Always pass signals to the right thread
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
ecd75fc8 4 Copyright (C) 1986-2014 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
0e9f083f 23#include <string.h>
c906108c
SS
24#include <ctype.h>
25#include "symtab.h"
26#include "frame.h"
27#include "inferior.h"
60250e8b 28#include "exceptions.h"
c906108c 29#include "breakpoint.h"
03f2053f 30#include "gdb_wait.h"
c906108c
SS
31#include "gdbcore.h"
32#include "gdbcmd.h"
210661e7 33#include "cli/cli-script.h"
c906108c
SS
34#include "target.h"
35#include "gdbthread.h"
36#include "annotate.h"
1adeb98a 37#include "symfile.h"
7a292a7a 38#include "top.h"
c906108c 39#include <signal.h>
2acceee2 40#include "inf-loop.h"
4e052eda 41#include "regcache.h"
fd0407d6 42#include "value.h"
06600e06 43#include "observer.h"
f636b87d 44#include "language.h"
a77053c2 45#include "solib.h"
f17517ea 46#include "main.h"
186c406b
TT
47#include "dictionary.h"
48#include "block.h"
9f976b41 49#include "gdb_assert.h"
034dad6f 50#include "mi/mi-common.h"
4f8d22e3 51#include "event-top.h"
96429cc8 52#include "record.h"
d02ed0bb 53#include "record-full.h"
edb3359d 54#include "inline-frame.h"
4efc6507 55#include "jit.h"
06cd862c 56#include "tracepoint.h"
be34f849 57#include "continuations.h"
b4a14fd0 58#include "interps.h"
1bfeeb0f 59#include "skip.h"
28106bc2
SDJ
60#include "probe.h"
61#include "objfiles.h"
de0bea00 62#include "completer.h"
9107fc8d 63#include "target-descriptions.h"
f15cb84a 64#include "target-dcache.h"
c906108c
SS
65
66/* Prototypes for local functions */
67
96baa820 68static void signals_info (char *, int);
c906108c 69
96baa820 70static void handle_command (char *, int);
c906108c 71
2ea28649 72static void sig_print_info (enum gdb_signal);
c906108c 73
96baa820 74static void sig_print_header (void);
c906108c 75
74b7792f 76static void resume_cleanups (void *);
c906108c 77
96baa820 78static int hook_stop_stub (void *);
c906108c 79
96baa820
JM
80static int restore_selected_frame (void *);
81
4ef3f3be 82static int follow_fork (void);
96baa820
JM
83
84static void set_schedlock_func (char *args, int from_tty,
488f131b 85 struct cmd_list_element *c);
96baa820 86
a289b8f6
JK
87static int currently_stepping (struct thread_info *tp);
88
96baa820
JM
89static void xdb_handle_command (char *args, int from_tty);
90
91void _initialize_infrun (void);
43ff13b4 92
e58b0e63
PA
93void nullify_last_target_wait_ptid (void);
94
2c03e5be 95static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
96
97static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
98
2484c66b
UW
99static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
100
5fbbeb29
CF
101/* When set, stop the 'step' command if we enter a function which has
102 no line number information. The normal behavior is that we step
103 over such function. */
104int step_stop_if_no_debug = 0;
920d2a44
AC
105static void
106show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
107 struct cmd_list_element *c, const char *value)
108{
109 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
110}
5fbbeb29 111
1777feb0 112/* In asynchronous mode, but simulating synchronous execution. */
96baa820 113
43ff13b4
JM
114int sync_execution = 0;
115
b9f437de
PA
116/* proceed and normal_stop use this to notify the user when the
117 inferior stopped in a different thread than it had been running
118 in. */
96baa820 119
39f77062 120static ptid_t previous_inferior_ptid;
7a292a7a 121
07107ca6
LM
122/* If set (default for legacy reasons), when following a fork, GDB
123 will detach from one of the fork branches, child or parent.
124 Exactly which branch is detached depends on 'set follow-fork-mode'
125 setting. */
126
127static int detach_fork = 1;
6c95b8df 128
237fc4c9
PA
129int debug_displaced = 0;
130static void
131show_debug_displaced (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c, const char *value)
133{
134 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
135}
136
ccce17b0 137unsigned int debug_infrun = 0;
920d2a44
AC
138static void
139show_debug_infrun (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141{
142 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
143}
527159b7 144
03583c20
UW
145
146/* Support for disabling address space randomization. */
147
148int disable_randomization = 1;
149
150static void
151show_disable_randomization (struct ui_file *file, int from_tty,
152 struct cmd_list_element *c, const char *value)
153{
154 if (target_supports_disable_randomization ())
155 fprintf_filtered (file,
156 _("Disabling randomization of debuggee's "
157 "virtual address space is %s.\n"),
158 value);
159 else
160 fputs_filtered (_("Disabling randomization of debuggee's "
161 "virtual address space is unsupported on\n"
162 "this platform.\n"), file);
163}
164
165static void
166set_disable_randomization (char *args, int from_tty,
167 struct cmd_list_element *c)
168{
169 if (!target_supports_disable_randomization ())
170 error (_("Disabling randomization of debuggee's "
171 "virtual address space is unsupported on\n"
172 "this platform."));
173}
174
d32dc48e
PA
175/* User interface for non-stop mode. */
176
177int non_stop = 0;
178static int non_stop_1 = 0;
179
180static void
181set_non_stop (char *args, int from_tty,
182 struct cmd_list_element *c)
183{
184 if (target_has_execution)
185 {
186 non_stop_1 = non_stop;
187 error (_("Cannot change this setting while the inferior is running."));
188 }
189
190 non_stop = non_stop_1;
191}
192
193static void
194show_non_stop (struct ui_file *file, int from_tty,
195 struct cmd_list_element *c, const char *value)
196{
197 fprintf_filtered (file,
198 _("Controlling the inferior in non-stop mode is %s.\n"),
199 value);
200}
201
d914c394
SS
202/* "Observer mode" is somewhat like a more extreme version of
203 non-stop, in which all GDB operations that might affect the
204 target's execution have been disabled. */
205
d914c394
SS
206int observer_mode = 0;
207static int observer_mode_1 = 0;
208
209static void
210set_observer_mode (char *args, int from_tty,
211 struct cmd_list_element *c)
212{
d914c394
SS
213 if (target_has_execution)
214 {
215 observer_mode_1 = observer_mode;
216 error (_("Cannot change this setting while the inferior is running."));
217 }
218
219 observer_mode = observer_mode_1;
220
221 may_write_registers = !observer_mode;
222 may_write_memory = !observer_mode;
223 may_insert_breakpoints = !observer_mode;
224 may_insert_tracepoints = !observer_mode;
225 /* We can insert fast tracepoints in or out of observer mode,
226 but enable them if we're going into this mode. */
227 if (observer_mode)
228 may_insert_fast_tracepoints = 1;
229 may_stop = !observer_mode;
230 update_target_permissions ();
231
232 /* Going *into* observer mode we must force non-stop, then
233 going out we leave it that way. */
234 if (observer_mode)
235 {
d914c394
SS
236 pagination_enabled = 0;
237 non_stop = non_stop_1 = 1;
238 }
239
240 if (from_tty)
241 printf_filtered (_("Observer mode is now %s.\n"),
242 (observer_mode ? "on" : "off"));
243}
244
245static void
246show_observer_mode (struct ui_file *file, int from_tty,
247 struct cmd_list_element *c, const char *value)
248{
249 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
250}
251
252/* This updates the value of observer mode based on changes in
253 permissions. Note that we are deliberately ignoring the values of
254 may-write-registers and may-write-memory, since the user may have
255 reason to enable these during a session, for instance to turn on a
256 debugging-related global. */
257
258void
259update_observer_mode (void)
260{
261 int newval;
262
263 newval = (!may_insert_breakpoints
264 && !may_insert_tracepoints
265 && may_insert_fast_tracepoints
266 && !may_stop
267 && non_stop);
268
269 /* Let the user know if things change. */
270 if (newval != observer_mode)
271 printf_filtered (_("Observer mode is now %s.\n"),
272 (newval ? "on" : "off"));
273
274 observer_mode = observer_mode_1 = newval;
275}
c2c6d25f 276
c906108c
SS
277/* Tables of how to react to signals; the user sets them. */
278
279static unsigned char *signal_stop;
280static unsigned char *signal_print;
281static unsigned char *signal_program;
282
ab04a2af
TT
283/* Table of signals that are registered with "catch signal". A
284 non-zero entry indicates that the signal is caught by some "catch
285 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
286 signals. */
287static unsigned char *signal_catch;
288
2455069d
UW
289/* Table of signals that the target may silently handle.
290 This is automatically determined from the flags above,
291 and simply cached here. */
292static unsigned char *signal_pass;
293
c906108c
SS
294#define SET_SIGS(nsigs,sigs,flags) \
295 do { \
296 int signum = (nsigs); \
297 while (signum-- > 0) \
298 if ((sigs)[signum]) \
299 (flags)[signum] = 1; \
300 } while (0)
301
302#define UNSET_SIGS(nsigs,sigs,flags) \
303 do { \
304 int signum = (nsigs); \
305 while (signum-- > 0) \
306 if ((sigs)[signum]) \
307 (flags)[signum] = 0; \
308 } while (0)
309
9b224c5e
PA
310/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
311 this function is to avoid exporting `signal_program'. */
312
313void
314update_signals_program_target (void)
315{
a493e3e2 316 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
317}
318
1777feb0 319/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 320
edb3359d 321#define RESUME_ALL minus_one_ptid
c906108c
SS
322
323/* Command list pointer for the "stop" placeholder. */
324
325static struct cmd_list_element *stop_command;
326
c906108c
SS
327/* Function inferior was in as of last step command. */
328
329static struct symbol *step_start_function;
330
c906108c
SS
331/* Nonzero if we want to give control to the user when we're notified
332 of shared library events by the dynamic linker. */
628fe4e4 333int stop_on_solib_events;
f9e14852
GB
334
335/* Enable or disable optional shared library event breakpoints
336 as appropriate when the above flag is changed. */
337
338static void
339set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
340{
341 update_solib_breakpoints ();
342}
343
920d2a44
AC
344static void
345show_stop_on_solib_events (struct ui_file *file, int from_tty,
346 struct cmd_list_element *c, const char *value)
347{
348 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
349 value);
350}
c906108c 351
c906108c
SS
352/* Nonzero means expecting a trace trap
353 and should stop the inferior and return silently when it happens. */
354
355int stop_after_trap;
356
642fd101
DE
357/* Save register contents here when executing a "finish" command or are
358 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
359 Thus this contains the return value from the called function (assuming
360 values are returned in a register). */
361
72cec141 362struct regcache *stop_registers;
c906108c 363
c906108c
SS
364/* Nonzero after stop if current stack frame should be printed. */
365
366static int stop_print_frame;
367
e02bc4cc 368/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
369 returned by target_wait()/deprecated_target_wait_hook(). This
370 information is returned by get_last_target_status(). */
39f77062 371static ptid_t target_last_wait_ptid;
e02bc4cc
DS
372static struct target_waitstatus target_last_waitstatus;
373
0d1e5fa7
PA
374static void context_switch (ptid_t ptid);
375
4e1c45ea 376void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 377
7a76f5b8 378static void init_infwait_state (void);
a474d7c2 379
53904c9e
AC
380static const char follow_fork_mode_child[] = "child";
381static const char follow_fork_mode_parent[] = "parent";
382
40478521 383static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
384 follow_fork_mode_child,
385 follow_fork_mode_parent,
386 NULL
ef346e04 387};
c906108c 388
53904c9e 389static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
390static void
391show_follow_fork_mode_string (struct ui_file *file, int from_tty,
392 struct cmd_list_element *c, const char *value)
393{
3e43a32a
MS
394 fprintf_filtered (file,
395 _("Debugger response to a program "
396 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
397 value);
398}
c906108c
SS
399\f
400
e58b0e63
PA
401/* Tell the target to follow the fork we're stopped at. Returns true
402 if the inferior should be resumed; false, if the target for some
403 reason decided it's best not to resume. */
404
6604731b 405static int
4ef3f3be 406follow_fork (void)
c906108c 407{
ea1dd7bc 408 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
409 int should_resume = 1;
410 struct thread_info *tp;
411
412 /* Copy user stepping state to the new inferior thread. FIXME: the
413 followed fork child thread should have a copy of most of the
4e3990f4
DE
414 parent thread structure's run control related fields, not just these.
415 Initialized to avoid "may be used uninitialized" warnings from gcc. */
416 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 417 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
418 CORE_ADDR step_range_start = 0;
419 CORE_ADDR step_range_end = 0;
420 struct frame_id step_frame_id = { 0 };
17b2616c 421 struct interp *command_interp = NULL;
e58b0e63
PA
422
423 if (!non_stop)
424 {
425 ptid_t wait_ptid;
426 struct target_waitstatus wait_status;
427
428 /* Get the last target status returned by target_wait(). */
429 get_last_target_status (&wait_ptid, &wait_status);
430
431 /* If not stopped at a fork event, then there's nothing else to
432 do. */
433 if (wait_status.kind != TARGET_WAITKIND_FORKED
434 && wait_status.kind != TARGET_WAITKIND_VFORKED)
435 return 1;
436
437 /* Check if we switched over from WAIT_PTID, since the event was
438 reported. */
439 if (!ptid_equal (wait_ptid, minus_one_ptid)
440 && !ptid_equal (inferior_ptid, wait_ptid))
441 {
442 /* We did. Switch back to WAIT_PTID thread, to tell the
443 target to follow it (in either direction). We'll
444 afterwards refuse to resume, and inform the user what
445 happened. */
446 switch_to_thread (wait_ptid);
447 should_resume = 0;
448 }
449 }
450
451 tp = inferior_thread ();
452
453 /* If there were any forks/vforks that were caught and are now to be
454 followed, then do so now. */
455 switch (tp->pending_follow.kind)
456 {
457 case TARGET_WAITKIND_FORKED:
458 case TARGET_WAITKIND_VFORKED:
459 {
460 ptid_t parent, child;
461
462 /* If the user did a next/step, etc, over a fork call,
463 preserve the stepping state in the fork child. */
464 if (follow_child && should_resume)
465 {
8358c15c
JK
466 step_resume_breakpoint = clone_momentary_breakpoint
467 (tp->control.step_resume_breakpoint);
16c381f0
JK
468 step_range_start = tp->control.step_range_start;
469 step_range_end = tp->control.step_range_end;
470 step_frame_id = tp->control.step_frame_id;
186c406b
TT
471 exception_resume_breakpoint
472 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 473 command_interp = tp->control.command_interp;
e58b0e63
PA
474
475 /* For now, delete the parent's sr breakpoint, otherwise,
476 parent/child sr breakpoints are considered duplicates,
477 and the child version will not be installed. Remove
478 this when the breakpoints module becomes aware of
479 inferiors and address spaces. */
480 delete_step_resume_breakpoint (tp);
16c381f0
JK
481 tp->control.step_range_start = 0;
482 tp->control.step_range_end = 0;
483 tp->control.step_frame_id = null_frame_id;
186c406b 484 delete_exception_resume_breakpoint (tp);
17b2616c 485 tp->control.command_interp = NULL;
e58b0e63
PA
486 }
487
488 parent = inferior_ptid;
489 child = tp->pending_follow.value.related_pid;
490
491 /* Tell the target to do whatever is necessary to follow
492 either parent or child. */
07107ca6 493 if (target_follow_fork (follow_child, detach_fork))
e58b0e63
PA
494 {
495 /* Target refused to follow, or there's some other reason
496 we shouldn't resume. */
497 should_resume = 0;
498 }
499 else
500 {
501 /* This pending follow fork event is now handled, one way
502 or another. The previous selected thread may be gone
503 from the lists by now, but if it is still around, need
504 to clear the pending follow request. */
e09875d4 505 tp = find_thread_ptid (parent);
e58b0e63
PA
506 if (tp)
507 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
508
509 /* This makes sure we don't try to apply the "Switched
510 over from WAIT_PID" logic above. */
511 nullify_last_target_wait_ptid ();
512
1777feb0 513 /* If we followed the child, switch to it... */
e58b0e63
PA
514 if (follow_child)
515 {
516 switch_to_thread (child);
517
518 /* ... and preserve the stepping state, in case the
519 user was stepping over the fork call. */
520 if (should_resume)
521 {
522 tp = inferior_thread ();
8358c15c
JK
523 tp->control.step_resume_breakpoint
524 = step_resume_breakpoint;
16c381f0
JK
525 tp->control.step_range_start = step_range_start;
526 tp->control.step_range_end = step_range_end;
527 tp->control.step_frame_id = step_frame_id;
186c406b
TT
528 tp->control.exception_resume_breakpoint
529 = exception_resume_breakpoint;
17b2616c 530 tp->control.command_interp = command_interp;
e58b0e63
PA
531 }
532 else
533 {
534 /* If we get here, it was because we're trying to
535 resume from a fork catchpoint, but, the user
536 has switched threads away from the thread that
537 forked. In that case, the resume command
538 issued is most likely not applicable to the
539 child, so just warn, and refuse to resume. */
3e43a32a
MS
540 warning (_("Not resuming: switched threads "
541 "before following fork child.\n"));
e58b0e63
PA
542 }
543
544 /* Reset breakpoints in the child as appropriate. */
545 follow_inferior_reset_breakpoints ();
546 }
547 else
548 switch_to_thread (parent);
549 }
550 }
551 break;
552 case TARGET_WAITKIND_SPURIOUS:
553 /* Nothing to follow. */
554 break;
555 default:
556 internal_error (__FILE__, __LINE__,
557 "Unexpected pending_follow.kind %d\n",
558 tp->pending_follow.kind);
559 break;
560 }
c906108c 561
e58b0e63 562 return should_resume;
c906108c
SS
563}
564
6604731b
DJ
565void
566follow_inferior_reset_breakpoints (void)
c906108c 567{
4e1c45ea
PA
568 struct thread_info *tp = inferior_thread ();
569
6604731b
DJ
570 /* Was there a step_resume breakpoint? (There was if the user
571 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
572 thread number. Cloned step_resume breakpoints are disabled on
573 creation, so enable it here now that it is associated with the
574 correct thread.
6604731b
DJ
575
576 step_resumes are a form of bp that are made to be per-thread.
577 Since we created the step_resume bp when the parent process
578 was being debugged, and now are switching to the child process,
579 from the breakpoint package's viewpoint, that's a switch of
580 "threads". We must update the bp's notion of which thread
581 it is for, or it'll be ignored when it triggers. */
582
8358c15c 583 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
584 {
585 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
586 tp->control.step_resume_breakpoint->loc->enabled = 1;
587 }
6604731b 588
a1aa2221 589 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 590 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
591 {
592 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
593 tp->control.exception_resume_breakpoint->loc->enabled = 1;
594 }
186c406b 595
6604731b
DJ
596 /* Reinsert all breakpoints in the child. The user may have set
597 breakpoints after catching the fork, in which case those
598 were never set in the child, but only in the parent. This makes
599 sure the inserted breakpoints match the breakpoint list. */
600
601 breakpoint_re_set ();
602 insert_breakpoints ();
c906108c 603}
c906108c 604
6c95b8df
PA
605/* The child has exited or execed: resume threads of the parent the
606 user wanted to be executing. */
607
608static int
609proceed_after_vfork_done (struct thread_info *thread,
610 void *arg)
611{
612 int pid = * (int *) arg;
613
614 if (ptid_get_pid (thread->ptid) == pid
615 && is_running (thread->ptid)
616 && !is_executing (thread->ptid)
617 && !thread->stop_requested
a493e3e2 618 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
619 {
620 if (debug_infrun)
621 fprintf_unfiltered (gdb_stdlog,
622 "infrun: resuming vfork parent thread %s\n",
623 target_pid_to_str (thread->ptid));
624
625 switch_to_thread (thread->ptid);
70509625 626 clear_proceed_status (0);
a493e3e2 627 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
628 }
629
630 return 0;
631}
632
633/* Called whenever we notice an exec or exit event, to handle
634 detaching or resuming a vfork parent. */
635
636static void
637handle_vfork_child_exec_or_exit (int exec)
638{
639 struct inferior *inf = current_inferior ();
640
641 if (inf->vfork_parent)
642 {
643 int resume_parent = -1;
644
645 /* This exec or exit marks the end of the shared memory region
646 between the parent and the child. If the user wanted to
647 detach from the parent, now is the time. */
648
649 if (inf->vfork_parent->pending_detach)
650 {
651 struct thread_info *tp;
652 struct cleanup *old_chain;
653 struct program_space *pspace;
654 struct address_space *aspace;
655
1777feb0 656 /* follow-fork child, detach-on-fork on. */
6c95b8df 657
68c9da30
PA
658 inf->vfork_parent->pending_detach = 0;
659
f50f4e56
PA
660 if (!exec)
661 {
662 /* If we're handling a child exit, then inferior_ptid
663 points at the inferior's pid, not to a thread. */
664 old_chain = save_inferior_ptid ();
665 save_current_program_space ();
666 save_current_inferior ();
667 }
668 else
669 old_chain = save_current_space_and_thread ();
6c95b8df
PA
670
671 /* We're letting loose of the parent. */
672 tp = any_live_thread_of_process (inf->vfork_parent->pid);
673 switch_to_thread (tp->ptid);
674
675 /* We're about to detach from the parent, which implicitly
676 removes breakpoints from its address space. There's a
677 catch here: we want to reuse the spaces for the child,
678 but, parent/child are still sharing the pspace at this
679 point, although the exec in reality makes the kernel give
680 the child a fresh set of new pages. The problem here is
681 that the breakpoints module being unaware of this, would
682 likely chose the child process to write to the parent
683 address space. Swapping the child temporarily away from
684 the spaces has the desired effect. Yes, this is "sort
685 of" a hack. */
686
687 pspace = inf->pspace;
688 aspace = inf->aspace;
689 inf->aspace = NULL;
690 inf->pspace = NULL;
691
692 if (debug_infrun || info_verbose)
693 {
694 target_terminal_ours ();
695
696 if (exec)
697 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
698 "Detaching vfork parent process "
699 "%d after child exec.\n",
6c95b8df
PA
700 inf->vfork_parent->pid);
701 else
702 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
703 "Detaching vfork parent process "
704 "%d after child exit.\n",
6c95b8df
PA
705 inf->vfork_parent->pid);
706 }
707
708 target_detach (NULL, 0);
709
710 /* Put it back. */
711 inf->pspace = pspace;
712 inf->aspace = aspace;
713
714 do_cleanups (old_chain);
715 }
716 else if (exec)
717 {
718 /* We're staying attached to the parent, so, really give the
719 child a new address space. */
720 inf->pspace = add_program_space (maybe_new_address_space ());
721 inf->aspace = inf->pspace->aspace;
722 inf->removable = 1;
723 set_current_program_space (inf->pspace);
724
725 resume_parent = inf->vfork_parent->pid;
726
727 /* Break the bonds. */
728 inf->vfork_parent->vfork_child = NULL;
729 }
730 else
731 {
732 struct cleanup *old_chain;
733 struct program_space *pspace;
734
735 /* If this is a vfork child exiting, then the pspace and
736 aspaces were shared with the parent. Since we're
737 reporting the process exit, we'll be mourning all that is
738 found in the address space, and switching to null_ptid,
739 preparing to start a new inferior. But, since we don't
740 want to clobber the parent's address/program spaces, we
741 go ahead and create a new one for this exiting
742 inferior. */
743
744 /* Switch to null_ptid, so that clone_program_space doesn't want
745 to read the selected frame of a dead process. */
746 old_chain = save_inferior_ptid ();
747 inferior_ptid = null_ptid;
748
749 /* This inferior is dead, so avoid giving the breakpoints
750 module the option to write through to it (cloning a
751 program space resets breakpoints). */
752 inf->aspace = NULL;
753 inf->pspace = NULL;
754 pspace = add_program_space (maybe_new_address_space ());
755 set_current_program_space (pspace);
756 inf->removable = 1;
7dcd53a0 757 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
758 clone_program_space (pspace, inf->vfork_parent->pspace);
759 inf->pspace = pspace;
760 inf->aspace = pspace->aspace;
761
762 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 763 inferior. */
6c95b8df
PA
764 do_cleanups (old_chain);
765
766 resume_parent = inf->vfork_parent->pid;
767 /* Break the bonds. */
768 inf->vfork_parent->vfork_child = NULL;
769 }
770
771 inf->vfork_parent = NULL;
772
773 gdb_assert (current_program_space == inf->pspace);
774
775 if (non_stop && resume_parent != -1)
776 {
777 /* If the user wanted the parent to be running, let it go
778 free now. */
779 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
780
781 if (debug_infrun)
3e43a32a
MS
782 fprintf_unfiltered (gdb_stdlog,
783 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
784 resume_parent);
785
786 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
787
788 do_cleanups (old_chain);
789 }
790 }
791}
792
eb6c553b 793/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
794
795static const char follow_exec_mode_new[] = "new";
796static const char follow_exec_mode_same[] = "same";
40478521 797static const char *const follow_exec_mode_names[] =
6c95b8df
PA
798{
799 follow_exec_mode_new,
800 follow_exec_mode_same,
801 NULL,
802};
803
804static const char *follow_exec_mode_string = follow_exec_mode_same;
805static void
806show_follow_exec_mode_string (struct ui_file *file, int from_tty,
807 struct cmd_list_element *c, const char *value)
808{
809 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
810}
811
1777feb0 812/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 813
c906108c 814static void
3a3e9ee3 815follow_exec (ptid_t pid, char *execd_pathname)
c906108c 816{
4e1c45ea 817 struct thread_info *th = inferior_thread ();
6c95b8df 818 struct inferior *inf = current_inferior ();
7a292a7a 819
c906108c
SS
820 /* This is an exec event that we actually wish to pay attention to.
821 Refresh our symbol table to the newly exec'd program, remove any
822 momentary bp's, etc.
823
824 If there are breakpoints, they aren't really inserted now,
825 since the exec() transformed our inferior into a fresh set
826 of instructions.
827
828 We want to preserve symbolic breakpoints on the list, since
829 we have hopes that they can be reset after the new a.out's
830 symbol table is read.
831
832 However, any "raw" breakpoints must be removed from the list
833 (e.g., the solib bp's), since their address is probably invalid
834 now.
835
836 And, we DON'T want to call delete_breakpoints() here, since
837 that may write the bp's "shadow contents" (the instruction
838 value that was overwritten witha TRAP instruction). Since
1777feb0 839 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
840
841 mark_breakpoints_out ();
842
c906108c
SS
843 update_breakpoints_after_exec ();
844
845 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 846 statement through an exec(). */
8358c15c 847 th->control.step_resume_breakpoint = NULL;
186c406b 848 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
849 th->control.step_range_start = 0;
850 th->control.step_range_end = 0;
c906108c 851
a75724bc
PA
852 /* The target reports the exec event to the main thread, even if
853 some other thread does the exec, and even if the main thread was
854 already stopped --- if debugging in non-stop mode, it's possible
855 the user had the main thread held stopped in the previous image
856 --- release it now. This is the same behavior as step-over-exec
857 with scheduler-locking on in all-stop mode. */
858 th->stop_requested = 0;
859
1777feb0 860 /* What is this a.out's name? */
6c95b8df
PA
861 printf_unfiltered (_("%s is executing new program: %s\n"),
862 target_pid_to_str (inferior_ptid),
863 execd_pathname);
c906108c
SS
864
865 /* We've followed the inferior through an exec. Therefore, the
1777feb0 866 inferior has essentially been killed & reborn. */
7a292a7a 867
c906108c 868 gdb_flush (gdb_stdout);
6ca15a4b
PA
869
870 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
871
872 if (gdb_sysroot && *gdb_sysroot)
873 {
874 char *name = alloca (strlen (gdb_sysroot)
875 + strlen (execd_pathname)
876 + 1);
abbb1732 877
e85a822c
DJ
878 strcpy (name, gdb_sysroot);
879 strcat (name, execd_pathname);
880 execd_pathname = name;
881 }
c906108c 882
cce9b6bf
PA
883 /* Reset the shared library package. This ensures that we get a
884 shlib event when the child reaches "_start", at which point the
885 dld will have had a chance to initialize the child. */
886 /* Also, loading a symbol file below may trigger symbol lookups, and
887 we don't want those to be satisfied by the libraries of the
888 previous incarnation of this process. */
889 no_shared_libraries (NULL, 0);
890
6c95b8df
PA
891 if (follow_exec_mode_string == follow_exec_mode_new)
892 {
893 struct program_space *pspace;
6c95b8df
PA
894
895 /* The user wants to keep the old inferior and program spaces
896 around. Create a new fresh one, and switch to it. */
897
898 inf = add_inferior (current_inferior ()->pid);
899 pspace = add_program_space (maybe_new_address_space ());
900 inf->pspace = pspace;
901 inf->aspace = pspace->aspace;
902
903 exit_inferior_num_silent (current_inferior ()->num);
904
905 set_current_inferior (inf);
906 set_current_program_space (pspace);
907 }
9107fc8d
PA
908 else
909 {
910 /* The old description may no longer be fit for the new image.
911 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
912 old description; we'll read a new one below. No need to do
913 this on "follow-exec-mode new", as the old inferior stays
914 around (its description is later cleared/refetched on
915 restart). */
916 target_clear_description ();
917 }
6c95b8df
PA
918
919 gdb_assert (current_program_space == inf->pspace);
920
1777feb0 921 /* That a.out is now the one to use. */
6c95b8df
PA
922 exec_file_attach (execd_pathname, 0);
923
c1e56572
JK
924 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
925 (Position Independent Executable) main symbol file will get applied by
926 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
927 the breakpoints with the zero displacement. */
928
7dcd53a0
TT
929 symbol_file_add (execd_pathname,
930 (inf->symfile_flags
931 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
932 NULL, 0);
933
7dcd53a0
TT
934 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
935 set_initial_language ();
c906108c 936
9107fc8d
PA
937 /* If the target can specify a description, read it. Must do this
938 after flipping to the new executable (because the target supplied
939 description must be compatible with the executable's
940 architecture, and the old executable may e.g., be 32-bit, while
941 the new one 64-bit), and before anything involving memory or
942 registers. */
943 target_find_description ();
944
268a4a75 945 solib_create_inferior_hook (0);
c906108c 946
4efc6507
DE
947 jit_inferior_created_hook ();
948
c1e56572
JK
949 breakpoint_re_set ();
950
c906108c
SS
951 /* Reinsert all breakpoints. (Those which were symbolic have
952 been reset to the proper address in the new a.out, thanks
1777feb0 953 to symbol_file_command...). */
c906108c
SS
954 insert_breakpoints ();
955
956 /* The next resume of this inferior should bring it to the shlib
957 startup breakpoints. (If the user had also set bp's on
958 "main" from the old (parent) process, then they'll auto-
1777feb0 959 matically get reset there in the new process.). */
c906108c
SS
960}
961
962/* Non-zero if we just simulating a single-step. This is needed
963 because we cannot remove the breakpoints in the inferior process
964 until after the `wait' in `wait_for_inferior'. */
965static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
966
967/* The thread we inserted single-step breakpoints for. */
968static ptid_t singlestep_ptid;
969
fd48f117
DJ
970/* PC when we started this single-step. */
971static CORE_ADDR singlestep_pc;
972
31e77af2
PA
973/* Info about an instruction that is being stepped over. Invalid if
974 ASPACE is NULL. */
975
976struct step_over_info
977{
978 /* The instruction's address space. */
979 struct address_space *aspace;
980
981 /* The instruction's address. */
982 CORE_ADDR address;
983};
984
985/* The step-over info of the location that is being stepped over.
986
987 Note that with async/breakpoint always-inserted mode, a user might
988 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
989 being stepped over. As setting a new breakpoint inserts all
990 breakpoints, we need to make sure the breakpoint being stepped over
991 isn't inserted then. We do that by only clearing the step-over
992 info when the step-over is actually finished (or aborted).
993
994 Presently GDB can only step over one breakpoint at any given time.
995 Given threads that can't run code in the same address space as the
996 breakpoint's can't really miss the breakpoint, GDB could be taught
997 to step-over at most one breakpoint per address space (so this info
998 could move to the address space object if/when GDB is extended).
