint,
5379 bpstat_print would print out this message. If we hit
5380 an OS-level shared library event, do the same
5381 thing. */
5382 if (last.kind == TARGET_WAITKIND_LOADED)
5383 {
5384 printf_filtered (_("Stopped due to shared library event\n"));
5385 source_flag = SRC_LINE; /* something bogus */
5386 do_frame_printing = 0;
5387 break;
5388 }
5389
aa0cd9c1 5390 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5391 (or should) carry around the function and does (or
5392 should) use that when doing a frame comparison. */
414c69f7 5393 if (tp->stop_step
347bddb7 5394 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 5395 get_frame_id (get_current_frame ()))
917317f4 5396 && step_start_function == find_pc_function (stop_pc))
488f131b 5397 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 5398 else
488f131b 5399 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
5400 break;
5401 case PRINT_SRC_AND_LOC:
488f131b 5402 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
5403 break;
5404 case PRINT_SRC_ONLY:
c5394b80 5405 source_flag = SRC_LINE;
917317f4
JM
5406 break;
5407 case PRINT_NOTHING:
488f131b 5408 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
5409 do_frame_printing = 0;
5410 break;
5411 default:
e2e0b3e5 5412 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 5413 }
c906108c
SS
5414
5415 /* The behavior of this routine with respect to the source
5416 flag is:
c5394b80
JM
5417 SRC_LINE: Print only source line
5418 LOCATION: Print only location
5419 SRC_AND_LOC: Print location and source line */
917317f4 5420 if (do_frame_printing)
b04f3ab4 5421 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
5422
5423 /* Display the auto-display expressions. */
5424 do_displays ();
5425 }
5426 }
5427
5428 /* Save the function value return registers, if we care.
5429 We might be about to restore their previous contents. */
32400beb 5430 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
5431 {
5432 /* This should not be necessary. */
5433 if (stop_registers)
5434 regcache_xfree (stop_registers);
5435
5436 /* NB: The copy goes through to the target picking up the value of
5437 all the registers. */
5438 stop_registers = regcache_dup (get_current_regcache ());
5439 }
c906108c 5440
aa7d318d 5441 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 5442 {
b89667eb
DE
5443 /* Pop the empty frame that contains the stack dummy.
5444 This also restores inferior state prior to the call
5445 (struct inferior_thread_state). */
5446 struct frame_info *frame = get_current_frame ();
5447 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5448 frame_pop (frame);
5449 /* frame_pop() calls reinit_frame_cache as the last thing it does
5450 which means there's currently no selected frame. We don't need
5451 to re-establish a selected frame if the dummy call returns normally,
5452 that will be done by restore_inferior_status. However, we do have
5453 to handle the case where the dummy call is returning after being
5454 stopped (e.g. the dummy call previously hit a breakpoint). We
5455 can't know which case we have so just always re-establish a
5456 selected frame here. */
0f7d239c 5457 select_frame (get_current_frame ());
c906108c
SS
5458 }
5459
c906108c
SS
5460done:
5461 annotate_stopped ();
41d2bdb4
PA
5462
5463 /* Suppress the stop observer if we're in the middle of:
5464
5465 - a step n (n > 1), as there still more steps to be done.
5466
5467 - a "finish" command, as the observer will be called in
5468 finish_command_continuation, so it can include the inferior
5469 function's return value.
5470
5471 - calling an inferior function, as we pretend we inferior didn't
5472 run at all. The return value of the call is handled by the
5473 expression evaluator, through call_function_by_hand. */
5474
5475 if (!target_has_execution
5476 || last.kind == TARGET_WAITKIND_SIGNALLED
5477 || last.kind == TARGET_WAITKIND_EXITED
5478 || (!inferior_thread ()->step_multi
5479 && !(inferior_thread ()->stop_bpstat
c5a4d20b
PA
5480 && inferior_thread ()->proceed_to_finish)
5481 && !inferior_thread ()->in_infcall))
347bddb7
PA
5482 {
5483 if (!ptid_equal (inferior_ptid, null_ptid))
1d33d6ba
VP
5484 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
5485 stop_print_frame);
347bddb7 5486 else
1d33d6ba 5487 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 5488 }
347bddb7 5489
48844aa6
PA
5490 if (target_has_execution)
5491 {
5492 if (last.kind != TARGET_WAITKIND_SIGNALLED
5493 && last.kind != TARGET_WAITKIND_EXITED)
5494 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5495 Delete any breakpoint that is to be deleted at the next stop. */
5496 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
94cc34af 5497 }
6c95b8df
PA
5498
5499 /* Try to get rid of automatically added inferiors that are no
5500 longer needed. Keeping those around slows down things linearly.
