merge from gcc
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c
AC
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
c6f0559b
AC
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
31#include "breakpoint.h"
03f2053f 32#include "gdb_wait.h"
c906108c
SS
33#include "gdbcore.h"
34#include "gdbcmd.h"
210661e7 35#include "cli/cli-script.h"
c906108c
SS
36#include "target.h"
37#include "gdbthread.h"
38#include "annotate.h"
1adeb98a 39#include "symfile.h"
7a292a7a 40#include "top.h"
c906108c 41#include <signal.h>
2acceee2 42#include "inf-loop.h"
4e052eda 43#include "regcache.h"
fd0407d6 44#include "value.h"
06600e06 45#include "observer.h"
f636b87d 46#include "language.h"
9f976b41 47#include "gdb_assert.h"
c906108c
SS
48
49/* Prototypes for local functions */
50
96baa820 51static void signals_info (char *, int);
c906108c 52
96baa820 53static void handle_command (char *, int);
c906108c 54
96baa820 55static void sig_print_info (enum target_signal);
c906108c 56
96baa820 57static void sig_print_header (void);
c906108c 58
74b7792f 59static void resume_cleanups (void *);
c906108c 60
96baa820 61static int hook_stop_stub (void *);
c906108c 62
96baa820
JM
63static int restore_selected_frame (void *);
64
65static void build_infrun (void);
66
4ef3f3be 67static int follow_fork (void);
96baa820
JM
68
69static void set_schedlock_func (char *args, int from_tty,
488f131b 70 struct cmd_list_element *c);
96baa820 71
96baa820
JM
72struct execution_control_state;
73
74static int currently_stepping (struct execution_control_state *ecs);
75
76static void xdb_handle_command (char *args, int from_tty);
77
ea67f13b
DJ
78static int prepare_to_proceed (void);
79
96baa820 80void _initialize_infrun (void);
43ff13b4 81
c906108c
SS
82int inferior_ignoring_startup_exec_events = 0;
83int inferior_ignoring_leading_exec_events = 0;
84
5fbbeb29
CF
85/* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88int step_stop_if_no_debug = 0;
89
43ff13b4 90/* In asynchronous mode, but simulating synchronous execution. */
96baa820 91
43ff13b4
JM
92int sync_execution = 0;
93
c906108c
SS
94/* wait_for_inferior and normal_stop use this to notify the user
95 when the inferior stopped in a different thread than it had been
96baa820
JM
96 running in. */
97
39f77062 98static ptid_t previous_inferior_ptid;
7a292a7a
SS
99
100/* This is true for configurations that may follow through execl() and
101 similar functions. At present this is only true for HP-UX native. */
102
103#ifndef MAY_FOLLOW_EXEC
104#define MAY_FOLLOW_EXEC (0)
c906108c
SS
105#endif
106
7a292a7a
SS
107static int may_follow_exec = MAY_FOLLOW_EXEC;
108
d4f3574e
SS
109/* If the program uses ELF-style shared libraries, then calls to
110 functions in shared libraries go through stubs, which live in a
111 table called the PLT (Procedure Linkage Table). The first time the
112 function is called, the stub sends control to the dynamic linker,
113 which looks up the function's real address, patches the stub so
114 that future calls will go directly to the function, and then passes
115 control to the function.
116
117 If we are stepping at the source level, we don't want to see any of
118 this --- we just want to skip over the stub and the dynamic linker.
119 The simple approach is to single-step until control leaves the
120 dynamic linker.
121
ca557f44
AC
122 However, on some systems (e.g., Red Hat's 5.2 distribution) the
123 dynamic linker calls functions in the shared C library, so you
124 can't tell from the PC alone whether the dynamic linker is still
125 running. In this case, we use a step-resume breakpoint to get us
126 past the dynamic linker, as if we were using "next" to step over a
127 function call.
d4f3574e
SS
128
129 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
130 linker code or not. Normally, this means we single-step. However,
131 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
132 address where we can place a step-resume breakpoint to get past the
133 linker's symbol resolution function.
134
135 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
136 pretty portable way, by comparing the PC against the address ranges
137 of the dynamic linker's sections.
138
139 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
140 it depends on internal details of the dynamic linker. It's usually
141 not too hard to figure out where to put a breakpoint, but it
142 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
143 sanity checking. If it can't figure things out, returning zero and
144 getting the (possibly confusing) stepping behavior is better than
145 signalling an error, which will obscure the change in the
146 inferior's state. */
c906108c
SS
147
148#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
149#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
150#endif
151
c906108c
SS
152/* This function returns TRUE if pc is the address of an instruction
153 that lies within the dynamic linker (such as the event hook, or the
154 dld itself).
155
156 This function must be used only when a dynamic linker event has
157 been caught, and the inferior is being stepped out of the hook, or
158 undefined results are guaranteed. */
159
160#ifndef SOLIB_IN_DYNAMIC_LINKER
161#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
162#endif
163
164/* On MIPS16, a function that returns a floating point value may call
165 a library helper function to copy the return value to a floating point
166 register. The IGNORE_HELPER_CALL macro returns non-zero if we
167 should ignore (i.e. step over) this function call. */
168#ifndef IGNORE_HELPER_CALL
169#define IGNORE_HELPER_CALL(pc) 0
170#endif
171
172/* On some systems, the PC may be left pointing at an instruction that won't
173 actually be executed. This is usually indicated by a bit in the PSW. If
174 we find ourselves in such a state, then we step the target beyond the
175 nullified instruction before returning control to the user so as to avoid
176 confusion. */
177
178#ifndef INSTRUCTION_NULLIFIED
179#define INSTRUCTION_NULLIFIED 0
180#endif
181
c2c6d25f
JM
182/* We can't step off a permanent breakpoint in the ordinary way, because we
183 can't remove it. Instead, we have to advance the PC to the next
184 instruction. This macro should expand to a pointer to a function that
185 does that, or zero if we have no such function. If we don't have a
186 definition for it, we have to report an error. */
488f131b 187#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
188#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
189static void
c2d11a7d 190default_skip_permanent_breakpoint (void)
c2c6d25f 191{
255e7dbf 192 error ("\
c2c6d25f
JM
193The program is stopped at a permanent breakpoint, but GDB does not know\n\
194how to step past a permanent breakpoint on this architecture. Try using\n\
255e7dbf 195a command like `return' or `jump' to continue execution.");
c2c6d25f
JM
196}
197#endif
488f131b 198
c2c6d25f 199
7a292a7a
SS
200/* Convert the #defines into values. This is temporary until wfi control
201 flow is completely sorted out. */
202
203#ifndef HAVE_STEPPABLE_WATCHPOINT
204#define HAVE_STEPPABLE_WATCHPOINT 0
205#else
206#undef HAVE_STEPPABLE_WATCHPOINT
207#define HAVE_STEPPABLE_WATCHPOINT 1
208#endif
209
692590c1
MS
210#ifndef CANNOT_STEP_HW_WATCHPOINTS
211#define CANNOT_STEP_HW_WATCHPOINTS 0
212#else
213#undef CANNOT_STEP_HW_WATCHPOINTS
214#define CANNOT_STEP_HW_WATCHPOINTS 1
215#endif
216
c906108c
SS
217/* Tables of how to react to signals; the user sets them. */
218
219static unsigned char *signal_stop;
220static unsigned char *signal_print;
221static unsigned char *signal_program;
222
223#define SET_SIGS(nsigs,sigs,flags) \
224 do { \
225 int signum = (nsigs); \
226 while (signum-- > 0) \
227 if ((sigs)[signum]) \
228 (flags)[signum] = 1; \
229 } while (0)
230
231#define UNSET_SIGS(nsigs,sigs,flags) \
232 do { \
233 int signum = (nsigs); \
234 while (signum-- > 0) \
235 if ((sigs)[signum]) \
236 (flags)[signum] = 0; \
237 } while (0)
238
39f77062
KB
239/* Value to pass to target_resume() to cause all threads to resume */
240
241#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
242
243/* Command list pointer for the "stop" placeholder. */
244
245static struct cmd_list_element *stop_command;
246
247/* Nonzero if breakpoints are now inserted in the inferior. */
248
249static int breakpoints_inserted;
250
251/* Function inferior was in as of last step command. */
252
253static struct symbol *step_start_function;
254
255/* Nonzero if we are expecting a trace trap and should proceed from it. */
256
257static int trap_expected;
258
259#ifdef SOLIB_ADD
260/* Nonzero if we want to give control to the user when we're notified
261 of shared library events by the dynamic linker. */
262static int stop_on_solib_events;
263#endif
264
265#ifdef HP_OS_BUG
266/* Nonzero if the next time we try to continue the inferior, it will
267 step one instruction and generate a spurious trace trap.
268 This is used to compensate for a bug in HP-UX. */
269
270static int trap_expected_after_continue;
271#endif
272
273/* Nonzero means expecting a trace trap
274 and should stop the inferior and return silently when it happens. */
275
276int stop_after_trap;
277
278/* Nonzero means expecting a trap and caller will handle it themselves.
279 It is used after attach, due to attaching to a process;
280 when running in the shell before the child program has been exec'd;
281 and when running some kinds of remote stuff (FIXME?). */
282
c0236d92 283enum stop_kind stop_soon;
c906108c
SS
284
285/* Nonzero if proceed is being used for a "finish" command or a similar
286 situation when stop_registers should be saved. */
287
288int proceed_to_finish;
289
290/* Save register contents here when about to pop a stack dummy frame,
291 if-and-only-if proceed_to_finish is set.
292 Thus this contains the return value from the called function (assuming
293 values are returned in a register). */
294
72cec141 295struct regcache *stop_registers;
c906108c
SS
296
297/* Nonzero if program stopped due to error trying to insert breakpoints. */
298
299static int breakpoints_failed;
300
301/* Nonzero after stop if current stack frame should be printed. */
302
303static int stop_print_frame;
304
305static struct breakpoint *step_resume_breakpoint = NULL;
c906108c
SS
306
307/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
308 interactions with an inferior that is running a kernel function
309 (aka, a system call or "syscall"). wait_for_inferior therefore
310 may have a need to know when the inferior is in a syscall. This
311 is a count of the number of inferior threads which are known to
312 currently be running in a syscall. */
313static int number_of_threads_in_syscalls;
314
e02bc4cc 315/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
316 returned by target_wait()/deprecated_target_wait_hook(). This
317 information is returned by get_last_target_status(). */
39f77062 318static ptid_t target_last_wait_ptid;
e02bc4cc
DS
319static struct target_waitstatus target_last_waitstatus;
320
c906108c
SS
321/* This is used to remember when a fork, vfork or exec event
322 was caught by a catchpoint, and thus the event is to be
323 followed at the next resume of the inferior, and not
324 immediately. */
325static struct
488f131b
JB
326{
327 enum target_waitkind kind;
328 struct
c906108c 329 {
488f131b 330 int parent_pid;
488f131b 331 int child_pid;
c906108c 332 }
488f131b
JB
333 fork_event;
334 char *execd_pathname;
335}
c906108c
SS
336pending_follow;
337
53904c9e
AC
338static const char follow_fork_mode_child[] = "child";
339static const char follow_fork_mode_parent[] = "parent";
340
488f131b 341static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
342 follow_fork_mode_child,
343 follow_fork_mode_parent,
344 NULL
ef346e04 345};
c906108c 346
53904c9e 347static const char *follow_fork_mode_string = follow_fork_mode_parent;
c906108c
SS
348\f
349
6604731b 350static int
4ef3f3be 351follow_fork (void)
c906108c 352{
ea1dd7bc 353 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 354
6604731b 355 return target_follow_fork (follow_child);
c906108c
SS
356}
357
6604731b
DJ
358void
359follow_inferior_reset_breakpoints (void)
c906108c 360{
6604731b
DJ
361 /* Was there a step_resume breakpoint? (There was if the user
362 did a "next" at the fork() call.) If so, explicitly reset its
363 thread number.
364
365 step_resumes are a form of bp that are made to be per-thread.
366 Since we created the step_resume bp when the parent process
367 was being debugged, and now are switching to the child process,
368 from the breakpoint package's viewpoint, that's a switch of
369 "threads". We must update the bp's notion of which thread
370 it is for, or it'll be ignored when it triggers. */
371
372 if (step_resume_breakpoint)
373 breakpoint_re_set_thread (step_resume_breakpoint);
374
375 /* Reinsert all breakpoints in the child. The user may have set
376 breakpoints after catching the fork, in which case those
377 were never set in the child, but only in the parent. This makes
378 sure the inserted breakpoints match the breakpoint list. */
379
380 breakpoint_re_set ();
381 insert_breakpoints ();
c906108c 382}
c906108c 383
1adeb98a
FN
384/* EXECD_PATHNAME is assumed to be non-NULL. */
385
c906108c 386static void
96baa820 387follow_exec (int pid, char *execd_pathname)
c906108c 388{
c906108c 389 int saved_pid = pid;
7a292a7a
SS
390 struct target_ops *tgt;
391
392 if (!may_follow_exec)
393 return;
c906108c 394
c906108c
SS
395 /* This is an exec event that we actually wish to pay attention to.
396 Refresh our symbol table to the newly exec'd program, remove any
397 momentary bp's, etc.
398
399 If there are breakpoints, they aren't really inserted now,
400 since the exec() transformed our inferior into a fresh set
401 of instructions.
402
403 We want to preserve symbolic breakpoints on the list, since
404 we have hopes that they can be reset after the new a.out's
405 symbol table is read.
406
407 However, any "raw" breakpoints must be removed from the list
408 (e.g., the solib bp's), since their address is probably invalid
409 now.
410
411 And, we DON'T want to call delete_breakpoints() here, since
412 that may write the bp's "shadow contents" (the instruction
413 value that was overwritten witha TRAP instruction). Since
414 we now have a new a.out, those shadow contents aren't valid. */
415 update_breakpoints_after_exec ();
416
417 /* If there was one, it's gone now. We cannot truly step-to-next
418 statement through an exec(). */
419 step_resume_breakpoint = NULL;
420 step_range_start = 0;
421 step_range_end = 0;
422
c906108c
SS
423 /* What is this a.out's name? */
424 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
425
426 /* We've followed the inferior through an exec. Therefore, the
427 inferior has essentially been killed & reborn. */
7a292a7a
SS
428
429 /* First collect the run target in effect. */
430 tgt = find_run_target ();
431 /* If we can't find one, things are in a very strange state... */
432 if (tgt == NULL)
433 error ("Could find run target to save before following exec");
434
c906108c
SS
435 gdb_flush (gdb_stdout);
436 target_mourn_inferior ();
39f77062 437 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 438 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 439 push_target (tgt);
c906108c
SS
440
441 /* That a.out is now the one to use. */
442 exec_file_attach (execd_pathname, 0);
443
444 /* And also is where symbols can be found. */
1adeb98a 445 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
446
447 /* Reset the shared library package. This ensures that we get
448 a shlib event when the child reaches "_start", at which point
449 the dld will have had a chance to initialize the child. */
7a292a7a 450#if defined(SOLIB_RESTART)
c906108c 451 SOLIB_RESTART ();
7a292a7a
SS
452#endif
453#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 454 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 455#endif
c906108c
SS
456
457 /* Reinsert all breakpoints. (Those which were symbolic have
458 been reset to the proper address in the new a.out, thanks
459 to symbol_file_command...) */
460 insert_breakpoints ();
461
462 /* The next resume of this inferior should bring it to the shlib
463 startup breakpoints. (If the user had also set bp's on
464 "main" from the old (parent) process, then they'll auto-
465 matically get reset there in the new process.) */
c906108c
SS
466}
467
468/* Non-zero if we just simulating a single-step. This is needed
469 because we cannot remove the breakpoints in the inferior process
470 until after the `wait' in `wait_for_inferior'. */
471static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
472
473/* The thread we inserted single-step breakpoints for. */
474static ptid_t singlestep_ptid;
475
476/* If another thread hit the singlestep breakpoint, we save the original
477 thread here so that we can resume single-stepping it later. */
478static ptid_t saved_singlestep_ptid;
479static int stepping_past_singlestep_breakpoint;
c906108c
SS
480\f
481
482/* Things to clean up if we QUIT out of resume (). */
c906108c 483static void
74b7792f 484resume_cleanups (void *ignore)
c906108c
SS
485{
486 normal_stop ();
487}
488
53904c9e
AC
489static const char schedlock_off[] = "off";
490static const char schedlock_on[] = "on";
491static const char schedlock_step[] = "step";
492static const char *scheduler_mode = schedlock_off;
488f131b 493static const char *scheduler_enums[] = {
ef346e04
AC
494 schedlock_off,
495 schedlock_on,
496 schedlock_step,
497 NULL
498};
c906108c
SS
499
500static void
96baa820 501set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 502{
1868c04e
AC
503 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
504 the set command passed as a parameter. The clone operation will
505 include (BUG?) any ``set'' command callback, if present.
506 Commands like ``info set'' call all the ``show'' command
ce2826aa 507 callbacks. Unfortunately, for ``show'' commands cloned from
1868c04e
AC
508 ``set'', this includes callbacks belonging to ``set'' commands.
509 Making this worse, this only occures if add_show_from_set() is
510 called after add_cmd_sfunc() (BUG?). */
511 if (cmd_type (c) == set_cmd)
c906108c
SS
512 if (!target_can_lock_scheduler)
513 {
514 scheduler_mode = schedlock_off;
488f131b 515 error ("Target '%s' cannot support this command.", target_shortname);
c906108c
SS
516 }
517}
518
519
520/* Resume the inferior, but allow a QUIT. This is useful if the user
521 wants to interrupt some lengthy single-stepping operation
522 (for child processes, the SIGINT goes to the inferior, and so
523 we get a SIGINT random_signal, but for remote debugging and perhaps
524 other targets, that's not true).
