gdb: on exec, delegate pushing / unpushing target and adding thread to target_ops...
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
3666a048 4 Copyright (C) 1986-2021 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
bab37966 22#include "displaced-stepping.h"
45741a9c 23#include "infrun.h"
c906108c
SS
24#include <ctype.h>
25#include "symtab.h"
26#include "frame.h"
27#include "inferior.h"
28#include "breakpoint.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
31#include "target.h"
2f4fcf00 32#include "target-connection.h"
c906108c
SS
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
2acceee2 37#include "inf-loop.h"
4e052eda 38#include "regcache.h"
fd0407d6 39#include "value.h"
76727919 40#include "observable.h"
f636b87d 41#include "language.h"
a77053c2 42#include "solib.h"
f17517ea 43#include "main.h"
186c406b 44#include "block.h"
034dad6f 45#include "mi/mi-common.h"
4f8d22e3 46#include "event-top.h"
96429cc8 47#include "record.h"
d02ed0bb 48#include "record-full.h"
edb3359d 49#include "inline-frame.h"
4efc6507 50#include "jit.h"
06cd862c 51#include "tracepoint.h"
1bfeeb0f 52#include "skip.h"
28106bc2
SDJ
53#include "probe.h"
54#include "objfiles.h"
de0bea00 55#include "completer.h"
9107fc8d 56#include "target-descriptions.h"
f15cb84a 57#include "target-dcache.h"
d83ad864 58#include "terminal.h"
ff862be4 59#include "solist.h"
400b5eca 60#include "gdbsupport/event-loop.h"
243a9253 61#include "thread-fsm.h"
268a13a5 62#include "gdbsupport/enum-flags.h"
5ed8105e 63#include "progspace-and-thread.h"
268a13a5 64#include "gdbsupport/gdb_optional.h"
46a62268 65#include "arch-utils.h"
268a13a5
TT
66#include "gdbsupport/scope-exit.h"
67#include "gdbsupport/forward-scope-exit.h"
06cc9596 68#include "gdbsupport/gdb_select.h"
5b6d1e4f 69#include <unordered_map>
93b54c8e 70#include "async-event.h"
b161a60d
SM
71#include "gdbsupport/selftest.h"
72#include "scoped-mock-context.h"
73#include "test-target.h"
ba988419 74#include "gdbsupport/common-debug.h"
c906108c
SS
75
76/* Prototypes for local functions */
77
2ea28649 78static void sig_print_info (enum gdb_signal);
c906108c 79
96baa820 80static void sig_print_header (void);
c906108c 81
d83ad864
DB
82static void follow_inferior_reset_breakpoints (void);
83
c4464ade 84static bool currently_stepping (struct thread_info *tp);
a289b8f6 85
2c03e5be 86static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
87
88static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
89
2484c66b
UW
90static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
91
c4464ade 92static bool maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
8550d3b3 93
aff4e175
AB
94static void resume (gdb_signal sig);
95
5b6d1e4f
PA
96static void wait_for_inferior (inferior *inf);
97
372316f1
PA
98/* Asynchronous signal handler registered as event loop source for
99 when we have pending events ready to be passed to the core. */
100static struct async_event_handler *infrun_async_inferior_event_token;
101
102/* Stores whether infrun_async was previously enabled or disabled.
103 Starts off as -1, indicating "never enabled/disabled". */
104static int infrun_is_async = -1;
105
106/* See infrun.h. */
107
108void
109infrun_async (int enable)
110{
111 if (infrun_is_async != enable)
112 {
113 infrun_is_async = enable;
114
1eb8556f 115 infrun_debug_printf ("enable=%d", enable);
372316f1
PA
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122}
123
0b333c5e
PA
124/* See infrun.h. */
125
126void
127mark_infrun_async_event_handler (void)
128{
129 mark_async_event_handler (infrun_async_inferior_event_token);
130}
131
5fbbeb29
CF
132/* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
491144b5 135bool step_stop_if_no_debug = false;
920d2a44
AC
136static void
137show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139{
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141}
5fbbeb29 142
b9f437de
PA
143/* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
96baa820 146
39f77062 147static ptid_t previous_inferior_ptid;
7a292a7a 148
07107ca6
LM
149/* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
491144b5 154static bool detach_fork = true;
6c95b8df 155
94ba44a6 156bool debug_infrun = false;
920d2a44
AC
157static void
158show_debug_infrun (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160{
161 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
162}
527159b7 163
03583c20
UW
164/* Support for disabling address space randomization. */
165
491144b5 166bool disable_randomization = true;
03583c20
UW
167
168static void
169show_disable_randomization (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171{
172 if (target_supports_disable_randomization ())
173 fprintf_filtered (file,
174 _("Disabling randomization of debuggee's "
175 "virtual address space is %s.\n"),
176 value);
177 else
178 fputs_filtered (_("Disabling randomization of debuggee's "
179 "virtual address space is unsupported on\n"
180 "this platform.\n"), file);
181}
182
183static void
eb4c3f4a 184set_disable_randomization (const char *args, int from_tty,
03583c20
UW
185 struct cmd_list_element *c)
186{
187 if (!target_supports_disable_randomization ())
188 error (_("Disabling randomization of debuggee's "
189 "virtual address space is unsupported on\n"
190 "this platform."));
191}
192
d32dc48e
PA
193/* User interface for non-stop mode. */
194
491144b5
CB
195bool non_stop = false;
196static bool non_stop_1 = false;
d32dc48e
PA
197
198static void
eb4c3f4a 199set_non_stop (const char *args, int from_tty,
d32dc48e
PA
200 struct cmd_list_element *c)
201{
55f6301a 202 if (target_has_execution ())
d32dc48e
PA
203 {
204 non_stop_1 = non_stop;
205 error (_("Cannot change this setting while the inferior is running."));
206 }
207
208 non_stop = non_stop_1;
209}
210
211static void
212show_non_stop (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214{
215 fprintf_filtered (file,
216 _("Controlling the inferior in non-stop mode is %s.\n"),
217 value);
218}
219
d914c394
SS
220/* "Observer mode" is somewhat like a more extreme version of
221 non-stop, in which all GDB operations that might affect the
222 target's execution have been disabled. */
223
6bd434d6 224static bool observer_mode = false;
491144b5 225static bool observer_mode_1 = false;
d914c394
SS
226
227static void
eb4c3f4a 228set_observer_mode (const char *args, int from_tty,
d914c394
SS
229 struct cmd_list_element *c)
230{
55f6301a 231 if (target_has_execution ())
d914c394
SS
232 {
233 observer_mode_1 = observer_mode;
234 error (_("Cannot change this setting while the inferior is running."));
235 }
236
237 observer_mode = observer_mode_1;
238
239 may_write_registers = !observer_mode;
240 may_write_memory = !observer_mode;
241 may_insert_breakpoints = !observer_mode;
242 may_insert_tracepoints = !observer_mode;
243 /* We can insert fast tracepoints in or out of observer mode,
244 but enable them if we're going into this mode. */
245 if (observer_mode)
491144b5 246 may_insert_fast_tracepoints = true;
d914c394
SS
247 may_stop = !observer_mode;
248 update_target_permissions ();
249
250 /* Going *into* observer mode we must force non-stop, then
251 going out we leave it that way. */
252 if (observer_mode)
253 {
d914c394 254 pagination_enabled = 0;
491144b5 255 non_stop = non_stop_1 = true;
d914c394
SS
256 }
257
258 if (from_tty)
259 printf_filtered (_("Observer mode is now %s.\n"),
260 (observer_mode ? "on" : "off"));
261}
262
263static void
264show_observer_mode (struct ui_file *file, int from_tty,
265 struct cmd_list_element *c, const char *value)
266{
267 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
268}
269
270/* This updates the value of observer mode based on changes in
271 permissions. Note that we are deliberately ignoring the values of
272 may-write-registers and may-write-memory, since the user may have
273 reason to enable these during a session, for instance to turn on a
274 debugging-related global. */
275
276void
277update_observer_mode (void)
278{
491144b5
CB
279 bool newval = (!may_insert_breakpoints
280 && !may_insert_tracepoints
281 && may_insert_fast_tracepoints
282 && !may_stop
283 && non_stop);
d914c394
SS
284
285 /* Let the user know if things change. */
286 if (newval != observer_mode)
287 printf_filtered (_("Observer mode is now %s.\n"),
288 (newval ? "on" : "off"));
289
290 observer_mode = observer_mode_1 = newval;
291}
c2c6d25f 292
c906108c
SS
293/* Tables of how to react to signals; the user sets them. */
294
adc6a863
PA
295static unsigned char signal_stop[GDB_SIGNAL_LAST];
296static unsigned char signal_print[GDB_SIGNAL_LAST];
297static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 298
ab04a2af
TT
299/* Table of signals that are registered with "catch signal". A
300 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
301 signal" command. */
302static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 303
2455069d
UW
304/* Table of signals that the target may silently handle.
305 This is automatically determined from the flags above,
306 and simply cached here. */
adc6a863 307static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 308
c906108c
SS
309#define SET_SIGS(nsigs,sigs,flags) \
310 do { \
311 int signum = (nsigs); \
312 while (signum-- > 0) \
313 if ((sigs)[signum]) \
314 (flags)[signum] = 1; \
315 } while (0)
316
317#define UNSET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 0; \
323 } while (0)
324
9b224c5e
PA
325/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
326 this function is to avoid exporting `signal_program'. */
327
328void
329update_signals_program_target (void)
330{
adc6a863 331 target_program_signals (signal_program);
9b224c5e
PA
332}
333
1777feb0 334/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 335
edb3359d 336#define RESUME_ALL minus_one_ptid
c906108c
SS
337
338/* Command list pointer for the "stop" placeholder. */
339
340static struct cmd_list_element *stop_command;
341
c906108c
SS
342/* Nonzero if we want to give control to the user when we're notified
343 of shared library events by the dynamic linker. */
628fe4e4 344int stop_on_solib_events;
f9e14852
GB
345
346/* Enable or disable optional shared library event breakpoints
347 as appropriate when the above flag is changed. */
348
349static void
eb4c3f4a
TT
350set_stop_on_solib_events (const char *args,
351 int from_tty, struct cmd_list_element *c)
f9e14852
GB
352{
353 update_solib_breakpoints ();
354}
355
920d2a44
AC
356static void
357show_stop_on_solib_events (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c, const char *value)
359{
360 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
361 value);
362}
c906108c 363
c4464ade 364/* True after stop if current stack frame should be printed. */
c906108c 365
c4464ade 366static bool stop_print_frame;
c906108c 367
5b6d1e4f
PA
368/* This is a cached copy of the target/ptid/waitstatus of the last
369 event returned by target_wait()/deprecated_target_wait_hook().
370 This information is returned by get_last_target_status(). */
371static process_stratum_target *target_last_proc_target;
39f77062 372static ptid_t target_last_wait_ptid;
e02bc4cc
DS
373static struct target_waitstatus target_last_waitstatus;
374
4e1c45ea 375void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 376
53904c9e
AC
377static const char follow_fork_mode_child[] = "child";
378static const char follow_fork_mode_parent[] = "parent";
379
40478521 380static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
381 follow_fork_mode_child,
382 follow_fork_mode_parent,
383 NULL
ef346e04 384};
c906108c 385
53904c9e 386static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
387static void
388show_follow_fork_mode_string (struct ui_file *file, int from_tty,
389 struct cmd_list_element *c, const char *value)
390{
3e43a32a
MS
391 fprintf_filtered (file,
392 _("Debugger response to a program "
393 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
394 value);
395}
c906108c
SS
396\f
397
d83ad864
DB
398/* Handle changes to the inferior list based on the type of fork,
399 which process is being followed, and whether the other process
400 should be detached. On entry inferior_ptid must be the ptid of
401 the fork parent. At return inferior_ptid is the ptid of the
402 followed inferior. */
403
5ab2fbf1
SM
404static bool
405follow_fork_inferior (bool follow_child, bool detach_fork)
d83ad864
DB
406{
407 int has_vforked;
79639e11 408 ptid_t parent_ptid, child_ptid;
d83ad864
DB
409
410 has_vforked = (inferior_thread ()->pending_follow.kind
411 == TARGET_WAITKIND_VFORKED);
79639e11
PA
412 parent_ptid = inferior_ptid;
413 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
414
415 if (has_vforked
416 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 417 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
418 && !(follow_child || detach_fork || sched_multi))
419 {
420 /* The parent stays blocked inside the vfork syscall until the
421 child execs or exits. If we don't let the child run, then
422 the parent stays blocked. If we're telling the parent to run
423 in the foreground, the user will not be able to ctrl-c to get
424 back the terminal, effectively hanging the debug session. */
425 fprintf_filtered (gdb_stderr, _("\
426Can not resume the parent process over vfork in the foreground while\n\
427holding the child stopped. Try \"set detach-on-fork\" or \
428\"set schedule-multiple\".\n"));
e97007b6 429 return true;
d83ad864
DB
430 }
431
432 if (!follow_child)
433 {
434 /* Detach new forked process? */
435 if (detach_fork)
436 {
d83ad864
DB
437 /* Before detaching from the child, remove all breakpoints
438 from it. If we forked, then this has already been taken
439 care of by infrun.c. If we vforked however, any
440 breakpoint inserted in the parent is visible in the
441 child, even those added while stopped in a vfork
442 catchpoint. This will remove the breakpoints from the
443 parent also, but they'll be reinserted below. */
444 if (has_vforked)
445 {
446 /* Keep breakpoints list in sync. */
00431a78 447 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
448 }
449
f67c0c91 450 if (print_inferior_events)
d83ad864 451 {
8dd06f7a 452 /* Ensure that we have a process ptid. */
e99b03dc 453 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 454
223ffa71 455 target_terminal::ours_for_output ();
d83ad864 456 fprintf_filtered (gdb_stdlog,
f67c0c91 457 _("[Detaching after %s from child %s]\n"),
6f259a23 458 has_vforked ? "vfork" : "fork",
a068643d 459 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
460 }
461 }
462 else
463 {
464 struct inferior *parent_inf, *child_inf;
d83ad864
DB
465
466 /* Add process to GDB's tables. */
e99b03dc 467 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
468
469 parent_inf = current_inferior ();
470 child_inf->attach_flag = parent_inf->attach_flag;
471 copy_terminal_info (child_inf, parent_inf);
472 child_inf->gdbarch = parent_inf->gdbarch;
473 copy_inferior_target_desc_info (child_inf, parent_inf);
474
5ed8105e 475 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 476
2a00d7ce 477 set_current_inferior (child_inf);
5b6d1e4f 478 switch_to_no_thread ();
d83ad864 479 child_inf->symfile_flags = SYMFILE_NO_READ;
02980c56 480 child_inf->push_target (parent_inf->process_target ());
18493a00
PA
481 thread_info *child_thr
482 = add_thread_silent (child_inf->process_target (), child_ptid);
d83ad864
DB
483
484 /* If this is a vfork child, then the address-space is
485 shared with the parent. */
486 if (has_vforked)
487 {
488 child_inf->pspace = parent_inf->pspace;
489 child_inf->aspace = parent_inf->aspace;
490
5b6d1e4f
PA
491 exec_on_vfork ();
492
d83ad864
DB
493 /* The parent will be frozen until the child is done
494 with the shared region. Keep track of the
495 parent. */
496 child_inf->vfork_parent = parent_inf;
497 child_inf->pending_detach = 0;
498 parent_inf->vfork_child = child_inf;
499 parent_inf->pending_detach = 0;
18493a00
PA
500
501 /* Now that the inferiors and program spaces are all
502 wired up, we can switch to the child thread (which
503 switches inferior and program space too). */
504 switch_to_thread (child_thr);
d83ad864
DB
505 }
506 else
507 {
508 child_inf->aspace = new_address_space ();
564b1e3f 509 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
510 child_inf->removable = 1;
511 set_current_program_space (child_inf->pspace);
512 clone_program_space (child_inf->pspace, parent_inf->pspace);
513
18493a00
PA
514 /* solib_create_inferior_hook relies on the current
515 thread. */
516 switch_to_thread (child_thr);
517
d83ad864
DB
518 /* Let the shared library layer (e.g., solib-svr4) learn
519 about this new process, relocate the cloned exec, pull
520 in shared libraries, and install the solib event
521 breakpoint. If a "cloned-VM" event was propagated
522 better throughout the core, this wouldn't be
523 required. */
524 solib_create_inferior_hook (0);
525 }
d83ad864
DB
526 }
527
528 if (has_vforked)
529 {
530 struct inferior *parent_inf;
531
532 parent_inf = current_inferior ();
533
534 /* If we detached from the child, then we have to be careful
535 to not insert breakpoints in the parent until the child
536 is done with the shared memory region. However, if we're
537 staying attached to the child, then we can and should
538 insert breakpoints, so that we can debug it. A
539 subsequent child exec or exit is enough to know when does
540 the child stops using the parent's address space. */
541 parent_inf->waiting_for_vfork_done = detach_fork;
542 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
543 }
544 }
545 else
546 {
547 /* Follow the child. */
548 struct inferior *parent_inf, *child_inf;
549 struct program_space *parent_pspace;
550
f67c0c91 551 if (print_inferior_events)
d83ad864 552 {
f67c0c91
SDJ
553 std::string parent_pid = target_pid_to_str (parent_ptid);
554 std::string child_pid = target_pid_to_str (child_ptid);
555
223ffa71 556 target_terminal::ours_for_output ();
6f259a23 557 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
558 _("[Attaching after %s %s to child %s]\n"),
559 parent_pid.c_str (),
6f259a23 560 has_vforked ? "vfork" : "fork",
f67c0c91 561 child_pid.c_str ());
d83ad864
DB
562 }
563
564 /* Add the new inferior first, so that the target_detach below
565 doesn't unpush the target. */
566
e99b03dc 567 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
568
569 parent_inf = current_inferior ();
570 child_inf->attach_flag = parent_inf->attach_flag;
571 copy_terminal_info (child_inf, parent_inf);
572 child_inf->gdbarch = parent_inf->gdbarch;
573 copy_inferior_target_desc_info (child_inf, parent_inf);
574
575 parent_pspace = parent_inf->pspace;
576
5b6d1e4f 577 process_stratum_target *target = parent_inf->process_target ();
d83ad864 578
5b6d1e4f
PA
579 {
580 /* Hold a strong reference to the target while (maybe)
581 detaching the parent. Otherwise detaching could close the
582 target. */
583 auto target_ref = target_ops_ref::new_reference (target);
584
585 /* If we're vforking, we want to hold on to the parent until
586 the child exits or execs. At child exec or exit time we
587 can remove the old breakpoints from the parent and detach
588 or resume debugging it. Otherwise, detach the parent now;
589 we'll want to reuse it's program/address spaces, but we
590 can't set them to the child before removing breakpoints
591 from the parent, otherwise, the breakpoints module could
592 decide to remove breakpoints from the wrong process (since
593 they'd be assigned to the same address space). */
594
595 if (has_vforked)
596 {
597 gdb_assert (child_inf->vfork_parent == NULL);
598 gdb_assert (parent_inf->vfork_child == NULL);
599 child_inf->vfork_parent = parent_inf;
600 child_inf->pending_detach = 0;
601 parent_inf->vfork_child = child_inf;
602 parent_inf->pending_detach = detach_fork;
603 parent_inf->waiting_for_vfork_done = 0;
604 }
605 else if (detach_fork)
606 {
607 if (print_inferior_events)
608 {
609 /* Ensure that we have a process ptid. */
610 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
611
612 target_terminal::ours_for_output ();
613 fprintf_filtered (gdb_stdlog,
614 _("[Detaching after fork from "
615 "parent %s]\n"),
616 target_pid_to_str (process_ptid).c_str ());
617 }
8dd06f7a 618
5b6d1e4f
PA
619 target_detach (parent_inf, 0);
620 parent_inf = NULL;
621 }
6f259a23 622
5b6d1e4f 623 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 624
5b6d1e4f
PA
625 /* Add the child thread to the appropriate lists, and switch
626 to this new thread, before cloning the program space, and
627 informing the solib layer about this new process. */
d83ad864 628
5b6d1e4f 629 set_current_inferior (child_inf);
02980c56 630 child_inf->push_target (target);
5b6d1e4f 631 }
d83ad864 632
18493a00 633 thread_info *child_thr = add_thread_silent (target, child_ptid);
d83ad864
DB
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
642
643 exec_on_vfork ();
d83ad864
DB
644 }
645 else
646 {
647 child_inf->aspace = new_address_space ();
564b1e3f 648 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
649 child_inf->removable = 1;
650 child_inf->symfile_flags = SYMFILE_NO_READ;
651 set_current_program_space (child_inf->pspace);
652 clone_program_space (child_inf->pspace, parent_pspace);
653
654 /* Let the shared library layer (e.g., solib-svr4) learn
655 about this new process, relocate the cloned exec, pull in
656 shared libraries, and install the solib event breakpoint.
657 If a "cloned-VM" event was propagated better throughout
658 the core, this wouldn't be required. */
659 solib_create_inferior_hook (0);
660 }
18493a00
PA
661
662 switch_to_thread (child_thr);
d83ad864
DB
663 }
664
e97007b6
SM
665 target_follow_fork (follow_child, detach_fork);
666
667 return false;
d83ad864
DB
668}
669
e58b0e63
PA
670/* Tell the target to follow the fork we're stopped at. Returns true
671 if the inferior should be resumed; false, if the target for some
672 reason decided it's best not to resume. */
673
5ab2fbf1
SM
674static bool
675follow_fork ()
c906108c 676{
5ab2fbf1
SM
677 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
678 bool should_resume = true;
e58b0e63
PA
679 struct thread_info *tp;
680
681 /* Copy user stepping state to the new inferior thread. FIXME: the
682 followed fork child thread should have a copy of most of the
4e3990f4
DE
683 parent thread structure's run control related fields, not just these.
684 Initialized to avoid "may be used uninitialized" warnings from gcc. */
685 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 686 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
687 CORE_ADDR step_range_start = 0;
688 CORE_ADDR step_range_end = 0;
bf4cb9be
TV
689 int current_line = 0;
690 symtab *current_symtab = NULL;
4e3990f4 691 struct frame_id step_frame_id = { 0 };
8980e177 692 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
693
694 if (!non_stop)
695 {
5b6d1e4f 696 process_stratum_target *wait_target;
e58b0e63
PA
697 ptid_t wait_ptid;
698 struct target_waitstatus wait_status;
699
700 /* Get the last target status returned by target_wait(). */
5b6d1e4f 701 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
702
703 /* If not stopped at a fork event, then there's nothing else to
704 do. */
705 if (wait_status.kind != TARGET_WAITKIND_FORKED
706 && wait_status.kind != TARGET_WAITKIND_VFORKED)
707 return 1;
708
709 /* Check if we switched over from WAIT_PTID, since the event was
710 reported. */
00431a78 711 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
712 && (current_inferior ()->process_target () != wait_target
713 || inferior_ptid != wait_ptid))
e58b0e63
PA
714 {
715 /* We did. Switch back to WAIT_PTID thread, to tell the
716 target to follow it (in either direction). We'll
717 afterwards refuse to resume, and inform the user what
718 happened. */
5b6d1e4f 719 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 720 switch_to_thread (wait_thread);
5ab2fbf1 721 should_resume = false;
e58b0e63
PA
722 }
723 }
724
725 tp = inferior_thread ();
726
727 /* If there were any forks/vforks that were caught and are now to be
728 followed, then do so now. */
729 switch (tp->pending_follow.kind)
730 {
731 case TARGET_WAITKIND_FORKED:
732 case TARGET_WAITKIND_VFORKED:
733 {
734 ptid_t parent, child;
735
736 /* If the user did a next/step, etc, over a fork call,
737 preserve the stepping state in the fork child. */
738 if (follow_child && should_resume)
739 {
8358c15c
JK
740 step_resume_breakpoint = clone_momentary_breakpoint
741 (tp->control.step_resume_breakpoint);
16c381f0
JK
742 step_range_start = tp->control.step_range_start;
743 step_range_end = tp->control.step_range_end;
bf4cb9be
TV
744 current_line = tp->current_line;
745 current_symtab = tp->current_symtab;
16c381f0 746 step_frame_id = tp->control.step_frame_id;
186c406b
TT
747 exception_resume_breakpoint
748 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 749 thread_fsm = tp->thread_fsm;
e58b0e63
PA
750
751 /* For now, delete the parent's sr breakpoint, otherwise,
752 parent/child sr breakpoints are considered duplicates,
753 and the child version will not be installed. Remove
754 this when the breakpoints module becomes aware of
755 inferiors and address spaces. */
756 delete_step_resume_breakpoint (tp);
16c381f0
JK
757 tp->control.step_range_start = 0;
758 tp->control.step_range_end = 0;
759 tp->control.step_frame_id = null_frame_id;
186c406b 760 delete_exception_resume_breakpoint (tp);
8980e177 761 tp->thread_fsm = NULL;
e58b0e63
PA
762 }
763
764 parent = inferior_ptid;
765 child = tp->pending_follow.value.related_pid;
766
5b6d1e4f 767 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
768 /* Set up inferior(s) as specified by the caller, and tell the
769 target to do whatever is necessary to follow either parent
770 or child. */
771 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
772 {
773 /* Target refused to follow, or there's some other reason
774 we shouldn't resume. */
775 should_resume = 0;
776 }
777 else
778 {
779 /* This pending follow fork event is now handled, one way
780 or another. The previous selected thread may be gone
781 from the lists by now, but if it is still around, need
782 to clear the pending follow request. */
5b6d1e4f 783 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
784 if (tp)
785 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
786
787 /* This makes sure we don't try to apply the "Switched
788 over from WAIT_PID" logic above. */
789 nullify_last_target_wait_ptid ();
790
1777feb0 791 /* If we followed the child, switch to it... */
e58b0e63
PA
792 if (follow_child)
793 {
5b6d1e4f 794 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 795 switch_to_thread (child_thr);
e58b0e63
PA
796
797 /* ... and preserve the stepping state, in case the
798 user was stepping over the fork call. */
799 if (should_resume)
800 {
801 tp = inferior_thread ();
8358c15c
JK
802 tp->control.step_resume_breakpoint
803 = step_resume_breakpoint;
16c381f0
JK
804 tp->control.step_range_start = step_range_start;
805 tp->control.step_range_end = step_range_end;
bf4cb9be
TV
806 tp->current_line = current_line;
807 tp->current_symtab = current_symtab;
16c381f0 808 tp->control.step_frame_id = step_frame_id;
186c406b
TT
809 tp->control.exception_resume_breakpoint
810 = exception_resume_breakpoint;
8980e177 811 tp->thread_fsm = thread_fsm;
e58b0e63
PA
812 }
813 else
814 {
815 /* If we get here, it was because we're trying to
816 resume from a fork catchpoint, but, the user
817 has switched threads away from the thread that
818 forked. In that case, the resume command
819 issued is most likely not applicable to the
820 child, so just warn, and refuse to resume. */
3e43a32a 821 warning (_("Not resuming: switched threads "
fd7dcb94 822 "before following fork child."));
e58b0e63
PA
823 }
824
825 /* Reset breakpoints in the child as appropriate. */
826 follow_inferior_reset_breakpoints ();
827 }
e58b0e63
PA
828 }
829 }
830 break;
831 case TARGET_WAITKIND_SPURIOUS:
832 /* Nothing to follow. */
833 break;
834 default:
835 internal_error (__FILE__, __LINE__,
836 "Unexpected pending_follow.kind %d\n",
837 tp->pending_follow.kind);
838 break;
839 }
c906108c 840
e58b0e63 841 return should_resume;
c906108c
SS
842}
843
d83ad864 844static void
6604731b 845follow_inferior_reset_breakpoints (void)
c906108c 846{
4e1c45ea
PA
847 struct thread_info *tp = inferior_thread ();
848
6604731b
DJ
849 /* Was there a step_resume breakpoint? (There was if the user
850 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
851 thread number. Cloned step_resume breakpoints are disabled on
852 creation, so enable it here now that it is associated with the
853 correct thread.
6604731b
DJ
854
855 step_resumes are a form of bp that are made to be per-thread.
856 Since we created the step_resume bp when the parent process
857 was being debugged, and now are switching to the child process,
858 from the breakpoint package's viewpoint, that's a switch of
859 "threads". We must update the bp's notion of which thread
860 it is for, or it'll be ignored when it triggers. */
861
8358c15c 862 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
863 {
864 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
865 tp->control.step_resume_breakpoint->loc->enabled = 1;
866 }
6604731b 867
a1aa2221 868 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 869 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
870 {
871 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
872 tp->control.exception_resume_breakpoint->loc->enabled = 1;
873 }
186c406b 874
6604731b
DJ
875 /* Reinsert all breakpoints in the child. The user may have set
876 breakpoints after catching the fork, in which case those
877 were never set in the child, but only in the parent. This makes
878 sure the inserted breakpoints match the breakpoint list. */
879
880 breakpoint_re_set ();
881 insert_breakpoints ();
c906108c 882}
c906108c 883
6c95b8df
PA
884/* The child has exited or execed: resume threads of the parent the
885 user wanted to be executing. */
886
887static int
888proceed_after_vfork_done (struct thread_info *thread,
889 void *arg)
890{
891 int pid = * (int *) arg;
892
00431a78
PA
893 if (thread->ptid.pid () == pid
894 && thread->state == THREAD_RUNNING
895 && !thread->executing
6c95b8df 896 && !thread->stop_requested
a493e3e2 897 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df 898 {
1eb8556f
SM
899 infrun_debug_printf ("resuming vfork parent thread %s",
900 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 901
00431a78 902 switch_to_thread (thread);
70509625 903 clear_proceed_status (0);
64ce06e4 904 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
905 }
906
907 return 0;
908}
909
910/* Called whenever we notice an exec or exit event, to handle
911 detaching or resuming a vfork parent. */
912
913static void
914handle_vfork_child_exec_or_exit (int exec)
915{
916 struct inferior *inf = current_inferior ();
917
918 if (inf->vfork_parent)
919 {
920 int resume_parent = -1;
921
922 /* This exec or exit marks the end of the shared memory region
b73715df
TV
923 between the parent and the child. Break the bonds. */
924 inferior *vfork_parent = inf->vfork_parent;
925 inf->vfork_parent->vfork_child = NULL;
926 inf->vfork_parent = NULL;
6c95b8df 927
b73715df
TV
928 /* If the user wanted to detach from the parent, now is the
929 time. */
930 if (vfork_parent->pending_detach)
6c95b8df 931 {
6c95b8df
PA
932 struct program_space *pspace;
933 struct address_space *aspace;
934
1777feb0 935 /* follow-fork child, detach-on-fork on. */
6c95b8df 936
b73715df 937 vfork_parent->pending_detach = 0;
68c9da30 938
18493a00 939 scoped_restore_current_pspace_and_thread restore_thread;
6c95b8df
PA
940
941 /* We're letting loose of the parent. */
18493a00 942 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
00431a78 943 switch_to_thread (tp);
6c95b8df
PA
944
945 /* We're about to detach from the parent, which implicitly
946 removes breakpoints from its address space. There's a
947 catch here: we want to reuse the spaces for the child,
948 but, parent/child are still sharing the pspace at this
949 point, although the exec in reality makes the kernel give
950 the child a fresh set of new pages. The problem here is
951 that the breakpoints module being unaware of this, would
952 likely chose the child process to write to the parent
953 address space. Swapping the child temporarily away from
954 the spaces has the desired effect. Yes, this is "sort
955 of" a hack. */
956
957 pspace = inf->pspace;
958 aspace = inf->aspace;
959 inf->aspace = NULL;
960 inf->pspace = NULL;
961
f67c0c91 962 if (print_inferior_events)
6c95b8df 963 {
a068643d 964 std::string pidstr
b73715df 965 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 966
223ffa71 967 target_terminal::ours_for_output ();
6c95b8df
PA
968
969 if (exec)
6f259a23
DB
970 {
971 fprintf_filtered (gdb_stdlog,
f67c0c91 972 _("[Detaching vfork parent %s "
a068643d 973 "after child exec]\n"), pidstr.c_str ());
6f259a23 974 }
6c95b8df 975 else
6f259a23
DB
976 {
977 fprintf_filtered (gdb_stdlog,
f67c0c91 978 _("[Detaching vfork parent %s "
a068643d 979 "after child exit]\n"), pidstr.c_str ());
6f259a23 980 }
6c95b8df
PA
981 }
982
b73715df 983 target_detach (vfork_parent, 0);
6c95b8df
PA
984
985 /* Put it back. */
986 inf->pspace = pspace;
987 inf->aspace = aspace;
6c95b8df
PA
988 }
989 else if (exec)
990 {
991 /* We're staying attached to the parent, so, really give the
992 child a new address space. */
564b1e3f 993 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
994 inf->aspace = inf->pspace->aspace;
995 inf->removable = 1;
996 set_current_program_space (inf->pspace);
997
b73715df 998 resume_parent = vfork_parent->pid;
6c95b8df
PA
999 }
1000 else
1001 {
6c95b8df
PA
1002 /* If this is a vfork child exiting, then the pspace and
1003 aspaces were shared with the parent. Since we're
1004 reporting the process exit, we'll be mourning all that is
1005 found in the address space, and switching to null_ptid,
1006 preparing to start a new inferior. But, since we don't
1007 want to clobber the parent's address/program spaces, we
1008 go ahead and create a new one for this exiting
1009 inferior. */
1010
18493a00 1011 /* Switch to no-thread while running clone_program_space, so
5ed8105e
PA
1012 that clone_program_space doesn't want to read the
1013 selected frame of a dead process. */
18493a00
PA
1014 scoped_restore_current_thread restore_thread;
1015 switch_to_no_thread ();
6c95b8df 1016
53af73bf
PA
1017 inf->pspace = new program_space (maybe_new_address_space ());
1018 inf->aspace = inf->pspace->aspace;
1019 set_current_program_space (inf->pspace);
6c95b8df 1020 inf->removable = 1;
7dcd53a0 1021 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1022 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1023
b73715df 1024 resume_parent = vfork_parent->pid;
6c95b8df
PA
1025 }
1026
6c95b8df
PA
1027 gdb_assert (current_program_space == inf->pspace);
1028
1029 if (non_stop && resume_parent != -1)
1030 {
1031 /* If the user wanted the parent to be running, let it go
1032 free now. */
5ed8105e 1033 scoped_restore_current_thread restore_thread;
6c95b8df 1034
1eb8556f
SM
1035 infrun_debug_printf ("resuming vfork parent process %d",
1036 resume_parent);
6c95b8df
PA
1037
1038 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1039 }
1040 }
1041}
1042
eb6c553b 1043/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1044
1045static const char follow_exec_mode_new[] = "new";
1046static const char follow_exec_mode_same[] = "same";
40478521 1047static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1048{
1049 follow_exec_mode_new,
1050 follow_exec_mode_same,
1051 NULL,
1052};
1053
1054static const char *follow_exec_mode_string = follow_exec_mode_same;
1055static void
1056show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1057 struct cmd_list_element *c, const char *value)
1058{
1059 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1060}
1061
ecf45d2c 1062/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1063
c906108c 1064static void
4ca51187 1065follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1066{
e99b03dc 1067 int pid = ptid.pid ();
94585166 1068 ptid_t process_ptid;
7a292a7a 1069
65d2b333
PW
1070 /* Switch terminal for any messages produced e.g. by
1071 breakpoint_re_set. */
1072 target_terminal::ours_for_output ();
1073
c906108c
SS
1074 /* This is an exec event that we actually wish to pay attention to.
1075 Refresh our symbol table to the newly exec'd program, remove any
1076 momentary bp's, etc.
1077
1078 If there are breakpoints, they aren't really inserted now,
1079 since the exec() transformed our inferior into a fresh set
1080 of instructions.
1081
1082 We want to preserve symbolic breakpoints on the list, since
1083 we have hopes that they can be reset after the new a.out's
1084 symbol table is read.
1085
1086 However, any "raw" breakpoints must be removed from the list
1087 (e.g., the solib bp's), since their address is probably invalid
1088 now.
1089
1090 And, we DON'T want to call delete_breakpoints() here, since
1091 that may write the bp's "shadow contents" (the instruction
85102364 1092 value that was overwritten with a TRAP instruction). Since
1777feb0 1093 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1094
1095 mark_breakpoints_out ();
1096
95e50b27
PA
1097 /* The target reports the exec event to the main thread, even if
1098 some other thread does the exec, and even if the main thread was
1099 stopped or already gone. We may still have non-leader threads of
1100 the process on our list. E.g., on targets that don't have thread
1101 exit events (like remote); or on native Linux in non-stop mode if
1102 there were only two threads in the inferior and the non-leader
1103 one is the one that execs (and nothing forces an update of the
1104 thread list up to here). When debugging remotely, it's best to
1105 avoid extra traffic, when possible, so avoid syncing the thread
1106 list with the target, and instead go ahead and delete all threads
1107 of the process but one that reported the event. Note this must
1108 be done before calling update_breakpoints_after_exec, as
1109 otherwise clearing the threads' resources would reference stale
1110 thread breakpoints -- it may have been one of these threads that
1111 stepped across the exec. We could just clear their stepping
1112 states, but as long as we're iterating, might as well delete
1113 them. Deleting them now rather than at the next user-visible
1114 stop provides a nicer sequence of events for user and MI
1115 notifications. */
08036331 1116 for (thread_info *th : all_threads_safe ())
d7e15655 1117 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1118 delete_thread (th);
95e50b27
PA
1119
1120 /* We also need to clear any left over stale state for the
1121 leader/event thread. E.g., if there was any step-resume
1122 breakpoint or similar, it's gone now. We cannot truly
1123 step-to-next statement through an exec(). */
08036331 1124 thread_info *th = inferior_thread ();
8358c15c 1125 th->control.step_resume_breakpoint = NULL;
186c406b 1126 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1127 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1128 th->control.step_range_start = 0;
1129 th->control.step_range_end = 0;
c906108c 1130
95e50b27
PA
1131 /* The user may have had the main thread held stopped in the
1132 previous image (e.g., schedlock on, or non-stop). Release
1133 it now. */
a75724bc
PA
1134 th->stop_requested = 0;
1135
95e50b27
PA
1136 update_breakpoints_after_exec ();
1137
1777feb0 1138 /* What is this a.out's name? */
f2907e49 1139 process_ptid = ptid_t (pid);
6c95b8df 1140 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1141 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1142 exec_file_target);
c906108c
SS
1143
1144 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1145 inferior has essentially been killed & reborn. */
7a292a7a 1146
6ca15a4b 1147 breakpoint_init_inferior (inf_execd);
e85a822c 1148
797bc1cb
TT
1149 gdb::unique_xmalloc_ptr<char> exec_file_host
1150 = exec_file_find (exec_file_target, NULL);
ff862be4 1151
ecf45d2c
SL
1152 /* If we were unable to map the executable target pathname onto a host
1153 pathname, tell the user that. Otherwise GDB's subsequent behavior
1154 is confusing. Maybe it would even be better to stop at this point
1155 so that the user can specify a file manually before continuing. */
1156 if (exec_file_host == NULL)
1157 warning (_("Could not load symbols for executable %s.\n"
1158 "Do you need \"set sysroot\"?"),
1159 exec_file_target);
c906108c 1160
cce9b6bf
PA
1161 /* Reset the shared library package. This ensures that we get a
1162 shlib event when the child reaches "_start", at which point the
1163 dld will have had a chance to initialize the child. */
1164 /* Also, loading a symbol file below may trigger symbol lookups, and
1165 we don't want those to be satisfied by the libraries of the
1166 previous incarnation of this process. */
1167 no_shared_libraries (NULL, 0);
1168
294c36eb
SM
1169 struct inferior *inf = current_inferior ();
1170
6c95b8df
PA
1171 if (follow_exec_mode_string == follow_exec_mode_new)
1172 {
6c95b8df
PA
1173 /* The user wants to keep the old inferior and program spaces
1174 around. Create a new fresh one, and switch to it. */
1175
35ed81d4
SM
1176 /* Do exit processing for the original inferior before setting the new
1177 inferior's pid. Having two inferiors with the same pid would confuse
1178 find_inferior_p(t)id. Transfer the terminal state and info from the
1179 old to the new inferior. */
294c36eb
SM
1180 inferior *new_inferior = add_inferior_with_spaces ();
1181
1182 swap_terminal_info (new_inferior, inf);
1183 exit_inferior_silent (inf);
1184
1185 new_inferior->pid = pid;
1186 target_follow_exec (new_inferior, ptid, exec_file_target);
1187
1188 /* We continue with the new inferior. */
1189 inf = new_inferior;
6c95b8df 1190 }
9107fc8d
PA
1191 else
1192 {
1193 /* The old description may no longer be fit for the new image.
1194 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1195 old description; we'll read a new one below. No need to do
1196 this on "follow-exec-mode new", as the old inferior stays
1197 around (its description is later cleared/refetched on
1198 restart). */
1199 target_clear_description ();
294c36eb 1200 target_follow_exec (inf, ptid, exec_file_target);
9107fc8d 1201 }
6c95b8df 1202
294c36eb 1203 gdb_assert (current_inferior () == inf);
6c95b8df
PA
1204 gdb_assert (current_program_space == inf->pspace);
1205
ecf45d2c
SL
1206 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1207 because the proper displacement for a PIE (Position Independent
1208 Executable) main symbol file will only be computed by
1209 solib_create_inferior_hook below. breakpoint_re_set would fail
1210 to insert the breakpoints with the zero displacement. */
797bc1cb 1211 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1212
9107fc8d
PA
1213 /* If the target can specify a description, read it. Must do this
1214 after flipping to the new executable (because the target supplied
1215 description must be compatible with the executable's
1216 architecture, and the old executable may e.g., be 32-bit, while
1217 the new one 64-bit), and before anything involving memory or
1218 registers. */
1219 target_find_description ();
1220
42a4fec5 1221 gdb::observers::inferior_execd.notify (inf);
4efc6507 1222
c1e56572
JK
1223 breakpoint_re_set ();
1224
c906108c
SS
1225 /* Reinsert all breakpoints. (Those which were symbolic have
1226 been reset to the proper address in the new a.out, thanks
1777feb0 1227 to symbol_file_command...). */
c906108c
SS
1228 insert_breakpoints ();
1229
1230 /* The next resume of this inferior should bring it to the shlib
1231 startup breakpoints. (If the user had also set bp's on
1232 "main" from the old (parent) process, then they'll auto-
1777feb0 1233 matically get reset there in the new process.). */
c906108c
SS
1234}
1235
28d5518b 1236/* The chain of threads that need to do a step-over operation to get
c2829269
PA
1237 past e.g., a breakpoint. What technique is used to step over the
1238 breakpoint/watchpoint does not matter -- all threads end up in the
1239 same queue, to maintain rough temporal order of execution, in order
1240 to avoid starvation, otherwise, we could e.g., find ourselves
1241 constantly stepping the same couple threads past their breakpoints
1242 over and over, if the single-step finish fast enough. */
28d5518b 1243struct thread_info *global_thread_step_over_chain_head;
c2829269 1244
6c4cfb24
PA
1245/* Bit flags indicating what the thread needs to step over. */
1246
8d297bbf 1247enum step_over_what_flag
6c4cfb24
PA
1248 {
1249 /* Step over a breakpoint. */
1250 STEP_OVER_BREAKPOINT = 1,
1251
1252 /* Step past a non-continuable watchpoint, in order to let the
1253 instruction execute so we can evaluate the watchpoint
1254 expression. */
1255 STEP_OVER_WATCHPOINT = 2
1256 };
8d297bbf 1257DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1258
963f9c80 1259/* Info about an instruction that is being stepped over. */
31e77af2
PA
1260
1261struct step_over_info
1262{
963f9c80
PA
1263 /* If we're stepping past a breakpoint, this is the address space
1264 and address of the instruction the breakpoint is set at. We'll
1265 skip inserting all breakpoints here. Valid iff ASPACE is
1266 non-NULL. */
ac7d717c
PA
1267 const address_space *aspace = nullptr;
1268 CORE_ADDR address = 0;
963f9c80
PA
1269
1270 /* The instruction being stepped over triggers a nonsteppable
1271 watchpoint. If true, we'll skip inserting watchpoints. */
ac7d717c 1272 int nonsteppable_watchpoint_p = 0;
21edc42f
YQ
1273
1274 /* The thread's global number. */
ac7d717c 1275 int thread = -1;
31e77af2
PA
1276};
1277
1278/* The step-over info of the location that is being stepped over.