5501 Note that this never removes the current inferior. */
5502 prune_inferiors ();
c906108c
SS
5503}
5504
5505static int
96baa820 5506hook_stop_stub (void *cmd)
c906108c 5507{
5913bcb0 5508 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
5509 return (0);
5510}
5511\f
c5aa993b 5512int
96baa820 5513signal_stop_state (int signo)
c906108c 5514{
d6b48e9c 5515 return signal_stop[signo];
c906108c
SS
5516}
5517
c5aa993b 5518int
96baa820 5519signal_print_state (int signo)
c906108c
SS
5520{
5521 return signal_print[signo];
5522}
5523
c5aa993b 5524int
96baa820 5525signal_pass_state (int signo)
c906108c
SS
5526{
5527 return signal_program[signo];
5528}
5529
488f131b 5530int
7bda5e4a 5531signal_stop_update (int signo, int state)
d4f3574e
SS
5532{
5533 int ret = signal_stop[signo];
5534 signal_stop[signo] = state;
5535 return ret;
5536}
5537
488f131b 5538int
7bda5e4a 5539signal_print_update (int signo, int state)
d4f3574e
SS
5540{
5541 int ret = signal_print[signo];
5542 signal_print[signo] = state;
5543 return ret;
5544}
5545
488f131b 5546int
7bda5e4a 5547signal_pass_update (int signo, int state)
d4f3574e
SS
5548{
5549 int ret = signal_program[signo];
5550 signal_program[signo] = state;
5551 return ret;
5552}
5553
c906108c 5554static void
96baa820 5555sig_print_header (void)
c906108c 5556{
a3f17187
AC
5557 printf_filtered (_("\
5558Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
5559}
5560
5561static void
96baa820 5562sig_print_info (enum target_signal oursig)
c906108c 5563{
54363045 5564 const char *name = target_signal_to_name (oursig);
c906108c 5565 int name_padding = 13 - strlen (name);
96baa820 5566
c906108c
SS
5567 if (name_padding <= 0)
5568 name_padding = 0;
5569
5570 printf_filtered ("%s", name);
488f131b 5571 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
5572 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
5573 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
5574 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
5575 printf_filtered ("%s\n", target_signal_to_string (oursig));
5576}
5577
5578/* Specify how various signals in the inferior should be handled. */
5579
5580static void
96baa820 5581handle_command (char *args, int from_tty)
c906108c
SS
5582{
5583 char **argv;
5584 int digits, wordlen;
5585 int sigfirst, signum, siglast;
5586 enum target_signal oursig;
5587 int allsigs;
5588 int nsigs;
5589 unsigned char *sigs;
5590 struct cleanup *old_chain;
5591
5592 if (args == NULL)
5593 {
e2e0b3e5 5594 error_no_arg (_("signal to handle"));
c906108c
SS
5595 }
5596
5597 /* Allocate and zero an array of flags for which signals to handle. */
5598
5599 nsigs = (int) TARGET_SIGNAL_LAST;
5600 sigs = (unsigned char *) alloca (nsigs);
5601 memset (sigs, 0, nsigs);
5602
5603 /* Break the command line up into args. */
5604
d1a41061 5605 argv = gdb_buildargv (args);
7a292a7a 5606 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5607
5608 /* Walk through the args, looking for signal oursigs, signal names, and
5609 actions. Signal numbers and signal names may be interspersed with
5610 actions, with the actions being performed for all signals cumulatively
5611 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
5612
5613 while (*argv != NULL)
5614 {
5615 wordlen = strlen (*argv);
5616 for (digits = 0; isdigit ((*argv)[digits]); digits++)
5617 {;
5618 }
5619 allsigs = 0;
5620 sigfirst = siglast = -1;
5621
5622 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5623 {
5624 /* Apply action to all signals except those used by the
5625 debugger. Silently skip those. */
5626 allsigs = 1;
5627 sigfirst = 0;
5628 siglast = nsigs - 1;
5629 }
5630 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5631 {
5632 SET_SIGS (nsigs, sigs, signal_stop);
5633 SET_SIGS (nsigs, sigs, signal_print);
5634 }
5635 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5636 {
5637 UNSET_SIGS (nsigs, sigs, signal_program);
5638 }
5639 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5640 {
5641 SET_SIGS (nsigs, sigs, signal_print);
5642 }
5643 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5644 {
5645 SET_SIGS (nsigs, sigs, signal_program);
5646 }
5647 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5648 {
5649 UNSET_SIGS (nsigs, sigs, signal_stop);
5650 }
5651 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5652 {
5653 SET_SIGS (nsigs, sigs, signal_program);
5654 }
5655 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5656 {
5657 UNSET_SIGS (nsigs, sigs, signal_print);
5658 UNSET_SIGS (nsigs, sigs, signal_stop);
5659 }
5660 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5661 {
5662 UNSET_SIGS (nsigs, sigs, signal_program);
5663 }
5664 else if (digits > 0)
5665 {
5666 /* It is numeric. The numeric signal refers to our own
5667 internal signal numbering from target.h, not to host/target
5668 signal number. This is a feature; users really should be
5669 using symbolic names anyway, and the common ones like
5670 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5671
5672 sigfirst = siglast = (int)
5673 target_signal_from_command (atoi (*argv));
5674 if ((*argv)[digits] == '-')
5675 {
5676 siglast = (int)
5677 target_signal_from_command (atoi ((*argv) + digits + 1));
5678 }
5679 if (sigfirst > siglast)
5680 {
5681 /* Bet he didn't figure we'd think of this case... */
5682 signum = sigfirst;
5683 sigfirst = siglast;
5684 siglast = signum;
5685 }
5686 }
5687 else
5688 {
5689 oursig = target_signal_from_name (*argv);
5690 if (oursig != TARGET_SIGNAL_UNKNOWN)
5691 {
5692 sigfirst = siglast = (int) oursig;
5693 }
5694 else
5695 {
5696 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 5697 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
5698 }
5699 }
5700
5701 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 5702 which signals to apply actions to. */
c906108c
SS
5703
5704 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
5705 {
5706 switch ((enum target_signal) signum)
5707 {
5708 case TARGET_SIGNAL_TRAP:
5709 case TARGET_SIGNAL_INT:
5710 if (!allsigs && !sigs[signum])
5711 {
9e2f0ad4
HZ
5712 if (query (_("%s is used by the debugger.\n\
5713Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
5714 {
5715 sigs[signum] = 1;