999 The set of breakpoints being stepped over will normally be much
1000 smaller than the set of all breakpoints, so a flag in the
1001 breakpoint location structure would be wasteful. A separate list
1002 also saves complexity and run-time, as otherwise we'd have to go
1003 through all breakpoint locations clearing their flag whenever we
1004 start a new sequence. Similar considerations weigh against storing
1005 this info in the thread object. Plus, not all step overs actually
1006 have breakpoint locations -- e.g., stepping past a single-step
1007 breakpoint, or stepping to complete a non-continuable
1008 watchpoint. */
1009static struct step_over_info step_over_info;
1010
1011/* Record the address of the breakpoint/instruction we're currently
1012 stepping over. */
1013
1014static void
1015set_step_over_info (struct address_space *aspace, CORE_ADDR address)
1016{
1017 step_over_info.aspace = aspace;
1018 step_over_info.address = address;
1019}
1020
1021/* Called when we're not longer stepping over a breakpoint / an
1022 instruction, so all breakpoints are free to be (re)inserted. */
1023
1024static void
1025clear_step_over_info (void)
1026{
1027 step_over_info.aspace = NULL;
1028 step_over_info.address = 0;
1029}
1030
1031/* See inferior.h. */
1032
1033int
1034stepping_past_instruction_at (struct address_space *aspace,
1035 CORE_ADDR address)
1036{
1037 return (step_over_info.aspace != NULL
1038 && breakpoint_address_match (aspace, address,
1039 step_over_info.aspace,
1040 step_over_info.address));
1041}
1042
c906108c 1043\f
237fc4c9
PA
1044/* Displaced stepping. */
1045
1046/* In non-stop debugging mode, we must take special care to manage
1047 breakpoints properly; in particular, the traditional strategy for
1048 stepping a thread past a breakpoint it has hit is unsuitable.
1049 'Displaced stepping' is a tactic for stepping one thread past a
1050 breakpoint it has hit while ensuring that other threads running
1051 concurrently will hit the breakpoint as they should.
1052
1053 The traditional way to step a thread T off a breakpoint in a
1054 multi-threaded program in all-stop mode is as follows:
1055
1056 a0) Initially, all threads are stopped, and breakpoints are not
1057 inserted.
1058 a1) We single-step T, leaving breakpoints uninserted.
1059 a2) We insert breakpoints, and resume all threads.
1060
1061 In non-stop debugging, however, this strategy is unsuitable: we
1062 don't want to have to stop all threads in the system in order to
1063 continue or step T past a breakpoint. Instead, we use displaced
1064 stepping:
1065
1066 n0) Initially, T is stopped, other threads are running, and
1067 breakpoints are inserted.
1068 n1) We copy the instruction "under" the breakpoint to a separate
1069 location, outside the main code stream, making any adjustments
1070 to the instruction, register, and memory state as directed by
1071 T's architecture.
1072 n2) We single-step T over the instruction at its new location.
1073 n3) We adjust the resulting register and memory state as directed
1074 by T's architecture. This includes resetting T's PC to point
1075 back into the main instruction stream.
1076 n4) We resume T.
1077
1078 This approach depends on the following gdbarch methods:
1079
1080 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1081 indicate where to copy the instruction, and how much space must
1082 be reserved there. We use these in step n1.
1083
1084 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1085 address, and makes any necessary adjustments to the instruction,
1086 register contents, and memory. We use this in step n1.
1087
1088 - gdbarch_displaced_step_fixup adjusts registers and memory after
1089 we have successfuly single-stepped the instruction, to yield the
1090 same effect the instruction would have had if we had executed it
1091 at its original address. We use this in step n3.
1092
1093 - gdbarch_displaced_step_free_closure provides cleanup.
1094
1095 The gdbarch_displaced_step_copy_insn and
1096 gdbarch_displaced_step_fixup functions must be written so that
1097 copying an instruction with gdbarch_displaced_step_copy_insn,
1098 single-stepping across the copied instruction, and then applying
1099 gdbarch_displaced_insn_fixup should have the same effects on the
1100 thread's memory and registers as stepping the instruction in place
1101 would have. Exactly which responsibilities fall to the copy and
1102 which fall to the fixup is up to the author of those functions.
1103
1104 See the comments in gdbarch.sh for details.
1105
1106 Note that displaced stepping and software single-step cannot
1107 currently be used in combination, although with some care I think
1108 they could be made to. Software single-step works by placing
1109 breakpoints on all possible subsequent instructions; if the
1110 displaced instruction is a PC-relative jump, those breakpoints
1111 could fall in very strange places --- on pages that aren't
1112 executable, or at addresses that are not proper instruction
1113 boundaries. (We do generally let other threads run while we wait
1114 to hit the software single-step breakpoint, and they might
1115 encounter such a corrupted instruction.) One way to work around
1116 this would be to have gdbarch_displaced_step_copy_insn fully
1117 simulate the effect of PC-relative instructions (and return NULL)
1118 on architectures that use software single-stepping.
1119
1120 In non-stop mode, we can have independent and simultaneous step
1121 requests, so more than one thread may need to simultaneously step
1122 over a breakpoint. The current implementation assumes there is
1123 only one scratch space per process. In this case, we have to
1124 serialize access to the scratch space. If thread A wants to step
1125 over a breakpoint, but we are currently waiting for some other
1126 thread to complete a displaced step, we leave thread A stopped and
1127 place it in the displaced_step_request_queue. Whenever a displaced
1128 step finishes, we pick the next thread in the queue and start a new
1129 displaced step operation on it. See displaced_step_prepare and
1130 displaced_step_fixup for details. */
1131
237fc4c9
PA
1132struct displaced_step_request
1133{
1134 ptid_t ptid;
1135 struct displaced_step_request *next;
1136};
1137
fc1cf338
PA
1138/* Per-inferior displaced stepping state. */
1139struct displaced_step_inferior_state
1140{
1141 /* Pointer to next in linked list. */
1142 struct displaced_step_inferior_state *next;
1143
1144 /* The process this displaced step state refers to. */
1145 int pid;
1146
1147 /* A queue of pending displaced stepping requests. One entry per
1148 thread that needs to do a displaced step. */
1149 struct displaced_step_request *step_request_queue;
1150
1151 /* If this is not null_ptid, this is the thread carrying out a
1152 displaced single-step in process PID. This thread's state will
1153 require fixing up once it has completed its step. */
1154 ptid_t step_ptid;
1155
1156 /* The architecture the thread had when we stepped it. */
1157 struct gdbarch *step_gdbarch;
1158
1159 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1160 for post-step cleanup. */
1161 struct displaced_step_closure *step_closure;
1162
1163 /* The address of the original instruction, and the copy we
1164 made. */
1165 CORE_ADDR step_original, step_copy;
1166
1167 /* Saved contents of copy area. */
1168 gdb_byte *step_saved_copy;
1169};
1170
1171/* The list of states of processes involved in displaced stepping
1172 presently. */
1173static struct displaced_step_inferior_state *displaced_step_inferior_states;
1174
1175/* Get the displaced stepping state of process PID. */
1176
1177static struct displaced_step_inferior_state *
1178get_displaced_stepping_state (int pid)
1179{
1180 struct displaced_step_inferior_state *state;
1181
1182 for (state = displaced_step_inferior_states;
1183 state != NULL;
1184 state = state->next)
1185 if (state->pid == pid)
1186 return state;
1187
1188 return NULL;
1189}
1190
1191/* Add a new displaced stepping state for process PID to the displaced
1192 stepping state list, or return a pointer to an already existing
1193 entry, if it already exists. Never returns NULL. */
1194
1195static struct displaced_step_inferior_state *
1196add_displaced_stepping_state (int pid)
1197{
1198 struct displaced_step_inferior_state *state;
1199
1200 for (state = displaced_step_inferior_states;
1201 state != NULL;
1202 state = state->next)
1203 if (state->pid == pid)
1204 return state;
237fc4c9 1205
fc1cf338
PA
1206 state = xcalloc (1, sizeof (*state));
1207 state->pid = pid;
1208 state->next = displaced_step_inferior_states;
1209 displaced_step_inferior_states = state;
237fc4c9 1210
fc1cf338
PA
1211 return state;
1212}
1213
a42244db
YQ
1214/* If inferior is in displaced stepping, and ADDR equals to starting address
1215 of copy area, return corresponding displaced_step_closure. Otherwise,
1216 return NULL. */
1217
1218struct displaced_step_closure*
1219get_displaced_step_closure_by_addr (CORE_ADDR addr)
1220{
1221 struct displaced_step_inferior_state *displaced
1222 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1223
1224 /* If checking the mode of displaced instruction in copy area. */
1225 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1226 && (displaced->step_copy == addr))
1227 return displaced->step_closure;
1228
1229 return NULL;
1230}
1231
fc1cf338 1232/* Remove the displaced stepping state of process PID. */
237fc4c9 1233
fc1cf338
PA
1234static void
1235remove_displaced_stepping_state (int pid)
1236{
1237 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1238
fc1cf338
PA
1239 gdb_assert (pid != 0);
1240
1241 it = displaced_step_inferior_states;
1242 prev_next_p = &displaced_step_inferior_states;
1243 while (it)
1244 {
1245 if (it->pid == pid)
1246 {
1247 *prev_next_p = it->next;
1248 xfree (it);
1249 return;
1250 }
1251
1252 prev_next_p = &it->next;
1253 it = *prev_next_p;
1254 }
1255}
1256
1257static void
1258infrun_inferior_exit (struct inferior *inf)
1259{
1260 remove_displaced_stepping_state (inf->pid);
1261}
237fc4c9 1262
fff08868
HZ
1263/* If ON, and the architecture supports it, GDB will use displaced
1264 stepping to step over breakpoints. If OFF, or if the architecture
1265 doesn't support it, GDB will instead use the traditional
1266 hold-and-step approach. If AUTO (which is the default), GDB will
1267 decide which technique to use to step over breakpoints depending on
1268 which of all-stop or non-stop mode is active --- displaced stepping
1269 in non-stop mode; hold-and-step in all-stop mode. */
1270
72d0e2c5 1271static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1272
237fc4c9
PA
1273static void
1274show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1275 struct cmd_list_element *c,
1276 const char *value)
1277{
72d0e2c5 1278 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1279 fprintf_filtered (file,
1280 _("Debugger's willingness to use displaced stepping "
1281 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1282 value, non_stop ? "on" : "off");
1283 else
3e43a32a
MS
1284 fprintf_filtered (file,
1285 _("Debugger's willingness to use displaced stepping "
1286 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1287}
1288
fff08868
HZ
1289/* Return non-zero if displaced stepping can/should be used to step
1290 over breakpoints. */
1291
237fc4c9
PA
1292static int
1293use_displaced_stepping (struct gdbarch *gdbarch)
1294{
72d0e2c5
YQ
1295 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1296 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1297 && gdbarch_displaced_step_copy_insn_p (gdbarch)
8213266a 1298 && find_record_target () == NULL);
237fc4c9
PA
1299}
1300
1301/* Clean out any stray displaced stepping state. */
1302static void
fc1cf338 1303displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1304{
1305 /* Indicate that there is no cleanup pending. */
fc1cf338 1306 displaced->step_ptid = null_ptid;
237fc4c9 1307
fc1cf338 1308 if (displaced->step_closure)
237fc4c9 1309 {
fc1cf338
PA
1310 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1311 displaced->step_closure);
1312 displaced->step_closure = NULL;
237fc4c9
PA
1313 }
1314}
1315
1316static void
fc1cf338 1317displaced_step_clear_cleanup (void *arg)
237fc4c9 1318{
fc1cf338
PA
1319 struct displaced_step_inferior_state *state = arg;
1320
1321 displaced_step_clear (state);
237fc4c9
PA
1322}
1323
1324/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1325void
1326displaced_step_dump_bytes (struct ui_file *file,
1327 const gdb_byte *buf,
1328 size_t len)
1329{
1330 int i;
1331
1332 for (i = 0; i < len; i++)
1333 fprintf_unfiltered (file, "%02x ", buf[i]);
1334 fputs_unfiltered ("\n", file);
1335}
1336
1337/* Prepare to single-step, using displaced stepping.
1338
1339 Note that we cannot use displaced stepping when we have a signal to
1340 deliver. If we have a signal to deliver and an instruction to step
1341 over, then after the step, there will be no indication from the
1342 target whether the thread entered a signal handler or ignored the
1343 signal and stepped over the instruction successfully --- both cases
1344 result in a simple SIGTRAP. In the first case we mustn't do a
1345 fixup, and in the second case we must --- but we can't tell which.
1346 Comments in the code for 'random signals' in handle_inferior_event
1347 explain how we handle this case instead.
1348
1349 Returns 1 if preparing was successful -- this thread is going to be
1350 stepped now; or 0 if displaced stepping this thread got queued. */
1351static int
1352displaced_step_prepare (ptid_t ptid)
1353{
ad53cd71 1354 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1355 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1356 struct regcache *regcache = get_thread_regcache (ptid);
1357 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1358 CORE_ADDR original, copy;
1359 ULONGEST len;
1360 struct displaced_step_closure *closure;
fc1cf338 1361 struct displaced_step_inferior_state *displaced;
9e529e1d 1362 int status;
237fc4c9
PA
1363
1364 /* We should never reach this function if the architecture does not
1365 support displaced stepping. */
1366 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1367
c1e36e3e
PA
1368 /* Disable range stepping while executing in the scratch pad. We
1369 want a single-step even if executing the displaced instruction in
1370 the scratch buffer lands within the stepping range (e.g., a
1371 jump/branch). */
1372 tp->control.may_range_step = 0;
1373
fc1cf338
PA
1374 /* We have to displaced step one thread at a time, as we only have
1375 access to a single scratch space per inferior. */
237fc4c9 1376
fc1cf338
PA
1377 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1378
1379 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1380 {
1381 /* Already waiting for a displaced step to finish. Defer this
1382 request and place in queue. */
1383 struct displaced_step_request *req, *new_req;
1384
1385 if (debug_displaced)
1386 fprintf_unfiltered (gdb_stdlog,
1387 "displaced: defering step of %s\n",
1388 target_pid_to_str (ptid));
1389
1390 new_req = xmalloc (sizeof (*new_req));
1391 new_req->ptid = ptid;
1392 new_req->next = NULL;
1393
fc1cf338 1394 if (displaced->step_request_queue)
237fc4c9 1395 {
fc1cf338 1396 for (req = displaced->step_request_queue;
237fc4c9
PA
1397 req && req->next;
1398 req = req->next)
1399 ;
1400 req->next = new_req;
1401 }
1402 else
fc1cf338 1403 displaced->step_request_queue = new_req;
237fc4c9
PA
1404
1405 return 0;
1406 }
1407 else
1408 {
1409 if (debug_displaced)
1410 fprintf_unfiltered (gdb_stdlog,
1411 "displaced: stepping %s now\n",
1412 target_pid_to_str (ptid));
1413 }
1414
fc1cf338 1415 displaced_step_clear (displaced);
237fc4c9 1416
ad53cd71
PA
1417 old_cleanups = save_inferior_ptid ();
1418 inferior_ptid = ptid;
1419
515630c5 1420 original = regcache_read_pc (regcache);
237fc4c9
PA
1421
1422 copy = gdbarch_displaced_step_location (gdbarch);
1423 len = gdbarch_max_insn_length (gdbarch);
1424
1425 /* Save the original contents of the copy area. */
fc1cf338 1426 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1427 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1428 &displaced->step_saved_copy);
9e529e1d
JK
1429 status = target_read_memory (copy, displaced->step_saved_copy, len);
1430 if (status != 0)
1431 throw_error (MEMORY_ERROR,
1432 _("Error accessing memory address %s (%s) for "
1433 "displaced-stepping scratch space."),
1434 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1435 if (debug_displaced)
1436 {
5af949e3
UW
1437 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1438 paddress (gdbarch, copy));
fc1cf338
PA
1439 displaced_step_dump_bytes (gdb_stdlog,
1440 displaced->step_saved_copy,
1441 len);
237fc4c9
PA
1442 };
1443
1444 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1445 original, copy, regcache);
237fc4c9
PA
1446
1447 /* We don't support the fully-simulated case at present. */
1448 gdb_assert (closure);
1449
9f5a595d
UW
1450 /* Save the information we need to fix things up if the step
1451 succeeds. */
fc1cf338
PA
1452 displaced->step_ptid = ptid;
1453 displaced->step_gdbarch = gdbarch;
1454 displaced->step_closure = closure;
1455 displaced->step_original = original;
1456 displaced->step_copy = copy;
9f5a595d 1457
fc1cf338 1458 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1459
1460 /* Resume execution at the copy. */
515630c5 1461 regcache_write_pc (regcache, copy);
237fc4c9 1462
ad53cd71
PA
1463 discard_cleanups (ignore_cleanups);
1464
1465 do_cleanups (old_cleanups);
237fc4c9
PA
1466
1467 if (debug_displaced)
5af949e3
UW
1468 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1469 paddress (gdbarch, copy));
237fc4c9 1470
237fc4c9
PA
1471 return 1;
1472}
1473
237fc4c9 1474static void
3e43a32a
MS
1475write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1476 const gdb_byte *myaddr, int len)
237fc4c9
PA
1477{
1478 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1479
237fc4c9
PA
1480 inferior_ptid = ptid;
1481 write_memory (memaddr, myaddr, len);
1482 do_cleanups (ptid_cleanup);
1483}
1484
e2d96639
YQ
1485/* Restore the contents of the copy area for thread PTID. */
1486
1487static void
1488displaced_step_restore (struct displaced_step_inferior_state *displaced,
1489 ptid_t ptid)
1490{
1491 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1492
1493 write_memory_ptid (ptid, displaced->step_copy,
1494 displaced->step_saved_copy, len);
1495 if (debug_displaced)
1496 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1497 target_pid_to_str (ptid),
1498 paddress (displaced->step_gdbarch,
1499 displaced->step_copy));
1500}
1501
237fc4c9 1502static void
2ea28649 1503displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1504{
1505 struct cleanup *old_cleanups;
fc1cf338
PA
1506 struct displaced_step_inferior_state *displaced
1507 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1508
1509 /* Was any thread of this process doing a displaced step? */
1510 if (displaced == NULL)
1511 return;
237fc4c9
PA
1512
1513 /* Was this event for the pid we displaced? */
fc1cf338
PA
1514 if (ptid_equal (displaced->step_ptid, null_ptid)
1515 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1516 return;
1517
fc1cf338 1518 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1519
e2d96639 1520 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1521
1522 /* Did the instruction complete successfully? */
a493e3e2 1523 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1524 {
1525 /* Fix up the resulting state. */
fc1cf338
PA
1526 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1527 displaced->step_closure,
1528 displaced->step_original,
1529 displaced->step_copy,
1530 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1531 }
1532 else
1533 {
1534 /* Since the instruction didn't complete, all we can do is
1535 relocate the PC. */
515630c5
UW
1536 struct regcache *regcache = get_thread_regcache (event_ptid);
1537 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1538
fc1cf338 1539 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1540 regcache_write_pc (regcache, pc);
237fc4c9
PA
1541 }
1542
1543 do_cleanups (old_cleanups);
1544
fc1cf338 1545 displaced->step_ptid = null_ptid;
1c5cfe86 1546
237fc4c9 1547 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1548 one now. Leave the state object around, since we're likely to
1549 need it again soon. */
1550 while (displaced->step_request_queue)
237fc4c9
PA
1551 {
1552 struct displaced_step_request *head;
1553 ptid_t ptid;
5af949e3 1554 struct regcache *regcache;
929dfd4f 1555 struct gdbarch *gdbarch;
1c5cfe86 1556 CORE_ADDR actual_pc;
6c95b8df 1557 struct address_space *aspace;
237fc4c9 1558
fc1cf338 1559 head = displaced->step_request_queue;
237fc4c9 1560 ptid = head->ptid;
fc1cf338 1561 displaced->step_request_queue = head->next;
237fc4c9
PA
1562 xfree (head);
1563
ad53cd71
PA
1564 context_switch (ptid);
1565
5af949e3
UW
1566 regcache = get_thread_regcache (ptid);
1567 actual_pc = regcache_read_pc (regcache);
6c95b8df 1568 aspace = get_regcache_aspace (regcache);
1c5cfe86 1569
6c95b8df 1570 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1571 {
1c5cfe86
PA
1572 if (debug_displaced)
1573 fprintf_unfiltered (gdb_stdlog,
1574 "displaced: stepping queued %s now\n",
1575 target_pid_to_str (ptid));
1576
1577 displaced_step_prepare (ptid);
1578
929dfd4f
JB
1579 gdbarch = get_regcache_arch (regcache);
1580
1c5cfe86
PA
1581 if (debug_displaced)
1582 {
929dfd4f 1583 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1584 gdb_byte buf[4];
1585
5af949e3
UW
1586 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1587 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1588 read_memory (actual_pc, buf, sizeof (buf));
1589 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1590 }
1591
fc1cf338
PA
1592 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1593 displaced->step_closure))
a493e3e2 1594 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1595 else
a493e3e2 1596 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1597
1598 /* Done, we're stepping a thread. */
1599 break;
ad53cd71 1600 }
1c5cfe86
PA
1601 else
1602 {
1603 int step;
1604 struct thread_info *tp = inferior_thread ();
1605
1606 /* The breakpoint we were sitting under has since been
1607 removed. */
16c381f0 1608 tp->control.trap_expected = 0;
1c5cfe86
PA
1609
1610 /* Go back to what we were trying to do. */
1611 step = currently_stepping (tp);
ad53cd71 1612
1c5cfe86 1613 if (debug_displaced)
3e43a32a 1614 fprintf_unfiltered (gdb_stdlog,
27d2932e 1615 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1616 target_pid_to_str (tp->ptid), step);
1617
a493e3e2
PA
1618 target_resume (ptid, step, GDB_SIGNAL_0);
1619 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1620
1621 /* This request was discarded. See if there's any other
1622 thread waiting for its turn. */
1623 }
237fc4c9
PA
1624 }
1625}
1626
5231c1fd
PA
1627/* Update global variables holding ptids to hold NEW_PTID if they were
1628 holding OLD_PTID. */
1629static void
1630infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1631{
1632 struct displaced_step_request *it;
fc1cf338 1633 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1634
1635 if (ptid_equal (inferior_ptid, old_ptid))
1636 inferior_ptid = new_ptid;
1637
1638 if (ptid_equal (singlestep_ptid, old_ptid))
1639 singlestep_ptid = new_ptid;
1640
fc1cf338
PA
1641 for (displaced = displaced_step_inferior_states;
1642 displaced;
1643 displaced = displaced->next)
1644 {
1645 if (ptid_equal (displaced->step_ptid, old_ptid))
1646 displaced->step_ptid = new_ptid;
1647
1648 for (it = displaced->step_request_queue; it; it = it->next)
1649 if (ptid_equal (it->ptid, old_ptid))
1650 it->ptid = new_ptid;
1651 }
5231c1fd
PA
1652}
1653
237fc4c9
PA
1654\f
1655/* Resuming. */
c906108c
SS
1656
1657/* Things to clean up if we QUIT out of resume (). */
c906108c 1658static void
74b7792f 1659resume_cleanups (void *ignore)
c906108c
SS
1660{
1661 normal_stop ();
1662}
1663
53904c9e
AC
1664static const char schedlock_off[] = "off";
1665static const char schedlock_on[] = "on";
1666static const char schedlock_step[] = "step";
40478521 1667static const char *const scheduler_enums[] = {
ef346e04
AC
1668 schedlock_off,
1669 schedlock_on,
1670 schedlock_step,
1671 NULL
1672};
920d2a44
AC
1673static const char *scheduler_mode = schedlock_off;
1674static void
1675show_scheduler_mode (struct ui_file *file, int from_tty,
1676 struct cmd_list_element *c, const char *value)
1677{
3e43a32a
MS
1678 fprintf_filtered (file,
1679 _("Mode for locking scheduler "
1680 "during execution is \"%s\".\n"),
920d2a44
AC
1681 value);
1682}
c906108c
SS
1683
1684static void
96baa820 1685set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1686{
eefe576e
AC
1687 if (!target_can_lock_scheduler)
1688 {
1689 scheduler_mode = schedlock_off;
1690 error (_("Target '%s' cannot support this command."), target_shortname);
1691 }
c906108c
SS
1692}
1693
d4db2f36
PA
1694/* True if execution commands resume all threads of all processes by
1695 default; otherwise, resume only threads of the current inferior
1696 process. */
1697int sched_multi = 0;
1698
2facfe5c
DD
1699/* Try to setup for software single stepping over the specified location.
1700 Return 1 if target_resume() should use hardware single step.
1701
1702 GDBARCH the current gdbarch.
1703 PC the location to step over. */
1704
1705static int
1706maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1707{
1708 int hw_step = 1;
1709
f02253f1
HZ
1710 if (execution_direction == EXEC_FORWARD
1711 && gdbarch_software_single_step_p (gdbarch)
99e40580 1712 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1713 {
99e40580
UW
1714 hw_step = 0;
1715 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1716 `wait_for_inferior'. */
99e40580
UW
1717 singlestep_breakpoints_inserted_p = 1;
1718 singlestep_ptid = inferior_ptid;
1719 singlestep_pc = pc;
2facfe5c
DD
1720 }
1721 return hw_step;
1722}
c906108c 1723
09cee04b
PA
1724ptid_t
1725user_visible_resume_ptid (int step)
1726{
1727 /* By default, resume all threads of all processes. */
1728 ptid_t resume_ptid = RESUME_ALL;
1729
1730 /* Maybe resume only all threads of the current process. */
1731 if (!sched_multi && target_supports_multi_process ())
1732 {
1733 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1734 }
1735
1736 /* Maybe resume a single thread after all. */
1737 if (non_stop)
1738 {
1739 /* With non-stop mode on, threads are always handled
1740 individually. */
1741 resume_ptid = inferior_ptid;
1742 }
1743 else if ((scheduler_mode == schedlock_on)
1744 || (scheduler_mode == schedlock_step
1745 && (step || singlestep_breakpoints_inserted_p)))
1746 {
1747 /* User-settable 'scheduler' mode requires solo thread resume. */
1748 resume_ptid = inferior_ptid;
1749 }
1750
70509625
PA
1751 /* We may actually resume fewer threads at first, e.g., if a thread
1752 is stopped at a breakpoint that needs stepping-off, but that
1753 should not be visible to the user/frontend, and neither should
1754 the frontend/user be allowed to proceed any of the threads that
1755 happen to be stopped for internal run control handling, if a
1756 previous command wanted them resumed. */
09cee04b
PA
1757 return resume_ptid;
1758}
1759
c906108c
SS
1760/* Resume the inferior, but allow a QUIT. This is useful if the user
1761 wants to interrupt some lengthy single-stepping operation
1762 (for child processes, the SIGINT goes to the inferior, and so
1763 we get a SIGINT random_signal, but for remote debugging and perhaps
1764 other targets, that's not true).
1765
1766 STEP nonzero if we should step (zero to continue instead).
1767 SIG is the signal to give the inferior (zero for none). */
1768void
2ea28649 1769resume (int step, enum gdb_signal sig)
c906108c 1770{
74b7792f 1771 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1772 struct regcache *regcache = get_current_regcache ();
1773 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1774 struct thread_info *tp = inferior_thread ();
515630c5 1775 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1776 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 1777 ptid_t resume_ptid;
a09dd441
PA
1778 /* From here on, this represents the caller's step vs continue
1779 request, while STEP represents what we'll actually request the
1780 target to do. STEP can decay from a step to a continue, if e.g.,
1781 we need to implement single-stepping with breakpoints (software
1782 single-step). When deciding whether "set scheduler-locking step"
1783 applies, it's the callers intention that counts. */
1784 const int entry_step = step;
c7e8a53c 1785
c906108c
SS
1786 QUIT;
1787
74609e71
YQ
1788 if (current_inferior ()->waiting_for_vfork_done)
1789 {
48f9886d
PA
1790 /* Don't try to single-step a vfork parent that is waiting for
1791 the child to get out of the shared memory region (by exec'ing
1792 or exiting). This is particularly important on software
1793 single-step archs, as the child process would trip on the
1794 software single step breakpoint inserted for the parent
1795 process. Since the parent will not actually execute any
1796 instruction until the child is out of the shared region (such
1797 are vfork's semantics), it is safe to simply continue it.
1798 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1799 the parent, and tell it to `keep_going', which automatically
1800 re-sets it stepping. */
74609e71
YQ
1801 if (debug_infrun)
1802 fprintf_unfiltered (gdb_stdlog,
1803 "infrun: resume : clear step\n");
a09dd441 1804 step = 0;
74609e71
YQ
1805 }
1806
527159b7 1807 if (debug_infrun)
237fc4c9 1808 fprintf_unfiltered (gdb_stdlog,
c9737c08 1809 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 1810 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
1811 step, gdb_signal_to_symbol_string (sig),
1812 tp->control.trap_expected,
0d9a9a5f
PA
1813 target_pid_to_str (inferior_ptid),
1814 paddress (gdbarch, pc));
c906108c 1815
c2c6d25f
JM
1816 /* Normally, by the time we reach `resume', the breakpoints are either
1817 removed or inserted, as appropriate. The exception is if we're sitting
1818 at a permanent breakpoint; we need to step over it, but permanent
1819 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1820 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1821 {
515630c5
UW
1822 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1823 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1824 else
ac74f770
MS
1825 error (_("\
1826The program is stopped at a permanent breakpoint, but GDB does not know\n\
1827how to step past a permanent breakpoint on this architecture. Try using\n\
1828a command like `return' or `jump' to continue execution."));
6d350bb5 1829 }
c2c6d25f 1830
c1e36e3e
PA
1831 /* If we have a breakpoint to step over, make sure to do a single
1832 step only. Same if we have software watchpoints. */
1833 if (tp->control.trap_expected || bpstat_should_step ())
1834 tp->control.may_range_step = 0;
1835
237fc4c9
PA
1836 /* If enabled, step over breakpoints by executing a copy of the
1837 instruction at a different address.
1838
1839 We can't use displaced stepping when we have a signal to deliver;
1840 the comments for displaced_step_prepare explain why. The
1841 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1842 signals' explain what we do instead.
1843
1844 We can't use displaced stepping when we are waiting for vfork_done
1845 event, displaced stepping breaks the vfork child similarly as single
1846 step software breakpoint. */
515630c5 1847 if (use_displaced_stepping (gdbarch)
16c381f0 1848 && (tp->control.trap_expected
a09dd441 1849 || (step && gdbarch_software_single_step_p (gdbarch)))
a493e3e2 1850 && sig == GDB_SIGNAL_0
74609e71 1851 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1852 {
fc1cf338
PA
1853 struct displaced_step_inferior_state *displaced;
1854
237fc4c9 1855 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1856 {
1857 /* Got placed in displaced stepping queue. Will be resumed
1858 later when all the currently queued displaced stepping
251bde03
PA
1859 requests finish. The thread is not executing at this
1860 point, and the call to set_executing will be made later.
1861 But we need to call set_running here, since from the
1862 user/frontend's point of view, threads were set running.
1863 Unless we're calling an inferior function, as in that
1864 case we pretend the inferior doesn't run at all. */
1865 if (!tp->control.in_infcall)
a09dd441 1866 set_running (user_visible_resume_ptid (entry_step), 1);
d56b7306
VP
1867 discard_cleanups (old_cleanups);
1868 return;
1869 }
99e40580 1870
ca7781d2
LM
1871 /* Update pc to reflect the new address from which we will execute
1872 instructions due to displaced stepping. */
1873 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1874
fc1cf338 1875 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
a09dd441
PA
1876 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1877 displaced->step_closure);
237fc4c9
PA
1878 }
1879
2facfe5c 1880 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1881 else if (step)
2facfe5c 1882 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1883
30852783
UW
1884 /* Currently, our software single-step implementation leads to different
1885 results than hardware single-stepping in one situation: when stepping
1886 into delivering a signal which has an associated signal handler,
1887 hardware single-step will stop at the first instruction of the handler,
1888 while software single-step will simply skip execution of the handler.
1889
1890 For now, this difference in behavior is accepted since there is no
1891 easy way to actually implement single-stepping into a signal handler
1892 without kernel support.
1893
1894 However, there is one scenario where this difference leads to follow-on
1895 problems: if we're stepping off a breakpoint by removing all breakpoints
1896 and then single-stepping. In this case, the software single-step
1897 behavior means that even if there is a *breakpoint* in the signal
1898 handler, GDB still would not stop.