1279
1280 Note that with async/breakpoint always-inserted mode, a user might
1281 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1282 being stepped over. As setting a new breakpoint inserts all
1283 breakpoints, we need to make sure the breakpoint being stepped over
1284 isn't inserted then. We do that by only clearing the step-over
1285 info when the step-over is actually finished (or aborted).
1286
1287 Presently GDB can only step over one breakpoint at any given time.
1288 Given threads that can't run code in the same address space as the
1289 breakpoint's can't really miss the breakpoint, GDB could be taught
1290 to step-over at most one breakpoint per address space (so this info
1291 could move to the address space object if/when GDB is extended).
1292 The set of breakpoints being stepped over will normally be much
1293 smaller than the set of all breakpoints, so a flag in the
1294 breakpoint location structure would be wasteful. A separate list
1295 also saves complexity and run-time, as otherwise we'd have to go
1296 through all breakpoint locations clearing their flag whenever we
1297 start a new sequence. Similar considerations weigh against storing
1298 this info in the thread object. Plus, not all step overs actually
1299 have breakpoint locations -- e.g., stepping past a single-step
1300 breakpoint, or stepping to complete a non-continuable
1301 watchpoint. */
1302static struct step_over_info step_over_info;
1303
1304/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1305 stepping over.
1306 N.B. We record the aspace and address now, instead of say just the thread,
1307 because when we need the info later the thread may be running. */
31e77af2
PA
1308
1309static void
8b86c959 1310set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1311 int nonsteppable_watchpoint_p,
1312 int thread)
31e77af2
PA
1313{
1314 step_over_info.aspace = aspace;
1315 step_over_info.address = address;
963f9c80 1316 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1317 step_over_info.thread = thread;
31e77af2
PA
1318}
1319
1320/* Called when we're not longer stepping over a breakpoint / an
1321 instruction, so all breakpoints are free to be (re)inserted. */
1322
1323static void
1324clear_step_over_info (void)
1325{
1eb8556f 1326 infrun_debug_printf ("clearing step over info");
31e77af2
PA
1327 step_over_info.aspace = NULL;
1328 step_over_info.address = 0;
963f9c80 1329 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1330 step_over_info.thread = -1;
31e77af2
PA
1331}
1332
7f89fd65 1333/* See infrun.h. */
31e77af2
PA
1334
1335int
1336stepping_past_instruction_at (struct address_space *aspace,
1337 CORE_ADDR address)
1338{
1339 return (step_over_info.aspace != NULL
1340 && breakpoint_address_match (aspace, address,
1341 step_over_info.aspace,
1342 step_over_info.address));
1343}
1344
963f9c80
PA
1345/* See infrun.h. */
1346
21edc42f
YQ
1347int
1348thread_is_stepping_over_breakpoint (int thread)
1349{
1350 return (step_over_info.thread != -1
1351 && thread == step_over_info.thread);
1352}
1353
1354/* See infrun.h. */
1355
963f9c80
PA
1356int
1357stepping_past_nonsteppable_watchpoint (void)
1358{
1359 return step_over_info.nonsteppable_watchpoint_p;
1360}
1361
6cc83d2a
PA
1362/* Returns true if step-over info is valid. */
1363
c4464ade 1364static bool
6cc83d2a
PA
1365step_over_info_valid_p (void)
1366{
963f9c80
PA
1367 return (step_over_info.aspace != NULL
1368 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1369}
1370
c906108c 1371\f
237fc4c9
PA
1372/* Displaced stepping. */
1373
1374/* In non-stop debugging mode, we must take special care to manage
1375 breakpoints properly; in particular, the traditional strategy for
1376 stepping a thread past a breakpoint it has hit is unsuitable.
1377 'Displaced stepping' is a tactic for stepping one thread past a
1378 breakpoint it has hit while ensuring that other threads running
1379 concurrently will hit the breakpoint as they should.
1380
1381 The traditional way to step a thread T off a breakpoint in a
1382 multi-threaded program in all-stop mode is as follows:
1383
1384 a0) Initially, all threads are stopped, and breakpoints are not
1385 inserted.
1386 a1) We single-step T, leaving breakpoints uninserted.
1387 a2) We insert breakpoints, and resume all threads.
1388
1389 In non-stop debugging, however, this strategy is unsuitable: we
1390 don't want to have to stop all threads in the system in order to
1391 continue or step T past a breakpoint. Instead, we use displaced
1392 stepping:
1393
1394 n0) Initially, T is stopped, other threads are running, and
1395 breakpoints are inserted.
1396 n1) We copy the instruction "under" the breakpoint to a separate
1397 location, outside the main code stream, making any adjustments
1398 to the instruction, register, and memory state as directed by
1399 T's architecture.
1400 n2) We single-step T over the instruction at its new location.
1401 n3) We adjust the resulting register and memory state as directed
1402 by T's architecture. This includes resetting T's PC to point
1403 back into the main instruction stream.
1404 n4) We resume T.
1405
1406 This approach depends on the following gdbarch methods:
1407
1408 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1409 indicate where to copy the instruction, and how much space must
1410 be reserved there. We use these in step n1.
1411
1412 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1413 address, and makes any necessary adjustments to the instruction,
1414 register contents, and memory. We use this in step n1.
1415
1416 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1417 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1418 same effect the instruction would have had if we had executed it
1419 at its original address. We use this in step n3.
1420
237fc4c9
PA
1421 The gdbarch_displaced_step_copy_insn and
1422 gdbarch_displaced_step_fixup functions must be written so that
1423 copying an instruction with gdbarch_displaced_step_copy_insn,
1424 single-stepping across the copied instruction, and then applying
1425 gdbarch_displaced_insn_fixup should have the same effects on the
1426 thread's memory and registers as stepping the instruction in place
1427 would have. Exactly which responsibilities fall to the copy and
1428 which fall to the fixup is up to the author of those functions.
1429
1430 See the comments in gdbarch.sh for details.
1431
1432 Note that displaced stepping and software single-step cannot
1433 currently be used in combination, although with some care I think
1434 they could be made to. Software single-step works by placing
1435 breakpoints on all possible subsequent instructions; if the
1436 displaced instruction is a PC-relative jump, those breakpoints
1437 could fall in very strange places --- on pages that aren't
1438 executable, or at addresses that are not proper instruction
1439 boundaries. (We do generally let other threads run while we wait
1440 to hit the software single-step breakpoint, and they might
1441 encounter such a corrupted instruction.) One way to work around
1442 this would be to have gdbarch_displaced_step_copy_insn fully
1443 simulate the effect of PC-relative instructions (and return NULL)
1444 on architectures that use software single-stepping.
1445
1446 In non-stop mode, we can have independent and simultaneous step
1447 requests, so more than one thread may need to simultaneously step
1448 over a breakpoint. The current implementation assumes there is
1449 only one scratch space per process. In this case, we have to
1450 serialize access to the scratch space. If thread A wants to step
1451 over a breakpoint, but we are currently waiting for some other
1452 thread to complete a displaced step, we leave thread A stopped and
1453 place it in the displaced_step_request_queue. Whenever a displaced
1454 step finishes, we pick the next thread in the queue and start a new
1455 displaced step operation on it. See displaced_step_prepare and
7def77a1 1456 displaced_step_finish for details. */
237fc4c9 1457
a46d1843 1458/* Return true if THREAD is doing a displaced step. */
c0987663 1459
c4464ade 1460static bool
00431a78 1461displaced_step_in_progress_thread (thread_info *thread)
c0987663 1462{
00431a78 1463 gdb_assert (thread != NULL);
c0987663 1464
187b041e 1465 return thread->displaced_step_state.in_progress ();
c0987663
YQ
1466}
1467
a46d1843 1468/* Return true if INF has a thread doing a displaced step. */
8f572e5c 1469
c4464ade 1470static bool
00431a78 1471displaced_step_in_progress (inferior *inf)
8f572e5c 1472{
187b041e 1473 return inf->displaced_step_state.in_progress_count > 0;
fc1cf338
PA
1474}
1475
187b041e 1476/* Return true if any thread is doing a displaced step. */
a42244db 1477
187b041e
SM
1478static bool
1479displaced_step_in_progress_any_thread ()
a42244db 1480{
187b041e
SM
1481 for (inferior *inf : all_non_exited_inferiors ())
1482 {
1483 if (displaced_step_in_progress (inf))
1484 return true;
1485 }
a42244db 1486
187b041e 1487 return false;
a42244db
YQ
1488}
1489
fc1cf338
PA
1490static void
1491infrun_inferior_exit (struct inferior *inf)
1492{
d20172fc 1493 inf->displaced_step_state.reset ();
fc1cf338 1494}
237fc4c9 1495
3b7a962d
SM
1496static void
1497infrun_inferior_execd (inferior *inf)
1498{
187b041e
SM
1499 /* If some threads where was doing a displaced step in this inferior at the
1500 moment of the exec, they no longer exist. Even if the exec'ing thread
3b7a962d
SM
1501 doing a displaced step, we don't want to to any fixup nor restore displaced
1502 stepping buffer bytes. */
1503 inf->displaced_step_state.reset ();
1504
187b041e
SM
1505 for (thread_info *thread : inf->threads ())
1506 thread->displaced_step_state.reset ();
1507
3b7a962d
SM
1508 /* Since an in-line step is done with everything else stopped, if there was
1509 one in progress at the time of the exec, it must have been the exec'ing
1510 thread. */
1511 clear_step_over_info ();
1512}
1513
fff08868
HZ
1514/* If ON, and the architecture supports it, GDB will use displaced
1515 stepping to step over breakpoints. If OFF, or if the architecture
1516 doesn't support it, GDB will instead use the traditional
1517 hold-and-step approach. If AUTO (which is the default), GDB will
1518 decide which technique to use to step over breakpoints depending on
9822cb57 1519 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1520
72d0e2c5 1521static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1522
237fc4c9
PA
1523static void
1524show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1525 struct cmd_list_element *c,
1526 const char *value)
1527{
72d0e2c5 1528 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1529 fprintf_filtered (file,
1530 _("Debugger's willingness to use displaced stepping "
1531 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1532 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1533 else
3e43a32a
MS
1534 fprintf_filtered (file,
1535 _("Debugger's willingness to use displaced stepping "
1536 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1537}
1538
9822cb57
SM
1539/* Return true if the gdbarch implements the required methods to use
1540 displaced stepping. */
1541
1542static bool
1543gdbarch_supports_displaced_stepping (gdbarch *arch)
1544{
187b041e
SM
1545 /* Only check for the presence of `prepare`. The gdbarch verification ensures
1546 that if `prepare` is provided, so is `finish`. */
1547 return gdbarch_displaced_step_prepare_p (arch);
9822cb57
SM
1548}
1549
fff08868 1550/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1551 over breakpoints of thread TP. */
fff08868 1552
9822cb57
SM
1553static bool
1554use_displaced_stepping (thread_info *tp)
237fc4c9 1555{
9822cb57
SM
1556 /* If the user disabled it explicitly, don't use displaced stepping. */
1557 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1558 return false;
1559
1560 /* If "auto", only use displaced stepping if the target operates in a non-stop
1561 way. */
1562 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1563 && !target_is_non_stop_p ())
1564 return false;
1565
1566 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1567
1568 /* If the architecture doesn't implement displaced stepping, don't use
1569 it. */
1570 if (!gdbarch_supports_displaced_stepping (gdbarch))
1571 return false;
1572
1573 /* If recording, don't use displaced stepping. */
1574 if (find_record_target () != nullptr)
1575 return false;
1576
9822cb57
SM
1577 /* If displaced stepping failed before for this inferior, don't bother trying
1578 again. */
f5f01699 1579 if (tp->inf->displaced_step_state.failed_before)
9822cb57
SM
1580 return false;
1581
1582 return true;
237fc4c9
PA
1583}
1584
187b041e 1585/* Simple function wrapper around displaced_step_thread_state::reset. */
d8d83535 1586
237fc4c9 1587static void
187b041e 1588displaced_step_reset (displaced_step_thread_state *displaced)
237fc4c9 1589{
d8d83535 1590 displaced->reset ();
237fc4c9
PA
1591}
1592
d8d83535
SM
1593/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1594 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1595
1596using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9 1597
136821d9
SM
1598/* See infrun.h. */
1599
1600std::string
1601displaced_step_dump_bytes (const gdb_byte *buf, size_t len)
237fc4c9 1602{
136821d9 1603 std::string ret;
237fc4c9 1604
136821d9
SM
1605 for (size_t i = 0; i < len; i++)
1606 {
1607 if (i == 0)
1608 ret += string_printf ("%02x", buf[i]);
1609 else
1610 ret += string_printf (" %02x", buf[i]);
1611 }
1612
1613 return ret;
237fc4c9
PA
1614}
1615
1616/* Prepare to single-step, using displaced stepping.
1617
1618 Note that we cannot use displaced stepping when we have a signal to
1619 deliver. If we have a signal to deliver and an instruction to step
1620 over, then after the step, there will be no indication from the
1621 target whether the thread entered a signal handler or ignored the
1622 signal and stepped over the instruction successfully --- both cases
1623 result in a simple SIGTRAP. In the first case we mustn't do a
1624 fixup, and in the second case we must --- but we can't tell which.
1625 Comments in the code for 'random signals' in handle_inferior_event
1626 explain how we handle this case instead.
1627
bab37966
SM
1628 Returns DISPLACED_STEP_PREPARE_STATUS_OK if preparing was successful -- this
1629 thread is going to be stepped now; DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE
1630 if displaced stepping this thread got queued; or
1631 DISPLACED_STEP_PREPARE_STATUS_CANT if this instruction can't be displaced
1632 stepped. */
7f03bd92 1633
bab37966 1634static displaced_step_prepare_status
00431a78 1635displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1636{
00431a78 1637 regcache *regcache = get_thread_regcache (tp);
ac7936df 1638 struct gdbarch *gdbarch = regcache->arch ();
187b041e
SM
1639 displaced_step_thread_state &disp_step_thread_state
1640 = tp->displaced_step_state;
237fc4c9
PA
1641
1642 /* We should never reach this function if the architecture does not
1643 support displaced stepping. */
9822cb57 1644 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
237fc4c9 1645
c2829269
PA
1646 /* Nor if the thread isn't meant to step over a breakpoint. */
1647 gdb_assert (tp->control.trap_expected);
1648
c1e36e3e
PA
1649 /* Disable range stepping while executing in the scratch pad. We
1650 want a single-step even if executing the displaced instruction in
1651 the scratch buffer lands within the stepping range (e.g., a
1652 jump/branch). */
1653 tp->control.may_range_step = 0;
1654
187b041e
SM
1655 /* We are about to start a displaced step for this thread. If one is already
1656 in progress, something's wrong. */
1657 gdb_assert (!disp_step_thread_state.in_progress ());
237fc4c9 1658
187b041e 1659 if (tp->inf->displaced_step_state.unavailable)
237fc4c9 1660 {
187b041e
SM
1661 /* The gdbarch tells us it's not worth asking to try a prepare because
1662 it is likely that it will return unavailable, so don't bother asking. */
237fc4c9 1663
136821d9
SM
1664 displaced_debug_printf ("deferring step of %s",
1665 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1666
28d5518b 1667 global_thread_step_over_chain_enqueue (tp);
bab37966 1668 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
237fc4c9 1669 }
237fc4c9 1670
187b041e
SM
1671 displaced_debug_printf ("displaced-stepping %s now",
1672 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1673
00431a78
PA
1674 scoped_restore_current_thread restore_thread;
1675
1676 switch_to_thread (tp);
ad53cd71 1677
187b041e
SM
1678 CORE_ADDR original_pc = regcache_read_pc (regcache);
1679 CORE_ADDR displaced_pc;
237fc4c9 1680
187b041e
SM
1681 displaced_step_prepare_status status
1682 = gdbarch_displaced_step_prepare (gdbarch, tp, displaced_pc);
237fc4c9 1683
187b041e 1684 if (status == DISPLACED_STEP_PREPARE_STATUS_CANT)
d35ae833 1685 {
187b041e
SM
1686 displaced_debug_printf ("failed to prepare (%s)",
1687 target_pid_to_str (tp->ptid).c_str ());
d35ae833 1688
bab37966 1689 return DISPLACED_STEP_PREPARE_STATUS_CANT;
d35ae833 1690 }
187b041e 1691 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
7f03bd92 1692 {
187b041e
SM
1693 /* Not enough displaced stepping resources available, defer this
1694 request by placing it the queue. */
1695
1696 displaced_debug_printf ("not enough resources available, "
1697 "deferring step of %s",
1698 target_pid_to_str (tp->ptid).c_str ());
1699
1700 global_thread_step_over_chain_enqueue (tp);
1701
1702 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
7f03bd92 1703 }
237fc4c9 1704
187b041e
SM
1705 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1706
9f5a595d
UW
1707 /* Save the information we need to fix things up if the step
1708 succeeds. */
187b041e 1709 disp_step_thread_state.set (gdbarch);
9f5a595d 1710
187b041e 1711 tp->inf->displaced_step_state.in_progress_count++;
ad53cd71 1712
187b041e
SM
1713 displaced_debug_printf ("prepared successfully thread=%s, "
1714 "original_pc=%s, displaced_pc=%s",
1715 target_pid_to_str (tp->ptid).c_str (),
1716 paddress (gdbarch, original_pc),
1717 paddress (gdbarch, displaced_pc));
237fc4c9 1718
bab37966 1719 return DISPLACED_STEP_PREPARE_STATUS_OK;
237fc4c9
PA
1720}
1721
3fc8eb30
PA
1722/* Wrapper for displaced_step_prepare_throw that disabled further
1723 attempts at displaced stepping if we get a memory error. */
1724
bab37966 1725static displaced_step_prepare_status
00431a78 1726displaced_step_prepare (thread_info *thread)
3fc8eb30 1727{
bab37966
SM
1728 displaced_step_prepare_status status
1729 = DISPLACED_STEP_PREPARE_STATUS_CANT;
3fc8eb30 1730
a70b8144 1731 try
3fc8eb30 1732 {
bab37966 1733 status = displaced_step_prepare_throw (thread);
3fc8eb30 1734 }
230d2906 1735 catch (const gdb_exception_error &ex)
3fc8eb30 1736 {
16b41842
PA
1737 if (ex.error != MEMORY_ERROR
1738 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1739 throw;
3fc8eb30 1740
1eb8556f
SM
1741 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1742 ex.what ());
3fc8eb30
PA
1743
1744 /* Be verbose if "set displaced-stepping" is "on", silent if
1745 "auto". */
1746 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1747 {
fd7dcb94 1748 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1749 ex.what ());
3fc8eb30
PA
1750 }
1751
1752 /* Disable further displaced stepping attempts. */
f5f01699 1753 thread->inf->displaced_step_state.failed_before = 1;
3fc8eb30 1754 }
3fc8eb30 1755
bab37966 1756 return status;
3fc8eb30
PA
1757}
1758
bab37966
SM
1759/* If we displaced stepped an instruction successfully, adjust registers and
1760 memory to yield the same effect the instruction would have had if we had
1761 executed it at its original address, and return
1762 DISPLACED_STEP_FINISH_STATUS_OK. If the instruction didn't complete,
1763 relocate the PC and return DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED.
372316f1 1764
bab37966
SM
1765 If the thread wasn't displaced stepping, return
1766 DISPLACED_STEP_FINISH_STATUS_OK as well. */
1767
1768static displaced_step_finish_status
7def77a1 1769displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1770{
187b041e 1771 displaced_step_thread_state *displaced = &event_thread->displaced_step_state;
fc1cf338 1772
187b041e
SM
1773 /* Was this thread performing a displaced step? */
1774 if (!displaced->in_progress ())
bab37966 1775 return DISPLACED_STEP_FINISH_STATUS_OK;
237fc4c9 1776
187b041e
SM
1777 gdb_assert (event_thread->inf->displaced_step_state.in_progress_count > 0);
1778 event_thread->inf->displaced_step_state.in_progress_count--;
1779
cb71640d
PA
1780 /* Fixup may need to read memory/registers. Switch to the thread
1781 that we're fixing up. Also, target_stopped_by_watchpoint checks
d43b7a2d 1782 the current thread, and displaced_step_restore performs ptid-dependent
328d42d8 1783 memory accesses using current_inferior(). */
00431a78 1784 switch_to_thread (event_thread);
cb71640d 1785
d43b7a2d
TBA
1786 displaced_step_reset_cleanup cleanup (displaced);
1787
187b041e
SM
1788 /* Do the fixup, and release the resources acquired to do the displaced
1789 step. */
1790 return gdbarch_displaced_step_finish (displaced->get_original_gdbarch (),
1791 event_thread, signal);
c2829269 1792}
1c5cfe86 1793
4d9d9d04
PA
1794/* Data to be passed around while handling an event. This data is
1795 discarded between events. */
1796struct execution_control_state
1797{
5b6d1e4f 1798 process_stratum_target *target;
4d9d9d04
PA
1799 ptid_t ptid;
1800 /* The thread that got the event, if this was a thread event; NULL
1801 otherwise. */
1802 struct thread_info *event_thread;
1803
1804 struct target_waitstatus ws;
1805 int stop_func_filled_in;
1806 CORE_ADDR stop_func_start;
1807 CORE_ADDR stop_func_end;
1808 const char *stop_func_name;
1809 int wait_some_more;
1810
1811 /* True if the event thread hit the single-step breakpoint of
1812 another thread. Thus the event doesn't cause a stop, the thread
1813 needs to be single-stepped past the single-step breakpoint before
1814 we can switch back to the original stepping thread. */
1815 int hit_singlestep_breakpoint;
1816};
1817
1818/* Clear ECS and set it to point at TP. */
c2829269
PA
1819
1820static void
4d9d9d04
PA
1821reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1822{
1823 memset (ecs, 0, sizeof (*ecs));
1824 ecs->event_thread = tp;
1825 ecs->ptid = tp->ptid;
1826}
1827
1828static void keep_going_pass_signal (struct execution_control_state *ecs);
1829static void prepare_to_wait (struct execution_control_state *ecs);
c4464ade 1830static bool keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1831static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1832
1833/* Are there any pending step-over requests? If so, run all we can
1834 now and return true. Otherwise, return false. */
1835
c4464ade 1836static bool
c2829269
PA
1837start_step_over (void)
1838{
3ec3145c
SM
1839 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
1840
187b041e 1841 thread_info *next;
c2829269 1842
372316f1
PA
1843 /* Don't start a new step-over if we already have an in-line
1844 step-over operation ongoing. */
1845 if (step_over_info_valid_p ())
c4464ade 1846 return false;
372316f1 1847
187b041e
SM
1848 /* Steal the global thread step over chain. As we try to initiate displaced
1849 steps, threads will be enqueued in the global chain if no buffers are
1850 available. If we iterated on the global chain directly, we might iterate
1851 indefinitely. */
1852 thread_info *threads_to_step = global_thread_step_over_chain_head;
1853 global_thread_step_over_chain_head = NULL;
1854
1855 infrun_debug_printf ("stealing global queue of threads to step, length = %d",
1856 thread_step_over_chain_length (threads_to_step));
1857
1858 bool started = false;
1859
1860 /* On scope exit (whatever the reason, return or exception), if there are
1861 threads left in the THREADS_TO_STEP chain, put back these threads in the
1862 global list. */
1863 SCOPE_EXIT
1864 {
1865 if (threads_to_step == nullptr)
1866 infrun_debug_printf ("step-over queue now empty");
1867 else
1868 {
1869 infrun_debug_printf ("putting back %d threads to step in global queue",
1870 thread_step_over_chain_length (threads_to_step));
1871
1872 global_thread_step_over_chain_enqueue_chain (threads_to_step);
1873 }
1874 };
1875
1876 for (thread_info *tp = threads_to_step; tp != NULL; tp = next)
237fc4c9 1877 {
4d9d9d04
PA
1878 struct execution_control_state ecss;
1879 struct execution_control_state *ecs = &ecss;
8d297bbf 1880 step_over_what step_what;
372316f1 1881 int must_be_in_line;
c2829269 1882
c65d6b55
PA
1883 gdb_assert (!tp->stop_requested);
1884
187b041e 1885 next = thread_step_over_chain_next (threads_to_step, tp);
237fc4c9 1886
187b041e
SM
1887 if (tp->inf->displaced_step_state.unavailable)
1888 {
1889 /* The arch told us to not even try preparing another displaced step
1890 for this inferior. Just leave the thread in THREADS_TO_STEP, it
1891 will get moved to the global chain on scope exit. */
1892 continue;
1893 }
1894
1895 /* Remove thread from the THREADS_TO_STEP chain. If anything goes wrong
1896 while we try to prepare the displaced step, we don't add it back to
1897 the global step over chain. This is to avoid a thread staying in the
1898 step over chain indefinitely if something goes wrong when resuming it
1899 If the error is intermittent and it still needs a step over, it will
1900 get enqueued again when we try to resume it normally. */
1901 thread_step_over_chain_remove (&threads_to_step, tp);
c2829269 1902
372316f1
PA
1903 step_what = thread_still_needs_step_over (tp);
1904 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1905 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1906 && !use_displaced_stepping (tp)));
372316f1
PA
1907
1908 /* We currently stop all threads of all processes to step-over
1909 in-line. If we need to start a new in-line step-over, let
1910 any pending displaced steps finish first. */
187b041e
SM
1911 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1912 {
1913 global_thread_step_over_chain_enqueue (tp);
1914 continue;
1915 }
c2829269 1916
372316f1
PA
1917 if (tp->control.trap_expected
1918 || tp->resumed
1919 || tp->executing)
ad53cd71 1920 {
4d9d9d04
PA
1921 internal_error (__FILE__, __LINE__,
1922 "[%s] has inconsistent state: "
372316f1 1923 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 1924 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 1925 tp->control.trap_expected,
372316f1 1926 tp->resumed,
4d9d9d04 1927 tp->executing);
ad53cd71 1928 }
1c5cfe86 1929
1eb8556f
SM
1930 infrun_debug_printf ("resuming [%s] for step-over",
1931 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
1932
1933 /* keep_going_pass_signal skips the step-over if the breakpoint
1934 is no longer inserted. In all-stop, we want to keep looking
1935 for a thread that needs a step-over instead of resuming TP,
1936 because we wouldn't be able to resume anything else until the
1937 target stops again. In non-stop, the resume always resumes
1938 only TP, so it's OK to let the thread resume freely. */
fbea99ea 1939 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 1940 continue;
8550d3b3 1941
00431a78 1942 switch_to_thread (tp);
4d9d9d04
PA
1943 reset_ecs (ecs, tp);
1944 keep_going_pass_signal (ecs);
1c5cfe86 1945
4d9d9d04
PA
1946 if (!ecs->wait_some_more)
1947 error (_("Command aborted."));
1c5cfe86 1948
187b041e
SM
1949 /* If the thread's step over could not be initiated because no buffers
1950 were available, it was re-added to the global step over chain. */
1951 if (tp->resumed)
1952 {
1953 infrun_debug_printf ("[%s] was resumed.",
1954 target_pid_to_str (tp->ptid).c_str ());
1955 gdb_assert (!thread_is_in_step_over_chain (tp));
1956 }
1957 else
1958 {
1959 infrun_debug_printf ("[%s] was NOT resumed.",
1960 target_pid_to_str (tp->ptid).c_str ());
1961 gdb_assert (thread_is_in_step_over_chain (tp));
1962 }
372316f1
PA
1963
1964 /* If we started a new in-line step-over, we're done. */
1965 if (step_over_info_valid_p ())
1966 {
1967 gdb_assert (tp->control.trap_expected);
187b041e
SM
1968 started = true;
1969 break;
372316f1
PA
1970 }
1971
fbea99ea 1972 if (!target_is_non_stop_p ())
4d9d9d04
PA
1973 {
1974 /* On all-stop, shouldn't have resumed unless we needed a
1975 step over. */
1976 gdb_assert (tp->control.trap_expected
1977 || tp->step_after_step_resume_breakpoint);
1978
1979 /* With remote targets (at least), in all-stop, we can't
1980 issue any further remote commands until the program stops
1981 again. */
187b041e
SM
1982 started = true;
1983 break;
1c5cfe86 1984 }
c2829269 1985
4d9d9d04
PA
1986 /* Either the thread no longer needed a step-over, or a new
1987 displaced stepping sequence started. Even in the latter
1988 case, continue looking. Maybe we can also start another
1989 displaced step on a thread of other process. */
237fc4c9 1990 }
4d9d9d04 1991
187b041e 1992 return started;
237fc4c9
PA
1993}
1994
5231c1fd
PA
1995/* Update global variables holding ptids to hold NEW_PTID if they were
1996 holding OLD_PTID. */
1997static void
b161a60d
SM
1998infrun_thread_ptid_changed (process_stratum_target *target,
1999 ptid_t old_ptid, ptid_t new_ptid)
5231c1fd 2000{
b161a60d
SM
2001 if (inferior_ptid == old_ptid
2002 && current_inferior ()->process_target () == target)
5231c1fd 2003 inferior_ptid = new_ptid;
5231c1fd
PA
2004}
2005
237fc4c9 2006\f
c906108c 2007
53904c9e
AC
2008static const char schedlock_off[] = "off";
2009static const char schedlock_on[] = "on";
2010static const char schedlock_step[] = "step";
f2665db5 2011static const char schedlock_replay[] = "replay";
40478521 2012static const char *const scheduler_enums[] = {
ef346e04
AC
2013 schedlock_off,
2014 schedlock_on,
2015 schedlock_step,
f2665db5 2016 schedlock_replay,
ef346e04
AC
2017 NULL
2018};
f2665db5 2019static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2020static void
2021show_scheduler_mode (struct ui_file *file, int from_tty,
2022 struct cmd_list_element *c, const char *value)
2023{
3e43a32a
MS
2024 fprintf_filtered (file,
2025 _("Mode for locking scheduler "
2026 "during execution is \"%s\".\n"),
920d2a44
AC
2027 value);
2028}
c906108c
SS
2029
2030static void
eb4c3f4a 2031set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2032{
8a3ecb79 2033 if (!target_can_lock_scheduler ())
eefe576e
AC
2034 {
2035 scheduler_mode = schedlock_off;
d777bf0d
SM
2036 error (_("Target '%s' cannot support this command."),
2037 target_shortname ());
eefe576e 2038 }
c906108c
SS
2039}
2040
d4db2f36
PA
2041/* True if execution commands resume all threads of all processes by
2042 default; otherwise, resume only threads of the current inferior
2043 process. */
491144b5 2044bool sched_multi = false;
d4db2f36 2045
2facfe5c 2046/* Try to setup for software single stepping over the specified location.
c4464ade 2047 Return true if target_resume() should use hardware single step.
2facfe5c
DD
2048
2049 GDBARCH the current gdbarch.
2050 PC the location to step over. */
2051
c4464ade 2052static bool
2facfe5c
DD
2053maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2054{
c4464ade 2055 bool hw_step = true;
2facfe5c 2056
f02253f1 2057 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2058 && gdbarch_software_single_step_p (gdbarch))
2059 hw_step = !insert_single_step_breakpoints (gdbarch);
2060
2facfe5c
DD
2061 return hw_step;
2062}
c906108c 2063
f3263aa4
PA
2064/* See infrun.h. */
2065
09cee04b
PA
2066ptid_t
2067user_visible_resume_ptid (int step)
2068{
f3263aa4 2069 ptid_t resume_ptid;
09cee04b 2070
09cee04b
PA
2071 if (non_stop)
2072 {
2073 /* With non-stop mode on, threads are always handled
2074 individually. */
2075 resume_ptid = inferior_ptid;
2076 }
2077 else if ((scheduler_mode == schedlock_on)
03d46957 2078 || (scheduler_mode == schedlock_step && step))
09cee04b 2079 {
f3263aa4
PA
2080 /* User-settable 'scheduler' mode requires solo thread
2081 resume. */
09cee04b
PA
2082 resume_ptid = inferior_ptid;
2083 }
f2665db5
MM
2084 else if ((scheduler_mode == schedlock_replay)
2085 && target_record_will_replay (minus_one_ptid, execution_direction))
2086 {
2087 /* User-settable 'scheduler' mode requires solo thread resume in replay
2088 mode. */
2089 resume_ptid = inferior_ptid;
2090 }
f3263aa4
PA
2091 else if (!sched_multi && target_supports_multi_process ())
2092 {
2093 /* Resume all threads of the current process (and none of other
2094 processes). */
e99b03dc 2095 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2096 }
2097 else
2098 {
2099 /* Resume all threads of all processes. */
2100 resume_ptid = RESUME_ALL;
2101 }
09cee04b
PA
2102
2103 return resume_ptid;
2104}
2105
5b6d1e4f
PA
2106/* See infrun.h. */
2107
2108process_stratum_target *
2109user_visible_resume_target (ptid_t resume_ptid)
2110{
2111 return (resume_ptid == minus_one_ptid && sched_multi
2112 ? NULL
2113 : current_inferior ()->process_target ());
2114}
2115
fbea99ea
PA
2116/* Return a ptid representing the set of threads that we will resume,
2117 in the perspective of the target, assuming run control handling
2118 does not require leaving some threads stopped (e.g., stepping past
2119 breakpoint). USER_STEP indicates whether we're about to start the
2120 target for a stepping command. */
2121
2122static ptid_t
2123internal_resume_ptid (int user_step)
2124{
2125 /* In non-stop, we always control threads individually. Note that
2126 the target may always work in non-stop mode even with "set
2127 non-stop off", in which case user_visible_resume_ptid could
2128 return a wildcard ptid. */
2129 if (target_is_non_stop_p ())
2130 return inferior_ptid;
2131 else
2132 return user_visible_resume_ptid (user_step);
2133}
2134
64ce06e4
PA
2135/* Wrapper for target_resume, that handles infrun-specific
2136 bookkeeping. */
2137
2138static void
c4464ade 2139do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
64ce06e4
PA
2140{
2141 struct thread_info *tp = inferior_thread ();
2142
c65d6b55
PA
2143 gdb_assert (!tp->stop_requested);
2144
64ce06e4 2145 /* Install inferior's terminal modes. */
223ffa71 2146 target_terminal::inferior ();
64ce06e4
PA
2147
2148 /* Avoid confusing the next resume, if the next stop/resume
2149 happens to apply to another thread. */
2150 tp->suspend.stop_signal = GDB_SIGNAL_0;
2151
8f572e5c
PA
2152 /* Advise target which signals may be handled silently.
2153
2154 If we have removed breakpoints because we are stepping over one
2155 in-line (in any thread), we need to receive all signals to avoid
2156 accidentally skipping a breakpoint during execution of a signal
2157 handler.
2158
2159 Likewise if we're displaced stepping, otherwise a trap for a
2160 breakpoint in a signal handler might be confused with the
7def77a1 2161 displaced step finishing. We don't make the displaced_step_finish
8f572e5c
PA
2162 step distinguish the cases instead, because:
2163
2164 - a backtrace while stopped in the signal handler would show the
2165 scratch pad as frame older than the signal handler, instead of
2166 the real mainline code.
2167
2168 - when the thread is later resumed, the signal handler would
2169 return to the scratch pad area, which would no longer be
2170 valid. */
2171 if (step_over_info_valid_p ()
00431a78 2172 || displaced_step_in_progress (tp->inf))
adc6a863 2173 target_pass_signals ({});
64ce06e4 2174 else
adc6a863 2175 target_pass_signals (signal_pass);
64ce06e4
PA
2176
2177 target_resume (resume_ptid, step, sig);
85ad3aaf 2178
5b6d1e4f
PA
2179 if (target_can_async_p ())
2180 target_async (1);
64ce06e4
PA
2181}
2182
d930703d 2183/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2184 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2185 call 'resume', which handles exceptions. */
c906108c 2186
71d378ae
PA
2187static void
2188resume_1 (enum gdb_signal sig)
c906108c 2189{
515630c5 2190 struct regcache *regcache = get_current_regcache ();
ac7936df 2191 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2192 struct thread_info *tp = inferior_thread ();
8b86c959 2193 const address_space *aspace = regcache->aspace ();
b0f16a3e 2194 ptid_t resume_ptid;
856e7dd6
PA
2195 /* This represents the user's step vs continue request. When
2196 deciding whether "set scheduler-locking step" applies, it's the
2197 user's intention that counts. */
2198 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2199 /* This represents what we'll actually request the target to do.
2200 This can decay from a step to a continue, if e.g., we need to
2201 implement single-stepping with breakpoints (software
2202 single-step). */
c4464ade 2203 bool step;
c7e8a53c 2204
c65d6b55 2205 gdb_assert (!tp->stop_requested);
c2829269
PA
2206 gdb_assert (!thread_is_in_step_over_chain (tp));
2207
372316f1
PA
2208 if (tp->suspend.waitstatus_pending_p)
2209 {
1eb8556f
SM
2210 infrun_debug_printf
2211 ("thread %s has pending wait "
2212 "status %s (currently_stepping=%d).",
2213 target_pid_to_str (tp->ptid).c_str (),
2214 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2215 currently_stepping (tp));
372316f1 2216
5b6d1e4f 2217 tp->inf->process_target ()->threads_executing = true;
719546c4 2218 tp->resumed = true;
372316f1
PA
2219
2220 /* FIXME: What should we do if we are supposed to resume this
2221 thread with a signal? Maybe we should maintain a queue of
2222 pending signals to deliver. */
2223 if (sig != GDB_SIGNAL_0)
2224 {
fd7dcb94 2225 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2226 gdb_signal_to_name (sig),
2227 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2228 }
2229
2230 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2231
2232 if (target_can_async_p ())
9516f85a
AB
2233 {
2234 target_async (1);
2235 /* Tell the event loop we have an event to process. */
2236 mark_async_event_handler (infrun_async_inferior_event_token);
2237 }
372316f1
PA
2238 return;
2239 }
2240
2241 tp->stepped_breakpoint = 0;
2242
6b403daa
PA
2243 /* Depends on stepped_breakpoint. */
2244 step = currently_stepping (tp);
2245
74609e71
YQ
2246 if (current_inferior ()->waiting_for_vfork_done)
2247 {
48f9886d
PA
2248 /* Don't try to single-step a vfork parent that is waiting for
2249 the child to get out of the shared memory region (by exec'ing
2250 or exiting). This is particularly important on software
2251 single-step archs, as the child process would trip on the
2252 software single step breakpoint inserted for the parent
2253 process. Since the parent will not actually execute any
2254 instruction until the child is out of the shared region (such
2255 are vfork's semantics), it is safe to simply continue it.
2256 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2257 the parent, and tell it to `keep_going', which automatically
2258 re-sets it stepping. */
1eb8556f 2259 infrun_debug_printf ("resume : clear step");
c4464ade 2260 step = false;
74609e71
YQ
2261 }
2262
7ca9b62a
TBA
2263 CORE_ADDR pc = regcache_read_pc (regcache);
2264
1eb8556f
SM
2265 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2266 "current thread [%s] at %s",
2267 step, gdb_signal_to_symbol_string (sig),
2268 tp->control.trap_expected,
2269 target_pid_to_str (inferior_ptid).c_str (),
2270 paddress (gdbarch, pc));
c906108c 2271
c2c6d25f
JM
2272 /* Normally, by the time we reach `resume', the breakpoints are either
2273 removed or inserted, as appropriate. The exception is if we're sitting
2274 at a permanent breakpoint; we need to step over it, but permanent
2275 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2276 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2277 {
af48d08f
PA
2278 if (sig != GDB_SIGNAL_0)
2279 {
2280 /* We have a signal to pass to the inferior. The resume
2281 may, or may not take us to the signal handler. If this
2282 is a step, we'll need to stop in the signal handler, if
2283 there's one, (if the target supports stepping into
2284 handlers), or in the next mainline instruction, if
2285 there's no handler. If this is a continue, we need to be
2286 sure to run the handler with all breakpoints inserted.
2287 In all cases, set a breakpoint at the current address
2288 (where the handler returns to), and once that breakpoint
2289 is hit, resume skipping the permanent breakpoint. If
2290 that breakpoint isn't hit, then we've stepped into the
2291 signal handler (or hit some other event). We'll delete
2292 the step-resume breakpoint then. */
2293
1eb8556f
SM
2294 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2295 "deliver signal first");
af48d08f
PA
2296
2297 clear_step_over_info ();
2298 tp->control.trap_expected = 0;
2299
2300 if (tp->control.step_resume_breakpoint == NULL)
2301 {
2302 /* Set a "high-priority" step-resume, as we don't want
2303 user breakpoints at PC to trigger (again) when this
2304 hits. */
2305 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2306 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2307
2308 tp->step_after_step_resume_breakpoint = step;
2309 }
2310
2311 insert_breakpoints ();
2312 }
2313 else
2314 {
2315 /* There's no signal to pass, we can go ahead and skip the
2316 permanent breakpoint manually. */
1eb8556f 2317 infrun_debug_printf ("skipping permanent breakpoint");
af48d08f
PA
2318 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2319 /* Update pc to reflect the new address from which we will
2320 execute instructions. */
2321 pc = regcache_read_pc (regcache);
2322
2323 if (step)
2324 {
2325 /* We've already advanced the PC, so the stepping part
2326 is done. Now we need to arrange for a trap to be
2327 reported to handle_inferior_event. Set a breakpoint
2328 at the current PC, and run to it. Don't update
2329 prev_pc, because if we end in
44a1ee51
PA
2330 switch_back_to_stepped_thread, we want the "expected
2331 thread advanced also" branch to be taken. IOW, we
2332 don't want this thread to step further from PC
af48d08f 2333 (overstep). */
1ac806b8 2334 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2335 insert_single_step_breakpoint (gdbarch, aspace, pc);
2336 insert_breakpoints ();
2337
fbea99ea 2338 resume_ptid = internal_resume_ptid (user_step);
c4464ade 2339 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
719546c4 2340 tp->resumed = true;
af48d08f
PA
2341 return;
2342 }
2343 }
6d350bb5 2344 }
c2c6d25f 2345
c1e36e3e
PA
2346 /* If we have a breakpoint to step over, make sure to do a single
2347 step only. Same if we have software watchpoints. */
2348 if (tp->control.trap_expected || bpstat_should_step ())
2349 tp->control.may_range_step = 0;
2350
7da6a5b9
LM
2351 /* If displaced stepping is enabled, step over breakpoints by executing a
2352 copy of the instruction at a different address.
237fc4c9
PA
2353
2354 We can't use displaced stepping when we have a signal to deliver;
2355 the comments for displaced_step_prepare explain why. The
2356 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2357 signals' explain what we do instead.
2358
2359 We can't use displaced stepping when we are waiting for vfork_done
2360 event, displaced stepping breaks the vfork child similarly as single
2361 step software breakpoint. */
3fc8eb30
PA
2362 if (tp->control.trap_expected
2363 && use_displaced_stepping (tp)
cb71640d 2364 && !step_over_info_valid_p ()
a493e3e2 2365 && sig == GDB_SIGNAL_0
74609e71 2366 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2367 {
bab37966
SM
2368 displaced_step_prepare_status prepare_status
2369 = displaced_step_prepare (tp);
fc1cf338 2370
bab37966 2371 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
d56b7306 2372 {
1eb8556f 2373 infrun_debug_printf ("Got placed in step-over queue");
4d9d9d04
PA
2374
2375 tp->control.trap_expected = 0;
d56b7306
VP
2376 return;
2377 }
bab37966 2378 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_CANT)
3fc8eb30
PA
2379 {
2380 /* Fallback to stepping over the breakpoint in-line. */
2381
2382 if (target_is_non_stop_p ())
2383 stop_all_threads ();
2384
a01bda52 2385 set_step_over_info (regcache->aspace (),
21edc42f 2386 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2387
2388 step = maybe_software_singlestep (gdbarch, pc);
2389
2390 insert_breakpoints ();
2391 }
bab37966 2392 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
3fc8eb30 2393 {
3fc8eb30
PA
2394 /* Update pc to reflect the new address from which we will
2395 execute instructions due to displaced stepping. */
00431a78 2396 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2397
40a53766 2398 step = gdbarch_displaced_step_hw_singlestep (gdbarch);
3fc8eb30 2399 }
bab37966
SM
2400 else
2401 gdb_assert_not_reached (_("Invalid displaced_step_prepare_status "
2402 "value."));
237fc4c9
PA
2403 }
2404
2facfe5c 2405 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2406 else if (step)
2facfe5c 2407 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2408
30852783
UW
2409 /* Currently, our software single-step implementation leads to different
2410 results than hardware single-stepping in one situation: when stepping
2411 into delivering a signal which has an associated signal handler,
2412 hardware single-step will stop at the first instruction of the handler,
2413 while software single-step will simply skip execution of the handler.