5716 }
5717 else
5718 {
a3f17187 5719 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
5720 gdb_flush (gdb_stdout);
5721 }
5722 }
5723 break;
5724 case TARGET_SIGNAL_0:
5725 case TARGET_SIGNAL_DEFAULT:
5726 case TARGET_SIGNAL_UNKNOWN:
5727 /* Make sure that "all" doesn't print these. */
5728 break;
5729 default:
5730 sigs[signum] = 1;
5731 break;
5732 }
5733 }
5734
5735 argv++;
5736 }
5737
3a031f65
PA
5738 for (signum = 0; signum < nsigs; signum++)
5739 if (sigs[signum])
5740 {
5741 target_notice_signals (inferior_ptid);
c906108c 5742
3a031f65
PA
5743 if (from_tty)
5744 {
5745 /* Show the results. */
5746 sig_print_header ();
5747 for (; signum < nsigs; signum++)
5748 if (sigs[signum])
5749 sig_print_info (signum);
5750 }
5751
5752 break;
5753 }
c906108c
SS
5754
5755 do_cleanups (old_chain);
5756}
5757
5758static void
96baa820 5759xdb_handle_command (char *args, int from_tty)
c906108c
SS
5760{
5761 char **argv;
5762 struct cleanup *old_chain;
5763
d1a41061
PP
5764 if (args == NULL)
5765 error_no_arg (_("xdb command"));
5766
c906108c
SS
5767 /* Break the command line up into args. */
5768
d1a41061 5769 argv = gdb_buildargv (args);
7a292a7a 5770 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5771 if (argv[1] != (char *) NULL)
5772 {
5773 char *argBuf;
5774 int bufLen;
5775
5776 bufLen = strlen (argv[0]) + 20;
5777 argBuf = (char *) xmalloc (bufLen);
5778 if (argBuf)
5779 {
5780 int validFlag = 1;
5781 enum target_signal oursig;
5782
5783 oursig = target_signal_from_name (argv[0]);
5784 memset (argBuf, 0, bufLen);
5785 if (strcmp (argv[1], "Q") == 0)
5786 sprintf (argBuf, "%s %s", argv[0], "noprint");
5787 else
5788 {
5789 if (strcmp (argv[1], "s") == 0)
5790 {
5791 if (!signal_stop[oursig])
5792 sprintf (argBuf, "%s %s", argv[0], "stop");
5793 else
5794 sprintf (argBuf, "%s %s", argv[0], "nostop");
5795 }
5796 else if (strcmp (argv[1], "i") == 0)
5797 {
5798 if (!signal_program[oursig])
5799 sprintf (argBuf, "%s %s", argv[0], "pass");
5800 else
5801 sprintf (argBuf, "%s %s", argv[0], "nopass");
5802 }
5803 else if (strcmp (argv[1], "r") == 0)
5804 {
5805 if (!signal_print[oursig])
5806 sprintf (argBuf, "%s %s", argv[0], "print");
5807 else
5808 sprintf (argBuf, "%s %s", argv[0], "noprint");
5809 }
5810 else
5811 validFlag = 0;
5812 }
5813 if (validFlag)
5814 handle_command (argBuf, from_tty);
5815 else
a3f17187 5816 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 5817 if (argBuf)
b8c9b27d 5818 xfree (argBuf);
c906108c
SS
5819 }
5820 }
5821 do_cleanups (old_chain);
5822}
5823
5824/* Print current contents of the tables set by the handle command.
5825 It is possible we should just be printing signals actually used
5826 by the current target (but for things to work right when switching
5827 targets, all signals should be in the signal tables). */
5828
5829static void
96baa820 5830signals_info (char *signum_exp, int from_tty)
c906108c
SS
5831{
5832 enum target_signal oursig;
5833 sig_print_header ();
5834
5835 if (signum_exp)
5836 {
5837 /* First see if this is a symbol name. */
5838 oursig = target_signal_from_name (signum_exp);
5839 if (oursig == TARGET_SIGNAL_UNKNOWN)
5840 {
5841 /* No, try numeric. */
5842 oursig =
bb518678 5843 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
5844 }
5845 sig_print_info (oursig);
5846 return;
5847 }
5848
5849 printf_filtered ("\n");
5850 /* These ugly casts brought to you by the native VAX compiler. */
5851 for (oursig = TARGET_SIGNAL_FIRST;
5852 (int) oursig < (int) TARGET_SIGNAL_LAST;
5853 oursig = (enum target_signal) ((int) oursig + 1))
5854 {
5855 QUIT;
5856
5857 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 5858 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
5859 sig_print_info (oursig);
5860 }
5861
a3f17187 5862 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c 5863}
4aa995e1
PA
5864
5865/* The $_siginfo convenience variable is a bit special. We don't know
5866 for sure the type of the value until we actually have a chance to
5867 fetch the data. The type can change depending on gdbarch, so it it
5868 also dependent on which thread you have selected.
5869
5870 1. making $_siginfo be an internalvar that creates a new value on
5871 access.
5872
5873 2. making the value of $_siginfo be an lval_computed value. */
5874
5875/* This function implements the lval_computed support for reading a
5876 $_siginfo value. */
5877
5878static void
5879siginfo_value_read (struct value *v)
5880{
5881 LONGEST transferred;
5882
5883 transferred =
5884 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5885 NULL,
5886 value_contents_all_raw (v),
5887 value_offset (v),
5888 TYPE_LENGTH (value_type (v)));
5889
5890 if (transferred != TYPE_LENGTH (value_type (v)))
5891 error (_("Unable to read siginfo"));
5892}
5893
5894/* This function implements the lval_computed support for writing a
5895 $_siginfo value. */
5896
5897static void
5898siginfo_value_write (struct value *v, struct value *fromval)
5899{
5900 LONGEST transferred;
5901
5902 transferred = target_write (&current_target,
5903 TARGET_OBJECT_SIGNAL_INFO,
5904 NULL,
5905 value_contents_all_raw (fromval),
5906 value_offset (v),
5907 TYPE_LENGTH (value_type (fromval)));
5908
5909 if (transferred != TYPE_LENGTH (value_type (fromval)))
5910 error (_("Unable to write siginfo"));
5911}
5912
5913static struct lval_funcs siginfo_value_funcs =
5914 {
5915 siginfo_value_read,
5916 siginfo_value_write
5917 };
5918
5919/* Return a new value with the correct type for the siginfo object of
78267919
UW
5920 the current thread using architecture GDBARCH. Return a void value
5921 if there's no object available. */
4aa995e1 5922
2c0b251b 5923static struct value *
78267919 5924siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 5925{
4aa995e1 5926 if (target_has_stack
78267919
UW
5927 && !ptid_equal (inferior_ptid, null_ptid)
5928 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 5929 {
78267919
UW
5930 struct type *type = gdbarch_get_siginfo_type (gdbarch);
5931 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
5932 }
5933
78267919 5934 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
5935}
5936
c906108c 5937\f
b89667eb
DE
5938/* Inferior thread state.