525
526 STEP nonzero if we should step (zero to continue instead).
527 SIG is the signal to give the inferior (zero for none). */
528void
96baa820 529resume (int step, enum target_signal sig)
c906108c
SS
530{
531 int should_resume = 1;
74b7792f 532 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
533 QUIT;
534
ef5cf84e
MS
535 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
536
c906108c 537
692590c1
MS
538 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
539 over an instruction that causes a page fault without triggering
540 a hardware watchpoint. The kernel properly notices that it shouldn't
541 stop, because the hardware watchpoint is not triggered, but it forgets
542 the step request and continues the program normally.
543 Work around the problem by removing hardware watchpoints if a step is
544 requested, GDB will check for a hardware watchpoint trigger after the
545 step anyway. */
546 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
547 remove_hw_watchpoints ();
488f131b 548
692590c1 549
c2c6d25f
JM
550 /* Normally, by the time we reach `resume', the breakpoints are either
551 removed or inserted, as appropriate. The exception is if we're sitting
552 at a permanent breakpoint; we need to step over it, but permanent
553 breakpoints can't be removed. So we have to test for it here. */
554 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
555 SKIP_PERMANENT_BREAKPOINT ();
556
b0ed3589 557 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
558 {
559 /* Do it the hard way, w/temp breakpoints */
c5aa993b 560 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
561 /* ...and don't ask hardware to do it. */
562 step = 0;
563 /* and do not pull these breakpoints until after a `wait' in
564 `wait_for_inferior' */
565 singlestep_breakpoints_inserted_p = 1;
9f976b41 566 singlestep_ptid = inferior_ptid;
c906108c
SS
567 }
568
c906108c 569 /* If there were any forks/vforks/execs that were caught and are
6604731b 570 now to be followed, then do so. */
c906108c
SS
571 switch (pending_follow.kind)
572 {
6604731b
DJ
573 case TARGET_WAITKIND_FORKED:
574 case TARGET_WAITKIND_VFORKED:
c906108c 575 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
576 if (follow_fork ())
577 should_resume = 0;
c906108c
SS
578 break;
579
6604731b 580 case TARGET_WAITKIND_EXECD:
c906108c 581 /* follow_exec is called as soon as the exec event is seen. */
6604731b 582 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
583 break;
584
585 default:
586 break;
587 }
c906108c
SS
588
589 /* Install inferior's terminal modes. */
590 target_terminal_inferior ();
591
592 if (should_resume)
593 {
39f77062 594 ptid_t resume_ptid;
dfcd3bfb 595
488f131b 596 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e
MS
597
598 if ((step || singlestep_breakpoints_inserted_p) &&
9f976b41
DJ
599 (stepping_past_singlestep_breakpoint
600 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 601 {
ef5cf84e
MS
602 /* Stepping past a breakpoint without inserting breakpoints.
603 Make sure only the current thread gets to step, so that
604 other threads don't sneak past breakpoints while they are
605 not inserted. */
c906108c 606
ef5cf84e 607 resume_ptid = inferior_ptid;
c906108c 608 }
ef5cf84e
MS
609
610 if ((scheduler_mode == schedlock_on) ||
488f131b 611 (scheduler_mode == schedlock_step &&
ef5cf84e 612 (step || singlestep_breakpoints_inserted_p)))
c906108c 613 {
ef5cf84e 614 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 615 resume_ptid = inferior_ptid;
c906108c 616 }
ef5cf84e 617
c4ed33b9
AC
618 if (CANNOT_STEP_BREAKPOINT)
619 {
620 /* Most targets can step a breakpoint instruction, thus
621 executing it normally. But if this one cannot, just
622 continue and we will hit it anyway. */
623 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
624 step = 0;
625 }
39f77062 626 target_resume (resume_ptid, step, sig);
c906108c
SS
627 }
628
629 discard_cleanups (old_cleanups);
630}
631\f
632
633/* Clear out all variables saying what to do when inferior is continued.
634 First do this, then set the ones you want, then call `proceed'. */
635
636void
96baa820 637clear_proceed_status (void)
c906108c
SS
638{
639 trap_expected = 0;
640 step_range_start = 0;
641 step_range_end = 0;
aa0cd9c1 642 step_frame_id = null_frame_id;
5fbbeb29 643 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 644 stop_after_trap = 0;
c0236d92 645 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
646 proceed_to_finish = 0;
647 breakpoint_proceeded = 1; /* We're about to proceed... */
648
649 /* Discard any remaining commands or status from previous stop. */
650 bpstat_clear (&stop_bpstat);
651}
652
ea67f13b
DJ
653/* This should be suitable for any targets that support threads. */
654
655static int
656prepare_to_proceed (void)
657{
658 ptid_t wait_ptid;
659 struct target_waitstatus wait_status;
660
661 /* Get the last target status returned by target_wait(). */
662 get_last_target_status (&wait_ptid, &wait_status);
663
664 /* Make sure we were stopped either at a breakpoint, or because
665 of a Ctrl-C. */
666 if (wait_status.kind != TARGET_WAITKIND_STOPPED
667 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
668 wait_status.value.sig != TARGET_SIGNAL_INT))
669 {
670 return 0;
671 }
672
673 if (!ptid_equal (wait_ptid, minus_one_ptid)
674 && !ptid_equal (inferior_ptid, wait_ptid))
675 {
676 /* Switched over from WAIT_PID. */
677 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
678
679 if (wait_pc != read_pc ())
680 {
681 /* Switch back to WAIT_PID thread. */
682 inferior_ptid = wait_ptid;
683
684 /* FIXME: This stuff came from switch_to_thread() in
685 thread.c (which should probably be a public function). */
686 flush_cached_frames ();
687 registers_changed ();
688 stop_pc = wait_pc;
689 select_frame (get_current_frame ());
690 }
691
692 /* We return 1 to indicate that there is a breakpoint here,
693 so we need to step over it before continuing to avoid
694 hitting it straight away. */
695 if (breakpoint_here_p (wait_pc))
696 return 1;
697 }
698
699 return 0;
700
701}
e4846b08
JJ
702
703/* Record the pc of the program the last time it stopped. This is
704 just used internally by wait_for_inferior, but need to be preserved
705 over calls to it and cleared when the inferior is started. */
706static CORE_ADDR prev_pc;
707
c906108c
SS
708/* Basic routine for continuing the program in various fashions.
709
710 ADDR is the address to resume at, or -1 for resume where stopped.
711 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 712 or -1 for act according to how it stopped.
c906108c 713 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
714 -1 means return after that and print nothing.
715 You should probably set various step_... variables
716 before calling here, if you are stepping.
c906108c
SS
717
718 You should call clear_proceed_status before calling proceed. */
719
720void
96baa820 721proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
722{
723 int oneproc = 0;
724
725 if (step > 0)
726 step_start_function = find_pc_function (read_pc ());
727 if (step < 0)
728 stop_after_trap = 1;
729
2acceee2 730 if (addr == (CORE_ADDR) -1)
c906108c
SS
731 {
732 /* If there is a breakpoint at the address we will resume at,
c5aa993b
JM
733 step one instruction before inserting breakpoints
734 so that we do not stop right away (and report a second
c906108c
SS
735 hit at this breakpoint). */
736
737 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
738 oneproc = 1;
739
740#ifndef STEP_SKIPS_DELAY
741#define STEP_SKIPS_DELAY(pc) (0)
742#define STEP_SKIPS_DELAY_P (0)
743#endif
744 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
c5aa993b
JM
745 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
746 is slow (it needs to read memory from the target). */
c906108c
SS
747 if (STEP_SKIPS_DELAY_P
748 && breakpoint_here_p (read_pc () + 4)
749 && STEP_SKIPS_DELAY (read_pc ()))
750 oneproc = 1;
751 }
752 else
753 {
754 write_pc (addr);
c906108c
SS
755 }
756
c906108c
SS
757 /* In a multi-threaded task we may select another thread
758 and then continue or step.
759
760 But if the old thread was stopped at a breakpoint, it
761 will immediately cause another breakpoint stop without
762 any execution (i.e. it will report a breakpoint hit
763 incorrectly). So we must step over it first.
764
ea67f13b 765 prepare_to_proceed checks the current thread against the thread
c906108c
SS
766 that reported the most recent event. If a step-over is required
767 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
768 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
769 oneproc = 1;
c906108c
SS
770
771#ifdef HP_OS_BUG
772 if (trap_expected_after_continue)
773 {
774 /* If (step == 0), a trap will be automatically generated after
c5aa993b
JM
775 the first instruction is executed. Force step one
776 instruction to clear this condition. This should not occur
777 if step is nonzero, but it is harmless in that case. */
c906108c
SS
778 oneproc = 1;
779 trap_expected_after_continue = 0;
780 }
781#endif /* HP_OS_BUG */
782
783 if (oneproc)
784 /* We will get a trace trap after one instruction.
785 Continue it automatically and insert breakpoints then. */
786 trap_expected = 1;
787 else
788 {
81d0cc19
GS
789 insert_breakpoints ();
790 /* If we get here there was no call to error() in
791 insert breakpoints -- so they were inserted. */
c906108c
SS
792 breakpoints_inserted = 1;
793 }
794
795 if (siggnal != TARGET_SIGNAL_DEFAULT)
796 stop_signal = siggnal;
797 /* If this signal should not be seen by program,
798 give it zero. Used for debugging signals. */
799 else if (!signal_program[stop_signal])
800 stop_signal = TARGET_SIGNAL_0;
801
802 annotate_starting ();
803
804 /* Make sure that output from GDB appears before output from the
805 inferior. */
806 gdb_flush (gdb_stdout);
807
e4846b08
JJ
808 /* Refresh prev_pc value just prior to resuming. This used to be
809 done in stop_stepping, however, setting prev_pc there did not handle
810 scenarios such as inferior function calls or returning from
811 a function via the return command. In those cases, the prev_pc
812 value was not set properly for subsequent commands. The prev_pc value
813 is used to initialize the starting line number in the ecs. With an
814 invalid value, the gdb next command ends up stopping at the position
815 represented by the next line table entry past our start position.
816 On platforms that generate one line table entry per line, this
817 is not a problem. However, on the ia64, the compiler generates
818 extraneous line table entries that do not increase the line number.
819 When we issue the gdb next command on the ia64 after an inferior call
820 or a return command, we often end up a few instructions forward, still
821 within the original line we started.
822
823 An attempt was made to have init_execution_control_state () refresh
824 the prev_pc value before calculating the line number. This approach
825 did not work because on platforms that use ptrace, the pc register
826 cannot be read unless the inferior is stopped. At that point, we
827 are not guaranteed the inferior is stopped and so the read_pc ()
828 call can fail. Setting the prev_pc value here ensures the value is
829 updated correctly when the inferior is stopped. */
830 prev_pc = read_pc ();
831
c906108c
SS
832 /* Resume inferior. */
833 resume (oneproc || step || bpstat_should_step (), stop_signal);
834
835 /* Wait for it to stop (if not standalone)
836 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
837 /* Do this only if we are not using the event loop, or if the target
838 does not support asynchronous execution. */
6426a772 839 if (!event_loop_p || !target_can_async_p ())
43ff13b4
JM
840 {
841 wait_for_inferior ();
842 normal_stop ();
843 }
c906108c 844}
c906108c
SS
845\f
846
847/* Start remote-debugging of a machine over a serial link. */
96baa820 848
c906108c 849void
96baa820 850start_remote (void)
c906108c
SS
851{
852 init_thread_list ();
853 init_wait_for_inferior ();
c0236d92 854 stop_soon = STOP_QUIETLY;
c906108c 855 trap_expected = 0;
43ff13b4 856
6426a772
JM
857 /* Always go on waiting for the target, regardless of the mode. */
858 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 859 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
860 nothing is returned (instead of just blocking). Because of this,
861 targets expecting an immediate response need to, internally, set
862 things up so that the target_wait() is forced to eventually
863 timeout. */
864 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
865 differentiate to its caller what the state of the target is after
866 the initial open has been performed. Here we're assuming that
867 the target has stopped. It should be possible to eventually have
868 target_open() return to the caller an indication that the target
869 is currently running and GDB state should be set to the same as
870 for an async run. */
871 wait_for_inferior ();
872 normal_stop ();
c906108c
SS
873}
874
875/* Initialize static vars when a new inferior begins. */
876
877void
96baa820 878init_wait_for_inferior (void)
c906108c
SS
879{
880 /* These are meaningless until the first time through wait_for_inferior. */
881 prev_pc = 0;
c906108c
SS
882
883#ifdef HP_OS_BUG
884 trap_expected_after_continue = 0;
885#endif
886 breakpoints_inserted = 0;
887 breakpoint_init_inferior (inf_starting);
888
889 /* Don't confuse first call to proceed(). */
890 stop_signal = TARGET_SIGNAL_0;
891
892 /* The first resume is not following a fork/vfork/exec. */
893 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c
SS
894
895 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
896 number_of_threads_in_syscalls = 0;
897
898 clear_proceed_status ();
9f976b41
DJ
899
900 stepping_past_singlestep_breakpoint = 0;
c906108c 901}
c906108c 902\f
b83266a0
SS
903/* This enum encodes possible reasons for doing a target_wait, so that
904 wfi can call target_wait in one place. (Ultimately the call will be
905 moved out of the infinite loop entirely.) */
906
c5aa993b
JM
907enum infwait_states
908{
cd0fc7c3
SS
909 infwait_normal_state,
910 infwait_thread_hop_state,
911 infwait_nullified_state,
912 infwait_nonstep_watch_state
b83266a0
SS
913};
914
11cf8741
JM
915/* Why did the inferior stop? Used to print the appropriate messages
916 to the interface from within handle_inferior_event(). */
917enum inferior_stop_reason
918{
919 /* We don't know why. */
920 STOP_UNKNOWN,
921 /* Step, next, nexti, stepi finished. */
922 END_STEPPING_RANGE,
923 /* Found breakpoint. */
924 BREAKPOINT_HIT,
925 /* Inferior terminated by signal. */
926 SIGNAL_EXITED,
927 /* Inferior exited. */
928 EXITED,
929 /* Inferior received signal, and user asked to be notified. */
930 SIGNAL_RECEIVED
931};
932
cd0fc7c3
SS
933/* This structure contains what used to be local variables in
934 wait_for_inferior. Probably many of them can return to being
935 locals in handle_inferior_event. */
936
c5aa993b 937struct execution_control_state
488f131b
JB
938{
939 struct target_waitstatus ws;
940 struct target_waitstatus *wp;
941 int another_trap;
942 int random_signal;
943 CORE_ADDR stop_func_start;
944 CORE_ADDR stop_func_end;
945 char *stop_func_name;
946 struct symtab_and_line sal;
947 int remove_breakpoints_on_following_step;
948 int current_line;
949 struct symtab *current_symtab;
950 int handling_longjmp; /* FIXME */
951 ptid_t ptid;
952 ptid_t saved_inferior_ptid;
488f131b
JB
953 int stepping_through_solib_after_catch;
954 bpstat stepping_through_solib_catchpoints;
955 int enable_hw_watchpoints_after_wait;
956 int stepping_through_sigtramp;
957 int new_thread_event;
958 struct target_waitstatus tmpstatus;
959 enum infwait_states infwait_state;
960 ptid_t waiton_ptid;
961 int wait_some_more;
962};
963
964void init_execution_control_state (struct execution_control_state *ecs);
965
1af510a8 966static void handle_step_into_function (struct execution_control_state *ecs);
488f131b 967void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 968
c2c6d25f 969static void step_into_function (struct execution_control_state *ecs);
d303a6c7
AC
970static void insert_step_resume_breakpoint (struct frame_info *step_frame,
971 struct execution_control_state *ecs);
104c1213
JM
972static void stop_stepping (struct execution_control_state *ecs);
973static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 974static void keep_going (struct execution_control_state *ecs);
488f131b
JB
975static void print_stop_reason (enum inferior_stop_reason stop_reason,
976 int stop_info);
104c1213 977
cd0fc7c3
SS
978/* Wait for control to return from inferior to debugger.
979 If inferior gets a signal, we may decide to start it up again
980 instead of returning. That is why there is a loop in this function.
981 When this function actually returns it means the inferior
982 should be left stopped and GDB should read more commands. */
983
984void
96baa820 985wait_for_inferior (void)
cd0fc7c3
SS
986{
987 struct cleanup *old_cleanups;
988 struct execution_control_state ecss;
989 struct execution_control_state *ecs;
c906108c 990
8601f500 991 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 992 &step_resume_breakpoint);
cd0fc7c3
SS
993
994 /* wfi still stays in a loop, so it's OK just to take the address of
995 a local to get the ecs pointer. */
996 ecs = &ecss;
997
998 /* Fill in with reasonable starting values. */
999 init_execution_control_state (ecs);
1000
c906108c 1001 /* We'll update this if & when we switch to a new thread. */
39f77062 1002 previous_inferior_ptid = inferior_ptid;
c906108c 1003
cd0fc7c3
SS
1004 overlay_cache_invalid = 1;
1005
1006 /* We have to invalidate the registers BEFORE calling target_wait
1007 because they can be loaded from the target while in target_wait.