2414
2415 For now, this difference in behavior is accepted since there is no
2416 easy way to actually implement single-stepping into a signal handler
2417 without kernel support.
2418
2419 However, there is one scenario where this difference leads to follow-on
2420 problems: if we're stepping off a breakpoint by removing all breakpoints
2421 and then single-stepping. In this case, the software single-step
2422 behavior means that even if there is a *breakpoint* in the signal
2423 handler, GDB still would not stop.
2424
2425 Fortunately, we can at least fix this particular issue. We detect
2426 here the case where we are about to deliver a signal while software
2427 single-stepping with breakpoints removed. In this situation, we
2428 revert the decisions to remove all breakpoints and insert single-
2429 step breakpoints, and instead we install a step-resume breakpoint
2430 at the current address, deliver the signal without stepping, and
2431 once we arrive back at the step-resume breakpoint, actually step
2432 over the breakpoint we originally wanted to step over. */
34b7e8a6 2433 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2434 && sig != GDB_SIGNAL_0
2435 && step_over_info_valid_p ())
30852783
UW
2436 {
2437 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2438 immediately after a handler returns, might already have
30852783
UW
2439 a step-resume breakpoint set on the earlier handler. We cannot
2440 set another step-resume breakpoint; just continue on until the
2441 original breakpoint is hit. */
2442 if (tp->control.step_resume_breakpoint == NULL)
2443 {
2c03e5be 2444 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2445 tp->step_after_step_resume_breakpoint = 1;
2446 }
2447
34b7e8a6 2448 delete_single_step_breakpoints (tp);
30852783 2449
31e77af2 2450 clear_step_over_info ();
30852783 2451 tp->control.trap_expected = 0;
31e77af2
PA
2452
2453 insert_breakpoints ();
30852783
UW
2454 }
2455
b0f16a3e
SM
2456 /* If STEP is set, it's a request to use hardware stepping
2457 facilities. But in that case, we should never
2458 use singlestep breakpoint. */
34b7e8a6 2459 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2460
fbea99ea 2461 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2462 if (tp->control.trap_expected)
b0f16a3e
SM
2463 {
2464 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2465 hit, either by single-stepping the thread with the breakpoint
2466 removed, or by displaced stepping, with the breakpoint inserted.
2467 In the former case, we need to single-step only this thread,
2468 and keep others stopped, as they can miss this breakpoint if
2469 allowed to run. That's not really a problem for displaced
2470 stepping, but, we still keep other threads stopped, in case
2471 another thread is also stopped for a breakpoint waiting for
2472 its turn in the displaced stepping queue. */
b0f16a3e
SM
2473 resume_ptid = inferior_ptid;
2474 }
fbea99ea
PA
2475 else
2476 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2477
7f5ef605
PA
2478 if (execution_direction != EXEC_REVERSE
2479 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2480 {
372316f1
PA
2481 /* There are two cases where we currently need to step a
2482 breakpoint instruction when we have a signal to deliver:
2483
2484 - See handle_signal_stop where we handle random signals that
2485 could take out us out of the stepping range. Normally, in
2486 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2487 signal handler with a breakpoint at PC, but there are cases
2488 where we should _always_ single-step, even if we have a
2489 step-resume breakpoint, like when a software watchpoint is
2490 set. Assuming single-stepping and delivering a signal at the
2491 same time would takes us to the signal handler, then we could
2492 have removed the breakpoint at PC to step over it. However,
2493 some hardware step targets (like e.g., Mac OS) can't step
2494 into signal handlers, and for those, we need to leave the
2495 breakpoint at PC inserted, as otherwise if the handler
2496 recurses and executes PC again, it'll miss the breakpoint.
2497 So we leave the breakpoint inserted anyway, but we need to
2498 record that we tried to step a breakpoint instruction, so
372316f1
PA
2499 that adjust_pc_after_break doesn't end up confused.
2500
dda83cd7 2501 - In non-stop if we insert a breakpoint (e.g., a step-resume)
372316f1
PA
2502 in one thread after another thread that was stepping had been
2503 momentarily paused for a step-over. When we re-resume the
2504 stepping thread, it may be resumed from that address with a
2505 breakpoint that hasn't trapped yet. Seen with
2506 gdb.threads/non-stop-fair-events.exp, on targets that don't
2507 do displaced stepping. */
2508
1eb8556f
SM
2509 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2510 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2511
2512 tp->stepped_breakpoint = 1;
2513
b0f16a3e
SM
2514 /* Most targets can step a breakpoint instruction, thus
2515 executing it normally. But if this one cannot, just
2516 continue and we will hit it anyway. */
7f5ef605 2517 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4464ade 2518 step = false;
b0f16a3e 2519 }
ef5cf84e 2520
b0f16a3e 2521 if (debug_displaced
cb71640d 2522 && tp->control.trap_expected
3fc8eb30 2523 && use_displaced_stepping (tp)
cb71640d 2524 && !step_over_info_valid_p ())
b0f16a3e 2525 {
00431a78 2526 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2527 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2528 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2529 gdb_byte buf[4];
2530
b0f16a3e 2531 read_memory (actual_pc, buf, sizeof (buf));
136821d9
SM
2532 displaced_debug_printf ("run %s: %s",
2533 paddress (resume_gdbarch, actual_pc),
2534 displaced_step_dump_bytes
2535 (buf, sizeof (buf)).c_str ());
b0f16a3e 2536 }
237fc4c9 2537
b0f16a3e
SM
2538 if (tp->control.may_range_step)
2539 {
2540 /* If we're resuming a thread with the PC out of the step
2541 range, then we're doing some nested/finer run control
2542 operation, like stepping the thread out of the dynamic
2543 linker or the displaced stepping scratch pad. We
2544 shouldn't have allowed a range step then. */
2545 gdb_assert (pc_in_thread_step_range (pc, tp));
2546 }
c1e36e3e 2547
64ce06e4 2548 do_target_resume (resume_ptid, step, sig);
719546c4 2549 tp->resumed = true;
c906108c 2550}
71d378ae
PA
2551
2552/* Resume the inferior. SIG is the signal to give the inferior
2553 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2554 rolls back state on error. */
2555
aff4e175 2556static void
71d378ae
PA
2557resume (gdb_signal sig)
2558{
a70b8144 2559 try
71d378ae
PA
2560 {
2561 resume_1 (sig);
2562 }
230d2906 2563 catch (const gdb_exception &ex)
71d378ae
PA
2564 {
2565 /* If resuming is being aborted for any reason, delete any
2566 single-step breakpoint resume_1 may have created, to avoid
2567 confusing the following resumption, and to avoid leaving
2568 single-step breakpoints perturbing other threads, in case
2569 we're running in non-stop mode. */
2570 if (inferior_ptid != null_ptid)
2571 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2572 throw;
71d378ae 2573 }
71d378ae
PA
2574}
2575
c906108c 2576\f
237fc4c9 2577/* Proceeding. */
c906108c 2578
4c2f2a79
PA
2579/* See infrun.h. */
2580
2581/* Counter that tracks number of user visible stops. This can be used
2582 to tell whether a command has proceeded the inferior past the
2583 current location. This allows e.g., inferior function calls in
2584 breakpoint commands to not interrupt the command list. When the
2585 call finishes successfully, the inferior is standing at the same
2586 breakpoint as if nothing happened (and so we don't call
2587 normal_stop). */
2588static ULONGEST current_stop_id;
2589
2590/* See infrun.h. */
2591
2592ULONGEST
2593get_stop_id (void)
2594{
2595 return current_stop_id;
2596}
2597
2598/* Called when we report a user visible stop. */
2599
2600static void
2601new_stop_id (void)
2602{
2603 current_stop_id++;
2604}
2605
c906108c
SS
2606/* Clear out all variables saying what to do when inferior is continued.
2607 First do this, then set the ones you want, then call `proceed'. */
2608
a7212384
UW
2609static void
2610clear_proceed_status_thread (struct thread_info *tp)
c906108c 2611{
1eb8556f 2612 infrun_debug_printf ("%s", target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2613
372316f1
PA
2614 /* If we're starting a new sequence, then the previous finished
2615 single-step is no longer relevant. */
2616 if (tp->suspend.waitstatus_pending_p)
2617 {
2618 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2619 {
1eb8556f
SM
2620 infrun_debug_printf ("pending event of %s was a finished step. "
2621 "Discarding.",
2622 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2623
2624 tp->suspend.waitstatus_pending_p = 0;
2625 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2626 }
1eb8556f 2627 else
372316f1 2628 {
1eb8556f
SM
2629 infrun_debug_printf
2630 ("thread %s has pending wait status %s (currently_stepping=%d).",
2631 target_pid_to_str (tp->ptid).c_str (),
2632 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2633 currently_stepping (tp));
372316f1
PA
2634 }
2635 }
2636
70509625
PA
2637 /* If this signal should not be seen by program, give it zero.
2638 Used for debugging signals. */
2639 if (!signal_pass_state (tp->suspend.stop_signal))
2640 tp->suspend.stop_signal = GDB_SIGNAL_0;
2641
46e3ed7f 2642 delete tp->thread_fsm;
243a9253
PA
2643 tp->thread_fsm = NULL;
2644
16c381f0
JK
2645 tp->control.trap_expected = 0;
2646 tp->control.step_range_start = 0;
2647 tp->control.step_range_end = 0;
c1e36e3e 2648 tp->control.may_range_step = 0;
16c381f0
JK
2649 tp->control.step_frame_id = null_frame_id;
2650 tp->control.step_stack_frame_id = null_frame_id;
2651 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2652 tp->control.step_start_function = NULL;
a7212384 2653 tp->stop_requested = 0;
4e1c45ea 2654
16c381f0 2655 tp->control.stop_step = 0;
32400beb 2656
16c381f0 2657 tp->control.proceed_to_finish = 0;
414c69f7 2658
856e7dd6 2659 tp->control.stepping_command = 0;
17b2616c 2660
a7212384 2661 /* Discard any remaining commands or status from previous stop. */
16c381f0 2662 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2663}
32400beb 2664
a7212384 2665void
70509625 2666clear_proceed_status (int step)
a7212384 2667{
f2665db5
MM
2668 /* With scheduler-locking replay, stop replaying other threads if we're
2669 not replaying the user-visible resume ptid.
2670
2671 This is a convenience feature to not require the user to explicitly
2672 stop replaying the other threads. We're assuming that the user's
2673 intent is to resume tracing the recorded process. */
2674 if (!non_stop && scheduler_mode == schedlock_replay
2675 && target_record_is_replaying (minus_one_ptid)
2676 && !target_record_will_replay (user_visible_resume_ptid (step),
2677 execution_direction))
2678 target_record_stop_replaying ();
2679
08036331 2680 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2681 {
08036331 2682 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2683 process_stratum_target *resume_target
2684 = user_visible_resume_target (resume_ptid);
70509625
PA
2685
2686 /* In all-stop mode, delete the per-thread status of all threads
2687 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2688 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2689 clear_proceed_status_thread (tp);
6c95b8df
PA
2690 }
2691
d7e15655 2692 if (inferior_ptid != null_ptid)
a7212384
UW
2693 {
2694 struct inferior *inferior;
2695
2696 if (non_stop)
2697 {
6c95b8df
PA
2698 /* If in non-stop mode, only delete the per-thread status of
2699 the current thread. */
a7212384
UW
2700 clear_proceed_status_thread (inferior_thread ());
2701 }
6c95b8df 2702
d6b48e9c 2703 inferior = current_inferior ();
16c381f0 2704 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2705 }
2706
76727919 2707 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2708}
2709
99619bea
PA
2710/* Returns true if TP is still stopped at a breakpoint that needs
2711 stepping-over in order to make progress. If the breakpoint is gone
2712 meanwhile, we can skip the whole step-over dance. */
ea67f13b 2713
c4464ade 2714static bool
6c4cfb24 2715thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2716{
2717 if (tp->stepping_over_breakpoint)
2718 {
00431a78 2719 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2720
a01bda52 2721 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2722 regcache_read_pc (regcache))
2723 == ordinary_breakpoint_here)
c4464ade 2724 return true;
99619bea
PA
2725
2726 tp->stepping_over_breakpoint = 0;
2727 }
2728
c4464ade 2729 return false;
99619bea
PA
2730}
2731
6c4cfb24
PA
2732/* Check whether thread TP still needs to start a step-over in order
2733 to make progress when resumed. Returns an bitwise or of enum
2734 step_over_what bits, indicating what needs to be stepped over. */
2735
8d297bbf 2736static step_over_what
6c4cfb24
PA
2737thread_still_needs_step_over (struct thread_info *tp)
2738{
8d297bbf 2739 step_over_what what = 0;
6c4cfb24
PA
2740
2741 if (thread_still_needs_step_over_bp (tp))
2742 what |= STEP_OVER_BREAKPOINT;
2743
2744 if (tp->stepping_over_watchpoint
9aed480c 2745 && !target_have_steppable_watchpoint ())
6c4cfb24
PA
2746 what |= STEP_OVER_WATCHPOINT;
2747
2748 return what;
2749}
2750
483805cf
PA
2751/* Returns true if scheduler locking applies. STEP indicates whether
2752 we're about to do a step/next-like command to a thread. */
2753
c4464ade 2754static bool
856e7dd6 2755schedlock_applies (struct thread_info *tp)
483805cf
PA
2756{
2757 return (scheduler_mode == schedlock_on
2758 || (scheduler_mode == schedlock_step
f2665db5
MM
2759 && tp->control.stepping_command)
2760 || (scheduler_mode == schedlock_replay
2761 && target_record_will_replay (minus_one_ptid,
2762 execution_direction)));
483805cf
PA
2763}
2764
1192f124
SM
2765/* Set process_stratum_target::COMMIT_RESUMED_STATE in all target
2766 stacks that have threads executing and don't have threads with
2767 pending events. */
5b6d1e4f
PA
2768
2769static void
1192f124
SM
2770maybe_set_commit_resumed_all_targets ()
2771{
b4b1a226
SM
2772 scoped_restore_current_thread restore_thread;
2773
1192f124
SM
2774 for (inferior *inf : all_non_exited_inferiors ())
2775 {
2776 process_stratum_target *proc_target = inf->process_target ();
2777
2778 if (proc_target->commit_resumed_state)
2779 {
2780 /* We already set this in a previous iteration, via another
2781 inferior sharing the process_stratum target. */
2782 continue;
2783 }
2784
2785 /* If the target has no resumed threads, it would be useless to
2786 ask it to commit the resumed threads. */
2787 if (!proc_target->threads_executing)
2788 {
2789 infrun_debug_printf ("not requesting commit-resumed for target "
2790 "%s, no resumed threads",
2791 proc_target->shortname ());
2792 continue;
2793 }
2794
2795 /* As an optimization, if a thread from this target has some
2796 status to report, handle it before requiring the target to
2797 commit its resumed threads: handling the status might lead to
2798 resuming more threads. */
2799 bool has_thread_with_pending_status = false;
2800 for (thread_info *thread : all_non_exited_threads (proc_target))
2801 if (thread->resumed && thread->suspend.waitstatus_pending_p)
2802 {
2803 has_thread_with_pending_status = true;
2804 break;
2805 }
2806
2807 if (has_thread_with_pending_status)
2808 {
2809 infrun_debug_printf ("not requesting commit-resumed for target %s, a"
2810 " thread has a pending waitstatus",
2811 proc_target->shortname ());
2812 continue;
2813 }
2814
b4b1a226
SM
2815 switch_to_inferior_no_thread (inf);
2816
2817 if (target_has_pending_events ())
2818 {
2819 infrun_debug_printf ("not requesting commit-resumed for target %s, "
2820 "target has pending events",
2821 proc_target->shortname ());
2822 continue;
2823 }
2824
1192f124
SM
2825 infrun_debug_printf ("enabling commit-resumed for target %s",
2826 proc_target->shortname ());
2827
2828 proc_target->commit_resumed_state = true;
2829 }
2830}
2831
2832/* See infrun.h. */
2833
2834void
2835maybe_call_commit_resumed_all_targets ()
5b6d1e4f
PA
2836{
2837 scoped_restore_current_thread restore_thread;
2838
1192f124
SM
2839 for (inferior *inf : all_non_exited_inferiors ())
2840 {
2841 process_stratum_target *proc_target = inf->process_target ();
2842
2843 if (!proc_target->commit_resumed_state)
2844 continue;
2845
2846 switch_to_inferior_no_thread (inf);
2847
2848 infrun_debug_printf ("calling commit_resumed for target %s",
2849 proc_target->shortname());
2850
2851 target_commit_resumed ();
2852 }
2853}
2854
2855/* To track nesting of scoped_disable_commit_resumed objects, ensuring
2856 that only the outermost one attempts to re-enable
2857 commit-resumed. */
2858static bool enable_commit_resumed = true;
2859
2860/* See infrun.h. */
2861
2862scoped_disable_commit_resumed::scoped_disable_commit_resumed
2863 (const char *reason)
2864 : m_reason (reason),
2865 m_prev_enable_commit_resumed (enable_commit_resumed)
2866{
2867 infrun_debug_printf ("reason=%s", m_reason);
2868
2869 enable_commit_resumed = false;
5b6d1e4f
PA
2870
2871 for (inferior *inf : all_non_exited_inferiors ())
1192f124
SM
2872 {
2873 process_stratum_target *proc_target = inf->process_target ();
5b6d1e4f 2874
1192f124
SM
2875 if (m_prev_enable_commit_resumed)
2876 {
2877 /* This is the outermost instance: force all
2878 COMMIT_RESUMED_STATE to false. */
2879 proc_target->commit_resumed_state = false;
2880 }
2881 else
2882 {
2883 /* This is not the outermost instance, we expect
2884 COMMIT_RESUMED_STATE to have been cleared by the
2885 outermost instance. */
2886 gdb_assert (!proc_target->commit_resumed_state);
2887 }
2888 }
2889}
2890
2891/* See infrun.h. */
2892
2893void
2894scoped_disable_commit_resumed::reset ()
2895{
2896 if (m_reset)
2897 return;
2898 m_reset = true;
2899
2900 infrun_debug_printf ("reason=%s", m_reason);
2901
2902 gdb_assert (!enable_commit_resumed);
2903
2904 enable_commit_resumed = m_prev_enable_commit_resumed;
2905
2906 if (m_prev_enable_commit_resumed)
5b6d1e4f 2907 {
1192f124
SM
2908 /* This is the outermost instance, re-enable
2909 COMMIT_RESUMED_STATE on the targets where it's possible. */
2910 maybe_set_commit_resumed_all_targets ();
2911 }
2912 else
2913 {
2914 /* This is not the outermost instance, we expect
2915 COMMIT_RESUMED_STATE to still be false. */
2916 for (inferior *inf : all_non_exited_inferiors ())
2917 {
2918 process_stratum_target *proc_target = inf->process_target ();
2919 gdb_assert (!proc_target->commit_resumed_state);
2920 }
2921 }
2922}
2923
2924/* See infrun.h. */
2925
2926scoped_disable_commit_resumed::~scoped_disable_commit_resumed ()
2927{
2928 reset ();
2929}
2930
2931/* See infrun.h. */
2932
2933void
2934scoped_disable_commit_resumed::reset_and_commit ()
2935{
2936 reset ();
2937 maybe_call_commit_resumed_all_targets ();
2938}
2939
2940/* See infrun.h. */
2941
2942scoped_enable_commit_resumed::scoped_enable_commit_resumed
2943 (const char *reason)
2944 : m_reason (reason),
2945 m_prev_enable_commit_resumed (enable_commit_resumed)
2946{
2947 infrun_debug_printf ("reason=%s", m_reason);
2948
2949 if (!enable_commit_resumed)
2950 {
2951 enable_commit_resumed = true;
2952
2953 /* Re-enable COMMIT_RESUMED_STATE on the targets where it's
2954 possible. */
2955 maybe_set_commit_resumed_all_targets ();
2956
2957 maybe_call_commit_resumed_all_targets ();
2958 }
2959}
2960
2961/* See infrun.h. */
2962
2963scoped_enable_commit_resumed::~scoped_enable_commit_resumed ()
2964{
2965 infrun_debug_printf ("reason=%s", m_reason);
2966
2967 gdb_assert (enable_commit_resumed);
2968
2969 enable_commit_resumed = m_prev_enable_commit_resumed;
2970
2971 if (!enable_commit_resumed)
2972 {
2973 /* Force all COMMIT_RESUMED_STATE back to false. */
2974 for (inferior *inf : all_non_exited_inferiors ())
2975 {
2976 process_stratum_target *proc_target = inf->process_target ();
2977 proc_target->commit_resumed_state = false;
2978 }
5b6d1e4f
PA
2979 }
2980}
2981
2f4fcf00
PA
2982/* Check that all the targets we're about to resume are in non-stop
2983 mode. Ideally, we'd only care whether all targets support
2984 target-async, but we're not there yet. E.g., stop_all_threads
2985 doesn't know how to handle all-stop targets. Also, the remote
2986 protocol in all-stop mode is synchronous, irrespective of
2987 target-async, which means that things like a breakpoint re-set
2988 triggered by one target would try to read memory from all targets
2989 and fail. */
2990
2991static void
2992check_multi_target_resumption (process_stratum_target *resume_target)
2993{
2994 if (!non_stop && resume_target == nullptr)
2995 {
2996 scoped_restore_current_thread restore_thread;
2997
2998 /* This is used to track whether we're resuming more than one
2999 target. */
3000 process_stratum_target *first_connection = nullptr;
3001
3002 /* The first inferior we see with a target that does not work in
3003 always-non-stop mode. */
3004 inferior *first_not_non_stop = nullptr;
3005
f058c521 3006 for (inferior *inf : all_non_exited_inferiors ())
2f4fcf00
PA
3007 {
3008 switch_to_inferior_no_thread (inf);
3009
55f6301a 3010 if (!target_has_execution ())
2f4fcf00
PA
3011 continue;
3012
3013 process_stratum_target *proc_target
3014 = current_inferior ()->process_target();
3015
3016 if (!target_is_non_stop_p ())
3017 first_not_non_stop = inf;
3018
3019 if (first_connection == nullptr)
3020 first_connection = proc_target;
3021 else if (first_connection != proc_target
3022 && first_not_non_stop != nullptr)
3023 {
3024 switch_to_inferior_no_thread (first_not_non_stop);
3025
3026 proc_target = current_inferior ()->process_target();
3027
3028 error (_("Connection %d (%s) does not support "
3029 "multi-target resumption."),
3030 proc_target->connection_number,
3031 make_target_connection_string (proc_target).c_str ());
3032 }
3033 }
3034 }
3035}
3036
c906108c
SS
3037/* Basic routine for continuing the program in various fashions.
3038
3039 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
3040 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
3041 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
3042
3043 You should call clear_proceed_status before calling proceed. */
3044
3045void
64ce06e4 3046proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 3047{
3ec3145c
SM
3048 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
3049
e58b0e63
PA
3050 struct regcache *regcache;
3051 struct gdbarch *gdbarch;
e58b0e63 3052 CORE_ADDR pc;
4d9d9d04
PA
3053 struct execution_control_state ecss;
3054 struct execution_control_state *ecs = &ecss;
c4464ade 3055 bool started;
c906108c 3056
e58b0e63
PA
3057 /* If we're stopped at a fork/vfork, follow the branch set by the
3058 "set follow-fork-mode" command; otherwise, we'll just proceed
3059 resuming the current thread. */
3060 if (!follow_fork ())
3061 {
3062 /* The target for some reason decided not to resume. */
3063 normal_stop ();
f148b27e 3064 if (target_can_async_p ())
b1a35af2 3065 inferior_event_handler (INF_EXEC_COMPLETE);
e58b0e63
PA
3066 return;
3067 }
3068
842951eb
PA
3069 /* We'll update this if & when we switch to a new thread. */
3070 previous_inferior_ptid = inferior_ptid;
3071
e58b0e63 3072 regcache = get_current_regcache ();
ac7936df 3073 gdbarch = regcache->arch ();
8b86c959
YQ
3074 const address_space *aspace = regcache->aspace ();
3075
fc75c28b
TBA
3076 pc = regcache_read_pc_protected (regcache);
3077
08036331 3078 thread_info *cur_thr = inferior_thread ();
e58b0e63 3079
99619bea 3080 /* Fill in with reasonable starting values. */
08036331 3081 init_thread_stepping_state (cur_thr);
99619bea 3082
08036331 3083 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 3084
5b6d1e4f
PA
3085 ptid_t resume_ptid
3086 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3087 process_stratum_target *resume_target
3088 = user_visible_resume_target (resume_ptid);
3089
2f4fcf00
PA
3090 check_multi_target_resumption (resume_target);
3091
2acceee2 3092 if (addr == (CORE_ADDR) -1)
c906108c 3093 {
08036331 3094 if (pc == cur_thr->suspend.stop_pc
af48d08f 3095 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3096 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3097 /* There is a breakpoint at the address we will resume at,
3098 step one instruction before inserting breakpoints so that
3099 we do not stop right away (and report a second hit at this
b2175913
MS
3100 breakpoint).
3101
3102 Note, we don't do this in reverse, because we won't
3103 actually be executing the breakpoint insn anyway.
3104 We'll be (un-)executing the previous instruction. */
08036331 3105 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
3106 else if (gdbarch_single_step_through_delay_p (gdbarch)
3107 && gdbarch_single_step_through_delay (gdbarch,
3108 get_current_frame ()))
3352ef37
AC
3109 /* We stepped onto an instruction that needs to be stepped
3110 again before re-inserting the breakpoint, do so. */
08036331 3111 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
3112 }
3113 else
3114 {
515630c5 3115 regcache_write_pc (regcache, addr);
c906108c
SS
3116 }
3117
70509625 3118 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 3119 cur_thr->suspend.stop_signal = siggnal;
70509625 3120
4d9d9d04
PA
3121 /* If an exception is thrown from this point on, make sure to
3122 propagate GDB's knowledge of the executing state to the
3123 frontend/user running state. */
5b6d1e4f 3124 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
3125
3126 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3127 threads (e.g., we might need to set threads stepping over
3128 breakpoints first), from the user/frontend's point of view, all
3129 threads in RESUME_PTID are now running. Unless we're calling an
3130 inferior function, as in that case we pretend the inferior
3131 doesn't run at all. */
08036331 3132 if (!cur_thr->control.in_infcall)
719546c4 3133 set_running (resume_target, resume_ptid, true);
17b2616c 3134
1eb8556f
SM
3135 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
3136 gdb_signal_to_symbol_string (siggnal));
527159b7 3137
4d9d9d04
PA
3138 annotate_starting ();
3139
3140 /* Make sure that output from GDB appears before output from the
3141 inferior. */
3142 gdb_flush (gdb_stdout);
3143
d930703d
PA
3144 /* Since we've marked the inferior running, give it the terminal. A
3145 QUIT/Ctrl-C from here on is forwarded to the target (which can
3146 still detect attempts to unblock a stuck connection with repeated
3147 Ctrl-C from within target_pass_ctrlc). */
3148 target_terminal::inferior ();
3149
4d9d9d04
PA
3150 /* In a multi-threaded task we may select another thread and
3151 then continue or step.
3152
3153 But if a thread that we're resuming had stopped at a breakpoint,
3154 it will immediately cause another breakpoint stop without any
3155 execution (i.e. it will report a breakpoint hit incorrectly). So
3156 we must step over it first.
3157
3158 Look for threads other than the current (TP) that reported a
3159 breakpoint hit and haven't been resumed yet since. */
3160
3161 /* If scheduler locking applies, we can avoid iterating over all
3162 threads. */
08036331 3163 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3164 {
5b6d1e4f
PA
3165 for (thread_info *tp : all_non_exited_threads (resume_target,
3166 resume_ptid))
08036331 3167 {
f3f8ece4
PA
3168 switch_to_thread_no_regs (tp);
3169
4d9d9d04
PA
3170 /* Ignore the current thread here. It's handled
3171 afterwards. */
08036331 3172 if (tp == cur_thr)
4d9d9d04 3173 continue;
c906108c 3174
4d9d9d04
PA
3175 if (!thread_still_needs_step_over (tp))
3176 continue;
3177
3178 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3179
1eb8556f
SM
3180 infrun_debug_printf ("need to step-over [%s] first",
3181 target_pid_to_str (tp->ptid).c_str ());
99619bea 3182
28d5518b 3183 global_thread_step_over_chain_enqueue (tp);
2adfaa28 3184 }
f3f8ece4
PA
3185
3186 switch_to_thread (cur_thr);
30852783
UW
3187 }
3188
4d9d9d04
PA
3189 /* Enqueue the current thread last, so that we move all other
3190 threads over their breakpoints first. */
08036331 3191 if (cur_thr->stepping_over_breakpoint)
28d5518b 3192 global_thread_step_over_chain_enqueue (cur_thr);
30852783 3193
4d9d9d04
PA
3194 /* If the thread isn't started, we'll still need to set its prev_pc,
3195 so that switch_back_to_stepped_thread knows the thread hasn't
3196 advanced. Must do this before resuming any thread, as in
3197 all-stop/remote, once we resume we can't send any other packet
3198 until the target stops again. */
fc75c28b 3199 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
99619bea 3200
a9bc57b9 3201 {
1192f124 3202 scoped_disable_commit_resumed disable_commit_resumed ("proceeding");
85ad3aaf 3203
a9bc57b9 3204 started = start_step_over ();
c906108c 3205
a9bc57b9
TT
3206 if (step_over_info_valid_p ())
3207 {
3208 /* Either this thread started a new in-line step over, or some
3209 other thread was already doing one. In either case, don't
3210 resume anything else until the step-over is finished. */
3211 }
3212 else if (started && !target_is_non_stop_p ())
3213 {
3214 /* A new displaced stepping sequence was started. In all-stop,
3215 we can't talk to the target anymore until it next stops. */
3216 }
3217 else if (!non_stop && target_is_non_stop_p ())
3218 {
3ec3145c
SM
3219 INFRUN_SCOPED_DEBUG_START_END
3220 ("resuming threads, all-stop-on-top-of-non-stop");
3221
a9bc57b9
TT
3222 /* In all-stop, but the target is always in non-stop mode.
3223 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3224 for (thread_info *tp : all_non_exited_threads (resume_target,
3225 resume_ptid))
3226 {
3227 switch_to_thread_no_regs (tp);
3228
f9fac3c8
SM
3229 if (!tp->inf->has_execution ())
3230 {
1eb8556f
SM
3231 infrun_debug_printf ("[%s] target has no execution",
3232 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3233 continue;
3234 }
f3f8ece4 3235
f9fac3c8
SM
3236 if (tp->resumed)
3237 {
1eb8556f
SM
3238 infrun_debug_printf ("[%s] resumed",
3239 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3240 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3241 continue;
3242 }
fbea99ea 3243
f9fac3c8
SM
3244 if (thread_is_in_step_over_chain (tp))
3245 {
1eb8556f
SM
3246 infrun_debug_printf ("[%s] needs step-over",
3247 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3248 continue;
3249 }
fbea99ea 3250
1eb8556f 3251 infrun_debug_printf ("resuming %s",
dda83cd7 3252 target_pid_to_str (tp->ptid).c_str ());
fbea99ea 3253
f9fac3c8
SM
3254 reset_ecs (ecs, tp);
3255 switch_to_thread (tp);
3256 keep_going_pass_signal (ecs);
3257 if (!ecs->wait_some_more)
3258 error (_("Command aborted."));
3259 }
a9bc57b9 3260 }
08036331 3261 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3262 {
3263 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3264 reset_ecs (ecs, cur_thr);
3265 switch_to_thread (cur_thr);
a9bc57b9
TT
3266 keep_going_pass_signal (ecs);
3267 if (!ecs->wait_some_more)
3268 error (_("Command aborted."));
3269 }
c906108c 3270
1192f124
SM
3271 disable_commit_resumed.reset_and_commit ();
3272 }
85ad3aaf 3273
731f534f 3274 finish_state.release ();
c906108c 3275
873657b9
PA
3276 /* If we've switched threads above, switch back to the previously
3277 current thread. We don't want the user to see a different
3278 selected thread. */
3279 switch_to_thread (cur_thr);
3280
0b333c5e
PA
3281 /* Tell the event loop to wait for it to stop. If the target
3282 supports asynchronous execution, it'll do this from within
3283 target_resume. */
362646f5 3284 if (!target_can_async_p ())
0b333c5e 3285 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3286}
c906108c
SS
3287\f
3288
3289/* Start remote-debugging of a machine over a serial link. */
96baa820 3290
c906108c 3291void
8621d6a9 3292start_remote (int from_tty)
c906108c 3293{
5b6d1e4f
PA
3294 inferior *inf = current_inferior ();
3295 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3296
1777feb0 3297 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3298 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3299 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3300 nothing is returned (instead of just blocking). Because of this,
3301 targets expecting an immediate response need to, internally, set
3302 things up so that the target_wait() is forced to eventually
1777feb0 3303 timeout. */
6426a772
JM
3304 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3305 differentiate to its caller what the state of the target is after
3306 the initial open has been performed. Here we're assuming that
3307 the target has stopped. It should be possible to eventually have
3308 target_open() return to the caller an indication that the target
3309 is currently running and GDB state should be set to the same as
1777feb0 3310 for an async run. */
5b6d1e4f 3311 wait_for_inferior (inf);
8621d6a9
DJ
3312
3313 /* Now that the inferior has stopped, do any bookkeeping like
3314 loading shared libraries. We want to do this before normal_stop,
3315 so that the displayed frame is up to date. */
a7aba266 3316 post_create_inferior (from_tty);
8621d6a9 3317
6426a772 3318 normal_stop ();
c906108c
SS
3319}
3320
3321/* Initialize static vars when a new inferior begins. */
3322
3323void
96baa820 3324init_wait_for_inferior (void)
c906108c
SS
3325{
3326 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3327
c906108c
SS
3328 breakpoint_init_inferior (inf_starting);
3329
70509625 3330 clear_proceed_status (0);
9f976b41 3331
ab1ddbcf 3332 nullify_last_target_wait_ptid ();
237fc4c9 3333
842951eb 3334 previous_inferior_ptid = inferior_ptid;
c906108c 3335}
237fc4c9 3336
c906108c 3337\f
488f131b 3338
ec9499be 3339static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3340
568d6575
UW
3341static void handle_step_into_function (struct gdbarch *gdbarch,
3342 struct execution_control_state *ecs);
3343static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3344 struct execution_control_state *ecs);
4f5d7f63 3345static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3346static void check_exception_resume (struct execution_control_state *,
28106bc2 3347 struct frame_info *);
611c83ae 3348
bdc36728 3349static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3350static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3351static void keep_going (struct execution_control_state *ecs);
94c57d6a 3352static void process_event_stop_test (struct execution_control_state *ecs);
c4464ade 3353static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3354
252fbfc8
PA
3355/* This function is attached as a "thread_stop_requested" observer.
