Use ui_file_as_string in gdb/ada-lang.c
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
618f726f 4 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
c906108c
SS
67
68/* Prototypes for local functions */
69
96baa820 70static void signals_info (char *, int);
c906108c 71
96baa820 72static void handle_command (char *, int);
c906108c 73
2ea28649 74static void sig_print_info (enum gdb_signal);
c906108c 75
96baa820 76static void sig_print_header (void);
c906108c 77
74b7792f 78static void resume_cleanups (void *);
c906108c 79
96baa820 80static int hook_stop_stub (void *);
c906108c 81
96baa820
JM
82static int restore_selected_frame (void *);
83
4ef3f3be 84static int follow_fork (void);
96baa820 85
d83ad864
DB
86static int follow_fork_inferior (int follow_child, int detach_fork);
87
88static void follow_inferior_reset_breakpoints (void);
89
96baa820 90static void set_schedlock_func (char *args, int from_tty,
488f131b 91 struct cmd_list_element *c);
96baa820 92
a289b8f6
JK
93static int currently_stepping (struct thread_info *tp);
94
96baa820 95void _initialize_infrun (void);
43ff13b4 96
e58b0e63
PA
97void nullify_last_target_wait_ptid (void);
98
2c03e5be 99static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
100
101static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
2484c66b
UW
103static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
8550d3b3
YQ
105static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
372316f1
PA
107/* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109static struct async_event_handler *infrun_async_inferior_event_token;
110
111/* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113static int infrun_is_async = -1;
114
115/* See infrun.h. */
116
117void
118infrun_async (int enable)
119{
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134}
135
0b333c5e
PA
136/* See infrun.h. */
137
138void
139mark_infrun_async_event_handler (void)
140{
141 mark_async_event_handler (infrun_async_inferior_event_token);
142}
143
5fbbeb29
CF
144/* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147int step_stop_if_no_debug = 0;
920d2a44
AC
148static void
149show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151{
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153}
5fbbeb29 154
b9f437de
PA
155/* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
96baa820 158
39f77062 159static ptid_t previous_inferior_ptid;
7a292a7a 160
07107ca6
LM
161/* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166static int detach_fork = 1;
6c95b8df 167
237fc4c9
PA
168int debug_displaced = 0;
169static void
170show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172{
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174}
175
ccce17b0 176unsigned int debug_infrun = 0;
920d2a44
AC
177static void
178show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182}
527159b7 183
03583c20
UW
184
185/* Support for disabling address space randomization. */
186
187int disable_randomization = 1;
188
189static void
190show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192{
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202}
203
204static void
205set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207{
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212}
213
d32dc48e
PA
214/* User interface for non-stop mode. */
215
216int non_stop = 0;
217static int non_stop_1 = 0;
218
219static void
220set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222{
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230}
231
232static void
233show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235{
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239}
240
d914c394
SS
241/* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
d914c394
SS
245int observer_mode = 0;
246static int observer_mode_1 = 0;
247
248static void
249set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251{
d914c394
SS
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
d914c394
SS
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282}
283
284static void
285show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287{
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289}
290
291/* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297void
298update_observer_mode (void)
299{
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314}
c2c6d25f 315
c906108c
SS
316/* Tables of how to react to signals; the user sets them. */
317
318static unsigned char *signal_stop;
319static unsigned char *signal_print;
320static unsigned char *signal_program;
321
ab04a2af
TT
322/* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326static unsigned char *signal_catch;
327
2455069d
UW
328/* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331static unsigned char *signal_pass;
332
c906108c
SS
333#define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341#define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
9b224c5e
PA
349/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352void
353update_signals_program_target (void)
354{
a493e3e2 355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
356}
357
1777feb0 358/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 359
edb3359d 360#define RESUME_ALL minus_one_ptid
c906108c
SS
361
362/* Command list pointer for the "stop" placeholder. */
363
364static struct cmd_list_element *stop_command;
365
c906108c
SS
366/* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
628fe4e4 368int stop_on_solib_events;
f9e14852
GB
369
370/* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373static void
374set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375{
376 update_solib_breakpoints ();
377}
378
920d2a44
AC
379static void
380show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382{
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385}
c906108c 386
c906108c
SS
387/* Nonzero after stop if current stack frame should be printed. */
388
389static int stop_print_frame;
390
e02bc4cc 391/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
39f77062 394static ptid_t target_last_wait_ptid;
e02bc4cc
DS
395static struct target_waitstatus target_last_waitstatus;
396
0d1e5fa7
PA
397static void context_switch (ptid_t ptid);
398
4e1c45ea 399void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 400
53904c9e
AC
401static const char follow_fork_mode_child[] = "child";
402static const char follow_fork_mode_parent[] = "parent";
403
40478521 404static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
ef346e04 408};
c906108c 409
53904c9e 410static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
411static void
412show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414{
3e43a32a
MS
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
418 value);
419}
c906108c
SS
420\f
421
d83ad864
DB
422/* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428static int
429follow_fork_inferior (int follow_child, int detach_fork)
430{
431 int has_vforked;
79639e11 432 ptid_t parent_ptid, child_ptid;
d83ad864
DB
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
79639e11
PA
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 441 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450Can not resume the parent process over vfork in the foreground while\n\
451holding the child stopped. Try \"set detach-on-fork\" or \
452\"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
d83ad864
DB
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
8dd06f7a
DB
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
6f259a23 480 target_terminal_ours_for_output ();
d83ad864 481 fprintf_filtered (gdb_stdlog,
79639e11 482 _("Detaching after %s from child %s.\n"),
6f259a23 483 has_vforked ? "vfork" : "fork",
8dd06f7a 484 target_pid_to_str (process_ptid));
d83ad864
DB
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
79639e11 493 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_inferior_ptid ();
502 save_current_program_space ();
503
79639e11 504 inferior_ptid = child_ptid;
d83ad864
DB
505 add_thread (inferior_ptid);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
6f259a23
DB
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
79639e11
PA
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
6f259a23 572 has_vforked ? "vfork" : "fork",
79639e11 573 target_pid_to_str (child_ptid));
d83ad864
DB
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
79639e11 579 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
6f259a23
DB
610 {
611 if (info_verbose || debug_infrun)
612 {
8dd06f7a
DB
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
6f259a23
DB
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
79639e11 619 "child %s.\n"),
8dd06f7a 620 target_pid_to_str (process_ptid));
6f259a23
DB
621 }
622
623 target_detach (NULL, 0);
624 }
d83ad864
DB
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
79639e11 632 inferior_ptid = child_ptid;
d83ad864
DB
633 add_thread (inferior_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662}
663
e58b0e63
PA
664/* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
6604731b 668static int
4ef3f3be 669follow_fork (void)
c906108c 670{
ea1dd7bc 671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
4e3990f4
DE
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 680 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
8980e177 684 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
8358c15c
JK
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
16c381f0
JK
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
186c406b
TT
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 736 thread_fsm = tp->thread_fsm;
e58b0e63
PA
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
16c381f0
JK
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
186c406b 747 delete_exception_resume_breakpoint (tp);
8980e177 748 tp->thread_fsm = NULL;
e58b0e63
PA
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
d83ad864
DB
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
e09875d4 769 tp = find_thread_ptid (parent);
e58b0e63
PA
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
1777feb0 777 /* If we followed the child, switch to it... */
e58b0e63
PA
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
8358c15c
JK
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
16c381f0
JK
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
186c406b
TT
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
8980e177 794 tp->thread_fsm = thread_fsm;
e58b0e63
PA
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
3e43a32a 804 warning (_("Not resuming: switched threads "
fd7dcb94 805 "before following fork child."));
e58b0e63
PA
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
c906108c 825
e58b0e63 826 return should_resume;
c906108c
SS
827}
828
d83ad864 829static void
6604731b 830follow_inferior_reset_breakpoints (void)
c906108c 831{
4e1c45ea
PA
832 struct thread_info *tp = inferior_thread ();
833
6604731b
DJ
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
6604731b
DJ
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
8358c15c 847 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
6604731b 852
a1aa2221 853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 854 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
186c406b 859
6604731b
DJ
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
c906108c 867}
c906108c 868
6c95b8df
PA
869/* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872static int
873proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875{
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
a493e3e2 882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
70509625 890 clear_proceed_status (0);
64ce06e4 891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
892 }
893
894 return 0;
895}
896
897/* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900static void
901handle_vfork_child_exec_or_exit (int exec)
902{
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. If the user wanted to
911 detach from the parent, now is the time. */
912
913 if (inf->vfork_parent->pending_detach)
914 {
915 struct thread_info *tp;
916 struct cleanup *old_chain;
917 struct program_space *pspace;
918 struct address_space *aspace;
919
1777feb0 920 /* follow-fork child, detach-on-fork on. */
6c95b8df 921
68c9da30
PA
922 inf->vfork_parent->pending_detach = 0;
923
f50f4e56
PA
924 if (!exec)
925 {
926 /* If we're handling a child exit, then inferior_ptid
927 points at the inferior's pid, not to a thread. */
928 old_chain = save_inferior_ptid ();
929 save_current_program_space ();
930 save_current_inferior ();
931 }
932 else
933 old_chain = save_current_space_and_thread ();
6c95b8df
PA
934
935 /* We're letting loose of the parent. */
936 tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 switch_to_thread (tp->ptid);
938
939 /* We're about to detach from the parent, which implicitly
940 removes breakpoints from its address space. There's a
941 catch here: we want to reuse the spaces for the child,
942 but, parent/child are still sharing the pspace at this
943 point, although the exec in reality makes the kernel give
944 the child a fresh set of new pages. The problem here is
945 that the breakpoints module being unaware of this, would
946 likely chose the child process to write to the parent
947 address space. Swapping the child temporarily away from
948 the spaces has the desired effect. Yes, this is "sort
949 of" a hack. */
950
951 pspace = inf->pspace;
952 aspace = inf->aspace;
953 inf->aspace = NULL;
954 inf->pspace = NULL;
955
956 if (debug_infrun || info_verbose)
957 {
6f259a23 958 target_terminal_ours_for_output ();
6c95b8df
PA
959
960 if (exec)
6f259a23
DB
961 {
962 fprintf_filtered (gdb_stdlog,
963 _("Detaching vfork parent process "
964 "%d after child exec.\n"),
965 inf->vfork_parent->pid);
966 }
6c95b8df 967 else
6f259a23
DB
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("Detaching vfork parent process "
971 "%d after child exit.\n"),
972 inf->vfork_parent->pid);
973 }
6c95b8df
PA
974 }
975
976 target_detach (NULL, 0);
977
978 /* Put it back. */
979 inf->pspace = pspace;
980 inf->aspace = aspace;
981
982 do_cleanups (old_chain);
983 }
984 else if (exec)
985 {
986 /* We're staying attached to the parent, so, really give the
987 child a new address space. */
988 inf->pspace = add_program_space (maybe_new_address_space ());
989 inf->aspace = inf->pspace->aspace;
990 inf->removable = 1;
991 set_current_program_space (inf->pspace);
992
993 resume_parent = inf->vfork_parent->pid;
994
995 /* Break the bonds. */
996 inf->vfork_parent->vfork_child = NULL;
997 }
998 else
999 {
1000 struct cleanup *old_chain;
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid, so that clone_program_space doesn't want
1013 to read the selected frame of a dead process. */
1014 old_chain = save_inferior_ptid ();
1015 inferior_ptid = null_ptid;
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = add_program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
7dcd53a0 1025 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1026 clone_program_space (pspace, inf->vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1031 inferior. */
6c95b8df
PA
1032 do_cleanups (old_chain);
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048
1049 if (debug_infrun)
3e43a32a
MS
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055
1056 do_cleanups (old_chain);
1057 }
1058 }
1059}
1060
eb6c553b 1061/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1062
1063static const char follow_exec_mode_new[] = "new";
1064static const char follow_exec_mode_same[] = "same";
40478521 1065static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1066{
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070};
1071
1072static const char *follow_exec_mode_string = follow_exec_mode_same;
1073static void
1074show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076{
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078}
1079
ecf45d2c 1080/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1081
c906108c 1082static void
ecf45d2c 1083follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1084{
95e50b27 1085 struct thread_info *th, *tmp;
6c95b8df 1086 struct inferior *inf = current_inferior ();
95e50b27 1087 int pid = ptid_get_pid (ptid);
94585166 1088 ptid_t process_ptid;
ecf45d2c
SL
1089 char *exec_file_host;
1090 struct cleanup *old_chain;
7a292a7a 1091
c906108c
SS
1092 /* This is an exec event that we actually wish to pay attention to.
1093 Refresh our symbol table to the newly exec'd program, remove any
1094 momentary bp's, etc.
1095
1096 If there are breakpoints, they aren't really inserted now,
1097 since the exec() transformed our inferior into a fresh set
1098 of instructions.
1099
1100 We want to preserve symbolic breakpoints on the list, since
1101 we have hopes that they can be reset after the new a.out's
1102 symbol table is read.
1103
1104 However, any "raw" breakpoints must be removed from the list
1105 (e.g., the solib bp's), since their address is probably invalid
1106 now.
1107
1108 And, we DON'T want to call delete_breakpoints() here, since
1109 that may write the bp's "shadow contents" (the instruction
1110 value that was overwritten witha TRAP instruction). Since
1777feb0 1111 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1112
1113 mark_breakpoints_out ();
1114
95e50b27
PA
1115 /* The target reports the exec event to the main thread, even if
1116 some other thread does the exec, and even if the main thread was
1117 stopped or already gone. We may still have non-leader threads of
1118 the process on our list. E.g., on targets that don't have thread
1119 exit events (like remote); or on native Linux in non-stop mode if
1120 there were only two threads in the inferior and the non-leader
1121 one is the one that execs (and nothing forces an update of the
1122 thread list up to here). When debugging remotely, it's best to
1123 avoid extra traffic, when possible, so avoid syncing the thread
1124 list with the target, and instead go ahead and delete all threads
1125 of the process but one that reported the event. Note this must
1126 be done before calling update_breakpoints_after_exec, as
1127 otherwise clearing the threads' resources would reference stale
1128 thread breakpoints -- it may have been one of these threads that
1129 stepped across the exec. We could just clear their stepping
1130 states, but as long as we're iterating, might as well delete
1131 them. Deleting them now rather than at the next user-visible
1132 stop provides a nicer sequence of events for user and MI
1133 notifications. */
8a06aea7 1134 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1135 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1136 delete_thread (th->ptid);
1137
1138 /* We also need to clear any left over stale state for the
1139 leader/event thread. E.g., if there was any step-resume
1140 breakpoint or similar, it's gone now. We cannot truly
1141 step-to-next statement through an exec(). */
1142 th = inferior_thread ();
8358c15c 1143 th->control.step_resume_breakpoint = NULL;
186c406b 1144 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1145 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1146 th->control.step_range_start = 0;
1147 th->control.step_range_end = 0;
c906108c 1148
95e50b27
PA
1149 /* The user may have had the main thread held stopped in the
1150 previous image (e.g., schedlock on, or non-stop). Release
1151 it now. */
a75724bc
PA
1152 th->stop_requested = 0;
1153
95e50b27
PA
1154 update_breakpoints_after_exec ();
1155
1777feb0 1156 /* What is this a.out's name? */
94585166 1157 process_ptid = pid_to_ptid (pid);
6c95b8df 1158 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1159 target_pid_to_str (process_ptid),
ecf45d2c 1160 exec_file_target);
c906108c
SS
1161
1162 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1163 inferior has essentially been killed & reborn. */
7a292a7a 1164
c906108c 1165 gdb_flush (gdb_stdout);
6ca15a4b
PA
1166
1167 breakpoint_init_inferior (inf_execd);
e85a822c 1168
ecf45d2c
SL
1169 exec_file_host = exec_file_find (exec_file_target, NULL);
1170 old_chain = make_cleanup (xfree, exec_file_host);
ff862be4 1171
ecf45d2c
SL
1172 /* If we were unable to map the executable target pathname onto a host
1173 pathname, tell the user that. Otherwise GDB's subsequent behavior
1174 is confusing. Maybe it would even be better to stop at this point
1175 so that the user can specify a file manually before continuing. */
1176 if (exec_file_host == NULL)
1177 warning (_("Could not load symbols for executable %s.\n"
1178 "Do you need \"set sysroot\"?"),
1179 exec_file_target);
c906108c 1180
cce9b6bf
PA
1181 /* Reset the shared library package. This ensures that we get a
1182 shlib event when the child reaches "_start", at which point the
1183 dld will have had a chance to initialize the child. */
1184 /* Also, loading a symbol file below may trigger symbol lookups, and
1185 we don't want those to be satisfied by the libraries of the
1186 previous incarnation of this process. */
1187 no_shared_libraries (NULL, 0);
1188
6c95b8df
PA
1189 if (follow_exec_mode_string == follow_exec_mode_new)
1190 {
6c95b8df
PA
1191 /* The user wants to keep the old inferior and program spaces
1192 around. Create a new fresh one, and switch to it. */
1193
17d8546e
DB
1194 /* Do exit processing for the original inferior before adding
1195 the new inferior so we don't have two active inferiors with
1196 the same ptid, which can confuse find_inferior_ptid. */
1197 exit_inferior_num_silent (current_inferior ()->num);
1198
94585166
DB
1199 inf = add_inferior_with_spaces ();
1200 inf->pid = pid;
ecf45d2c 1201 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1202
1203 set_current_inferior (inf);
94585166
DB
1204 set_current_program_space (inf->pspace);
1205 add_thread (ptid);
6c95b8df 1206 }
9107fc8d
PA
1207 else
1208 {
1209 /* The old description may no longer be fit for the new image.
1210 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1211 old description; we'll read a new one below. No need to do
1212 this on "follow-exec-mode new", as the old inferior stays
1213 around (its description is later cleared/refetched on
1214 restart). */
1215 target_clear_description ();
1216 }
6c95b8df
PA
1217
1218 gdb_assert (current_program_space == inf->pspace);
1219
ecf45d2c
SL
1220 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1221 because the proper displacement for a PIE (Position Independent
1222 Executable) main symbol file will only be computed by
1223 solib_create_inferior_hook below. breakpoint_re_set would fail
1224 to insert the breakpoints with the zero displacement. */
1225 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
c1e56572 1226
ecf45d2c 1227 do_cleanups (old_chain);
c906108c 1228
9107fc8d
PA
1229 /* If the target can specify a description, read it. Must do this
1230 after flipping to the new executable (because the target supplied
1231 description must be compatible with the executable's
1232 architecture, and the old executable may e.g., be 32-bit, while
1233 the new one 64-bit), and before anything involving memory or
1234 registers. */
1235 target_find_description ();
1236
268a4a75 1237 solib_create_inferior_hook (0);
c906108c 1238
4efc6507
DE
1239 jit_inferior_created_hook ();
1240
c1e56572
JK
1241 breakpoint_re_set ();
1242
c906108c
SS
1243 /* Reinsert all breakpoints. (Those which were symbolic have
1244 been reset to the proper address in the new a.out, thanks
1777feb0 1245 to symbol_file_command...). */
c906108c
SS
1246 insert_breakpoints ();
1247
1248 /* The next resume of this inferior should bring it to the shlib
1249 startup breakpoints. (If the user had also set bp's on
1250 "main" from the old (parent) process, then they'll auto-
1777feb0 1251 matically get reset there in the new process.). */
c906108c
SS
1252}
1253
c2829269
PA
1254/* The queue of threads that need to do a step-over operation to get
1255 past e.g., a breakpoint. What technique is used to step over the
1256 breakpoint/watchpoint does not matter -- all threads end up in the
1257 same queue, to maintain rough temporal order of execution, in order
1258 to avoid starvation, otherwise, we could e.g., find ourselves
1259 constantly stepping the same couple threads past their breakpoints
1260 over and over, if the single-step finish fast enough. */
1261struct thread_info *step_over_queue_head;
1262
6c4cfb24
PA
1263/* Bit flags indicating what the thread needs to step over. */
1264
8d297bbf 1265enum step_over_what_flag
6c4cfb24
PA
1266 {
1267 /* Step over a breakpoint. */
1268 STEP_OVER_BREAKPOINT = 1,
1269
1270 /* Step past a non-continuable watchpoint, in order to let the
1271 instruction execute so we can evaluate the watchpoint
1272 expression. */
1273 STEP_OVER_WATCHPOINT = 2
1274 };
8d297bbf 1275DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1276
963f9c80 1277/* Info about an instruction that is being stepped over. */
31e77af2
PA
1278
1279struct step_over_info
1280{
963f9c80
PA
1281 /* If we're stepping past a breakpoint, this is the address space
1282 and address of the instruction the breakpoint is set at. We'll
1283 skip inserting all breakpoints here. Valid iff ASPACE is
1284 non-NULL. */
31e77af2 1285 struct address_space *aspace;
31e77af2 1286 CORE_ADDR address;
963f9c80
PA
1287
1288 /* The instruction being stepped over triggers a nonsteppable
1289 watchpoint. If true, we'll skip inserting watchpoints. */
1290 int nonsteppable_watchpoint_p;
21edc42f
YQ
1291
1292 /* The thread's global number. */
1293 int thread;
31e77af2
PA
1294};
1295
1296/* The step-over info of the location that is being stepped over.
1297
1298 Note that with async/breakpoint always-inserted mode, a user might
1299 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1300 being stepped over. As setting a new breakpoint inserts all
1301 breakpoints, we need to make sure the breakpoint being stepped over
1302 isn't inserted then. We do that by only clearing the step-over
1303 info when the step-over is actually finished (or aborted).
1304
1305 Presently GDB can only step over one breakpoint at any given time.
1306 Given threads that can't run code in the same address space as the
1307 breakpoint's can't really miss the breakpoint, GDB could be taught
1308 to step-over at most one breakpoint per address space (so this info
1309 could move to the address space object if/when GDB is extended).
1310 The set of breakpoints being stepped over will normally be much
1311 smaller than the set of all breakpoints, so a flag in the
1312 breakpoint location structure would be wasteful. A separate list
1313 also saves complexity and run-time, as otherwise we'd have to go
1314 through all breakpoint locations clearing their flag whenever we
1315 start a new sequence. Similar considerations weigh against storing
1316 this info in the thread object. Plus, not all step overs actually
1317 have breakpoint locations -- e.g., stepping past a single-step
1318 breakpoint, or stepping to complete a non-continuable
1319 watchpoint. */
1320static struct step_over_info step_over_info;
1321
1322/* Record the address of the breakpoint/instruction we're currently
1323 stepping over. */
1324
1325static void
963f9c80 1326set_step_over_info (struct address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1327 int nonsteppable_watchpoint_p,
1328 int thread)
31e77af2
PA
1329{
1330 step_over_info.aspace = aspace;
1331 step_over_info.address = address;
963f9c80 1332 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1333 step_over_info.thread = thread;
31e77af2
PA
1334}
1335
1336/* Called when we're not longer stepping over a breakpoint / an
1337 instruction, so all breakpoints are free to be (re)inserted. */
1338
1339static void
1340clear_step_over_info (void)
1341{
372316f1
PA
1342 if (debug_infrun)
1343 fprintf_unfiltered (gdb_stdlog,
1344 "infrun: clear_step_over_info\n");
31e77af2
PA
1345 step_over_info.aspace = NULL;
1346 step_over_info.address = 0;
963f9c80 1347 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1348 step_over_info.thread = -1;
31e77af2
PA
1349}
1350
7f89fd65 1351/* See infrun.h. */
31e77af2
PA
1352
1353int
1354stepping_past_instruction_at (struct address_space *aspace,
1355 CORE_ADDR address)
1356{
1357 return (step_over_info.aspace != NULL
1358 && breakpoint_address_match (aspace, address,
1359 step_over_info.aspace,
1360 step_over_info.address));
1361}
1362
963f9c80
PA
1363/* See infrun.h. */
1364
21edc42f
YQ
1365int
1366thread_is_stepping_over_breakpoint (int thread)
1367{
1368 return (step_over_info.thread != -1
1369 && thread == step_over_info.thread);
1370}
1371
1372/* See infrun.h. */
1373
963f9c80
PA
1374int
1375stepping_past_nonsteppable_watchpoint (void)
1376{
1377 return step_over_info.nonsteppable_watchpoint_p;
1378}
1379
6cc83d2a
PA
1380/* Returns true if step-over info is valid. */
1381
1382static int
1383step_over_info_valid_p (void)
1384{
963f9c80
PA
1385 return (step_over_info.aspace != NULL
1386 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1387}
1388
c906108c 1389\f
237fc4c9
PA
1390/* Displaced stepping. */
1391
1392/* In non-stop debugging mode, we must take special care to manage
1393 breakpoints properly; in particular, the traditional strategy for
1394 stepping a thread past a breakpoint it has hit is unsuitable.
1395 'Displaced stepping' is a tactic for stepping one thread past a
1396 breakpoint it has hit while ensuring that other threads running
1397 concurrently will hit the breakpoint as they should.
1398
1399 The traditional way to step a thread T off a breakpoint in a
1400 multi-threaded program in all-stop mode is as follows:
1401
1402 a0) Initially, all threads are stopped, and breakpoints are not
1403 inserted.
1404 a1) We single-step T, leaving breakpoints uninserted.
1405 a2) We insert breakpoints, and resume all threads.
1406
1407 In non-stop debugging, however, this strategy is unsuitable: we
1408 don't want to have to stop all threads in the system in order to
1409 continue or step T past a breakpoint. Instead, we use displaced
1410 stepping:
1411
1412 n0) Initially, T is stopped, other threads are running, and
1413 breakpoints are inserted.
1414 n1) We copy the instruction "under" the breakpoint to a separate
1415 location, outside the main code stream, making any adjustments
1416 to the instruction, register, and memory state as directed by
1417 T's architecture.
1418 n2) We single-step T over the instruction at its new location.
1419 n3) We adjust the resulting register and memory state as directed
1420 by T's architecture. This includes resetting T's PC to point
1421 back into the main instruction stream.
1422 n4) We resume T.
1423
1424 This approach depends on the following gdbarch methods:
1425
1426 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1427 indicate where to copy the instruction, and how much space must
1428 be reserved there. We use these in step n1.
1429
1430 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1431 address, and makes any necessary adjustments to the instruction,
1432 register contents, and memory. We use this in step n1.
1433
1434 - gdbarch_displaced_step_fixup adjusts registers and memory after
1435 we have successfuly single-stepped the instruction, to yield the
1436 same effect the instruction would have had if we had executed it
1437 at its original address. We use this in step n3.
1438
1439 - gdbarch_displaced_step_free_closure provides cleanup.
1440
1441 The gdbarch_displaced_step_copy_insn and
1442 gdbarch_displaced_step_fixup functions must be written so that
1443 copying an instruction with gdbarch_displaced_step_copy_insn,
1444 single-stepping across the copied instruction, and then applying
1445 gdbarch_displaced_insn_fixup should have the same effects on the
1446 thread's memory and registers as stepping the instruction in place
1447 would have. Exactly which responsibilities fall to the copy and
1448 which fall to the fixup is up to the author of those functions.
1449
1450 See the comments in gdbarch.sh for details.
1451
1452 Note that displaced stepping and software single-step cannot
1453 currently be used in combination, although with some care I think
1454 they could be made to. Software single-step works by placing
1455 breakpoints on all possible subsequent instructions; if the
1456 displaced instruction is a PC-relative jump, those breakpoints
1457 could fall in very strange places --- on pages that aren't
1458 executable, or at addresses that are not proper instruction
1459 boundaries. (We do generally let other threads run while we wait
1460 to hit the software single-step breakpoint, and they might
1461 encounter such a corrupted instruction.) One way to work around
1462 this would be to have gdbarch_displaced_step_copy_insn fully
1463 simulate the effect of PC-relative instructions (and return NULL)
1464 on architectures that use software single-stepping.
1465
1466 In non-stop mode, we can have independent and simultaneous step
1467 requests, so more than one thread may need to simultaneously step
1468 over a breakpoint. The current implementation assumes there is
1469 only one scratch space per process. In this case, we have to
1470 serialize access to the scratch space. If thread A wants to step
1471 over a breakpoint, but we are currently waiting for some other
1472 thread to complete a displaced step, we leave thread A stopped and
1473 place it in the displaced_step_request_queue. Whenever a displaced
1474 step finishes, we pick the next thread in the queue and start a new
1475 displaced step operation on it. See displaced_step_prepare and
1476 displaced_step_fixup for details. */
1477
fc1cf338
PA
1478/* Per-inferior displaced stepping state. */
1479struct displaced_step_inferior_state
1480{
1481 /* Pointer to next in linked list. */
1482 struct displaced_step_inferior_state *next;
1483
1484 /* The process this displaced step state refers to. */
1485 int pid;
1486
3fc8eb30
PA
1487 /* True if preparing a displaced step ever failed. If so, we won't
1488 try displaced stepping for this inferior again. */
1489 int failed_before;
1490
fc1cf338
PA
1491 /* If this is not null_ptid, this is the thread carrying out a
1492 displaced single-step in process PID. This thread's state will
1493 require fixing up once it has completed its step. */
1494 ptid_t step_ptid;
1495
1496 /* The architecture the thread had when we stepped it. */
1497 struct gdbarch *step_gdbarch;
1498
1499 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1500 for post-step cleanup. */
1501 struct displaced_step_closure *step_closure;
1502
1503 /* The address of the original instruction, and the copy we
1504 made. */
1505 CORE_ADDR step_original, step_copy;
1506
1507 /* Saved contents of copy area. */
1508 gdb_byte *step_saved_copy;
1509};
1510
1511/* The list of states of processes involved in displaced stepping
1512 presently. */
1513static struct displaced_step_inferior_state *displaced_step_inferior_states;
1514
1515/* Get the displaced stepping state of process PID. */
1516
1517static struct displaced_step_inferior_state *
1518get_displaced_stepping_state (int pid)
1519{
1520 struct displaced_step_inferior_state *state;
1521
1522 for (state = displaced_step_inferior_states;
1523 state != NULL;
1524 state = state->next)
1525 if (state->pid == pid)
1526 return state;
1527
1528 return NULL;
1529}
1530
372316f1
PA
1531/* Returns true if any inferior has a thread doing a displaced
1532 step. */
1533
1534static int
1535displaced_step_in_progress_any_inferior (void)
1536{
1537 struct displaced_step_inferior_state *state;
1538
1539 for (state = displaced_step_inferior_states;
1540 state != NULL;
1541 state = state->next)
1542 if (!ptid_equal (state->step_ptid, null_ptid))
1543 return 1;
1544
1545 return 0;
1546}
1547
c0987663
YQ
1548/* Return true if thread represented by PTID is doing a displaced
1549 step. */
1550
1551static int
1552displaced_step_in_progress_thread (ptid_t ptid)
1553{
1554 struct displaced_step_inferior_state *displaced;
1555
1556 gdb_assert (!ptid_equal (ptid, null_ptid));
1557
1558 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1559
1560 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1561}
1562
8f572e5c
PA
1563/* Return true if process PID has a thread doing a displaced step. */
1564
1565static int
1566displaced_step_in_progress (int pid)
1567{
1568 struct displaced_step_inferior_state *displaced;
1569
1570 displaced = get_displaced_stepping_state (pid);
1571 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1572 return 1;
1573
1574 return 0;
1575}
1576
fc1cf338
PA
1577/* Add a new displaced stepping state for process PID to the displaced
1578 stepping state list, or return a pointer to an already existing
1579 entry, if it already exists. Never returns NULL. */
1580
1581static struct displaced_step_inferior_state *
1582add_displaced_stepping_state (int pid)
1583{
1584 struct displaced_step_inferior_state *state;
1585
1586 for (state = displaced_step_inferior_states;
1587 state != NULL;
1588 state = state->next)
1589 if (state->pid == pid)
1590 return state;
237fc4c9 1591
8d749320 1592 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1593 state->pid = pid;
1594 state->next = displaced_step_inferior_states;
1595 displaced_step_inferior_states = state;
237fc4c9 1596
fc1cf338
PA
1597 return state;
1598}
1599
a42244db
YQ
1600/* If inferior is in displaced stepping, and ADDR equals to starting address
1601 of copy area, return corresponding displaced_step_closure. Otherwise,
1602 return NULL. */
1603
1604struct displaced_step_closure*
1605get_displaced_step_closure_by_addr (CORE_ADDR addr)
1606{
1607 struct displaced_step_inferior_state *displaced
1608 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1609
1610 /* If checking the mode of displaced instruction in copy area. */
1611 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1612 && (displaced->step_copy == addr))
1613 return displaced->step_closure;
1614
1615 return NULL;
1616}
1617
fc1cf338 1618/* Remove the displaced stepping state of process PID. */
237fc4c9 1619
fc1cf338
PA
1620static void
1621remove_displaced_stepping_state (int pid)
1622{
1623 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1624
fc1cf338
PA
1625 gdb_assert (pid != 0);
1626
1627 it = displaced_step_inferior_states;
1628 prev_next_p = &displaced_step_inferior_states;
1629 while (it)
1630 {
1631 if (it->pid == pid)
1632 {
1633 *prev_next_p = it->next;
1634 xfree (it);
1635 return;
1636 }
1637
1638 prev_next_p = &it->next;
1639 it = *prev_next_p;
1640 }
1641}
1642
1643static void
1644infrun_inferior_exit (struct inferior *inf)
1645{
1646 remove_displaced_stepping_state (inf->pid);
1647}
237fc4c9 1648
fff08868
HZ
1649/* If ON, and the architecture supports it, GDB will use displaced
1650 stepping to step over breakpoints. If OFF, or if the architecture
1651 doesn't support it, GDB will instead use the traditional
1652 hold-and-step approach. If AUTO (which is the default), GDB will
1653 decide which technique to use to step over breakpoints depending on
1654 which of all-stop or non-stop mode is active --- displaced stepping
1655 in non-stop mode; hold-and-step in all-stop mode. */
1656
72d0e2c5 1657static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1658
237fc4c9
PA
1659static void
1660show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1661 struct cmd_list_element *c,
1662 const char *value)
1663{
72d0e2c5 1664 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1665 fprintf_filtered (file,
1666 _("Debugger's willingness to use displaced stepping "
1667 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1668 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1669 else
3e43a32a
MS
1670 fprintf_filtered (file,
1671 _("Debugger's willingness to use displaced stepping "
1672 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1673}
1674
fff08868 1675/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1676 over breakpoints of thread TP. */
fff08868 1677
237fc4c9 1678static int
3fc8eb30 1679use_displaced_stepping (struct thread_info *tp)
237fc4c9 1680{
3fc8eb30
PA
1681 struct regcache *regcache = get_thread_regcache (tp->ptid);
1682 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1683 struct displaced_step_inferior_state *displaced_state;
1684
1685 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1686
fbea99ea
PA
1687 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1688 && target_is_non_stop_p ())
72d0e2c5 1689 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1690 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1691 && find_record_target () == NULL
1692 && (displaced_state == NULL
1693 || !displaced_state->failed_before));
237fc4c9
PA
1694}
1695
1696/* Clean out any stray displaced stepping state. */
1697static void
fc1cf338 1698displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1699{
1700 /* Indicate that there is no cleanup pending. */
fc1cf338 1701 displaced->step_ptid = null_ptid;
237fc4c9 1702
fc1cf338 1703 if (displaced->step_closure)
237fc4c9 1704 {
fc1cf338
PA
1705 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1706 displaced->step_closure);
1707 displaced->step_closure = NULL;
237fc4c9
PA
1708 }
1709}
1710
1711static void
fc1cf338 1712displaced_step_clear_cleanup (void *arg)
237fc4c9 1713{
9a3c8263
SM
1714 struct displaced_step_inferior_state *state
1715 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1716
1717 displaced_step_clear (state);
237fc4c9
PA
1718}
1719
1720/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1721void
1722displaced_step_dump_bytes (struct ui_file *file,
1723 const gdb_byte *buf,
1724 size_t len)
1725{
1726 int i;
1727
1728 for (i = 0; i < len; i++)
1729 fprintf_unfiltered (file, "%02x ", buf[i]);
1730 fputs_unfiltered ("\n", file);
1731}
1732
1733/* Prepare to single-step, using displaced stepping.
1734
1735 Note that we cannot use displaced stepping when we have a signal to
1736 deliver. If we have a signal to deliver and an instruction to step
1737 over, then after the step, there will be no indication from the
1738 target whether the thread entered a signal handler or ignored the
1739 signal and stepped over the instruction successfully --- both cases
1740 result in a simple SIGTRAP. In the first case we mustn't do a
1741 fixup, and in the second case we must --- but we can't tell which.
1742 Comments in the code for 'random signals' in handle_inferior_event
1743 explain how we handle this case instead.