1008 This makes remote debugging a bit more efficient for those
1009 targets that provide critical registers as part of their normal
1010 status mechanism. */
1011
1012 registers_changed ();
b83266a0 1013
c906108c
SS
1014 while (1)
1015 {
9a4105ab
AC
1016 if (deprecated_target_wait_hook)
1017 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 1018 else
39f77062 1019 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1020
cd0fc7c3
SS
1021 /* Now figure out what to do with the result of the result. */
1022 handle_inferior_event (ecs);
c906108c 1023
cd0fc7c3
SS
1024 if (!ecs->wait_some_more)
1025 break;
1026 }
1027 do_cleanups (old_cleanups);
1028}
c906108c 1029
43ff13b4
JM
1030/* Asynchronous version of wait_for_inferior. It is called by the
1031 event loop whenever a change of state is detected on the file
1032 descriptor corresponding to the target. It can be called more than
1033 once to complete a single execution command. In such cases we need
1034 to keep the state in a global variable ASYNC_ECSS. If it is the
1035 last time that this function is called for a single execution
1036 command, then report to the user that the inferior has stopped, and
1037 do the necessary cleanups. */
1038
1039struct execution_control_state async_ecss;
1040struct execution_control_state *async_ecs;
1041
1042void
fba45db2 1043fetch_inferior_event (void *client_data)
43ff13b4
JM
1044{
1045 static struct cleanup *old_cleanups;
1046
c5aa993b 1047 async_ecs = &async_ecss;
43ff13b4
JM
1048
1049 if (!async_ecs->wait_some_more)
1050 {
488f131b 1051 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1052 &step_resume_breakpoint);
43ff13b4
JM
1053
1054 /* Fill in with reasonable starting values. */
1055 init_execution_control_state (async_ecs);
1056
43ff13b4 1057 /* We'll update this if & when we switch to a new thread. */
39f77062 1058 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1059
1060 overlay_cache_invalid = 1;
1061
1062 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1063 because they can be loaded from the target while in target_wait.
1064 This makes remote debugging a bit more efficient for those
1065 targets that provide critical registers as part of their normal
1066 status mechanism. */
43ff13b4
JM
1067
1068 registers_changed ();
1069 }
1070
9a4105ab 1071 if (deprecated_target_wait_hook)
488f131b 1072 async_ecs->ptid =
9a4105ab 1073 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1074 else
39f77062 1075 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1076
1077 /* Now figure out what to do with the result of the result. */
1078 handle_inferior_event (async_ecs);
1079
1080 if (!async_ecs->wait_some_more)
1081 {
adf40b2e 1082 /* Do only the cleanups that have been added by this
488f131b
JB
1083 function. Let the continuations for the commands do the rest,
1084 if there are any. */
43ff13b4
JM
1085 do_exec_cleanups (old_cleanups);
1086 normal_stop ();
c2d11a7d
JM
1087 if (step_multi && stop_step)
1088 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1089 else
1090 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1091 }
1092}
1093
cd0fc7c3
SS
1094/* Prepare an execution control state for looping through a
1095 wait_for_inferior-type loop. */
1096
1097void
96baa820 1098init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1099{
c2d11a7d 1100 /* ecs->another_trap? */
cd0fc7c3
SS
1101 ecs->random_signal = 0;
1102 ecs->remove_breakpoints_on_following_step = 0;
1103 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1104 ecs->stepping_through_solib_after_catch = 0;
1105 ecs->stepping_through_solib_catchpoints = NULL;
1106 ecs->enable_hw_watchpoints_after_wait = 0;
1107 ecs->stepping_through_sigtramp = 0;
1108 ecs->sal = find_pc_line (prev_pc, 0);
1109 ecs->current_line = ecs->sal.line;
1110 ecs->current_symtab = ecs->sal.symtab;
1111 ecs->infwait_state = infwait_normal_state;
39f77062 1112 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1113 ecs->wp = &(ecs->ws);
1114}
1115
a0b3c4fd 1116/* Call this function before setting step_resume_breakpoint, as a
53a5351d
JM
1117 sanity check. There should never be more than one step-resume
1118 breakpoint per thread, so we should never be setting a new
1119 step_resume_breakpoint when one is already active. */
a0b3c4fd 1120static void
96baa820 1121check_for_old_step_resume_breakpoint (void)
a0b3c4fd
JM
1122{
1123 if (step_resume_breakpoint)
488f131b
JB
1124 warning
1125 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
a0b3c4fd
JM
1126}
1127
e02bc4cc 1128/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1129 target_wait()/deprecated_target_wait_hook(). The data is actually
1130 cached by handle_inferior_event(), which gets called immediately
1131 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1132
1133void
488f131b 1134get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1135{
39f77062 1136 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1137 *status = target_last_waitstatus;
1138}
1139
dd80620e
MS
1140/* Switch thread contexts, maintaining "infrun state". */
1141
1142static void
1143context_switch (struct execution_control_state *ecs)
1144{
1145 /* Caution: it may happen that the new thread (or the old one!)
1146 is not in the thread list. In this case we must not attempt
1147 to "switch context", or we run the risk that our context may
1148 be lost. This may happen as a result of the target module
1149 mishandling thread creation. */
1150
1151 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1152 { /* Perform infrun state context switch: */
dd80620e 1153 /* Save infrun state for the old thread. */
0ce3d317 1154 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1155 trap_expected, step_resume_breakpoint,
15960608 1156 step_range_start,
aa0cd9c1 1157 step_range_end, &step_frame_id,
dd80620e
MS
1158 ecs->handling_longjmp, ecs->another_trap,
1159 ecs->stepping_through_solib_after_catch,
1160 ecs->stepping_through_solib_catchpoints,
1161 ecs->stepping_through_sigtramp,
f2c9ca08 1162 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1163
1164 /* Load infrun state for the new thread. */
0ce3d317 1165 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1166 &trap_expected, &step_resume_breakpoint,
15960608 1167 &step_range_start,
aa0cd9c1 1168 &step_range_end, &step_frame_id,
dd80620e
MS
1169 &ecs->handling_longjmp, &ecs->another_trap,
1170 &ecs->stepping_through_solib_after_catch,
1171 &ecs->stepping_through_solib_catchpoints,
488f131b 1172 &ecs->stepping_through_sigtramp,
f2c9ca08 1173 &ecs->current_line, &ecs->current_symtab);
dd80620e
MS
1174 }
1175 inferior_ptid = ecs->ptid;
1176}
1177
1af510a8
JB
1178/* Handle the inferior event in the cases when we just stepped
1179 into a function. */
1180
1181static void
1182handle_step_into_function (struct execution_control_state *ecs)
1183{
1184 CORE_ADDR real_stop_pc;
1185
1186 if ((step_over_calls == STEP_OVER_NONE)
1187 || ((step_range_end == 1)
1188 && in_prologue (prev_pc, ecs->stop_func_start)))
1189 {
1190 /* I presume that step_over_calls is only 0 when we're
1191 supposed to be stepping at the assembly language level
1192 ("stepi"). Just stop. */
1193 /* Also, maybe we just did a "nexti" inside a prolog,
1194 so we thought it was a subroutine call but it was not.
1195 Stop as well. FENN */
1196 stop_step = 1;
1197 print_stop_reason (END_STEPPING_RANGE, 0);
1198 stop_stepping (ecs);
1199 return;
1200 }
1201
1202 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
1203 {
922d5ae0
AC
1204 /* We're doing a "next", set a breakpoint at callee's return
1205 address (the address at which the caller will resume). */
1206 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()),
1207 ecs);
1af510a8
JB
1208 keep_going (ecs);
1209 return;
1210 }
1211
1212 /* If we are in a function call trampoline (a stub between
1213 the calling routine and the real function), locate the real
1214 function. That's what tells us (a) whether we want to step
1215 into it at all, and (b) what prologue we want to run to
1216 the end of, if we do step into it. */
1217 real_stop_pc = skip_language_trampoline (stop_pc);
1218 if (real_stop_pc == 0)
1219 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
1220 if (real_stop_pc != 0)
1221 ecs->stop_func_start = real_stop_pc;
1222
1223 /* If we have line number information for the function we
1224 are thinking of stepping into, step into it.
1225
1226 If there are several symtabs at that PC (e.g. with include
1227 files), just want to know whether *any* of them have line
1228 numbers. find_pc_line handles this. */
1229 {
1230 struct symtab_and_line tmp_sal;
1231
1232 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
1233 if (tmp_sal.line != 0)
1234 {
1235 step_into_function (ecs);
1236 return;
1237 }
1238 }
1239
1240 /* If we have no line number and the step-stop-if-no-debug
1241 is set, we stop the step so that the user has a chance to
1242 switch in assembly mode. */
1243 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
1244 {
1245 stop_step = 1;
1246 print_stop_reason (END_STEPPING_RANGE, 0);
1247 stop_stepping (ecs);
1248 return;
1249 }
1250
922d5ae0
AC
1251 /* Set a breakpoint at callee's return address (the address at which
1252 the caller will resume). */
1253 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()), ecs);
1af510a8
JB
1254 keep_going (ecs);
1255 return;
1256}
dd80620e 1257
4fa8626c
DJ
1258static void
1259adjust_pc_after_break (struct execution_control_state *ecs)
1260{
8aad930b 1261 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1262
1263 /* If this target does not decrement the PC after breakpoints, then
1264 we have nothing to do. */
1265 if (DECR_PC_AFTER_BREAK == 0)
1266 return;
1267
1268 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1269 we aren't, just return.
9709f61c
DJ
1270
1271 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1272 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1273 by software breakpoints should be handled through the normal breakpoint
1274 layer.
4fa8626c
DJ
1275
1276 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1277 different signals (SIGILL or SIGEMT for instance), but it is less
1278 clear where the PC is pointing afterwards. It may not match
1279 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1280 these signals at breakpoints (the code has been in GDB since at least
1281 1992) so I can not guess how to handle them here.
1282
1283 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1284 would have the PC after hitting a watchpoint affected by
1285 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1286 in GDB history, and it seems unlikely to be correct, so
1287 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1288
1289 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1290 return;
1291
1292 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1293 return;
1294
8aad930b
AC
1295 /* Find the location where (if we've hit a breakpoint) the
1296 breakpoint would be. */
1297 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1298
1299 if (SOFTWARE_SINGLE_STEP_P ())
1300 {
1301 /* When using software single-step, a SIGTRAP can only indicate
1302 an inserted breakpoint. This actually makes things
1303 easier. */
1304 if (singlestep_breakpoints_inserted_p)
1305 /* When software single stepping, the instruction at [prev_pc]
1306 is never a breakpoint, but the instruction following
1307 [prev_pc] (in program execution order) always is. Assume
1308 that following instruction was reached and hence a software
1309 breakpoint was hit. */
1310 write_pc_pid (breakpoint_pc, ecs->ptid);
1311 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1312 /* The inferior was free running (i.e., no single-step
1313 breakpoints inserted) and it hit a software breakpoint. */
1314 write_pc_pid (breakpoint_pc, ecs->ptid);
1315 }
1316 else
1317 {
1318 /* When using hardware single-step, a SIGTRAP is reported for
1319 both a completed single-step and a software breakpoint. Need
1320 to differentiate between the two as the latter needs
1321 adjusting but the former does not. */
1322 if (currently_stepping (ecs))
1323 {
1324 if (prev_pc == breakpoint_pc
1325 && software_breakpoint_inserted_here_p (breakpoint_pc))
1326 /* Hardware single-stepped a software breakpoint (as
1327 occures when the inferior is resumed with PC pointing
1328 at not-yet-hit software breakpoint). Since the
1329 breakpoint really is executed, the inferior needs to be
1330 backed up to the breakpoint address. */
1331 write_pc_pid (breakpoint_pc, ecs->ptid);
1332 }
1333 else
1334 {
1335 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1336 /* The inferior was free running (i.e., no hardware
1337 single-step and no possibility of a false SIGTRAP) and
1338 hit a software breakpoint. */
1339 write_pc_pid (breakpoint_pc, ecs->ptid);
1340 }
1341 }
4fa8626c
DJ
1342}
1343
cd0fc7c3
SS
1344/* Given an execution control state that has been freshly filled in
1345 by an event from the inferior, figure out what it means and take
1346 appropriate action. */
c906108c 1347
7270d8f2
OF
1348int stepped_after_stopped_by_watchpoint;
1349
cd0fc7c3 1350void
96baa820 1351handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1352{
65e82032
AC
1353 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1354 thinking that the variable stepped_after_stopped_by_watchpoint
1355 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1356 defined in the file "config/pa/nm-hppah.h", accesses the variable
1357 indirectly. Mutter something rude about the HP merge. */
c8edd8b4 1358 int sw_single_step_trap_p = 0;
00d4360e 1359 int stopped_by_watchpoint = 0;
cd0fc7c3 1360
e02bc4cc 1361 /* Cache the last pid/waitstatus. */
39f77062 1362 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1363 target_last_waitstatus = *ecs->wp;
1364
4fa8626c
DJ
1365 adjust_pc_after_break (ecs);
1366
488f131b
JB
1367 switch (ecs->infwait_state)
1368 {
1369 case infwait_thread_hop_state:
1370 /* Cancel the waiton_ptid. */
1371 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032
AC
1372 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1373 is serviced in this loop, below. */
1374 if (ecs->enable_hw_watchpoints_after_wait)
1375 {
1376 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1377 ecs->enable_hw_watchpoints_after_wait = 0;
1378 }
1379 stepped_after_stopped_by_watchpoint = 0;
1380 break;
b83266a0 1381
488f131b
JB
1382 case infwait_normal_state:
1383 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1384 is serviced in this loop, below. */
1385 if (ecs->enable_hw_watchpoints_after_wait)
1386 {
1387 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1388 ecs->enable_hw_watchpoints_after_wait = 0;
1389 }
1390 stepped_after_stopped_by_watchpoint = 0;
1391 break;
b83266a0 1392
488f131b 1393 case infwait_nullified_state:
65e82032 1394 stepped_after_stopped_by_watchpoint = 0;
488f131b 1395 break;
b83266a0 1396
488f131b
JB
1397 case infwait_nonstep_watch_state:
1398 insert_breakpoints ();
c906108c 1399
488f131b
JB
1400 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1401 handle things like signals arriving and other things happening
1402 in combination correctly? */
1403 stepped_after_stopped_by_watchpoint = 1;
1404 break;
65e82032
AC
1405
1406 default:
1407 internal_error (__FILE__, __LINE__, "bad switch");
488f131b
JB
1408 }
1409 ecs->infwait_state = infwait_normal_state;
c906108c 1410
488f131b 1411 flush_cached_frames ();
c906108c 1412
488f131b 1413 /* If it's a new process, add it to the thread database */
c906108c 1414
488f131b
JB
1415 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1416 && !in_thread_list (ecs->ptid));
1417
1418 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1419 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1420 {
1421 add_thread (ecs->ptid);
c906108c 1422
488f131b
JB
1423 ui_out_text (uiout, "[New ");
1424 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1425 ui_out_text (uiout, "]\n");
c906108c
SS
1426
1427#if 0
488f131b
JB
1428 /* NOTE: This block is ONLY meant to be invoked in case of a
1429 "thread creation event"! If it is invoked for any other
1430 sort of event (such as a new thread landing on a breakpoint),
1431 the event will be discarded, which is almost certainly
1432 a bad thing!
1433
1434 To avoid this, the low-level module (eg. target_wait)
1435 should call in_thread_list and add_thread, so that the
1436 new thread is known by the time we get here. */
1437
1438 /* We may want to consider not doing a resume here in order
1439 to give the user a chance to play with the new thread.
1440 It might be good to make that a user-settable option. */
1441
1442 /* At this point, all threads are stopped (happens
1443 automatically in either the OS or the native code).