1899
1900 Fortunately, we can at least fix this particular issue. We detect
1901 here the case where we are about to deliver a signal while software
1902 single-stepping with breakpoints removed. In this situation, we
1903 revert the decisions to remove all breakpoints and insert single-
1904 step breakpoints, and instead we install a step-resume breakpoint
1905 at the current address, deliver the signal without stepping, and
1906 once we arrive back at the step-resume breakpoint, actually step
1907 over the breakpoint we originally wanted to step over. */
1908 if (singlestep_breakpoints_inserted_p
a493e3e2 1909 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
30852783
UW
1910 {
1911 /* If we have nested signals or a pending signal is delivered
1912 immediately after a handler returns, might might already have
1913 a step-resume breakpoint set on the earlier handler. We cannot
1914 set another step-resume breakpoint; just continue on until the
1915 original breakpoint is hit. */
1916 if (tp->control.step_resume_breakpoint == NULL)
1917 {
2c03e5be 1918 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1919 tp->step_after_step_resume_breakpoint = 1;
1920 }
1921
1922 remove_single_step_breakpoints ();
1923 singlestep_breakpoints_inserted_p = 0;
1924
31e77af2 1925 clear_step_over_info ();
30852783 1926 tp->control.trap_expected = 0;
31e77af2
PA
1927
1928 insert_breakpoints ();
30852783
UW
1929 }
1930
b0f16a3e
SM
1931 /* If STEP is set, it's a request to use hardware stepping
1932 facilities. But in that case, we should never
1933 use singlestep breakpoint. */
1934 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
dfcd3bfb 1935
b0f16a3e
SM
1936 /* Decide the set of threads to ask the target to resume. Start
1937 by assuming everything will be resumed, than narrow the set
1938 by applying increasingly restricting conditions. */
a09dd441 1939 resume_ptid = user_visible_resume_ptid (entry_step);
cd76b0b7 1940
251bde03
PA
1941 /* Even if RESUME_PTID is a wildcard, and we end up resuming less
1942 (e.g., we might need to step over a breakpoint), from the
1943 user/frontend's point of view, all threads in RESUME_PTID are now
1944 running. Unless we're calling an inferior function, as in that
1945 case pretend we inferior doesn't run at all. */
1946 if (!tp->control.in_infcall)
1947 set_running (resume_ptid, 1);
1948
b0f16a3e
SM
1949 /* Maybe resume a single thread after all. */
1950 if ((step || singlestep_breakpoints_inserted_p)
1951 && tp->control.trap_expected)
1952 {
1953 /* We're allowing a thread to run past a breakpoint it has
1954 hit, by single-stepping the thread with the breakpoint
1955 removed. In which case, we need to single-step only this
1956 thread, and keep others stopped, as they can miss this
1957 breakpoint if allowed to run. */
1958 resume_ptid = inferior_ptid;
1959 }
d4db2f36 1960
b0f16a3e
SM
1961 if (gdbarch_cannot_step_breakpoint (gdbarch))
1962 {
1963 /* Most targets can step a breakpoint instruction, thus
1964 executing it normally. But if this one cannot, just
1965 continue and we will hit it anyway. */
1966 if (step && breakpoint_inserted_here_p (aspace, pc))
1967 step = 0;
1968 }
ef5cf84e 1969
b0f16a3e
SM
1970 if (debug_displaced
1971 && use_displaced_stepping (gdbarch)
1972 && tp->control.trap_expected)
1973 {
1974 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1975 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1976 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1977 gdb_byte buf[4];
1978
1979 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1980 paddress (resume_gdbarch, actual_pc));
1981 read_memory (actual_pc, buf, sizeof (buf));
1982 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1983 }
237fc4c9 1984
b0f16a3e
SM
1985 if (tp->control.may_range_step)
1986 {
1987 /* If we're resuming a thread with the PC out of the step
1988 range, then we're doing some nested/finer run control
1989 operation, like stepping the thread out of the dynamic
1990 linker or the displaced stepping scratch pad. We
1991 shouldn't have allowed a range step then. */
1992 gdb_assert (pc_in_thread_step_range (pc, tp));
1993 }
c1e36e3e 1994
b0f16a3e
SM
1995 /* Install inferior's terminal modes. */
1996 target_terminal_inferior ();
1997
1998 /* Avoid confusing the next resume, if the next stop/resume
1999 happens to apply to another thread. */
2000 tp->suspend.stop_signal = GDB_SIGNAL_0;
2001
2002 /* Advise target which signals may be handled silently. If we have
2003 removed breakpoints because we are stepping over one (which can
2004 happen only if we are not using displaced stepping), we need to
2005 receive all signals to avoid accidentally skipping a breakpoint
2006 during execution of a signal handler. */
2007 if ((step || singlestep_breakpoints_inserted_p)
2008 && tp->control.trap_expected
2009 && !use_displaced_stepping (gdbarch))
2010 target_pass_signals (0, NULL);
2011 else
2012 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 2013
b0f16a3e 2014 target_resume (resume_ptid, step, sig);
c906108c
SS
2015
2016 discard_cleanups (old_cleanups);
2017}
2018\f
237fc4c9 2019/* Proceeding. */
c906108c
SS
2020
2021/* Clear out all variables saying what to do when inferior is continued.
2022 First do this, then set the ones you want, then call `proceed'. */
2023
a7212384
UW
2024static void
2025clear_proceed_status_thread (struct thread_info *tp)
c906108c 2026{
a7212384
UW
2027 if (debug_infrun)
2028 fprintf_unfiltered (gdb_stdlog,
2029 "infrun: clear_proceed_status_thread (%s)\n",
2030 target_pid_to_str (tp->ptid));
d6b48e9c 2031
70509625
PA
2032 /* If this signal should not be seen by program, give it zero.
2033 Used for debugging signals. */
2034 if (!signal_pass_state (tp->suspend.stop_signal))
2035 tp->suspend.stop_signal = GDB_SIGNAL_0;
2036
16c381f0
JK
2037 tp->control.trap_expected = 0;
2038 tp->control.step_range_start = 0;
2039 tp->control.step_range_end = 0;
c1e36e3e 2040 tp->control.may_range_step = 0;
16c381f0
JK
2041 tp->control.step_frame_id = null_frame_id;
2042 tp->control.step_stack_frame_id = null_frame_id;
2043 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 2044 tp->stop_requested = 0;
4e1c45ea 2045
16c381f0 2046 tp->control.stop_step = 0;
32400beb 2047
16c381f0 2048 tp->control.proceed_to_finish = 0;
414c69f7 2049
17b2616c
PA
2050 tp->control.command_interp = NULL;
2051
a7212384 2052 /* Discard any remaining commands or status from previous stop. */
16c381f0 2053 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2054}
32400beb 2055
a7212384 2056void
70509625 2057clear_proceed_status (int step)
a7212384 2058{
6c95b8df
PA
2059 if (!non_stop)
2060 {
70509625
PA
2061 struct thread_info *tp;
2062 ptid_t resume_ptid;
2063
2064 resume_ptid = user_visible_resume_ptid (step);
2065
2066 /* In all-stop mode, delete the per-thread status of all threads
2067 we're about to resume, implicitly and explicitly. */
2068 ALL_NON_EXITED_THREADS (tp)
2069 {
2070 if (!ptid_match (tp->ptid, resume_ptid))
2071 continue;
2072 clear_proceed_status_thread (tp);
2073 }
6c95b8df
PA
2074 }
2075
a7212384
UW
2076 if (!ptid_equal (inferior_ptid, null_ptid))
2077 {
2078 struct inferior *inferior;
2079
2080 if (non_stop)
2081 {
6c95b8df
PA
2082 /* If in non-stop mode, only delete the per-thread status of
2083 the current thread. */
a7212384
UW
2084 clear_proceed_status_thread (inferior_thread ());
2085 }
6c95b8df 2086
d6b48e9c 2087 inferior = current_inferior ();
16c381f0 2088 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2089 }
2090
c906108c 2091 stop_after_trap = 0;
f3b1572e 2092
31e77af2
PA
2093 clear_step_over_info ();
2094
f3b1572e 2095 observer_notify_about_to_proceed ();
c906108c 2096
d5c31457
UW
2097 if (stop_registers)
2098 {
2099 regcache_xfree (stop_registers);
2100 stop_registers = NULL;
2101 }
c906108c
SS
2102}
2103
99619bea
PA
2104/* Returns true if TP is still stopped at a breakpoint that needs
2105 stepping-over in order to make progress. If the breakpoint is gone
2106 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2107
2108static int
99619bea
PA
2109thread_still_needs_step_over (struct thread_info *tp)
2110{
2111 if (tp->stepping_over_breakpoint)
2112 {
2113 struct regcache *regcache = get_thread_regcache (tp->ptid);
2114
2115 if (breakpoint_here_p (get_regcache_aspace (regcache),
2116 regcache_read_pc (regcache)))
2117 return 1;
2118
2119 tp->stepping_over_breakpoint = 0;
2120 }
2121
2122 return 0;
2123}
2124
483805cf
PA
2125/* Returns true if scheduler locking applies. STEP indicates whether
2126 we're about to do a step/next-like command to a thread. */
2127
2128static int
2129schedlock_applies (int step)
2130{
2131 return (scheduler_mode == schedlock_on
2132 || (scheduler_mode == schedlock_step
2133 && step));
2134}
2135
99619bea
PA
2136/* Look a thread other than EXCEPT that has previously reported a
2137 breakpoint event, and thus needs a step-over in order to make
2138 progress. Returns NULL is none is found. STEP indicates whether
2139 we're about to step the current thread, in order to decide whether
2140 "set scheduler-locking step" applies. */
2141
2142static struct thread_info *
2143find_thread_needs_step_over (int step, struct thread_info *except)
ea67f13b 2144{
99619bea 2145 struct thread_info *tp, *current;
5a437975
DE
2146
2147 /* With non-stop mode on, threads are always handled individually. */
2148 gdb_assert (! non_stop);
ea67f13b 2149
99619bea 2150 current = inferior_thread ();
d4db2f36 2151
99619bea
PA
2152 /* If scheduler locking applies, we can avoid iterating over all
2153 threads. */
483805cf 2154 if (schedlock_applies (step))
ea67f13b 2155 {
99619bea
PA
2156 if (except != current
2157 && thread_still_needs_step_over (current))
2158 return current;
515630c5 2159
99619bea
PA
2160 return NULL;
2161 }
0d9a9a5f 2162
034f788c 2163 ALL_NON_EXITED_THREADS (tp)
99619bea
PA
2164 {
2165 /* Ignore the EXCEPT thread. */
2166 if (tp == except)
2167 continue;
2168 /* Ignore threads of processes we're not resuming. */
2169 if (!sched_multi
2170 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2171 continue;
2172
2173 if (thread_still_needs_step_over (tp))
2174 return tp;
ea67f13b
DJ
2175 }
2176
99619bea 2177 return NULL;
ea67f13b 2178}
e4846b08 2179
c906108c
SS
2180/* Basic routine for continuing the program in various fashions.
2181
2182 ADDR is the address to resume at, or -1 for resume where stopped.
2183 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2184 or -1 for act according to how it stopped.
c906108c 2185 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2186 -1 means return after that and print nothing.
2187 You should probably set various step_... variables
2188 before calling here, if you are stepping.
c906108c
SS
2189
2190 You should call clear_proceed_status before calling proceed. */
2191
2192void
2ea28649 2193proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2194{
e58b0e63
PA
2195 struct regcache *regcache;
2196 struct gdbarch *gdbarch;
4e1c45ea 2197 struct thread_info *tp;
e58b0e63 2198 CORE_ADDR pc;
6c95b8df 2199 struct address_space *aspace;
c906108c 2200
e58b0e63
PA
2201 /* If we're stopped at a fork/vfork, follow the branch set by the
2202 "set follow-fork-mode" command; otherwise, we'll just proceed
2203 resuming the current thread. */
2204 if (!follow_fork ())
2205 {
2206 /* The target for some reason decided not to resume. */
2207 normal_stop ();
f148b27e
PA
2208 if (target_can_async_p ())
2209 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2210 return;
2211 }
2212
842951eb
PA
2213 /* We'll update this if & when we switch to a new thread. */
2214 previous_inferior_ptid = inferior_ptid;
2215
e58b0e63
PA
2216 regcache = get_current_regcache ();
2217 gdbarch = get_regcache_arch (regcache);
6c95b8df 2218 aspace = get_regcache_aspace (regcache);
e58b0e63 2219 pc = regcache_read_pc (regcache);
2adfaa28 2220 tp = inferior_thread ();
e58b0e63 2221
c906108c 2222 if (step > 0)
515630c5 2223 step_start_function = find_pc_function (pc);
c906108c
SS
2224 if (step < 0)
2225 stop_after_trap = 1;
2226
99619bea
PA
2227 /* Fill in with reasonable starting values. */
2228 init_thread_stepping_state (tp);
2229
2acceee2 2230 if (addr == (CORE_ADDR) -1)
c906108c 2231 {
6c95b8df 2232 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2233 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2234 /* There is a breakpoint at the address we will resume at,
2235 step one instruction before inserting breakpoints so that
2236 we do not stop right away (and report a second hit at this
b2175913
MS
2237 breakpoint).
2238
2239 Note, we don't do this in reverse, because we won't
2240 actually be executing the breakpoint insn anyway.
2241 We'll be (un-)executing the previous instruction. */
99619bea 2242 tp->stepping_over_breakpoint = 1;
515630c5
UW
2243 else if (gdbarch_single_step_through_delay_p (gdbarch)
2244 && gdbarch_single_step_through_delay (gdbarch,
2245 get_current_frame ()))
3352ef37
AC
2246 /* We stepped onto an instruction that needs to be stepped
2247 again before re-inserting the breakpoint, do so. */
99619bea 2248 tp->stepping_over_breakpoint = 1;
c906108c
SS
2249 }
2250 else
2251 {
515630c5 2252 regcache_write_pc (regcache, addr);
c906108c
SS
2253 }
2254
70509625
PA
2255 if (siggnal != GDB_SIGNAL_DEFAULT)
2256 tp->suspend.stop_signal = siggnal;
2257
17b2616c
PA
2258 /* Record the interpreter that issued the execution command that
2259 caused this thread to resume. If the top level interpreter is
2260 MI/async, and the execution command was a CLI command
2261 (next/step/etc.), we'll want to print stop event output to the MI
2262 console channel (the stepped-to line, etc.), as if the user
2263 entered the execution command on a real GDB console. */
2264 inferior_thread ()->control.command_interp = command_interp ();
2265
527159b7 2266 if (debug_infrun)
8a9de0e4 2267 fprintf_unfiltered (gdb_stdlog,
c9737c08
PA
2268 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2269 paddress (gdbarch, addr),
2270 gdb_signal_to_symbol_string (siggnal), step);
527159b7 2271
94cc34af
PA
2272 if (non_stop)
2273 /* In non-stop, each thread is handled individually. The context
2274 must already be set to the right thread here. */
2275 ;
2276 else
2277 {
99619bea
PA
2278 struct thread_info *step_over;
2279
94cc34af
PA
2280 /* In a multi-threaded task we may select another thread and
2281 then continue or step.
c906108c 2282
94cc34af
PA
2283 But if the old thread was stopped at a breakpoint, it will
2284 immediately cause another breakpoint stop without any
2285 execution (i.e. it will report a breakpoint hit incorrectly).
2286 So we must step over it first.
c906108c 2287
99619bea
PA
2288 Look for a thread other than the current (TP) that reported a
2289 breakpoint hit and hasn't been resumed yet since. */
2290 step_over = find_thread_needs_step_over (step, tp);
2291 if (step_over != NULL)
2adfaa28 2292 {
99619bea
PA
2293 if (debug_infrun)
2294 fprintf_unfiltered (gdb_stdlog,
2295 "infrun: need to step-over [%s] first\n",
2296 target_pid_to_str (step_over->ptid));
2297
2298 /* Store the prev_pc for the stepping thread too, needed by
2299 switch_back_to_stepping thread. */
2300 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2301 switch_to_thread (step_over->ptid);
2302 tp = step_over;
2adfaa28 2303 }
94cc34af 2304 }
c906108c 2305
31e77af2
PA
2306 /* If we need to step over a breakpoint, and we're not using
2307 displaced stepping to do so, insert all breakpoints (watchpoints,
2308 etc.) but the one we're stepping over, step one instruction, and
2309 then re-insert the breakpoint when that step is finished. */
99619bea 2310 if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
30852783 2311 {
31e77af2
PA
2312 struct regcache *regcache = get_current_regcache ();
2313
2314 set_step_over_info (get_regcache_aspace (regcache),
2315 regcache_read_pc (regcache));
30852783 2316 }
31e77af2
PA
2317 else
2318 clear_step_over_info ();
30852783 2319
31e77af2 2320 insert_breakpoints ();
30852783 2321
99619bea
PA
2322 tp->control.trap_expected = tp->stepping_over_breakpoint;
2323
c906108c
SS
2324 annotate_starting ();
2325
2326 /* Make sure that output from GDB appears before output from the
2327 inferior. */
2328 gdb_flush (gdb_stdout);
2329
e4846b08 2330 /* Refresh prev_pc value just prior to resuming. This used to be
22bcd14b 2331 done in stop_waiting, however, setting prev_pc there did not handle
e4846b08
JJ
2332 scenarios such as inferior function calls or returning from
2333 a function via the return command. In those cases, the prev_pc
2334 value was not set properly for subsequent commands. The prev_pc value
2335 is used to initialize the starting line number in the ecs. With an
2336 invalid value, the gdb next command ends up stopping at the position
2337 represented by the next line table entry past our start position.
2338 On platforms that generate one line table entry per line, this
2339 is not a problem. However, on the ia64, the compiler generates
2340 extraneous line table entries that do not increase the line number.
2341 When we issue the gdb next command on the ia64 after an inferior call
2342 or a return command, we often end up a few instructions forward, still
2343 within the original line we started.
2344
d5cd6034
JB
2345 An attempt was made to refresh the prev_pc at the same time the
2346 execution_control_state is initialized (for instance, just before
2347 waiting for an inferior event). But this approach did not work
2348 because of platforms that use ptrace, where the pc register cannot
2349 be read unless the inferior is stopped. At that point, we are not
2350 guaranteed the inferior is stopped and so the regcache_read_pc() call
2351 can fail. Setting the prev_pc value here ensures the value is updated
2352 correctly when the inferior is stopped. */
4e1c45ea 2353 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2354
59f0d5d9
PA
2355 /* Reset to normal state. */
2356 init_infwait_state ();
2357
c906108c 2358 /* Resume inferior. */
99619bea 2359 resume (tp->control.trap_expected || step || bpstat_should_step (),
0de5618e 2360 tp->suspend.stop_signal);
c906108c
SS
2361
2362 /* Wait for it to stop (if not standalone)
2363 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2364 /* Do this only if we are not using the event loop, or if the target
1777feb0 2365 does not support asynchronous execution. */
362646f5 2366 if (!target_can_async_p ())
43ff13b4 2367 {
e4c8541f 2368 wait_for_inferior ();
43ff13b4
JM
2369 normal_stop ();
2370 }
c906108c 2371}
c906108c
SS
2372\f
2373
2374/* Start remote-debugging of a machine over a serial link. */
96baa820 2375
c906108c 2376void
8621d6a9 2377start_remote (int from_tty)
c906108c 2378{
d6b48e9c 2379 struct inferior *inferior;
d6b48e9c
PA
2380
2381 inferior = current_inferior ();
16c381f0 2382 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2383
1777feb0 2384 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2385 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2386 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2387 nothing is returned (instead of just blocking). Because of this,
2388 targets expecting an immediate response need to, internally, set
2389 things up so that the target_wait() is forced to eventually
1777feb0 2390 timeout. */
6426a772
JM
2391 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2392 differentiate to its caller what the state of the target is after
2393 the initial open has been performed. Here we're assuming that
2394 the target has stopped. It should be possible to eventually have
2395 target_open() return to the caller an indication that the target
2396 is currently running and GDB state should be set to the same as
1777feb0 2397 for an async run. */
e4c8541f 2398 wait_for_inferior ();
8621d6a9
DJ
2399
2400 /* Now that the inferior has stopped, do any bookkeeping like
2401 loading shared libraries. We want to do this before normal_stop,
2402 so that the displayed frame is up to date. */
2403 post_create_inferior (&current_target, from_tty);
2404
6426a772 2405 normal_stop ();
c906108c
SS
2406}
2407
2408/* Initialize static vars when a new inferior begins. */
2409
2410void
96baa820 2411init_wait_for_inferior (void)
c906108c
SS
2412{
2413 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2414
c906108c
SS
2415 breakpoint_init_inferior (inf_starting);
2416
70509625 2417 clear_proceed_status (0);
9f976b41 2418
ca005067 2419 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2420
842951eb 2421 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2422 init_infwait_state ();
2423
edb3359d
DJ
2424 /* Discard any skipped inlined frames. */
2425 clear_inline_frame_state (minus_one_ptid);
2adfaa28
PA
2426
2427 singlestep_ptid = null_ptid;
2428 singlestep_pc = 0;
c906108c 2429}
237fc4c9 2430
c906108c 2431\f
b83266a0
SS
2432/* This enum encodes possible reasons for doing a target_wait, so that
2433 wfi can call target_wait in one place. (Ultimately the call will be
2434 moved out of the infinite loop entirely.) */
2435
c5aa993b
JM
2436enum infwait_states
2437{
cd0fc7c3 2438 infwait_normal_state,
d983da9c 2439 infwait_step_watch_state,
cd0fc7c3 2440 infwait_nonstep_watch_state
b83266a0
SS
2441};
2442
0d1e5fa7
PA
2443/* The PTID we'll do a target_wait on.*/
2444ptid_t waiton_ptid;
2445
2446/* Current inferior wait state. */
8870954f 2447static enum infwait_states infwait_state;
cd0fc7c3 2448
0d1e5fa7
PA
2449/* Data to be passed around while handling an event. This data is
2450 discarded between events. */
c5aa993b 2451struct execution_control_state
488f131b 2452{
0d1e5fa7 2453 ptid_t ptid;
4e1c45ea
PA
2454 /* The thread that got the event, if this was a thread event; NULL
2455 otherwise. */
2456 struct thread_info *event_thread;
2457
488f131b 2458 struct target_waitstatus ws;
7e324e48 2459 int stop_func_filled_in;
488f131b
JB
2460 CORE_ADDR stop_func_start;
2461 CORE_ADDR stop_func_end;
2c02bd72 2462 const char *stop_func_name;
488f131b 2463 int wait_some_more;
4f5d7f63
PA
2464
2465 /* We were in infwait_step_watch_state or
2466 infwait_nonstep_watch_state state, and the thread reported an
2467 event. */
2468 int stepped_after_stopped_by_watchpoint;
2adfaa28
PA
2469
2470 /* True if the event thread hit the single-step breakpoint of
2471 another thread. Thus the event doesn't cause a stop, the thread
2472 needs to be single-stepped past the single-step breakpoint before
2473 we can switch back to the original stepping thread. */
2474 int hit_singlestep_breakpoint;
488f131b
JB
2475};
2476
ec9499be 2477static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2478
568d6575
UW
2479static void handle_step_into_function (struct gdbarch *gdbarch,
2480 struct execution_control_state *ecs);
2481static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2482 struct execution_control_state *ecs);
4f5d7f63 2483static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 2484static void check_exception_resume (struct execution_control_state *,
28106bc2 2485 struct frame_info *);
611c83ae 2486
bdc36728 2487static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 2488static void stop_waiting (struct execution_control_state *ecs);
104c1213 2489static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2490static void keep_going (struct execution_control_state *ecs);
94c57d6a 2491static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 2492static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 2493
252fbfc8
PA
2494/* Callback for iterate over threads. If the thread is stopped, but
2495 the user/frontend doesn't know about that yet, go through
2496 normal_stop, as if the thread had just stopped now. ARG points at
2497 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2498 ptid_is_pid(PTID) is true, applies to all threads of the process
2499 pointed at by PTID. Otherwise, apply only to the thread pointed by
2500 PTID. */
2501
2502static int
2503infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2504{
2505 ptid_t ptid = * (ptid_t *) arg;
2506
2507 if ((ptid_equal (info->ptid, ptid)
2508 || ptid_equal (minus_one_ptid, ptid)
2509 || (ptid_is_pid (ptid)
2510 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2511 && is_running (info->ptid)
2512 && !is_executing (info->ptid))
2513 {
2514 struct cleanup *old_chain;
2515 struct execution_control_state ecss;
2516 struct execution_control_state *ecs = &ecss;
2517
2518 memset (ecs, 0, sizeof (*ecs));
2519
2520 old_chain = make_cleanup_restore_current_thread ();
2521
f15cb84a
YQ
2522 overlay_cache_invalid = 1;
2523 /* Flush target cache before starting to handle each event.
2524 Target was running and cache could be stale. This is just a
2525 heuristic. Running threads may modify target memory, but we
2526 don't get any event. */
2527 target_dcache_invalidate ();
2528
252fbfc8
PA
2529 /* Go through handle_inferior_event/normal_stop, so we always
2530 have consistent output as if the stop event had been
2531 reported. */
2532 ecs->ptid = info->ptid;
e09875d4 2533 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2534 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2535 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2536
2537 handle_inferior_event (ecs);
2538
2539 if (!ecs->wait_some_more)
2540 {
2541 struct thread_info *tp;
2542
2543 normal_stop ();
2544
fa4cd53f 2545 /* Finish off the continuations. */
252fbfc8 2546 tp = inferior_thread ();
fa4cd53f
PA
2547 do_all_intermediate_continuations_thread (tp, 1);
2548 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2549 }
2550
2551 do_cleanups (old_chain);
2552 }
2553
2554 return 0;
2555}
2556
2557/* This function is attached as a "thread_stop_requested" observer.
2558 Cleanup local state that assumed the PTID was to be resumed, and
2559 report the stop to the frontend. */
2560
2c0b251b 2561static void
252fbfc8
PA
2562infrun_thread_stop_requested (ptid_t ptid)
2563{
fc1cf338 2564 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2565
2566 /* PTID was requested to stop. Remove it from the displaced
2567 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2568
2569 for (displaced = displaced_step_inferior_states;
2570 displaced;
2571 displaced = displaced->next)
252fbfc8 2572 {
fc1cf338 2573 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2574
fc1cf338
PA
2575 it = displaced->step_request_queue;
2576 prev_next_p = &displaced->step_request_queue;
2577 while (it)
252fbfc8 2578 {
fc1cf338
PA
2579 if (ptid_match (it->ptid, ptid))
2580 {
2581 *prev_next_p = it->next;
2582 it->next = NULL;
2583 xfree (it);
2584 }
252fbfc8 2585 else
fc1cf338
PA
2586 {
2587 prev_next_p = &it->next;
2588 }
252fbfc8 2589
fc1cf338 2590 it = *prev_next_p;
252fbfc8 2591 }
252fbfc8
PA
2592 }
2593
2594 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2595}
2596
a07daef3
PA
2597static void
2598infrun_thread_thread_exit (struct thread_info *tp, int silent)
2599{
2600 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2601 nullify_last_target_wait_ptid ();
2602}
2603
4e1c45ea
PA
2604/* Callback for iterate_over_threads. */
2605
2606static int
2607delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2608{
2609 if (is_exited (info->ptid))
2610 return 0;
2611
2612 delete_step_resume_breakpoint (info);
186c406b 2613 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2614 return 0;
2615}
2616
2617/* In all-stop, delete the step resume breakpoint of any thread that
2618 had one. In non-stop, delete the step resume breakpoint of the
2619 thread that just stopped. */
2620
2621static void
2622delete_step_thread_step_resume_breakpoint (void)
2623{
2624 if (!target_has_execution
2625 || ptid_equal (inferior_ptid, null_ptid))
2626 /* If the inferior has exited, we have already deleted the step
2627 resume breakpoints out of GDB's lists. */
2628 return;
2629
2630 if (non_stop)
2631 {
2632 /* If in non-stop mode, only delete the step-resume or
2633 longjmp-resume breakpoint of the thread that just stopped
2634 stepping. */
2635 struct thread_info *tp = inferior_thread ();
abbb1732 2636
4e1c45ea 2637 delete_step_resume_breakpoint (tp);
186c406b 2638 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2639 }
2640 else
2641 /* In all-stop mode, delete all step-resume and longjmp-resume
2642 breakpoints of any thread that had them. */
2643 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2644}
2645
1777feb0 2646/* A cleanup wrapper. */
4e1c45ea
PA
2647
2648static void
2649delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2650{
2651 delete_step_thread_step_resume_breakpoint ();
2652}
2653
223698f8
DE
2654/* Pretty print the results of target_wait, for debugging purposes. */
2655
2656static void
2657print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2658 const struct target_waitstatus *ws)
2659{
2660 char *status_string = target_waitstatus_to_string (ws);
2661 struct ui_file *tmp_stream = mem_fileopen ();
2662 char *text;
223698f8
DE
2663
2664 /* The text is split over several lines because it was getting too long.
2665 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2666 output as a unit; we want only one timestamp printed if debug_timestamp
2667 is set. */
2668
2669 fprintf_unfiltered (tmp_stream,
dfd4cc63
LM
2670 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2671 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
2672 fprintf_unfiltered (tmp_stream,
2673 " [%s]", target_pid_to_str (waiton_ptid));
2674 fprintf_unfiltered (tmp_stream, ", status) =\n");
2675 fprintf_unfiltered (tmp_stream,
2676 "infrun: %d [%s],\n",
dfd4cc63
LM
2677 ptid_get_pid (result_ptid),
2678 target_pid_to_str (result_ptid));
223698f8
DE
2679 fprintf_unfiltered (tmp_stream,
2680 "infrun: %s\n",
2681 status_string);
2682
759ef836 2683 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2684
2685 /* This uses %s in part to handle %'s in the text, but also to avoid
2686 a gcc error: the format attribute requires a string literal. */
2687 fprintf_unfiltered (gdb_stdlog, "%s", text);
2688
2689 xfree (status_string);
2690 xfree (text);
2691 ui_file_delete (tmp_stream);
2692}
2693
24291992
PA
2694/* Prepare and stabilize the inferior for detaching it. E.g.,
2695 detaching while a thread is displaced stepping is a recipe for
2696 crashing it, as nothing would readjust the PC out of the scratch
2697 pad. */
2698
2699void
2700prepare_for_detach (void)
2701{
2702 struct inferior *inf = current_inferior ();
2703 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2704 struct cleanup *old_chain_1;
2705 struct displaced_step_inferior_state *displaced;
2706
2707 displaced = get_displaced_stepping_state (inf->pid);
2708
2709 /* Is any thread of this process displaced stepping? If not,
2710 there's nothing else to do. */
2711 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2712 return;
2713
2714 if (debug_infrun)
2715 fprintf_unfiltered (gdb_stdlog,
2716 "displaced-stepping in-process while detaching");
2717
2718 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2719 inf->detaching = 1;
2720
2721 while (!ptid_equal (displaced->step_ptid, null_ptid))
2722 {
2723 struct cleanup *old_chain_2;
2724 struct execution_control_state ecss;
2725 struct execution_control_state *ecs;
2726
2727 ecs = &ecss;
2728 memset (ecs, 0, sizeof (*ecs));
2729
2730 overlay_cache_invalid = 1;
f15cb84a
YQ
2731 /* Flush target cache before starting to handle each event.
2732 Target was running and cache could be stale. This is just a
2733 heuristic. Running threads may modify target memory, but we
2734 don't get any event. */
2735 target_dcache_invalidate ();
24291992 2736
24291992
PA
2737 if (deprecated_target_wait_hook)
2738 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2739 else
2740 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2741
2742 if (debug_infrun)
2743 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2744
2745 /* If an error happens while handling the event, propagate GDB's
2746 knowledge of the executing state to the frontend/user running
2747 state. */
3e43a32a
MS
2748 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2749 &minus_one_ptid);
24291992
PA
2750
2751 /* Now figure out what to do with the result of the result. */
2752 handle_inferior_event (ecs);
2753
2754 /* No error, don't finish the state yet. */
2755 discard_cleanups (old_chain_2);
2756
2757 /* Breakpoints and watchpoints are not installed on the target
2758 at this point, and signals are passed directly to the
2759 inferior, so this must mean the process is gone. */
2760 if (!ecs->wait_some_more)
2761 {
2762 discard_cleanups (old_chain_1);
2763 error (_("Program exited while detaching"));
2764 }
2765 }
2766
2767 discard_cleanups (old_chain_1);
2768}
2769
cd0fc7c3 2770/* Wait for control to return from inferior to debugger.
ae123ec6 2771
cd0fc7c3
SS
2772 If inferior gets a signal, we may decide to start it up again
2773 instead of returning. That is why there is a loop in this function.
2774 When this function actually returns it means the inferior
2775 should be left stopped and GDB should read more commands. */
2776
2777void
e4c8541f 2778wait_for_inferior (void)
cd0fc7c3
SS
2779{
2780 struct cleanup *old_cleanups;
c906108c 2781
527159b7 2782 if (debug_infrun)
ae123ec6 2783 fprintf_unfiltered
e4c8541f 2784 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2785
4e1c45ea
PA
2786 old_cleanups =
2787 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2788
c906108c
SS
2789 while (1)
2790 {
ae25568b
PA
2791 struct execution_control_state ecss;
2792 struct execution_control_state *ecs = &ecss;
29f49a6a
PA
2793 struct cleanup *old_chain;
2794
ae25568b
PA
2795 memset (ecs, 0, sizeof (*ecs));
2796
ec9499be 2797 overlay_cache_invalid = 1;
ec9499be 2798
f15cb84a
YQ
2799 /* Flush target cache before starting to handle each event.