1744
1745 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1746 stepped now; 0 if displaced stepping this thread got queued; or -1
1747 if this instruction can't be displaced stepped. */
1748
237fc4c9 1749static int
3fc8eb30 1750displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1751{
ad53cd71 1752 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1753 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1754 struct regcache *regcache = get_thread_regcache (ptid);
1755 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d35ae833 1756 struct address_space *aspace = get_regcache_aspace (regcache);
237fc4c9
PA
1757 CORE_ADDR original, copy;
1758 ULONGEST len;
1759 struct displaced_step_closure *closure;
fc1cf338 1760 struct displaced_step_inferior_state *displaced;
9e529e1d 1761 int status;
237fc4c9
PA
1762
1763 /* We should never reach this function if the architecture does not
1764 support displaced stepping. */
1765 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1766
c2829269
PA
1767 /* Nor if the thread isn't meant to step over a breakpoint. */
1768 gdb_assert (tp->control.trap_expected);
1769
c1e36e3e
PA
1770 /* Disable range stepping while executing in the scratch pad. We
1771 want a single-step even if executing the displaced instruction in
1772 the scratch buffer lands within the stepping range (e.g., a
1773 jump/branch). */
1774 tp->control.may_range_step = 0;
1775
fc1cf338
PA
1776 /* We have to displaced step one thread at a time, as we only have
1777 access to a single scratch space per inferior. */
237fc4c9 1778
fc1cf338
PA
1779 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1780
1781 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1782 {
1783 /* Already waiting for a displaced step to finish. Defer this
1784 request and place in queue. */
237fc4c9
PA
1785
1786 if (debug_displaced)
1787 fprintf_unfiltered (gdb_stdlog,
c2829269 1788 "displaced: deferring step of %s\n",
237fc4c9
PA
1789 target_pid_to_str (ptid));
1790
c2829269 1791 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1792 return 0;
1793 }
1794 else
1795 {
1796 if (debug_displaced)
1797 fprintf_unfiltered (gdb_stdlog,
1798 "displaced: stepping %s now\n",
1799 target_pid_to_str (ptid));
1800 }
1801
fc1cf338 1802 displaced_step_clear (displaced);
237fc4c9 1803
ad53cd71
PA
1804 old_cleanups = save_inferior_ptid ();
1805 inferior_ptid = ptid;
1806
515630c5 1807 original = regcache_read_pc (regcache);
237fc4c9
PA
1808
1809 copy = gdbarch_displaced_step_location (gdbarch);
1810 len = gdbarch_max_insn_length (gdbarch);
1811
d35ae833
PA
1812 if (breakpoint_in_range_p (aspace, copy, len))
1813 {
1814 /* There's a breakpoint set in the scratch pad location range
1815 (which is usually around the entry point). We'd either
1816 install it before resuming, which would overwrite/corrupt the
1817 scratch pad, or if it was already inserted, this displaced
1818 step would overwrite it. The latter is OK in the sense that
1819 we already assume that no thread is going to execute the code
1820 in the scratch pad range (after initial startup) anyway, but
1821 the former is unacceptable. Simply punt and fallback to
1822 stepping over this breakpoint in-line. */
1823 if (debug_displaced)
1824 {
1825 fprintf_unfiltered (gdb_stdlog,
1826 "displaced: breakpoint set in scratch pad. "
1827 "Stepping over breakpoint in-line instead.\n");
1828 }
1829
1830 do_cleanups (old_cleanups);
1831 return -1;
1832 }
1833
237fc4c9 1834 /* Save the original contents of the copy area. */
224c3ddb 1835 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1836 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1837 &displaced->step_saved_copy);
9e529e1d
JK
1838 status = target_read_memory (copy, displaced->step_saved_copy, len);
1839 if (status != 0)
1840 throw_error (MEMORY_ERROR,
1841 _("Error accessing memory address %s (%s) for "
1842 "displaced-stepping scratch space."),
1843 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1844 if (debug_displaced)
1845 {
5af949e3
UW
1846 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1847 paddress (gdbarch, copy));
fc1cf338
PA
1848 displaced_step_dump_bytes (gdb_stdlog,
1849 displaced->step_saved_copy,
1850 len);
237fc4c9
PA
1851 };
1852
1853 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1854 original, copy, regcache);
7f03bd92
PA
1855 if (closure == NULL)
1856 {
1857 /* The architecture doesn't know how or want to displaced step
1858 this instruction or instruction sequence. Fallback to
1859 stepping over the breakpoint in-line. */
1860 do_cleanups (old_cleanups);
1861 return -1;
1862 }
237fc4c9 1863
9f5a595d
UW
1864 /* Save the information we need to fix things up if the step
1865 succeeds. */
fc1cf338
PA
1866 displaced->step_ptid = ptid;
1867 displaced->step_gdbarch = gdbarch;
1868 displaced->step_closure = closure;
1869 displaced->step_original = original;
1870 displaced->step_copy = copy;
9f5a595d 1871
fc1cf338 1872 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1873
1874 /* Resume execution at the copy. */
515630c5 1875 regcache_write_pc (regcache, copy);
237fc4c9 1876
ad53cd71
PA
1877 discard_cleanups (ignore_cleanups);
1878
1879 do_cleanups (old_cleanups);
237fc4c9
PA
1880
1881 if (debug_displaced)
5af949e3
UW
1882 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1883 paddress (gdbarch, copy));
237fc4c9 1884
237fc4c9
PA
1885 return 1;
1886}
1887
3fc8eb30
PA
1888/* Wrapper for displaced_step_prepare_throw that disabled further
1889 attempts at displaced stepping if we get a memory error. */
1890
1891static int
1892displaced_step_prepare (ptid_t ptid)
1893{
1894 int prepared = -1;
1895
1896 TRY
1897 {
1898 prepared = displaced_step_prepare_throw (ptid);
1899 }
1900 CATCH (ex, RETURN_MASK_ERROR)
1901 {
1902 struct displaced_step_inferior_state *displaced_state;
1903
16b41842
PA
1904 if (ex.error != MEMORY_ERROR
1905 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1906 throw_exception (ex);
1907
1908 if (debug_infrun)
1909 {
1910 fprintf_unfiltered (gdb_stdlog,
1911 "infrun: disabling displaced stepping: %s\n",
1912 ex.message);
1913 }
1914
1915 /* Be verbose if "set displaced-stepping" is "on", silent if
1916 "auto". */
1917 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1918 {
fd7dcb94 1919 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1920 ex.message);
1921 }
1922
1923 /* Disable further displaced stepping attempts. */
1924 displaced_state
1925 = get_displaced_stepping_state (ptid_get_pid (ptid));
1926 displaced_state->failed_before = 1;
1927 }
1928 END_CATCH
1929
1930 return prepared;
1931}
1932
237fc4c9 1933static void
3e43a32a
MS
1934write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1935 const gdb_byte *myaddr, int len)
237fc4c9
PA
1936{
1937 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1938
237fc4c9
PA
1939 inferior_ptid = ptid;
1940 write_memory (memaddr, myaddr, len);
1941 do_cleanups (ptid_cleanup);
1942}
1943
e2d96639
YQ
1944/* Restore the contents of the copy area for thread PTID. */
1945
1946static void
1947displaced_step_restore (struct displaced_step_inferior_state *displaced,
1948 ptid_t ptid)
1949{
1950 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1951
1952 write_memory_ptid (ptid, displaced->step_copy,
1953 displaced->step_saved_copy, len);
1954 if (debug_displaced)
1955 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1956 target_pid_to_str (ptid),
1957 paddress (displaced->step_gdbarch,
1958 displaced->step_copy));
1959}
1960
372316f1
PA
1961/* If we displaced stepped an instruction successfully, adjust
1962 registers and memory to yield the same effect the instruction would
1963 have had if we had executed it at its original address, and return
1964 1. If the instruction didn't complete, relocate the PC and return
1965 -1. If the thread wasn't displaced stepping, return 0. */
1966
1967static int
2ea28649 1968displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1969{
1970 struct cleanup *old_cleanups;
fc1cf338
PA
1971 struct displaced_step_inferior_state *displaced
1972 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1973 int ret;
fc1cf338
PA
1974
1975 /* Was any thread of this process doing a displaced step? */
1976 if (displaced == NULL)
372316f1 1977 return 0;
237fc4c9
PA
1978
1979 /* Was this event for the pid we displaced? */
fc1cf338
PA
1980 if (ptid_equal (displaced->step_ptid, null_ptid)
1981 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1982 return 0;
237fc4c9 1983
fc1cf338 1984 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1985
e2d96639 1986 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1987
cb71640d
PA
1988 /* Fixup may need to read memory/registers. Switch to the thread
1989 that we're fixing up. Also, target_stopped_by_watchpoint checks
1990 the current thread. */
1991 switch_to_thread (event_ptid);
1992
237fc4c9 1993 /* Did the instruction complete successfully? */
cb71640d
PA
1994 if (signal == GDB_SIGNAL_TRAP
1995 && !(target_stopped_by_watchpoint ()
1996 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1997 || target_have_steppable_watchpoint)))
237fc4c9
PA
1998 {
1999 /* Fix up the resulting state. */
fc1cf338
PA
2000 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2001 displaced->step_closure,
2002 displaced->step_original,
2003 displaced->step_copy,
2004 get_thread_regcache (displaced->step_ptid));
372316f1 2005 ret = 1;
237fc4c9
PA
2006 }
2007 else
2008 {
2009 /* Since the instruction didn't complete, all we can do is
2010 relocate the PC. */
515630c5
UW
2011 struct regcache *regcache = get_thread_regcache (event_ptid);
2012 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2013
fc1cf338 2014 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2015 regcache_write_pc (regcache, pc);
372316f1 2016 ret = -1;
237fc4c9
PA
2017 }
2018
2019 do_cleanups (old_cleanups);
2020
fc1cf338 2021 displaced->step_ptid = null_ptid;
372316f1
PA
2022
2023 return ret;
c2829269 2024}
1c5cfe86 2025
4d9d9d04
PA
2026/* Data to be passed around while handling an event. This data is
2027 discarded between events. */
2028struct execution_control_state
2029{
2030 ptid_t ptid;
2031 /* The thread that got the event, if this was a thread event; NULL
2032 otherwise. */
2033 struct thread_info *event_thread;
2034
2035 struct target_waitstatus ws;
2036 int stop_func_filled_in;
2037 CORE_ADDR stop_func_start;
2038 CORE_ADDR stop_func_end;
2039 const char *stop_func_name;
2040 int wait_some_more;
2041
2042 /* True if the event thread hit the single-step breakpoint of
2043 another thread. Thus the event doesn't cause a stop, the thread
2044 needs to be single-stepped past the single-step breakpoint before
2045 we can switch back to the original stepping thread. */
2046 int hit_singlestep_breakpoint;
2047};
2048
2049/* Clear ECS and set it to point at TP. */
c2829269
PA
2050
2051static void
4d9d9d04
PA
2052reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2053{
2054 memset (ecs, 0, sizeof (*ecs));
2055 ecs->event_thread = tp;
2056 ecs->ptid = tp->ptid;
2057}
2058
2059static void keep_going_pass_signal (struct execution_control_state *ecs);
2060static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2061static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2062static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2063
2064/* Are there any pending step-over requests? If so, run all we can
2065 now and return true. Otherwise, return false. */
2066
2067static int
c2829269
PA
2068start_step_over (void)
2069{
2070 struct thread_info *tp, *next;
2071
372316f1
PA
2072 /* Don't start a new step-over if we already have an in-line
2073 step-over operation ongoing. */
2074 if (step_over_info_valid_p ())
2075 return 0;
2076
c2829269 2077 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2078 {
4d9d9d04
PA
2079 struct execution_control_state ecss;
2080 struct execution_control_state *ecs = &ecss;
8d297bbf 2081 step_over_what step_what;
372316f1 2082 int must_be_in_line;
c2829269
PA
2083
2084 next = thread_step_over_chain_next (tp);
237fc4c9 2085
c2829269
PA
2086 /* If this inferior already has a displaced step in process,
2087 don't start a new one. */
4d9d9d04 2088 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2089 continue;
2090
372316f1
PA
2091 step_what = thread_still_needs_step_over (tp);
2092 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2093 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2094 && !use_displaced_stepping (tp)));
372316f1
PA
2095
2096 /* We currently stop all threads of all processes to step-over
2097 in-line. If we need to start a new in-line step-over, let
2098 any pending displaced steps finish first. */
2099 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2100 return 0;
2101
c2829269
PA
2102 thread_step_over_chain_remove (tp);
2103
2104 if (step_over_queue_head == NULL)
2105 {
2106 if (debug_infrun)
2107 fprintf_unfiltered (gdb_stdlog,
2108 "infrun: step-over queue now empty\n");
2109 }
2110
372316f1
PA
2111 if (tp->control.trap_expected
2112 || tp->resumed
2113 || tp->executing)
ad53cd71 2114 {
4d9d9d04
PA
2115 internal_error (__FILE__, __LINE__,
2116 "[%s] has inconsistent state: "
372316f1 2117 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2118 target_pid_to_str (tp->ptid),
2119 tp->control.trap_expected,
372316f1 2120 tp->resumed,
4d9d9d04 2121 tp->executing);
ad53cd71 2122 }
1c5cfe86 2123
4d9d9d04
PA
2124 if (debug_infrun)
2125 fprintf_unfiltered (gdb_stdlog,
2126 "infrun: resuming [%s] for step-over\n",
2127 target_pid_to_str (tp->ptid));
2128
2129 /* keep_going_pass_signal skips the step-over if the breakpoint
2130 is no longer inserted. In all-stop, we want to keep looking
2131 for a thread that needs a step-over instead of resuming TP,
2132 because we wouldn't be able to resume anything else until the
2133 target stops again. In non-stop, the resume always resumes
2134 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2135 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2136 continue;
8550d3b3 2137
4d9d9d04
PA
2138 switch_to_thread (tp->ptid);
2139 reset_ecs (ecs, tp);
2140 keep_going_pass_signal (ecs);
1c5cfe86 2141
4d9d9d04
PA
2142 if (!ecs->wait_some_more)
2143 error (_("Command aborted."));
1c5cfe86 2144
372316f1
PA
2145 gdb_assert (tp->resumed);
2146
2147 /* If we started a new in-line step-over, we're done. */
2148 if (step_over_info_valid_p ())
2149 {
2150 gdb_assert (tp->control.trap_expected);
2151 return 1;
2152 }
2153
fbea99ea 2154 if (!target_is_non_stop_p ())
4d9d9d04
PA
2155 {
2156 /* On all-stop, shouldn't have resumed unless we needed a
2157 step over. */
2158 gdb_assert (tp->control.trap_expected
2159 || tp->step_after_step_resume_breakpoint);
2160
2161 /* With remote targets (at least), in all-stop, we can't
2162 issue any further remote commands until the program stops
2163 again. */
2164 return 1;
1c5cfe86 2165 }
c2829269 2166
4d9d9d04
PA
2167 /* Either the thread no longer needed a step-over, or a new
2168 displaced stepping sequence started. Even in the latter
2169 case, continue looking. Maybe we can also start another
2170 displaced step on a thread of other process. */
237fc4c9 2171 }
4d9d9d04
PA
2172
2173 return 0;
237fc4c9
PA
2174}
2175
5231c1fd
PA
2176/* Update global variables holding ptids to hold NEW_PTID if they were
2177 holding OLD_PTID. */
2178static void
2179infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2180{
fc1cf338 2181 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2182
2183 if (ptid_equal (inferior_ptid, old_ptid))
2184 inferior_ptid = new_ptid;
2185
fc1cf338
PA
2186 for (displaced = displaced_step_inferior_states;
2187 displaced;
2188 displaced = displaced->next)
2189 {
2190 if (ptid_equal (displaced->step_ptid, old_ptid))
2191 displaced->step_ptid = new_ptid;
fc1cf338 2192 }
5231c1fd
PA
2193}
2194
237fc4c9
PA
2195\f
2196/* Resuming. */
c906108c
SS
2197
2198/* Things to clean up if we QUIT out of resume (). */
c906108c 2199static void
74b7792f 2200resume_cleanups (void *ignore)
c906108c 2201{
34b7e8a6
PA
2202 if (!ptid_equal (inferior_ptid, null_ptid))
2203 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2204
c906108c
SS
2205 normal_stop ();
2206}
2207
53904c9e
AC
2208static const char schedlock_off[] = "off";
2209static const char schedlock_on[] = "on";
2210static const char schedlock_step[] = "step";
f2665db5 2211static const char schedlock_replay[] = "replay";
40478521 2212static const char *const scheduler_enums[] = {
ef346e04
AC
2213 schedlock_off,
2214 schedlock_on,
2215 schedlock_step,
f2665db5 2216 schedlock_replay,
ef346e04
AC
2217 NULL
2218};
f2665db5 2219static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2220static void
2221show_scheduler_mode (struct ui_file *file, int from_tty,
2222 struct cmd_list_element *c, const char *value)
2223{
3e43a32a
MS
2224 fprintf_filtered (file,
2225 _("Mode for locking scheduler "
2226 "during execution is \"%s\".\n"),
920d2a44
AC
2227 value);
2228}
c906108c
SS
2229
2230static void
96baa820 2231set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2232{
eefe576e
AC
2233 if (!target_can_lock_scheduler)
2234 {
2235 scheduler_mode = schedlock_off;
2236 error (_("Target '%s' cannot support this command."), target_shortname);
2237 }
c906108c
SS
2238}
2239
d4db2f36
PA
2240/* True if execution commands resume all threads of all processes by
2241 default; otherwise, resume only threads of the current inferior
2242 process. */
2243int sched_multi = 0;
2244
2facfe5c
DD
2245/* Try to setup for software single stepping over the specified location.
2246 Return 1 if target_resume() should use hardware single step.
2247
2248 GDBARCH the current gdbarch.
2249 PC the location to step over. */
2250
2251static int
2252maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2253{
2254 int hw_step = 1;
2255
f02253f1 2256 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2257 && gdbarch_software_single_step_p (gdbarch))
2258 hw_step = !insert_single_step_breakpoints (gdbarch);
2259
2facfe5c
DD
2260 return hw_step;
2261}
c906108c 2262
f3263aa4
PA
2263/* See infrun.h. */
2264
09cee04b
PA
2265ptid_t
2266user_visible_resume_ptid (int step)
2267{
f3263aa4 2268 ptid_t resume_ptid;
09cee04b 2269
09cee04b
PA
2270 if (non_stop)
2271 {
2272 /* With non-stop mode on, threads are always handled
2273 individually. */
2274 resume_ptid = inferior_ptid;
2275 }
2276 else if ((scheduler_mode == schedlock_on)
03d46957 2277 || (scheduler_mode == schedlock_step && step))
09cee04b 2278 {
f3263aa4
PA
2279 /* User-settable 'scheduler' mode requires solo thread
2280 resume. */
09cee04b
PA
2281 resume_ptid = inferior_ptid;
2282 }
f2665db5
MM
2283 else if ((scheduler_mode == schedlock_replay)
2284 && target_record_will_replay (minus_one_ptid, execution_direction))
2285 {
2286 /* User-settable 'scheduler' mode requires solo thread resume in replay
2287 mode. */
2288 resume_ptid = inferior_ptid;
2289 }
f3263aa4
PA
2290 else if (!sched_multi && target_supports_multi_process ())
2291 {
2292 /* Resume all threads of the current process (and none of other
2293 processes). */
2294 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2295 }
2296 else
2297 {
2298 /* Resume all threads of all processes. */
2299 resume_ptid = RESUME_ALL;
2300 }
09cee04b
PA
2301
2302 return resume_ptid;
2303}
2304
fbea99ea
PA
2305/* Return a ptid representing the set of threads that we will resume,
2306 in the perspective of the target, assuming run control handling
2307 does not require leaving some threads stopped (e.g., stepping past
2308 breakpoint). USER_STEP indicates whether we're about to start the
2309 target for a stepping command. */
2310
2311static ptid_t
2312internal_resume_ptid (int user_step)
2313{
2314 /* In non-stop, we always control threads individually. Note that
2315 the target may always work in non-stop mode even with "set
2316 non-stop off", in which case user_visible_resume_ptid could
2317 return a wildcard ptid. */
2318 if (target_is_non_stop_p ())
2319 return inferior_ptid;
2320 else
2321 return user_visible_resume_ptid (user_step);
2322}
2323
64ce06e4
PA
2324/* Wrapper for target_resume, that handles infrun-specific
2325 bookkeeping. */
2326
2327static void
2328do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2329{
2330 struct thread_info *tp = inferior_thread ();
2331
2332 /* Install inferior's terminal modes. */
2333 target_terminal_inferior ();
2334
2335 /* Avoid confusing the next resume, if the next stop/resume
2336 happens to apply to another thread. */
2337 tp->suspend.stop_signal = GDB_SIGNAL_0;
2338
8f572e5c
PA
2339 /* Advise target which signals may be handled silently.
2340
2341 If we have removed breakpoints because we are stepping over one
2342 in-line (in any thread), we need to receive all signals to avoid
2343 accidentally skipping a breakpoint during execution of a signal
2344 handler.
2345
2346 Likewise if we're displaced stepping, otherwise a trap for a
2347 breakpoint in a signal handler might be confused with the
2348 displaced step finishing. We don't make the displaced_step_fixup
2349 step distinguish the cases instead, because:
2350
2351 - a backtrace while stopped in the signal handler would show the
2352 scratch pad as frame older than the signal handler, instead of
2353 the real mainline code.
2354
2355 - when the thread is later resumed, the signal handler would
2356 return to the scratch pad area, which would no longer be
2357 valid. */
2358 if (step_over_info_valid_p ()
2359 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2360 target_pass_signals (0, NULL);
2361 else
2362 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2363
2364 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2365
2366 target_commit_resume ();
64ce06e4
PA
2367}
2368
c906108c
SS
2369/* Resume the inferior, but allow a QUIT. This is useful if the user
2370 wants to interrupt some lengthy single-stepping operation
2371 (for child processes, the SIGINT goes to the inferior, and so
2372 we get a SIGINT random_signal, but for remote debugging and perhaps
2373 other targets, that's not true).
2374
c906108c
SS
2375 SIG is the signal to give the inferior (zero for none). */
2376void
64ce06e4 2377resume (enum gdb_signal sig)
c906108c 2378{
74b7792f 2379 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2380 struct regcache *regcache = get_current_regcache ();
2381 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2382 struct thread_info *tp = inferior_thread ();
515630c5 2383 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2384 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2385 ptid_t resume_ptid;
856e7dd6
PA
2386 /* This represents the user's step vs continue request. When
2387 deciding whether "set scheduler-locking step" applies, it's the
2388 user's intention that counts. */
2389 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2390 /* This represents what we'll actually request the target to do.
2391 This can decay from a step to a continue, if e.g., we need to
2392 implement single-stepping with breakpoints (software
2393 single-step). */
6b403daa 2394 int step;
c7e8a53c 2395
c2829269
PA
2396 gdb_assert (!thread_is_in_step_over_chain (tp));
2397
c906108c
SS
2398 QUIT;
2399
372316f1
PA
2400 if (tp->suspend.waitstatus_pending_p)
2401 {
2402 if (debug_infrun)
2403 {
2404 char *statstr;
2405
2406 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2407 fprintf_unfiltered (gdb_stdlog,
2408 "infrun: resume: thread %s has pending wait status %s "
2409 "(currently_stepping=%d).\n",
2410 target_pid_to_str (tp->ptid), statstr,
2411 currently_stepping (tp));
2412 xfree (statstr);
2413 }
2414
2415 tp->resumed = 1;
2416
2417 /* FIXME: What should we do if we are supposed to resume this
2418 thread with a signal? Maybe we should maintain a queue of
2419 pending signals to deliver. */
2420 if (sig != GDB_SIGNAL_0)
2421 {
fd7dcb94 2422 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2423 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2424 }
2425
2426 tp->suspend.stop_signal = GDB_SIGNAL_0;
2427 discard_cleanups (old_cleanups);
2428
2429 if (target_can_async_p ())
2430 target_async (1);
2431 return;
2432 }
2433
2434 tp->stepped_breakpoint = 0;
2435
6b403daa
PA
2436 /* Depends on stepped_breakpoint. */
2437 step = currently_stepping (tp);
2438
74609e71
YQ
2439 if (current_inferior ()->waiting_for_vfork_done)
2440 {
48f9886d
PA
2441 /* Don't try to single-step a vfork parent that is waiting for
2442 the child to get out of the shared memory region (by exec'ing
2443 or exiting). This is particularly important on software
2444 single-step archs, as the child process would trip on the
2445 software single step breakpoint inserted for the parent
2446 process. Since the parent will not actually execute any
2447 instruction until the child is out of the shared region (such
2448 are vfork's semantics), it is safe to simply continue it.
2449 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2450 the parent, and tell it to `keep_going', which automatically
2451 re-sets it stepping. */
74609e71
YQ
2452 if (debug_infrun)
2453 fprintf_unfiltered (gdb_stdlog,
2454 "infrun: resume : clear step\n");
a09dd441 2455 step = 0;
74609e71
YQ
2456 }
2457
527159b7 2458 if (debug_infrun)
237fc4c9 2459 fprintf_unfiltered (gdb_stdlog,
c9737c08 2460 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2461 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2462 step, gdb_signal_to_symbol_string (sig),
2463 tp->control.trap_expected,
0d9a9a5f
PA
2464 target_pid_to_str (inferior_ptid),
2465 paddress (gdbarch, pc));
c906108c 2466
c2c6d25f
JM
2467 /* Normally, by the time we reach `resume', the breakpoints are either
2468 removed or inserted, as appropriate. The exception is if we're sitting
2469 at a permanent breakpoint; we need to step over it, but permanent
2470 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2471 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2472 {
af48d08f
PA
2473 if (sig != GDB_SIGNAL_0)
2474 {
2475 /* We have a signal to pass to the inferior. The resume
2476 may, or may not take us to the signal handler. If this
2477 is a step, we'll need to stop in the signal handler, if
2478 there's one, (if the target supports stepping into
2479 handlers), or in the next mainline instruction, if
2480 there's no handler. If this is a continue, we need to be
2481 sure to run the handler with all breakpoints inserted.
2482 In all cases, set a breakpoint at the current address
2483 (where the handler returns to), and once that breakpoint
2484 is hit, resume skipping the permanent breakpoint. If
2485 that breakpoint isn't hit, then we've stepped into the
2486 signal handler (or hit some other event). We'll delete
2487 the step-resume breakpoint then. */
2488
2489 if (debug_infrun)
2490 fprintf_unfiltered (gdb_stdlog,
2491 "infrun: resume: skipping permanent breakpoint, "
2492 "deliver signal first\n");
2493
2494 clear_step_over_info ();
2495 tp->control.trap_expected = 0;
2496
2497 if (tp->control.step_resume_breakpoint == NULL)
2498 {
2499 /* Set a "high-priority" step-resume, as we don't want
2500 user breakpoints at PC to trigger (again) when this
2501 hits. */
2502 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2503 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2504
2505 tp->step_after_step_resume_breakpoint = step;
2506 }
2507
2508 insert_breakpoints ();
2509 }
2510 else
2511 {
2512 /* There's no signal to pass, we can go ahead and skip the
2513 permanent breakpoint manually. */
2514 if (debug_infrun)
2515 fprintf_unfiltered (gdb_stdlog,
2516 "infrun: resume: skipping permanent breakpoint\n");
2517 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2518 /* Update pc to reflect the new address from which we will
2519 execute instructions. */
2520 pc = regcache_read_pc (regcache);
2521
2522 if (step)
2523 {
2524 /* We've already advanced the PC, so the stepping part
2525 is done. Now we need to arrange for a trap to be
2526 reported to handle_inferior_event. Set a breakpoint
2527 at the current PC, and run to it. Don't update
2528 prev_pc, because if we end in
44a1ee51
PA
2529 switch_back_to_stepped_thread, we want the "expected
2530 thread advanced also" branch to be taken. IOW, we
2531 don't want this thread to step further from PC
af48d08f 2532 (overstep). */
1ac806b8 2533 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2534 insert_single_step_breakpoint (gdbarch, aspace, pc);
2535 insert_breakpoints ();
2536
fbea99ea 2537 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2538 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2539 discard_cleanups (old_cleanups);
372316f1 2540 tp->resumed = 1;
af48d08f
PA
2541 return;
2542 }
2543 }
6d350bb5 2544 }
c2c6d25f 2545
c1e36e3e
PA
2546 /* If we have a breakpoint to step over, make sure to do a single
2547 step only. Same if we have software watchpoints. */
2548 if (tp->control.trap_expected || bpstat_should_step ())
2549 tp->control.may_range_step = 0;
2550
237fc4c9
PA
2551 /* If enabled, step over breakpoints by executing a copy of the
2552 instruction at a different address.
2553
2554 We can't use displaced stepping when we have a signal to deliver;
2555 the comments for displaced_step_prepare explain why. The
2556 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2557 signals' explain what we do instead.
2558
2559 We can't use displaced stepping when we are waiting for vfork_done
2560 event, displaced stepping breaks the vfork child similarly as single
2561 step software breakpoint. */
3fc8eb30
PA
2562 if (tp->control.trap_expected
2563 && use_displaced_stepping (tp)
cb71640d 2564 && !step_over_info_valid_p ()
a493e3e2 2565 && sig == GDB_SIGNAL_0
74609e71 2566 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2567 {
3fc8eb30 2568 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2569
3fc8eb30 2570 if (prepared == 0)
d56b7306 2571 {
4d9d9d04
PA
2572 if (debug_infrun)
2573 fprintf_unfiltered (gdb_stdlog,
2574 "Got placed in step-over queue\n");
2575
2576 tp->control.trap_expected = 0;
d56b7306
VP
2577 discard_cleanups (old_cleanups);
2578 return;
2579 }
3fc8eb30
PA
2580 else if (prepared < 0)
2581 {
2582 /* Fallback to stepping over the breakpoint in-line. */
2583
2584 if (target_is_non_stop_p ())
2585 stop_all_threads ();
2586
2587 set_step_over_info (get_regcache_aspace (regcache),
21edc42f 2588 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2589
2590 step = maybe_software_singlestep (gdbarch, pc);
2591
2592 insert_breakpoints ();
2593 }
2594 else if (prepared > 0)
2595 {
2596 struct displaced_step_inferior_state *displaced;
99e40580 2597
3fc8eb30
PA
2598 /* Update pc to reflect the new address from which we will
2599 execute instructions due to displaced stepping. */
2600 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2601
3fc8eb30
PA
2602 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2603 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2604 displaced->step_closure);
2605 }
237fc4c9
PA
2606 }
2607
2facfe5c 2608 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2609 else if (step)
2facfe5c 2610 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2611
30852783
UW
2612 /* Currently, our software single-step implementation leads to different
2613 results than hardware single-stepping in one situation: when stepping
2614 into delivering a signal which has an associated signal handler,
2615 hardware single-step will stop at the first instruction of the handler,
2616 while software single-step will simply skip execution of the handler.
2617
2618 For now, this difference in behavior is accepted since there is no
2619 easy way to actually implement single-stepping into a signal handler
2620 without kernel support.
2621
2622 However, there is one scenario where this difference leads to follow-on
2623 problems: if we're stepping off a breakpoint by removing all breakpoints
2624 and then single-stepping. In this case, the software single-step
2625 behavior means that even if there is a *breakpoint* in the signal
2626 handler, GDB still would not stop.
2627
2628 Fortunately, we can at least fix this particular issue. We detect
2629 here the case where we are about to deliver a signal while software
2630 single-stepping with breakpoints removed. In this situation, we
2631 revert the decisions to remove all breakpoints and insert single-
2632 step breakpoints, and instead we install a step-resume breakpoint
2633 at the current address, deliver the signal without stepping, and
2634 once we arrive back at the step-resume breakpoint, actually step
2635 over the breakpoint we originally wanted to step over. */
34b7e8a6 2636 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2637 && sig != GDB_SIGNAL_0
2638 && step_over_info_valid_p ())
30852783
UW
2639 {
2640 /* If we have nested signals or a pending signal is delivered
2641 immediately after a handler returns, might might already have
2642 a step-resume breakpoint set on the earlier handler. We cannot
2643 set another step-resume breakpoint; just continue on until the
2644 original breakpoint is hit. */
2645 if (tp->control.step_resume_breakpoint == NULL)
2646 {
2c03e5be 2647 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2648 tp->step_after_step_resume_breakpoint = 1;
2649 }
2650
34b7e8a6 2651 delete_single_step_breakpoints (tp);
30852783 2652
31e77af2 2653 clear_step_over_info ();
30852783 2654 tp->control.trap_expected = 0;
31e77af2
PA
2655
2656 insert_breakpoints ();
30852783
UW
2657 }
2658
b0f16a3e
SM
2659 /* If STEP is set, it's a request to use hardware stepping
2660 facilities. But in that case, we should never
2661 use singlestep breakpoint. */
34b7e8a6 2662 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2663
fbea99ea 2664 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2665 if (tp->control.trap_expected)
b0f16a3e
SM
2666 {
2667 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2668 hit, either by single-stepping the thread with the breakpoint
2669 removed, or by displaced stepping, with the breakpoint inserted.
2670 In the former case, we need to single-step only this thread,
2671 and keep others stopped, as they can miss this breakpoint if
2672 allowed to run. That's not really a problem for displaced
2673 stepping, but, we still keep other threads stopped, in case
2674 another thread is also stopped for a breakpoint waiting for
2675 its turn in the displaced stepping queue. */
b0f16a3e
SM
2676 resume_ptid = inferior_ptid;
2677 }
fbea99ea
PA
2678 else
2679 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2680
7f5ef605
PA
2681 if (execution_direction != EXEC_REVERSE
2682 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2683 {
372316f1
PA
2684 /* There are two cases where we currently need to step a
2685 breakpoint instruction when we have a signal to deliver:
2686
2687 - See handle_signal_stop where we handle random signals that
2688 could take out us out of the stepping range. Normally, in
2689 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2690 signal handler with a breakpoint at PC, but there are cases
2691 where we should _always_ single-step, even if we have a
2692 step-resume breakpoint, like when a software watchpoint is
2693 set. Assuming single-stepping and delivering a signal at the
2694 same time would takes us to the signal handler, then we could
2695 have removed the breakpoint at PC to step over it. However,
2696 some hardware step targets (like e.g., Mac OS) can't step
2697 into signal handlers, and for those, we need to leave the
2698 breakpoint at PC inserted, as otherwise if the handler
2699 recurses and executes PC again, it'll miss the breakpoint.
2700 So we leave the breakpoint inserted anyway, but we need to
2701 record that we tried to step a breakpoint instruction, so
372316f1
PA
2702 that adjust_pc_after_break doesn't end up confused.
2703
2704 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2705 in one thread after another thread that was stepping had been
2706 momentarily paused for a step-over. When we re-resume the
2707 stepping thread, it may be resumed from that address with a
2708 breakpoint that hasn't trapped yet. Seen with
2709 gdb.threads/non-stop-fair-events.exp, on targets that don't
2710 do displaced stepping. */
2711
2712 if (debug_infrun)
2713 fprintf_unfiltered (gdb_stdlog,
2714 "infrun: resume: [%s] stepped breakpoint\n",
2715 target_pid_to_str (tp->ptid));
7f5ef605
PA
2716
2717 tp->stepped_breakpoint = 1;
2718
b0f16a3e
SM
2719 /* Most targets can step a breakpoint instruction, thus
2720 executing it normally. But if this one cannot, just
2721 continue and we will hit it anyway. */
7f5ef605 2722 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2723 step = 0;
2724 }
ef5cf84e 2725
b0f16a3e 2726 if (debug_displaced
cb71640d 2727 && tp->control.trap_expected
3fc8eb30 2728 && use_displaced_stepping (tp)
cb71640d 2729 && !step_over_info_valid_p ())
b0f16a3e 2730 {
d9b67d9f 2731 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2732 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2733 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2734 gdb_byte buf[4];
2735
2736 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2737 paddress (resume_gdbarch, actual_pc));
2738 read_memory (actual_pc, buf, sizeof (buf));
2739 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2740 }
237fc4c9 2741
b0f16a3e
SM
2742 if (tp->control.may_range_step)
2743 {
2744 /* If we're resuming a thread with the PC out of the step
2745 range, then we're doing some nested/finer run control
2746 operation, like stepping the thread out of the dynamic
2747 linker or the displaced stepping scratch pad. We
2748 shouldn't have allowed a range step then. */
2749 gdb_assert (pc_in_thread_step_range (pc, tp));
2750 }
c1e36e3e 2751
64ce06e4 2752 do_target_resume (resume_ptid, step, sig);
372316f1 2753 tp->resumed = 1;
c906108c
SS
2754 discard_cleanups (old_cleanups);
2755}
2756\f
237fc4c9 2757/* Proceeding. */
c906108c 2758
4c2f2a79
PA
2759/* See infrun.h. */
2760
2761/* Counter that tracks number of user visible stops. This can be used
2762 to tell whether a command has proceeded the inferior past the
2763 current location. This allows e.g., inferior function calls in
2764 breakpoint commands to not interrupt the command list. When the
2765 call finishes successfully, the inferior is standing at the same
2766 breakpoint as if nothing happened (and so we don't call
2767 normal_stop). */
2768static ULONGEST current_stop_id;
2769
2770/* See infrun.h. */
2771
2772ULONGEST
2773get_stop_id (void)
2774{
2775 return current_stop_id;
2776}
2777
2778/* Called when we report a user visible stop. */
2779
2780static void
2781new_stop_id (void)
2782{
2783 current_stop_id++;
2784}
2785
c906108c
SS
2786/* Clear out all variables saying what to do when inferior is continued.
2787 First do this, then set the ones you want, then call `proceed'. */
2788
a7212384
UW
2789static void
2790clear_proceed_status_thread (struct thread_info *tp)
c906108c 2791{
a7212384
UW
2792 if (debug_infrun)
2793 fprintf_unfiltered (gdb_stdlog,
2794 "infrun: clear_proceed_status_thread (%s)\n",
2795 target_pid_to_str (tp->ptid));
d6b48e9c 2796
372316f1
PA
2797 /* If we're starting a new sequence, then the previous finished
2798 single-step is no longer relevant. */
2799 if (tp->suspend.waitstatus_pending_p)
2800 {
2801 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2802 {
2803 if (debug_infrun)
2804 fprintf_unfiltered (gdb_stdlog,
2805 "infrun: clear_proceed_status: pending "
2806 "event of %s was a finished step. "
2807 "Discarding.\n",
2808 target_pid_to_str (tp->ptid));
2809
2810 tp->suspend.waitstatus_pending_p = 0;
2811 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2812 }
2813 else if (debug_infrun)
2814 {
2815 char *statstr;
2816
2817 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2818 fprintf_unfiltered (gdb_stdlog,
2819 "infrun: clear_proceed_status_thread: thread %s "
2820 "has pending wait status %s "
2821 "(currently_stepping=%d).\n",
2822 target_pid_to_str (tp->ptid), statstr,
2823 currently_stepping (tp));
2824 xfree (statstr);
2825 }
2826 }
2827
70509625
PA
2828 /* If this signal should not be seen by program, give it zero.
2829 Used for debugging signals. */
2830 if (!signal_pass_state (tp->suspend.stop_signal))
2831 tp->suspend.stop_signal = GDB_SIGNAL_0;
2832
243a9253
PA
2833 thread_fsm_delete (tp->thread_fsm);
2834 tp->thread_fsm = NULL;
2835
16c381f0
JK
2836 tp->control.trap_expected = 0;
2837 tp->control.step_range_start = 0;
2838 tp->control.step_range_end = 0;
c1e36e3e 2839 tp->control.may_range_step = 0;
16c381f0
JK
2840 tp->control.step_frame_id = null_frame_id;
2841 tp->control.step_stack_frame_id = null_frame_id;
2842 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2843 tp->control.step_start_function = NULL;
a7212384 2844 tp->stop_requested = 0;
4e1c45ea 2845
16c381f0 2846 tp->control.stop_step = 0;
32400beb 2847
16c381f0 2848 tp->control.proceed_to_finish = 0;
414c69f7 2849
856e7dd6 2850 tp->control.stepping_command = 0;
17b2616c 2851
a7212384 2852 /* Discard any remaining commands or status from previous stop. */
16c381f0 2853 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2854}
32400beb 2855
a7212384 2856void
70509625 2857clear_proceed_status (int step)
a7212384 2858{
f2665db5
MM
2859 /* With scheduler-locking replay, stop replaying other threads if we're
2860 not replaying the user-visible resume ptid.