3356 Cleanup local state that assumed the PTID was to be resumed, and
3357 report the stop to the frontend. */
3358
2c0b251b 3359static void
252fbfc8
PA
3360infrun_thread_stop_requested (ptid_t ptid)
3361{
5b6d1e4f
PA
3362 process_stratum_target *curr_target = current_inferior ()->process_target ();
3363
c65d6b55
PA
3364 /* PTID was requested to stop. If the thread was already stopped,
3365 but the user/frontend doesn't know about that yet (e.g., the
3366 thread had been temporarily paused for some step-over), set up
3367 for reporting the stop now. */
5b6d1e4f 3368 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3369 {
3370 if (tp->state != THREAD_RUNNING)
3371 continue;
3372 if (tp->executing)
3373 continue;
c65d6b55 3374
08036331
PA
3375 /* Remove matching threads from the step-over queue, so
3376 start_step_over doesn't try to resume them
3377 automatically. */
3378 if (thread_is_in_step_over_chain (tp))
28d5518b 3379 global_thread_step_over_chain_remove (tp);
c65d6b55 3380
08036331
PA
3381 /* If the thread is stopped, but the user/frontend doesn't
3382 know about that yet, queue a pending event, as if the
3383 thread had just stopped now. Unless the thread already had
3384 a pending event. */
3385 if (!tp->suspend.waitstatus_pending_p)
3386 {
3387 tp->suspend.waitstatus_pending_p = 1;
3388 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3389 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3390 }
c65d6b55 3391
08036331
PA
3392 /* Clear the inline-frame state, since we're re-processing the
3393 stop. */
5b6d1e4f 3394 clear_inline_frame_state (tp);
c65d6b55 3395
08036331
PA
3396 /* If this thread was paused because some other thread was
3397 doing an inline-step over, let that finish first. Once
3398 that happens, we'll restart all threads and consume pending
3399 stop events then. */
3400 if (step_over_info_valid_p ())
3401 continue;
3402
3403 /* Otherwise we can process the (new) pending event now. Set
3404 it so this pending event is considered by
3405 do_target_wait. */
719546c4 3406 tp->resumed = true;
08036331 3407 }
252fbfc8
PA
3408}
3409
a07daef3
PA
3410static void
3411infrun_thread_thread_exit (struct thread_info *tp, int silent)
3412{
5b6d1e4f
PA
3413 if (target_last_proc_target == tp->inf->process_target ()
3414 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3415 nullify_last_target_wait_ptid ();
3416}
3417
0cbcdb96
PA
3418/* Delete the step resume, single-step and longjmp/exception resume
3419 breakpoints of TP. */
4e1c45ea 3420
0cbcdb96
PA
3421static void
3422delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3423{
0cbcdb96
PA
3424 delete_step_resume_breakpoint (tp);
3425 delete_exception_resume_breakpoint (tp);
34b7e8a6 3426 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3427}
3428
0cbcdb96
PA
3429/* If the target still has execution, call FUNC for each thread that
3430 just stopped. In all-stop, that's all the non-exited threads; in
3431 non-stop, that's the current thread, only. */
3432
3433typedef void (*for_each_just_stopped_thread_callback_func)
3434 (struct thread_info *tp);
4e1c45ea
PA
3435
3436static void
0cbcdb96 3437for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3438{
55f6301a 3439 if (!target_has_execution () || inferior_ptid == null_ptid)
4e1c45ea
PA
3440 return;
3441
fbea99ea 3442 if (target_is_non_stop_p ())
4e1c45ea 3443 {
0cbcdb96
PA
3444 /* If in non-stop mode, only the current thread stopped. */
3445 func (inferior_thread ());
4e1c45ea
PA
3446 }
3447 else
0cbcdb96 3448 {
0cbcdb96 3449 /* In all-stop mode, all threads have stopped. */
08036331
PA
3450 for (thread_info *tp : all_non_exited_threads ())
3451 func (tp);
0cbcdb96
PA
3452 }
3453}
3454
3455/* Delete the step resume and longjmp/exception resume breakpoints of
3456 the threads that just stopped. */
3457
3458static void
3459delete_just_stopped_threads_infrun_breakpoints (void)
3460{
3461 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3462}
3463
3464/* Delete the single-step breakpoints of the threads that just
3465 stopped. */
7c16b83e 3466
34b7e8a6
PA
3467static void
3468delete_just_stopped_threads_single_step_breakpoints (void)
3469{
3470 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3471}
3472
221e1a37 3473/* See infrun.h. */
223698f8 3474
221e1a37 3475void
223698f8
DE
3476print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3477 const struct target_waitstatus *ws)
3478{
e71daf80
SM
3479 infrun_debug_printf ("target_wait (%d.%ld.%ld [%s], status) =",
3480 waiton_ptid.pid (),
3481 waiton_ptid.lwp (),
3482 waiton_ptid.tid (),
3483 target_pid_to_str (waiton_ptid).c_str ());
3484 infrun_debug_printf (" %d.%ld.%ld [%s],",
3485 result_ptid.pid (),
3486 result_ptid.lwp (),
3487 result_ptid.tid (),
3488 target_pid_to_str (result_ptid).c_str ());
3489 infrun_debug_printf (" %s", target_waitstatus_to_string (ws).c_str ());
223698f8
DE
3490}
3491
372316f1
PA
3492/* Select a thread at random, out of those which are resumed and have
3493 had events. */
3494
3495static struct thread_info *
5b6d1e4f 3496random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3497{
372316f1 3498 int num_events = 0;
08036331 3499
5b6d1e4f 3500 auto has_event = [&] (thread_info *tp)
08036331 3501 {
5b6d1e4f
PA
3502 return (tp->ptid.matches (waiton_ptid)
3503 && tp->resumed
08036331
PA
3504 && tp->suspend.waitstatus_pending_p);
3505 };
372316f1
PA
3506
3507 /* First see how many events we have. Count only resumed threads
3508 that have an event pending. */
5b6d1e4f 3509 for (thread_info *tp : inf->non_exited_threads ())
08036331 3510 if (has_event (tp))
372316f1
PA
3511 num_events++;
3512
3513 if (num_events == 0)
3514 return NULL;
3515
3516 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3517 int random_selector = (int) ((num_events * (double) rand ())
3518 / (RAND_MAX + 1.0));
372316f1 3519
1eb8556f
SM
3520 if (num_events > 1)
3521 infrun_debug_printf ("Found %d events, selecting #%d",
3522 num_events, random_selector);
372316f1
PA
3523
3524 /* Select the Nth thread that has had an event. */
5b6d1e4f 3525 for (thread_info *tp : inf->non_exited_threads ())
08036331 3526 if (has_event (tp))
372316f1 3527 if (random_selector-- == 0)
08036331 3528 return tp;
372316f1 3529
08036331 3530 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3531}
3532
3533/* Wrapper for target_wait that first checks whether threads have
3534 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3535 more events. INF is the inferior we're using to call target_wait
3536 on. */
372316f1
PA
3537
3538static ptid_t
5b6d1e4f 3539do_target_wait_1 (inferior *inf, ptid_t ptid,
b60cea74 3540 target_waitstatus *status, target_wait_flags options)
372316f1
PA
3541{
3542 ptid_t event_ptid;
3543 struct thread_info *tp;
3544
24ed6739
AB
3545 /* We know that we are looking for an event in the target of inferior
3546 INF, but we don't know which thread the event might come from. As
3547 such we want to make sure that INFERIOR_PTID is reset so that none of
3548 the wait code relies on it - doing so is always a mistake. */
3549 switch_to_inferior_no_thread (inf);
3550
372316f1
PA
3551 /* First check if there is a resumed thread with a wait status
3552 pending. */
d7e15655 3553 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3554 {
5b6d1e4f 3555 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3556 }
3557 else
3558 {
1eb8556f
SM
3559 infrun_debug_printf ("Waiting for specific thread %s.",
3560 target_pid_to_str (ptid).c_str ());
372316f1
PA
3561
3562 /* We have a specific thread to check. */
5b6d1e4f 3563 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3564 gdb_assert (tp != NULL);
3565 if (!tp->suspend.waitstatus_pending_p)
3566 tp = NULL;
3567 }
3568
3569 if (tp != NULL
3570 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3571 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3572 {
00431a78 3573 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3574 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3575 CORE_ADDR pc;
3576 int discard = 0;
3577
3578 pc = regcache_read_pc (regcache);
3579
3580 if (pc != tp->suspend.stop_pc)
3581 {
1eb8556f
SM
3582 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3583 target_pid_to_str (tp->ptid).c_str (),
3584 paddress (gdbarch, tp->suspend.stop_pc),
3585 paddress (gdbarch, pc));
372316f1
PA
3586 discard = 1;
3587 }
a01bda52 3588 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1 3589 {
1eb8556f
SM
3590 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3591 target_pid_to_str (tp->ptid).c_str (),
3592 paddress (gdbarch, pc));
372316f1
PA
3593
3594 discard = 1;
3595 }
3596
3597 if (discard)
3598 {
1eb8556f
SM
3599 infrun_debug_printf ("pending event of %s cancelled.",
3600 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3601
3602 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3603 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3604 }
3605 }
3606
3607 if (tp != NULL)
3608 {
1eb8556f
SM
3609 infrun_debug_printf ("Using pending wait status %s for %s.",
3610 target_waitstatus_to_string
3611 (&tp->suspend.waitstatus).c_str (),
3612 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3613
3614 /* Now that we've selected our final event LWP, un-adjust its PC
3615 if it was a software breakpoint (and the target doesn't
3616 always adjust the PC itself). */
3617 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3618 && !target_supports_stopped_by_sw_breakpoint ())
3619 {
3620 struct regcache *regcache;
3621 struct gdbarch *gdbarch;
3622 int decr_pc;
3623
00431a78 3624 regcache = get_thread_regcache (tp);
ac7936df 3625 gdbarch = regcache->arch ();
372316f1
PA
3626
3627 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3628 if (decr_pc != 0)
3629 {
3630 CORE_ADDR pc;
3631
3632 pc = regcache_read_pc (regcache);
3633 regcache_write_pc (regcache, pc + decr_pc);
3634 }
3635 }
3636
3637 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3638 *status = tp->suspend.waitstatus;
3639 tp->suspend.waitstatus_pending_p = 0;
3640
3641 /* Wake up the event loop again, until all pending events are
3642 processed. */
3643 if (target_is_async_p ())
3644 mark_async_event_handler (infrun_async_inferior_event_token);
3645 return tp->ptid;
3646 }
3647
3648 /* But if we don't find one, we'll have to wait. */
3649
d3a07122
SM
3650 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3651 a blocking wait. */
3652 if (!target_can_async_p ())
3653 options &= ~TARGET_WNOHANG;
3654
372316f1
PA
3655 if (deprecated_target_wait_hook)
3656 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3657 else
3658 event_ptid = target_wait (ptid, status, options);
3659
3660 return event_ptid;
3661}
3662
5b6d1e4f
PA
3663/* Wrapper for target_wait that first checks whether threads have
3664 pending statuses to report before actually asking the target for
b3e3a4c1 3665 more events. Polls for events from all inferiors/targets. */
5b6d1e4f
PA
3666
3667static bool
b60cea74
TT
3668do_target_wait (ptid_t wait_ptid, execution_control_state *ecs,
3669 target_wait_flags options)
5b6d1e4f
PA
3670{
3671 int num_inferiors = 0;
3672 int random_selector;
3673
b3e3a4c1
SM
3674 /* For fairness, we pick the first inferior/target to poll at random
3675 out of all inferiors that may report events, and then continue
3676 polling the rest of the inferior list starting from that one in a
3677 circular fashion until the whole list is polled once. */
5b6d1e4f
PA
3678
3679 auto inferior_matches = [&wait_ptid] (inferior *inf)
3680 {
3681 return (inf->process_target () != NULL
5b6d1e4f
PA
3682 && ptid_t (inf->pid).matches (wait_ptid));
3683 };
3684
b3e3a4c1 3685 /* First see how many matching inferiors we have. */
5b6d1e4f
PA
3686 for (inferior *inf : all_inferiors ())
3687 if (inferior_matches (inf))
3688 num_inferiors++;
3689
3690 if (num_inferiors == 0)
3691 {
3692 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3693 return false;
3694 }
3695
b3e3a4c1 3696 /* Now randomly pick an inferior out of those that matched. */
5b6d1e4f
PA
3697 random_selector = (int)
3698 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3699
1eb8556f
SM
3700 if (num_inferiors > 1)
3701 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3702 num_inferiors, random_selector);
5b6d1e4f 3703
b3e3a4c1 3704 /* Select the Nth inferior that matched. */
5b6d1e4f
PA
3705
3706 inferior *selected = nullptr;
3707
3708 for (inferior *inf : all_inferiors ())
3709 if (inferior_matches (inf))
3710 if (random_selector-- == 0)
3711 {
3712 selected = inf;
3713 break;
3714 }
3715
b3e3a4c1 3716 /* Now poll for events out of each of the matching inferior's
5b6d1e4f
PA
3717 targets, starting from the selected one. */
3718
3719 auto do_wait = [&] (inferior *inf)
3720 {
5b6d1e4f
PA
3721 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3722 ecs->target = inf->process_target ();
3723 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3724 };
3725
b3e3a4c1
SM
3726 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3727 here spuriously after the target is all stopped and we've already
5b6d1e4f
PA
3728 reported the stop to the user, polling for events. */
3729 scoped_restore_current_thread restore_thread;
3730
3731 int inf_num = selected->num;
3732 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3733 if (inferior_matches (inf))
3734 if (do_wait (inf))
3735 return true;
3736
3737 for (inferior *inf = inferior_list;
3738 inf != NULL && inf->num < inf_num;
3739 inf = inf->next)
3740 if (inferior_matches (inf))
3741 if (do_wait (inf))
3742 return true;
3743
3744 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3745 return false;
3746}
3747
8ff53139
PA
3748/* An event reported by wait_one. */
3749
3750struct wait_one_event
3751{
3752 /* The target the event came out of. */
3753 process_stratum_target *target;
3754
3755 /* The PTID the event was for. */
3756 ptid_t ptid;
3757
3758 /* The waitstatus. */
3759 target_waitstatus ws;
3760};
3761
3762static bool handle_one (const wait_one_event &event);
ac7d717c 3763static void restart_threads (struct thread_info *event_thread);
8ff53139 3764
24291992
PA
3765/* Prepare and stabilize the inferior for detaching it. E.g.,
3766 detaching while a thread is displaced stepping is a recipe for
3767 crashing it, as nothing would readjust the PC out of the scratch
3768 pad. */
3769
3770void
3771prepare_for_detach (void)
3772{
3773 struct inferior *inf = current_inferior ();
f2907e49 3774 ptid_t pid_ptid = ptid_t (inf->pid);
8ff53139 3775 scoped_restore_current_thread restore_thread;
24291992 3776
9bcb1f16 3777 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3778
8ff53139
PA
3779 /* Remove all threads of INF from the global step-over chain. We
3780 want to stop any ongoing step-over, not start any new one. */
3781 thread_info *next;
3782 for (thread_info *tp = global_thread_step_over_chain_head;
3783 tp != nullptr;
3784 tp = next)
24291992 3785 {
8ff53139
PA
3786 next = global_thread_step_over_chain_next (tp);
3787 if (tp->inf == inf)
3788 global_thread_step_over_chain_remove (tp);
3789 }
24291992 3790
ac7d717c
PA
3791 /* If we were already in the middle of an inline step-over, and the
3792 thread stepping belongs to the inferior we're detaching, we need
3793 to restart the threads of other inferiors. */
3794 if (step_over_info.thread != -1)
3795 {
3796 infrun_debug_printf ("inline step-over in-process while detaching");
3797
3798 thread_info *thr = find_thread_global_id (step_over_info.thread);
3799 if (thr->inf == inf)
3800 {
3801 /* Since we removed threads of INF from the step-over chain,
3802 we know this won't start a step-over for INF. */
3803 clear_step_over_info ();
3804
3805 if (target_is_non_stop_p ())
3806 {
3807 /* Start a new step-over in another thread if there's
3808 one that needs it. */
3809 start_step_over ();
3810
3811 /* Restart all other threads (except the
3812 previously-stepping thread, since that one is still
3813 running). */
3814 if (!step_over_info_valid_p ())
3815 restart_threads (thr);
3816 }
3817 }
3818 }
3819
8ff53139
PA
3820 if (displaced_step_in_progress (inf))
3821 {
3822 infrun_debug_printf ("displaced-stepping in-process while detaching");
24291992 3823
8ff53139 3824 /* Stop threads currently displaced stepping, aborting it. */
24291992 3825
8ff53139
PA
3826 for (thread_info *thr : inf->non_exited_threads ())
3827 {
3828 if (thr->displaced_step_state.in_progress ())
3829 {
3830 if (thr->executing)
3831 {
3832 if (!thr->stop_requested)
3833 {
3834 target_stop (thr->ptid);
3835 thr->stop_requested = true;
3836 }
3837 }
3838 else
3839 thr->resumed = false;
3840 }
3841 }
24291992 3842
8ff53139
PA
3843 while (displaced_step_in_progress (inf))
3844 {
3845 wait_one_event event;
24291992 3846
8ff53139
PA
3847 event.target = inf->process_target ();
3848 event.ptid = do_target_wait_1 (inf, pid_ptid, &event.ws, 0);
24291992 3849
8ff53139
PA
3850 if (debug_infrun)
3851 print_target_wait_results (pid_ptid, event.ptid, &event.ws);
24291992 3852
8ff53139
PA
3853 handle_one (event);
3854 }
24291992 3855
8ff53139
PA
3856 /* It's OK to leave some of the threads of INF stopped, since
3857 they'll be detached shortly. */
24291992 3858 }
24291992
PA
3859}
3860
cd0fc7c3 3861/* Wait for control to return from inferior to debugger.
ae123ec6 3862
cd0fc7c3
SS
3863 If inferior gets a signal, we may decide to start it up again
3864 instead of returning. That is why there is a loop in this function.
3865 When this function actually returns it means the inferior
3866 should be left stopped and GDB should read more commands. */
3867
5b6d1e4f
PA
3868static void
3869wait_for_inferior (inferior *inf)
cd0fc7c3 3870{
1eb8556f 3871 infrun_debug_printf ("wait_for_inferior ()");
527159b7 3872
4c41382a 3873 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3874
e6f5c25b
PA
3875 /* If an error happens while handling the event, propagate GDB's
3876 knowledge of the executing state to the frontend/user running
3877 state. */
5b6d1e4f
PA
3878 scoped_finish_thread_state finish_state
3879 (inf->process_target (), minus_one_ptid);
e6f5c25b 3880
c906108c
SS
3881 while (1)
3882 {
ae25568b
PA
3883 struct execution_control_state ecss;
3884 struct execution_control_state *ecs = &ecss;
29f49a6a 3885
ae25568b
PA
3886 memset (ecs, 0, sizeof (*ecs));
3887
ec9499be 3888 overlay_cache_invalid = 1;
ec9499be 3889
f15cb84a
YQ
3890 /* Flush target cache before starting to handle each event.
3891 Target was running and cache could be stale. This is just a
3892 heuristic. Running threads may modify target memory, but we
3893 don't get any event. */
3894 target_dcache_invalidate ();
3895
5b6d1e4f
PA
3896 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3897 ecs->target = inf->process_target ();
c906108c 3898
f00150c9 3899 if (debug_infrun)
5b6d1e4f 3900 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3901
cd0fc7c3
SS
3902 /* Now figure out what to do with the result of the result. */
3903 handle_inferior_event (ecs);
c906108c 3904
cd0fc7c3
SS
3905 if (!ecs->wait_some_more)
3906 break;
3907 }
4e1c45ea 3908
e6f5c25b 3909 /* No error, don't finish the state yet. */
731f534f 3910 finish_state.release ();
cd0fc7c3 3911}
c906108c 3912
d3d4baed
PA
3913/* Cleanup that reinstalls the readline callback handler, if the
3914 target is running in the background. If while handling the target
3915 event something triggered a secondary prompt, like e.g., a
3916 pagination prompt, we'll have removed the callback handler (see
3917 gdb_readline_wrapper_line). Need to do this as we go back to the
3918 event loop, ready to process further input. Note this has no
3919 effect if the handler hasn't actually been removed, because calling
3920 rl_callback_handler_install resets the line buffer, thus losing
3921 input. */
3922
3923static void
d238133d 3924reinstall_readline_callback_handler_cleanup ()
d3d4baed 3925{
3b12939d
PA
3926 struct ui *ui = current_ui;
3927
3928 if (!ui->async)
6c400b59
PA
3929 {
3930 /* We're not going back to the top level event loop yet. Don't
3931 install the readline callback, as it'd prep the terminal,
3932 readline-style (raw, noecho) (e.g., --batch). We'll install
3933 it the next time the prompt is displayed, when we're ready
3934 for input. */
3935 return;
3936 }
3937
3b12939d 3938 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3939 gdb_rl_callback_handler_reinstall ();
3940}
3941
243a9253
PA
3942/* Clean up the FSMs of threads that are now stopped. In non-stop,
3943 that's just the event thread. In all-stop, that's all threads. */
3944
3945static void
3946clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3947{
08036331
PA
3948 if (ecs->event_thread != NULL
3949 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3950 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3951
3952 if (!non_stop)
3953 {
08036331 3954 for (thread_info *thr : all_non_exited_threads ())
dda83cd7 3955 {
243a9253
PA
3956 if (thr->thread_fsm == NULL)
3957 continue;
3958 if (thr == ecs->event_thread)
3959 continue;
3960
00431a78 3961 switch_to_thread (thr);
46e3ed7f 3962 thr->thread_fsm->clean_up (thr);
243a9253
PA
3963 }
3964
3965 if (ecs->event_thread != NULL)
00431a78 3966 switch_to_thread (ecs->event_thread);
243a9253
PA
3967 }
3968}
3969
3b12939d
PA
3970/* Helper for all_uis_check_sync_execution_done that works on the
3971 current UI. */
3972
3973static void
3974check_curr_ui_sync_execution_done (void)
3975{
3976 struct ui *ui = current_ui;
3977
3978 if (ui->prompt_state == PROMPT_NEEDED
3979 && ui->async
3980 && !gdb_in_secondary_prompt_p (ui))
3981 {
223ffa71 3982 target_terminal::ours ();
76727919 3983 gdb::observers::sync_execution_done.notify ();
3eb7562a 3984 ui_register_input_event_handler (ui);
3b12939d
PA
3985 }
3986}
3987
3988/* See infrun.h. */
3989
3990void
3991all_uis_check_sync_execution_done (void)
3992{
0e454242 3993 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3994 {
3995 check_curr_ui_sync_execution_done ();
3996 }
3997}
3998
a8836c93
PA
3999/* See infrun.h. */
4000
4001void
4002all_uis_on_sync_execution_starting (void)
4003{
0e454242 4004 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
4005 {
4006 if (current_ui->prompt_state == PROMPT_NEEDED)
4007 async_disable_stdin ();
4008 }
4009}
4010
1777feb0 4011/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 4012 event loop whenever a change of state is detected on the file
1777feb0
MS
4013 descriptor corresponding to the target. It can be called more than
4014 once to complete a single execution command. In such cases we need
4015 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
4016 that this function is called for a single execution command, then
4017 report to the user that the inferior has stopped, and do the
1777feb0 4018 necessary cleanups. */
43ff13b4
JM
4019
4020void
b1a35af2 4021fetch_inferior_event ()
43ff13b4 4022{
3ec3145c
SM
4023 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
4024
0d1e5fa7 4025 struct execution_control_state ecss;
a474d7c2 4026 struct execution_control_state *ecs = &ecss;
0f641c01 4027 int cmd_done = 0;
43ff13b4 4028
0d1e5fa7
PA
4029 memset (ecs, 0, sizeof (*ecs));
4030
c61db772
PA
4031 /* Events are always processed with the main UI as current UI. This
4032 way, warnings, debug output, etc. are always consistently sent to
4033 the main console. */
4b6749b9 4034 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 4035
b78b3a29
TBA
4036 /* Temporarily disable pagination. Otherwise, the user would be
4037 given an option to press 'q' to quit, which would cause an early
4038 exit and could leave GDB in a half-baked state. */
4039 scoped_restore save_pagination
4040 = make_scoped_restore (&pagination_enabled, false);
4041
d3d4baed 4042 /* End up with readline processing input, if necessary. */
d238133d
TT
4043 {
4044 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
4045
4046 /* We're handling a live event, so make sure we're doing live
4047 debugging. If we're looking at traceframes while the target is
4048 running, we're going to need to get back to that mode after
4049 handling the event. */
4050 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
4051 if (non_stop)
4052 {
4053 maybe_restore_traceframe.emplace ();
4054 set_current_traceframe (-1);
4055 }
43ff13b4 4056
873657b9
PA
4057 /* The user/frontend should not notice a thread switch due to
4058 internal events. Make sure we revert to the user selected
4059 thread and frame after handling the event and running any
4060 breakpoint commands. */
4061 scoped_restore_current_thread restore_thread;
d238133d
TT
4062
4063 overlay_cache_invalid = 1;
4064 /* Flush target cache before starting to handle each event. Target
4065 was running and cache could be stale. This is just a heuristic.
4066 Running threads may modify target memory, but we don't get any
4067 event. */
4068 target_dcache_invalidate ();
4069
4070 scoped_restore save_exec_dir
4071 = make_scoped_restore (&execution_direction,
4072 target_execution_direction ());
4073
1192f124
SM
4074 /* Allow targets to pause their resumed threads while we handle
4075 the event. */
4076 scoped_disable_commit_resumed disable_commit_resumed ("handling event");
4077
5b6d1e4f 4078 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
1192f124
SM
4079 {
4080 infrun_debug_printf ("do_target_wait returned no event");
4081 disable_commit_resumed.reset_and_commit ();
4082 return;
4083 }
5b6d1e4f
PA
4084
4085 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
4086
4087 /* Switch to the target that generated the event, so we can do
7f08fd51
TBA
4088 target calls. */
4089 switch_to_target_no_thread (ecs->target);
d238133d
TT
4090
4091 if (debug_infrun)
5b6d1e4f 4092 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
4093
4094 /* If an error happens while handling the event, propagate GDB's
4095 knowledge of the executing state to the frontend/user running
4096 state. */
4097 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 4098 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 4099
979a0d13 4100 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
4101 still for the thread which has thrown the exception. */
4102 auto defer_bpstat_clear
4103 = make_scope_exit (bpstat_clear_actions);
4104 auto defer_delete_threads
4105 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4106
4107 /* Now figure out what to do with the result of the result. */
4108 handle_inferior_event (ecs);
4109
4110 if (!ecs->wait_some_more)
4111 {
5b6d1e4f 4112 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
758cb810 4113 bool should_stop = true;
d238133d 4114 struct thread_info *thr = ecs->event_thread;
d6b48e9c 4115
d238133d 4116 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 4117
d238133d
TT
4118 if (thr != NULL)
4119 {
4120 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 4121
d238133d 4122 if (thread_fsm != NULL)
46e3ed7f 4123 should_stop = thread_fsm->should_stop (thr);
d238133d 4124 }
243a9253 4125
d238133d
TT
4126 if (!should_stop)
4127 {
4128 keep_going (ecs);
4129 }
4130 else
4131 {
46e3ed7f 4132 bool should_notify_stop = true;
d238133d 4133 int proceeded = 0;
1840d81a 4134
d238133d 4135 clean_up_just_stopped_threads_fsms (ecs);
243a9253 4136
d238133d 4137 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 4138 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 4139
d238133d
TT
4140 if (should_notify_stop)
4141 {
4142 /* We may not find an inferior if this was a process exit. */
4143 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4144 proceeded = normal_stop ();
4145 }
243a9253 4146
d238133d
TT
4147 if (!proceeded)
4148 {
b1a35af2 4149 inferior_event_handler (INF_EXEC_COMPLETE);
d238133d
TT
4150 cmd_done = 1;
4151 }
873657b9
PA
4152
4153 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4154 previously selected thread is gone. We have two
4155 choices - switch to no thread selected, or restore the
4156 previously selected thread (now exited). We chose the
4157 later, just because that's what GDB used to do. After
4158 this, "info threads" says "The current thread <Thread
4159 ID 2> has terminated." instead of "No thread
4160 selected.". */
4161 if (!non_stop
4162 && cmd_done
4163 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4164 restore_thread.dont_restore ();
d238133d
TT
4165 }
4166 }
4f8d22e3 4167
d238133d
TT
4168 defer_delete_threads.release ();
4169 defer_bpstat_clear.release ();
29f49a6a 4170
d238133d
TT
4171 /* No error, don't finish the thread states yet. */
4172 finish_state.release ();
731f534f 4173
1192f124
SM
4174 disable_commit_resumed.reset_and_commit ();
4175
d238133d
TT
4176 /* This scope is used to ensure that readline callbacks are
4177 reinstalled here. */
4178 }
4f8d22e3 4179
3b12939d
PA
4180 /* If a UI was in sync execution mode, and now isn't, restore its
4181 prompt (a synchronous execution command has finished, and we're
4182 ready for input). */
4183 all_uis_check_sync_execution_done ();
0f641c01
PA
4184
4185 if (cmd_done
0f641c01 4186 && exec_done_display_p
00431a78
PA
4187 && (inferior_ptid == null_ptid
4188 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 4189 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4190}
4191
29734269
SM
4192/* See infrun.h. */
4193
edb3359d 4194void
29734269
SM
4195set_step_info (thread_info *tp, struct frame_info *frame,
4196 struct symtab_and_line sal)
edb3359d 4197{
29734269
SM
4198 /* This can be removed once this function no longer implicitly relies on the
4199 inferior_ptid value. */
4200 gdb_assert (inferior_ptid == tp->ptid);
edb3359d 4201
16c381f0
JK
4202 tp->control.step_frame_id = get_frame_id (frame);
4203 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4204
4205 tp->current_symtab = sal.symtab;
4206 tp->current_line = sal.line;
4207}
4208
0d1e5fa7
PA
4209/* Clear context switchable stepping state. */
4210
4211void
4e1c45ea 4212init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4213{
7f5ef605 4214 tss->stepped_breakpoint = 0;
0d1e5fa7 4215 tss->stepping_over_breakpoint = 0;
963f9c80 4216 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4217 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4218}
4219
ab1ddbcf 4220/* See infrun.h. */
c32c64b7 4221
6efcd9a8 4222void
5b6d1e4f
PA
4223set_last_target_status (process_stratum_target *target, ptid_t ptid,
4224 target_waitstatus status)
c32c64b7 4225{
5b6d1e4f 4226 target_last_proc_target = target;
c32c64b7
DE
4227 target_last_wait_ptid = ptid;
4228 target_last_waitstatus = status;
4229}
4230
ab1ddbcf 4231/* See infrun.h. */
e02bc4cc
DS
4232
4233void
5b6d1e4f
PA
4234get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4235 target_waitstatus *status)
e02bc4cc 4236{
5b6d1e4f
PA
4237 if (target != nullptr)
4238 *target = target_last_proc_target;
ab1ddbcf
PA
4239 if (ptid != nullptr)
4240 *ptid = target_last_wait_ptid;
4241 if (status != nullptr)
4242 *status = target_last_waitstatus;
e02bc4cc
DS
4243}
4244
ab1ddbcf
PA
4245/* See infrun.h. */
4246
ac264b3b
MS
4247void
4248nullify_last_target_wait_ptid (void)
4249{
5b6d1e4f 4250 target_last_proc_target = nullptr;
ac264b3b 4251 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4252 target_last_waitstatus = {};
ac264b3b
MS
4253}
4254
dcf4fbde 4255/* Switch thread contexts. */
dd80620e
MS
4256
4257static void
00431a78 4258context_switch (execution_control_state *ecs)
dd80620e 4259{
1eb8556f 4260 if (ecs->ptid != inferior_ptid
5b6d1e4f
PA
4261 && (inferior_ptid == null_ptid
4262 || ecs->event_thread != inferior_thread ()))
fd48f117 4263 {
1eb8556f
SM
4264 infrun_debug_printf ("Switching context from %s to %s",
4265 target_pid_to_str (inferior_ptid).c_str (),
4266 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4267 }
4268
00431a78 4269 switch_to_thread (ecs->event_thread);
dd80620e
MS
4270}
4271
d8dd4d5f
PA
4272/* If the target can't tell whether we've hit breakpoints
4273 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4274 check whether that could have been caused by a breakpoint. If so,
4275 adjust the PC, per gdbarch_decr_pc_after_break. */
4276
4fa8626c 4277static void
d8dd4d5f
PA
4278adjust_pc_after_break (struct thread_info *thread,
4279 struct target_waitstatus *ws)
4fa8626c 4280{
24a73cce
UW
4281 struct regcache *regcache;
4282 struct gdbarch *gdbarch;
118e6252 4283 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4284
4fa8626c
DJ
4285 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4286 we aren't, just return.
9709f61c
DJ
4287
4288 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4289 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4290 implemented by software breakpoints should be handled through the normal
4291 breakpoint layer.
8fb3e588 4292
4fa8626c
DJ
4293 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4294 different signals (SIGILL or SIGEMT for instance), but it is less
4295 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4296 gdbarch_decr_pc_after_break. I don't know any specific target that
4297 generates these signals at breakpoints (the code has been in GDB since at
4298 least 1992) so I can not guess how to handle them here.
8fb3e588 4299
e6cf7916
UW
4300 In earlier versions of GDB, a target with
4301 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4302 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4303 target with both of these set in GDB history, and it seems unlikely to be
4304 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4305
d8dd4d5f 4306 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4307 return;
4308
d8dd4d5f 4309 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4310 return;
4311
4058b839
PA
4312 /* In reverse execution, when a breakpoint is hit, the instruction
4313 under it has already been de-executed. The reported PC always
4314 points at the breakpoint address, so adjusting it further would
4315 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4316 architecture:
4317
4318 B1 0x08000000 : INSN1
4319 B2 0x08000001 : INSN2
4320 0x08000002 : INSN3
4321 PC -> 0x08000003 : INSN4
4322
4323 Say you're stopped at 0x08000003 as above. Reverse continuing
4324 from that point should hit B2 as below. Reading the PC when the
4325 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4326 been de-executed already.
4327
4328 B1 0x08000000 : INSN1
4329 B2 PC -> 0x08000001 : INSN2
4330 0x08000002 : INSN3
4331 0x08000003 : INSN4
4332
4333 We can't apply the same logic as for forward execution, because
4334 we would wrongly adjust the PC to 0x08000000, since there's a
4335 breakpoint at PC - 1. We'd then report a hit on B1, although
4336 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4337 behaviour. */
4338 if (execution_direction == EXEC_REVERSE)
4339 return;
4340
1cf4d951
PA
4341 /* If the target can tell whether the thread hit a SW breakpoint,
4342 trust it. Targets that can tell also adjust the PC
4343 themselves. */
4344 if (target_supports_stopped_by_sw_breakpoint ())
4345 return;
4346
4347 /* Note that relying on whether a breakpoint is planted in memory to
4348 determine this can fail. E.g,. the breakpoint could have been
4349 removed since. Or the thread could have been told to step an
4350 instruction the size of a breakpoint instruction, and only
4351 _after_ was a breakpoint inserted at its address. */
4352
24a73cce
UW
4353 /* If this target does not decrement the PC after breakpoints, then
4354 we have nothing to do. */
00431a78 4355 regcache = get_thread_regcache (thread);
ac7936df 4356 gdbarch = regcache->arch ();
118e6252 4357
527a273a 4358 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4359 if (decr_pc == 0)
24a73cce
UW
4360 return;
4361
8b86c959 4362 const address_space *aspace = regcache->aspace ();
6c95b8df 4363
8aad930b
AC
4364 /* Find the location where (if we've hit a breakpoint) the
4365 breakpoint would be. */
118e6252 4366 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4367
1cf4d951
PA
4368 /* If the target can't tell whether a software breakpoint triggered,
4369 fallback to figuring it out based on breakpoints we think were
4370 inserted in the target, and on whether the thread was stepped or
4371 continued. */
4372
1c5cfe86
PA
4373 /* Check whether there actually is a software breakpoint inserted at
4374 that location.
4375
4376 If in non-stop mode, a race condition is possible where we've
4377 removed a breakpoint, but stop events for that breakpoint were
4378 already queued and arrive later. To suppress those spurious
4379 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4380 and retire them after a number of stop events are reported. Note
4381 this is an heuristic and can thus get confused. The real fix is
4382 to get the "stopped by SW BP and needs adjustment" info out of
4383 the target/kernel (and thus never reach here; see above). */
6c95b8df 4384 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4385 || (target_is_non_stop_p ()
4386 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4387 {
07036511 4388 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4389
8213266a 4390 if (record_full_is_used ())
07036511
TT
4391 restore_operation_disable.emplace
4392 (record_full_gdb_operation_disable_set ());
96429cc8 4393
1c0fdd0e
UW
4394 /* When using hardware single-step, a SIGTRAP is reported for both
4395 a completed single-step and a software breakpoint. Need to
4396 differentiate between the two, as the latter needs adjusting
4397 but the former does not.
4398
4399 The SIGTRAP can be due to a completed hardware single-step only if
4400 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4401 - this thread is currently being stepped
4402
4403 If any of these events did not occur, we must have stopped due
4404 to hitting a software breakpoint, and have to back up to the
4405 breakpoint address.
4406
4407 As a special case, we could have hardware single-stepped a
4408 software breakpoint. In this case (prev_pc == breakpoint_pc),
4409 we also need to back up to the breakpoint address. */
4410
d8dd4d5f
PA
4411 if (thread_has_single_step_breakpoints_set (thread)
4412 || !currently_stepping (thread)
4413 || (thread->stepped_breakpoint
4414 && thread->prev_pc == breakpoint_pc))
515630c5 4415 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4416 }
4fa8626c
DJ
4417}
4418
c4464ade 4419static bool
edb3359d
DJ
4420stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4421{
4422 for (frame = get_prev_frame (frame);
4423 frame != NULL;
4424 frame = get_prev_frame (frame))
4425 {
4426 if (frame_id_eq (get_frame_id (frame), step_frame_id))
c4464ade
SM
4427 return true;
4428
edb3359d
DJ
4429 if (get_frame_type (frame) != INLINE_FRAME)
4430 break;
4431 }
4432
c4464ade 4433 return false;
edb3359d
DJ
4434}
4435
4a4c04f1
BE
4436/* Look for an inline frame that is marked for skip.
4437 If PREV_FRAME is TRUE start at the previous frame,
4438 otherwise start at the current frame. Stop at the
4439 first non-inline frame, or at the frame where the
4440 step started. */
4441
4442static bool
4443inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4444{
4445 struct frame_info *frame = get_current_frame ();
4446
4447 if (prev_frame)
4448 frame = get_prev_frame (frame);
4449
4450 for (; frame != NULL; frame = get_prev_frame (frame))
4451 {
4452 const char *fn = NULL;
4453 symtab_and_line sal;
4454 struct symbol *sym;
4455
4456 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4457 break;
4458 if (get_frame_type (frame) != INLINE_FRAME)
4459 break;
4460
4461 sal = find_frame_sal (frame);
4462 sym = get_frame_function (frame);
4463
4464 if (sym != NULL)
4465 fn = sym->print_name ();
4466
4467 if (sal.line != 0
4468 && function_name_is_marked_for_skip (fn, sal))
4469 return true;
4470 }
4471
4472 return false;
4473}
4474
c65d6b55
PA
4475/* If the event thread has the stop requested flag set, pretend it
4476 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4477 target_stop). */
4478
4479static bool
4480handle_stop_requested (struct execution_control_state *ecs)
4481{
4482 if (ecs->event_thread->stop_requested)
4483 {
4484 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4485 ecs->ws.value.sig = GDB_SIGNAL_0;
4486 handle_signal_stop (ecs);
4487 return true;
4488 }
4489 return false;
4490}
4491
a96d9b2e 4492/* Auxiliary function that handles syscall entry/return events.
c4464ade
SM
4493 It returns true if the inferior should keep going (and GDB
4494 should ignore the event), or false if the event deserves to be
a96d9b2e 4495 processed. */
ca2163eb 4496
c4464ade 4497static bool
ca2163eb 4498handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4499{
ca2163eb 4500 struct regcache *regcache;
ca2163eb
PA
4501 int syscall_number;
4502
00431a78 4503 context_switch (ecs);
ca2163eb 4504
00431a78 4505 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4506 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4507 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4508
a96d9b2e
SDJ
4509 if (catch_syscall_enabled () > 0
4510 && catching_syscall_number (syscall_number) > 0)
4511 {
1eb8556f 4512 infrun_debug_printf ("syscall number=%d", syscall_number);
a96d9b2e 4513
16c381f0 4514 ecs->event_thread->control.stop_bpstat
a01bda52 4515 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4516 ecs->event_thread->suspend.stop_pc,
4517 ecs->event_thread, &ecs->ws);
ab04a2af 4518
c65d6b55 4519 if (handle_stop_requested (ecs))
c4464ade 4520 return false;
c65d6b55 4521
ce12b012 4522 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4523 {
4524 /* Catchpoint hit. */
c4464ade 4525 return false;
ca2163eb 4526 }
a96d9b2e 4527 }
ca2163eb 4528
c65d6b55 4529 if (handle_stop_requested (ecs))
c4464ade 4530 return false;
c65d6b55 4531
ca2163eb 4532 /* If no catchpoint triggered for this, then keep going. */
ca2163eb 4533 keep_going (ecs);
c4464ade
SM
4534
4535 return true;
a96d9b2e
SDJ
4536}
4537
7e324e48
GB
4538/* Lazily fill in the execution_control_state's stop_func_* fields. */
4539
4540static void
4541fill_in_stop_func (struct gdbarch *gdbarch,
4542 struct execution_control_state *ecs)
4543{
4544 if (!ecs->stop_func_filled_in)
4545 {
98a617f8 4546 const block *block;
fe830662 4547 const general_symbol_info *gsi;
98a617f8 4548
7e324e48
GB
4549 /* Don't care about return value; stop_func_start and stop_func_name
4550 will both be 0 if it doesn't work. */
fe830662
TT
4551 find_pc_partial_function_sym (ecs->event_thread->suspend.stop_pc,
4552 &gsi,
4553 &ecs->stop_func_start,
4554 &ecs->stop_func_end,
4555 &block);
4556 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
98a617f8
KB
4557
4558 /* The call to find_pc_partial_function, above, will set
4559 stop_func_start and stop_func_end to the start and end
4560 of the range containing the stop pc. If this range
4561 contains the entry pc for the block (which is always the
4562 case for contiguous blocks), advance stop_func_start past
4563 the function's start offset and entrypoint. Note that
4564 stop_func_start is NOT advanced when in a range of a
4565 non-contiguous block that does not contain the entry pc. */
4566 if (block != nullptr
4567 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4568 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4569 {
4570 ecs->stop_func_start
4571 += gdbarch_deprecated_function_start_offset (gdbarch);
4572
4573 if (gdbarch_skip_entrypoint_p (gdbarch))
4574 ecs->stop_func_start
4575 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4576 }
591a12a1 4577
7e324e48
GB
4578 ecs->stop_func_filled_in = 1;
4579 }
4580}
4581
4f5d7f63 4582
00431a78 4583/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4584
4585static enum stop_kind
00431a78 4586get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4587{
5b6d1e4f 4588 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4589
4590 gdb_assert (inf != NULL);
4591 return inf->control.stop_soon;
4592}
4593
5b6d1e4f
PA
4594/* Poll for one event out of the current target. Store the resulting
4595 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4596
4597static ptid_t
5b6d1e4f 4598poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4599{
4600 ptid_t event_ptid;
372316f1
PA
4601
4602 overlay_cache_invalid = 1;
4603
4604 /* Flush target cache before starting to handle each event.
4605 Target was running and cache could be stale. This is just a
4606 heuristic. Running threads may modify target memory, but we
4607 don't get any event. */
4608 target_dcache_invalidate ();
4609
4610 if (deprecated_target_wait_hook)
5b6d1e4f 4611 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4612 else
5b6d1e4f 4613 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4614
4615 if (debug_infrun)
5b6d1e4f 4616 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4617
4618 return event_ptid;
4619}
4620
5b6d1e4f
PA
4621/* Wait for one event out of any target. */
4622
4623static wait_one_event
4624wait_one ()
4625{
4626 while (1)
4627 {
4628 for (inferior *inf : all_inferiors ())
4629 {
4630 process_stratum_target *target = inf->process_target ();
4631 if (target == NULL
4632 || !target->is_async_p ()
4633 || !target->threads_executing)
4634 continue;
4635
4636 switch_to_inferior_no_thread (inf);
4637
4638 wait_one_event event;
4639 event.target = target;
4640 event.ptid = poll_one_curr_target (&event.ws);
4641
4642 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4643 {
4644 /* If nothing is resumed, remove the target from the
4645 event loop. */
4646 target_async (0);
4647 }
4648 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4649 return event;
4650 }
4651
4652 /* Block waiting for some event. */
4653
4654 fd_set readfds;
4655 int nfds = 0;
4656
4657 FD_ZERO (&readfds);
4658
4659 for (inferior *inf : all_inferiors ())
4660 {
4661 process_stratum_target *target = inf->process_target ();
4662 if (target == NULL
4663 || !target->is_async_p ()
4664 || !target->threads_executing)
4665 continue;
4666
4667 int fd = target->async_wait_fd ();
4668 FD_SET (fd, &readfds);
4669 if (nfds <= fd)
4670 nfds = fd + 1;
4671 }
4672
4673 if (nfds == 0)
4674 {
4675 /* No waitable targets left. All must be stopped. */
4676 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4677 }
4678
4679 QUIT;
4680
4681 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4682 if (numfds < 0)
4683 {
4684 if (errno == EINTR)
4685 continue;
4686 else
4687 perror_with_name ("interruptible_select");
4688 }
4689 }
4690}
4691
372316f1
PA
4692/* Save the thread's event and stop reason to process it later. */
4693
4694static void
5b6d1e4f 4695save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4696{
1eb8556f
SM
4697 infrun_debug_printf ("saving status %s for %d.%ld.%ld",
4698 target_waitstatus_to_string (ws).c_str (),
4699 tp->ptid.pid (),
4700 tp->ptid.lwp (),
4701 tp->ptid.tid ());
372316f1
PA
4702
4703 /* Record for later. */
4704 tp->suspend.waitstatus = *ws;
4705 tp->suspend.waitstatus_pending_p = 1;
4706
372316f1
PA
4707 if (ws->kind == TARGET_WAITKIND_STOPPED
4708 && ws->value.sig == GDB_SIGNAL_TRAP)
4709 {
89ba430c
SM
4710 struct regcache *regcache = get_thread_regcache (tp);
4711 const address_space *aspace = regcache->aspace ();
372316f1
PA
4712 CORE_ADDR pc = regcache_read_pc (regcache);
4713
4714 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4715
18493a00
PA
4716 scoped_restore_current_thread restore_thread;
4717 switch_to_thread (tp);
4718
4719 if (target_stopped_by_watchpoint ())
372316f1
PA
4720 {
4721 tp->suspend.stop_reason
4722 = TARGET_STOPPED_BY_WATCHPOINT;
4723 }
4724 else if (target_supports_stopped_by_sw_breakpoint ()
18493a00 4725 && target_stopped_by_sw_breakpoint ())
372316f1
PA
4726 {
4727 tp->suspend.stop_reason
4728 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4729 }
4730 else if (target_supports_stopped_by_hw_breakpoint ()
18493a00 4731 && target_stopped_by_hw_breakpoint ())
372316f1
PA
4732 {
4733 tp->suspend.stop_reason
4734 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4735 }
4736 else if (!target_supports_stopped_by_hw_breakpoint ()
4737 && hardware_breakpoint_inserted_here_p (aspace,
4738 pc))
4739 {
4740 tp->suspend.stop_reason
4741 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4742 }
4743 else if (!target_supports_stopped_by_sw_breakpoint ()
4744 && software_breakpoint_inserted_here_p (aspace,
4745 pc))
4746 {
4747 tp->suspend.stop_reason
4748 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4749 }
4750 else if (!thread_has_single_step_breakpoints_set (tp)
4751 && currently_stepping (tp))
4752 {
4753 tp->suspend.stop_reason
4754 = TARGET_STOPPED_BY_SINGLE_STEP;
4755 }
4756 }
4757}
4758
293b3ebc
TBA
4759/* Mark the non-executing threads accordingly. In all-stop, all
4760 threads of all processes are stopped when we get any event
4761 reported. In non-stop mode, only the event thread stops. */
4762
4763static void
4764mark_non_executing_threads (process_stratum_target *target,
4765 ptid_t event_ptid,
4766 struct target_waitstatus ws)
4767{
4768 ptid_t mark_ptid;
4769
4770 if (!target_is_non_stop_p ())
4771 mark_ptid = minus_one_ptid;
4772 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4773 || ws.kind == TARGET_WAITKIND_EXITED)
4774 {
4775 /* If we're handling a process exit in non-stop mode, even
4776 though threads haven't been deleted yet, one would think
4777 that there is nothing to do, as threads of the dead process
4778 will be soon deleted, and threads of any other process were
4779 left running. However, on some targets, threads survive a
4780 process exit event. E.g., for the "checkpoint" command,
4781 when the current checkpoint/fork exits, linux-fork.c
4782 automatically switches to another fork from within
4783 target_mourn_inferior, by associating the same
4784 inferior/thread to another fork. We haven't mourned yet at
4785 this point, but we must mark any threads left in the
4786 process as not-executing so that finish_thread_state marks
4787 them stopped (in the user's perspective) if/when we present
4788 the stop to the user. */
4789 mark_ptid = ptid_t (event_ptid.pid ());
4790 }
4791 else
4792 mark_ptid = event_ptid;
4793
4794 set_executing (target, mark_ptid, false);
4795
4796 /* Likewise the resumed flag. */
4797 set_resumed (target, mark_ptid, false);
4798}
4799
d758e62c
PA
4800/* Handle one event after stopping threads. If the eventing thread
4801 reports back any interesting event, we leave it pending. If the
4802 eventing thread was in the middle of a displaced step, we
8ff53139
PA
4803 cancel/finish it, and unless the thread's inferior is being
4804 detached, put the thread back in the step-over chain. Returns true
4805 if there are no resumed threads left in the target (thus there's no
4806 point in waiting further), false otherwise. */
d758e62c
PA
4807
4808static bool
4809handle_one (const wait_one_event &event)
4810{
4811 infrun_debug_printf
4812 ("%s %s", target_waitstatus_to_string (&event.ws).c_str (),
4813 target_pid_to_str (event.ptid).c_str ());
4814
4815 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4816 {
4817 /* All resumed threads exited. */
4818 return true;
4819 }
4820 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4821 || event.ws.kind == TARGET_WAITKIND_EXITED
4822 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4823 {
4824 /* One thread/process exited/signalled. */
4825
4826 thread_info *t = nullptr;
4827
4828 /* The target may have reported just a pid. If so, try
4829 the first non-exited thread. */
4830 if (event.ptid.is_pid ())
4831 {
4832 int pid = event.ptid.pid ();
4833 inferior *inf = find_inferior_pid (event.target, pid);
4834 for (thread_info *tp : inf->non_exited_threads ())
4835 {
4836 t = tp;
4837 break;
4838 }
4839
4840 /* If there is no available thread, the event would
4841 have to be appended to a per-inferior event list,
4842 which does not exist (and if it did, we'd have
4843 to adjust run control command to be able to
4844 resume such an inferior). We assert here instead
4845 of going into an infinite loop. */
4846 gdb_assert (t != nullptr);
4847
4848 infrun_debug_printf
4849 ("using %s", target_pid_to_str (t->ptid).c_str ());
4850 }
4851 else
4852 {
4853 t = find_thread_ptid (event.target, event.ptid);
4854 /* Check if this is the first time we see this thread.