2800 Target was running and cache could be stale. This is just a
2801 heuristic. Running threads may modify target memory, but we
2802 don't get any event. */
2803 target_dcache_invalidate ();
2804
9a4105ab 2805 if (deprecated_target_wait_hook)
47608cb1 2806 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2807 else
47608cb1 2808 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2809
f00150c9 2810 if (debug_infrun)
223698f8 2811 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2812
29f49a6a
PA
2813 /* If an error happens while handling the event, propagate GDB's
2814 knowledge of the executing state to the frontend/user running
2815 state. */
2816 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2817
cd0fc7c3
SS
2818 /* Now figure out what to do with the result of the result. */
2819 handle_inferior_event (ecs);
c906108c 2820
29f49a6a
PA
2821 /* No error, don't finish the state yet. */
2822 discard_cleanups (old_chain);
2823
cd0fc7c3
SS
2824 if (!ecs->wait_some_more)
2825 break;
2826 }
4e1c45ea 2827
cd0fc7c3
SS
2828 do_cleanups (old_cleanups);
2829}
c906108c 2830
1777feb0 2831/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2832 event loop whenever a change of state is detected on the file
1777feb0
MS
2833 descriptor corresponding to the target. It can be called more than
2834 once to complete a single execution command. In such cases we need
2835 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2836 that this function is called for a single execution command, then
2837 report to the user that the inferior has stopped, and do the
1777feb0 2838 necessary cleanups. */
43ff13b4
JM
2839
2840void
fba45db2 2841fetch_inferior_event (void *client_data)
43ff13b4 2842{
0d1e5fa7 2843 struct execution_control_state ecss;
a474d7c2 2844 struct execution_control_state *ecs = &ecss;
4f8d22e3 2845 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2846 struct cleanup *ts_old_chain;
4f8d22e3 2847 int was_sync = sync_execution;
0f641c01 2848 int cmd_done = 0;
43ff13b4 2849
0d1e5fa7
PA
2850 memset (ecs, 0, sizeof (*ecs));
2851
c5187ac6
PA
2852 /* We're handling a live event, so make sure we're doing live
2853 debugging. If we're looking at traceframes while the target is
2854 running, we're going to need to get back to that mode after
2855 handling the event. */
2856 if (non_stop)
2857 {
2858 make_cleanup_restore_current_traceframe ();
e6e4e701 2859 set_current_traceframe (-1);
c5187ac6
PA
2860 }
2861
4f8d22e3
PA
2862 if (non_stop)
2863 /* In non-stop mode, the user/frontend should not notice a thread
2864 switch due to internal events. Make sure we reverse to the
2865 user selected thread and frame after handling the event and
2866 running any breakpoint commands. */
2867 make_cleanup_restore_current_thread ();
2868
ec9499be 2869 overlay_cache_invalid = 1;
f15cb84a
YQ
2870 /* Flush target cache before starting to handle each event. Target
2871 was running and cache could be stale. This is just a heuristic.
2872 Running threads may modify target memory, but we don't get any
2873 event. */
2874 target_dcache_invalidate ();
3dd5b83d 2875
32231432
PA
2876 make_cleanup_restore_integer (&execution_direction);
2877 execution_direction = target_execution_direction ();
2878
9a4105ab 2879 if (deprecated_target_wait_hook)
a474d7c2 2880 ecs->ptid =
47608cb1 2881 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2882 else
47608cb1 2883 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2884
f00150c9 2885 if (debug_infrun)
223698f8 2886 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2887
29f49a6a
PA
2888 /* If an error happens while handling the event, propagate GDB's
2889 knowledge of the executing state to the frontend/user running
2890 state. */
2891 if (!non_stop)
2892 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2893 else
2894 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2895
353d1d73
JK
2896 /* Get executed before make_cleanup_restore_current_thread above to apply
2897 still for the thread which has thrown the exception. */
2898 make_bpstat_clear_actions_cleanup ();
2899
43ff13b4 2900 /* Now figure out what to do with the result of the result. */
a474d7c2 2901 handle_inferior_event (ecs);
43ff13b4 2902
a474d7c2 2903 if (!ecs->wait_some_more)
43ff13b4 2904 {
d6b48e9c
PA
2905 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2906
4e1c45ea 2907 delete_step_thread_step_resume_breakpoint ();
f107f563 2908
d6b48e9c 2909 /* We may not find an inferior if this was a process exit. */
16c381f0 2910 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2911 normal_stop ();
2912
af679fd0 2913 if (target_has_execution
0e5bf2a8 2914 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2915 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2916 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2917 && ecs->event_thread->step_multi
16c381f0 2918 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2919 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2920 else
0f641c01
PA
2921 {
2922 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2923 cmd_done = 1;
2924 }
43ff13b4 2925 }
4f8d22e3 2926
29f49a6a
PA
2927 /* No error, don't finish the thread states yet. */
2928 discard_cleanups (ts_old_chain);
2929
4f8d22e3
PA
2930 /* Revert thread and frame. */
2931 do_cleanups (old_chain);
2932
2933 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2934 restore the prompt (a synchronous execution command has finished,
2935 and we're ready for input). */
b4a14fd0 2936 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 2937 observer_notify_sync_execution_done ();
0f641c01
PA
2938
2939 if (cmd_done
2940 && !was_sync
2941 && exec_done_display_p
2942 && (ptid_equal (inferior_ptid, null_ptid)
2943 || !is_running (inferior_ptid)))
2944 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2945}
2946
edb3359d
DJ
2947/* Record the frame and location we're currently stepping through. */
2948void
2949set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2950{
2951 struct thread_info *tp = inferior_thread ();
2952
16c381f0
JK
2953 tp->control.step_frame_id = get_frame_id (frame);
2954 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2955
2956 tp->current_symtab = sal.symtab;
2957 tp->current_line = sal.line;
2958}
2959
0d1e5fa7
PA
2960/* Clear context switchable stepping state. */
2961
2962void
4e1c45ea 2963init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2964{
2965 tss->stepping_over_breakpoint = 0;
2966 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2967}
2968
c32c64b7
DE
2969/* Set the cached copy of the last ptid/waitstatus. */
2970
2971static void
2972set_last_target_status (ptid_t ptid, struct target_waitstatus status)
2973{
2974 target_last_wait_ptid = ptid;
2975 target_last_waitstatus = status;
2976}
2977
e02bc4cc 2978/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2979 target_wait()/deprecated_target_wait_hook(). The data is actually
2980 cached by handle_inferior_event(), which gets called immediately
2981 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2982
2983void
488f131b 2984get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2985{
39f77062 2986 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2987 *status = target_last_waitstatus;
2988}
2989
ac264b3b
MS
2990void
2991nullify_last_target_wait_ptid (void)
2992{
2993 target_last_wait_ptid = minus_one_ptid;
2994}
2995
dcf4fbde 2996/* Switch thread contexts. */
dd80620e
MS
2997
2998static void
0d1e5fa7 2999context_switch (ptid_t ptid)
dd80620e 3000{
4b51d87b 3001 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
3002 {
3003 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3004 target_pid_to_str (inferior_ptid));
3005 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 3006 target_pid_to_str (ptid));
fd48f117
DJ
3007 }
3008
0d1e5fa7 3009 switch_to_thread (ptid);
dd80620e
MS
3010}
3011
4fa8626c
DJ
3012static void
3013adjust_pc_after_break (struct execution_control_state *ecs)
3014{
24a73cce
UW
3015 struct regcache *regcache;
3016 struct gdbarch *gdbarch;
6c95b8df 3017 struct address_space *aspace;
118e6252 3018 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3019
4fa8626c
DJ
3020 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3021 we aren't, just return.
9709f61c
DJ
3022
3023 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3024 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3025 implemented by software breakpoints should be handled through the normal
3026 breakpoint layer.
8fb3e588 3027
4fa8626c
DJ
3028 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3029 different signals (SIGILL or SIGEMT for instance), but it is less
3030 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3031 gdbarch_decr_pc_after_break. I don't know any specific target that
3032 generates these signals at breakpoints (the code has been in GDB since at
3033 least 1992) so I can not guess how to handle them here.
8fb3e588 3034
e6cf7916
UW
3035 In earlier versions of GDB, a target with
3036 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3037 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3038 target with both of these set in GDB history, and it seems unlikely to be
3039 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
3040
3041 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3042 return;
3043
a493e3e2 3044 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3045 return;
3046
4058b839
PA
3047 /* In reverse execution, when a breakpoint is hit, the instruction
3048 under it has already been de-executed. The reported PC always
3049 points at the breakpoint address, so adjusting it further would
3050 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3051 architecture:
3052
3053 B1 0x08000000 : INSN1
3054 B2 0x08000001 : INSN2
3055 0x08000002 : INSN3
3056 PC -> 0x08000003 : INSN4
3057
3058 Say you're stopped at 0x08000003 as above. Reverse continuing
3059 from that point should hit B2 as below. Reading the PC when the
3060 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3061 been de-executed already.
3062
3063 B1 0x08000000 : INSN1
3064 B2 PC -> 0x08000001 : INSN2
3065 0x08000002 : INSN3
3066 0x08000003 : INSN4
3067
3068 We can't apply the same logic as for forward execution, because
3069 we would wrongly adjust the PC to 0x08000000, since there's a
3070 breakpoint at PC - 1. We'd then report a hit on B1, although
3071 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3072 behaviour. */
3073 if (execution_direction == EXEC_REVERSE)
3074 return;
3075
24a73cce
UW
3076 /* If this target does not decrement the PC after breakpoints, then
3077 we have nothing to do. */
3078 regcache = get_thread_regcache (ecs->ptid);
3079 gdbarch = get_regcache_arch (regcache);
118e6252
MM
3080
3081 decr_pc = target_decr_pc_after_break (gdbarch);
3082 if (decr_pc == 0)
24a73cce
UW
3083 return;
3084
6c95b8df
PA
3085 aspace = get_regcache_aspace (regcache);
3086
8aad930b
AC
3087 /* Find the location where (if we've hit a breakpoint) the
3088 breakpoint would be. */
118e6252 3089 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3090
1c5cfe86
PA
3091 /* Check whether there actually is a software breakpoint inserted at
3092 that location.
3093
3094 If in non-stop mode, a race condition is possible where we've
3095 removed a breakpoint, but stop events for that breakpoint were
3096 already queued and arrive later. To suppress those spurious
3097 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3098 and retire them after a number of stop events are reported. */
6c95b8df
PA
3099 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3100 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3101 {
77f9e713 3102 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3103
8213266a 3104 if (record_full_is_used ())
77f9e713 3105 record_full_gdb_operation_disable_set ();
96429cc8 3106
1c0fdd0e
UW
3107 /* When using hardware single-step, a SIGTRAP is reported for both
3108 a completed single-step and a software breakpoint. Need to
3109 differentiate between the two, as the latter needs adjusting
3110 but the former does not.
3111
3112 The SIGTRAP can be due to a completed hardware single-step only if
3113 - we didn't insert software single-step breakpoints
3114 - the thread to be examined is still the current thread
3115 - this thread is currently being stepped
3116
3117 If any of these events did not occur, we must have stopped due
3118 to hitting a software breakpoint, and have to back up to the
3119 breakpoint address.
3120
3121 As a special case, we could have hardware single-stepped a
3122 software breakpoint. In this case (prev_pc == breakpoint_pc),
3123 we also need to back up to the breakpoint address. */
3124
3125 if (singlestep_breakpoints_inserted_p
3126 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3127 || !currently_stepping (ecs->event_thread)
3128 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3129 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3130
77f9e713 3131 do_cleanups (old_cleanups);
8aad930b 3132 }
4fa8626c
DJ
3133}
3134
7a76f5b8 3135static void
0d1e5fa7
PA
3136init_infwait_state (void)
3137{
3138 waiton_ptid = pid_to_ptid (-1);
3139 infwait_state = infwait_normal_state;
3140}
3141
edb3359d
DJ
3142static int
3143stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3144{
3145 for (frame = get_prev_frame (frame);
3146 frame != NULL;
3147 frame = get_prev_frame (frame))
3148 {
3149 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3150 return 1;
3151 if (get_frame_type (frame) != INLINE_FRAME)
3152 break;
3153 }
3154
3155 return 0;
3156}
3157
a96d9b2e
SDJ
3158/* Auxiliary function that handles syscall entry/return events.
3159 It returns 1 if the inferior should keep going (and GDB
3160 should ignore the event), or 0 if the event deserves to be
3161 processed. */
ca2163eb 3162
a96d9b2e 3163static int
ca2163eb 3164handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3165{
ca2163eb 3166 struct regcache *regcache;
ca2163eb
PA
3167 int syscall_number;
3168
3169 if (!ptid_equal (ecs->ptid, inferior_ptid))
3170 context_switch (ecs->ptid);
3171
3172 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3173 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3174 stop_pc = regcache_read_pc (regcache);
3175
a96d9b2e
SDJ
3176 if (catch_syscall_enabled () > 0
3177 && catching_syscall_number (syscall_number) > 0)
3178 {
3179 if (debug_infrun)
3180 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3181 syscall_number);
a96d9b2e 3182
16c381f0 3183 ecs->event_thread->control.stop_bpstat
6c95b8df 3184 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3185 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3186
ce12b012 3187 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
3188 {
3189 /* Catchpoint hit. */
ca2163eb
PA
3190 return 0;
3191 }
a96d9b2e 3192 }
ca2163eb
PA
3193
3194 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
3195 keep_going (ecs);
3196 return 1;
a96d9b2e
SDJ
3197}
3198
7e324e48
GB
3199/* Lazily fill in the execution_control_state's stop_func_* fields. */
3200
3201static void
3202fill_in_stop_func (struct gdbarch *gdbarch,
3203 struct execution_control_state *ecs)
3204{
3205 if (!ecs->stop_func_filled_in)
3206 {
3207 /* Don't care about return value; stop_func_start and stop_func_name
3208 will both be 0 if it doesn't work. */
3209 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3210 &ecs->stop_func_start, &ecs->stop_func_end);
3211 ecs->stop_func_start
3212 += gdbarch_deprecated_function_start_offset (gdbarch);
3213
591a12a1
UW
3214 if (gdbarch_skip_entrypoint_p (gdbarch))
3215 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3216 ecs->stop_func_start);
3217
7e324e48
GB
3218 ecs->stop_func_filled_in = 1;
3219 }
3220}
3221
4f5d7f63
PA
3222
3223/* Return the STOP_SOON field of the inferior pointed at by PTID. */
3224
3225static enum stop_kind
3226get_inferior_stop_soon (ptid_t ptid)
3227{
3228 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
3229
3230 gdb_assert (inf != NULL);
3231 return inf->control.stop_soon;
3232}
3233
05ba8510
PA
3234/* Given an execution control state that has been freshly filled in by
3235 an event from the inferior, figure out what it means and take
3236 appropriate action.
3237
3238 The alternatives are:
3239
22bcd14b 3240 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
3241 debugger.
3242
3243 2) keep_going and return; to wait for the next event (set
3244 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3245 once). */
c906108c 3246
ec9499be 3247static void
96baa820 3248handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3249{
d6b48e9c
PA
3250 enum stop_kind stop_soon;
3251
28736962
PA
3252 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3253 {
3254 /* We had an event in the inferior, but we are not interested in
3255 handling it at this level. The lower layers have already
3256 done what needs to be done, if anything.
3257
3258 One of the possible circumstances for this is when the
3259 inferior produces output for the console. The inferior has
3260 not stopped, and we are ignoring the event. Another possible
3261 circumstance is any event which the lower level knows will be
3262 reported multiple times without an intervening resume. */
3263 if (debug_infrun)
3264 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3265 prepare_to_wait (ecs);
3266 return;
3267 }
3268
0e5bf2a8
PA
3269 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3270 && target_can_async_p () && !sync_execution)
3271 {
3272 /* There were no unwaited-for children left in the target, but,
3273 we're not synchronously waiting for events either. Just
3274 ignore. Otherwise, if we were running a synchronous
3275 execution command, we need to cancel it and give the user
3276 back the terminal. */
3277 if (debug_infrun)
3278 fprintf_unfiltered (gdb_stdlog,
3279 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3280 prepare_to_wait (ecs);
3281 return;
3282 }
3283
1777feb0 3284 /* Cache the last pid/waitstatus. */
c32c64b7 3285 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 3286
ca005067 3287 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3288 stop_stack_dummy = STOP_NONE;
ca005067 3289
0e5bf2a8
PA
3290 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3291 {
3292 /* No unwaited-for children left. IOW, all resumed children
3293 have exited. */
3294 if (debug_infrun)
3295 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3296
3297 stop_print_frame = 0;
22bcd14b 3298 stop_waiting (ecs);
0e5bf2a8
PA
3299 return;
3300 }
3301
8c90c137 3302 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3303 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3304 {
3305 ecs->event_thread = find_thread_ptid (ecs->ptid);
3306 /* If it's a new thread, add it to the thread database. */
3307 if (ecs->event_thread == NULL)
3308 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3309
3310 /* Disable range stepping. If the next step request could use a
3311 range, this will be end up re-enabled then. */
3312 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3313 }
88ed393a
JK
3314
3315 /* Dependent on valid ECS->EVENT_THREAD. */
3316 adjust_pc_after_break (ecs);
3317
3318 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3319 reinit_frame_cache ();
3320
28736962
PA
3321 breakpoint_retire_moribund ();
3322
2b009048
DJ
3323 /* First, distinguish signals caused by the debugger from signals
3324 that have to do with the program's own actions. Note that
3325 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3326 on the operating system version. Here we detect when a SIGILL or
3327 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3328 something similar for SIGSEGV, since a SIGSEGV will be generated
3329 when we're trying to execute a breakpoint instruction on a
3330 non-executable stack. This happens for call dummy breakpoints
3331 for architectures like SPARC that place call dummies on the
3332 stack. */
2b009048 3333 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3334 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3335 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3336 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3337 {
de0a0249
UW
3338 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3339
3340 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3341 regcache_read_pc (regcache)))
3342 {
3343 if (debug_infrun)
3344 fprintf_unfiltered (gdb_stdlog,
3345 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3346 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3347 }
2b009048
DJ
3348 }
3349
28736962
PA
3350 /* Mark the non-executing threads accordingly. In all-stop, all
3351 threads of all processes are stopped when we get any event
3352 reported. In non-stop mode, only the event thread stops. If
3353 we're handling a process exit in non-stop mode, there's nothing
3354 to do, as threads of the dead process are gone, and threads of
3355 any other process were left running. */
3356 if (!non_stop)
3357 set_executing (minus_one_ptid, 0);
3358 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3359 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3360 set_executing (ecs->ptid, 0);
8c90c137 3361
0d1e5fa7 3362 switch (infwait_state)
488f131b 3363 {
488f131b 3364 case infwait_normal_state:
527159b7 3365 if (debug_infrun)
8a9de0e4 3366 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3367 break;
3368
3369 case infwait_step_watch_state:
3370 if (debug_infrun)
3371 fprintf_unfiltered (gdb_stdlog,
3372 "infrun: infwait_step_watch_state\n");
3373
4f5d7f63 3374 ecs->stepped_after_stopped_by_watchpoint = 1;
488f131b 3375 break;
b83266a0 3376
488f131b 3377 case infwait_nonstep_watch_state:
527159b7 3378 if (debug_infrun)
8a9de0e4
AC
3379 fprintf_unfiltered (gdb_stdlog,
3380 "infrun: infwait_nonstep_watch_state\n");
488f131b 3381 insert_breakpoints ();
c906108c 3382
488f131b
JB
3383 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3384 handle things like signals arriving and other things happening
3385 in combination correctly? */
4f5d7f63 3386 ecs->stepped_after_stopped_by_watchpoint = 1;
488f131b 3387 break;
65e82032
AC
3388
3389 default:
e2e0b3e5 3390 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3391 }
ec9499be 3392
0d1e5fa7 3393 infwait_state = infwait_normal_state;
ec9499be 3394 waiton_ptid = pid_to_ptid (-1);
c906108c 3395
488f131b
JB
3396 switch (ecs->ws.kind)
3397 {
3398 case TARGET_WAITKIND_LOADED:
527159b7 3399 if (debug_infrun)
8a9de0e4 3400 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
3401 if (!ptid_equal (ecs->ptid, inferior_ptid))
3402 context_switch (ecs->ptid);
b0f4b84b
DJ
3403 /* Ignore gracefully during startup of the inferior, as it might
3404 be the shell which has just loaded some objects, otherwise
3405 add the symbols for the newly loaded objects. Also ignore at
3406 the beginning of an attach or remote session; we will query
3407 the full list of libraries once the connection is
3408 established. */
4f5d7f63
PA
3409
3410 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 3411 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3412 {
edcc5120
TT
3413 struct regcache *regcache;
3414
edcc5120
TT
3415 regcache = get_thread_regcache (ecs->ptid);
3416
3417 handle_solib_event ();
3418
3419 ecs->event_thread->control.stop_bpstat
3420 = bpstat_stop_status (get_regcache_aspace (regcache),
3421 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3422
ce12b012 3423 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
3424 {
3425 /* A catchpoint triggered. */
94c57d6a
PA
3426 process_event_stop_test (ecs);
3427 return;
edcc5120 3428 }
488f131b 3429
b0f4b84b
DJ
3430 /* If requested, stop when the dynamic linker notifies
3431 gdb of events. This allows the user to get control
3432 and place breakpoints in initializer routines for
3433 dynamically loaded objects (among other things). */
a493e3e2 3434 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3435 if (stop_on_solib_events)
3436 {
55409f9d
DJ
3437 /* Make sure we print "Stopped due to solib-event" in
3438 normal_stop. */
3439 stop_print_frame = 1;
3440
22bcd14b 3441 stop_waiting (ecs);
b0f4b84b
DJ
3442 return;
3443 }
488f131b 3444 }
b0f4b84b
DJ
3445
3446 /* If we are skipping through a shell, or through shared library
3447 loading that we aren't interested in, resume the program. If
5c09a2c5 3448 we're running the program normally, also resume. */
b0f4b84b
DJ
3449 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3450 {
74960c60
VP
3451 /* Loading of shared libraries might have changed breakpoint
3452 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3453 if (stop_soon == NO_STOP_QUIETLY
3454 && !breakpoints_always_inserted_mode ())
74960c60 3455 insert_breakpoints ();
a493e3e2 3456 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3457 prepare_to_wait (ecs);
3458 return;
3459 }
3460
5c09a2c5
PA
3461 /* But stop if we're attaching or setting up a remote
3462 connection. */
3463 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3464 || stop_soon == STOP_QUIETLY_REMOTE)
3465 {
3466 if (debug_infrun)
3467 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 3468 stop_waiting (ecs);
5c09a2c5
PA
3469 return;
3470 }
3471
3472 internal_error (__FILE__, __LINE__,
3473 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 3474
488f131b 3475 case TARGET_WAITKIND_SPURIOUS:
527159b7 3476 if (debug_infrun)
8a9de0e4 3477 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3478 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3479 context_switch (ecs->ptid);
a493e3e2 3480 resume (0, GDB_SIGNAL_0);
488f131b
JB
3481 prepare_to_wait (ecs);
3482 return;
c5aa993b 3483
488f131b 3484 case TARGET_WAITKIND_EXITED:
940c3c06 3485 case TARGET_WAITKIND_SIGNALLED:
527159b7 3486 if (debug_infrun)
940c3c06
PA
3487 {
3488 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3489 fprintf_unfiltered (gdb_stdlog,
3490 "infrun: TARGET_WAITKIND_EXITED\n");
3491 else
3492 fprintf_unfiltered (gdb_stdlog,
3493 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3494 }
3495
fb66883a 3496 inferior_ptid = ecs->ptid;
6c95b8df
PA
3497 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3498 set_current_program_space (current_inferior ()->pspace);
3499 handle_vfork_child_exec_or_exit (0);
1777feb0 3500 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3501
0c557179
SDJ
3502 /* Clearing any previous state of convenience variables. */
3503 clear_exit_convenience_vars ();
3504
940c3c06
PA
3505 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3506 {
3507 /* Record the exit code in the convenience variable $_exitcode, so
3508 that the user can inspect this again later. */
3509 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3510 (LONGEST) ecs->ws.value.integer);
3511
3512 /* Also record this in the inferior itself. */
3513 current_inferior ()->has_exit_code = 1;
3514 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3515
98eb56a4
PA
3516 /* Support the --return-child-result option. */
3517 return_child_result_value = ecs->ws.value.integer;
3518
fd664c91 3519 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
3520 }
3521 else
0c557179
SDJ
3522 {
3523 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3524 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3525
3526 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3527 {
3528 /* Set the value of the internal variable $_exitsignal,
3529 which holds the signal uncaught by the inferior. */
3530 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3531 gdbarch_gdb_signal_to_target (gdbarch,
3532 ecs->ws.value.sig));
3533 }
3534 else
3535 {
3536 /* We don't have access to the target's method used for
3537 converting between signal numbers (GDB's internal
3538 representation <-> target's representation).
3539 Therefore, we cannot do a good job at displaying this
3540 information to the user. It's better to just warn
3541 her about it (if infrun debugging is enabled), and
3542 give up. */
3543 if (debug_infrun)
3544 fprintf_filtered (gdb_stdlog, _("\
3545Cannot fill $_exitsignal with the correct signal number.\n"));
3546 }
3547
fd664c91 3548 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 3549 }
8cf64490 3550
488f131b
JB
3551 gdb_flush (gdb_stdout);
3552 target_mourn_inferior ();
1c0fdd0e 3553 singlestep_breakpoints_inserted_p = 0;
d03285ec 3554 cancel_single_step_breakpoints ();
488f131b 3555 stop_print_frame = 0;
22bcd14b 3556 stop_waiting (ecs);
488f131b 3557 return;
c5aa993b 3558
488f131b 3559 /* The following are the only cases in which we keep going;
1777feb0 3560 the above cases end in a continue or goto. */
488f131b 3561 case TARGET_WAITKIND_FORKED:
deb3b17b 3562 case TARGET_WAITKIND_VFORKED:
527159b7 3563 if (debug_infrun)
fed708ed
PA
3564 {
3565 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3566 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3567 else
3568 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3569 }
c906108c 3570
e2d96639
YQ
3571 /* Check whether the inferior is displaced stepping. */
3572 {
3573 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3574 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3575 struct displaced_step_inferior_state *displaced
3576 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3577
3578 /* If checking displaced stepping is supported, and thread
3579 ecs->ptid is displaced stepping. */
3580 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3581 {
3582 struct inferior *parent_inf
3583 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3584 struct regcache *child_regcache;
3585 CORE_ADDR parent_pc;
3586
3587 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3588 indicating that the displaced stepping of syscall instruction
3589 has been done. Perform cleanup for parent process here. Note
3590 that this operation also cleans up the child process for vfork,
3591 because their pages are shared. */
a493e3e2 3592 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3593
3594 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3595 {
3596 /* Restore scratch pad for child process. */
3597 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3598 }
3599
3600 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3601 the child's PC is also within the scratchpad. Set the child's PC
3602 to the parent's PC value, which has already been fixed up.
3603 FIXME: we use the parent's aspace here, although we're touching
3604 the child, because the child hasn't been added to the inferior
3605 list yet at this point. */
3606
3607 child_regcache
3608 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3609 gdbarch,
3610 parent_inf->aspace);
3611 /* Read PC value of parent process. */
3612 parent_pc = regcache_read_pc (regcache);
3613
3614 if (debug_displaced)
3615 fprintf_unfiltered (gdb_stdlog,
3616 "displaced: write child pc from %s to %s\n",
3617 paddress (gdbarch,
3618 regcache_read_pc (child_regcache)),
3619 paddress (gdbarch, parent_pc));
3620
3621 regcache_write_pc (child_regcache, parent_pc);
3622 }
3623 }
3624
5a2901d9 3625 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3626 context_switch (ecs->ptid);
5a2901d9 3627
b242c3c2
PA
3628 /* Immediately detach breakpoints from the child before there's
3629 any chance of letting the user delete breakpoints from the
3630 breakpoint lists. If we don't do this early, it's easy to
3631 leave left over traps in the child, vis: "break foo; catch
3632 fork; c; <fork>; del; c; <child calls foo>". We only follow
3633 the fork on the last `continue', and by that time the
3634 breakpoint at "foo" is long gone from the breakpoint table.
3635 If we vforked, then we don't need to unpatch here, since both
3636 parent and child are sharing the same memory pages; we'll
3637 need to unpatch at follow/detach time instead to be certain
3638 that new breakpoints added between catchpoint hit time and
3639 vfork follow are detached. */
3640 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3641 {
b242c3c2
PA
3642 /* This won't actually modify the breakpoint list, but will
3643 physically remove the breakpoints from the child. */
d80ee84f 3644 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3645 }
3646
d03285ec
UW
3647 if (singlestep_breakpoints_inserted_p)
3648 {
1777feb0 3649 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3650 remove_single_step_breakpoints ();
3651 singlestep_breakpoints_inserted_p = 0;
3652 }
3653
e58b0e63
PA
3654 /* In case the event is caught by a catchpoint, remember that
3655 the event is to be followed at the next resume of the thread,
3656 and not immediately. */
3657 ecs->event_thread->pending_follow = ecs->ws;
3658
fb14de7b 3659 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3660
16c381f0 3661 ecs->event_thread->control.stop_bpstat
6c95b8df 3662 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3663 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3664
ce12b012
PA
3665 /* If no catchpoint triggered for this, then keep going. Note
3666 that we're interested in knowing the bpstat actually causes a
3667 stop, not just if it may explain the signal. Software
3668 watchpoints, for example, always appear in the bpstat. */
3669 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 3670 {
6c95b8df
PA
3671 ptid_t parent;
3672 ptid_t child;
e58b0e63 3673 int should_resume;
3e43a32a
MS
3674 int follow_child
3675 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3676
a493e3e2 3677 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3678
3679 should_resume = follow_fork ();
3680
6c95b8df
PA
3681 parent = ecs->ptid;
3682 child = ecs->ws.value.related_pid;
3683
3684 /* In non-stop mode, also resume the other branch. */
3685 if (non_stop && !detach_fork)
3686 {
3687 if (follow_child)
3688 switch_to_thread (parent);
3689 else
3690 switch_to_thread (child);
3691
3692 ecs->event_thread = inferior_thread ();
3693 ecs->ptid = inferior_ptid;
3694 keep_going (ecs);
3695 }
3696
3697 if (follow_child)
3698 switch_to_thread (child);
3699 else
3700 switch_to_thread (parent);
3701
e58b0e63
PA
3702 ecs->event_thread = inferior_thread ();
3703 ecs->ptid = inferior_ptid;
3704
3705 if (should_resume)
3706 keep_going (ecs);
3707 else
22bcd14b 3708 stop_waiting (ecs);
04e68871
DJ
3709 return;
3710 }
94c57d6a
PA
3711 process_event_stop_test (ecs);
3712 return;
488f131b 3713
6c95b8df
PA
3714 case TARGET_WAITKIND_VFORK_DONE:
3715 /* Done with the shared memory region. Re-insert breakpoints in
3716 the parent, and keep going. */
3717
3718 if (debug_infrun)
3e43a32a
MS
3719 fprintf_unfiltered (gdb_stdlog,
3720 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3721
3722 if (!ptid_equal (ecs->ptid, inferior_ptid))
3723 context_switch (ecs->ptid);
3724
3725 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3726 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3727 /* This also takes care of reinserting breakpoints in the
3728 previously locked inferior. */
3729 keep_going (ecs);
3730 return;
3731
488f131b 3732 case TARGET_WAITKIND_EXECD:
527159b7 3733 if (debug_infrun)
fc5261f2 3734 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3735
5a2901d9 3736 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3737 context_switch (ecs->ptid);
5a2901d9 3738
d03285ec
UW
3739 singlestep_breakpoints_inserted_p = 0;
3740 cancel_single_step_breakpoints ();
3741
fb14de7b 3742 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3743
6c95b8df
PA
3744 /* Do whatever is necessary to the parent branch of the vfork. */
3745 handle_vfork_child_exec_or_exit (1);
3746
795e548f
PA
3747 /* This causes the eventpoints and symbol table to be reset.