2861
2862 This is a convenience feature to not require the user to explicitly
2863 stop replaying the other threads. We're assuming that the user's
2864 intent is to resume tracing the recorded process. */
2865 if (!non_stop && scheduler_mode == schedlock_replay
2866 && target_record_is_replaying (minus_one_ptid)
2867 && !target_record_will_replay (user_visible_resume_ptid (step),
2868 execution_direction))
2869 target_record_stop_replaying ();
2870
6c95b8df
PA
2871 if (!non_stop)
2872 {
70509625
PA
2873 struct thread_info *tp;
2874 ptid_t resume_ptid;
2875
2876 resume_ptid = user_visible_resume_ptid (step);
2877
2878 /* In all-stop mode, delete the per-thread status of all threads
2879 we're about to resume, implicitly and explicitly. */
2880 ALL_NON_EXITED_THREADS (tp)
2881 {
2882 if (!ptid_match (tp->ptid, resume_ptid))
2883 continue;
2884 clear_proceed_status_thread (tp);
2885 }
6c95b8df
PA
2886 }
2887
a7212384
UW
2888 if (!ptid_equal (inferior_ptid, null_ptid))
2889 {
2890 struct inferior *inferior;
2891
2892 if (non_stop)
2893 {
6c95b8df
PA
2894 /* If in non-stop mode, only delete the per-thread status of
2895 the current thread. */
a7212384
UW
2896 clear_proceed_status_thread (inferior_thread ());
2897 }
6c95b8df 2898
d6b48e9c 2899 inferior = current_inferior ();
16c381f0 2900 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2901 }
2902
f3b1572e 2903 observer_notify_about_to_proceed ();
c906108c
SS
2904}
2905
99619bea
PA
2906/* Returns true if TP is still stopped at a breakpoint that needs
2907 stepping-over in order to make progress. If the breakpoint is gone
2908 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2909
2910static int
6c4cfb24 2911thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2912{
2913 if (tp->stepping_over_breakpoint)
2914 {
2915 struct regcache *regcache = get_thread_regcache (tp->ptid);
2916
2917 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2918 regcache_read_pc (regcache))
2919 == ordinary_breakpoint_here)
99619bea
PA
2920 return 1;
2921
2922 tp->stepping_over_breakpoint = 0;
2923 }
2924
2925 return 0;
2926}
2927
6c4cfb24
PA
2928/* Check whether thread TP still needs to start a step-over in order
2929 to make progress when resumed. Returns an bitwise or of enum
2930 step_over_what bits, indicating what needs to be stepped over. */
2931
8d297bbf 2932static step_over_what
6c4cfb24
PA
2933thread_still_needs_step_over (struct thread_info *tp)
2934{
8d297bbf 2935 step_over_what what = 0;
6c4cfb24
PA
2936
2937 if (thread_still_needs_step_over_bp (tp))
2938 what |= STEP_OVER_BREAKPOINT;
2939
2940 if (tp->stepping_over_watchpoint
2941 && !target_have_steppable_watchpoint)
2942 what |= STEP_OVER_WATCHPOINT;
2943
2944 return what;
2945}
2946
483805cf
PA
2947/* Returns true if scheduler locking applies. STEP indicates whether
2948 we're about to do a step/next-like command to a thread. */
2949
2950static int
856e7dd6 2951schedlock_applies (struct thread_info *tp)
483805cf
PA
2952{
2953 return (scheduler_mode == schedlock_on
2954 || (scheduler_mode == schedlock_step
f2665db5
MM
2955 && tp->control.stepping_command)
2956 || (scheduler_mode == schedlock_replay
2957 && target_record_will_replay (minus_one_ptid,
2958 execution_direction)));
483805cf
PA
2959}
2960
c906108c
SS
2961/* Basic routine for continuing the program in various fashions.
2962
2963 ADDR is the address to resume at, or -1 for resume where stopped.
2964 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2965 or -1 for act according to how it stopped.
c906108c 2966 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2967 -1 means return after that and print nothing.
2968 You should probably set various step_... variables
2969 before calling here, if you are stepping.
c906108c
SS
2970
2971 You should call clear_proceed_status before calling proceed. */
2972
2973void
64ce06e4 2974proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2975{
e58b0e63
PA
2976 struct regcache *regcache;
2977 struct gdbarch *gdbarch;
4e1c45ea 2978 struct thread_info *tp;
e58b0e63 2979 CORE_ADDR pc;
6c95b8df 2980 struct address_space *aspace;
4d9d9d04
PA
2981 ptid_t resume_ptid;
2982 struct execution_control_state ecss;
2983 struct execution_control_state *ecs = &ecss;
2984 struct cleanup *old_chain;
85ad3aaf 2985 struct cleanup *defer_resume_cleanup;
4d9d9d04 2986 int started;
c906108c 2987
e58b0e63
PA
2988 /* If we're stopped at a fork/vfork, follow the branch set by the
2989 "set follow-fork-mode" command; otherwise, we'll just proceed
2990 resuming the current thread. */
2991 if (!follow_fork ())
2992 {
2993 /* The target for some reason decided not to resume. */
2994 normal_stop ();
f148b27e
PA
2995 if (target_can_async_p ())
2996 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2997 return;
2998 }
2999
842951eb
PA
3000 /* We'll update this if & when we switch to a new thread. */
3001 previous_inferior_ptid = inferior_ptid;
3002
e58b0e63
PA
3003 regcache = get_current_regcache ();
3004 gdbarch = get_regcache_arch (regcache);
6c95b8df 3005 aspace = get_regcache_aspace (regcache);
e58b0e63 3006 pc = regcache_read_pc (regcache);
2adfaa28 3007 tp = inferior_thread ();
e58b0e63 3008
99619bea
PA
3009 /* Fill in with reasonable starting values. */
3010 init_thread_stepping_state (tp);
3011
c2829269
PA
3012 gdb_assert (!thread_is_in_step_over_chain (tp));
3013
2acceee2 3014 if (addr == (CORE_ADDR) -1)
c906108c 3015 {
af48d08f
PA
3016 if (pc == stop_pc
3017 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3018 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3019 /* There is a breakpoint at the address we will resume at,
3020 step one instruction before inserting breakpoints so that
3021 we do not stop right away (and report a second hit at this
b2175913
MS
3022 breakpoint).
3023
3024 Note, we don't do this in reverse, because we won't
3025 actually be executing the breakpoint insn anyway.
3026 We'll be (un-)executing the previous instruction. */
99619bea 3027 tp->stepping_over_breakpoint = 1;
515630c5
UW
3028 else if (gdbarch_single_step_through_delay_p (gdbarch)
3029 && gdbarch_single_step_through_delay (gdbarch,
3030 get_current_frame ()))
3352ef37
AC
3031 /* We stepped onto an instruction that needs to be stepped
3032 again before re-inserting the breakpoint, do so. */
99619bea 3033 tp->stepping_over_breakpoint = 1;
c906108c
SS
3034 }
3035 else
3036 {
515630c5 3037 regcache_write_pc (regcache, addr);
c906108c
SS
3038 }
3039
70509625
PA
3040 if (siggnal != GDB_SIGNAL_DEFAULT)
3041 tp->suspend.stop_signal = siggnal;
3042
4d9d9d04
PA
3043 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3044
3045 /* If an exception is thrown from this point on, make sure to
3046 propagate GDB's knowledge of the executing state to the
3047 frontend/user running state. */
3048 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3049
3050 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3051 threads (e.g., we might need to set threads stepping over
3052 breakpoints first), from the user/frontend's point of view, all
3053 threads in RESUME_PTID are now running. Unless we're calling an
3054 inferior function, as in that case we pretend the inferior
3055 doesn't run at all. */
3056 if (!tp->control.in_infcall)
3057 set_running (resume_ptid, 1);
17b2616c 3058
527159b7 3059 if (debug_infrun)
8a9de0e4 3060 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3061 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3062 paddress (gdbarch, addr),
64ce06e4 3063 gdb_signal_to_symbol_string (siggnal));
527159b7 3064
4d9d9d04
PA
3065 annotate_starting ();
3066
3067 /* Make sure that output from GDB appears before output from the
3068 inferior. */
3069 gdb_flush (gdb_stdout);
3070
3071 /* In a multi-threaded task we may select another thread and
3072 then continue or step.
3073
3074 But if a thread that we're resuming had stopped at a breakpoint,
3075 it will immediately cause another breakpoint stop without any
3076 execution (i.e. it will report a breakpoint hit incorrectly). So
3077 we must step over it first.
3078
3079 Look for threads other than the current (TP) that reported a
3080 breakpoint hit and haven't been resumed yet since. */
3081
3082 /* If scheduler locking applies, we can avoid iterating over all
3083 threads. */
3084 if (!non_stop && !schedlock_applies (tp))
94cc34af 3085 {
4d9d9d04
PA
3086 struct thread_info *current = tp;
3087
3088 ALL_NON_EXITED_THREADS (tp)
3089 {
3090 /* Ignore the current thread here. It's handled
3091 afterwards. */
3092 if (tp == current)
3093 continue;
99619bea 3094
4d9d9d04
PA
3095 /* Ignore threads of processes we're not resuming. */
3096 if (!ptid_match (tp->ptid, resume_ptid))
3097 continue;
c906108c 3098
4d9d9d04
PA
3099 if (!thread_still_needs_step_over (tp))
3100 continue;
3101
3102 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3103
99619bea
PA
3104 if (debug_infrun)
3105 fprintf_unfiltered (gdb_stdlog,
3106 "infrun: need to step-over [%s] first\n",
4d9d9d04 3107 target_pid_to_str (tp->ptid));
99619bea 3108
4d9d9d04 3109 thread_step_over_chain_enqueue (tp);
2adfaa28 3110 }
31e77af2 3111
4d9d9d04 3112 tp = current;
30852783
UW
3113 }
3114
4d9d9d04
PA
3115 /* Enqueue the current thread last, so that we move all other
3116 threads over their breakpoints first. */
3117 if (tp->stepping_over_breakpoint)
3118 thread_step_over_chain_enqueue (tp);
30852783 3119
4d9d9d04
PA
3120 /* If the thread isn't started, we'll still need to set its prev_pc,
3121 so that switch_back_to_stepped_thread knows the thread hasn't
3122 advanced. Must do this before resuming any thread, as in
3123 all-stop/remote, once we resume we can't send any other packet
3124 until the target stops again. */
3125 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3126
85ad3aaf
PA
3127 defer_resume_cleanup = make_cleanup_defer_target_commit_resume ();
3128
4d9d9d04 3129 started = start_step_over ();
c906108c 3130
4d9d9d04
PA
3131 if (step_over_info_valid_p ())
3132 {
3133 /* Either this thread started a new in-line step over, or some
3134 other thread was already doing one. In either case, don't
3135 resume anything else until the step-over is finished. */
3136 }
fbea99ea 3137 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3138 {
3139 /* A new displaced stepping sequence was started. In all-stop,
3140 we can't talk to the target anymore until it next stops. */
3141 }
fbea99ea
PA
3142 else if (!non_stop && target_is_non_stop_p ())
3143 {
3144 /* In all-stop, but the target is always in non-stop mode.
3145 Start all other threads that are implicitly resumed too. */
3146 ALL_NON_EXITED_THREADS (tp)
3147 {
3148 /* Ignore threads of processes we're not resuming. */
3149 if (!ptid_match (tp->ptid, resume_ptid))
3150 continue;
3151
3152 if (tp->resumed)
3153 {
3154 if (debug_infrun)
3155 fprintf_unfiltered (gdb_stdlog,
3156 "infrun: proceed: [%s] resumed\n",
3157 target_pid_to_str (tp->ptid));
3158 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3159 continue;
3160 }
3161
3162 if (thread_is_in_step_over_chain (tp))
3163 {
3164 if (debug_infrun)
3165 fprintf_unfiltered (gdb_stdlog,
3166 "infrun: proceed: [%s] needs step-over\n",
3167 target_pid_to_str (tp->ptid));
3168 continue;
3169 }
3170
3171 if (debug_infrun)
3172 fprintf_unfiltered (gdb_stdlog,
3173 "infrun: proceed: resuming %s\n",
3174 target_pid_to_str (tp->ptid));
3175
3176 reset_ecs (ecs, tp);
3177 switch_to_thread (tp->ptid);
3178 keep_going_pass_signal (ecs);
3179 if (!ecs->wait_some_more)
fd7dcb94 3180 error (_("Command aborted."));
fbea99ea
PA
3181 }
3182 }
372316f1 3183 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3184 {
3185 /* The thread wasn't started, and isn't queued, run it now. */
3186 reset_ecs (ecs, tp);
3187 switch_to_thread (tp->ptid);
3188 keep_going_pass_signal (ecs);
3189 if (!ecs->wait_some_more)
fd7dcb94 3190 error (_("Command aborted."));
4d9d9d04 3191 }
c906108c 3192
85ad3aaf
PA
3193 do_cleanups (defer_resume_cleanup);
3194 target_commit_resume ();
3195
4d9d9d04 3196 discard_cleanups (old_chain);
c906108c 3197
0b333c5e
PA
3198 /* Tell the event loop to wait for it to stop. If the target
3199 supports asynchronous execution, it'll do this from within
3200 target_resume. */
362646f5 3201 if (!target_can_async_p ())
0b333c5e 3202 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3203}
c906108c
SS
3204\f
3205
3206/* Start remote-debugging of a machine over a serial link. */
96baa820 3207
c906108c 3208void
8621d6a9 3209start_remote (int from_tty)
c906108c 3210{
d6b48e9c 3211 struct inferior *inferior;
d6b48e9c
PA
3212
3213 inferior = current_inferior ();
16c381f0 3214 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3215
1777feb0 3216 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3217 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3218 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3219 nothing is returned (instead of just blocking). Because of this,
3220 targets expecting an immediate response need to, internally, set
3221 things up so that the target_wait() is forced to eventually
1777feb0 3222 timeout. */
6426a772
JM
3223 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3224 differentiate to its caller what the state of the target is after
3225 the initial open has been performed. Here we're assuming that
3226 the target has stopped. It should be possible to eventually have
3227 target_open() return to the caller an indication that the target
3228 is currently running and GDB state should be set to the same as
1777feb0 3229 for an async run. */
e4c8541f 3230 wait_for_inferior ();
8621d6a9
DJ
3231
3232 /* Now that the inferior has stopped, do any bookkeeping like
3233 loading shared libraries. We want to do this before normal_stop,
3234 so that the displayed frame is up to date. */
3235 post_create_inferior (&current_target, from_tty);
3236
6426a772 3237 normal_stop ();
c906108c
SS
3238}
3239
3240/* Initialize static vars when a new inferior begins. */
3241
3242void
96baa820 3243init_wait_for_inferior (void)
c906108c
SS
3244{
3245 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3246
c906108c
SS
3247 breakpoint_init_inferior (inf_starting);
3248
70509625 3249 clear_proceed_status (0);
9f976b41 3250
ca005067 3251 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3252
842951eb 3253 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3254
edb3359d
DJ
3255 /* Discard any skipped inlined frames. */
3256 clear_inline_frame_state (minus_one_ptid);
c906108c 3257}
237fc4c9 3258
c906108c 3259\f
488f131b 3260
ec9499be 3261static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3262
568d6575
UW
3263static void handle_step_into_function (struct gdbarch *gdbarch,
3264 struct execution_control_state *ecs);
3265static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3266 struct execution_control_state *ecs);
4f5d7f63 3267static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3268static void check_exception_resume (struct execution_control_state *,
28106bc2 3269 struct frame_info *);
611c83ae 3270
bdc36728 3271static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3272static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3273static void keep_going (struct execution_control_state *ecs);
94c57d6a 3274static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3275static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3276
252fbfc8
PA
3277/* Callback for iterate over threads. If the thread is stopped, but
3278 the user/frontend doesn't know about that yet, go through
3279 normal_stop, as if the thread had just stopped now. ARG points at
3280 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3281 ptid_is_pid(PTID) is true, applies to all threads of the process
3282 pointed at by PTID. Otherwise, apply only to the thread pointed by
3283 PTID. */
3284
3285static int
3286infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3287{
3288 ptid_t ptid = * (ptid_t *) arg;
3289
3290 if ((ptid_equal (info->ptid, ptid)
3291 || ptid_equal (minus_one_ptid, ptid)
3292 || (ptid_is_pid (ptid)
3293 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3294 && is_running (info->ptid)
3295 && !is_executing (info->ptid))
3296 {
3297 struct cleanup *old_chain;
3298 struct execution_control_state ecss;
3299 struct execution_control_state *ecs = &ecss;
3300
3301 memset (ecs, 0, sizeof (*ecs));
3302
3303 old_chain = make_cleanup_restore_current_thread ();
3304
f15cb84a
YQ
3305 overlay_cache_invalid = 1;
3306 /* Flush target cache before starting to handle each event.
3307 Target was running and cache could be stale. This is just a
3308 heuristic. Running threads may modify target memory, but we
3309 don't get any event. */
3310 target_dcache_invalidate ();
3311
252fbfc8
PA
3312 /* Go through handle_inferior_event/normal_stop, so we always
3313 have consistent output as if the stop event had been
3314 reported. */
3315 ecs->ptid = info->ptid;
243a9253 3316 ecs->event_thread = info;
252fbfc8 3317 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3318 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3319
3320 handle_inferior_event (ecs);
3321
3322 if (!ecs->wait_some_more)
3323 {
243a9253
PA
3324 /* Cancel any running execution command. */
3325 thread_cancel_execution_command (info);
3326
252fbfc8 3327 normal_stop ();
252fbfc8
PA
3328 }
3329
3330 do_cleanups (old_chain);
3331 }
3332
3333 return 0;
3334}
3335
3336/* This function is attached as a "thread_stop_requested" observer.
3337 Cleanup local state that assumed the PTID was to be resumed, and
3338 report the stop to the frontend. */
3339
2c0b251b 3340static void
252fbfc8
PA
3341infrun_thread_stop_requested (ptid_t ptid)
3342{
c2829269 3343 struct thread_info *tp;
252fbfc8 3344
c2829269
PA
3345 /* PTID was requested to stop. Remove matching threads from the
3346 step-over queue, so we don't try to resume them
3347 automatically. */
3348 ALL_NON_EXITED_THREADS (tp)
3349 if (ptid_match (tp->ptid, ptid))
3350 {
3351 if (thread_is_in_step_over_chain (tp))
3352 thread_step_over_chain_remove (tp);
3353 }
252fbfc8
PA
3354
3355 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3356}
3357
a07daef3
PA
3358static void
3359infrun_thread_thread_exit (struct thread_info *tp, int silent)
3360{
3361 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3362 nullify_last_target_wait_ptid ();
3363}
3364
0cbcdb96
PA
3365/* Delete the step resume, single-step and longjmp/exception resume
3366 breakpoints of TP. */
4e1c45ea 3367
0cbcdb96
PA
3368static void
3369delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3370{
0cbcdb96
PA
3371 delete_step_resume_breakpoint (tp);
3372 delete_exception_resume_breakpoint (tp);
34b7e8a6 3373 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3374}
3375
0cbcdb96
PA
3376/* If the target still has execution, call FUNC for each thread that
3377 just stopped. In all-stop, that's all the non-exited threads; in
3378 non-stop, that's the current thread, only. */
3379
3380typedef void (*for_each_just_stopped_thread_callback_func)
3381 (struct thread_info *tp);
4e1c45ea
PA
3382
3383static void
0cbcdb96 3384for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3385{
0cbcdb96 3386 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3387 return;
3388
fbea99ea 3389 if (target_is_non_stop_p ())
4e1c45ea 3390 {
0cbcdb96
PA
3391 /* If in non-stop mode, only the current thread stopped. */
3392 func (inferior_thread ());
4e1c45ea
PA
3393 }
3394 else
0cbcdb96
PA
3395 {
3396 struct thread_info *tp;
3397
3398 /* In all-stop mode, all threads have stopped. */
3399 ALL_NON_EXITED_THREADS (tp)
3400 {
3401 func (tp);
3402 }
3403 }
3404}
3405
3406/* Delete the step resume and longjmp/exception resume breakpoints of
3407 the threads that just stopped. */
3408
3409static void
3410delete_just_stopped_threads_infrun_breakpoints (void)
3411{
3412 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3413}
3414
3415/* Delete the single-step breakpoints of the threads that just
3416 stopped. */
7c16b83e 3417
34b7e8a6
PA
3418static void
3419delete_just_stopped_threads_single_step_breakpoints (void)
3420{
3421 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3422}
3423
1777feb0 3424/* A cleanup wrapper. */
4e1c45ea
PA
3425
3426static void
0cbcdb96 3427delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3428{
0cbcdb96 3429 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3430}
3431
221e1a37 3432/* See infrun.h. */
223698f8 3433
221e1a37 3434void
223698f8
DE
3435print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3436 const struct target_waitstatus *ws)
3437{
3438 char *status_string = target_waitstatus_to_string (ws);
3439 struct ui_file *tmp_stream = mem_fileopen ();
3440 char *text;
223698f8
DE
3441
3442 /* The text is split over several lines because it was getting too long.
3443 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3444 output as a unit; we want only one timestamp printed if debug_timestamp
3445 is set. */
3446
3447 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3448 "infrun: target_wait (%d.%ld.%ld",
3449 ptid_get_pid (waiton_ptid),
3450 ptid_get_lwp (waiton_ptid),
3451 ptid_get_tid (waiton_ptid));
dfd4cc63 3452 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3453 fprintf_unfiltered (tmp_stream,
3454 " [%s]", target_pid_to_str (waiton_ptid));
3455 fprintf_unfiltered (tmp_stream, ", status) =\n");
3456 fprintf_unfiltered (tmp_stream,
1176ecec 3457 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3458 ptid_get_pid (result_ptid),
1176ecec
PA
3459 ptid_get_lwp (result_ptid),
3460 ptid_get_tid (result_ptid),
dfd4cc63 3461 target_pid_to_str (result_ptid));
223698f8
DE
3462 fprintf_unfiltered (tmp_stream,
3463 "infrun: %s\n",
3464 status_string);
3465
759ef836 3466 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3467
3468 /* This uses %s in part to handle %'s in the text, but also to avoid
3469 a gcc error: the format attribute requires a string literal. */
3470 fprintf_unfiltered (gdb_stdlog, "%s", text);
3471
3472 xfree (status_string);
3473 xfree (text);
3474 ui_file_delete (tmp_stream);
3475}
3476
372316f1
PA
3477/* Select a thread at random, out of those which are resumed and have
3478 had events. */
3479
3480static struct thread_info *
3481random_pending_event_thread (ptid_t waiton_ptid)
3482{
3483 struct thread_info *event_tp;
3484 int num_events = 0;
3485 int random_selector;
3486
3487 /* First see how many events we have. Count only resumed threads
3488 that have an event pending. */
3489 ALL_NON_EXITED_THREADS (event_tp)
3490 if (ptid_match (event_tp->ptid, waiton_ptid)
3491 && event_tp->resumed
3492 && event_tp->suspend.waitstatus_pending_p)
3493 num_events++;
3494
3495 if (num_events == 0)
3496 return NULL;
3497
3498 /* Now randomly pick a thread out of those that have had events. */
3499 random_selector = (int)
3500 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3501
3502 if (debug_infrun && num_events > 1)
3503 fprintf_unfiltered (gdb_stdlog,
3504 "infrun: Found %d events, selecting #%d\n",
3505 num_events, random_selector);
3506
3507 /* Select the Nth thread that has had an event. */
3508 ALL_NON_EXITED_THREADS (event_tp)
3509 if (ptid_match (event_tp->ptid, waiton_ptid)
3510 && event_tp->resumed
3511 && event_tp->suspend.waitstatus_pending_p)
3512 if (random_selector-- == 0)
3513 break;
3514
3515 return event_tp;
3516}
3517
3518/* Wrapper for target_wait that first checks whether threads have
3519 pending statuses to report before actually asking the target for
3520 more events. */
3521
3522static ptid_t
3523do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3524{
3525 ptid_t event_ptid;
3526 struct thread_info *tp;
3527
3528 /* First check if there is a resumed thread with a wait status
3529 pending. */
3530 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3531 {
3532 tp = random_pending_event_thread (ptid);
3533 }
3534 else
3535 {
3536 if (debug_infrun)
3537 fprintf_unfiltered (gdb_stdlog,
3538 "infrun: Waiting for specific thread %s.\n",
3539 target_pid_to_str (ptid));
3540
3541 /* We have a specific thread to check. */
3542 tp = find_thread_ptid (ptid);
3543 gdb_assert (tp != NULL);
3544 if (!tp->suspend.waitstatus_pending_p)
3545 tp = NULL;
3546 }
3547
3548 if (tp != NULL
3549 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3550 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3551 {
3552 struct regcache *regcache = get_thread_regcache (tp->ptid);
3553 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3554 CORE_ADDR pc;
3555 int discard = 0;
3556
3557 pc = regcache_read_pc (regcache);
3558
3559 if (pc != tp->suspend.stop_pc)
3560 {
3561 if (debug_infrun)
3562 fprintf_unfiltered (gdb_stdlog,
3563 "infrun: PC of %s changed. was=%s, now=%s\n",
3564 target_pid_to_str (tp->ptid),
3565 paddress (gdbarch, tp->prev_pc),
3566 paddress (gdbarch, pc));
3567 discard = 1;
3568 }
3569 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3570 {
3571 if (debug_infrun)
3572 fprintf_unfiltered (gdb_stdlog,
3573 "infrun: previous breakpoint of %s, at %s gone\n",
3574 target_pid_to_str (tp->ptid),
3575 paddress (gdbarch, pc));
3576
3577 discard = 1;
3578 }
3579
3580 if (discard)
3581 {
3582 if (debug_infrun)
3583 fprintf_unfiltered (gdb_stdlog,
3584 "infrun: pending event of %s cancelled.\n",
3585 target_pid_to_str (tp->ptid));
3586
3587 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3588 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3589 }
3590 }
3591
3592 if (tp != NULL)
3593 {
3594 if (debug_infrun)
3595 {
3596 char *statstr;
3597
3598 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3599 fprintf_unfiltered (gdb_stdlog,
3600 "infrun: Using pending wait status %s for %s.\n",
3601 statstr,
3602 target_pid_to_str (tp->ptid));
3603 xfree (statstr);
3604 }
3605
3606 /* Now that we've selected our final event LWP, un-adjust its PC
3607 if it was a software breakpoint (and the target doesn't
3608 always adjust the PC itself). */
3609 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3610 && !target_supports_stopped_by_sw_breakpoint ())
3611 {
3612 struct regcache *regcache;
3613 struct gdbarch *gdbarch;
3614 int decr_pc;
3615
3616 regcache = get_thread_regcache (tp->ptid);
3617 gdbarch = get_regcache_arch (regcache);
3618
3619 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3620 if (decr_pc != 0)
3621 {
3622 CORE_ADDR pc;
3623
3624 pc = regcache_read_pc (regcache);
3625 regcache_write_pc (regcache, pc + decr_pc);
3626 }
3627 }
3628
3629 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3630 *status = tp->suspend.waitstatus;
3631 tp->suspend.waitstatus_pending_p = 0;
3632
3633 /* Wake up the event loop again, until all pending events are
3634 processed. */
3635 if (target_is_async_p ())
3636 mark_async_event_handler (infrun_async_inferior_event_token);
3637 return tp->ptid;
3638 }
3639
3640 /* But if we don't find one, we'll have to wait. */
3641
3642 if (deprecated_target_wait_hook)
3643 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3644 else
3645 event_ptid = target_wait (ptid, status, options);
3646
3647 return event_ptid;
3648}
3649
24291992
PA
3650/* Prepare and stabilize the inferior for detaching it. E.g.,
3651 detaching while a thread is displaced stepping is a recipe for
3652 crashing it, as nothing would readjust the PC out of the scratch
3653 pad. */
3654
3655void
3656prepare_for_detach (void)
3657{
3658 struct inferior *inf = current_inferior ();
3659 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3660 struct cleanup *old_chain_1;
3661 struct displaced_step_inferior_state *displaced;
3662
3663 displaced = get_displaced_stepping_state (inf->pid);
3664
3665 /* Is any thread of this process displaced stepping? If not,
3666 there's nothing else to do. */
3667 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3668 return;
3669
3670 if (debug_infrun)
3671 fprintf_unfiltered (gdb_stdlog,
3672 "displaced-stepping in-process while detaching");
3673
3674 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3675 inf->detaching = 1;
3676
3677 while (!ptid_equal (displaced->step_ptid, null_ptid))
3678 {
3679 struct cleanup *old_chain_2;
3680 struct execution_control_state ecss;
3681 struct execution_control_state *ecs;
3682
3683 ecs = &ecss;
3684 memset (ecs, 0, sizeof (*ecs));
3685
3686 overlay_cache_invalid = 1;
f15cb84a
YQ
3687 /* Flush target cache before starting to handle each event.
3688 Target was running and cache could be stale. This is just a
3689 heuristic. Running threads may modify target memory, but we
3690 don't get any event. */
3691 target_dcache_invalidate ();
24291992 3692
372316f1 3693 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3694
3695 if (debug_infrun)
3696 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3697
3698 /* If an error happens while handling the event, propagate GDB's
3699 knowledge of the executing state to the frontend/user running
3700 state. */
3e43a32a
MS
3701 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3702 &minus_one_ptid);
24291992
PA
3703
3704 /* Now figure out what to do with the result of the result. */
3705 handle_inferior_event (ecs);
3706
3707 /* No error, don't finish the state yet. */
3708 discard_cleanups (old_chain_2);
3709
3710 /* Breakpoints and watchpoints are not installed on the target
3711 at this point, and signals are passed directly to the
3712 inferior, so this must mean the process is gone. */
3713 if (!ecs->wait_some_more)
3714 {
3715 discard_cleanups (old_chain_1);
3716 error (_("Program exited while detaching"));
3717 }
3718 }
3719
3720 discard_cleanups (old_chain_1);
3721}
3722
cd0fc7c3 3723/* Wait for control to return from inferior to debugger.
ae123ec6 3724
cd0fc7c3
SS
3725 If inferior gets a signal, we may decide to start it up again
3726 instead of returning. That is why there is a loop in this function.
3727 When this function actually returns it means the inferior
3728 should be left stopped and GDB should read more commands. */
3729
3730void
e4c8541f 3731wait_for_inferior (void)
cd0fc7c3
SS
3732{
3733 struct cleanup *old_cleanups;
e6f5c25b 3734 struct cleanup *thread_state_chain;
c906108c 3735
527159b7 3736 if (debug_infrun)
ae123ec6 3737 fprintf_unfiltered
e4c8541f 3738 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3739
0cbcdb96
PA
3740 old_cleanups
3741 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3742 NULL);
cd0fc7c3 3743
e6f5c25b
PA
3744 /* If an error happens while handling the event, propagate GDB's
3745 knowledge of the executing state to the frontend/user running
3746 state. */
3747 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3748
c906108c
SS
3749 while (1)
3750 {
ae25568b
PA
3751 struct execution_control_state ecss;
3752 struct execution_control_state *ecs = &ecss;
963f9c80 3753 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3754
ae25568b
PA
3755 memset (ecs, 0, sizeof (*ecs));
3756
ec9499be 3757 overlay_cache_invalid = 1;
ec9499be 3758
f15cb84a
YQ
3759 /* Flush target cache before starting to handle each event.
3760 Target was running and cache could be stale. This is just a
3761 heuristic. Running threads may modify target memory, but we
3762 don't get any event. */
3763 target_dcache_invalidate ();
3764
372316f1 3765 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3766
f00150c9 3767 if (debug_infrun)
223698f8 3768 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3769
cd0fc7c3
SS
3770 /* Now figure out what to do with the result of the result. */
3771 handle_inferior_event (ecs);
c906108c 3772
cd0fc7c3
SS
3773 if (!ecs->wait_some_more)
3774 break;
3775 }
4e1c45ea 3776
e6f5c25b
PA
3777 /* No error, don't finish the state yet. */
3778 discard_cleanups (thread_state_chain);
3779
cd0fc7c3
SS
3780 do_cleanups (old_cleanups);
3781}
c906108c 3782
d3d4baed
PA
3783/* Cleanup that reinstalls the readline callback handler, if the
3784 target is running in the background. If while handling the target
3785 event something triggered a secondary prompt, like e.g., a
3786 pagination prompt, we'll have removed the callback handler (see
3787 gdb_readline_wrapper_line). Need to do this as we go back to the
3788 event loop, ready to process further input. Note this has no
3789 effect if the handler hasn't actually been removed, because calling
3790 rl_callback_handler_install resets the line buffer, thus losing
3791 input. */
3792
3793static void
3794reinstall_readline_callback_handler_cleanup (void *arg)
3795{
3b12939d
PA
3796 struct ui *ui = current_ui;
3797
3798 if (!ui->async)
6c400b59
PA
3799 {
3800 /* We're not going back to the top level event loop yet. Don't
3801 install the readline callback, as it'd prep the terminal,
3802 readline-style (raw, noecho) (e.g., --batch). We'll install
3803 it the next time the prompt is displayed, when we're ready
3804 for input. */
3805 return;
3806 }
3807
3b12939d 3808 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3809 gdb_rl_callback_handler_reinstall ();
3810}
3811
243a9253
PA
3812/* Clean up the FSMs of threads that are now stopped. In non-stop,
3813 that's just the event thread. In all-stop, that's all threads. */
3814
3815static void
3816clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3817{
3818 struct thread_info *thr = ecs->event_thread;
3819
3820 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3821 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3822
3823 if (!non_stop)
3824 {
3825 ALL_NON_EXITED_THREADS (thr)
3826 {
3827 if (thr->thread_fsm == NULL)
3828 continue;
3829 if (thr == ecs->event_thread)
3830 continue;
3831
3832 switch_to_thread (thr->ptid);
8980e177 3833 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3834 }
3835
3836 if (ecs->event_thread != NULL)
3837 switch_to_thread (ecs->event_thread->ptid);
3838 }
3839}
3840
3b12939d
PA
3841/* Helper for all_uis_check_sync_execution_done that works on the
3842 current UI. */
3843
3844static void
3845check_curr_ui_sync_execution_done (void)
3846{
3847 struct ui *ui = current_ui;
3848
3849 if (ui->prompt_state == PROMPT_NEEDED
3850 && ui->async
3851 && !gdb_in_secondary_prompt_p (ui))
3852 {
3853 target_terminal_ours ();
3854 observer_notify_sync_execution_done ();
3eb7562a 3855 ui_register_input_event_handler (ui);
3b12939d
PA
3856 }
3857}
3858
3859/* See infrun.h. */
3860
3861void
3862all_uis_check_sync_execution_done (void)
3863{
0e454242 3864 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3865 {
3866 check_curr_ui_sync_execution_done ();
3867 }
3868}
3869
a8836c93
PA
3870/* See infrun.h. */
3871
3872void
3873all_uis_on_sync_execution_starting (void)
3874{
0e454242 3875 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3876 {
3877 if (current_ui->prompt_state == PROMPT_NEEDED)
3878 async_disable_stdin ();
3879 }
3880}
3881
1777feb0 3882/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3883 event loop whenever a change of state is detected on the file
1777feb0
MS
3884 descriptor corresponding to the target. It can be called more than
3885 once to complete a single execution command. In such cases we need
3886 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3887 that this function is called for a single execution command, then
3888 report to the user that the inferior has stopped, and do the
1777feb0 3889 necessary cleanups. */
43ff13b4
JM
3890
3891void
fba45db2 3892fetch_inferior_event (void *client_data)
43ff13b4 3893{
0d1e5fa7 3894 struct execution_control_state ecss;
a474d7c2 3895 struct execution_control_state *ecs = &ecss;
4f8d22e3 3896 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3897 struct cleanup *ts_old_chain;
0f641c01 3898 int cmd_done = 0;
963f9c80 3899 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3900
0d1e5fa7
PA
3901 memset (ecs, 0, sizeof (*ecs));
3902
c61db772
PA
3903 /* Events are always processed with the main UI as current UI. This
3904 way, warnings, debug output, etc. are always consistently sent to
3905 the main console. */
4b6749b9 3906 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3907
d3d4baed
PA
3908 /* End up with readline processing input, if necessary. */
3909 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3910
c5187ac6
PA
3911 /* We're handling a live event, so make sure we're doing live
3912 debugging. If we're looking at traceframes while the target is
3913 running, we're going to need to get back to that mode after
3914 handling the event. */
3915 if (non_stop)
3916 {
3917 make_cleanup_restore_current_traceframe ();
e6e4e701 3918 set_current_traceframe (-1);
c5187ac6
PA
3919 }
3920
4f8d22e3
PA
3921 if (non_stop)
3922 /* In non-stop mode, the user/frontend should not notice a thread
3923 switch due to internal events. Make sure we reverse to the
3924 user selected thread and frame after handling the event and
3925 running any breakpoint commands. */
3926 make_cleanup_restore_current_thread ();
3927
ec9499be 3928 overlay_cache_invalid = 1;
f15cb84a
YQ
3929 /* Flush target cache before starting to handle each event. Target
3930 was running and cache could be stale. This is just a heuristic.