5939 These are details related to the inferior itself, and don't include
5940 things like what frame the user had selected or what gdb was doing
5941 with the target at the time.
5942 For inferior function calls these are things we want to restore
5943 regardless of whether the function call successfully completes
5944 or the dummy frame has to be manually popped. */
5945
5946struct inferior_thread_state
7a292a7a
SS
5947{
5948 enum target_signal stop_signal;
5949 CORE_ADDR stop_pc;
b89667eb
DE
5950 struct regcache *registers;
5951};
5952
5953struct inferior_thread_state *
5954save_inferior_thread_state (void)
5955{
5956 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5957 struct thread_info *tp = inferior_thread ();
5958
5959 inf_state->stop_signal = tp->stop_signal;
5960 inf_state->stop_pc = stop_pc;
5961
5962 inf_state->registers = regcache_dup (get_current_regcache ());
5963
5964 return inf_state;
5965}
5966
5967/* Restore inferior session state to INF_STATE. */
5968
5969void
5970restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5971{
5972 struct thread_info *tp = inferior_thread ();
5973
5974 tp->stop_signal = inf_state->stop_signal;
5975 stop_pc = inf_state->stop_pc;
5976
5977 /* The inferior can be gone if the user types "print exit(0)"
5978 (and perhaps other times). */
5979 if (target_has_execution)
5980 /* NB: The register write goes through to the target. */
5981 regcache_cpy (get_current_regcache (), inf_state->registers);
5982 regcache_xfree (inf_state->registers);
5983 xfree (inf_state);
5984}
5985
5986static void
5987do_restore_inferior_thread_state_cleanup (void *state)
5988{
5989 restore_inferior_thread_state (state);
5990}
5991
5992struct cleanup *
5993make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5994{
5995 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5996}
5997
5998void
5999discard_inferior_thread_state (struct inferior_thread_state *inf_state)
6000{
6001 regcache_xfree (inf_state->registers);
6002 xfree (inf_state);
6003}
6004
6005struct regcache *
6006get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
6007{
6008 return inf_state->registers;
6009}
6010
6011/* Session related state for inferior function calls.
6012 These are the additional bits of state that need to be restored
6013 when an inferior function call successfully completes. */
6014
6015struct inferior_status
6016{
7a292a7a
SS
6017 bpstat stop_bpstat;
6018 int stop_step;
aa7d318d 6019 enum stop_stack_kind stop_stack_dummy;
7a292a7a 6020 int stopped_by_random_signal;
ca67fcb8 6021 int stepping_over_breakpoint;
7a292a7a
SS
6022 CORE_ADDR step_range_start;
6023 CORE_ADDR step_range_end;
aa0cd9c1 6024 struct frame_id step_frame_id;
edb3359d 6025 struct frame_id step_stack_frame_id;
5fbbeb29 6026 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
6027 CORE_ADDR step_resume_break_address;
6028 int stop_after_trap;
c0236d92 6029 int stop_soon;
7a292a7a 6030
b89667eb 6031 /* ID if the selected frame when the inferior function call was made. */
101dcfbe
AC
6032 struct frame_id selected_frame_id;
6033
7a292a7a 6034 int proceed_to_finish;
c5a4d20b 6035 int in_infcall;
7a292a7a
SS
6036};
6037
c906108c 6038/* Save all of the information associated with the inferior<==>gdb
b89667eb 6039 connection. */
c906108c 6040
7a292a7a 6041struct inferior_status *
b89667eb 6042save_inferior_status (void)
c906108c 6043{
72cec141 6044 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 6045 struct thread_info *tp = inferior_thread ();
d6b48e9c 6046 struct inferior *inf = current_inferior ();
7a292a7a 6047
414c69f7 6048 inf_status->stop_step = tp->stop_step;
c906108c
SS
6049 inf_status->stop_stack_dummy = stop_stack_dummy;
6050 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
6051 inf_status->stepping_over_breakpoint = tp->trap_expected;
6052 inf_status->step_range_start = tp->step_range_start;
6053 inf_status->step_range_end = tp->step_range_end;
6054 inf_status->step_frame_id = tp->step_frame_id;
edb3359d 6055 inf_status->step_stack_frame_id = tp->step_stack_frame_id;
078130d0 6056 inf_status->step_over_calls = tp->step_over_calls;
c906108c 6057 inf_status->stop_after_trap = stop_after_trap;
d6b48e9c 6058 inf_status->stop_soon = inf->stop_soon;
c906108c
SS
6059 /* Save original bpstat chain here; replace it with copy of chain.