3748 Must do this now, before trying to determine whether to
3749 stop. */
71b43ef8 3750 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3751
16c381f0 3752 ecs->event_thread->control.stop_bpstat
6c95b8df 3753 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3754 stop_pc, ecs->ptid, &ecs->ws);
795e548f 3755
71b43ef8
PA
3756 /* Note that this may be referenced from inside
3757 bpstat_stop_status above, through inferior_has_execd. */
3758 xfree (ecs->ws.value.execd_pathname);
3759 ecs->ws.value.execd_pathname = NULL;
3760
04e68871 3761 /* If no catchpoint triggered for this, then keep going. */
ce12b012 3762 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 3763 {
a493e3e2 3764 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3765 keep_going (ecs);
3766 return;
3767 }
94c57d6a
PA
3768 process_event_stop_test (ecs);
3769 return;
488f131b 3770
b4dc5ffa
MK
3771 /* Be careful not to try to gather much state about a thread
3772 that's in a syscall. It's frequently a losing proposition. */
488f131b 3773 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3774 if (debug_infrun)
3e43a32a
MS
3775 fprintf_unfiltered (gdb_stdlog,
3776 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3777 /* Getting the current syscall number. */
94c57d6a
PA
3778 if (handle_syscall_event (ecs) == 0)
3779 process_event_stop_test (ecs);
3780 return;
c906108c 3781
488f131b
JB
3782 /* Before examining the threads further, step this thread to
3783 get it entirely out of the syscall. (We get notice of the
3784 event when the thread is just on the verge of exiting a
3785 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3786 into user code.) */
488f131b 3787 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3788 if (debug_infrun)
3e43a32a
MS
3789 fprintf_unfiltered (gdb_stdlog,
3790 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
3791 if (handle_syscall_event (ecs) == 0)
3792 process_event_stop_test (ecs);
3793 return;
c906108c 3794
488f131b 3795 case TARGET_WAITKIND_STOPPED:
527159b7 3796 if (debug_infrun)
8a9de0e4 3797 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3798 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
3799 handle_signal_stop (ecs);
3800 return;
c906108c 3801
b2175913 3802 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3803 if (debug_infrun)
3804 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3805 /* Reverse execution: target ran out of history info. */
eab402df
PA
3806
3807 /* Pull the single step breakpoints out of the target. */
3808 if (singlestep_breakpoints_inserted_p)
3809 {
3810 if (!ptid_equal (ecs->ptid, inferior_ptid))
3811 context_switch (ecs->ptid);
3812 remove_single_step_breakpoints ();
3813 singlestep_breakpoints_inserted_p = 0;
3814 }
fb14de7b 3815 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
fd664c91 3816 observer_notify_no_history ();
22bcd14b 3817 stop_waiting (ecs);
b2175913 3818 return;
488f131b 3819 }
4f5d7f63
PA
3820}
3821
3822/* Come here when the program has stopped with a signal. */
3823
3824static void
3825handle_signal_stop (struct execution_control_state *ecs)
3826{
3827 struct frame_info *frame;
3828 struct gdbarch *gdbarch;
3829 int stopped_by_watchpoint;
3830 enum stop_kind stop_soon;
3831 int random_signal;
c906108c 3832
f0407826
DE
3833 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
3834
3835 /* Do we need to clean up the state of a thread that has
3836 completed a displaced single-step? (Doing so usually affects
3837 the PC, so do it here, before we set stop_pc.) */
3838 displaced_step_fixup (ecs->ptid,
3839 ecs->event_thread->suspend.stop_signal);
3840
3841 /* If we either finished a single-step or hit a breakpoint, but
3842 the user wanted this thread to be stopped, pretend we got a
3843 SIG0 (generic unsignaled stop). */
3844 if (ecs->event_thread->stop_requested
3845 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3846 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 3847
515630c5 3848 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3849
527159b7 3850 if (debug_infrun)
237fc4c9 3851 {
5af949e3
UW
3852 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3853 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3854 struct cleanup *old_chain = save_inferior_ptid ();
3855
3856 inferior_ptid = ecs->ptid;
5af949e3
UW
3857
3858 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3859 paddress (gdbarch, stop_pc));
d92524f1 3860 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3861 {
3862 CORE_ADDR addr;
abbb1732 3863
237fc4c9
PA
3864 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3865
3866 if (target_stopped_data_address (&current_target, &addr))
3867 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3868 "infrun: stopped data address = %s\n",
3869 paddress (gdbarch, addr));
237fc4c9
PA
3870 else
3871 fprintf_unfiltered (gdb_stdlog,
3872 "infrun: (no data address available)\n");
3873 }
7f82dfc7
JK
3874
3875 do_cleanups (old_chain);
237fc4c9 3876 }
527159b7 3877
36fa8042
PA
3878 /* This is originated from start_remote(), start_inferior() and
3879 shared libraries hook functions. */
3880 stop_soon = get_inferior_stop_soon (ecs->ptid);
3881 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3882 {
3883 if (!ptid_equal (ecs->ptid, inferior_ptid))
3884 context_switch (ecs->ptid);
3885 if (debug_infrun)
3886 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3887 stop_print_frame = 1;
22bcd14b 3888 stop_waiting (ecs);
36fa8042
PA
3889 return;
3890 }
3891
3892 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
3893 && stop_after_trap)
3894 {
3895 if (!ptid_equal (ecs->ptid, inferior_ptid))
3896 context_switch (ecs->ptid);
3897 if (debug_infrun)
3898 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3899 stop_print_frame = 0;
22bcd14b 3900 stop_waiting (ecs);
36fa8042
PA
3901 return;
3902 }
3903
3904 /* This originates from attach_command(). We need to overwrite
3905 the stop_signal here, because some kernels don't ignore a
3906 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3907 See more comments in inferior.h. On the other hand, if we
3908 get a non-SIGSTOP, report it to the user - assume the backend
3909 will handle the SIGSTOP if it should show up later.
3910
3911 Also consider that the attach is complete when we see a
3912 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3913 target extended-remote report it instead of a SIGSTOP
3914 (e.g. gdbserver). We already rely on SIGTRAP being our
3915 signal, so this is no exception.
3916
3917 Also consider that the attach is complete when we see a
3918 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3919 the target to stop all threads of the inferior, in case the
3920 low level attach operation doesn't stop them implicitly. If
3921 they weren't stopped implicitly, then the stub will report a
3922 GDB_SIGNAL_0, meaning: stopped for no particular reason
3923 other than GDB's request. */
3924 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3925 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
3926 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
3927 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
3928 {
3929 stop_print_frame = 1;
22bcd14b 3930 stop_waiting (ecs);
36fa8042
PA
3931 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3932 return;
3933 }
3934
488f131b 3935 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3936 so, then switch to that thread. */
3937 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3938 {
527159b7 3939 if (debug_infrun)
8a9de0e4 3940 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3941
0d1e5fa7 3942 context_switch (ecs->ptid);
c5aa993b 3943
9a4105ab
AC
3944 if (deprecated_context_hook)
3945 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3946 }
c906108c 3947
568d6575
UW
3948 /* At this point, get hold of the now-current thread's frame. */
3949 frame = get_current_frame ();
3950 gdbarch = get_frame_arch (frame);
3951
2adfaa28 3952 /* Pull the single step breakpoints out of the target. */
1c0fdd0e 3953 if (singlestep_breakpoints_inserted_p)
488f131b 3954 {
2adfaa28
PA
3955 /* However, before doing so, if this single-step breakpoint was
3956 actually for another thread, set this thread up for moving
3957 past it. */
3958 if (!ptid_equal (ecs->ptid, singlestep_ptid)
3959 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3960 {
3961 struct regcache *regcache;
3962 struct address_space *aspace;
3963 CORE_ADDR pc;
3964
3965 regcache = get_thread_regcache (ecs->ptid);
3966 aspace = get_regcache_aspace (regcache);
3967 pc = regcache_read_pc (regcache);
3968 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3969 {
3970 if (debug_infrun)
3971 {
3972 fprintf_unfiltered (gdb_stdlog,
3973 "infrun: [%s] hit step over single-step"
3974 " breakpoint of [%s]\n",
3975 target_pid_to_str (ecs->ptid),
3976 target_pid_to_str (singlestep_ptid));
3977 }
3978 ecs->hit_singlestep_breakpoint = 1;
3979 }
3980 }
3981
e0cd558a 3982 remove_single_step_breakpoints ();
488f131b
JB
3983 singlestep_breakpoints_inserted_p = 0;
3984 }
c906108c 3985
4f5d7f63 3986 if (ecs->stepped_after_stopped_by_watchpoint)
d983da9c
DJ
3987 stopped_by_watchpoint = 0;
3988 else
3989 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3990
3991 /* If necessary, step over this watchpoint. We'll be back to display
3992 it in a moment. */
3993 if (stopped_by_watchpoint
d92524f1 3994 && (target_have_steppable_watchpoint
568d6575 3995 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3996 {
488f131b
JB
3997 /* At this point, we are stopped at an instruction which has
3998 attempted to write to a piece of memory under control of
3999 a watchpoint. The instruction hasn't actually executed
4000 yet. If we were to evaluate the watchpoint expression
4001 now, we would get the old value, and therefore no change
4002 would seem to have occurred.
4003
4004 In order to make watchpoints work `right', we really need
4005 to complete the memory write, and then evaluate the
d983da9c
DJ
4006 watchpoint expression. We do this by single-stepping the
4007 target.
4008
4009 It may not be necessary to disable the watchpoint to stop over
4010 it. For example, the PA can (with some kernel cooperation)
4011 single step over a watchpoint without disabling the watchpoint.
4012
4013 It is far more common to need to disable a watchpoint to step
4014 the inferior over it. If we have non-steppable watchpoints,
4015 we must disable the current watchpoint; it's simplest to
4016 disable all watchpoints and breakpoints. */
2facfe5c
DD
4017 int hw_step = 1;
4018
d92524f1 4019 if (!target_have_steppable_watchpoint)
2455069d
UW
4020 {
4021 remove_breakpoints ();
4022 /* See comment in resume why we need to stop bypassing signals
4023 while breakpoints have been removed. */
4024 target_pass_signals (0, NULL);
4025 }
2facfe5c 4026 /* Single step */
568d6575 4027 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
a493e3e2 4028 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
0d1e5fa7 4029 waiton_ptid = ecs->ptid;
d92524f1 4030 if (target_have_steppable_watchpoint)
0d1e5fa7 4031 infwait_state = infwait_step_watch_state;
d983da9c 4032 else
0d1e5fa7 4033 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4034 prepare_to_wait (ecs);
4035 return;
4036 }
4037
4e1c45ea 4038 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4039 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4040 ecs->event_thread->control.stop_step = 0;
488f131b 4041 stop_print_frame = 1;
488f131b 4042 stopped_by_random_signal = 0;
488f131b 4043
edb3359d
DJ
4044 /* Hide inlined functions starting here, unless we just performed stepi or
4045 nexti. After stepi and nexti, always show the innermost frame (not any
4046 inline function call sites). */
16c381f0 4047 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4048 {
4049 struct address_space *aspace =
4050 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4051
4052 /* skip_inline_frames is expensive, so we avoid it if we can
4053 determine that the address is one where functions cannot have
4054 been inlined. This improves performance with inferiors that
4055 load a lot of shared libraries, because the solib event
4056 breakpoint is defined as the address of a function (i.e. not
4057 inline). Note that we have to check the previous PC as well
4058 as the current one to catch cases when we have just
4059 single-stepped off a breakpoint prior to reinstating it.
4060 Note that we're assuming that the code we single-step to is
4061 not inline, but that's not definitive: there's nothing
4062 preventing the event breakpoint function from containing
4063 inlined code, and the single-step ending up there. If the
4064 user had set a breakpoint on that inlined code, the missing
4065 skip_inline_frames call would break things. Fortunately
4066 that's an extremely unlikely scenario. */
09ac7c10 4067 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4068 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4069 && ecs->event_thread->control.trap_expected
4070 && pc_at_non_inline_function (aspace,
4071 ecs->event_thread->prev_pc,
09ac7c10 4072 &ecs->ws)))
1c5a993e
MR
4073 {
4074 skip_inline_frames (ecs->ptid);
4075
4076 /* Re-fetch current thread's frame in case that invalidated
4077 the frame cache. */
4078 frame = get_current_frame ();
4079 gdbarch = get_frame_arch (frame);
4080 }
0574c78f 4081 }
edb3359d 4082
a493e3e2 4083 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4084 && ecs->event_thread->control.trap_expected
568d6575 4085 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4086 && currently_stepping (ecs->event_thread))
3352ef37 4087 {
b50d7442 4088 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4089 also on an instruction that needs to be stepped multiple
1777feb0 4090 times before it's been fully executing. E.g., architectures
3352ef37
AC
4091 with a delay slot. It needs to be stepped twice, once for
4092 the instruction and once for the delay slot. */
4093 int step_through_delay
568d6575 4094 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4095
527159b7 4096 if (debug_infrun && step_through_delay)
8a9de0e4 4097 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4098 if (ecs->event_thread->control.step_range_end == 0
4099 && step_through_delay)
3352ef37
AC
4100 {
4101 /* The user issued a continue when stopped at a breakpoint.
4102 Set up for another trap and get out of here. */
4e1c45ea 4103 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4104 keep_going (ecs);
4105 return;
4106 }
4107 else if (step_through_delay)
4108 {
4109 /* The user issued a step when stopped at a breakpoint.
4110 Maybe we should stop, maybe we should not - the delay
4111 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4112 case, don't decide that here, just set
4113 ecs->stepping_over_breakpoint, making sure we
4114 single-step again before breakpoints are re-inserted. */
4e1c45ea 4115 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4116 }
4117 }
4118
ab04a2af
TT
4119 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4120 handles this event. */
4121 ecs->event_thread->control.stop_bpstat
4122 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4123 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4124
ab04a2af
TT
4125 /* Following in case break condition called a
4126 function. */
4127 stop_print_frame = 1;
73dd234f 4128
ab04a2af
TT
4129 /* This is where we handle "moribund" watchpoints. Unlike
4130 software breakpoints traps, hardware watchpoint traps are
4131 always distinguishable from random traps. If no high-level
4132 watchpoint is associated with the reported stop data address
4133 anymore, then the bpstat does not explain the signal ---
4134 simply make sure to ignore it if `stopped_by_watchpoint' is
4135 set. */
4136
4137 if (debug_infrun
4138 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 4139 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 4140 GDB_SIGNAL_TRAP)
ab04a2af
TT
4141 && stopped_by_watchpoint)
4142 fprintf_unfiltered (gdb_stdlog,
4143 "infrun: no user watchpoint explains "
4144 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4145
bac7d97b 4146 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
4147 at one stage in the past included checks for an inferior
4148 function call's call dummy's return breakpoint. The original
4149 comment, that went with the test, read:
03cebad2 4150
ab04a2af
TT
4151 ``End of a stack dummy. Some systems (e.g. Sony news) give
4152 another signal besides SIGTRAP, so check here as well as
4153 above.''
73dd234f 4154
ab04a2af
TT
4155 If someone ever tries to get call dummys on a
4156 non-executable stack to work (where the target would stop
4157 with something like a SIGSEGV), then those tests might need
4158 to be re-instated. Given, however, that the tests were only
4159 enabled when momentary breakpoints were not being used, I
4160 suspect that it won't be the case.
488f131b 4161
ab04a2af
TT
4162 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4163 be necessary for call dummies on a non-executable stack on
4164 SPARC. */
488f131b 4165
bac7d97b 4166 /* See if the breakpoints module can explain the signal. */
47591c29
PA
4167 random_signal
4168 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4169 ecs->event_thread->suspend.stop_signal);
bac7d97b
PA
4170
4171 /* If not, perhaps stepping/nexting can. */
4172 if (random_signal)
4173 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4174 && currently_stepping (ecs->event_thread));
ab04a2af 4175
2adfaa28
PA
4176 /* Perhaps the thread hit a single-step breakpoint of _another_
4177 thread. Single-step breakpoints are transparent to the
4178 breakpoints module. */
4179 if (random_signal)
4180 random_signal = !ecs->hit_singlestep_breakpoint;
4181
bac7d97b
PA
4182 /* No? Perhaps we got a moribund watchpoint. */
4183 if (random_signal)
4184 random_signal = !stopped_by_watchpoint;
ab04a2af 4185
488f131b
JB
4186 /* For the program's own signals, act according to
4187 the signal handling tables. */
4188
ce12b012 4189 if (random_signal)
488f131b
JB
4190 {
4191 /* Signal not for debugging purposes. */
4192 int printed = 0;
24291992 4193 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
c9737c08 4194 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4195
527159b7 4196 if (debug_infrun)
c9737c08
PA
4197 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4198 gdb_signal_to_symbol_string (stop_signal));
527159b7 4199
488f131b
JB
4200 stopped_by_random_signal = 1;
4201
16c381f0 4202 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b 4203 {
fd664c91 4204 /* The signal table tells us to print about this signal. */
488f131b
JB
4205 printed = 1;
4206 target_terminal_ours_for_output ();
fd664c91 4207 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
488f131b 4208 }
252fbfc8
PA
4209 /* Always stop on signals if we're either just gaining control
4210 of the program, or the user explicitly requested this thread
4211 to remain stopped. */
d6b48e9c 4212 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4213 || ecs->event_thread->stop_requested
24291992 4214 || (!inf->detaching
16c381f0 4215 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 4216 {
22bcd14b 4217 stop_waiting (ecs);
488f131b
JB
4218 return;
4219 }
4220 /* If not going to stop, give terminal back
4221 if we took it away. */
4222 else if (printed)
4223 target_terminal_inferior ();
4224
4225 /* Clear the signal if it should not be passed. */
16c381f0 4226 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4227 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4228
fb14de7b 4229 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4230 && ecs->event_thread->control.trap_expected
8358c15c 4231 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4232 {
4233 /* We were just starting a new sequence, attempting to
4234 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4235 Instead this signal arrives. This signal will take us out
68f53502
AC
4236 of the stepping range so GDB needs to remember to, when
4237 the signal handler returns, resume stepping off that
4238 breakpoint. */
4239 /* To simplify things, "continue" is forced to use the same
4240 code paths as single-step - set a breakpoint at the
4241 signal return address and then, once hit, step off that
4242 breakpoint. */
237fc4c9
PA
4243 if (debug_infrun)
4244 fprintf_unfiltered (gdb_stdlog,
4245 "infrun: signal arrived while stepping over "
4246 "breakpoint\n");
d3169d93 4247
2c03e5be 4248 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4249 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4250 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4251 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
4252
4253 /* If we were nexting/stepping some other thread, switch to
4254 it, so that we don't continue it, losing control. */
4255 if (!switch_back_to_stepped_thread (ecs))
4256 keep_going (ecs);
9d799f85 4257 return;
68f53502 4258 }
9d799f85 4259
16c381f0 4260 if (ecs->event_thread->control.step_range_end != 0
a493e3e2 4261 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
ce4c476a 4262 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
edb3359d 4263 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4264 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4265 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4266 {
4267 /* The inferior is about to take a signal that will take it
4268 out of the single step range. Set a breakpoint at the
4269 current PC (which is presumably where the signal handler
4270 will eventually return) and then allow the inferior to
4271 run free.
4272
4273 Note that this is only needed for a signal delivered
4274 while in the single-step range. Nested signals aren't a
4275 problem as they eventually all return. */
237fc4c9
PA
4276 if (debug_infrun)
4277 fprintf_unfiltered (gdb_stdlog,
4278 "infrun: signal may take us out of "
4279 "single-step range\n");
4280
2c03e5be 4281 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4282 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4283 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4284 keep_going (ecs);
4285 return;
d303a6c7 4286 }
9d799f85
AC
4287
4288 /* Note: step_resume_breakpoint may be non-NULL. This occures
4289 when either there's a nested signal, or when there's a
4290 pending signal enabled just as the signal handler returns
4291 (leaving the inferior at the step-resume-breakpoint without
4292 actually executing it). Either way continue until the
4293 breakpoint is really hit. */
c447ac0b
PA
4294
4295 if (!switch_back_to_stepped_thread (ecs))
4296 {
4297 if (debug_infrun)
4298 fprintf_unfiltered (gdb_stdlog,
4299 "infrun: random signal, keep going\n");
4300
4301 keep_going (ecs);
4302 }
4303 return;
488f131b 4304 }
94c57d6a
PA
4305
4306 process_event_stop_test (ecs);
4307}
4308
4309/* Come here when we've got some debug event / signal we can explain
4310 (IOW, not a random signal), and test whether it should cause a
4311 stop, or whether we should resume the inferior (transparently).
4312 E.g., could be a breakpoint whose condition evaluates false; we
4313 could be still stepping within the line; etc. */
4314
4315static void
4316process_event_stop_test (struct execution_control_state *ecs)
4317{
4318 struct symtab_and_line stop_pc_sal;
4319 struct frame_info *frame;
4320 struct gdbarch *gdbarch;
cdaa5b73
PA
4321 CORE_ADDR jmp_buf_pc;
4322 struct bpstat_what what;
94c57d6a 4323
cdaa5b73 4324 /* Handle cases caused by hitting a breakpoint. */
611c83ae 4325
cdaa5b73
PA
4326 frame = get_current_frame ();
4327 gdbarch = get_frame_arch (frame);
fcf3daef 4328
cdaa5b73 4329 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4330
cdaa5b73
PA
4331 if (what.call_dummy)
4332 {
4333 stop_stack_dummy = what.call_dummy;
4334 }
186c406b 4335
cdaa5b73
PA
4336 /* If we hit an internal event that triggers symbol changes, the
4337 current frame will be invalidated within bpstat_what (e.g., if we
4338 hit an internal solib event). Re-fetch it. */
4339 frame = get_current_frame ();
4340 gdbarch = get_frame_arch (frame);
e2e4d78b 4341
cdaa5b73
PA
4342 switch (what.main_action)
4343 {
4344 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4345 /* If we hit the breakpoint at longjmp while stepping, we
4346 install a momentary breakpoint at the target of the
4347 jmp_buf. */
186c406b 4348
cdaa5b73
PA
4349 if (debug_infrun)
4350 fprintf_unfiltered (gdb_stdlog,
4351 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4352
cdaa5b73 4353 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4354
cdaa5b73
PA
4355 if (what.is_longjmp)
4356 {
4357 struct value *arg_value;
4358
4359 /* If we set the longjmp breakpoint via a SystemTap probe,
4360 then use it to extract the arguments. The destination PC
4361 is the third argument to the probe. */
4362 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4363 if (arg_value)
4364 jmp_buf_pc = value_as_address (arg_value);
4365 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4366 || !gdbarch_get_longjmp_target (gdbarch,
4367 frame, &jmp_buf_pc))
e2e4d78b 4368 {
cdaa5b73
PA
4369 if (debug_infrun)
4370 fprintf_unfiltered (gdb_stdlog,
4371 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4372 "(!gdbarch_get_longjmp_target)\n");
4373 keep_going (ecs);
4374 return;
e2e4d78b 4375 }
e2e4d78b 4376
cdaa5b73
PA
4377 /* Insert a breakpoint at resume address. */
4378 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4379 }
4380 else
4381 check_exception_resume (ecs, frame);
4382 keep_going (ecs);
4383 return;
e81a37f7 4384
cdaa5b73
PA
4385 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4386 {
4387 struct frame_info *init_frame;
e81a37f7 4388
cdaa5b73 4389 /* There are several cases to consider.
c906108c 4390
cdaa5b73
PA
4391 1. The initiating frame no longer exists. In this case we
4392 must stop, because the exception or longjmp has gone too
4393 far.
2c03e5be 4394
cdaa5b73
PA
4395 2. The initiating frame exists, and is the same as the
4396 current frame. We stop, because the exception or longjmp
4397 has been caught.
2c03e5be 4398
cdaa5b73
PA
4399 3. The initiating frame exists and is different from the
4400 current frame. This means the exception or longjmp has
4401 been caught beneath the initiating frame, so keep going.
c906108c 4402
cdaa5b73
PA
4403 4. longjmp breakpoint has been placed just to protect
4404 against stale dummy frames and user is not interested in
4405 stopping around longjmps. */
c5aa993b 4406
cdaa5b73
PA
4407 if (debug_infrun)
4408 fprintf_unfiltered (gdb_stdlog,
4409 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 4410
cdaa5b73
PA
4411 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4412 != NULL);
4413 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4414
cdaa5b73
PA
4415 if (what.is_longjmp)
4416 {
b67a2c6f 4417 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 4418
cdaa5b73 4419 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 4420 {
cdaa5b73
PA
4421 /* Case 4. */
4422 keep_going (ecs);
4423 return;
e5ef252a 4424 }
cdaa5b73 4425 }
c5aa993b 4426
cdaa5b73 4427 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 4428
cdaa5b73
PA
4429 if (init_frame)
4430 {
4431 struct frame_id current_id
4432 = get_frame_id (get_current_frame ());
4433 if (frame_id_eq (current_id,
4434 ecs->event_thread->initiating_frame))
4435 {
4436 /* Case 2. Fall through. */
4437 }
4438 else
4439 {
4440 /* Case 3. */
4441 keep_going (ecs);
4442 return;
4443 }
68f53502 4444 }
488f131b 4445
cdaa5b73
PA
4446 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4447 exists. */
4448 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 4449
bdc36728 4450 end_stepping_range (ecs);
cdaa5b73
PA
4451 }
4452 return;
e5ef252a 4453
cdaa5b73
PA
4454 case BPSTAT_WHAT_SINGLE:
4455 if (debug_infrun)
4456 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4457 ecs->event_thread->stepping_over_breakpoint = 1;
4458 /* Still need to check other stuff, at least the case where we
4459 are stepping and step out of the right range. */
4460 break;
e5ef252a 4461
cdaa5b73
PA
4462 case BPSTAT_WHAT_STEP_RESUME:
4463 if (debug_infrun)
4464 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 4465
cdaa5b73
PA
4466 delete_step_resume_breakpoint (ecs->event_thread);
4467 if (ecs->event_thread->control.proceed_to_finish
4468 && execution_direction == EXEC_REVERSE)
4469 {
4470 struct thread_info *tp = ecs->event_thread;
4471
4472 /* We are finishing a function in reverse, and just hit the
4473 step-resume breakpoint at the start address of the
4474 function, and we're almost there -- just need to back up
4475 by one more single-step, which should take us back to the
4476 function call. */
4477 tp->control.step_range_start = tp->control.step_range_end = 1;
4478 keep_going (ecs);
e5ef252a 4479 return;
cdaa5b73
PA
4480 }
4481 fill_in_stop_func (gdbarch, ecs);
4482 if (stop_pc == ecs->stop_func_start
4483 && execution_direction == EXEC_REVERSE)
4484 {
4485 /* We are stepping over a function call in reverse, and just
4486 hit the step-resume breakpoint at the start address of
4487 the function. Go back to single-stepping, which should
4488 take us back to the function call. */
4489 ecs->event_thread->stepping_over_breakpoint = 1;
4490 keep_going (ecs);
4491 return;
4492 }
4493 break;
e5ef252a 4494
cdaa5b73
PA
4495 case BPSTAT_WHAT_STOP_NOISY:
4496 if (debug_infrun)
4497 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4498 stop_print_frame = 1;
e5ef252a 4499
99619bea
PA
4500 /* Assume the thread stopped for a breapoint. We'll still check
4501 whether a/the breakpoint is there when the thread is next
4502 resumed. */
4503 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 4504
22bcd14b 4505 stop_waiting (ecs);
cdaa5b73 4506 return;
e5ef252a 4507
cdaa5b73
PA
4508 case BPSTAT_WHAT_STOP_SILENT:
4509 if (debug_infrun)
4510 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4511 stop_print_frame = 0;
e5ef252a 4512
99619bea
PA
4513 /* Assume the thread stopped for a breapoint. We'll still check
4514 whether a/the breakpoint is there when the thread is next
4515 resumed. */
4516 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 4517 stop_waiting (ecs);
cdaa5b73
PA
4518 return;
4519
4520 case BPSTAT_WHAT_HP_STEP_RESUME:
4521 if (debug_infrun)
4522 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4523
4524 delete_step_resume_breakpoint (ecs->event_thread);
4525 if (ecs->event_thread->step_after_step_resume_breakpoint)
4526 {
4527 /* Back when the step-resume breakpoint was inserted, we
4528 were trying to single-step off a breakpoint. Go back to
4529 doing that. */
4530 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4531 ecs->event_thread->stepping_over_breakpoint = 1;
4532 keep_going (ecs);
4533 return;
e5ef252a 4534 }
cdaa5b73
PA
4535 break;
4536
4537 case BPSTAT_WHAT_KEEP_CHECKING:
4538 break;
e5ef252a 4539 }
c906108c 4540
cdaa5b73
PA
4541 /* We come here if we hit a breakpoint but should not stop for it.
4542 Possibly we also were stepping and should stop for that. So fall
4543 through and test for stepping. But, if not stepping, do not
4544 stop. */
c906108c 4545
a7212384
UW
4546 /* In all-stop mode, if we're currently stepping but have stopped in
4547 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
4548 if (switch_back_to_stepped_thread (ecs))
4549 return;
776f04fa 4550
8358c15c 4551 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4552 {
527159b7 4553 if (debug_infrun)
d3169d93
DJ
4554 fprintf_unfiltered (gdb_stdlog,
4555 "infrun: step-resume breakpoint is inserted\n");
527159b7 4556
488f131b
JB
4557 /* Having a step-resume breakpoint overrides anything
4558 else having to do with stepping commands until
4559 that breakpoint is reached. */
488f131b
JB
4560 keep_going (ecs);
4561 return;
4562 }
c5aa993b 4563
16c381f0 4564 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4565 {
527159b7 4566 if (debug_infrun)
8a9de0e4 4567 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4568 /* Likewise if we aren't even stepping. */
488f131b
JB
4569 keep_going (ecs);
4570 return;
4571 }
c5aa993b 4572
4b7703ad
JB
4573 /* Re-fetch current thread's frame in case the code above caused
4574 the frame cache to be re-initialized, making our FRAME variable
4575 a dangling pointer. */
4576 frame = get_current_frame ();
628fe4e4 4577 gdbarch = get_frame_arch (frame);
7e324e48 4578 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4579
488f131b 4580 /* If stepping through a line, keep going if still within it.
c906108c 4581
488f131b
JB
4582 Note that step_range_end is the address of the first instruction
4583 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4584 within it!
4585
4586 Note also that during reverse execution, we may be stepping
4587 through a function epilogue and therefore must detect when
4588 the current-frame changes in the middle of a line. */
4589
ce4c476a 4590 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 4591 && (execution_direction != EXEC_REVERSE
388a8562 4592 || frame_id_eq (get_frame_id (frame),
16c381f0 4593 ecs->event_thread->control.step_frame_id)))
488f131b 4594 {
527159b7 4595 if (debug_infrun)
5af949e3
UW
4596 fprintf_unfiltered
4597 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4598 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4599 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 4600
c1e36e3e
PA
4601 /* Tentatively re-enable range stepping; `resume' disables it if
4602 necessary (e.g., if we're stepping over a breakpoint or we
4603 have software watchpoints). */
4604 ecs->event_thread->control.may_range_step = 1;
4605
b2175913
MS
4606 /* When stepping backward, stop at beginning of line range
4607 (unless it's the function entry point, in which case
4608 keep going back to the call point). */
16c381f0 4609 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4610 && stop_pc != ecs->stop_func_start
4611 && execution_direction == EXEC_REVERSE)
bdc36728 4612 end_stepping_range (ecs);
b2175913
MS
4613 else
4614 keep_going (ecs);
4615
488f131b
JB
4616 return;
4617 }
c5aa993b 4618
488f131b 4619 /* We stepped out of the stepping range. */
c906108c 4620
488f131b 4621 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4622 loader dynamic symbol resolution code...
4623
4624 EXEC_FORWARD: we keep on single stepping until we exit the run
4625 time loader code and reach the callee's address.
4626
4627 EXEC_REVERSE: we've already executed the callee (backward), and
4628 the runtime loader code is handled just like any other
4629 undebuggable function call. Now we need only keep stepping
4630 backward through the trampoline code, and that's handled further
4631 down, so there is nothing for us to do here. */
4632
4633 if (execution_direction != EXEC_REVERSE
16c381f0 4634 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4635 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4636 {
4c8c40e6 4637 CORE_ADDR pc_after_resolver =
568d6575 4638 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4639
527159b7 4640 if (debug_infrun)
3e43a32a
MS
4641 fprintf_unfiltered (gdb_stdlog,
4642 "infrun: stepped into dynsym resolve code\n");
527159b7 4643
488f131b
JB
4644 if (pc_after_resolver)
4645 {
4646 /* Set up a step-resume breakpoint at the address
4647 indicated by SKIP_SOLIB_RESOLVER. */
4648 struct symtab_and_line sr_sal;
abbb1732 4649
fe39c653 4650 init_sal (&sr_sal);
488f131b 4651 sr_sal.pc = pc_after_resolver;
6c95b8df 4652 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4653
a6d9a66e
UW
4654 insert_step_resume_breakpoint_at_sal (gdbarch,
4655 sr_sal, null_frame_id);
c5aa993b 4656 }
c906108c 4657
488f131b
JB
4658 keep_going (ecs);
4659 return;
4660 }
c906108c 4661
16c381f0
JK
4662 if (ecs->event_thread->control.step_range_end != 1
4663 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4664 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4665 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4666 {
527159b7 4667 if (debug_infrun)
3e43a32a
MS
4668 fprintf_unfiltered (gdb_stdlog,
4669 "infrun: stepped into signal trampoline\n");
42edda50 4670 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4671 a signal trampoline (either by a signal being delivered or by
4672 the signal handler returning). Just single-step until the
4673 inferior leaves the trampoline (either by calling the handler
4674 or returning). */
488f131b
JB
4675 keep_going (ecs);
4676 return;
4677 }
c906108c 4678
14132e89
MR
4679 /* If we're in the return path from a shared library trampoline,
4680 we want to proceed through the trampoline when stepping. */
4681 /* macro/2012-04-25: This needs to come before the subroutine
4682 call check below as on some targets return trampolines look
4683 like subroutine calls (MIPS16 return thunks). */
4684 if (gdbarch_in_solib_return_trampoline (gdbarch,
4685 stop_pc, ecs->stop_func_name)
4686 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4687 {
4688 /* Determine where this trampoline returns. */
4689 CORE_ADDR real_stop_pc;
4690
4691 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4692
4693 if (debug_infrun)
4694 fprintf_unfiltered (gdb_stdlog,
4695 "infrun: stepped into solib return tramp\n");
4696
4697 /* Only proceed through if we know where it's going. */
4698 if (real_stop_pc)
4699 {
4700 /* And put the step-breakpoint there and go until there. */
4701 struct symtab_and_line sr_sal;
4702
4703 init_sal (&sr_sal); /* initialize to zeroes */
4704 sr_sal.pc = real_stop_pc;
4705 sr_sal.section = find_pc_overlay (sr_sal.pc);
4706 sr_sal.pspace = get_frame_program_space (frame);
4707
4708 /* Do not specify what the fp should be when we stop since
4709 on some machines the prologue is where the new fp value
4710 is established. */
4711 insert_step_resume_breakpoint_at_sal (gdbarch,
4712 sr_sal, null_frame_id);
4713
4714 /* Restart without fiddling with the step ranges or
4715 other state. */
4716 keep_going (ecs);
4717 return;
4718 }
4719 }
4720
c17eaafe
DJ
4721 /* Check for subroutine calls. The check for the current frame
4722 equalling the step ID is not necessary - the check of the
4723 previous frame's ID is sufficient - but it is a common case and
4724 cheaper than checking the previous frame's ID.
