detach with in-line step over in progress
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
3666a048 4 Copyright (C) 1986-2021 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
bab37966 22#include "displaced-stepping.h"
45741a9c 23#include "infrun.h"
c906108c
SS
24#include <ctype.h>
25#include "symtab.h"
26#include "frame.h"
27#include "inferior.h"
28#include "breakpoint.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
31#include "target.h"
2f4fcf00 32#include "target-connection.h"
c906108c
SS
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
2acceee2 37#include "inf-loop.h"
4e052eda 38#include "regcache.h"
fd0407d6 39#include "value.h"
76727919 40#include "observable.h"
f636b87d 41#include "language.h"
a77053c2 42#include "solib.h"
f17517ea 43#include "main.h"
186c406b 44#include "block.h"
034dad6f 45#include "mi/mi-common.h"
4f8d22e3 46#include "event-top.h"
96429cc8 47#include "record.h"
d02ed0bb 48#include "record-full.h"
edb3359d 49#include "inline-frame.h"
4efc6507 50#include "jit.h"
06cd862c 51#include "tracepoint.h"
1bfeeb0f 52#include "skip.h"
28106bc2
SDJ
53#include "probe.h"
54#include "objfiles.h"
de0bea00 55#include "completer.h"
9107fc8d 56#include "target-descriptions.h"
f15cb84a 57#include "target-dcache.h"
d83ad864 58#include "terminal.h"
ff862be4 59#include "solist.h"
400b5eca 60#include "gdbsupport/event-loop.h"
243a9253 61#include "thread-fsm.h"
268a13a5 62#include "gdbsupport/enum-flags.h"
5ed8105e 63#include "progspace-and-thread.h"
268a13a5 64#include "gdbsupport/gdb_optional.h"
46a62268 65#include "arch-utils.h"
268a13a5
TT
66#include "gdbsupport/scope-exit.h"
67#include "gdbsupport/forward-scope-exit.h"
06cc9596 68#include "gdbsupport/gdb_select.h"
5b6d1e4f 69#include <unordered_map>
93b54c8e 70#include "async-event.h"
b161a60d
SM
71#include "gdbsupport/selftest.h"
72#include "scoped-mock-context.h"
73#include "test-target.h"
ba988419 74#include "gdbsupport/common-debug.h"
c906108c
SS
75
76/* Prototypes for local functions */
77
2ea28649 78static void sig_print_info (enum gdb_signal);
c906108c 79
96baa820 80static void sig_print_header (void);
c906108c 81
d83ad864
DB
82static void follow_inferior_reset_breakpoints (void);
83
c4464ade 84static bool currently_stepping (struct thread_info *tp);
a289b8f6 85
2c03e5be 86static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
87
88static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
89
2484c66b
UW
90static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
91
c4464ade 92static bool maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
8550d3b3 93
aff4e175
AB
94static void resume (gdb_signal sig);
95
5b6d1e4f
PA
96static void wait_for_inferior (inferior *inf);
97
372316f1
PA
98/* Asynchronous signal handler registered as event loop source for
99 when we have pending events ready to be passed to the core. */
100static struct async_event_handler *infrun_async_inferior_event_token;
101
102/* Stores whether infrun_async was previously enabled or disabled.
103 Starts off as -1, indicating "never enabled/disabled". */
104static int infrun_is_async = -1;
105
106/* See infrun.h. */
107
108void
109infrun_async (int enable)
110{
111 if (infrun_is_async != enable)
112 {
113 infrun_is_async = enable;
114
1eb8556f 115 infrun_debug_printf ("enable=%d", enable);
372316f1
PA
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122}
123
0b333c5e
PA
124/* See infrun.h. */
125
126void
127mark_infrun_async_event_handler (void)
128{
129 mark_async_event_handler (infrun_async_inferior_event_token);
130}
131
5fbbeb29
CF
132/* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
491144b5 135bool step_stop_if_no_debug = false;
920d2a44
AC
136static void
137show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139{
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141}
5fbbeb29 142
b9f437de
PA
143/* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
96baa820 146
39f77062 147static ptid_t previous_inferior_ptid;
7a292a7a 148
07107ca6
LM
149/* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
491144b5 154static bool detach_fork = true;
6c95b8df 155
94ba44a6 156bool debug_infrun = false;
920d2a44
AC
157static void
158show_debug_infrun (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160{
161 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
162}
527159b7 163
03583c20
UW
164/* Support for disabling address space randomization. */
165
491144b5 166bool disable_randomization = true;
03583c20
UW
167
168static void
169show_disable_randomization (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171{
172 if (target_supports_disable_randomization ())
173 fprintf_filtered (file,
174 _("Disabling randomization of debuggee's "
175 "virtual address space is %s.\n"),
176 value);
177 else
178 fputs_filtered (_("Disabling randomization of debuggee's "
179 "virtual address space is unsupported on\n"
180 "this platform.\n"), file);
181}
182
183static void
eb4c3f4a 184set_disable_randomization (const char *args, int from_tty,
03583c20
UW
185 struct cmd_list_element *c)
186{
187 if (!target_supports_disable_randomization ())
188 error (_("Disabling randomization of debuggee's "
189 "virtual address space is unsupported on\n"
190 "this platform."));
191}
192
d32dc48e
PA
193/* User interface for non-stop mode. */
194
491144b5
CB
195bool non_stop = false;
196static bool non_stop_1 = false;
d32dc48e
PA
197
198static void
eb4c3f4a 199set_non_stop (const char *args, int from_tty,
d32dc48e
PA
200 struct cmd_list_element *c)
201{
55f6301a 202 if (target_has_execution ())
d32dc48e
PA
203 {
204 non_stop_1 = non_stop;
205 error (_("Cannot change this setting while the inferior is running."));
206 }
207
208 non_stop = non_stop_1;
209}
210
211static void
212show_non_stop (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214{
215 fprintf_filtered (file,
216 _("Controlling the inferior in non-stop mode is %s.\n"),
217 value);
218}
219
d914c394
SS
220/* "Observer mode" is somewhat like a more extreme version of
221 non-stop, in which all GDB operations that might affect the
222 target's execution have been disabled. */
223
6bd434d6 224static bool observer_mode = false;
491144b5 225static bool observer_mode_1 = false;
d914c394
SS
226
227static void
eb4c3f4a 228set_observer_mode (const char *args, int from_tty,
d914c394
SS
229 struct cmd_list_element *c)
230{
55f6301a 231 if (target_has_execution ())
d914c394
SS
232 {
233 observer_mode_1 = observer_mode;
234 error (_("Cannot change this setting while the inferior is running."));
235 }
236
237 observer_mode = observer_mode_1;
238
239 may_write_registers = !observer_mode;
240 may_write_memory = !observer_mode;
241 may_insert_breakpoints = !observer_mode;
242 may_insert_tracepoints = !observer_mode;
243 /* We can insert fast tracepoints in or out of observer mode,
244 but enable them if we're going into this mode. */
245 if (observer_mode)
491144b5 246 may_insert_fast_tracepoints = true;
d914c394
SS
247 may_stop = !observer_mode;
248 update_target_permissions ();
249
250 /* Going *into* observer mode we must force non-stop, then
251 going out we leave it that way. */
252 if (observer_mode)
253 {
d914c394 254 pagination_enabled = 0;
491144b5 255 non_stop = non_stop_1 = true;
d914c394
SS
256 }
257
258 if (from_tty)
259 printf_filtered (_("Observer mode is now %s.\n"),
260 (observer_mode ? "on" : "off"));
261}
262
263static void
264show_observer_mode (struct ui_file *file, int from_tty,
265 struct cmd_list_element *c, const char *value)
266{
267 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
268}
269
270/* This updates the value of observer mode based on changes in
271 permissions. Note that we are deliberately ignoring the values of
272 may-write-registers and may-write-memory, since the user may have
273 reason to enable these during a session, for instance to turn on a
274 debugging-related global. */
275
276void
277update_observer_mode (void)
278{
491144b5
CB
279 bool newval = (!may_insert_breakpoints
280 && !may_insert_tracepoints
281 && may_insert_fast_tracepoints
282 && !may_stop
283 && non_stop);
d914c394
SS
284
285 /* Let the user know if things change. */
286 if (newval != observer_mode)
287 printf_filtered (_("Observer mode is now %s.\n"),
288 (newval ? "on" : "off"));
289
290 observer_mode = observer_mode_1 = newval;
291}
c2c6d25f 292
c906108c
SS
293/* Tables of how to react to signals; the user sets them. */
294
adc6a863
PA
295static unsigned char signal_stop[GDB_SIGNAL_LAST];
296static unsigned char signal_print[GDB_SIGNAL_LAST];
297static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 298
ab04a2af
TT
299/* Table of signals that are registered with "catch signal". A
300 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
301 signal" command. */
302static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 303
2455069d
UW
304/* Table of signals that the target may silently handle.
305 This is automatically determined from the flags above,
306 and simply cached here. */
adc6a863 307static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 308
c906108c
SS
309#define SET_SIGS(nsigs,sigs,flags) \
310 do { \
311 int signum = (nsigs); \
312 while (signum-- > 0) \
313 if ((sigs)[signum]) \
314 (flags)[signum] = 1; \
315 } while (0)
316
317#define UNSET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 0; \
323 } while (0)
324
9b224c5e
PA
325/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
326 this function is to avoid exporting `signal_program'. */
327
328void
329update_signals_program_target (void)
330{
adc6a863 331 target_program_signals (signal_program);
9b224c5e
PA
332}
333
1777feb0 334/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 335
edb3359d 336#define RESUME_ALL minus_one_ptid
c906108c
SS
337
338/* Command list pointer for the "stop" placeholder. */
339
340static struct cmd_list_element *stop_command;
341
c906108c
SS
342/* Nonzero if we want to give control to the user when we're notified
343 of shared library events by the dynamic linker. */
628fe4e4 344int stop_on_solib_events;
f9e14852
GB
345
346/* Enable or disable optional shared library event breakpoints
347 as appropriate when the above flag is changed. */
348
349static void
eb4c3f4a
TT
350set_stop_on_solib_events (const char *args,
351 int from_tty, struct cmd_list_element *c)
f9e14852
GB
352{
353 update_solib_breakpoints ();
354}
355
920d2a44
AC
356static void
357show_stop_on_solib_events (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c, const char *value)
359{
360 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
361 value);
362}
c906108c 363
c4464ade 364/* True after stop if current stack frame should be printed. */
c906108c 365
c4464ade 366static bool stop_print_frame;
c906108c 367
5b6d1e4f
PA
368/* This is a cached copy of the target/ptid/waitstatus of the last
369 event returned by target_wait()/deprecated_target_wait_hook().
370 This information is returned by get_last_target_status(). */
371static process_stratum_target *target_last_proc_target;
39f77062 372static ptid_t target_last_wait_ptid;
e02bc4cc
DS
373static struct target_waitstatus target_last_waitstatus;
374
4e1c45ea 375void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 376
53904c9e
AC
377static const char follow_fork_mode_child[] = "child";
378static const char follow_fork_mode_parent[] = "parent";
379
40478521 380static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
381 follow_fork_mode_child,
382 follow_fork_mode_parent,
383 NULL
ef346e04 384};
c906108c 385
53904c9e 386static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
387static void
388show_follow_fork_mode_string (struct ui_file *file, int from_tty,
389 struct cmd_list_element *c, const char *value)
390{
3e43a32a
MS
391 fprintf_filtered (file,
392 _("Debugger response to a program "
393 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
394 value);
395}
c906108c
SS
396\f
397
d83ad864
DB
398/* Handle changes to the inferior list based on the type of fork,
399 which process is being followed, and whether the other process
400 should be detached. On entry inferior_ptid must be the ptid of
401 the fork parent. At return inferior_ptid is the ptid of the
402 followed inferior. */
403
5ab2fbf1
SM
404static bool
405follow_fork_inferior (bool follow_child, bool detach_fork)
d83ad864
DB
406{
407 int has_vforked;
79639e11 408 ptid_t parent_ptid, child_ptid;
d83ad864
DB
409
410 has_vforked = (inferior_thread ()->pending_follow.kind
411 == TARGET_WAITKIND_VFORKED);
79639e11
PA
412 parent_ptid = inferior_ptid;
413 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
414
415 if (has_vforked
416 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 417 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
418 && !(follow_child || detach_fork || sched_multi))
419 {
420 /* The parent stays blocked inside the vfork syscall until the
421 child execs or exits. If we don't let the child run, then
422 the parent stays blocked. If we're telling the parent to run
423 in the foreground, the user will not be able to ctrl-c to get
424 back the terminal, effectively hanging the debug session. */
425 fprintf_filtered (gdb_stderr, _("\
426Can not resume the parent process over vfork in the foreground while\n\
427holding the child stopped. Try \"set detach-on-fork\" or \
428\"set schedule-multiple\".\n"));
d83ad864
DB
429 return 1;
430 }
431
432 if (!follow_child)
433 {
434 /* Detach new forked process? */
435 if (detach_fork)
436 {
d83ad864
DB
437 /* Before detaching from the child, remove all breakpoints
438 from it. If we forked, then this has already been taken
439 care of by infrun.c. If we vforked however, any
440 breakpoint inserted in the parent is visible in the
441 child, even those added while stopped in a vfork
442 catchpoint. This will remove the breakpoints from the
443 parent also, but they'll be reinserted below. */
444 if (has_vforked)
445 {
446 /* Keep breakpoints list in sync. */
00431a78 447 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
448 }
449
f67c0c91 450 if (print_inferior_events)
d83ad864 451 {
8dd06f7a 452 /* Ensure that we have a process ptid. */
e99b03dc 453 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 454
223ffa71 455 target_terminal::ours_for_output ();
d83ad864 456 fprintf_filtered (gdb_stdlog,
f67c0c91 457 _("[Detaching after %s from child %s]\n"),
6f259a23 458 has_vforked ? "vfork" : "fork",
a068643d 459 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
460 }
461 }
462 else
463 {
464 struct inferior *parent_inf, *child_inf;
d83ad864
DB
465
466 /* Add process to GDB's tables. */
e99b03dc 467 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
468
469 parent_inf = current_inferior ();
470 child_inf->attach_flag = parent_inf->attach_flag;
471 copy_terminal_info (child_inf, parent_inf);
472 child_inf->gdbarch = parent_inf->gdbarch;
473 copy_inferior_target_desc_info (child_inf, parent_inf);
474
5ed8105e 475 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 476
2a00d7ce 477 set_current_inferior (child_inf);
5b6d1e4f 478 switch_to_no_thread ();
d83ad864 479 child_inf->symfile_flags = SYMFILE_NO_READ;
5b6d1e4f 480 push_target (parent_inf->process_target ());
18493a00
PA
481 thread_info *child_thr
482 = add_thread_silent (child_inf->process_target (), child_ptid);
d83ad864
DB
483
484 /* If this is a vfork child, then the address-space is
485 shared with the parent. */
486 if (has_vforked)
487 {
488 child_inf->pspace = parent_inf->pspace;
489 child_inf->aspace = parent_inf->aspace;
490
5b6d1e4f
PA
491 exec_on_vfork ();
492
d83ad864
DB
493 /* The parent will be frozen until the child is done
494 with the shared region. Keep track of the
495 parent. */
496 child_inf->vfork_parent = parent_inf;
497 child_inf->pending_detach = 0;
498 parent_inf->vfork_child = child_inf;
499 parent_inf->pending_detach = 0;
18493a00
PA
500
501 /* Now that the inferiors and program spaces are all
502 wired up, we can switch to the child thread (which
503 switches inferior and program space too). */
504 switch_to_thread (child_thr);
d83ad864
DB
505 }
506 else
507 {
508 child_inf->aspace = new_address_space ();
564b1e3f 509 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
510 child_inf->removable = 1;
511 set_current_program_space (child_inf->pspace);
512 clone_program_space (child_inf->pspace, parent_inf->pspace);
513
18493a00
PA
514 /* solib_create_inferior_hook relies on the current
515 thread. */
516 switch_to_thread (child_thr);
517
d83ad864
DB
518 /* Let the shared library layer (e.g., solib-svr4) learn
519 about this new process, relocate the cloned exec, pull
520 in shared libraries, and install the solib event
521 breakpoint. If a "cloned-VM" event was propagated
522 better throughout the core, this wouldn't be
523 required. */
524 solib_create_inferior_hook (0);
525 }
d83ad864
DB
526 }
527
528 if (has_vforked)
529 {
530 struct inferior *parent_inf;
531
532 parent_inf = current_inferior ();
533
534 /* If we detached from the child, then we have to be careful
535 to not insert breakpoints in the parent until the child
536 is done with the shared memory region. However, if we're
537 staying attached to the child, then we can and should
538 insert breakpoints, so that we can debug it. A
539 subsequent child exec or exit is enough to know when does
540 the child stops using the parent's address space. */
541 parent_inf->waiting_for_vfork_done = detach_fork;
542 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
543 }
544 }
545 else
546 {
547 /* Follow the child. */
548 struct inferior *parent_inf, *child_inf;
549 struct program_space *parent_pspace;
550
f67c0c91 551 if (print_inferior_events)
d83ad864 552 {
f67c0c91
SDJ
553 std::string parent_pid = target_pid_to_str (parent_ptid);
554 std::string child_pid = target_pid_to_str (child_ptid);
555
223ffa71 556 target_terminal::ours_for_output ();
6f259a23 557 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
558 _("[Attaching after %s %s to child %s]\n"),
559 parent_pid.c_str (),
6f259a23 560 has_vforked ? "vfork" : "fork",
f67c0c91 561 child_pid.c_str ());
d83ad864
DB
562 }
563
564 /* Add the new inferior first, so that the target_detach below
565 doesn't unpush the target. */
566
e99b03dc 567 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
568
569 parent_inf = current_inferior ();
570 child_inf->attach_flag = parent_inf->attach_flag;
571 copy_terminal_info (child_inf, parent_inf);
572 child_inf->gdbarch = parent_inf->gdbarch;
573 copy_inferior_target_desc_info (child_inf, parent_inf);
574
575 parent_pspace = parent_inf->pspace;
576
5b6d1e4f 577 process_stratum_target *target = parent_inf->process_target ();
d83ad864 578
5b6d1e4f
PA
579 {
580 /* Hold a strong reference to the target while (maybe)
581 detaching the parent. Otherwise detaching could close the
582 target. */
583 auto target_ref = target_ops_ref::new_reference (target);
584
585 /* If we're vforking, we want to hold on to the parent until
586 the child exits or execs. At child exec or exit time we
587 can remove the old breakpoints from the parent and detach
588 or resume debugging it. Otherwise, detach the parent now;
589 we'll want to reuse it's program/address spaces, but we
590 can't set them to the child before removing breakpoints
591 from the parent, otherwise, the breakpoints module could
592 decide to remove breakpoints from the wrong process (since
593 they'd be assigned to the same address space). */
594
595 if (has_vforked)
596 {
597 gdb_assert (child_inf->vfork_parent == NULL);
598 gdb_assert (parent_inf->vfork_child == NULL);
599 child_inf->vfork_parent = parent_inf;
600 child_inf->pending_detach = 0;
601 parent_inf->vfork_child = child_inf;
602 parent_inf->pending_detach = detach_fork;
603 parent_inf->waiting_for_vfork_done = 0;
604 }
605 else if (detach_fork)
606 {
607 if (print_inferior_events)
608 {
609 /* Ensure that we have a process ptid. */
610 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
611
612 target_terminal::ours_for_output ();
613 fprintf_filtered (gdb_stdlog,
614 _("[Detaching after fork from "
615 "parent %s]\n"),
616 target_pid_to_str (process_ptid).c_str ());
617 }
8dd06f7a 618
5b6d1e4f
PA
619 target_detach (parent_inf, 0);
620 parent_inf = NULL;
621 }
6f259a23 622
5b6d1e4f 623 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 624
5b6d1e4f
PA
625 /* Add the child thread to the appropriate lists, and switch
626 to this new thread, before cloning the program space, and
627 informing the solib layer about this new process. */
d83ad864 628
5b6d1e4f
PA
629 set_current_inferior (child_inf);
630 push_target (target);
631 }
d83ad864 632
18493a00 633 thread_info *child_thr = add_thread_silent (target, child_ptid);
d83ad864
DB
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
642
643 exec_on_vfork ();
d83ad864
DB
644 }
645 else
646 {
647 child_inf->aspace = new_address_space ();
564b1e3f 648 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
649 child_inf->removable = 1;
650 child_inf->symfile_flags = SYMFILE_NO_READ;
651 set_current_program_space (child_inf->pspace);
652 clone_program_space (child_inf->pspace, parent_pspace);
653
654 /* Let the shared library layer (e.g., solib-svr4) learn
655 about this new process, relocate the cloned exec, pull in
656 shared libraries, and install the solib event breakpoint.
657 If a "cloned-VM" event was propagated better throughout
658 the core, this wouldn't be required. */
659 solib_create_inferior_hook (0);
660 }
18493a00
PA
661
662 switch_to_thread (child_thr);
d83ad864
DB
663 }
664
665 return target_follow_fork (follow_child, detach_fork);
666}
667
e58b0e63
PA
668/* Tell the target to follow the fork we're stopped at. Returns true
669 if the inferior should be resumed; false, if the target for some
670 reason decided it's best not to resume. */
671
5ab2fbf1
SM
672static bool
673follow_fork ()
c906108c 674{
5ab2fbf1
SM
675 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
676 bool should_resume = true;
e58b0e63
PA
677 struct thread_info *tp;
678
679 /* Copy user stepping state to the new inferior thread. FIXME: the
680 followed fork child thread should have a copy of most of the
4e3990f4
DE
681 parent thread structure's run control related fields, not just these.
682 Initialized to avoid "may be used uninitialized" warnings from gcc. */
683 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 684 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
685 CORE_ADDR step_range_start = 0;
686 CORE_ADDR step_range_end = 0;
bf4cb9be
TV
687 int current_line = 0;
688 symtab *current_symtab = NULL;
4e3990f4 689 struct frame_id step_frame_id = { 0 };
8980e177 690 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
691
692 if (!non_stop)
693 {
5b6d1e4f 694 process_stratum_target *wait_target;
e58b0e63
PA
695 ptid_t wait_ptid;
696 struct target_waitstatus wait_status;
697
698 /* Get the last target status returned by target_wait(). */
5b6d1e4f 699 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
700
701 /* If not stopped at a fork event, then there's nothing else to
702 do. */
703 if (wait_status.kind != TARGET_WAITKIND_FORKED
704 && wait_status.kind != TARGET_WAITKIND_VFORKED)
705 return 1;
706
707 /* Check if we switched over from WAIT_PTID, since the event was
708 reported. */
00431a78 709 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
710 && (current_inferior ()->process_target () != wait_target
711 || inferior_ptid != wait_ptid))
e58b0e63
PA
712 {
713 /* We did. Switch back to WAIT_PTID thread, to tell the
714 target to follow it (in either direction). We'll
715 afterwards refuse to resume, and inform the user what
716 happened. */
5b6d1e4f 717 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 718 switch_to_thread (wait_thread);
5ab2fbf1 719 should_resume = false;
e58b0e63
PA
720 }
721 }
722
723 tp = inferior_thread ();
724
725 /* If there were any forks/vforks that were caught and are now to be
726 followed, then do so now. */
727 switch (tp->pending_follow.kind)
728 {
729 case TARGET_WAITKIND_FORKED:
730 case TARGET_WAITKIND_VFORKED:
731 {
732 ptid_t parent, child;
733
734 /* If the user did a next/step, etc, over a fork call,
735 preserve the stepping state in the fork child. */
736 if (follow_child && should_resume)
737 {
8358c15c
JK
738 step_resume_breakpoint = clone_momentary_breakpoint
739 (tp->control.step_resume_breakpoint);
16c381f0
JK
740 step_range_start = tp->control.step_range_start;
741 step_range_end = tp->control.step_range_end;
bf4cb9be
TV
742 current_line = tp->current_line;
743 current_symtab = tp->current_symtab;
16c381f0 744 step_frame_id = tp->control.step_frame_id;
186c406b
TT
745 exception_resume_breakpoint
746 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 747 thread_fsm = tp->thread_fsm;
e58b0e63
PA
748
749 /* For now, delete the parent's sr breakpoint, otherwise,
750 parent/child sr breakpoints are considered duplicates,
751 and the child version will not be installed. Remove
752 this when the breakpoints module becomes aware of
753 inferiors and address spaces. */
754 delete_step_resume_breakpoint (tp);
16c381f0
JK
755 tp->control.step_range_start = 0;
756 tp->control.step_range_end = 0;
757 tp->control.step_frame_id = null_frame_id;
186c406b 758 delete_exception_resume_breakpoint (tp);
8980e177 759 tp->thread_fsm = NULL;
e58b0e63
PA
760 }
761
762 parent = inferior_ptid;
763 child = tp->pending_follow.value.related_pid;
764
5b6d1e4f 765 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
766 /* Set up inferior(s) as specified by the caller, and tell the
767 target to do whatever is necessary to follow either parent
768 or child. */
769 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
770 {
771 /* Target refused to follow, or there's some other reason
772 we shouldn't resume. */
773 should_resume = 0;
774 }
775 else
776 {
777 /* This pending follow fork event is now handled, one way
778 or another. The previous selected thread may be gone
779 from the lists by now, but if it is still around, need
780 to clear the pending follow request. */
5b6d1e4f 781 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
782 if (tp)
783 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
784
785 /* This makes sure we don't try to apply the "Switched
786 over from WAIT_PID" logic above. */
787 nullify_last_target_wait_ptid ();
788
1777feb0 789 /* If we followed the child, switch to it... */
e58b0e63
PA
790 if (follow_child)
791 {
5b6d1e4f 792 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 793 switch_to_thread (child_thr);
e58b0e63
PA
794
795 /* ... and preserve the stepping state, in case the
796 user was stepping over the fork call. */
797 if (should_resume)
798 {
799 tp = inferior_thread ();
8358c15c
JK
800 tp->control.step_resume_breakpoint
801 = step_resume_breakpoint;
16c381f0
JK
802 tp->control.step_range_start = step_range_start;
803 tp->control.step_range_end = step_range_end;
bf4cb9be
TV
804 tp->current_line = current_line;
805 tp->current_symtab = current_symtab;
16c381f0 806 tp->control.step_frame_id = step_frame_id;
186c406b
TT
807 tp->control.exception_resume_breakpoint
808 = exception_resume_breakpoint;
8980e177 809 tp->thread_fsm = thread_fsm;
e58b0e63
PA
810 }
811 else
812 {
813 /* If we get here, it was because we're trying to
814 resume from a fork catchpoint, but, the user
815 has switched threads away from the thread that
816 forked. In that case, the resume command
817 issued is most likely not applicable to the
818 child, so just warn, and refuse to resume. */
3e43a32a 819 warning (_("Not resuming: switched threads "
fd7dcb94 820 "before following fork child."));
e58b0e63
PA
821 }
822
823 /* Reset breakpoints in the child as appropriate. */
824 follow_inferior_reset_breakpoints ();
825 }
e58b0e63
PA
826 }
827 }
828 break;
829 case TARGET_WAITKIND_SPURIOUS:
830 /* Nothing to follow. */
831 break;
832 default:
833 internal_error (__FILE__, __LINE__,
834 "Unexpected pending_follow.kind %d\n",
835 tp->pending_follow.kind);
836 break;
837 }
c906108c 838
e58b0e63 839 return should_resume;
c906108c
SS
840}
841
d83ad864 842static void
6604731b 843follow_inferior_reset_breakpoints (void)
c906108c 844{
4e1c45ea
PA
845 struct thread_info *tp = inferior_thread ();
846
6604731b
DJ
847 /* Was there a step_resume breakpoint? (There was if the user
848 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
849 thread number. Cloned step_resume breakpoints are disabled on
850 creation, so enable it here now that it is associated with the
851 correct thread.
6604731b
DJ
852
853 step_resumes are a form of bp that are made to be per-thread.
854 Since we created the step_resume bp when the parent process
855 was being debugged, and now are switching to the child process,
856 from the breakpoint package's viewpoint, that's a switch of
857 "threads". We must update the bp's notion of which thread
858 it is for, or it'll be ignored when it triggers. */
859
8358c15c 860 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
861 {
862 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
863 tp->control.step_resume_breakpoint->loc->enabled = 1;
864 }
6604731b 865
a1aa2221 866 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 867 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
868 {
869 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
870 tp->control.exception_resume_breakpoint->loc->enabled = 1;
871 }
186c406b 872
6604731b
DJ
873 /* Reinsert all breakpoints in the child. The user may have set
874 breakpoints after catching the fork, in which case those
875 were never set in the child, but only in the parent. This makes
876 sure the inserted breakpoints match the breakpoint list. */
877
878 breakpoint_re_set ();
879 insert_breakpoints ();
c906108c 880}
c906108c 881
6c95b8df
PA
882/* The child has exited or execed: resume threads of the parent the
883 user wanted to be executing. */
884
885static int
886proceed_after_vfork_done (struct thread_info *thread,
887 void *arg)
888{
889 int pid = * (int *) arg;
890
00431a78
PA
891 if (thread->ptid.pid () == pid
892 && thread->state == THREAD_RUNNING
893 && !thread->executing
6c95b8df 894 && !thread->stop_requested
a493e3e2 895 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df 896 {
1eb8556f
SM
897 infrun_debug_printf ("resuming vfork parent thread %s",
898 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 899
00431a78 900 switch_to_thread (thread);
70509625 901 clear_proceed_status (0);
64ce06e4 902 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
903 }
904
905 return 0;
906}
907
908/* Called whenever we notice an exec or exit event, to handle
909 detaching or resuming a vfork parent. */
910
911static void
912handle_vfork_child_exec_or_exit (int exec)
913{
914 struct inferior *inf = current_inferior ();
915
916 if (inf->vfork_parent)
917 {
918 int resume_parent = -1;
919
920 /* This exec or exit marks the end of the shared memory region
b73715df
TV
921 between the parent and the child. Break the bonds. */
922 inferior *vfork_parent = inf->vfork_parent;
923 inf->vfork_parent->vfork_child = NULL;
924 inf->vfork_parent = NULL;
6c95b8df 925
b73715df
TV
926 /* If the user wanted to detach from the parent, now is the
927 time. */
928 if (vfork_parent->pending_detach)
6c95b8df 929 {
6c95b8df
PA
930 struct program_space *pspace;
931 struct address_space *aspace;
932
1777feb0 933 /* follow-fork child, detach-on-fork on. */
6c95b8df 934
b73715df 935 vfork_parent->pending_detach = 0;
68c9da30 936
18493a00 937 scoped_restore_current_pspace_and_thread restore_thread;
6c95b8df
PA
938
939 /* We're letting loose of the parent. */
18493a00 940 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
00431a78 941 switch_to_thread (tp);
6c95b8df
PA
942
943 /* We're about to detach from the parent, which implicitly
944 removes breakpoints from its address space. There's a
945 catch here: we want to reuse the spaces for the child,
946 but, parent/child are still sharing the pspace at this
947 point, although the exec in reality makes the kernel give
948 the child a fresh set of new pages. The problem here is
949 that the breakpoints module being unaware of this, would
950 likely chose the child process to write to the parent
951 address space. Swapping the child temporarily away from
952 the spaces has the desired effect. Yes, this is "sort
953 of" a hack. */
954
955 pspace = inf->pspace;
956 aspace = inf->aspace;
957 inf->aspace = NULL;
958 inf->pspace = NULL;
959
f67c0c91 960 if (print_inferior_events)
6c95b8df 961 {
a068643d 962 std::string pidstr
b73715df 963 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 964
223ffa71 965 target_terminal::ours_for_output ();
6c95b8df
PA
966
967 if (exec)
6f259a23
DB
968 {
969 fprintf_filtered (gdb_stdlog,
f67c0c91 970 _("[Detaching vfork parent %s "
a068643d 971 "after child exec]\n"), pidstr.c_str ());
6f259a23 972 }
6c95b8df 973 else
6f259a23
DB
974 {
975 fprintf_filtered (gdb_stdlog,
f67c0c91 976 _("[Detaching vfork parent %s "
a068643d 977 "after child exit]\n"), pidstr.c_str ());
6f259a23 978 }
6c95b8df
PA
979 }
980
b73715df 981 target_detach (vfork_parent, 0);
6c95b8df
PA
982
983 /* Put it back. */
984 inf->pspace = pspace;
985 inf->aspace = aspace;
6c95b8df
PA
986 }
987 else if (exec)
988 {
989 /* We're staying attached to the parent, so, really give the
990 child a new address space. */
564b1e3f 991 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
992 inf->aspace = inf->pspace->aspace;
993 inf->removable = 1;
994 set_current_program_space (inf->pspace);
995
b73715df 996 resume_parent = vfork_parent->pid;
6c95b8df
PA
997 }
998 else
999 {
6c95b8df
PA
1000 /* If this is a vfork child exiting, then the pspace and
1001 aspaces were shared with the parent. Since we're
1002 reporting the process exit, we'll be mourning all that is
1003 found in the address space, and switching to null_ptid,
1004 preparing to start a new inferior. But, since we don't
1005 want to clobber the parent's address/program spaces, we
1006 go ahead and create a new one for this exiting
1007 inferior. */
1008
18493a00 1009 /* Switch to no-thread while running clone_program_space, so
5ed8105e
PA
1010 that clone_program_space doesn't want to read the
1011 selected frame of a dead process. */
18493a00
PA
1012 scoped_restore_current_thread restore_thread;
1013 switch_to_no_thread ();
6c95b8df 1014
53af73bf
PA
1015 inf->pspace = new program_space (maybe_new_address_space ());
1016 inf->aspace = inf->pspace->aspace;
1017 set_current_program_space (inf->pspace);
6c95b8df 1018 inf->removable = 1;
7dcd53a0 1019 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1020 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1021
b73715df 1022 resume_parent = vfork_parent->pid;
6c95b8df
PA
1023 }
1024
6c95b8df
PA
1025 gdb_assert (current_program_space == inf->pspace);
1026
1027 if (non_stop && resume_parent != -1)
1028 {
1029 /* If the user wanted the parent to be running, let it go
1030 free now. */
5ed8105e 1031 scoped_restore_current_thread restore_thread;
6c95b8df 1032
1eb8556f
SM
1033 infrun_debug_printf ("resuming vfork parent process %d",
1034 resume_parent);
6c95b8df
PA
1035
1036 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1037 }
1038 }
1039}
1040
eb6c553b 1041/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1042
1043static const char follow_exec_mode_new[] = "new";
1044static const char follow_exec_mode_same[] = "same";
40478521 1045static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1046{
1047 follow_exec_mode_new,
1048 follow_exec_mode_same,
1049 NULL,
1050};
1051
1052static const char *follow_exec_mode_string = follow_exec_mode_same;
1053static void
1054show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1055 struct cmd_list_element *c, const char *value)
1056{
1057 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1058}
1059
ecf45d2c 1060/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1061
c906108c 1062static void
4ca51187 1063follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1064{
6c95b8df 1065 struct inferior *inf = current_inferior ();
e99b03dc 1066 int pid = ptid.pid ();
94585166 1067 ptid_t process_ptid;
7a292a7a 1068
65d2b333
PW
1069 /* Switch terminal for any messages produced e.g. by
1070 breakpoint_re_set. */
1071 target_terminal::ours_for_output ();
1072
c906108c
SS
1073 /* This is an exec event that we actually wish to pay attention to.
1074 Refresh our symbol table to the newly exec'd program, remove any
1075 momentary bp's, etc.
1076
1077 If there are breakpoints, they aren't really inserted now,
1078 since the exec() transformed our inferior into a fresh set
1079 of instructions.
1080
1081 We want to preserve symbolic breakpoints on the list, since
1082 we have hopes that they can be reset after the new a.out's
1083 symbol table is read.
1084
1085 However, any "raw" breakpoints must be removed from the list
1086 (e.g., the solib bp's), since their address is probably invalid
1087 now.