4855 Don't bother adding if it individually exited. */
4856 if (t == nullptr
4857 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4858 t = add_thread (event.target, event.ptid);
4859 }
4860
4861 if (t != nullptr)
4862 {
4863 /* Set the threads as non-executing to avoid
4864 another stop attempt on them. */
4865 switch_to_thread_no_regs (t);
4866 mark_non_executing_threads (event.target, event.ptid,
4867 event.ws);
4868 save_waitstatus (t, &event.ws);
4869 t->stop_requested = false;
4870 }
4871 }
4872 else
4873 {
4874 thread_info *t = find_thread_ptid (event.target, event.ptid);
4875 if (t == NULL)
4876 t = add_thread (event.target, event.ptid);
4877
4878 t->stop_requested = 0;
4879 t->executing = 0;
4880 t->resumed = false;
4881 t->control.may_range_step = 0;
4882
4883 /* This may be the first time we see the inferior report
4884 a stop. */
4885 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4886 if (inf->needs_setup)
4887 {
4888 switch_to_thread_no_regs (t);
4889 setup_inferior (0);
4890 }
4891
4892 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4893 && event.ws.value.sig == GDB_SIGNAL_0)
4894 {
4895 /* We caught the event that we intended to catch, so
4896 there's no event pending. */
4897 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4898 t->suspend.waitstatus_pending_p = 0;
4899
4900 if (displaced_step_finish (t, GDB_SIGNAL_0)
4901 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4902 {
4903 /* Add it back to the step-over queue. */
4904 infrun_debug_printf
4905 ("displaced-step of %s canceled",
4906 target_pid_to_str (t->ptid).c_str ());
4907
4908 t->control.trap_expected = 0;
8ff53139
PA
4909 if (!t->inf->detaching)
4910 global_thread_step_over_chain_enqueue (t);
d758e62c
PA
4911 }
4912 }
4913 else
4914 {
4915 enum gdb_signal sig;
4916 struct regcache *regcache;
4917
4918 infrun_debug_printf
4919 ("target_wait %s, saving status for %d.%ld.%ld",
4920 target_waitstatus_to_string (&event.ws).c_str (),
4921 t->ptid.pid (), t->ptid.lwp (), t->ptid.tid ());
4922
4923 /* Record for later. */
4924 save_waitstatus (t, &event.ws);
4925
4926 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4927 ? event.ws.value.sig : GDB_SIGNAL_0);
4928
4929 if (displaced_step_finish (t, sig)
4930 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4931 {
4932 /* Add it back to the step-over queue. */
4933 t->control.trap_expected = 0;
8ff53139
PA
4934 if (!t->inf->detaching)
4935 global_thread_step_over_chain_enqueue (t);
d758e62c
PA
4936 }
4937
4938 regcache = get_thread_regcache (t);
4939 t->suspend.stop_pc = regcache_read_pc (regcache);
4940
4941 infrun_debug_printf ("saved stop_pc=%s for %s "
4942 "(currently_stepping=%d)",
4943 paddress (target_gdbarch (),
4944 t->suspend.stop_pc),
4945 target_pid_to_str (t->ptid).c_str (),
4946 currently_stepping (t));
4947 }
4948 }
4949
4950 return false;
4951}
4952
6efcd9a8 4953/* See infrun.h. */
372316f1 4954
6efcd9a8 4955void
372316f1
PA
4956stop_all_threads (void)
4957{
4958 /* We may need multiple passes to discover all threads. */
4959 int pass;
4960 int iterations = 0;
372316f1 4961
53cccef1 4962 gdb_assert (exists_non_stop_target ());
372316f1 4963
1eb8556f 4964 infrun_debug_printf ("starting");
372316f1 4965
00431a78 4966 scoped_restore_current_thread restore_thread;
372316f1 4967
6ad82919
TBA
4968 /* Enable thread events of all targets. */
4969 for (auto *target : all_non_exited_process_targets ())
4970 {
4971 switch_to_target_no_thread (target);
4972 target_thread_events (true);
4973 }
4974
4975 SCOPE_EXIT
4976 {
4977 /* Disable thread events of all targets. */
4978 for (auto *target : all_non_exited_process_targets ())
4979 {
4980 switch_to_target_no_thread (target);
4981 target_thread_events (false);
4982 }
4983
17417fb0 4984 /* Use debug_prefixed_printf directly to get a meaningful function
dda83cd7 4985 name. */
6ad82919 4986 if (debug_infrun)
17417fb0 4987 debug_prefixed_printf ("infrun", "stop_all_threads", "done");
6ad82919 4988 };
65706a29 4989
372316f1
PA
4990 /* Request threads to stop, and then wait for the stops. Because
4991 threads we already know about can spawn more threads while we're
4992 trying to stop them, and we only learn about new threads when we
4993 update the thread list, do this in a loop, and keep iterating
4994 until two passes find no threads that need to be stopped. */
4995 for (pass = 0; pass < 2; pass++, iterations++)
4996 {
1eb8556f 4997 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
372316f1
PA
4998 while (1)
4999 {
29d6859f 5000 int waits_needed = 0;
372316f1 5001
a05575d3
TBA
5002 for (auto *target : all_non_exited_process_targets ())
5003 {
5004 switch_to_target_no_thread (target);
5005 update_thread_list ();
5006 }
372316f1
PA
5007
5008 /* Go through all threads looking for threads that we need
5009 to tell the target to stop. */
08036331 5010 for (thread_info *t : all_non_exited_threads ())
372316f1 5011 {
53cccef1
TBA
5012 /* For a single-target setting with an all-stop target,
5013 we would not even arrive here. For a multi-target
5014 setting, until GDB is able to handle a mixture of
5015 all-stop and non-stop targets, simply skip all-stop
5016 targets' threads. This should be fine due to the
5017 protection of 'check_multi_target_resumption'. */
5018
5019 switch_to_thread_no_regs (t);
5020 if (!target_is_non_stop_p ())
5021 continue;
5022
372316f1
PA
5023 if (t->executing)
5024 {
5025 /* If already stopping, don't request a stop again.
5026 We just haven't seen the notification yet. */
5027 if (!t->stop_requested)
5028 {
1eb8556f
SM
5029 infrun_debug_printf (" %s executing, need stop",
5030 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
5031 target_stop (t->ptid);
5032 t->stop_requested = 1;
5033 }
5034 else
5035 {
1eb8556f
SM
5036 infrun_debug_printf (" %s executing, already stopping",
5037 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
5038 }
5039
5040 if (t->stop_requested)
29d6859f 5041 waits_needed++;
372316f1
PA
5042 }
5043 else
5044 {
1eb8556f
SM
5045 infrun_debug_printf (" %s not executing",
5046 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
5047
5048 /* The thread may be not executing, but still be
5049 resumed with a pending status to process. */
719546c4 5050 t->resumed = false;
372316f1
PA
5051 }
5052 }
5053
29d6859f 5054 if (waits_needed == 0)
372316f1
PA
5055 break;
5056
5057 /* If we find new threads on the second iteration, restart
5058 over. We want to see two iterations in a row with all
5059 threads stopped. */
5060 if (pass > 0)
5061 pass = -1;
5062
29d6859f 5063 for (int i = 0; i < waits_needed; i++)
c29705b7 5064 {
29d6859f 5065 wait_one_event event = wait_one ();
d758e62c
PA
5066 if (handle_one (event))
5067 break;
372316f1
PA
5068 }
5069 }
5070 }
372316f1
PA
5071}
5072
f4836ba9
PA
5073/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
5074
c4464ade 5075static bool
f4836ba9
PA
5076handle_no_resumed (struct execution_control_state *ecs)
5077{
3b12939d 5078 if (target_can_async_p ())
f4836ba9 5079 {
c4464ade 5080 bool any_sync = false;
f4836ba9 5081
2dab0c7b 5082 for (ui *ui : all_uis ())
3b12939d
PA
5083 {
5084 if (ui->prompt_state == PROMPT_BLOCKED)
5085 {
c4464ade 5086 any_sync = true;
3b12939d
PA
5087 break;
5088 }
5089 }
5090 if (!any_sync)
5091 {
5092 /* There were no unwaited-for children left in the target, but,
5093 we're not synchronously waiting for events either. Just
5094 ignore. */
5095
1eb8556f 5096 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
3b12939d 5097 prepare_to_wait (ecs);
c4464ade 5098 return true;
3b12939d 5099 }
f4836ba9
PA
5100 }
5101
5102 /* Otherwise, if we were running a synchronous execution command, we
5103 may need to cancel it and give the user back the terminal.
5104
5105 In non-stop mode, the target can't tell whether we've already
5106 consumed previous stop events, so it can end up sending us a
5107 no-resumed event like so:
5108
5109 #0 - thread 1 is left stopped
5110
5111 #1 - thread 2 is resumed and hits breakpoint
dda83cd7 5112 -> TARGET_WAITKIND_STOPPED
f4836ba9
PA
5113
5114 #2 - thread 3 is resumed and exits
dda83cd7 5115 this is the last resumed thread, so
f4836ba9
PA
5116 -> TARGET_WAITKIND_NO_RESUMED
5117
5118 #3 - gdb processes stop for thread 2 and decides to re-resume
dda83cd7 5119 it.
f4836ba9
PA
5120
5121 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
dda83cd7 5122 thread 2 is now resumed, so the event should be ignored.
f4836ba9
PA
5123
5124 IOW, if the stop for thread 2 doesn't end a foreground command,
5125 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
5126 event. But it could be that the event meant that thread 2 itself
5127 (or whatever other thread was the last resumed thread) exited.
5128
5129 To address this we refresh the thread list and check whether we
5130 have resumed threads _now_. In the example above, this removes
5131 thread 3 from the thread list. If thread 2 was re-resumed, we
5132 ignore this event. If we find no thread resumed, then we cancel
7d3badc6
PA
5133 the synchronous command and show "no unwaited-for " to the
5134 user. */
f4836ba9 5135
d6cc5d98 5136 inferior *curr_inf = current_inferior ();
7d3badc6 5137
d6cc5d98
PA
5138 scoped_restore_current_thread restore_thread;
5139
5140 for (auto *target : all_non_exited_process_targets ())
5141 {
5142 switch_to_target_no_thread (target);
5143 update_thread_list ();
5144 }
5145
5146 /* If:
5147
5148 - the current target has no thread executing, and
5149 - the current inferior is native, and
5150 - the current inferior is the one which has the terminal, and
5151 - we did nothing,
5152
5153 then a Ctrl-C from this point on would remain stuck in the
5154 kernel, until a thread resumes and dequeues it. That would
5155 result in the GDB CLI not reacting to Ctrl-C, not able to
5156 interrupt the program. To address this, if the current inferior
5157 no longer has any thread executing, we give the terminal to some
5158 other inferior that has at least one thread executing. */
5159 bool swap_terminal = true;
5160
5161 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
5162 whether to report it to the user. */
5163 bool ignore_event = false;
7d3badc6
PA
5164
5165 for (thread_info *thread : all_non_exited_threads ())
f4836ba9 5166 {
d6cc5d98
PA
5167 if (swap_terminal && thread->executing)
5168 {
5169 if (thread->inf != curr_inf)
5170 {
5171 target_terminal::ours ();
5172
5173 switch_to_thread (thread);
5174 target_terminal::inferior ();
5175 }
5176 swap_terminal = false;
5177 }
5178
5179 if (!ignore_event
5180 && (thread->executing
5181 || thread->suspend.waitstatus_pending_p))
f4836ba9 5182 {
7d3badc6
PA
5183 /* Either there were no unwaited-for children left in the
5184 target at some point, but there are now, or some target
5185 other than the eventing one has unwaited-for children
5186 left. Just ignore. */
1eb8556f
SM
5187 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
5188 "(ignoring: found resumed)");
d6cc5d98
PA
5189
5190 ignore_event = true;
f4836ba9 5191 }
d6cc5d98
PA
5192
5193 if (ignore_event && !swap_terminal)
5194 break;
5195 }
5196
5197 if (ignore_event)
5198 {
5199 switch_to_inferior_no_thread (curr_inf);
5200 prepare_to_wait (ecs);
c4464ade 5201 return true;
f4836ba9
PA
5202 }
5203
5204 /* Go ahead and report the event. */
c4464ade 5205 return false;
f4836ba9
PA
5206}
5207
05ba8510
PA
5208/* Given an execution control state that has been freshly filled in by
5209 an event from the inferior, figure out what it means and take
5210 appropriate action.
5211
5212 The alternatives are:
5213
22bcd14b 5214 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5215 debugger.
5216
5217 2) keep_going and return; to wait for the next event (set
5218 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5219 once). */
c906108c 5220
ec9499be 5221static void
595915c1 5222handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5223{
595915c1
TT
5224 /* Make sure that all temporary struct value objects that were
5225 created during the handling of the event get deleted at the
5226 end. */
5227 scoped_value_mark free_values;
5228
1eb8556f 5229 infrun_debug_printf ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
c29705b7 5230
28736962
PA
5231 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5232 {
5233 /* We had an event in the inferior, but we are not interested in
5234 handling it at this level. The lower layers have already
5235 done what needs to be done, if anything.
5236
5237 One of the possible circumstances for this is when the
5238 inferior produces output for the console. The inferior has
5239 not stopped, and we are ignoring the event. Another possible
5240 circumstance is any event which the lower level knows will be
5241 reported multiple times without an intervening resume. */
28736962
PA
5242 prepare_to_wait (ecs);
5243 return;
5244 }
5245
65706a29
PA
5246 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5247 {
65706a29
PA
5248 prepare_to_wait (ecs);
5249 return;
5250 }
5251
0e5bf2a8 5252 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5253 && handle_no_resumed (ecs))
5254 return;
0e5bf2a8 5255
5b6d1e4f
PA
5256 /* Cache the last target/ptid/waitstatus. */
5257 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5258
ca005067 5259 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5260 stop_stack_dummy = STOP_NONE;
ca005067 5261
0e5bf2a8
PA
5262 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5263 {
5264 /* No unwaited-for children left. IOW, all resumed children
5265 have exited. */
c4464ade 5266 stop_print_frame = false;
22bcd14b 5267 stop_waiting (ecs);
0e5bf2a8
PA
5268 return;
5269 }
5270
8c90c137 5271 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5272 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5273 {
5b6d1e4f 5274 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5275 /* If it's a new thread, add it to the thread database. */
5276 if (ecs->event_thread == NULL)
5b6d1e4f 5277 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5278
5279 /* Disable range stepping. If the next step request could use a
5280 range, this will be end up re-enabled then. */
5281 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5282 }
88ed393a
JK
5283
5284 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5285 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5286
5287 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5288 reinit_frame_cache ();
5289
28736962
PA
5290 breakpoint_retire_moribund ();
5291
2b009048
DJ
5292 /* First, distinguish signals caused by the debugger from signals
5293 that have to do with the program's own actions. Note that
5294 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5295 on the operating system version. Here we detect when a SIGILL or
5296 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5297 something similar for SIGSEGV, since a SIGSEGV will be generated
5298 when we're trying to execute a breakpoint instruction on a
5299 non-executable stack. This happens for call dummy breakpoints
5300 for architectures like SPARC that place call dummies on the
5301 stack. */
2b009048 5302 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5303 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5304 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5305 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5306 {
00431a78 5307 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5308
a01bda52 5309 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5310 regcache_read_pc (regcache)))
5311 {
1eb8556f 5312 infrun_debug_printf ("Treating signal as SIGTRAP");
a493e3e2 5313 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5314 }
2b009048
DJ
5315 }
5316
293b3ebc 5317 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
8c90c137 5318
488f131b
JB
5319 switch (ecs->ws.kind)
5320 {
5321 case TARGET_WAITKIND_LOADED:
72d383bb
SM
5322 {
5323 context_switch (ecs);
5324 /* Ignore gracefully during startup of the inferior, as it might
5325 be the shell which has just loaded some objects, otherwise
5326 add the symbols for the newly loaded objects. Also ignore at
5327 the beginning of an attach or remote session; we will query
5328 the full list of libraries once the connection is
5329 established. */
5330
5331 stop_kind stop_soon = get_inferior_stop_soon (ecs);
5332 if (stop_soon == NO_STOP_QUIETLY)
5333 {
5334 struct regcache *regcache;
edcc5120 5335
72d383bb 5336 regcache = get_thread_regcache (ecs->event_thread);
edcc5120 5337
72d383bb 5338 handle_solib_event ();
ab04a2af 5339
72d383bb
SM
5340 ecs->event_thread->control.stop_bpstat
5341 = bpstat_stop_status (regcache->aspace (),
5342 ecs->event_thread->suspend.stop_pc,
5343 ecs->event_thread, &ecs->ws);
c65d6b55 5344
72d383bb 5345 if (handle_stop_requested (ecs))
94c57d6a 5346 return;
488f131b 5347
72d383bb
SM
5348 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5349 {
5350 /* A catchpoint triggered. */
5351 process_event_stop_test (ecs);
5352 return;
5353 }
55409f9d 5354
72d383bb
SM
5355 /* If requested, stop when the dynamic linker notifies
5356 gdb of events. This allows the user to get control
5357 and place breakpoints in initializer routines for
5358 dynamically loaded objects (among other things). */
5359 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5360 if (stop_on_solib_events)
5361 {
5362 /* Make sure we print "Stopped due to solib-event" in
5363 normal_stop. */
5364 stop_print_frame = true;
b0f4b84b 5365
72d383bb
SM
5366 stop_waiting (ecs);
5367 return;
5368 }
5369 }
b0f4b84b 5370
72d383bb
SM
5371 /* If we are skipping through a shell, or through shared library
5372 loading that we aren't interested in, resume the program. If
5373 we're running the program normally, also resume. */
5374 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5375 {
5376 /* Loading of shared libraries might have changed breakpoint
5377 addresses. Make sure new breakpoints are inserted. */
5378 if (stop_soon == NO_STOP_QUIETLY)
5379 insert_breakpoints ();
5380 resume (GDB_SIGNAL_0);
5381 prepare_to_wait (ecs);
5382 return;
5383 }
5c09a2c5 5384
72d383bb
SM
5385 /* But stop if we're attaching or setting up a remote
5386 connection. */
5387 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5388 || stop_soon == STOP_QUIETLY_REMOTE)
5389 {
5390 infrun_debug_printf ("quietly stopped");
5391 stop_waiting (ecs);
5392 return;
5393 }
5394
5395 internal_error (__FILE__, __LINE__,
5396 _("unhandled stop_soon: %d"), (int) stop_soon);
5397 }
c5aa993b 5398
488f131b 5399 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5400 if (handle_stop_requested (ecs))
5401 return;
00431a78 5402 context_switch (ecs);
64ce06e4 5403 resume (GDB_SIGNAL_0);
488f131b
JB
5404 prepare_to_wait (ecs);
5405 return;
c5aa993b 5406
65706a29 5407 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5408 if (handle_stop_requested (ecs))
5409 return;
00431a78 5410 context_switch (ecs);
65706a29
PA
5411 if (!switch_back_to_stepped_thread (ecs))
5412 keep_going (ecs);
5413 return;
5414
488f131b 5415 case TARGET_WAITKIND_EXITED:
940c3c06 5416 case TARGET_WAITKIND_SIGNALLED:
18493a00
PA
5417 {
5418 /* Depending on the system, ecs->ptid may point to a thread or
5419 to a process. On some targets, target_mourn_inferior may
5420 need to have access to the just-exited thread. That is the
5421 case of GNU/Linux's "checkpoint" support, for example.
5422 Call the switch_to_xxx routine as appropriate. */
5423 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5424 if (thr != nullptr)
5425 switch_to_thread (thr);
5426 else
5427 {
5428 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5429 switch_to_inferior_no_thread (inf);
5430 }
5431 }
6c95b8df 5432 handle_vfork_child_exec_or_exit (0);
223ffa71 5433 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5434
0c557179
SDJ
5435 /* Clearing any previous state of convenience variables. */
5436 clear_exit_convenience_vars ();
5437
940c3c06
PA
5438 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5439 {
5440 /* Record the exit code in the convenience variable $_exitcode, so
5441 that the user can inspect this again later. */
5442 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5443 (LONGEST) ecs->ws.value.integer);
5444
5445 /* Also record this in the inferior itself. */
5446 current_inferior ()->has_exit_code = 1;
5447 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5448
98eb56a4
PA
5449 /* Support the --return-child-result option. */
5450 return_child_result_value = ecs->ws.value.integer;
5451
76727919 5452 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5453 }
5454 else
0c557179 5455 {
00431a78 5456 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5457
5458 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5459 {
5460 /* Set the value of the internal variable $_exitsignal,
5461 which holds the signal uncaught by the inferior. */
5462 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5463 gdbarch_gdb_signal_to_target (gdbarch,
5464 ecs->ws.value.sig));
5465 }
5466 else
5467 {
5468 /* We don't have access to the target's method used for
5469 converting between signal numbers (GDB's internal
5470 representation <-> target's representation).
5471 Therefore, we cannot do a good job at displaying this
5472 information to the user. It's better to just warn
5473 her about it (if infrun debugging is enabled), and
5474 give up. */
1eb8556f
SM
5475 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5476 "signal number.");
0c557179
SDJ
5477 }
5478
76727919 5479 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5480 }
8cf64490 5481
488f131b 5482 gdb_flush (gdb_stdout);
bc1e6c81 5483 target_mourn_inferior (inferior_ptid);
c4464ade 5484 stop_print_frame = false;
22bcd14b 5485 stop_waiting (ecs);
488f131b 5486 return;
c5aa993b 5487
488f131b 5488 case TARGET_WAITKIND_FORKED:
deb3b17b 5489 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5490 /* Check whether the inferior is displaced stepping. */
5491 {
00431a78 5492 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5493 struct gdbarch *gdbarch = regcache->arch ();
c0aba012 5494 inferior *parent_inf = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639 5495
187b041e
SM
5496 /* If this is a fork (child gets its own address space copy) and some
5497 displaced step buffers were in use at the time of the fork, restore
5498 the displaced step buffer bytes in the child process. */
c0aba012 5499 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
187b041e
SM
5500 gdbarch_displaced_step_restore_all_in_ptid
5501 (gdbarch, parent_inf, ecs->ws.value.related_pid);
c0aba012
SM
5502
5503 /* If displaced stepping is supported, and thread ecs->ptid is
5504 displaced stepping. */
00431a78 5505 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639 5506 {
e2d96639
YQ
5507 struct regcache *child_regcache;
5508 CORE_ADDR parent_pc;
5509
5510 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5511 indicating that the displaced stepping of syscall instruction
5512 has been done. Perform cleanup for parent process here. Note
5513 that this operation also cleans up the child process for vfork,
5514 because their pages are shared. */
7def77a1 5515 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5516 /* Start a new step-over in another thread if there's one
5517 that needs it. */
5518 start_step_over ();
e2d96639 5519
e2d96639
YQ
5520 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5521 the child's PC is also within the scratchpad. Set the child's PC
5522 to the parent's PC value, which has already been fixed up.
5523 FIXME: we use the parent's aspace here, although we're touching
5524 the child, because the child hasn't been added to the inferior
5525 list yet at this point. */
5526
5527 child_regcache
5b6d1e4f
PA
5528 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5529 ecs->ws.value.related_pid,
e2d96639
YQ
5530 gdbarch,
5531 parent_inf->aspace);
5532 /* Read PC value of parent process. */
5533 parent_pc = regcache_read_pc (regcache);
5534
136821d9
SM
5535 displaced_debug_printf ("write child pc from %s to %s",
5536 paddress (gdbarch,
5537 regcache_read_pc (child_regcache)),
5538 paddress (gdbarch, parent_pc));
e2d96639
YQ
5539
5540 regcache_write_pc (child_regcache, parent_pc);
5541 }
5542 }
5543
00431a78 5544 context_switch (ecs);
5a2901d9 5545
b242c3c2
PA
5546 /* Immediately detach breakpoints from the child before there's
5547 any chance of letting the user delete breakpoints from the
5548 breakpoint lists. If we don't do this early, it's easy to
5549 leave left over traps in the child, vis: "break foo; catch
5550 fork; c; <fork>; del; c; <child calls foo>". We only follow
5551 the fork on the last `continue', and by that time the
5552 breakpoint at "foo" is long gone from the breakpoint table.
5553 If we vforked, then we don't need to unpatch here, since both
5554 parent and child are sharing the same memory pages; we'll
5555 need to unpatch at follow/detach time instead to be certain
5556 that new breakpoints added between catchpoint hit time and
5557 vfork follow are detached. */
5558 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5559 {
b242c3c2
PA
5560 /* This won't actually modify the breakpoint list, but will
5561 physically remove the breakpoints from the child. */
d80ee84f 5562 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5563 }
5564
34b7e8a6 5565 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5566
e58b0e63
PA
5567 /* In case the event is caught by a catchpoint, remember that
5568 the event is to be followed at the next resume of the thread,
5569 and not immediately. */
5570 ecs->event_thread->pending_follow = ecs->ws;
5571
f2ffa92b
PA
5572 ecs->event_thread->suspend.stop_pc
5573 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5574
16c381f0 5575 ecs->event_thread->control.stop_bpstat
a01bda52 5576 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5577 ecs->event_thread->suspend.stop_pc,
5578 ecs->event_thread, &ecs->ws);
675bf4cb 5579
c65d6b55
PA
5580 if (handle_stop_requested (ecs))
5581 return;
5582
ce12b012
PA
5583 /* If no catchpoint triggered for this, then keep going. Note
5584 that we're interested in knowing the bpstat actually causes a
5585 stop, not just if it may explain the signal. Software
5586 watchpoints, for example, always appear in the bpstat. */
5587 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5588 {
5ab2fbf1 5589 bool follow_child
3e43a32a 5590 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5591
a493e3e2 5592 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5593
5b6d1e4f
PA
5594 process_stratum_target *targ
5595 = ecs->event_thread->inf->process_target ();
5596
5ab2fbf1 5597 bool should_resume = follow_fork ();
e58b0e63 5598
5b6d1e4f
PA
5599 /* Note that one of these may be an invalid pointer,
5600 depending on detach_fork. */
00431a78 5601 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5602 thread_info *child
5603 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5604
a2077e25
PA
5605 /* At this point, the parent is marked running, and the
5606 child is marked stopped. */
5607
5608 /* If not resuming the parent, mark it stopped. */
5609 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5610 parent->set_running (false);
a2077e25
PA
5611
5612 /* If resuming the child, mark it running. */
5613 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5614 child->set_running (true);
a2077e25 5615
6c95b8df 5616 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5617 if (!detach_fork && (non_stop
5618 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5619 {
5620 if (follow_child)
5621 switch_to_thread (parent);
5622 else
5623 switch_to_thread (child);
5624
5625 ecs->event_thread = inferior_thread ();
5626 ecs->ptid = inferior_ptid;
5627 keep_going (ecs);
5628 }
5629
5630 if (follow_child)
5631 switch_to_thread (child);
5632 else
5633 switch_to_thread (parent);
5634
e58b0e63
PA
5635 ecs->event_thread = inferior_thread ();
5636 ecs->ptid = inferior_ptid;
5637
5638 if (should_resume)
5639 keep_going (ecs);
5640 else
22bcd14b 5641 stop_waiting (ecs);
04e68871
DJ
5642 return;
5643 }
94c57d6a
PA
5644 process_event_stop_test (ecs);
5645 return;
488f131b 5646
6c95b8df
PA
5647 case TARGET_WAITKIND_VFORK_DONE:
5648 /* Done with the shared memory region. Re-insert breakpoints in
5649 the parent, and keep going. */
5650
00431a78 5651 context_switch (ecs);
6c95b8df
PA
5652
5653 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5654 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5655
5656 if (handle_stop_requested (ecs))
5657 return;
5658
6c95b8df
PA
5659 /* This also takes care of reinserting breakpoints in the
5660 previously locked inferior. */
5661 keep_going (ecs);
5662 return;
5663
488f131b 5664 case TARGET_WAITKIND_EXECD:
488f131b 5665
cbd2b4e3
PA
5666 /* Note we can't read registers yet (the stop_pc), because we
5667 don't yet know the inferior's post-exec architecture.
5668 'stop_pc' is explicitly read below instead. */
00431a78 5669 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5670
6c95b8df
PA
5671 /* Do whatever is necessary to the parent branch of the vfork. */
5672 handle_vfork_child_exec_or_exit (1);
5673
795e548f 5674 /* This causes the eventpoints and symbol table to be reset.
dda83cd7
SM
5675 Must do this now, before trying to determine whether to
5676 stop. */
71b43ef8 5677 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5678
17d8546e
DB
5679 /* In follow_exec we may have deleted the original thread and
5680 created a new one. Make sure that the event thread is the
5681 execd thread for that case (this is a nop otherwise). */
5682 ecs->event_thread = inferior_thread ();
5683
f2ffa92b
PA
5684 ecs->event_thread->suspend.stop_pc
5685 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5686
16c381f0 5687 ecs->event_thread->control.stop_bpstat
a01bda52 5688 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5689 ecs->event_thread->suspend.stop_pc,
5690 ecs->event_thread, &ecs->ws);
795e548f 5691
71b43ef8
PA
5692 /* Note that this may be referenced from inside
5693 bpstat_stop_status above, through inferior_has_execd. */
5694 xfree (ecs->ws.value.execd_pathname);
5695 ecs->ws.value.execd_pathname = NULL;
5696
c65d6b55
PA
5697 if (handle_stop_requested (ecs))
5698 return;
5699
04e68871 5700 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5701 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5702 {
a493e3e2 5703 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5704 keep_going (ecs);
5705 return;
5706 }
94c57d6a
PA
5707 process_event_stop_test (ecs);
5708 return;
488f131b 5709
b4dc5ffa 5710 /* Be careful not to try to gather much state about a thread
dda83cd7 5711 that's in a syscall. It's frequently a losing proposition. */
488f131b 5712 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5713 /* Getting the current syscall number. */
94c57d6a
PA
5714 if (handle_syscall_event (ecs) == 0)
5715 process_event_stop_test (ecs);
5716 return;
c906108c 5717
488f131b 5718 /* Before examining the threads further, step this thread to
dda83cd7
SM
5719 get it entirely out of the syscall. (We get notice of the
5720 event when the thread is just on the verge of exiting a
5721 syscall. Stepping one instruction seems to get it back
5722 into user code.) */
488f131b 5723 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5724 if (handle_syscall_event (ecs) == 0)
5725 process_event_stop_test (ecs);
5726 return;
c906108c 5727
488f131b 5728 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5729 handle_signal_stop (ecs);
5730 return;
c906108c 5731
b2175913
MS
5732 case TARGET_WAITKIND_NO_HISTORY:
5733 /* Reverse execution: target ran out of history info. */
eab402df 5734
d1988021 5735 /* Switch to the stopped thread. */
00431a78 5736 context_switch (ecs);
1eb8556f 5737 infrun_debug_printf ("stopped");
d1988021 5738
34b7e8a6 5739 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5740 ecs->event_thread->suspend.stop_pc
5741 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5742
5743 if (handle_stop_requested (ecs))
5744 return;
5745
76727919 5746 gdb::observers::no_history.notify ();
22bcd14b 5747 stop_waiting (ecs);
b2175913 5748 return;
488f131b 5749 }
4f5d7f63
PA
5750}
5751
372316f1
PA
5752/* Restart threads back to what they were trying to do back when we
5753 paused them for an in-line step-over. The EVENT_THREAD thread is
5754 ignored. */
4d9d9d04
PA
5755
5756static void
372316f1
PA
5757restart_threads (struct thread_info *event_thread)
5758{
372316f1
PA
5759 /* In case the instruction just stepped spawned a new thread. */
5760 update_thread_list ();
5761
08036331 5762 for (thread_info *tp : all_non_exited_threads ())
372316f1 5763 {
ac7d717c
PA
5764 if (tp->inf->detaching)
5765 {
5766 infrun_debug_printf ("restart threads: [%s] inferior detaching",
5767 target_pid_to_str (tp->ptid).c_str ());
5768 continue;
5769 }
5770
f3f8ece4
PA
5771 switch_to_thread_no_regs (tp);
5772
372316f1
PA
5773 if (tp == event_thread)
5774 {
1eb8556f
SM
5775 infrun_debug_printf ("restart threads: [%s] is event thread",
5776 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5777 continue;
5778 }
5779
5780 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5781 {
1eb8556f
SM
5782 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5783 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5784 continue;
5785 }
5786
5787 if (tp->resumed)
5788 {
1eb8556f
SM
5789 infrun_debug_printf ("restart threads: [%s] resumed",
5790 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5791 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5792 continue;
5793 }
5794
5795 if (thread_is_in_step_over_chain (tp))
5796 {
1eb8556f
SM
5797 infrun_debug_printf ("restart threads: [%s] needs step-over",
5798 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5799 gdb_assert (!tp->resumed);
5800 continue;
5801 }
5802
5803
5804 if (tp->suspend.waitstatus_pending_p)
5805 {
1eb8556f
SM
5806 infrun_debug_printf ("restart threads: [%s] has pending status",
5807 target_pid_to_str (tp->ptid).c_str ());
719546c4 5808 tp->resumed = true;
372316f1
PA
5809 continue;
5810 }
5811
c65d6b55
PA
5812 gdb_assert (!tp->stop_requested);
5813
372316f1
PA
5814 /* If some thread needs to start a step-over at this point, it
5815 should still be in the step-over queue, and thus skipped
5816 above. */
5817 if (thread_still_needs_step_over (tp))
5818 {
5819 internal_error (__FILE__, __LINE__,
5820 "thread [%s] needs a step-over, but not in "
5821 "step-over queue\n",
a068643d 5822 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5823 }
5824
5825 if (currently_stepping (tp))
5826 {
1eb8556f
SM
5827 infrun_debug_printf ("restart threads: [%s] was stepping",
5828 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5829 keep_going_stepped_thread (tp);
5830 }
5831 else
5832 {
5833 struct execution_control_state ecss;
5834 struct execution_control_state *ecs = &ecss;
5835
1eb8556f
SM
5836 infrun_debug_printf ("restart threads: [%s] continuing",
5837 target_pid_to_str (tp->ptid).c_str ());
372316f1 5838 reset_ecs (ecs, tp);
00431a78 5839 switch_to_thread (tp);
372316f1
PA
5840 keep_going_pass_signal (ecs);
5841 }
5842 }
5843}
5844
5845/* Callback for iterate_over_threads. Find a resumed thread that has
5846 a pending waitstatus. */
5847
5848static int
5849resumed_thread_with_pending_status (struct thread_info *tp,
5850 void *arg)
5851{
5852 return (tp->resumed
5853 && tp->suspend.waitstatus_pending_p);
5854}
5855
5856/* Called when we get an event that may finish an in-line or
5857 out-of-line (displaced stepping) step-over started previously.
5858 Return true if the event is processed and we should go back to the
5859 event loop; false if the caller should continue processing the
5860 event. */
5861
5862static int
4d9d9d04
PA
5863finish_step_over (struct execution_control_state *ecs)
5864{
7def77a1
SM
5865 displaced_step_finish (ecs->event_thread,
5866 ecs->event_thread->suspend.stop_signal);
4d9d9d04 5867
c4464ade 5868 bool had_step_over_info = step_over_info_valid_p ();
372316f1
PA
5869
5870 if (had_step_over_info)
4d9d9d04
PA
5871 {
5872 /* If we're stepping over a breakpoint with all threads locked,
5873 then only the thread that was stepped should be reporting
5874 back an event. */
5875 gdb_assert (ecs->event_thread->control.trap_expected);
5876
c65d6b55 5877 clear_step_over_info ();
4d9d9d04
PA
5878 }
5879
fbea99ea 5880 if (!target_is_non_stop_p ())
372316f1 5881 return 0;
4d9d9d04
PA
5882
5883 /* Start a new step-over in another thread if there's one that
5884 needs it. */
5885 start_step_over ();
372316f1
PA
5886
5887 /* If we were stepping over a breakpoint before, and haven't started
5888 a new in-line step-over sequence, then restart all other threads
5889 (except the event thread). We can't do this in all-stop, as then
5890 e.g., we wouldn't be able to issue any other remote packet until
5891 these other threads stop. */
5892 if (had_step_over_info && !step_over_info_valid_p ())
5893 {
5894 struct thread_info *pending;
5895
5896 /* If we only have threads with pending statuses, the restart
5897 below won't restart any thread and so nothing re-inserts the
5898 breakpoint we just stepped over. But we need it inserted
5899 when we later process the pending events, otherwise if
5900 another thread has a pending event for this breakpoint too,
5901 we'd discard its event (because the breakpoint that
5902 originally caused the event was no longer inserted). */
00431a78 5903 context_switch (ecs);
372316f1
PA
5904 insert_breakpoints ();
5905
5906 restart_threads (ecs->event_thread);
5907
5908 /* If we have events pending, go through handle_inferior_event
5909 again, picking up a pending event at random. This avoids
5910 thread starvation. */
5911
5912 /* But not if we just stepped over a watchpoint in order to let
5913 the instruction execute so we can evaluate its expression.
5914 The set of watchpoints that triggered is recorded in the
5915 breakpoint objects themselves (see bp->watchpoint_triggered).
5916 If we processed another event first, that other event could
5917 clobber this info. */
5918 if (ecs->event_thread->stepping_over_watchpoint)
5919 return 0;
5920
5921 pending = iterate_over_threads (resumed_thread_with_pending_status,
5922 NULL);
5923 if (pending != NULL)
5924 {
5925 struct thread_info *tp = ecs->event_thread;
5926 struct regcache *regcache;
5927
1eb8556f
SM
5928 infrun_debug_printf ("found resumed threads with "
5929 "pending events, saving status");
372316f1
PA
5930
5931 gdb_assert (pending != tp);
5932
5933 /* Record the event thread's event for later. */
5934 save_waitstatus (tp, &ecs->ws);
5935 /* This was cleared early, by handle_inferior_event. Set it
5936 so this pending event is considered by
5937 do_target_wait. */
719546c4 5938 tp->resumed = true;
372316f1
PA
5939
5940 gdb_assert (!tp->executing);
5941
00431a78 5942 regcache = get_thread_regcache (tp);
372316f1
PA
5943 tp->suspend.stop_pc = regcache_read_pc (regcache);
5944
1eb8556f
SM
5945 infrun_debug_printf ("saved stop_pc=%s for %s "
5946 "(currently_stepping=%d)",
5947 paddress (target_gdbarch (),
dda83cd7 5948 tp->suspend.stop_pc),
1eb8556f
SM
5949 target_pid_to_str (tp->ptid).c_str (),
5950 currently_stepping (tp));
372316f1
PA
5951
5952 /* This in-line step-over finished; clear this so we won't
5953 start a new one. This is what handle_signal_stop would
5954 do, if we returned false. */
5955 tp->stepping_over_breakpoint = 0;
5956
5957 /* Wake up the event loop again. */
5958 mark_async_event_handler (infrun_async_inferior_event_token);
5959
5960 prepare_to_wait (ecs);
5961 return 1;
5962 }
5963 }
5964
5965 return 0;
4d9d9d04
PA
5966}
5967
4f5d7f63
PA
5968/* Come here when the program has stopped with a signal. */
5969
5970static void
5971handle_signal_stop (struct execution_control_state *ecs)
5972{
5973 struct frame_info *frame;
5974 struct gdbarch *gdbarch;
5975 int stopped_by_watchpoint;
5976 enum stop_kind stop_soon;
5977 int random_signal;
c906108c 5978
f0407826
DE
5979 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5980
c65d6b55
PA
5981 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5982
f0407826
DE
5983 /* Do we need to clean up the state of a thread that has
5984 completed a displaced single-step? (Doing so usually affects
5985 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5986 if (finish_step_over (ecs))
5987 return;
f0407826
DE
5988
5989 /* If we either finished a single-step or hit a breakpoint, but
5990 the user wanted this thread to be stopped, pretend we got a
5991 SIG0 (generic unsignaled stop). */
5992 if (ecs->event_thread->stop_requested
5993 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5994 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5995
f2ffa92b
PA
5996 ecs->event_thread->suspend.stop_pc
5997 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5998
2ab76a18
PA
5999 context_switch (ecs);
6000
6001 if (deprecated_context_hook)
6002 deprecated_context_hook (ecs->event_thread->global_num);
6003
527159b7 6004 if (debug_infrun)
237fc4c9 6005 {
00431a78 6006 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 6007 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 6008
1eb8556f
SM
6009 infrun_debug_printf ("stop_pc=%s",
6010 paddress (reg_gdbarch,
6011 ecs->event_thread->suspend.stop_pc));
d92524f1 6012 if (target_stopped_by_watchpoint ())
237fc4c9 6013 {
dda83cd7 6014 CORE_ADDR addr;
abbb1732 6015
1eb8556f 6016 infrun_debug_printf ("stopped by watchpoint");
237fc4c9 6017
328d42d8
SM
6018 if (target_stopped_data_address (current_inferior ()->top_target (),
6019 &addr))
1eb8556f 6020 infrun_debug_printf ("stopped data address=%s",
dda83cd7
SM
6021 paddress (reg_gdbarch, addr));
6022 else
1eb8556f 6023 infrun_debug_printf ("(no data address available)");
237fc4c9
PA
6024 }
6025 }
527159b7 6026
36fa8042
PA
6027 /* This is originated from start_remote(), start_inferior() and
6028 shared libraries hook functions. */
00431a78 6029 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
6030 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
6031 {
1eb8556f 6032 infrun_debug_printf ("quietly stopped");
c4464ade 6033 stop_print_frame = true;
22bcd14b 6034 stop_waiting (ecs);
36fa8042
PA
6035 return;
6036 }
6037
36fa8042
PA
6038 /* This originates from attach_command(). We need to overwrite
6039 the stop_signal here, because some kernels don't ignore a
6040 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
6041 See more comments in inferior.h. On the other hand, if we
6042 get a non-SIGSTOP, report it to the user - assume the backend
6043 will handle the SIGSTOP if it should show up later.
6044
6045 Also consider that the attach is complete when we see a
6046 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
6047 target extended-remote report it instead of a SIGSTOP
6048 (e.g. gdbserver). We already rely on SIGTRAP being our
6049 signal, so this is no exception.
6050
6051 Also consider that the attach is complete when we see a
6052 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
6053 the target to stop all threads of the inferior, in case the
6054 low level attach operation doesn't stop them implicitly. If
6055 they weren't stopped implicitly, then the stub will report a
6056 GDB_SIGNAL_0, meaning: stopped for no particular reason
6057 other than GDB's request. */
6058 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
6059 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
6060 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6061 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
6062 {
c4464ade 6063 stop_print_frame = true;
22bcd14b 6064 stop_waiting (ecs);
36fa8042
PA
6065 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6066 return;
6067 }
6068
568d6575
UW
6069 /* At this point, get hold of the now-current thread's frame. */
6070 frame = get_current_frame ();
6071 gdbarch = get_frame_arch (frame);
6072
2adfaa28 6073 /* Pull the single step breakpoints out of the target. */
af48d08f 6074 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 6075 {
af48d08f 6076 struct regcache *regcache;
af48d08f 6077 CORE_ADDR pc;
2adfaa28 6078
00431a78 6079 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
6080 const address_space *aspace = regcache->aspace ();
6081
af48d08f 6082 pc = regcache_read_pc (regcache);
34b7e8a6 6083
af48d08f
PA
6084 /* However, before doing so, if this single-step breakpoint was
6085 actually for another thread, set this thread up for moving
6086 past it. */
6087 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
6088 aspace, pc))
6089 {
6090 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28 6091 {
1eb8556f
SM
6092 infrun_debug_printf ("[%s] hit another thread's single-step "
6093 "breakpoint",
6094 target_pid_to_str (ecs->ptid).c_str ());
af48d08f
PA
6095 ecs->hit_singlestep_breakpoint = 1;
6096 }
6097 }
6098 else
6099 {
1eb8556f
SM
6100 infrun_debug_printf ("[%s] hit its single-step breakpoint",
6101 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 6102 }
488f131b 6103 }
af48d08f 6104 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 6105
963f9c80
PA
6106 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6107 && ecs->event_thread->control.trap_expected
6108 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
6109 stopped_by_watchpoint = 0;
6110 else
6111 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6112
6113 /* If necessary, step over this watchpoint. We'll be back to display
6114 it in a moment. */
6115 if (stopped_by_watchpoint
9aed480c 6116 && (target_have_steppable_watchpoint ()
568d6575 6117 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 6118 {
488f131b 6119 /* At this point, we are stopped at an instruction which has
dda83cd7
SM
6120 attempted to write to a piece of memory under control of
6121 a watchpoint. The instruction hasn't actually executed
6122 yet. If we were to evaluate the watchpoint expression
6123 now, we would get the old value, and therefore no change
6124 would seem to have occurred.
6125
6126 In order to make watchpoints work `right', we really need
6127 to complete the memory write, and then evaluate the
6128 watchpoint expression. We do this by single-stepping the
d983da9c
DJ
6129 target.
6130
7f89fd65 6131 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
6132 it. For example, the PA can (with some kernel cooperation)
6133 single step over a watchpoint without disabling the watchpoint.
6134
6135 It is far more common to need to disable a watchpoint to step
6136 the inferior over it. If we have non-steppable watchpoints,
6137 we must disable the current watchpoint; it's simplest to
963f9c80
PA
6138 disable all watchpoints.