6060 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
6061 hand them back the original chain when restore_inferior_status is
6062 called. */
347bddb7
PA
6063 inf_status->stop_bpstat = tp->stop_bpstat;
6064 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
32400beb 6065 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5a4d20b 6066 inf_status->in_infcall = tp->in_infcall;
c5aa993b 6067
206415a3 6068 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6069
7a292a7a 6070 return inf_status;
c906108c
SS
6071}
6072
c906108c 6073static int
96baa820 6074restore_selected_frame (void *args)
c906108c 6075{
488f131b 6076 struct frame_id *fid = (struct frame_id *) args;
c906108c 6077 struct frame_info *frame;
c906108c 6078
101dcfbe 6079 frame = frame_find_by_id (*fid);
c906108c 6080
aa0cd9c1
AC
6081 /* If inf_status->selected_frame_id is NULL, there was no previously
6082 selected frame. */
101dcfbe 6083 if (frame == NULL)
c906108c 6084 {
8a3fe4f8 6085 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6086 return 0;
6087 }
6088
0f7d239c 6089 select_frame (frame);
c906108c
SS
6090
6091 return (1);
6092}
6093
b89667eb
DE
6094/* Restore inferior session state to INF_STATUS. */
6095
c906108c 6096void
96baa820 6097restore_inferior_status (struct inferior_status *inf_status)
c906108c 6098{
4e1c45ea 6099 struct thread_info *tp = inferior_thread ();
d6b48e9c 6100 struct inferior *inf = current_inferior ();
4e1c45ea 6101
414c69f7 6102 tp->stop_step = inf_status->stop_step;
c906108c
SS
6103 stop_stack_dummy = inf_status->stop_stack_dummy;
6104 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
6105 tp->trap_expected = inf_status->stepping_over_breakpoint;
6106 tp->step_range_start = inf_status->step_range_start;
6107 tp->step_range_end = inf_status->step_range_end;
6108 tp->step_frame_id = inf_status->step_frame_id;
edb3359d 6109 tp->step_stack_frame_id = inf_status->step_stack_frame_id;
078130d0 6110 tp->step_over_calls = inf_status->step_over_calls;
c906108c 6111 stop_after_trap = inf_status->stop_after_trap;
d6b48e9c 6112 inf->stop_soon = inf_status->stop_soon;
347bddb7
PA
6113 bpstat_clear (&tp->stop_bpstat);
6114 tp->stop_bpstat = inf_status->stop_bpstat;
b89667eb 6115 inf_status->stop_bpstat = NULL;
32400beb 6116 tp->proceed_to_finish = inf_status->proceed_to_finish;
c5a4d20b 6117 tp->in_infcall = inf_status->in_infcall;
c906108c 6118
b89667eb 6119 if (target_has_stack)
c906108c 6120 {
c906108c 6121 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6122 walking the stack might encounter a garbage pointer and
6123 error() trying to dereference it. */
488f131b
JB
6124 if (catch_errors
6125 (restore_selected_frame, &inf_status->selected_frame_id,
6126 "Unable to restore previously selected frame:\n",
6127 RETURN_MASK_ERROR) == 0)
c906108c
SS
6128 /* Error in restoring the selected frame. Select the innermost
6129 frame. */
0f7d239c 6130 select_frame (get_current_frame ());
c906108c 6131 }
c906108c 6132
72cec141 6133 xfree (inf_status);
7a292a7a 6134}
c906108c 6135
74b7792f
AC
6136static void
6137do_restore_inferior_status_cleanup (void *sts)
6138{
6139 restore_inferior_status (sts);
6140}
6141
6142struct cleanup *
6143make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
6144{
6145 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
6146}
6147
c906108c 6148void
96baa820 6149discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
6150{
6151 /* See save_inferior_status for info on stop_bpstat. */
6152 bpstat_clear (&inf_status->stop_bpstat);
72cec141 6153 xfree (inf_status);
7a292a7a 6154}
b89667eb 6155\f
47932f85 6156int
3a3e9ee3 6157inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6158{
6159 struct target_waitstatus last;
6160 ptid_t last_ptid;
6161
6162 get_last_target_status (&last_ptid, &last);
6163
6164 if (last.kind != TARGET_WAITKIND_FORKED)
6165 return 0;
6166
3a3e9ee3 6167 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6168 return 0;
6169
6170 *child_pid = last.value.related_pid;
6171 return 1;
6172}
6173
6174int
3a3e9ee3 6175inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6176{
6177 struct target_waitstatus last;
6178 ptid_t last_ptid;
6179
6180 get_last_target_status (&last_ptid, &last);
6181
6182 if (last.kind != TARGET_WAITKIND_VFORKED)
6183 return 0;
6184
3a3e9ee3 6185 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6186 return 0;
6187
6188 *child_pid = last.value.related_pid;
6189 return 1;
6190}
6191
6192int
3a3e9ee3 6193inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
6194{
6195 struct target_waitstatus last;
6196 ptid_t last_ptid;
6197
6198 get_last_target_status (&last_ptid, &last);
6199
6200 if (last.kind != TARGET_WAITKIND_EXECD)
6201 return 0;
6202
3a3e9ee3 6203 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6204 return 0;
6205
6206 *execd_pathname = xstrdup (last.value.execd_pathname);
6207 return 1;
6208}
6209
a96d9b2e
SDJ
6210int
6211inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6212{
6213 struct target_waitstatus last;
6214 ptid_t last_ptid;
6215
6216 get_last_target_status (&last_ptid, &last);
6217
6218 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6219 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6220 return 0;
6221
6222 if (!ptid_equal (last_ptid, pid))
6223 return 0;
6224
6225 *syscall_number = last.value.syscall_number;
6226 return 1;
6227}
6228
ca6724c1
KB
6229/* Oft used ptids */
6230ptid_t null_ptid;
6231ptid_t minus_one_ptid;
6232
6233/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 6234
ca6724c1
KB
6235ptid_t
6236ptid_build (int pid, long lwp, long tid)
6237{
6238 ptid_t ptid;
6239
6240 ptid.pid = pid;
6241 ptid.lwp = lwp;
6242 ptid.tid = tid;
6243 return ptid;
6244}
6245
6246/* Create a ptid from just a pid. */
6247
6248ptid_t
6249pid_to_ptid (int pid)
6250{
6251 return ptid_build (pid, 0, 0);
6252}
6253
6254/* Fetch the pid (process id) component from a ptid. */