1444 Therefore we need to continue all threads in order to
1445 make progress. */
1446
1447 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1448 prepare_to_wait (ecs);
1449 return;
c906108c 1450#endif
488f131b 1451 }
c906108c 1452
488f131b
JB
1453 switch (ecs->ws.kind)
1454 {
1455 case TARGET_WAITKIND_LOADED:
1456 /* Ignore gracefully during startup of the inferior, as it
1457 might be the shell which has just loaded some objects,
1458 otherwise add the symbols for the newly loaded objects. */
c906108c 1459#ifdef SOLIB_ADD
c0236d92 1460 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1461 {
1462 /* Remove breakpoints, SOLIB_ADD might adjust
1463 breakpoint addresses via breakpoint_re_set. */
1464 if (breakpoints_inserted)
1465 remove_breakpoints ();
c906108c 1466
488f131b
JB
1467 /* Check for any newly added shared libraries if we're
1468 supposed to be adding them automatically. Switch
1469 terminal for any messages produced by
1470 breakpoint_re_set. */
1471 target_terminal_ours_for_output ();
aff6338a
AC
1472 /* NOTE: cagney/2003-11-25: Make certain that the target
1473 stack's section table is kept up-to-date. Architectures,
1474 (e.g., PPC64), use the section table to perform
1475 operations such as address => section name and hence
1476 require the table to contain all sections (including
1477 those found in shared libraries). */
1478 /* NOTE: cagney/2003-11-25: Pass current_target and not
1479 exec_ops to SOLIB_ADD. This is because current GDB is
1480 only tooled to propagate section_table changes out from
1481 the "current_target" (see target_resize_to_sections), and
1482 not up from the exec stratum. This, of course, isn't
1483 right. "infrun.c" should only interact with the
1484 exec/process stratum, instead relying on the target stack
1485 to propagate relevant changes (stop, section table
1486 changed, ...) up to other layers. */
1487 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
1488 target_terminal_inferior ();
1489
1490 /* Reinsert breakpoints and continue. */
1491 if (breakpoints_inserted)
1492 insert_breakpoints ();
1493 }
c906108c 1494#endif
488f131b
JB
1495 resume (0, TARGET_SIGNAL_0);
1496 prepare_to_wait (ecs);
1497 return;
c5aa993b 1498
488f131b
JB
1499 case TARGET_WAITKIND_SPURIOUS:
1500 resume (0, TARGET_SIGNAL_0);
1501 prepare_to_wait (ecs);
1502 return;
c5aa993b 1503
488f131b
JB
1504 case TARGET_WAITKIND_EXITED:
1505 target_terminal_ours (); /* Must do this before mourn anyway */
1506 print_stop_reason (EXITED, ecs->ws.value.integer);
1507
1508 /* Record the exit code in the convenience variable $_exitcode, so
1509 that the user can inspect this again later. */
1510 set_internalvar (lookup_internalvar ("_exitcode"),
1511 value_from_longest (builtin_type_int,
1512 (LONGEST) ecs->ws.value.integer));
1513 gdb_flush (gdb_stdout);
1514 target_mourn_inferior ();
1515 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1516 stop_print_frame = 0;
1517 stop_stepping (ecs);
1518 return;
c5aa993b 1519
488f131b
JB
1520 case TARGET_WAITKIND_SIGNALLED:
1521 stop_print_frame = 0;
1522 stop_signal = ecs->ws.value.sig;
1523 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1524
488f131b
JB
1525 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1526 reach here unless the inferior is dead. However, for years
1527 target_kill() was called here, which hints that fatal signals aren't
1528 really fatal on some systems. If that's true, then some changes
1529 may be needed. */
1530 target_mourn_inferior ();
c906108c 1531
488f131b
JB
1532 print_stop_reason (SIGNAL_EXITED, stop_signal);
1533 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1534 stop_stepping (ecs);
1535 return;
c906108c 1536
488f131b
JB
1537 /* The following are the only cases in which we keep going;
1538 the above cases end in a continue or goto. */
1539 case TARGET_WAITKIND_FORKED:
deb3b17b 1540 case TARGET_WAITKIND_VFORKED:
488f131b
JB
1541 stop_signal = TARGET_SIGNAL_TRAP;
1542 pending_follow.kind = ecs->ws.kind;
1543
8e7d2c16
DJ
1544 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1545 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1546
488f131b 1547 stop_pc = read_pc ();
675bf4cb 1548
00d4360e 1549 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1550
488f131b 1551 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1552
1553 /* If no catchpoint triggered for this, then keep going. */
1554 if (ecs->random_signal)
1555 {
1556 stop_signal = TARGET_SIGNAL_0;
1557 keep_going (ecs);
1558 return;
1559 }
488f131b
JB
1560 goto process_event_stop_test;
1561
1562 case TARGET_WAITKIND_EXECD:
1563 stop_signal = TARGET_SIGNAL_TRAP;
1564
7d2830a3
DJ
1565 /* NOTE drow/2002-12-05: This code should be pushed down into the
1566 target_wait function. Until then following vfork on HP/UX 10.20
1567 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1568 /* Is this a target which reports multiple exec events per actual
1569 call to exec()? (HP-UX using ptrace does, for example.) If so,
1570 ignore all but the last one. Just resume the exec'r, and wait
1571 for the next exec event. */
1572 if (inferior_ignoring_leading_exec_events)
1573 {
1574 inferior_ignoring_leading_exec_events--;
1575 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1576 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1577 parent_pid);
1578 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1579 prepare_to_wait (ecs);
1580 return;
1581 }
1582 inferior_ignoring_leading_exec_events =
1583 target_reported_exec_events_per_exec_call () - 1;
1584
1585 pending_follow.execd_pathname =
1586 savestring (ecs->ws.value.execd_pathname,
1587 strlen (ecs->ws.value.execd_pathname));
1588
488f131b
JB
1589 /* This causes the eventpoints and symbol table to be reset. Must
1590 do this now, before trying to determine whether to stop. */
1591 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1592 xfree (pending_follow.execd_pathname);
c906108c 1593
488f131b
JB
1594 stop_pc = read_pc_pid (ecs->ptid);
1595 ecs->saved_inferior_ptid = inferior_ptid;
1596 inferior_ptid = ecs->ptid;
675bf4cb 1597
00d4360e 1598 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1599
488f131b
JB
1600 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1601 inferior_ptid = ecs->saved_inferior_ptid;
04e68871
DJ
1602
1603 /* If no catchpoint triggered for this, then keep going. */
1604 if (ecs->random_signal)
1605 {
1606 stop_signal = TARGET_SIGNAL_0;
1607 keep_going (ecs);
1608 return;
1609 }
488f131b
JB
1610 goto process_event_stop_test;
1611
1612 /* These syscall events are returned on HP-UX, as part of its
1613 implementation of page-protection-based "hardware" watchpoints.
1614 HP-UX has unfortunate interactions between page-protections and
1615 some system calls. Our solution is to disable hardware watches
1616 when a system call is entered, and reenable them when the syscall
1617 completes. The downside of this is that we may miss the precise
1618 point at which a watched piece of memory is modified. "Oh well."
1619
1620 Note that we may have multiple threads running, which may each
1621 enter syscalls at roughly the same time. Since we don't have a
1622 good notion currently of whether a watched piece of memory is
1623 thread-private, we'd best not have any page-protections active
1624 when any thread is in a syscall. Thus, we only want to reenable
1625 hardware watches when no threads are in a syscall.
1626
1627 Also, be careful not to try to gather much state about a thread
1628 that's in a syscall. It's frequently a losing proposition. */
1629 case TARGET_WAITKIND_SYSCALL_ENTRY:
1630 number_of_threads_in_syscalls++;
1631 if (number_of_threads_in_syscalls == 1)
1632 {
1633 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1634 }
1635 resume (0, TARGET_SIGNAL_0);
1636 prepare_to_wait (ecs);
1637 return;
c906108c 1638
488f131b
JB
1639 /* Before examining the threads further, step this thread to
1640 get it entirely out of the syscall. (We get notice of the
1641 event when the thread is just on the verge of exiting a
1642 syscall. Stepping one instruction seems to get it back
1643 into user code.)
c906108c 1644
488f131b
JB
1645 Note that although the logical place to reenable h/w watches
1646 is here, we cannot. We cannot reenable them before stepping
1647 the thread (this causes the next wait on the thread to hang).
c4093a6a 1648
488f131b
JB
1649 Nor can we enable them after stepping until we've done a wait.
1650 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1651 here, which will be serviced immediately after the target
1652 is waited on. */
1653 case TARGET_WAITKIND_SYSCALL_RETURN:
1654 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1655
1656 if (number_of_threads_in_syscalls > 0)
1657 {
1658 number_of_threads_in_syscalls--;
1659 ecs->enable_hw_watchpoints_after_wait =
1660 (number_of_threads_in_syscalls == 0);
1661 }
1662 prepare_to_wait (ecs);
1663 return;
c906108c 1664
488f131b
JB
1665 case TARGET_WAITKIND_STOPPED:
1666 stop_signal = ecs->ws.value.sig;
1667 break;
c906108c 1668
488f131b
JB
1669 /* We had an event in the inferior, but we are not interested
1670 in handling it at this level. The lower layers have already
8e7d2c16
DJ
1671 done what needs to be done, if anything.
1672
1673 One of the possible circumstances for this is when the
1674 inferior produces output for the console. The inferior has
1675 not stopped, and we are ignoring the event. Another possible
1676 circumstance is any event which the lower level knows will be
1677 reported multiple times without an intervening resume. */
488f131b 1678 case TARGET_WAITKIND_IGNORE:
8e7d2c16 1679 prepare_to_wait (ecs);
488f131b
JB
1680 return;
1681 }
c906108c 1682
488f131b
JB
1683 /* We may want to consider not doing a resume here in order to give
1684 the user a chance to play with the new thread. It might be good
1685 to make that a user-settable option. */
c906108c 1686
488f131b
JB
1687 /* At this point, all threads are stopped (happens automatically in
1688 either the OS or the native code). Therefore we need to continue
1689 all threads in order to make progress. */
1690 if (ecs->new_thread_event)
1691 {
1692 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1693 prepare_to_wait (ecs);
1694 return;
1695 }
c906108c 1696
488f131b
JB
1697 stop_pc = read_pc_pid (ecs->ptid);
1698
9f976b41
DJ
1699 if (stepping_past_singlestep_breakpoint)
1700 {
1701 gdb_assert (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p);
1702 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1703 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1704
1705 stepping_past_singlestep_breakpoint = 0;
1706
1707 /* We've either finished single-stepping past the single-step
1708 breakpoint, or stopped for some other reason. It would be nice if
1709 we could tell, but we can't reliably. */
1710 if (stop_signal == TARGET_SIGNAL_TRAP)
1711 {
1712 /* Pull the single step breakpoints out of the target. */
1713 SOFTWARE_SINGLE_STEP (0, 0);
1714 singlestep_breakpoints_inserted_p = 0;
1715
1716 ecs->random_signal = 0;
1717
1718 ecs->ptid = saved_singlestep_ptid;
1719 context_switch (ecs);
9a4105ab
AC
1720 if (deprecated_context_hook)
1721 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1722
1723 resume (1, TARGET_SIGNAL_0);
1724 prepare_to_wait (ecs);
1725 return;
1726 }
1727 }
1728
1729 stepping_past_singlestep_breakpoint = 0;
1730
488f131b
JB
1731 /* See if a thread hit a thread-specific breakpoint that was meant for
1732 another thread. If so, then step that thread past the breakpoint,
1733 and continue it. */
1734
1735 if (stop_signal == TARGET_SIGNAL_TRAP)
1736 {
9f976b41
DJ
1737 int thread_hop_needed = 0;
1738
f8d40ec8
JB
1739 /* Check if a regular breakpoint has been hit before checking
1740 for a potential single step breakpoint. Otherwise, GDB will
1741 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1742 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1743 {
c5aa993b 1744 ecs->random_signal = 0;
4fa8626c 1745 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1746 thread_hop_needed = 1;
1747 }
1748 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1749 {
1750 ecs->random_signal = 0;
1751 /* The call to in_thread_list is necessary because PTIDs sometimes
1752 change when we go from single-threaded to multi-threaded. If
1753 the singlestep_ptid is still in the list, assume that it is
1754 really different from ecs->ptid. */
1755 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1756 && in_thread_list (singlestep_ptid))
1757 {
1758 thread_hop_needed = 1;
1759 stepping_past_singlestep_breakpoint = 1;
1760 saved_singlestep_ptid = singlestep_ptid;
1761 }
1762 }
1763
1764 if (thread_hop_needed)
488f131b
JB
1765 {
1766 int remove_status;
1767
1768 /* Saw a breakpoint, but it was hit by the wrong thread.
1769 Just continue. */
488f131b 1770
9f976b41
DJ
1771 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1772 {
1773 /* Pull the single step breakpoints out of the target. */
1774 SOFTWARE_SINGLE_STEP (0, 0);
1775 singlestep_breakpoints_inserted_p = 0;
1776 }
1777
488f131b
JB
1778 remove_status = remove_breakpoints ();
1779 /* Did we fail to remove breakpoints? If so, try
1780 to set the PC past the bp. (There's at least
1781 one situation in which we can fail to remove
1782 the bp's: On HP-UX's that use ttrace, we can't
1783 change the address space of a vforking child
1784 process until the child exits (well, okay, not
1785 then either :-) or execs. */
1786 if (remove_status != 0)
1787 {
1788 /* FIXME! This is obviously non-portable! */
4fa8626c 1789 write_pc_pid (stop_pc + 4, ecs->ptid);
488f131b
JB
1790 /* We need to restart all the threads now,
1791 * unles we're running in scheduler-locked mode.
1792 * Use currently_stepping to determine whether to
1793 * step or continue.
1794 */
1795 /* FIXME MVS: is there any reason not to call resume()? */
1796 if (scheduler_mode == schedlock_on)
1797 target_resume (ecs->ptid,
1798 currently_stepping (ecs), TARGET_SIGNAL_0);
1799 else
1800 target_resume (RESUME_ALL,
1801 currently_stepping (ecs), TARGET_SIGNAL_0);
1802 prepare_to_wait (ecs);
1803 return;
1804 }
1805 else
1806 { /* Single step */
1807 breakpoints_inserted = 0;
1808 if (!ptid_equal (inferior_ptid, ecs->ptid))
1809 context_switch (ecs);
1810 ecs->waiton_ptid = ecs->ptid;
1811 ecs->wp = &(ecs->ws);
1812 ecs->another_trap = 1;
1813
1814 ecs->infwait_state = infwait_thread_hop_state;
1815 keep_going (ecs);
1816 registers_changed ();
1817 return;
1818 }
488f131b 1819 }
f8d40ec8
JB
1820 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1821 {
c8edd8b4 1822 sw_single_step_trap_p = 1;
f8d40ec8
JB
1823 ecs->random_signal = 0;
1824 }
488f131b
JB
1825 }
1826 else
1827 ecs->random_signal = 1;
c906108c 1828
488f131b 1829 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1830 so, then switch to that thread. */
1831 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1832 {
488f131b 1833 context_switch (ecs);
c5aa993b 1834
9a4105ab
AC
1835 if (deprecated_context_hook)
1836 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1837
488f131b
JB
1838 flush_cached_frames ();
1839 }
c906108c 1840
488f131b
JB
1841 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1842 {
1843 /* Pull the single step breakpoints out of the target. */
1844 SOFTWARE_SINGLE_STEP (0, 0);
1845 singlestep_breakpoints_inserted_p = 0;
1846 }
c906108c 1847
488f131b
JB
1848 /* If PC is pointing at a nullified instruction, then step beyond
1849 it so that the user won't be confused when GDB appears to be ready
1850 to execute it. */
c906108c 1851
488f131b
JB
1852 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1853 if (INSTRUCTION_NULLIFIED)
1854 {
1855 registers_changed ();
1856 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c906108c 1857
488f131b
JB
1858 /* We may have received a signal that we want to pass to
1859 the inferior; therefore, we must not clobber the waitstatus
1860 in WS. */
c906108c 1861
488f131b
JB
1862 ecs->infwait_state = infwait_nullified_state;
1863 ecs->waiton_ptid = ecs->ptid;
1864 ecs->wp = &(ecs->tmpstatus);
1865 prepare_to_wait (ecs);
1866 return;
1867 }
c906108c 1868
488f131b
JB
1869 /* It may not be necessary to disable the watchpoint to stop over
1870 it. For example, the PA can (with some kernel cooperation)
1871 single step over a watchpoint without disabling the watchpoint. */
1872 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1873 {
1874 resume (1, 0);
1875 prepare_to_wait (ecs);
1876 return;
1877 }
c906108c 1878
488f131b
JB
1879 /* It is far more common to need to disable a watchpoint to step
1880 the inferior over it. FIXME. What else might a debug
1881 register or page protection watchpoint scheme need here? */
1882 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1883 {
1884 /* At this point, we are stopped at an instruction which has
1885 attempted to write to a piece of memory under control of
1886 a watchpoint. The instruction hasn't actually executed
1887 yet. If we were to evaluate the watchpoint expression
1888 now, we would get the old value, and therefore no change
1889 would seem to have occurred.
1890
1891 In order to make watchpoints work `right', we really need
1892 to complete the memory write, and then evaluate the
1893 watchpoint expression. The following code does that by
1894 removing the watchpoint (actually, all watchpoints and
1895 breakpoints), single-stepping the target, re-inserting
1896 watchpoints, and then falling through to let normal
1897 single-step processing handle proceed. Since this
1898 includes evaluating watchpoints, things will come to a
1899 stop in the correct manner. */
1900
488f131b
JB
1901 remove_breakpoints ();
1902 registers_changed ();
1903 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1904
488f131b
JB
1905 ecs->waiton_ptid = ecs->ptid;
1906 ecs->wp = &(ecs->ws);
1907 ecs->infwait_state = infwait_nonstep_watch_state;
1908 prepare_to_wait (ecs);
1909 return;
1910 }
1911
1912 /* It may be possible to simply continue after a watchpoint. */
1913 if (HAVE_CONTINUABLE_WATCHPOINT)
00d4360e 1914 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
488f131b
JB
1915
1916 ecs->stop_func_start = 0;
1917 ecs->stop_func_end = 0;
1918 ecs->stop_func_name = 0;
1919 /* Don't care about return value; stop_func_start and stop_func_name
1920 will both be 0 if it doesn't work. */
1921 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1922 &ecs->stop_func_start, &ecs->stop_func_end);
1923 ecs->stop_func_start += FUNCTION_START_OFFSET;
1924 ecs->another_trap = 0;
1925 bpstat_clear (&stop_bpstat);
1926 stop_step = 0;
1927 stop_stack_dummy = 0;
1928 stop_print_frame = 1;
1929 ecs->random_signal = 0;
1930 stopped_by_random_signal = 0;
1931 breakpoints_failed = 0;
1932
1933 /* Look at the cause of the stop, and decide what to do.