1088
1089 And, we DON'T want to call delete_breakpoints() here, since
1090 that may write the bp's "shadow contents" (the instruction
85102364 1091 value that was overwritten with a TRAP instruction). Since
1777feb0 1092 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1093
1094 mark_breakpoints_out ();
1095
95e50b27
PA
1096 /* The target reports the exec event to the main thread, even if
1097 some other thread does the exec, and even if the main thread was
1098 stopped or already gone. We may still have non-leader threads of
1099 the process on our list. E.g., on targets that don't have thread
1100 exit events (like remote); or on native Linux in non-stop mode if
1101 there were only two threads in the inferior and the non-leader
1102 one is the one that execs (and nothing forces an update of the
1103 thread list up to here). When debugging remotely, it's best to
1104 avoid extra traffic, when possible, so avoid syncing the thread
1105 list with the target, and instead go ahead and delete all threads
1106 of the process but one that reported the event. Note this must
1107 be done before calling update_breakpoints_after_exec, as
1108 otherwise clearing the threads' resources would reference stale
1109 thread breakpoints -- it may have been one of these threads that
1110 stepped across the exec. We could just clear their stepping
1111 states, but as long as we're iterating, might as well delete
1112 them. Deleting them now rather than at the next user-visible
1113 stop provides a nicer sequence of events for user and MI
1114 notifications. */
08036331 1115 for (thread_info *th : all_threads_safe ())
d7e15655 1116 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1117 delete_thread (th);
95e50b27
PA
1118
1119 /* We also need to clear any left over stale state for the
1120 leader/event thread. E.g., if there was any step-resume
1121 breakpoint or similar, it's gone now. We cannot truly
1122 step-to-next statement through an exec(). */
08036331 1123 thread_info *th = inferior_thread ();
8358c15c 1124 th->control.step_resume_breakpoint = NULL;
186c406b 1125 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1126 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1127 th->control.step_range_start = 0;
1128 th->control.step_range_end = 0;
c906108c 1129
95e50b27
PA
1130 /* The user may have had the main thread held stopped in the
1131 previous image (e.g., schedlock on, or non-stop). Release
1132 it now. */
a75724bc
PA
1133 th->stop_requested = 0;
1134
95e50b27
PA
1135 update_breakpoints_after_exec ();
1136
1777feb0 1137 /* What is this a.out's name? */
f2907e49 1138 process_ptid = ptid_t (pid);
6c95b8df 1139 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1140 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1141 exec_file_target);
c906108c
SS
1142
1143 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1144 inferior has essentially been killed & reborn. */
7a292a7a 1145
6ca15a4b 1146 breakpoint_init_inferior (inf_execd);
e85a822c 1147
797bc1cb
TT
1148 gdb::unique_xmalloc_ptr<char> exec_file_host
1149 = exec_file_find (exec_file_target, NULL);
ff862be4 1150
ecf45d2c
SL
1151 /* If we were unable to map the executable target pathname onto a host
1152 pathname, tell the user that. Otherwise GDB's subsequent behavior
1153 is confusing. Maybe it would even be better to stop at this point
1154 so that the user can specify a file manually before continuing. */
1155 if (exec_file_host == NULL)
1156 warning (_("Could not load symbols for executable %s.\n"
1157 "Do you need \"set sysroot\"?"),
1158 exec_file_target);
c906108c 1159
cce9b6bf
PA
1160 /* Reset the shared library package. This ensures that we get a
1161 shlib event when the child reaches "_start", at which point the
1162 dld will have had a chance to initialize the child. */
1163 /* Also, loading a symbol file below may trigger symbol lookups, and
1164 we don't want those to be satisfied by the libraries of the
1165 previous incarnation of this process. */
1166 no_shared_libraries (NULL, 0);
1167
6c95b8df
PA
1168 if (follow_exec_mode_string == follow_exec_mode_new)
1169 {
6c95b8df
PA
1170 /* The user wants to keep the old inferior and program spaces
1171 around. Create a new fresh one, and switch to it. */
1172
35ed81d4
SM
1173 /* Do exit processing for the original inferior before setting the new
1174 inferior's pid. Having two inferiors with the same pid would confuse
1175 find_inferior_p(t)id. Transfer the terminal state and info from the
1176 old to the new inferior. */
1177 inf = add_inferior_with_spaces ();
1178 swap_terminal_info (inf, current_inferior ());
057302ce 1179 exit_inferior_silent (current_inferior ());
17d8546e 1180
94585166 1181 inf->pid = pid;
ecf45d2c 1182 target_follow_exec (inf, exec_file_target);
6c95b8df 1183
5b6d1e4f
PA
1184 inferior *org_inferior = current_inferior ();
1185 switch_to_inferior_no_thread (inf);
1186 push_target (org_inferior->process_target ());
1187 thread_info *thr = add_thread (inf->process_target (), ptid);
1188 switch_to_thread (thr);
6c95b8df 1189 }
9107fc8d
PA
1190 else
1191 {
1192 /* The old description may no longer be fit for the new image.
1193 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1194 old description; we'll read a new one below. No need to do
1195 this on "follow-exec-mode new", as the old inferior stays
1196 around (its description is later cleared/refetched on
1197 restart). */
1198 target_clear_description ();
1199 }
6c95b8df
PA
1200
1201 gdb_assert (current_program_space == inf->pspace);
1202
ecf45d2c
SL
1203 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1204 because the proper displacement for a PIE (Position Independent
1205 Executable) main symbol file will only be computed by
1206 solib_create_inferior_hook below. breakpoint_re_set would fail
1207 to insert the breakpoints with the zero displacement. */
797bc1cb 1208 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1209
9107fc8d
PA
1210 /* If the target can specify a description, read it. Must do this
1211 after flipping to the new executable (because the target supplied
1212 description must be compatible with the executable's
1213 architecture, and the old executable may e.g., be 32-bit, while
1214 the new one 64-bit), and before anything involving memory or
1215 registers. */
1216 target_find_description ();
1217
42a4fec5 1218 gdb::observers::inferior_execd.notify (inf);
4efc6507 1219
c1e56572
JK
1220 breakpoint_re_set ();
1221
c906108c
SS
1222 /* Reinsert all breakpoints. (Those which were symbolic have
1223 been reset to the proper address in the new a.out, thanks
1777feb0 1224 to symbol_file_command...). */
c906108c
SS
1225 insert_breakpoints ();
1226
1227 /* The next resume of this inferior should bring it to the shlib
1228 startup breakpoints. (If the user had also set bp's on
1229 "main" from the old (parent) process, then they'll auto-
1777feb0 1230 matically get reset there in the new process.). */
c906108c
SS
1231}
1232
28d5518b 1233/* The chain of threads that need to do a step-over operation to get
c2829269
PA
1234 past e.g., a breakpoint. What technique is used to step over the
1235 breakpoint/watchpoint does not matter -- all threads end up in the
1236 same queue, to maintain rough temporal order of execution, in order
1237 to avoid starvation, otherwise, we could e.g., find ourselves
1238 constantly stepping the same couple threads past their breakpoints
1239 over and over, if the single-step finish fast enough. */
28d5518b 1240struct thread_info *global_thread_step_over_chain_head;
c2829269 1241
6c4cfb24
PA
1242/* Bit flags indicating what the thread needs to step over. */
1243
8d297bbf 1244enum step_over_what_flag
6c4cfb24
PA
1245 {
1246 /* Step over a breakpoint. */
1247 STEP_OVER_BREAKPOINT = 1,
1248
1249 /* Step past a non-continuable watchpoint, in order to let the
1250 instruction execute so we can evaluate the watchpoint
1251 expression. */
1252 STEP_OVER_WATCHPOINT = 2
1253 };
8d297bbf 1254DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1255
963f9c80 1256/* Info about an instruction that is being stepped over. */
31e77af2
PA
1257
1258struct step_over_info
1259{
963f9c80
PA
1260 /* If we're stepping past a breakpoint, this is the address space
1261 and address of the instruction the breakpoint is set at. We'll
1262 skip inserting all breakpoints here. Valid iff ASPACE is
1263 non-NULL. */
ac7d717c
PA
1264 const address_space *aspace = nullptr;
1265 CORE_ADDR address = 0;
963f9c80
PA
1266
1267 /* The instruction being stepped over triggers a nonsteppable
1268 watchpoint. If true, we'll skip inserting watchpoints. */
ac7d717c 1269 int nonsteppable_watchpoint_p = 0;
21edc42f
YQ
1270
1271 /* The thread's global number. */
ac7d717c 1272 int thread = -1;
31e77af2
PA
1273};
1274
1275/* The step-over info of the location that is being stepped over.
1276
1277 Note that with async/breakpoint always-inserted mode, a user might
1278 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1279 being stepped over. As setting a new breakpoint inserts all
1280 breakpoints, we need to make sure the breakpoint being stepped over
1281 isn't inserted then. We do that by only clearing the step-over
1282 info when the step-over is actually finished (or aborted).
1283
1284 Presently GDB can only step over one breakpoint at any given time.
1285 Given threads that can't run code in the same address space as the
1286 breakpoint's can't really miss the breakpoint, GDB could be taught
1287 to step-over at most one breakpoint per address space (so this info
1288 could move to the address space object if/when GDB is extended).
1289 The set of breakpoints being stepped over will normally be much
1290 smaller than the set of all breakpoints, so a flag in the
1291 breakpoint location structure would be wasteful. A separate list
1292 also saves complexity and run-time, as otherwise we'd have to go
1293 through all breakpoint locations clearing their flag whenever we
1294 start a new sequence. Similar considerations weigh against storing
1295 this info in the thread object. Plus, not all step overs actually
1296 have breakpoint locations -- e.g., stepping past a single-step
1297 breakpoint, or stepping to complete a non-continuable
1298 watchpoint. */
1299static struct step_over_info step_over_info;
1300
1301/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1302 stepping over.
1303 N.B. We record the aspace and address now, instead of say just the thread,
1304 because when we need the info later the thread may be running. */
31e77af2
PA
1305
1306static void
8b86c959 1307set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1308 int nonsteppable_watchpoint_p,
1309 int thread)
31e77af2
PA
1310{
1311 step_over_info.aspace = aspace;
1312 step_over_info.address = address;
963f9c80 1313 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1314 step_over_info.thread = thread;
31e77af2
PA
1315}
1316
1317/* Called when we're not longer stepping over a breakpoint / an
1318 instruction, so all breakpoints are free to be (re)inserted. */
1319
1320static void
1321clear_step_over_info (void)
1322{
1eb8556f 1323 infrun_debug_printf ("clearing step over info");
31e77af2
PA
1324 step_over_info.aspace = NULL;
1325 step_over_info.address = 0;
963f9c80 1326 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1327 step_over_info.thread = -1;
31e77af2
PA
1328}
1329
7f89fd65 1330/* See infrun.h. */
31e77af2
PA
1331
1332int
1333stepping_past_instruction_at (struct address_space *aspace,
1334 CORE_ADDR address)
1335{
1336 return (step_over_info.aspace != NULL
1337 && breakpoint_address_match (aspace, address,
1338 step_over_info.aspace,
1339 step_over_info.address));
1340}
1341
963f9c80
PA
1342/* See infrun.h. */
1343
21edc42f
YQ
1344int
1345thread_is_stepping_over_breakpoint (int thread)
1346{
1347 return (step_over_info.thread != -1
1348 && thread == step_over_info.thread);
1349}
1350
1351/* See infrun.h. */
1352
963f9c80
PA
1353int
1354stepping_past_nonsteppable_watchpoint (void)
1355{
1356 return step_over_info.nonsteppable_watchpoint_p;
1357}
1358
6cc83d2a
PA
1359/* Returns true if step-over info is valid. */
1360
c4464ade 1361static bool
6cc83d2a
PA
1362step_over_info_valid_p (void)
1363{
963f9c80
PA
1364 return (step_over_info.aspace != NULL
1365 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1366}
1367
c906108c 1368\f
237fc4c9
PA
1369/* Displaced stepping. */
1370
1371/* In non-stop debugging mode, we must take special care to manage
1372 breakpoints properly; in particular, the traditional strategy for
1373 stepping a thread past a breakpoint it has hit is unsuitable.
1374 'Displaced stepping' is a tactic for stepping one thread past a
1375 breakpoint it has hit while ensuring that other threads running
1376 concurrently will hit the breakpoint as they should.
1377
1378 The traditional way to step a thread T off a breakpoint in a
1379 multi-threaded program in all-stop mode is as follows:
1380
1381 a0) Initially, all threads are stopped, and breakpoints are not
1382 inserted.
1383 a1) We single-step T, leaving breakpoints uninserted.
1384 a2) We insert breakpoints, and resume all threads.
1385
1386 In non-stop debugging, however, this strategy is unsuitable: we
1387 don't want to have to stop all threads in the system in order to
1388 continue or step T past a breakpoint. Instead, we use displaced
1389 stepping:
1390
1391 n0) Initially, T is stopped, other threads are running, and
1392 breakpoints are inserted.
1393 n1) We copy the instruction "under" the breakpoint to a separate
1394 location, outside the main code stream, making any adjustments
1395 to the instruction, register, and memory state as directed by
1396 T's architecture.
1397 n2) We single-step T over the instruction at its new location.
1398 n3) We adjust the resulting register and memory state as directed
1399 by T's architecture. This includes resetting T's PC to point
1400 back into the main instruction stream.
1401 n4) We resume T.
1402
1403 This approach depends on the following gdbarch methods:
1404
1405 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1406 indicate where to copy the instruction, and how much space must
1407 be reserved there. We use these in step n1.
1408
1409 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1410 address, and makes any necessary adjustments to the instruction,
1411 register contents, and memory. We use this in step n1.
1412
1413 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1414 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1415 same effect the instruction would have had if we had executed it
1416 at its original address. We use this in step n3.
1417
237fc4c9
PA
1418 The gdbarch_displaced_step_copy_insn and
1419 gdbarch_displaced_step_fixup functions must be written so that
1420 copying an instruction with gdbarch_displaced_step_copy_insn,
1421 single-stepping across the copied instruction, and then applying
1422 gdbarch_displaced_insn_fixup should have the same effects on the
1423 thread's memory and registers as stepping the instruction in place
1424 would have. Exactly which responsibilities fall to the copy and
1425 which fall to the fixup is up to the author of those functions.
1426
1427 See the comments in gdbarch.sh for details.
1428
1429 Note that displaced stepping and software single-step cannot
1430 currently be used in combination, although with some care I think
1431 they could be made to. Software single-step works by placing
1432 breakpoints on all possible subsequent instructions; if the
1433 displaced instruction is a PC-relative jump, those breakpoints
1434 could fall in very strange places --- on pages that aren't
1435 executable, or at addresses that are not proper instruction
1436 boundaries. (We do generally let other threads run while we wait
1437 to hit the software single-step breakpoint, and they might
1438 encounter such a corrupted instruction.) One way to work around
1439 this would be to have gdbarch_displaced_step_copy_insn fully
1440 simulate the effect of PC-relative instructions (and return NULL)
1441 on architectures that use software single-stepping.
1442
1443 In non-stop mode, we can have independent and simultaneous step
1444 requests, so more than one thread may need to simultaneously step
1445 over a breakpoint. The current implementation assumes there is
1446 only one scratch space per process. In this case, we have to
1447 serialize access to the scratch space. If thread A wants to step
1448 over a breakpoint, but we are currently waiting for some other
1449 thread to complete a displaced step, we leave thread A stopped and
1450 place it in the displaced_step_request_queue. Whenever a displaced
1451 step finishes, we pick the next thread in the queue and start a new
1452 displaced step operation on it. See displaced_step_prepare and
7def77a1 1453 displaced_step_finish for details. */
237fc4c9 1454
a46d1843 1455/* Return true if THREAD is doing a displaced step. */
c0987663 1456
c4464ade 1457static bool
00431a78 1458displaced_step_in_progress_thread (thread_info *thread)
c0987663 1459{
00431a78 1460 gdb_assert (thread != NULL);
c0987663 1461
187b041e 1462 return thread->displaced_step_state.in_progress ();
c0987663
YQ
1463}
1464
a46d1843 1465/* Return true if INF has a thread doing a displaced step. */
8f572e5c 1466
c4464ade 1467static bool
00431a78 1468displaced_step_in_progress (inferior *inf)
8f572e5c 1469{
187b041e 1470 return inf->displaced_step_state.in_progress_count > 0;
fc1cf338
PA
1471}
1472
187b041e 1473/* Return true if any thread is doing a displaced step. */
a42244db 1474
187b041e
SM
1475static bool
1476displaced_step_in_progress_any_thread ()
a42244db 1477{
187b041e
SM
1478 for (inferior *inf : all_non_exited_inferiors ())
1479 {
1480 if (displaced_step_in_progress (inf))
1481 return true;
1482 }
a42244db 1483
187b041e 1484 return false;
a42244db
YQ
1485}
1486
fc1cf338
PA
1487static void
1488infrun_inferior_exit (struct inferior *inf)
1489{
d20172fc 1490 inf->displaced_step_state.reset ();
fc1cf338 1491}
237fc4c9 1492
3b7a962d
SM
1493static void
1494infrun_inferior_execd (inferior *inf)
1495{
187b041e
SM
1496 /* If some threads where was doing a displaced step in this inferior at the
1497 moment of the exec, they no longer exist. Even if the exec'ing thread
3b7a962d
SM
1498 doing a displaced step, we don't want to to any fixup nor restore displaced
1499 stepping buffer bytes. */
1500 inf->displaced_step_state.reset ();
1501
187b041e
SM
1502 for (thread_info *thread : inf->threads ())
1503 thread->displaced_step_state.reset ();
1504
3b7a962d
SM
1505 /* Since an in-line step is done with everything else stopped, if there was
1506 one in progress at the time of the exec, it must have been the exec'ing
1507 thread. */
1508 clear_step_over_info ();
1509}
1510
fff08868
HZ
1511/* If ON, and the architecture supports it, GDB will use displaced
1512 stepping to step over breakpoints. If OFF, or if the architecture
1513 doesn't support it, GDB will instead use the traditional
1514 hold-and-step approach. If AUTO (which is the default), GDB will
1515 decide which technique to use to step over breakpoints depending on
9822cb57 1516 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1517
72d0e2c5 1518static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1519
237fc4c9
PA
1520static void
1521show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1522 struct cmd_list_element *c,
1523 const char *value)
1524{
72d0e2c5 1525 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1526 fprintf_filtered (file,
1527 _("Debugger's willingness to use displaced stepping "
1528 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1529 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1530 else
3e43a32a
MS
1531 fprintf_filtered (file,
1532 _("Debugger's willingness to use displaced stepping "
1533 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1534}
1535
9822cb57
SM
1536/* Return true if the gdbarch implements the required methods to use
1537 displaced stepping. */
1538
1539static bool
1540gdbarch_supports_displaced_stepping (gdbarch *arch)
1541{
187b041e
SM
1542 /* Only check for the presence of `prepare`. The gdbarch verification ensures
1543 that if `prepare` is provided, so is `finish`. */
1544 return gdbarch_displaced_step_prepare_p (arch);
9822cb57
SM
1545}
1546
fff08868 1547/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1548 over breakpoints of thread TP. */
fff08868 1549
9822cb57
SM
1550static bool
1551use_displaced_stepping (thread_info *tp)
237fc4c9 1552{
9822cb57
SM
1553 /* If the user disabled it explicitly, don't use displaced stepping. */
1554 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1555 return false;
1556
1557 /* If "auto", only use displaced stepping if the target operates in a non-stop
1558 way. */
1559 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1560 && !target_is_non_stop_p ())
1561 return false;
1562
1563 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1564
1565 /* If the architecture doesn't implement displaced stepping, don't use
1566 it. */
1567 if (!gdbarch_supports_displaced_stepping (gdbarch))
1568 return false;
1569
1570 /* If recording, don't use displaced stepping. */
1571 if (find_record_target () != nullptr)
1572 return false;
1573
9822cb57
SM
1574 /* If displaced stepping failed before for this inferior, don't bother trying
1575 again. */
f5f01699 1576 if (tp->inf->displaced_step_state.failed_before)
9822cb57
SM
1577 return false;
1578
1579 return true;
237fc4c9
PA
1580}
1581
187b041e 1582/* Simple function wrapper around displaced_step_thread_state::reset. */
d8d83535 1583
237fc4c9 1584static void
187b041e 1585displaced_step_reset (displaced_step_thread_state *displaced)
237fc4c9 1586{
d8d83535 1587 displaced->reset ();
237fc4c9
PA
1588}
1589
d8d83535
SM
1590/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1591 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1592
1593using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9 1594
136821d9
SM
1595/* See infrun.h. */
1596
1597std::string
1598displaced_step_dump_bytes (const gdb_byte *buf, size_t len)
237fc4c9 1599{
136821d9 1600 std::string ret;
237fc4c9 1601
136821d9
SM
1602 for (size_t i = 0; i < len; i++)
1603 {
1604 if (i == 0)
1605 ret += string_printf ("%02x", buf[i]);
1606 else
1607 ret += string_printf (" %02x", buf[i]);
1608 }
1609
1610 return ret;
237fc4c9
PA
1611}
1612
1613/* Prepare to single-step, using displaced stepping.
1614
1615 Note that we cannot use displaced stepping when we have a signal to
1616 deliver. If we have a signal to deliver and an instruction to step
1617 over, then after the step, there will be no indication from the
1618 target whether the thread entered a signal handler or ignored the
1619 signal and stepped over the instruction successfully --- both cases
1620 result in a simple SIGTRAP. In the first case we mustn't do a
1621 fixup, and in the second case we must --- but we can't tell which.
1622 Comments in the code for 'random signals' in handle_inferior_event
1623 explain how we handle this case instead.
1624
bab37966
SM
1625 Returns DISPLACED_STEP_PREPARE_STATUS_OK if preparing was successful -- this
1626 thread is going to be stepped now; DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE
1627 if displaced stepping this thread got queued; or
1628 DISPLACED_STEP_PREPARE_STATUS_CANT if this instruction can't be displaced
1629 stepped. */
7f03bd92 1630
bab37966 1631static displaced_step_prepare_status
00431a78 1632displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1633{
00431a78 1634 regcache *regcache = get_thread_regcache (tp);
ac7936df 1635 struct gdbarch *gdbarch = regcache->arch ();
187b041e
SM
1636 displaced_step_thread_state &disp_step_thread_state
1637 = tp->displaced_step_state;
237fc4c9
PA
1638
1639 /* We should never reach this function if the architecture does not
1640 support displaced stepping. */
9822cb57 1641 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
237fc4c9 1642
c2829269
PA
1643 /* Nor if the thread isn't meant to step over a breakpoint. */
1644 gdb_assert (tp->control.trap_expected);
1645
c1e36e3e
PA
1646 /* Disable range stepping while executing in the scratch pad. We
1647 want a single-step even if executing the displaced instruction in
1648 the scratch buffer lands within the stepping range (e.g., a
1649 jump/branch). */
1650 tp->control.may_range_step = 0;
1651
187b041e
SM
1652 /* We are about to start a displaced step for this thread. If one is already
1653 in progress, something's wrong. */
1654 gdb_assert (!disp_step_thread_state.in_progress ());
237fc4c9 1655
187b041e 1656 if (tp->inf->displaced_step_state.unavailable)
237fc4c9 1657 {
187b041e
SM
1658 /* The gdbarch tells us it's not worth asking to try a prepare because
1659 it is likely that it will return unavailable, so don't bother asking. */
237fc4c9 1660
136821d9
SM
1661 displaced_debug_printf ("deferring step of %s",
1662 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1663
28d5518b 1664 global_thread_step_over_chain_enqueue (tp);
bab37966 1665 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
237fc4c9 1666 }
237fc4c9 1667
187b041e
SM
1668 displaced_debug_printf ("displaced-stepping %s now",
1669 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1670
00431a78
PA
1671 scoped_restore_current_thread restore_thread;
1672
1673 switch_to_thread (tp);
ad53cd71 1674
187b041e
SM
1675 CORE_ADDR original_pc = regcache_read_pc (regcache);
1676 CORE_ADDR displaced_pc;
237fc4c9 1677
187b041e
SM
1678 displaced_step_prepare_status status
1679 = gdbarch_displaced_step_prepare (gdbarch, tp, displaced_pc);
237fc4c9 1680
187b041e 1681 if (status == DISPLACED_STEP_PREPARE_STATUS_CANT)
d35ae833 1682 {
187b041e
SM
1683 displaced_debug_printf ("failed to prepare (%s)",
1684 target_pid_to_str (tp->ptid).c_str ());
d35ae833 1685
bab37966 1686 return DISPLACED_STEP_PREPARE_STATUS_CANT;
d35ae833 1687 }
187b041e 1688 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
7f03bd92 1689 {
187b041e
SM
1690 /* Not enough displaced stepping resources available, defer this
1691 request by placing it the queue. */
1692
1693 displaced_debug_printf ("not enough resources available, "
1694 "deferring step of %s",
1695 target_pid_to_str (tp->ptid).c_str ());
1696
1697 global_thread_step_over_chain_enqueue (tp);
1698
1699 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
7f03bd92 1700 }
237fc4c9 1701
187b041e
SM
1702 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1703
9f5a595d
UW
1704 /* Save the information we need to fix things up if the step
1705 succeeds. */
187b041e 1706 disp_step_thread_state.set (gdbarch);
9f5a595d 1707
187b041e 1708 tp->inf->displaced_step_state.in_progress_count++;
ad53cd71 1709
187b041e
SM
1710 displaced_debug_printf ("prepared successfully thread=%s, "
1711 "original_pc=%s, displaced_pc=%s",
1712 target_pid_to_str (tp->ptid).c_str (),
1713 paddress (gdbarch, original_pc),
1714 paddress (gdbarch, displaced_pc));
237fc4c9 1715
bab37966 1716 return DISPLACED_STEP_PREPARE_STATUS_OK;
237fc4c9
PA
1717}
1718
3fc8eb30
PA
1719/* Wrapper for displaced_step_prepare_throw that disabled further
1720 attempts at displaced stepping if we get a memory error. */
1721
bab37966 1722static displaced_step_prepare_status
00431a78 1723displaced_step_prepare (thread_info *thread)
3fc8eb30 1724{
bab37966
SM
1725 displaced_step_prepare_status status
1726 = DISPLACED_STEP_PREPARE_STATUS_CANT;
3fc8eb30 1727
a70b8144 1728 try
3fc8eb30 1729 {
bab37966 1730 status = displaced_step_prepare_throw (thread);
3fc8eb30 1731 }
230d2906 1732 catch (const gdb_exception_error &ex)
3fc8eb30 1733 {
16b41842
PA
1734 if (ex.error != MEMORY_ERROR
1735 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1736 throw;
3fc8eb30 1737
1eb8556f
SM
1738 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1739 ex.what ());
3fc8eb30
PA
1740
1741 /* Be verbose if "set displaced-stepping" is "on", silent if
1742 "auto". */
1743 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1744 {
fd7dcb94 1745 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1746 ex.what ());
3fc8eb30
PA
1747 }
1748
1749 /* Disable further displaced stepping attempts. */
f5f01699 1750 thread->inf->displaced_step_state.failed_before = 1;
3fc8eb30 1751 }
3fc8eb30 1752
bab37966 1753 return status;
3fc8eb30
PA
1754}
1755
bab37966
SM
1756/* If we displaced stepped an instruction successfully, adjust registers and
1757 memory to yield the same effect the instruction would have had if we had
1758 executed it at its original address, and return
1759 DISPLACED_STEP_FINISH_STATUS_OK. If the instruction didn't complete,
1760 relocate the PC and return DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED.
372316f1 1761
bab37966
SM
1762 If the thread wasn't displaced stepping, return
1763 DISPLACED_STEP_FINISH_STATUS_OK as well. */
1764
1765static displaced_step_finish_status
7def77a1 1766displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1767{
187b041e 1768 displaced_step_thread_state *displaced = &event_thread->displaced_step_state;
fc1cf338 1769
187b041e
SM
1770 /* Was this thread performing a displaced step? */
1771 if (!displaced->in_progress ())
bab37966 1772 return DISPLACED_STEP_FINISH_STATUS_OK;
237fc4c9 1773
187b041e
SM
1774 gdb_assert (event_thread->inf->displaced_step_state.in_progress_count > 0);
1775 event_thread->inf->displaced_step_state.in_progress_count--;
1776
cb71640d
PA
1777 /* Fixup may need to read memory/registers. Switch to the thread
1778 that we're fixing up. Also, target_stopped_by_watchpoint checks
d43b7a2d
TBA
1779 the current thread, and displaced_step_restore performs ptid-dependent
1780 memory accesses using current_inferior() and current_top_target(). */
00431a78 1781 switch_to_thread (event_thread);
cb71640d 1782
d43b7a2d
TBA
1783 displaced_step_reset_cleanup cleanup (displaced);
1784
187b041e
SM
1785 /* Do the fixup, and release the resources acquired to do the displaced
1786 step. */
1787 return gdbarch_displaced_step_finish (displaced->get_original_gdbarch (),
1788 event_thread, signal);
c2829269 1789}
1c5cfe86 1790
4d9d9d04
PA
1791/* Data to be passed around while handling an event. This data is
1792 discarded between events. */
1793struct execution_control_state
1794{
5b6d1e4f 1795 process_stratum_target *target;
4d9d9d04
PA
1796 ptid_t ptid;
1797 /* The thread that got the event, if this was a thread event; NULL
1798 otherwise. */
1799 struct thread_info *event_thread;
1800
1801 struct target_waitstatus ws;
1802 int stop_func_filled_in;
1803 CORE_ADDR stop_func_start;
1804 CORE_ADDR stop_func_end;
1805 const char *stop_func_name;
1806 int wait_some_more;
1807
1808 /* True if the event thread hit the single-step breakpoint of
1809 another thread. Thus the event doesn't cause a stop, the thread
1810 needs to be single-stepped past the single-step breakpoint before
1811 we can switch back to the original stepping thread. */
1812 int hit_singlestep_breakpoint;
1813};
1814
1815/* Clear ECS and set it to point at TP. */
c2829269
PA
1816
1817static void
4d9d9d04
PA
1818reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1819{
1820 memset (ecs, 0, sizeof (*ecs));
1821 ecs->event_thread = tp;
1822 ecs->ptid = tp->ptid;
1823}
1824
1825static void keep_going_pass_signal (struct execution_control_state *ecs);
1826static void prepare_to_wait (struct execution_control_state *ecs);
c4464ade 1827static bool keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1828static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1829
1830/* Are there any pending step-over requests? If so, run all we can
1831 now and return true. Otherwise, return false. */
1832
c4464ade 1833static bool
c2829269
PA
1834start_step_over (void)
1835{
3ec3145c
SM
1836 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
1837
187b041e 1838 thread_info *next;
c2829269 1839
372316f1
PA
1840 /* Don't start a new step-over if we already have an in-line
1841 step-over operation ongoing. */
1842 if (step_over_info_valid_p ())
c4464ade 1843 return false;
372316f1 1844
187b041e
SM
1845 /* Steal the global thread step over chain. As we try to initiate displaced
1846 steps, threads will be enqueued in the global chain if no buffers are
1847 available. If we iterated on the global chain directly, we might iterate
1848 indefinitely. */
1849 thread_info *threads_to_step = global_thread_step_over_chain_head;
1850 global_thread_step_over_chain_head = NULL;
1851
1852 infrun_debug_printf ("stealing global queue of threads to step, length = %d",
1853 thread_step_over_chain_length (threads_to_step));
1854
1855 bool started = false;
1856
1857 /* On scope exit (whatever the reason, return or exception), if there are
1858 threads left in the THREADS_TO_STEP chain, put back these threads in the
1859 global list. */
1860 SCOPE_EXIT
1861 {
1862 if (threads_to_step == nullptr)
1863 infrun_debug_printf ("step-over queue now empty");
1864 else
1865 {
1866 infrun_debug_printf ("putting back %d threads to step in global queue",
1867 thread_step_over_chain_length (threads_to_step));
1868
1869 global_thread_step_over_chain_enqueue_chain (threads_to_step);
1870 }
1871 };
1872
1873 for (thread_info *tp = threads_to_step; tp != NULL; tp = next)
237fc4c9 1874 {
4d9d9d04
PA
1875 struct execution_control_state ecss;
1876 struct execution_control_state *ecs = &ecss;
8d297bbf 1877 step_over_what step_what;
372316f1 1878 int must_be_in_line;
c2829269 1879
c65d6b55
PA
1880 gdb_assert (!tp->stop_requested);
1881
187b041e 1882 next = thread_step_over_chain_next (threads_to_step, tp);
237fc4c9 1883
187b041e
SM
1884 if (tp->inf->displaced_step_state.unavailable)
1885 {
1886 /* The arch told us to not even try preparing another displaced step
1887 for this inferior. Just leave the thread in THREADS_TO_STEP, it
1888 will get moved to the global chain on scope exit. */
1889 continue;
1890 }
1891
1892 /* Remove thread from the THREADS_TO_STEP chain. If anything goes wrong
1893 while we try to prepare the displaced step, we don't add it back to
1894 the global step over chain. This is to avoid a thread staying in the
1895 step over chain indefinitely if something goes wrong when resuming it
1896 If the error is intermittent and it still needs a step over, it will
1897 get enqueued again when we try to resume it normally. */
1898 thread_step_over_chain_remove (&threads_to_step, tp);
c2829269 1899
372316f1
PA
1900 step_what = thread_still_needs_step_over (tp);
1901 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1902 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1903 && !use_displaced_stepping (tp)));
372316f1
PA
1904
1905 /* We currently stop all threads of all processes to step-over
1906 in-line. If we need to start a new in-line step-over, let
1907 any pending displaced steps finish first. */
187b041e
SM
1908 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1909 {
1910 global_thread_step_over_chain_enqueue (tp);
1911 continue;
1912 }
c2829269 1913
372316f1
PA
1914 if (tp->control.trap_expected
1915 || tp->resumed
1916 || tp->executing)
ad53cd71 1917 {
4d9d9d04
PA
1918 internal_error (__FILE__, __LINE__,
1919 "[%s] has inconsistent state: "
372316f1 1920 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 1921 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 1922 tp->control.trap_expected,
372316f1 1923 tp->resumed,
4d9d9d04 1924 tp->executing);
ad53cd71 1925 }
1c5cfe86 1926
1eb8556f
SM
1927 infrun_debug_printf ("resuming [%s] for step-over",
1928 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
1929
1930 /* keep_going_pass_signal skips the step-over if the breakpoint
1931 is no longer inserted. In all-stop, we want to keep looking
1932 for a thread that needs a step-over instead of resuming TP,
1933 because we wouldn't be able to resume anything else until the
1934 target stops again. In non-stop, the resume always resumes
1935 only TP, so it's OK to let the thread resume freely. */
fbea99ea 1936 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 1937 continue;
8550d3b3 1938
00431a78 1939 switch_to_thread (tp);
4d9d9d04
PA
1940 reset_ecs (ecs, tp);
1941 keep_going_pass_signal (ecs);
1c5cfe86 1942
4d9d9d04
PA
1943 if (!ecs->wait_some_more)
1944 error (_("Command aborted."));
1c5cfe86 1945
187b041e
SM
1946 /* If the thread's step over could not be initiated because no buffers
1947 were available, it was re-added to the global step over chain. */
1948 if (tp->resumed)
1949 {
1950 infrun_debug_printf ("[%s] was resumed.",
1951 target_pid_to_str (tp->ptid).c_str ());
1952 gdb_assert (!thread_is_in_step_over_chain (tp));
1953 }
1954 else
1955 {
1956 infrun_debug_printf ("[%s] was NOT resumed.",
1957 target_pid_to_str (tp->ptid).c_str ());
1958 gdb_assert (thread_is_in_step_over_chain (tp));
1959 }
372316f1
PA
1960
1961 /* If we started a new in-line step-over, we're done. */
1962 if (step_over_info_valid_p ())
1963 {
1964 gdb_assert (tp->control.trap_expected);
187b041e
SM
1965 started = true;
1966 break;
372316f1
PA
1967 }
1968
fbea99ea 1969 if (!target_is_non_stop_p ())
4d9d9d04
PA
1970 {
1971 /* On all-stop, shouldn't have resumed unless we needed a
1972 step over. */
1973 gdb_assert (tp->control.trap_expected
1974 || tp->step_after_step_resume_breakpoint);
1975
1976 /* With remote targets (at least), in all-stop, we can't
1977 issue any further remote commands until the program stops
1978 again. */
187b041e
SM
1979 started = true;
1980 break;
1c5cfe86 1981 }
c2829269 1982
4d9d9d04
PA
1983 /* Either the thread no longer needed a step-over, or a new
1984 displaced stepping sequence started. Even in the latter
1985 case, continue looking. Maybe we can also start another
1986 displaced step on a thread of other process. */
237fc4c9 1987 }
4d9d9d04 1988
187b041e 1989 return started;
237fc4c9
PA
1990}
1991
5231c1fd
PA
1992/* Update global variables holding ptids to hold NEW_PTID if they were
1993 holding OLD_PTID. */
1994static void
b161a60d
SM
1995infrun_thread_ptid_changed (process_stratum_target *target,
1996 ptid_t old_ptid, ptid_t new_ptid)
5231c1fd 1997{
b161a60d
SM
1998 if (inferior_ptid == old_ptid
1999 && current_inferior ()->process_target () == target)
5231c1fd 2000 inferior_ptid = new_ptid;
5231c1fd
PA
2001}
2002
237fc4c9 2003\f
c906108c 2004
53904c9e
AC
2005static const char schedlock_off[] = "off";
2006static const char schedlock_on[] = "on";
2007static const char schedlock_step[] = "step";
f2665db5 2008static const char schedlock_replay[] = "replay";
40478521 2009static const char *const scheduler_enums[] = {
ef346e04
AC
2010 schedlock_off,
2011 schedlock_on,
2012 schedlock_step,
f2665db5 2013 schedlock_replay,
ef346e04
AC
2014 NULL
2015};
f2665db5 2016static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2017static void
2018show_scheduler_mode (struct ui_file *file, int from_tty,
2019 struct cmd_list_element *c, const char *value)
2020{
3e43a32a
MS
2021 fprintf_filtered (file,
2022 _("Mode for locking scheduler "
2023 "during execution is \"%s\".\n"),
920d2a44
AC
2024 value);
2025}
c906108c
SS
2026
2027static void
eb4c3f4a 2028set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2029{
8a3ecb79 2030 if (!target_can_lock_scheduler ())
eefe576e
AC
2031 {
2032 scheduler_mode = schedlock_off;
2033 error (_("Target '%s' cannot support this command."), target_shortname);
2034 }
c906108c
SS
2035}
2036
d4db2f36
PA
2037/* True if execution commands resume all threads of all processes by
2038 default; otherwise, resume only threads of the current inferior
2039 process. */
491144b5 2040bool sched_multi = false;
d4db2f36 2041
2facfe5c 2042/* Try to setup for software single stepping over the specified location.
c4464ade 2043 Return true if target_resume() should use hardware single step.