6255
6256int
6257ptid_get_pid (ptid_t ptid)
6258{
6259 return ptid.pid;
6260}
6261
6262/* Fetch the lwp (lightweight process) component from a ptid. */
6263
6264long
6265ptid_get_lwp (ptid_t ptid)
6266{
6267 return ptid.lwp;
6268}
6269
6270/* Fetch the tid (thread id) component from a ptid. */
6271
6272long
6273ptid_get_tid (ptid_t ptid)
6274{
6275 return ptid.tid;
6276}
6277
6278/* ptid_equal() is used to test equality of two ptids. */
6279
6280int
6281ptid_equal (ptid_t ptid1, ptid_t ptid2)
6282{
6283 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 6284 && ptid1.tid == ptid2.tid);
ca6724c1
KB
6285}
6286
252fbfc8
PA
6287/* Returns true if PTID represents a process. */
6288
6289int
6290ptid_is_pid (ptid_t ptid)
6291{
6292 if (ptid_equal (minus_one_ptid, ptid))
6293 return 0;
6294 if (ptid_equal (null_ptid, ptid))
6295 return 0;
6296
6297 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6298}
6299
0723dbf5
PA
6300int
6301ptid_match (ptid_t ptid, ptid_t filter)
6302{
6303 /* Since both parameters have the same type, prevent easy mistakes
6304 from happening. */
6305 gdb_assert (!ptid_equal (ptid, minus_one_ptid)
5f25d77d 6306 && !ptid_equal (ptid, null_ptid));
0723dbf5
PA
6307
6308 if (ptid_equal (filter, minus_one_ptid))
6309 return 1;
6310 if (ptid_is_pid (filter)
6311 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6312 return 1;
6313 else if (ptid_equal (ptid, filter))
6314 return 1;
6315
6316 return 0;
6317}
6318
ca6724c1
KB
6319/* restore_inferior_ptid() will be used by the cleanup machinery
6320 to restore the inferior_ptid value saved in a call to
6321 save_inferior_ptid(). */
ce696e05
KB
6322
6323static void
6324restore_inferior_ptid (void *arg)
6325{
6326 ptid_t *saved_ptid_ptr = arg;
6327 inferior_ptid = *saved_ptid_ptr;
6328 xfree (arg);
6329}
6330
6331/* Save the value of inferior_ptid so that it may be restored by a
6332 later call to do_cleanups(). Returns the struct cleanup pointer
6333 needed for later doing the cleanup. */
6334
6335struct cleanup *
6336save_inferior_ptid (void)
6337{
6338 ptid_t *saved_ptid_ptr;
6339
6340 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6341 *saved_ptid_ptr = inferior_ptid;
6342 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6343}
c5aa993b 6344\f
488f131b 6345
b2175913
MS
6346/* User interface for reverse debugging:
6347 Set exec-direction / show exec-direction commands
6348 (returns error unless target implements to_set_exec_direction method). */
6349
6350enum exec_direction_kind execution_direction = EXEC_FORWARD;
6351static const char exec_forward[] = "forward";
6352static const char exec_reverse[] = "reverse";
6353static const char *exec_direction = exec_forward;
6354static const char *exec_direction_names[] = {
6355 exec_forward,
6356 exec_reverse,
6357 NULL
6358};
6359
6360static void
6361set_exec_direction_func (char *args, int from_tty,
6362 struct cmd_list_element *cmd)
6363{
6364 if (target_can_execute_reverse)
6365 {
6366 if (!strcmp (exec_direction, exec_forward))
6367 execution_direction = EXEC_FORWARD;
6368 else if (!strcmp (exec_direction, exec_reverse))
6369 execution_direction = EXEC_REVERSE;
6370 }
6371}
6372
6373static void
6374show_exec_direction_func (struct ui_file *out, int from_tty,
6375 struct cmd_list_element *cmd, const char *value)
6376{
6377 switch (execution_direction) {
6378 case EXEC_FORWARD:
6379 fprintf_filtered (out, _("Forward.\n"));
6380 break;
6381 case EXEC_REVERSE:
6382 fprintf_filtered (out, _("Reverse.\n"));
6383 break;
6384 case EXEC_ERROR:
6385 default:
6386 fprintf_filtered (out,
6387 _("Forward (target `%s' does not support exec-direction).\n"),
6388 target_shortname);
6389 break;
6390 }
6391}
6392
6393/* User interface for non-stop mode. */
6394
ad52ddc6
PA
6395int non_stop = 0;
6396static int non_stop_1 = 0;
6397
6398static void
6399set_non_stop (char *args, int from_tty,
6400 struct cmd_list_element *c)
6401{
6402 if (target_has_execution)
6403 {
6404 non_stop_1 = non_stop;
6405 error (_("Cannot change this setting while the inferior is running."));
6406 }
6407
6408 non_stop = non_stop_1;
6409}
6410
6411static void
6412show_non_stop (struct ui_file *file, int from_tty,
6413 struct cmd_list_element *c, const char *value)
6414{
6415 fprintf_filtered (file,
6416 _("Controlling the inferior in non-stop mode is %s.\n"),
6417 value);
6418}
6419
d4db2f36
PA
6420static void
6421show_schedule_multiple (struct ui_file *file, int from_tty,
6422 struct cmd_list_element *c, const char *value)
6423{
6424 fprintf_filtered (file, _("\
6425Resuming the execution of threads of all processes is %s.\n"), value);
6426}
ad52ddc6 6427
c906108c 6428void
96baa820 6429_initialize_infrun (void)
c906108c 6430{
52f0bd74
AC
6431 int i;
6432 int numsigs;
c906108c
SS
6433 struct cmd_list_element *c;
6434
1bedd215
AC
6435 add_info ("signals", signals_info, _("\
6436What debugger does when program gets various signals.\n\
6437Specify a signal as argument to print info on that signal only."));
c906108c
SS
6438 add_info_alias ("handle", "signals", 0);
6439
1bedd215
AC
6440 add_com ("handle", class_run, handle_command, _("\
6441Specify how to handle a signal.\n\
c906108c
SS
6442Args are signals and actions to apply to those signals.\n\
6443Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6444from 1-15 are allowed for compatibility with old versions of GDB.\n\
6445Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6446The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
6447used by the debugger, typically SIGTRAP and SIGINT.\n\
6448Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
6449\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6450Stop means reenter debugger if this signal happens (implies print).\n\
6451Print means print a message if this signal happens.\n\
6452Pass means let program see this signal; otherwise program doesn't know.\n\