1934 The alternatives are:
1935 1) break; to really stop and return to the debugger,
1936 2) drop through to start up again
1937 (set ecs->another_trap to 1 to single step once)
1938 3) set ecs->random_signal to 1, and the decision between 1 and 2
1939 will be made according to the signal handling tables. */
1940
1941 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1942 that have to do with the program's own actions. Note that
1943 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1944 on the operating system version. Here we detect when a SIGILL or
1945 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1946 something similar for SIGSEGV, since a SIGSEGV will be generated
1947 when we're trying to execute a breakpoint instruction on a
1948 non-executable stack. This happens for call dummy breakpoints
1949 for architectures like SPARC that place call dummies on the
1950 stack. */
488f131b
JB
1951
1952 if (stop_signal == TARGET_SIGNAL_TRAP
1953 || (breakpoints_inserted &&
1954 (stop_signal == TARGET_SIGNAL_ILL
03cebad2 1955 || stop_signal == TARGET_SIGNAL_SEGV
c54cfec8 1956 || stop_signal == TARGET_SIGNAL_EMT))
c0236d92
EZ
1957 || stop_soon == STOP_QUIETLY
1958 || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1959 {
1960 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1961 {
1962 stop_print_frame = 0;
1963 stop_stepping (ecs);
1964 return;
1965 }
c54cfec8
EZ
1966
1967 /* This is originated from start_remote(), start_inferior() and
1968 shared libraries hook functions. */
c0236d92 1969 if (stop_soon == STOP_QUIETLY)
488f131b
JB
1970 {
1971 stop_stepping (ecs);
1972 return;
1973 }
1974
c54cfec8
EZ
1975 /* This originates from attach_command(). We need to overwrite
1976 the stop_signal here, because some kernels don't ignore a
1977 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1978 See more comments in inferior.h. */
c0236d92 1979 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1980 {
1981 stop_stepping (ecs);
1982 if (stop_signal == TARGET_SIGNAL_STOP)
1983 stop_signal = TARGET_SIGNAL_0;
1984 return;
1985 }
1986
d303a6c7
AC
1987 /* Don't even think about breakpoints if just proceeded over a
1988 breakpoint. */
1989 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
488f131b
JB
1990 bpstat_clear (&stop_bpstat);
1991 else
1992 {
1993 /* See if there is a breakpoint at the current PC. */
00d4360e
UW
1994 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1995 stopped_by_watchpoint);
488f131b 1996
488f131b
JB
1997 /* Following in case break condition called a
1998 function. */
1999 stop_print_frame = 1;
2000 }
2001
73dd234f
AC
2002 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2003 at one stage in the past included checks for an inferior
2004 function call's call dummy's return breakpoint. The original
2005 comment, that went with the test, read:
2006
2007 ``End of a stack dummy. Some systems (e.g. Sony news) give
2008 another signal besides SIGTRAP, so check here as well as
2009 above.''
2010
2011 If someone ever tries to get get call dummys on a
2012 non-executable stack to work (where the target would stop
03cebad2
MK
2013 with something like a SIGSEGV), then those tests might need
2014 to be re-instated. Given, however, that the tests were only
73dd234f 2015 enabled when momentary breakpoints were not being used, I
03cebad2
MK
2016 suspect that it won't be the case.
2017
2018 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2019 be necessary for call dummies on a non-executable stack on
2020 SPARC. */
73dd234f 2021
488f131b
JB
2022 if (stop_signal == TARGET_SIGNAL_TRAP)
2023 ecs->random_signal
2024 = !(bpstat_explains_signal (stop_bpstat)
2025 || trap_expected
488f131b 2026 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
2027 else
2028 {
73dd234f 2029 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
2030 if (!ecs->random_signal)
2031 stop_signal = TARGET_SIGNAL_TRAP;
2032 }
2033 }
2034
2035 /* When we reach this point, we've pretty much decided
2036 that the reason for stopping must've been a random
2037 (unexpected) signal. */
2038
2039 else
2040 ecs->random_signal = 1;
488f131b 2041
04e68871 2042process_event_stop_test:
488f131b
JB
2043 /* For the program's own signals, act according to
2044 the signal handling tables. */
2045
2046 if (ecs->random_signal)
2047 {
2048 /* Signal not for debugging purposes. */
2049 int printed = 0;
2050
2051 stopped_by_random_signal = 1;
2052
2053 if (signal_print[stop_signal])
2054 {
2055 printed = 1;
2056 target_terminal_ours_for_output ();
2057 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2058 }
2059 if (signal_stop[stop_signal])
2060 {
2061 stop_stepping (ecs);
2062 return;
2063 }
2064 /* If not going to stop, give terminal back
2065 if we took it away. */
2066 else if (printed)
2067 target_terminal_inferior ();
2068
2069 /* Clear the signal if it should not be passed. */
2070 if (signal_program[stop_signal] == 0)
2071 stop_signal = TARGET_SIGNAL_0;
2072
d303a6c7
AC
2073 if (step_range_end != 0
2074 && stop_signal != TARGET_SIGNAL_0
2075 && stop_pc >= step_range_start && stop_pc < step_range_end
2076 && frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id))
2077 {
2078 /* The inferior is about to take a signal that will take it
2079 out of the single step range. Set a breakpoint at the
2080 current PC (which is presumably where the signal handler
2081 will eventually return) and then allow the inferior to
2082 run free.
2083
2084 Note that this is only needed for a signal delivered
2085 while in the single-step range. Nested signals aren't a
2086 problem as they eventually all return. */
2087 insert_step_resume_breakpoint (get_current_frame (), ecs);
2088 }
488f131b
JB
2089 keep_going (ecs);
2090 return;
2091 }
2092
2093 /* Handle cases caused by hitting a breakpoint. */
2094 {
2095 CORE_ADDR jmp_buf_pc;
2096 struct bpstat_what what;
2097
2098 what = bpstat_what (stop_bpstat);
2099
2100 if (what.call_dummy)
2101 {
2102 stop_stack_dummy = 1;
2103#ifdef HP_OS_BUG
2104 trap_expected_after_continue = 1;
2105#endif
c5aa993b 2106 }
c906108c 2107
488f131b 2108 switch (what.main_action)
c5aa993b 2109 {
488f131b
JB
2110 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2111 /* If we hit the breakpoint at longjmp, disable it for the
2112 duration of this command. Then, install a temporary
2113 breakpoint at the target of the jmp_buf. */
2114 disable_longjmp_breakpoint ();
2115 remove_breakpoints ();
2116 breakpoints_inserted = 0;
2117 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2118 {
488f131b 2119 keep_going (ecs);
104c1213 2120 return;
c5aa993b 2121 }
488f131b
JB
2122
2123 /* Need to blow away step-resume breakpoint, as it
2124 interferes with us */
2125 if (step_resume_breakpoint != NULL)
104c1213 2126 {
488f131b 2127 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2128 }
c906108c 2129
488f131b
JB
2130#if 0
2131 /* FIXME - Need to implement nested temporary breakpoints */
2132 if (step_over_calls > 0)
2133 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
c5aa993b 2134 else
488f131b 2135#endif /* 0 */
818dd999 2136 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2137 ecs->handling_longjmp = 1; /* FIXME */
2138 keep_going (ecs);
2139 return;
c906108c 2140
488f131b
JB
2141 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2142 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2143 remove_breakpoints ();
2144 breakpoints_inserted = 0;
2145#if 0
2146 /* FIXME - Need to implement nested temporary breakpoints */
2147 if (step_over_calls
aa0cd9c1
AC
2148 && (frame_id_inner (get_frame_id (get_current_frame ()),
2149 step_frame_id)))
c5aa993b 2150 {
488f131b 2151 ecs->another_trap = 1;
d4f3574e
SS
2152 keep_going (ecs);
2153 return;
c5aa993b 2154 }
488f131b
JB
2155#endif /* 0 */
2156 disable_longjmp_breakpoint ();
2157 ecs->handling_longjmp = 0; /* FIXME */
2158 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2159 break;
2160 /* else fallthrough */
2161
2162 case BPSTAT_WHAT_SINGLE:
2163 if (breakpoints_inserted)
c5aa993b 2164 {
488f131b 2165 remove_breakpoints ();
c5aa993b 2166 }
488f131b
JB
2167 breakpoints_inserted = 0;
2168 ecs->another_trap = 1;
2169 /* Still need to check other stuff, at least the case
2170 where we are stepping and step out of the right range. */
2171 break;
c906108c 2172
488f131b
JB
2173 case BPSTAT_WHAT_STOP_NOISY:
2174 stop_print_frame = 1;
c906108c 2175
d303a6c7
AC
2176 /* We are about to nuke the step_resume_breakpointt via the
2177 cleanup chain, so no need to worry about it here. */
c5aa993b 2178
488f131b
JB
2179 stop_stepping (ecs);
2180 return;
c5aa993b 2181
488f131b
JB
2182 case BPSTAT_WHAT_STOP_SILENT:
2183 stop_print_frame = 0;
c5aa993b 2184
d303a6c7
AC
2185 /* We are about to nuke the step_resume_breakpoin via the
2186 cleanup chain, so no need to worry about it here. */
c5aa993b 2187
488f131b 2188 stop_stepping (ecs);
e441088d 2189 return;
c5aa993b 2190
488f131b
JB
2191 case BPSTAT_WHAT_STEP_RESUME:
2192 /* This proably demands a more elegant solution, but, yeah
2193 right...
c5aa993b 2194
488f131b
JB
2195 This function's use of the simple variable
2196 step_resume_breakpoint doesn't seem to accomodate
2197 simultaneously active step-resume bp's, although the
2198 breakpoint list certainly can.
c5aa993b 2199
488f131b
JB
2200 If we reach here and step_resume_breakpoint is already
2201 NULL, then apparently we have multiple active
2202 step-resume bp's. We'll just delete the breakpoint we
2203 stopped at, and carry on.
2204
2205 Correction: what the code currently does is delete a
2206 step-resume bp, but it makes no effort to ensure that
2207 the one deleted is the one currently stopped at. MVS */
c5aa993b 2208
488f131b
JB
2209 if (step_resume_breakpoint == NULL)
2210 {
2211 step_resume_breakpoint =
2212 bpstat_find_step_resume_breakpoint (stop_bpstat);
2213 }
2214 delete_step_resume_breakpoint (&step_resume_breakpoint);
2215 break;
2216
2217 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
488f131b
JB
2218 /* If were waiting for a trap, hitting the step_resume_break
2219 doesn't count as getting it. */
2220 if (trap_expected)
2221 ecs->another_trap = 1;
2222 break;
2223
2224 case BPSTAT_WHAT_CHECK_SHLIBS:
2225 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2226#ifdef SOLIB_ADD
c906108c 2227 {
488f131b
JB
2228 /* Remove breakpoints, we eventually want to step over the
2229 shlib event breakpoint, and SOLIB_ADD might adjust
2230 breakpoint addresses via breakpoint_re_set. */
2231 if (breakpoints_inserted)
2232 remove_breakpoints ();
c5aa993b 2233 breakpoints_inserted = 0;
488f131b
JB
2234
2235 /* Check for any newly added shared libraries if we're
2236 supposed to be adding them automatically. Switch
2237 terminal for any messages produced by
2238 breakpoint_re_set. */
2239 target_terminal_ours_for_output ();
aff6338a
AC
2240 /* NOTE: cagney/2003-11-25: Make certain that the target
2241 stack's section table is kept up-to-date. Architectures,
2242 (e.g., PPC64), use the section table to perform
2243 operations such as address => section name and hence
2244 require the table to contain all sections (including
2245 those found in shared libraries). */
2246 /* NOTE: cagney/2003-11-25: Pass current_target and not
2247 exec_ops to SOLIB_ADD. This is because current GDB is
2248 only tooled to propagate section_table changes out from
2249 the "current_target" (see target_resize_to_sections), and
2250 not up from the exec stratum. This, of course, isn't
2251 right. "infrun.c" should only interact with the
2252 exec/process stratum, instead relying on the target stack
2253 to propagate relevant changes (stop, section table
2254 changed, ...) up to other layers. */
2255 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
2256 target_terminal_inferior ();
2257
2258 /* Try to reenable shared library breakpoints, additional
2259 code segments in shared libraries might be mapped in now. */
2260 re_enable_breakpoints_in_shlibs ();
2261
2262 /* If requested, stop when the dynamic linker notifies
2263 gdb of events. This allows the user to get control
2264 and place breakpoints in initializer routines for
2265 dynamically loaded objects (among other things). */
877522db 2266 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2267 {
488f131b 2268 stop_stepping (ecs);
d4f3574e
SS
2269 return;
2270 }
c5aa993b 2271
488f131b
JB
2272 /* If we stopped due to an explicit catchpoint, then the
2273 (see above) call to SOLIB_ADD pulled in any symbols
2274 from a newly-loaded library, if appropriate.
2275
2276 We do want the inferior to stop, but not where it is
2277 now, which is in the dynamic linker callback. Rather,
2278 we would like it stop in the user's program, just after
2279 the call that caused this catchpoint to trigger. That
2280 gives the user a more useful vantage from which to
2281 examine their program's state. */
2282 else if (what.main_action ==
2283 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2284 {
488f131b
JB
2285 /* ??rehrauer: If I could figure out how to get the
2286 right return PC from here, we could just set a temp
2287 breakpoint and resume. I'm not sure we can without
2288 cracking open the dld's shared libraries and sniffing
2289 their unwind tables and text/data ranges, and that's
2290 not a terribly portable notion.
2291
2292 Until that time, we must step the inferior out of the
2293 dld callback, and also out of the dld itself (and any
2294 code or stubs in libdld.sl, such as "shl_load" and
2295 friends) until we reach non-dld code. At that point,
2296 we can stop stepping. */
2297 bpstat_get_triggered_catchpoints (stop_bpstat,
2298 &ecs->
2299 stepping_through_solib_catchpoints);
2300 ecs->stepping_through_solib_after_catch = 1;
2301
2302 /* Be sure to lift all breakpoints, so the inferior does
2303 actually step past this point... */
2304 ecs->another_trap = 1;
2305 break;
c906108c 2306 }
c5aa993b 2307 else
c5aa993b 2308 {
488f131b 2309 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2310 ecs->another_trap = 1;
488f131b 2311 break;
c5aa993b 2312 }
488f131b
JB
2313 }
2314#endif
2315 break;
c906108c 2316
488f131b
JB
2317 case BPSTAT_WHAT_LAST:
2318 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2319
488f131b
JB
2320 case BPSTAT_WHAT_KEEP_CHECKING:
2321 break;
2322 }
2323 }
c906108c 2324
488f131b
JB
2325 /* We come here if we hit a breakpoint but should not
2326 stop for it. Possibly we also were stepping
2327 and should stop for that. So fall through and
2328 test for stepping. But, if not stepping,
2329 do not stop. */
c906108c 2330
488f131b
JB
2331 /* Are we stepping to get the inferior out of the dynamic
2332 linker's hook (and possibly the dld itself) after catching
2333 a shlib event? */
2334 if (ecs->stepping_through_solib_after_catch)
2335 {
2336#if defined(SOLIB_ADD)
2337 /* Have we reached our destination? If not, keep going. */
2338 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2339 {
2340 ecs->another_trap = 1;
2341 keep_going (ecs);
104c1213 2342 return;
488f131b
JB
2343 }
2344#endif
2345 /* Else, stop and report the catchpoint(s) whose triggering
2346 caused us to begin stepping. */
2347 ecs->stepping_through_solib_after_catch = 0;
2348 bpstat_clear (&stop_bpstat);
2349 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2350 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2351 stop_print_frame = 1;
2352 stop_stepping (ecs);
2353 return;
2354 }
c906108c 2355
488f131b
JB
2356 if (step_resume_breakpoint)
2357 {
2358 /* Having a step-resume breakpoint overrides anything
2359 else having to do with stepping commands until
2360 that breakpoint is reached. */
488f131b
JB
2361 keep_going (ecs);
2362 return;
2363 }
c5aa993b 2364
488f131b
JB
2365 if (step_range_end == 0)
2366 {
2367 /* Likewise if we aren't even stepping. */
488f131b
JB
2368 keep_going (ecs);
2369 return;
2370 }
c5aa993b 2371
488f131b 2372 /* If stepping through a line, keep going if still within it.