2facfe5c
DD
2044
2045 GDBARCH the current gdbarch.
2046 PC the location to step over. */
2047
c4464ade 2048static bool
2facfe5c
DD
2049maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2050{
c4464ade 2051 bool hw_step = true;
2facfe5c 2052
f02253f1 2053 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2054 && gdbarch_software_single_step_p (gdbarch))
2055 hw_step = !insert_single_step_breakpoints (gdbarch);
2056
2facfe5c
DD
2057 return hw_step;
2058}
c906108c 2059
f3263aa4
PA
2060/* See infrun.h. */
2061
09cee04b
PA
2062ptid_t
2063user_visible_resume_ptid (int step)
2064{
f3263aa4 2065 ptid_t resume_ptid;
09cee04b 2066
09cee04b
PA
2067 if (non_stop)
2068 {
2069 /* With non-stop mode on, threads are always handled
2070 individually. */
2071 resume_ptid = inferior_ptid;
2072 }
2073 else if ((scheduler_mode == schedlock_on)
03d46957 2074 || (scheduler_mode == schedlock_step && step))
09cee04b 2075 {
f3263aa4
PA
2076 /* User-settable 'scheduler' mode requires solo thread
2077 resume. */
09cee04b
PA
2078 resume_ptid = inferior_ptid;
2079 }
f2665db5
MM
2080 else if ((scheduler_mode == schedlock_replay)
2081 && target_record_will_replay (minus_one_ptid, execution_direction))
2082 {
2083 /* User-settable 'scheduler' mode requires solo thread resume in replay
2084 mode. */
2085 resume_ptid = inferior_ptid;
2086 }
f3263aa4
PA
2087 else if (!sched_multi && target_supports_multi_process ())
2088 {
2089 /* Resume all threads of the current process (and none of other
2090 processes). */
e99b03dc 2091 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2092 }
2093 else
2094 {
2095 /* Resume all threads of all processes. */
2096 resume_ptid = RESUME_ALL;
2097 }
09cee04b
PA
2098
2099 return resume_ptid;
2100}
2101
5b6d1e4f
PA
2102/* See infrun.h. */
2103
2104process_stratum_target *
2105user_visible_resume_target (ptid_t resume_ptid)
2106{
2107 return (resume_ptid == minus_one_ptid && sched_multi
2108 ? NULL
2109 : current_inferior ()->process_target ());
2110}
2111
fbea99ea
PA
2112/* Return a ptid representing the set of threads that we will resume,
2113 in the perspective of the target, assuming run control handling
2114 does not require leaving some threads stopped (e.g., stepping past
2115 breakpoint). USER_STEP indicates whether we're about to start the
2116 target for a stepping command. */
2117
2118static ptid_t
2119internal_resume_ptid (int user_step)
2120{
2121 /* In non-stop, we always control threads individually. Note that
2122 the target may always work in non-stop mode even with "set
2123 non-stop off", in which case user_visible_resume_ptid could
2124 return a wildcard ptid. */
2125 if (target_is_non_stop_p ())
2126 return inferior_ptid;
2127 else
2128 return user_visible_resume_ptid (user_step);
2129}
2130
64ce06e4
PA
2131/* Wrapper for target_resume, that handles infrun-specific
2132 bookkeeping. */
2133
2134static void
c4464ade 2135do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
64ce06e4
PA
2136{
2137 struct thread_info *tp = inferior_thread ();
2138
c65d6b55
PA
2139 gdb_assert (!tp->stop_requested);
2140
64ce06e4 2141 /* Install inferior's terminal modes. */
223ffa71 2142 target_terminal::inferior ();
64ce06e4
PA
2143
2144 /* Avoid confusing the next resume, if the next stop/resume
2145 happens to apply to another thread. */
2146 tp->suspend.stop_signal = GDB_SIGNAL_0;
2147
8f572e5c
PA
2148 /* Advise target which signals may be handled silently.
2149
2150 If we have removed breakpoints because we are stepping over one
2151 in-line (in any thread), we need to receive all signals to avoid
2152 accidentally skipping a breakpoint during execution of a signal
2153 handler.
2154
2155 Likewise if we're displaced stepping, otherwise a trap for a
2156 breakpoint in a signal handler might be confused with the
7def77a1 2157 displaced step finishing. We don't make the displaced_step_finish
8f572e5c
PA
2158 step distinguish the cases instead, because:
2159
2160 - a backtrace while stopped in the signal handler would show the
2161 scratch pad as frame older than the signal handler, instead of
2162 the real mainline code.
2163
2164 - when the thread is later resumed, the signal handler would
2165 return to the scratch pad area, which would no longer be
2166 valid. */
2167 if (step_over_info_valid_p ()
00431a78 2168 || displaced_step_in_progress (tp->inf))
adc6a863 2169 target_pass_signals ({});
64ce06e4 2170 else
adc6a863 2171 target_pass_signals (signal_pass);
64ce06e4
PA
2172
2173 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2174
2175 target_commit_resume ();
5b6d1e4f
PA
2176
2177 if (target_can_async_p ())
2178 target_async (1);
64ce06e4
PA
2179}
2180
d930703d 2181/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2182 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2183 call 'resume', which handles exceptions. */
c906108c 2184
71d378ae
PA
2185static void
2186resume_1 (enum gdb_signal sig)
c906108c 2187{
515630c5 2188 struct regcache *regcache = get_current_regcache ();
ac7936df 2189 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2190 struct thread_info *tp = inferior_thread ();
8b86c959 2191 const address_space *aspace = regcache->aspace ();
b0f16a3e 2192 ptid_t resume_ptid;
856e7dd6
PA
2193 /* This represents the user's step vs continue request. When
2194 deciding whether "set scheduler-locking step" applies, it's the
2195 user's intention that counts. */
2196 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2197 /* This represents what we'll actually request the target to do.
2198 This can decay from a step to a continue, if e.g., we need to
2199 implement single-stepping with breakpoints (software
2200 single-step). */
c4464ade 2201 bool step;
c7e8a53c 2202
c65d6b55 2203 gdb_assert (!tp->stop_requested);
c2829269
PA
2204 gdb_assert (!thread_is_in_step_over_chain (tp));
2205
372316f1
PA
2206 if (tp->suspend.waitstatus_pending_p)
2207 {
1eb8556f
SM
2208 infrun_debug_printf
2209 ("thread %s has pending wait "
2210 "status %s (currently_stepping=%d).",
2211 target_pid_to_str (tp->ptid).c_str (),
2212 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2213 currently_stepping (tp));
372316f1 2214
5b6d1e4f 2215 tp->inf->process_target ()->threads_executing = true;
719546c4 2216 tp->resumed = true;
372316f1
PA
2217
2218 /* FIXME: What should we do if we are supposed to resume this
2219 thread with a signal? Maybe we should maintain a queue of
2220 pending signals to deliver. */
2221 if (sig != GDB_SIGNAL_0)
2222 {
fd7dcb94 2223 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2224 gdb_signal_to_name (sig),
2225 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2226 }
2227
2228 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2229
2230 if (target_can_async_p ())
9516f85a
AB
2231 {
2232 target_async (1);
2233 /* Tell the event loop we have an event to process. */
2234 mark_async_event_handler (infrun_async_inferior_event_token);
2235 }
372316f1
PA
2236 return;
2237 }
2238
2239 tp->stepped_breakpoint = 0;
2240
6b403daa
PA
2241 /* Depends on stepped_breakpoint. */
2242 step = currently_stepping (tp);
2243
74609e71
YQ
2244 if (current_inferior ()->waiting_for_vfork_done)
2245 {
48f9886d
PA
2246 /* Don't try to single-step a vfork parent that is waiting for
2247 the child to get out of the shared memory region (by exec'ing
2248 or exiting). This is particularly important on software
2249 single-step archs, as the child process would trip on the
2250 software single step breakpoint inserted for the parent
2251 process. Since the parent will not actually execute any
2252 instruction until the child is out of the shared region (such
2253 are vfork's semantics), it is safe to simply continue it.
2254 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2255 the parent, and tell it to `keep_going', which automatically
2256 re-sets it stepping. */
1eb8556f 2257 infrun_debug_printf ("resume : clear step");
c4464ade 2258 step = false;
74609e71
YQ
2259 }
2260
7ca9b62a
TBA
2261 CORE_ADDR pc = regcache_read_pc (regcache);
2262
1eb8556f
SM
2263 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2264 "current thread [%s] at %s",
2265 step, gdb_signal_to_symbol_string (sig),
2266 tp->control.trap_expected,
2267 target_pid_to_str (inferior_ptid).c_str (),
2268 paddress (gdbarch, pc));
c906108c 2269
c2c6d25f
JM
2270 /* Normally, by the time we reach `resume', the breakpoints are either
2271 removed or inserted, as appropriate. The exception is if we're sitting
2272 at a permanent breakpoint; we need to step over it, but permanent
2273 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2274 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2275 {
af48d08f
PA
2276 if (sig != GDB_SIGNAL_0)
2277 {
2278 /* We have a signal to pass to the inferior. The resume
2279 may, or may not take us to the signal handler. If this
2280 is a step, we'll need to stop in the signal handler, if
2281 there's one, (if the target supports stepping into
2282 handlers), or in the next mainline instruction, if
2283 there's no handler. If this is a continue, we need to be
2284 sure to run the handler with all breakpoints inserted.
2285 In all cases, set a breakpoint at the current address
2286 (where the handler returns to), and once that breakpoint
2287 is hit, resume skipping the permanent breakpoint. If
2288 that breakpoint isn't hit, then we've stepped into the
2289 signal handler (or hit some other event). We'll delete
2290 the step-resume breakpoint then. */
2291
1eb8556f
SM
2292 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2293 "deliver signal first");
af48d08f
PA
2294
2295 clear_step_over_info ();
2296 tp->control.trap_expected = 0;
2297
2298 if (tp->control.step_resume_breakpoint == NULL)
2299 {
2300 /* Set a "high-priority" step-resume, as we don't want
2301 user breakpoints at PC to trigger (again) when this
2302 hits. */
2303 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2304 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2305
2306 tp->step_after_step_resume_breakpoint = step;
2307 }
2308
2309 insert_breakpoints ();
2310 }
2311 else
2312 {
2313 /* There's no signal to pass, we can go ahead and skip the
2314 permanent breakpoint manually. */
1eb8556f 2315 infrun_debug_printf ("skipping permanent breakpoint");
af48d08f
PA
2316 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2317 /* Update pc to reflect the new address from which we will
2318 execute instructions. */
2319 pc = regcache_read_pc (regcache);
2320
2321 if (step)
2322 {
2323 /* We've already advanced the PC, so the stepping part
2324 is done. Now we need to arrange for a trap to be
2325 reported to handle_inferior_event. Set a breakpoint
2326 at the current PC, and run to it. Don't update
2327 prev_pc, because if we end in
44a1ee51
PA
2328 switch_back_to_stepped_thread, we want the "expected
2329 thread advanced also" branch to be taken. IOW, we
2330 don't want this thread to step further from PC
af48d08f 2331 (overstep). */
1ac806b8 2332 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2333 insert_single_step_breakpoint (gdbarch, aspace, pc);
2334 insert_breakpoints ();
2335
fbea99ea 2336 resume_ptid = internal_resume_ptid (user_step);
c4464ade 2337 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
719546c4 2338 tp->resumed = true;
af48d08f
PA
2339 return;
2340 }
2341 }
6d350bb5 2342 }
c2c6d25f 2343
c1e36e3e
PA
2344 /* If we have a breakpoint to step over, make sure to do a single
2345 step only. Same if we have software watchpoints. */
2346 if (tp->control.trap_expected || bpstat_should_step ())
2347 tp->control.may_range_step = 0;
2348
7da6a5b9
LM
2349 /* If displaced stepping is enabled, step over breakpoints by executing a
2350 copy of the instruction at a different address.
237fc4c9
PA
2351
2352 We can't use displaced stepping when we have a signal to deliver;
2353 the comments for displaced_step_prepare explain why. The
2354 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2355 signals' explain what we do instead.
2356
2357 We can't use displaced stepping when we are waiting for vfork_done
2358 event, displaced stepping breaks the vfork child similarly as single
2359 step software breakpoint. */
3fc8eb30
PA
2360 if (tp->control.trap_expected
2361 && use_displaced_stepping (tp)
cb71640d 2362 && !step_over_info_valid_p ()
a493e3e2 2363 && sig == GDB_SIGNAL_0
74609e71 2364 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2365 {
bab37966
SM
2366 displaced_step_prepare_status prepare_status
2367 = displaced_step_prepare (tp);
fc1cf338 2368
bab37966 2369 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
d56b7306 2370 {
1eb8556f 2371 infrun_debug_printf ("Got placed in step-over queue");
4d9d9d04
PA
2372
2373 tp->control.trap_expected = 0;
d56b7306
VP
2374 return;
2375 }
bab37966 2376 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_CANT)
3fc8eb30
PA
2377 {
2378 /* Fallback to stepping over the breakpoint in-line. */
2379
2380 if (target_is_non_stop_p ())
2381 stop_all_threads ();
2382
a01bda52 2383 set_step_over_info (regcache->aspace (),
21edc42f 2384 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2385
2386 step = maybe_software_singlestep (gdbarch, pc);
2387
2388 insert_breakpoints ();
2389 }
bab37966 2390 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
3fc8eb30 2391 {
3fc8eb30
PA
2392 /* Update pc to reflect the new address from which we will
2393 execute instructions due to displaced stepping. */
00431a78 2394 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2395
40a53766 2396 step = gdbarch_displaced_step_hw_singlestep (gdbarch);
3fc8eb30 2397 }
bab37966
SM
2398 else
2399 gdb_assert_not_reached (_("Invalid displaced_step_prepare_status "
2400 "value."));
237fc4c9
PA
2401 }
2402
2facfe5c 2403 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2404 else if (step)
2facfe5c 2405 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2406
30852783
UW
2407 /* Currently, our software single-step implementation leads to different
2408 results than hardware single-stepping in one situation: when stepping
2409 into delivering a signal which has an associated signal handler,
2410 hardware single-step will stop at the first instruction of the handler,
2411 while software single-step will simply skip execution of the handler.
2412
2413 For now, this difference in behavior is accepted since there is no
2414 easy way to actually implement single-stepping into a signal handler
2415 without kernel support.
2416
2417 However, there is one scenario where this difference leads to follow-on
2418 problems: if we're stepping off a breakpoint by removing all breakpoints
2419 and then single-stepping. In this case, the software single-step
2420 behavior means that even if there is a *breakpoint* in the signal
2421 handler, GDB still would not stop.
2422
2423 Fortunately, we can at least fix this particular issue. We detect
2424 here the case where we are about to deliver a signal while software
2425 single-stepping with breakpoints removed. In this situation, we
2426 revert the decisions to remove all breakpoints and insert single-
2427 step breakpoints, and instead we install a step-resume breakpoint
2428 at the current address, deliver the signal without stepping, and
2429 once we arrive back at the step-resume breakpoint, actually step
2430 over the breakpoint we originally wanted to step over. */
34b7e8a6 2431 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2432 && sig != GDB_SIGNAL_0
2433 && step_over_info_valid_p ())
30852783
UW
2434 {
2435 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2436 immediately after a handler returns, might already have
30852783
UW
2437 a step-resume breakpoint set on the earlier handler. We cannot
2438 set another step-resume breakpoint; just continue on until the
2439 original breakpoint is hit. */
2440 if (tp->control.step_resume_breakpoint == NULL)
2441 {
2c03e5be 2442 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2443 tp->step_after_step_resume_breakpoint = 1;
2444 }
2445
34b7e8a6 2446 delete_single_step_breakpoints (tp);
30852783 2447
31e77af2 2448 clear_step_over_info ();
30852783 2449 tp->control.trap_expected = 0;
31e77af2
PA
2450
2451 insert_breakpoints ();
30852783
UW
2452 }
2453
b0f16a3e
SM
2454 /* If STEP is set, it's a request to use hardware stepping
2455 facilities. But in that case, we should never
2456 use singlestep breakpoint. */
34b7e8a6 2457 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2458
fbea99ea 2459 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2460 if (tp->control.trap_expected)
b0f16a3e
SM
2461 {
2462 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2463 hit, either by single-stepping the thread with the breakpoint
2464 removed, or by displaced stepping, with the breakpoint inserted.
2465 In the former case, we need to single-step only this thread,
2466 and keep others stopped, as they can miss this breakpoint if
2467 allowed to run. That's not really a problem for displaced
2468 stepping, but, we still keep other threads stopped, in case
2469 another thread is also stopped for a breakpoint waiting for
2470 its turn in the displaced stepping queue. */
b0f16a3e
SM
2471 resume_ptid = inferior_ptid;
2472 }
fbea99ea
PA
2473 else
2474 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2475
7f5ef605
PA
2476 if (execution_direction != EXEC_REVERSE
2477 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2478 {
372316f1
PA
2479 /* There are two cases where we currently need to step a
2480 breakpoint instruction when we have a signal to deliver:
2481
2482 - See handle_signal_stop where we handle random signals that
2483 could take out us out of the stepping range. Normally, in
2484 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2485 signal handler with a breakpoint at PC, but there are cases
2486 where we should _always_ single-step, even if we have a
2487 step-resume breakpoint, like when a software watchpoint is
2488 set. Assuming single-stepping and delivering a signal at the
2489 same time would takes us to the signal handler, then we could
2490 have removed the breakpoint at PC to step over it. However,
2491 some hardware step targets (like e.g., Mac OS) can't step
2492 into signal handlers, and for those, we need to leave the
2493 breakpoint at PC inserted, as otherwise if the handler
2494 recurses and executes PC again, it'll miss the breakpoint.
2495 So we leave the breakpoint inserted anyway, but we need to
2496 record that we tried to step a breakpoint instruction, so
372316f1
PA
2497 that adjust_pc_after_break doesn't end up confused.
2498
dda83cd7 2499 - In non-stop if we insert a breakpoint (e.g., a step-resume)
372316f1
PA
2500 in one thread after another thread that was stepping had been
2501 momentarily paused for a step-over. When we re-resume the
2502 stepping thread, it may be resumed from that address with a
2503 breakpoint that hasn't trapped yet. Seen with
2504 gdb.threads/non-stop-fair-events.exp, on targets that don't
2505 do displaced stepping. */
2506
1eb8556f
SM
2507 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2508 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2509
2510 tp->stepped_breakpoint = 1;
2511
b0f16a3e
SM
2512 /* Most targets can step a breakpoint instruction, thus
2513 executing it normally. But if this one cannot, just
2514 continue and we will hit it anyway. */
7f5ef605 2515 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4464ade 2516 step = false;
b0f16a3e 2517 }
ef5cf84e 2518
b0f16a3e 2519 if (debug_displaced
cb71640d 2520 && tp->control.trap_expected
3fc8eb30 2521 && use_displaced_stepping (tp)
cb71640d 2522 && !step_over_info_valid_p ())
b0f16a3e 2523 {
00431a78 2524 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2525 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2526 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2527 gdb_byte buf[4];
2528
b0f16a3e 2529 read_memory (actual_pc, buf, sizeof (buf));
136821d9
SM
2530 displaced_debug_printf ("run %s: %s",
2531 paddress (resume_gdbarch, actual_pc),
2532 displaced_step_dump_bytes
2533 (buf, sizeof (buf)).c_str ());
b0f16a3e 2534 }
237fc4c9 2535
b0f16a3e
SM
2536 if (tp->control.may_range_step)
2537 {
2538 /* If we're resuming a thread with the PC out of the step
2539 range, then we're doing some nested/finer run control
2540 operation, like stepping the thread out of the dynamic
2541 linker or the displaced stepping scratch pad. We
2542 shouldn't have allowed a range step then. */
2543 gdb_assert (pc_in_thread_step_range (pc, tp));
2544 }
c1e36e3e 2545
64ce06e4 2546 do_target_resume (resume_ptid, step, sig);
719546c4 2547 tp->resumed = true;
c906108c 2548}
71d378ae
PA
2549
2550/* Resume the inferior. SIG is the signal to give the inferior
2551 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2552 rolls back state on error. */
2553
aff4e175 2554static void
71d378ae
PA
2555resume (gdb_signal sig)
2556{
a70b8144 2557 try
71d378ae
PA
2558 {
2559 resume_1 (sig);
2560 }
230d2906 2561 catch (const gdb_exception &ex)
71d378ae
PA
2562 {
2563 /* If resuming is being aborted for any reason, delete any
2564 single-step breakpoint resume_1 may have created, to avoid
2565 confusing the following resumption, and to avoid leaving
2566 single-step breakpoints perturbing other threads, in case
2567 we're running in non-stop mode. */
2568 if (inferior_ptid != null_ptid)
2569 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2570 throw;
71d378ae 2571 }
71d378ae
PA
2572}
2573
c906108c 2574\f
237fc4c9 2575/* Proceeding. */
c906108c 2576
4c2f2a79
PA
2577/* See infrun.h. */
2578
2579/* Counter that tracks number of user visible stops. This can be used
2580 to tell whether a command has proceeded the inferior past the
2581 current location. This allows e.g., inferior function calls in
2582 breakpoint commands to not interrupt the command list. When the
2583 call finishes successfully, the inferior is standing at the same
2584 breakpoint as if nothing happened (and so we don't call
2585 normal_stop). */
2586static ULONGEST current_stop_id;
2587
2588/* See infrun.h. */
2589
2590ULONGEST
2591get_stop_id (void)
2592{
2593 return current_stop_id;
2594}
2595
2596/* Called when we report a user visible stop. */
2597
2598static void
2599new_stop_id (void)
2600{
2601 current_stop_id++;
2602}
2603
c906108c
SS
2604/* Clear out all variables saying what to do when inferior is continued.
2605 First do this, then set the ones you want, then call `proceed'. */
2606
a7212384
UW
2607static void
2608clear_proceed_status_thread (struct thread_info *tp)
c906108c 2609{
1eb8556f 2610 infrun_debug_printf ("%s", target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2611
372316f1
PA
2612 /* If we're starting a new sequence, then the previous finished
2613 single-step is no longer relevant. */
2614 if (tp->suspend.waitstatus_pending_p)
2615 {
2616 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2617 {
1eb8556f
SM
2618 infrun_debug_printf ("pending event of %s was a finished step. "
2619 "Discarding.",
2620 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2621
2622 tp->suspend.waitstatus_pending_p = 0;
2623 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2624 }
1eb8556f 2625 else
372316f1 2626 {
1eb8556f
SM
2627 infrun_debug_printf
2628 ("thread %s has pending wait status %s (currently_stepping=%d).",
2629 target_pid_to_str (tp->ptid).c_str (),
2630 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2631 currently_stepping (tp));
372316f1
PA
2632 }
2633 }
2634
70509625
PA
2635 /* If this signal should not be seen by program, give it zero.
2636 Used for debugging signals. */
2637 if (!signal_pass_state (tp->suspend.stop_signal))
2638 tp->suspend.stop_signal = GDB_SIGNAL_0;
2639
46e3ed7f 2640 delete tp->thread_fsm;
243a9253
PA
2641 tp->thread_fsm = NULL;
2642
16c381f0
JK
2643 tp->control.trap_expected = 0;
2644 tp->control.step_range_start = 0;
2645 tp->control.step_range_end = 0;
c1e36e3e 2646 tp->control.may_range_step = 0;
16c381f0
JK
2647 tp->control.step_frame_id = null_frame_id;
2648 tp->control.step_stack_frame_id = null_frame_id;
2649 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2650 tp->control.step_start_function = NULL;
a7212384 2651 tp->stop_requested = 0;
4e1c45ea 2652
16c381f0 2653 tp->control.stop_step = 0;
32400beb 2654
16c381f0 2655 tp->control.proceed_to_finish = 0;
414c69f7 2656
856e7dd6 2657 tp->control.stepping_command = 0;
17b2616c 2658
a7212384 2659 /* Discard any remaining commands or status from previous stop. */
16c381f0 2660 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2661}
32400beb 2662
a7212384 2663void
70509625 2664clear_proceed_status (int step)
a7212384 2665{
f2665db5
MM
2666 /* With scheduler-locking replay, stop replaying other threads if we're
2667 not replaying the user-visible resume ptid.
2668
2669 This is a convenience feature to not require the user to explicitly
2670 stop replaying the other threads. We're assuming that the user's
2671 intent is to resume tracing the recorded process. */
2672 if (!non_stop && scheduler_mode == schedlock_replay
2673 && target_record_is_replaying (minus_one_ptid)
2674 && !target_record_will_replay (user_visible_resume_ptid (step),
2675 execution_direction))
2676 target_record_stop_replaying ();
2677
08036331 2678 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2679 {
08036331 2680 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2681 process_stratum_target *resume_target
2682 = user_visible_resume_target (resume_ptid);
70509625
PA
2683
2684 /* In all-stop mode, delete the per-thread status of all threads
2685 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2686 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2687 clear_proceed_status_thread (tp);
6c95b8df
PA
2688 }
2689
d7e15655 2690 if (inferior_ptid != null_ptid)
a7212384
UW
2691 {
2692 struct inferior *inferior;
2693
2694 if (non_stop)
2695 {
6c95b8df
PA
2696 /* If in non-stop mode, only delete the per-thread status of
2697 the current thread. */
a7212384
UW
2698 clear_proceed_status_thread (inferior_thread ());
2699 }
6c95b8df 2700
d6b48e9c 2701 inferior = current_inferior ();
16c381f0 2702 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2703 }
2704
76727919 2705 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2706}
2707
99619bea
PA
2708/* Returns true if TP is still stopped at a breakpoint that needs
2709 stepping-over in order to make progress. If the breakpoint is gone
2710 meanwhile, we can skip the whole step-over dance. */
ea67f13b 2711
c4464ade 2712static bool
6c4cfb24 2713thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2714{
2715 if (tp->stepping_over_breakpoint)
2716 {
00431a78 2717 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2718
a01bda52 2719 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2720 regcache_read_pc (regcache))
2721 == ordinary_breakpoint_here)
c4464ade 2722 return true;
99619bea
PA
2723
2724 tp->stepping_over_breakpoint = 0;
2725 }
2726
c4464ade 2727 return false;
99619bea
PA
2728}
2729
6c4cfb24
PA
2730/* Check whether thread TP still needs to start a step-over in order
2731 to make progress when resumed. Returns an bitwise or of enum
2732 step_over_what bits, indicating what needs to be stepped over. */
2733
8d297bbf 2734static step_over_what
6c4cfb24
PA
2735thread_still_needs_step_over (struct thread_info *tp)
2736{
8d297bbf 2737 step_over_what what = 0;
6c4cfb24
PA
2738
2739 if (thread_still_needs_step_over_bp (tp))
2740 what |= STEP_OVER_BREAKPOINT;
2741
2742 if (tp->stepping_over_watchpoint
9aed480c 2743 && !target_have_steppable_watchpoint ())
6c4cfb24
PA
2744 what |= STEP_OVER_WATCHPOINT;
2745
2746 return what;
2747}
2748
483805cf
PA
2749/* Returns true if scheduler locking applies. STEP indicates whether
2750 we're about to do a step/next-like command to a thread. */
2751
c4464ade 2752static bool
856e7dd6 2753schedlock_applies (struct thread_info *tp)
483805cf
PA
2754{
2755 return (scheduler_mode == schedlock_on
2756 || (scheduler_mode == schedlock_step
f2665db5
MM
2757 && tp->control.stepping_command)
2758 || (scheduler_mode == schedlock_replay
2759 && target_record_will_replay (minus_one_ptid,
2760 execution_direction)));
483805cf
PA
2761}
2762
5b6d1e4f
PA
2763/* Calls target_commit_resume on all targets. */
2764
2765static void
2766commit_resume_all_targets ()
2767{
2768 scoped_restore_current_thread restore_thread;
2769
2770 /* Map between process_target and a representative inferior. This
2771 is to avoid committing a resume in the same target more than
2772 once. Resumptions must be idempotent, so this is an
2773 optimization. */
2774 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2775
2776 for (inferior *inf : all_non_exited_inferiors ())
2777 if (inf->has_execution ())
2778 conn_inf[inf->process_target ()] = inf;
2779
2780 for (const auto &ci : conn_inf)
2781 {
2782 inferior *inf = ci.second;
2783 switch_to_inferior_no_thread (inf);
2784 target_commit_resume ();
2785 }
2786}
2787
2f4fcf00
PA
2788/* Check that all the targets we're about to resume are in non-stop
2789 mode. Ideally, we'd only care whether all targets support
2790 target-async, but we're not there yet. E.g., stop_all_threads
2791 doesn't know how to handle all-stop targets. Also, the remote
2792 protocol in all-stop mode is synchronous, irrespective of
2793 target-async, which means that things like a breakpoint re-set
2794 triggered by one target would try to read memory from all targets
2795 and fail. */
2796
2797static void
2798check_multi_target_resumption (process_stratum_target *resume_target)
2799{
2800 if (!non_stop && resume_target == nullptr)
2801 {
2802 scoped_restore_current_thread restore_thread;
2803
2804 /* This is used to track whether we're resuming more than one
2805 target. */
2806 process_stratum_target *first_connection = nullptr;
2807
2808 /* The first inferior we see with a target that does not work in
2809 always-non-stop mode. */
2810 inferior *first_not_non_stop = nullptr;
2811
2812 for (inferior *inf : all_non_exited_inferiors (resume_target))
2813 {
2814 switch_to_inferior_no_thread (inf);
2815
55f6301a 2816 if (!target_has_execution ())
2f4fcf00
PA
2817 continue;
2818
2819 process_stratum_target *proc_target
2820 = current_inferior ()->process_target();
2821
2822 if (!target_is_non_stop_p ())
2823 first_not_non_stop = inf;
2824
2825 if (first_connection == nullptr)
2826 first_connection = proc_target;
2827 else if (first_connection != proc_target
2828 && first_not_non_stop != nullptr)
2829 {
2830 switch_to_inferior_no_thread (first_not_non_stop);
2831
2832 proc_target = current_inferior ()->process_target();
2833
2834 error (_("Connection %d (%s) does not support "
2835 "multi-target resumption."),
2836 proc_target->connection_number,
2837 make_target_connection_string (proc_target).c_str ());
2838 }
2839 }
2840 }
2841}
2842
c906108c
SS
2843/* Basic routine for continuing the program in various fashions.
2844
2845 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2846 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2847 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2848
2849 You should call clear_proceed_status before calling proceed. */
2850
2851void
64ce06e4 2852proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2853{
3ec3145c
SM
2854 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
2855
e58b0e63
PA
2856 struct regcache *regcache;
2857 struct gdbarch *gdbarch;
e58b0e63 2858 CORE_ADDR pc;
4d9d9d04
PA
2859 struct execution_control_state ecss;
2860 struct execution_control_state *ecs = &ecss;
c4464ade 2861 bool started;
c906108c 2862
e58b0e63
PA
2863 /* If we're stopped at a fork/vfork, follow the branch set by the
2864 "set follow-fork-mode" command; otherwise, we'll just proceed
2865 resuming the current thread. */
2866 if (!follow_fork ())
2867 {
2868 /* The target for some reason decided not to resume. */
2869 normal_stop ();
f148b27e 2870 if (target_can_async_p ())
b1a35af2 2871 inferior_event_handler (INF_EXEC_COMPLETE);
e58b0e63
PA
2872 return;
2873 }
2874
842951eb
PA
2875 /* We'll update this if & when we switch to a new thread. */
2876 previous_inferior_ptid = inferior_ptid;
2877
e58b0e63 2878 regcache = get_current_regcache ();
ac7936df 2879 gdbarch = regcache->arch ();
8b86c959
YQ
2880 const address_space *aspace = regcache->aspace ();
2881
fc75c28b
TBA
2882 pc = regcache_read_pc_protected (regcache);
2883
08036331 2884 thread_info *cur_thr = inferior_thread ();
e58b0e63 2885
99619bea 2886 /* Fill in with reasonable starting values. */
08036331 2887 init_thread_stepping_state (cur_thr);
99619bea 2888
08036331 2889 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2890
5b6d1e4f
PA
2891 ptid_t resume_ptid
2892 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2893 process_stratum_target *resume_target
2894 = user_visible_resume_target (resume_ptid);
2895
2f4fcf00
PA
2896 check_multi_target_resumption (resume_target);
2897
2acceee2 2898 if (addr == (CORE_ADDR) -1)
c906108c 2899 {
08036331 2900 if (pc == cur_thr->suspend.stop_pc
af48d08f 2901 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2902 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2903 /* There is a breakpoint at the address we will resume at,
2904 step one instruction before inserting breakpoints so that
2905 we do not stop right away (and report a second hit at this
b2175913
MS
2906 breakpoint).
2907
2908 Note, we don't do this in reverse, because we won't
2909 actually be executing the breakpoint insn anyway.
2910 We'll be (un-)executing the previous instruction. */
08036331 2911 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2912 else if (gdbarch_single_step_through_delay_p (gdbarch)
2913 && gdbarch_single_step_through_delay (gdbarch,
2914 get_current_frame ()))
3352ef37
AC
2915 /* We stepped onto an instruction that needs to be stepped
2916 again before re-inserting the breakpoint, do so. */
08036331 2917 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2918 }
2919 else
2920 {
515630c5 2921 regcache_write_pc (regcache, addr);
c906108c
SS
2922 }
2923
70509625 2924 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2925 cur_thr->suspend.stop_signal = siggnal;
70509625 2926
4d9d9d04
PA
2927 /* If an exception is thrown from this point on, make sure to
2928 propagate GDB's knowledge of the executing state to the
2929 frontend/user running state. */
5b6d1e4f 2930 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
2931
2932 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2933 threads (e.g., we might need to set threads stepping over
2934 breakpoints first), from the user/frontend's point of view, all
2935 threads in RESUME_PTID are now running. Unless we're calling an
2936 inferior function, as in that case we pretend the inferior
2937 doesn't run at all. */
08036331 2938 if (!cur_thr->control.in_infcall)
719546c4 2939 set_running (resume_target, resume_ptid, true);
17b2616c 2940
1eb8556f
SM
2941 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
2942 gdb_signal_to_symbol_string (siggnal));
527159b7 2943
4d9d9d04
PA
2944 annotate_starting ();
2945
2946 /* Make sure that output from GDB appears before output from the
2947 inferior. */
2948 gdb_flush (gdb_stdout);
2949
d930703d
PA
2950 /* Since we've marked the inferior running, give it the terminal. A
2951 QUIT/Ctrl-C from here on is forwarded to the target (which can
2952 still detect attempts to unblock a stuck connection with repeated
2953 Ctrl-C from within target_pass_ctrlc). */
2954 target_terminal::inferior ();
2955
4d9d9d04
PA
2956 /* In a multi-threaded task we may select another thread and
2957 then continue or step.