3931 Running threads may modify target memory, but we don't get any
3932 event. */
3933 target_dcache_invalidate ();
3dd5b83d 3934
b7b633e9
TT
3935 scoped_restore save_exec_dir
3936 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3937
0b333c5e
PA
3938 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3939 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3940
f00150c9 3941 if (debug_infrun)
223698f8 3942 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3943
29f49a6a
PA
3944 /* If an error happens while handling the event, propagate GDB's
3945 knowledge of the executing state to the frontend/user running
3946 state. */
fbea99ea 3947 if (!target_is_non_stop_p ())
29f49a6a
PA
3948 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3949 else
3950 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3951
353d1d73
JK
3952 /* Get executed before make_cleanup_restore_current_thread above to apply
3953 still for the thread which has thrown the exception. */
3954 make_bpstat_clear_actions_cleanup ();
3955
7c16b83e
PA
3956 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3957
43ff13b4 3958 /* Now figure out what to do with the result of the result. */
a474d7c2 3959 handle_inferior_event (ecs);
43ff13b4 3960
a474d7c2 3961 if (!ecs->wait_some_more)
43ff13b4 3962 {
c9657e70 3963 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3964 int should_stop = 1;
3965 struct thread_info *thr = ecs->event_thread;
388a7084 3966 int should_notify_stop = 1;
d6b48e9c 3967
0cbcdb96 3968 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3969
243a9253
PA
3970 if (thr != NULL)
3971 {
3972 struct thread_fsm *thread_fsm = thr->thread_fsm;
3973
3974 if (thread_fsm != NULL)
8980e177 3975 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3976 }
3977
3978 if (!should_stop)
3979 {
3980 keep_going (ecs);
3981 }
c2d11a7d 3982 else
0f641c01 3983 {
243a9253
PA
3984 clean_up_just_stopped_threads_fsms (ecs);
3985
388a7084
PA
3986 if (thr != NULL && thr->thread_fsm != NULL)
3987 {
3988 should_notify_stop
3989 = thread_fsm_should_notify_stop (thr->thread_fsm);
3990 }
3991
3992 if (should_notify_stop)
3993 {
4c2f2a79
PA
3994 int proceeded = 0;
3995
388a7084
PA
3996 /* We may not find an inferior if this was a process exit. */
3997 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3998 proceeded = normal_stop ();
243a9253 3999
4c2f2a79
PA
4000 if (!proceeded)
4001 {
4002 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4003 cmd_done = 1;
4004 }
388a7084 4005 }
0f641c01 4006 }
43ff13b4 4007 }
4f8d22e3 4008
29f49a6a
PA
4009 /* No error, don't finish the thread states yet. */
4010 discard_cleanups (ts_old_chain);
4011
4f8d22e3
PA
4012 /* Revert thread and frame. */
4013 do_cleanups (old_chain);
4014
3b12939d
PA
4015 /* If a UI was in sync execution mode, and now isn't, restore its
4016 prompt (a synchronous execution command has finished, and we're
4017 ready for input). */
4018 all_uis_check_sync_execution_done ();
0f641c01
PA
4019
4020 if (cmd_done
0f641c01
PA
4021 && exec_done_display_p
4022 && (ptid_equal (inferior_ptid, null_ptid)
4023 || !is_running (inferior_ptid)))
4024 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4025}
4026
edb3359d
DJ
4027/* Record the frame and location we're currently stepping through. */
4028void
4029set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4030{
4031 struct thread_info *tp = inferior_thread ();
4032
16c381f0
JK
4033 tp->control.step_frame_id = get_frame_id (frame);
4034 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4035
4036 tp->current_symtab = sal.symtab;
4037 tp->current_line = sal.line;
4038}
4039
0d1e5fa7
PA
4040/* Clear context switchable stepping state. */
4041
4042void
4e1c45ea 4043init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4044{
7f5ef605 4045 tss->stepped_breakpoint = 0;
0d1e5fa7 4046 tss->stepping_over_breakpoint = 0;
963f9c80 4047 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4048 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4049}
4050
c32c64b7
DE
4051/* Set the cached copy of the last ptid/waitstatus. */
4052
6efcd9a8 4053void
c32c64b7
DE
4054set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4055{
4056 target_last_wait_ptid = ptid;
4057 target_last_waitstatus = status;
4058}
4059
e02bc4cc 4060/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4061 target_wait()/deprecated_target_wait_hook(). The data is actually
4062 cached by handle_inferior_event(), which gets called immediately
4063 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4064
4065void
488f131b 4066get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4067{
39f77062 4068 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4069 *status = target_last_waitstatus;
4070}
4071
ac264b3b
MS
4072void
4073nullify_last_target_wait_ptid (void)
4074{
4075 target_last_wait_ptid = minus_one_ptid;
4076}
4077
dcf4fbde 4078/* Switch thread contexts. */
dd80620e
MS
4079
4080static void
0d1e5fa7 4081context_switch (ptid_t ptid)
dd80620e 4082{
4b51d87b 4083 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4084 {
4085 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4086 target_pid_to_str (inferior_ptid));
4087 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4088 target_pid_to_str (ptid));
fd48f117
DJ
4089 }
4090
0d1e5fa7 4091 switch_to_thread (ptid);
dd80620e
MS
4092}
4093
d8dd4d5f
PA
4094/* If the target can't tell whether we've hit breakpoints
4095 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4096 check whether that could have been caused by a breakpoint. If so,
4097 adjust the PC, per gdbarch_decr_pc_after_break. */
4098
4fa8626c 4099static void
d8dd4d5f
PA
4100adjust_pc_after_break (struct thread_info *thread,
4101 struct target_waitstatus *ws)
4fa8626c 4102{
24a73cce
UW
4103 struct regcache *regcache;
4104 struct gdbarch *gdbarch;
6c95b8df 4105 struct address_space *aspace;
118e6252 4106 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4107
4fa8626c
DJ
4108 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4109 we aren't, just return.
9709f61c
DJ
4110
4111 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4112 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4113 implemented by software breakpoints should be handled through the normal
4114 breakpoint layer.
8fb3e588 4115
4fa8626c
DJ
4116 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4117 different signals (SIGILL or SIGEMT for instance), but it is less
4118 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4119 gdbarch_decr_pc_after_break. I don't know any specific target that
4120 generates these signals at breakpoints (the code has been in GDB since at
4121 least 1992) so I can not guess how to handle them here.
8fb3e588 4122
e6cf7916
UW
4123 In earlier versions of GDB, a target with
4124 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4125 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4126 target with both of these set in GDB history, and it seems unlikely to be
4127 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4128
d8dd4d5f 4129 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4130 return;
4131
d8dd4d5f 4132 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4133 return;
4134
4058b839
PA
4135 /* In reverse execution, when a breakpoint is hit, the instruction
4136 under it has already been de-executed. The reported PC always
4137 points at the breakpoint address, so adjusting it further would
4138 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4139 architecture:
4140
4141 B1 0x08000000 : INSN1
4142 B2 0x08000001 : INSN2
4143 0x08000002 : INSN3
4144 PC -> 0x08000003 : INSN4
4145
4146 Say you're stopped at 0x08000003 as above. Reverse continuing
4147 from that point should hit B2 as below. Reading the PC when the
4148 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4149 been de-executed already.
4150
4151 B1 0x08000000 : INSN1
4152 B2 PC -> 0x08000001 : INSN2
4153 0x08000002 : INSN3
4154 0x08000003 : INSN4
4155
4156 We can't apply the same logic as for forward execution, because
4157 we would wrongly adjust the PC to 0x08000000, since there's a
4158 breakpoint at PC - 1. We'd then report a hit on B1, although
4159 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4160 behaviour. */
4161 if (execution_direction == EXEC_REVERSE)
4162 return;
4163
1cf4d951
PA
4164 /* If the target can tell whether the thread hit a SW breakpoint,
4165 trust it. Targets that can tell also adjust the PC
4166 themselves. */
4167 if (target_supports_stopped_by_sw_breakpoint ())
4168 return;
4169
4170 /* Note that relying on whether a breakpoint is planted in memory to
4171 determine this can fail. E.g,. the breakpoint could have been
4172 removed since. Or the thread could have been told to step an
4173 instruction the size of a breakpoint instruction, and only
4174 _after_ was a breakpoint inserted at its address. */
4175
24a73cce
UW
4176 /* If this target does not decrement the PC after breakpoints, then
4177 we have nothing to do. */
d8dd4d5f 4178 regcache = get_thread_regcache (thread->ptid);
24a73cce 4179 gdbarch = get_regcache_arch (regcache);
118e6252 4180
527a273a 4181 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4182 if (decr_pc == 0)
24a73cce
UW
4183 return;
4184
6c95b8df
PA
4185 aspace = get_regcache_aspace (regcache);
4186
8aad930b
AC
4187 /* Find the location where (if we've hit a breakpoint) the
4188 breakpoint would be. */
118e6252 4189 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4190
1cf4d951
PA
4191 /* If the target can't tell whether a software breakpoint triggered,
4192 fallback to figuring it out based on breakpoints we think were
4193 inserted in the target, and on whether the thread was stepped or
4194 continued. */
4195
1c5cfe86
PA
4196 /* Check whether there actually is a software breakpoint inserted at
4197 that location.
4198
4199 If in non-stop mode, a race condition is possible where we've
4200 removed a breakpoint, but stop events for that breakpoint were
4201 already queued and arrive later. To suppress those spurious
4202 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4203 and retire them after a number of stop events are reported. Note
4204 this is an heuristic and can thus get confused. The real fix is
4205 to get the "stopped by SW BP and needs adjustment" info out of
4206 the target/kernel (and thus never reach here; see above). */
6c95b8df 4207 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4208 || (target_is_non_stop_p ()
4209 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4210 {
77f9e713 4211 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4212
8213266a 4213 if (record_full_is_used ())
77f9e713 4214 record_full_gdb_operation_disable_set ();
96429cc8 4215
1c0fdd0e
UW
4216 /* When using hardware single-step, a SIGTRAP is reported for both
4217 a completed single-step and a software breakpoint. Need to
4218 differentiate between the two, as the latter needs adjusting
4219 but the former does not.
4220
4221 The SIGTRAP can be due to a completed hardware single-step only if
4222 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4223 - this thread is currently being stepped
4224
4225 If any of these events did not occur, we must have stopped due
4226 to hitting a software breakpoint, and have to back up to the
4227 breakpoint address.
4228
4229 As a special case, we could have hardware single-stepped a
4230 software breakpoint. In this case (prev_pc == breakpoint_pc),
4231 we also need to back up to the breakpoint address. */
4232
d8dd4d5f
PA
4233 if (thread_has_single_step_breakpoints_set (thread)
4234 || !currently_stepping (thread)
4235 || (thread->stepped_breakpoint
4236 && thread->prev_pc == breakpoint_pc))
515630c5 4237 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4238
77f9e713 4239 do_cleanups (old_cleanups);
8aad930b 4240 }
4fa8626c
DJ
4241}
4242
edb3359d
DJ
4243static int
4244stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4245{
4246 for (frame = get_prev_frame (frame);
4247 frame != NULL;
4248 frame = get_prev_frame (frame))
4249 {
4250 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4251 return 1;
4252 if (get_frame_type (frame) != INLINE_FRAME)
4253 break;
4254 }
4255
4256 return 0;
4257}
4258
a96d9b2e
SDJ
4259/* Auxiliary function that handles syscall entry/return events.
4260 It returns 1 if the inferior should keep going (and GDB
4261 should ignore the event), or 0 if the event deserves to be
4262 processed. */
ca2163eb 4263
a96d9b2e 4264static int
ca2163eb 4265handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4266{
ca2163eb 4267 struct regcache *regcache;
ca2163eb
PA
4268 int syscall_number;
4269
4270 if (!ptid_equal (ecs->ptid, inferior_ptid))
4271 context_switch (ecs->ptid);
4272
4273 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4274 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4275 stop_pc = regcache_read_pc (regcache);
4276
a96d9b2e
SDJ
4277 if (catch_syscall_enabled () > 0
4278 && catching_syscall_number (syscall_number) > 0)
4279 {
4280 if (debug_infrun)
4281 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4282 syscall_number);
a96d9b2e 4283
16c381f0 4284 ecs->event_thread->control.stop_bpstat
6c95b8df 4285 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4286 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4287
ce12b012 4288 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4289 {
4290 /* Catchpoint hit. */
ca2163eb
PA
4291 return 0;
4292 }
a96d9b2e 4293 }
ca2163eb
PA
4294
4295 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4296 keep_going (ecs);
4297 return 1;
a96d9b2e
SDJ
4298}
4299
7e324e48
GB
4300/* Lazily fill in the execution_control_state's stop_func_* fields. */
4301
4302static void
4303fill_in_stop_func (struct gdbarch *gdbarch,
4304 struct execution_control_state *ecs)
4305{
4306 if (!ecs->stop_func_filled_in)
4307 {
4308 /* Don't care about return value; stop_func_start and stop_func_name
4309 will both be 0 if it doesn't work. */
4310 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4311 &ecs->stop_func_start, &ecs->stop_func_end);
4312 ecs->stop_func_start
4313 += gdbarch_deprecated_function_start_offset (gdbarch);
4314
591a12a1
UW
4315 if (gdbarch_skip_entrypoint_p (gdbarch))
4316 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4317 ecs->stop_func_start);
4318
7e324e48
GB
4319 ecs->stop_func_filled_in = 1;
4320 }
4321}
4322
4f5d7f63
PA
4323
4324/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4325
4326static enum stop_kind
4327get_inferior_stop_soon (ptid_t ptid)
4328{
c9657e70 4329 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4330
4331 gdb_assert (inf != NULL);
4332 return inf->control.stop_soon;
4333}
4334
372316f1
PA
4335/* Wait for one event. Store the resulting waitstatus in WS, and
4336 return the event ptid. */
4337
4338static ptid_t
4339wait_one (struct target_waitstatus *ws)
4340{
4341 ptid_t event_ptid;
4342 ptid_t wait_ptid = minus_one_ptid;
4343
4344 overlay_cache_invalid = 1;
4345
4346 /* Flush target cache before starting to handle each event.
4347 Target was running and cache could be stale. This is just a
4348 heuristic. Running threads may modify target memory, but we
4349 don't get any event. */
4350 target_dcache_invalidate ();
4351
4352 if (deprecated_target_wait_hook)
4353 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4354 else
4355 event_ptid = target_wait (wait_ptid, ws, 0);
4356
4357 if (debug_infrun)
4358 print_target_wait_results (wait_ptid, event_ptid, ws);
4359
4360 return event_ptid;
4361}
4362
4363/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4364 instead of the current thread. */
4365#define THREAD_STOPPED_BY(REASON) \
4366static int \
4367thread_stopped_by_ ## REASON (ptid_t ptid) \
4368{ \
4369 struct cleanup *old_chain; \
4370 int res; \
4371 \
4372 old_chain = save_inferior_ptid (); \
4373 inferior_ptid = ptid; \
4374 \
4375 res = target_stopped_by_ ## REASON (); \
4376 \
4377 do_cleanups (old_chain); \
4378 \
4379 return res; \
4380}
4381
4382/* Generate thread_stopped_by_watchpoint. */
4383THREAD_STOPPED_BY (watchpoint)
4384/* Generate thread_stopped_by_sw_breakpoint. */
4385THREAD_STOPPED_BY (sw_breakpoint)
4386/* Generate thread_stopped_by_hw_breakpoint. */
4387THREAD_STOPPED_BY (hw_breakpoint)
4388
4389/* Cleanups that switches to the PTID pointed at by PTID_P. */
4390
4391static void
4392switch_to_thread_cleanup (void *ptid_p)
4393{
4394 ptid_t ptid = *(ptid_t *) ptid_p;
4395
4396 switch_to_thread (ptid);
4397}
4398
4399/* Save the thread's event and stop reason to process it later. */
4400
4401static void
4402save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4403{
4404 struct regcache *regcache;
4405 struct address_space *aspace;
4406
4407 if (debug_infrun)
4408 {
4409 char *statstr;
4410
4411 statstr = target_waitstatus_to_string (ws);
4412 fprintf_unfiltered (gdb_stdlog,
4413 "infrun: saving status %s for %d.%ld.%ld\n",
4414 statstr,
4415 ptid_get_pid (tp->ptid),
4416 ptid_get_lwp (tp->ptid),
4417 ptid_get_tid (tp->ptid));
4418 xfree (statstr);
4419 }
4420
4421 /* Record for later. */
4422 tp->suspend.waitstatus = *ws;
4423 tp->suspend.waitstatus_pending_p = 1;
4424
4425 regcache = get_thread_regcache (tp->ptid);
4426 aspace = get_regcache_aspace (regcache);
4427
4428 if (ws->kind == TARGET_WAITKIND_STOPPED
4429 && ws->value.sig == GDB_SIGNAL_TRAP)
4430 {
4431 CORE_ADDR pc = regcache_read_pc (regcache);
4432
4433 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4434
4435 if (thread_stopped_by_watchpoint (tp->ptid))
4436 {
4437 tp->suspend.stop_reason
4438 = TARGET_STOPPED_BY_WATCHPOINT;
4439 }
4440 else if (target_supports_stopped_by_sw_breakpoint ()
4441 && thread_stopped_by_sw_breakpoint (tp->ptid))
4442 {
4443 tp->suspend.stop_reason
4444 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4445 }
4446 else if (target_supports_stopped_by_hw_breakpoint ()
4447 && thread_stopped_by_hw_breakpoint (tp->ptid))
4448 {
4449 tp->suspend.stop_reason
4450 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4451 }
4452 else if (!target_supports_stopped_by_hw_breakpoint ()
4453 && hardware_breakpoint_inserted_here_p (aspace,
4454 pc))
4455 {
4456 tp->suspend.stop_reason
4457 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4458 }
4459 else if (!target_supports_stopped_by_sw_breakpoint ()
4460 && software_breakpoint_inserted_here_p (aspace,
4461 pc))
4462 {
4463 tp->suspend.stop_reason
4464 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4465 }
4466 else if (!thread_has_single_step_breakpoints_set (tp)
4467 && currently_stepping (tp))
4468 {
4469 tp->suspend.stop_reason
4470 = TARGET_STOPPED_BY_SINGLE_STEP;
4471 }
4472 }
4473}
4474
65706a29
PA
4475/* A cleanup that disables thread create/exit events. */
4476
4477static void
4478disable_thread_events (void *arg)
4479{
4480 target_thread_events (0);
4481}
4482
6efcd9a8 4483/* See infrun.h. */
372316f1 4484
6efcd9a8 4485void
372316f1
PA
4486stop_all_threads (void)
4487{
4488 /* We may need multiple passes to discover all threads. */
4489 int pass;
4490 int iterations = 0;
4491 ptid_t entry_ptid;
4492 struct cleanup *old_chain;
4493
fbea99ea 4494 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4495
4496 if (debug_infrun)
4497 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4498
4499 entry_ptid = inferior_ptid;
4500 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4501
65706a29
PA
4502 target_thread_events (1);
4503 make_cleanup (disable_thread_events, NULL);
4504
372316f1
PA
4505 /* Request threads to stop, and then wait for the stops. Because
4506 threads we already know about can spawn more threads while we're
4507 trying to stop them, and we only learn about new threads when we
4508 update the thread list, do this in a loop, and keep iterating
4509 until two passes find no threads that need to be stopped. */
4510 for (pass = 0; pass < 2; pass++, iterations++)
4511 {
4512 if (debug_infrun)
4513 fprintf_unfiltered (gdb_stdlog,
4514 "infrun: stop_all_threads, pass=%d, "
4515 "iterations=%d\n", pass, iterations);
4516 while (1)
4517 {
4518 ptid_t event_ptid;
4519 struct target_waitstatus ws;
4520 int need_wait = 0;
4521 struct thread_info *t;
4522
4523 update_thread_list ();
4524
4525 /* Go through all threads looking for threads that we need
4526 to tell the target to stop. */
4527 ALL_NON_EXITED_THREADS (t)
4528 {
4529 if (t->executing)
4530 {
4531 /* If already stopping, don't request a stop again.
4532 We just haven't seen the notification yet. */
4533 if (!t->stop_requested)
4534 {
4535 if (debug_infrun)
4536 fprintf_unfiltered (gdb_stdlog,
4537 "infrun: %s executing, "
4538 "need stop\n",
4539 target_pid_to_str (t->ptid));
4540 target_stop (t->ptid);
4541 t->stop_requested = 1;
4542 }
4543 else
4544 {
4545 if (debug_infrun)
4546 fprintf_unfiltered (gdb_stdlog,
4547 "infrun: %s executing, "
4548 "already stopping\n",
4549 target_pid_to_str (t->ptid));
4550 }
4551
4552 if (t->stop_requested)
4553 need_wait = 1;
4554 }
4555 else
4556 {
4557 if (debug_infrun)
4558 fprintf_unfiltered (gdb_stdlog,
4559 "infrun: %s not executing\n",
4560 target_pid_to_str (t->ptid));
4561
4562 /* The thread may be not executing, but still be
4563 resumed with a pending status to process. */
4564 t->resumed = 0;
4565 }
4566 }
4567
4568 if (!need_wait)
4569 break;
4570
4571 /* If we find new threads on the second iteration, restart
4572 over. We want to see two iterations in a row with all
4573 threads stopped. */
4574 if (pass > 0)
4575 pass = -1;
4576
4577 event_ptid = wait_one (&ws);
4578 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4579 {
4580 /* All resumed threads exited. */
4581 }
65706a29
PA
4582 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4583 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4584 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4585 {
4586 if (debug_infrun)
4587 {
4588 ptid_t ptid = pid_to_ptid (ws.value.integer);
4589
4590 fprintf_unfiltered (gdb_stdlog,
4591 "infrun: %s exited while "
4592 "stopping threads\n",
4593 target_pid_to_str (ptid));
4594 }
4595 }
4596 else
4597 {
6efcd9a8
PA
4598 struct inferior *inf;
4599
372316f1
PA
4600 t = find_thread_ptid (event_ptid);
4601 if (t == NULL)
4602 t = add_thread (event_ptid);
4603
4604 t->stop_requested = 0;
4605 t->executing = 0;
4606 t->resumed = 0;
4607 t->control.may_range_step = 0;
4608
6efcd9a8
PA
4609 /* This may be the first time we see the inferior report
4610 a stop. */
4611 inf = find_inferior_ptid (event_ptid);
4612 if (inf->needs_setup)
4613 {
4614 switch_to_thread_no_regs (t);
4615 setup_inferior (0);
4616 }
4617
372316f1
PA
4618 if (ws.kind == TARGET_WAITKIND_STOPPED
4619 && ws.value.sig == GDB_SIGNAL_0)
4620 {
4621 /* We caught the event that we intended to catch, so
4622 there's no event pending. */
4623 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4624 t->suspend.waitstatus_pending_p = 0;
4625
4626 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4627 {
4628 /* Add it back to the step-over queue. */
4629 if (debug_infrun)
4630 {
4631 fprintf_unfiltered (gdb_stdlog,
4632 "infrun: displaced-step of %s "
4633 "canceled: adding back to the "
4634 "step-over queue\n",
4635 target_pid_to_str (t->ptid));
4636 }
4637 t->control.trap_expected = 0;
4638 thread_step_over_chain_enqueue (t);
4639 }
4640 }
4641 else
4642 {
4643 enum gdb_signal sig;
4644 struct regcache *regcache;
372316f1
PA
4645
4646 if (debug_infrun)
4647 {
4648 char *statstr;
4649
4650 statstr = target_waitstatus_to_string (&ws);
4651 fprintf_unfiltered (gdb_stdlog,
4652 "infrun: target_wait %s, saving "
4653 "status for %d.%ld.%ld\n",
4654 statstr,
4655 ptid_get_pid (t->ptid),
4656 ptid_get_lwp (t->ptid),
4657 ptid_get_tid (t->ptid));
4658 xfree (statstr);
4659 }
4660
4661 /* Record for later. */
4662 save_waitstatus (t, &ws);
4663
4664 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4665 ? ws.value.sig : GDB_SIGNAL_0);
4666
4667 if (displaced_step_fixup (t->ptid, sig) < 0)
4668 {
4669 /* Add it back to the step-over queue. */
4670 t->control.trap_expected = 0;
4671 thread_step_over_chain_enqueue (t);
4672 }
4673
4674 regcache = get_thread_regcache (t->ptid);
4675 t->suspend.stop_pc = regcache_read_pc (regcache);
4676
4677 if (debug_infrun)
4678 {
4679 fprintf_unfiltered (gdb_stdlog,
4680 "infrun: saved stop_pc=%s for %s "
4681 "(currently_stepping=%d)\n",
4682 paddress (target_gdbarch (),
4683 t->suspend.stop_pc),
4684 target_pid_to_str (t->ptid),
4685 currently_stepping (t));
4686 }
4687 }
4688 }
4689 }
4690 }
4691
4692 do_cleanups (old_chain);
4693
4694 if (debug_infrun)
4695 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4696}
4697
f4836ba9
PA
4698/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4699
4700static int
4701handle_no_resumed (struct execution_control_state *ecs)
4702{
4703 struct inferior *inf;
4704 struct thread_info *thread;
4705
3b12939d 4706 if (target_can_async_p ())
f4836ba9 4707 {
3b12939d
PA
4708 struct ui *ui;
4709 int any_sync = 0;
f4836ba9 4710
3b12939d
PA
4711 ALL_UIS (ui)
4712 {
4713 if (ui->prompt_state == PROMPT_BLOCKED)
4714 {
4715 any_sync = 1;
4716 break;
4717 }
4718 }
4719 if (!any_sync)
4720 {
4721 /* There were no unwaited-for children left in the target, but,
4722 we're not synchronously waiting for events either. Just
4723 ignore. */
4724
4725 if (debug_infrun)
4726 fprintf_unfiltered (gdb_stdlog,
4727 "infrun: TARGET_WAITKIND_NO_RESUMED "
4728 "(ignoring: bg)\n");
4729 prepare_to_wait (ecs);
4730 return 1;
4731 }
f4836ba9
PA
4732 }
4733
4734 /* Otherwise, if we were running a synchronous execution command, we
4735 may need to cancel it and give the user back the terminal.
4736
4737 In non-stop mode, the target can't tell whether we've already
4738 consumed previous stop events, so it can end up sending us a
4739 no-resumed event like so:
4740
4741 #0 - thread 1 is left stopped
4742
4743 #1 - thread 2 is resumed and hits breakpoint
4744 -> TARGET_WAITKIND_STOPPED
4745
4746 #2 - thread 3 is resumed and exits
4747 this is the last resumed thread, so
4748 -> TARGET_WAITKIND_NO_RESUMED
4749
4750 #3 - gdb processes stop for thread 2 and decides to re-resume
4751 it.
4752
4753 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4754 thread 2 is now resumed, so the event should be ignored.
4755
4756 IOW, if the stop for thread 2 doesn't end a foreground command,
4757 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4758 event. But it could be that the event meant that thread 2 itself
4759 (or whatever other thread was the last resumed thread) exited.
4760
4761 To address this we refresh the thread list and check whether we
4762 have resumed threads _now_. In the example above, this removes
4763 thread 3 from the thread list. If thread 2 was re-resumed, we
4764 ignore this event. If we find no thread resumed, then we cancel
4765 the synchronous command show "no unwaited-for " to the user. */
4766 update_thread_list ();
4767
4768 ALL_NON_EXITED_THREADS (thread)
4769 {
4770 if (thread->executing
4771 || thread->suspend.waitstatus_pending_p)
4772 {
4773 /* There were no unwaited-for children left in the target at
4774 some point, but there are now. Just ignore. */
4775 if (debug_infrun)
4776 fprintf_unfiltered (gdb_stdlog,
4777 "infrun: TARGET_WAITKIND_NO_RESUMED "
4778 "(ignoring: found resumed)\n");
4779 prepare_to_wait (ecs);
4780 return 1;
4781 }
4782 }
4783
4784 /* Note however that we may find no resumed thread because the whole
4785 process exited meanwhile (thus updating the thread list results
4786 in an empty thread list). In this case we know we'll be getting
4787 a process exit event shortly. */
4788 ALL_INFERIORS (inf)
4789 {
4790 if (inf->pid == 0)
4791 continue;
4792
4793 thread = any_live_thread_of_process (inf->pid);
4794 if (thread == NULL)
4795 {
4796 if (debug_infrun)
4797 fprintf_unfiltered (gdb_stdlog,
4798 "infrun: TARGET_WAITKIND_NO_RESUMED "
4799 "(expect process exit)\n");
4800 prepare_to_wait (ecs);
4801 return 1;
4802 }
4803 }
4804
4805 /* Go ahead and report the event. */
4806 return 0;
4807}
4808
05ba8510
PA
4809/* Given an execution control state that has been freshly filled in by
4810 an event from the inferior, figure out what it means and take
4811 appropriate action.
4812
4813 The alternatives are:
4814
22bcd14b 4815 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4816 debugger.
4817
4818 2) keep_going and return; to wait for the next event (set
4819 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4820 once). */
c906108c 4821
ec9499be 4822static void
0b6e5e10 4823handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4824{
d6b48e9c
PA
4825 enum stop_kind stop_soon;
4826
28736962
PA
4827 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4828 {
4829 /* We had an event in the inferior, but we are not interested in
4830 handling it at this level. The lower layers have already
4831 done what needs to be done, if anything.
4832
4833 One of the possible circumstances for this is when the
4834 inferior produces output for the console. The inferior has
4835 not stopped, and we are ignoring the event. Another possible
4836 circumstance is any event which the lower level knows will be
4837 reported multiple times without an intervening resume. */
4838 if (debug_infrun)
4839 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4840 prepare_to_wait (ecs);
4841 return;
4842 }
4843
65706a29
PA
4844 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4845 {
4846 if (debug_infrun)
4847 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4848 prepare_to_wait (ecs);
4849 return;
4850 }
4851
0e5bf2a8 4852 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4853 && handle_no_resumed (ecs))
4854 return;
0e5bf2a8 4855
1777feb0 4856 /* Cache the last pid/waitstatus. */
c32c64b7 4857 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4858
ca005067 4859 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4860 stop_stack_dummy = STOP_NONE;
ca005067 4861
0e5bf2a8
PA
4862 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4863 {
4864 /* No unwaited-for children left. IOW, all resumed children
4865 have exited. */
4866 if (debug_infrun)
4867 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4868
4869 stop_print_frame = 0;
22bcd14b 4870 stop_waiting (ecs);
0e5bf2a8
PA
4871 return;
4872 }
4873
8c90c137 4874 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4875 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4876 {
4877 ecs->event_thread = find_thread_ptid (ecs->ptid);
4878 /* If it's a new thread, add it to the thread database. */
4879 if (ecs->event_thread == NULL)
4880 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4881
4882 /* Disable range stepping. If the next step request could use a
4883 range, this will be end up re-enabled then. */
4884 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4885 }
88ed393a
JK
4886
4887 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4888 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4889
4890 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4891 reinit_frame_cache ();
4892
28736962
PA
4893 breakpoint_retire_moribund ();
4894
2b009048
DJ
4895 /* First, distinguish signals caused by the debugger from signals
4896 that have to do with the program's own actions. Note that
4897 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4898 on the operating system version. Here we detect when a SIGILL or
4899 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4900 something similar for SIGSEGV, since a SIGSEGV will be generated
4901 when we're trying to execute a breakpoint instruction on a
4902 non-executable stack. This happens for call dummy breakpoints
4903 for architectures like SPARC that place call dummies on the
4904 stack. */
2b009048 4905 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4906 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4907 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4908 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4909 {
de0a0249
UW
4910 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4911
4912 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4913 regcache_read_pc (regcache)))
4914 {
4915 if (debug_infrun)
4916 fprintf_unfiltered (gdb_stdlog,
4917 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4918 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4919 }
2b009048
DJ
4920 }
4921
28736962
PA
4922 /* Mark the non-executing threads accordingly. In all-stop, all
4923 threads of all processes are stopped when we get any event
e1316e60 4924 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4925 {
4926 ptid_t mark_ptid;
4927
fbea99ea 4928 if (!target_is_non_stop_p ())
372316f1
PA
4929 mark_ptid = minus_one_ptid;
4930 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4931 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4932 {
4933 /* If we're handling a process exit in non-stop mode, even
4934 though threads haven't been deleted yet, one would think
4935 that there is nothing to do, as threads of the dead process
4936 will be soon deleted, and threads of any other process were
4937 left running. However, on some targets, threads survive a
4938 process exit event. E.g., for the "checkpoint" command,
4939 when the current checkpoint/fork exits, linux-fork.c
4940 automatically switches to another fork from within
4941 target_mourn_inferior, by associating the same
4942 inferior/thread to another fork. We haven't mourned yet at
4943 this point, but we must mark any threads left in the
4944 process as not-executing so that finish_thread_state marks
4945 them stopped (in the user's perspective) if/when we present
4946 the stop to the user. */
4947 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4948 }
4949 else
4950 mark_ptid = ecs->ptid;
4951
4952 set_executing (mark_ptid, 0);
4953
4954 /* Likewise the resumed flag. */
4955 set_resumed (mark_ptid, 0);
4956 }
8c90c137 4957
488f131b
JB
4958 switch (ecs->ws.kind)
4959 {
4960 case TARGET_WAITKIND_LOADED:
527159b7 4961 if (debug_infrun)
8a9de0e4 4962 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4963 if (!ptid_equal (ecs->ptid, inferior_ptid))
4964 context_switch (ecs->ptid);
b0f4b84b
DJ
4965 /* Ignore gracefully during startup of the inferior, as it might
4966 be the shell which has just loaded some objects, otherwise
4967 add the symbols for the newly loaded objects. Also ignore at
4968 the beginning of an attach or remote session; we will query
4969 the full list of libraries once the connection is
4970 established. */
4f5d7f63
PA
4971
4972 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4973 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4974 {
edcc5120
TT
4975 struct regcache *regcache;
4976
edcc5120
TT
4977 regcache = get_thread_regcache (ecs->ptid);
4978
4979 handle_solib_event ();
4980
4981 ecs->event_thread->control.stop_bpstat
4982 = bpstat_stop_status (get_regcache_aspace (regcache),
4983 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4984
ce12b012 4985 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4986 {
4987 /* A catchpoint triggered. */
94c57d6a
PA
4988 process_event_stop_test (ecs);
4989 return;
edcc5120 4990 }
488f131b 4991
b0f4b84b
DJ
4992 /* If requested, stop when the dynamic linker notifies
4993 gdb of events. This allows the user to get control
4994 and place breakpoints in initializer routines for
4995 dynamically loaded objects (among other things). */
a493e3e2 4996 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4997 if (stop_on_solib_events)
4998 {
55409f9d
DJ
4999 /* Make sure we print "Stopped due to solib-event" in
5000 normal_stop. */
5001 stop_print_frame = 1;
5002
22bcd14b 5003 stop_waiting (ecs);
b0f4b84b
DJ
5004 return;
5005 }
488f131b 5006 }
b0f4b84b
DJ
5007
5008 /* If we are skipping through a shell, or through shared library
5009 loading that we aren't interested in, resume the program. If
5c09a2c5 5010 we're running the program normally, also resume. */
b0f4b84b
DJ
5011 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5012 {
74960c60
VP
5013 /* Loading of shared libraries might have changed breakpoint
5014 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5015 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5016 insert_breakpoints ();
64ce06e4 5017 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5018 prepare_to_wait (ecs);
5019 return;
5020 }
5021
5c09a2c5
PA
5022 /* But stop if we're attaching or setting up a remote
5023 connection. */
5024 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5025 || stop_soon == STOP_QUIETLY_REMOTE)
5026 {
5027 if (debug_infrun)
5028 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5029 stop_waiting (ecs);
5c09a2c5
PA
5030 return;
5031 }
5032
5033 internal_error (__FILE__, __LINE__,
5034 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5035
488f131b 5036 case TARGET_WAITKIND_SPURIOUS:
527159b7 5037 if (debug_infrun)
8a9de0e4 5038 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 5039 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 5040 context_switch (ecs->ptid);
64ce06e4 5041 resume (GDB_SIGNAL_0);
488f131b
JB
5042 prepare_to_wait (ecs);
5043 return;
c5aa993b 5044
65706a29
PA
5045 case TARGET_WAITKIND_THREAD_CREATED:
5046 if (debug_infrun)
5047 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5048 if (!ptid_equal (ecs->ptid, inferior_ptid))
5049 context_switch (ecs->ptid);
5050 if (!switch_back_to_stepped_thread (ecs))
5051 keep_going (ecs);
5052 return;
5053
488f131b 5054 case TARGET_WAITKIND_EXITED:
940c3c06 5055 case TARGET_WAITKIND_SIGNALLED:
527159b7 5056 if (debug_infrun)
940c3c06
PA
5057 {
5058 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5059 fprintf_unfiltered (gdb_stdlog,
5060 "infrun: TARGET_WAITKIND_EXITED\n");
5061 else
5062 fprintf_unfiltered (gdb_stdlog,
5063 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5064 }
5065
fb66883a 5066 inferior_ptid = ecs->ptid;
c9657e70 5067 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5068 set_current_program_space (current_inferior ()->pspace);
5069 handle_vfork_child_exec_or_exit (0);
1777feb0 5070 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 5071
0c557179
SDJ
5072 /* Clearing any previous state of convenience variables. */
5073 clear_exit_convenience_vars ();
5074
940c3c06
PA
5075 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5076 {
5077 /* Record the exit code in the convenience variable $_exitcode, so
5078 that the user can inspect this again later. */
5079 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5080 (LONGEST) ecs->ws.value.integer);
5081
5082 /* Also record this in the inferior itself. */
5083 current_inferior ()->has_exit_code = 1;
5084 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5085
98eb56a4
PA
5086 /* Support the --return-child-result option. */
5087 return_child_result_value = ecs->ws.value.integer;
5088
fd664c91 5089 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
5090 }
5091 else
0c557179
SDJ
5092 {
5093 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5094 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5095
5096 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5097 {
5098 /* Set the value of the internal variable $_exitsignal,
5099 which holds the signal uncaught by the inferior. */
5100 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5101 gdbarch_gdb_signal_to_target (gdbarch,
5102 ecs->ws.value.sig));
5103 }
5104 else
5105 {
5106 /* We don't have access to the target's method used for
5107 converting between signal numbers (GDB's internal
5108 representation <-> target's representation).