c906108c 2373
488f131b
JB
2374 Note that step_range_end is the address of the first instruction
2375 beyond the step range, and NOT the address of the last instruction
2376 within it! */
2377 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2378 {
488f131b
JB
2379 keep_going (ecs);
2380 return;
2381 }
c5aa993b 2382
488f131b 2383 /* We stepped out of the stepping range. */
c906108c 2384
488f131b
JB
2385 /* If we are stepping at the source level and entered the runtime
2386 loader dynamic symbol resolution code, we keep on single stepping
2387 until we exit the run time loader code and reach the callee's
2388 address. */
2389 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2390 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2391 {
4c8c40e6
MK
2392 CORE_ADDR pc_after_resolver =
2393 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2394
488f131b
JB
2395 if (pc_after_resolver)
2396 {
2397 /* Set up a step-resume breakpoint at the address
2398 indicated by SKIP_SOLIB_RESOLVER. */
2399 struct symtab_and_line sr_sal;
fe39c653 2400 init_sal (&sr_sal);
488f131b
JB
2401 sr_sal.pc = pc_after_resolver;
2402
2403 check_for_old_step_resume_breakpoint ();
2404 step_resume_breakpoint =
818dd999 2405 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2406 if (breakpoints_inserted)
2407 insert_breakpoints ();
c5aa993b 2408 }
c906108c 2409
488f131b
JB
2410 keep_going (ecs);
2411 return;
2412 }
c906108c 2413
a587af0b
AC
2414 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2415 && ecs->stop_func_name == NULL)
2416 {
2417 /* There is no symbol, not even a minimal symbol, corresponding
2418 to the address where we just stopped. So we just stepped
2419 inside undebuggable code. Since we want to step over this
2420 kind of code, we keep going until the inferior returns from
2421 the current function. */
2422 handle_step_into_function (ecs);
2423 return;
2424 }
2425
42edda50
AC
2426 if (step_range_end != 1
2427 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2428 || step_over_calls == STEP_OVER_ALL)
2429 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2430 {
42edda50
AC
2431 /* The inferior, while doing a "step" or "next", has ended up in
2432 a signal trampoline (either by a signal being delivered or by
2433 the signal handler returning). Just single-step until the
2434 inferior leaves the trampoline (either by calling the handler
2435 or returning). */
488f131b
JB
2436 keep_going (ecs);
2437 return;
2438 }
c906108c 2439
a587af0b
AC
2440 if (frame_id_eq (get_frame_id (get_prev_frame (get_current_frame ())),
2441 step_frame_id))
488f131b
JB
2442 {
2443 /* It's a subroutine call. */
1af510a8 2444 handle_step_into_function (ecs);
488f131b 2445 return;
488f131b 2446 }
c906108c 2447
488f131b 2448 /* We've wandered out of the step range. */
c906108c 2449
488f131b 2450 ecs->sal = find_pc_line (stop_pc, 0);
c906108c 2451
488f131b
JB
2452 if (step_range_end == 1)
2453 {
2454 /* It is stepi or nexti. We always want to stop stepping after
2455 one instruction. */
2456 stop_step = 1;
2457 print_stop_reason (END_STEPPING_RANGE, 0);
2458 stop_stepping (ecs);
2459 return;
2460 }
c906108c 2461
488f131b
JB
2462 /* If we're in the return path from a shared library trampoline,
2463 we want to proceed through the trampoline when stepping. */
2464 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2465 {
488f131b 2466 /* Determine where this trampoline returns. */
5cf4d23a 2467 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2468
488f131b 2469 /* Only proceed through if we know where it's going. */
d764a824 2470 if (real_stop_pc)
488f131b
JB
2471 {
2472 /* And put the step-breakpoint there and go until there. */
2473 struct symtab_and_line sr_sal;
2474
fe39c653 2475 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2476 sr_sal.pc = real_stop_pc;
488f131b
JB
2477 sr_sal.section = find_pc_overlay (sr_sal.pc);
2478 /* Do not specify what the fp should be when we stop
2479 since on some machines the prologue
2480 is where the new fp value is established. */
2481 check_for_old_step_resume_breakpoint ();
2482 step_resume_breakpoint =
818dd999 2483 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2484 if (breakpoints_inserted)
2485 insert_breakpoints ();
c906108c 2486
488f131b
JB
2487 /* Restart without fiddling with the step ranges or
2488 other state. */
2489 keep_going (ecs);
2490 return;
2491 }
2492 }
c906108c 2493
488f131b
JB
2494 if (ecs->sal.line == 0)
2495 {
2496 /* We have no line number information. That means to stop
2497 stepping (does this always happen right after one instruction,
2498 when we do "s" in a function with no line numbers,
2499 or can this happen as a result of a return or longjmp?). */
2500 stop_step = 1;
2501 print_stop_reason (END_STEPPING_RANGE, 0);
2502 stop_stepping (ecs);
2503 return;
2504 }
c906108c 2505
488f131b
JB
2506 if ((stop_pc == ecs->sal.pc)
2507 && (ecs->current_line != ecs->sal.line
2508 || ecs->current_symtab != ecs->sal.symtab))
2509 {
2510 /* We are at the start of a different line. So stop. Note that
2511 we don't stop if we step into the middle of a different line.
2512 That is said to make things like for (;;) statements work
2513 better. */
2514 stop_step = 1;
2515 print_stop_reason (END_STEPPING_RANGE, 0);
2516 stop_stepping (ecs);
2517 return;
2518 }
c906108c 2519
488f131b 2520 /* We aren't done stepping.
c906108c 2521
488f131b
JB
2522 Optimize by setting the stepping range to the line.
2523 (We might not be in the original line, but if we entered a
2524 new line in mid-statement, we continue stepping. This makes
2525 things like for(;;) statements work better.) */
c906108c 2526
488f131b 2527 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2528 {
488f131b
JB
2529 /* If this is the last line of the function, don't keep stepping
2530 (it would probably step us out of the function).
2531 This is particularly necessary for a one-line function,
2532 in which after skipping the prologue we better stop even though
2533 we will be in mid-line. */
2534 stop_step = 1;
2535 print_stop_reason (END_STEPPING_RANGE, 0);
2536 stop_stepping (ecs);
2537 return;
c5aa993b 2538 }
488f131b
JB
2539 step_range_start = ecs->sal.pc;
2540 step_range_end = ecs->sal.end;
aa0cd9c1 2541 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2542 ecs->current_line = ecs->sal.line;
2543 ecs->current_symtab = ecs->sal.symtab;
2544
aa0cd9c1
AC
2545 /* In the case where we just stepped out of a function into the
2546 middle of a line of the caller, continue stepping, but
2547 step_frame_id must be modified to current frame */
65815ea1
AC
2548#if 0
2549 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2550 generous. It will trigger on things like a step into a frameless
2551 stackless leaf function. I think the logic should instead look
2552 at the unwound frame ID has that should give a more robust
2553 indication of what happened. */
2554 if (step-ID == current-ID)
2555 still stepping in same function;
2556 else if (step-ID == unwind (current-ID))
2557 stepped into a function;
2558 else
2559 stepped out of a function;
2560 /* Of course this assumes that the frame ID unwind code is robust
2561 and we're willing to introduce frame unwind logic into this
ce2826aa 2562 function. Fortunately, those days are nearly upon us. */
65815ea1 2563#endif
488f131b 2564 {
aa0cd9c1
AC
2565 struct frame_id current_frame = get_frame_id (get_current_frame ());
2566 if (!(frame_id_inner (current_frame, step_frame_id)))
2567 step_frame_id = current_frame;
488f131b 2568 }
c906108c 2569
488f131b 2570 keep_going (ecs);
104c1213
JM
2571}
2572
2573/* Are we in the middle of stepping? */
2574
2575static int
2576currently_stepping (struct execution_control_state *ecs)
2577{
d303a6c7 2578 return ((!ecs->handling_longjmp
104c1213
JM
2579 && ((step_range_end && step_resume_breakpoint == NULL)
2580 || trap_expected))
2581 || ecs->stepping_through_solib_after_catch
2582 || bpstat_should_step ());
2583}
c906108c 2584
c2c6d25f
JM
2585/* Subroutine call with source code we should not step over. Do step
2586 to the first line of code in it. */
2587
2588static void
2589step_into_function (struct execution_control_state *ecs)
2590{
2591 struct symtab *s;
2592 struct symtab_and_line sr_sal;
2593
2594 s = find_pc_symtab (stop_pc);
2595 if (s && s->language != language_asm)
2596 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2597
2598 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2599 /* Use the step_resume_break to step until the end of the prologue,
2600 even if that involves jumps (as it seems to on the vax under
2601 4.2). */
2602 /* If the prologue ends in the middle of a source line, continue to
2603 the end of that source line (if it is still within the function).
2604 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2605 if (ecs->sal.end
2606 && ecs->sal.pc != ecs->stop_func_start
2607 && ecs->sal.end < ecs->stop_func_end)
2608 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2609
2dbd5e30
KB
2610 /* Architectures which require breakpoint adjustment might not be able
2611 to place a breakpoint at the computed address. If so, the test
2612 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2613 ecs->stop_func_start to an address at which a breakpoint may be
2614 legitimately placed.
2615
2616 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2617 made, GDB will enter an infinite loop when stepping through
2618 optimized code consisting of VLIW instructions which contain
2619 subinstructions corresponding to different source lines. On
2620 FR-V, it's not permitted to place a breakpoint on any but the
2621 first subinstruction of a VLIW instruction. When a breakpoint is
2622 set, GDB will adjust the breakpoint address to the beginning of
2623 the VLIW instruction. Thus, we need to make the corresponding
2624 adjustment here when computing the stop address. */
2625
2626 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2627 {
2628 ecs->stop_func_start
2629 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2630 ecs->stop_func_start);
2631 }
2632
c2c6d25f
JM
2633 if (ecs->stop_func_start == stop_pc)
2634 {
2635 /* We are already there: stop now. */
2636 stop_step = 1;
488f131b 2637 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2638 stop_stepping (ecs);
2639 return;
2640 }
2641 else
2642 {
2643 /* Put the step-breakpoint there and go until there. */
fe39c653 2644 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2645 sr_sal.pc = ecs->stop_func_start;
2646 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2647 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2648 some machines the prologue is where the new fp value is
2649 established. */
c2c6d25f
JM
2650 check_for_old_step_resume_breakpoint ();
2651 step_resume_breakpoint =
818dd999 2652 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
c2c6d25f
JM
2653 if (breakpoints_inserted)
2654 insert_breakpoints ();
2655
2656 /* And make sure stepping stops right away then. */
2657 step_range_end = step_range_start;
2658 }
2659 keep_going (ecs);
2660}
d4f3574e 2661
d303a6c7
AC
2662/* The inferior, as a result of a function call (has left) or signal
2663 (about to leave) the single-step range. Set a momentary breakpoint
2664 within the step range where the inferior is expected to later
2665 return. */
2666
2667static void
2668insert_step_resume_breakpoint (struct frame_info *step_frame,
2669 struct execution_control_state *ecs)
2670{
2671 struct symtab_and_line sr_sal;
2672
2673 /* This is only used within the step-resume range/frame. */
2674 gdb_assert (frame_id_eq (step_frame_id, get_frame_id (step_frame)));
2675 gdb_assert (step_range_end != 0);
922d5ae0
AC
2676 /* Remember, if the call instruction is the last in the step range,
2677 the breakpoint will land just beyond that. Hence ``<=
2678 step_range_end''. Also, ignore check when "nexti". */
2679 gdb_assert (step_range_start == step_range_end
2680 || (get_frame_pc (step_frame) >= step_range_start
2681 && get_frame_pc (step_frame) <= step_range_end));
d303a6c7
AC
2682
2683 init_sal (&sr_sal); /* initialize to zeros */
2684
2685 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (step_frame));
2686 sr_sal.section = find_pc_overlay (sr_sal.pc);
2687
2688 check_for_old_step_resume_breakpoint ();
2689
2690 step_resume_breakpoint
2691 = set_momentary_breakpoint (sr_sal, get_frame_id (step_frame),
2692 bp_step_resume);
2693
2694 if (breakpoints_inserted)
2695 insert_breakpoints ();
2696}
2697
104c1213
JM
2698static void
2699stop_stepping (struct execution_control_state *ecs)
2700{
cd0fc7c3
SS
2701 /* Let callers know we don't want to wait for the inferior anymore. */
2702 ecs->wait_some_more = 0;
2703}
2704
d4f3574e
SS
2705/* This function handles various cases where we need to continue
2706 waiting for the inferior. */
2707/* (Used to be the keep_going: label in the old wait_for_inferior) */
2708
2709static void
2710keep_going (struct execution_control_state *ecs)
2711{
d4f3574e 2712 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2713 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2714
d4f3574e
SS
2715 /* If we did not do break;, it means we should keep running the
2716 inferior and not return to debugger. */
2717
2718 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2719 {
2720 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2721 the inferior, else we'd have done a break above) and we
2722 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2723 resume (currently_stepping (ecs), stop_signal);
2724 }
2725 else
2726 {
2727 /* Either the trap was not expected, but we are continuing
488f131b
JB
2728 anyway (the user asked that this signal be passed to the
2729 child)
2730 -- or --
2731 The signal was SIGTRAP, e.g. it was our signal, but we
2732 decided we should resume from it.
d4f3574e 2733
488f131b 2734 We're going to run this baby now!
d4f3574e 2735
488f131b
JB
2736 Insert breakpoints now, unless we are trying to one-proceed
2737 past a breakpoint. */
d4f3574e 2738 /* If we've just finished a special step resume and we don't
488f131b 2739 want to hit a breakpoint, pull em out. */
d4f3574e 2740 if (step_resume_breakpoint == NULL
d4f3574e
SS
2741 && ecs->remove_breakpoints_on_following_step)
2742 {
2743 ecs->remove_breakpoints_on_following_step = 0;
2744 remove_breakpoints ();
2745 breakpoints_inserted = 0;
2746 }
d303a6c7 2747 else if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e
SS
2748 {
2749 breakpoints_failed = insert_breakpoints ();
2750 if (breakpoints_failed)
2751 {
2752 stop_stepping (ecs);
2753 return;
2754 }
2755 breakpoints_inserted = 1;
2756 }
2757
2758 trap_expected = ecs->another_trap;
2759
2760 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2761 specifies that such a signal should be delivered to the
2762 target program).
2763
2764 Typically, this would occure when a user is debugging a
2765 target monitor on a simulator: the target monitor sets a
2766 breakpoint; the simulator encounters this break-point and
2767 halts the simulation handing control to GDB; GDB, noteing
2768 that the break-point isn't valid, returns control back to the
2769 simulator; the simulator then delivers the hardware
2770 equivalent of a SIGNAL_TRAP to the program being debugged. */
2771
2772 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2773 stop_signal = TARGET_SIGNAL_0;
2774
d4f3574e
SS
2775
2776 resume (currently_stepping (ecs), stop_signal);
2777 }
2778
488f131b 2779 prepare_to_wait (ecs);
d4f3574e
SS
2780}
2781
104c1213
JM
2782/* This function normally comes after a resume, before
2783 handle_inferior_event exits. It takes care of any last bits of
2784 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2785
104c1213
JM
2786static void
2787prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2788{
104c1213
JM
2789 if (ecs->infwait_state == infwait_normal_state)
2790 {
2791 overlay_cache_invalid = 1;
2792
2793 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2794 target_wait because they can be loaded from the target while
2795 in target_wait. This makes remote debugging a bit more
2796 efficient for those targets that provide critical registers
2797 as part of their normal status mechanism. */
104c1213
JM
2798
2799 registers_changed ();
39f77062 2800 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2801 ecs->wp = &(ecs->ws);
2802 }
2803 /* This is the old end of the while loop. Let everybody know we
2804 want to wait for the inferior some more and get called again
2805 soon. */
2806 ecs->wait_some_more = 1;
c906108c 2807}
11cf8741
JM
2808
2809/* Print why the inferior has stopped. We always print something when
2810 the inferior exits, or receives a signal. The rest of the cases are
2811 dealt with later on in normal_stop() and print_it_typical(). Ideally
2812 there should be a call to this function from handle_inferior_event()
2813 each time stop_stepping() is called.*/
2814static void
2815print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2816{
2817 switch (stop_reason)
2818 {
2819 case STOP_UNKNOWN:
2820 /* We don't deal with these cases from handle_inferior_event()
2821 yet. */
2822 break;
2823 case END_STEPPING_RANGE:
2824 /* We are done with a step/next/si/ni command. */
2825 /* For now print nothing. */
fb40c209 2826 /* Print a message only if not in the middle of doing a "step n"
488f131b 2827 operation for n > 1 */
fb40c209 2828 if (!step_multi || !stop_step)
9dc5e2a9 2829 if (ui_out_is_mi_like_p (uiout))
fb40c209 2830 ui_out_field_string (uiout, "reason", "end-stepping-range");
11cf8741
JM
2831 break;
2832 case BREAKPOINT_HIT:
2833 /* We found a breakpoint. */
2834 /* For now print nothing. */
2835 break;
2836 case SIGNAL_EXITED:
2837 /* The inferior was terminated by a signal. */
8b93c638 2838 annotate_signalled ();
9dc5e2a9 2839 if (ui_out_is_mi_like_p (uiout))
fb40c209 2840 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
2841 ui_out_text (uiout, "\nProgram terminated with signal ");
2842 annotate_signal_name ();
488f131b
JB
2843 ui_out_field_string (uiout, "signal-name",
2844 target_signal_to_name (stop_info));
8b93c638
JM
2845 annotate_signal_name_end ();
2846 ui_out_text (uiout, ", ");
2847 annotate_signal_string ();
488f131b
JB
2848 ui_out_field_string (uiout, "signal-meaning",
2849 target_signal_to_string (stop_info));
8b93c638
JM
2850 annotate_signal_string_end ();
2851 ui_out_text (uiout, ".\n");
2852 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
2853 break;
2854 case EXITED:
2855 /* The inferior program is finished. */
8b93c638
JM
2856 annotate_exited (stop_info);
2857 if (stop_info)
2858 {
9dc5e2a9 2859 if (ui_out_is_mi_like_p (uiout))
fb40c209 2860 ui_out_field_string (uiout, "reason", "exited");
8b93c638 2861 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
2862 ui_out_field_fmt (uiout, "exit-code", "0%o",
2863 (unsigned int) stop_info);
8b93c638
JM
2864 ui_out_text (uiout, ".\n");
2865 }
2866 else
2867 {
9dc5e2a9 2868 if (ui_out_is_mi_like_p (uiout))
fb40c209 2869 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
2870 ui_out_text (uiout, "\nProgram exited normally.\n");
2871 }
11cf8741
JM
2872 break;
2873 case SIGNAL_RECEIVED:
2874 /* Signal received. The signal table tells us to print about
2875 it. */
8b93c638
JM
2876 annotate_signal ();
2877 ui_out_text (uiout, "\nProgram received signal ");
2878 annotate_signal_name ();
84c6c83c
KS
2879 if (ui_out_is_mi_like_p (uiout))
2880 ui_out_field_string (uiout, "reason", "signal-received");
488f131b
JB
2881 ui_out_field_string (uiout, "signal-name",
2882 target_signal_to_name (stop_info));
8b93c638
JM
2883 annotate_signal_name_end ();
2884 ui_out_text (uiout, ", ");
2885 annotate_signal_string ();
488f131b
JB
2886 ui_out_field_string (uiout, "signal-meaning",
2887 target_signal_to_string (stop_info));
8b93c638
JM
2888 annotate_signal_string_end ();
2889 ui_out_text (uiout, ".\n");
11cf8741
JM
2890 break;
2891 default:
8e65ff28
AC
2892 internal_error (__FILE__, __LINE__,
2893 "print_stop_reason: unrecognized enum value");
11cf8741
JM
2894 break;
2895 }
2896}
c906108c 2897\f
43ff13b4 2898
c906108c
SS
2899/* Here to return control to GDB when the inferior stops for real.