2958
2959 But if a thread that we're resuming had stopped at a breakpoint,
2960 it will immediately cause another breakpoint stop without any
2961 execution (i.e. it will report a breakpoint hit incorrectly). So
2962 we must step over it first.
2963
2964 Look for threads other than the current (TP) that reported a
2965 breakpoint hit and haven't been resumed yet since. */
2966
2967 /* If scheduler locking applies, we can avoid iterating over all
2968 threads. */
08036331 2969 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 2970 {
5b6d1e4f
PA
2971 for (thread_info *tp : all_non_exited_threads (resume_target,
2972 resume_ptid))
08036331 2973 {
f3f8ece4
PA
2974 switch_to_thread_no_regs (tp);
2975
4d9d9d04
PA
2976 /* Ignore the current thread here. It's handled
2977 afterwards. */
08036331 2978 if (tp == cur_thr)
4d9d9d04 2979 continue;
c906108c 2980
4d9d9d04
PA
2981 if (!thread_still_needs_step_over (tp))
2982 continue;
2983
2984 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 2985
1eb8556f
SM
2986 infrun_debug_printf ("need to step-over [%s] first",
2987 target_pid_to_str (tp->ptid).c_str ());
99619bea 2988
28d5518b 2989 global_thread_step_over_chain_enqueue (tp);
2adfaa28 2990 }
f3f8ece4
PA
2991
2992 switch_to_thread (cur_thr);
30852783
UW
2993 }
2994
4d9d9d04
PA
2995 /* Enqueue the current thread last, so that we move all other
2996 threads over their breakpoints first. */
08036331 2997 if (cur_thr->stepping_over_breakpoint)
28d5518b 2998 global_thread_step_over_chain_enqueue (cur_thr);
30852783 2999
4d9d9d04
PA
3000 /* If the thread isn't started, we'll still need to set its prev_pc,
3001 so that switch_back_to_stepped_thread knows the thread hasn't
3002 advanced. Must do this before resuming any thread, as in
3003 all-stop/remote, once we resume we can't send any other packet
3004 until the target stops again. */
fc75c28b 3005 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
99619bea 3006
a9bc57b9
TT
3007 {
3008 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3009
a9bc57b9 3010 started = start_step_over ();
c906108c 3011
a9bc57b9
TT
3012 if (step_over_info_valid_p ())
3013 {
3014 /* Either this thread started a new in-line step over, or some
3015 other thread was already doing one. In either case, don't
3016 resume anything else until the step-over is finished. */
3017 }
3018 else if (started && !target_is_non_stop_p ())
3019 {
3020 /* A new displaced stepping sequence was started. In all-stop,
3021 we can't talk to the target anymore until it next stops. */
3022 }
3023 else if (!non_stop && target_is_non_stop_p ())
3024 {
3ec3145c
SM
3025 INFRUN_SCOPED_DEBUG_START_END
3026 ("resuming threads, all-stop-on-top-of-non-stop");
3027
a9bc57b9
TT
3028 /* In all-stop, but the target is always in non-stop mode.
3029 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3030 for (thread_info *tp : all_non_exited_threads (resume_target,
3031 resume_ptid))
3032 {
3033 switch_to_thread_no_regs (tp);
3034
f9fac3c8
SM
3035 if (!tp->inf->has_execution ())
3036 {
1eb8556f
SM
3037 infrun_debug_printf ("[%s] target has no execution",
3038 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3039 continue;
3040 }
f3f8ece4 3041
f9fac3c8
SM
3042 if (tp->resumed)
3043 {
1eb8556f
SM
3044 infrun_debug_printf ("[%s] resumed",
3045 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3046 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3047 continue;
3048 }
fbea99ea 3049
f9fac3c8
SM
3050 if (thread_is_in_step_over_chain (tp))
3051 {
1eb8556f
SM
3052 infrun_debug_printf ("[%s] needs step-over",
3053 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3054 continue;
3055 }
fbea99ea 3056
1eb8556f 3057 infrun_debug_printf ("resuming %s",
dda83cd7 3058 target_pid_to_str (tp->ptid).c_str ());
fbea99ea 3059
f9fac3c8
SM
3060 reset_ecs (ecs, tp);
3061 switch_to_thread (tp);
3062 keep_going_pass_signal (ecs);
3063 if (!ecs->wait_some_more)
3064 error (_("Command aborted."));
3065 }
a9bc57b9 3066 }
08036331 3067 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3068 {
3069 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3070 reset_ecs (ecs, cur_thr);
3071 switch_to_thread (cur_thr);
a9bc57b9
TT
3072 keep_going_pass_signal (ecs);
3073 if (!ecs->wait_some_more)
3074 error (_("Command aborted."));
3075 }
3076 }
c906108c 3077
5b6d1e4f 3078 commit_resume_all_targets ();
85ad3aaf 3079
731f534f 3080 finish_state.release ();
c906108c 3081
873657b9
PA
3082 /* If we've switched threads above, switch back to the previously
3083 current thread. We don't want the user to see a different
3084 selected thread. */
3085 switch_to_thread (cur_thr);
3086
0b333c5e
PA
3087 /* Tell the event loop to wait for it to stop. If the target
3088 supports asynchronous execution, it'll do this from within
3089 target_resume. */
362646f5 3090 if (!target_can_async_p ())
0b333c5e 3091 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3092}
c906108c
SS
3093\f
3094
3095/* Start remote-debugging of a machine over a serial link. */
96baa820 3096
c906108c 3097void
8621d6a9 3098start_remote (int from_tty)
c906108c 3099{
5b6d1e4f
PA
3100 inferior *inf = current_inferior ();
3101 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3102
1777feb0 3103 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3104 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3105 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3106 nothing is returned (instead of just blocking). Because of this,
3107 targets expecting an immediate response need to, internally, set
3108 things up so that the target_wait() is forced to eventually
1777feb0 3109 timeout. */
6426a772
JM
3110 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3111 differentiate to its caller what the state of the target is after
3112 the initial open has been performed. Here we're assuming that
3113 the target has stopped. It should be possible to eventually have
3114 target_open() return to the caller an indication that the target
3115 is currently running and GDB state should be set to the same as
1777feb0 3116 for an async run. */
5b6d1e4f 3117 wait_for_inferior (inf);
8621d6a9
DJ
3118
3119 /* Now that the inferior has stopped, do any bookkeeping like
3120 loading shared libraries. We want to do this before normal_stop,
3121 so that the displayed frame is up to date. */
a7aba266 3122 post_create_inferior (from_tty);
8621d6a9 3123
6426a772 3124 normal_stop ();
c906108c
SS
3125}
3126
3127/* Initialize static vars when a new inferior begins. */
3128
3129void
96baa820 3130init_wait_for_inferior (void)
c906108c
SS
3131{
3132 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3133
c906108c
SS
3134 breakpoint_init_inferior (inf_starting);
3135
70509625 3136 clear_proceed_status (0);
9f976b41 3137
ab1ddbcf 3138 nullify_last_target_wait_ptid ();
237fc4c9 3139
842951eb 3140 previous_inferior_ptid = inferior_ptid;
c906108c 3141}
237fc4c9 3142
c906108c 3143\f
488f131b 3144
ec9499be 3145static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3146
568d6575
UW
3147static void handle_step_into_function (struct gdbarch *gdbarch,
3148 struct execution_control_state *ecs);
3149static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3150 struct execution_control_state *ecs);
4f5d7f63 3151static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3152static void check_exception_resume (struct execution_control_state *,
28106bc2 3153 struct frame_info *);
611c83ae 3154
bdc36728 3155static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3156static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3157static void keep_going (struct execution_control_state *ecs);
94c57d6a 3158static void process_event_stop_test (struct execution_control_state *ecs);
c4464ade 3159static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3160
252fbfc8
PA
3161/* This function is attached as a "thread_stop_requested" observer.
3162 Cleanup local state that assumed the PTID was to be resumed, and
3163 report the stop to the frontend. */
3164
2c0b251b 3165static void
252fbfc8
PA
3166infrun_thread_stop_requested (ptid_t ptid)
3167{
5b6d1e4f
PA
3168 process_stratum_target *curr_target = current_inferior ()->process_target ();
3169
c65d6b55
PA
3170 /* PTID was requested to stop. If the thread was already stopped,
3171 but the user/frontend doesn't know about that yet (e.g., the
3172 thread had been temporarily paused for some step-over), set up
3173 for reporting the stop now. */
5b6d1e4f 3174 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3175 {
3176 if (tp->state != THREAD_RUNNING)
3177 continue;
3178 if (tp->executing)
3179 continue;
c65d6b55 3180
08036331
PA
3181 /* Remove matching threads from the step-over queue, so
3182 start_step_over doesn't try to resume them
3183 automatically. */
3184 if (thread_is_in_step_over_chain (tp))
28d5518b 3185 global_thread_step_over_chain_remove (tp);
c65d6b55 3186
08036331
PA
3187 /* If the thread is stopped, but the user/frontend doesn't
3188 know about that yet, queue a pending event, as if the
3189 thread had just stopped now. Unless the thread already had
3190 a pending event. */
3191 if (!tp->suspend.waitstatus_pending_p)
3192 {
3193 tp->suspend.waitstatus_pending_p = 1;
3194 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3195 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3196 }
c65d6b55 3197
08036331
PA
3198 /* Clear the inline-frame state, since we're re-processing the
3199 stop. */
5b6d1e4f 3200 clear_inline_frame_state (tp);
c65d6b55 3201
08036331
PA
3202 /* If this thread was paused because some other thread was
3203 doing an inline-step over, let that finish first. Once
3204 that happens, we'll restart all threads and consume pending
3205 stop events then. */
3206 if (step_over_info_valid_p ())
3207 continue;
3208
3209 /* Otherwise we can process the (new) pending event now. Set
3210 it so this pending event is considered by
3211 do_target_wait. */
719546c4 3212 tp->resumed = true;
08036331 3213 }
252fbfc8
PA
3214}
3215
a07daef3
PA
3216static void
3217infrun_thread_thread_exit (struct thread_info *tp, int silent)
3218{
5b6d1e4f
PA
3219 if (target_last_proc_target == tp->inf->process_target ()
3220 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3221 nullify_last_target_wait_ptid ();
3222}
3223
0cbcdb96
PA
3224/* Delete the step resume, single-step and longjmp/exception resume
3225 breakpoints of TP. */
4e1c45ea 3226
0cbcdb96
PA
3227static void
3228delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3229{
0cbcdb96
PA
3230 delete_step_resume_breakpoint (tp);
3231 delete_exception_resume_breakpoint (tp);
34b7e8a6 3232 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3233}
3234
0cbcdb96
PA
3235/* If the target still has execution, call FUNC for each thread that
3236 just stopped. In all-stop, that's all the non-exited threads; in
3237 non-stop, that's the current thread, only. */
3238
3239typedef void (*for_each_just_stopped_thread_callback_func)
3240 (struct thread_info *tp);
4e1c45ea
PA
3241
3242static void
0cbcdb96 3243for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3244{
55f6301a 3245 if (!target_has_execution () || inferior_ptid == null_ptid)
4e1c45ea
PA
3246 return;
3247
fbea99ea 3248 if (target_is_non_stop_p ())
4e1c45ea 3249 {
0cbcdb96
PA
3250 /* If in non-stop mode, only the current thread stopped. */
3251 func (inferior_thread ());
4e1c45ea
PA
3252 }
3253 else
0cbcdb96 3254 {
0cbcdb96 3255 /* In all-stop mode, all threads have stopped. */
08036331
PA
3256 for (thread_info *tp : all_non_exited_threads ())
3257 func (tp);
0cbcdb96
PA
3258 }
3259}
3260
3261/* Delete the step resume and longjmp/exception resume breakpoints of
3262 the threads that just stopped. */
3263
3264static void
3265delete_just_stopped_threads_infrun_breakpoints (void)
3266{
3267 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3268}
3269
3270/* Delete the single-step breakpoints of the threads that just
3271 stopped. */
7c16b83e 3272
34b7e8a6
PA
3273static void
3274delete_just_stopped_threads_single_step_breakpoints (void)
3275{
3276 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3277}
3278
221e1a37 3279/* See infrun.h. */
223698f8 3280
221e1a37 3281void
223698f8
DE
3282print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3283 const struct target_waitstatus *ws)
3284{
e71daf80
SM
3285 infrun_debug_printf ("target_wait (%d.%ld.%ld [%s], status) =",
3286 waiton_ptid.pid (),
3287 waiton_ptid.lwp (),
3288 waiton_ptid.tid (),
3289 target_pid_to_str (waiton_ptid).c_str ());
3290 infrun_debug_printf (" %d.%ld.%ld [%s],",
3291 result_ptid.pid (),
3292 result_ptid.lwp (),
3293 result_ptid.tid (),
3294 target_pid_to_str (result_ptid).c_str ());
3295 infrun_debug_printf (" %s", target_waitstatus_to_string (ws).c_str ());
223698f8
DE
3296}
3297
372316f1
PA
3298/* Select a thread at random, out of those which are resumed and have
3299 had events. */
3300
3301static struct thread_info *
5b6d1e4f 3302random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3303{
372316f1 3304 int num_events = 0;
08036331 3305
5b6d1e4f 3306 auto has_event = [&] (thread_info *tp)
08036331 3307 {
5b6d1e4f
PA
3308 return (tp->ptid.matches (waiton_ptid)
3309 && tp->resumed
08036331
PA
3310 && tp->suspend.waitstatus_pending_p);
3311 };
372316f1
PA
3312
3313 /* First see how many events we have. Count only resumed threads
3314 that have an event pending. */
5b6d1e4f 3315 for (thread_info *tp : inf->non_exited_threads ())
08036331 3316 if (has_event (tp))
372316f1
PA
3317 num_events++;
3318
3319 if (num_events == 0)
3320 return NULL;
3321
3322 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3323 int random_selector = (int) ((num_events * (double) rand ())
3324 / (RAND_MAX + 1.0));
372316f1 3325
1eb8556f
SM
3326 if (num_events > 1)
3327 infrun_debug_printf ("Found %d events, selecting #%d",
3328 num_events, random_selector);
372316f1
PA
3329
3330 /* Select the Nth thread that has had an event. */
5b6d1e4f 3331 for (thread_info *tp : inf->non_exited_threads ())
08036331 3332 if (has_event (tp))
372316f1 3333 if (random_selector-- == 0)
08036331 3334 return tp;
372316f1 3335
08036331 3336 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3337}
3338
3339/* Wrapper for target_wait that first checks whether threads have
3340 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3341 more events. INF is the inferior we're using to call target_wait
3342 on. */
372316f1
PA
3343
3344static ptid_t
5b6d1e4f 3345do_target_wait_1 (inferior *inf, ptid_t ptid,
b60cea74 3346 target_waitstatus *status, target_wait_flags options)
372316f1
PA
3347{
3348 ptid_t event_ptid;
3349 struct thread_info *tp;
3350
24ed6739
AB
3351 /* We know that we are looking for an event in the target of inferior
3352 INF, but we don't know which thread the event might come from. As
3353 such we want to make sure that INFERIOR_PTID is reset so that none of
3354 the wait code relies on it - doing so is always a mistake. */
3355 switch_to_inferior_no_thread (inf);
3356
372316f1
PA
3357 /* First check if there is a resumed thread with a wait status
3358 pending. */
d7e15655 3359 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3360 {
5b6d1e4f 3361 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3362 }
3363 else
3364 {
1eb8556f
SM
3365 infrun_debug_printf ("Waiting for specific thread %s.",
3366 target_pid_to_str (ptid).c_str ());
372316f1
PA
3367
3368 /* We have a specific thread to check. */
5b6d1e4f 3369 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3370 gdb_assert (tp != NULL);
3371 if (!tp->suspend.waitstatus_pending_p)
3372 tp = NULL;
3373 }
3374
3375 if (tp != NULL
3376 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3377 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3378 {
00431a78 3379 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3380 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3381 CORE_ADDR pc;
3382 int discard = 0;
3383
3384 pc = regcache_read_pc (regcache);
3385
3386 if (pc != tp->suspend.stop_pc)
3387 {
1eb8556f
SM
3388 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3389 target_pid_to_str (tp->ptid).c_str (),
3390 paddress (gdbarch, tp->suspend.stop_pc),
3391 paddress (gdbarch, pc));
372316f1
PA
3392 discard = 1;
3393 }
a01bda52 3394 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1 3395 {
1eb8556f
SM
3396 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3397 target_pid_to_str (tp->ptid).c_str (),
3398 paddress (gdbarch, pc));
372316f1
PA
3399
3400 discard = 1;
3401 }
3402
3403 if (discard)
3404 {
1eb8556f
SM
3405 infrun_debug_printf ("pending event of %s cancelled.",
3406 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3407
3408 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3409 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3410 }
3411 }
3412
3413 if (tp != NULL)
3414 {
1eb8556f
SM
3415 infrun_debug_printf ("Using pending wait status %s for %s.",
3416 target_waitstatus_to_string
3417 (&tp->suspend.waitstatus).c_str (),
3418 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3419
3420 /* Now that we've selected our final event LWP, un-adjust its PC
3421 if it was a software breakpoint (and the target doesn't
3422 always adjust the PC itself). */
3423 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3424 && !target_supports_stopped_by_sw_breakpoint ())
3425 {
3426 struct regcache *regcache;
3427 struct gdbarch *gdbarch;
3428 int decr_pc;
3429
00431a78 3430 regcache = get_thread_regcache (tp);
ac7936df 3431 gdbarch = regcache->arch ();
372316f1
PA
3432
3433 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3434 if (decr_pc != 0)
3435 {
3436 CORE_ADDR pc;
3437
3438 pc = regcache_read_pc (regcache);
3439 regcache_write_pc (regcache, pc + decr_pc);
3440 }
3441 }
3442
3443 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3444 *status = tp->suspend.waitstatus;
3445 tp->suspend.waitstatus_pending_p = 0;
3446
3447 /* Wake up the event loop again, until all pending events are
3448 processed. */
3449 if (target_is_async_p ())
3450 mark_async_event_handler (infrun_async_inferior_event_token);
3451 return tp->ptid;
3452 }
3453
3454 /* But if we don't find one, we'll have to wait. */
3455
d3a07122
SM
3456 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3457 a blocking wait. */
3458 if (!target_can_async_p ())
3459 options &= ~TARGET_WNOHANG;
3460
372316f1
PA
3461 if (deprecated_target_wait_hook)
3462 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3463 else
3464 event_ptid = target_wait (ptid, status, options);
3465
3466 return event_ptid;
3467}
3468
5b6d1e4f
PA
3469/* Wrapper for target_wait that first checks whether threads have
3470 pending statuses to report before actually asking the target for
b3e3a4c1 3471 more events. Polls for events from all inferiors/targets. */
5b6d1e4f
PA
3472
3473static bool
b60cea74
TT
3474do_target_wait (ptid_t wait_ptid, execution_control_state *ecs,
3475 target_wait_flags options)
5b6d1e4f
PA
3476{
3477 int num_inferiors = 0;
3478 int random_selector;
3479
b3e3a4c1
SM
3480 /* For fairness, we pick the first inferior/target to poll at random
3481 out of all inferiors that may report events, and then continue
3482 polling the rest of the inferior list starting from that one in a
3483 circular fashion until the whole list is polled once. */
5b6d1e4f
PA
3484
3485 auto inferior_matches = [&wait_ptid] (inferior *inf)
3486 {
3487 return (inf->process_target () != NULL
5b6d1e4f
PA
3488 && ptid_t (inf->pid).matches (wait_ptid));
3489 };
3490
b3e3a4c1 3491 /* First see how many matching inferiors we have. */
5b6d1e4f
PA
3492 for (inferior *inf : all_inferiors ())
3493 if (inferior_matches (inf))
3494 num_inferiors++;
3495
3496 if (num_inferiors == 0)
3497 {
3498 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3499 return false;
3500 }
3501
b3e3a4c1 3502 /* Now randomly pick an inferior out of those that matched. */
5b6d1e4f
PA
3503 random_selector = (int)
3504 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3505
1eb8556f
SM
3506 if (num_inferiors > 1)
3507 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3508 num_inferiors, random_selector);
5b6d1e4f 3509
b3e3a4c1 3510 /* Select the Nth inferior that matched. */
5b6d1e4f
PA
3511
3512 inferior *selected = nullptr;
3513
3514 for (inferior *inf : all_inferiors ())
3515 if (inferior_matches (inf))
3516 if (random_selector-- == 0)
3517 {
3518 selected = inf;
3519 break;
3520 }
3521
b3e3a4c1 3522 /* Now poll for events out of each of the matching inferior's
5b6d1e4f
PA
3523 targets, starting from the selected one. */
3524
3525 auto do_wait = [&] (inferior *inf)
3526 {
5b6d1e4f
PA
3527 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3528 ecs->target = inf->process_target ();
3529 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3530 };
3531
b3e3a4c1
SM
3532 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3533 here spuriously after the target is all stopped and we've already
5b6d1e4f
PA
3534 reported the stop to the user, polling for events. */
3535 scoped_restore_current_thread restore_thread;
3536
3537 int inf_num = selected->num;
3538 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3539 if (inferior_matches (inf))
3540 if (do_wait (inf))
3541 return true;
3542
3543 for (inferior *inf = inferior_list;
3544 inf != NULL && inf->num < inf_num;
3545 inf = inf->next)
3546 if (inferior_matches (inf))
3547 if (do_wait (inf))
3548 return true;
3549
3550 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3551 return false;
3552}
3553
8ff53139
PA
3554/* An event reported by wait_one. */
3555
3556struct wait_one_event
3557{
3558 /* The target the event came out of. */
3559 process_stratum_target *target;
3560
3561 /* The PTID the event was for. */
3562 ptid_t ptid;
3563
3564 /* The waitstatus. */
3565 target_waitstatus ws;
3566};
3567
3568static bool handle_one (const wait_one_event &event);
ac7d717c 3569static void restart_threads (struct thread_info *event_thread);
8ff53139 3570
24291992
PA
3571/* Prepare and stabilize the inferior for detaching it. E.g.,
3572 detaching while a thread is displaced stepping is a recipe for
3573 crashing it, as nothing would readjust the PC out of the scratch
3574 pad. */
3575
3576void
3577prepare_for_detach (void)
3578{
3579 struct inferior *inf = current_inferior ();
f2907e49 3580 ptid_t pid_ptid = ptid_t (inf->pid);
8ff53139 3581 scoped_restore_current_thread restore_thread;
24291992 3582
9bcb1f16 3583 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3584
8ff53139
PA
3585 /* Remove all threads of INF from the global step-over chain. We
3586 want to stop any ongoing step-over, not start any new one. */
3587 thread_info *next;
3588 for (thread_info *tp = global_thread_step_over_chain_head;
3589 tp != nullptr;
3590 tp = next)
24291992 3591 {
8ff53139
PA
3592 next = global_thread_step_over_chain_next (tp);
3593 if (tp->inf == inf)
3594 global_thread_step_over_chain_remove (tp);
3595 }
24291992 3596
ac7d717c
PA
3597 /* If we were already in the middle of an inline step-over, and the
3598 thread stepping belongs to the inferior we're detaching, we need
3599 to restart the threads of other inferiors. */
3600 if (step_over_info.thread != -1)
3601 {
3602 infrun_debug_printf ("inline step-over in-process while detaching");
3603
3604 thread_info *thr = find_thread_global_id (step_over_info.thread);
3605 if (thr->inf == inf)
3606 {
3607 /* Since we removed threads of INF from the step-over chain,
3608 we know this won't start a step-over for INF. */
3609 clear_step_over_info ();
3610
3611 if (target_is_non_stop_p ())
3612 {
3613 /* Start a new step-over in another thread if there's
3614 one that needs it. */
3615 start_step_over ();
3616
3617 /* Restart all other threads (except the
3618 previously-stepping thread, since that one is still
3619 running). */
3620 if (!step_over_info_valid_p ())
3621 restart_threads (thr);
3622 }
3623 }
3624 }
3625
8ff53139
PA
3626 if (displaced_step_in_progress (inf))
3627 {
3628 infrun_debug_printf ("displaced-stepping in-process while detaching");
24291992 3629
8ff53139 3630 /* Stop threads currently displaced stepping, aborting it. */
24291992 3631
8ff53139
PA
3632 for (thread_info *thr : inf->non_exited_threads ())
3633 {
3634 if (thr->displaced_step_state.in_progress ())
3635 {
3636 if (thr->executing)
3637 {
3638 if (!thr->stop_requested)
3639 {
3640 target_stop (thr->ptid);
3641 thr->stop_requested = true;
3642 }
3643 }
3644 else
3645 thr->resumed = false;
3646 }
3647 }
24291992 3648
8ff53139
PA
3649 while (displaced_step_in_progress (inf))
3650 {
3651 wait_one_event event;
24291992 3652
8ff53139
PA
3653 event.target = inf->process_target ();
3654 event.ptid = do_target_wait_1 (inf, pid_ptid, &event.ws, 0);
24291992 3655
8ff53139
PA
3656 if (debug_infrun)
3657 print_target_wait_results (pid_ptid, event.ptid, &event.ws);
24291992 3658
8ff53139
PA
3659 handle_one (event);
3660 }
24291992 3661
8ff53139
PA
3662 /* It's OK to leave some of the threads of INF stopped, since
3663 they'll be detached shortly. */
24291992 3664 }
24291992
PA
3665}
3666
cd0fc7c3 3667/* Wait for control to return from inferior to debugger.
ae123ec6 3668
cd0fc7c3
SS
3669 If inferior gets a signal, we may decide to start it up again
3670 instead of returning. That is why there is a loop in this function.
3671 When this function actually returns it means the inferior
3672 should be left stopped and GDB should read more commands. */
3673
5b6d1e4f
PA
3674static void
3675wait_for_inferior (inferior *inf)
cd0fc7c3 3676{
1eb8556f 3677 infrun_debug_printf ("wait_for_inferior ()");
527159b7 3678
4c41382a 3679 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3680
e6f5c25b
PA
3681 /* If an error happens while handling the event, propagate GDB's
3682 knowledge of the executing state to the frontend/user running
3683 state. */
5b6d1e4f
PA
3684 scoped_finish_thread_state finish_state
3685 (inf->process_target (), minus_one_ptid);
e6f5c25b 3686
c906108c
SS
3687 while (1)
3688 {
ae25568b
PA
3689 struct execution_control_state ecss;
3690 struct execution_control_state *ecs = &ecss;
29f49a6a 3691
ae25568b
PA
3692 memset (ecs, 0, sizeof (*ecs));
3693
ec9499be 3694 overlay_cache_invalid = 1;
ec9499be 3695
f15cb84a
YQ
3696 /* Flush target cache before starting to handle each event.
3697 Target was running and cache could be stale. This is just a
3698 heuristic. Running threads may modify target memory, but we
3699 don't get any event. */
3700 target_dcache_invalidate ();
3701
5b6d1e4f
PA
3702 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3703 ecs->target = inf->process_target ();
c906108c 3704
f00150c9 3705 if (debug_infrun)
5b6d1e4f 3706 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3707
cd0fc7c3
SS
3708 /* Now figure out what to do with the result of the result. */
3709 handle_inferior_event (ecs);
c906108c 3710
cd0fc7c3
SS
3711 if (!ecs->wait_some_more)
3712 break;
3713 }
4e1c45ea 3714
e6f5c25b 3715 /* No error, don't finish the state yet. */
731f534f 3716 finish_state.release ();
cd0fc7c3 3717}
c906108c 3718
d3d4baed
PA
3719/* Cleanup that reinstalls the readline callback handler, if the
3720 target is running in the background. If while handling the target
3721 event something triggered a secondary prompt, like e.g., a
3722 pagination prompt, we'll have removed the callback handler (see
3723 gdb_readline_wrapper_line). Need to do this as we go back to the
3724 event loop, ready to process further input. Note this has no
3725 effect if the handler hasn't actually been removed, because calling
3726 rl_callback_handler_install resets the line buffer, thus losing
3727 input. */
3728
3729static void
d238133d 3730reinstall_readline_callback_handler_cleanup ()
d3d4baed 3731{
3b12939d
PA
3732 struct ui *ui = current_ui;
3733
3734 if (!ui->async)
6c400b59
PA
3735 {
3736 /* We're not going back to the top level event loop yet. Don't
3737 install the readline callback, as it'd prep the terminal,
3738 readline-style (raw, noecho) (e.g., --batch). We'll install
3739 it the next time the prompt is displayed, when we're ready
3740 for input. */
3741 return;
3742 }
3743
3b12939d 3744 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3745 gdb_rl_callback_handler_reinstall ();
3746}
3747
243a9253
PA
3748/* Clean up the FSMs of threads that are now stopped. In non-stop,
3749 that's just the event thread. In all-stop, that's all threads. */
3750
3751static void
3752clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3753{
08036331
PA
3754 if (ecs->event_thread != NULL
3755 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3756 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3757
3758 if (!non_stop)
3759 {
08036331 3760 for (thread_info *thr : all_non_exited_threads ())
dda83cd7 3761 {
243a9253
PA
3762 if (thr->thread_fsm == NULL)
3763 continue;
3764 if (thr == ecs->event_thread)
3765 continue;
3766
00431a78 3767 switch_to_thread (thr);
46e3ed7f 3768 thr->thread_fsm->clean_up (thr);
243a9253
PA
3769 }
3770
3771 if (ecs->event_thread != NULL)
00431a78 3772 switch_to_thread (ecs->event_thread);
243a9253
PA
3773 }
3774}
3775
3b12939d
PA
3776/* Helper for all_uis_check_sync_execution_done that works on the
3777 current UI. */
3778
3779static void
3780check_curr_ui_sync_execution_done (void)
3781{
3782 struct ui *ui = current_ui;
3783
3784 if (ui->prompt_state == PROMPT_NEEDED
3785 && ui->async
3786 && !gdb_in_secondary_prompt_p (ui))
3787 {
223ffa71 3788 target_terminal::ours ();
76727919 3789 gdb::observers::sync_execution_done.notify ();
3eb7562a 3790 ui_register_input_event_handler (ui);
3b12939d
PA
3791 }
3792}
3793
3794/* See infrun.h. */
3795
3796void
3797all_uis_check_sync_execution_done (void)
3798{
0e454242 3799 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3800 {
3801 check_curr_ui_sync_execution_done ();
3802 }
3803}
3804
a8836c93
PA
3805/* See infrun.h. */
3806
3807void
3808all_uis_on_sync_execution_starting (void)
3809{
0e454242 3810 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3811 {
3812 if (current_ui->prompt_state == PROMPT_NEEDED)
3813 async_disable_stdin ();
3814 }
3815}
3816
1777feb0 3817/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3818 event loop whenever a change of state is detected on the file
1777feb0
MS
3819 descriptor corresponding to the target. It can be called more than
3820 once to complete a single execution command. In such cases we need
3821 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3822 that this function is called for a single execution command, then
3823 report to the user that the inferior has stopped, and do the
1777feb0 3824 necessary cleanups. */
43ff13b4
JM
3825
3826void
b1a35af2 3827fetch_inferior_event ()
43ff13b4 3828{
3ec3145c
SM
3829 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
3830
0d1e5fa7 3831 struct execution_control_state ecss;
a474d7c2 3832 struct execution_control_state *ecs = &ecss;
0f641c01 3833 int cmd_done = 0;
43ff13b4 3834
0d1e5fa7
PA
3835 memset (ecs, 0, sizeof (*ecs));
3836
c61db772
PA
3837 /* Events are always processed with the main UI as current UI. This
3838 way, warnings, debug output, etc. are always consistently sent to
3839 the main console. */
4b6749b9 3840 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3841
b78b3a29
TBA
3842 /* Temporarily disable pagination. Otherwise, the user would be
3843 given an option to press 'q' to quit, which would cause an early
3844 exit and could leave GDB in a half-baked state. */
3845 scoped_restore save_pagination
3846 = make_scoped_restore (&pagination_enabled, false);
3847
d3d4baed 3848 /* End up with readline processing input, if necessary. */
d238133d
TT
3849 {
3850 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3851
3852 /* We're handling a live event, so make sure we're doing live
3853 debugging. If we're looking at traceframes while the target is
3854 running, we're going to need to get back to that mode after
3855 handling the event. */
3856 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3857 if (non_stop)
3858 {
3859 maybe_restore_traceframe.emplace ();
3860 set_current_traceframe (-1);
3861 }
43ff13b4 3862
873657b9
PA
3863 /* The user/frontend should not notice a thread switch due to
3864 internal events. Make sure we revert to the user selected
3865 thread and frame after handling the event and running any
3866 breakpoint commands. */
3867 scoped_restore_current_thread restore_thread;
d238133d
TT
3868
3869 overlay_cache_invalid = 1;
3870 /* Flush target cache before starting to handle each event. Target
3871 was running and cache could be stale. This is just a heuristic.
3872 Running threads may modify target memory, but we don't get any
3873 event. */
3874 target_dcache_invalidate ();
3875
3876 scoped_restore save_exec_dir
3877 = make_scoped_restore (&execution_direction,
3878 target_execution_direction ());
3879
5b6d1e4f
PA
3880 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3881 return;
3882
3883 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3884
3885 /* Switch to the target that generated the event, so we can do
7f08fd51
TBA
3886 target calls. */
3887 switch_to_target_no_thread (ecs->target);
d238133d
TT
3888
3889 if (debug_infrun)
5b6d1e4f 3890 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
3891
3892 /* If an error happens while handling the event, propagate GDB's
3893 knowledge of the executing state to the frontend/user running
3894 state. */
3895 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 3896 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 3897
979a0d13 3898 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3899 still for the thread which has thrown the exception. */
3900 auto defer_bpstat_clear
3901 = make_scope_exit (bpstat_clear_actions);
3902 auto defer_delete_threads
3903 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3904
3905 /* Now figure out what to do with the result of the result. */
3906 handle_inferior_event (ecs);
3907
3908 if (!ecs->wait_some_more)
3909 {
5b6d1e4f 3910 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
758cb810 3911 bool should_stop = true;
d238133d 3912 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3913
d238133d 3914 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3915
d238133d
TT
3916 if (thr != NULL)
3917 {
3918 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3919
d238133d 3920 if (thread_fsm != NULL)
46e3ed7f 3921 should_stop = thread_fsm->should_stop (thr);
d238133d 3922 }
243a9253 3923
d238133d
TT
3924 if (!should_stop)
3925 {
3926 keep_going (ecs);
3927 }
3928 else
3929 {
46e3ed7f 3930 bool should_notify_stop = true;
d238133d 3931 int proceeded = 0;
1840d81a 3932
d238133d 3933 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3934
d238133d 3935 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3936 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3937
d238133d
TT
3938 if (should_notify_stop)
3939 {
3940 /* We may not find an inferior if this was a process exit. */
3941 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3942 proceeded = normal_stop ();
3943 }
243a9253 3944
d238133d
TT
3945 if (!proceeded)
3946 {
b1a35af2 3947 inferior_event_handler (INF_EXEC_COMPLETE);
d238133d
TT
3948 cmd_done = 1;
3949 }
873657b9
PA
3950
3951 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3952 previously selected thread is gone. We have two
3953 choices - switch to no thread selected, or restore the
3954 previously selected thread (now exited). We chose the
3955 later, just because that's what GDB used to do. After
3956 this, "info threads" says "The current thread <Thread
3957 ID 2> has terminated." instead of "No thread
3958 selected.". */
3959 if (!non_stop
3960 && cmd_done
3961 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3962 restore_thread.dont_restore ();
d238133d
TT
3963 }
3964 }
4f8d22e3 3965
d238133d
TT
3966 defer_delete_threads.release ();
3967 defer_bpstat_clear.release ();
29f49a6a 3968
d238133d
TT
3969 /* No error, don't finish the thread states yet. */
3970 finish_state.release ();
731f534f 3971
d238133d
TT
3972 /* This scope is used to ensure that readline callbacks are
3973 reinstalled here. */
3974 }
4f8d22e3 3975
3b12939d
PA
3976 /* If a UI was in sync execution mode, and now isn't, restore its
3977 prompt (a synchronous execution command has finished, and we're
3978 ready for input). */
3979 all_uis_check_sync_execution_done ();
0f641c01
PA
3980
3981 if (cmd_done
0f641c01 3982 && exec_done_display_p
00431a78
PA
3983 && (inferior_ptid == null_ptid
3984 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3985 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3986}
3987
29734269
SM
3988/* See infrun.h. */
3989
edb3359d 3990void
29734269
SM
3991set_step_info (thread_info *tp, struct frame_info *frame,
3992 struct symtab_and_line sal)
edb3359d 3993{
29734269
SM
3994 /* This can be removed once this function no longer implicitly relies on the
3995 inferior_ptid value. */
3996 gdb_assert (inferior_ptid == tp->ptid);
edb3359d 3997
16c381f0
JK
3998 tp->control.step_frame_id = get_frame_id (frame);
3999 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4000
4001 tp->current_symtab = sal.symtab;
4002 tp->current_line = sal.line;
4003}
4004
0d1e5fa7
PA
4005/* Clear context switchable stepping state. */
4006
4007void
4e1c45ea 4008init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4009{
7f5ef605 4010 tss->stepped_breakpoint = 0;
0d1e5fa7 4011 tss->stepping_over_breakpoint = 0;
963f9c80 4012 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4013 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4014}
4015
ab1ddbcf 4016/* See infrun.h. */
c32c64b7 4017
6efcd9a8 4018void
5b6d1e4f
PA
4019set_last_target_status (process_stratum_target *target, ptid_t ptid,
4020 target_waitstatus status)
c32c64b7 4021{
5b6d1e4f 4022 target_last_proc_target = target;
c32c64b7
DE
4023 target_last_wait_ptid = ptid;
4024 target_last_waitstatus = status;
4025}
4026
ab1ddbcf 4027/* See infrun.h. */
e02bc4cc
DS
4028
4029void
5b6d1e4f
PA
4030get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4031 target_waitstatus *status)
e02bc4cc 4032{
5b6d1e4f
PA
4033 if (target != nullptr)
4034 *target = target_last_proc_target;
ab1ddbcf
PA
4035 if (ptid != nullptr)
4036 *ptid = target_last_wait_ptid;
4037 if (status != nullptr)
4038 *status = target_last_waitstatus;
e02bc4cc
DS
4039}
4040
ab1ddbcf
PA
4041/* See infrun.h. */
4042
ac264b3b
MS
4043void
4044nullify_last_target_wait_ptid (void)
4045{
5b6d1e4f 4046 target_last_proc_target = nullptr;
ac264b3b 4047 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4048 target_last_waitstatus = {};
ac264b3b
MS
4049}
4050
dcf4fbde 4051/* Switch thread contexts. */
dd80620e
MS
4052
4053static void
00431a78 4054context_switch (execution_control_state *ecs)
dd80620e 4055{
1eb8556f 4056 if (ecs->ptid != inferior_ptid
5b6d1e4f
PA
4057 && (inferior_ptid == null_ptid
4058 || ecs->event_thread != inferior_thread ()))
fd48f117 4059 {
1eb8556f
SM
4060 infrun_debug_printf ("Switching context from %s to %s",
4061 target_pid_to_str (inferior_ptid).c_str (),
4062 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4063 }
4064
00431a78 4065 switch_to_thread (ecs->event_thread);
dd80620e
MS
4066}
4067
d8dd4d5f
PA
4068/* If the target can't tell whether we've hit breakpoints
4069 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4070 check whether that could have been caused by a breakpoint. If so,
4071 adjust the PC, per gdbarch_decr_pc_after_break. */
4072
4fa8626c 4073static void
d8dd4d5f
PA
4074adjust_pc_after_break (struct thread_info *thread,
4075 struct target_waitstatus *ws)
4fa8626c 4076{
24a73cce
UW
4077 struct regcache *regcache;
4078 struct gdbarch *gdbarch;
118e6252 4079 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4080
4fa8626c
DJ
4081 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4082 we aren't, just return.