6139
6140 Any breakpoint at PC must also be stepped over -- if there's
6141 one, it will have already triggered before the watchpoint
6142 triggered, and we either already reported it to the user, or
6143 it didn't cause a stop and we called keep_going. In either
6144 case, if there was a breakpoint at PC, we must be trying to
6145 step past it. */
6146 ecs->event_thread->stepping_over_watchpoint = 1;
6147 keep_going (ecs);
488f131b
JB
6148 return;
6149 }
6150
4e1c45ea 6151 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 6152 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
6153 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6154 ecs->event_thread->control.stop_step = 0;
c4464ade 6155 stop_print_frame = true;
488f131b 6156 stopped_by_random_signal = 0;
ddfe970e 6157 bpstat stop_chain = NULL;
488f131b 6158
edb3359d
DJ
6159 /* Hide inlined functions starting here, unless we just performed stepi or
6160 nexti. After stepi and nexti, always show the innermost frame (not any
6161 inline function call sites). */
16c381f0 6162 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 6163 {
00431a78
PA
6164 const address_space *aspace
6165 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
6166
6167 /* skip_inline_frames is expensive, so we avoid it if we can
6168 determine that the address is one where functions cannot have
6169 been inlined. This improves performance with inferiors that
6170 load a lot of shared libraries, because the solib event
6171 breakpoint is defined as the address of a function (i.e. not
6172 inline). Note that we have to check the previous PC as well
6173 as the current one to catch cases when we have just
6174 single-stepped off a breakpoint prior to reinstating it.
6175 Note that we're assuming that the code we single-step to is
6176 not inline, but that's not definitive: there's nothing
6177 preventing the event breakpoint function from containing
6178 inlined code, and the single-step ending up there. If the
6179 user had set a breakpoint on that inlined code, the missing
6180 skip_inline_frames call would break things. Fortunately
6181 that's an extremely unlikely scenario. */
f2ffa92b
PA
6182 if (!pc_at_non_inline_function (aspace,
6183 ecs->event_thread->suspend.stop_pc,
6184 &ecs->ws)
a210c238
MR
6185 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6186 && ecs->event_thread->control.trap_expected
6187 && pc_at_non_inline_function (aspace,
6188 ecs->event_thread->prev_pc,
09ac7c10 6189 &ecs->ws)))
1c5a993e 6190 {
f2ffa92b
PA
6191 stop_chain = build_bpstat_chain (aspace,
6192 ecs->event_thread->suspend.stop_pc,
6193 &ecs->ws);
00431a78 6194 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
6195
6196 /* Re-fetch current thread's frame in case that invalidated
6197 the frame cache. */
6198 frame = get_current_frame ();
6199 gdbarch = get_frame_arch (frame);
6200 }
0574c78f 6201 }
edb3359d 6202
a493e3e2 6203 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6204 && ecs->event_thread->control.trap_expected
568d6575 6205 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6206 && currently_stepping (ecs->event_thread))
3352ef37 6207 {
b50d7442 6208 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6209 also on an instruction that needs to be stepped multiple
1777feb0 6210 times before it's been fully executing. E.g., architectures
3352ef37
AC
6211 with a delay slot. It needs to be stepped twice, once for
6212 the instruction and once for the delay slot. */
6213 int step_through_delay
568d6575 6214 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6215
1eb8556f
SM
6216 if (step_through_delay)
6217 infrun_debug_printf ("step through delay");
6218
16c381f0
JK
6219 if (ecs->event_thread->control.step_range_end == 0
6220 && step_through_delay)
3352ef37
AC
6221 {
6222 /* The user issued a continue when stopped at a breakpoint.
6223 Set up for another trap and get out of here. */
dda83cd7
SM
6224 ecs->event_thread->stepping_over_breakpoint = 1;
6225 keep_going (ecs);
6226 return;
3352ef37
AC
6227 }
6228 else if (step_through_delay)
6229 {
6230 /* The user issued a step when stopped at a breakpoint.
6231 Maybe we should stop, maybe we should not - the delay
6232 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6233 case, don't decide that here, just set
6234 ecs->stepping_over_breakpoint, making sure we
6235 single-step again before breakpoints are re-inserted. */
4e1c45ea 6236 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6237 }
6238 }
6239
ab04a2af
TT
6240 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6241 handles this event. */
6242 ecs->event_thread->control.stop_bpstat
a01bda52 6243 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6244 ecs->event_thread->suspend.stop_pc,
6245 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6246
ab04a2af
TT
6247 /* Following in case break condition called a
6248 function. */
c4464ade 6249 stop_print_frame = true;
73dd234f 6250
ab04a2af
TT
6251 /* This is where we handle "moribund" watchpoints. Unlike
6252 software breakpoints traps, hardware watchpoint traps are
6253 always distinguishable from random traps. If no high-level
6254 watchpoint is associated with the reported stop data address
6255 anymore, then the bpstat does not explain the signal ---
6256 simply make sure to ignore it if `stopped_by_watchpoint' is
6257 set. */
6258
1eb8556f 6259 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6260 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6261 GDB_SIGNAL_TRAP)
ab04a2af 6262 && stopped_by_watchpoint)
1eb8556f
SM
6263 {
6264 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6265 "ignoring");
6266 }
73dd234f 6267
bac7d97b 6268 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6269 at one stage in the past included checks for an inferior
6270 function call's call dummy's return breakpoint. The original
6271 comment, that went with the test, read:
03cebad2 6272
ab04a2af
TT
6273 ``End of a stack dummy. Some systems (e.g. Sony news) give
6274 another signal besides SIGTRAP, so check here as well as
6275 above.''
73dd234f 6276
ab04a2af
TT
6277 If someone ever tries to get call dummys on a
6278 non-executable stack to work (where the target would stop
6279 with something like a SIGSEGV), then those tests might need
6280 to be re-instated. Given, however, that the tests were only
6281 enabled when momentary breakpoints were not being used, I
6282 suspect that it won't be the case.
488f131b 6283
ab04a2af
TT
6284 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6285 be necessary for call dummies on a non-executable stack on
6286 SPARC. */
488f131b 6287
bac7d97b 6288 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6289 random_signal
6290 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6291 ecs->event_thread->suspend.stop_signal);
bac7d97b 6292
1cf4d951
PA
6293 /* Maybe this was a trap for a software breakpoint that has since
6294 been removed. */
6295 if (random_signal && target_stopped_by_sw_breakpoint ())
6296 {
5133a315
LM
6297 if (gdbarch_program_breakpoint_here_p (gdbarch,
6298 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6299 {
6300 struct regcache *regcache;
6301 int decr_pc;
6302
6303 /* Re-adjust PC to what the program would see if GDB was not
6304 debugging it. */
00431a78 6305 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6306 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6307 if (decr_pc != 0)
6308 {
07036511
TT
6309 gdb::optional<scoped_restore_tmpl<int>>
6310 restore_operation_disable;
1cf4d951
PA
6311
6312 if (record_full_is_used ())
07036511
TT
6313 restore_operation_disable.emplace
6314 (record_full_gdb_operation_disable_set ());
1cf4d951 6315
f2ffa92b
PA
6316 regcache_write_pc (regcache,
6317 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6318 }
6319 }
6320 else
6321 {
6322 /* A delayed software breakpoint event. Ignore the trap. */
1eb8556f 6323 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
1cf4d951
PA
6324 random_signal = 0;
6325 }
6326 }
6327
6328 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6329 has since been removed. */
6330 if (random_signal && target_stopped_by_hw_breakpoint ())
6331 {
6332 /* A delayed hardware breakpoint event. Ignore the trap. */
1eb8556f
SM
6333 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6334 "trap, ignoring");
1cf4d951
PA
6335 random_signal = 0;
6336 }
6337
bac7d97b
PA
6338 /* If not, perhaps stepping/nexting can. */
6339 if (random_signal)
6340 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6341 && currently_stepping (ecs->event_thread));
ab04a2af 6342
2adfaa28
PA
6343 /* Perhaps the thread hit a single-step breakpoint of _another_
6344 thread. Single-step breakpoints are transparent to the
6345 breakpoints module. */
6346 if (random_signal)
6347 random_signal = !ecs->hit_singlestep_breakpoint;
6348
bac7d97b
PA
6349 /* No? Perhaps we got a moribund watchpoint. */
6350 if (random_signal)
6351 random_signal = !stopped_by_watchpoint;
ab04a2af 6352
c65d6b55
PA
6353 /* Always stop if the user explicitly requested this thread to
6354 remain stopped. */
6355 if (ecs->event_thread->stop_requested)
6356 {
6357 random_signal = 1;
1eb8556f 6358 infrun_debug_printf ("user-requested stop");
c65d6b55
PA
6359 }
6360
488f131b
JB
6361 /* For the program's own signals, act according to
6362 the signal handling tables. */
6363
ce12b012 6364 if (random_signal)
488f131b
JB
6365 {
6366 /* Signal not for debugging purposes. */
c9737c08 6367 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6368
1eb8556f
SM
6369 infrun_debug_printf ("random signal (%s)",
6370 gdb_signal_to_symbol_string (stop_signal));
527159b7 6371
488f131b
JB
6372 stopped_by_random_signal = 1;
6373
252fbfc8
PA
6374 /* Always stop on signals if we're either just gaining control
6375 of the program, or the user explicitly requested this thread
6376 to remain stopped. */
d6b48e9c 6377 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6378 || ecs->event_thread->stop_requested
8ff53139 6379 || signal_stop_state (ecs->event_thread->suspend.stop_signal))
488f131b 6380 {
22bcd14b 6381 stop_waiting (ecs);
488f131b
JB
6382 return;
6383 }
b57bacec
PA
6384
6385 /* Notify observers the signal has "handle print" set. Note we
6386 returned early above if stopping; normal_stop handles the
6387 printing in that case. */
6388 if (signal_print[ecs->event_thread->suspend.stop_signal])
6389 {
6390 /* The signal table tells us to print about this signal. */
223ffa71 6391 target_terminal::ours_for_output ();
76727919 6392 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6393 target_terminal::inferior ();
b57bacec 6394 }
488f131b
JB
6395
6396 /* Clear the signal if it should not be passed. */
16c381f0 6397 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6398 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6399
f2ffa92b 6400 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6401 && ecs->event_thread->control.trap_expected
8358c15c 6402 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6403 {
6404 /* We were just starting a new sequence, attempting to
6405 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6406 Instead this signal arrives. This signal will take us out
68f53502
AC
6407 of the stepping range so GDB needs to remember to, when
6408 the signal handler returns, resume stepping off that
6409 breakpoint. */
6410 /* To simplify things, "continue" is forced to use the same
6411 code paths as single-step - set a breakpoint at the
6412 signal return address and then, once hit, step off that
6413 breakpoint. */
1eb8556f 6414 infrun_debug_printf ("signal arrived while stepping over breakpoint");
d3169d93 6415
2c03e5be 6416 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6417 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6418 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6419 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6420
6421 /* If we were nexting/stepping some other thread, switch to
6422 it, so that we don't continue it, losing control. */
6423 if (!switch_back_to_stepped_thread (ecs))
6424 keep_going (ecs);
9d799f85 6425 return;
68f53502 6426 }
9d799f85 6427
e5f8a7cc 6428 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6429 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6430 ecs->event_thread)
e5f8a7cc 6431 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6432 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6433 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6434 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6435 {
6436 /* The inferior is about to take a signal that will take it
6437 out of the single step range. Set a breakpoint at the
6438 current PC (which is presumably where the signal handler
6439 will eventually return) and then allow the inferior to
6440 run free.
6441
6442 Note that this is only needed for a signal delivered
6443 while in the single-step range. Nested signals aren't a
6444 problem as they eventually all return. */
1eb8556f 6445 infrun_debug_printf ("signal may take us out of single-step range");
237fc4c9 6446
372316f1 6447 clear_step_over_info ();
2c03e5be 6448 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6449 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6450 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6451 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6452 keep_going (ecs);
6453 return;
d303a6c7 6454 }
9d799f85 6455
85102364 6456 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6457 when either there's a nested signal, or when there's a
6458 pending signal enabled just as the signal handler returns
6459 (leaving the inferior at the step-resume-breakpoint without
6460 actually executing it). Either way continue until the
6461 breakpoint is really hit. */
c447ac0b
PA
6462
6463 if (!switch_back_to_stepped_thread (ecs))
6464 {
1eb8556f 6465 infrun_debug_printf ("random signal, keep going");
c447ac0b
PA
6466
6467 keep_going (ecs);
6468 }
6469 return;
488f131b 6470 }
94c57d6a
PA
6471
6472 process_event_stop_test (ecs);
6473}
6474
6475/* Come here when we've got some debug event / signal we can explain
6476 (IOW, not a random signal), and test whether it should cause a
6477 stop, or whether we should resume the inferior (transparently).
6478 E.g., could be a breakpoint whose condition evaluates false; we
6479 could be still stepping within the line; etc. */
6480
6481static void
6482process_event_stop_test (struct execution_control_state *ecs)
6483{
6484 struct symtab_and_line stop_pc_sal;
6485 struct frame_info *frame;
6486 struct gdbarch *gdbarch;
cdaa5b73
PA
6487 CORE_ADDR jmp_buf_pc;
6488 struct bpstat_what what;
94c57d6a 6489
cdaa5b73 6490 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6491
cdaa5b73
PA
6492 frame = get_current_frame ();
6493 gdbarch = get_frame_arch (frame);
fcf3daef 6494
cdaa5b73 6495 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6496
cdaa5b73
PA
6497 if (what.call_dummy)
6498 {
6499 stop_stack_dummy = what.call_dummy;
6500 }
186c406b 6501
243a9253
PA
6502 /* A few breakpoint types have callbacks associated (e.g.,
6503 bp_jit_event). Run them now. */
6504 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6505
cdaa5b73
PA
6506 /* If we hit an internal event that triggers symbol changes, the
6507 current frame will be invalidated within bpstat_what (e.g., if we
6508 hit an internal solib event). Re-fetch it. */
6509 frame = get_current_frame ();
6510 gdbarch = get_frame_arch (frame);
e2e4d78b 6511
cdaa5b73
PA
6512 switch (what.main_action)
6513 {
6514 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6515 /* If we hit the breakpoint at longjmp while stepping, we
6516 install a momentary breakpoint at the target of the
6517 jmp_buf. */
186c406b 6518
1eb8556f 6519 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
186c406b 6520
cdaa5b73 6521 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6522
cdaa5b73
PA
6523 if (what.is_longjmp)
6524 {
6525 struct value *arg_value;
6526
6527 /* If we set the longjmp breakpoint via a SystemTap probe,
6528 then use it to extract the arguments. The destination PC
6529 is the third argument to the probe. */
6530 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6531 if (arg_value)
8fa0c4f8
AA
6532 {
6533 jmp_buf_pc = value_as_address (arg_value);
6534 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6535 }
cdaa5b73
PA
6536 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6537 || !gdbarch_get_longjmp_target (gdbarch,
6538 frame, &jmp_buf_pc))
e2e4d78b 6539 {
1eb8556f
SM
6540 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6541 "(!gdbarch_get_longjmp_target)");
cdaa5b73
PA
6542 keep_going (ecs);
6543 return;
e2e4d78b 6544 }
e2e4d78b 6545
cdaa5b73
PA
6546 /* Insert a breakpoint at resume address. */
6547 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6548 }
6549 else
6550 check_exception_resume (ecs, frame);
6551 keep_going (ecs);
6552 return;
e81a37f7 6553
cdaa5b73
PA
6554 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6555 {
6556 struct frame_info *init_frame;
e81a37f7 6557
cdaa5b73 6558 /* There are several cases to consider.
c906108c 6559
cdaa5b73
PA
6560 1. The initiating frame no longer exists. In this case we
6561 must stop, because the exception or longjmp has gone too
6562 far.
2c03e5be 6563
cdaa5b73
PA
6564 2. The initiating frame exists, and is the same as the
6565 current frame. We stop, because the exception or longjmp
6566 has been caught.
2c03e5be 6567
cdaa5b73
PA
6568 3. The initiating frame exists and is different from the
6569 current frame. This means the exception or longjmp has
6570 been caught beneath the initiating frame, so keep going.
c906108c 6571
cdaa5b73
PA
6572 4. longjmp breakpoint has been placed just to protect
6573 against stale dummy frames and user is not interested in
6574 stopping around longjmps. */
c5aa993b 6575
1eb8556f 6576 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
c5aa993b 6577
cdaa5b73
PA
6578 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6579 != NULL);
6580 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6581
cdaa5b73
PA
6582 if (what.is_longjmp)
6583 {
b67a2c6f 6584 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6585
cdaa5b73 6586 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6587 {
cdaa5b73
PA
6588 /* Case 4. */
6589 keep_going (ecs);
6590 return;
e5ef252a 6591 }
cdaa5b73 6592 }
c5aa993b 6593
cdaa5b73 6594 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6595
cdaa5b73
PA
6596 if (init_frame)
6597 {
6598 struct frame_id current_id
6599 = get_frame_id (get_current_frame ());
6600 if (frame_id_eq (current_id,
6601 ecs->event_thread->initiating_frame))
6602 {
6603 /* Case 2. Fall through. */
6604 }
6605 else
6606 {
6607 /* Case 3. */
6608 keep_going (ecs);
6609 return;
6610 }
68f53502 6611 }
488f131b 6612
cdaa5b73
PA
6613 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6614 exists. */
6615 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6616
bdc36728 6617 end_stepping_range (ecs);
cdaa5b73
PA
6618 }
6619 return;
e5ef252a 6620
cdaa5b73 6621 case BPSTAT_WHAT_SINGLE:
1eb8556f 6622 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
cdaa5b73
PA
6623 ecs->event_thread->stepping_over_breakpoint = 1;
6624 /* Still need to check other stuff, at least the case where we
6625 are stepping and step out of the right range. */
6626 break;
e5ef252a 6627
cdaa5b73 6628 case BPSTAT_WHAT_STEP_RESUME:
1eb8556f 6629 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
e5ef252a 6630
cdaa5b73
PA
6631 delete_step_resume_breakpoint (ecs->event_thread);
6632 if (ecs->event_thread->control.proceed_to_finish
6633 && execution_direction == EXEC_REVERSE)
6634 {
6635 struct thread_info *tp = ecs->event_thread;
6636
6637 /* We are finishing a function in reverse, and just hit the
6638 step-resume breakpoint at the start address of the
6639 function, and we're almost there -- just need to back up
6640 by one more single-step, which should take us back to the
6641 function call. */
6642 tp->control.step_range_start = tp->control.step_range_end = 1;
6643 keep_going (ecs);
e5ef252a 6644 return;
cdaa5b73
PA
6645 }
6646 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6647 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6648 && execution_direction == EXEC_REVERSE)
6649 {
6650 /* We are stepping over a function call in reverse, and just
6651 hit the step-resume breakpoint at the start address of
6652 the function. Go back to single-stepping, which should
6653 take us back to the function call. */
6654 ecs->event_thread->stepping_over_breakpoint = 1;
6655 keep_going (ecs);
6656 return;
6657 }
6658 break;
e5ef252a 6659
cdaa5b73 6660 case BPSTAT_WHAT_STOP_NOISY:
1eb8556f 6661 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
c4464ade 6662 stop_print_frame = true;
e5ef252a 6663
33bf4c5c 6664 /* Assume the thread stopped for a breakpoint. We'll still check
99619bea
PA
6665 whether a/the breakpoint is there when the thread is next
6666 resumed. */
6667 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6668
22bcd14b 6669 stop_waiting (ecs);
cdaa5b73 6670 return;
e5ef252a 6671
cdaa5b73 6672 case BPSTAT_WHAT_STOP_SILENT:
1eb8556f 6673 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
c4464ade 6674 stop_print_frame = false;
e5ef252a 6675
33bf4c5c 6676 /* Assume the thread stopped for a breakpoint. We'll still check
99619bea
PA
6677 whether a/the breakpoint is there when the thread is next
6678 resumed. */
6679 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6680 stop_waiting (ecs);
cdaa5b73
PA
6681 return;
6682
6683 case BPSTAT_WHAT_HP_STEP_RESUME:
1eb8556f 6684 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
cdaa5b73
PA
6685
6686 delete_step_resume_breakpoint (ecs->event_thread);
6687 if (ecs->event_thread->step_after_step_resume_breakpoint)
6688 {
6689 /* Back when the step-resume breakpoint was inserted, we
6690 were trying to single-step off a breakpoint. Go back to
6691 doing that. */
6692 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6693 ecs->event_thread->stepping_over_breakpoint = 1;
6694 keep_going (ecs);
6695 return;
e5ef252a 6696 }
cdaa5b73
PA
6697 break;
6698
6699 case BPSTAT_WHAT_KEEP_CHECKING:
6700 break;
e5ef252a 6701 }
c906108c 6702
af48d08f
PA
6703 /* If we stepped a permanent breakpoint and we had a high priority
6704 step-resume breakpoint for the address we stepped, but we didn't
6705 hit it, then we must have stepped into the signal handler. The
6706 step-resume was only necessary to catch the case of _not_
6707 stepping into the handler, so delete it, and fall through to
6708 checking whether the step finished. */
6709 if (ecs->event_thread->stepped_breakpoint)
6710 {
6711 struct breakpoint *sr_bp
6712 = ecs->event_thread->control.step_resume_breakpoint;
6713
8d707a12
PA
6714 if (sr_bp != NULL
6715 && sr_bp->loc->permanent
af48d08f
PA
6716 && sr_bp->type == bp_hp_step_resume
6717 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6718 {
1eb8556f 6719 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
af48d08f
PA
6720 delete_step_resume_breakpoint (ecs->event_thread);
6721 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6722 }
6723 }
6724
cdaa5b73
PA
6725 /* We come here if we hit a breakpoint but should not stop for it.
6726 Possibly we also were stepping and should stop for that. So fall
6727 through and test for stepping. But, if not stepping, do not
6728 stop. */
c906108c 6729
a7212384
UW
6730 /* In all-stop mode, if we're currently stepping but have stopped in
6731 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6732 if (switch_back_to_stepped_thread (ecs))
6733 return;
776f04fa 6734
8358c15c 6735 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6736 {
1eb8556f 6737 infrun_debug_printf ("step-resume breakpoint is inserted");
527159b7 6738
488f131b 6739 /* Having a step-resume breakpoint overrides anything
dda83cd7
SM
6740 else having to do with stepping commands until
6741 that breakpoint is reached. */
488f131b
JB
6742 keep_going (ecs);
6743 return;
6744 }
c5aa993b 6745
16c381f0 6746 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6747 {
1eb8556f 6748 infrun_debug_printf ("no stepping, continue");
488f131b 6749 /* Likewise if we aren't even stepping. */
488f131b
JB
6750 keep_going (ecs);
6751 return;
6752 }
c5aa993b 6753
4b7703ad
JB
6754 /* Re-fetch current thread's frame in case the code above caused
6755 the frame cache to be re-initialized, making our FRAME variable
6756 a dangling pointer. */
6757 frame = get_current_frame ();
628fe4e4 6758 gdbarch = get_frame_arch (frame);
7e324e48 6759 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6760
488f131b 6761 /* If stepping through a line, keep going if still within it.
c906108c 6762
488f131b
JB
6763 Note that step_range_end is the address of the first instruction
6764 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6765 within it!
6766
6767 Note also that during reverse execution, we may be stepping
6768 through a function epilogue and therefore must detect when
6769 the current-frame changes in the middle of a line. */
6770
f2ffa92b
PA
6771 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6772 ecs->event_thread)
31410e84 6773 && (execution_direction != EXEC_REVERSE
388a8562 6774 || frame_id_eq (get_frame_id (frame),
16c381f0 6775 ecs->event_thread->control.step_frame_id)))
488f131b 6776 {
1eb8556f
SM
6777 infrun_debug_printf
6778 ("stepping inside range [%s-%s]",
6779 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6780 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6781
c1e36e3e
PA
6782 /* Tentatively re-enable range stepping; `resume' disables it if
6783 necessary (e.g., if we're stepping over a breakpoint or we
6784 have software watchpoints). */
6785 ecs->event_thread->control.may_range_step = 1;
6786
b2175913
MS
6787 /* When stepping backward, stop at beginning of line range
6788 (unless it's the function entry point, in which case
6789 keep going back to the call point). */
f2ffa92b 6790 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6791 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6792 && stop_pc != ecs->stop_func_start
6793 && execution_direction == EXEC_REVERSE)
bdc36728 6794 end_stepping_range (ecs);
b2175913
MS
6795 else
6796 keep_going (ecs);
6797
488f131b
JB
6798 return;
6799 }
c5aa993b 6800
488f131b 6801 /* We stepped out of the stepping range. */
c906108c 6802
488f131b 6803 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6804 loader dynamic symbol resolution code...
6805
6806 EXEC_FORWARD: we keep on single stepping until we exit the run
6807 time loader code and reach the callee's address.
6808
6809 EXEC_REVERSE: we've already executed the callee (backward), and
6810 the runtime loader code is handled just like any other
6811 undebuggable function call. Now we need only keep stepping
6812 backward through the trampoline code, and that's handled further
6813 down, so there is nothing for us to do here. */
6814
6815 if (execution_direction != EXEC_REVERSE
16c381f0 6816 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6817 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6818 {
4c8c40e6 6819 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6820 gdbarch_skip_solib_resolver (gdbarch,
6821 ecs->event_thread->suspend.stop_pc);
c906108c 6822
1eb8556f 6823 infrun_debug_printf ("stepped into dynsym resolve code");
527159b7 6824
488f131b
JB
6825 if (pc_after_resolver)
6826 {
6827 /* Set up a step-resume breakpoint at the address
6828 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6829 symtab_and_line sr_sal;
488f131b 6830 sr_sal.pc = pc_after_resolver;
6c95b8df 6831 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6832
a6d9a66e
UW
6833 insert_step_resume_breakpoint_at_sal (gdbarch,
6834 sr_sal, null_frame_id);
c5aa993b 6835 }
c906108c 6836
488f131b
JB
6837 keep_going (ecs);
6838 return;
6839 }
c906108c 6840
1d509aa6
MM
6841 /* Step through an indirect branch thunk. */
6842 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6843 && gdbarch_in_indirect_branch_thunk (gdbarch,
6844 ecs->event_thread->suspend.stop_pc))
1d509aa6 6845 {
1eb8556f 6846 infrun_debug_printf ("stepped into indirect branch thunk");
1d509aa6
MM
6847 keep_going (ecs);
6848 return;
6849 }
6850
16c381f0
JK
6851 if (ecs->event_thread->control.step_range_end != 1
6852 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6853 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6854 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6855 {
1eb8556f 6856 infrun_debug_printf ("stepped into signal trampoline");
42edda50 6857 /* The inferior, while doing a "step" or "next", has ended up in
dda83cd7
SM
6858 a signal trampoline (either by a signal being delivered or by
6859 the signal handler returning). Just single-step until the
6860 inferior leaves the trampoline (either by calling the handler
6861 or returning). */
488f131b
JB
6862 keep_going (ecs);
6863 return;
6864 }
c906108c 6865
14132e89
MR
6866 /* If we're in the return path from a shared library trampoline,
6867 we want to proceed through the trampoline when stepping. */
6868 /* macro/2012-04-25: This needs to come before the subroutine
6869 call check below as on some targets return trampolines look
6870 like subroutine calls (MIPS16 return thunks). */
6871 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6872 ecs->event_thread->suspend.stop_pc,
6873 ecs->stop_func_name)
14132e89
MR
6874 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6875 {
6876 /* Determine where this trampoline returns. */
f2ffa92b
PA
6877 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6878 CORE_ADDR real_stop_pc
6879 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89 6880
1eb8556f 6881 infrun_debug_printf ("stepped into solib return tramp");
14132e89
MR
6882
6883 /* Only proceed through if we know where it's going. */
6884 if (real_stop_pc)
6885 {
6886 /* And put the step-breakpoint there and go until there. */
51abb421 6887 symtab_and_line sr_sal;
14132e89
MR
6888 sr_sal.pc = real_stop_pc;
6889 sr_sal.section = find_pc_overlay (sr_sal.pc);
6890 sr_sal.pspace = get_frame_program_space (frame);
6891
6892 /* Do not specify what the fp should be when we stop since
6893 on some machines the prologue is where the new fp value
6894 is established. */
6895 insert_step_resume_breakpoint_at_sal (gdbarch,
6896 sr_sal, null_frame_id);
6897
6898 /* Restart without fiddling with the step ranges or
6899 other state. */
6900 keep_going (ecs);
6901 return;
6902 }
6903 }
6904
c17eaafe
DJ
6905 /* Check for subroutine calls. The check for the current frame
6906 equalling the step ID is not necessary - the check of the
6907 previous frame's ID is sufficient - but it is a common case and
6908 cheaper than checking the previous frame's ID.
14e60db5
DJ
6909
6910 NOTE: frame_id_eq will never report two invalid frame IDs as
6911 being equal, so to get into this block, both the current and
6912 previous frame must have valid frame IDs. */
005ca36a
JB
6913 /* The outer_frame_id check is a heuristic to detect stepping
6914 through startup code. If we step over an instruction which
6915 sets the stack pointer from an invalid value to a valid value,
6916 we may detect that as a subroutine call from the mythical
6917 "outermost" function. This could be fixed by marking
6918 outermost frames as !stack_p,code_p,special_p. Then the
6919 initial outermost frame, before sp was valid, would
ce6cca6d 6920 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6921 for more. */
edb3359d 6922 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6923 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6924 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6925 ecs->event_thread->control.step_stack_frame_id)
6926 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6927 outer_frame_id)
885eeb5b 6928 || (ecs->event_thread->control.step_start_function
f2ffa92b 6929 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6930 {
f2ffa92b 6931 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6932 CORE_ADDR real_stop_pc;
8fb3e588 6933
1eb8556f 6934 infrun_debug_printf ("stepped into subroutine");
527159b7 6935
b7a084be 6936 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6937 {
6938 /* I presume that step_over_calls is only 0 when we're
6939 supposed to be stepping at the assembly language level
6940 ("stepi"). Just stop. */
388a8562 6941 /* And this works the same backward as frontward. MVS */
bdc36728 6942 end_stepping_range (ecs);
95918acb
AC
6943 return;
6944 }
8fb3e588 6945
388a8562
MS
6946 /* Reverse stepping through solib trampolines. */
6947
6948 if (execution_direction == EXEC_REVERSE
16c381f0 6949 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6950 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6951 || (ecs->stop_func_start == 0
6952 && in_solib_dynsym_resolve_code (stop_pc))))
6953 {
6954 /* Any solib trampoline code can be handled in reverse
6955 by simply continuing to single-step. We have already
6956 executed the solib function (backwards), and a few
6957 steps will take us back through the trampoline to the
6958 caller. */
6959 keep_going (ecs);
6960 return;
6961 }
6962
16c381f0 6963 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6964 {
b2175913
MS
6965 /* We're doing a "next".
6966
6967 Normal (forward) execution: set a breakpoint at the
6968 callee's return address (the address at which the caller
6969 will resume).
6970
6971 Reverse (backward) execution. set the step-resume
6972 breakpoint at the start of the function that we just
6973 stepped into (backwards), and continue to there. When we
6130d0b7 6974 get there, we'll need to single-step back to the caller. */
b2175913
MS
6975
6976 if (execution_direction == EXEC_REVERSE)
6977 {
acf9414f
JK
6978 /* If we're already at the start of the function, we've either
6979 just stepped backward into a single instruction function,
6980 or stepped back out of a signal handler to the first instruction
6981 of the function. Just keep going, which will single-step back
6982 to the caller. */
58c48e72 6983 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6984 {
acf9414f 6985 /* Normal function call return (static or dynamic). */
51abb421 6986 symtab_and_line sr_sal;
acf9414f
JK
6987 sr_sal.pc = ecs->stop_func_start;
6988 sr_sal.pspace = get_frame_program_space (frame);
6989 insert_step_resume_breakpoint_at_sal (gdbarch,
6990 sr_sal, null_frame_id);
6991 }
b2175913
MS
6992 }
6993 else
568d6575 6994 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6995
8567c30f
AC
6996 keep_going (ecs);
6997 return;
6998 }
a53c66de 6999
95918acb 7000 /* If we are in a function call trampoline (a stub between the
dda83cd7
SM
7001 calling routine and the real function), locate the real
7002 function. That's what tells us (a) whether we want to step
7003 into it at all, and (b) what prologue we want to run to the
7004 end of, if we do step into it. */
568d6575 7005 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 7006 if (real_stop_pc == 0)
568d6575 7007 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
7008 if (real_stop_pc != 0)
7009 ecs->stop_func_start = real_stop_pc;
8fb3e588 7010
db5f024e 7011 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 7012 {
51abb421 7013 symtab_and_line sr_sal;
1b2bfbb9 7014 sr_sal.pc = ecs->stop_func_start;
6c95b8df 7015 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 7016
a6d9a66e
UW
7017 insert_step_resume_breakpoint_at_sal (gdbarch,
7018 sr_sal, null_frame_id);
8fb3e588
AC
7019 keep_going (ecs);
7020 return;
1b2bfbb9
RC
7021 }
7022
95918acb 7023 /* If we have line number information for the function we are
1bfeeb0f
JL
7024 thinking of stepping into and the function isn't on the skip
7025 list, step into it.
95918acb 7026
dda83cd7
SM
7027 If there are several symtabs at that PC (e.g. with include
7028 files), just want to know whether *any* of them have line
7029 numbers. find_pc_line handles this. */
95918acb
AC
7030 {
7031 struct symtab_and_line tmp_sal;
8fb3e588 7032
95918acb 7033 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 7034 if (tmp_sal.line != 0
85817405 7035 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
7036 tmp_sal)
7037 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 7038 {
b2175913 7039 if (execution_direction == EXEC_REVERSE)
568d6575 7040 handle_step_into_function_backward (gdbarch, ecs);
b2175913 7041 else
568d6575 7042 handle_step_into_function (gdbarch, ecs);
95918acb
AC
7043 return;
7044 }
7045 }
7046
7047 /* If we have no line number and the step-stop-if-no-debug is
dda83cd7
SM
7048 set, we stop the step so that the user has a chance to switch
7049 in assembly mode. */
16c381f0 7050 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 7051 && step_stop_if_no_debug)
95918acb 7052 {
bdc36728 7053 end_stepping_range (ecs);
95918acb
AC
7054 return;
7055 }
7056
b2175913
MS
7057 if (execution_direction == EXEC_REVERSE)
7058 {
acf9414f
JK
7059 /* If we're already at the start of the function, we've either just
7060 stepped backward into a single instruction function without line
7061 number info, or stepped back out of a signal handler to the first
7062 instruction of the function without line number info. Just keep
7063 going, which will single-step back to the caller. */
7064 if (ecs->stop_func_start != stop_pc)
7065 {
7066 /* Set a breakpoint at callee's start address.
7067 From there we can step once and be back in the caller. */
51abb421 7068 symtab_and_line sr_sal;
acf9414f
JK
7069 sr_sal.pc = ecs->stop_func_start;
7070 sr_sal.pspace = get_frame_program_space (frame);
7071 insert_step_resume_breakpoint_at_sal (gdbarch,
7072 sr_sal, null_frame_id);
7073 }
b2175913
MS
7074 }
7075 else
7076 /* Set a breakpoint at callee's return address (the address
7077 at which the caller will resume). */
568d6575 7078 insert_step_resume_breakpoint_at_caller (frame);
b2175913 7079
95918acb 7080 keep_going (ecs);
488f131b 7081 return;
488f131b 7082 }
c906108c 7083
fdd654f3
MS
7084 /* Reverse stepping through solib trampolines. */
7085
7086 if (execution_direction == EXEC_REVERSE
16c381f0 7087 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 7088 {
f2ffa92b
PA
7089 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7090
fdd654f3
MS
7091 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7092 || (ecs->stop_func_start == 0
7093 && in_solib_dynsym_resolve_code (stop_pc)))
7094 {
7095 /* Any solib trampoline code can be handled in reverse
7096 by simply continuing to single-step. We have already
7097 executed the solib function (backwards), and a few
7098 steps will take us back through the trampoline to the
7099 caller. */
7100 keep_going (ecs);
7101 return;
7102 }
7103 else if (in_solib_dynsym_resolve_code (stop_pc))
7104 {
7105 /* Stepped backward into the solib dynsym resolver.
7106 Set a breakpoint at its start and continue, then
7107 one more step will take us out. */
51abb421 7108 symtab_and_line sr_sal;
fdd654f3 7109 sr_sal.pc = ecs->stop_func_start;
9d1807c3 7110 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
7111 insert_step_resume_breakpoint_at_sal (gdbarch,
7112 sr_sal, null_frame_id);
7113 keep_going (ecs);
7114 return;
7115 }
7116 }
7117
8c95582d
AB
7118 /* This always returns the sal for the inner-most frame when we are in a
7119 stack of inlined frames, even if GDB actually believes that it is in a
7120 more outer frame. This is checked for below by calls to
7121 inline_skipped_frames. */
f2ffa92b 7122 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 7123
1b2bfbb9
RC
7124 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7125 the trampoline processing logic, however, there are some trampolines
7126 that have no names, so we should do trampoline handling first. */
16c381f0 7127 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 7128 && ecs->stop_func_name == NULL
2afb61aa 7129 && stop_pc_sal.line == 0)
1b2bfbb9 7130 {
1eb8556f 7131 infrun_debug_printf ("stepped into undebuggable function");
527159b7 7132
1b2bfbb9 7133 /* The inferior just stepped into, or returned to, an
dda83cd7
SM
7134 undebuggable function (where there is no debugging information
7135 and no line number corresponding to the address where the
7136 inferior stopped). Since we want to skip this kind of code,
7137 we keep going until the inferior returns from this
7138 function - unless the user has asked us not to (via
7139 set step-mode) or we no longer know how to get back
7140 to the call site. */
14e60db5 7141 if (step_stop_if_no_debug
c7ce8faa 7142 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
7143 {
7144 /* If we have no line number and the step-stop-if-no-debug
7145 is set, we stop the step so that the user has a chance to
7146 switch in assembly mode. */
bdc36728 7147 end_stepping_range (ecs);
1b2bfbb9
RC
7148 return;
7149 }
7150 else
7151 {
7152 /* Set a breakpoint at callee's return address (the address
7153 at which the caller will resume). */
568d6575 7154 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
7155 keep_going (ecs);
7156 return;
7157 }
7158 }
7159
16c381f0 7160 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
7161 {
7162 /* It is stepi or nexti. We always want to stop stepping after
dda83cd7 7163 one instruction. */
1eb8556f 7164 infrun_debug_printf ("stepi/nexti");
bdc36728 7165 end_stepping_range (ecs);
1b2bfbb9
RC
7166 return;
7167 }
7168
2afb61aa 7169 if (stop_pc_sal.line == 0)
488f131b
JB
7170 {
7171 /* We have no line number information. That means to stop
dda83cd7
SM
7172 stepping (does this always happen right after one instruction,
7173 when we do "s" in a function with no line numbers,
7174 or can this happen as a result of a return or longjmp?). */
1eb8556f 7175 infrun_debug_printf ("line number info");
bdc36728 7176 end_stepping_range (ecs);
488f131b
JB
7177 return;
7178 }
c906108c 7179
edb3359d
DJ
7180 /* Look for "calls" to inlined functions, part one. If the inline
7181 frame machinery detected some skipped call sites, we have entered
7182 a new inline function. */
7183
7184 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7185 ecs->event_thread->control.step_frame_id)
00431a78 7186 && inline_skipped_frames (ecs->event_thread))
edb3359d 7187 {
1eb8556f 7188 infrun_debug_printf ("stepped into inlined function");
edb3359d 7189
51abb421 7190 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 7191
16c381f0 7192 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
7193 {
7194 /* For "step", we're going to stop. But if the call site
7195 for this inlined function is on the same source line as
7196 we were previously stepping, go down into the function
7197 first. Otherwise stop at the call site. */
7198
7199 if (call_sal.line == ecs->event_thread->current_line
7200 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7201 {
7202 step_into_inline_frame (ecs->event_thread);
7203 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7204 {
7205 keep_going (ecs);
7206 return;
7207 }
7208 }
edb3359d 7209
bdc36728 7210 end_stepping_range (ecs);
edb3359d
DJ
7211 return;
7212 }
7213 else
7214 {
7215 /* For "next", we should stop at the call site if it is on a
7216 different source line. Otherwise continue through the
7217 inlined function. */
7218 if (call_sal.line == ecs->event_thread->current_line
7219 && call_sal.symtab == ecs->event_thread->current_symtab)
7220 keep_going (ecs);
7221 else
bdc36728 7222 end_stepping_range (ecs);
edb3359d
DJ
7223 return;
7224 }
7225 }
7226
7227 /* Look for "calls" to inlined functions, part two. If we are still
7228 in the same real function we were stepping through, but we have
7229 to go further up to find the exact frame ID, we are stepping
7230 through a more inlined call beyond its call site. */
7231
7232 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7233 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7234 ecs->event_thread->control.step_frame_id)
edb3359d 7235 && stepped_in_from (get_current_frame (),
16c381f0 7236 ecs->event_thread->control.step_frame_id))
edb3359d 7237 {
1eb8556f 7238 infrun_debug_printf ("stepping through inlined function");
edb3359d 7239
4a4c04f1
BE
7240 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7241 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7242 keep_going (ecs);
7243 else
bdc36728 7244 end_stepping_range (ecs);
edb3359d
DJ
7245 return;
7246 }
7247
8c95582d 7248 bool refresh_step_info = true;
f2ffa92b 7249 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7250 && (ecs->event_thread->current_line != stop_pc_sal.line
7251 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b 7252 {
ebde6f2d
TV
7253 /* We are at a different line. */
7254
8c95582d
AB
7255 if (stop_pc_sal.is_stmt)
7256 {
ebde6f2d
TV
7257 /* We are at the start of a statement.
7258
7259 So stop. Note that we don't stop if we step into the middle of a
7260 statement. That is said to make things like for (;;) statements
7261 work better. */
1eb8556f 7262 infrun_debug_printf ("stepped to a different line");
8c95582d
AB
7263 end_stepping_range (ecs);
7264 return;
7265 }
7266 else if (frame_id_eq (get_frame_id (get_current_frame ()),
ebde6f2d 7267 ecs->event_thread->control.step_frame_id))
8c95582d 7268 {
ebde6f2d
TV
7269 /* We are not at the start of a statement, and we have not changed
7270 frame.
7271
7272 We ignore this line table entry, and continue stepping forward,
8c95582d
AB
7273 looking for a better place to stop. */
7274 refresh_step_info = false;
1eb8556f
SM
7275 infrun_debug_printf ("stepped to a different line, but "
7276 "it's not the start of a statement");
8c95582d 7277 }
ebde6f2d
TV
7278 else
7279 {
7280 /* We are not the start of a statement, and we have changed frame.
7281
7282 We ignore this line table entry, and continue stepping forward,
7283 looking for a better place to stop. Keep refresh_step_info at
7284 true to note that the frame has changed, but ignore the line
7285 number to make sure we don't ignore a subsequent entry with the
7286 same line number. */
7287 stop_pc_sal.line = 0;
7288 infrun_debug_printf ("stepped to a different frame, but "
7289 "it's not the start of a statement");
7290 }
488f131b 7291 }
c906108c 7292
488f131b 7293 /* We aren't done stepping.
c906108c 7294
488f131b
JB
7295 Optimize by setting the stepping range to the line.
7296 (We might not be in the original line, but if we entered a
7297 new line in mid-statement, we continue stepping. This makes
8c95582d
AB
7298 things like for(;;) statements work better.)
7299
7300 If we entered a SAL that indicates a non-statement line table entry,
7301 then we update the stepping range, but we don't update the step info,
7302 which includes things like the line number we are stepping away from.