2900 Print appropriate messages, remove breakpoints, give terminal our modes.
2901
2902 STOP_PRINT_FRAME nonzero means print the executing frame
2903 (pc, function, args, file, line number and line text).
2904 BREAKPOINTS_FAILED nonzero means stop was due to error
2905 attempting to insert breakpoints. */
2906
2907void
96baa820 2908normal_stop (void)
c906108c 2909{
73b65bb0
DJ
2910 struct target_waitstatus last;
2911 ptid_t last_ptid;
2912
2913 get_last_target_status (&last_ptid, &last);
2914
c906108c
SS
2915 /* As with the notification of thread events, we want to delay
2916 notifying the user that we've switched thread context until
2917 the inferior actually stops.
2918
73b65bb0
DJ
2919 There's no point in saying anything if the inferior has exited.
2920 Note that SIGNALLED here means "exited with a signal", not
2921 "received a signal". */
488f131b 2922 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
2923 && target_has_execution
2924 && last.kind != TARGET_WAITKIND_SIGNALLED
2925 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
2926 {
2927 target_terminal_ours_for_output ();
c3f6f71d 2928 printf_filtered ("[Switching to %s]\n",
39f77062
KB
2929 target_pid_or_tid_to_str (inferior_ptid));
2930 previous_inferior_ptid = inferior_ptid;
c906108c 2931 }
c906108c 2932
4fa8626c 2933 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
2934 /* Make sure that the current_frame's pc is correct. This
2935 is a correction for setting up the frame info before doing
2936 DECR_PC_AFTER_BREAK */
b87efeee
AC
2937 if (target_has_execution)
2938 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2939 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2940 frame code to check for this and sort out any resultant mess.
2941 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 2942 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 2943
c906108c
SS
2944 if (target_has_execution && breakpoints_inserted)
2945 {
2946 if (remove_breakpoints ())
2947 {
2948 target_terminal_ours_for_output ();
2949 printf_filtered ("Cannot remove breakpoints because ");
2950 printf_filtered ("program is no longer writable.\n");
2951 printf_filtered ("It might be running in another process.\n");
2952 printf_filtered ("Further execution is probably impossible.\n");
2953 }
2954 }
2955 breakpoints_inserted = 0;
2956
2957 /* Delete the breakpoint we stopped at, if it wants to be deleted.
2958 Delete any breakpoint that is to be deleted at the next stop. */
2959
2960 breakpoint_auto_delete (stop_bpstat);
2961
2962 /* If an auto-display called a function and that got a signal,
2963 delete that auto-display to avoid an infinite recursion. */
2964
2965 if (stopped_by_random_signal)
2966 disable_current_display ();
2967
2968 /* Don't print a message if in the middle of doing a "step n"
2969 operation for n > 1 */
2970 if (step_multi && stop_step)
2971 goto done;
2972
2973 target_terminal_ours ();
2974
5913bcb0
AC
2975 /* Look up the hook_stop and run it (CLI internally handles problem
2976 of stop_command's pre-hook not existing). */
2977 if (stop_command)
2978 catch_errors (hook_stop_stub, stop_command,
2979 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
2980
2981 if (!target_has_stack)
2982 {
2983
2984 goto done;
2985 }
2986
2987 /* Select innermost stack frame - i.e., current frame is frame 0,
2988 and current location is based on that.
2989 Don't do this on return from a stack dummy routine,
2990 or if the program has exited. */
2991
2992 if (!stop_stack_dummy)
2993 {
0f7d239c 2994 select_frame (get_current_frame ());
c906108c
SS
2995
2996 /* Print current location without a level number, if
c5aa993b
JM
2997 we have changed functions or hit a breakpoint.
2998 Print source line if we have one.
2999 bpstat_print() contains the logic deciding in detail
3000 what to print, based on the event(s) that just occurred. */
c906108c 3001
6e7f8b9c 3002 if (stop_print_frame && deprecated_selected_frame)
c906108c
SS
3003 {
3004 int bpstat_ret;
3005 int source_flag;
917317f4 3006 int do_frame_printing = 1;
c906108c
SS
3007
3008 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3009 switch (bpstat_ret)
3010 {
3011 case PRINT_UNKNOWN:
aa0cd9c1
AC
3012 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3013 (or should) carry around the function and does (or
3014 should) use that when doing a frame comparison. */
917317f4 3015 if (stop_step
aa0cd9c1
AC
3016 && frame_id_eq (step_frame_id,
3017 get_frame_id (get_current_frame ()))
917317f4 3018 && step_start_function == find_pc_function (stop_pc))
488f131b 3019 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3020 else
488f131b 3021 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3022 break;
3023 case PRINT_SRC_AND_LOC:
488f131b 3024 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3025 break;
3026 case PRINT_SRC_ONLY:
c5394b80 3027 source_flag = SRC_LINE;
917317f4
JM
3028 break;
3029 case PRINT_NOTHING:
488f131b 3030 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3031 do_frame_printing = 0;
3032 break;
3033 default:
488f131b 3034 internal_error (__FILE__, __LINE__, "Unknown value.");
917317f4 3035 }
fb40c209 3036 /* For mi, have the same behavior every time we stop:
488f131b 3037 print everything but the source line. */
9dc5e2a9 3038 if (ui_out_is_mi_like_p (uiout))
fb40c209 3039 source_flag = LOC_AND_ADDRESS;
c906108c 3040
9dc5e2a9 3041 if (ui_out_is_mi_like_p (uiout))
39f77062 3042 ui_out_field_int (uiout, "thread-id",
488f131b 3043 pid_to_thread_id (inferior_ptid));
c906108c
SS
3044 /* The behavior of this routine with respect to the source
3045 flag is:
c5394b80
JM
3046 SRC_LINE: Print only source line
3047 LOCATION: Print only location
3048 SRC_AND_LOC: Print location and source line */
917317f4 3049 if (do_frame_printing)
0faf0076 3050 print_stack_frame (get_selected_frame (), 0, source_flag);
c906108c
SS
3051
3052 /* Display the auto-display expressions. */
3053 do_displays ();
3054 }
3055 }
3056
3057 /* Save the function value return registers, if we care.
3058 We might be about to restore their previous contents. */
3059 if (proceed_to_finish)
72cec141
AC
3060 /* NB: The copy goes through to the target picking up the value of
3061 all the registers. */
3062 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3063
3064 if (stop_stack_dummy)
3065 {
dbe9fe58
AC
3066 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3067 ends with a setting of the current frame, so we can use that
3068 next. */
3069 frame_pop (get_current_frame ());
c906108c 3070 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3071 Can't rely on restore_inferior_status because that only gets
3072 called if we don't stop in the called function. */
c906108c 3073 stop_pc = read_pc ();
0f7d239c 3074 select_frame (get_current_frame ());
c906108c
SS
3075 }
3076
c906108c
SS
3077done:
3078 annotate_stopped ();
7a464420 3079 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3080}
3081
3082static int
96baa820 3083hook_stop_stub (void *cmd)
c906108c 3084{
5913bcb0 3085 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3086 return (0);
3087}
3088\f
c5aa993b 3089int
96baa820 3090signal_stop_state (int signo)
c906108c
SS
3091{
3092 return signal_stop[signo];
3093}
3094
c5aa993b 3095int
96baa820 3096signal_print_state (int signo)
c906108c
SS
3097{
3098 return signal_print[signo];
3099}
3100
c5aa993b 3101int
96baa820 3102signal_pass_state (int signo)
c906108c
SS
3103{
3104 return signal_program[signo];
3105}
3106
488f131b 3107int
7bda5e4a 3108signal_stop_update (int signo, int state)
d4f3574e
SS
3109{
3110 int ret = signal_stop[signo];
3111 signal_stop[signo] = state;
3112 return ret;
3113}
3114
488f131b 3115int
7bda5e4a 3116signal_print_update (int signo, int state)
d4f3574e
SS
3117{
3118 int ret = signal_print[signo];
3119 signal_print[signo] = state;
3120 return ret;
3121}
3122
488f131b 3123int
7bda5e4a 3124signal_pass_update (int signo, int state)
d4f3574e
SS
3125{
3126 int ret = signal_program[signo];
3127 signal_program[signo] = state;
3128 return ret;
3129}
3130
c906108c 3131static void
96baa820 3132sig_print_header (void)
c906108c
SS
3133{
3134 printf_filtered ("\
3135Signal Stop\tPrint\tPass to program\tDescription\n");
3136}
3137
3138static void
96baa820 3139sig_print_info (enum target_signal oursig)
c906108c
SS
3140{
3141 char *name = target_signal_to_name (oursig);
3142 int name_padding = 13 - strlen (name);
96baa820 3143
c906108c
SS
3144 if (name_padding <= 0)
3145 name_padding = 0;
3146
3147 printf_filtered ("%s", name);
488f131b 3148 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3149 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3150 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3151 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3152 printf_filtered ("%s\n", target_signal_to_string (oursig));
3153}
3154
3155/* Specify how various signals in the inferior should be handled. */
3156
3157static void
96baa820 3158handle_command (char *args, int from_tty)
c906108c
SS
3159{
3160 char **argv;
3161 int digits, wordlen;
3162 int sigfirst, signum, siglast;
3163 enum target_signal oursig;
3164 int allsigs;
3165 int nsigs;
3166 unsigned char *sigs;
3167 struct cleanup *old_chain;
3168
3169 if (args == NULL)
3170 {
3171 error_no_arg ("signal to handle");
3172 }
3173
3174 /* Allocate and zero an array of flags for which signals to handle. */
3175
3176 nsigs = (int) TARGET_SIGNAL_LAST;
3177 sigs = (unsigned char *) alloca (nsigs);
3178 memset (sigs, 0, nsigs);
3179
3180 /* Break the command line up into args. */
3181
3182 argv = buildargv (args);
3183 if (argv == NULL)
3184 {
3185 nomem (0);
3186 }
7a292a7a 3187 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3188
3189 /* Walk through the args, looking for signal oursigs, signal names, and
3190 actions. Signal numbers and signal names may be interspersed with
3191 actions, with the actions being performed for all signals cumulatively
3192 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3193
3194 while (*argv != NULL)
3195 {
3196 wordlen = strlen (*argv);
3197 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3198 {;
3199 }
3200 allsigs = 0;
3201 sigfirst = siglast = -1;
3202
3203 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3204 {
3205 /* Apply action to all signals except those used by the
3206 debugger. Silently skip those. */
3207 allsigs = 1;
3208 sigfirst = 0;
3209 siglast = nsigs - 1;
3210 }
3211 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3212 {
3213 SET_SIGS (nsigs, sigs, signal_stop);
3214 SET_SIGS (nsigs, sigs, signal_print);
3215 }
3216 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3217 {
3218 UNSET_SIGS (nsigs, sigs, signal_program);
3219 }
3220 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3221 {
3222 SET_SIGS (nsigs, sigs, signal_print);
3223 }
3224 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3225 {
3226 SET_SIGS (nsigs, sigs, signal_program);
3227 }
3228 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3229 {
3230 UNSET_SIGS (nsigs, sigs, signal_stop);
3231 }
3232 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3233 {
3234 SET_SIGS (nsigs, sigs, signal_program);
3235 }
3236 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3237 {
3238 UNSET_SIGS (nsigs, sigs, signal_print);
3239 UNSET_SIGS (nsigs, sigs, signal_stop);
3240 }
3241 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3242 {
3243 UNSET_SIGS (nsigs, sigs, signal_program);
3244 }
3245 else if (digits > 0)
3246 {
3247 /* It is numeric. The numeric signal refers to our own
3248 internal signal numbering from target.h, not to host/target
3249 signal number. This is a feature; users really should be
3250 using symbolic names anyway, and the common ones like
3251 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3252
3253 sigfirst = siglast = (int)
3254 target_signal_from_command (atoi (*argv));
3255 if ((*argv)[digits] == '-')
3256 {
3257 siglast = (int)
3258 target_signal_from_command (atoi ((*argv) + digits + 1));
3259 }
3260 if (sigfirst > siglast)
3261 {
3262 /* Bet he didn't figure we'd think of this case... */
3263 signum = sigfirst;
3264 sigfirst = siglast;
3265 siglast = signum;
3266 }
3267 }
3268 else
3269 {
3270 oursig = target_signal_from_name (*argv);
3271 if (oursig != TARGET_SIGNAL_UNKNOWN)
3272 {
3273 sigfirst = siglast = (int) oursig;
3274 }
3275 else
3276 {
3277 /* Not a number and not a recognized flag word => complain. */
3278 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3279 }
3280 }
3281
3282 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3283 which signals to apply actions to. */
c906108c
SS
3284
3285 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3286 {
3287 switch ((enum target_signal) signum)
3288 {
3289 case TARGET_SIGNAL_TRAP:
3290 case TARGET_SIGNAL_INT:
3291 if (!allsigs && !sigs[signum])
3292 {
3293 if (query ("%s is used by the debugger.\n\
488f131b 3294Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3295 {
3296 sigs[signum] = 1;
3297 }
3298 else
3299 {
3300 printf_unfiltered ("Not confirmed, unchanged.\n");
3301 gdb_flush (gdb_stdout);
3302 }
3303 }
3304 break;
3305 case TARGET_SIGNAL_0:
3306 case TARGET_SIGNAL_DEFAULT:
3307 case TARGET_SIGNAL_UNKNOWN:
3308 /* Make sure that "all" doesn't print these. */
3309 break;
3310 default:
3311 sigs[signum] = 1;
3312 break;
3313 }
3314 }
3315
3316 argv++;
3317 }
3318
39f77062 3319 target_notice_signals (inferior_ptid);
c906108c
SS
3320
3321 if (from_tty)
3322 {
3323 /* Show the results. */
3324 sig_print_header ();
3325 for (signum = 0; signum < nsigs; signum++)
3326 {
3327 if (sigs[signum])
3328 {
3329 sig_print_info (signum);
3330 }
3331 }
3332 }
3333
3334 do_cleanups (old_chain);
3335}
3336
3337static void
96baa820 3338xdb_handle_command (char *args, int from_tty)
c906108c
SS
3339{
3340 char **argv;
3341 struct cleanup *old_chain;
3342
3343 /* Break the command line up into args. */
3344
3345 argv = buildargv (args);
3346 if (argv == NULL)
3347 {
3348 nomem (0);
3349 }
7a292a7a 3350 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3351 if (argv[1] != (char *) NULL)
3352 {
3353 char *argBuf;
3354 int bufLen;
3355
3356 bufLen = strlen (argv[0]) + 20;
3357 argBuf = (char *) xmalloc (bufLen);
3358 if (argBuf)
3359 {
3360 int validFlag = 1;
3361 enum target_signal oursig;
3362
3363 oursig = target_signal_from_name (argv[0]);
3364 memset (argBuf, 0, bufLen);
3365 if (strcmp (argv[1], "Q") == 0)
3366 sprintf (argBuf, "%s %s", argv[0], "noprint");
3367 else
3368 {
3369 if (strcmp (argv[1], "s") == 0)
3370 {
3371 if (!signal_stop[oursig])
3372 sprintf (argBuf, "%s %s", argv[0], "stop");
3373 else
3374 sprintf (argBuf, "%s %s", argv[0], "nostop");
3375 }
3376 else if (strcmp (argv[1], "i") == 0)
3377 {
3378 if (!signal_program[oursig])
3379 sprintf (argBuf, "%s %s", argv[0], "pass");
3380 else
3381 sprintf (argBuf, "%s %s", argv[0], "nopass");
3382 }
3383 else if (strcmp (argv[1], "r") == 0)
3384 {
3385 if (!signal_print[oursig])
3386 sprintf (argBuf, "%s %s", argv[0], "print");
3387 else
3388 sprintf (argBuf, "%s %s", argv[0], "noprint");
3389 }
3390 else
3391 validFlag = 0;
3392 }
3393 if (validFlag)
3394 handle_command (argBuf, from_tty);
3395 else
3396 printf_filtered ("Invalid signal handling flag.\n");
3397 if (argBuf)
b8c9b27d 3398 xfree (argBuf);
c906108c
SS
3399 }
3400 }
3401 do_cleanups (old_chain);
3402}
3403
3404/* Print current contents of the tables set by the handle command.