5109 Therefore, we cannot do a good job at displaying this
5110 information to the user. It's better to just warn
5111 her about it (if infrun debugging is enabled), and
5112 give up. */
5113 if (debug_infrun)
5114 fprintf_filtered (gdb_stdlog, _("\
5115Cannot fill $_exitsignal with the correct signal number.\n"));
5116 }
5117
fd664c91 5118 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 5119 }
8cf64490 5120
488f131b 5121 gdb_flush (gdb_stdout);
bc1e6c81 5122 target_mourn_inferior (inferior_ptid);
488f131b 5123 stop_print_frame = 0;
22bcd14b 5124 stop_waiting (ecs);
488f131b 5125 return;
c5aa993b 5126
488f131b 5127 /* The following are the only cases in which we keep going;
1777feb0 5128 the above cases end in a continue or goto. */
488f131b 5129 case TARGET_WAITKIND_FORKED:
deb3b17b 5130 case TARGET_WAITKIND_VFORKED:
527159b7 5131 if (debug_infrun)
fed708ed
PA
5132 {
5133 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5134 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5135 else
5136 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5137 }
c906108c 5138
e2d96639
YQ
5139 /* Check whether the inferior is displaced stepping. */
5140 {
5141 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5142 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e2d96639
YQ
5143
5144 /* If checking displaced stepping is supported, and thread
5145 ecs->ptid is displaced stepping. */
c0987663 5146 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5147 {
5148 struct inferior *parent_inf
c9657e70 5149 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5150 struct regcache *child_regcache;
5151 CORE_ADDR parent_pc;
5152
5153 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5154 indicating that the displaced stepping of syscall instruction
5155 has been done. Perform cleanup for parent process here. Note
5156 that this operation also cleans up the child process for vfork,
5157 because their pages are shared. */
a493e3e2 5158 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5159 /* Start a new step-over in another thread if there's one
5160 that needs it. */
5161 start_step_over ();
e2d96639
YQ
5162
5163 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5164 {
c0987663
YQ
5165 struct displaced_step_inferior_state *displaced
5166 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5167
e2d96639
YQ
5168 /* Restore scratch pad for child process. */
5169 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5170 }
5171
5172 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5173 the child's PC is also within the scratchpad. Set the child's PC
5174 to the parent's PC value, which has already been fixed up.
5175 FIXME: we use the parent's aspace here, although we're touching
5176 the child, because the child hasn't been added to the inferior
5177 list yet at this point. */
5178
5179 child_regcache
5180 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5181 gdbarch,
5182 parent_inf->aspace);
5183 /* Read PC value of parent process. */
5184 parent_pc = regcache_read_pc (regcache);
5185
5186 if (debug_displaced)
5187 fprintf_unfiltered (gdb_stdlog,
5188 "displaced: write child pc from %s to %s\n",
5189 paddress (gdbarch,
5190 regcache_read_pc (child_regcache)),
5191 paddress (gdbarch, parent_pc));
5192
5193 regcache_write_pc (child_regcache, parent_pc);
5194 }
5195 }
5196
5a2901d9 5197 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5198 context_switch (ecs->ptid);
5a2901d9 5199
b242c3c2
PA
5200 /* Immediately detach breakpoints from the child before there's
5201 any chance of letting the user delete breakpoints from the
5202 breakpoint lists. If we don't do this early, it's easy to
5203 leave left over traps in the child, vis: "break foo; catch
5204 fork; c; <fork>; del; c; <child calls foo>". We only follow
5205 the fork on the last `continue', and by that time the
5206 breakpoint at "foo" is long gone from the breakpoint table.
5207 If we vforked, then we don't need to unpatch here, since both
5208 parent and child are sharing the same memory pages; we'll
5209 need to unpatch at follow/detach time instead to be certain
5210 that new breakpoints added between catchpoint hit time and
5211 vfork follow are detached. */
5212 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5213 {
b242c3c2
PA
5214 /* This won't actually modify the breakpoint list, but will
5215 physically remove the breakpoints from the child. */
d80ee84f 5216 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5217 }
5218
34b7e8a6 5219 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5220
e58b0e63
PA
5221 /* In case the event is caught by a catchpoint, remember that
5222 the event is to be followed at the next resume of the thread,
5223 and not immediately. */
5224 ecs->event_thread->pending_follow = ecs->ws;
5225
fb14de7b 5226 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5227
16c381f0 5228 ecs->event_thread->control.stop_bpstat
6c95b8df 5229 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5230 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5231
ce12b012
PA
5232 /* If no catchpoint triggered for this, then keep going. Note
5233 that we're interested in knowing the bpstat actually causes a
5234 stop, not just if it may explain the signal. Software
5235 watchpoints, for example, always appear in the bpstat. */
5236 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5237 {
6c95b8df
PA
5238 ptid_t parent;
5239 ptid_t child;
e58b0e63 5240 int should_resume;
3e43a32a
MS
5241 int follow_child
5242 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5243
a493e3e2 5244 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5245
5246 should_resume = follow_fork ();
5247
6c95b8df
PA
5248 parent = ecs->ptid;
5249 child = ecs->ws.value.related_pid;
5250
a2077e25
PA
5251 /* At this point, the parent is marked running, and the
5252 child is marked stopped. */
5253
5254 /* If not resuming the parent, mark it stopped. */
5255 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5256 set_running (parent, 0);
5257
5258 /* If resuming the child, mark it running. */
5259 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5260 set_running (child, 1);
5261
6c95b8df 5262 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5263 if (!detach_fork && (non_stop
5264 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5265 {
5266 if (follow_child)
5267 switch_to_thread (parent);
5268 else
5269 switch_to_thread (child);
5270
5271 ecs->event_thread = inferior_thread ();
5272 ecs->ptid = inferior_ptid;
5273 keep_going (ecs);
5274 }
5275
5276 if (follow_child)
5277 switch_to_thread (child);
5278 else
5279 switch_to_thread (parent);
5280
e58b0e63
PA
5281 ecs->event_thread = inferior_thread ();
5282 ecs->ptid = inferior_ptid;
5283
5284 if (should_resume)
5285 keep_going (ecs);
5286 else
22bcd14b 5287 stop_waiting (ecs);
04e68871
DJ
5288 return;
5289 }
94c57d6a
PA
5290 process_event_stop_test (ecs);
5291 return;
488f131b 5292
6c95b8df
PA
5293 case TARGET_WAITKIND_VFORK_DONE:
5294 /* Done with the shared memory region. Re-insert breakpoints in
5295 the parent, and keep going. */
5296
5297 if (debug_infrun)
3e43a32a
MS
5298 fprintf_unfiltered (gdb_stdlog,
5299 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5300
5301 if (!ptid_equal (ecs->ptid, inferior_ptid))
5302 context_switch (ecs->ptid);
5303
5304 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5305 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5306 /* This also takes care of reinserting breakpoints in the
5307 previously locked inferior. */
5308 keep_going (ecs);
5309 return;
5310
488f131b 5311 case TARGET_WAITKIND_EXECD:
527159b7 5312 if (debug_infrun)
fc5261f2 5313 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5314
5a2901d9 5315 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5316 context_switch (ecs->ptid);
5a2901d9 5317
fb14de7b 5318 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5319
6c95b8df
PA
5320 /* Do whatever is necessary to the parent branch of the vfork. */
5321 handle_vfork_child_exec_or_exit (1);
5322
795e548f
PA
5323 /* This causes the eventpoints and symbol table to be reset.
5324 Must do this now, before trying to determine whether to
5325 stop. */
71b43ef8 5326 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5327
17d8546e
DB
5328 /* In follow_exec we may have deleted the original thread and
5329 created a new one. Make sure that the event thread is the
5330 execd thread for that case (this is a nop otherwise). */
5331 ecs->event_thread = inferior_thread ();
5332
16c381f0 5333 ecs->event_thread->control.stop_bpstat
6c95b8df 5334 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5335 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5336
71b43ef8
PA
5337 /* Note that this may be referenced from inside
5338 bpstat_stop_status above, through inferior_has_execd. */
5339 xfree (ecs->ws.value.execd_pathname);
5340 ecs->ws.value.execd_pathname = NULL;
5341
04e68871 5342 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5343 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5344 {
a493e3e2 5345 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5346 keep_going (ecs);
5347 return;
5348 }
94c57d6a
PA
5349 process_event_stop_test (ecs);
5350 return;
488f131b 5351
b4dc5ffa
MK
5352 /* Be careful not to try to gather much state about a thread
5353 that's in a syscall. It's frequently a losing proposition. */
488f131b 5354 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5355 if (debug_infrun)
3e43a32a
MS
5356 fprintf_unfiltered (gdb_stdlog,
5357 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5358 /* Getting the current syscall number. */
94c57d6a
PA
5359 if (handle_syscall_event (ecs) == 0)
5360 process_event_stop_test (ecs);
5361 return;
c906108c 5362
488f131b
JB
5363 /* Before examining the threads further, step this thread to
5364 get it entirely out of the syscall. (We get notice of the
5365 event when the thread is just on the verge of exiting a
5366 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5367 into user code.) */
488f131b 5368 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5369 if (debug_infrun)
3e43a32a
MS
5370 fprintf_unfiltered (gdb_stdlog,
5371 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5372 if (handle_syscall_event (ecs) == 0)
5373 process_event_stop_test (ecs);
5374 return;
c906108c 5375
488f131b 5376 case TARGET_WAITKIND_STOPPED:
527159b7 5377 if (debug_infrun)
8a9de0e4 5378 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5379 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5380 handle_signal_stop (ecs);
5381 return;
c906108c 5382
b2175913 5383 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5384 if (debug_infrun)
5385 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5386 /* Reverse execution: target ran out of history info. */
eab402df 5387
d1988021
MM
5388 /* Switch to the stopped thread. */
5389 if (!ptid_equal (ecs->ptid, inferior_ptid))
5390 context_switch (ecs->ptid);
5391 if (debug_infrun)
5392 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5393
34b7e8a6 5394 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5395 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
fd664c91 5396 observer_notify_no_history ();
22bcd14b 5397 stop_waiting (ecs);
b2175913 5398 return;
488f131b 5399 }
4f5d7f63
PA
5400}
5401
0b6e5e10
JB
5402/* A wrapper around handle_inferior_event_1, which also makes sure
5403 that all temporary struct value objects that were created during
5404 the handling of the event get deleted at the end. */
5405
5406static void
5407handle_inferior_event (struct execution_control_state *ecs)
5408{
5409 struct value *mark = value_mark ();
5410
5411 handle_inferior_event_1 (ecs);
5412 /* Purge all temporary values created during the event handling,
5413 as it could be a long time before we return to the command level
5414 where such values would otherwise be purged. */
5415 value_free_to_mark (mark);
5416}
5417
372316f1
PA
5418/* Restart threads back to what they were trying to do back when we
5419 paused them for an in-line step-over. The EVENT_THREAD thread is
5420 ignored. */
4d9d9d04
PA
5421
5422static void
372316f1
PA
5423restart_threads (struct thread_info *event_thread)
5424{
5425 struct thread_info *tp;
372316f1
PA
5426
5427 /* In case the instruction just stepped spawned a new thread. */
5428 update_thread_list ();
5429
5430 ALL_NON_EXITED_THREADS (tp)
5431 {
5432 if (tp == event_thread)
5433 {
5434 if (debug_infrun)
5435 fprintf_unfiltered (gdb_stdlog,
5436 "infrun: restart threads: "
5437 "[%s] is event thread\n",
5438 target_pid_to_str (tp->ptid));
5439 continue;
5440 }
5441
5442 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5443 {
5444 if (debug_infrun)
5445 fprintf_unfiltered (gdb_stdlog,
5446 "infrun: restart threads: "
5447 "[%s] not meant to be running\n",
5448 target_pid_to_str (tp->ptid));
5449 continue;
5450 }
5451
5452 if (tp->resumed)
5453 {
5454 if (debug_infrun)
5455 fprintf_unfiltered (gdb_stdlog,
5456 "infrun: restart threads: [%s] resumed\n",
5457 target_pid_to_str (tp->ptid));
5458 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5459 continue;
5460 }
5461
5462 if (thread_is_in_step_over_chain (tp))
5463 {
5464 if (debug_infrun)
5465 fprintf_unfiltered (gdb_stdlog,
5466 "infrun: restart threads: "
5467 "[%s] needs step-over\n",
5468 target_pid_to_str (tp->ptid));
5469 gdb_assert (!tp->resumed);
5470 continue;
5471 }
5472
5473
5474 if (tp->suspend.waitstatus_pending_p)
5475 {
5476 if (debug_infrun)
5477 fprintf_unfiltered (gdb_stdlog,
5478 "infrun: restart threads: "
5479 "[%s] has pending status\n",
5480 target_pid_to_str (tp->ptid));
5481 tp->resumed = 1;
5482 continue;
5483 }
5484
5485 /* If some thread needs to start a step-over at this point, it
5486 should still be in the step-over queue, and thus skipped
5487 above. */
5488 if (thread_still_needs_step_over (tp))
5489 {
5490 internal_error (__FILE__, __LINE__,
5491 "thread [%s] needs a step-over, but not in "
5492 "step-over queue\n",
5493 target_pid_to_str (tp->ptid));
5494 }
5495
5496 if (currently_stepping (tp))
5497 {
5498 if (debug_infrun)
5499 fprintf_unfiltered (gdb_stdlog,
5500 "infrun: restart threads: [%s] was stepping\n",
5501 target_pid_to_str (tp->ptid));
5502 keep_going_stepped_thread (tp);
5503 }
5504 else
5505 {
5506 struct execution_control_state ecss;
5507 struct execution_control_state *ecs = &ecss;
5508
5509 if (debug_infrun)
5510 fprintf_unfiltered (gdb_stdlog,
5511 "infrun: restart threads: [%s] continuing\n",
5512 target_pid_to_str (tp->ptid));
5513 reset_ecs (ecs, tp);
5514 switch_to_thread (tp->ptid);
5515 keep_going_pass_signal (ecs);
5516 }
5517 }
5518}
5519
5520/* Callback for iterate_over_threads. Find a resumed thread that has
5521 a pending waitstatus. */
5522
5523static int
5524resumed_thread_with_pending_status (struct thread_info *tp,
5525 void *arg)
5526{
5527 return (tp->resumed
5528 && tp->suspend.waitstatus_pending_p);
5529}
5530
5531/* Called when we get an event that may finish an in-line or
5532 out-of-line (displaced stepping) step-over started previously.
5533 Return true if the event is processed and we should go back to the
5534 event loop; false if the caller should continue processing the
5535 event. */
5536
5537static int
4d9d9d04
PA
5538finish_step_over (struct execution_control_state *ecs)
5539{
372316f1
PA
5540 int had_step_over_info;
5541
4d9d9d04
PA
5542 displaced_step_fixup (ecs->ptid,
5543 ecs->event_thread->suspend.stop_signal);
5544
372316f1
PA
5545 had_step_over_info = step_over_info_valid_p ();
5546
5547 if (had_step_over_info)
4d9d9d04
PA
5548 {
5549 /* If we're stepping over a breakpoint with all threads locked,
5550 then only the thread that was stepped should be reporting
5551 back an event. */
5552 gdb_assert (ecs->event_thread->control.trap_expected);
5553
5554 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5555 clear_step_over_info ();
5556 }
5557
fbea99ea 5558 if (!target_is_non_stop_p ())
372316f1 5559 return 0;
4d9d9d04
PA
5560
5561 /* Start a new step-over in another thread if there's one that
5562 needs it. */
5563 start_step_over ();
372316f1
PA
5564
5565 /* If we were stepping over a breakpoint before, and haven't started
5566 a new in-line step-over sequence, then restart all other threads
5567 (except the event thread). We can't do this in all-stop, as then
5568 e.g., we wouldn't be able to issue any other remote packet until
5569 these other threads stop. */
5570 if (had_step_over_info && !step_over_info_valid_p ())
5571 {
5572 struct thread_info *pending;
5573
5574 /* If we only have threads with pending statuses, the restart
5575 below won't restart any thread and so nothing re-inserts the
5576 breakpoint we just stepped over. But we need it inserted
5577 when we later process the pending events, otherwise if
5578 another thread has a pending event for this breakpoint too,
5579 we'd discard its event (because the breakpoint that
5580 originally caused the event was no longer inserted). */
5581 context_switch (ecs->ptid);
5582 insert_breakpoints ();
5583
5584 restart_threads (ecs->event_thread);
5585
5586 /* If we have events pending, go through handle_inferior_event
5587 again, picking up a pending event at random. This avoids
5588 thread starvation. */
5589
5590 /* But not if we just stepped over a watchpoint in order to let
5591 the instruction execute so we can evaluate its expression.
5592 The set of watchpoints that triggered is recorded in the
5593 breakpoint objects themselves (see bp->watchpoint_triggered).
5594 If we processed another event first, that other event could
5595 clobber this info. */
5596 if (ecs->event_thread->stepping_over_watchpoint)
5597 return 0;
5598
5599 pending = iterate_over_threads (resumed_thread_with_pending_status,
5600 NULL);
5601 if (pending != NULL)
5602 {
5603 struct thread_info *tp = ecs->event_thread;
5604 struct regcache *regcache;
5605
5606 if (debug_infrun)
5607 {
5608 fprintf_unfiltered (gdb_stdlog,
5609 "infrun: found resumed threads with "
5610 "pending events, saving status\n");
5611 }
5612
5613 gdb_assert (pending != tp);
5614
5615 /* Record the event thread's event for later. */
5616 save_waitstatus (tp, &ecs->ws);
5617 /* This was cleared early, by handle_inferior_event. Set it
5618 so this pending event is considered by
5619 do_target_wait. */
5620 tp->resumed = 1;
5621
5622 gdb_assert (!tp->executing);
5623
5624 regcache = get_thread_regcache (tp->ptid);
5625 tp->suspend.stop_pc = regcache_read_pc (regcache);
5626
5627 if (debug_infrun)
5628 {
5629 fprintf_unfiltered (gdb_stdlog,
5630 "infrun: saved stop_pc=%s for %s "
5631 "(currently_stepping=%d)\n",
5632 paddress (target_gdbarch (),
5633 tp->suspend.stop_pc),
5634 target_pid_to_str (tp->ptid),
5635 currently_stepping (tp));
5636 }
5637
5638 /* This in-line step-over finished; clear this so we won't
5639 start a new one. This is what handle_signal_stop would
5640 do, if we returned false. */
5641 tp->stepping_over_breakpoint = 0;
5642
5643 /* Wake up the event loop again. */
5644 mark_async_event_handler (infrun_async_inferior_event_token);
5645
5646 prepare_to_wait (ecs);
5647 return 1;
5648 }
5649 }
5650
5651 return 0;
4d9d9d04
PA
5652}
5653
4f5d7f63
PA
5654/* Come here when the program has stopped with a signal. */
5655
5656static void
5657handle_signal_stop (struct execution_control_state *ecs)
5658{
5659 struct frame_info *frame;
5660 struct gdbarch *gdbarch;
5661 int stopped_by_watchpoint;
5662 enum stop_kind stop_soon;
5663 int random_signal;
c906108c 5664
f0407826
DE
5665 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5666
5667 /* Do we need to clean up the state of a thread that has
5668 completed a displaced single-step? (Doing so usually affects
5669 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5670 if (finish_step_over (ecs))
5671 return;
f0407826
DE
5672
5673 /* If we either finished a single-step or hit a breakpoint, but
5674 the user wanted this thread to be stopped, pretend we got a
5675 SIG0 (generic unsignaled stop). */
5676 if (ecs->event_thread->stop_requested
5677 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5678 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5679
515630c5 5680 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5681
527159b7 5682 if (debug_infrun)
237fc4c9 5683 {
5af949e3
UW
5684 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5685 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5686 struct cleanup *old_chain = save_inferior_ptid ();
5687
5688 inferior_ptid = ecs->ptid;
5af949e3
UW
5689
5690 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5691 paddress (gdbarch, stop_pc));
d92524f1 5692 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5693 {
5694 CORE_ADDR addr;
abbb1732 5695
237fc4c9
PA
5696 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5697
5698 if (target_stopped_data_address (&current_target, &addr))
5699 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5700 "infrun: stopped data address = %s\n",
5701 paddress (gdbarch, addr));
237fc4c9
PA
5702 else
5703 fprintf_unfiltered (gdb_stdlog,
5704 "infrun: (no data address available)\n");
5705 }
7f82dfc7
JK
5706
5707 do_cleanups (old_chain);
237fc4c9 5708 }
527159b7 5709
36fa8042
PA
5710 /* This is originated from start_remote(), start_inferior() and
5711 shared libraries hook functions. */
5712 stop_soon = get_inferior_stop_soon (ecs->ptid);
5713 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5714 {
5715 if (!ptid_equal (ecs->ptid, inferior_ptid))
5716 context_switch (ecs->ptid);
5717 if (debug_infrun)
5718 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5719 stop_print_frame = 1;
22bcd14b 5720 stop_waiting (ecs);
36fa8042
PA
5721 return;
5722 }
5723
36fa8042
PA
5724 /* This originates from attach_command(). We need to overwrite
5725 the stop_signal here, because some kernels don't ignore a
5726 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5727 See more comments in inferior.h. On the other hand, if we
5728 get a non-SIGSTOP, report it to the user - assume the backend
5729 will handle the SIGSTOP if it should show up later.
5730
5731 Also consider that the attach is complete when we see a
5732 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5733 target extended-remote report it instead of a SIGSTOP
5734 (e.g. gdbserver). We already rely on SIGTRAP being our
5735 signal, so this is no exception.
5736
5737 Also consider that the attach is complete when we see a
5738 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5739 the target to stop all threads of the inferior, in case the
5740 low level attach operation doesn't stop them implicitly. If
5741 they weren't stopped implicitly, then the stub will report a
5742 GDB_SIGNAL_0, meaning: stopped for no particular reason
5743 other than GDB's request. */
5744 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5745 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5746 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5747 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5748 {
5749 stop_print_frame = 1;
22bcd14b 5750 stop_waiting (ecs);
36fa8042
PA
5751 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5752 return;
5753 }
5754
488f131b 5755 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5756 so, then switch to that thread. */
5757 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5758 {
527159b7 5759 if (debug_infrun)
8a9de0e4 5760 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5761
0d1e5fa7 5762 context_switch (ecs->ptid);
c5aa993b 5763
9a4105ab 5764 if (deprecated_context_hook)
5d5658a1 5765 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
488f131b 5766 }
c906108c 5767
568d6575
UW
5768 /* At this point, get hold of the now-current thread's frame. */
5769 frame = get_current_frame ();
5770 gdbarch = get_frame_arch (frame);
5771
2adfaa28 5772 /* Pull the single step breakpoints out of the target. */
af48d08f 5773 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5774 {
af48d08f
PA
5775 struct regcache *regcache;
5776 struct address_space *aspace;
5777 CORE_ADDR pc;
2adfaa28 5778
af48d08f
PA
5779 regcache = get_thread_regcache (ecs->ptid);
5780 aspace = get_regcache_aspace (regcache);
5781 pc = regcache_read_pc (regcache);
34b7e8a6 5782
af48d08f
PA
5783 /* However, before doing so, if this single-step breakpoint was
5784 actually for another thread, set this thread up for moving
5785 past it. */
5786 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5787 aspace, pc))
5788 {
5789 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5790 {
5791 if (debug_infrun)
5792 {
5793 fprintf_unfiltered (gdb_stdlog,
af48d08f 5794 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5795 "single-step breakpoint\n",
5796 target_pid_to_str (ecs->ptid));
2adfaa28 5797 }
af48d08f
PA
5798 ecs->hit_singlestep_breakpoint = 1;
5799 }
5800 }
5801 else
5802 {
5803 if (debug_infrun)
5804 {
5805 fprintf_unfiltered (gdb_stdlog,
5806 "infrun: [%s] hit its "
5807 "single-step breakpoint\n",
5808 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5809 }
5810 }
488f131b 5811 }
af48d08f 5812 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5813
963f9c80
PA
5814 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5815 && ecs->event_thread->control.trap_expected
5816 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5817 stopped_by_watchpoint = 0;
5818 else
5819 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5820
5821 /* If necessary, step over this watchpoint. We'll be back to display
5822 it in a moment. */
5823 if (stopped_by_watchpoint
d92524f1 5824 && (target_have_steppable_watchpoint
568d6575 5825 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5826 {
488f131b
JB
5827 /* At this point, we are stopped at an instruction which has
5828 attempted to write to a piece of memory under control of
5829 a watchpoint. The instruction hasn't actually executed
5830 yet. If we were to evaluate the watchpoint expression
5831 now, we would get the old value, and therefore no change
5832 would seem to have occurred.
5833
5834 In order to make watchpoints work `right', we really need
5835 to complete the memory write, and then evaluate the
d983da9c
DJ
5836 watchpoint expression. We do this by single-stepping the
5837 target.
5838
7f89fd65 5839 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5840 it. For example, the PA can (with some kernel cooperation)
5841 single step over a watchpoint without disabling the watchpoint.
5842
5843 It is far more common to need to disable a watchpoint to step
5844 the inferior over it. If we have non-steppable watchpoints,
5845 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5846 disable all watchpoints.
5847
5848 Any breakpoint at PC must also be stepped over -- if there's
5849 one, it will have already triggered before the watchpoint
5850 triggered, and we either already reported it to the user, or
5851 it didn't cause a stop and we called keep_going. In either
5852 case, if there was a breakpoint at PC, we must be trying to
5853 step past it. */
5854 ecs->event_thread->stepping_over_watchpoint = 1;
5855 keep_going (ecs);
488f131b
JB
5856 return;
5857 }
5858
4e1c45ea 5859 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5860 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5861 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5862 ecs->event_thread->control.stop_step = 0;
488f131b 5863 stop_print_frame = 1;
488f131b 5864 stopped_by_random_signal = 0;
488f131b 5865
edb3359d
DJ
5866 /* Hide inlined functions starting here, unless we just performed stepi or
5867 nexti. After stepi and nexti, always show the innermost frame (not any
5868 inline function call sites). */
16c381f0 5869 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5870 {
5871 struct address_space *aspace =
5872 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5873
5874 /* skip_inline_frames is expensive, so we avoid it if we can
5875 determine that the address is one where functions cannot have
5876 been inlined. This improves performance with inferiors that
5877 load a lot of shared libraries, because the solib event
5878 breakpoint is defined as the address of a function (i.e. not
5879 inline). Note that we have to check the previous PC as well
5880 as the current one to catch cases when we have just
5881 single-stepped off a breakpoint prior to reinstating it.
5882 Note that we're assuming that the code we single-step to is
5883 not inline, but that's not definitive: there's nothing
5884 preventing the event breakpoint function from containing
5885 inlined code, and the single-step ending up there. If the
5886 user had set a breakpoint on that inlined code, the missing
5887 skip_inline_frames call would break things. Fortunately
5888 that's an extremely unlikely scenario. */
09ac7c10 5889 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5890 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5891 && ecs->event_thread->control.trap_expected
5892 && pc_at_non_inline_function (aspace,
5893 ecs->event_thread->prev_pc,
09ac7c10 5894 &ecs->ws)))
1c5a993e
MR
5895 {
5896 skip_inline_frames (ecs->ptid);
5897
5898 /* Re-fetch current thread's frame in case that invalidated
5899 the frame cache. */
5900 frame = get_current_frame ();
5901 gdbarch = get_frame_arch (frame);
5902 }
0574c78f 5903 }
edb3359d 5904
a493e3e2 5905 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5906 && ecs->event_thread->control.trap_expected
568d6575 5907 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5908 && currently_stepping (ecs->event_thread))
3352ef37 5909 {
b50d7442 5910 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5911 also on an instruction that needs to be stepped multiple
1777feb0 5912 times before it's been fully executing. E.g., architectures
3352ef37
AC
5913 with a delay slot. It needs to be stepped twice, once for
5914 the instruction and once for the delay slot. */
5915 int step_through_delay
568d6575 5916 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5917
527159b7 5918 if (debug_infrun && step_through_delay)
8a9de0e4 5919 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5920 if (ecs->event_thread->control.step_range_end == 0
5921 && step_through_delay)
3352ef37
AC
5922 {
5923 /* The user issued a continue when stopped at a breakpoint.
5924 Set up for another trap and get out of here. */
4e1c45ea 5925 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5926 keep_going (ecs);
5927 return;
5928 }
5929 else if (step_through_delay)
5930 {
5931 /* The user issued a step when stopped at a breakpoint.
5932 Maybe we should stop, maybe we should not - the delay
5933 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5934 case, don't decide that here, just set
5935 ecs->stepping_over_breakpoint, making sure we
5936 single-step again before breakpoints are re-inserted. */
4e1c45ea 5937 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5938 }
5939 }
5940
ab04a2af
TT
5941 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5942 handles this event. */
5943 ecs->event_thread->control.stop_bpstat
5944 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5945 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5946
ab04a2af
TT
5947 /* Following in case break condition called a
5948 function. */
5949 stop_print_frame = 1;
73dd234f 5950
ab04a2af
TT
5951 /* This is where we handle "moribund" watchpoints. Unlike
5952 software breakpoints traps, hardware watchpoint traps are
5953 always distinguishable from random traps. If no high-level
5954 watchpoint is associated with the reported stop data address
5955 anymore, then the bpstat does not explain the signal ---
5956 simply make sure to ignore it if `stopped_by_watchpoint' is
5957 set. */
5958
5959 if (debug_infrun
5960 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5961 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5962 GDB_SIGNAL_TRAP)
ab04a2af
TT
5963 && stopped_by_watchpoint)
5964 fprintf_unfiltered (gdb_stdlog,
5965 "infrun: no user watchpoint explains "
5966 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5967
bac7d97b 5968 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5969 at one stage in the past included checks for an inferior
5970 function call's call dummy's return breakpoint. The original
5971 comment, that went with the test, read:
03cebad2 5972
ab04a2af
TT
5973 ``End of a stack dummy. Some systems (e.g. Sony news) give
5974 another signal besides SIGTRAP, so check here as well as
5975 above.''
73dd234f 5976
ab04a2af
TT
5977 If someone ever tries to get call dummys on a
5978 non-executable stack to work (where the target would stop
5979 with something like a SIGSEGV), then those tests might need
5980 to be re-instated. Given, however, that the tests were only
5981 enabled when momentary breakpoints were not being used, I
5982 suspect that it won't be the case.
488f131b 5983
ab04a2af
TT
5984 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5985 be necessary for call dummies on a non-executable stack on
5986 SPARC. */
488f131b 5987
bac7d97b 5988 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5989 random_signal
5990 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5991 ecs->event_thread->suspend.stop_signal);
bac7d97b 5992
1cf4d951
PA
5993 /* Maybe this was a trap for a software breakpoint that has since
5994 been removed. */
5995 if (random_signal && target_stopped_by_sw_breakpoint ())
5996 {
5997 if (program_breakpoint_here_p (gdbarch, stop_pc))
5998 {
5999 struct regcache *regcache;
6000 int decr_pc;
6001
6002 /* Re-adjust PC to what the program would see if GDB was not
6003 debugging it. */
6004 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 6005 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6006 if (decr_pc != 0)
6007 {
6008 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6009
6010 if (record_full_is_used ())
6011 record_full_gdb_operation_disable_set ();
6012
6013 regcache_write_pc (regcache, stop_pc + decr_pc);
6014
6015 do_cleanups (old_cleanups);
6016 }
6017 }
6018 else
6019 {
6020 /* A delayed software breakpoint event. Ignore the trap. */
6021 if (debug_infrun)
6022 fprintf_unfiltered (gdb_stdlog,
6023 "infrun: delayed software breakpoint "
6024 "trap, ignoring\n");
6025 random_signal = 0;
6026 }
6027 }
6028
6029 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6030 has since been removed. */
6031 if (random_signal && target_stopped_by_hw_breakpoint ())
6032 {
6033 /* A delayed hardware breakpoint event. Ignore the trap. */
6034 if (debug_infrun)
6035 fprintf_unfiltered (gdb_stdlog,
6036 "infrun: delayed hardware breakpoint/watchpoint "
6037 "trap, ignoring\n");
6038 random_signal = 0;
6039 }
6040
bac7d97b
PA
6041 /* If not, perhaps stepping/nexting can. */
6042 if (random_signal)
6043 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6044 && currently_stepping (ecs->event_thread));
ab04a2af 6045
2adfaa28
PA
6046 /* Perhaps the thread hit a single-step breakpoint of _another_
6047 thread. Single-step breakpoints are transparent to the
6048 breakpoints module. */
6049 if (random_signal)
6050 random_signal = !ecs->hit_singlestep_breakpoint;
6051
bac7d97b
PA
6052 /* No? Perhaps we got a moribund watchpoint. */
6053 if (random_signal)
6054 random_signal = !stopped_by_watchpoint;
ab04a2af 6055
488f131b
JB
6056 /* For the program's own signals, act according to
6057 the signal handling tables. */
6058
ce12b012 6059 if (random_signal)
488f131b
JB
6060 {
6061 /* Signal not for debugging purposes. */
c9657e70 6062 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6063 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6064
527159b7 6065 if (debug_infrun)
c9737c08
PA
6066 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6067 gdb_signal_to_symbol_string (stop_signal));
527159b7 6068
488f131b
JB
6069 stopped_by_random_signal = 1;
6070
252fbfc8
PA
6071 /* Always stop on signals if we're either just gaining control
6072 of the program, or the user explicitly requested this thread
6073 to remain stopped. */
d6b48e9c 6074 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6075 || ecs->event_thread->stop_requested
24291992 6076 || (!inf->detaching
16c381f0 6077 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6078 {
22bcd14b 6079 stop_waiting (ecs);
488f131b
JB
6080 return;
6081 }
b57bacec
PA
6082
6083 /* Notify observers the signal has "handle print" set. Note we
6084 returned early above if stopping; normal_stop handles the
6085 printing in that case. */
6086 if (signal_print[ecs->event_thread->suspend.stop_signal])
6087 {
6088 /* The signal table tells us to print about this signal. */
6089 target_terminal_ours_for_output ();
6090 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6091 target_terminal_inferior ();
6092 }
488f131b
JB
6093
6094 /* Clear the signal if it should not be passed. */
16c381f0 6095 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6096 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6097
fb14de7b 6098 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6099 && ecs->event_thread->control.trap_expected
8358c15c 6100 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 6101 {
372316f1
PA
6102 int was_in_line;
6103
68f53502
AC
6104 /* We were just starting a new sequence, attempting to
6105 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6106 Instead this signal arrives. This signal will take us out
68f53502
AC
6107 of the stepping range so GDB needs to remember to, when
6108 the signal handler returns, resume stepping off that
6109 breakpoint. */
6110 /* To simplify things, "continue" is forced to use the same
6111 code paths as single-step - set a breakpoint at the
6112 signal return address and then, once hit, step off that
6113 breakpoint. */
237fc4c9
PA
6114 if (debug_infrun)
6115 fprintf_unfiltered (gdb_stdlog,
6116 "infrun: signal arrived while stepping over "
6117 "breakpoint\n");
d3169d93 6118
372316f1
PA
6119 was_in_line = step_over_info_valid_p ();
6120 clear_step_over_info ();
2c03e5be 6121 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6122 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6123 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6124 ecs->event_thread->control.trap_expected = 0;
d137e6dc 6125
fbea99ea 6126 if (target_is_non_stop_p ())
372316f1 6127 {
fbea99ea
PA
6128 /* Either "set non-stop" is "on", or the target is
6129 always in non-stop mode. In this case, we have a bit
6130 more work to do. Resume the current thread, and if
6131 we had paused all threads, restart them while the
6132 signal handler runs. */
372316f1
PA
6133 keep_going (ecs);
6134
372316f1
PA
6135 if (was_in_line)
6136 {
372316f1
PA
6137 restart_threads (ecs->event_thread);
6138 }
6139 else if (debug_infrun)
6140 {
6141 fprintf_unfiltered (gdb_stdlog,
6142 "infrun: no need to restart threads\n");
6143 }
6144 return;
6145 }
6146
d137e6dc
PA
6147 /* If we were nexting/stepping some other thread, switch to
6148 it, so that we don't continue it, losing control. */
6149 if (!switch_back_to_stepped_thread (ecs))
6150 keep_going (ecs);
9d799f85 6151 return;
68f53502 6152 }
9d799f85 6153
e5f8a7cc
PA
6154 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6155 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6156 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6157 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6158 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6159 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6160 {
6161 /* The inferior is about to take a signal that will take it
6162 out of the single step range. Set a breakpoint at the
6163 current PC (which is presumably where the signal handler
6164 will eventually return) and then allow the inferior to
6165 run free.
6166
6167 Note that this is only needed for a signal delivered
6168 while in the single-step range. Nested signals aren't a
6169 problem as they eventually all return. */
237fc4c9
PA
6170 if (debug_infrun)
6171 fprintf_unfiltered (gdb_stdlog,
6172 "infrun: signal may take us out of "
6173 "single-step range\n");
6174
372316f1 6175 clear_step_over_info ();
2c03e5be 6176 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6177 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6178 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6179 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6180 keep_going (ecs);
6181 return;
d303a6c7 6182 }
9d799f85
AC
6183
6184 /* Note: step_resume_breakpoint may be non-NULL. This occures
6185 when either there's a nested signal, or when there's a
6186 pending signal enabled just as the signal handler returns
6187 (leaving the inferior at the step-resume-breakpoint without
6188 actually executing it). Either way continue until the
6189 breakpoint is really hit. */
c447ac0b
PA
6190
6191 if (!switch_back_to_stepped_thread (ecs))
6192 {
6193 if (debug_infrun)
6194 fprintf_unfiltered (gdb_stdlog,
6195 "infrun: random signal, keep going\n");
6196
6197 keep_going (ecs);
6198 }
6199 return;
488f131b 6200 }
94c57d6a
PA
6201
6202 process_event_stop_test (ecs);
6203}
6204
6205/* Come here when we've got some debug event / signal we can explain
6206 (IOW, not a random signal), and test whether it should cause a
6207 stop, or whether we should resume the inferior (transparently).