14e60db5
DJ
4725
4726 NOTE: frame_id_eq will never report two invalid frame IDs as
4727 being equal, so to get into this block, both the current and
4728 previous frame must have valid frame IDs. */
005ca36a
JB
4729 /* The outer_frame_id check is a heuristic to detect stepping
4730 through startup code. If we step over an instruction which
4731 sets the stack pointer from an invalid value to a valid value,
4732 we may detect that as a subroutine call from the mythical
4733 "outermost" function. This could be fixed by marking
4734 outermost frames as !stack_p,code_p,special_p. Then the
4735 initial outermost frame, before sp was valid, would
ce6cca6d 4736 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4737 for more. */
edb3359d 4738 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4739 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4740 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4741 ecs->event_thread->control.step_stack_frame_id)
4742 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4743 outer_frame_id)
4744 || step_start_function != find_pc_function (stop_pc))))
488f131b 4745 {
95918acb 4746 CORE_ADDR real_stop_pc;
8fb3e588 4747
527159b7 4748 if (debug_infrun)
8a9de0e4 4749 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4750
16c381f0
JK
4751 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4752 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4753 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4754 ecs->stop_func_start)))
95918acb
AC
4755 {
4756 /* I presume that step_over_calls is only 0 when we're
4757 supposed to be stepping at the assembly language level
4758 ("stepi"). Just stop. */
4759 /* Also, maybe we just did a "nexti" inside a prolog, so we
4760 thought it was a subroutine call but it was not. Stop as
4761 well. FENN */
388a8562 4762 /* And this works the same backward as frontward. MVS */
bdc36728 4763 end_stepping_range (ecs);
95918acb
AC
4764 return;
4765 }
8fb3e588 4766
388a8562
MS
4767 /* Reverse stepping through solib trampolines. */
4768
4769 if (execution_direction == EXEC_REVERSE
16c381f0 4770 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4771 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4772 || (ecs->stop_func_start == 0
4773 && in_solib_dynsym_resolve_code (stop_pc))))
4774 {
4775 /* Any solib trampoline code can be handled in reverse
4776 by simply continuing to single-step. We have already
4777 executed the solib function (backwards), and a few
4778 steps will take us back through the trampoline to the
4779 caller. */
4780 keep_going (ecs);
4781 return;
4782 }
4783
16c381f0 4784 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4785 {
b2175913
MS
4786 /* We're doing a "next".
4787
4788 Normal (forward) execution: set a breakpoint at the
4789 callee's return address (the address at which the caller
4790 will resume).
4791
4792 Reverse (backward) execution. set the step-resume
4793 breakpoint at the start of the function that we just
4794 stepped into (backwards), and continue to there. When we
6130d0b7 4795 get there, we'll need to single-step back to the caller. */
b2175913
MS
4796
4797 if (execution_direction == EXEC_REVERSE)
4798 {
acf9414f
JK
4799 /* If we're already at the start of the function, we've either
4800 just stepped backward into a single instruction function,
4801 or stepped back out of a signal handler to the first instruction
4802 of the function. Just keep going, which will single-step back
4803 to the caller. */
58c48e72 4804 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
4805 {
4806 struct symtab_and_line sr_sal;
4807
4808 /* Normal function call return (static or dynamic). */
4809 init_sal (&sr_sal);
4810 sr_sal.pc = ecs->stop_func_start;
4811 sr_sal.pspace = get_frame_program_space (frame);
4812 insert_step_resume_breakpoint_at_sal (gdbarch,
4813 sr_sal, null_frame_id);
4814 }
b2175913
MS
4815 }
4816 else
568d6575 4817 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4818
8567c30f
AC
4819 keep_going (ecs);
4820 return;
4821 }
a53c66de 4822
95918acb 4823 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4824 calling routine and the real function), locate the real
4825 function. That's what tells us (a) whether we want to step
4826 into it at all, and (b) what prologue we want to run to the
4827 end of, if we do step into it. */
568d6575 4828 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4829 if (real_stop_pc == 0)
568d6575 4830 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4831 if (real_stop_pc != 0)
4832 ecs->stop_func_start = real_stop_pc;
8fb3e588 4833
db5f024e 4834 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4835 {
4836 struct symtab_and_line sr_sal;
abbb1732 4837
1b2bfbb9
RC
4838 init_sal (&sr_sal);
4839 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4840 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4841
a6d9a66e
UW
4842 insert_step_resume_breakpoint_at_sal (gdbarch,
4843 sr_sal, null_frame_id);
8fb3e588
AC
4844 keep_going (ecs);
4845 return;
1b2bfbb9
RC
4846 }
4847
95918acb 4848 /* If we have line number information for the function we are
1bfeeb0f
JL
4849 thinking of stepping into and the function isn't on the skip
4850 list, step into it.
95918acb 4851
8fb3e588
AC
4852 If there are several symtabs at that PC (e.g. with include
4853 files), just want to know whether *any* of them have line
4854 numbers. find_pc_line handles this. */
95918acb
AC
4855 {
4856 struct symtab_and_line tmp_sal;
8fb3e588 4857
95918acb 4858 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 4859 if (tmp_sal.line != 0
85817405
JK
4860 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4861 &tmp_sal))
95918acb 4862 {
b2175913 4863 if (execution_direction == EXEC_REVERSE)
568d6575 4864 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4865 else
568d6575 4866 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4867 return;
4868 }
4869 }
4870
4871 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4872 set, we stop the step so that the user has a chance to switch
4873 in assembly mode. */
16c381f0 4874 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4875 && step_stop_if_no_debug)
95918acb 4876 {
bdc36728 4877 end_stepping_range (ecs);
95918acb
AC
4878 return;
4879 }
4880
b2175913
MS
4881 if (execution_direction == EXEC_REVERSE)
4882 {
acf9414f
JK
4883 /* If we're already at the start of the function, we've either just
4884 stepped backward into a single instruction function without line
4885 number info, or stepped back out of a signal handler to the first
4886 instruction of the function without line number info. Just keep
4887 going, which will single-step back to the caller. */
4888 if (ecs->stop_func_start != stop_pc)
4889 {
4890 /* Set a breakpoint at callee's start address.
4891 From there we can step once and be back in the caller. */
4892 struct symtab_and_line sr_sal;
abbb1732 4893
acf9414f
JK
4894 init_sal (&sr_sal);
4895 sr_sal.pc = ecs->stop_func_start;
4896 sr_sal.pspace = get_frame_program_space (frame);
4897 insert_step_resume_breakpoint_at_sal (gdbarch,
4898 sr_sal, null_frame_id);
4899 }
b2175913
MS
4900 }
4901 else
4902 /* Set a breakpoint at callee's return address (the address
4903 at which the caller will resume). */
568d6575 4904 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4905
95918acb 4906 keep_going (ecs);
488f131b 4907 return;
488f131b 4908 }
c906108c 4909
fdd654f3
MS
4910 /* Reverse stepping through solib trampolines. */
4911
4912 if (execution_direction == EXEC_REVERSE
16c381f0 4913 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
4914 {
4915 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4916 || (ecs->stop_func_start == 0
4917 && in_solib_dynsym_resolve_code (stop_pc)))
4918 {
4919 /* Any solib trampoline code can be handled in reverse
4920 by simply continuing to single-step. We have already
4921 executed the solib function (backwards), and a few
4922 steps will take us back through the trampoline to the
4923 caller. */
4924 keep_going (ecs);
4925 return;
4926 }
4927 else if (in_solib_dynsym_resolve_code (stop_pc))
4928 {
4929 /* Stepped backward into the solib dynsym resolver.
4930 Set a breakpoint at its start and continue, then
4931 one more step will take us out. */
4932 struct symtab_and_line sr_sal;
abbb1732 4933
fdd654f3
MS
4934 init_sal (&sr_sal);
4935 sr_sal.pc = ecs->stop_func_start;
9d1807c3 4936 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
4937 insert_step_resume_breakpoint_at_sal (gdbarch,
4938 sr_sal, null_frame_id);
4939 keep_going (ecs);
4940 return;
4941 }
4942 }
4943
2afb61aa 4944 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 4945
1b2bfbb9
RC
4946 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4947 the trampoline processing logic, however, there are some trampolines
4948 that have no names, so we should do trampoline handling first. */
16c381f0 4949 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 4950 && ecs->stop_func_name == NULL
2afb61aa 4951 && stop_pc_sal.line == 0)
1b2bfbb9 4952 {
527159b7 4953 if (debug_infrun)
3e43a32a
MS
4954 fprintf_unfiltered (gdb_stdlog,
4955 "infrun: stepped into undebuggable function\n");
527159b7 4956
1b2bfbb9 4957 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
4958 undebuggable function (where there is no debugging information
4959 and no line number corresponding to the address where the
1b2bfbb9
RC
4960 inferior stopped). Since we want to skip this kind of code,
4961 we keep going until the inferior returns from this
14e60db5
DJ
4962 function - unless the user has asked us not to (via
4963 set step-mode) or we no longer know how to get back
4964 to the call site. */
4965 if (step_stop_if_no_debug
c7ce8faa 4966 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
4967 {
4968 /* If we have no line number and the step-stop-if-no-debug
4969 is set, we stop the step so that the user has a chance to
4970 switch in assembly mode. */
bdc36728 4971 end_stepping_range (ecs);
1b2bfbb9
RC
4972 return;
4973 }
4974 else
4975 {
4976 /* Set a breakpoint at callee's return address (the address
4977 at which the caller will resume). */
568d6575 4978 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
4979 keep_going (ecs);
4980 return;
4981 }
4982 }
4983
16c381f0 4984 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
4985 {
4986 /* It is stepi or nexti. We always want to stop stepping after
4987 one instruction. */
527159b7 4988 if (debug_infrun)
8a9de0e4 4989 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 4990 end_stepping_range (ecs);
1b2bfbb9
RC
4991 return;
4992 }
4993
2afb61aa 4994 if (stop_pc_sal.line == 0)
488f131b
JB
4995 {
4996 /* We have no line number information. That means to stop
4997 stepping (does this always happen right after one instruction,
4998 when we do "s" in a function with no line numbers,
4999 or can this happen as a result of a return or longjmp?). */
527159b7 5000 if (debug_infrun)
8a9de0e4 5001 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 5002 end_stepping_range (ecs);
488f131b
JB
5003 return;
5004 }
c906108c 5005
edb3359d
DJ
5006 /* Look for "calls" to inlined functions, part one. If the inline
5007 frame machinery detected some skipped call sites, we have entered
5008 a new inline function. */
5009
5010 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5011 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5012 && inline_skipped_frames (ecs->ptid))
5013 {
5014 struct symtab_and_line call_sal;
5015
5016 if (debug_infrun)
5017 fprintf_unfiltered (gdb_stdlog,
5018 "infrun: stepped into inlined function\n");
5019
5020 find_frame_sal (get_current_frame (), &call_sal);
5021
16c381f0 5022 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5023 {
5024 /* For "step", we're going to stop. But if the call site
5025 for this inlined function is on the same source line as
5026 we were previously stepping, go down into the function
5027 first. Otherwise stop at the call site. */
5028
5029 if (call_sal.line == ecs->event_thread->current_line
5030 && call_sal.symtab == ecs->event_thread->current_symtab)
5031 step_into_inline_frame (ecs->ptid);
5032
bdc36728 5033 end_stepping_range (ecs);
edb3359d
DJ
5034 return;
5035 }
5036 else
5037 {
5038 /* For "next", we should stop at the call site if it is on a
5039 different source line. Otherwise continue through the
5040 inlined function. */
5041 if (call_sal.line == ecs->event_thread->current_line
5042 && call_sal.symtab == ecs->event_thread->current_symtab)
5043 keep_going (ecs);
5044 else
bdc36728 5045 end_stepping_range (ecs);
edb3359d
DJ
5046 return;
5047 }
5048 }
5049
5050 /* Look for "calls" to inlined functions, part two. If we are still
5051 in the same real function we were stepping through, but we have
5052 to go further up to find the exact frame ID, we are stepping
5053 through a more inlined call beyond its call site. */
5054
5055 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5056 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5057 ecs->event_thread->control.step_frame_id)
edb3359d 5058 && stepped_in_from (get_current_frame (),
16c381f0 5059 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5060 {
5061 if (debug_infrun)
5062 fprintf_unfiltered (gdb_stdlog,
5063 "infrun: stepping through inlined function\n");
5064
16c381f0 5065 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5066 keep_going (ecs);
5067 else
bdc36728 5068 end_stepping_range (ecs);
edb3359d
DJ
5069 return;
5070 }
5071
2afb61aa 5072 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5073 && (ecs->event_thread->current_line != stop_pc_sal.line
5074 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5075 {
5076 /* We are at the start of a different line. So stop. Note that
5077 we don't stop if we step into the middle of a different line.
5078 That is said to make things like for (;;) statements work
5079 better. */
527159b7 5080 if (debug_infrun)
3e43a32a
MS
5081 fprintf_unfiltered (gdb_stdlog,
5082 "infrun: stepped to a different line\n");
bdc36728 5083 end_stepping_range (ecs);
488f131b
JB
5084 return;
5085 }
c906108c 5086
488f131b 5087 /* We aren't done stepping.
c906108c 5088
488f131b
JB
5089 Optimize by setting the stepping range to the line.
5090 (We might not be in the original line, but if we entered a
5091 new line in mid-statement, we continue stepping. This makes
5092 things like for(;;) statements work better.) */
c906108c 5093
16c381f0
JK
5094 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5095 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5096 ecs->event_thread->control.may_range_step = 1;
edb3359d 5097 set_step_info (frame, stop_pc_sal);
488f131b 5098
527159b7 5099 if (debug_infrun)
8a9de0e4 5100 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5101 keep_going (ecs);
104c1213
JM
5102}
5103
c447ac0b
PA
5104/* In all-stop mode, if we're currently stepping but have stopped in
5105 some other thread, we may need to switch back to the stepped
5106 thread. Returns true we set the inferior running, false if we left
5107 it stopped (and the event needs further processing). */
5108
5109static int
5110switch_back_to_stepped_thread (struct execution_control_state *ecs)
5111{
5112 if (!non_stop)
5113 {
5114 struct thread_info *tp;
99619bea 5115 struct thread_info *stepping_thread;
483805cf 5116 struct thread_info *step_over;
99619bea
PA
5117
5118 /* If any thread is blocked on some internal breakpoint, and we
5119 simply need to step over that breakpoint to get it going
5120 again, do that first. */
5121
5122 /* However, if we see an event for the stepping thread, then we
5123 know all other threads have been moved past their breakpoints
5124 already. Let the caller check whether the step is finished,
5125 etc., before deciding to move it past a breakpoint. */
5126 if (ecs->event_thread->control.step_range_end != 0)
5127 return 0;
5128
5129 /* Check if the current thread is blocked on an incomplete
5130 step-over, interrupted by a random signal. */
5131 if (ecs->event_thread->control.trap_expected
5132 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 5133 {
99619bea
PA
5134 if (debug_infrun)
5135 {
5136 fprintf_unfiltered (gdb_stdlog,
5137 "infrun: need to finish step-over of [%s]\n",
5138 target_pid_to_str (ecs->event_thread->ptid));
5139 }
5140 keep_going (ecs);
5141 return 1;
5142 }
2adfaa28 5143
99619bea
PA
5144 /* Check if the current thread is blocked by a single-step
5145 breakpoint of another thread. */
5146 if (ecs->hit_singlestep_breakpoint)
5147 {
5148 if (debug_infrun)
5149 {
5150 fprintf_unfiltered (gdb_stdlog,
5151 "infrun: need to step [%s] over single-step "
5152 "breakpoint\n",
5153 target_pid_to_str (ecs->ptid));
5154 }
5155 keep_going (ecs);
5156 return 1;
5157 }
5158
483805cf
PA
5159 /* Otherwise, we no longer expect a trap in the current thread.
5160 Clear the trap_expected flag before switching back -- this is
5161 what keep_going does as well, if we call it. */
5162 ecs->event_thread->control.trap_expected = 0;
5163
70509625
PA
5164 /* Likewise, clear the signal if it should not be passed. */
5165 if (!signal_program[ecs->event_thread->suspend.stop_signal])
5166 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5167
483805cf
PA
5168 /* If scheduler locking applies even if not stepping, there's no
5169 need to walk over threads. Above we've checked whether the
5170 current thread is stepping. If some other thread not the
5171 event thread is stepping, then it must be that scheduler
5172 locking is not in effect. */
5173 if (schedlock_applies (0))
5174 return 0;
5175
5176 /* Look for the stepping/nexting thread, and check if any other
5177 thread other than the stepping thread needs to start a
5178 step-over. Do all step-overs before actually proceeding with
5179 step/next/etc. */
5180 stepping_thread = NULL;
5181 step_over = NULL;
034f788c 5182 ALL_NON_EXITED_THREADS (tp)
483805cf
PA
5183 {
5184 /* Ignore threads of processes we're not resuming. */
5185 if (!sched_multi
5186 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5187 continue;
5188
5189 /* When stepping over a breakpoint, we lock all threads
5190 except the one that needs to move past the breakpoint.
5191 If a non-event thread has this set, the "incomplete
5192 step-over" check above should have caught it earlier. */
5193 gdb_assert (!tp->control.trap_expected);
5194
5195 /* Did we find the stepping thread? */
5196 if (tp->control.step_range_end)
5197 {
5198 /* Yep. There should only one though. */
5199 gdb_assert (stepping_thread == NULL);
5200
5201 /* The event thread is handled at the top, before we
5202 enter this loop. */
5203 gdb_assert (tp != ecs->event_thread);
5204
5205 /* If some thread other than the event thread is
5206 stepping, then scheduler locking can't be in effect,
5207 otherwise we wouldn't have resumed the current event
5208 thread in the first place. */
5209 gdb_assert (!schedlock_applies (1));
5210
5211 stepping_thread = tp;
5212 }
5213 else if (thread_still_needs_step_over (tp))
5214 {
5215 step_over = tp;
5216
5217 /* At the top we've returned early if the event thread
5218 is stepping. If some other thread not the event
5219 thread is stepping, then scheduler locking can't be
5220 in effect, and we can resume this thread. No need to
5221 keep looking for the stepping thread then. */
5222 break;
5223 }
5224 }
99619bea 5225
483805cf 5226 if (step_over != NULL)
99619bea 5227 {
483805cf 5228 tp = step_over;
99619bea 5229 if (debug_infrun)
c447ac0b 5230 {
99619bea
PA
5231 fprintf_unfiltered (gdb_stdlog,
5232 "infrun: need to step-over [%s]\n",
5233 target_pid_to_str (tp->ptid));
c447ac0b
PA
5234 }
5235
483805cf 5236 /* Only the stepping thread should have this set. */
99619bea
PA
5237 gdb_assert (tp->control.step_range_end == 0);
5238
99619bea
PA
5239 ecs->ptid = tp->ptid;
5240 ecs->event_thread = tp;
5241 switch_to_thread (ecs->ptid);
5242 keep_going (ecs);
5243 return 1;
5244 }
5245
483805cf 5246 if (stepping_thread != NULL)
99619bea
PA
5247 {
5248 struct frame_info *frame;
5249 struct gdbarch *gdbarch;
5250
483805cf
PA
5251 tp = stepping_thread;
5252
c447ac0b
PA
5253 /* If the stepping thread exited, then don't try to switch
5254 back and resume it, which could fail in several different
5255 ways depending on the target. Instead, just keep going.
5256
5257 We can find a stepping dead thread in the thread list in
5258 two cases:
5259
5260 - The target supports thread exit events, and when the
5261 target tries to delete the thread from the thread list,
5262 inferior_ptid pointed at the exiting thread. In such
5263 case, calling delete_thread does not really remove the
5264 thread from the list; instead, the thread is left listed,
5265 with 'exited' state.
5266
5267 - The target's debug interface does not support thread
5268 exit events, and so we have no idea whatsoever if the
5269 previously stepping thread is still alive. For that
5270 reason, we need to synchronously query the target
5271 now. */
5272 if (is_exited (tp->ptid)
5273 || !target_thread_alive (tp->ptid))
5274 {
5275 if (debug_infrun)
5276 fprintf_unfiltered (gdb_stdlog,
5277 "infrun: not switching back to "
5278 "stepped thread, it has vanished\n");
5279
5280 delete_thread (tp->ptid);
5281 keep_going (ecs);
5282 return 1;
5283 }
5284
c447ac0b
PA
5285 if (debug_infrun)
5286 fprintf_unfiltered (gdb_stdlog,
5287 "infrun: switching back to stepped thread\n");
5288
5289 ecs->event_thread = tp;
5290 ecs->ptid = tp->ptid;
5291 context_switch (ecs->ptid);
2adfaa28
PA
5292
5293 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5294 frame = get_current_frame ();
5295 gdbarch = get_frame_arch (frame);
5296
5297 /* If the PC of the thread we were trying to single-step has
99619bea
PA
5298 changed, then that thread has trapped or been signaled,
5299 but the event has not been reported to GDB yet. Re-poll
5300 the target looking for this particular thread's event
5301 (i.e. temporarily enable schedlock) by:
2adfaa28
PA
5302
5303 - setting a break at the current PC
5304 - resuming that particular thread, only (by setting
5305 trap expected)
5306
5307 This prevents us continuously moving the single-step
5308 breakpoint forward, one instruction at a time,
5309 overstepping. */
5310
5311 if (gdbarch_software_single_step_p (gdbarch)
5312 && stop_pc != tp->prev_pc)
5313 {
5314 if (debug_infrun)
5315 fprintf_unfiltered (gdb_stdlog,
5316 "infrun: expected thread advanced also\n");
5317
5318 insert_single_step_breakpoint (get_frame_arch (frame),
5319 get_frame_address_space (frame),
5320 stop_pc);
5321 singlestep_breakpoints_inserted_p = 1;
5322 ecs->event_thread->control.trap_expected = 1;
5323 singlestep_ptid = inferior_ptid;
5324 singlestep_pc = stop_pc;
5325
5326 resume (0, GDB_SIGNAL_0);
5327 prepare_to_wait (ecs);
5328 }
5329 else
5330 {
5331 if (debug_infrun)
5332 fprintf_unfiltered (gdb_stdlog,
5333 "infrun: expected thread still "
5334 "hasn't advanced\n");
5335 keep_going (ecs);
5336 }
5337
c447ac0b
PA
5338 return 1;
5339 }
5340 }
5341 return 0;
5342}
5343
b3444185 5344/* Is thread TP in the middle of single-stepping? */
104c1213 5345
a289b8f6 5346static int
b3444185 5347currently_stepping (struct thread_info *tp)
a7212384 5348{
8358c15c
JK
5349 return ((tp->control.step_range_end
5350 && tp->control.step_resume_breakpoint == NULL)
5351 || tp->control.trap_expected
8358c15c 5352 || bpstat_should_step ());
a7212384
UW
5353}
5354
b2175913
MS
5355/* Inferior has stepped into a subroutine call with source code that
5356 we should not step over. Do step to the first line of code in
5357 it. */
c2c6d25f
JM
5358
5359static void
568d6575
UW
5360handle_step_into_function (struct gdbarch *gdbarch,
5361 struct execution_control_state *ecs)
c2c6d25f
JM
5362{
5363 struct symtab *s;
2afb61aa 5364 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5365
7e324e48
GB
5366 fill_in_stop_func (gdbarch, ecs);
5367
c2c6d25f
JM
5368 s = find_pc_symtab (stop_pc);
5369 if (s && s->language != language_asm)
568d6575 5370 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5371 ecs->stop_func_start);
c2c6d25f 5372
2afb61aa 5373 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5374 /* Use the step_resume_break to step until the end of the prologue,
5375 even if that involves jumps (as it seems to on the vax under
5376 4.2). */
5377 /* If the prologue ends in the middle of a source line, continue to
5378 the end of that source line (if it is still within the function).
5379 Otherwise, just go to end of prologue. */
2afb61aa
PA
5380 if (stop_func_sal.end
5381 && stop_func_sal.pc != ecs->stop_func_start
5382 && stop_func_sal.end < ecs->stop_func_end)
5383 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5384
2dbd5e30
KB
5385 /* Architectures which require breakpoint adjustment might not be able
5386 to place a breakpoint at the computed address. If so, the test
5387 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5388 ecs->stop_func_start to an address at which a breakpoint may be
5389 legitimately placed.
8fb3e588 5390
2dbd5e30
KB
5391 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5392 made, GDB will enter an infinite loop when stepping through
5393 optimized code consisting of VLIW instructions which contain
5394 subinstructions corresponding to different source lines. On
5395 FR-V, it's not permitted to place a breakpoint on any but the
5396 first subinstruction of a VLIW instruction. When a breakpoint is
5397 set, GDB will adjust the breakpoint address to the beginning of
5398 the VLIW instruction. Thus, we need to make the corresponding
5399 adjustment here when computing the stop address. */
8fb3e588 5400
568d6575 5401 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5402 {
5403 ecs->stop_func_start
568d6575 5404 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5405 ecs->stop_func_start);
2dbd5e30
KB
5406 }
5407
c2c6d25f
JM
5408 if (ecs->stop_func_start == stop_pc)
5409 {
5410 /* We are already there: stop now. */
bdc36728 5411 end_stepping_range (ecs);
c2c6d25f
JM
5412 return;
5413 }
5414 else
5415 {
5416 /* Put the step-breakpoint there and go until there. */
fe39c653 5417 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5418 sr_sal.pc = ecs->stop_func_start;
5419 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5420 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5421
c2c6d25f 5422 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5423 some machines the prologue is where the new fp value is
5424 established. */
a6d9a66e 5425 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5426
5427 /* And make sure stepping stops right away then. */
16c381f0
JK
5428 ecs->event_thread->control.step_range_end
5429 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5430 }
5431 keep_going (ecs);
5432}
d4f3574e 5433
b2175913
MS
5434/* Inferior has stepped backward into a subroutine call with source
5435 code that we should not step over. Do step to the beginning of the
5436 last line of code in it. */
5437
5438static void
568d6575
UW
5439handle_step_into_function_backward (struct gdbarch *gdbarch,
5440 struct execution_control_state *ecs)
b2175913
MS
5441{
5442 struct symtab *s;
167e4384 5443 struct symtab_and_line stop_func_sal;
b2175913 5444
7e324e48
GB
5445 fill_in_stop_func (gdbarch, ecs);
5446
b2175913
MS
5447 s = find_pc_symtab (stop_pc);
5448 if (s && s->language != language_asm)
568d6575 5449 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5450 ecs->stop_func_start);
5451
5452 stop_func_sal = find_pc_line (stop_pc, 0);
5453
5454 /* OK, we're just going to keep stepping here. */
5455 if (stop_func_sal.pc == stop_pc)
5456 {
5457 /* We're there already. Just stop stepping now. */
bdc36728 5458 end_stepping_range (ecs);
b2175913
MS
5459 }
5460 else
5461 {
5462 /* Else just reset the step range and keep going.
5463 No step-resume breakpoint, they don't work for
5464 epilogues, which can have multiple entry paths. */
16c381f0
JK
5465 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5466 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5467 keep_going (ecs);
5468 }
5469 return;
5470}
5471
d3169d93 5472/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5473 This is used to both functions and to skip over code. */
5474
5475static void
2c03e5be
PA
5476insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5477 struct symtab_and_line sr_sal,
5478 struct frame_id sr_id,
5479 enum bptype sr_type)
44cbf7b5 5480{
611c83ae
PA
5481 /* There should never be more than one step-resume or longjmp-resume
5482 breakpoint per thread, so we should never be setting a new
44cbf7b5 5483 step_resume_breakpoint when one is already active. */
8358c15c 5484 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5485 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5486
5487 if (debug_infrun)
5488 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5489 "infrun: inserting step-resume breakpoint at %s\n",
5490 paddress (gdbarch, sr_sal.pc));
d3169d93 5491
8358c15c 5492 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5493 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5494}
5495
9da8c2a0 5496void
2c03e5be
PA
5497insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5498 struct symtab_and_line sr_sal,
5499 struct frame_id sr_id)
5500{
5501 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5502 sr_sal, sr_id,
5503 bp_step_resume);
44cbf7b5 5504}
7ce450bd 5505
2c03e5be
PA
5506/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5507 This is used to skip a potential signal handler.
7ce450bd 5508
14e60db5
DJ
5509 This is called with the interrupted function's frame. The signal
5510 handler, when it returns, will resume the interrupted function at
5511 RETURN_FRAME.pc. */
d303a6c7
AC
5512
5513static void
2c03e5be 5514insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5515{
5516 struct symtab_and_line sr_sal;
a6d9a66e 5517 struct gdbarch *gdbarch;
d303a6c7 5518
f4c1edd8 5519 gdb_assert (return_frame != NULL);
d303a6c7
AC
5520 init_sal (&sr_sal); /* initialize to zeros */
5521
a6d9a66e 5522 gdbarch = get_frame_arch (return_frame);
568d6575 5523 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5524 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5525 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5526
2c03e5be
PA
5527 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5528 get_stack_frame_id (return_frame),
5529 bp_hp_step_resume);
d303a6c7
AC
5530}
5531
2c03e5be
PA
5532/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5533 is used to skip a function after stepping into it (for "next" or if
5534 the called function has no debugging information).
14e60db5
DJ
5535
5536 The current function has almost always been reached by single
5537 stepping a call or return instruction. NEXT_FRAME belongs to the
5538 current function, and the breakpoint will be set at the caller's
5539 resume address.
5540
5541 This is a separate function rather than reusing
2c03e5be 5542 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5543 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5544 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5545
5546static void
5547insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5548{
5549 struct symtab_and_line sr_sal;
a6d9a66e 5550 struct gdbarch *gdbarch;
14e60db5
DJ
5551
5552 /* We shouldn't have gotten here if we don't know where the call site
5553 is. */
c7ce8faa 5554 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5555
5556 init_sal (&sr_sal); /* initialize to zeros */
5557
a6d9a66e 5558 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5559 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5560 frame_unwind_caller_pc (next_frame));
14e60db5 5561 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5562 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5563
a6d9a66e 5564 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5565 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5566}
5567
611c83ae
PA
5568/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5569 new breakpoint at the target of a jmp_buf. The handling of
5570 longjmp-resume uses the same mechanisms used for handling
5571 "step-resume" breakpoints. */
5572
5573static void
a6d9a66e 5574insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5575{
e81a37f7
TT
5576 /* There should never be more than one longjmp-resume breakpoint per
5577 thread, so we should never be setting a new
611c83ae 5578 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5579 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5580
5581 if (debug_infrun)
5582 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5583 "infrun: inserting longjmp-resume breakpoint at %s\n",
5584 paddress (gdbarch, pc));
611c83ae 5585
e81a37f7 5586 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5587 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5588}
5589
186c406b
TT
5590/* Insert an exception resume breakpoint. TP is the thread throwing
5591 the exception. The block B is the block of the unwinder debug hook
5592 function. FRAME is the frame corresponding to the call to this
5593 function. SYM is the symbol of the function argument holding the
5594 target PC of the exception. */
5595
5596static void
5597insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 5598 const struct block *b,
186c406b
TT
5599 struct frame_info *frame,
5600 struct symbol *sym)
5601{
bfd189b1 5602 volatile struct gdb_exception e;
186c406b
TT
5603
5604 /* We want to ignore errors here. */
5605 TRY_CATCH (e, RETURN_MASK_ERROR)
5606 {
5607 struct symbol *vsym;
5608 struct value *value;
5609 CORE_ADDR handler;
5610 struct breakpoint *bp;
5611
5612 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5613 value = read_var_value (vsym, frame);
5614 /* If the value was optimized out, revert to the old behavior. */
5615 if (! value_optimized_out (value))
5616 {
5617 handler = value_as_address (value);
5618
5619 if (debug_infrun)
5620 fprintf_unfiltered (gdb_stdlog,
5621 "infrun: exception resume at %lx\n",
5622 (unsigned long) handler);
5623
5624 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5625 handler, bp_exception_resume);
c70a6932
JK
5626
5627 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5628 frame = NULL;
5629
186c406b
TT
5630 bp->thread = tp->num;
5631 inferior_thread ()->control.exception_resume_breakpoint = bp;
5632 }
5633 }
5634}
5635
28106bc2
SDJ
5636/* A helper for check_exception_resume that sets an
5637 exception-breakpoint based on a SystemTap probe. */
5638
5639static void
5640insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 5641 const struct bound_probe *probe,
28106bc2
SDJ
5642 struct frame_info *frame)
5643{
5644 struct value *arg_value;
5645 CORE_ADDR handler;
5646 struct breakpoint *bp;
5647
5648 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5649 if (!arg_value)
5650 return;
5651
5652 handler = value_as_address (arg_value);
5653
5654 if (debug_infrun)
5655 fprintf_unfiltered (gdb_stdlog,
5656 "infrun: exception resume at %s\n",
6bac7473 5657 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5658 handler));
5659
5660 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5661 handler, bp_exception_resume);
5662 bp->thread = tp->num;
5663 inferior_thread ()->control.exception_resume_breakpoint = bp;
5664}
5665
186c406b
TT
5666/* This is called when an exception has been intercepted. Check to
5667 see whether the exception's destination is of interest, and if so,
5668 set an exception resume breakpoint there. */
5669
5670static void
5671check_exception_resume (struct execution_control_state *ecs,
28106bc2 5672 struct frame_info *frame)
186c406b 5673{
bfd189b1 5674 volatile struct gdb_exception e;
729662a5 5675 struct bound_probe probe;
28106bc2
SDJ
5676 struct symbol *func;
5677
5678 /* First see if this exception unwinding breakpoint was set via a
5679 SystemTap probe point. If so, the probe has two arguments: the
5680 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5681 set a breakpoint there. */
6bac7473 5682 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 5683 if (probe.probe)
28106bc2 5684 {
729662a5 5685 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
5686 return;
5687 }
5688
5689 func = get_frame_function (frame);
5690 if (!func)
5691 return;
186c406b
TT
5692
5693 TRY_CATCH (e, RETURN_MASK_ERROR)
5694 {
3977b71f 5695 const struct block *b;
8157b174 5696 struct block_iterator iter;
186c406b
TT
5697 struct symbol *sym;
5698 int argno = 0;
5699
5700 /* The exception breakpoint is a thread-specific breakpoint on
5701 the unwinder's debug hook, declared as:
5702
5703 void _Unwind_DebugHook (void *cfa, void *handler);
5704
5705 The CFA argument indicates the frame to which control is
5706 about to be transferred. HANDLER is the destination PC.