9709f61c
DJ
4083
4084 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4085 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4086 implemented by software breakpoints should be handled through the normal
4087 breakpoint layer.
8fb3e588 4088
4fa8626c
DJ
4089 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4090 different signals (SIGILL or SIGEMT for instance), but it is less
4091 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4092 gdbarch_decr_pc_after_break. I don't know any specific target that
4093 generates these signals at breakpoints (the code has been in GDB since at
4094 least 1992) so I can not guess how to handle them here.
8fb3e588 4095
e6cf7916
UW
4096 In earlier versions of GDB, a target with
4097 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4098 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4099 target with both of these set in GDB history, and it seems unlikely to be
4100 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4101
d8dd4d5f 4102 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4103 return;
4104
d8dd4d5f 4105 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4106 return;
4107
4058b839
PA
4108 /* In reverse execution, when a breakpoint is hit, the instruction
4109 under it has already been de-executed. The reported PC always
4110 points at the breakpoint address, so adjusting it further would
4111 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4112 architecture:
4113
4114 B1 0x08000000 : INSN1
4115 B2 0x08000001 : INSN2
4116 0x08000002 : INSN3
4117 PC -> 0x08000003 : INSN4
4118
4119 Say you're stopped at 0x08000003 as above. Reverse continuing
4120 from that point should hit B2 as below. Reading the PC when the
4121 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4122 been de-executed already.
4123
4124 B1 0x08000000 : INSN1
4125 B2 PC -> 0x08000001 : INSN2
4126 0x08000002 : INSN3
4127 0x08000003 : INSN4
4128
4129 We can't apply the same logic as for forward execution, because
4130 we would wrongly adjust the PC to 0x08000000, since there's a
4131 breakpoint at PC - 1. We'd then report a hit on B1, although
4132 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4133 behaviour. */
4134 if (execution_direction == EXEC_REVERSE)
4135 return;
4136
1cf4d951
PA
4137 /* If the target can tell whether the thread hit a SW breakpoint,
4138 trust it. Targets that can tell also adjust the PC
4139 themselves. */
4140 if (target_supports_stopped_by_sw_breakpoint ())
4141 return;
4142
4143 /* Note that relying on whether a breakpoint is planted in memory to
4144 determine this can fail. E.g,. the breakpoint could have been
4145 removed since. Or the thread could have been told to step an
4146 instruction the size of a breakpoint instruction, and only
4147 _after_ was a breakpoint inserted at its address. */
4148
24a73cce
UW
4149 /* If this target does not decrement the PC after breakpoints, then
4150 we have nothing to do. */
00431a78 4151 regcache = get_thread_regcache (thread);
ac7936df 4152 gdbarch = regcache->arch ();
118e6252 4153
527a273a 4154 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4155 if (decr_pc == 0)
24a73cce
UW
4156 return;
4157
8b86c959 4158 const address_space *aspace = regcache->aspace ();
6c95b8df 4159
8aad930b
AC
4160 /* Find the location where (if we've hit a breakpoint) the
4161 breakpoint would be. */
118e6252 4162 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4163
1cf4d951
PA
4164 /* If the target can't tell whether a software breakpoint triggered,
4165 fallback to figuring it out based on breakpoints we think were
4166 inserted in the target, and on whether the thread was stepped or
4167 continued. */
4168
1c5cfe86
PA
4169 /* Check whether there actually is a software breakpoint inserted at
4170 that location.
4171
4172 If in non-stop mode, a race condition is possible where we've
4173 removed a breakpoint, but stop events for that breakpoint were
4174 already queued and arrive later. To suppress those spurious
4175 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4176 and retire them after a number of stop events are reported. Note
4177 this is an heuristic and can thus get confused. The real fix is
4178 to get the "stopped by SW BP and needs adjustment" info out of
4179 the target/kernel (and thus never reach here; see above). */
6c95b8df 4180 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4181 || (target_is_non_stop_p ()
4182 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4183 {
07036511 4184 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4185
8213266a 4186 if (record_full_is_used ())
07036511
TT
4187 restore_operation_disable.emplace
4188 (record_full_gdb_operation_disable_set ());
96429cc8 4189
1c0fdd0e
UW
4190 /* When using hardware single-step, a SIGTRAP is reported for both
4191 a completed single-step and a software breakpoint. Need to
4192 differentiate between the two, as the latter needs adjusting
4193 but the former does not.
4194
4195 The SIGTRAP can be due to a completed hardware single-step only if
4196 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4197 - this thread is currently being stepped
4198
4199 If any of these events did not occur, we must have stopped due
4200 to hitting a software breakpoint, and have to back up to the
4201 breakpoint address.
4202
4203 As a special case, we could have hardware single-stepped a
4204 software breakpoint. In this case (prev_pc == breakpoint_pc),
4205 we also need to back up to the breakpoint address. */
4206
d8dd4d5f
PA
4207 if (thread_has_single_step_breakpoints_set (thread)
4208 || !currently_stepping (thread)
4209 || (thread->stepped_breakpoint
4210 && thread->prev_pc == breakpoint_pc))
515630c5 4211 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4212 }
4fa8626c
DJ
4213}
4214
c4464ade 4215static bool
edb3359d
DJ
4216stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4217{
4218 for (frame = get_prev_frame (frame);
4219 frame != NULL;
4220 frame = get_prev_frame (frame))
4221 {
4222 if (frame_id_eq (get_frame_id (frame), step_frame_id))
c4464ade
SM
4223 return true;
4224
edb3359d
DJ
4225 if (get_frame_type (frame) != INLINE_FRAME)
4226 break;
4227 }
4228
c4464ade 4229 return false;
edb3359d
DJ
4230}
4231
4a4c04f1
BE
4232/* Look for an inline frame that is marked for skip.
4233 If PREV_FRAME is TRUE start at the previous frame,
4234 otherwise start at the current frame. Stop at the
4235 first non-inline frame, or at the frame where the
4236 step started. */
4237
4238static bool
4239inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4240{
4241 struct frame_info *frame = get_current_frame ();
4242
4243 if (prev_frame)
4244 frame = get_prev_frame (frame);
4245
4246 for (; frame != NULL; frame = get_prev_frame (frame))
4247 {
4248 const char *fn = NULL;
4249 symtab_and_line sal;
4250 struct symbol *sym;
4251
4252 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4253 break;
4254 if (get_frame_type (frame) != INLINE_FRAME)
4255 break;
4256
4257 sal = find_frame_sal (frame);
4258 sym = get_frame_function (frame);
4259
4260 if (sym != NULL)
4261 fn = sym->print_name ();
4262
4263 if (sal.line != 0
4264 && function_name_is_marked_for_skip (fn, sal))
4265 return true;
4266 }
4267
4268 return false;
4269}
4270
c65d6b55
PA
4271/* If the event thread has the stop requested flag set, pretend it
4272 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4273 target_stop). */
4274
4275static bool
4276handle_stop_requested (struct execution_control_state *ecs)
4277{
4278 if (ecs->event_thread->stop_requested)
4279 {
4280 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4281 ecs->ws.value.sig = GDB_SIGNAL_0;
4282 handle_signal_stop (ecs);
4283 return true;
4284 }
4285 return false;
4286}
4287
a96d9b2e 4288/* Auxiliary function that handles syscall entry/return events.
c4464ade
SM
4289 It returns true if the inferior should keep going (and GDB
4290 should ignore the event), or false if the event deserves to be
a96d9b2e 4291 processed. */
ca2163eb 4292
c4464ade 4293static bool
ca2163eb 4294handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4295{
ca2163eb 4296 struct regcache *regcache;
ca2163eb
PA
4297 int syscall_number;
4298
00431a78 4299 context_switch (ecs);
ca2163eb 4300
00431a78 4301 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4302 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4303 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4304
a96d9b2e
SDJ
4305 if (catch_syscall_enabled () > 0
4306 && catching_syscall_number (syscall_number) > 0)
4307 {
1eb8556f 4308 infrun_debug_printf ("syscall number=%d", syscall_number);
a96d9b2e 4309
16c381f0 4310 ecs->event_thread->control.stop_bpstat
a01bda52 4311 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4312 ecs->event_thread->suspend.stop_pc,
4313 ecs->event_thread, &ecs->ws);
ab04a2af 4314
c65d6b55 4315 if (handle_stop_requested (ecs))
c4464ade 4316 return false;
c65d6b55 4317
ce12b012 4318 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4319 {
4320 /* Catchpoint hit. */
c4464ade 4321 return false;
ca2163eb 4322 }
a96d9b2e 4323 }
ca2163eb 4324
c65d6b55 4325 if (handle_stop_requested (ecs))
c4464ade 4326 return false;
c65d6b55 4327
ca2163eb 4328 /* If no catchpoint triggered for this, then keep going. */
ca2163eb 4329 keep_going (ecs);
c4464ade
SM
4330
4331 return true;
a96d9b2e
SDJ
4332}
4333
7e324e48
GB
4334/* Lazily fill in the execution_control_state's stop_func_* fields. */
4335
4336static void
4337fill_in_stop_func (struct gdbarch *gdbarch,
4338 struct execution_control_state *ecs)
4339{
4340 if (!ecs->stop_func_filled_in)
4341 {
98a617f8 4342 const block *block;
fe830662 4343 const general_symbol_info *gsi;
98a617f8 4344
7e324e48
GB
4345 /* Don't care about return value; stop_func_start and stop_func_name
4346 will both be 0 if it doesn't work. */
fe830662
TT
4347 find_pc_partial_function_sym (ecs->event_thread->suspend.stop_pc,
4348 &gsi,
4349 &ecs->stop_func_start,
4350 &ecs->stop_func_end,
4351 &block);
4352 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
98a617f8
KB
4353
4354 /* The call to find_pc_partial_function, above, will set
4355 stop_func_start and stop_func_end to the start and end
4356 of the range containing the stop pc. If this range
4357 contains the entry pc for the block (which is always the
4358 case for contiguous blocks), advance stop_func_start past
4359 the function's start offset and entrypoint. Note that
4360 stop_func_start is NOT advanced when in a range of a
4361 non-contiguous block that does not contain the entry pc. */
4362 if (block != nullptr
4363 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4364 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4365 {
4366 ecs->stop_func_start
4367 += gdbarch_deprecated_function_start_offset (gdbarch);
4368
4369 if (gdbarch_skip_entrypoint_p (gdbarch))
4370 ecs->stop_func_start
4371 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4372 }
591a12a1 4373
7e324e48
GB
4374 ecs->stop_func_filled_in = 1;
4375 }
4376}
4377
4f5d7f63 4378
00431a78 4379/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4380
4381static enum stop_kind
00431a78 4382get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4383{
5b6d1e4f 4384 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4385
4386 gdb_assert (inf != NULL);
4387 return inf->control.stop_soon;
4388}
4389
5b6d1e4f
PA
4390/* Poll for one event out of the current target. Store the resulting
4391 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4392
4393static ptid_t
5b6d1e4f 4394poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4395{
4396 ptid_t event_ptid;
372316f1
PA
4397
4398 overlay_cache_invalid = 1;
4399
4400 /* Flush target cache before starting to handle each event.
4401 Target was running and cache could be stale. This is just a
4402 heuristic. Running threads may modify target memory, but we
4403 don't get any event. */
4404 target_dcache_invalidate ();
4405
4406 if (deprecated_target_wait_hook)
5b6d1e4f 4407 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4408 else
5b6d1e4f 4409 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4410
4411 if (debug_infrun)
5b6d1e4f 4412 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4413
4414 return event_ptid;
4415}
4416
5b6d1e4f
PA
4417/* Wait for one event out of any target. */
4418
4419static wait_one_event
4420wait_one ()
4421{
4422 while (1)
4423 {
4424 for (inferior *inf : all_inferiors ())
4425 {
4426 process_stratum_target *target = inf->process_target ();
4427 if (target == NULL
4428 || !target->is_async_p ()
4429 || !target->threads_executing)
4430 continue;
4431
4432 switch_to_inferior_no_thread (inf);
4433
4434 wait_one_event event;
4435 event.target = target;
4436 event.ptid = poll_one_curr_target (&event.ws);
4437
4438 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4439 {
4440 /* If nothing is resumed, remove the target from the
4441 event loop. */
4442 target_async (0);
4443 }
4444 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4445 return event;
4446 }
4447
4448 /* Block waiting for some event. */
4449
4450 fd_set readfds;
4451 int nfds = 0;
4452
4453 FD_ZERO (&readfds);
4454
4455 for (inferior *inf : all_inferiors ())
4456 {
4457 process_stratum_target *target = inf->process_target ();
4458 if (target == NULL
4459 || !target->is_async_p ()
4460 || !target->threads_executing)
4461 continue;
4462
4463 int fd = target->async_wait_fd ();
4464 FD_SET (fd, &readfds);
4465 if (nfds <= fd)
4466 nfds = fd + 1;
4467 }
4468
4469 if (nfds == 0)
4470 {
4471 /* No waitable targets left. All must be stopped. */
4472 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4473 }
4474
4475 QUIT;
4476
4477 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4478 if (numfds < 0)
4479 {
4480 if (errno == EINTR)
4481 continue;
4482 else
4483 perror_with_name ("interruptible_select");
4484 }
4485 }
4486}
4487
372316f1
PA
4488/* Save the thread's event and stop reason to process it later. */
4489
4490static void
5b6d1e4f 4491save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4492{
1eb8556f
SM
4493 infrun_debug_printf ("saving status %s for %d.%ld.%ld",
4494 target_waitstatus_to_string (ws).c_str (),
4495 tp->ptid.pid (),
4496 tp->ptid.lwp (),
4497 tp->ptid.tid ());
372316f1
PA
4498
4499 /* Record for later. */
4500 tp->suspend.waitstatus = *ws;
4501 tp->suspend.waitstatus_pending_p = 1;
4502
00431a78 4503 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4504 const address_space *aspace = regcache->aspace ();
372316f1
PA
4505
4506 if (ws->kind == TARGET_WAITKIND_STOPPED
4507 && ws->value.sig == GDB_SIGNAL_TRAP)
4508 {
4509 CORE_ADDR pc = regcache_read_pc (regcache);
4510
4511 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4512
18493a00
PA
4513 scoped_restore_current_thread restore_thread;
4514 switch_to_thread (tp);
4515
4516 if (target_stopped_by_watchpoint ())
372316f1
PA
4517 {
4518 tp->suspend.stop_reason
4519 = TARGET_STOPPED_BY_WATCHPOINT;
4520 }
4521 else if (target_supports_stopped_by_sw_breakpoint ()
18493a00 4522 && target_stopped_by_sw_breakpoint ())
372316f1
PA
4523 {
4524 tp->suspend.stop_reason
4525 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4526 }
4527 else if (target_supports_stopped_by_hw_breakpoint ()
18493a00 4528 && target_stopped_by_hw_breakpoint ())
372316f1
PA
4529 {
4530 tp->suspend.stop_reason
4531 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4532 }
4533 else if (!target_supports_stopped_by_hw_breakpoint ()
4534 && hardware_breakpoint_inserted_here_p (aspace,
4535 pc))
4536 {
4537 tp->suspend.stop_reason
4538 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4539 }
4540 else if (!target_supports_stopped_by_sw_breakpoint ()
4541 && software_breakpoint_inserted_here_p (aspace,
4542 pc))
4543 {
4544 tp->suspend.stop_reason
4545 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4546 }
4547 else if (!thread_has_single_step_breakpoints_set (tp)
4548 && currently_stepping (tp))
4549 {
4550 tp->suspend.stop_reason
4551 = TARGET_STOPPED_BY_SINGLE_STEP;
4552 }
4553 }
4554}
4555
293b3ebc
TBA
4556/* Mark the non-executing threads accordingly. In all-stop, all
4557 threads of all processes are stopped when we get any event
4558 reported. In non-stop mode, only the event thread stops. */
4559
4560static void
4561mark_non_executing_threads (process_stratum_target *target,
4562 ptid_t event_ptid,
4563 struct target_waitstatus ws)
4564{
4565 ptid_t mark_ptid;
4566
4567 if (!target_is_non_stop_p ())
4568 mark_ptid = minus_one_ptid;
4569 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4570 || ws.kind == TARGET_WAITKIND_EXITED)
4571 {
4572 /* If we're handling a process exit in non-stop mode, even
4573 though threads haven't been deleted yet, one would think
4574 that there is nothing to do, as threads of the dead process
4575 will be soon deleted, and threads of any other process were
4576 left running. However, on some targets, threads survive a
4577 process exit event. E.g., for the "checkpoint" command,
4578 when the current checkpoint/fork exits, linux-fork.c
4579 automatically switches to another fork from within
4580 target_mourn_inferior, by associating the same
4581 inferior/thread to another fork. We haven't mourned yet at
4582 this point, but we must mark any threads left in the
4583 process as not-executing so that finish_thread_state marks
4584 them stopped (in the user's perspective) if/when we present
4585 the stop to the user. */
4586 mark_ptid = ptid_t (event_ptid.pid ());
4587 }
4588 else
4589 mark_ptid = event_ptid;
4590
4591 set_executing (target, mark_ptid, false);
4592
4593 /* Likewise the resumed flag. */
4594 set_resumed (target, mark_ptid, false);
4595}
4596
d758e62c
PA
4597/* Handle one event after stopping threads. If the eventing thread
4598 reports back any interesting event, we leave it pending. If the
4599 eventing thread was in the middle of a displaced step, we
8ff53139
PA
4600 cancel/finish it, and unless the thread's inferior is being
4601 detached, put the thread back in the step-over chain. Returns true
4602 if there are no resumed threads left in the target (thus there's no
4603 point in waiting further), false otherwise. */
d758e62c
PA
4604
4605static bool
4606handle_one (const wait_one_event &event)
4607{
4608 infrun_debug_printf
4609 ("%s %s", target_waitstatus_to_string (&event.ws).c_str (),
4610 target_pid_to_str (event.ptid).c_str ());
4611
4612 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4613 {
4614 /* All resumed threads exited. */
4615 return true;
4616 }
4617 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4618 || event.ws.kind == TARGET_WAITKIND_EXITED
4619 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4620 {
4621 /* One thread/process exited/signalled. */
4622
4623 thread_info *t = nullptr;
4624
4625 /* The target may have reported just a pid. If so, try
4626 the first non-exited thread. */
4627 if (event.ptid.is_pid ())
4628 {
4629 int pid = event.ptid.pid ();
4630 inferior *inf = find_inferior_pid (event.target, pid);
4631 for (thread_info *tp : inf->non_exited_threads ())
4632 {
4633 t = tp;
4634 break;
4635 }
4636
4637 /* If there is no available thread, the event would
4638 have to be appended to a per-inferior event list,
4639 which does not exist (and if it did, we'd have
4640 to adjust run control command to be able to
4641 resume such an inferior). We assert here instead
4642 of going into an infinite loop. */
4643 gdb_assert (t != nullptr);
4644
4645 infrun_debug_printf
4646 ("using %s", target_pid_to_str (t->ptid).c_str ());
4647 }
4648 else
4649 {
4650 t = find_thread_ptid (event.target, event.ptid);
4651 /* Check if this is the first time we see this thread.
4652 Don't bother adding if it individually exited. */
4653 if (t == nullptr
4654 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4655 t = add_thread (event.target, event.ptid);
4656 }
4657
4658 if (t != nullptr)
4659 {
4660 /* Set the threads as non-executing to avoid
4661 another stop attempt on them. */
4662 switch_to_thread_no_regs (t);
4663 mark_non_executing_threads (event.target, event.ptid,
4664 event.ws);
4665 save_waitstatus (t, &event.ws);
4666 t->stop_requested = false;
4667 }
4668 }
4669 else
4670 {
4671 thread_info *t = find_thread_ptid (event.target, event.ptid);
4672 if (t == NULL)
4673 t = add_thread (event.target, event.ptid);
4674
4675 t->stop_requested = 0;
4676 t->executing = 0;
4677 t->resumed = false;
4678 t->control.may_range_step = 0;
4679
4680 /* This may be the first time we see the inferior report
4681 a stop. */
4682 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4683 if (inf->needs_setup)
4684 {
4685 switch_to_thread_no_regs (t);
4686 setup_inferior (0);
4687 }
4688
4689 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4690 && event.ws.value.sig == GDB_SIGNAL_0)
4691 {
4692 /* We caught the event that we intended to catch, so
4693 there's no event pending. */
4694 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4695 t->suspend.waitstatus_pending_p = 0;
4696
4697 if (displaced_step_finish (t, GDB_SIGNAL_0)
4698 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4699 {
4700 /* Add it back to the step-over queue. */
4701 infrun_debug_printf
4702 ("displaced-step of %s canceled",
4703 target_pid_to_str (t->ptid).c_str ());
4704
4705 t->control.trap_expected = 0;
8ff53139
PA
4706 if (!t->inf->detaching)
4707 global_thread_step_over_chain_enqueue (t);
d758e62c
PA
4708 }
4709 }
4710 else
4711 {
4712 enum gdb_signal sig;
4713 struct regcache *regcache;
4714
4715 infrun_debug_printf
4716 ("target_wait %s, saving status for %d.%ld.%ld",
4717 target_waitstatus_to_string (&event.ws).c_str (),
4718 t->ptid.pid (), t->ptid.lwp (), t->ptid.tid ());
4719
4720 /* Record for later. */
4721 save_waitstatus (t, &event.ws);
4722
4723 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4724 ? event.ws.value.sig : GDB_SIGNAL_0);
4725
4726 if (displaced_step_finish (t, sig)
4727 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4728 {
4729 /* Add it back to the step-over queue. */
4730 t->control.trap_expected = 0;
8ff53139
PA
4731 if (!t->inf->detaching)
4732 global_thread_step_over_chain_enqueue (t);
d758e62c
PA
4733 }
4734
4735 regcache = get_thread_regcache (t);
4736 t->suspend.stop_pc = regcache_read_pc (regcache);
4737
4738 infrun_debug_printf ("saved stop_pc=%s for %s "
4739 "(currently_stepping=%d)",
4740 paddress (target_gdbarch (),
4741 t->suspend.stop_pc),
4742 target_pid_to_str (t->ptid).c_str (),
4743 currently_stepping (t));
4744 }
4745 }
4746
4747 return false;
4748}
4749
6efcd9a8 4750/* See infrun.h. */
372316f1 4751
6efcd9a8 4752void
372316f1
PA
4753stop_all_threads (void)
4754{
4755 /* We may need multiple passes to discover all threads. */
4756 int pass;
4757 int iterations = 0;
372316f1 4758
53cccef1 4759 gdb_assert (exists_non_stop_target ());
372316f1 4760
1eb8556f 4761 infrun_debug_printf ("starting");
372316f1 4762
00431a78 4763 scoped_restore_current_thread restore_thread;
372316f1 4764
6ad82919
TBA
4765 /* Enable thread events of all targets. */
4766 for (auto *target : all_non_exited_process_targets ())
4767 {
4768 switch_to_target_no_thread (target);
4769 target_thread_events (true);
4770 }
4771
4772 SCOPE_EXIT
4773 {
4774 /* Disable thread events of all targets. */
4775 for (auto *target : all_non_exited_process_targets ())
4776 {
4777 switch_to_target_no_thread (target);
4778 target_thread_events (false);
4779 }
4780
17417fb0 4781 /* Use debug_prefixed_printf directly to get a meaningful function
dda83cd7 4782 name. */
6ad82919 4783 if (debug_infrun)
17417fb0 4784 debug_prefixed_printf ("infrun", "stop_all_threads", "done");
6ad82919 4785 };
65706a29 4786
372316f1
PA
4787 /* Request threads to stop, and then wait for the stops. Because
4788 threads we already know about can spawn more threads while we're
4789 trying to stop them, and we only learn about new threads when we
4790 update the thread list, do this in a loop, and keep iterating
4791 until two passes find no threads that need to be stopped. */
4792 for (pass = 0; pass < 2; pass++, iterations++)
4793 {
1eb8556f 4794 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
372316f1
PA
4795 while (1)
4796 {
29d6859f 4797 int waits_needed = 0;
372316f1 4798
a05575d3
TBA
4799 for (auto *target : all_non_exited_process_targets ())
4800 {
4801 switch_to_target_no_thread (target);
4802 update_thread_list ();
4803 }
372316f1
PA
4804
4805 /* Go through all threads looking for threads that we need
4806 to tell the target to stop. */
08036331 4807 for (thread_info *t : all_non_exited_threads ())
372316f1 4808 {
53cccef1
TBA
4809 /* For a single-target setting with an all-stop target,
4810 we would not even arrive here. For a multi-target
4811 setting, until GDB is able to handle a mixture of
4812 all-stop and non-stop targets, simply skip all-stop
4813 targets' threads. This should be fine due to the
4814 protection of 'check_multi_target_resumption'. */
4815
4816 switch_to_thread_no_regs (t);
4817 if (!target_is_non_stop_p ())
4818 continue;
4819
372316f1
PA
4820 if (t->executing)
4821 {
4822 /* If already stopping, don't request a stop again.
4823 We just haven't seen the notification yet. */
4824 if (!t->stop_requested)
4825 {
1eb8556f
SM
4826 infrun_debug_printf (" %s executing, need stop",
4827 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4828 target_stop (t->ptid);
4829 t->stop_requested = 1;
4830 }
4831 else
4832 {
1eb8556f
SM
4833 infrun_debug_printf (" %s executing, already stopping",
4834 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4835 }
4836
4837 if (t->stop_requested)
29d6859f 4838 waits_needed++;
372316f1
PA
4839 }
4840 else
4841 {
1eb8556f
SM
4842 infrun_debug_printf (" %s not executing",
4843 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4844
4845 /* The thread may be not executing, but still be
4846 resumed with a pending status to process. */
719546c4 4847 t->resumed = false;
372316f1
PA
4848 }
4849 }
4850
29d6859f 4851 if (waits_needed == 0)
372316f1
PA
4852 break;
4853
4854 /* If we find new threads on the second iteration, restart
4855 over. We want to see two iterations in a row with all
4856 threads stopped. */
4857 if (pass > 0)
4858 pass = -1;
4859
29d6859f 4860 for (int i = 0; i < waits_needed; i++)
c29705b7 4861 {
29d6859f 4862 wait_one_event event = wait_one ();
d758e62c
PA
4863 if (handle_one (event))
4864 break;
372316f1
PA
4865 }
4866 }
4867 }
372316f1
PA
4868}
4869
f4836ba9
PA
4870/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4871
c4464ade 4872static bool
f4836ba9
PA
4873handle_no_resumed (struct execution_control_state *ecs)
4874{
3b12939d 4875 if (target_can_async_p ())
f4836ba9 4876 {
c4464ade 4877 bool any_sync = false;
f4836ba9 4878
2dab0c7b 4879 for (ui *ui : all_uis ())
3b12939d
PA
4880 {
4881 if (ui->prompt_state == PROMPT_BLOCKED)
4882 {
c4464ade 4883 any_sync = true;
3b12939d
PA
4884 break;
4885 }
4886 }
4887 if (!any_sync)
4888 {
4889 /* There were no unwaited-for children left in the target, but,
4890 we're not synchronously waiting for events either. Just
4891 ignore. */
4892
1eb8556f 4893 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
3b12939d 4894 prepare_to_wait (ecs);
c4464ade 4895 return true;
3b12939d 4896 }
f4836ba9
PA
4897 }
4898
4899 /* Otherwise, if we were running a synchronous execution command, we
4900 may need to cancel it and give the user back the terminal.
4901
4902 In non-stop mode, the target can't tell whether we've already
4903 consumed previous stop events, so it can end up sending us a
4904 no-resumed event like so:
4905
4906 #0 - thread 1 is left stopped
4907
4908 #1 - thread 2 is resumed and hits breakpoint
dda83cd7 4909 -> TARGET_WAITKIND_STOPPED
f4836ba9
PA
4910
4911 #2 - thread 3 is resumed and exits
dda83cd7 4912 this is the last resumed thread, so
f4836ba9
PA
4913 -> TARGET_WAITKIND_NO_RESUMED
4914
4915 #3 - gdb processes stop for thread 2 and decides to re-resume
dda83cd7 4916 it.
f4836ba9
PA
4917
4918 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
dda83cd7 4919 thread 2 is now resumed, so the event should be ignored.
f4836ba9
PA
4920
4921 IOW, if the stop for thread 2 doesn't end a foreground command,
4922 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4923 event. But it could be that the event meant that thread 2 itself
4924 (or whatever other thread was the last resumed thread) exited.
4925
4926 To address this we refresh the thread list and check whether we
4927 have resumed threads _now_. In the example above, this removes
4928 thread 3 from the thread list. If thread 2 was re-resumed, we
4929 ignore this event. If we find no thread resumed, then we cancel
7d3badc6
PA
4930 the synchronous command and show "no unwaited-for " to the
4931 user. */
f4836ba9 4932
d6cc5d98 4933 inferior *curr_inf = current_inferior ();
7d3badc6 4934
d6cc5d98
PA
4935 scoped_restore_current_thread restore_thread;
4936
4937 for (auto *target : all_non_exited_process_targets ())
4938 {
4939 switch_to_target_no_thread (target);
4940 update_thread_list ();
4941 }
4942
4943 /* If:
4944
4945 - the current target has no thread executing, and
4946 - the current inferior is native, and
4947 - the current inferior is the one which has the terminal, and
4948 - we did nothing,
4949
4950 then a Ctrl-C from this point on would remain stuck in the
4951 kernel, until a thread resumes and dequeues it. That would
4952 result in the GDB CLI not reacting to Ctrl-C, not able to
4953 interrupt the program. To address this, if the current inferior
4954 no longer has any thread executing, we give the terminal to some
4955 other inferior that has at least one thread executing. */
4956 bool swap_terminal = true;
4957
4958 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4959 whether to report it to the user. */
4960 bool ignore_event = false;
7d3badc6
PA
4961
4962 for (thread_info *thread : all_non_exited_threads ())
f4836ba9 4963 {
d6cc5d98
PA
4964 if (swap_terminal && thread->executing)
4965 {
4966 if (thread->inf != curr_inf)
4967 {
4968 target_terminal::ours ();
4969
4970 switch_to_thread (thread);
4971 target_terminal::inferior ();
4972 }
4973 swap_terminal = false;
4974 }
4975
4976 if (!ignore_event
4977 && (thread->executing
4978 || thread->suspend.waitstatus_pending_p))
f4836ba9 4979 {
7d3badc6
PA
4980 /* Either there were no unwaited-for children left in the
4981 target at some point, but there are now, or some target
4982 other than the eventing one has unwaited-for children
4983 left. Just ignore. */
1eb8556f
SM
4984 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
4985 "(ignoring: found resumed)");
d6cc5d98
PA
4986
4987 ignore_event = true;
f4836ba9 4988 }
d6cc5d98
PA
4989
4990 if (ignore_event && !swap_terminal)
4991 break;
4992 }
4993
4994 if (ignore_event)
4995 {
4996 switch_to_inferior_no_thread (curr_inf);
4997 prepare_to_wait (ecs);
c4464ade 4998 return true;
f4836ba9
PA
4999 }
5000
5001 /* Go ahead and report the event. */
c4464ade 5002 return false;
f4836ba9
PA
5003}
5004
05ba8510
PA
5005/* Given an execution control state that has been freshly filled in by
5006 an event from the inferior, figure out what it means and take
5007 appropriate action.
5008
5009 The alternatives are:
5010
22bcd14b 5011 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5012 debugger.
5013
5014 2) keep_going and return; to wait for the next event (set
5015 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5016 once). */
c906108c 5017
ec9499be 5018static void
595915c1 5019handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5020{
595915c1
TT
5021 /* Make sure that all temporary struct value objects that were
5022 created during the handling of the event get deleted at the
5023 end. */
5024 scoped_value_mark free_values;
5025
d6b48e9c
PA
5026 enum stop_kind stop_soon;
5027
1eb8556f 5028 infrun_debug_printf ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
c29705b7 5029
28736962
PA
5030 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5031 {
5032 /* We had an event in the inferior, but we are not interested in
5033 handling it at this level. The lower layers have already
5034 done what needs to be done, if anything.