7303 This means we will stop when we find a line table entry that is marked
7304 as is-statement, even if it matches the non-statement one we just
7305 stepped into. */
c906108c 7306
16c381f0
JK
7307 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7308 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7309 ecs->event_thread->control.may_range_step = 1;
8c95582d
AB
7310 if (refresh_step_info)
7311 set_step_info (ecs->event_thread, frame, stop_pc_sal);
488f131b 7312
1eb8556f 7313 infrun_debug_printf ("keep going");
488f131b 7314 keep_going (ecs);
104c1213
JM
7315}
7316
408f6686
PA
7317static bool restart_stepped_thread (process_stratum_target *resume_target,
7318 ptid_t resume_ptid);
7319
c447ac0b
PA
7320/* In all-stop mode, if we're currently stepping but have stopped in
7321 some other thread, we may need to switch back to the stepped
7322 thread. Returns true we set the inferior running, false if we left
7323 it stopped (and the event needs further processing). */
7324
c4464ade 7325static bool
c447ac0b
PA
7326switch_back_to_stepped_thread (struct execution_control_state *ecs)
7327{
fbea99ea 7328 if (!target_is_non_stop_p ())
c447ac0b 7329 {
99619bea
PA
7330 /* If any thread is blocked on some internal breakpoint, and we
7331 simply need to step over that breakpoint to get it going
7332 again, do that first. */
7333
7334 /* However, if we see an event for the stepping thread, then we
7335 know all other threads have been moved past their breakpoints
7336 already. Let the caller check whether the step is finished,
7337 etc., before deciding to move it past a breakpoint. */
7338 if (ecs->event_thread->control.step_range_end != 0)
c4464ade 7339 return false;
99619bea
PA
7340
7341 /* Check if the current thread is blocked on an incomplete
7342 step-over, interrupted by a random signal. */
7343 if (ecs->event_thread->control.trap_expected
7344 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7345 {
1eb8556f
SM
7346 infrun_debug_printf
7347 ("need to finish step-over of [%s]",
7348 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea 7349 keep_going (ecs);
c4464ade 7350 return true;
99619bea 7351 }
2adfaa28 7352
99619bea
PA
7353 /* Check if the current thread is blocked by a single-step
7354 breakpoint of another thread. */
7355 if (ecs->hit_singlestep_breakpoint)
7356 {
1eb8556f
SM
7357 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7358 target_pid_to_str (ecs->ptid).c_str ());
99619bea 7359 keep_going (ecs);
c4464ade 7360 return true;
99619bea
PA
7361 }
7362
4d9d9d04
PA
7363 /* If this thread needs yet another step-over (e.g., stepping
7364 through a delay slot), do it first before moving on to
7365 another thread. */
7366 if (thread_still_needs_step_over (ecs->event_thread))
7367 {
1eb8556f
SM
7368 infrun_debug_printf
7369 ("thread [%s] still needs step-over",
7370 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04 7371 keep_going (ecs);
c4464ade 7372 return true;
4d9d9d04 7373 }
70509625 7374
483805cf
PA
7375 /* If scheduler locking applies even if not stepping, there's no
7376 need to walk over threads. Above we've checked whether the
7377 current thread is stepping. If some other thread not the
7378 event thread is stepping, then it must be that scheduler
7379 locking is not in effect. */
856e7dd6 7380 if (schedlock_applies (ecs->event_thread))
c4464ade 7381 return false;
483805cf 7382
4d9d9d04
PA
7383 /* Otherwise, we no longer expect a trap in the current thread.
7384 Clear the trap_expected flag before switching back -- this is
7385 what keep_going does as well, if we call it. */
7386 ecs->event_thread->control.trap_expected = 0;
7387
7388 /* Likewise, clear the signal if it should not be passed. */
7389 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7390 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7391
408f6686 7392 if (restart_stepped_thread (ecs->target, ecs->ptid))
4d9d9d04
PA
7393 {
7394 prepare_to_wait (ecs);
c4464ade 7395 return true;
4d9d9d04
PA
7396 }
7397
408f6686
PA
7398 switch_to_thread (ecs->event_thread);
7399 }
4d9d9d04 7400
408f6686
PA
7401 return false;
7402}
f3f8ece4 7403
408f6686
PA
7404/* Look for the thread that was stepping, and resume it.
7405 RESUME_TARGET / RESUME_PTID indicate the set of threads the caller
7406 is resuming. Return true if a thread was started, false
7407 otherwise. */
483805cf 7408
408f6686
PA
7409static bool
7410restart_stepped_thread (process_stratum_target *resume_target,
7411 ptid_t resume_ptid)
7412{
7413 /* Do all pending step-overs before actually proceeding with
7414 step/next/etc. */
7415 if (start_step_over ())
7416 return true;
483805cf 7417
408f6686
PA
7418 for (thread_info *tp : all_threads_safe ())
7419 {
7420 if (tp->state == THREAD_EXITED)
7421 continue;
7422
7423 if (tp->suspend.waitstatus_pending_p)
7424 continue;
483805cf 7425
408f6686
PA
7426 /* Ignore threads of processes the caller is not
7427 resuming. */
7428 if (!sched_multi
7429 && (tp->inf->process_target () != resume_target
7430 || tp->inf->pid != resume_ptid.pid ()))
7431 continue;
483805cf 7432
408f6686
PA
7433 if (tp->control.trap_expected)
7434 {
7435 infrun_debug_printf ("switching back to stepped thread (step-over)");
483805cf 7436
408f6686
PA
7437 if (keep_going_stepped_thread (tp))
7438 return true;
99619bea 7439 }
408f6686
PA
7440 }
7441
7442 for (thread_info *tp : all_threads_safe ())
7443 {
7444 if (tp->state == THREAD_EXITED)
7445 continue;
7446
7447 if (tp->suspend.waitstatus_pending_p)
7448 continue;
99619bea 7449
408f6686
PA
7450 /* Ignore threads of processes the caller is not
7451 resuming. */
7452 if (!sched_multi
7453 && (tp->inf->process_target () != resume_target
7454 || tp->inf->pid != resume_ptid.pid ()))
7455 continue;
7456
7457 /* Did we find the stepping thread? */
7458 if (tp->control.step_range_end)
99619bea 7459 {
408f6686 7460 infrun_debug_printf ("switching back to stepped thread (stepping)");
c447ac0b 7461
408f6686
PA
7462 if (keep_going_stepped_thread (tp))
7463 return true;
2ac7589c
PA
7464 }
7465 }
2adfaa28 7466
c4464ade 7467 return false;
2ac7589c 7468}
2adfaa28 7469
408f6686
PA
7470/* See infrun.h. */
7471
7472void
7473restart_after_all_stop_detach (process_stratum_target *proc_target)
7474{
7475 /* Note we don't check target_is_non_stop_p() here, because the
7476 current inferior may no longer have a process_stratum target
7477 pushed, as we just detached. */
7478
7479 /* See if we have a THREAD_RUNNING thread that need to be
7480 re-resumed. If we have any thread that is already executing,
7481 then we don't need to resume the target -- it is already been
7482 resumed. With the remote target (in all-stop), it's even
7483 impossible to issue another resumption if the target is already
7484 resumed, until the target reports a stop. */
7485 for (thread_info *thr : all_threads (proc_target))
7486 {
7487 if (thr->state != THREAD_RUNNING)
7488 continue;
7489
7490 /* If we have any thread that is already executing, then we
7491 don't need to resume the target -- it is already been
7492 resumed. */
7493 if (thr->executing)
7494 return;
7495
7496 /* If we have a pending event to process, skip resuming the
7497 target and go straight to processing it. */
7498 if (thr->resumed && thr->suspend.waitstatus_pending_p)
7499 return;
7500 }
7501
7502 /* Alright, we need to re-resume the target. If a thread was
7503 stepping, we need to restart it stepping. */
7504 if (restart_stepped_thread (proc_target, minus_one_ptid))
7505 return;
7506
7507 /* Otherwise, find the first THREAD_RUNNING thread and resume
7508 it. */
7509 for (thread_info *thr : all_threads (proc_target))
7510 {
7511 if (thr->state != THREAD_RUNNING)
7512 continue;
7513
7514 execution_control_state ecs;
7515 reset_ecs (&ecs, thr);
7516 switch_to_thread (thr);
7517 keep_going (&ecs);
7518 return;
7519 }
7520}
7521
2ac7589c
PA
7522/* Set a previously stepped thread back to stepping. Returns true on
7523 success, false if the resume is not possible (e.g., the thread
7524 vanished). */
7525
c4464ade 7526static bool
2ac7589c
PA
7527keep_going_stepped_thread (struct thread_info *tp)
7528{
7529 struct frame_info *frame;
2ac7589c
PA
7530 struct execution_control_state ecss;
7531 struct execution_control_state *ecs = &ecss;
2adfaa28 7532
2ac7589c
PA
7533 /* If the stepping thread exited, then don't try to switch back and
7534 resume it, which could fail in several different ways depending
7535 on the target. Instead, just keep going.
2adfaa28 7536
2ac7589c
PA
7537 We can find a stepping dead thread in the thread list in two
7538 cases:
2adfaa28 7539
2ac7589c
PA
7540 - The target supports thread exit events, and when the target
7541 tries to delete the thread from the thread list, inferior_ptid
7542 pointed at the exiting thread. In such case, calling
7543 delete_thread does not really remove the thread from the list;
7544 instead, the thread is left listed, with 'exited' state.
64ce06e4 7545
2ac7589c
PA
7546 - The target's debug interface does not support thread exit
7547 events, and so we have no idea whatsoever if the previously
7548 stepping thread is still alive. For that reason, we need to
7549 synchronously query the target now. */
2adfaa28 7550
00431a78 7551 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c 7552 {
1eb8556f
SM
7553 infrun_debug_printf ("not resuming previously stepped thread, it has "
7554 "vanished");
2ac7589c 7555
00431a78 7556 delete_thread (tp);
c4464ade 7557 return false;
c447ac0b 7558 }
2ac7589c 7559
1eb8556f 7560 infrun_debug_printf ("resuming previously stepped thread");
2ac7589c
PA
7561
7562 reset_ecs (ecs, tp);
00431a78 7563 switch_to_thread (tp);
2ac7589c 7564
f2ffa92b 7565 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7566 frame = get_current_frame ();
2ac7589c
PA
7567
7568 /* If the PC of the thread we were trying to single-step has
7569 changed, then that thread has trapped or been signaled, but the
7570 event has not been reported to GDB yet. Re-poll the target
7571 looking for this particular thread's event (i.e. temporarily
7572 enable schedlock) by:
7573
7574 - setting a break at the current PC
7575 - resuming that particular thread, only (by setting trap
7576 expected)
7577
7578 This prevents us continuously moving the single-step breakpoint
7579 forward, one instruction at a time, overstepping. */
7580
f2ffa92b 7581 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7582 {
7583 ptid_t resume_ptid;
7584
1eb8556f
SM
7585 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7586 paddress (target_gdbarch (), tp->prev_pc),
7587 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7588
7589 /* Clear the info of the previous step-over, as it's no longer
7590 valid (if the thread was trying to step over a breakpoint, it
7591 has already succeeded). It's what keep_going would do too,
7592 if we called it. Do this before trying to insert the sss
7593 breakpoint, otherwise if we were previously trying to step
7594 over this exact address in another thread, the breakpoint is
7595 skipped. */
7596 clear_step_over_info ();
7597 tp->control.trap_expected = 0;
7598
7599 insert_single_step_breakpoint (get_frame_arch (frame),
7600 get_frame_address_space (frame),
f2ffa92b 7601 tp->suspend.stop_pc);
2ac7589c 7602
719546c4 7603 tp->resumed = true;
fbea99ea 7604 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
c4464ade 7605 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2ac7589c
PA
7606 }
7607 else
7608 {
1eb8556f 7609 infrun_debug_printf ("expected thread still hasn't advanced");
2ac7589c
PA
7610
7611 keep_going_pass_signal (ecs);
7612 }
c4464ade
SM
7613
7614 return true;
c447ac0b
PA
7615}
7616
8b061563
PA
7617/* Is thread TP in the middle of (software or hardware)
7618 single-stepping? (Note the result of this function must never be
7619 passed directly as target_resume's STEP parameter.) */
104c1213 7620
c4464ade 7621static bool
b3444185 7622currently_stepping (struct thread_info *tp)
a7212384 7623{
8358c15c
JK
7624 return ((tp->control.step_range_end
7625 && tp->control.step_resume_breakpoint == NULL)
7626 || tp->control.trap_expected
af48d08f 7627 || tp->stepped_breakpoint
8358c15c 7628 || bpstat_should_step ());
a7212384
UW
7629}
7630
b2175913
MS
7631/* Inferior has stepped into a subroutine call with source code that
7632 we should not step over. Do step to the first line of code in
7633 it. */
c2c6d25f
JM
7634
7635static void
568d6575
UW
7636handle_step_into_function (struct gdbarch *gdbarch,
7637 struct execution_control_state *ecs)
c2c6d25f 7638{
7e324e48
GB
7639 fill_in_stop_func (gdbarch, ecs);
7640
f2ffa92b
PA
7641 compunit_symtab *cust
7642 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7643 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7644 ecs->stop_func_start
7645 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7646
51abb421 7647 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7648 /* Use the step_resume_break to step until the end of the prologue,
7649 even if that involves jumps (as it seems to on the vax under
7650 4.2). */
7651 /* If the prologue ends in the middle of a source line, continue to
7652 the end of that source line (if it is still within the function).
7653 Otherwise, just go to end of prologue. */
2afb61aa
PA
7654 if (stop_func_sal.end
7655 && stop_func_sal.pc != ecs->stop_func_start
7656 && stop_func_sal.end < ecs->stop_func_end)
7657 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7658
2dbd5e30
KB
7659 /* Architectures which require breakpoint adjustment might not be able
7660 to place a breakpoint at the computed address. If so, the test
7661 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7662 ecs->stop_func_start to an address at which a breakpoint may be
7663 legitimately placed.
8fb3e588 7664
2dbd5e30
KB
7665 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7666 made, GDB will enter an infinite loop when stepping through
7667 optimized code consisting of VLIW instructions which contain
7668 subinstructions corresponding to different source lines. On
7669 FR-V, it's not permitted to place a breakpoint on any but the
7670 first subinstruction of a VLIW instruction. When a breakpoint is
7671 set, GDB will adjust the breakpoint address to the beginning of
7672 the VLIW instruction. Thus, we need to make the corresponding
7673 adjustment here when computing the stop address. */
8fb3e588 7674
568d6575 7675 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7676 {
7677 ecs->stop_func_start
568d6575 7678 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7679 ecs->stop_func_start);
2dbd5e30
KB
7680 }
7681
f2ffa92b 7682 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7683 {
7684 /* We are already there: stop now. */
bdc36728 7685 end_stepping_range (ecs);
c2c6d25f
JM
7686 return;
7687 }
7688 else
7689 {
7690 /* Put the step-breakpoint there and go until there. */
51abb421 7691 symtab_and_line sr_sal;
c2c6d25f
JM
7692 sr_sal.pc = ecs->stop_func_start;
7693 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7694 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7695
c2c6d25f 7696 /* Do not specify what the fp should be when we stop since on
dda83cd7
SM
7697 some machines the prologue is where the new fp value is
7698 established. */
a6d9a66e 7699 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7700
7701 /* And make sure stepping stops right away then. */
16c381f0 7702 ecs->event_thread->control.step_range_end
dda83cd7 7703 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7704 }
7705 keep_going (ecs);
7706}
d4f3574e 7707
b2175913
MS
7708/* Inferior has stepped backward into a subroutine call with source
7709 code that we should not step over. Do step to the beginning of the
7710 last line of code in it. */
7711
7712static void
568d6575
UW
7713handle_step_into_function_backward (struct gdbarch *gdbarch,
7714 struct execution_control_state *ecs)
b2175913 7715{
43f3e411 7716 struct compunit_symtab *cust;
167e4384 7717 struct symtab_and_line stop_func_sal;
b2175913 7718
7e324e48
GB
7719 fill_in_stop_func (gdbarch, ecs);
7720
f2ffa92b 7721 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7722 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7723 ecs->stop_func_start
7724 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7725
f2ffa92b 7726 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7727
7728 /* OK, we're just going to keep stepping here. */
f2ffa92b 7729 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7730 {
7731 /* We're there already. Just stop stepping now. */
bdc36728 7732 end_stepping_range (ecs);
b2175913
MS
7733 }
7734 else
7735 {
7736 /* Else just reset the step range and keep going.
7737 No step-resume breakpoint, they don't work for
7738 epilogues, which can have multiple entry paths. */
16c381f0
JK
7739 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7740 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7741 keep_going (ecs);
7742 }
7743 return;
7744}
7745
d3169d93 7746/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7747 This is used to both functions and to skip over code. */
7748
7749static void
2c03e5be
PA
7750insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7751 struct symtab_and_line sr_sal,
7752 struct frame_id sr_id,
7753 enum bptype sr_type)
44cbf7b5 7754{
611c83ae
PA
7755 /* There should never be more than one step-resume or longjmp-resume
7756 breakpoint per thread, so we should never be setting a new
44cbf7b5 7757 step_resume_breakpoint when one is already active. */
8358c15c 7758 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7759 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93 7760
1eb8556f
SM
7761 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7762 paddress (gdbarch, sr_sal.pc));
d3169d93 7763
8358c15c 7764 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7765 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7766}
7767
9da8c2a0 7768void
2c03e5be
PA
7769insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7770 struct symtab_and_line sr_sal,
7771 struct frame_id sr_id)
7772{
7773 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7774 sr_sal, sr_id,
7775 bp_step_resume);
44cbf7b5 7776}
7ce450bd 7777
2c03e5be
PA
7778/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7779 This is used to skip a potential signal handler.
7ce450bd 7780
14e60db5
DJ
7781 This is called with the interrupted function's frame. The signal
7782 handler, when it returns, will resume the interrupted function at
7783 RETURN_FRAME.pc. */
d303a6c7
AC
7784
7785static void
2c03e5be 7786insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7787{
f4c1edd8 7788 gdb_assert (return_frame != NULL);
d303a6c7 7789
51abb421
PA
7790 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7791
7792 symtab_and_line sr_sal;
568d6575 7793 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7794 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7795 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7796
2c03e5be
PA
7797 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7798 get_stack_frame_id (return_frame),
7799 bp_hp_step_resume);
d303a6c7
AC
7800}
7801
2c03e5be
PA
7802/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7803 is used to skip a function after stepping into it (for "next" or if
7804 the called function has no debugging information).
14e60db5
DJ
7805
7806 The current function has almost always been reached by single
7807 stepping a call or return instruction. NEXT_FRAME belongs to the
7808 current function, and the breakpoint will be set at the caller's
7809 resume address.
7810
7811 This is a separate function rather than reusing
2c03e5be 7812 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7813 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7814 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7815
7816static void
7817insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7818{
14e60db5
DJ
7819 /* We shouldn't have gotten here if we don't know where the call site
7820 is. */
c7ce8faa 7821 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7822
51abb421 7823 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7824
51abb421 7825 symtab_and_line sr_sal;
c7ce8faa
DJ
7826 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7827 frame_unwind_caller_pc (next_frame));
14e60db5 7828 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7829 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7830
a6d9a66e 7831 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7832 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7833}
7834
611c83ae
PA
7835/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7836 new breakpoint at the target of a jmp_buf. The handling of
7837 longjmp-resume uses the same mechanisms used for handling
7838 "step-resume" breakpoints. */
7839
7840static void
a6d9a66e 7841insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7842{
e81a37f7
TT
7843 /* There should never be more than one longjmp-resume breakpoint per
7844 thread, so we should never be setting a new
611c83ae 7845 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7846 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae 7847
1eb8556f
SM
7848 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7849 paddress (gdbarch, pc));
611c83ae 7850
e81a37f7 7851 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7852 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7853}
7854
186c406b
TT
7855/* Insert an exception resume breakpoint. TP is the thread throwing
7856 the exception. The block B is the block of the unwinder debug hook
7857 function. FRAME is the frame corresponding to the call to this
7858 function. SYM is the symbol of the function argument holding the
7859 target PC of the exception. */
7860
7861static void
7862insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7863 const struct block *b,
186c406b
TT
7864 struct frame_info *frame,
7865 struct symbol *sym)
7866{
a70b8144 7867 try
186c406b 7868 {
63e43d3a 7869 struct block_symbol vsym;
186c406b
TT
7870 struct value *value;
7871 CORE_ADDR handler;
7872 struct breakpoint *bp;
7873
987012b8 7874 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7875 b, VAR_DOMAIN);
63e43d3a 7876 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7877 /* If the value was optimized out, revert to the old behavior. */
7878 if (! value_optimized_out (value))
7879 {
7880 handler = value_as_address (value);
7881
1eb8556f
SM
7882 infrun_debug_printf ("exception resume at %lx",
7883 (unsigned long) handler);
186c406b
TT
7884
7885 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7886 handler,
7887 bp_exception_resume).release ();
c70a6932
JK
7888
7889 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7890 frame = NULL;
7891
5d5658a1 7892 bp->thread = tp->global_num;
186c406b
TT
7893 inferior_thread ()->control.exception_resume_breakpoint = bp;
7894 }
7895 }
230d2906 7896 catch (const gdb_exception_error &e)
492d29ea
PA
7897 {
7898 /* We want to ignore errors here. */
7899 }
186c406b
TT
7900}
7901
28106bc2
SDJ
7902/* A helper for check_exception_resume that sets an
7903 exception-breakpoint based on a SystemTap probe. */
7904
7905static void
7906insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7907 const struct bound_probe *probe,
28106bc2
SDJ
7908 struct frame_info *frame)
7909{
7910 struct value *arg_value;
7911 CORE_ADDR handler;
7912 struct breakpoint *bp;
7913
7914 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7915 if (!arg_value)
7916 return;
7917
7918 handler = value_as_address (arg_value);
7919
1eb8556f
SM
7920 infrun_debug_printf ("exception resume at %s",
7921 paddress (probe->objfile->arch (), handler));
28106bc2
SDJ
7922
7923 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7924 handler, bp_exception_resume).release ();
5d5658a1 7925 bp->thread = tp->global_num;
28106bc2
SDJ
7926 inferior_thread ()->control.exception_resume_breakpoint = bp;
7927}
7928
186c406b
TT
7929/* This is called when an exception has been intercepted. Check to
7930 see whether the exception's destination is of interest, and if so,
7931 set an exception resume breakpoint there. */
7932
7933static void
7934check_exception_resume (struct execution_control_state *ecs,
28106bc2 7935 struct frame_info *frame)
186c406b 7936{
729662a5 7937 struct bound_probe probe;
28106bc2
SDJ
7938 struct symbol *func;
7939
7940 /* First see if this exception unwinding breakpoint was set via a
7941 SystemTap probe point. If so, the probe has two arguments: the
7942 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7943 set a breakpoint there. */
6bac7473 7944 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7945 if (probe.prob)
28106bc2 7946 {
729662a5 7947 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7948 return;
7949 }
7950
7951 func = get_frame_function (frame);
7952 if (!func)
7953 return;
186c406b 7954
a70b8144 7955 try
186c406b 7956 {
3977b71f 7957 const struct block *b;
8157b174 7958 struct block_iterator iter;
186c406b
TT
7959 struct symbol *sym;
7960 int argno = 0;
7961
7962 /* The exception breakpoint is a thread-specific breakpoint on
7963 the unwinder's debug hook, declared as:
7964
7965 void _Unwind_DebugHook (void *cfa, void *handler);
7966
7967 The CFA argument indicates the frame to which control is
7968 about to be transferred. HANDLER is the destination PC.
7969
7970 We ignore the CFA and set a temporary breakpoint at HANDLER.
7971 This is not extremely efficient but it avoids issues in gdb
7972 with computing the DWARF CFA, and it also works even in weird
7973 cases such as throwing an exception from inside a signal
7974 handler. */
7975
7976 b = SYMBOL_BLOCK_VALUE (func);
7977 ALL_BLOCK_SYMBOLS (b, iter, sym)
7978 {
7979 if (!SYMBOL_IS_ARGUMENT (sym))
7980 continue;
7981
7982 if (argno == 0)
7983 ++argno;
7984 else
7985 {
7986 insert_exception_resume_breakpoint (ecs->event_thread,
7987 b, frame, sym);
7988 break;
7989 }
7990 }
7991 }
230d2906 7992 catch (const gdb_exception_error &e)
492d29ea
PA
7993 {
7994 }
186c406b
TT
7995}
7996
104c1213 7997static void
22bcd14b 7998stop_waiting (struct execution_control_state *ecs)
104c1213 7999{
1eb8556f 8000 infrun_debug_printf ("stop_waiting");
527159b7 8001
cd0fc7c3
SS
8002 /* Let callers know we don't want to wait for the inferior anymore. */
8003 ecs->wait_some_more = 0;
fbea99ea 8004
53cccef1 8005 /* If all-stop, but there exists a non-stop target, stop all
fbea99ea 8006 threads now that we're presenting the stop to the user. */
53cccef1 8007 if (!non_stop && exists_non_stop_target ())
fbea99ea 8008 stop_all_threads ();
cd0fc7c3
SS
8009}
8010
4d9d9d04
PA
8011/* Like keep_going, but passes the signal to the inferior, even if the
8012 signal is set to nopass. */
d4f3574e
SS
8013
8014static void
4d9d9d04 8015keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 8016{
d7e15655 8017 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 8018 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 8019
d4f3574e 8020 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 8021 ecs->event_thread->prev_pc
fc75c28b 8022 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
d4f3574e 8023
4d9d9d04 8024 if (ecs->event_thread->control.trap_expected)
d4f3574e 8025 {
4d9d9d04
PA
8026 struct thread_info *tp = ecs->event_thread;
8027
1eb8556f
SM
8028 infrun_debug_printf ("%s has trap_expected set, "
8029 "resuming to collect trap",
8030 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 8031
a9ba6bae
PA
8032 /* We haven't yet gotten our trap, and either: intercepted a
8033 non-signal event (e.g., a fork); or took a signal which we
8034 are supposed to pass through to the inferior. Simply
8035 continue. */
64ce06e4 8036 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 8037 }
372316f1
PA
8038 else if (step_over_info_valid_p ())
8039 {
8040 /* Another thread is stepping over a breakpoint in-line. If
8041 this thread needs a step-over too, queue the request. In
8042 either case, this resume must be deferred for later. */
8043 struct thread_info *tp = ecs->event_thread;
8044
8045 if (ecs->hit_singlestep_breakpoint
8046 || thread_still_needs_step_over (tp))
8047 {
1eb8556f
SM
8048 infrun_debug_printf ("step-over already in progress: "
8049 "step-over for %s deferred",
8050 target_pid_to_str (tp->ptid).c_str ());
28d5518b 8051 global_thread_step_over_chain_enqueue (tp);
372316f1
PA
8052 }
8053 else
8054 {
1eb8556f
SM
8055 infrun_debug_printf ("step-over in progress: resume of %s deferred",
8056 target_pid_to_str (tp->ptid).c_str ());
372316f1 8057 }
372316f1 8058 }
d4f3574e
SS
8059 else
8060 {
31e77af2 8061 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
8062 int remove_bp;
8063 int remove_wps;
8d297bbf 8064 step_over_what step_what;
31e77af2 8065
d4f3574e 8066 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
8067 anyway (if we got a signal, the user asked it be passed to
8068 the child)
8069 -- or --
8070 We got our expected trap, but decided we should resume from
8071 it.
d4f3574e 8072
a9ba6bae 8073 We're going to run this baby now!
d4f3574e 8074
c36b740a
VP
8075 Note that insert_breakpoints won't try to re-insert
8076 already inserted breakpoints. Therefore, we don't
8077 care if breakpoints were already inserted, or not. */
a9ba6bae 8078
31e77af2
PA
8079 /* If we need to step over a breakpoint, and we're not using
8080 displaced stepping to do so, insert all breakpoints
8081 (watchpoints, etc.) but the one we're stepping over, step one
8082 instruction, and then re-insert the breakpoint when that step
8083 is finished. */
963f9c80 8084
6c4cfb24
PA
8085 step_what = thread_still_needs_step_over (ecs->event_thread);
8086
963f9c80 8087 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
8088 || (step_what & STEP_OVER_BREAKPOINT));
8089 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 8090
cb71640d
PA
8091 /* We can't use displaced stepping if we need to step past a
8092 watchpoint. The instruction copied to the scratch pad would
8093 still trigger the watchpoint. */
8094 if (remove_bp
3fc8eb30 8095 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 8096 {
a01bda52 8097 set_step_over_info (regcache->aspace (),
21edc42f
YQ
8098 regcache_read_pc (regcache), remove_wps,
8099 ecs->event_thread->global_num);
45e8c884 8100 }
963f9c80 8101 else if (remove_wps)
21edc42f 8102 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
8103
8104 /* If we now need to do an in-line step-over, we need to stop
8105 all other threads. Note this must be done before
8106 insert_breakpoints below, because that removes the breakpoint
8107 we're about to step over, otherwise other threads could miss
8108 it. */
fbea99ea 8109 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 8110 stop_all_threads ();
abbb1732 8111
31e77af2 8112 /* Stop stepping if inserting breakpoints fails. */
a70b8144 8113 try
31e77af2
PA
8114 {
8115 insert_breakpoints ();
8116 }
230d2906 8117 catch (const gdb_exception_error &e)
31e77af2
PA
8118 {
8119 exception_print (gdb_stderr, e);
22bcd14b 8120 stop_waiting (ecs);
bdf2a94a 8121 clear_step_over_info ();
31e77af2 8122 return;
d4f3574e
SS
8123 }
8124
963f9c80 8125 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 8126
64ce06e4 8127 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
8128 }
8129
488f131b 8130 prepare_to_wait (ecs);
d4f3574e
SS
8131}
8132
4d9d9d04
PA
8133/* Called when we should continue running the inferior, because the
8134 current event doesn't cause a user visible stop. This does the
8135 resuming part; waiting for the next event is done elsewhere. */
8136
8137static void
8138keep_going (struct execution_control_state *ecs)
8139{
8140 if (ecs->event_thread->control.trap_expected
8141 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8142 ecs->event_thread->control.trap_expected = 0;
8143
8144 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8145 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8146 keep_going_pass_signal (ecs);
8147}
8148
104c1213
JM
8149/* This function normally comes after a resume, before
8150 handle_inferior_event exits. It takes care of any last bits of
8151 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 8152
104c1213
JM
8153static void
8154prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 8155{
1eb8556f 8156 infrun_debug_printf ("prepare_to_wait");
104c1213 8157
104c1213 8158 ecs->wait_some_more = 1;
0b333c5e 8159
42bd97a6
PA
8160 /* If the target can't async, emulate it by marking the infrun event
8161 handler such that as soon as we get back to the event-loop, we
8162 immediately end up in fetch_inferior_event again calling
8163 target_wait. */
8164 if (!target_can_async_p ())
0b333c5e 8165 mark_infrun_async_event_handler ();
c906108c 8166}
11cf8741 8167
fd664c91 8168/* We are done with the step range of a step/next/si/ni command.
b57bacec 8169 Called once for each n of a "step n" operation. */
fd664c91
PA
8170
8171static void
bdc36728 8172end_stepping_range (struct execution_control_state *ecs)
fd664c91 8173{
bdc36728 8174 ecs->event_thread->control.stop_step = 1;
bdc36728 8175 stop_waiting (ecs);
fd664c91
PA
8176}
8177
33d62d64
JK
8178/* Several print_*_reason functions to print why the inferior has stopped.
8179 We always print something when the inferior exits, or receives a signal.
8180 The rest of the cases are dealt with later on in normal_stop and
8181 print_it_typical. Ideally there should be a call to one of these
8182 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 8183 stop_waiting is called.
33d62d64 8184
fd664c91
PA
8185 Note that we don't call these directly, instead we delegate that to
8186 the interpreters, through observers. Interpreters then call these
8187 with whatever uiout is right. */
33d62d64 8188
fd664c91
PA
8189void
8190print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 8191{
fd664c91 8192 /* For CLI-like interpreters, print nothing. */
33d62d64 8193
112e8700 8194 if (uiout->is_mi_like_p ())
fd664c91 8195 {
112e8700 8196 uiout->field_string ("reason",
fd664c91
PA
8197 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8198 }
8199}
33d62d64 8200
fd664c91
PA
8201void
8202print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 8203{
33d62d64 8204 annotate_signalled ();
112e8700
SM
8205 if (uiout->is_mi_like_p ())
8206 uiout->field_string
8207 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8208 uiout->text ("\nProgram terminated with signal ");
33d62d64 8209 annotate_signal_name ();
112e8700 8210 uiout->field_string ("signal-name",
2ea28649 8211 gdb_signal_to_name (siggnal));
33d62d64 8212 annotate_signal_name_end ();
112e8700 8213 uiout->text (", ");
33d62d64 8214 annotate_signal_string ();
112e8700 8215 uiout->field_string ("signal-meaning",
2ea28649 8216 gdb_signal_to_string (siggnal));
33d62d64 8217 annotate_signal_string_end ();
112e8700
SM
8218 uiout->text (".\n");
8219 uiout->text ("The program no longer exists.\n");
33d62d64
JK
8220}
8221
fd664c91
PA
8222void
8223print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 8224{
fda326dd 8225 struct inferior *inf = current_inferior ();
a068643d 8226 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 8227
33d62d64
JK
8228 annotate_exited (exitstatus);
8229 if (exitstatus)
8230 {
112e8700
SM
8231 if (uiout->is_mi_like_p ())
8232 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
8233 std::string exit_code_str
8234 = string_printf ("0%o", (unsigned int) exitstatus);
8235 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8236 plongest (inf->num), pidstr.c_str (),
8237 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
8238 }
8239 else
11cf8741 8240 {
112e8700
SM
8241 if (uiout->is_mi_like_p ())
8242 uiout->field_string
8243 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
8244 uiout->message ("[Inferior %s (%s) exited normally]\n",
8245 plongest (inf->num), pidstr.c_str ());
33d62d64 8246 }
33d62d64
JK
8247}
8248
fd664c91
PA
8249void
8250print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 8251{
f303dbd6
PA
8252 struct thread_info *thr = inferior_thread ();
8253
33d62d64
JK
8254 annotate_signal ();
8255
112e8700 8256 if (uiout->is_mi_like_p ())
f303dbd6
PA
8257 ;
8258 else if (show_thread_that_caused_stop ())
33d62d64 8259 {
f303dbd6 8260 const char *name;
33d62d64 8261
112e8700 8262 uiout->text ("\nThread ");
33eca680 8263 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8264
8265 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8266 if (name != NULL)
8267 {
112e8700 8268 uiout->text (" \"");
33eca680 8269 uiout->field_string ("name", name);
112e8700 8270 uiout->text ("\"");
f303dbd6 8271 }
33d62d64 8272 }
f303dbd6 8273 else
112e8700 8274 uiout->text ("\nProgram");
f303dbd6 8275
112e8700
SM
8276 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8277 uiout->text (" stopped");
33d62d64
JK
8278 else
8279 {
112e8700 8280 uiout->text (" received signal ");
8b93c638 8281 annotate_signal_name ();
112e8700
SM
8282 if (uiout->is_mi_like_p ())
8283 uiout->field_string
8284 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8285 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8286 annotate_signal_name_end ();
112e8700 8287 uiout->text (", ");
8b93c638 8288 annotate_signal_string ();
112e8700 8289 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21 8290
272bb05c
JB
8291 struct regcache *regcache = get_current_regcache ();
8292 struct gdbarch *gdbarch = regcache->arch ();
8293 if (gdbarch_report_signal_info_p (gdbarch))
8294 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8295
8b93c638 8296 annotate_signal_string_end ();
33d62d64 8297 }
112e8700 8298 uiout->text (".\n");
33d62d64 8299}
252fbfc8 8300
fd664c91
PA
8301void
8302print_no_history_reason (struct ui_out *uiout)
33d62d64 8303{
112e8700 8304 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8305}
43ff13b4 8306
0c7e1a46
PA
8307/* Print current location without a level number, if we have changed
8308 functions or hit a breakpoint. Print source line if we have one.
8309 bpstat_print contains the logic deciding in detail what to print,
8310 based on the event(s) that just occurred. */
8311
243a9253
PA
8312static void
8313print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8314{
8315 int bpstat_ret;
f486487f 8316 enum print_what source_flag;
0c7e1a46
PA
8317 int do_frame_printing = 1;
8318 struct thread_info *tp = inferior_thread ();
8319
8320 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8321 switch (bpstat_ret)
8322 {
8323 case PRINT_UNKNOWN:
8324 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8325 should) carry around the function and does (or should) use
8326 that when doing a frame comparison. */
8327 if (tp->control.stop_step
8328 && frame_id_eq (tp->control.step_frame_id,
8329 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8330 && (tp->control.step_start_function
8331 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8332 {
8333 /* Finished step, just print source line. */
8334 source_flag = SRC_LINE;
8335 }
8336 else
8337 {
8338 /* Print location and source line. */
8339 source_flag = SRC_AND_LOC;
8340 }
8341 break;
8342 case PRINT_SRC_AND_LOC:
8343 /* Print location and source line. */
8344 source_flag = SRC_AND_LOC;
8345 break;
8346 case PRINT_SRC_ONLY:
8347 source_flag = SRC_LINE;
8348 break;
8349 case PRINT_NOTHING:
8350 /* Something bogus. */
8351 source_flag = SRC_LINE;
8352 do_frame_printing = 0;
8353 break;
8354 default:
8355 internal_error (__FILE__, __LINE__, _("Unknown value."));
8356 }
8357
8358 /* The behavior of this routine with respect to the source
8359 flag is:
8360 SRC_LINE: Print only source line
8361 LOCATION: Print only location
8362 SRC_AND_LOC: Print location and source line. */
8363 if (do_frame_printing)
8364 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8365}
8366
243a9253
PA
8367/* See infrun.h. */
8368
8369void
4c7d57e7 8370print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8371{
243a9253 8372 struct target_waitstatus last;
243a9253
PA
8373 struct thread_info *tp;
8374
5b6d1e4f 8375 get_last_target_status (nullptr, nullptr, &last);
243a9253 8376
67ad9399
TT
8377 {
8378 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8379
67ad9399 8380 print_stop_location (&last);
243a9253 8381
67ad9399 8382 /* Display the auto-display expressions. */
4c7d57e7
TT
8383 if (displays)
8384 do_displays ();
67ad9399 8385 }
243a9253
PA
8386
8387 tp = inferior_thread ();
8388 if (tp->thread_fsm != NULL
46e3ed7f 8389 && tp->thread_fsm->finished_p ())
243a9253
PA
8390 {
8391 struct return_value_info *rv;
8392
46e3ed7f 8393 rv = tp->thread_fsm->return_value ();
243a9253
PA
8394 if (rv != NULL)
8395 print_return_value (uiout, rv);
8396 }
0c7e1a46
PA
8397}
8398
388a7084
PA
8399/* See infrun.h. */
8400
8401void
8402maybe_remove_breakpoints (void)
8403{
55f6301a 8404 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
388a7084
PA
8405 {
8406 if (remove_breakpoints ())
8407 {
223ffa71 8408 target_terminal::ours_for_output ();
388a7084
PA
8409 printf_filtered (_("Cannot remove breakpoints because "
8410 "program is no longer writable.\nFurther "
8411 "execution is probably impossible.\n"));
8412 }
8413 }
8414}
8415
4c2f2a79
PA
8416/* The execution context that just caused a normal stop. */
8417
8418struct stop_context
8419{
2d844eaf 8420 stop_context ();
2d844eaf
TT
8421
8422 DISABLE_COPY_AND_ASSIGN (stop_context);
8423
8424 bool changed () const;
8425
4c2f2a79
PA
8426 /* The stop ID. */
8427 ULONGEST stop_id;
c906108c 8428
4c2f2a79 8429 /* The event PTID. */
c906108c 8430
4c2f2a79
PA
8431 ptid_t ptid;
8432
8433 /* If stopp for a thread event, this is the thread that caused the
8434 stop. */
d634cd0b 8435 thread_info_ref thread;
4c2f2a79
PA
8436
8437 /* The inferior that caused the stop. */
8438 int inf_num;
8439};
8440
2d844eaf 8441/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8442 takes a strong reference to the thread. */
8443
2d844eaf 8444stop_context::stop_context ()
4c2f2a79 8445{
2d844eaf
TT
8446 stop_id = get_stop_id ();
8447 ptid = inferior_ptid;
8448 inf_num = current_inferior ()->num;
4c2f2a79 8449
d7e15655 8450 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8451 {
8452 /* Take a strong reference so that the thread can't be deleted
8453 yet. */
d634cd0b 8454 thread = thread_info_ref::new_reference (inferior_thread ());
4c2f2a79 8455 }
4c2f2a79
PA
8456}
8457
8458/* Return true if the current context no longer matches the saved stop
8459 context. */
8460
2d844eaf
TT
8461bool
8462stop_context::changed () const
8463{
8464 if (ptid != inferior_ptid)
8465 return true;
8466 if (inf_num != current_inferior ()->num)
8467 return true;
8468 if (thread != NULL && thread->state != THREAD_STOPPED)
8469 return true;
8470 if (get_stop_id () != stop_id)
8471 return true;
8472 return false;
4c2f2a79
PA
8473}
8474
8475/* See infrun.h. */
8476
8477int
96baa820 8478normal_stop (void)
c906108c 8479{
73b65bb0 8480 struct target_waitstatus last;
73b65bb0 8481
5b6d1e4f 8482 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8483
4c2f2a79
PA
8484 new_stop_id ();
8485
29f49a6a
PA
8486 /* If an exception is thrown from this point on, make sure to
8487 propagate GDB's knowledge of the executing state to the
8488 frontend/user running state. A QUIT is an easy exception to see
8489 here, so do this before any filtered output. */
731f534f 8490
5b6d1e4f 8491 ptid_t finish_ptid = null_ptid;
731f534f 8492
c35b1492 8493 if (!non_stop)
5b6d1e4f 8494 finish_ptid = minus_one_ptid;
e1316e60
PA
8495 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8496 || last.kind == TARGET_WAITKIND_EXITED)
8497 {
8498 /* On some targets, we may still have live threads in the
8499 inferior when we get a process exit event. E.g., for
8500 "checkpoint", when the current checkpoint/fork exits,
8501 linux-fork.c automatically switches to another fork from
8502 within target_mourn_inferior. */
731f534f 8503 if (inferior_ptid != null_ptid)
5b6d1e4f 8504 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8505 }
8506 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8507 finish_ptid = inferior_ptid;
8508
8509 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8510 if (finish_ptid != null_ptid)
8511 {
8512 maybe_finish_thread_state.emplace
8513 (user_visible_resume_target (finish_ptid), finish_ptid);
8514 }
29f49a6a 8515
b57bacec
PA
8516 /* As we're presenting a stop, and potentially removing breakpoints,
8517 update the thread list so we can tell whether there are threads
8518 running on the target. With target remote, for example, we can
8519 only learn about new threads when we explicitly update the thread
8520 list. Do this before notifying the interpreters about signal
8521 stops, end of stepping ranges, etc., so that the "new thread"
8522 output is emitted before e.g., "Program received signal FOO",
8523 instead of after. */
8524 update_thread_list ();
8525
8526 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8527 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8528
c906108c
SS
8529 /* As with the notification of thread events, we want to delay
8530 notifying the user that we've switched thread context until
8531 the inferior actually stops.
8532
73b65bb0
DJ
8533 There's no point in saying anything if the inferior has exited.
8534 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8535 "received a signal".