5707
5708 We ignore the CFA and set a temporary breakpoint at HANDLER.
5709 This is not extremely efficient but it avoids issues in gdb
5710 with computing the DWARF CFA, and it also works even in weird
5711 cases such as throwing an exception from inside a signal
5712 handler. */
5713
5714 b = SYMBOL_BLOCK_VALUE (func);
5715 ALL_BLOCK_SYMBOLS (b, iter, sym)
5716 {
5717 if (!SYMBOL_IS_ARGUMENT (sym))
5718 continue;
5719
5720 if (argno == 0)
5721 ++argno;
5722 else
5723 {
5724 insert_exception_resume_breakpoint (ecs->event_thread,
5725 b, frame, sym);
5726 break;
5727 }
5728 }
5729 }
5730}
5731
104c1213 5732static void
22bcd14b 5733stop_waiting (struct execution_control_state *ecs)
104c1213 5734{
527159b7 5735 if (debug_infrun)
22bcd14b 5736 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 5737
31e77af2
PA
5738 clear_step_over_info ();
5739
cd0fc7c3
SS
5740 /* Let callers know we don't want to wait for the inferior anymore. */
5741 ecs->wait_some_more = 0;
5742}
5743
a9ba6bae
PA
5744/* Called when we should continue running the inferior, because the
5745 current event doesn't cause a user visible stop. This does the
5746 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
5747
5748static void
5749keep_going (struct execution_control_state *ecs)
5750{
c4dbc9af
PA
5751 /* Make sure normal_stop is called if we get a QUIT handled before
5752 reaching resume. */
5753 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5754
d4f3574e 5755 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5756 ecs->event_thread->prev_pc
5757 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5758
16c381f0 5759 if (ecs->event_thread->control.trap_expected
a493e3e2 5760 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 5761 {
a9ba6bae
PA
5762 /* We haven't yet gotten our trap, and either: intercepted a
5763 non-signal event (e.g., a fork); or took a signal which we
5764 are supposed to pass through to the inferior. Simply
5765 continue. */
c4dbc9af 5766 discard_cleanups (old_cleanups);
2020b7ab 5767 resume (currently_stepping (ecs->event_thread),
16c381f0 5768 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5769 }
5770 else
5771 {
31e77af2
PA
5772 volatile struct gdb_exception e;
5773 struct regcache *regcache = get_current_regcache ();
5774
d4f3574e 5775 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
5776 anyway (if we got a signal, the user asked it be passed to
5777 the child)
5778 -- or --
5779 We got our expected trap, but decided we should resume from
5780 it.
d4f3574e 5781
a9ba6bae 5782 We're going to run this baby now!
d4f3574e 5783
c36b740a
VP
5784 Note that insert_breakpoints won't try to re-insert
5785 already inserted breakpoints. Therefore, we don't
5786 care if breakpoints were already inserted, or not. */
a9ba6bae 5787
31e77af2
PA
5788 /* If we need to step over a breakpoint, and we're not using
5789 displaced stepping to do so, insert all breakpoints
5790 (watchpoints, etc.) but the one we're stepping over, step one
5791 instruction, and then re-insert the breakpoint when that step
5792 is finished. */
2adfaa28 5793 if ((ecs->hit_singlestep_breakpoint
99619bea 5794 || thread_still_needs_step_over (ecs->event_thread))
31e77af2 5795 && !use_displaced_stepping (get_regcache_arch (regcache)))
45e8c884 5796 {
31e77af2
PA
5797 set_step_over_info (get_regcache_aspace (regcache),
5798 regcache_read_pc (regcache));
45e8c884
VP
5799 }
5800 else
31e77af2 5801 clear_step_over_info ();
abbb1732 5802
31e77af2
PA
5803 /* Stop stepping if inserting breakpoints fails. */
5804 TRY_CATCH (e, RETURN_MASK_ERROR)
5805 {
5806 insert_breakpoints ();
5807 }
5808 if (e.reason < 0)
5809 {
5810 exception_print (gdb_stderr, e);
22bcd14b 5811 stop_waiting (ecs);
31e77af2 5812 return;
d4f3574e
SS
5813 }
5814
16c381f0 5815 ecs->event_thread->control.trap_expected
2adfaa28
PA
5816 = (ecs->event_thread->stepping_over_breakpoint
5817 || ecs->hit_singlestep_breakpoint);
d4f3574e 5818
a9ba6bae
PA
5819 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5820 explicitly specifies that such a signal should be delivered
5821 to the target program). Typically, that would occur when a
5822 user is debugging a target monitor on a simulator: the target
5823 monitor sets a breakpoint; the simulator encounters this
5824 breakpoint and halts the simulation handing control to GDB;
5825 GDB, noting that the stop address doesn't map to any known
5826 breakpoint, returns control back to the simulator; the
5827 simulator then delivers the hardware equivalent of a
5828 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 5829 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5830 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 5831 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 5832
c4dbc9af 5833 discard_cleanups (old_cleanups);
2020b7ab 5834 resume (currently_stepping (ecs->event_thread),
16c381f0 5835 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5836 }
5837
488f131b 5838 prepare_to_wait (ecs);
d4f3574e
SS
5839}
5840
104c1213
JM
5841/* This function normally comes after a resume, before
5842 handle_inferior_event exits. It takes care of any last bits of
5843 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5844
104c1213
JM
5845static void
5846prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5847{
527159b7 5848 if (debug_infrun)
8a9de0e4 5849 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5850
104c1213
JM
5851 /* This is the old end of the while loop. Let everybody know we
5852 want to wait for the inferior some more and get called again
5853 soon. */
5854 ecs->wait_some_more = 1;
c906108c 5855}
11cf8741 5856
fd664c91
PA
5857/* We are done with the step range of a step/next/si/ni command.
5858 Called once for each n of a "step n" operation. Notify observers
5859 if not in the middle of doing a "step N" operation for N > 1. */
5860
5861static void
bdc36728 5862end_stepping_range (struct execution_control_state *ecs)
fd664c91 5863{
bdc36728
PA
5864 ecs->event_thread->control.stop_step = 1;
5865 if (!ecs->event_thread->step_multi)
5866 observer_notify_end_stepping_range ();
5867 stop_waiting (ecs);
fd664c91
PA
5868}
5869
33d62d64
JK
5870/* Several print_*_reason functions to print why the inferior has stopped.
5871 We always print something when the inferior exits, or receives a signal.
5872 The rest of the cases are dealt with later on in normal_stop and
5873 print_it_typical. Ideally there should be a call to one of these
5874 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 5875 stop_waiting is called.
33d62d64 5876
fd664c91
PA
5877 Note that we don't call these directly, instead we delegate that to
5878 the interpreters, through observers. Interpreters then call these
5879 with whatever uiout is right. */
33d62d64 5880
fd664c91
PA
5881void
5882print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 5883{
fd664c91 5884 /* For CLI-like interpreters, print nothing. */
33d62d64 5885
fd664c91
PA
5886 if (ui_out_is_mi_like_p (uiout))
5887 {
5888 ui_out_field_string (uiout, "reason",
5889 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5890 }
5891}
33d62d64 5892
fd664c91
PA
5893void
5894print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 5895{
33d62d64
JK
5896 annotate_signalled ();
5897 if (ui_out_is_mi_like_p (uiout))
5898 ui_out_field_string
5899 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5900 ui_out_text (uiout, "\nProgram terminated with signal ");
5901 annotate_signal_name ();
5902 ui_out_field_string (uiout, "signal-name",
2ea28649 5903 gdb_signal_to_name (siggnal));
33d62d64
JK
5904 annotate_signal_name_end ();
5905 ui_out_text (uiout, ", ");
5906 annotate_signal_string ();
5907 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5908 gdb_signal_to_string (siggnal));
33d62d64
JK
5909 annotate_signal_string_end ();
5910 ui_out_text (uiout, ".\n");
5911 ui_out_text (uiout, "The program no longer exists.\n");
5912}
5913
fd664c91
PA
5914void
5915print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 5916{
fda326dd
TT
5917 struct inferior *inf = current_inferior ();
5918 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5919
33d62d64
JK
5920 annotate_exited (exitstatus);
5921 if (exitstatus)
5922 {
5923 if (ui_out_is_mi_like_p (uiout))
5924 ui_out_field_string (uiout, "reason",
5925 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5926 ui_out_text (uiout, "[Inferior ");
5927 ui_out_text (uiout, plongest (inf->num));
5928 ui_out_text (uiout, " (");
5929 ui_out_text (uiout, pidstr);
5930 ui_out_text (uiout, ") exited with code ");
33d62d64 5931 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5932 ui_out_text (uiout, "]\n");
33d62d64
JK
5933 }
5934 else
11cf8741 5935 {
9dc5e2a9 5936 if (ui_out_is_mi_like_p (uiout))
034dad6f 5937 ui_out_field_string
33d62d64 5938 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5939 ui_out_text (uiout, "[Inferior ");
5940 ui_out_text (uiout, plongest (inf->num));
5941 ui_out_text (uiout, " (");
5942 ui_out_text (uiout, pidstr);
5943 ui_out_text (uiout, ") exited normally]\n");
33d62d64 5944 }
33d62d64
JK
5945}
5946
fd664c91
PA
5947void
5948print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
5949{
5950 annotate_signal ();
5951
a493e3e2 5952 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
5953 {
5954 struct thread_info *t = inferior_thread ();
5955
5956 ui_out_text (uiout, "\n[");
5957 ui_out_field_string (uiout, "thread-name",
5958 target_pid_to_str (t->ptid));
5959 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5960 ui_out_text (uiout, " stopped");
5961 }
5962 else
5963 {
5964 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5965 annotate_signal_name ();
33d62d64
JK
5966 if (ui_out_is_mi_like_p (uiout))
5967 ui_out_field_string
5968 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5969 ui_out_field_string (uiout, "signal-name",
2ea28649 5970 gdb_signal_to_name (siggnal));
8b93c638
JM
5971 annotate_signal_name_end ();
5972 ui_out_text (uiout, ", ");
5973 annotate_signal_string ();
488f131b 5974 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5975 gdb_signal_to_string (siggnal));
8b93c638 5976 annotate_signal_string_end ();
33d62d64
JK
5977 }
5978 ui_out_text (uiout, ".\n");
5979}
252fbfc8 5980
fd664c91
PA
5981void
5982print_no_history_reason (struct ui_out *uiout)
33d62d64 5983{
fd664c91 5984 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 5985}
43ff13b4 5986
0c7e1a46
PA
5987/* Print current location without a level number, if we have changed
5988 functions or hit a breakpoint. Print source line if we have one.
5989 bpstat_print contains the logic deciding in detail what to print,
5990 based on the event(s) that just occurred. */
5991
5992void
5993print_stop_event (struct target_waitstatus *ws)
5994{
5995 int bpstat_ret;
5996 int source_flag;
5997 int do_frame_printing = 1;
5998 struct thread_info *tp = inferior_thread ();
5999
6000 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6001 switch (bpstat_ret)
6002 {
6003 case PRINT_UNKNOWN:
6004 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6005 should) carry around the function and does (or should) use
6006 that when doing a frame comparison. */
6007 if (tp->control.stop_step
6008 && frame_id_eq (tp->control.step_frame_id,
6009 get_frame_id (get_current_frame ()))
6010 && step_start_function == find_pc_function (stop_pc))
6011 {
6012 /* Finished step, just print source line. */
6013 source_flag = SRC_LINE;
6014 }
6015 else
6016 {
6017 /* Print location and source line. */
6018 source_flag = SRC_AND_LOC;
6019 }
6020 break;
6021 case PRINT_SRC_AND_LOC:
6022 /* Print location and source line. */
6023 source_flag = SRC_AND_LOC;
6024 break;
6025 case PRINT_SRC_ONLY:
6026 source_flag = SRC_LINE;
6027 break;
6028 case PRINT_NOTHING:
6029 /* Something bogus. */
6030 source_flag = SRC_LINE;
6031 do_frame_printing = 0;
6032 break;
6033 default:
6034 internal_error (__FILE__, __LINE__, _("Unknown value."));
6035 }
6036
6037 /* The behavior of this routine with respect to the source
6038 flag is:
6039 SRC_LINE: Print only source line
6040 LOCATION: Print only location
6041 SRC_AND_LOC: Print location and source line. */
6042 if (do_frame_printing)
6043 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6044
6045 /* Display the auto-display expressions. */
6046 do_displays ();
6047}
6048
c906108c
SS
6049/* Here to return control to GDB when the inferior stops for real.
6050 Print appropriate messages, remove breakpoints, give terminal our modes.
6051
6052 STOP_PRINT_FRAME nonzero means print the executing frame
6053 (pc, function, args, file, line number and line text).
6054 BREAKPOINTS_FAILED nonzero means stop was due to error
6055 attempting to insert breakpoints. */
6056
6057void
96baa820 6058normal_stop (void)
c906108c 6059{
73b65bb0
DJ
6060 struct target_waitstatus last;
6061 ptid_t last_ptid;
29f49a6a 6062 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
6063
6064 get_last_target_status (&last_ptid, &last);
6065
29f49a6a
PA
6066 /* If an exception is thrown from this point on, make sure to
6067 propagate GDB's knowledge of the executing state to the
6068 frontend/user running state. A QUIT is an easy exception to see
6069 here, so do this before any filtered output. */
c35b1492
PA
6070 if (!non_stop)
6071 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6072 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6073 && last.kind != TARGET_WAITKIND_EXITED
6074 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 6075 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 6076
c906108c
SS
6077 /* As with the notification of thread events, we want to delay
6078 notifying the user that we've switched thread context until
6079 the inferior actually stops.
6080
73b65bb0
DJ
6081 There's no point in saying anything if the inferior has exited.
6082 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
6083 "received a signal".
6084
6085 Also skip saying anything in non-stop mode. In that mode, as we
6086 don't want GDB to switch threads behind the user's back, to avoid
6087 races where the user is typing a command to apply to thread x,
6088 but GDB switches to thread y before the user finishes entering
6089 the command, fetch_inferior_event installs a cleanup to restore
6090 the current thread back to the thread the user had selected right
6091 after this event is handled, so we're not really switching, only
6092 informing of a stop. */
4f8d22e3
PA
6093 if (!non_stop
6094 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
6095 && target_has_execution
6096 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6097 && last.kind != TARGET_WAITKIND_EXITED
6098 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
6099 {
6100 target_terminal_ours_for_output ();
a3f17187 6101 printf_filtered (_("[Switching to %s]\n"),
c95310c6 6102 target_pid_to_str (inferior_ptid));
b8fa951a 6103 annotate_thread_changed ();
39f77062 6104 previous_inferior_ptid = inferior_ptid;
c906108c 6105 }
c906108c 6106
0e5bf2a8
PA
6107 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6108 {
6109 gdb_assert (sync_execution || !target_can_async_p ());
6110
6111 target_terminal_ours_for_output ();
6112 printf_filtered (_("No unwaited-for children left.\n"));
6113 }
6114
74960c60 6115 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
6116 {
6117 if (remove_breakpoints ())
6118 {
6119 target_terminal_ours_for_output ();
3e43a32a
MS
6120 printf_filtered (_("Cannot remove breakpoints because "
6121 "program is no longer writable.\nFurther "
6122 "execution is probably impossible.\n"));
c906108c
SS
6123 }
6124 }
c906108c 6125
c906108c
SS
6126 /* If an auto-display called a function and that got a signal,
6127 delete that auto-display to avoid an infinite recursion. */
6128
6129 if (stopped_by_random_signal)
6130 disable_current_display ();
6131
6132 /* Don't print a message if in the middle of doing a "step n"
6133 operation for n > 1 */
af679fd0
PA
6134 if (target_has_execution
6135 && last.kind != TARGET_WAITKIND_SIGNALLED
6136 && last.kind != TARGET_WAITKIND_EXITED
6137 && inferior_thread ()->step_multi
16c381f0 6138 && inferior_thread ()->control.stop_step)
c906108c
SS
6139 goto done;
6140
6141 target_terminal_ours ();
0f641c01 6142 async_enable_stdin ();
c906108c 6143
7abfe014
DJ
6144 /* Set the current source location. This will also happen if we
6145 display the frame below, but the current SAL will be incorrect
6146 during a user hook-stop function. */
d729566a 6147 if (has_stack_frames () && !stop_stack_dummy)
5166082f 6148 set_current_sal_from_frame (get_current_frame ());
7abfe014 6149
251bde03
PA
6150 /* Let the user/frontend see the threads as stopped, but do nothing
6151 if the thread was running an infcall. We may be e.g., evaluating
6152 a breakpoint condition. In that case, the thread had state
6153 THREAD_RUNNING before the infcall, and shall remain set to
6154 running, all without informing the user/frontend about state
6155 transition changes. If this is actually a call command, then the
6156 thread was originally already stopped, so there's no state to
6157 finish either. */
6158 if (target_has_execution && inferior_thread ()->control.in_infcall)
6159 discard_cleanups (old_chain);
6160 else
6161 do_cleanups (old_chain);
dd7e2d2b
PA
6162
6163 /* Look up the hook_stop and run it (CLI internally handles problem
6164 of stop_command's pre-hook not existing). */
6165 if (stop_command)
6166 catch_errors (hook_stop_stub, stop_command,
6167 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6168
d729566a 6169 if (!has_stack_frames ())
d51fd4c8 6170 goto done;
c906108c 6171
32400beb
PA
6172 if (last.kind == TARGET_WAITKIND_SIGNALLED
6173 || last.kind == TARGET_WAITKIND_EXITED)
6174 goto done;
6175
c906108c
SS
6176 /* Select innermost stack frame - i.e., current frame is frame 0,
6177 and current location is based on that.
6178 Don't do this on return from a stack dummy routine,
1777feb0 6179 or if the program has exited. */
c906108c
SS
6180
6181 if (!stop_stack_dummy)
6182 {
0f7d239c 6183 select_frame (get_current_frame ());
c906108c 6184
d01a8610
AS
6185 /* If --batch-silent is enabled then there's no need to print the current
6186 source location, and to try risks causing an error message about
6187 missing source files. */
6188 if (stop_print_frame && !batch_silent)
0c7e1a46 6189 print_stop_event (&last);
c906108c
SS
6190 }
6191
6192 /* Save the function value return registers, if we care.
6193 We might be about to restore their previous contents. */
9da8c2a0
PA
6194 if (inferior_thread ()->control.proceed_to_finish
6195 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6196 {
6197 /* This should not be necessary. */
6198 if (stop_registers)
6199 regcache_xfree (stop_registers);
6200
6201 /* NB: The copy goes through to the target picking up the value of
6202 all the registers. */
6203 stop_registers = regcache_dup (get_current_regcache ());
6204 }
c906108c 6205
aa7d318d 6206 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6207 {
b89667eb
DE
6208 /* Pop the empty frame that contains the stack dummy.
6209 This also restores inferior state prior to the call
16c381f0 6210 (struct infcall_suspend_state). */
b89667eb 6211 struct frame_info *frame = get_current_frame ();
abbb1732 6212
b89667eb
DE
6213 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6214 frame_pop (frame);
3e43a32a
MS
6215 /* frame_pop() calls reinit_frame_cache as the last thing it
6216 does which means there's currently no selected frame. We
6217 don't need to re-establish a selected frame if the dummy call
6218 returns normally, that will be done by
6219 restore_infcall_control_state. However, we do have to handle
6220 the case where the dummy call is returning after being
6221 stopped (e.g. the dummy call previously hit a breakpoint).
6222 We can't know which case we have so just always re-establish
6223 a selected frame here. */
0f7d239c 6224 select_frame (get_current_frame ());
c906108c
SS
6225 }
6226
c906108c
SS
6227done:
6228 annotate_stopped ();
41d2bdb4
PA
6229
6230 /* Suppress the stop observer if we're in the middle of:
6231
6232 - a step n (n > 1), as there still more steps to be done.
6233
6234 - a "finish" command, as the observer will be called in
6235 finish_command_continuation, so it can include the inferior
6236 function's return value.
6237
6238 - calling an inferior function, as we pretend we inferior didn't
6239 run at all. The return value of the call is handled by the
6240 expression evaluator, through call_function_by_hand. */
6241
6242 if (!target_has_execution
6243 || last.kind == TARGET_WAITKIND_SIGNALLED
6244 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6245 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6246 || (!(inferior_thread ()->step_multi
6247 && inferior_thread ()->control.stop_step)
16c381f0
JK
6248 && !(inferior_thread ()->control.stop_bpstat
6249 && inferior_thread ()->control.proceed_to_finish)
6250 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6251 {
6252 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6253 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6254 stop_print_frame);
347bddb7 6255 else
1d33d6ba 6256 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6257 }
347bddb7 6258
48844aa6
PA
6259 if (target_has_execution)
6260 {
6261 if (last.kind != TARGET_WAITKIND_SIGNALLED
6262 && last.kind != TARGET_WAITKIND_EXITED)
6263 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6264 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6265 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6266 }
6c95b8df
PA
6267
6268 /* Try to get rid of automatically added inferiors that are no
6269 longer needed. Keeping those around slows down things linearly.
6270 Note that this never removes the current inferior. */
6271 prune_inferiors ();
c906108c
SS
6272}
6273
6274static int
96baa820 6275hook_stop_stub (void *cmd)
c906108c 6276{
5913bcb0 6277 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6278 return (0);
6279}
6280\f
c5aa993b 6281int
96baa820 6282signal_stop_state (int signo)
c906108c 6283{
d6b48e9c 6284 return signal_stop[signo];
c906108c
SS
6285}
6286
c5aa993b 6287int
96baa820 6288signal_print_state (int signo)
c906108c
SS
6289{
6290 return signal_print[signo];
6291}
6292
c5aa993b 6293int
96baa820 6294signal_pass_state (int signo)
c906108c
SS
6295{
6296 return signal_program[signo];
6297}
6298
2455069d
UW
6299static void
6300signal_cache_update (int signo)
6301{
6302 if (signo == -1)
6303 {
a493e3e2 6304 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6305 signal_cache_update (signo);
6306
6307 return;
6308 }
6309
6310 signal_pass[signo] = (signal_stop[signo] == 0
6311 && signal_print[signo] == 0
ab04a2af
TT
6312 && signal_program[signo] == 1
6313 && signal_catch[signo] == 0);
2455069d
UW
6314}
6315
488f131b 6316int
7bda5e4a 6317signal_stop_update (int signo, int state)
d4f3574e
SS
6318{
6319 int ret = signal_stop[signo];
abbb1732 6320
d4f3574e 6321 signal_stop[signo] = state;
2455069d 6322 signal_cache_update (signo);
d4f3574e
SS
6323 return ret;
6324}
6325
488f131b 6326int
7bda5e4a 6327signal_print_update (int signo, int state)
d4f3574e
SS
6328{
6329 int ret = signal_print[signo];
abbb1732 6330
d4f3574e 6331 signal_print[signo] = state;
2455069d 6332 signal_cache_update (signo);
d4f3574e
SS
6333 return ret;
6334}
6335
488f131b 6336int
7bda5e4a 6337signal_pass_update (int signo, int state)
d4f3574e
SS
6338{
6339 int ret = signal_program[signo];
abbb1732 6340
d4f3574e 6341 signal_program[signo] = state;
2455069d 6342 signal_cache_update (signo);
d4f3574e
SS
6343 return ret;
6344}
6345
ab04a2af
TT
6346/* Update the global 'signal_catch' from INFO and notify the
6347 target. */
6348
6349void
6350signal_catch_update (const unsigned int *info)
6351{
6352 int i;
6353
6354 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6355 signal_catch[i] = info[i] > 0;
6356 signal_cache_update (-1);
6357 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6358}
6359
c906108c 6360static void
96baa820 6361sig_print_header (void)
c906108c 6362{
3e43a32a
MS
6363 printf_filtered (_("Signal Stop\tPrint\tPass "
6364 "to program\tDescription\n"));
c906108c
SS
6365}
6366
6367static void
2ea28649 6368sig_print_info (enum gdb_signal oursig)
c906108c 6369{
2ea28649 6370 const char *name = gdb_signal_to_name (oursig);
c906108c 6371 int name_padding = 13 - strlen (name);
96baa820 6372
c906108c
SS
6373 if (name_padding <= 0)
6374 name_padding = 0;
6375
6376 printf_filtered ("%s", name);
488f131b 6377 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6378 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6379 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6380 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6381 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6382}
6383
6384/* Specify how various signals in the inferior should be handled. */
6385
6386static void
96baa820 6387handle_command (char *args, int from_tty)
c906108c
SS
6388{
6389 char **argv;
6390 int digits, wordlen;
6391 int sigfirst, signum, siglast;
2ea28649 6392 enum gdb_signal oursig;
c906108c
SS
6393 int allsigs;
6394 int nsigs;
6395 unsigned char *sigs;
6396 struct cleanup *old_chain;
6397
6398 if (args == NULL)
6399 {
e2e0b3e5 6400 error_no_arg (_("signal to handle"));
c906108c
SS
6401 }
6402
1777feb0 6403 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6404
a493e3e2 6405 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6406 sigs = (unsigned char *) alloca (nsigs);
6407 memset (sigs, 0, nsigs);
6408
1777feb0 6409 /* Break the command line up into args. */
c906108c 6410
d1a41061 6411 argv = gdb_buildargv (args);
7a292a7a 6412 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6413
6414 /* Walk through the args, looking for signal oursigs, signal names, and
6415 actions. Signal numbers and signal names may be interspersed with
6416 actions, with the actions being performed for all signals cumulatively
1777feb0 6417 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6418
6419 while (*argv != NULL)
6420 {
6421 wordlen = strlen (*argv);
6422 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6423 {;
6424 }
6425 allsigs = 0;
6426 sigfirst = siglast = -1;
6427
6428 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6429 {
6430 /* Apply action to all signals except those used by the
1777feb0 6431 debugger. Silently skip those. */
c906108c
SS
6432 allsigs = 1;
6433 sigfirst = 0;
6434 siglast = nsigs - 1;
6435 }
6436 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6437 {
6438 SET_SIGS (nsigs, sigs, signal_stop);
6439 SET_SIGS (nsigs, sigs, signal_print);
6440 }
6441 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6442 {
6443 UNSET_SIGS (nsigs, sigs, signal_program);
6444 }
6445 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6446 {
6447 SET_SIGS (nsigs, sigs, signal_print);
6448 }
6449 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6450 {
6451 SET_SIGS (nsigs, sigs, signal_program);
6452 }
6453 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6454 {
6455 UNSET_SIGS (nsigs, sigs, signal_stop);
6456 }
6457 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6458 {
6459 SET_SIGS (nsigs, sigs, signal_program);
6460 }
6461 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6462 {
6463 UNSET_SIGS (nsigs, sigs, signal_print);
6464 UNSET_SIGS (nsigs, sigs, signal_stop);
6465 }
6466 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6467 {
6468 UNSET_SIGS (nsigs, sigs, signal_program);
6469 }
6470 else if (digits > 0)
6471 {
6472 /* It is numeric. The numeric signal refers to our own
6473 internal signal numbering from target.h, not to host/target
6474 signal number. This is a feature; users really should be
6475 using symbolic names anyway, and the common ones like
6476 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6477
6478 sigfirst = siglast = (int)
2ea28649 6479 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6480 if ((*argv)[digits] == '-')
6481 {
6482 siglast = (int)
2ea28649 6483 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6484 }
6485 if (sigfirst > siglast)
6486 {
1777feb0 6487 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6488 signum = sigfirst;
6489 sigfirst = siglast;
6490 siglast = signum;
6491 }
6492 }
6493 else
6494 {
2ea28649 6495 oursig = gdb_signal_from_name (*argv);
a493e3e2 6496 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6497 {
6498 sigfirst = siglast = (int) oursig;
6499 }
6500 else
6501 {
6502 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6503 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6504 }
6505 }
6506
6507 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6508 which signals to apply actions to. */
c906108c
SS
6509
6510 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6511 {
2ea28649 6512 switch ((enum gdb_signal) signum)
c906108c 6513 {
a493e3e2
PA
6514 case GDB_SIGNAL_TRAP:
6515 case GDB_SIGNAL_INT:
c906108c
SS
6516 if (!allsigs && !sigs[signum])
6517 {
9e2f0ad4 6518 if (query (_("%s is used by the debugger.\n\
3e43a32a 6519Are you sure you want to change it? "),
2ea28649 6520 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6521 {
6522 sigs[signum] = 1;
6523 }
6524 else
6525 {
a3f17187 6526 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6527 gdb_flush (gdb_stdout);
6528 }
6529 }
6530 break;
a493e3e2
PA
6531 case GDB_SIGNAL_0:
6532 case GDB_SIGNAL_DEFAULT:
6533 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6534 /* Make sure that "all" doesn't print these. */
6535 break;
6536 default:
6537 sigs[signum] = 1;
6538 break;
6539 }
6540 }
6541
6542 argv++;
6543 }
6544
3a031f65
PA
6545 for (signum = 0; signum < nsigs; signum++)
6546 if (sigs[signum])
6547 {
2455069d 6548 signal_cache_update (-1);
a493e3e2
PA
6549 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6550 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6551
3a031f65
PA
6552 if (from_tty)
6553 {
6554 /* Show the results. */
6555 sig_print_header ();
6556 for (; signum < nsigs; signum++)
6557 if (sigs[signum])
6558 sig_print_info (signum);
6559 }
6560
6561 break;
6562 }
c906108c
SS
6563
6564 do_cleanups (old_chain);
6565}
6566
de0bea00
MF
6567/* Complete the "handle" command. */
6568
6569static VEC (char_ptr) *
6570handle_completer (struct cmd_list_element *ignore,
6f937416 6571 const char *text, const char *word)
de0bea00
MF
6572{
6573 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6574 static const char * const keywords[] =
6575 {
6576 "all",
6577 "stop",
6578 "ignore",
6579 "print",
6580 "pass",
6581 "nostop",
6582 "noignore",
6583 "noprint",
6584 "nopass",
6585 NULL,
6586 };
6587
6588 vec_signals = signal_completer (ignore, text, word);
6589 vec_keywords = complete_on_enum (keywords, word, word);
6590
6591 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6592 VEC_free (char_ptr, vec_signals);
6593 VEC_free (char_ptr, vec_keywords);
6594 return return_val;
6595}
6596
c906108c 6597static void
96baa820 6598xdb_handle_command (char *args, int from_tty)
c906108c
SS
6599{
6600 char **argv;
6601 struct cleanup *old_chain;
6602
d1a41061
PP
6603 if (args == NULL)
6604 error_no_arg (_("xdb command"));
6605
1777feb0 6606 /* Break the command line up into args. */
c906108c 6607
d1a41061 6608 argv = gdb_buildargv (args);
7a292a7a 6609 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6610 if (argv[1] != (char *) NULL)
6611 {
6612 char *argBuf;
6613 int bufLen;
6614
6615 bufLen = strlen (argv[0]) + 20;
6616 argBuf = (char *) xmalloc (bufLen);
6617 if (argBuf)
6618 {
6619 int validFlag = 1;
2ea28649 6620 enum gdb_signal oursig;
c906108c 6621
2ea28649 6622 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6623 memset (argBuf, 0, bufLen);
6624 if (strcmp (argv[1], "Q") == 0)
6625 sprintf (argBuf, "%s %s", argv[0], "noprint");
6626 else
6627 {
6628 if (strcmp (argv[1], "s") == 0)
6629 {
6630 if (!signal_stop[oursig])
6631 sprintf (argBuf, "%s %s", argv[0], "stop");
6632 else
6633 sprintf (argBuf, "%s %s", argv[0], "nostop");
6634 }
6635 else if (strcmp (argv[1], "i") == 0)
6636 {
6637 if (!signal_program[oursig])
6638 sprintf (argBuf, "%s %s", argv[0], "pass");
6639 else
6640 sprintf (argBuf, "%s %s", argv[0], "nopass");
6641 }
6642 else if (strcmp (argv[1], "r") == 0)
6643 {
6644 if (!signal_print[oursig])
6645 sprintf (argBuf, "%s %s", argv[0], "print");
6646 else
6647 sprintf (argBuf, "%s %s", argv[0], "noprint");
6648 }
6649 else
6650 validFlag = 0;
6651 }
6652 if (validFlag)
6653 handle_command (argBuf, from_tty);
6654 else
a3f17187 6655 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6656 if (argBuf)
b8c9b27d 6657 xfree (argBuf);
c906108c
SS
6658 }
6659 }
6660 do_cleanups (old_chain);
6661}
6662
2ea28649
PA
6663enum gdb_signal
6664gdb_signal_from_command (int num)
ed01b82c
PA
6665{
6666 if (num >= 1 && num <= 15)
2ea28649 6667 return (enum gdb_signal) num;
ed01b82c
PA
6668 error (_("Only signals 1-15 are valid as numeric signals.\n\
6669Use \"info signals\" for a list of symbolic signals."));
6670}
6671
c906108c
SS
6672/* Print current contents of the tables set by the handle command.