6208 E.g., could be a breakpoint whose condition evaluates false; we
6209 could be still stepping within the line; etc. */
6210
6211static void
6212process_event_stop_test (struct execution_control_state *ecs)
6213{
6214 struct symtab_and_line stop_pc_sal;
6215 struct frame_info *frame;
6216 struct gdbarch *gdbarch;
cdaa5b73
PA
6217 CORE_ADDR jmp_buf_pc;
6218 struct bpstat_what what;
94c57d6a 6219
cdaa5b73 6220 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6221
cdaa5b73
PA
6222 frame = get_current_frame ();
6223 gdbarch = get_frame_arch (frame);
fcf3daef 6224
cdaa5b73 6225 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6226
cdaa5b73
PA
6227 if (what.call_dummy)
6228 {
6229 stop_stack_dummy = what.call_dummy;
6230 }
186c406b 6231
243a9253
PA
6232 /* A few breakpoint types have callbacks associated (e.g.,
6233 bp_jit_event). Run them now. */
6234 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6235
cdaa5b73
PA
6236 /* If we hit an internal event that triggers symbol changes, the
6237 current frame will be invalidated within bpstat_what (e.g., if we
6238 hit an internal solib event). Re-fetch it. */
6239 frame = get_current_frame ();
6240 gdbarch = get_frame_arch (frame);
e2e4d78b 6241
cdaa5b73
PA
6242 switch (what.main_action)
6243 {
6244 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6245 /* If we hit the breakpoint at longjmp while stepping, we
6246 install a momentary breakpoint at the target of the
6247 jmp_buf. */
186c406b 6248
cdaa5b73
PA
6249 if (debug_infrun)
6250 fprintf_unfiltered (gdb_stdlog,
6251 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6252
cdaa5b73 6253 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6254
cdaa5b73
PA
6255 if (what.is_longjmp)
6256 {
6257 struct value *arg_value;
6258
6259 /* If we set the longjmp breakpoint via a SystemTap probe,
6260 then use it to extract the arguments. The destination PC
6261 is the third argument to the probe. */
6262 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6263 if (arg_value)
8fa0c4f8
AA
6264 {
6265 jmp_buf_pc = value_as_address (arg_value);
6266 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6267 }
cdaa5b73
PA
6268 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6269 || !gdbarch_get_longjmp_target (gdbarch,
6270 frame, &jmp_buf_pc))
e2e4d78b 6271 {
cdaa5b73
PA
6272 if (debug_infrun)
6273 fprintf_unfiltered (gdb_stdlog,
6274 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6275 "(!gdbarch_get_longjmp_target)\n");
6276 keep_going (ecs);
6277 return;
e2e4d78b 6278 }
e2e4d78b 6279
cdaa5b73
PA
6280 /* Insert a breakpoint at resume address. */
6281 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6282 }
6283 else
6284 check_exception_resume (ecs, frame);
6285 keep_going (ecs);
6286 return;
e81a37f7 6287
cdaa5b73
PA
6288 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6289 {
6290 struct frame_info *init_frame;
e81a37f7 6291
cdaa5b73 6292 /* There are several cases to consider.
c906108c 6293
cdaa5b73
PA
6294 1. The initiating frame no longer exists. In this case we
6295 must stop, because the exception or longjmp has gone too
6296 far.
2c03e5be 6297
cdaa5b73
PA
6298 2. The initiating frame exists, and is the same as the
6299 current frame. We stop, because the exception or longjmp
6300 has been caught.
2c03e5be 6301
cdaa5b73
PA
6302 3. The initiating frame exists and is different from the
6303 current frame. This means the exception or longjmp has
6304 been caught beneath the initiating frame, so keep going.
c906108c 6305
cdaa5b73
PA
6306 4. longjmp breakpoint has been placed just to protect
6307 against stale dummy frames and user is not interested in
6308 stopping around longjmps. */
c5aa993b 6309
cdaa5b73
PA
6310 if (debug_infrun)
6311 fprintf_unfiltered (gdb_stdlog,
6312 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6313
cdaa5b73
PA
6314 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6315 != NULL);
6316 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6317
cdaa5b73
PA
6318 if (what.is_longjmp)
6319 {
b67a2c6f 6320 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6321
cdaa5b73 6322 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6323 {
cdaa5b73
PA
6324 /* Case 4. */
6325 keep_going (ecs);
6326 return;
e5ef252a 6327 }
cdaa5b73 6328 }
c5aa993b 6329
cdaa5b73 6330 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6331
cdaa5b73
PA
6332 if (init_frame)
6333 {
6334 struct frame_id current_id
6335 = get_frame_id (get_current_frame ());
6336 if (frame_id_eq (current_id,
6337 ecs->event_thread->initiating_frame))
6338 {
6339 /* Case 2. Fall through. */
6340 }
6341 else
6342 {
6343 /* Case 3. */
6344 keep_going (ecs);
6345 return;
6346 }
68f53502 6347 }
488f131b 6348
cdaa5b73
PA
6349 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6350 exists. */
6351 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6352
bdc36728 6353 end_stepping_range (ecs);
cdaa5b73
PA
6354 }
6355 return;
e5ef252a 6356
cdaa5b73
PA
6357 case BPSTAT_WHAT_SINGLE:
6358 if (debug_infrun)
6359 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6360 ecs->event_thread->stepping_over_breakpoint = 1;
6361 /* Still need to check other stuff, at least the case where we
6362 are stepping and step out of the right range. */
6363 break;
e5ef252a 6364
cdaa5b73
PA
6365 case BPSTAT_WHAT_STEP_RESUME:
6366 if (debug_infrun)
6367 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6368
cdaa5b73
PA
6369 delete_step_resume_breakpoint (ecs->event_thread);
6370 if (ecs->event_thread->control.proceed_to_finish
6371 && execution_direction == EXEC_REVERSE)
6372 {
6373 struct thread_info *tp = ecs->event_thread;
6374
6375 /* We are finishing a function in reverse, and just hit the
6376 step-resume breakpoint at the start address of the
6377 function, and we're almost there -- just need to back up
6378 by one more single-step, which should take us back to the
6379 function call. */
6380 tp->control.step_range_start = tp->control.step_range_end = 1;
6381 keep_going (ecs);
e5ef252a 6382 return;
cdaa5b73
PA
6383 }
6384 fill_in_stop_func (gdbarch, ecs);
6385 if (stop_pc == ecs->stop_func_start
6386 && execution_direction == EXEC_REVERSE)
6387 {
6388 /* We are stepping over a function call in reverse, and just
6389 hit the step-resume breakpoint at the start address of
6390 the function. Go back to single-stepping, which should
6391 take us back to the function call. */
6392 ecs->event_thread->stepping_over_breakpoint = 1;
6393 keep_going (ecs);
6394 return;
6395 }
6396 break;
e5ef252a 6397
cdaa5b73
PA
6398 case BPSTAT_WHAT_STOP_NOISY:
6399 if (debug_infrun)
6400 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6401 stop_print_frame = 1;
e5ef252a 6402
99619bea
PA
6403 /* Assume the thread stopped for a breapoint. We'll still check
6404 whether a/the breakpoint is there when the thread is next
6405 resumed. */
6406 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6407
22bcd14b 6408 stop_waiting (ecs);
cdaa5b73 6409 return;
e5ef252a 6410
cdaa5b73
PA
6411 case BPSTAT_WHAT_STOP_SILENT:
6412 if (debug_infrun)
6413 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6414 stop_print_frame = 0;
e5ef252a 6415
99619bea
PA
6416 /* Assume the thread stopped for a breapoint. We'll still check
6417 whether a/the breakpoint is there when the thread is next
6418 resumed. */
6419 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6420 stop_waiting (ecs);
cdaa5b73
PA
6421 return;
6422
6423 case BPSTAT_WHAT_HP_STEP_RESUME:
6424 if (debug_infrun)
6425 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6426
6427 delete_step_resume_breakpoint (ecs->event_thread);
6428 if (ecs->event_thread->step_after_step_resume_breakpoint)
6429 {
6430 /* Back when the step-resume breakpoint was inserted, we
6431 were trying to single-step off a breakpoint. Go back to
6432 doing that. */
6433 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6434 ecs->event_thread->stepping_over_breakpoint = 1;
6435 keep_going (ecs);
6436 return;
e5ef252a 6437 }
cdaa5b73
PA
6438 break;
6439
6440 case BPSTAT_WHAT_KEEP_CHECKING:
6441 break;
e5ef252a 6442 }
c906108c 6443
af48d08f
PA
6444 /* If we stepped a permanent breakpoint and we had a high priority
6445 step-resume breakpoint for the address we stepped, but we didn't
6446 hit it, then we must have stepped into the signal handler. The
6447 step-resume was only necessary to catch the case of _not_
6448 stepping into the handler, so delete it, and fall through to
6449 checking whether the step finished. */
6450 if (ecs->event_thread->stepped_breakpoint)
6451 {
6452 struct breakpoint *sr_bp
6453 = ecs->event_thread->control.step_resume_breakpoint;
6454
8d707a12
PA
6455 if (sr_bp != NULL
6456 && sr_bp->loc->permanent
af48d08f
PA
6457 && sr_bp->type == bp_hp_step_resume
6458 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6459 {
6460 if (debug_infrun)
6461 fprintf_unfiltered (gdb_stdlog,
6462 "infrun: stepped permanent breakpoint, stopped in "
6463 "handler\n");
6464 delete_step_resume_breakpoint (ecs->event_thread);
6465 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6466 }
6467 }
6468
cdaa5b73
PA
6469 /* We come here if we hit a breakpoint but should not stop for it.
6470 Possibly we also were stepping and should stop for that. So fall
6471 through and test for stepping. But, if not stepping, do not
6472 stop. */
c906108c 6473
a7212384
UW
6474 /* In all-stop mode, if we're currently stepping but have stopped in
6475 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6476 if (switch_back_to_stepped_thread (ecs))
6477 return;
776f04fa 6478
8358c15c 6479 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6480 {
527159b7 6481 if (debug_infrun)
d3169d93
DJ
6482 fprintf_unfiltered (gdb_stdlog,
6483 "infrun: step-resume breakpoint is inserted\n");
527159b7 6484
488f131b
JB
6485 /* Having a step-resume breakpoint overrides anything
6486 else having to do with stepping commands until
6487 that breakpoint is reached. */
488f131b
JB
6488 keep_going (ecs);
6489 return;
6490 }
c5aa993b 6491
16c381f0 6492 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6493 {
527159b7 6494 if (debug_infrun)
8a9de0e4 6495 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6496 /* Likewise if we aren't even stepping. */
488f131b
JB
6497 keep_going (ecs);
6498 return;
6499 }
c5aa993b 6500
4b7703ad
JB
6501 /* Re-fetch current thread's frame in case the code above caused
6502 the frame cache to be re-initialized, making our FRAME variable
6503 a dangling pointer. */
6504 frame = get_current_frame ();
628fe4e4 6505 gdbarch = get_frame_arch (frame);
7e324e48 6506 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6507
488f131b 6508 /* If stepping through a line, keep going if still within it.
c906108c 6509
488f131b
JB
6510 Note that step_range_end is the address of the first instruction
6511 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6512 within it!
6513
6514 Note also that during reverse execution, we may be stepping
6515 through a function epilogue and therefore must detect when
6516 the current-frame changes in the middle of a line. */
6517
ce4c476a 6518 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6519 && (execution_direction != EXEC_REVERSE
388a8562 6520 || frame_id_eq (get_frame_id (frame),
16c381f0 6521 ecs->event_thread->control.step_frame_id)))
488f131b 6522 {
527159b7 6523 if (debug_infrun)
5af949e3
UW
6524 fprintf_unfiltered
6525 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6526 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6527 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6528
c1e36e3e
PA
6529 /* Tentatively re-enable range stepping; `resume' disables it if
6530 necessary (e.g., if we're stepping over a breakpoint or we
6531 have software watchpoints). */
6532 ecs->event_thread->control.may_range_step = 1;
6533
b2175913
MS
6534 /* When stepping backward, stop at beginning of line range
6535 (unless it's the function entry point, in which case
6536 keep going back to the call point). */
16c381f0 6537 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6538 && stop_pc != ecs->stop_func_start
6539 && execution_direction == EXEC_REVERSE)
bdc36728 6540 end_stepping_range (ecs);
b2175913
MS
6541 else
6542 keep_going (ecs);
6543
488f131b
JB
6544 return;
6545 }
c5aa993b 6546
488f131b 6547 /* We stepped out of the stepping range. */
c906108c 6548
488f131b 6549 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6550 loader dynamic symbol resolution code...
6551
6552 EXEC_FORWARD: we keep on single stepping until we exit the run
6553 time loader code and reach the callee's address.
6554
6555 EXEC_REVERSE: we've already executed the callee (backward), and
6556 the runtime loader code is handled just like any other
6557 undebuggable function call. Now we need only keep stepping
6558 backward through the trampoline code, and that's handled further
6559 down, so there is nothing for us to do here. */
6560
6561 if (execution_direction != EXEC_REVERSE
16c381f0 6562 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6563 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6564 {
4c8c40e6 6565 CORE_ADDR pc_after_resolver =
568d6575 6566 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6567
527159b7 6568 if (debug_infrun)
3e43a32a
MS
6569 fprintf_unfiltered (gdb_stdlog,
6570 "infrun: stepped into dynsym resolve code\n");
527159b7 6571
488f131b
JB
6572 if (pc_after_resolver)
6573 {
6574 /* Set up a step-resume breakpoint at the address
6575 indicated by SKIP_SOLIB_RESOLVER. */
6576 struct symtab_and_line sr_sal;
abbb1732 6577
fe39c653 6578 init_sal (&sr_sal);
488f131b 6579 sr_sal.pc = pc_after_resolver;
6c95b8df 6580 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6581
a6d9a66e
UW
6582 insert_step_resume_breakpoint_at_sal (gdbarch,
6583 sr_sal, null_frame_id);
c5aa993b 6584 }
c906108c 6585
488f131b
JB
6586 keep_going (ecs);
6587 return;
6588 }
c906108c 6589
16c381f0
JK
6590 if (ecs->event_thread->control.step_range_end != 1
6591 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6592 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6593 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6594 {
527159b7 6595 if (debug_infrun)
3e43a32a
MS
6596 fprintf_unfiltered (gdb_stdlog,
6597 "infrun: stepped into signal trampoline\n");
42edda50 6598 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6599 a signal trampoline (either by a signal being delivered or by
6600 the signal handler returning). Just single-step until the
6601 inferior leaves the trampoline (either by calling the handler
6602 or returning). */
488f131b
JB
6603 keep_going (ecs);
6604 return;
6605 }
c906108c 6606
14132e89
MR
6607 /* If we're in the return path from a shared library trampoline,
6608 we want to proceed through the trampoline when stepping. */
6609 /* macro/2012-04-25: This needs to come before the subroutine
6610 call check below as on some targets return trampolines look
6611 like subroutine calls (MIPS16 return thunks). */
6612 if (gdbarch_in_solib_return_trampoline (gdbarch,
6613 stop_pc, ecs->stop_func_name)
6614 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6615 {
6616 /* Determine where this trampoline returns. */
6617 CORE_ADDR real_stop_pc;
6618
6619 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6620
6621 if (debug_infrun)
6622 fprintf_unfiltered (gdb_stdlog,
6623 "infrun: stepped into solib return tramp\n");
6624
6625 /* Only proceed through if we know where it's going. */
6626 if (real_stop_pc)
6627 {
6628 /* And put the step-breakpoint there and go until there. */
6629 struct symtab_and_line sr_sal;
6630
6631 init_sal (&sr_sal); /* initialize to zeroes */
6632 sr_sal.pc = real_stop_pc;
6633 sr_sal.section = find_pc_overlay (sr_sal.pc);
6634 sr_sal.pspace = get_frame_program_space (frame);
6635
6636 /* Do not specify what the fp should be when we stop since
6637 on some machines the prologue is where the new fp value
6638 is established. */
6639 insert_step_resume_breakpoint_at_sal (gdbarch,
6640 sr_sal, null_frame_id);
6641
6642 /* Restart without fiddling with the step ranges or
6643 other state. */
6644 keep_going (ecs);
6645 return;
6646 }
6647 }
6648
c17eaafe
DJ
6649 /* Check for subroutine calls. The check for the current frame
6650 equalling the step ID is not necessary - the check of the
6651 previous frame's ID is sufficient - but it is a common case and
6652 cheaper than checking the previous frame's ID.
14e60db5
DJ
6653
6654 NOTE: frame_id_eq will never report two invalid frame IDs as
6655 being equal, so to get into this block, both the current and
6656 previous frame must have valid frame IDs. */
005ca36a
JB
6657 /* The outer_frame_id check is a heuristic to detect stepping
6658 through startup code. If we step over an instruction which
6659 sets the stack pointer from an invalid value to a valid value,
6660 we may detect that as a subroutine call from the mythical
6661 "outermost" function. This could be fixed by marking
6662 outermost frames as !stack_p,code_p,special_p. Then the
6663 initial outermost frame, before sp was valid, would
ce6cca6d 6664 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6665 for more. */
edb3359d 6666 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6667 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6668 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6669 ecs->event_thread->control.step_stack_frame_id)
6670 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6671 outer_frame_id)
885eeb5b
PA
6672 || (ecs->event_thread->control.step_start_function
6673 != find_pc_function (stop_pc)))))
488f131b 6674 {
95918acb 6675 CORE_ADDR real_stop_pc;
8fb3e588 6676
527159b7 6677 if (debug_infrun)
8a9de0e4 6678 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6679
b7a084be 6680 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6681 {
6682 /* I presume that step_over_calls is only 0 when we're
6683 supposed to be stepping at the assembly language level
6684 ("stepi"). Just stop. */
388a8562 6685 /* And this works the same backward as frontward. MVS */
bdc36728 6686 end_stepping_range (ecs);
95918acb
AC
6687 return;
6688 }
8fb3e588 6689
388a8562
MS
6690 /* Reverse stepping through solib trampolines. */
6691
6692 if (execution_direction == EXEC_REVERSE
16c381f0 6693 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6694 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6695 || (ecs->stop_func_start == 0
6696 && in_solib_dynsym_resolve_code (stop_pc))))
6697 {
6698 /* Any solib trampoline code can be handled in reverse
6699 by simply continuing to single-step. We have already
6700 executed the solib function (backwards), and a few
6701 steps will take us back through the trampoline to the
6702 caller. */
6703 keep_going (ecs);
6704 return;
6705 }
6706
16c381f0 6707 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6708 {
b2175913
MS
6709 /* We're doing a "next".
6710
6711 Normal (forward) execution: set a breakpoint at the
6712 callee's return address (the address at which the caller
6713 will resume).
6714
6715 Reverse (backward) execution. set the step-resume
6716 breakpoint at the start of the function that we just
6717 stepped into (backwards), and continue to there. When we
6130d0b7 6718 get there, we'll need to single-step back to the caller. */
b2175913
MS
6719
6720 if (execution_direction == EXEC_REVERSE)
6721 {
acf9414f
JK
6722 /* If we're already at the start of the function, we've either
6723 just stepped backward into a single instruction function,
6724 or stepped back out of a signal handler to the first instruction
6725 of the function. Just keep going, which will single-step back
6726 to the caller. */
58c48e72 6727 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6728 {
6729 struct symtab_and_line sr_sal;
6730
6731 /* Normal function call return (static or dynamic). */
6732 init_sal (&sr_sal);
6733 sr_sal.pc = ecs->stop_func_start;
6734 sr_sal.pspace = get_frame_program_space (frame);
6735 insert_step_resume_breakpoint_at_sal (gdbarch,
6736 sr_sal, null_frame_id);
6737 }
b2175913
MS
6738 }
6739 else
568d6575 6740 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6741
8567c30f
AC
6742 keep_going (ecs);
6743 return;
6744 }
a53c66de 6745
95918acb 6746 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6747 calling routine and the real function), locate the real
6748 function. That's what tells us (a) whether we want to step
6749 into it at all, and (b) what prologue we want to run to the
6750 end of, if we do step into it. */
568d6575 6751 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6752 if (real_stop_pc == 0)
568d6575 6753 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6754 if (real_stop_pc != 0)
6755 ecs->stop_func_start = real_stop_pc;
8fb3e588 6756
db5f024e 6757 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6758 {
6759 struct symtab_and_line sr_sal;
abbb1732 6760
1b2bfbb9
RC
6761 init_sal (&sr_sal);
6762 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6763 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6764
a6d9a66e
UW
6765 insert_step_resume_breakpoint_at_sal (gdbarch,
6766 sr_sal, null_frame_id);
8fb3e588
AC
6767 keep_going (ecs);
6768 return;
1b2bfbb9
RC
6769 }
6770
95918acb 6771 /* If we have line number information for the function we are
1bfeeb0f
JL
6772 thinking of stepping into and the function isn't on the skip
6773 list, step into it.
95918acb 6774
8fb3e588
AC
6775 If there are several symtabs at that PC (e.g. with include
6776 files), just want to know whether *any* of them have line
6777 numbers. find_pc_line handles this. */
95918acb
AC
6778 {
6779 struct symtab_and_line tmp_sal;
8fb3e588 6780
95918acb 6781 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6782 if (tmp_sal.line != 0
85817405
JK
6783 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6784 &tmp_sal))
95918acb 6785 {
b2175913 6786 if (execution_direction == EXEC_REVERSE)
568d6575 6787 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6788 else
568d6575 6789 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6790 return;
6791 }
6792 }
6793
6794 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6795 set, we stop the step so that the user has a chance to switch
6796 in assembly mode. */
16c381f0 6797 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6798 && step_stop_if_no_debug)
95918acb 6799 {
bdc36728 6800 end_stepping_range (ecs);
95918acb
AC
6801 return;
6802 }
6803
b2175913
MS
6804 if (execution_direction == EXEC_REVERSE)
6805 {
acf9414f
JK
6806 /* If we're already at the start of the function, we've either just
6807 stepped backward into a single instruction function without line
6808 number info, or stepped back out of a signal handler to the first
6809 instruction of the function without line number info. Just keep
6810 going, which will single-step back to the caller. */
6811 if (ecs->stop_func_start != stop_pc)
6812 {
6813 /* Set a breakpoint at callee's start address.
6814 From there we can step once and be back in the caller. */
6815 struct symtab_and_line sr_sal;
abbb1732 6816
acf9414f
JK
6817 init_sal (&sr_sal);
6818 sr_sal.pc = ecs->stop_func_start;
6819 sr_sal.pspace = get_frame_program_space (frame);
6820 insert_step_resume_breakpoint_at_sal (gdbarch,
6821 sr_sal, null_frame_id);
6822 }
b2175913
MS
6823 }
6824 else
6825 /* Set a breakpoint at callee's return address (the address
6826 at which the caller will resume). */
568d6575 6827 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6828
95918acb 6829 keep_going (ecs);
488f131b 6830 return;
488f131b 6831 }
c906108c 6832
fdd654f3
MS
6833 /* Reverse stepping through solib trampolines. */
6834
6835 if (execution_direction == EXEC_REVERSE
16c381f0 6836 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6837 {
6838 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6839 || (ecs->stop_func_start == 0
6840 && in_solib_dynsym_resolve_code (stop_pc)))
6841 {
6842 /* Any solib trampoline code can be handled in reverse
6843 by simply continuing to single-step. We have already
6844 executed the solib function (backwards), and a few
6845 steps will take us back through the trampoline to the
6846 caller. */
6847 keep_going (ecs);
6848 return;
6849 }
6850 else if (in_solib_dynsym_resolve_code (stop_pc))
6851 {
6852 /* Stepped backward into the solib dynsym resolver.
6853 Set a breakpoint at its start and continue, then
6854 one more step will take us out. */
6855 struct symtab_and_line sr_sal;
abbb1732 6856
fdd654f3
MS
6857 init_sal (&sr_sal);
6858 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6859 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6860 insert_step_resume_breakpoint_at_sal (gdbarch,
6861 sr_sal, null_frame_id);
6862 keep_going (ecs);
6863 return;
6864 }
6865 }
6866
2afb61aa 6867 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6868
1b2bfbb9
RC
6869 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6870 the trampoline processing logic, however, there are some trampolines
6871 that have no names, so we should do trampoline handling first. */
16c381f0 6872 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6873 && ecs->stop_func_name == NULL
2afb61aa 6874 && stop_pc_sal.line == 0)
1b2bfbb9 6875 {
527159b7 6876 if (debug_infrun)
3e43a32a
MS
6877 fprintf_unfiltered (gdb_stdlog,
6878 "infrun: stepped into undebuggable function\n");
527159b7 6879
1b2bfbb9 6880 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6881 undebuggable function (where there is no debugging information
6882 and no line number corresponding to the address where the
1b2bfbb9
RC
6883 inferior stopped). Since we want to skip this kind of code,
6884 we keep going until the inferior returns from this
14e60db5
DJ
6885 function - unless the user has asked us not to (via
6886 set step-mode) or we no longer know how to get back
6887 to the call site. */
6888 if (step_stop_if_no_debug
c7ce8faa 6889 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6890 {
6891 /* If we have no line number and the step-stop-if-no-debug
6892 is set, we stop the step so that the user has a chance to
6893 switch in assembly mode. */
bdc36728 6894 end_stepping_range (ecs);
1b2bfbb9
RC
6895 return;
6896 }
6897 else
6898 {
6899 /* Set a breakpoint at callee's return address (the address
6900 at which the caller will resume). */
568d6575 6901 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6902 keep_going (ecs);
6903 return;
6904 }
6905 }
6906
16c381f0 6907 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6908 {
6909 /* It is stepi or nexti. We always want to stop stepping after
6910 one instruction. */
527159b7 6911 if (debug_infrun)
8a9de0e4 6912 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6913 end_stepping_range (ecs);
1b2bfbb9
RC
6914 return;
6915 }
6916
2afb61aa 6917 if (stop_pc_sal.line == 0)
488f131b
JB
6918 {
6919 /* We have no line number information. That means to stop
6920 stepping (does this always happen right after one instruction,
6921 when we do "s" in a function with no line numbers,
6922 or can this happen as a result of a return or longjmp?). */
527159b7 6923 if (debug_infrun)
8a9de0e4 6924 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6925 end_stepping_range (ecs);
488f131b
JB
6926 return;
6927 }
c906108c 6928
edb3359d
DJ
6929 /* Look for "calls" to inlined functions, part one. If the inline
6930 frame machinery detected some skipped call sites, we have entered
6931 a new inline function. */
6932
6933 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6934 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6935 && inline_skipped_frames (ecs->ptid))
6936 {
6937 struct symtab_and_line call_sal;
6938
6939 if (debug_infrun)
6940 fprintf_unfiltered (gdb_stdlog,
6941 "infrun: stepped into inlined function\n");
6942
6943 find_frame_sal (get_current_frame (), &call_sal);
6944
16c381f0 6945 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6946 {
6947 /* For "step", we're going to stop. But if the call site
6948 for this inlined function is on the same source line as
6949 we were previously stepping, go down into the function
6950 first. Otherwise stop at the call site. */
6951
6952 if (call_sal.line == ecs->event_thread->current_line
6953 && call_sal.symtab == ecs->event_thread->current_symtab)
6954 step_into_inline_frame (ecs->ptid);
6955
bdc36728 6956 end_stepping_range (ecs);
edb3359d
DJ
6957 return;
6958 }
6959 else
6960 {
6961 /* For "next", we should stop at the call site if it is on a
6962 different source line. Otherwise continue through the
6963 inlined function. */
6964 if (call_sal.line == ecs->event_thread->current_line
6965 && call_sal.symtab == ecs->event_thread->current_symtab)
6966 keep_going (ecs);
6967 else
bdc36728 6968 end_stepping_range (ecs);
edb3359d
DJ
6969 return;
6970 }
6971 }
6972
6973 /* Look for "calls" to inlined functions, part two. If we are still
6974 in the same real function we were stepping through, but we have
6975 to go further up to find the exact frame ID, we are stepping
6976 through a more inlined call beyond its call site. */
6977
6978 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6979 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6980 ecs->event_thread->control.step_frame_id)
edb3359d 6981 && stepped_in_from (get_current_frame (),
16c381f0 6982 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6983 {
6984 if (debug_infrun)
6985 fprintf_unfiltered (gdb_stdlog,
6986 "infrun: stepping through inlined function\n");
6987
16c381f0 6988 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6989 keep_going (ecs);
6990 else
bdc36728 6991 end_stepping_range (ecs);
edb3359d
DJ
6992 return;
6993 }
6994
2afb61aa 6995 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6996 && (ecs->event_thread->current_line != stop_pc_sal.line
6997 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6998 {
6999 /* We are at the start of a different line. So stop. Note that
7000 we don't stop if we step into the middle of a different line.
7001 That is said to make things like for (;;) statements work
7002 better. */
527159b7 7003 if (debug_infrun)
3e43a32a
MS
7004 fprintf_unfiltered (gdb_stdlog,
7005 "infrun: stepped to a different line\n");
bdc36728 7006 end_stepping_range (ecs);
488f131b
JB
7007 return;
7008 }
c906108c 7009
488f131b 7010 /* We aren't done stepping.
c906108c 7011
488f131b
JB
7012 Optimize by setting the stepping range to the line.
7013 (We might not be in the original line, but if we entered a
7014 new line in mid-statement, we continue stepping. This makes
7015 things like for(;;) statements work better.) */
c906108c 7016
16c381f0
JK
7017 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7018 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7019 ecs->event_thread->control.may_range_step = 1;
edb3359d 7020 set_step_info (frame, stop_pc_sal);
488f131b 7021
527159b7 7022 if (debug_infrun)
8a9de0e4 7023 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7024 keep_going (ecs);
104c1213
JM
7025}
7026
c447ac0b
PA
7027/* In all-stop mode, if we're currently stepping but have stopped in
7028 some other thread, we may need to switch back to the stepped
7029 thread. Returns true we set the inferior running, false if we left
7030 it stopped (and the event needs further processing). */
7031
7032static int
7033switch_back_to_stepped_thread (struct execution_control_state *ecs)
7034{
fbea99ea 7035 if (!target_is_non_stop_p ())
c447ac0b
PA
7036 {
7037 struct thread_info *tp;
99619bea
PA
7038 struct thread_info *stepping_thread;
7039
7040 /* If any thread is blocked on some internal breakpoint, and we
7041 simply need to step over that breakpoint to get it going
7042 again, do that first. */
7043
7044 /* However, if we see an event for the stepping thread, then we
7045 know all other threads have been moved past their breakpoints
7046 already. Let the caller check whether the step is finished,
7047 etc., before deciding to move it past a breakpoint. */
7048 if (ecs->event_thread->control.step_range_end != 0)
7049 return 0;
7050
7051 /* Check if the current thread is blocked on an incomplete
7052 step-over, interrupted by a random signal. */
7053 if (ecs->event_thread->control.trap_expected
7054 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7055 {
99619bea
PA
7056 if (debug_infrun)
7057 {
7058 fprintf_unfiltered (gdb_stdlog,
7059 "infrun: need to finish step-over of [%s]\n",
7060 target_pid_to_str (ecs->event_thread->ptid));
7061 }
7062 keep_going (ecs);
7063 return 1;
7064 }
2adfaa28 7065
99619bea
PA
7066 /* Check if the current thread is blocked by a single-step
7067 breakpoint of another thread. */
7068 if (ecs->hit_singlestep_breakpoint)
7069 {
7070 if (debug_infrun)
7071 {
7072 fprintf_unfiltered (gdb_stdlog,
7073 "infrun: need to step [%s] over single-step "
7074 "breakpoint\n",
7075 target_pid_to_str (ecs->ptid));
7076 }
7077 keep_going (ecs);
7078 return 1;
7079 }
7080
4d9d9d04
PA
7081 /* If this thread needs yet another step-over (e.g., stepping
7082 through a delay slot), do it first before moving on to
7083 another thread. */
7084 if (thread_still_needs_step_over (ecs->event_thread))
7085 {
7086 if (debug_infrun)
7087 {
7088 fprintf_unfiltered (gdb_stdlog,
7089 "infrun: thread [%s] still needs step-over\n",
7090 target_pid_to_str (ecs->event_thread->ptid));
7091 }
7092 keep_going (ecs);
7093 return 1;
7094 }
70509625 7095
483805cf
PA
7096 /* If scheduler locking applies even if not stepping, there's no
7097 need to walk over threads. Above we've checked whether the
7098 current thread is stepping. If some other thread not the
7099 event thread is stepping, then it must be that scheduler
7100 locking is not in effect. */
856e7dd6 7101 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7102 return 0;
7103
4d9d9d04
PA
7104 /* Otherwise, we no longer expect a trap in the current thread.
7105 Clear the trap_expected flag before switching back -- this is
7106 what keep_going does as well, if we call it. */
7107 ecs->event_thread->control.trap_expected = 0;
7108
7109 /* Likewise, clear the signal if it should not be passed. */
7110 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7111 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7112
7113 /* Do all pending step-overs before actually proceeding with
483805cf 7114 step/next/etc. */
4d9d9d04
PA
7115 if (start_step_over ())
7116 {
7117 prepare_to_wait (ecs);
7118 return 1;
7119 }
7120
7121 /* Look for the stepping/nexting thread. */
483805cf 7122 stepping_thread = NULL;
4d9d9d04 7123
034f788c 7124 ALL_NON_EXITED_THREADS (tp)
483805cf 7125 {
fbea99ea
PA
7126 /* Ignore threads of processes the caller is not
7127 resuming. */
483805cf 7128 if (!sched_multi
1afd5965 7129 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7130 continue;
7131
7132 /* When stepping over a breakpoint, we lock all threads
7133 except the one that needs to move past the breakpoint.
7134 If a non-event thread has this set, the "incomplete
7135 step-over" check above should have caught it earlier. */
372316f1
PA
7136 if (tp->control.trap_expected)
7137 {
7138 internal_error (__FILE__, __LINE__,
7139 "[%s] has inconsistent state: "
7140 "trap_expected=%d\n",
7141 target_pid_to_str (tp->ptid),
7142 tp->control.trap_expected);
7143 }
483805cf
PA
7144
7145 /* Did we find the stepping thread? */
7146 if (tp->control.step_range_end)
7147 {
7148 /* Yep. There should only one though. */
7149 gdb_assert (stepping_thread == NULL);
7150
7151 /* The event thread is handled at the top, before we
7152 enter this loop. */
7153 gdb_assert (tp != ecs->event_thread);
7154
7155 /* If some thread other than the event thread is
7156 stepping, then scheduler locking can't be in effect,
7157 otherwise we wouldn't have resumed the current event
7158 thread in the first place. */
856e7dd6 7159 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7160
7161 stepping_thread = tp;
7162 }
99619bea
PA
7163 }
7164
483805cf 7165 if (stepping_thread != NULL)
99619bea 7166 {
c447ac0b
PA
7167 if (debug_infrun)
7168 fprintf_unfiltered (gdb_stdlog,
7169 "infrun: switching back to stepped thread\n");
7170
2ac7589c
PA
7171 if (keep_going_stepped_thread (stepping_thread))
7172 {
7173 prepare_to_wait (ecs);
7174 return 1;
7175 }
7176 }
7177 }
2adfaa28 7178
2ac7589c
PA
7179 return 0;
7180}
2adfaa28 7181
2ac7589c
PA
7182/* Set a previously stepped thread back to stepping. Returns true on
7183 success, false if the resume is not possible (e.g., the thread
7184 vanished). */
7185
7186static int
7187keep_going_stepped_thread (struct thread_info *tp)
7188{
7189 struct frame_info *frame;
2ac7589c
PA
7190 struct execution_control_state ecss;
7191 struct execution_control_state *ecs = &ecss;
2adfaa28 7192
2ac7589c
PA
7193 /* If the stepping thread exited, then don't try to switch back and
7194 resume it, which could fail in several different ways depending
7195 on the target. Instead, just keep going.
2adfaa28 7196
2ac7589c
PA
7197 We can find a stepping dead thread in the thread list in two
7198 cases:
2adfaa28 7199
2ac7589c
PA
7200 - The target supports thread exit events, and when the target
7201 tries to delete the thread from the thread list, inferior_ptid
7202 pointed at the exiting thread. In such case, calling
7203 delete_thread does not really remove the thread from the list;
7204 instead, the thread is left listed, with 'exited' state.
64ce06e4 7205
2ac7589c
PA
7206 - The target's debug interface does not support thread exit
7207 events, and so we have no idea whatsoever if the previously
7208 stepping thread is still alive. For that reason, we need to
7209 synchronously query the target now. */
2adfaa28 7210
2ac7589c
PA
7211 if (is_exited (tp->ptid)
7212 || !target_thread_alive (tp->ptid))
7213 {
7214 if (debug_infrun)
7215 fprintf_unfiltered (gdb_stdlog,
7216 "infrun: not resuming previously "
7217 "stepped thread, it has vanished\n");
7218
7219 delete_thread (tp->ptid);
7220 return 0;
c447ac0b 7221 }
2ac7589c
PA
7222
7223 if (debug_infrun)
7224 fprintf_unfiltered (gdb_stdlog,
7225 "infrun: resuming previously stepped thread\n");
7226
7227 reset_ecs (ecs, tp);
7228 switch_to_thread (tp->ptid);
7229
7230 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7231 frame = get_current_frame ();
2ac7589c
PA
7232
7233 /* If the PC of the thread we were trying to single-step has
7234 changed, then that thread has trapped or been signaled, but the
7235 event has not been reported to GDB yet. Re-poll the target
7236 looking for this particular thread's event (i.e. temporarily
7237 enable schedlock) by:
7238
7239 - setting a break at the current PC
7240 - resuming that particular thread, only (by setting trap
7241 expected)
7242
7243 This prevents us continuously moving the single-step breakpoint
7244 forward, one instruction at a time, overstepping. */
7245
7246 if (stop_pc != tp->prev_pc)
7247 {
7248 ptid_t resume_ptid;
7249
7250 if (debug_infrun)
7251 fprintf_unfiltered (gdb_stdlog,
7252 "infrun: expected thread advanced also (%s -> %s)\n",
7253 paddress (target_gdbarch (), tp->prev_pc),
7254 paddress (target_gdbarch (), stop_pc));
7255
7256 /* Clear the info of the previous step-over, as it's no longer
7257 valid (if the thread was trying to step over a breakpoint, it
7258 has already succeeded). It's what keep_going would do too,
7259 if we called it. Do this before trying to insert the sss
7260 breakpoint, otherwise if we were previously trying to step
7261 over this exact address in another thread, the breakpoint is
7262 skipped. */
7263 clear_step_over_info ();
7264 tp->control.trap_expected = 0;
7265
7266 insert_single_step_breakpoint (get_frame_arch (frame),
7267 get_frame_address_space (frame),
7268 stop_pc);
7269
372316f1 7270 tp->resumed = 1;
fbea99ea 7271 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7272 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7273 }
7274 else
7275 {
7276 if (debug_infrun)
7277 fprintf_unfiltered (gdb_stdlog,
7278 "infrun: expected thread still hasn't advanced\n");
7279
7280 keep_going_pass_signal (ecs);
7281 }
7282 return 1;
c447ac0b
PA
7283}
7284
8b061563
PA
7285/* Is thread TP in the middle of (software or hardware)
7286 single-stepping? (Note the result of this function must never be
7287 passed directly as target_resume's STEP parameter.) */
104c1213 7288
a289b8f6 7289static int
b3444185 7290currently_stepping (struct thread_info *tp)
a7212384 7291{
8358c15c
JK
7292 return ((tp->control.step_range_end
7293 && tp->control.step_resume_breakpoint == NULL)
7294 || tp->control.trap_expected
af48d08f 7295 || tp->stepped_breakpoint
8358c15c 7296 || bpstat_should_step ());
a7212384
UW
7297}
7298
b2175913
MS
7299/* Inferior has stepped into a subroutine call with source code that
7300 we should not step over. Do step to the first line of code in
7301 it. */
c2c6d25f
JM
7302
7303static void
568d6575
UW
7304handle_step_into_function (struct gdbarch *gdbarch,
7305 struct execution_control_state *ecs)
c2c6d25f 7306{
43f3e411 7307 struct compunit_symtab *cust;
2afb61aa 7308 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7309
7e324e48
GB
7310 fill_in_stop_func (gdbarch, ecs);
7311
43f3e411
DE
7312 cust = find_pc_compunit_symtab (stop_pc);
7313 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7314 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7315 ecs->stop_func_start);
c2c6d25f 7316
2afb61aa 7317 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7318 /* Use the step_resume_break to step until the end of the prologue,
7319 even if that involves jumps (as it seems to on the vax under
7320 4.2). */
7321 /* If the prologue ends in the middle of a source line, continue to
7322 the end of that source line (if it is still within the function).