5035
5036 One of the possible circumstances for this is when the
5037 inferior produces output for the console. The inferior has
5038 not stopped, and we are ignoring the event. Another possible
5039 circumstance is any event which the lower level knows will be
5040 reported multiple times without an intervening resume. */
28736962
PA
5041 prepare_to_wait (ecs);
5042 return;
5043 }
5044
65706a29
PA
5045 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5046 {
65706a29
PA
5047 prepare_to_wait (ecs);
5048 return;
5049 }
5050
0e5bf2a8 5051 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5052 && handle_no_resumed (ecs))
5053 return;
0e5bf2a8 5054
5b6d1e4f
PA
5055 /* Cache the last target/ptid/waitstatus. */
5056 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5057
ca005067 5058 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5059 stop_stack_dummy = STOP_NONE;
ca005067 5060
0e5bf2a8
PA
5061 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5062 {
5063 /* No unwaited-for children left. IOW, all resumed children
5064 have exited. */
c4464ade 5065 stop_print_frame = false;
22bcd14b 5066 stop_waiting (ecs);
0e5bf2a8
PA
5067 return;
5068 }
5069
8c90c137 5070 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5071 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5072 {
5b6d1e4f 5073 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5074 /* If it's a new thread, add it to the thread database. */
5075 if (ecs->event_thread == NULL)
5b6d1e4f 5076 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5077
5078 /* Disable range stepping. If the next step request could use a
5079 range, this will be end up re-enabled then. */
5080 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5081 }
88ed393a
JK
5082
5083 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5084 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5085
5086 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5087 reinit_frame_cache ();
5088
28736962
PA
5089 breakpoint_retire_moribund ();
5090
2b009048
DJ
5091 /* First, distinguish signals caused by the debugger from signals
5092 that have to do with the program's own actions. Note that
5093 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5094 on the operating system version. Here we detect when a SIGILL or
5095 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5096 something similar for SIGSEGV, since a SIGSEGV will be generated
5097 when we're trying to execute a breakpoint instruction on a
5098 non-executable stack. This happens for call dummy breakpoints
5099 for architectures like SPARC that place call dummies on the
5100 stack. */
2b009048 5101 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5102 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5103 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5104 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5105 {
00431a78 5106 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5107
a01bda52 5108 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5109 regcache_read_pc (regcache)))
5110 {
1eb8556f 5111 infrun_debug_printf ("Treating signal as SIGTRAP");
a493e3e2 5112 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5113 }
2b009048
DJ
5114 }
5115
293b3ebc 5116 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
8c90c137 5117
488f131b
JB
5118 switch (ecs->ws.kind)
5119 {
5120 case TARGET_WAITKIND_LOADED:
00431a78 5121 context_switch (ecs);
b0f4b84b 5122 /* Ignore gracefully during startup of the inferior, as it might
dda83cd7
SM
5123 be the shell which has just loaded some objects, otherwise
5124 add the symbols for the newly loaded objects. Also ignore at
5125 the beginning of an attach or remote session; we will query
5126 the full list of libraries once the connection is
5127 established. */
4f5d7f63 5128
00431a78 5129 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 5130 if (stop_soon == NO_STOP_QUIETLY)
488f131b 5131 {
edcc5120
TT
5132 struct regcache *regcache;
5133
00431a78 5134 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
5135
5136 handle_solib_event ();
5137
5138 ecs->event_thread->control.stop_bpstat
a01bda52 5139 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
5140 ecs->event_thread->suspend.stop_pc,
5141 ecs->event_thread, &ecs->ws);
ab04a2af 5142
c65d6b55
PA
5143 if (handle_stop_requested (ecs))
5144 return;
5145
ce12b012 5146 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
5147 {
5148 /* A catchpoint triggered. */
94c57d6a
PA
5149 process_event_stop_test (ecs);
5150 return;
edcc5120 5151 }
488f131b 5152
b0f4b84b
DJ
5153 /* If requested, stop when the dynamic linker notifies
5154 gdb of events. This allows the user to get control
5155 and place breakpoints in initializer routines for
5156 dynamically loaded objects (among other things). */
a493e3e2 5157 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5158 if (stop_on_solib_events)
5159 {
55409f9d
DJ
5160 /* Make sure we print "Stopped due to solib-event" in
5161 normal_stop. */
c4464ade 5162 stop_print_frame = true;
55409f9d 5163
22bcd14b 5164 stop_waiting (ecs);
b0f4b84b
DJ
5165 return;
5166 }
488f131b 5167 }
b0f4b84b
DJ
5168
5169 /* If we are skipping through a shell, or through shared library
5170 loading that we aren't interested in, resume the program. If
5c09a2c5 5171 we're running the program normally, also resume. */
b0f4b84b
DJ
5172 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5173 {
74960c60
VP
5174 /* Loading of shared libraries might have changed breakpoint
5175 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5176 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5177 insert_breakpoints ();
64ce06e4 5178 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5179 prepare_to_wait (ecs);
5180 return;
5181 }
5182
5c09a2c5
PA
5183 /* But stop if we're attaching or setting up a remote
5184 connection. */
5185 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5186 || stop_soon == STOP_QUIETLY_REMOTE)
5187 {
1eb8556f 5188 infrun_debug_printf ("quietly stopped");
22bcd14b 5189 stop_waiting (ecs);
5c09a2c5
PA
5190 return;
5191 }
5192
5193 internal_error (__FILE__, __LINE__,
5194 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5195
488f131b 5196 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5197 if (handle_stop_requested (ecs))
5198 return;
00431a78 5199 context_switch (ecs);
64ce06e4 5200 resume (GDB_SIGNAL_0);
488f131b
JB
5201 prepare_to_wait (ecs);
5202 return;
c5aa993b 5203
65706a29 5204 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5205 if (handle_stop_requested (ecs))
5206 return;
00431a78 5207 context_switch (ecs);
65706a29
PA
5208 if (!switch_back_to_stepped_thread (ecs))
5209 keep_going (ecs);
5210 return;
5211
488f131b 5212 case TARGET_WAITKIND_EXITED:
940c3c06 5213 case TARGET_WAITKIND_SIGNALLED:
18493a00
PA
5214 {
5215 /* Depending on the system, ecs->ptid may point to a thread or
5216 to a process. On some targets, target_mourn_inferior may
5217 need to have access to the just-exited thread. That is the
5218 case of GNU/Linux's "checkpoint" support, for example.
5219 Call the switch_to_xxx routine as appropriate. */
5220 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5221 if (thr != nullptr)
5222 switch_to_thread (thr);
5223 else
5224 {
5225 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5226 switch_to_inferior_no_thread (inf);
5227 }
5228 }
6c95b8df 5229 handle_vfork_child_exec_or_exit (0);
223ffa71 5230 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5231
0c557179
SDJ
5232 /* Clearing any previous state of convenience variables. */
5233 clear_exit_convenience_vars ();
5234
940c3c06
PA
5235 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5236 {
5237 /* Record the exit code in the convenience variable $_exitcode, so
5238 that the user can inspect this again later. */
5239 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5240 (LONGEST) ecs->ws.value.integer);
5241
5242 /* Also record this in the inferior itself. */
5243 current_inferior ()->has_exit_code = 1;
5244 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5245
98eb56a4
PA
5246 /* Support the --return-child-result option. */
5247 return_child_result_value = ecs->ws.value.integer;
5248
76727919 5249 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5250 }
5251 else
0c557179 5252 {
00431a78 5253 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5254
5255 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5256 {
5257 /* Set the value of the internal variable $_exitsignal,
5258 which holds the signal uncaught by the inferior. */
5259 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5260 gdbarch_gdb_signal_to_target (gdbarch,
5261 ecs->ws.value.sig));
5262 }
5263 else
5264 {
5265 /* We don't have access to the target's method used for
5266 converting between signal numbers (GDB's internal
5267 representation <-> target's representation).
5268 Therefore, we cannot do a good job at displaying this
5269 information to the user. It's better to just warn
5270 her about it (if infrun debugging is enabled), and
5271 give up. */
1eb8556f
SM
5272 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5273 "signal number.");
0c557179
SDJ
5274 }
5275
76727919 5276 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5277 }
8cf64490 5278
488f131b 5279 gdb_flush (gdb_stdout);
bc1e6c81 5280 target_mourn_inferior (inferior_ptid);
c4464ade 5281 stop_print_frame = false;
22bcd14b 5282 stop_waiting (ecs);
488f131b 5283 return;
c5aa993b 5284
488f131b 5285 case TARGET_WAITKIND_FORKED:
deb3b17b 5286 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5287 /* Check whether the inferior is displaced stepping. */
5288 {
00431a78 5289 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5290 struct gdbarch *gdbarch = regcache->arch ();
c0aba012 5291 inferior *parent_inf = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639 5292
187b041e
SM
5293 /* If this is a fork (child gets its own address space copy) and some
5294 displaced step buffers were in use at the time of the fork, restore
5295 the displaced step buffer bytes in the child process. */
c0aba012 5296 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
187b041e
SM
5297 gdbarch_displaced_step_restore_all_in_ptid
5298 (gdbarch, parent_inf, ecs->ws.value.related_pid);
c0aba012
SM
5299
5300 /* If displaced stepping is supported, and thread ecs->ptid is
5301 displaced stepping. */
00431a78 5302 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639 5303 {
e2d96639
YQ
5304 struct regcache *child_regcache;
5305 CORE_ADDR parent_pc;
5306
5307 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5308 indicating that the displaced stepping of syscall instruction
5309 has been done. Perform cleanup for parent process here. Note
5310 that this operation also cleans up the child process for vfork,
5311 because their pages are shared. */
7def77a1 5312 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5313 /* Start a new step-over in another thread if there's one
5314 that needs it. */
5315 start_step_over ();
e2d96639 5316
e2d96639
YQ
5317 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5318 the child's PC is also within the scratchpad. Set the child's PC
5319 to the parent's PC value, which has already been fixed up.
5320 FIXME: we use the parent's aspace here, although we're touching
5321 the child, because the child hasn't been added to the inferior
5322 list yet at this point. */
5323
5324 child_regcache
5b6d1e4f
PA
5325 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5326 ecs->ws.value.related_pid,
e2d96639
YQ
5327 gdbarch,
5328 parent_inf->aspace);
5329 /* Read PC value of parent process. */
5330 parent_pc = regcache_read_pc (regcache);
5331
136821d9
SM
5332 displaced_debug_printf ("write child pc from %s to %s",
5333 paddress (gdbarch,
5334 regcache_read_pc (child_regcache)),
5335 paddress (gdbarch, parent_pc));
e2d96639
YQ
5336
5337 regcache_write_pc (child_regcache, parent_pc);
5338 }
5339 }
5340
00431a78 5341 context_switch (ecs);
5a2901d9 5342
b242c3c2
PA
5343 /* Immediately detach breakpoints from the child before there's
5344 any chance of letting the user delete breakpoints from the
5345 breakpoint lists. If we don't do this early, it's easy to
5346 leave left over traps in the child, vis: "break foo; catch
5347 fork; c; <fork>; del; c; <child calls foo>". We only follow
5348 the fork on the last `continue', and by that time the
5349 breakpoint at "foo" is long gone from the breakpoint table.
5350 If we vforked, then we don't need to unpatch here, since both
5351 parent and child are sharing the same memory pages; we'll
5352 need to unpatch at follow/detach time instead to be certain
5353 that new breakpoints added between catchpoint hit time and
5354 vfork follow are detached. */
5355 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5356 {
b242c3c2
PA
5357 /* This won't actually modify the breakpoint list, but will
5358 physically remove the breakpoints from the child. */
d80ee84f 5359 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5360 }
5361
34b7e8a6 5362 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5363
e58b0e63
PA
5364 /* In case the event is caught by a catchpoint, remember that
5365 the event is to be followed at the next resume of the thread,
5366 and not immediately. */
5367 ecs->event_thread->pending_follow = ecs->ws;
5368
f2ffa92b
PA
5369 ecs->event_thread->suspend.stop_pc
5370 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5371
16c381f0 5372 ecs->event_thread->control.stop_bpstat
a01bda52 5373 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5374 ecs->event_thread->suspend.stop_pc,
5375 ecs->event_thread, &ecs->ws);
675bf4cb 5376
c65d6b55
PA
5377 if (handle_stop_requested (ecs))
5378 return;
5379
ce12b012
PA
5380 /* If no catchpoint triggered for this, then keep going. Note
5381 that we're interested in knowing the bpstat actually causes a
5382 stop, not just if it may explain the signal. Software
5383 watchpoints, for example, always appear in the bpstat. */
5384 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5385 {
5ab2fbf1 5386 bool follow_child
3e43a32a 5387 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5388
a493e3e2 5389 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5390
5b6d1e4f
PA
5391 process_stratum_target *targ
5392 = ecs->event_thread->inf->process_target ();
5393
5ab2fbf1 5394 bool should_resume = follow_fork ();
e58b0e63 5395
5b6d1e4f
PA
5396 /* Note that one of these may be an invalid pointer,
5397 depending on detach_fork. */
00431a78 5398 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5399 thread_info *child
5400 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5401
a2077e25
PA
5402 /* At this point, the parent is marked running, and the
5403 child is marked stopped. */
5404
5405 /* If not resuming the parent, mark it stopped. */
5406 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5407 parent->set_running (false);
a2077e25
PA
5408
5409 /* If resuming the child, mark it running. */
5410 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5411 child->set_running (true);
a2077e25 5412
6c95b8df 5413 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5414 if (!detach_fork && (non_stop
5415 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5416 {
5417 if (follow_child)
5418 switch_to_thread (parent);
5419 else
5420 switch_to_thread (child);
5421
5422 ecs->event_thread = inferior_thread ();
5423 ecs->ptid = inferior_ptid;
5424 keep_going (ecs);
5425 }
5426
5427 if (follow_child)
5428 switch_to_thread (child);
5429 else
5430 switch_to_thread (parent);
5431
e58b0e63
PA
5432 ecs->event_thread = inferior_thread ();
5433 ecs->ptid = inferior_ptid;
5434
5435 if (should_resume)
5436 keep_going (ecs);
5437 else
22bcd14b 5438 stop_waiting (ecs);
04e68871
DJ
5439 return;
5440 }
94c57d6a
PA
5441 process_event_stop_test (ecs);
5442 return;
488f131b 5443
6c95b8df
PA
5444 case TARGET_WAITKIND_VFORK_DONE:
5445 /* Done with the shared memory region. Re-insert breakpoints in
5446 the parent, and keep going. */
5447
00431a78 5448 context_switch (ecs);
6c95b8df
PA
5449
5450 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5451 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5452
5453 if (handle_stop_requested (ecs))
5454 return;
5455
6c95b8df
PA
5456 /* This also takes care of reinserting breakpoints in the
5457 previously locked inferior. */
5458 keep_going (ecs);
5459 return;
5460
488f131b 5461 case TARGET_WAITKIND_EXECD:
488f131b 5462
cbd2b4e3
PA
5463 /* Note we can't read registers yet (the stop_pc), because we
5464 don't yet know the inferior's post-exec architecture.
5465 'stop_pc' is explicitly read below instead. */
00431a78 5466 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5467
6c95b8df
PA
5468 /* Do whatever is necessary to the parent branch of the vfork. */
5469 handle_vfork_child_exec_or_exit (1);
5470
795e548f 5471 /* This causes the eventpoints and symbol table to be reset.
dda83cd7
SM
5472 Must do this now, before trying to determine whether to
5473 stop. */
71b43ef8 5474 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5475
17d8546e
DB
5476 /* In follow_exec we may have deleted the original thread and
5477 created a new one. Make sure that the event thread is the
5478 execd thread for that case (this is a nop otherwise). */
5479 ecs->event_thread = inferior_thread ();
5480
f2ffa92b
PA
5481 ecs->event_thread->suspend.stop_pc
5482 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5483
16c381f0 5484 ecs->event_thread->control.stop_bpstat
a01bda52 5485 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5486 ecs->event_thread->suspend.stop_pc,
5487 ecs->event_thread, &ecs->ws);
795e548f 5488
71b43ef8
PA
5489 /* Note that this may be referenced from inside
5490 bpstat_stop_status above, through inferior_has_execd. */
5491 xfree (ecs->ws.value.execd_pathname);
5492 ecs->ws.value.execd_pathname = NULL;
5493
c65d6b55
PA
5494 if (handle_stop_requested (ecs))
5495 return;
5496
04e68871 5497 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5498 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5499 {
a493e3e2 5500 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5501 keep_going (ecs);
5502 return;
5503 }
94c57d6a
PA
5504 process_event_stop_test (ecs);
5505 return;
488f131b 5506
b4dc5ffa 5507 /* Be careful not to try to gather much state about a thread
dda83cd7 5508 that's in a syscall. It's frequently a losing proposition. */
488f131b 5509 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5510 /* Getting the current syscall number. */
94c57d6a
PA
5511 if (handle_syscall_event (ecs) == 0)
5512 process_event_stop_test (ecs);
5513 return;
c906108c 5514
488f131b 5515 /* Before examining the threads further, step this thread to
dda83cd7
SM
5516 get it entirely out of the syscall. (We get notice of the
5517 event when the thread is just on the verge of exiting a
5518 syscall. Stepping one instruction seems to get it back
5519 into user code.) */
488f131b 5520 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5521 if (handle_syscall_event (ecs) == 0)
5522 process_event_stop_test (ecs);
5523 return;
c906108c 5524
488f131b 5525 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5526 handle_signal_stop (ecs);
5527 return;
c906108c 5528
b2175913
MS
5529 case TARGET_WAITKIND_NO_HISTORY:
5530 /* Reverse execution: target ran out of history info. */
eab402df 5531
d1988021 5532 /* Switch to the stopped thread. */
00431a78 5533 context_switch (ecs);
1eb8556f 5534 infrun_debug_printf ("stopped");
d1988021 5535
34b7e8a6 5536 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5537 ecs->event_thread->suspend.stop_pc
5538 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5539
5540 if (handle_stop_requested (ecs))
5541 return;
5542
76727919 5543 gdb::observers::no_history.notify ();
22bcd14b 5544 stop_waiting (ecs);
b2175913 5545 return;
488f131b 5546 }
4f5d7f63
PA
5547}
5548
372316f1
PA
5549/* Restart threads back to what they were trying to do back when we
5550 paused them for an in-line step-over. The EVENT_THREAD thread is
5551 ignored. */
4d9d9d04
PA
5552
5553static void
372316f1
PA
5554restart_threads (struct thread_info *event_thread)
5555{
372316f1
PA
5556 /* In case the instruction just stepped spawned a new thread. */
5557 update_thread_list ();
5558
08036331 5559 for (thread_info *tp : all_non_exited_threads ())
372316f1 5560 {
ac7d717c
PA
5561 if (tp->inf->detaching)
5562 {
5563 infrun_debug_printf ("restart threads: [%s] inferior detaching",
5564 target_pid_to_str (tp->ptid).c_str ());
5565 continue;
5566 }
5567
f3f8ece4
PA
5568 switch_to_thread_no_regs (tp);
5569
372316f1
PA
5570 if (tp == event_thread)
5571 {
1eb8556f
SM
5572 infrun_debug_printf ("restart threads: [%s] is event thread",
5573 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5574 continue;
5575 }
5576
5577 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5578 {
1eb8556f
SM
5579 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5580 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5581 continue;
5582 }
5583
5584 if (tp->resumed)
5585 {
1eb8556f
SM
5586 infrun_debug_printf ("restart threads: [%s] resumed",
5587 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5588 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5589 continue;
5590 }
5591
5592 if (thread_is_in_step_over_chain (tp))
5593 {
1eb8556f
SM
5594 infrun_debug_printf ("restart threads: [%s] needs step-over",
5595 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5596 gdb_assert (!tp->resumed);
5597 continue;
5598 }
5599
5600
5601 if (tp->suspend.waitstatus_pending_p)
5602 {
1eb8556f
SM
5603 infrun_debug_printf ("restart threads: [%s] has pending status",
5604 target_pid_to_str (tp->ptid).c_str ());
719546c4 5605 tp->resumed = true;
372316f1
PA
5606 continue;
5607 }
5608
c65d6b55
PA
5609 gdb_assert (!tp->stop_requested);
5610
372316f1
PA
5611 /* If some thread needs to start a step-over at this point, it
5612 should still be in the step-over queue, and thus skipped
5613 above. */
5614 if (thread_still_needs_step_over (tp))
5615 {
5616 internal_error (__FILE__, __LINE__,
5617 "thread [%s] needs a step-over, but not in "
5618 "step-over queue\n",
a068643d 5619 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5620 }
5621
5622 if (currently_stepping (tp))
5623 {
1eb8556f
SM
5624 infrun_debug_printf ("restart threads: [%s] was stepping",
5625 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5626 keep_going_stepped_thread (tp);
5627 }
5628 else
5629 {
5630 struct execution_control_state ecss;
5631 struct execution_control_state *ecs = &ecss;
5632
1eb8556f
SM
5633 infrun_debug_printf ("restart threads: [%s] continuing",
5634 target_pid_to_str (tp->ptid).c_str ());
372316f1 5635 reset_ecs (ecs, tp);
00431a78 5636 switch_to_thread (tp);
372316f1
PA
5637 keep_going_pass_signal (ecs);
5638 }
5639 }
5640}
5641
5642/* Callback for iterate_over_threads. Find a resumed thread that has
5643 a pending waitstatus. */
5644
5645static int
5646resumed_thread_with_pending_status (struct thread_info *tp,
5647 void *arg)
5648{
5649 return (tp->resumed
5650 && tp->suspend.waitstatus_pending_p);
5651}
5652
5653/* Called when we get an event that may finish an in-line or
5654 out-of-line (displaced stepping) step-over started previously.
5655 Return true if the event is processed and we should go back to the
5656 event loop; false if the caller should continue processing the
5657 event. */
5658
5659static int
4d9d9d04
PA
5660finish_step_over (struct execution_control_state *ecs)
5661{
7def77a1
SM
5662 displaced_step_finish (ecs->event_thread,
5663 ecs->event_thread->suspend.stop_signal);
4d9d9d04 5664
c4464ade 5665 bool had_step_over_info = step_over_info_valid_p ();
372316f1
PA
5666
5667 if (had_step_over_info)
4d9d9d04
PA
5668 {
5669 /* If we're stepping over a breakpoint with all threads locked,
5670 then only the thread that was stepped should be reporting
5671 back an event. */
5672 gdb_assert (ecs->event_thread->control.trap_expected);
5673
c65d6b55 5674 clear_step_over_info ();
4d9d9d04
PA
5675 }
5676
fbea99ea 5677 if (!target_is_non_stop_p ())
372316f1 5678 return 0;
4d9d9d04
PA
5679
5680 /* Start a new step-over in another thread if there's one that
5681 needs it. */
5682 start_step_over ();
372316f1
PA
5683
5684 /* If we were stepping over a breakpoint before, and haven't started
5685 a new in-line step-over sequence, then restart all other threads
5686 (except the event thread). We can't do this in all-stop, as then
5687 e.g., we wouldn't be able to issue any other remote packet until
5688 these other threads stop. */
5689 if (had_step_over_info && !step_over_info_valid_p ())
5690 {
5691 struct thread_info *pending;
5692
5693 /* If we only have threads with pending statuses, the restart
5694 below won't restart any thread and so nothing re-inserts the
5695 breakpoint we just stepped over. But we need it inserted
5696 when we later process the pending events, otherwise if
5697 another thread has a pending event for this breakpoint too,
5698 we'd discard its event (because the breakpoint that
5699 originally caused the event was no longer inserted). */
00431a78 5700 context_switch (ecs);
372316f1
PA
5701 insert_breakpoints ();
5702
5703 restart_threads (ecs->event_thread);
5704
5705 /* If we have events pending, go through handle_inferior_event
5706 again, picking up a pending event at random. This avoids
5707 thread starvation. */
5708
5709 /* But not if we just stepped over a watchpoint in order to let
5710 the instruction execute so we can evaluate its expression.
5711 The set of watchpoints that triggered is recorded in the
5712 breakpoint objects themselves (see bp->watchpoint_triggered).
5713 If we processed another event first, that other event could
5714 clobber this info. */
5715 if (ecs->event_thread->stepping_over_watchpoint)
5716 return 0;
5717
5718 pending = iterate_over_threads (resumed_thread_with_pending_status,
5719 NULL);
5720 if (pending != NULL)
5721 {
5722 struct thread_info *tp = ecs->event_thread;
5723 struct regcache *regcache;
5724
1eb8556f
SM
5725 infrun_debug_printf ("found resumed threads with "
5726 "pending events, saving status");
372316f1
PA
5727
5728 gdb_assert (pending != tp);
5729
5730 /* Record the event thread's event for later. */
5731 save_waitstatus (tp, &ecs->ws);
5732 /* This was cleared early, by handle_inferior_event. Set it
5733 so this pending event is considered by
5734 do_target_wait. */
719546c4 5735 tp->resumed = true;
372316f1
PA
5736
5737 gdb_assert (!tp->executing);
5738
00431a78 5739 regcache = get_thread_regcache (tp);
372316f1
PA
5740 tp->suspend.stop_pc = regcache_read_pc (regcache);
5741
1eb8556f
SM
5742 infrun_debug_printf ("saved stop_pc=%s for %s "
5743 "(currently_stepping=%d)",
5744 paddress (target_gdbarch (),
dda83cd7 5745 tp->suspend.stop_pc),
1eb8556f
SM
5746 target_pid_to_str (tp->ptid).c_str (),
5747 currently_stepping (tp));
372316f1
PA
5748
5749 /* This in-line step-over finished; clear this so we won't
5750 start a new one. This is what handle_signal_stop would
5751 do, if we returned false. */
5752 tp->stepping_over_breakpoint = 0;
5753
5754 /* Wake up the event loop again. */
5755 mark_async_event_handler (infrun_async_inferior_event_token);
5756
5757 prepare_to_wait (ecs);
5758 return 1;
5759 }
5760 }
5761
5762 return 0;
4d9d9d04
PA
5763}
5764
4f5d7f63
PA
5765/* Come here when the program has stopped with a signal. */
5766
5767static void
5768handle_signal_stop (struct execution_control_state *ecs)
5769{
5770 struct frame_info *frame;
5771 struct gdbarch *gdbarch;
5772 int stopped_by_watchpoint;
5773 enum stop_kind stop_soon;
5774 int random_signal;
c906108c 5775
f0407826
DE
5776 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5777
c65d6b55
PA
5778 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5779
f0407826
DE
5780 /* Do we need to clean up the state of a thread that has
5781 completed a displaced single-step? (Doing so usually affects
5782 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5783 if (finish_step_over (ecs))
5784 return;
f0407826
DE
5785
5786 /* If we either finished a single-step or hit a breakpoint, but
5787 the user wanted this thread to be stopped, pretend we got a
5788 SIG0 (generic unsignaled stop). */
5789 if (ecs->event_thread->stop_requested
5790 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5791 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5792
f2ffa92b
PA
5793 ecs->event_thread->suspend.stop_pc
5794 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5795
2ab76a18
PA
5796 context_switch (ecs);
5797
5798 if (deprecated_context_hook)
5799 deprecated_context_hook (ecs->event_thread->global_num);
5800
527159b7 5801 if (debug_infrun)
237fc4c9 5802 {
00431a78 5803 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5804 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 5805
1eb8556f
SM
5806 infrun_debug_printf ("stop_pc=%s",
5807 paddress (reg_gdbarch,
5808 ecs->event_thread->suspend.stop_pc));
d92524f1 5809 if (target_stopped_by_watchpoint ())
237fc4c9 5810 {
dda83cd7 5811 CORE_ADDR addr;
abbb1732 5812
1eb8556f 5813 infrun_debug_printf ("stopped by watchpoint");
237fc4c9 5814
8b88a78e 5815 if (target_stopped_data_address (current_top_target (), &addr))
1eb8556f 5816 infrun_debug_printf ("stopped data address=%s",
dda83cd7
SM
5817 paddress (reg_gdbarch, addr));
5818 else
1eb8556f 5819 infrun_debug_printf ("(no data address available)");
237fc4c9
PA
5820 }
5821 }
527159b7 5822
36fa8042
PA
5823 /* This is originated from start_remote(), start_inferior() and
5824 shared libraries hook functions. */
00431a78 5825 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5826 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5827 {
1eb8556f 5828 infrun_debug_printf ("quietly stopped");
c4464ade 5829 stop_print_frame = true;
22bcd14b 5830 stop_waiting (ecs);
36fa8042
PA
5831 return;
5832 }
5833
36fa8042
PA
5834 /* This originates from attach_command(). We need to overwrite
5835 the stop_signal here, because some kernels don't ignore a
5836 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5837 See more comments in inferior.h. On the other hand, if we
5838 get a non-SIGSTOP, report it to the user - assume the backend
5839 will handle the SIGSTOP if it should show up later.
5840
5841 Also consider that the attach is complete when we see a
5842 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5843 target extended-remote report it instead of a SIGSTOP
5844 (e.g. gdbserver). We already rely on SIGTRAP being our
5845 signal, so this is no exception.
5846
5847 Also consider that the attach is complete when we see a
5848 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5849 the target to stop all threads of the inferior, in case the
5850 low level attach operation doesn't stop them implicitly. If
5851 they weren't stopped implicitly, then the stub will report a
5852 GDB_SIGNAL_0, meaning: stopped for no particular reason
5853 other than GDB's request. */
5854 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5855 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5856 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5857 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5858 {
c4464ade 5859 stop_print_frame = true;
22bcd14b 5860 stop_waiting (ecs);
36fa8042
PA
5861 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5862 return;
5863 }
5864
568d6575
UW
5865 /* At this point, get hold of the now-current thread's frame. */
5866 frame = get_current_frame ();
5867 gdbarch = get_frame_arch (frame);
5868
2adfaa28 5869 /* Pull the single step breakpoints out of the target. */
af48d08f 5870 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5871 {
af48d08f 5872 struct regcache *regcache;
af48d08f 5873 CORE_ADDR pc;
2adfaa28 5874
00431a78 5875 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5876 const address_space *aspace = regcache->aspace ();
5877
af48d08f 5878 pc = regcache_read_pc (regcache);
34b7e8a6 5879
af48d08f
PA
5880 /* However, before doing so, if this single-step breakpoint was
5881 actually for another thread, set this thread up for moving
5882 past it. */
5883 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5884 aspace, pc))
5885 {
5886 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28 5887 {
1eb8556f
SM
5888 infrun_debug_printf ("[%s] hit another thread's single-step "
5889 "breakpoint",
5890 target_pid_to_str (ecs->ptid).c_str ());
af48d08f
PA
5891 ecs->hit_singlestep_breakpoint = 1;
5892 }
5893 }
5894 else
5895 {
1eb8556f
SM
5896 infrun_debug_printf ("[%s] hit its single-step breakpoint",
5897 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5898 }
488f131b 5899 }
af48d08f 5900 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5901
963f9c80
PA
5902 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5903 && ecs->event_thread->control.trap_expected
5904 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5905 stopped_by_watchpoint = 0;
5906 else
5907 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5908
5909 /* If necessary, step over this watchpoint. We'll be back to display
5910 it in a moment. */
5911 if (stopped_by_watchpoint
9aed480c 5912 && (target_have_steppable_watchpoint ()
568d6575 5913 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5914 {
488f131b 5915 /* At this point, we are stopped at an instruction which has
dda83cd7
SM
5916 attempted to write to a piece of memory under control of
5917 a watchpoint. The instruction hasn't actually executed
5918 yet. If we were to evaluate the watchpoint expression
5919 now, we would get the old value, and therefore no change
5920 would seem to have occurred.
5921
5922 In order to make watchpoints work `right', we really need
5923 to complete the memory write, and then evaluate the
5924 watchpoint expression. We do this by single-stepping the
d983da9c
DJ
5925 target.
5926
7f89fd65 5927 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5928 it. For example, the PA can (with some kernel cooperation)
5929 single step over a watchpoint without disabling the watchpoint.
5930
5931 It is far more common to need to disable a watchpoint to step
5932 the inferior over it. If we have non-steppable watchpoints,
5933 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5934 disable all watchpoints.
5935
5936 Any breakpoint at PC must also be stepped over -- if there's
5937 one, it will have already triggered before the watchpoint
5938 triggered, and we either already reported it to the user, or
5939 it didn't cause a stop and we called keep_going. In either
5940 case, if there was a breakpoint at PC, we must be trying to
5941 step past it. */
5942 ecs->event_thread->stepping_over_watchpoint = 1;
5943 keep_going (ecs);
488f131b
JB
5944 return;
5945 }
5946
4e1c45ea 5947 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5948 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5949 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5950 ecs->event_thread->control.stop_step = 0;
c4464ade 5951 stop_print_frame = true;
488f131b 5952 stopped_by_random_signal = 0;
ddfe970e 5953 bpstat stop_chain = NULL;
488f131b 5954
edb3359d
DJ
5955 /* Hide inlined functions starting here, unless we just performed stepi or
5956 nexti. After stepi and nexti, always show the innermost frame (not any
5957 inline function call sites). */
16c381f0 5958 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5959 {
00431a78
PA
5960 const address_space *aspace
5961 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5962
5963 /* skip_inline_frames is expensive, so we avoid it if we can
5964 determine that the address is one where functions cannot have
5965 been inlined. This improves performance with inferiors that
5966 load a lot of shared libraries, because the solib event
5967 breakpoint is defined as the address of a function (i.e. not
5968 inline). Note that we have to check the previous PC as well
5969 as the current one to catch cases when we have just
5970 single-stepped off a breakpoint prior to reinstating it.
5971 Note that we're assuming that the code we single-step to is
5972 not inline, but that's not definitive: there's nothing
5973 preventing the event breakpoint function from containing
5974 inlined code, and the single-step ending up there. If the
5975 user had set a breakpoint on that inlined code, the missing
5976 skip_inline_frames call would break things. Fortunately
5977 that's an extremely unlikely scenario. */
f2ffa92b
PA
5978 if (!pc_at_non_inline_function (aspace,
5979 ecs->event_thread->suspend.stop_pc,
5980 &ecs->ws)
a210c238
MR
5981 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5982 && ecs->event_thread->control.trap_expected
5983 && pc_at_non_inline_function (aspace,
5984 ecs->event_thread->prev_pc,
09ac7c10 5985 &ecs->ws)))
1c5a993e 5986 {
f2ffa92b
PA
5987 stop_chain = build_bpstat_chain (aspace,
5988 ecs->event_thread->suspend.stop_pc,
5989 &ecs->ws);
00431a78 5990 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5991
5992 /* Re-fetch current thread's frame in case that invalidated
5993 the frame cache. */
5994 frame = get_current_frame ();
5995 gdbarch = get_frame_arch (frame);
5996 }
0574c78f 5997 }
edb3359d 5998
a493e3e2 5999 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6000 && ecs->event_thread->control.trap_expected
568d6575 6001 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6002 && currently_stepping (ecs->event_thread))
3352ef37 6003 {
b50d7442 6004 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6005 also on an instruction that needs to be stepped multiple
1777feb0 6006 times before it's been fully executing. E.g., architectures
3352ef37
AC
6007 with a delay slot. It needs to be stepped twice, once for
6008 the instruction and once for the delay slot. */
6009 int step_through_delay
568d6575 6010 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6011
1eb8556f
SM
6012 if (step_through_delay)
6013 infrun_debug_printf ("step through delay");
6014
16c381f0
JK
6015 if (ecs->event_thread->control.step_range_end == 0
6016 && step_through_delay)
3352ef37
AC
6017 {
6018 /* The user issued a continue when stopped at a breakpoint.
6019 Set up for another trap and get out of here. */
dda83cd7
SM
6020 ecs->event_thread->stepping_over_breakpoint = 1;
6021 keep_going (ecs);
6022 return;
3352ef37
AC
6023 }
6024 else if (step_through_delay)
6025 {
6026 /* The user issued a step when stopped at a breakpoint.
6027 Maybe we should stop, maybe we should not - the delay
6028 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6029 case, don't decide that here, just set
6030 ecs->stepping_over_breakpoint, making sure we
6031 single-step again before breakpoints are re-inserted. */
4e1c45ea 6032 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6033 }
6034 }
6035
ab04a2af
TT
6036 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6037 handles this event. */
6038 ecs->event_thread->control.stop_bpstat
a01bda52 6039 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6040 ecs->event_thread->suspend.stop_pc,
6041 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6042
ab04a2af
TT
6043 /* Following in case break condition called a
6044 function. */
c4464ade 6045 stop_print_frame = true;
73dd234f 6046
ab04a2af
TT
6047 /* This is where we handle "moribund" watchpoints. Unlike
6048 software breakpoints traps, hardware watchpoint traps are
6049 always distinguishable from random traps. If no high-level
6050 watchpoint is associated with the reported stop data address
6051 anymore, then the bpstat does not explain the signal ---
6052 simply make sure to ignore it if `stopped_by_watchpoint' is
6053 set. */
6054
1eb8556f 6055 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6056 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6057 GDB_SIGNAL_TRAP)
ab04a2af 6058 && stopped_by_watchpoint)
1eb8556f
SM
6059 {
6060 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6061 "ignoring");
6062 }
73dd234f 6063
bac7d97b 6064 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6065 at one stage in the past included checks for an inferior
6066 function call's call dummy's return breakpoint. The original
6067 comment, that went with the test, read:
03cebad2 6068
ab04a2af
TT
6069 ``End of a stack dummy. Some systems (e.g. Sony news) give
6070 another signal besides SIGTRAP, so check here as well as
6071 above.''
73dd234f 6072
ab04a2af
TT
6073 If someone ever tries to get call dummys on a
6074 non-executable stack to work (where the target would stop
6075 with something like a SIGSEGV), then those tests might need
6076 to be re-instated. Given, however, that the tests were only
6077 enabled when momentary breakpoints were not being used, I
6078 suspect that it won't be the case.