3405 It is possible we should just be printing signals actually used
3406 by the current target (but for things to work right when switching
3407 targets, all signals should be in the signal tables). */
3408
3409static void
96baa820 3410signals_info (char *signum_exp, int from_tty)
c906108c
SS
3411{
3412 enum target_signal oursig;
3413 sig_print_header ();
3414
3415 if (signum_exp)
3416 {
3417 /* First see if this is a symbol name. */
3418 oursig = target_signal_from_name (signum_exp);
3419 if (oursig == TARGET_SIGNAL_UNKNOWN)
3420 {
3421 /* No, try numeric. */
3422 oursig =
bb518678 3423 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3424 }
3425 sig_print_info (oursig);
3426 return;
3427 }
3428
3429 printf_filtered ("\n");
3430 /* These ugly casts brought to you by the native VAX compiler. */
3431 for (oursig = TARGET_SIGNAL_FIRST;
3432 (int) oursig < (int) TARGET_SIGNAL_LAST;
3433 oursig = (enum target_signal) ((int) oursig + 1))
3434 {
3435 QUIT;
3436
3437 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3438 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3439 sig_print_info (oursig);
3440 }
3441
3442 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3443}
3444\f
7a292a7a
SS
3445struct inferior_status
3446{
3447 enum target_signal stop_signal;
3448 CORE_ADDR stop_pc;
3449 bpstat stop_bpstat;
3450 int stop_step;
3451 int stop_stack_dummy;
3452 int stopped_by_random_signal;
3453 int trap_expected;
3454 CORE_ADDR step_range_start;
3455 CORE_ADDR step_range_end;
aa0cd9c1 3456 struct frame_id step_frame_id;
5fbbeb29 3457 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3458 CORE_ADDR step_resume_break_address;
3459 int stop_after_trap;
c0236d92 3460 int stop_soon;
72cec141 3461 struct regcache *stop_registers;
7a292a7a
SS
3462
3463 /* These are here because if call_function_by_hand has written some
3464 registers and then decides to call error(), we better not have changed
3465 any registers. */
72cec141 3466 struct regcache *registers;
7a292a7a 3467
101dcfbe
AC
3468 /* A frame unique identifier. */
3469 struct frame_id selected_frame_id;
3470
7a292a7a
SS
3471 int breakpoint_proceeded;
3472 int restore_stack_info;
3473 int proceed_to_finish;
3474};
3475
7a292a7a 3476void
96baa820
JM
3477write_inferior_status_register (struct inferior_status *inf_status, int regno,
3478 LONGEST val)
7a292a7a 3479{
12c266ea 3480 int size = DEPRECATED_REGISTER_RAW_SIZE (regno);
7a292a7a
SS
3481 void *buf = alloca (size);
3482 store_signed_integer (buf, size, val);
0818c12a 3483 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3484}
3485
c906108c
SS
3486/* Save all of the information associated with the inferior<==>gdb
3487 connection. INF_STATUS is a pointer to a "struct inferior_status"
3488 (defined in inferior.h). */
3489
7a292a7a 3490struct inferior_status *
96baa820 3491save_inferior_status (int restore_stack_info)
c906108c 3492{
72cec141 3493 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3494
c906108c
SS
3495 inf_status->stop_signal = stop_signal;
3496 inf_status->stop_pc = stop_pc;
3497 inf_status->stop_step = stop_step;
3498 inf_status->stop_stack_dummy = stop_stack_dummy;
3499 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3500 inf_status->trap_expected = trap_expected;
3501 inf_status->step_range_start = step_range_start;
3502 inf_status->step_range_end = step_range_end;
aa0cd9c1 3503 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3504 inf_status->step_over_calls = step_over_calls;
3505 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3506 inf_status->stop_soon = stop_soon;
c906108c
SS
3507 /* Save original bpstat chain here; replace it with copy of chain.
3508 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3509 hand them back the original chain when restore_inferior_status is
3510 called. */
c906108c
SS
3511 inf_status->stop_bpstat = stop_bpstat;
3512 stop_bpstat = bpstat_copy (stop_bpstat);
3513 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3514 inf_status->restore_stack_info = restore_stack_info;
3515 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3516
72cec141 3517 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3518
72cec141 3519 inf_status->registers = regcache_dup (current_regcache);
c906108c 3520
7a424e99 3521 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
7a292a7a 3522 return inf_status;
c906108c
SS
3523}
3524
c906108c 3525static int
96baa820 3526restore_selected_frame (void *args)
c906108c 3527{
488f131b 3528 struct frame_id *fid = (struct frame_id *) args;
c906108c 3529 struct frame_info *frame;
c906108c 3530
101dcfbe 3531 frame = frame_find_by_id (*fid);
c906108c 3532
aa0cd9c1
AC
3533 /* If inf_status->selected_frame_id is NULL, there was no previously
3534 selected frame. */
101dcfbe 3535 if (frame == NULL)
c906108c
SS
3536 {
3537 warning ("Unable to restore previously selected frame.\n");
3538 return 0;
3539 }
3540
0f7d239c 3541 select_frame (frame);
c906108c
SS
3542
3543 return (1);
3544}
3545
3546void
96baa820 3547restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3548{
3549 stop_signal = inf_status->stop_signal;
3550 stop_pc = inf_status->stop_pc;
3551 stop_step = inf_status->stop_step;
3552 stop_stack_dummy = inf_status->stop_stack_dummy;
3553 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3554 trap_expected = inf_status->trap_expected;
3555 step_range_start = inf_status->step_range_start;
3556 step_range_end = inf_status->step_range_end;
aa0cd9c1 3557 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3558 step_over_calls = inf_status->step_over_calls;
3559 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3560 stop_soon = inf_status->stop_soon;
c906108c
SS
3561 bpstat_clear (&stop_bpstat);
3562 stop_bpstat = inf_status->stop_bpstat;
3563 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3564 proceed_to_finish = inf_status->proceed_to_finish;
3565
72cec141
AC
3566 /* FIXME: Is the restore of stop_registers always needed. */
3567 regcache_xfree (stop_registers);
3568 stop_registers = inf_status->stop_registers;
c906108c
SS
3569
3570 /* The inferior can be gone if the user types "print exit(0)"
3571 (and perhaps other times). */
3572 if (target_has_execution)
72cec141
AC
3573 /* NB: The register write goes through to the target. */
3574 regcache_cpy (current_regcache, inf_status->registers);
3575 regcache_xfree (inf_status->registers);
c906108c 3576
c906108c
SS
3577 /* FIXME: If we are being called after stopping in a function which
3578 is called from gdb, we should not be trying to restore the
3579 selected frame; it just prints a spurious error message (The
3580 message is useful, however, in detecting bugs in gdb (like if gdb
3581 clobbers the stack)). In fact, should we be restoring the
3582 inferior status at all in that case? . */
3583
3584 if (target_has_stack && inf_status->restore_stack_info)
3585 {
c906108c 3586 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3587 walking the stack might encounter a garbage pointer and
3588 error() trying to dereference it. */
488f131b
JB
3589 if (catch_errors
3590 (restore_selected_frame, &inf_status->selected_frame_id,
3591 "Unable to restore previously selected frame:\n",
3592 RETURN_MASK_ERROR) == 0)
c906108c
SS
3593 /* Error in restoring the selected frame. Select the innermost
3594 frame. */
0f7d239c 3595 select_frame (get_current_frame ());
c906108c
SS
3596
3597 }
c906108c 3598
72cec141 3599 xfree (inf_status);
7a292a7a 3600}
c906108c 3601
74b7792f
AC
3602static void
3603do_restore_inferior_status_cleanup (void *sts)
3604{
3605 restore_inferior_status (sts);
3606}
3607
3608struct cleanup *
3609make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3610{
3611 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3612}
3613
c906108c 3614void
96baa820 3615discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3616{
3617 /* See save_inferior_status for info on stop_bpstat. */
3618 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3619 regcache_xfree (inf_status->registers);
3620 regcache_xfree (inf_status->stop_registers);
3621 xfree (inf_status);
7a292a7a
SS
3622}
3623
47932f85
DJ
3624int
3625inferior_has_forked (int pid, int *child_pid)
3626{
3627 struct target_waitstatus last;
3628 ptid_t last_ptid;
3629
3630 get_last_target_status (&last_ptid, &last);
3631
3632 if (last.kind != TARGET_WAITKIND_FORKED)
3633 return 0;
3634
3635 if (ptid_get_pid (last_ptid) != pid)
3636 return 0;
3637
3638 *child_pid = last.value.related_pid;
3639 return 1;
3640}
3641
3642int
3643inferior_has_vforked (int pid, int *child_pid)
3644{
3645 struct target_waitstatus last;
3646 ptid_t last_ptid;
3647
3648 get_last_target_status (&last_ptid, &last);
3649
3650 if (last.kind != TARGET_WAITKIND_VFORKED)
3651 return 0;
3652
3653 if (ptid_get_pid (last_ptid) != pid)
3654 return 0;
3655
3656 *child_pid = last.value.related_pid;
3657 return 1;
3658}
3659
3660int
3661inferior_has_execd (int pid, char **execd_pathname)
3662{
3663 struct target_waitstatus last;
3664 ptid_t last_ptid;
3665
3666 get_last_target_status (&last_ptid, &last);
3667
3668 if (last.kind != TARGET_WAITKIND_EXECD)
3669 return 0;
3670
3671 if (ptid_get_pid (last_ptid) != pid)
3672 return 0;
3673
3674 *execd_pathname = xstrdup (last.value.execd_pathname);
3675 return 1;
3676}
3677
ca6724c1
KB
3678/* Oft used ptids */
3679ptid_t null_ptid;
3680ptid_t minus_one_ptid;
3681
3682/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3683
ca6724c1
KB
3684ptid_t
3685ptid_build (int pid, long lwp, long tid)
3686{
3687 ptid_t ptid;
3688
3689 ptid.pid = pid;
3690 ptid.lwp = lwp;
3691 ptid.tid = tid;
3692 return ptid;
3693}
3694
3695/* Create a ptid from just a pid. */
3696
3697ptid_t
3698pid_to_ptid (int pid)
3699{
3700 return ptid_build (pid, 0, 0);
3701}
3702
3703/* Fetch the pid (process id) component from a ptid. */
3704
3705int
3706ptid_get_pid (ptid_t ptid)
3707{
3708 return ptid.pid;
3709}
3710
3711/* Fetch the lwp (lightweight process) component from a ptid. */
3712
3713long
3714ptid_get_lwp (ptid_t ptid)
3715{
3716 return ptid.lwp;
3717}
3718
3719/* Fetch the tid (thread id) component from a ptid. */
3720
3721long
3722ptid_get_tid (ptid_t ptid)
3723{
3724 return ptid.tid;
3725}
3726
3727/* ptid_equal() is used to test equality of two ptids. */
3728
3729int
3730ptid_equal (ptid_t ptid1, ptid_t ptid2)
3731{
3732 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3733 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3734}
3735
3736/* restore_inferior_ptid() will be used by the cleanup machinery
3737 to restore the inferior_ptid value saved in a call to
3738 save_inferior_ptid(). */
ce696e05
KB
3739
3740static void
3741restore_inferior_ptid (void *arg)
3742{
3743 ptid_t *saved_ptid_ptr = arg;
3744 inferior_ptid = *saved_ptid_ptr;
3745 xfree (arg);
3746}
3747
3748/* Save the value of inferior_ptid so that it may be restored by a
3749 later call to do_cleanups(). Returns the struct cleanup pointer
3750 needed for later doing the cleanup. */
3751
3752struct cleanup *
3753save_inferior_ptid (void)
3754{
3755 ptid_t *saved_ptid_ptr;
3756
3757 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3758 *saved_ptid_ptr = inferior_ptid;
3759 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3760}
c5aa993b 3761\f
488f131b 3762
7a292a7a 3763static void
96baa820 3764build_infrun (void)
7a292a7a 3765{
72cec141 3766 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3767}
c906108c 3768
c906108c 3769void
96baa820 3770_initialize_infrun (void)
c906108c 3771{
52f0bd74
AC
3772 int i;
3773 int numsigs;
c906108c
SS
3774 struct cmd_list_element *c;
3775
046a4708
AC
3776 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3777 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
0f71a2f6 3778
c906108c
SS
3779 add_info ("signals", signals_info,
3780 "What debugger does when program gets various signals.\n\
3781Specify a signal as argument to print info on that signal only.");
3782 add_info_alias ("handle", "signals", 0);
3783
3784 add_com ("handle", class_run, handle_command,
3785 concat ("Specify how to handle a signal.\n\
3786Args are signals and actions to apply to those signals.\n\
3787Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3788from 1-15 are allowed for compatibility with old versions of GDB.\n\
3789Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3790The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3791used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3792\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3793Stop means reenter debugger if this signal happens (implies print).\n\
3794Print means print a message if this signal happens.\n\
3795Pass means let program see this signal; otherwise program doesn't know.\n\
3796Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3797Pass and Stop may be combined.", NULL));
3798 if (xdb_commands)
3799 {
3800 add_com ("lz", class_info, signals_info,
3801 "What debugger does when program gets various signals.\n\
3802Specify a signal as argument to print info on that signal only.");
3803 add_com ("z", class_run, xdb_handle_command,
3804 concat ("Specify how to handle a signal.\n\
3805Args are signals and actions to apply to those signals.\n\
3806Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3807from 1-15 are allowed for compatibility with old versions of GDB.\n\
3808Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3809The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3810used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3811\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3812nopass), \"Q\" (noprint)\n\
3813Stop means reenter debugger if this signal happens (implies print).\n\
3814Print means print a message if this signal happens.\n\
3815Pass means let program see this signal; otherwise program doesn't know.\n\
3816Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3817Pass and Stop may be combined.", NULL));
3818 }
3819
3820 if (!dbx_commands)
488f131b
JB
3821 stop_command =
3822 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c
SS
3823This allows you to set a list of commands to be run each time execution\n\
3824of the program stops.", &cmdlist);
3825
3826 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 3827 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
3828 signal_print = (unsigned char *)
3829 xmalloc (sizeof (signal_print[0]) * numsigs);
3830 signal_program = (unsigned char *)
3831 xmalloc (sizeof (signal_program[0]) * numsigs);
3832 for (i = 0; i < numsigs; i++)
3833 {
3834 signal_stop[i] = 1;
3835 signal_print[i] = 1;
3836 signal_program[i] = 1;
3837 }
3838
3839 /* Signals caused by debugger's own actions
3840 should not be given to the program afterwards. */
3841 signal_program[TARGET_SIGNAL_TRAP] = 0;
3842 signal_program[TARGET_SIGNAL_INT] = 0;
3843
3844 /* Signals that are not errors should not normally enter the debugger. */
3845 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3846 signal_print[TARGET_SIGNAL_ALRM] = 0;
3847 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3848 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3849 signal_stop[TARGET_SIGNAL_PROF] = 0;
3850 signal_print[TARGET_SIGNAL_PROF] = 0;
3851 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3852 signal_print[TARGET_SIGNAL_CHLD] = 0;
3853 signal_stop[TARGET_SIGNAL_IO] = 0;
3854 signal_print[TARGET_SIGNAL_IO] = 0;
3855 signal_stop[TARGET_SIGNAL_POLL] = 0;
3856 signal_print[TARGET_SIGNAL_POLL] = 0;
3857 signal_stop[TARGET_SIGNAL_URG] = 0;
3858 signal_print[TARGET_SIGNAL_URG] = 0;
3859 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3860 signal_print[TARGET_SIGNAL_WINCH] = 0;
3861
cd0fc7c3
SS
3862 /* These signals are used internally by user-level thread
3863 implementations. (See signal(5) on Solaris.) Like the above
3864 signals, a healthy program receives and handles them as part of
3865 its normal operation. */
3866 signal_stop[TARGET_SIGNAL_LWP] = 0;
3867 signal_print[TARGET_SIGNAL_LWP] = 0;
3868 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3869 signal_print[TARGET_SIGNAL_WAITING] = 0;
3870 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3871 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3872
c906108c
SS
3873#ifdef SOLIB_ADD
3874 add_show_from_set
3875 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3876 (char *) &stop_on_solib_events,
3877 "Set stopping for shared library events.\n\
3878If nonzero, gdb will give control to the user when the dynamic linker\n\
3879notifies gdb of shared library events. The most common event of interest\n\
488f131b 3880to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
c906108c
SS
3881#endif
3882
3883 c = add_set_enum_cmd ("follow-fork-mode",
3884 class_run,
488f131b 3885 follow_fork_mode_kind_names, &follow_fork_mode_string,
c906108c
SS
3886 "Set debugger response to a program call of fork \
3887or vfork.\n\
3888A fork or vfork creates a new process. follow-fork-mode can be:\n\
3889 parent - the original process is debugged after a fork\n\
3890 child - the new process is debugged after a fork\n\
ea1dd7bc 3891The unfollowed process will continue to run.\n\
488f131b 3892By default, the debugger will follow the parent process.", &setlist);
c906108c
SS
3893 add_show_from_set (c, &showlist);
3894
488f131b 3895 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
1ed2a135 3896 &scheduler_mode, /* current mode */
c906108c
SS
3897 "Set mode for locking scheduler during execution.\n\
3898off == no locking (threads may preempt at any time)\n\
3899on == full locking (no thread except the current thread may run)\n\
3900step == scheduler locked during every single-step operation.\n\
3901 In this mode, no other thread may run during a step command.\n\
488f131b 3902 Other threads may run while stepping over a function call ('next').", &setlist);
c906108c 3903
9f60d481 3904 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
c906108c 3905 add_show_from_set (c, &showlist);
5fbbeb29
CF
3906
3907 c = add_set_cmd ("step-mode", class_run,
488f131b
JB
3908 var_boolean, (char *) &step_stop_if_no_debug,
3909 "Set mode of the step operation. When set, doing a step over a\n\
5fbbeb29
CF
3910function without debug line information will stop at the first\n\
3911instruction of that function. Otherwise, the function is skipped and\n\
488f131b 3912the step command stops at a different source line.", &setlist);
5fbbeb29 3913 add_show_from_set (c, &showlist);
ca6724c1
KB
3914
3915 /* ptid initializations */
3916 null_ptid = ptid_build (0, 0, 0);
3917 minus_one_ptid = ptid_build (-1, 0, 0);
3918 inferior_ptid = null_ptid;
3919 target_last_wait_ptid = minus_one_ptid;
c906108c 3920}
This page took 0.60878 seconds and 4 git commands to generate.