6453Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6454Pass and Stop may be combined."));
c906108c
SS
6455 if (xdb_commands)
6456 {
1bedd215
AC
6457 add_com ("lz", class_info, signals_info, _("\
6458What debugger does when program gets various signals.\n\
6459Specify a signal as argument to print info on that signal only."));
6460 add_com ("z", class_run, xdb_handle_command, _("\
6461Specify how to handle a signal.\n\
c906108c
SS
6462Args are signals and actions to apply to those signals.\n\
6463Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6464from 1-15 are allowed for compatibility with old versions of GDB.\n\
6465Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6466The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
6467used by the debugger, typically SIGTRAP and SIGINT.\n\
6468Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
6469\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6470nopass), \"Q\" (noprint)\n\
6471Stop means reenter debugger if this signal happens (implies print).\n\
6472Print means print a message if this signal happens.\n\
6473Pass means let program see this signal; otherwise program doesn't know.\n\
6474Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6475Pass and Stop may be combined."));
c906108c
SS
6476 }
6477
6478 if (!dbx_commands)
1a966eab
AC
6479 stop_command = add_cmd ("stop", class_obscure,
6480 not_just_help_class_command, _("\
6481There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 6482This allows you to set a list of commands to be run each time execution\n\
1a966eab 6483of the program stops."), &cmdlist);
c906108c 6484
85c07804
AC
6485 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6486Set inferior debugging."), _("\
6487Show inferior debugging."), _("\
6488When non-zero, inferior specific debugging is enabled."),
6489 NULL,
920d2a44 6490 show_debug_infrun,
85c07804 6491 &setdebuglist, &showdebuglist);
527159b7 6492
237fc4c9
PA
6493 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
6494Set displaced stepping debugging."), _("\
6495Show displaced stepping debugging."), _("\
6496When non-zero, displaced stepping specific debugging is enabled."),
6497 NULL,
6498 show_debug_displaced,
6499 &setdebuglist, &showdebuglist);
6500
ad52ddc6
PA
6501 add_setshow_boolean_cmd ("non-stop", no_class,
6502 &non_stop_1, _("\
6503Set whether gdb controls the inferior in non-stop mode."), _("\
6504Show whether gdb controls the inferior in non-stop mode."), _("\
6505When debugging a multi-threaded program and this setting is\n\
6506off (the default, also called all-stop mode), when one thread stops\n\
6507(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
6508all other threads in the program while you interact with the thread of\n\
6509interest. When you continue or step a thread, you can allow the other\n\
6510threads to run, or have them remain stopped, but while you inspect any\n\
6511thread's state, all threads stop.\n\
6512\n\
6513In non-stop mode, when one thread stops, other threads can continue\n\
6514to run freely. You'll be able to step each thread independently,\n\
6515leave it stopped or free to run as needed."),
6516 set_non_stop,
6517 show_non_stop,
6518 &setlist,
6519 &showlist);
6520
c906108c 6521 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 6522 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
6523 signal_print = (unsigned char *)
6524 xmalloc (sizeof (signal_print[0]) * numsigs);
6525 signal_program = (unsigned char *)
6526 xmalloc (sizeof (signal_program[0]) * numsigs);
6527 for (i = 0; i < numsigs; i++)
6528 {
6529 signal_stop[i] = 1;
6530 signal_print[i] = 1;
6531 signal_program[i] = 1;
6532 }
6533
6534 /* Signals caused by debugger's own actions
6535 should not be given to the program afterwards. */
6536 signal_program[TARGET_SIGNAL_TRAP] = 0;
6537 signal_program[TARGET_SIGNAL_INT] = 0;
6538
6539 /* Signals that are not errors should not normally enter the debugger. */
6540 signal_stop[TARGET_SIGNAL_ALRM] = 0;
6541 signal_print[TARGET_SIGNAL_ALRM] = 0;
6542 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
6543 signal_print[TARGET_SIGNAL_VTALRM] = 0;
6544 signal_stop[TARGET_SIGNAL_PROF] = 0;
6545 signal_print[TARGET_SIGNAL_PROF] = 0;
6546 signal_stop[TARGET_SIGNAL_CHLD] = 0;
6547 signal_print[TARGET_SIGNAL_CHLD] = 0;
6548 signal_stop[TARGET_SIGNAL_IO] = 0;
6549 signal_print[TARGET_SIGNAL_IO] = 0;
6550 signal_stop[TARGET_SIGNAL_POLL] = 0;
6551 signal_print[TARGET_SIGNAL_POLL] = 0;
6552 signal_stop[TARGET_SIGNAL_URG] = 0;
6553 signal_print[TARGET_SIGNAL_URG] = 0;
6554 signal_stop[TARGET_SIGNAL_WINCH] = 0;
6555 signal_print[TARGET_SIGNAL_WINCH] = 0;
6556
cd0fc7c3
SS
6557 /* These signals are used internally by user-level thread
6558 implementations. (See signal(5) on Solaris.) Like the above
6559 signals, a healthy program receives and handles them as part of
6560 its normal operation. */
6561 signal_stop[TARGET_SIGNAL_LWP] = 0;
6562 signal_print[TARGET_SIGNAL_LWP] = 0;
6563 signal_stop[TARGET_SIGNAL_WAITING] = 0;
6564 signal_print[TARGET_SIGNAL_WAITING] = 0;
6565 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
6566 signal_print[TARGET_SIGNAL_CANCEL] = 0;
6567
85c07804
AC
6568 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
6569 &stop_on_solib_events, _("\
6570Set stopping for shared library events."), _("\
6571Show stopping for shared library events."), _("\
c906108c
SS
6572If nonzero, gdb will give control to the user when the dynamic linker\n\
6573notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
6574to the user would be loading/unloading of a new library."),
6575 NULL,
920d2a44 6576 show_stop_on_solib_events,
85c07804 6577 &setlist, &showlist);
c906108c 6578
7ab04401
AC
6579 add_setshow_enum_cmd ("follow-fork-mode", class_run,
6580 follow_fork_mode_kind_names,
6581 &follow_fork_mode_string, _("\