488f131b 6079
ab04a2af
TT
6080 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6081 be necessary for call dummies on a non-executable stack on
6082 SPARC. */
488f131b 6083
bac7d97b 6084 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6085 random_signal
6086 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6087 ecs->event_thread->suspend.stop_signal);
bac7d97b 6088
1cf4d951
PA
6089 /* Maybe this was a trap for a software breakpoint that has since
6090 been removed. */
6091 if (random_signal && target_stopped_by_sw_breakpoint ())
6092 {
5133a315
LM
6093 if (gdbarch_program_breakpoint_here_p (gdbarch,
6094 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6095 {
6096 struct regcache *regcache;
6097 int decr_pc;
6098
6099 /* Re-adjust PC to what the program would see if GDB was not
6100 debugging it. */
00431a78 6101 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6102 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6103 if (decr_pc != 0)
6104 {
07036511
TT
6105 gdb::optional<scoped_restore_tmpl<int>>
6106 restore_operation_disable;
1cf4d951
PA
6107
6108 if (record_full_is_used ())
07036511
TT
6109 restore_operation_disable.emplace
6110 (record_full_gdb_operation_disable_set ());
1cf4d951 6111
f2ffa92b
PA
6112 regcache_write_pc (regcache,
6113 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6114 }
6115 }
6116 else
6117 {
6118 /* A delayed software breakpoint event. Ignore the trap. */
1eb8556f 6119 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
1cf4d951
PA
6120 random_signal = 0;
6121 }
6122 }
6123
6124 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6125 has since been removed. */
6126 if (random_signal && target_stopped_by_hw_breakpoint ())
6127 {
6128 /* A delayed hardware breakpoint event. Ignore the trap. */
1eb8556f
SM
6129 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6130 "trap, ignoring");
1cf4d951
PA
6131 random_signal = 0;
6132 }
6133
bac7d97b
PA
6134 /* If not, perhaps stepping/nexting can. */
6135 if (random_signal)
6136 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6137 && currently_stepping (ecs->event_thread));
ab04a2af 6138
2adfaa28
PA
6139 /* Perhaps the thread hit a single-step breakpoint of _another_
6140 thread. Single-step breakpoints are transparent to the
6141 breakpoints module. */
6142 if (random_signal)
6143 random_signal = !ecs->hit_singlestep_breakpoint;
6144
bac7d97b
PA
6145 /* No? Perhaps we got a moribund watchpoint. */
6146 if (random_signal)
6147 random_signal = !stopped_by_watchpoint;
ab04a2af 6148
c65d6b55
PA
6149 /* Always stop if the user explicitly requested this thread to
6150 remain stopped. */
6151 if (ecs->event_thread->stop_requested)
6152 {
6153 random_signal = 1;
1eb8556f 6154 infrun_debug_printf ("user-requested stop");
c65d6b55
PA
6155 }
6156
488f131b
JB
6157 /* For the program's own signals, act according to
6158 the signal handling tables. */
6159
ce12b012 6160 if (random_signal)
488f131b
JB
6161 {
6162 /* Signal not for debugging purposes. */
c9737c08 6163 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6164
1eb8556f
SM
6165 infrun_debug_printf ("random signal (%s)",
6166 gdb_signal_to_symbol_string (stop_signal));
527159b7 6167
488f131b
JB
6168 stopped_by_random_signal = 1;
6169
252fbfc8
PA
6170 /* Always stop on signals if we're either just gaining control
6171 of the program, or the user explicitly requested this thread
6172 to remain stopped. */
d6b48e9c 6173 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6174 || ecs->event_thread->stop_requested
8ff53139 6175 || signal_stop_state (ecs->event_thread->suspend.stop_signal))
488f131b 6176 {
22bcd14b 6177 stop_waiting (ecs);
488f131b
JB
6178 return;
6179 }
b57bacec
PA
6180
6181 /* Notify observers the signal has "handle print" set. Note we
6182 returned early above if stopping; normal_stop handles the
6183 printing in that case. */
6184 if (signal_print[ecs->event_thread->suspend.stop_signal])
6185 {
6186 /* The signal table tells us to print about this signal. */
223ffa71 6187 target_terminal::ours_for_output ();
76727919 6188 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6189 target_terminal::inferior ();
b57bacec 6190 }
488f131b
JB
6191
6192 /* Clear the signal if it should not be passed. */
16c381f0 6193 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6194 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6195
f2ffa92b 6196 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6197 && ecs->event_thread->control.trap_expected
8358c15c 6198 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6199 {
6200 /* We were just starting a new sequence, attempting to
6201 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6202 Instead this signal arrives. This signal will take us out
68f53502
AC
6203 of the stepping range so GDB needs to remember to, when
6204 the signal handler returns, resume stepping off that
6205 breakpoint. */
6206 /* To simplify things, "continue" is forced to use the same
6207 code paths as single-step - set a breakpoint at the
6208 signal return address and then, once hit, step off that
6209 breakpoint. */
1eb8556f 6210 infrun_debug_printf ("signal arrived while stepping over breakpoint");
d3169d93 6211
2c03e5be 6212 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6213 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6214 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6215 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6216
6217 /* If we were nexting/stepping some other thread, switch to
6218 it, so that we don't continue it, losing control. */
6219 if (!switch_back_to_stepped_thread (ecs))
6220 keep_going (ecs);
9d799f85 6221 return;
68f53502 6222 }
9d799f85 6223
e5f8a7cc 6224 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6225 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6226 ecs->event_thread)
e5f8a7cc 6227 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6228 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6229 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6230 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6231 {
6232 /* The inferior is about to take a signal that will take it
6233 out of the single step range. Set a breakpoint at the
6234 current PC (which is presumably where the signal handler
6235 will eventually return) and then allow the inferior to
6236 run free.
6237
6238 Note that this is only needed for a signal delivered
6239 while in the single-step range. Nested signals aren't a
6240 problem as they eventually all return. */
1eb8556f 6241 infrun_debug_printf ("signal may take us out of single-step range");
237fc4c9 6242
372316f1 6243 clear_step_over_info ();
2c03e5be 6244 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6245 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6246 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6247 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6248 keep_going (ecs);
6249 return;
d303a6c7 6250 }
9d799f85 6251
85102364 6252 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6253 when either there's a nested signal, or when there's a
6254 pending signal enabled just as the signal handler returns
6255 (leaving the inferior at the step-resume-breakpoint without
6256 actually executing it). Either way continue until the
6257 breakpoint is really hit. */
c447ac0b
PA
6258
6259 if (!switch_back_to_stepped_thread (ecs))
6260 {
1eb8556f 6261 infrun_debug_printf ("random signal, keep going");
c447ac0b
PA
6262
6263 keep_going (ecs);
6264 }
6265 return;
488f131b 6266 }
94c57d6a
PA
6267
6268 process_event_stop_test (ecs);
6269}
6270
6271/* Come here when we've got some debug event / signal we can explain
6272 (IOW, not a random signal), and test whether it should cause a
6273 stop, or whether we should resume the inferior (transparently).
6274 E.g., could be a breakpoint whose condition evaluates false; we
6275 could be still stepping within the line; etc. */
6276
6277static void
6278process_event_stop_test (struct execution_control_state *ecs)
6279{
6280 struct symtab_and_line stop_pc_sal;
6281 struct frame_info *frame;
6282 struct gdbarch *gdbarch;
cdaa5b73
PA
6283 CORE_ADDR jmp_buf_pc;
6284 struct bpstat_what what;
94c57d6a 6285
cdaa5b73 6286 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6287
cdaa5b73
PA
6288 frame = get_current_frame ();
6289 gdbarch = get_frame_arch (frame);
fcf3daef 6290
cdaa5b73 6291 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6292
cdaa5b73
PA
6293 if (what.call_dummy)
6294 {
6295 stop_stack_dummy = what.call_dummy;
6296 }
186c406b 6297
243a9253
PA
6298 /* A few breakpoint types have callbacks associated (e.g.,
6299 bp_jit_event). Run them now. */
6300 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6301
cdaa5b73
PA
6302 /* If we hit an internal event that triggers symbol changes, the
6303 current frame will be invalidated within bpstat_what (e.g., if we
6304 hit an internal solib event). Re-fetch it. */
6305 frame = get_current_frame ();
6306 gdbarch = get_frame_arch (frame);
e2e4d78b 6307
cdaa5b73
PA
6308 switch (what.main_action)
6309 {
6310 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6311 /* If we hit the breakpoint at longjmp while stepping, we
6312 install a momentary breakpoint at the target of the
6313 jmp_buf. */
186c406b 6314
1eb8556f 6315 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
186c406b 6316
cdaa5b73 6317 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6318
cdaa5b73
PA
6319 if (what.is_longjmp)
6320 {
6321 struct value *arg_value;
6322
6323 /* If we set the longjmp breakpoint via a SystemTap probe,
6324 then use it to extract the arguments. The destination PC
6325 is the third argument to the probe. */
6326 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6327 if (arg_value)
8fa0c4f8
AA
6328 {
6329 jmp_buf_pc = value_as_address (arg_value);
6330 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6331 }
cdaa5b73
PA
6332 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6333 || !gdbarch_get_longjmp_target (gdbarch,
6334 frame, &jmp_buf_pc))
e2e4d78b 6335 {
1eb8556f
SM
6336 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6337 "(!gdbarch_get_longjmp_target)");
cdaa5b73
PA
6338 keep_going (ecs);
6339 return;
e2e4d78b 6340 }
e2e4d78b 6341
cdaa5b73
PA
6342 /* Insert a breakpoint at resume address. */
6343 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6344 }
6345 else
6346 check_exception_resume (ecs, frame);
6347 keep_going (ecs);
6348 return;
e81a37f7 6349
cdaa5b73
PA
6350 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6351 {
6352 struct frame_info *init_frame;
e81a37f7 6353
cdaa5b73 6354 /* There are several cases to consider.
c906108c 6355
cdaa5b73
PA
6356 1. The initiating frame no longer exists. In this case we
6357 must stop, because the exception or longjmp has gone too
6358 far.
2c03e5be 6359
cdaa5b73
PA
6360 2. The initiating frame exists, and is the same as the
6361 current frame. We stop, because the exception or longjmp
6362 has been caught.
2c03e5be 6363
cdaa5b73
PA
6364 3. The initiating frame exists and is different from the
6365 current frame. This means the exception or longjmp has
6366 been caught beneath the initiating frame, so keep going.
c906108c 6367
cdaa5b73
PA
6368 4. longjmp breakpoint has been placed just to protect
6369 against stale dummy frames and user is not interested in
6370 stopping around longjmps. */
c5aa993b 6371
1eb8556f 6372 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
c5aa993b 6373
cdaa5b73
PA
6374 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6375 != NULL);
6376 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6377
cdaa5b73
PA
6378 if (what.is_longjmp)
6379 {
b67a2c6f 6380 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6381
cdaa5b73 6382 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6383 {
cdaa5b73
PA
6384 /* Case 4. */
6385 keep_going (ecs);
6386 return;
e5ef252a 6387 }
cdaa5b73 6388 }
c5aa993b 6389
cdaa5b73 6390 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6391
cdaa5b73
PA
6392 if (init_frame)
6393 {
6394 struct frame_id current_id
6395 = get_frame_id (get_current_frame ());
6396 if (frame_id_eq (current_id,
6397 ecs->event_thread->initiating_frame))
6398 {
6399 /* Case 2. Fall through. */
6400 }
6401 else
6402 {
6403 /* Case 3. */
6404 keep_going (ecs);
6405 return;
6406 }
68f53502 6407 }
488f131b 6408
cdaa5b73
PA
6409 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6410 exists. */
6411 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6412
bdc36728 6413 end_stepping_range (ecs);
cdaa5b73
PA
6414 }
6415 return;
e5ef252a 6416
cdaa5b73 6417 case BPSTAT_WHAT_SINGLE:
1eb8556f 6418 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
cdaa5b73
PA
6419 ecs->event_thread->stepping_over_breakpoint = 1;
6420 /* Still need to check other stuff, at least the case where we
6421 are stepping and step out of the right range. */
6422 break;
e5ef252a 6423
cdaa5b73 6424 case BPSTAT_WHAT_STEP_RESUME:
1eb8556f 6425 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
e5ef252a 6426
cdaa5b73
PA
6427 delete_step_resume_breakpoint (ecs->event_thread);
6428 if (ecs->event_thread->control.proceed_to_finish
6429 && execution_direction == EXEC_REVERSE)
6430 {
6431 struct thread_info *tp = ecs->event_thread;
6432
6433 /* We are finishing a function in reverse, and just hit the
6434 step-resume breakpoint at the start address of the
6435 function, and we're almost there -- just need to back up
6436 by one more single-step, which should take us back to the
6437 function call. */
6438 tp->control.step_range_start = tp->control.step_range_end = 1;
6439 keep_going (ecs);
e5ef252a 6440 return;
cdaa5b73
PA
6441 }
6442 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6443 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6444 && execution_direction == EXEC_REVERSE)
6445 {
6446 /* We are stepping over a function call in reverse, and just
6447 hit the step-resume breakpoint at the start address of
6448 the function. Go back to single-stepping, which should
6449 take us back to the function call. */
6450 ecs->event_thread->stepping_over_breakpoint = 1;
6451 keep_going (ecs);
6452 return;
6453 }
6454 break;
e5ef252a 6455
cdaa5b73 6456 case BPSTAT_WHAT_STOP_NOISY:
1eb8556f 6457 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
c4464ade 6458 stop_print_frame = true;
e5ef252a 6459
33bf4c5c 6460 /* Assume the thread stopped for a breakpoint. We'll still check
99619bea
PA
6461 whether a/the breakpoint is there when the thread is next
6462 resumed. */
6463 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6464
22bcd14b 6465 stop_waiting (ecs);
cdaa5b73 6466 return;
e5ef252a 6467
cdaa5b73 6468 case BPSTAT_WHAT_STOP_SILENT:
1eb8556f 6469 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
c4464ade 6470 stop_print_frame = false;
e5ef252a 6471
33bf4c5c 6472 /* Assume the thread stopped for a breakpoint. We'll still check
99619bea
PA
6473 whether a/the breakpoint is there when the thread is next
6474 resumed. */
6475 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6476 stop_waiting (ecs);
cdaa5b73
PA
6477 return;
6478
6479 case BPSTAT_WHAT_HP_STEP_RESUME:
1eb8556f 6480 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
cdaa5b73
PA
6481
6482 delete_step_resume_breakpoint (ecs->event_thread);
6483 if (ecs->event_thread->step_after_step_resume_breakpoint)
6484 {
6485 /* Back when the step-resume breakpoint was inserted, we
6486 were trying to single-step off a breakpoint. Go back to
6487 doing that. */
6488 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6489 ecs->event_thread->stepping_over_breakpoint = 1;
6490 keep_going (ecs);
6491 return;
e5ef252a 6492 }
cdaa5b73
PA
6493 break;
6494
6495 case BPSTAT_WHAT_KEEP_CHECKING:
6496 break;
e5ef252a 6497 }
c906108c 6498
af48d08f
PA
6499 /* If we stepped a permanent breakpoint and we had a high priority
6500 step-resume breakpoint for the address we stepped, but we didn't
6501 hit it, then we must have stepped into the signal handler. The
6502 step-resume was only necessary to catch the case of _not_
6503 stepping into the handler, so delete it, and fall through to
6504 checking whether the step finished. */
6505 if (ecs->event_thread->stepped_breakpoint)
6506 {
6507 struct breakpoint *sr_bp
6508 = ecs->event_thread->control.step_resume_breakpoint;
6509
8d707a12
PA
6510 if (sr_bp != NULL
6511 && sr_bp->loc->permanent
af48d08f
PA
6512 && sr_bp->type == bp_hp_step_resume
6513 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6514 {
1eb8556f 6515 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
af48d08f
PA
6516 delete_step_resume_breakpoint (ecs->event_thread);
6517 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6518 }
6519 }
6520
cdaa5b73
PA
6521 /* We come here if we hit a breakpoint but should not stop for it.
6522 Possibly we also were stepping and should stop for that. So fall
6523 through and test for stepping. But, if not stepping, do not
6524 stop. */
c906108c 6525
a7212384
UW
6526 /* In all-stop mode, if we're currently stepping but have stopped in
6527 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6528 if (switch_back_to_stepped_thread (ecs))
6529 return;
776f04fa 6530
8358c15c 6531 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6532 {
1eb8556f 6533 infrun_debug_printf ("step-resume breakpoint is inserted");
527159b7 6534
488f131b 6535 /* Having a step-resume breakpoint overrides anything
dda83cd7
SM
6536 else having to do with stepping commands until
6537 that breakpoint is reached. */
488f131b
JB
6538 keep_going (ecs);
6539 return;
6540 }
c5aa993b 6541
16c381f0 6542 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6543 {
1eb8556f 6544 infrun_debug_printf ("no stepping, continue");
488f131b 6545 /* Likewise if we aren't even stepping. */
488f131b
JB
6546 keep_going (ecs);
6547 return;
6548 }
c5aa993b 6549
4b7703ad
JB
6550 /* Re-fetch current thread's frame in case the code above caused
6551 the frame cache to be re-initialized, making our FRAME variable
6552 a dangling pointer. */
6553 frame = get_current_frame ();
628fe4e4 6554 gdbarch = get_frame_arch (frame);
7e324e48 6555 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6556
488f131b 6557 /* If stepping through a line, keep going if still within it.
c906108c 6558
488f131b
JB
6559 Note that step_range_end is the address of the first instruction
6560 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6561 within it!
6562
6563 Note also that during reverse execution, we may be stepping
6564 through a function epilogue and therefore must detect when
6565 the current-frame changes in the middle of a line. */
6566
f2ffa92b
PA
6567 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6568 ecs->event_thread)
31410e84 6569 && (execution_direction != EXEC_REVERSE
388a8562 6570 || frame_id_eq (get_frame_id (frame),
16c381f0 6571 ecs->event_thread->control.step_frame_id)))
488f131b 6572 {
1eb8556f
SM
6573 infrun_debug_printf
6574 ("stepping inside range [%s-%s]",
6575 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6576 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6577
c1e36e3e
PA
6578 /* Tentatively re-enable range stepping; `resume' disables it if
6579 necessary (e.g., if we're stepping over a breakpoint or we
6580 have software watchpoints). */
6581 ecs->event_thread->control.may_range_step = 1;
6582
b2175913
MS
6583 /* When stepping backward, stop at beginning of line range
6584 (unless it's the function entry point, in which case
6585 keep going back to the call point). */
f2ffa92b 6586 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6587 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6588 && stop_pc != ecs->stop_func_start
6589 && execution_direction == EXEC_REVERSE)
bdc36728 6590 end_stepping_range (ecs);
b2175913
MS
6591 else
6592 keep_going (ecs);
6593
488f131b
JB
6594 return;
6595 }
c5aa993b 6596
488f131b 6597 /* We stepped out of the stepping range. */
c906108c 6598
488f131b 6599 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6600 loader dynamic symbol resolution code...
6601
6602 EXEC_FORWARD: we keep on single stepping until we exit the run
6603 time loader code and reach the callee's address.
6604
6605 EXEC_REVERSE: we've already executed the callee (backward), and
6606 the runtime loader code is handled just like any other
6607 undebuggable function call. Now we need only keep stepping
6608 backward through the trampoline code, and that's handled further
6609 down, so there is nothing for us to do here. */
6610
6611 if (execution_direction != EXEC_REVERSE
16c381f0 6612 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6613 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6614 {
4c8c40e6 6615 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6616 gdbarch_skip_solib_resolver (gdbarch,
6617 ecs->event_thread->suspend.stop_pc);
c906108c 6618
1eb8556f 6619 infrun_debug_printf ("stepped into dynsym resolve code");
527159b7 6620
488f131b
JB
6621 if (pc_after_resolver)
6622 {
6623 /* Set up a step-resume breakpoint at the address
6624 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6625 symtab_and_line sr_sal;
488f131b 6626 sr_sal.pc = pc_after_resolver;
6c95b8df 6627 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6628
a6d9a66e
UW
6629 insert_step_resume_breakpoint_at_sal (gdbarch,
6630 sr_sal, null_frame_id);
c5aa993b 6631 }
c906108c 6632
488f131b
JB
6633 keep_going (ecs);
6634 return;
6635 }
c906108c 6636
1d509aa6
MM
6637 /* Step through an indirect branch thunk. */
6638 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6639 && gdbarch_in_indirect_branch_thunk (gdbarch,
6640 ecs->event_thread->suspend.stop_pc))
1d509aa6 6641 {
1eb8556f 6642 infrun_debug_printf ("stepped into indirect branch thunk");
1d509aa6
MM
6643 keep_going (ecs);
6644 return;
6645 }
6646
16c381f0
JK
6647 if (ecs->event_thread->control.step_range_end != 1
6648 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6649 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6650 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6651 {
1eb8556f 6652 infrun_debug_printf ("stepped into signal trampoline");
42edda50 6653 /* The inferior, while doing a "step" or "next", has ended up in
dda83cd7
SM
6654 a signal trampoline (either by a signal being delivered or by
6655 the signal handler returning). Just single-step until the
6656 inferior leaves the trampoline (either by calling the handler
6657 or returning). */
488f131b
JB
6658 keep_going (ecs);
6659 return;
6660 }
c906108c 6661
14132e89
MR
6662 /* If we're in the return path from a shared library trampoline,
6663 we want to proceed through the trampoline when stepping. */
6664 /* macro/2012-04-25: This needs to come before the subroutine
6665 call check below as on some targets return trampolines look
6666 like subroutine calls (MIPS16 return thunks). */
6667 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6668 ecs->event_thread->suspend.stop_pc,
6669 ecs->stop_func_name)
14132e89
MR
6670 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6671 {
6672 /* Determine where this trampoline returns. */
f2ffa92b
PA
6673 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6674 CORE_ADDR real_stop_pc
6675 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89 6676
1eb8556f 6677 infrun_debug_printf ("stepped into solib return tramp");
14132e89
MR
6678
6679 /* Only proceed through if we know where it's going. */
6680 if (real_stop_pc)
6681 {
6682 /* And put the step-breakpoint there and go until there. */
51abb421 6683 symtab_and_line sr_sal;
14132e89
MR
6684 sr_sal.pc = real_stop_pc;
6685 sr_sal.section = find_pc_overlay (sr_sal.pc);
6686 sr_sal.pspace = get_frame_program_space (frame);
6687
6688 /* Do not specify what the fp should be when we stop since
6689 on some machines the prologue is where the new fp value
6690 is established. */
6691 insert_step_resume_breakpoint_at_sal (gdbarch,
6692 sr_sal, null_frame_id);
6693
6694 /* Restart without fiddling with the step ranges or
6695 other state. */
6696 keep_going (ecs);
6697 return;
6698 }
6699 }
6700
c17eaafe
DJ
6701 /* Check for subroutine calls. The check for the current frame
6702 equalling the step ID is not necessary - the check of the
6703 previous frame's ID is sufficient - but it is a common case and
6704 cheaper than checking the previous frame's ID.
14e60db5
DJ
6705
6706 NOTE: frame_id_eq will never report two invalid frame IDs as
6707 being equal, so to get into this block, both the current and
6708 previous frame must have valid frame IDs. */
005ca36a
JB
6709 /* The outer_frame_id check is a heuristic to detect stepping
6710 through startup code. If we step over an instruction which
6711 sets the stack pointer from an invalid value to a valid value,
6712 we may detect that as a subroutine call from the mythical
6713 "outermost" function. This could be fixed by marking
6714 outermost frames as !stack_p,code_p,special_p. Then the
6715 initial outermost frame, before sp was valid, would
ce6cca6d 6716 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6717 for more. */
edb3359d 6718 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6719 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6720 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6721 ecs->event_thread->control.step_stack_frame_id)
6722 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6723 outer_frame_id)
885eeb5b 6724 || (ecs->event_thread->control.step_start_function
f2ffa92b 6725 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6726 {
f2ffa92b 6727 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6728 CORE_ADDR real_stop_pc;
8fb3e588 6729
1eb8556f 6730 infrun_debug_printf ("stepped into subroutine");
527159b7 6731
b7a084be 6732 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6733 {
6734 /* I presume that step_over_calls is only 0 when we're
6735 supposed to be stepping at the assembly language level
6736 ("stepi"). Just stop. */
388a8562 6737 /* And this works the same backward as frontward. MVS */
bdc36728 6738 end_stepping_range (ecs);
95918acb
AC
6739 return;
6740 }
8fb3e588 6741
388a8562
MS
6742 /* Reverse stepping through solib trampolines. */
6743
6744 if (execution_direction == EXEC_REVERSE
16c381f0 6745 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6746 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6747 || (ecs->stop_func_start == 0
6748 && in_solib_dynsym_resolve_code (stop_pc))))
6749 {
6750 /* Any solib trampoline code can be handled in reverse
6751 by simply continuing to single-step. We have already
6752 executed the solib function (backwards), and a few
6753 steps will take us back through the trampoline to the
6754 caller. */
6755 keep_going (ecs);
6756 return;
6757 }
6758
16c381f0 6759 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6760 {
b2175913
MS
6761 /* We're doing a "next".
6762
6763 Normal (forward) execution: set a breakpoint at the
6764 callee's return address (the address at which the caller
6765 will resume).
6766
6767 Reverse (backward) execution. set the step-resume
6768 breakpoint at the start of the function that we just
6769 stepped into (backwards), and continue to there. When we
6130d0b7 6770 get there, we'll need to single-step back to the caller. */
b2175913
MS
6771
6772 if (execution_direction == EXEC_REVERSE)
6773 {
acf9414f
JK
6774 /* If we're already at the start of the function, we've either
6775 just stepped backward into a single instruction function,
6776 or stepped back out of a signal handler to the first instruction
6777 of the function. Just keep going, which will single-step back
6778 to the caller. */
58c48e72 6779 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6780 {
acf9414f 6781 /* Normal function call return (static or dynamic). */
51abb421 6782 symtab_and_line sr_sal;
acf9414f
JK
6783 sr_sal.pc = ecs->stop_func_start;
6784 sr_sal.pspace = get_frame_program_space (frame);
6785 insert_step_resume_breakpoint_at_sal (gdbarch,
6786 sr_sal, null_frame_id);
6787 }
b2175913
MS
6788 }
6789 else
568d6575 6790 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6791
8567c30f
AC
6792 keep_going (ecs);
6793 return;
6794 }
a53c66de 6795
95918acb 6796 /* If we are in a function call trampoline (a stub between the
dda83cd7
SM
6797 calling routine and the real function), locate the real
6798 function. That's what tells us (a) whether we want to step
6799 into it at all, and (b) what prologue we want to run to the
6800 end of, if we do step into it. */
568d6575 6801 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6802 if (real_stop_pc == 0)
568d6575 6803 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6804 if (real_stop_pc != 0)
6805 ecs->stop_func_start = real_stop_pc;
8fb3e588 6806
db5f024e 6807 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6808 {
51abb421 6809 symtab_and_line sr_sal;
1b2bfbb9 6810 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6811 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6812
a6d9a66e
UW
6813 insert_step_resume_breakpoint_at_sal (gdbarch,
6814 sr_sal, null_frame_id);
8fb3e588
AC
6815 keep_going (ecs);
6816 return;
1b2bfbb9
RC
6817 }
6818
95918acb 6819 /* If we have line number information for the function we are
1bfeeb0f
JL
6820 thinking of stepping into and the function isn't on the skip
6821 list, step into it.
95918acb 6822
dda83cd7
SM
6823 If there are several symtabs at that PC (e.g. with include
6824 files), just want to know whether *any* of them have line
6825 numbers. find_pc_line handles this. */
95918acb
AC
6826 {
6827 struct symtab_and_line tmp_sal;
8fb3e588 6828
95918acb 6829 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6830 if (tmp_sal.line != 0
85817405 6831 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
6832 tmp_sal)
6833 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 6834 {
b2175913 6835 if (execution_direction == EXEC_REVERSE)
568d6575 6836 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6837 else
568d6575 6838 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6839 return;
6840 }
6841 }
6842
6843 /* If we have no line number and the step-stop-if-no-debug is
dda83cd7
SM
6844 set, we stop the step so that the user has a chance to switch
6845 in assembly mode. */
16c381f0 6846 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6847 && step_stop_if_no_debug)
95918acb 6848 {
bdc36728 6849 end_stepping_range (ecs);
95918acb
AC
6850 return;
6851 }
6852
b2175913
MS
6853 if (execution_direction == EXEC_REVERSE)
6854 {
acf9414f
JK
6855 /* If we're already at the start of the function, we've either just
6856 stepped backward into a single instruction function without line
6857 number info, or stepped back out of a signal handler to the first
6858 instruction of the function without line number info. Just keep
6859 going, which will single-step back to the caller. */
6860 if (ecs->stop_func_start != stop_pc)
6861 {
6862 /* Set a breakpoint at callee's start address.
6863 From there we can step once and be back in the caller. */
51abb421 6864 symtab_and_line sr_sal;
acf9414f
JK
6865 sr_sal.pc = ecs->stop_func_start;
6866 sr_sal.pspace = get_frame_program_space (frame);
6867 insert_step_resume_breakpoint_at_sal (gdbarch,
6868 sr_sal, null_frame_id);
6869 }
b2175913
MS
6870 }
6871 else
6872 /* Set a breakpoint at callee's return address (the address
6873 at which the caller will resume). */
568d6575 6874 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6875
95918acb 6876 keep_going (ecs);
488f131b 6877 return;
488f131b 6878 }
c906108c 6879
fdd654f3
MS
6880 /* Reverse stepping through solib trampolines. */
6881
6882 if (execution_direction == EXEC_REVERSE
16c381f0 6883 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6884 {
f2ffa92b
PA
6885 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6886
fdd654f3
MS
6887 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6888 || (ecs->stop_func_start == 0
6889 && in_solib_dynsym_resolve_code (stop_pc)))
6890 {
6891 /* Any solib trampoline code can be handled in reverse
6892 by simply continuing to single-step. We have already
6893 executed the solib function (backwards), and a few
6894 steps will take us back through the trampoline to the
6895 caller. */
6896 keep_going (ecs);
6897 return;
6898 }
6899 else if (in_solib_dynsym_resolve_code (stop_pc))
6900 {
6901 /* Stepped backward into the solib dynsym resolver.
6902 Set a breakpoint at its start and continue, then
6903 one more step will take us out. */
51abb421 6904 symtab_and_line sr_sal;
fdd654f3 6905 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6906 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6907 insert_step_resume_breakpoint_at_sal (gdbarch,
6908 sr_sal, null_frame_id);
6909 keep_going (ecs);
6910 return;
6911 }
6912 }
6913
8c95582d
AB
6914 /* This always returns the sal for the inner-most frame when we are in a
6915 stack of inlined frames, even if GDB actually believes that it is in a
6916 more outer frame. This is checked for below by calls to
6917 inline_skipped_frames. */
f2ffa92b 6918 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6919
1b2bfbb9
RC
6920 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6921 the trampoline processing logic, however, there are some trampolines
6922 that have no names, so we should do trampoline handling first. */
16c381f0 6923 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6924 && ecs->stop_func_name == NULL
2afb61aa 6925 && stop_pc_sal.line == 0)
1b2bfbb9 6926 {
1eb8556f 6927 infrun_debug_printf ("stepped into undebuggable function");
527159b7 6928
1b2bfbb9 6929 /* The inferior just stepped into, or returned to, an
dda83cd7
SM
6930 undebuggable function (where there is no debugging information
6931 and no line number corresponding to the address where the
6932 inferior stopped). Since we want to skip this kind of code,
6933 we keep going until the inferior returns from this
6934 function - unless the user has asked us not to (via
6935 set step-mode) or we no longer know how to get back
6936 to the call site. */
14e60db5 6937 if (step_stop_if_no_debug
c7ce8faa 6938 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6939 {
6940 /* If we have no line number and the step-stop-if-no-debug
6941 is set, we stop the step so that the user has a chance to
6942 switch in assembly mode. */
bdc36728 6943 end_stepping_range (ecs);
1b2bfbb9
RC
6944 return;
6945 }
6946 else
6947 {
6948 /* Set a breakpoint at callee's return address (the address
6949 at which the caller will resume). */
568d6575 6950 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6951 keep_going (ecs);
6952 return;
6953 }
6954 }
6955
16c381f0 6956 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6957 {
6958 /* It is stepi or nexti. We always want to stop stepping after
dda83cd7 6959 one instruction. */
1eb8556f 6960 infrun_debug_printf ("stepi/nexti");
bdc36728 6961 end_stepping_range (ecs);
1b2bfbb9
RC
6962 return;
6963 }
6964
2afb61aa 6965 if (stop_pc_sal.line == 0)
488f131b
JB
6966 {
6967 /* We have no line number information. That means to stop
dda83cd7
SM
6968 stepping (does this always happen right after one instruction,
6969 when we do "s" in a function with no line numbers,
6970 or can this happen as a result of a return or longjmp?). */
1eb8556f 6971 infrun_debug_printf ("line number info");
bdc36728 6972 end_stepping_range (ecs);
488f131b
JB
6973 return;
6974 }
c906108c 6975
edb3359d
DJ
6976 /* Look for "calls" to inlined functions, part one. If the inline
6977 frame machinery detected some skipped call sites, we have entered
6978 a new inline function. */
6979
6980 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6981 ecs->event_thread->control.step_frame_id)
00431a78 6982 && inline_skipped_frames (ecs->event_thread))
edb3359d 6983 {
1eb8556f 6984 infrun_debug_printf ("stepped into inlined function");
edb3359d 6985
51abb421 6986 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6987
16c381f0 6988 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6989 {
6990 /* For "step", we're going to stop. But if the call site
6991 for this inlined function is on the same source line as
6992 we were previously stepping, go down into the function
6993 first. Otherwise stop at the call site. */
6994
6995 if (call_sal.line == ecs->event_thread->current_line
6996 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
6997 {
6998 step_into_inline_frame (ecs->event_thread);
6999 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7000 {
7001 keep_going (ecs);
7002 return;
7003 }
7004 }
edb3359d 7005
bdc36728 7006 end_stepping_range (ecs);
edb3359d
DJ
7007 return;
7008 }
7009 else
7010 {
7011 /* For "next", we should stop at the call site if it is on a
7012 different source line. Otherwise continue through the
7013 inlined function. */
7014 if (call_sal.line == ecs->event_thread->current_line
7015 && call_sal.symtab == ecs->event_thread->current_symtab)
7016 keep_going (ecs);
7017 else
bdc36728 7018 end_stepping_range (ecs);
edb3359d
DJ
7019 return;
7020 }
7021 }
7022
7023 /* Look for "calls" to inlined functions, part two. If we are still
7024 in the same real function we were stepping through, but we have
7025 to go further up to find the exact frame ID, we are stepping
7026 through a more inlined call beyond its call site. */
7027
7028 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7029 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7030 ecs->event_thread->control.step_frame_id)
edb3359d 7031 && stepped_in_from (get_current_frame (),
16c381f0 7032 ecs->event_thread->control.step_frame_id))
edb3359d 7033 {
1eb8556f 7034 infrun_debug_printf ("stepping through inlined function");
edb3359d 7035
4a4c04f1
BE
7036 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7037 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7038 keep_going (ecs);
7039 else
bdc36728 7040 end_stepping_range (ecs);
edb3359d
DJ
7041 return;
7042 }
7043
8c95582d 7044 bool refresh_step_info = true;
f2ffa92b 7045 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7046 && (ecs->event_thread->current_line != stop_pc_sal.line
7047 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b 7048 {
ebde6f2d
TV
7049 /* We are at a different line. */
7050
8c95582d
AB
7051 if (stop_pc_sal.is_stmt)
7052 {
ebde6f2d
TV
7053 /* We are at the start of a statement.
7054
7055 So stop. Note that we don't stop if we step into the middle of a
7056 statement. That is said to make things like for (;;) statements
7057 work better. */
1eb8556f 7058 infrun_debug_printf ("stepped to a different line");
8c95582d
AB
7059 end_stepping_range (ecs);
7060 return;
7061 }
7062 else if (frame_id_eq (get_frame_id (get_current_frame ()),
ebde6f2d 7063 ecs->event_thread->control.step_frame_id))
8c95582d 7064 {
ebde6f2d
TV
7065 /* We are not at the start of a statement, and we have not changed
7066 frame.
7067
7068 We ignore this line table entry, and continue stepping forward,
8c95582d
AB
7069 looking for a better place to stop. */
7070 refresh_step_info = false;
1eb8556f
SM
7071 infrun_debug_printf ("stepped to a different line, but "
7072 "it's not the start of a statement");
8c95582d 7073 }
ebde6f2d
TV
7074 else
7075 {
7076 /* We are not the start of a statement, and we have changed frame.