7323 Otherwise, just go to end of prologue. */
2afb61aa
PA
7324 if (stop_func_sal.end
7325 && stop_func_sal.pc != ecs->stop_func_start
7326 && stop_func_sal.end < ecs->stop_func_end)
7327 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7328
2dbd5e30
KB
7329 /* Architectures which require breakpoint adjustment might not be able
7330 to place a breakpoint at the computed address. If so, the test
7331 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7332 ecs->stop_func_start to an address at which a breakpoint may be
7333 legitimately placed.
8fb3e588 7334
2dbd5e30
KB
7335 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7336 made, GDB will enter an infinite loop when stepping through
7337 optimized code consisting of VLIW instructions which contain
7338 subinstructions corresponding to different source lines. On
7339 FR-V, it's not permitted to place a breakpoint on any but the
7340 first subinstruction of a VLIW instruction. When a breakpoint is
7341 set, GDB will adjust the breakpoint address to the beginning of
7342 the VLIW instruction. Thus, we need to make the corresponding
7343 adjustment here when computing the stop address. */
8fb3e588 7344
568d6575 7345 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7346 {
7347 ecs->stop_func_start
568d6575 7348 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7349 ecs->stop_func_start);
2dbd5e30
KB
7350 }
7351
c2c6d25f
JM
7352 if (ecs->stop_func_start == stop_pc)
7353 {
7354 /* We are already there: stop now. */
bdc36728 7355 end_stepping_range (ecs);
c2c6d25f
JM
7356 return;
7357 }
7358 else
7359 {
7360 /* Put the step-breakpoint there and go until there. */
fe39c653 7361 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7362 sr_sal.pc = ecs->stop_func_start;
7363 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7364 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7365
c2c6d25f 7366 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7367 some machines the prologue is where the new fp value is
7368 established. */
a6d9a66e 7369 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7370
7371 /* And make sure stepping stops right away then. */
16c381f0
JK
7372 ecs->event_thread->control.step_range_end
7373 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7374 }
7375 keep_going (ecs);
7376}
d4f3574e 7377
b2175913
MS
7378/* Inferior has stepped backward into a subroutine call with source
7379 code that we should not step over. Do step to the beginning of the
7380 last line of code in it. */
7381
7382static void
568d6575
UW
7383handle_step_into_function_backward (struct gdbarch *gdbarch,
7384 struct execution_control_state *ecs)
b2175913 7385{
43f3e411 7386 struct compunit_symtab *cust;
167e4384 7387 struct symtab_and_line stop_func_sal;
b2175913 7388
7e324e48
GB
7389 fill_in_stop_func (gdbarch, ecs);
7390
43f3e411
DE
7391 cust = find_pc_compunit_symtab (stop_pc);
7392 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7393 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7394 ecs->stop_func_start);
7395
7396 stop_func_sal = find_pc_line (stop_pc, 0);
7397
7398 /* OK, we're just going to keep stepping here. */
7399 if (stop_func_sal.pc == stop_pc)
7400 {
7401 /* We're there already. Just stop stepping now. */
bdc36728 7402 end_stepping_range (ecs);
b2175913
MS
7403 }
7404 else
7405 {
7406 /* Else just reset the step range and keep going.
7407 No step-resume breakpoint, they don't work for
7408 epilogues, which can have multiple entry paths. */
16c381f0
JK
7409 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7410 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7411 keep_going (ecs);
7412 }
7413 return;
7414}
7415
d3169d93 7416/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7417 This is used to both functions and to skip over code. */
7418
7419static void
2c03e5be
PA
7420insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7421 struct symtab_and_line sr_sal,
7422 struct frame_id sr_id,
7423 enum bptype sr_type)
44cbf7b5 7424{
611c83ae
PA
7425 /* There should never be more than one step-resume or longjmp-resume
7426 breakpoint per thread, so we should never be setting a new
44cbf7b5 7427 step_resume_breakpoint when one is already active. */
8358c15c 7428 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7429 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7430
7431 if (debug_infrun)
7432 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7433 "infrun: inserting step-resume breakpoint at %s\n",
7434 paddress (gdbarch, sr_sal.pc));
d3169d93 7435
8358c15c 7436 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7437 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7438}
7439
9da8c2a0 7440void
2c03e5be
PA
7441insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7442 struct symtab_and_line sr_sal,
7443 struct frame_id sr_id)
7444{
7445 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7446 sr_sal, sr_id,
7447 bp_step_resume);
44cbf7b5 7448}
7ce450bd 7449
2c03e5be
PA
7450/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7451 This is used to skip a potential signal handler.
7ce450bd 7452
14e60db5
DJ
7453 This is called with the interrupted function's frame. The signal
7454 handler, when it returns, will resume the interrupted function at
7455 RETURN_FRAME.pc. */
d303a6c7
AC
7456
7457static void
2c03e5be 7458insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7459{
7460 struct symtab_and_line sr_sal;
a6d9a66e 7461 struct gdbarch *gdbarch;
d303a6c7 7462
f4c1edd8 7463 gdb_assert (return_frame != NULL);
d303a6c7
AC
7464 init_sal (&sr_sal); /* initialize to zeros */
7465
a6d9a66e 7466 gdbarch = get_frame_arch (return_frame);
568d6575 7467 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7468 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7469 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7470
2c03e5be
PA
7471 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7472 get_stack_frame_id (return_frame),
7473 bp_hp_step_resume);
d303a6c7
AC
7474}
7475
2c03e5be
PA
7476/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7477 is used to skip a function after stepping into it (for "next" or if
7478 the called function has no debugging information).
14e60db5
DJ
7479
7480 The current function has almost always been reached by single
7481 stepping a call or return instruction. NEXT_FRAME belongs to the
7482 current function, and the breakpoint will be set at the caller's
7483 resume address.
7484
7485 This is a separate function rather than reusing
2c03e5be 7486 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7487 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7488 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7489
7490static void
7491insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7492{
7493 struct symtab_and_line sr_sal;
a6d9a66e 7494 struct gdbarch *gdbarch;
14e60db5
DJ
7495
7496 /* We shouldn't have gotten here if we don't know where the call site
7497 is. */
c7ce8faa 7498 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7499
7500 init_sal (&sr_sal); /* initialize to zeros */
7501
a6d9a66e 7502 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7503 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7504 frame_unwind_caller_pc (next_frame));
14e60db5 7505 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7506 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7507
a6d9a66e 7508 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7509 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7510}
7511
611c83ae
PA
7512/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7513 new breakpoint at the target of a jmp_buf. The handling of
7514 longjmp-resume uses the same mechanisms used for handling
7515 "step-resume" breakpoints. */
7516
7517static void
a6d9a66e 7518insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7519{
e81a37f7
TT
7520 /* There should never be more than one longjmp-resume breakpoint per
7521 thread, so we should never be setting a new
611c83ae 7522 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7523 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7524
7525 if (debug_infrun)
7526 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7527 "infrun: inserting longjmp-resume breakpoint at %s\n",
7528 paddress (gdbarch, pc));
611c83ae 7529
e81a37f7 7530 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7531 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7532}
7533
186c406b
TT
7534/* Insert an exception resume breakpoint. TP is the thread throwing
7535 the exception. The block B is the block of the unwinder debug hook
7536 function. FRAME is the frame corresponding to the call to this
7537 function. SYM is the symbol of the function argument holding the
7538 target PC of the exception. */
7539
7540static void
7541insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7542 const struct block *b,
186c406b
TT
7543 struct frame_info *frame,
7544 struct symbol *sym)
7545{
492d29ea 7546 TRY
186c406b 7547 {
63e43d3a 7548 struct block_symbol vsym;
186c406b
TT
7549 struct value *value;
7550 CORE_ADDR handler;
7551 struct breakpoint *bp;
7552
63e43d3a
PMR
7553 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7554 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7555 /* If the value was optimized out, revert to the old behavior. */
7556 if (! value_optimized_out (value))
7557 {
7558 handler = value_as_address (value);
7559
7560 if (debug_infrun)
7561 fprintf_unfiltered (gdb_stdlog,
7562 "infrun: exception resume at %lx\n",
7563 (unsigned long) handler);
7564
7565 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7566 handler, bp_exception_resume);
c70a6932
JK
7567
7568 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7569 frame = NULL;
7570
5d5658a1 7571 bp->thread = tp->global_num;
186c406b
TT
7572 inferior_thread ()->control.exception_resume_breakpoint = bp;
7573 }
7574 }
492d29ea
PA
7575 CATCH (e, RETURN_MASK_ERROR)
7576 {
7577 /* We want to ignore errors here. */
7578 }
7579 END_CATCH
186c406b
TT
7580}
7581
28106bc2
SDJ
7582/* A helper for check_exception_resume that sets an
7583 exception-breakpoint based on a SystemTap probe. */
7584
7585static void
7586insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7587 const struct bound_probe *probe,
28106bc2
SDJ
7588 struct frame_info *frame)
7589{
7590 struct value *arg_value;
7591 CORE_ADDR handler;
7592 struct breakpoint *bp;
7593
7594 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7595 if (!arg_value)
7596 return;
7597
7598 handler = value_as_address (arg_value);
7599
7600 if (debug_infrun)
7601 fprintf_unfiltered (gdb_stdlog,
7602 "infrun: exception resume at %s\n",
6bac7473 7603 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7604 handler));
7605
7606 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7607 handler, bp_exception_resume);
5d5658a1 7608 bp->thread = tp->global_num;
28106bc2
SDJ
7609 inferior_thread ()->control.exception_resume_breakpoint = bp;
7610}
7611
186c406b
TT
7612/* This is called when an exception has been intercepted. Check to
7613 see whether the exception's destination is of interest, and if so,
7614 set an exception resume breakpoint there. */
7615
7616static void
7617check_exception_resume (struct execution_control_state *ecs,
28106bc2 7618 struct frame_info *frame)
186c406b 7619{
729662a5 7620 struct bound_probe probe;
28106bc2
SDJ
7621 struct symbol *func;
7622
7623 /* First see if this exception unwinding breakpoint was set via a
7624 SystemTap probe point. If so, the probe has two arguments: the
7625 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7626 set a breakpoint there. */
6bac7473 7627 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7628 if (probe.probe)
28106bc2 7629 {
729662a5 7630 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7631 return;
7632 }
7633
7634 func = get_frame_function (frame);
7635 if (!func)
7636 return;
186c406b 7637
492d29ea 7638 TRY
186c406b 7639 {
3977b71f 7640 const struct block *b;
8157b174 7641 struct block_iterator iter;
186c406b
TT
7642 struct symbol *sym;
7643 int argno = 0;
7644
7645 /* The exception breakpoint is a thread-specific breakpoint on
7646 the unwinder's debug hook, declared as:
7647
7648 void _Unwind_DebugHook (void *cfa, void *handler);
7649
7650 The CFA argument indicates the frame to which control is
7651 about to be transferred. HANDLER is the destination PC.
7652
7653 We ignore the CFA and set a temporary breakpoint at HANDLER.
7654 This is not extremely efficient but it avoids issues in gdb
7655 with computing the DWARF CFA, and it also works even in weird
7656 cases such as throwing an exception from inside a signal
7657 handler. */
7658
7659 b = SYMBOL_BLOCK_VALUE (func);
7660 ALL_BLOCK_SYMBOLS (b, iter, sym)
7661 {
7662 if (!SYMBOL_IS_ARGUMENT (sym))
7663 continue;
7664
7665 if (argno == 0)
7666 ++argno;
7667 else
7668 {
7669 insert_exception_resume_breakpoint (ecs->event_thread,
7670 b, frame, sym);
7671 break;
7672 }
7673 }
7674 }
492d29ea
PA
7675 CATCH (e, RETURN_MASK_ERROR)
7676 {
7677 }
7678 END_CATCH
186c406b
TT
7679}
7680
104c1213 7681static void
22bcd14b 7682stop_waiting (struct execution_control_state *ecs)
104c1213 7683{
527159b7 7684 if (debug_infrun)
22bcd14b 7685 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7686
31e77af2
PA
7687 clear_step_over_info ();
7688
cd0fc7c3
SS
7689 /* Let callers know we don't want to wait for the inferior anymore. */
7690 ecs->wait_some_more = 0;
fbea99ea
PA
7691
7692 /* If all-stop, but the target is always in non-stop mode, stop all
7693 threads now that we're presenting the stop to the user. */
7694 if (!non_stop && target_is_non_stop_p ())
7695 stop_all_threads ();
cd0fc7c3
SS
7696}
7697
4d9d9d04
PA
7698/* Like keep_going, but passes the signal to the inferior, even if the
7699 signal is set to nopass. */
d4f3574e
SS
7700
7701static void
4d9d9d04 7702keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7703{
c4dbc9af
PA
7704 /* Make sure normal_stop is called if we get a QUIT handled before
7705 reaching resume. */
7706 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7707
4d9d9d04 7708 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7709 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7710
d4f3574e 7711 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7712 ecs->event_thread->prev_pc
7713 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7714
4d9d9d04 7715 if (ecs->event_thread->control.trap_expected)
d4f3574e 7716 {
4d9d9d04
PA
7717 struct thread_info *tp = ecs->event_thread;
7718
7719 if (debug_infrun)
7720 fprintf_unfiltered (gdb_stdlog,
7721 "infrun: %s has trap_expected set, "
7722 "resuming to collect trap\n",
7723 target_pid_to_str (tp->ptid));
7724
a9ba6bae
PA
7725 /* We haven't yet gotten our trap, and either: intercepted a
7726 non-signal event (e.g., a fork); or took a signal which we
7727 are supposed to pass through to the inferior. Simply
7728 continue. */
c4dbc9af 7729 discard_cleanups (old_cleanups);
64ce06e4 7730 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7731 }
372316f1
PA
7732 else if (step_over_info_valid_p ())
7733 {
7734 /* Another thread is stepping over a breakpoint in-line. If
7735 this thread needs a step-over too, queue the request. In
7736 either case, this resume must be deferred for later. */
7737 struct thread_info *tp = ecs->event_thread;
7738
7739 if (ecs->hit_singlestep_breakpoint
7740 || thread_still_needs_step_over (tp))
7741 {
7742 if (debug_infrun)
7743 fprintf_unfiltered (gdb_stdlog,
7744 "infrun: step-over already in progress: "
7745 "step-over for %s deferred\n",
7746 target_pid_to_str (tp->ptid));
7747 thread_step_over_chain_enqueue (tp);
7748 }
7749 else
7750 {
7751 if (debug_infrun)
7752 fprintf_unfiltered (gdb_stdlog,
7753 "infrun: step-over in progress: "
7754 "resume of %s deferred\n",
7755 target_pid_to_str (tp->ptid));
7756 }
7757
7758 discard_cleanups (old_cleanups);
7759 }
d4f3574e
SS
7760 else
7761 {
31e77af2 7762 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7763 int remove_bp;
7764 int remove_wps;
8d297bbf 7765 step_over_what step_what;
31e77af2 7766
d4f3574e 7767 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7768 anyway (if we got a signal, the user asked it be passed to
7769 the child)
7770 -- or --
7771 We got our expected trap, but decided we should resume from
7772 it.
d4f3574e 7773
a9ba6bae 7774 We're going to run this baby now!
d4f3574e 7775
c36b740a
VP
7776 Note that insert_breakpoints won't try to re-insert
7777 already inserted breakpoints. Therefore, we don't
7778 care if breakpoints were already inserted, or not. */
a9ba6bae 7779
31e77af2
PA
7780 /* If we need to step over a breakpoint, and we're not using
7781 displaced stepping to do so, insert all breakpoints
7782 (watchpoints, etc.) but the one we're stepping over, step one
7783 instruction, and then re-insert the breakpoint when that step
7784 is finished. */
963f9c80 7785
6c4cfb24
PA
7786 step_what = thread_still_needs_step_over (ecs->event_thread);
7787
963f9c80 7788 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7789 || (step_what & STEP_OVER_BREAKPOINT));
7790 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7791
cb71640d
PA
7792 /* We can't use displaced stepping if we need to step past a
7793 watchpoint. The instruction copied to the scratch pad would
7794 still trigger the watchpoint. */
7795 if (remove_bp
3fc8eb30 7796 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7797 {
31e77af2 7798 set_step_over_info (get_regcache_aspace (regcache),
21edc42f
YQ
7799 regcache_read_pc (regcache), remove_wps,
7800 ecs->event_thread->global_num);
45e8c884 7801 }
963f9c80 7802 else if (remove_wps)
21edc42f 7803 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7804
7805 /* If we now need to do an in-line step-over, we need to stop
7806 all other threads. Note this must be done before
7807 insert_breakpoints below, because that removes the breakpoint
7808 we're about to step over, otherwise other threads could miss
7809 it. */
fbea99ea 7810 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7811 stop_all_threads ();
abbb1732 7812
31e77af2 7813 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7814 TRY
31e77af2
PA
7815 {
7816 insert_breakpoints ();
7817 }
492d29ea 7818 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7819 {
7820 exception_print (gdb_stderr, e);
22bcd14b 7821 stop_waiting (ecs);
de1fe8c8 7822 discard_cleanups (old_cleanups);
31e77af2 7823 return;
d4f3574e 7824 }
492d29ea 7825 END_CATCH
d4f3574e 7826
963f9c80 7827 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7828
c4dbc9af 7829 discard_cleanups (old_cleanups);
64ce06e4 7830 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7831 }
7832
488f131b 7833 prepare_to_wait (ecs);
d4f3574e
SS
7834}
7835
4d9d9d04
PA
7836/* Called when we should continue running the inferior, because the
7837 current event doesn't cause a user visible stop. This does the
7838 resuming part; waiting for the next event is done elsewhere. */
7839
7840static void
7841keep_going (struct execution_control_state *ecs)
7842{
7843 if (ecs->event_thread->control.trap_expected
7844 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7845 ecs->event_thread->control.trap_expected = 0;
7846
7847 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7848 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7849 keep_going_pass_signal (ecs);
7850}
7851
104c1213
JM
7852/* This function normally comes after a resume, before
7853 handle_inferior_event exits. It takes care of any last bits of
7854 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7855
104c1213
JM
7856static void
7857prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7858{
527159b7 7859 if (debug_infrun)
8a9de0e4 7860 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7861
104c1213 7862 ecs->wait_some_more = 1;
0b333c5e
PA
7863
7864 if (!target_is_async_p ())
7865 mark_infrun_async_event_handler ();
c906108c 7866}
11cf8741 7867
fd664c91 7868/* We are done with the step range of a step/next/si/ni command.
b57bacec 7869 Called once for each n of a "step n" operation. */
fd664c91
PA
7870
7871static void
bdc36728 7872end_stepping_range (struct execution_control_state *ecs)
fd664c91 7873{
bdc36728 7874 ecs->event_thread->control.stop_step = 1;
bdc36728 7875 stop_waiting (ecs);
fd664c91
PA
7876}
7877
33d62d64
JK
7878/* Several print_*_reason functions to print why the inferior has stopped.
7879 We always print something when the inferior exits, or receives a signal.
7880 The rest of the cases are dealt with later on in normal_stop and
7881 print_it_typical. Ideally there should be a call to one of these
7882 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7883 stop_waiting is called.
33d62d64 7884
fd664c91
PA
7885 Note that we don't call these directly, instead we delegate that to
7886 the interpreters, through observers. Interpreters then call these
7887 with whatever uiout is right. */
33d62d64 7888
fd664c91
PA
7889void
7890print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7891{
fd664c91 7892 /* For CLI-like interpreters, print nothing. */
33d62d64 7893
fd664c91
PA
7894 if (ui_out_is_mi_like_p (uiout))
7895 {
7896 ui_out_field_string (uiout, "reason",
7897 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7898 }
7899}
33d62d64 7900
fd664c91
PA
7901void
7902print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7903{
33d62d64
JK
7904 annotate_signalled ();
7905 if (ui_out_is_mi_like_p (uiout))
7906 ui_out_field_string
7907 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7908 ui_out_text (uiout, "\nProgram terminated with signal ");
7909 annotate_signal_name ();
7910 ui_out_field_string (uiout, "signal-name",
2ea28649 7911 gdb_signal_to_name (siggnal));
33d62d64
JK
7912 annotate_signal_name_end ();
7913 ui_out_text (uiout, ", ");
7914 annotate_signal_string ();
7915 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7916 gdb_signal_to_string (siggnal));
33d62d64
JK
7917 annotate_signal_string_end ();
7918 ui_out_text (uiout, ".\n");
7919 ui_out_text (uiout, "The program no longer exists.\n");
7920}
7921
fd664c91
PA
7922void
7923print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7924{
fda326dd
TT
7925 struct inferior *inf = current_inferior ();
7926 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7927
33d62d64
JK
7928 annotate_exited (exitstatus);
7929 if (exitstatus)
7930 {
7931 if (ui_out_is_mi_like_p (uiout))
7932 ui_out_field_string (uiout, "reason",
7933 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7934 ui_out_text (uiout, "[Inferior ");
7935 ui_out_text (uiout, plongest (inf->num));
7936 ui_out_text (uiout, " (");
7937 ui_out_text (uiout, pidstr);
7938 ui_out_text (uiout, ") exited with code ");
33d62d64 7939 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7940 ui_out_text (uiout, "]\n");
33d62d64
JK
7941 }
7942 else
11cf8741 7943 {
9dc5e2a9 7944 if (ui_out_is_mi_like_p (uiout))
034dad6f 7945 ui_out_field_string
33d62d64 7946 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7947 ui_out_text (uiout, "[Inferior ");
7948 ui_out_text (uiout, plongest (inf->num));
7949 ui_out_text (uiout, " (");
7950 ui_out_text (uiout, pidstr);
7951 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7952 }
33d62d64
JK
7953}
7954
012b3a21
WT
7955/* Some targets/architectures can do extra processing/display of
7956 segmentation faults. E.g., Intel MPX boundary faults.
7957 Call the architecture dependent function to handle the fault. */
7958
7959static void
7960handle_segmentation_fault (struct ui_out *uiout)
7961{
7962 struct regcache *regcache = get_current_regcache ();
7963 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7964
7965 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7966 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7967}
7968
fd664c91
PA
7969void
7970print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7971{
f303dbd6
PA
7972 struct thread_info *thr = inferior_thread ();
7973
33d62d64
JK
7974 annotate_signal ();
7975
f303dbd6
PA
7976 if (ui_out_is_mi_like_p (uiout))
7977 ;
7978 else if (show_thread_that_caused_stop ())
33d62d64 7979 {
f303dbd6 7980 const char *name;
33d62d64 7981
f303dbd6
PA
7982 ui_out_text (uiout, "\nThread ");
7983 ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr));
7984
7985 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7986 if (name != NULL)
7987 {
7988 ui_out_text (uiout, " \"");
7989 ui_out_field_fmt (uiout, "name", "%s", name);
7990 ui_out_text (uiout, "\"");
7991 }
33d62d64 7992 }
f303dbd6
PA
7993 else
7994 ui_out_text (uiout, "\nProgram");
7995
7996 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
7997 ui_out_text (uiout, " stopped");
33d62d64
JK
7998 else
7999 {
f303dbd6 8000 ui_out_text (uiout, " received signal ");
8b93c638 8001 annotate_signal_name ();
33d62d64
JK
8002 if (ui_out_is_mi_like_p (uiout))
8003 ui_out_field_string
8004 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 8005 ui_out_field_string (uiout, "signal-name",
2ea28649 8006 gdb_signal_to_name (siggnal));
8b93c638
JM
8007 annotate_signal_name_end ();
8008 ui_out_text (uiout, ", ");
8009 annotate_signal_string ();
488f131b 8010 ui_out_field_string (uiout, "signal-meaning",
2ea28649 8011 gdb_signal_to_string (siggnal));
012b3a21
WT
8012
8013 if (siggnal == GDB_SIGNAL_SEGV)
8014 handle_segmentation_fault (uiout);
8015
8b93c638 8016 annotate_signal_string_end ();
33d62d64
JK
8017 }
8018 ui_out_text (uiout, ".\n");
8019}
252fbfc8 8020
fd664c91
PA
8021void
8022print_no_history_reason (struct ui_out *uiout)
33d62d64 8023{
fd664c91 8024 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 8025}
43ff13b4 8026
0c7e1a46
PA
8027/* Print current location without a level number, if we have changed
8028 functions or hit a breakpoint. Print source line if we have one.
8029 bpstat_print contains the logic deciding in detail what to print,
8030 based on the event(s) that just occurred. */
8031
243a9253
PA
8032static void
8033print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8034{
8035 int bpstat_ret;
f486487f 8036 enum print_what source_flag;
0c7e1a46
PA
8037 int do_frame_printing = 1;
8038 struct thread_info *tp = inferior_thread ();
8039
8040 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8041 switch (bpstat_ret)
8042 {
8043 case PRINT_UNKNOWN:
8044 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8045 should) carry around the function and does (or should) use
8046 that when doing a frame comparison. */
8047 if (tp->control.stop_step
8048 && frame_id_eq (tp->control.step_frame_id,
8049 get_frame_id (get_current_frame ()))
885eeb5b 8050 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
8051 {
8052 /* Finished step, just print source line. */
8053 source_flag = SRC_LINE;
8054 }
8055 else
8056 {
8057 /* Print location and source line. */
8058 source_flag = SRC_AND_LOC;
8059 }
8060 break;
8061 case PRINT_SRC_AND_LOC:
8062 /* Print location and source line. */
8063 source_flag = SRC_AND_LOC;
8064 break;
8065 case PRINT_SRC_ONLY:
8066 source_flag = SRC_LINE;
8067 break;
8068 case PRINT_NOTHING:
8069 /* Something bogus. */
8070 source_flag = SRC_LINE;
8071 do_frame_printing = 0;
8072 break;
8073 default:
8074 internal_error (__FILE__, __LINE__, _("Unknown value."));
8075 }
8076
8077 /* The behavior of this routine with respect to the source
8078 flag is:
8079 SRC_LINE: Print only source line
8080 LOCATION: Print only location
8081 SRC_AND_LOC: Print location and source line. */
8082 if (do_frame_printing)
8083 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8084}
8085
243a9253
PA
8086/* See infrun.h. */
8087
8088void
8089print_stop_event (struct ui_out *uiout)
8090{
243a9253
PA
8091 struct target_waitstatus last;
8092 ptid_t last_ptid;
8093 struct thread_info *tp;
8094
8095 get_last_target_status (&last_ptid, &last);
8096
67ad9399
TT
8097 {
8098 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8099
67ad9399 8100 print_stop_location (&last);
243a9253 8101
67ad9399
TT
8102 /* Display the auto-display expressions. */
8103 do_displays ();
8104 }
243a9253
PA
8105
8106 tp = inferior_thread ();
8107 if (tp->thread_fsm != NULL
8108 && thread_fsm_finished_p (tp->thread_fsm))
8109 {
8110 struct return_value_info *rv;
8111
8112 rv = thread_fsm_return_value (tp->thread_fsm);
8113 if (rv != NULL)
8114 print_return_value (uiout, rv);
8115 }
0c7e1a46
PA
8116}
8117
388a7084
PA
8118/* See infrun.h. */
8119
8120void
8121maybe_remove_breakpoints (void)
8122{
8123 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8124 {
8125 if (remove_breakpoints ())
8126 {
8127 target_terminal_ours_for_output ();
8128 printf_filtered (_("Cannot remove breakpoints because "
8129 "program is no longer writable.\nFurther "
8130 "execution is probably impossible.\n"));
8131 }
8132 }
8133}
8134
4c2f2a79
PA
8135/* The execution context that just caused a normal stop. */
8136
8137struct stop_context
8138{
8139 /* The stop ID. */
8140 ULONGEST stop_id;
c906108c 8141
4c2f2a79 8142 /* The event PTID. */
c906108c 8143
4c2f2a79
PA
8144 ptid_t ptid;
8145
8146 /* If stopp for a thread event, this is the thread that caused the
8147 stop. */
8148 struct thread_info *thread;
8149
8150 /* The inferior that caused the stop. */
8151 int inf_num;
8152};
8153
8154/* Returns a new stop context. If stopped for a thread event, this
8155 takes a strong reference to the thread. */
8156
8157static struct stop_context *
8158save_stop_context (void)
8159{
224c3ddb 8160 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8161
8162 sc->stop_id = get_stop_id ();
8163 sc->ptid = inferior_ptid;
8164 sc->inf_num = current_inferior ()->num;
8165
8166 if (!ptid_equal (inferior_ptid, null_ptid))
8167 {
8168 /* Take a strong reference so that the thread can't be deleted
8169 yet. */
8170 sc->thread = inferior_thread ();
8171 sc->thread->refcount++;
8172 }
8173 else
8174 sc->thread = NULL;
8175
8176 return sc;
8177}
8178
8179/* Release a stop context previously created with save_stop_context.
8180 Releases the strong reference to the thread as well. */
8181
8182static void
8183release_stop_context_cleanup (void *arg)
8184{
9a3c8263 8185 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8186
8187 if (sc->thread != NULL)
8188 sc->thread->refcount--;
8189 xfree (sc);
8190}
8191
8192/* Return true if the current context no longer matches the saved stop
8193 context. */
8194
8195static int
8196stop_context_changed (struct stop_context *prev)
8197{
8198 if (!ptid_equal (prev->ptid, inferior_ptid))
8199 return 1;
8200 if (prev->inf_num != current_inferior ()->num)
8201 return 1;
8202 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8203 return 1;
8204 if (get_stop_id () != prev->stop_id)
8205 return 1;
8206 return 0;
8207}
8208
8209/* See infrun.h. */
8210
8211int
96baa820 8212normal_stop (void)
c906108c 8213{
73b65bb0
DJ
8214 struct target_waitstatus last;
8215 ptid_t last_ptid;
29f49a6a 8216 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8217 ptid_t pid_ptid;
73b65bb0
DJ
8218
8219 get_last_target_status (&last_ptid, &last);
8220
4c2f2a79
PA
8221 new_stop_id ();
8222
29f49a6a
PA
8223 /* If an exception is thrown from this point on, make sure to
8224 propagate GDB's knowledge of the executing state to the
8225 frontend/user running state. A QUIT is an easy exception to see
8226 here, so do this before any filtered output. */
c35b1492
PA
8227 if (!non_stop)
8228 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8229 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8230 || last.kind == TARGET_WAITKIND_EXITED)
8231 {
8232 /* On some targets, we may still have live threads in the
8233 inferior when we get a process exit event. E.g., for
8234 "checkpoint", when the current checkpoint/fork exits,
8235 linux-fork.c automatically switches to another fork from
8236 within target_mourn_inferior. */
8237 if (!ptid_equal (inferior_ptid, null_ptid))
8238 {
8239 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8240 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8241 }
8242 }
8243 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8244 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8245
b57bacec
PA
8246 /* As we're presenting a stop, and potentially removing breakpoints,
8247 update the thread list so we can tell whether there are threads
8248 running on the target. With target remote, for example, we can
8249 only learn about new threads when we explicitly update the thread
8250 list. Do this before notifying the interpreters about signal
8251 stops, end of stepping ranges, etc., so that the "new thread"
8252 output is emitted before e.g., "Program received signal FOO",
8253 instead of after. */
8254 update_thread_list ();
8255
8256 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8257 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8258
c906108c
SS
8259 /* As with the notification of thread events, we want to delay
8260 notifying the user that we've switched thread context until
8261 the inferior actually stops.
8262
73b65bb0
DJ
8263 There's no point in saying anything if the inferior has exited.
8264 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8265 "received a signal".
8266
8267 Also skip saying anything in non-stop mode. In that mode, as we
8268 don't want GDB to switch threads behind the user's back, to avoid
8269 races where the user is typing a command to apply to thread x,
8270 but GDB switches to thread y before the user finishes entering
8271 the command, fetch_inferior_event installs a cleanup to restore
8272 the current thread back to the thread the user had selected right
8273 after this event is handled, so we're not really switching, only
8274 informing of a stop. */
4f8d22e3
PA
8275 if (!non_stop
8276 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8277 && target_has_execution
8278 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8279 && last.kind != TARGET_WAITKIND_EXITED
8280 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8281 {
0e454242 8282 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8283 {
8284 target_terminal_ours_for_output ();
8285 printf_filtered (_("[Switching to %s]\n"),
8286 target_pid_to_str (inferior_ptid));
8287 annotate_thread_changed ();
8288 }
39f77062 8289 previous_inferior_ptid = inferior_ptid;
c906108c 8290 }
c906108c 8291
0e5bf2a8
PA
8292 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8293 {
0e454242 8294 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8295 if (current_ui->prompt_state == PROMPT_BLOCKED)
8296 {
8297 target_terminal_ours_for_output ();
8298 printf_filtered (_("No unwaited-for children left.\n"));
8299 }
0e5bf2a8
PA
8300 }
8301
b57bacec 8302 /* Note: this depends on the update_thread_list call above. */
388a7084 8303 maybe_remove_breakpoints ();
c906108c 8304
c906108c
SS
8305 /* If an auto-display called a function and that got a signal,
8306 delete that auto-display to avoid an infinite recursion. */
8307
8308 if (stopped_by_random_signal)
8309 disable_current_display ();
8310
0e454242 8311 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8312 {
8313 async_enable_stdin ();
8314 }
c906108c 8315
388a7084
PA
8316 /* Let the user/frontend see the threads as stopped. */
8317 do_cleanups (old_chain);
8318
8319 /* Select innermost stack frame - i.e., current frame is frame 0,
8320 and current location is based on that. Handle the case where the
8321 dummy call is returning after being stopped. E.g. the dummy call
8322 previously hit a breakpoint. (If the dummy call returns
8323 normally, we won't reach here.) Do this before the stop hook is
8324 run, so that it doesn't get to see the temporary dummy frame,
8325 which is not where we'll present the stop. */
8326 if (has_stack_frames ())
8327 {
8328 if (stop_stack_dummy == STOP_STACK_DUMMY)
8329 {
8330 /* Pop the empty frame that contains the stack dummy. This
8331 also restores inferior state prior to the call (struct
8332 infcall_suspend_state). */
8333 struct frame_info *frame = get_current_frame ();
8334
8335 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8336 frame_pop (frame);
8337 /* frame_pop calls reinit_frame_cache as the last thing it
8338 does which means there's now no selected frame. */
8339 }
8340
8341 select_frame (get_current_frame ());
8342
8343 /* Set the current source location. */
8344 set_current_sal_from_frame (get_current_frame ());
8345 }
dd7e2d2b
PA
8346
8347 /* Look up the hook_stop and run it (CLI internally handles problem
8348 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8349 if (stop_command != NULL)
8350 {
8351 struct stop_context *saved_context = save_stop_context ();
8352 struct cleanup *old_chain
8353 = make_cleanup (release_stop_context_cleanup, saved_context);
8354
8355 catch_errors (hook_stop_stub, stop_command,
8356 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8357
8358 /* If the stop hook resumes the target, then there's no point in
8359 trying to notify about the previous stop; its context is
8360 gone. Likewise if the command switches thread or inferior --
8361 the observers would print a stop for the wrong
8362 thread/inferior. */
8363 if (stop_context_changed (saved_context))
8364 {
8365 do_cleanups (old_chain);
8366 return 1;
8367 }
8368 do_cleanups (old_chain);
8369 }
dd7e2d2b 8370
388a7084
PA
8371 /* Notify observers about the stop. This is where the interpreters
8372 print the stop event. */
8373 if (!ptid_equal (inferior_ptid, null_ptid))
8374 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8375 stop_print_frame);
8376 else
8377 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8378
243a9253
PA
8379 annotate_stopped ();
8380
48844aa6
PA
8381 if (target_has_execution)
8382 {
8383 if (last.kind != TARGET_WAITKIND_SIGNALLED
8384 && last.kind != TARGET_WAITKIND_EXITED)
8385 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8386 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8387 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8388 }
6c95b8df
PA
8389
8390 /* Try to get rid of automatically added inferiors that are no
8391 longer needed. Keeping those around slows down things linearly.