8536
8537 Also skip saying anything in non-stop mode. In that mode, as we
8538 don't want GDB to switch threads behind the user's back, to avoid
8539 races where the user is typing a command to apply to thread x,
8540 but GDB switches to thread y before the user finishes entering
8541 the command, fetch_inferior_event installs a cleanup to restore
8542 the current thread back to the thread the user had selected right
8543 after this event is handled, so we're not really switching, only
8544 informing of a stop. */
4f8d22e3 8545 if (!non_stop
731f534f 8546 && previous_inferior_ptid != inferior_ptid
55f6301a 8547 && target_has_execution ()
73b65bb0 8548 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8549 && last.kind != TARGET_WAITKIND_EXITED
8550 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8551 {
0e454242 8552 SWITCH_THRU_ALL_UIS ()
3b12939d 8553 {
223ffa71 8554 target_terminal::ours_for_output ();
3b12939d 8555 printf_filtered (_("[Switching to %s]\n"),
a068643d 8556 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8557 annotate_thread_changed ();
8558 }
39f77062 8559 previous_inferior_ptid = inferior_ptid;
c906108c 8560 }
c906108c 8561
0e5bf2a8
PA
8562 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8563 {
0e454242 8564 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8565 if (current_ui->prompt_state == PROMPT_BLOCKED)
8566 {
223ffa71 8567 target_terminal::ours_for_output ();
3b12939d
PA
8568 printf_filtered (_("No unwaited-for children left.\n"));
8569 }
0e5bf2a8
PA
8570 }
8571
b57bacec 8572 /* Note: this depends on the update_thread_list call above. */
388a7084 8573 maybe_remove_breakpoints ();
c906108c 8574
c906108c
SS
8575 /* If an auto-display called a function and that got a signal,
8576 delete that auto-display to avoid an infinite recursion. */
8577
8578 if (stopped_by_random_signal)
8579 disable_current_display ();
8580
0e454242 8581 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8582 {
8583 async_enable_stdin ();
8584 }
c906108c 8585
388a7084 8586 /* Let the user/frontend see the threads as stopped. */
731f534f 8587 maybe_finish_thread_state.reset ();
388a7084
PA
8588
8589 /* Select innermost stack frame - i.e., current frame is frame 0,
8590 and current location is based on that. Handle the case where the
8591 dummy call is returning after being stopped. E.g. the dummy call
8592 previously hit a breakpoint. (If the dummy call returns
8593 normally, we won't reach here.) Do this before the stop hook is
8594 run, so that it doesn't get to see the temporary dummy frame,
8595 which is not where we'll present the stop. */
8596 if (has_stack_frames ())
8597 {
8598 if (stop_stack_dummy == STOP_STACK_DUMMY)
8599 {
8600 /* Pop the empty frame that contains the stack dummy. This
8601 also restores inferior state prior to the call (struct
8602 infcall_suspend_state). */
8603 struct frame_info *frame = get_current_frame ();
8604
8605 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8606 frame_pop (frame);
8607 /* frame_pop calls reinit_frame_cache as the last thing it
8608 does which means there's now no selected frame. */
8609 }
8610
8611 select_frame (get_current_frame ());
8612
8613 /* Set the current source location. */
8614 set_current_sal_from_frame (get_current_frame ());
8615 }
dd7e2d2b
PA
8616
8617 /* Look up the hook_stop and run it (CLI internally handles problem
8618 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8619 if (stop_command != NULL)
8620 {
2d844eaf 8621 stop_context saved_context;
4c2f2a79 8622
a70b8144 8623 try
bf469271
PA
8624 {
8625 execute_cmd_pre_hook (stop_command);
8626 }
230d2906 8627 catch (const gdb_exception &ex)
bf469271
PA
8628 {
8629 exception_fprintf (gdb_stderr, ex,
8630 "Error while running hook_stop:\n");
8631 }
4c2f2a79
PA
8632
8633 /* If the stop hook resumes the target, then there's no point in
8634 trying to notify about the previous stop; its context is
8635 gone. Likewise if the command switches thread or inferior --
8636 the observers would print a stop for the wrong
8637 thread/inferior. */
2d844eaf
TT
8638 if (saved_context.changed ())
8639 return 1;
4c2f2a79 8640 }
dd7e2d2b 8641
388a7084
PA
8642 /* Notify observers about the stop. This is where the interpreters
8643 print the stop event. */
d7e15655 8644 if (inferior_ptid != null_ptid)
76727919 8645 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
24a7f1b5 8646 stop_print_frame);
388a7084 8647 else
76727919 8648 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8649
243a9253
PA
8650 annotate_stopped ();
8651
55f6301a 8652 if (target_has_execution ())
48844aa6
PA
8653 {
8654 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8655 && last.kind != TARGET_WAITKIND_EXITED
8656 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8657 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8658 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8659 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8660 }
6c95b8df
PA
8661
8662 /* Try to get rid of automatically added inferiors that are no
8663 longer needed. Keeping those around slows down things linearly.
8664 Note that this never removes the current inferior. */
8665 prune_inferiors ();
4c2f2a79
PA
8666
8667 return 0;
c906108c 8668}
c906108c 8669\f
c5aa993b 8670int
96baa820 8671signal_stop_state (int signo)
c906108c 8672{
d6b48e9c 8673 return signal_stop[signo];
c906108c
SS
8674}
8675
c5aa993b 8676int
96baa820 8677signal_print_state (int signo)
c906108c
SS
8678{
8679 return signal_print[signo];
8680}
8681
c5aa993b 8682int
96baa820 8683signal_pass_state (int signo)
c906108c
SS
8684{
8685 return signal_program[signo];
8686}
8687
2455069d
UW
8688static void
8689signal_cache_update (int signo)
8690{
8691 if (signo == -1)
8692 {
a493e3e2 8693 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8694 signal_cache_update (signo);
8695
8696 return;
8697 }
8698
8699 signal_pass[signo] = (signal_stop[signo] == 0
8700 && signal_print[signo] == 0
ab04a2af
TT
8701 && signal_program[signo] == 1
8702 && signal_catch[signo] == 0);
2455069d
UW
8703}
8704
488f131b 8705int
7bda5e4a 8706signal_stop_update (int signo, int state)
d4f3574e
SS
8707{
8708 int ret = signal_stop[signo];
abbb1732 8709
d4f3574e 8710 signal_stop[signo] = state;
2455069d 8711 signal_cache_update (signo);
d4f3574e
SS
8712 return ret;
8713}
8714
488f131b 8715int
7bda5e4a 8716signal_print_update (int signo, int state)
d4f3574e
SS
8717{
8718 int ret = signal_print[signo];
abbb1732 8719
d4f3574e 8720 signal_print[signo] = state;
2455069d 8721 signal_cache_update (signo);
d4f3574e
SS
8722 return ret;
8723}
8724
488f131b 8725int
7bda5e4a 8726signal_pass_update (int signo, int state)
d4f3574e
SS
8727{
8728 int ret = signal_program[signo];
abbb1732 8729
d4f3574e 8730 signal_program[signo] = state;
2455069d 8731 signal_cache_update (signo);
d4f3574e
SS
8732 return ret;
8733}
8734
ab04a2af
TT
8735/* Update the global 'signal_catch' from INFO and notify the
8736 target. */
8737
8738void
8739signal_catch_update (const unsigned int *info)
8740{
8741 int i;
8742
8743 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8744 signal_catch[i] = info[i] > 0;
8745 signal_cache_update (-1);
adc6a863 8746 target_pass_signals (signal_pass);
ab04a2af
TT
8747}
8748
c906108c 8749static void
96baa820 8750sig_print_header (void)
c906108c 8751{
3e43a32a
MS
8752 printf_filtered (_("Signal Stop\tPrint\tPass "
8753 "to program\tDescription\n"));
c906108c
SS
8754}
8755
8756static void
2ea28649 8757sig_print_info (enum gdb_signal oursig)
c906108c 8758{
2ea28649 8759 const char *name = gdb_signal_to_name (oursig);
c906108c 8760 int name_padding = 13 - strlen (name);
96baa820 8761
c906108c
SS
8762 if (name_padding <= 0)
8763 name_padding = 0;
8764
8765 printf_filtered ("%s", name);
488f131b 8766 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8767 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8768 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8769 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8770 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8771}
8772
8773/* Specify how various signals in the inferior should be handled. */
8774
8775static void
0b39b52e 8776handle_command (const char *args, int from_tty)
c906108c 8777{
c906108c 8778 int digits, wordlen;
b926417a 8779 int sigfirst, siglast;
2ea28649 8780 enum gdb_signal oursig;
c906108c 8781 int allsigs;
c906108c
SS
8782
8783 if (args == NULL)
8784 {
e2e0b3e5 8785 error_no_arg (_("signal to handle"));
c906108c
SS
8786 }
8787
1777feb0 8788 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8789
adc6a863
PA
8790 const size_t nsigs = GDB_SIGNAL_LAST;
8791 unsigned char sigs[nsigs] {};
c906108c 8792
1777feb0 8793 /* Break the command line up into args. */
c906108c 8794
773a1edc 8795 gdb_argv built_argv (args);
c906108c
SS
8796
8797 /* Walk through the args, looking for signal oursigs, signal names, and
8798 actions. Signal numbers and signal names may be interspersed with
8799 actions, with the actions being performed for all signals cumulatively
1777feb0 8800 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8801
773a1edc 8802 for (char *arg : built_argv)
c906108c 8803 {
773a1edc
TT
8804 wordlen = strlen (arg);
8805 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8806 {;
8807 }
8808 allsigs = 0;
8809 sigfirst = siglast = -1;
8810
773a1edc 8811 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8812 {
8813 /* Apply action to all signals except those used by the
1777feb0 8814 debugger. Silently skip those. */
c906108c
SS
8815 allsigs = 1;
8816 sigfirst = 0;
8817 siglast = nsigs - 1;
8818 }
773a1edc 8819 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8820 {
8821 SET_SIGS (nsigs, sigs, signal_stop);
8822 SET_SIGS (nsigs, sigs, signal_print);
8823 }
773a1edc 8824 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8825 {
8826 UNSET_SIGS (nsigs, sigs, signal_program);
8827 }
773a1edc 8828 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8829 {
8830 SET_SIGS (nsigs, sigs, signal_print);
8831 }
773a1edc 8832 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8833 {
8834 SET_SIGS (nsigs, sigs, signal_program);
8835 }
773a1edc 8836 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8837 {
8838 UNSET_SIGS (nsigs, sigs, signal_stop);
8839 }
773a1edc 8840 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8841 {
8842 SET_SIGS (nsigs, sigs, signal_program);
8843 }
773a1edc 8844 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8845 {
8846 UNSET_SIGS (nsigs, sigs, signal_print);
8847 UNSET_SIGS (nsigs, sigs, signal_stop);
8848 }
773a1edc 8849 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8850 {
8851 UNSET_SIGS (nsigs, sigs, signal_program);
8852 }
8853 else if (digits > 0)
8854 {
8855 /* It is numeric. The numeric signal refers to our own
8856 internal signal numbering from target.h, not to host/target
8857 signal number. This is a feature; users really should be
8858 using symbolic names anyway, and the common ones like
8859 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8860
8861 sigfirst = siglast = (int)
773a1edc
TT
8862 gdb_signal_from_command (atoi (arg));
8863 if (arg[digits] == '-')
c906108c
SS
8864 {
8865 siglast = (int)
773a1edc 8866 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8867 }
8868 if (sigfirst > siglast)
8869 {
1777feb0 8870 /* Bet he didn't figure we'd think of this case... */
b926417a 8871 std::swap (sigfirst, siglast);
c906108c
SS
8872 }
8873 }
8874 else
8875 {
773a1edc 8876 oursig = gdb_signal_from_name (arg);
a493e3e2 8877 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8878 {
8879 sigfirst = siglast = (int) oursig;
8880 }
8881 else
8882 {
8883 /* Not a number and not a recognized flag word => complain. */
773a1edc 8884 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8885 }
8886 }
8887
8888 /* If any signal numbers or symbol names were found, set flags for
dda83cd7 8889 which signals to apply actions to. */
c906108c 8890
b926417a 8891 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8892 {
2ea28649 8893 switch ((enum gdb_signal) signum)
c906108c 8894 {
a493e3e2
PA
8895 case GDB_SIGNAL_TRAP:
8896 case GDB_SIGNAL_INT:
c906108c
SS
8897 if (!allsigs && !sigs[signum])
8898 {
9e2f0ad4 8899 if (query (_("%s is used by the debugger.\n\
3e43a32a 8900Are you sure you want to change it? "),
2ea28649 8901 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8902 {
8903 sigs[signum] = 1;
8904 }
8905 else
c119e040 8906 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8907 }
8908 break;
a493e3e2
PA
8909 case GDB_SIGNAL_0:
8910 case GDB_SIGNAL_DEFAULT:
8911 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8912 /* Make sure that "all" doesn't print these. */
8913 break;
8914 default:
8915 sigs[signum] = 1;
8916 break;
8917 }
8918 }
c906108c
SS
8919 }
8920
b926417a 8921 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8922 if (sigs[signum])
8923 {
2455069d 8924 signal_cache_update (-1);
adc6a863
PA
8925 target_pass_signals (signal_pass);
8926 target_program_signals (signal_program);
c906108c 8927
3a031f65
PA
8928 if (from_tty)
8929 {
8930 /* Show the results. */
8931 sig_print_header ();
8932 for (; signum < nsigs; signum++)
8933 if (sigs[signum])
aead7601 8934 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8935 }
8936
8937 break;
8938 }
c906108c
SS
8939}
8940
de0bea00
MF
8941/* Complete the "handle" command. */
8942
eb3ff9a5 8943static void
de0bea00 8944handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8945 completion_tracker &tracker,
6f937416 8946 const char *text, const char *word)
de0bea00 8947{
de0bea00
MF
8948 static const char * const keywords[] =
8949 {
8950 "all",
8951 "stop",
8952 "ignore",
8953 "print",
8954 "pass",
8955 "nostop",
8956 "noignore",
8957 "noprint",
8958 "nopass",
8959 NULL,
8960 };
8961
eb3ff9a5
PA
8962 signal_completer (ignore, tracker, text, word);
8963 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8964}
8965
2ea28649
PA
8966enum gdb_signal
8967gdb_signal_from_command (int num)
ed01b82c
PA
8968{
8969 if (num >= 1 && num <= 15)
2ea28649 8970 return (enum gdb_signal) num;
ed01b82c
PA
8971 error (_("Only signals 1-15 are valid as numeric signals.\n\
8972Use \"info signals\" for a list of symbolic signals."));
8973}
8974
c906108c
SS
8975/* Print current contents of the tables set by the handle command.
8976 It is possible we should just be printing signals actually used
8977 by the current target (but for things to work right when switching
8978 targets, all signals should be in the signal tables). */
8979
8980static void
1d12d88f 8981info_signals_command (const char *signum_exp, int from_tty)
c906108c 8982{
2ea28649 8983 enum gdb_signal oursig;
abbb1732 8984
c906108c
SS
8985 sig_print_header ();
8986
8987 if (signum_exp)
8988 {
8989 /* First see if this is a symbol name. */
2ea28649 8990 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8991 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8992 {
8993 /* No, try numeric. */
8994 oursig =
2ea28649 8995 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8996 }
8997 sig_print_info (oursig);
8998 return;
8999 }
9000
9001 printf_filtered ("\n");
9002 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
9003 for (oursig = GDB_SIGNAL_FIRST;
9004 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 9005 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
9006 {
9007 QUIT;
9008
a493e3e2
PA
9009 if (oursig != GDB_SIGNAL_UNKNOWN
9010 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
9011 sig_print_info (oursig);
9012 }
9013
3e43a32a
MS
9014 printf_filtered (_("\nUse the \"handle\" command "
9015 "to change these tables.\n"));
c906108c 9016}
4aa995e1
PA
9017
9018/* The $_siginfo convenience variable is a bit special. We don't know
9019 for sure the type of the value until we actually have a chance to
7a9dd1b2 9020 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
9021 also dependent on which thread you have selected.
9022
9023 1. making $_siginfo be an internalvar that creates a new value on
9024 access.
9025
9026 2. making the value of $_siginfo be an lval_computed value. */
9027
9028/* This function implements the lval_computed support for reading a
9029 $_siginfo value. */
9030
9031static void
9032siginfo_value_read (struct value *v)
9033{
9034 LONGEST transferred;
9035
a911d87a
PA
9036 /* If we can access registers, so can we access $_siginfo. Likewise
9037 vice versa. */
9038 validate_registers_access ();
c709acd1 9039
4aa995e1 9040 transferred =
328d42d8
SM
9041 target_read (current_inferior ()->top_target (),
9042 TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
9043 NULL,
9044 value_contents_all_raw (v),
9045 value_offset (v),
9046 TYPE_LENGTH (value_type (v)));
9047
9048 if (transferred != TYPE_LENGTH (value_type (v)))
9049 error (_("Unable to read siginfo"));
9050}
9051
9052/* This function implements the lval_computed support for writing a
9053 $_siginfo value. */
9054
9055static void
9056siginfo_value_write (struct value *v, struct value *fromval)
9057{
9058 LONGEST transferred;
9059
a911d87a
PA
9060 /* If we can access registers, so can we access $_siginfo. Likewise
9061 vice versa. */
9062 validate_registers_access ();
c709acd1 9063
328d42d8 9064 transferred = target_write (current_inferior ()->top_target (),
4aa995e1
PA
9065 TARGET_OBJECT_SIGNAL_INFO,
9066 NULL,
9067 value_contents_all_raw (fromval),
9068 value_offset (v),
9069 TYPE_LENGTH (value_type (fromval)));
9070
9071 if (transferred != TYPE_LENGTH (value_type (fromval)))
9072 error (_("Unable to write siginfo"));
9073}
9074
c8f2448a 9075static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
9076 {
9077 siginfo_value_read,
9078 siginfo_value_write
9079 };
9080
9081/* Return a new value with the correct type for the siginfo object of
78267919
UW
9082 the current thread using architecture GDBARCH. Return a void value
9083 if there's no object available. */
4aa995e1 9084
2c0b251b 9085static struct value *
22d2b532
SDJ
9086siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9087 void *ignore)
4aa995e1 9088{
841de120 9089 if (target_has_stack ()
d7e15655 9090 && inferior_ptid != null_ptid
78267919 9091 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 9092 {
78267919 9093 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 9094
78267919 9095 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
9096 }
9097
78267919 9098 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
9099}
9100
c906108c 9101\f
16c381f0
JK
9102/* infcall_suspend_state contains state about the program itself like its
9103 registers and any signal it received when it last stopped.
9104 This state must be restored regardless of how the inferior function call
9105 ends (either successfully, or after it hits a breakpoint or signal)
9106 if the program is to properly continue where it left off. */
9107
6bf78e29 9108class infcall_suspend_state
7a292a7a 9109{
6bf78e29
AB
9110public:
9111 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9112 once the inferior function call has finished. */
9113 infcall_suspend_state (struct gdbarch *gdbarch,
dda83cd7
SM
9114 const struct thread_info *tp,
9115 struct regcache *regcache)
6bf78e29
AB
9116 : m_thread_suspend (tp->suspend),
9117 m_registers (new readonly_detached_regcache (*regcache))
9118 {
9119 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9120
9121 if (gdbarch_get_siginfo_type_p (gdbarch))
9122 {
dda83cd7
SM
9123 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9124 size_t len = TYPE_LENGTH (type);
6bf78e29 9125
dda83cd7 9126 siginfo_data.reset ((gdb_byte *) xmalloc (len));
6bf78e29 9127
328d42d8
SM
9128 if (target_read (current_inferior ()->top_target (),
9129 TARGET_OBJECT_SIGNAL_INFO, NULL,
dda83cd7
SM
9130 siginfo_data.get (), 0, len) != len)
9131 {
9132 /* Errors ignored. */
9133 siginfo_data.reset (nullptr);
9134 }
6bf78e29
AB
9135 }
9136
9137 if (siginfo_data)
9138 {
dda83cd7
SM
9139 m_siginfo_gdbarch = gdbarch;
9140 m_siginfo_data = std::move (siginfo_data);
6bf78e29
AB
9141 }
9142 }
9143
9144 /* Return a pointer to the stored register state. */
16c381f0 9145
6bf78e29
AB
9146 readonly_detached_regcache *registers () const
9147 {
9148 return m_registers.get ();
9149 }
9150
9151 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9152
9153 void restore (struct gdbarch *gdbarch,
dda83cd7
SM
9154 struct thread_info *tp,
9155 struct regcache *regcache) const
6bf78e29
AB
9156 {
9157 tp->suspend = m_thread_suspend;
9158
9159 if (m_siginfo_gdbarch == gdbarch)
9160 {
dda83cd7 9161 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6bf78e29 9162
dda83cd7 9163 /* Errors ignored. */
328d42d8
SM
9164 target_write (current_inferior ()->top_target (),
9165 TARGET_OBJECT_SIGNAL_INFO, NULL,
dda83cd7 9166 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
6bf78e29
AB
9167 }
9168
9169 /* The inferior can be gone if the user types "print exit(0)"
9170 (and perhaps other times). */
55f6301a 9171 if (target_has_execution ())
6bf78e29
AB
9172 /* NB: The register write goes through to the target. */
9173 regcache->restore (registers ());
9174 }
9175
9176private:
9177 /* How the current thread stopped before the inferior function call was
9178 executed. */
9179 struct thread_suspend_state m_thread_suspend;
9180
9181 /* The registers before the inferior function call was executed. */
9182 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 9183
35515841 9184 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 9185 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
9186
9187 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9188 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9189 content would be invalid. */
6bf78e29 9190 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
9191};
9192
cb524840
TT
9193infcall_suspend_state_up
9194save_infcall_suspend_state ()
b89667eb 9195{
b89667eb 9196 struct thread_info *tp = inferior_thread ();
1736ad11 9197 struct regcache *regcache = get_current_regcache ();
ac7936df 9198 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 9199
6bf78e29
AB
9200 infcall_suspend_state_up inf_state
9201 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 9202
6bf78e29
AB
9203 /* Having saved the current state, adjust the thread state, discarding
9204 any stop signal information. The stop signal is not useful when
9205 starting an inferior function call, and run_inferior_call will not use
9206 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 9207 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 9208
b89667eb
DE
9209 return inf_state;
9210}
9211
9212/* Restore inferior session state to INF_STATE. */
9213
9214void
16c381f0 9215restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
9216{
9217 struct thread_info *tp = inferior_thread ();
1736ad11 9218 struct regcache *regcache = get_current_regcache ();
ac7936df 9219 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 9220
6bf78e29 9221 inf_state->restore (gdbarch, tp, regcache);
16c381f0 9222 discard_infcall_suspend_state (inf_state);
b89667eb
DE
9223}
9224
b89667eb 9225void
16c381f0 9226discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 9227{
dd848631 9228 delete inf_state;
b89667eb
DE
9229}
9230
daf6667d 9231readonly_detached_regcache *
16c381f0 9232get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 9233{
6bf78e29 9234 return inf_state->registers ();
b89667eb
DE
9235}
9236
16c381f0
JK
9237/* infcall_control_state contains state regarding gdb's control of the
9238 inferior itself like stepping control. It also contains session state like
9239 the user's currently selected frame. */
b89667eb 9240
16c381f0 9241struct infcall_control_state
b89667eb 9242{
16c381f0
JK
9243 struct thread_control_state thread_control;
9244 struct inferior_control_state inferior_control;
d82142e2
JK
9245
9246 /* Other fields: */
ee841dd8
TT
9247 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9248 int stopped_by_random_signal = 0;
7a292a7a 9249
79952e69
PA
9250 /* ID and level of the selected frame when the inferior function
9251 call was made. */
ee841dd8 9252 struct frame_id selected_frame_id {};
79952e69 9253 int selected_frame_level = -1;
7a292a7a
SS
9254};
9255
c906108c 9256/* Save all of the information associated with the inferior<==>gdb
b89667eb 9257 connection. */
c906108c 9258
cb524840
TT
9259infcall_control_state_up
9260save_infcall_control_state ()
c906108c 9261{
cb524840 9262 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9263 struct thread_info *tp = inferior_thread ();
d6b48e9c 9264 struct inferior *inf = current_inferior ();
7a292a7a 9265
16c381f0
JK
9266 inf_status->thread_control = tp->control;
9267 inf_status->inferior_control = inf->control;
d82142e2 9268
8358c15c 9269 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9270 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9271
16c381f0
JK
9272 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9273 chain. If caller's caller is walking the chain, they'll be happier if we
9274 hand them back the original chain when restore_infcall_control_state is
9275 called. */
9276 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9277
9278 /* Other fields: */
9279 inf_status->stop_stack_dummy = stop_stack_dummy;
9280 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9281
79952e69
PA
9282 save_selected_frame (&inf_status->selected_frame_id,
9283 &inf_status->selected_frame_level);
b89667eb 9284
7a292a7a 9285 return inf_status;
c906108c
SS
9286}
9287
b89667eb
DE
9288/* Restore inferior session state to INF_STATUS. */
9289
c906108c 9290void
16c381f0 9291restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9292{
4e1c45ea 9293 struct thread_info *tp = inferior_thread ();
d6b48e9c 9294 struct inferior *inf = current_inferior ();
4e1c45ea 9295
8358c15c
JK
9296 if (tp->control.step_resume_breakpoint)
9297 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9298
5b79abe7
TT
9299 if (tp->control.exception_resume_breakpoint)
9300 tp->control.exception_resume_breakpoint->disposition
9301 = disp_del_at_next_stop;
9302
d82142e2 9303 /* Handle the bpstat_copy of the chain. */
16c381f0 9304 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9305
16c381f0
JK
9306 tp->control = inf_status->thread_control;
9307 inf->control = inf_status->inferior_control;
d82142e2
JK
9308
9309 /* Other fields: */
9310 stop_stack_dummy = inf_status->stop_stack_dummy;
9311 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9312
841de120 9313 if (target_has_stack ())
c906108c 9314 {
79952e69
PA
9315 restore_selected_frame (inf_status->selected_frame_id,
9316 inf_status->selected_frame_level);
c906108c 9317 }
c906108c 9318
ee841dd8 9319 delete inf_status;
7a292a7a 9320}
c906108c
SS
9321
9322void
16c381f0 9323discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9324{
8358c15c
JK
9325 if (inf_status->thread_control.step_resume_breakpoint)
9326 inf_status->thread_control.step_resume_breakpoint->disposition
9327 = disp_del_at_next_stop;
9328
5b79abe7
TT
9329 if (inf_status->thread_control.exception_resume_breakpoint)
9330 inf_status->thread_control.exception_resume_breakpoint->disposition
9331 = disp_del_at_next_stop;
9332
1777feb0 9333 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9334 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9335
ee841dd8 9336 delete inf_status;
7a292a7a 9337}
b89667eb 9338\f
7f89fd65 9339/* See infrun.h. */
0c557179
SDJ
9340
9341void
9342clear_exit_convenience_vars (void)
9343{
9344 clear_internalvar (lookup_internalvar ("_exitsignal"));
9345 clear_internalvar (lookup_internalvar ("_exitcode"));
9346}
c5aa993b 9347\f
488f131b 9348
b2175913
MS
9349/* User interface for reverse debugging:
9350 Set exec-direction / show exec-direction commands
9351 (returns error unless target implements to_set_exec_direction method). */
9352
170742de 9353enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9354static const char exec_forward[] = "forward";
9355static const char exec_reverse[] = "reverse";
9356static const char *exec_direction = exec_forward;
40478521 9357static const char *const exec_direction_names[] = {
b2175913
MS
9358 exec_forward,
9359 exec_reverse,
9360 NULL
9361};
9362
9363static void
eb4c3f4a 9364set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9365 struct cmd_list_element *cmd)
9366{
05374cfd 9367 if (target_can_execute_reverse ())
b2175913
MS
9368 {
9369 if (!strcmp (exec_direction, exec_forward))
9370 execution_direction = EXEC_FORWARD;
9371 else if (!strcmp (exec_direction, exec_reverse))
9372 execution_direction = EXEC_REVERSE;
9373 }
8bbed405
MS
9374 else
9375 {
9376 exec_direction = exec_forward;
9377 error (_("Target does not support this operation."));
9378 }
b2175913
MS
9379}
9380
9381static void
9382show_exec_direction_func (struct ui_file *out, int from_tty,
9383 struct cmd_list_element *cmd, const char *value)
9384{
9385 switch (execution_direction) {
9386 case EXEC_FORWARD:
9387 fprintf_filtered (out, _("Forward.\n"));
9388 break;
9389 case EXEC_REVERSE:
9390 fprintf_filtered (out, _("Reverse.\n"));
9391 break;
b2175913 9392 default:
d8b34453
PA
9393 internal_error (__FILE__, __LINE__,
9394 _("bogus execution_direction value: %d"),
9395 (int) execution_direction);
b2175913
MS
9396 }
9397}
9398
d4db2f36
PA
9399static void
9400show_schedule_multiple (struct ui_file *file, int from_tty,
9401 struct cmd_list_element *c, const char *value)
9402{
3e43a32a
MS
9403 fprintf_filtered (file, _("Resuming the execution of threads "
9404 "of all processes is %s.\n"), value);
d4db2f36 9405}
ad52ddc6 9406
22d2b532
SDJ
9407/* Implementation of `siginfo' variable. */
9408
9409static const struct internalvar_funcs siginfo_funcs =
9410{
9411 siginfo_make_value,
9412 NULL,
9413 NULL
9414};
9415
372316f1
PA
9416/* Callback for infrun's target events source. This is marked when a
9417 thread has a pending status to process. */
9418
9419static void
9420infrun_async_inferior_event_handler (gdb_client_data data)
9421{
6b36ddeb 9422 clear_async_event_handler (infrun_async_inferior_event_token);
b1a35af2 9423 inferior_event_handler (INF_REG_EVENT);
372316f1
PA
9424}
9425
8087c3fa 9426#if GDB_SELF_TEST
b161a60d
SM
9427namespace selftests
9428{
9429
9430/* Verify that when two threads with the same ptid exist (from two different
9431 targets) and one of them changes ptid, we only update inferior_ptid if
9432 it is appropriate. */
9433
9434static void
9435infrun_thread_ptid_changed ()
9436{
9437 gdbarch *arch = current_inferior ()->gdbarch;
9438
9439 /* The thread which inferior_ptid represents changes ptid. */
9440 {
9441 scoped_restore_current_pspace_and_thread restore;
9442
9443 scoped_mock_context<test_target_ops> target1 (arch);
9444 scoped_mock_context<test_target_ops> target2 (arch);
9445 target2.mock_inferior.next = &target1.mock_inferior;
9446
9447 ptid_t old_ptid (111, 222);
9448 ptid_t new_ptid (111, 333);
9449
9450 target1.mock_inferior.pid = old_ptid.pid ();
9451 target1.mock_thread.ptid = old_ptid;
9452 target2.mock_inferior.pid = old_ptid.pid ();
9453 target2.mock_thread.ptid = old_ptid;
9454
9455 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9456 set_current_inferior (&target1.mock_inferior);
9457
9458 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9459
9460 gdb_assert (inferior_ptid == new_ptid);
9461 }
9462
9463 /* A thread with the same ptid as inferior_ptid, but from another target,
9464 changes ptid. */
9465 {
9466 scoped_restore_current_pspace_and_thread restore;
9467
9468 scoped_mock_context<test_target_ops> target1 (arch);
9469 scoped_mock_context<test_target_ops> target2 (arch);
9470 target2.mock_inferior.next = &target1.mock_inferior;
9471
9472 ptid_t old_ptid (111, 222);
9473 ptid_t new_ptid (111, 333);
9474
9475 target1.mock_inferior.pid = old_ptid.pid ();
9476 target1.mock_thread.ptid = old_ptid;
9477 target2.mock_inferior.pid = old_ptid.pid ();
9478 target2.mock_thread.ptid = old_ptid;
9479
9480 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9481 set_current_inferior (&target2.mock_inferior);
9482
9483 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9484
9485 gdb_assert (inferior_ptid == old_ptid);
9486 }
9487}
9488
9489} /* namespace selftests */
9490
8087c3fa
JB
9491#endif /* GDB_SELF_TEST */
9492
6c265988 9493void _initialize_infrun ();
c906108c 9494void
6c265988 9495_initialize_infrun ()
c906108c 9496{
de0bea00 9497 struct cmd_list_element *c;
c906108c 9498
372316f1
PA
9499 /* Register extra event sources in the event loop. */
9500 infrun_async_inferior_event_token
db20ebdf
SM
9501 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9502 "infrun");
372316f1 9503
11db9430 9504 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9505What debugger does when program gets various signals.\n\
9506Specify a signal as argument to print info on that signal only."));
c906108c
SS
9507 add_info_alias ("handle", "signals", 0);
9508
de0bea00 9509 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9510Specify how to handle signals.\n\
486c7739 9511Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9512Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9513If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9514will be displayed instead.\n\
9515\n\
c906108c
SS
9516Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9517from 1-15 are allowed for compatibility with old versions of GDB.\n\
9518Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9519The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9520used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9521\n\
1bedd215 9522Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9523\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9524Stop means reenter debugger if this signal happens (implies print).\n\
9525Print means print a message if this signal happens.\n\
9526Pass means let program see this signal; otherwise program doesn't know.\n\
9527Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9528Pass and Stop may be combined.\n\
9529\n\
9530Multiple signals may be specified. Signal numbers and signal names\n\
9531may be interspersed with actions, with the actions being performed for\n\
9532all signals cumulatively specified."));
de0bea00 9533 set_cmd_completer (c, handle_completer);
486c7739 9534
c906108c 9535 if (!dbx_commands)
1a966eab
AC
9536 stop_command = add_cmd ("stop", class_obscure,
9537 not_just_help_class_command, _("\
9538There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9539This allows you to set a list of commands to be run each time execution\n\
1a966eab 9540of the program stops."), &cmdlist);
c906108c 9541
94ba44a6
SM
9542 add_setshow_boolean_cmd
9543 ("infrun", class_maintenance, &debug_infrun,
9544 _("Set inferior debugging."),
9545 _("Show inferior debugging."),
9546 _("When non-zero, inferior specific debugging is enabled."),
9547 NULL, show_debug_infrun, &setdebuglist, &showdebuglist);
527159b7 9548
ad52ddc6
PA
9549 add_setshow_boolean_cmd ("non-stop", no_class,
9550 &non_stop_1, _("\
9551Set whether gdb controls the inferior in non-stop mode."), _("\
9552Show whether gdb controls the inferior in non-stop mode."), _("\
9553When debugging a multi-threaded program and this setting is\n\
9554off (the default, also called all-stop mode), when one thread stops\n\
9555(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9556all other threads in the program while you interact with the thread of\n\
9557interest. When you continue or step a thread, you can allow the other\n\
9558threads to run, or have them remain stopped, but while you inspect any\n\
9559thread's state, all threads stop.\n\
9560\n\
9561In non-stop mode, when one thread stops, other threads can continue\n\
9562to run freely. You'll be able to step each thread independently,\n\
9563leave it stopped or free to run as needed."),
9564 set_non_stop,
9565 show_non_stop,
9566 &setlist,
9567 &showlist);
9568
adc6a863 9569 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9570 {
9571 signal_stop[i] = 1;
9572 signal_print[i] = 1;
9573 signal_program[i] = 1;
ab04a2af 9574 signal_catch[i] = 0;
c906108c
SS
9575 }
9576
4d9d9d04
PA
9577 /* Signals caused by debugger's own actions should not be given to
9578 the program afterwards.
9579
9580 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9581 explicitly specifies that it should be delivered to the target
9582 program. Typically, that would occur when a user is debugging a
9583 target monitor on a simulator: the target monitor sets a
9584 breakpoint; the simulator encounters this breakpoint and halts
9585 the simulation handing control to GDB; GDB, noting that the stop
9586 address doesn't map to any known breakpoint, returns control back
9587 to the simulator; the simulator then delivers the hardware
9588 equivalent of a GDB_SIGNAL_TRAP to the program being
9589 debugged. */
a493e3e2
PA
9590 signal_program[GDB_SIGNAL_TRAP] = 0;
9591 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9592
9593 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9594 signal_stop[GDB_SIGNAL_ALRM] = 0;
9595 signal_print[GDB_SIGNAL_ALRM] = 0;
9596 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9597 signal_print[GDB_SIGNAL_VTALRM] = 0;
9598 signal_stop[GDB_SIGNAL_PROF] = 0;
9599 signal_print[GDB_SIGNAL_PROF] = 0;
9600 signal_stop[GDB_SIGNAL_CHLD] = 0;
9601 signal_print[GDB_SIGNAL_CHLD] = 0;
9602 signal_stop[GDB_SIGNAL_IO] = 0;
9603 signal_print[GDB_SIGNAL_IO] = 0;
9604 signal_stop[GDB_SIGNAL_POLL] = 0;
9605 signal_print[GDB_SIGNAL_POLL] = 0;
9606 signal_stop[GDB_SIGNAL_URG] = 0;
9607 signal_print[GDB_SIGNAL_URG] = 0;
9608 signal_stop[GDB_SIGNAL_WINCH] = 0;
9609 signal_print[GDB_SIGNAL_WINCH] = 0;
9610 signal_stop[GDB_SIGNAL_PRIO] = 0;
9611 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9612
cd0fc7c3
SS
9613 /* These signals are used internally by user-level thread
9614 implementations. (See signal(5) on Solaris.) Like the above
9615 signals, a healthy program receives and handles them as part of
9616 its normal operation. */
a493e3e2
PA
9617 signal_stop[GDB_SIGNAL_LWP] = 0;
9618 signal_print[GDB_SIGNAL_LWP] = 0;
9619 signal_stop[GDB_SIGNAL_WAITING] = 0;
9620 signal_print[GDB_SIGNAL_WAITING] = 0;
9621 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9622 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9623 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9624 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9625
2455069d
UW
9626 /* Update cached state. */
9627 signal_cache_update (-1);
9628
85c07804
AC
9629 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9630 &stop_on_solib_events, _("\
9631Set stopping for shared library events."), _("\
9632Show stopping for shared library events."), _("\
c906108c
SS
9633If nonzero, gdb will give control to the user when the dynamic linker\n\
9634notifies gdb of shared library events. The most common event of interest\n\
85c07804 9635to the user would be loading/unloading of a new library."),
f9e14852 9636 set_stop_on_solib_events,
920d2a44 9637 show_stop_on_solib_events,
85c07804 9638 &setlist, &showlist);
c906108c 9639
7ab04401
AC
9640 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9641 follow_fork_mode_kind_names,
9642 &follow_fork_mode_string, _("\
9643Set debugger response to a program call of fork or vfork."), _("\
9644Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9645A fork or vfork creates a new process. follow-fork-mode can be:\n\
9646 parent - the original process is debugged after a fork\n\
9647 child - the new process is debugged after a fork\n\
ea1dd7bc 9648The unfollowed process will continue to run.\n\
7ab04401
AC
9649By default, the debugger will follow the parent process."),
9650 NULL,
920d2a44 9651 show_follow_fork_mode_string,
7ab04401
AC
9652 &setlist, &showlist);
9653
6c95b8df
PA
9654 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9655 follow_exec_mode_names,
9656 &follow_exec_mode_string, _("\
9657Set debugger response to a program call of exec."), _("\
9658Show debugger response to a program call of exec."), _("\
9659An exec call replaces the program image of a process.\n\
9660\n\
9661follow-exec-mode can be:\n\
9662\n\
cce7e648 9663 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9664to this new inferior. The program the process was running before\n\
9665the exec call can be restarted afterwards by restarting the original\n\
9666inferior.\n\
9667\n\
9668 same - the debugger keeps the process bound to the same inferior.\n\
9669The new executable image replaces the previous executable loaded in\n\
9670the inferior. Restarting the inferior after the exec call restarts\n\
9671the executable the process was running after the exec call.\n\
9672\n\
9673By default, the debugger will use the same inferior."),
9674 NULL,
9675 show_follow_exec_mode_string,
9676 &setlist, &showlist);
9677
7ab04401
AC
9678 add_setshow_enum_cmd ("scheduler-locking", class_run,
9679 scheduler_enums, &scheduler_mode, _("\
9680Set mode for locking scheduler during execution."), _("\
9681Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9682off == no locking (threads may preempt at any time)\n\
9683on == full locking (no thread except the current thread may run)\n\
dda83cd7 9684 This applies to both normal execution and replay mode.\n\
f2665db5 9685step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
dda83cd7
SM
9686 In this mode, other threads may run during other commands.\n\
9687 This applies to both normal execution and replay mode.\n\
f2665db5 9688replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9689 set_schedlock_func, /* traps on target vector */
920d2a44 9690 show_scheduler_mode,
7ab04401 9691 &setlist, &showlist);
5fbbeb29 9692
d4db2f36
PA
9693 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9694Set mode for resuming threads of all processes."), _("\
9695Show mode for resuming threads of all processes."), _("\
9696When on, execution commands (such as 'continue' or 'next') resume all\n\
9697threads of all processes. When off (which is the default), execution\n\
9698commands only resume the threads of the current process. The set of\n\
9699threads that are resumed is further refined by the scheduler-locking\n\
9700mode (see help set scheduler-locking)."),
9701 NULL,
9702 show_schedule_multiple,
9703 &setlist, &showlist);
9704
5bf193a2
AC
9705 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9706Set mode of the step operation."), _("\
9707Show mode of the step operation."), _("\
9708When set, doing a step over a function without debug line information\n\
9709will stop at the first instruction of that function. Otherwise, the\n\
9710function is skipped and the step command stops at a different source line."),
9711 NULL,
920d2a44 9712 show_step_stop_if_no_debug,
5bf193a2 9713 &setlist, &showlist);
ca6724c1 9714
72d0e2c5
YQ
9715 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9716 &can_use_displaced_stepping, _("\
237fc4c9
PA
9717Set debugger's willingness to use displaced stepping."), _("\
9718Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9719If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9720supported by the target architecture. If off, gdb will not use displaced\n\
9721stepping to step over breakpoints, even if such is supported by the target\n\
9722architecture. If auto (which is the default), gdb will use displaced stepping\n\
9723if the target architecture supports it and non-stop mode is active, but will not\n\
9724use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9725 NULL,
9726 show_can_use_displaced_stepping,
9727 &setlist, &showlist);
237fc4c9 9728
b2175913
MS
9729 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9730 &exec_direction, _("Set direction of execution.\n\
9731Options are 'forward' or 'reverse'."),
9732 _("Show direction of execution (forward/reverse)."),
9733 _("Tells gdb whether to execute forward or backward."),
9734 set_exec_direction_func, show_exec_direction_func,
9735 &setlist, &showlist);
9736
6c95b8df
PA
9737 /* Set/show detach-on-fork: user-settable mode. */
9738
9739 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9740Set whether gdb will detach the child of a fork."), _("\
9741Show whether gdb will detach the child of a fork."), _("\
9742Tells gdb whether to detach the child of a fork."),
9743 NULL, NULL, &setlist, &showlist);
9744
03583c20
UW
9745 /* Set/show disable address space randomization mode. */
9746
9747 add_setshow_boolean_cmd ("disable-randomization", class_support,
9748 &disable_randomization, _("\
9749Set disabling of debuggee's virtual address space randomization."), _("\
9750Show disabling of debuggee's virtual address space randomization."), _("\
9751When this mode is on (which is the default), randomization of the virtual\n\
9752address space is disabled. Standalone programs run with the randomization\n\
9753enabled by default on some platforms."),
9754 &set_disable_randomization,
9755 &show_disable_randomization,
9756 &setlist, &showlist);
9757
ca6724c1 9758 /* ptid initializations */
ca6724c1
KB
9759 inferior_ptid = null_ptid;
9760 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9761
c90e7d63
SM
9762 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed,
9763 "infrun");
9764 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested,
9765 "infrun");
9766 gdb::observers::thread_exit.attach (infrun_thread_thread_exit, "infrun");
9767 gdb::observers::inferior_exit.attach (infrun_inferior_exit, "infrun");
9768 gdb::observers::inferior_execd.attach (infrun_inferior_execd, "infrun");
4aa995e1
PA
9769
9770 /* Explicitly create without lookup, since that tries to create a
9771 value with a void typed value, and when we get here, gdbarch
9772 isn't initialized yet. At this point, we're quite sure there
9773 isn't another convenience variable of the same name. */
22d2b532 9774 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9775
9776 add_setshow_boolean_cmd ("observer", no_class,
9777 &observer_mode_1, _("\
9778Set whether gdb controls the inferior in observer mode."), _("\
9779Show whether gdb controls the inferior in observer mode."), _("\
9780In observer mode, GDB can get data from the inferior, but not\n\
9781affect its execution. Registers and memory may not be changed,\n\
9782breakpoints may not be set, and the program cannot be interrupted\n\
9783or signalled."),
9784 set_observer_mode,
9785 show_observer_mode,
9786 &setlist,
9787 &showlist);
b161a60d
SM
9788
9789#if GDB_SELF_TEST
9790 selftests::register_test ("infrun_thread_ptid_changed",
9791 selftests::infrun_thread_ptid_changed);
9792#endif
c906108c 9793}
This page took 4.300139 seconds and 4 git commands to generate.