6673 It is possible we should just be printing signals actually used
6674 by the current target (but for things to work right when switching
6675 targets, all signals should be in the signal tables). */
6676
6677static void
96baa820 6678signals_info (char *signum_exp, int from_tty)
c906108c 6679{
2ea28649 6680 enum gdb_signal oursig;
abbb1732 6681
c906108c
SS
6682 sig_print_header ();
6683
6684 if (signum_exp)
6685 {
6686 /* First see if this is a symbol name. */
2ea28649 6687 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6688 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6689 {
6690 /* No, try numeric. */
6691 oursig =
2ea28649 6692 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6693 }
6694 sig_print_info (oursig);
6695 return;
6696 }
6697
6698 printf_filtered ("\n");
6699 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6700 for (oursig = GDB_SIGNAL_FIRST;
6701 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6702 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6703 {
6704 QUIT;
6705
a493e3e2
PA
6706 if (oursig != GDB_SIGNAL_UNKNOWN
6707 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6708 sig_print_info (oursig);
6709 }
6710
3e43a32a
MS
6711 printf_filtered (_("\nUse the \"handle\" command "
6712 "to change these tables.\n"));
c906108c 6713}
4aa995e1 6714
c709acd1
PA
6715/* Check if it makes sense to read $_siginfo from the current thread
6716 at this point. If not, throw an error. */
6717
6718static void
6719validate_siginfo_access (void)
6720{
6721 /* No current inferior, no siginfo. */
6722 if (ptid_equal (inferior_ptid, null_ptid))
6723 error (_("No thread selected."));
6724
6725 /* Don't try to read from a dead thread. */
6726 if (is_exited (inferior_ptid))
6727 error (_("The current thread has terminated"));
6728
6729 /* ... or from a spinning thread. */
6730 if (is_running (inferior_ptid))
6731 error (_("Selected thread is running."));
6732}
6733
4aa995e1
PA
6734/* The $_siginfo convenience variable is a bit special. We don't know
6735 for sure the type of the value until we actually have a chance to
7a9dd1b2 6736 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6737 also dependent on which thread you have selected.
6738
6739 1. making $_siginfo be an internalvar that creates a new value on
6740 access.
6741
6742 2. making the value of $_siginfo be an lval_computed value. */
6743
6744/* This function implements the lval_computed support for reading a
6745 $_siginfo value. */
6746
6747static void
6748siginfo_value_read (struct value *v)
6749{
6750 LONGEST transferred;
6751
c709acd1
PA
6752 validate_siginfo_access ();
6753
4aa995e1
PA
6754 transferred =
6755 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6756 NULL,
6757 value_contents_all_raw (v),
6758 value_offset (v),
6759 TYPE_LENGTH (value_type (v)));
6760
6761 if (transferred != TYPE_LENGTH (value_type (v)))
6762 error (_("Unable to read siginfo"));
6763}
6764
6765/* This function implements the lval_computed support for writing a
6766 $_siginfo value. */
6767
6768static void
6769siginfo_value_write (struct value *v, struct value *fromval)
6770{
6771 LONGEST transferred;
6772
c709acd1
PA
6773 validate_siginfo_access ();
6774
4aa995e1
PA
6775 transferred = target_write (&current_target,
6776 TARGET_OBJECT_SIGNAL_INFO,
6777 NULL,
6778 value_contents_all_raw (fromval),
6779 value_offset (v),
6780 TYPE_LENGTH (value_type (fromval)));
6781
6782 if (transferred != TYPE_LENGTH (value_type (fromval)))
6783 error (_("Unable to write siginfo"));
6784}
6785
c8f2448a 6786static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6787 {
6788 siginfo_value_read,
6789 siginfo_value_write
6790 };
6791
6792/* Return a new value with the correct type for the siginfo object of
78267919
UW
6793 the current thread using architecture GDBARCH. Return a void value
6794 if there's no object available. */
4aa995e1 6795
2c0b251b 6796static struct value *
22d2b532
SDJ
6797siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6798 void *ignore)
4aa995e1 6799{
4aa995e1 6800 if (target_has_stack
78267919
UW
6801 && !ptid_equal (inferior_ptid, null_ptid)
6802 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6803 {
78267919 6804 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6805
78267919 6806 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6807 }
6808
78267919 6809 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6810}
6811
c906108c 6812\f
16c381f0
JK
6813/* infcall_suspend_state contains state about the program itself like its
6814 registers and any signal it received when it last stopped.
6815 This state must be restored regardless of how the inferior function call
6816 ends (either successfully, or after it hits a breakpoint or signal)
6817 if the program is to properly continue where it left off. */
6818
6819struct infcall_suspend_state
7a292a7a 6820{
16c381f0 6821 struct thread_suspend_state thread_suspend;
dd80ea3c 6822#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6823 struct inferior_suspend_state inferior_suspend;
dd80ea3c 6824#endif
16c381f0
JK
6825
6826 /* Other fields: */
7a292a7a 6827 CORE_ADDR stop_pc;
b89667eb 6828 struct regcache *registers;
1736ad11 6829
35515841 6830 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6831 struct gdbarch *siginfo_gdbarch;
6832
6833 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6834 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6835 content would be invalid. */
6836 gdb_byte *siginfo_data;
b89667eb
DE
6837};
6838
16c381f0
JK
6839struct infcall_suspend_state *
6840save_infcall_suspend_state (void)
b89667eb 6841{
16c381f0 6842 struct infcall_suspend_state *inf_state;
b89667eb 6843 struct thread_info *tp = inferior_thread ();
974a734b 6844#if 0
16c381f0 6845 struct inferior *inf = current_inferior ();
974a734b 6846#endif
1736ad11
JK
6847 struct regcache *regcache = get_current_regcache ();
6848 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6849 gdb_byte *siginfo_data = NULL;
6850
6851 if (gdbarch_get_siginfo_type_p (gdbarch))
6852 {
6853 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6854 size_t len = TYPE_LENGTH (type);
6855 struct cleanup *back_to;
6856
6857 siginfo_data = xmalloc (len);
6858 back_to = make_cleanup (xfree, siginfo_data);
6859
6860 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6861 siginfo_data, 0, len) == len)
6862 discard_cleanups (back_to);
6863 else
6864 {
6865 /* Errors ignored. */
6866 do_cleanups (back_to);
6867 siginfo_data = NULL;
6868 }
6869 }
6870
41bf6aca 6871 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
6872
6873 if (siginfo_data)
6874 {
6875 inf_state->siginfo_gdbarch = gdbarch;
6876 inf_state->siginfo_data = siginfo_data;
6877 }
b89667eb 6878
16c381f0 6879 inf_state->thread_suspend = tp->suspend;
dd80ea3c 6880#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6881 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 6882#endif
16c381f0 6883
35515841 6884 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
6885 GDB_SIGNAL_0 anyway. */
6886 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 6887
b89667eb
DE
6888 inf_state->stop_pc = stop_pc;
6889
1736ad11 6890 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6891
6892 return inf_state;
6893}
6894
6895/* Restore inferior session state to INF_STATE. */
6896
6897void
16c381f0 6898restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6899{
6900 struct thread_info *tp = inferior_thread ();
974a734b 6901#if 0
16c381f0 6902 struct inferior *inf = current_inferior ();
974a734b 6903#endif
1736ad11
JK
6904 struct regcache *regcache = get_current_regcache ();
6905 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6906
16c381f0 6907 tp->suspend = inf_state->thread_suspend;
dd80ea3c 6908#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6909 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 6910#endif
16c381f0 6911
b89667eb
DE
6912 stop_pc = inf_state->stop_pc;
6913
1736ad11
JK
6914 if (inf_state->siginfo_gdbarch == gdbarch)
6915 {
6916 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
6917
6918 /* Errors ignored. */
6919 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 6920 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
6921 }
6922
b89667eb
DE
6923 /* The inferior can be gone if the user types "print exit(0)"
6924 (and perhaps other times). */
6925 if (target_has_execution)
6926 /* NB: The register write goes through to the target. */
1736ad11 6927 regcache_cpy (regcache, inf_state->registers);
803b5f95 6928
16c381f0 6929 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6930}
6931
6932static void
16c381f0 6933do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6934{
16c381f0 6935 restore_infcall_suspend_state (state);
b89667eb
DE
6936}
6937
6938struct cleanup *
16c381f0
JK
6939make_cleanup_restore_infcall_suspend_state
6940 (struct infcall_suspend_state *inf_state)
b89667eb 6941{
16c381f0 6942 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6943}
6944
6945void
16c381f0 6946discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6947{
6948 regcache_xfree (inf_state->registers);
803b5f95 6949 xfree (inf_state->siginfo_data);
b89667eb
DE
6950 xfree (inf_state);
6951}
6952
6953struct regcache *
16c381f0 6954get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6955{
6956 return inf_state->registers;
6957}
6958
16c381f0
JK
6959/* infcall_control_state contains state regarding gdb's control of the
6960 inferior itself like stepping control. It also contains session state like
6961 the user's currently selected frame. */
b89667eb 6962
16c381f0 6963struct infcall_control_state
b89667eb 6964{
16c381f0
JK
6965 struct thread_control_state thread_control;
6966 struct inferior_control_state inferior_control;
d82142e2
JK
6967
6968 /* Other fields: */
6969 enum stop_stack_kind stop_stack_dummy;
6970 int stopped_by_random_signal;
7a292a7a 6971 int stop_after_trap;
7a292a7a 6972
b89667eb 6973 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6974 struct frame_id selected_frame_id;
7a292a7a
SS
6975};
6976
c906108c 6977/* Save all of the information associated with the inferior<==>gdb
b89667eb 6978 connection. */
c906108c 6979
16c381f0
JK
6980struct infcall_control_state *
6981save_infcall_control_state (void)
c906108c 6982{
16c381f0 6983 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6984 struct thread_info *tp = inferior_thread ();
d6b48e9c 6985 struct inferior *inf = current_inferior ();
7a292a7a 6986
16c381f0
JK
6987 inf_status->thread_control = tp->control;
6988 inf_status->inferior_control = inf->control;
d82142e2 6989
8358c15c 6990 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6991 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6992
16c381f0
JK
6993 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6994 chain. If caller's caller is walking the chain, they'll be happier if we
6995 hand them back the original chain when restore_infcall_control_state is
6996 called. */
6997 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6998
6999 /* Other fields: */
7000 inf_status->stop_stack_dummy = stop_stack_dummy;
7001 inf_status->stopped_by_random_signal = stopped_by_random_signal;
7002 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 7003
206415a3 7004 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 7005
7a292a7a 7006 return inf_status;
c906108c
SS
7007}
7008
c906108c 7009static int
96baa820 7010restore_selected_frame (void *args)
c906108c 7011{
488f131b 7012 struct frame_id *fid = (struct frame_id *) args;
c906108c 7013 struct frame_info *frame;
c906108c 7014
101dcfbe 7015 frame = frame_find_by_id (*fid);
c906108c 7016
aa0cd9c1
AC
7017 /* If inf_status->selected_frame_id is NULL, there was no previously
7018 selected frame. */
101dcfbe 7019 if (frame == NULL)
c906108c 7020 {
8a3fe4f8 7021 warning (_("Unable to restore previously selected frame."));
c906108c
SS
7022 return 0;
7023 }
7024
0f7d239c 7025 select_frame (frame);
c906108c
SS
7026
7027 return (1);
7028}
7029
b89667eb
DE
7030/* Restore inferior session state to INF_STATUS. */
7031
c906108c 7032void
16c381f0 7033restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 7034{
4e1c45ea 7035 struct thread_info *tp = inferior_thread ();
d6b48e9c 7036 struct inferior *inf = current_inferior ();
4e1c45ea 7037
8358c15c
JK
7038 if (tp->control.step_resume_breakpoint)
7039 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7040
5b79abe7
TT
7041 if (tp->control.exception_resume_breakpoint)
7042 tp->control.exception_resume_breakpoint->disposition
7043 = disp_del_at_next_stop;
7044
d82142e2 7045 /* Handle the bpstat_copy of the chain. */
16c381f0 7046 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 7047
16c381f0
JK
7048 tp->control = inf_status->thread_control;
7049 inf->control = inf_status->inferior_control;
d82142e2
JK
7050
7051 /* Other fields: */
7052 stop_stack_dummy = inf_status->stop_stack_dummy;
7053 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7054 stop_after_trap = inf_status->stop_after_trap;
c906108c 7055
b89667eb 7056 if (target_has_stack)
c906108c 7057 {
c906108c 7058 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7059 walking the stack might encounter a garbage pointer and
7060 error() trying to dereference it. */
488f131b
JB
7061 if (catch_errors
7062 (restore_selected_frame, &inf_status->selected_frame_id,
7063 "Unable to restore previously selected frame:\n",
7064 RETURN_MASK_ERROR) == 0)
c906108c
SS
7065 /* Error in restoring the selected frame. Select the innermost
7066 frame. */
0f7d239c 7067 select_frame (get_current_frame ());
c906108c 7068 }
c906108c 7069
72cec141 7070 xfree (inf_status);
7a292a7a 7071}
c906108c 7072
74b7792f 7073static void
16c381f0 7074do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7075{
16c381f0 7076 restore_infcall_control_state (sts);
74b7792f
AC
7077}
7078
7079struct cleanup *
16c381f0
JK
7080make_cleanup_restore_infcall_control_state
7081 (struct infcall_control_state *inf_status)
74b7792f 7082{
16c381f0 7083 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7084}
7085
c906108c 7086void
16c381f0 7087discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7088{
8358c15c
JK
7089 if (inf_status->thread_control.step_resume_breakpoint)
7090 inf_status->thread_control.step_resume_breakpoint->disposition
7091 = disp_del_at_next_stop;
7092
5b79abe7
TT
7093 if (inf_status->thread_control.exception_resume_breakpoint)
7094 inf_status->thread_control.exception_resume_breakpoint->disposition
7095 = disp_del_at_next_stop;
7096
1777feb0 7097 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7098 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7099
72cec141 7100 xfree (inf_status);
7a292a7a 7101}
b89667eb 7102\f
ca6724c1
KB
7103/* restore_inferior_ptid() will be used by the cleanup machinery
7104 to restore the inferior_ptid value saved in a call to
7105 save_inferior_ptid(). */
ce696e05
KB
7106
7107static void
7108restore_inferior_ptid (void *arg)
7109{
7110 ptid_t *saved_ptid_ptr = arg;
abbb1732 7111
ce696e05
KB
7112 inferior_ptid = *saved_ptid_ptr;
7113 xfree (arg);
7114}
7115
7116/* Save the value of inferior_ptid so that it may be restored by a
7117 later call to do_cleanups(). Returns the struct cleanup pointer
7118 needed for later doing the cleanup. */
7119
7120struct cleanup *
7121save_inferior_ptid (void)
7122{
7123 ptid_t *saved_ptid_ptr;
7124
7125 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7126 *saved_ptid_ptr = inferior_ptid;
7127 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7128}
0c557179
SDJ
7129
7130/* See inferior.h. */
7131
7132void
7133clear_exit_convenience_vars (void)
7134{
7135 clear_internalvar (lookup_internalvar ("_exitsignal"));
7136 clear_internalvar (lookup_internalvar ("_exitcode"));
7137}
c5aa993b 7138\f
488f131b 7139
b2175913
MS
7140/* User interface for reverse debugging:
7141 Set exec-direction / show exec-direction commands
7142 (returns error unless target implements to_set_exec_direction method). */
7143
32231432 7144int execution_direction = EXEC_FORWARD;
b2175913
MS
7145static const char exec_forward[] = "forward";
7146static const char exec_reverse[] = "reverse";
7147static const char *exec_direction = exec_forward;
40478521 7148static const char *const exec_direction_names[] = {
b2175913
MS
7149 exec_forward,
7150 exec_reverse,
7151 NULL
7152};
7153
7154static void
7155set_exec_direction_func (char *args, int from_tty,
7156 struct cmd_list_element *cmd)
7157{
7158 if (target_can_execute_reverse)
7159 {
7160 if (!strcmp (exec_direction, exec_forward))
7161 execution_direction = EXEC_FORWARD;
7162 else if (!strcmp (exec_direction, exec_reverse))
7163 execution_direction = EXEC_REVERSE;
7164 }
8bbed405
MS
7165 else
7166 {
7167 exec_direction = exec_forward;
7168 error (_("Target does not support this operation."));
7169 }
b2175913
MS
7170}
7171
7172static void
7173show_exec_direction_func (struct ui_file *out, int from_tty,
7174 struct cmd_list_element *cmd, const char *value)
7175{
7176 switch (execution_direction) {
7177 case EXEC_FORWARD:
7178 fprintf_filtered (out, _("Forward.\n"));
7179 break;
7180 case EXEC_REVERSE:
7181 fprintf_filtered (out, _("Reverse.\n"));
7182 break;
b2175913 7183 default:
d8b34453
PA
7184 internal_error (__FILE__, __LINE__,
7185 _("bogus execution_direction value: %d"),
7186 (int) execution_direction);
b2175913
MS
7187 }
7188}
7189
d4db2f36
PA
7190static void
7191show_schedule_multiple (struct ui_file *file, int from_tty,
7192 struct cmd_list_element *c, const char *value)
7193{
3e43a32a
MS
7194 fprintf_filtered (file, _("Resuming the execution of threads "
7195 "of all processes is %s.\n"), value);
d4db2f36 7196}
ad52ddc6 7197
22d2b532
SDJ
7198/* Implementation of `siginfo' variable. */
7199
7200static const struct internalvar_funcs siginfo_funcs =
7201{
7202 siginfo_make_value,
7203 NULL,
7204 NULL
7205};
7206
c906108c 7207void
96baa820 7208_initialize_infrun (void)
c906108c 7209{
52f0bd74
AC
7210 int i;
7211 int numsigs;
de0bea00 7212 struct cmd_list_element *c;
c906108c 7213
1bedd215
AC
7214 add_info ("signals", signals_info, _("\
7215What debugger does when program gets various signals.\n\
7216Specify a signal as argument to print info on that signal only."));
c906108c
SS
7217 add_info_alias ("handle", "signals", 0);
7218
de0bea00 7219 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7220Specify how to handle signals.\n\
486c7739 7221Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7222Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7223If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7224will be displayed instead.\n\
7225\n\
c906108c
SS
7226Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7227from 1-15 are allowed for compatibility with old versions of GDB.\n\
7228Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7229The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7230used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7231\n\
1bedd215 7232Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7233\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7234Stop means reenter debugger if this signal happens (implies print).\n\
7235Print means print a message if this signal happens.\n\
7236Pass means let program see this signal; otherwise program doesn't know.\n\
7237Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7238Pass and Stop may be combined.\n\
7239\n\
7240Multiple signals may be specified. Signal numbers and signal names\n\
7241may be interspersed with actions, with the actions being performed for\n\
7242all signals cumulatively specified."));
de0bea00 7243 set_cmd_completer (c, handle_completer);
486c7739 7244
c906108c
SS
7245 if (xdb_commands)
7246 {
1bedd215
AC
7247 add_com ("lz", class_info, signals_info, _("\
7248What debugger does when program gets various signals.\n\
7249Specify a signal as argument to print info on that signal only."));
7250 add_com ("z", class_run, xdb_handle_command, _("\
7251Specify how to handle a signal.\n\
c906108c
SS
7252Args are signals and actions to apply to those signals.\n\
7253Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7254from 1-15 are allowed for compatibility with old versions of GDB.\n\
7255Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7256The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7257used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7258Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7259\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7260nopass), \"Q\" (noprint)\n\
7261Stop means reenter debugger if this signal happens (implies print).\n\
7262Print means print a message if this signal happens.\n\
7263Pass means let program see this signal; otherwise program doesn't know.\n\
7264Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7265Pass and Stop may be combined."));
c906108c
SS
7266 }
7267
7268 if (!dbx_commands)
1a966eab
AC
7269 stop_command = add_cmd ("stop", class_obscure,
7270 not_just_help_class_command, _("\
7271There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7272This allows you to set a list of commands to be run each time execution\n\
1a966eab 7273of the program stops."), &cmdlist);
c906108c 7274
ccce17b0 7275 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7276Set inferior debugging."), _("\
7277Show inferior debugging."), _("\
7278When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7279 NULL,
7280 show_debug_infrun,
7281 &setdebuglist, &showdebuglist);
527159b7 7282
3e43a32a
MS
7283 add_setshow_boolean_cmd ("displaced", class_maintenance,
7284 &debug_displaced, _("\
237fc4c9
PA
7285Set displaced stepping debugging."), _("\
7286Show displaced stepping debugging."), _("\
7287When non-zero, displaced stepping specific debugging is enabled."),
7288 NULL,
7289 show_debug_displaced,
7290 &setdebuglist, &showdebuglist);
7291
ad52ddc6
PA
7292 add_setshow_boolean_cmd ("non-stop", no_class,
7293 &non_stop_1, _("\
7294Set whether gdb controls the inferior in non-stop mode."), _("\
7295Show whether gdb controls the inferior in non-stop mode."), _("\
7296When debugging a multi-threaded program and this setting is\n\
7297off (the default, also called all-stop mode), when one thread stops\n\
7298(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7299all other threads in the program while you interact with the thread of\n\
7300interest. When you continue or step a thread, you can allow the other\n\
7301threads to run, or have them remain stopped, but while you inspect any\n\
7302thread's state, all threads stop.\n\
7303\n\
7304In non-stop mode, when one thread stops, other threads can continue\n\
7305to run freely. You'll be able to step each thread independently,\n\
7306leave it stopped or free to run as needed."),
7307 set_non_stop,
7308 show_non_stop,
7309 &setlist,
7310 &showlist);
7311
a493e3e2 7312 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7313 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7314 signal_print = (unsigned char *)
7315 xmalloc (sizeof (signal_print[0]) * numsigs);
7316 signal_program = (unsigned char *)
7317 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7318 signal_catch = (unsigned char *)
7319 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d 7320 signal_pass = (unsigned char *)
4395285e 7321 xmalloc (sizeof (signal_pass[0]) * numsigs);
c906108c
SS
7322 for (i = 0; i < numsigs; i++)
7323 {
7324 signal_stop[i] = 1;
7325 signal_print[i] = 1;
7326 signal_program[i] = 1;
ab04a2af 7327 signal_catch[i] = 0;
c906108c
SS
7328 }
7329
7330 /* Signals caused by debugger's own actions
7331 should not be given to the program afterwards. */
a493e3e2
PA
7332 signal_program[GDB_SIGNAL_TRAP] = 0;
7333 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7334
7335 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7336 signal_stop[GDB_SIGNAL_ALRM] = 0;
7337 signal_print[GDB_SIGNAL_ALRM] = 0;
7338 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7339 signal_print[GDB_SIGNAL_VTALRM] = 0;
7340 signal_stop[GDB_SIGNAL_PROF] = 0;
7341 signal_print[GDB_SIGNAL_PROF] = 0;
7342 signal_stop[GDB_SIGNAL_CHLD] = 0;
7343 signal_print[GDB_SIGNAL_CHLD] = 0;
7344 signal_stop[GDB_SIGNAL_IO] = 0;
7345 signal_print[GDB_SIGNAL_IO] = 0;
7346 signal_stop[GDB_SIGNAL_POLL] = 0;
7347 signal_print[GDB_SIGNAL_POLL] = 0;
7348 signal_stop[GDB_SIGNAL_URG] = 0;
7349 signal_print[GDB_SIGNAL_URG] = 0;
7350 signal_stop[GDB_SIGNAL_WINCH] = 0;
7351 signal_print[GDB_SIGNAL_WINCH] = 0;
7352 signal_stop[GDB_SIGNAL_PRIO] = 0;
7353 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7354
cd0fc7c3
SS
7355 /* These signals are used internally by user-level thread
7356 implementations. (See signal(5) on Solaris.) Like the above
7357 signals, a healthy program receives and handles them as part of
7358 its normal operation. */
a493e3e2
PA
7359 signal_stop[GDB_SIGNAL_LWP] = 0;
7360 signal_print[GDB_SIGNAL_LWP] = 0;
7361 signal_stop[GDB_SIGNAL_WAITING] = 0;
7362 signal_print[GDB_SIGNAL_WAITING] = 0;
7363 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7364 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7365
2455069d
UW
7366 /* Update cached state. */
7367 signal_cache_update (-1);
7368
85c07804
AC
7369 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7370 &stop_on_solib_events, _("\
7371Set stopping for shared library events."), _("\
7372Show stopping for shared library events."), _("\
c906108c
SS
7373If nonzero, gdb will give control to the user when the dynamic linker\n\
7374notifies gdb of shared library events. The most common event of interest\n\
85c07804 7375to the user would be loading/unloading of a new library."),
f9e14852 7376 set_stop_on_solib_events,
920d2a44 7377 show_stop_on_solib_events,
85c07804 7378 &setlist, &showlist);
c906108c 7379
7ab04401
AC
7380 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7381 follow_fork_mode_kind_names,
7382 &follow_fork_mode_string, _("\
7383Set debugger response to a program call of fork or vfork."), _("\
7384Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7385A fork or vfork creates a new process. follow-fork-mode can be:\n\
7386 parent - the original process is debugged after a fork\n\
7387 child - the new process is debugged after a fork\n\
ea1dd7bc 7388The unfollowed process will continue to run.\n\
7ab04401
AC
7389By default, the debugger will follow the parent process."),
7390 NULL,
920d2a44 7391 show_follow_fork_mode_string,
7ab04401
AC
7392 &setlist, &showlist);
7393
6c95b8df
PA
7394 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7395 follow_exec_mode_names,
7396 &follow_exec_mode_string, _("\
7397Set debugger response to a program call of exec."), _("\
7398Show debugger response to a program call of exec."), _("\
7399An exec call replaces the program image of a process.\n\
7400\n\
7401follow-exec-mode can be:\n\
7402\n\
cce7e648 7403 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7404to this new inferior. The program the process was running before\n\
7405the exec call can be restarted afterwards by restarting the original\n\
7406inferior.\n\
7407\n\
7408 same - the debugger keeps the process bound to the same inferior.\n\
7409The new executable image replaces the previous executable loaded in\n\
7410the inferior. Restarting the inferior after the exec call restarts\n\
7411the executable the process was running after the exec call.\n\
7412\n\
7413By default, the debugger will use the same inferior."),
7414 NULL,
7415 show_follow_exec_mode_string,
7416 &setlist, &showlist);
7417
7ab04401
AC
7418 add_setshow_enum_cmd ("scheduler-locking", class_run,
7419 scheduler_enums, &scheduler_mode, _("\
7420Set mode for locking scheduler during execution."), _("\
7421Show mode for locking scheduler during execution."), _("\
c906108c
SS
7422off == no locking (threads may preempt at any time)\n\
7423on == full locking (no thread except the current thread may run)\n\
7424step == scheduler locked during every single-step operation.\n\
7425 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7426 Other threads may run while stepping over a function call ('next')."),
7427 set_schedlock_func, /* traps on target vector */
920d2a44 7428 show_scheduler_mode,
7ab04401 7429 &setlist, &showlist);
5fbbeb29 7430
d4db2f36
PA
7431 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7432Set mode for resuming threads of all processes."), _("\
7433Show mode for resuming threads of all processes."), _("\
7434When on, execution commands (such as 'continue' or 'next') resume all\n\
7435threads of all processes. When off (which is the default), execution\n\
7436commands only resume the threads of the current process. The set of\n\
7437threads that are resumed is further refined by the scheduler-locking\n\
7438mode (see help set scheduler-locking)."),
7439 NULL,
7440 show_schedule_multiple,
7441 &setlist, &showlist);
7442
5bf193a2
AC
7443 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7444Set mode of the step operation."), _("\
7445Show mode of the step operation."), _("\
7446When set, doing a step over a function without debug line information\n\
7447will stop at the first instruction of that function. Otherwise, the\n\
7448function is skipped and the step command stops at a different source line."),
7449 NULL,
920d2a44 7450 show_step_stop_if_no_debug,
5bf193a2 7451 &setlist, &showlist);
ca6724c1 7452
72d0e2c5
YQ
7453 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7454 &can_use_displaced_stepping, _("\
237fc4c9
PA
7455Set debugger's willingness to use displaced stepping."), _("\
7456Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7457If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7458supported by the target architecture. If off, gdb will not use displaced\n\
7459stepping to step over breakpoints, even if such is supported by the target\n\
7460architecture. If auto (which is the default), gdb will use displaced stepping\n\
7461if the target architecture supports it and non-stop mode is active, but will not\n\
7462use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7463 NULL,
7464 show_can_use_displaced_stepping,
7465 &setlist, &showlist);
237fc4c9 7466
b2175913
MS
7467 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7468 &exec_direction, _("Set direction of execution.\n\
7469Options are 'forward' or 'reverse'."),
7470 _("Show direction of execution (forward/reverse)."),
7471 _("Tells gdb whether to execute forward or backward."),
7472 set_exec_direction_func, show_exec_direction_func,
7473 &setlist, &showlist);
7474
6c95b8df
PA
7475 /* Set/show detach-on-fork: user-settable mode. */
7476
7477 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7478Set whether gdb will detach the child of a fork."), _("\
7479Show whether gdb will detach the child of a fork."), _("\
7480Tells gdb whether to detach the child of a fork."),
7481 NULL, NULL, &setlist, &showlist);
7482
03583c20
UW
7483 /* Set/show disable address space randomization mode. */
7484
7485 add_setshow_boolean_cmd ("disable-randomization", class_support,
7486 &disable_randomization, _("\
7487Set disabling of debuggee's virtual address space randomization."), _("\
7488Show disabling of debuggee's virtual address space randomization."), _("\
7489When this mode is on (which is the default), randomization of the virtual\n\
7490address space is disabled. Standalone programs run with the randomization\n\
7491enabled by default on some platforms."),
7492 &set_disable_randomization,
7493 &show_disable_randomization,
7494 &setlist, &showlist);
7495
ca6724c1 7496 /* ptid initializations */
ca6724c1
KB
7497 inferior_ptid = null_ptid;
7498 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7499
7500 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7501 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7502 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7503 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7504
7505 /* Explicitly create without lookup, since that tries to create a
7506 value with a void typed value, and when we get here, gdbarch
7507 isn't initialized yet. At this point, we're quite sure there
7508 isn't another convenience variable of the same name. */
22d2b532 7509 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7510
7511 add_setshow_boolean_cmd ("observer", no_class,
7512 &observer_mode_1, _("\
7513Set whether gdb controls the inferior in observer mode."), _("\
7514Show whether gdb controls the inferior in observer mode."), _("\
7515In observer mode, GDB can get data from the inferior, but not\n\
7516affect its execution. Registers and memory may not be changed,\n\
7517breakpoints may not be set, and the program cannot be interrupted\n\
7518or signalled."),
7519 set_observer_mode,
7520 show_observer_mode,
7521 &setlist,
7522 &showlist);
c906108c 7523}
This page took 2.172315 seconds and 4 git commands to generate.