8392 Note that this never removes the current inferior. */
8393 prune_inferiors ();
4c2f2a79
PA
8394
8395 return 0;
c906108c
SS
8396}
8397
8398static int
96baa820 8399hook_stop_stub (void *cmd)
c906108c 8400{
5913bcb0 8401 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8402 return (0);
8403}
8404\f
c5aa993b 8405int
96baa820 8406signal_stop_state (int signo)
c906108c 8407{
d6b48e9c 8408 return signal_stop[signo];
c906108c
SS
8409}
8410
c5aa993b 8411int
96baa820 8412signal_print_state (int signo)
c906108c
SS
8413{
8414 return signal_print[signo];
8415}
8416
c5aa993b 8417int
96baa820 8418signal_pass_state (int signo)
c906108c
SS
8419{
8420 return signal_program[signo];
8421}
8422
2455069d
UW
8423static void
8424signal_cache_update (int signo)
8425{
8426 if (signo == -1)
8427 {
a493e3e2 8428 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8429 signal_cache_update (signo);
8430
8431 return;
8432 }
8433
8434 signal_pass[signo] = (signal_stop[signo] == 0
8435 && signal_print[signo] == 0
ab04a2af
TT
8436 && signal_program[signo] == 1
8437 && signal_catch[signo] == 0);
2455069d
UW
8438}
8439
488f131b 8440int
7bda5e4a 8441signal_stop_update (int signo, int state)
d4f3574e
SS
8442{
8443 int ret = signal_stop[signo];
abbb1732 8444
d4f3574e 8445 signal_stop[signo] = state;
2455069d 8446 signal_cache_update (signo);
d4f3574e
SS
8447 return ret;
8448}
8449
488f131b 8450int
7bda5e4a 8451signal_print_update (int signo, int state)
d4f3574e
SS
8452{
8453 int ret = signal_print[signo];
abbb1732 8454
d4f3574e 8455 signal_print[signo] = state;
2455069d 8456 signal_cache_update (signo);
d4f3574e
SS
8457 return ret;
8458}
8459
488f131b 8460int
7bda5e4a 8461signal_pass_update (int signo, int state)
d4f3574e
SS
8462{
8463 int ret = signal_program[signo];
abbb1732 8464
d4f3574e 8465 signal_program[signo] = state;
2455069d 8466 signal_cache_update (signo);
d4f3574e
SS
8467 return ret;
8468}
8469
ab04a2af
TT
8470/* Update the global 'signal_catch' from INFO and notify the
8471 target. */
8472
8473void
8474signal_catch_update (const unsigned int *info)
8475{
8476 int i;
8477
8478 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8479 signal_catch[i] = info[i] > 0;
8480 signal_cache_update (-1);
8481 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8482}
8483
c906108c 8484static void
96baa820 8485sig_print_header (void)
c906108c 8486{
3e43a32a
MS
8487 printf_filtered (_("Signal Stop\tPrint\tPass "
8488 "to program\tDescription\n"));
c906108c
SS
8489}
8490
8491static void
2ea28649 8492sig_print_info (enum gdb_signal oursig)
c906108c 8493{
2ea28649 8494 const char *name = gdb_signal_to_name (oursig);
c906108c 8495 int name_padding = 13 - strlen (name);
96baa820 8496
c906108c
SS
8497 if (name_padding <= 0)
8498 name_padding = 0;
8499
8500 printf_filtered ("%s", name);
488f131b 8501 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8502 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8503 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8504 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8505 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8506}
8507
8508/* Specify how various signals in the inferior should be handled. */
8509
8510static void
96baa820 8511handle_command (char *args, int from_tty)
c906108c
SS
8512{
8513 char **argv;
8514 int digits, wordlen;
8515 int sigfirst, signum, siglast;
2ea28649 8516 enum gdb_signal oursig;
c906108c
SS
8517 int allsigs;
8518 int nsigs;
8519 unsigned char *sigs;
8520 struct cleanup *old_chain;
8521
8522 if (args == NULL)
8523 {
e2e0b3e5 8524 error_no_arg (_("signal to handle"));
c906108c
SS
8525 }
8526
1777feb0 8527 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8528
a493e3e2 8529 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8530 sigs = (unsigned char *) alloca (nsigs);
8531 memset (sigs, 0, nsigs);
8532
1777feb0 8533 /* Break the command line up into args. */
c906108c 8534
d1a41061 8535 argv = gdb_buildargv (args);
7a292a7a 8536 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8537
8538 /* Walk through the args, looking for signal oursigs, signal names, and
8539 actions. Signal numbers and signal names may be interspersed with
8540 actions, with the actions being performed for all signals cumulatively
1777feb0 8541 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8542
8543 while (*argv != NULL)
8544 {
8545 wordlen = strlen (*argv);
8546 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8547 {;
8548 }
8549 allsigs = 0;
8550 sigfirst = siglast = -1;
8551
8552 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8553 {
8554 /* Apply action to all signals except those used by the
1777feb0 8555 debugger. Silently skip those. */
c906108c
SS
8556 allsigs = 1;
8557 sigfirst = 0;
8558 siglast = nsigs - 1;
8559 }
8560 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8561 {
8562 SET_SIGS (nsigs, sigs, signal_stop);
8563 SET_SIGS (nsigs, sigs, signal_print);
8564 }
8565 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8566 {
8567 UNSET_SIGS (nsigs, sigs, signal_program);
8568 }
8569 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8570 {
8571 SET_SIGS (nsigs, sigs, signal_print);
8572 }
8573 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8574 {
8575 SET_SIGS (nsigs, sigs, signal_program);
8576 }
8577 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8578 {
8579 UNSET_SIGS (nsigs, sigs, signal_stop);
8580 }
8581 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8582 {
8583 SET_SIGS (nsigs, sigs, signal_program);
8584 }
8585 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8586 {
8587 UNSET_SIGS (nsigs, sigs, signal_print);
8588 UNSET_SIGS (nsigs, sigs, signal_stop);
8589 }
8590 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8591 {
8592 UNSET_SIGS (nsigs, sigs, signal_program);
8593 }
8594 else if (digits > 0)
8595 {
8596 /* It is numeric. The numeric signal refers to our own
8597 internal signal numbering from target.h, not to host/target
8598 signal number. This is a feature; users really should be
8599 using symbolic names anyway, and the common ones like
8600 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8601
8602 sigfirst = siglast = (int)
2ea28649 8603 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8604 if ((*argv)[digits] == '-')
8605 {
8606 siglast = (int)
2ea28649 8607 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8608 }
8609 if (sigfirst > siglast)
8610 {
1777feb0 8611 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8612 signum = sigfirst;
8613 sigfirst = siglast;
8614 siglast = signum;
8615 }
8616 }
8617 else
8618 {
2ea28649 8619 oursig = gdb_signal_from_name (*argv);
a493e3e2 8620 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8621 {
8622 sigfirst = siglast = (int) oursig;
8623 }
8624 else
8625 {
8626 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8627 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8628 }
8629 }
8630
8631 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8632 which signals to apply actions to. */
c906108c
SS
8633
8634 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8635 {
2ea28649 8636 switch ((enum gdb_signal) signum)
c906108c 8637 {
a493e3e2
PA
8638 case GDB_SIGNAL_TRAP:
8639 case GDB_SIGNAL_INT:
c906108c
SS
8640 if (!allsigs && !sigs[signum])
8641 {
9e2f0ad4 8642 if (query (_("%s is used by the debugger.\n\
3e43a32a 8643Are you sure you want to change it? "),
2ea28649 8644 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8645 {
8646 sigs[signum] = 1;
8647 }
8648 else
8649 {
a3f17187 8650 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8651 gdb_flush (gdb_stdout);
8652 }
8653 }
8654 break;
a493e3e2
PA
8655 case GDB_SIGNAL_0:
8656 case GDB_SIGNAL_DEFAULT:
8657 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8658 /* Make sure that "all" doesn't print these. */
8659 break;
8660 default:
8661 sigs[signum] = 1;
8662 break;
8663 }
8664 }
8665
8666 argv++;
8667 }
8668
3a031f65
PA
8669 for (signum = 0; signum < nsigs; signum++)
8670 if (sigs[signum])
8671 {
2455069d 8672 signal_cache_update (-1);
a493e3e2
PA
8673 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8674 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8675
3a031f65
PA
8676 if (from_tty)
8677 {
8678 /* Show the results. */
8679 sig_print_header ();
8680 for (; signum < nsigs; signum++)
8681 if (sigs[signum])
aead7601 8682 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8683 }
8684
8685 break;
8686 }
c906108c
SS
8687
8688 do_cleanups (old_chain);
8689}
8690
de0bea00
MF
8691/* Complete the "handle" command. */
8692
8693static VEC (char_ptr) *
8694handle_completer (struct cmd_list_element *ignore,
6f937416 8695 const char *text, const char *word)
de0bea00
MF
8696{
8697 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8698 static const char * const keywords[] =
8699 {
8700 "all",
8701 "stop",
8702 "ignore",
8703 "print",
8704 "pass",
8705 "nostop",
8706 "noignore",
8707 "noprint",
8708 "nopass",
8709 NULL,
8710 };
8711
8712 vec_signals = signal_completer (ignore, text, word);
8713 vec_keywords = complete_on_enum (keywords, word, word);
8714
8715 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8716 VEC_free (char_ptr, vec_signals);
8717 VEC_free (char_ptr, vec_keywords);
8718 return return_val;
8719}
8720
2ea28649
PA
8721enum gdb_signal
8722gdb_signal_from_command (int num)
ed01b82c
PA
8723{
8724 if (num >= 1 && num <= 15)
2ea28649 8725 return (enum gdb_signal) num;
ed01b82c
PA
8726 error (_("Only signals 1-15 are valid as numeric signals.\n\
8727Use \"info signals\" for a list of symbolic signals."));
8728}
8729
c906108c
SS
8730/* Print current contents of the tables set by the handle command.
8731 It is possible we should just be printing signals actually used
8732 by the current target (but for things to work right when switching
8733 targets, all signals should be in the signal tables). */
8734
8735static void
96baa820 8736signals_info (char *signum_exp, int from_tty)
c906108c 8737{
2ea28649 8738 enum gdb_signal oursig;
abbb1732 8739
c906108c
SS
8740 sig_print_header ();
8741
8742 if (signum_exp)
8743 {
8744 /* First see if this is a symbol name. */
2ea28649 8745 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8746 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8747 {
8748 /* No, try numeric. */
8749 oursig =
2ea28649 8750 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8751 }
8752 sig_print_info (oursig);
8753 return;
8754 }
8755
8756 printf_filtered ("\n");
8757 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8758 for (oursig = GDB_SIGNAL_FIRST;
8759 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8760 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8761 {
8762 QUIT;
8763
a493e3e2
PA
8764 if (oursig != GDB_SIGNAL_UNKNOWN
8765 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8766 sig_print_info (oursig);
8767 }
8768
3e43a32a
MS
8769 printf_filtered (_("\nUse the \"handle\" command "
8770 "to change these tables.\n"));
c906108c 8771}
4aa995e1
PA
8772
8773/* The $_siginfo convenience variable is a bit special. We don't know
8774 for sure the type of the value until we actually have a chance to
7a9dd1b2 8775 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8776 also dependent on which thread you have selected.
8777
8778 1. making $_siginfo be an internalvar that creates a new value on
8779 access.
8780
8781 2. making the value of $_siginfo be an lval_computed value. */
8782
8783/* This function implements the lval_computed support for reading a
8784 $_siginfo value. */
8785
8786static void
8787siginfo_value_read (struct value *v)
8788{
8789 LONGEST transferred;
8790
a911d87a
PA
8791 /* If we can access registers, so can we access $_siginfo. Likewise
8792 vice versa. */
8793 validate_registers_access ();
c709acd1 8794
4aa995e1
PA
8795 transferred =
8796 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8797 NULL,
8798 value_contents_all_raw (v),
8799 value_offset (v),
8800 TYPE_LENGTH (value_type (v)));
8801
8802 if (transferred != TYPE_LENGTH (value_type (v)))
8803 error (_("Unable to read siginfo"));
8804}
8805
8806/* This function implements the lval_computed support for writing a
8807 $_siginfo value. */
8808
8809static void
8810siginfo_value_write (struct value *v, struct value *fromval)
8811{
8812 LONGEST transferred;
8813
a911d87a
PA
8814 /* If we can access registers, so can we access $_siginfo. Likewise
8815 vice versa. */
8816 validate_registers_access ();
c709acd1 8817
4aa995e1
PA
8818 transferred = target_write (&current_target,
8819 TARGET_OBJECT_SIGNAL_INFO,
8820 NULL,
8821 value_contents_all_raw (fromval),
8822 value_offset (v),
8823 TYPE_LENGTH (value_type (fromval)));
8824
8825 if (transferred != TYPE_LENGTH (value_type (fromval)))
8826 error (_("Unable to write siginfo"));
8827}
8828
c8f2448a 8829static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8830 {
8831 siginfo_value_read,
8832 siginfo_value_write
8833 };
8834
8835/* Return a new value with the correct type for the siginfo object of
78267919
UW
8836 the current thread using architecture GDBARCH. Return a void value
8837 if there's no object available. */
4aa995e1 8838
2c0b251b 8839static struct value *
22d2b532
SDJ
8840siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8841 void *ignore)
4aa995e1 8842{
4aa995e1 8843 if (target_has_stack
78267919
UW
8844 && !ptid_equal (inferior_ptid, null_ptid)
8845 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8846 {
78267919 8847 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8848
78267919 8849 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8850 }
8851
78267919 8852 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8853}
8854
c906108c 8855\f
16c381f0
JK
8856/* infcall_suspend_state contains state about the program itself like its
8857 registers and any signal it received when it last stopped.
8858 This state must be restored regardless of how the inferior function call
8859 ends (either successfully, or after it hits a breakpoint or signal)
8860 if the program is to properly continue where it left off. */
8861
8862struct infcall_suspend_state
7a292a7a 8863{
16c381f0 8864 struct thread_suspend_state thread_suspend;
16c381f0
JK
8865
8866 /* Other fields: */
7a292a7a 8867 CORE_ADDR stop_pc;
b89667eb 8868 struct regcache *registers;
1736ad11 8869
35515841 8870 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8871 struct gdbarch *siginfo_gdbarch;
8872
8873 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8874 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8875 content would be invalid. */
8876 gdb_byte *siginfo_data;
b89667eb
DE
8877};
8878
16c381f0
JK
8879struct infcall_suspend_state *
8880save_infcall_suspend_state (void)
b89667eb 8881{
16c381f0 8882 struct infcall_suspend_state *inf_state;
b89667eb 8883 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8884 struct regcache *regcache = get_current_regcache ();
8885 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8886 gdb_byte *siginfo_data = NULL;
8887
8888 if (gdbarch_get_siginfo_type_p (gdbarch))
8889 {
8890 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8891 size_t len = TYPE_LENGTH (type);
8892 struct cleanup *back_to;
8893
224c3ddb 8894 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8895 back_to = make_cleanup (xfree, siginfo_data);
8896
8897 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8898 siginfo_data, 0, len) == len)
8899 discard_cleanups (back_to);
8900 else
8901 {
8902 /* Errors ignored. */
8903 do_cleanups (back_to);
8904 siginfo_data = NULL;
8905 }
8906 }
8907
41bf6aca 8908 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8909
8910 if (siginfo_data)
8911 {
8912 inf_state->siginfo_gdbarch = gdbarch;
8913 inf_state->siginfo_data = siginfo_data;
8914 }
b89667eb 8915
16c381f0 8916 inf_state->thread_suspend = tp->suspend;
16c381f0 8917
35515841 8918 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8919 GDB_SIGNAL_0 anyway. */
8920 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8921
b89667eb
DE
8922 inf_state->stop_pc = stop_pc;
8923
1736ad11 8924 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8925
8926 return inf_state;
8927}
8928
8929/* Restore inferior session state to INF_STATE. */
8930
8931void
16c381f0 8932restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8933{
8934 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8935 struct regcache *regcache = get_current_regcache ();
8936 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8937
16c381f0 8938 tp->suspend = inf_state->thread_suspend;
16c381f0 8939
b89667eb
DE
8940 stop_pc = inf_state->stop_pc;
8941
1736ad11
JK
8942 if (inf_state->siginfo_gdbarch == gdbarch)
8943 {
8944 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8945
8946 /* Errors ignored. */
8947 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8948 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8949 }
8950
b89667eb
DE
8951 /* The inferior can be gone if the user types "print exit(0)"
8952 (and perhaps other times). */
8953 if (target_has_execution)
8954 /* NB: The register write goes through to the target. */
1736ad11 8955 regcache_cpy (regcache, inf_state->registers);
803b5f95 8956
16c381f0 8957 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8958}
8959
8960static void
16c381f0 8961do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8962{
9a3c8263 8963 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8964}
8965
8966struct cleanup *
16c381f0
JK
8967make_cleanup_restore_infcall_suspend_state
8968 (struct infcall_suspend_state *inf_state)
b89667eb 8969{
16c381f0 8970 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8971}
8972
8973void
16c381f0 8974discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8975{
8976 regcache_xfree (inf_state->registers);
803b5f95 8977 xfree (inf_state->siginfo_data);
b89667eb
DE
8978 xfree (inf_state);
8979}
8980
8981struct regcache *
16c381f0 8982get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8983{
8984 return inf_state->registers;
8985}
8986
16c381f0
JK
8987/* infcall_control_state contains state regarding gdb's control of the
8988 inferior itself like stepping control. It also contains session state like
8989 the user's currently selected frame. */
b89667eb 8990
16c381f0 8991struct infcall_control_state
b89667eb 8992{
16c381f0
JK
8993 struct thread_control_state thread_control;
8994 struct inferior_control_state inferior_control;
d82142e2
JK
8995
8996 /* Other fields: */
8997 enum stop_stack_kind stop_stack_dummy;
8998 int stopped_by_random_signal;
7a292a7a 8999
b89667eb 9000 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 9001 struct frame_id selected_frame_id;
7a292a7a
SS
9002};
9003
c906108c 9004/* Save all of the information associated with the inferior<==>gdb
b89667eb 9005 connection. */
c906108c 9006
16c381f0
JK
9007struct infcall_control_state *
9008save_infcall_control_state (void)
c906108c 9009{
8d749320
SM
9010 struct infcall_control_state *inf_status =
9011 XNEW (struct infcall_control_state);
4e1c45ea 9012 struct thread_info *tp = inferior_thread ();
d6b48e9c 9013 struct inferior *inf = current_inferior ();
7a292a7a 9014
16c381f0
JK
9015 inf_status->thread_control = tp->control;
9016 inf_status->inferior_control = inf->control;
d82142e2 9017
8358c15c 9018 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9019 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9020
16c381f0
JK
9021 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9022 chain. If caller's caller is walking the chain, they'll be happier if we
9023 hand them back the original chain when restore_infcall_control_state is
9024 called. */
9025 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9026
9027 /* Other fields: */
9028 inf_status->stop_stack_dummy = stop_stack_dummy;
9029 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9030
206415a3 9031 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9032
7a292a7a 9033 return inf_status;
c906108c
SS
9034}
9035
c906108c 9036static int
96baa820 9037restore_selected_frame (void *args)
c906108c 9038{
488f131b 9039 struct frame_id *fid = (struct frame_id *) args;
c906108c 9040 struct frame_info *frame;
c906108c 9041
101dcfbe 9042 frame = frame_find_by_id (*fid);
c906108c 9043
aa0cd9c1
AC
9044 /* If inf_status->selected_frame_id is NULL, there was no previously
9045 selected frame. */
101dcfbe 9046 if (frame == NULL)
c906108c 9047 {
8a3fe4f8 9048 warning (_("Unable to restore previously selected frame."));
c906108c
SS
9049 return 0;
9050 }
9051
0f7d239c 9052 select_frame (frame);
c906108c
SS
9053
9054 return (1);
9055}
9056
b89667eb
DE
9057/* Restore inferior session state to INF_STATUS. */
9058
c906108c 9059void
16c381f0 9060restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9061{
4e1c45ea 9062 struct thread_info *tp = inferior_thread ();
d6b48e9c 9063 struct inferior *inf = current_inferior ();
4e1c45ea 9064
8358c15c
JK
9065 if (tp->control.step_resume_breakpoint)
9066 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9067
5b79abe7
TT
9068 if (tp->control.exception_resume_breakpoint)
9069 tp->control.exception_resume_breakpoint->disposition
9070 = disp_del_at_next_stop;
9071
d82142e2 9072 /* Handle the bpstat_copy of the chain. */
16c381f0 9073 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9074
16c381f0
JK
9075 tp->control = inf_status->thread_control;
9076 inf->control = inf_status->inferior_control;
d82142e2
JK
9077
9078 /* Other fields: */
9079 stop_stack_dummy = inf_status->stop_stack_dummy;
9080 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9081
b89667eb 9082 if (target_has_stack)
c906108c 9083 {
c906108c 9084 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
9085 walking the stack might encounter a garbage pointer and
9086 error() trying to dereference it. */
488f131b
JB
9087 if (catch_errors
9088 (restore_selected_frame, &inf_status->selected_frame_id,
9089 "Unable to restore previously selected frame:\n",
9090 RETURN_MASK_ERROR) == 0)
c906108c
SS
9091 /* Error in restoring the selected frame. Select the innermost
9092 frame. */
0f7d239c 9093 select_frame (get_current_frame ());
c906108c 9094 }
c906108c 9095
72cec141 9096 xfree (inf_status);
7a292a7a 9097}
c906108c 9098
74b7792f 9099static void
16c381f0 9100do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9101{
9a3c8263 9102 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9103}
9104
9105struct cleanup *
16c381f0
JK
9106make_cleanup_restore_infcall_control_state
9107 (struct infcall_control_state *inf_status)
74b7792f 9108{
16c381f0 9109 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9110}
9111
c906108c 9112void
16c381f0 9113discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9114{
8358c15c
JK
9115 if (inf_status->thread_control.step_resume_breakpoint)
9116 inf_status->thread_control.step_resume_breakpoint->disposition
9117 = disp_del_at_next_stop;
9118
5b79abe7
TT
9119 if (inf_status->thread_control.exception_resume_breakpoint)
9120 inf_status->thread_control.exception_resume_breakpoint->disposition
9121 = disp_del_at_next_stop;
9122
1777feb0 9123 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9124 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9125
72cec141 9126 xfree (inf_status);
7a292a7a 9127}
b89667eb 9128\f
ca6724c1
KB
9129/* restore_inferior_ptid() will be used by the cleanup machinery
9130 to restore the inferior_ptid value saved in a call to
9131 save_inferior_ptid(). */
ce696e05
KB
9132
9133static void
9134restore_inferior_ptid (void *arg)
9135{
9a3c8263 9136 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
abbb1732 9137
ce696e05
KB
9138 inferior_ptid = *saved_ptid_ptr;
9139 xfree (arg);
9140}
9141
9142/* Save the value of inferior_ptid so that it may be restored by a
9143 later call to do_cleanups(). Returns the struct cleanup pointer
9144 needed for later doing the cleanup. */
9145
9146struct cleanup *
9147save_inferior_ptid (void)
9148{
8d749320 9149 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 9150
ce696e05
KB
9151 *saved_ptid_ptr = inferior_ptid;
9152 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9153}
0c557179 9154
7f89fd65 9155/* See infrun.h. */
0c557179
SDJ
9156
9157void
9158clear_exit_convenience_vars (void)
9159{
9160 clear_internalvar (lookup_internalvar ("_exitsignal"));
9161 clear_internalvar (lookup_internalvar ("_exitcode"));
9162}
c5aa993b 9163\f
488f131b 9164
b2175913
MS
9165/* User interface for reverse debugging:
9166 Set exec-direction / show exec-direction commands
9167 (returns error unless target implements to_set_exec_direction method). */
9168
170742de 9169enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9170static const char exec_forward[] = "forward";
9171static const char exec_reverse[] = "reverse";
9172static const char *exec_direction = exec_forward;
40478521 9173static const char *const exec_direction_names[] = {
b2175913
MS
9174 exec_forward,
9175 exec_reverse,
9176 NULL
9177};
9178
9179static void
9180set_exec_direction_func (char *args, int from_tty,
9181 struct cmd_list_element *cmd)
9182{
9183 if (target_can_execute_reverse)
9184 {
9185 if (!strcmp (exec_direction, exec_forward))
9186 execution_direction = EXEC_FORWARD;
9187 else if (!strcmp (exec_direction, exec_reverse))
9188 execution_direction = EXEC_REVERSE;
9189 }
8bbed405
MS
9190 else
9191 {
9192 exec_direction = exec_forward;
9193 error (_("Target does not support this operation."));
9194 }
b2175913
MS
9195}
9196
9197static void
9198show_exec_direction_func (struct ui_file *out, int from_tty,
9199 struct cmd_list_element *cmd, const char *value)
9200{
9201 switch (execution_direction) {
9202 case EXEC_FORWARD:
9203 fprintf_filtered (out, _("Forward.\n"));
9204 break;
9205 case EXEC_REVERSE:
9206 fprintf_filtered (out, _("Reverse.\n"));
9207 break;
b2175913 9208 default:
d8b34453
PA
9209 internal_error (__FILE__, __LINE__,
9210 _("bogus execution_direction value: %d"),
9211 (int) execution_direction);
b2175913
MS
9212 }
9213}
9214
d4db2f36
PA
9215static void
9216show_schedule_multiple (struct ui_file *file, int from_tty,
9217 struct cmd_list_element *c, const char *value)
9218{
3e43a32a
MS
9219 fprintf_filtered (file, _("Resuming the execution of threads "
9220 "of all processes is %s.\n"), value);
d4db2f36 9221}
ad52ddc6 9222
22d2b532
SDJ
9223/* Implementation of `siginfo' variable. */
9224
9225static const struct internalvar_funcs siginfo_funcs =
9226{
9227 siginfo_make_value,
9228 NULL,
9229 NULL
9230};
9231
372316f1
PA
9232/* Callback for infrun's target events source. This is marked when a
9233 thread has a pending status to process. */
9234
9235static void
9236infrun_async_inferior_event_handler (gdb_client_data data)
9237{
372316f1
PA
9238 inferior_event_handler (INF_REG_EVENT, NULL);
9239}
9240
c906108c 9241void
96baa820 9242_initialize_infrun (void)
c906108c 9243{
52f0bd74
AC
9244 int i;
9245 int numsigs;
de0bea00 9246 struct cmd_list_element *c;
c906108c 9247
372316f1
PA
9248 /* Register extra event sources in the event loop. */
9249 infrun_async_inferior_event_token
9250 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9251
1bedd215
AC
9252 add_info ("signals", signals_info, _("\
9253What debugger does when program gets various signals.\n\
9254Specify a signal as argument to print info on that signal only."));
c906108c
SS
9255 add_info_alias ("handle", "signals", 0);
9256
de0bea00 9257 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9258Specify how to handle signals.\n\
486c7739 9259Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9260Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9261If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9262will be displayed instead.\n\
9263\n\
c906108c
SS
9264Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9265from 1-15 are allowed for compatibility with old versions of GDB.\n\
9266Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9267The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9268used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9269\n\
1bedd215 9270Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9271\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9272Stop means reenter debugger if this signal happens (implies print).\n\
9273Print means print a message if this signal happens.\n\
9274Pass means let program see this signal; otherwise program doesn't know.\n\
9275Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9276Pass and Stop may be combined.\n\
9277\n\
9278Multiple signals may be specified. Signal numbers and signal names\n\
9279may be interspersed with actions, with the actions being performed for\n\
9280all signals cumulatively specified."));
de0bea00 9281 set_cmd_completer (c, handle_completer);
486c7739 9282
c906108c 9283 if (!dbx_commands)
1a966eab
AC
9284 stop_command = add_cmd ("stop", class_obscure,
9285 not_just_help_class_command, _("\
9286There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9287This allows you to set a list of commands to be run each time execution\n\
1a966eab 9288of the program stops."), &cmdlist);
c906108c 9289
ccce17b0 9290 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9291Set inferior debugging."), _("\
9292Show inferior debugging."), _("\
9293When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9294 NULL,
9295 show_debug_infrun,
9296 &setdebuglist, &showdebuglist);
527159b7 9297
3e43a32a
MS
9298 add_setshow_boolean_cmd ("displaced", class_maintenance,
9299 &debug_displaced, _("\
237fc4c9
PA
9300Set displaced stepping debugging."), _("\
9301Show displaced stepping debugging."), _("\
9302When non-zero, displaced stepping specific debugging is enabled."),
9303 NULL,
9304 show_debug_displaced,
9305 &setdebuglist, &showdebuglist);
9306
ad52ddc6
PA
9307 add_setshow_boolean_cmd ("non-stop", no_class,
9308 &non_stop_1, _("\
9309Set whether gdb controls the inferior in non-stop mode."), _("\
9310Show whether gdb controls the inferior in non-stop mode."), _("\
9311When debugging a multi-threaded program and this setting is\n\
9312off (the default, also called all-stop mode), when one thread stops\n\
9313(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9314all other threads in the program while you interact with the thread of\n\
9315interest. When you continue or step a thread, you can allow the other\n\
9316threads to run, or have them remain stopped, but while you inspect any\n\
9317thread's state, all threads stop.\n\
9318\n\
9319In non-stop mode, when one thread stops, other threads can continue\n\
9320to run freely. You'll be able to step each thread independently,\n\
9321leave it stopped or free to run as needed."),
9322 set_non_stop,
9323 show_non_stop,
9324 &setlist,
9325 &showlist);
9326
a493e3e2 9327 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9328 signal_stop = XNEWVEC (unsigned char, numsigs);
9329 signal_print = XNEWVEC (unsigned char, numsigs);
9330 signal_program = XNEWVEC (unsigned char, numsigs);
9331 signal_catch = XNEWVEC (unsigned char, numsigs);
9332 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9333 for (i = 0; i < numsigs; i++)
9334 {
9335 signal_stop[i] = 1;
9336 signal_print[i] = 1;
9337 signal_program[i] = 1;
ab04a2af 9338 signal_catch[i] = 0;
c906108c
SS
9339 }
9340
4d9d9d04
PA
9341 /* Signals caused by debugger's own actions should not be given to
9342 the program afterwards.
9343
9344 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9345 explicitly specifies that it should be delivered to the target
9346 program. Typically, that would occur when a user is debugging a
9347 target monitor on a simulator: the target monitor sets a
9348 breakpoint; the simulator encounters this breakpoint and halts
9349 the simulation handing control to GDB; GDB, noting that the stop
9350 address doesn't map to any known breakpoint, returns control back
9351 to the simulator; the simulator then delivers the hardware
9352 equivalent of a GDB_SIGNAL_TRAP to the program being
9353 debugged. */
a493e3e2
PA
9354 signal_program[GDB_SIGNAL_TRAP] = 0;
9355 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9356
9357 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9358 signal_stop[GDB_SIGNAL_ALRM] = 0;
9359 signal_print[GDB_SIGNAL_ALRM] = 0;
9360 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9361 signal_print[GDB_SIGNAL_VTALRM] = 0;
9362 signal_stop[GDB_SIGNAL_PROF] = 0;
9363 signal_print[GDB_SIGNAL_PROF] = 0;
9364 signal_stop[GDB_SIGNAL_CHLD] = 0;
9365 signal_print[GDB_SIGNAL_CHLD] = 0;
9366 signal_stop[GDB_SIGNAL_IO] = 0;
9367 signal_print[GDB_SIGNAL_IO] = 0;
9368 signal_stop[GDB_SIGNAL_POLL] = 0;
9369 signal_print[GDB_SIGNAL_POLL] = 0;
9370 signal_stop[GDB_SIGNAL_URG] = 0;
9371 signal_print[GDB_SIGNAL_URG] = 0;
9372 signal_stop[GDB_SIGNAL_WINCH] = 0;
9373 signal_print[GDB_SIGNAL_WINCH] = 0;
9374 signal_stop[GDB_SIGNAL_PRIO] = 0;
9375 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9376
cd0fc7c3
SS
9377 /* These signals are used internally by user-level thread
9378 implementations. (See signal(5) on Solaris.) Like the above
9379 signals, a healthy program receives and handles them as part of
9380 its normal operation. */
a493e3e2
PA
9381 signal_stop[GDB_SIGNAL_LWP] = 0;
9382 signal_print[GDB_SIGNAL_LWP] = 0;
9383 signal_stop[GDB_SIGNAL_WAITING] = 0;
9384 signal_print[GDB_SIGNAL_WAITING] = 0;
9385 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9386 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9387 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9388 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9389
2455069d
UW
9390 /* Update cached state. */
9391 signal_cache_update (-1);
9392
85c07804
AC
9393 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9394 &stop_on_solib_events, _("\
9395Set stopping for shared library events."), _("\
9396Show stopping for shared library events."), _("\
c906108c
SS
9397If nonzero, gdb will give control to the user when the dynamic linker\n\
9398notifies gdb of shared library events. The most common event of interest\n\
85c07804 9399to the user would be loading/unloading of a new library."),
f9e14852 9400 set_stop_on_solib_events,
920d2a44 9401 show_stop_on_solib_events,
85c07804 9402 &setlist, &showlist);
c906108c 9403
7ab04401
AC
9404 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9405 follow_fork_mode_kind_names,
9406 &follow_fork_mode_string, _("\
9407Set debugger response to a program call of fork or vfork."), _("\
9408Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9409A fork or vfork creates a new process. follow-fork-mode can be:\n\
9410 parent - the original process is debugged after a fork\n\
9411 child - the new process is debugged after a fork\n\
ea1dd7bc 9412The unfollowed process will continue to run.\n\
7ab04401
AC
9413By default, the debugger will follow the parent process."),
9414 NULL,
920d2a44 9415 show_follow_fork_mode_string,
7ab04401
AC
9416 &setlist, &showlist);
9417
6c95b8df
PA
9418 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9419 follow_exec_mode_names,
9420 &follow_exec_mode_string, _("\
9421Set debugger response to a program call of exec."), _("\
9422Show debugger response to a program call of exec."), _("\
9423An exec call replaces the program image of a process.\n\
9424\n\
9425follow-exec-mode can be:\n\
9426\n\
cce7e648 9427 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9428to this new inferior. The program the process was running before\n\
9429the exec call can be restarted afterwards by restarting the original\n\
9430inferior.\n\
9431\n\
9432 same - the debugger keeps the process bound to the same inferior.\n\
9433The new executable image replaces the previous executable loaded in\n\
9434the inferior. Restarting the inferior after the exec call restarts\n\
9435the executable the process was running after the exec call.\n\
9436\n\
9437By default, the debugger will use the same inferior."),
9438 NULL,
9439 show_follow_exec_mode_string,
9440 &setlist, &showlist);
9441
7ab04401
AC
9442 add_setshow_enum_cmd ("scheduler-locking", class_run,
9443 scheduler_enums, &scheduler_mode, _("\
9444Set mode for locking scheduler during execution."), _("\
9445Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9446off == no locking (threads may preempt at any time)\n\
9447on == full locking (no thread except the current thread may run)\n\
9448 This applies to both normal execution and replay mode.\n\
9449step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9450 In this mode, other threads may run during other commands.\n\
9451 This applies to both normal execution and replay mode.\n\
9452replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9453 set_schedlock_func, /* traps on target vector */
920d2a44 9454 show_scheduler_mode,
7ab04401 9455 &setlist, &showlist);
5fbbeb29 9456
d4db2f36
PA
9457 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9458Set mode for resuming threads of all processes."), _("\
9459Show mode for resuming threads of all processes."), _("\
9460When on, execution commands (such as 'continue' or 'next') resume all\n\
9461threads of all processes. When off (which is the default), execution\n\
9462commands only resume the threads of the current process. The set of\n\
9463threads that are resumed is further refined by the scheduler-locking\n\
9464mode (see help set scheduler-locking)."),
9465 NULL,
9466 show_schedule_multiple,
9467 &setlist, &showlist);
9468
5bf193a2
AC
9469 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9470Set mode of the step operation."), _("\
9471Show mode of the step operation."), _("\
9472When set, doing a step over a function without debug line information\n\
9473will stop at the first instruction of that function. Otherwise, the\n\
9474function is skipped and the step command stops at a different source line."),
9475 NULL,
920d2a44 9476 show_step_stop_if_no_debug,
5bf193a2 9477 &setlist, &showlist);
ca6724c1 9478
72d0e2c5
YQ
9479 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9480 &can_use_displaced_stepping, _("\
237fc4c9
PA
9481Set debugger's willingness to use displaced stepping."), _("\
9482Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9483If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9484supported by the target architecture. If off, gdb will not use displaced\n\
9485stepping to step over breakpoints, even if such is supported by the target\n\
9486architecture. If auto (which is the default), gdb will use displaced stepping\n\
9487if the target architecture supports it and non-stop mode is active, but will not\n\
9488use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9489 NULL,
9490 show_can_use_displaced_stepping,
9491 &setlist, &showlist);
237fc4c9 9492
b2175913
MS
9493 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9494 &exec_direction, _("Set direction of execution.\n\
9495Options are 'forward' or 'reverse'."),
9496 _("Show direction of execution (forward/reverse)."),
9497 _("Tells gdb whether to execute forward or backward."),
9498 set_exec_direction_func, show_exec_direction_func,
9499 &setlist, &showlist);
9500
6c95b8df
PA
9501 /* Set/show detach-on-fork: user-settable mode. */
9502
9503 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9504Set whether gdb will detach the child of a fork."), _("\
9505Show whether gdb will detach the child of a fork."), _("\
9506Tells gdb whether to detach the child of a fork."),
9507 NULL, NULL, &setlist, &showlist);
9508
03583c20
UW
9509 /* Set/show disable address space randomization mode. */
9510
9511 add_setshow_boolean_cmd ("disable-randomization", class_support,
9512 &disable_randomization, _("\
9513Set disabling of debuggee's virtual address space randomization."), _("\
9514Show disabling of debuggee's virtual address space randomization."), _("\
9515When this mode is on (which is the default), randomization of the virtual\n\
9516address space is disabled. Standalone programs run with the randomization\n\
9517enabled by default on some platforms."),
9518 &set_disable_randomization,
9519 &show_disable_randomization,
9520 &setlist, &showlist);
9521
ca6724c1 9522 /* ptid initializations */
ca6724c1
KB
9523 inferior_ptid = null_ptid;
9524 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9525
9526 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9527 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9528 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9529 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9530
9531 /* Explicitly create without lookup, since that tries to create a
9532 value with a void typed value, and when we get here, gdbarch
9533 isn't initialized yet. At this point, we're quite sure there
9534 isn't another convenience variable of the same name. */
22d2b532 9535 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9536
9537 add_setshow_boolean_cmd ("observer", no_class,
9538 &observer_mode_1, _("\
9539Set whether gdb controls the inferior in observer mode."), _("\
9540Show whether gdb controls the inferior in observer mode."), _("\
9541In observer mode, GDB can get data from the inferior, but not\n\
9542affect its execution. Registers and memory may not be changed,\n\
9543breakpoints may not be set, and the program cannot be interrupted\n\
9544or signalled."),
9545 set_observer_mode,
9546 show_observer_mode,
9547 &setlist,
9548 &showlist);
c906108c 9549}
This page took 2.200757 seconds and 4 git commands to generate.