6582Set debugger response to a program call of fork or vfork."), _("\
6583Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
6584A fork or vfork creates a new process. follow-fork-mode can be:\n\
6585 parent - the original process is debugged after a fork\n\
6586 child - the new process is debugged after a fork\n\
ea1dd7bc 6587The unfollowed process will continue to run.\n\
7ab04401
AC
6588By default, the debugger will follow the parent process."),
6589 NULL,
920d2a44 6590 show_follow_fork_mode_string,
7ab04401
AC
6591 &setlist, &showlist);
6592
6c95b8df
PA
6593 add_setshow_enum_cmd ("follow-exec-mode", class_run,
6594 follow_exec_mode_names,
6595 &follow_exec_mode_string, _("\
6596Set debugger response to a program call of exec."), _("\
6597Show debugger response to a program call of exec."), _("\
6598An exec call replaces the program image of a process.\n\
6599\n\
6600follow-exec-mode can be:\n\
6601\n\
6602 new - the debugger creates a new inferior and rebinds the process \n\
6603to this new inferior. The program the process was running before\n\
6604the exec call can be restarted afterwards by restarting the original\n\
6605inferior.\n\
6606\n\
6607 same - the debugger keeps the process bound to the same inferior.\n\
6608The new executable image replaces the previous executable loaded in\n\
6609the inferior. Restarting the inferior after the exec call restarts\n\
6610the executable the process was running after the exec call.\n\
6611\n\
6612By default, the debugger will use the same inferior."),
6613 NULL,
6614 show_follow_exec_mode_string,
6615 &setlist, &showlist);
6616
7ab04401
AC
6617 add_setshow_enum_cmd ("scheduler-locking", class_run,
6618 scheduler_enums, &scheduler_mode, _("\
6619Set mode for locking scheduler during execution."), _("\
6620Show mode for locking scheduler during execution."), _("\
c906108c
SS
6621off == no locking (threads may preempt at any time)\n\
6622on == full locking (no thread except the current thread may run)\n\
6623step == scheduler locked during every single-step operation.\n\
6624 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
6625 Other threads may run while stepping over a function call ('next')."),
6626 set_schedlock_func, /* traps on target vector */
920d2a44 6627 show_scheduler_mode,
7ab04401 6628 &setlist, &showlist);
5fbbeb29 6629
d4db2f36
PA
6630 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
6631Set mode for resuming threads of all processes."), _("\
6632Show mode for resuming threads of all processes."), _("\
6633When on, execution commands (such as 'continue' or 'next') resume all\n\
6634threads of all processes. When off (which is the default), execution\n\
6635commands only resume the threads of the current process. The set of\n\
6636threads that are resumed is further refined by the scheduler-locking\n\
6637mode (see help set scheduler-locking)."),
6638 NULL,
6639 show_schedule_multiple,
6640 &setlist, &showlist);
6641
5bf193a2
AC
6642 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
6643Set mode of the step operation."), _("\
6644Show mode of the step operation."), _("\
6645When set, doing a step over a function without debug line information\n\
6646will stop at the first instruction of that function. Otherwise, the\n\
6647function is skipped and the step command stops at a different source line."),
6648 NULL,
920d2a44 6649 show_step_stop_if_no_debug,
5bf193a2 6650 &setlist, &showlist);
ca6724c1 6651
fff08868
HZ
6652 add_setshow_enum_cmd ("displaced-stepping", class_run,
6653 can_use_displaced_stepping_enum,
6654 &can_use_displaced_stepping, _("\
237fc4c9
PA
6655Set debugger's willingness to use displaced stepping."), _("\
6656Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
6657If on, gdb will use displaced stepping to step over breakpoints if it is\n\
6658supported by the target architecture. If off, gdb will not use displaced\n\
6659stepping to step over breakpoints, even if such is supported by the target\n\
6660architecture. If auto (which is the default), gdb will use displaced stepping\n\
6661if the target architecture supports it and non-stop mode is active, but will not\n\
6662use it in all-stop mode (see help set non-stop)."),
6663 NULL,
6664 show_can_use_displaced_stepping,
6665 &setlist, &showlist);
237fc4c9 6666
b2175913
MS
6667 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
6668 &exec_direction, _("Set direction of execution.\n\
6669Options are 'forward' or 'reverse'."),
6670 _("Show direction of execution (forward/reverse)."),
6671 _("Tells gdb whether to execute forward or backward."),
6672 set_exec_direction_func, show_exec_direction_func,
6673 &setlist, &showlist);
6674
6c95b8df
PA
6675 /* Set/show detach-on-fork: user-settable mode. */
6676
6677 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
6678Set whether gdb will detach the child of a fork."), _("\
6679Show whether gdb will detach the child of a fork."), _("\
6680Tells gdb whether to detach the child of a fork."),
6681 NULL, NULL, &setlist, &showlist);
6682
ca6724c1
KB
6683 /* ptid initializations */
6684 null_ptid = ptid_build (0, 0, 0);
6685 minus_one_ptid = ptid_build (-1, 0, 0);
6686 inferior_ptid = null_ptid;
6687 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
6688
6689 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 6690 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 6691 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 6692 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
6693
6694 /* Explicitly create without lookup, since that tries to create a
6695 value with a void typed value, and when we get here, gdbarch
6696 isn't initialized yet. At this point, we're quite sure there
6697 isn't another convenience variable of the same name. */
6698 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
c906108c 6699}
This page took 1.377019 seconds and 4 git commands to generate.