7077
7078 We ignore this line table entry, and continue stepping forward,
7079 looking for a better place to stop. Keep refresh_step_info at
7080 true to note that the frame has changed, but ignore the line
7081 number to make sure we don't ignore a subsequent entry with the
7082 same line number. */
7083 stop_pc_sal.line = 0;
7084 infrun_debug_printf ("stepped to a different frame, but "
7085 "it's not the start of a statement");
7086 }
488f131b 7087 }
c906108c 7088
488f131b 7089 /* We aren't done stepping.
c906108c 7090
488f131b
JB
7091 Optimize by setting the stepping range to the line.
7092 (We might not be in the original line, but if we entered a
7093 new line in mid-statement, we continue stepping. This makes
8c95582d
AB
7094 things like for(;;) statements work better.)
7095
7096 If we entered a SAL that indicates a non-statement line table entry,
7097 then we update the stepping range, but we don't update the step info,
7098 which includes things like the line number we are stepping away from.
7099 This means we will stop when we find a line table entry that is marked
7100 as is-statement, even if it matches the non-statement one we just
7101 stepped into. */
c906108c 7102
16c381f0
JK
7103 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7104 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7105 ecs->event_thread->control.may_range_step = 1;
8c95582d
AB
7106 if (refresh_step_info)
7107 set_step_info (ecs->event_thread, frame, stop_pc_sal);
488f131b 7108
1eb8556f 7109 infrun_debug_printf ("keep going");
488f131b 7110 keep_going (ecs);
104c1213
JM
7111}
7112
c447ac0b
PA
7113/* In all-stop mode, if we're currently stepping but have stopped in
7114 some other thread, we may need to switch back to the stepped
7115 thread. Returns true we set the inferior running, false if we left
7116 it stopped (and the event needs further processing). */
7117
c4464ade 7118static bool
c447ac0b
PA
7119switch_back_to_stepped_thread (struct execution_control_state *ecs)
7120{
fbea99ea 7121 if (!target_is_non_stop_p ())
c447ac0b 7122 {
99619bea
PA
7123 struct thread_info *stepping_thread;
7124
7125 /* If any thread is blocked on some internal breakpoint, and we
7126 simply need to step over that breakpoint to get it going
7127 again, do that first. */
7128
7129 /* However, if we see an event for the stepping thread, then we
7130 know all other threads have been moved past their breakpoints
7131 already. Let the caller check whether the step is finished,
7132 etc., before deciding to move it past a breakpoint. */
7133 if (ecs->event_thread->control.step_range_end != 0)
c4464ade 7134 return false;
99619bea
PA
7135
7136 /* Check if the current thread is blocked on an incomplete
7137 step-over, interrupted by a random signal. */
7138 if (ecs->event_thread->control.trap_expected
7139 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7140 {
1eb8556f
SM
7141 infrun_debug_printf
7142 ("need to finish step-over of [%s]",
7143 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea 7144 keep_going (ecs);
c4464ade 7145 return true;
99619bea 7146 }
2adfaa28 7147
99619bea
PA
7148 /* Check if the current thread is blocked by a single-step
7149 breakpoint of another thread. */
7150 if (ecs->hit_singlestep_breakpoint)
7151 {
1eb8556f
SM
7152 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7153 target_pid_to_str (ecs->ptid).c_str ());
99619bea 7154 keep_going (ecs);
c4464ade 7155 return true;
99619bea
PA
7156 }
7157
4d9d9d04
PA
7158 /* If this thread needs yet another step-over (e.g., stepping
7159 through a delay slot), do it first before moving on to
7160 another thread. */
7161 if (thread_still_needs_step_over (ecs->event_thread))
7162 {
1eb8556f
SM
7163 infrun_debug_printf
7164 ("thread [%s] still needs step-over",
7165 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04 7166 keep_going (ecs);
c4464ade 7167 return true;
4d9d9d04 7168 }
70509625 7169
483805cf
PA
7170 /* If scheduler locking applies even if not stepping, there's no
7171 need to walk over threads. Above we've checked whether the
7172 current thread is stepping. If some other thread not the
7173 event thread is stepping, then it must be that scheduler
7174 locking is not in effect. */
856e7dd6 7175 if (schedlock_applies (ecs->event_thread))
c4464ade 7176 return false;
483805cf 7177
4d9d9d04
PA
7178 /* Otherwise, we no longer expect a trap in the current thread.
7179 Clear the trap_expected flag before switching back -- this is
7180 what keep_going does as well, if we call it. */
7181 ecs->event_thread->control.trap_expected = 0;
7182
7183 /* Likewise, clear the signal if it should not be passed. */
7184 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7185 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7186
7187 /* Do all pending step-overs before actually proceeding with
483805cf 7188 step/next/etc. */
4d9d9d04
PA
7189 if (start_step_over ())
7190 {
7191 prepare_to_wait (ecs);
c4464ade 7192 return true;
4d9d9d04
PA
7193 }
7194
7195 /* Look for the stepping/nexting thread. */
483805cf 7196 stepping_thread = NULL;
4d9d9d04 7197
08036331 7198 for (thread_info *tp : all_non_exited_threads ())
dda83cd7 7199 {
f3f8ece4
PA
7200 switch_to_thread_no_regs (tp);
7201
fbea99ea
PA
7202 /* Ignore threads of processes the caller is not
7203 resuming. */
483805cf 7204 if (!sched_multi
5b6d1e4f
PA
7205 && (tp->inf->process_target () != ecs->target
7206 || tp->inf->pid != ecs->ptid.pid ()))
483805cf
PA
7207 continue;
7208
7209 /* When stepping over a breakpoint, we lock all threads
7210 except the one that needs to move past the breakpoint.
7211 If a non-event thread has this set, the "incomplete
7212 step-over" check above should have caught it earlier. */
372316f1
PA
7213 if (tp->control.trap_expected)
7214 {
7215 internal_error (__FILE__, __LINE__,
7216 "[%s] has inconsistent state: "
7217 "trap_expected=%d\n",
a068643d 7218 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
7219 tp->control.trap_expected);
7220 }
483805cf
PA
7221
7222 /* Did we find the stepping thread? */
7223 if (tp->control.step_range_end)
7224 {
7225 /* Yep. There should only one though. */
7226 gdb_assert (stepping_thread == NULL);
7227
7228 /* The event thread is handled at the top, before we
7229 enter this loop. */
7230 gdb_assert (tp != ecs->event_thread);
7231
7232 /* If some thread other than the event thread is
7233 stepping, then scheduler locking can't be in effect,
7234 otherwise we wouldn't have resumed the current event
7235 thread in the first place. */
856e7dd6 7236 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7237
7238 stepping_thread = tp;
7239 }
99619bea
PA
7240 }
7241
483805cf 7242 if (stepping_thread != NULL)
99619bea 7243 {
1eb8556f 7244 infrun_debug_printf ("switching back to stepped thread");
c447ac0b 7245
2ac7589c
PA
7246 if (keep_going_stepped_thread (stepping_thread))
7247 {
7248 prepare_to_wait (ecs);
c4464ade 7249 return true;
2ac7589c
PA
7250 }
7251 }
f3f8ece4
PA
7252
7253 switch_to_thread (ecs->event_thread);
2ac7589c 7254 }
2adfaa28 7255
c4464ade 7256 return false;
2ac7589c 7257}
2adfaa28 7258
2ac7589c
PA
7259/* Set a previously stepped thread back to stepping. Returns true on
7260 success, false if the resume is not possible (e.g., the thread
7261 vanished). */
7262
c4464ade 7263static bool
2ac7589c
PA
7264keep_going_stepped_thread (struct thread_info *tp)
7265{
7266 struct frame_info *frame;
2ac7589c
PA
7267 struct execution_control_state ecss;
7268 struct execution_control_state *ecs = &ecss;
2adfaa28 7269
2ac7589c
PA
7270 /* If the stepping thread exited, then don't try to switch back and
7271 resume it, which could fail in several different ways depending
7272 on the target. Instead, just keep going.
2adfaa28 7273
2ac7589c
PA
7274 We can find a stepping dead thread in the thread list in two
7275 cases:
2adfaa28 7276
2ac7589c
PA
7277 - The target supports thread exit events, and when the target
7278 tries to delete the thread from the thread list, inferior_ptid
7279 pointed at the exiting thread. In such case, calling
7280 delete_thread does not really remove the thread from the list;
7281 instead, the thread is left listed, with 'exited' state.
64ce06e4 7282
2ac7589c
PA
7283 - The target's debug interface does not support thread exit
7284 events, and so we have no idea whatsoever if the previously
7285 stepping thread is still alive. For that reason, we need to
7286 synchronously query the target now. */
2adfaa28 7287
00431a78 7288 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c 7289 {
1eb8556f
SM
7290 infrun_debug_printf ("not resuming previously stepped thread, it has "
7291 "vanished");
2ac7589c 7292
00431a78 7293 delete_thread (tp);
c4464ade 7294 return false;
c447ac0b 7295 }
2ac7589c 7296
1eb8556f 7297 infrun_debug_printf ("resuming previously stepped thread");
2ac7589c
PA
7298
7299 reset_ecs (ecs, tp);
00431a78 7300 switch_to_thread (tp);
2ac7589c 7301
f2ffa92b 7302 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7303 frame = get_current_frame ();
2ac7589c
PA
7304
7305 /* If the PC of the thread we were trying to single-step has
7306 changed, then that thread has trapped or been signaled, but the
7307 event has not been reported to GDB yet. Re-poll the target
7308 looking for this particular thread's event (i.e. temporarily
7309 enable schedlock) by:
7310
7311 - setting a break at the current PC
7312 - resuming that particular thread, only (by setting trap
7313 expected)
7314
7315 This prevents us continuously moving the single-step breakpoint
7316 forward, one instruction at a time, overstepping. */
7317
f2ffa92b 7318 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7319 {
7320 ptid_t resume_ptid;
7321
1eb8556f
SM
7322 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7323 paddress (target_gdbarch (), tp->prev_pc),
7324 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7325
7326 /* Clear the info of the previous step-over, as it's no longer
7327 valid (if the thread was trying to step over a breakpoint, it
7328 has already succeeded). It's what keep_going would do too,
7329 if we called it. Do this before trying to insert the sss
7330 breakpoint, otherwise if we were previously trying to step
7331 over this exact address in another thread, the breakpoint is
7332 skipped. */
7333 clear_step_over_info ();
7334 tp->control.trap_expected = 0;
7335
7336 insert_single_step_breakpoint (get_frame_arch (frame),
7337 get_frame_address_space (frame),
f2ffa92b 7338 tp->suspend.stop_pc);
2ac7589c 7339
719546c4 7340 tp->resumed = true;
fbea99ea 7341 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
c4464ade 7342 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2ac7589c
PA
7343 }
7344 else
7345 {
1eb8556f 7346 infrun_debug_printf ("expected thread still hasn't advanced");
2ac7589c
PA
7347
7348 keep_going_pass_signal (ecs);
7349 }
c4464ade
SM
7350
7351 return true;
c447ac0b
PA
7352}
7353
8b061563
PA
7354/* Is thread TP in the middle of (software or hardware)
7355 single-stepping? (Note the result of this function must never be
7356 passed directly as target_resume's STEP parameter.) */
104c1213 7357
c4464ade 7358static bool
b3444185 7359currently_stepping (struct thread_info *tp)
a7212384 7360{
8358c15c
JK
7361 return ((tp->control.step_range_end
7362 && tp->control.step_resume_breakpoint == NULL)
7363 || tp->control.trap_expected
af48d08f 7364 || tp->stepped_breakpoint
8358c15c 7365 || bpstat_should_step ());
a7212384
UW
7366}
7367
b2175913
MS
7368/* Inferior has stepped into a subroutine call with source code that
7369 we should not step over. Do step to the first line of code in
7370 it. */
c2c6d25f
JM
7371
7372static void
568d6575
UW
7373handle_step_into_function (struct gdbarch *gdbarch,
7374 struct execution_control_state *ecs)
c2c6d25f 7375{
7e324e48
GB
7376 fill_in_stop_func (gdbarch, ecs);
7377
f2ffa92b
PA
7378 compunit_symtab *cust
7379 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7380 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7381 ecs->stop_func_start
7382 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7383
51abb421 7384 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7385 /* Use the step_resume_break to step until the end of the prologue,
7386 even if that involves jumps (as it seems to on the vax under
7387 4.2). */
7388 /* If the prologue ends in the middle of a source line, continue to
7389 the end of that source line (if it is still within the function).
7390 Otherwise, just go to end of prologue. */
2afb61aa
PA
7391 if (stop_func_sal.end
7392 && stop_func_sal.pc != ecs->stop_func_start
7393 && stop_func_sal.end < ecs->stop_func_end)
7394 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7395
2dbd5e30
KB
7396 /* Architectures which require breakpoint adjustment might not be able
7397 to place a breakpoint at the computed address. If so, the test
7398 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7399 ecs->stop_func_start to an address at which a breakpoint may be
7400 legitimately placed.
8fb3e588 7401
2dbd5e30
KB
7402 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7403 made, GDB will enter an infinite loop when stepping through
7404 optimized code consisting of VLIW instructions which contain
7405 subinstructions corresponding to different source lines. On
7406 FR-V, it's not permitted to place a breakpoint on any but the
7407 first subinstruction of a VLIW instruction. When a breakpoint is
7408 set, GDB will adjust the breakpoint address to the beginning of
7409 the VLIW instruction. Thus, we need to make the corresponding
7410 adjustment here when computing the stop address. */
8fb3e588 7411
568d6575 7412 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7413 {
7414 ecs->stop_func_start
568d6575 7415 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7416 ecs->stop_func_start);
2dbd5e30
KB
7417 }
7418
f2ffa92b 7419 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7420 {
7421 /* We are already there: stop now. */
bdc36728 7422 end_stepping_range (ecs);
c2c6d25f
JM
7423 return;
7424 }
7425 else
7426 {
7427 /* Put the step-breakpoint there and go until there. */
51abb421 7428 symtab_and_line sr_sal;
c2c6d25f
JM
7429 sr_sal.pc = ecs->stop_func_start;
7430 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7431 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7432
c2c6d25f 7433 /* Do not specify what the fp should be when we stop since on
dda83cd7
SM
7434 some machines the prologue is where the new fp value is
7435 established. */
a6d9a66e 7436 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7437
7438 /* And make sure stepping stops right away then. */
16c381f0 7439 ecs->event_thread->control.step_range_end
dda83cd7 7440 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7441 }
7442 keep_going (ecs);
7443}
d4f3574e 7444
b2175913
MS
7445/* Inferior has stepped backward into a subroutine call with source
7446 code that we should not step over. Do step to the beginning of the
7447 last line of code in it. */
7448
7449static void
568d6575
UW
7450handle_step_into_function_backward (struct gdbarch *gdbarch,
7451 struct execution_control_state *ecs)
b2175913 7452{
43f3e411 7453 struct compunit_symtab *cust;
167e4384 7454 struct symtab_and_line stop_func_sal;
b2175913 7455
7e324e48
GB
7456 fill_in_stop_func (gdbarch, ecs);
7457
f2ffa92b 7458 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7459 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7460 ecs->stop_func_start
7461 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7462
f2ffa92b 7463 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7464
7465 /* OK, we're just going to keep stepping here. */
f2ffa92b 7466 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7467 {
7468 /* We're there already. Just stop stepping now. */
bdc36728 7469 end_stepping_range (ecs);
b2175913
MS
7470 }
7471 else
7472 {
7473 /* Else just reset the step range and keep going.
7474 No step-resume breakpoint, they don't work for
7475 epilogues, which can have multiple entry paths. */
16c381f0
JK
7476 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7477 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7478 keep_going (ecs);
7479 }
7480 return;
7481}
7482
d3169d93 7483/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7484 This is used to both functions and to skip over code. */
7485
7486static void
2c03e5be
PA
7487insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7488 struct symtab_and_line sr_sal,
7489 struct frame_id sr_id,
7490 enum bptype sr_type)
44cbf7b5 7491{
611c83ae
PA
7492 /* There should never be more than one step-resume or longjmp-resume
7493 breakpoint per thread, so we should never be setting a new
44cbf7b5 7494 step_resume_breakpoint when one is already active. */
8358c15c 7495 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7496 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93 7497
1eb8556f
SM
7498 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7499 paddress (gdbarch, sr_sal.pc));
d3169d93 7500
8358c15c 7501 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7502 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7503}
7504
9da8c2a0 7505void
2c03e5be
PA
7506insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7507 struct symtab_and_line sr_sal,
7508 struct frame_id sr_id)
7509{
7510 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7511 sr_sal, sr_id,
7512 bp_step_resume);
44cbf7b5 7513}
7ce450bd 7514
2c03e5be
PA
7515/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7516 This is used to skip a potential signal handler.
7ce450bd 7517
14e60db5
DJ
7518 This is called with the interrupted function's frame. The signal
7519 handler, when it returns, will resume the interrupted function at
7520 RETURN_FRAME.pc. */
d303a6c7
AC
7521
7522static void
2c03e5be 7523insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7524{
f4c1edd8 7525 gdb_assert (return_frame != NULL);
d303a6c7 7526
51abb421
PA
7527 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7528
7529 symtab_and_line sr_sal;
568d6575 7530 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7531 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7532 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7533
2c03e5be
PA
7534 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7535 get_stack_frame_id (return_frame),
7536 bp_hp_step_resume);
d303a6c7
AC
7537}
7538
2c03e5be
PA
7539/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7540 is used to skip a function after stepping into it (for "next" or if
7541 the called function has no debugging information).
14e60db5
DJ
7542
7543 The current function has almost always been reached by single
7544 stepping a call or return instruction. NEXT_FRAME belongs to the
7545 current function, and the breakpoint will be set at the caller's
7546 resume address.
7547
7548 This is a separate function rather than reusing
2c03e5be 7549 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7550 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7551 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7552
7553static void
7554insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7555{
14e60db5
DJ
7556 /* We shouldn't have gotten here if we don't know where the call site
7557 is. */
c7ce8faa 7558 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7559
51abb421 7560 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7561
51abb421 7562 symtab_and_line sr_sal;
c7ce8faa
DJ
7563 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7564 frame_unwind_caller_pc (next_frame));
14e60db5 7565 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7566 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7567
a6d9a66e 7568 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7569 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7570}
7571
611c83ae
PA
7572/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7573 new breakpoint at the target of a jmp_buf. The handling of
7574 longjmp-resume uses the same mechanisms used for handling
7575 "step-resume" breakpoints. */
7576
7577static void
a6d9a66e 7578insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7579{
e81a37f7
TT
7580 /* There should never be more than one longjmp-resume breakpoint per
7581 thread, so we should never be setting a new
611c83ae 7582 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7583 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae 7584
1eb8556f
SM
7585 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7586 paddress (gdbarch, pc));
611c83ae 7587
e81a37f7 7588 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7589 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7590}
7591
186c406b
TT
7592/* Insert an exception resume breakpoint. TP is the thread throwing
7593 the exception. The block B is the block of the unwinder debug hook
7594 function. FRAME is the frame corresponding to the call to this
7595 function. SYM is the symbol of the function argument holding the
7596 target PC of the exception. */
7597
7598static void
7599insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7600 const struct block *b,
186c406b
TT
7601 struct frame_info *frame,
7602 struct symbol *sym)
7603{
a70b8144 7604 try
186c406b 7605 {
63e43d3a 7606 struct block_symbol vsym;
186c406b
TT
7607 struct value *value;
7608 CORE_ADDR handler;
7609 struct breakpoint *bp;
7610
987012b8 7611 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7612 b, VAR_DOMAIN);
63e43d3a 7613 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7614 /* If the value was optimized out, revert to the old behavior. */
7615 if (! value_optimized_out (value))
7616 {
7617 handler = value_as_address (value);
7618
1eb8556f
SM
7619 infrun_debug_printf ("exception resume at %lx",
7620 (unsigned long) handler);
186c406b
TT
7621
7622 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7623 handler,
7624 bp_exception_resume).release ();
c70a6932
JK
7625
7626 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7627 frame = NULL;
7628
5d5658a1 7629 bp->thread = tp->global_num;
186c406b
TT
7630 inferior_thread ()->control.exception_resume_breakpoint = bp;
7631 }
7632 }
230d2906 7633 catch (const gdb_exception_error &e)
492d29ea
PA
7634 {
7635 /* We want to ignore errors here. */
7636 }
186c406b
TT
7637}
7638
28106bc2
SDJ
7639/* A helper for check_exception_resume that sets an
7640 exception-breakpoint based on a SystemTap probe. */
7641
7642static void
7643insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7644 const struct bound_probe *probe,
28106bc2
SDJ
7645 struct frame_info *frame)
7646{
7647 struct value *arg_value;
7648 CORE_ADDR handler;
7649 struct breakpoint *bp;
7650
7651 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7652 if (!arg_value)
7653 return;
7654
7655 handler = value_as_address (arg_value);
7656
1eb8556f
SM
7657 infrun_debug_printf ("exception resume at %s",
7658 paddress (probe->objfile->arch (), handler));
28106bc2
SDJ
7659
7660 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7661 handler, bp_exception_resume).release ();
5d5658a1 7662 bp->thread = tp->global_num;
28106bc2
SDJ
7663 inferior_thread ()->control.exception_resume_breakpoint = bp;
7664}
7665
186c406b
TT
7666/* This is called when an exception has been intercepted. Check to
7667 see whether the exception's destination is of interest, and if so,
7668 set an exception resume breakpoint there. */
7669
7670static void
7671check_exception_resume (struct execution_control_state *ecs,
28106bc2 7672 struct frame_info *frame)
186c406b 7673{
729662a5 7674 struct bound_probe probe;
28106bc2
SDJ
7675 struct symbol *func;
7676
7677 /* First see if this exception unwinding breakpoint was set via a
7678 SystemTap probe point. If so, the probe has two arguments: the
7679 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7680 set a breakpoint there. */
6bac7473 7681 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7682 if (probe.prob)
28106bc2 7683 {
729662a5 7684 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7685 return;
7686 }
7687
7688 func = get_frame_function (frame);
7689 if (!func)
7690 return;
186c406b 7691
a70b8144 7692 try
186c406b 7693 {
3977b71f 7694 const struct block *b;
8157b174 7695 struct block_iterator iter;
186c406b
TT
7696 struct symbol *sym;
7697 int argno = 0;
7698
7699 /* The exception breakpoint is a thread-specific breakpoint on
7700 the unwinder's debug hook, declared as:
7701
7702 void _Unwind_DebugHook (void *cfa, void *handler);
7703
7704 The CFA argument indicates the frame to which control is
7705 about to be transferred. HANDLER is the destination PC.
7706
7707 We ignore the CFA and set a temporary breakpoint at HANDLER.
7708 This is not extremely efficient but it avoids issues in gdb
7709 with computing the DWARF CFA, and it also works even in weird
7710 cases such as throwing an exception from inside a signal
7711 handler. */
7712
7713 b = SYMBOL_BLOCK_VALUE (func);
7714 ALL_BLOCK_SYMBOLS (b, iter, sym)
7715 {
7716 if (!SYMBOL_IS_ARGUMENT (sym))
7717 continue;
7718
7719 if (argno == 0)
7720 ++argno;
7721 else
7722 {
7723 insert_exception_resume_breakpoint (ecs->event_thread,
7724 b, frame, sym);
7725 break;
7726 }
7727 }
7728 }
230d2906 7729 catch (const gdb_exception_error &e)
492d29ea
PA
7730 {
7731 }
186c406b
TT
7732}
7733
104c1213 7734static void
22bcd14b 7735stop_waiting (struct execution_control_state *ecs)
104c1213 7736{
1eb8556f 7737 infrun_debug_printf ("stop_waiting");
527159b7 7738
cd0fc7c3
SS
7739 /* Let callers know we don't want to wait for the inferior anymore. */
7740 ecs->wait_some_more = 0;
fbea99ea 7741
53cccef1 7742 /* If all-stop, but there exists a non-stop target, stop all
fbea99ea 7743 threads now that we're presenting the stop to the user. */
53cccef1 7744 if (!non_stop && exists_non_stop_target ())
fbea99ea 7745 stop_all_threads ();
cd0fc7c3
SS
7746}
7747
4d9d9d04
PA
7748/* Like keep_going, but passes the signal to the inferior, even if the
7749 signal is set to nopass. */
d4f3574e
SS
7750
7751static void
4d9d9d04 7752keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7753{
d7e15655 7754 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7755 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7756
d4f3574e 7757 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7758 ecs->event_thread->prev_pc
fc75c28b 7759 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
d4f3574e 7760
4d9d9d04 7761 if (ecs->event_thread->control.trap_expected)
d4f3574e 7762 {
4d9d9d04
PA
7763 struct thread_info *tp = ecs->event_thread;
7764
1eb8556f
SM
7765 infrun_debug_printf ("%s has trap_expected set, "
7766 "resuming to collect trap",
7767 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7768
a9ba6bae
PA
7769 /* We haven't yet gotten our trap, and either: intercepted a
7770 non-signal event (e.g., a fork); or took a signal which we
7771 are supposed to pass through to the inferior. Simply
7772 continue. */
64ce06e4 7773 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7774 }
372316f1
PA
7775 else if (step_over_info_valid_p ())
7776 {
7777 /* Another thread is stepping over a breakpoint in-line. If
7778 this thread needs a step-over too, queue the request. In
7779 either case, this resume must be deferred for later. */
7780 struct thread_info *tp = ecs->event_thread;
7781
7782 if (ecs->hit_singlestep_breakpoint
7783 || thread_still_needs_step_over (tp))
7784 {
1eb8556f
SM
7785 infrun_debug_printf ("step-over already in progress: "
7786 "step-over for %s deferred",
7787 target_pid_to_str (tp->ptid).c_str ());
28d5518b 7788 global_thread_step_over_chain_enqueue (tp);
372316f1
PA
7789 }
7790 else
7791 {
1eb8556f
SM
7792 infrun_debug_printf ("step-over in progress: resume of %s deferred",
7793 target_pid_to_str (tp->ptid).c_str ());
372316f1 7794 }
372316f1 7795 }
d4f3574e
SS
7796 else
7797 {
31e77af2 7798 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7799 int remove_bp;
7800 int remove_wps;
8d297bbf 7801 step_over_what step_what;
31e77af2 7802
d4f3574e 7803 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7804 anyway (if we got a signal, the user asked it be passed to
7805 the child)
7806 -- or --
7807 We got our expected trap, but decided we should resume from
7808 it.
d4f3574e 7809
a9ba6bae 7810 We're going to run this baby now!
d4f3574e 7811
c36b740a
VP
7812 Note that insert_breakpoints won't try to re-insert
7813 already inserted breakpoints. Therefore, we don't
7814 care if breakpoints were already inserted, or not. */
a9ba6bae 7815
31e77af2
PA
7816 /* If we need to step over a breakpoint, and we're not using
7817 displaced stepping to do so, insert all breakpoints
7818 (watchpoints, etc.) but the one we're stepping over, step one
7819 instruction, and then re-insert the breakpoint when that step
7820 is finished. */
963f9c80 7821
6c4cfb24
PA
7822 step_what = thread_still_needs_step_over (ecs->event_thread);
7823
963f9c80 7824 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7825 || (step_what & STEP_OVER_BREAKPOINT));
7826 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7827
cb71640d
PA
7828 /* We can't use displaced stepping if we need to step past a
7829 watchpoint. The instruction copied to the scratch pad would
7830 still trigger the watchpoint. */
7831 if (remove_bp
3fc8eb30 7832 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7833 {
a01bda52 7834 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7835 regcache_read_pc (regcache), remove_wps,
7836 ecs->event_thread->global_num);
45e8c884 7837 }
963f9c80 7838 else if (remove_wps)
21edc42f 7839 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7840
7841 /* If we now need to do an in-line step-over, we need to stop
7842 all other threads. Note this must be done before
7843 insert_breakpoints below, because that removes the breakpoint
7844 we're about to step over, otherwise other threads could miss
7845 it. */
fbea99ea 7846 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7847 stop_all_threads ();
abbb1732 7848
31e77af2 7849 /* Stop stepping if inserting breakpoints fails. */
a70b8144 7850 try
31e77af2
PA
7851 {
7852 insert_breakpoints ();
7853 }
230d2906 7854 catch (const gdb_exception_error &e)
31e77af2
PA
7855 {
7856 exception_print (gdb_stderr, e);
22bcd14b 7857 stop_waiting (ecs);
bdf2a94a 7858 clear_step_over_info ();
31e77af2 7859 return;
d4f3574e
SS
7860 }
7861
963f9c80 7862 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7863
64ce06e4 7864 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7865 }
7866
488f131b 7867 prepare_to_wait (ecs);
d4f3574e
SS
7868}
7869
4d9d9d04
PA
7870/* Called when we should continue running the inferior, because the
7871 current event doesn't cause a user visible stop. This does the
7872 resuming part; waiting for the next event is done elsewhere. */
7873
7874static void
7875keep_going (struct execution_control_state *ecs)
7876{
7877 if (ecs->event_thread->control.trap_expected
7878 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7879 ecs->event_thread->control.trap_expected = 0;
7880
7881 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7882 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7883 keep_going_pass_signal (ecs);
7884}
7885
104c1213
JM
7886/* This function normally comes after a resume, before
7887 handle_inferior_event exits. It takes care of any last bits of
7888 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7889
104c1213
JM
7890static void
7891prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7892{
1eb8556f 7893 infrun_debug_printf ("prepare_to_wait");
104c1213 7894
104c1213 7895 ecs->wait_some_more = 1;
0b333c5e 7896
42bd97a6
PA
7897 /* If the target can't async, emulate it by marking the infrun event
7898 handler such that as soon as we get back to the event-loop, we
7899 immediately end up in fetch_inferior_event again calling
7900 target_wait. */
7901 if (!target_can_async_p ())
0b333c5e 7902 mark_infrun_async_event_handler ();
c906108c 7903}
11cf8741 7904
fd664c91 7905/* We are done with the step range of a step/next/si/ni command.
b57bacec 7906 Called once for each n of a "step n" operation. */
fd664c91
PA
7907
7908static void
bdc36728 7909end_stepping_range (struct execution_control_state *ecs)
fd664c91 7910{
bdc36728 7911 ecs->event_thread->control.stop_step = 1;
bdc36728 7912 stop_waiting (ecs);
fd664c91
PA
7913}
7914
33d62d64
JK
7915/* Several print_*_reason functions to print why the inferior has stopped.
7916 We always print something when the inferior exits, or receives a signal.
7917 The rest of the cases are dealt with later on in normal_stop and
7918 print_it_typical. Ideally there should be a call to one of these
7919 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7920 stop_waiting is called.
33d62d64 7921
fd664c91
PA
7922 Note that we don't call these directly, instead we delegate that to
7923 the interpreters, through observers. Interpreters then call these
7924 with whatever uiout is right. */
33d62d64 7925
fd664c91
PA
7926void
7927print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7928{
fd664c91 7929 /* For CLI-like interpreters, print nothing. */
33d62d64 7930
112e8700 7931 if (uiout->is_mi_like_p ())
fd664c91 7932 {
112e8700 7933 uiout->field_string ("reason",
fd664c91
PA
7934 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7935 }
7936}
33d62d64 7937
fd664c91
PA
7938void
7939print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7940{
33d62d64 7941 annotate_signalled ();
112e8700
SM
7942 if (uiout->is_mi_like_p ())
7943 uiout->field_string
7944 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7945 uiout->text ("\nProgram terminated with signal ");
33d62d64 7946 annotate_signal_name ();
112e8700 7947 uiout->field_string ("signal-name",
2ea28649 7948 gdb_signal_to_name (siggnal));
33d62d64 7949 annotate_signal_name_end ();
112e8700 7950 uiout->text (", ");
33d62d64 7951 annotate_signal_string ();
112e8700 7952 uiout->field_string ("signal-meaning",
2ea28649 7953 gdb_signal_to_string (siggnal));
33d62d64 7954 annotate_signal_string_end ();
112e8700
SM
7955 uiout->text (".\n");
7956 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7957}
7958
fd664c91
PA
7959void
7960print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7961{
fda326dd 7962 struct inferior *inf = current_inferior ();
a068643d 7963 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7964
33d62d64
JK
7965 annotate_exited (exitstatus);
7966 if (exitstatus)
7967 {
112e8700
SM
7968 if (uiout->is_mi_like_p ())
7969 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
7970 std::string exit_code_str
7971 = string_printf ("0%o", (unsigned int) exitstatus);
7972 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7973 plongest (inf->num), pidstr.c_str (),
7974 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
7975 }
7976 else
11cf8741 7977 {
112e8700
SM
7978 if (uiout->is_mi_like_p ())
7979 uiout->field_string
7980 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
7981 uiout->message ("[Inferior %s (%s) exited normally]\n",
7982 plongest (inf->num), pidstr.c_str ());
33d62d64 7983 }
33d62d64
JK
7984}
7985
fd664c91
PA
7986void
7987print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7988{
f303dbd6
PA
7989 struct thread_info *thr = inferior_thread ();
7990
33d62d64
JK
7991 annotate_signal ();
7992
112e8700 7993 if (uiout->is_mi_like_p ())
f303dbd6
PA
7994 ;
7995 else if (show_thread_that_caused_stop ())
33d62d64 7996 {
f303dbd6 7997 const char *name;
33d62d64 7998
112e8700 7999 uiout->text ("\nThread ");
33eca680 8000 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8001
8002 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8003 if (name != NULL)
8004 {
112e8700 8005 uiout->text (" \"");
33eca680 8006 uiout->field_string ("name", name);
112e8700 8007 uiout->text ("\"");
f303dbd6 8008 }
33d62d64 8009 }
f303dbd6 8010 else
112e8700 8011 uiout->text ("\nProgram");
f303dbd6 8012
112e8700
SM
8013 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8014 uiout->text (" stopped");
33d62d64
JK
8015 else
8016 {
112e8700 8017 uiout->text (" received signal ");
8b93c638 8018 annotate_signal_name ();
112e8700
SM
8019 if (uiout->is_mi_like_p ())
8020 uiout->field_string
8021 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8022 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8023 annotate_signal_name_end ();
112e8700 8024 uiout->text (", ");
8b93c638 8025 annotate_signal_string ();
112e8700 8026 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21 8027
272bb05c
JB
8028 struct regcache *regcache = get_current_regcache ();
8029 struct gdbarch *gdbarch = regcache->arch ();
8030 if (gdbarch_report_signal_info_p (gdbarch))
8031 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8032
8b93c638 8033 annotate_signal_string_end ();
33d62d64 8034 }
112e8700 8035 uiout->text (".\n");
33d62d64 8036}
252fbfc8 8037
fd664c91
PA
8038void
8039print_no_history_reason (struct ui_out *uiout)
33d62d64 8040{
112e8700 8041 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8042}
43ff13b4 8043
0c7e1a46
PA
8044/* Print current location without a level number, if we have changed
8045 functions or hit a breakpoint. Print source line if we have one.
8046 bpstat_print contains the logic deciding in detail what to print,
8047 based on the event(s) that just occurred. */
8048
243a9253
PA
8049static void
8050print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8051{
8052 int bpstat_ret;
f486487f 8053 enum print_what source_flag;
0c7e1a46
PA
8054 int do_frame_printing = 1;
8055 struct thread_info *tp = inferior_thread ();
8056
8057 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8058 switch (bpstat_ret)
8059 {
8060 case PRINT_UNKNOWN:
8061 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8062 should) carry around the function and does (or should) use
8063 that when doing a frame comparison. */
8064 if (tp->control.stop_step
8065 && frame_id_eq (tp->control.step_frame_id,
8066 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8067 && (tp->control.step_start_function
8068 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8069 {
8070 /* Finished step, just print source line. */
8071 source_flag = SRC_LINE;
8072 }
8073 else
8074 {
8075 /* Print location and source line. */
8076 source_flag = SRC_AND_LOC;
8077 }
8078 break;
8079 case PRINT_SRC_AND_LOC:
8080 /* Print location and source line. */
8081 source_flag = SRC_AND_LOC;
8082 break;
8083 case PRINT_SRC_ONLY:
8084 source_flag = SRC_LINE;
8085 break;
8086 case PRINT_NOTHING:
8087 /* Something bogus. */
8088 source_flag = SRC_LINE;
8089 do_frame_printing = 0;
8090 break;
8091 default:
8092 internal_error (__FILE__, __LINE__, _("Unknown value."));
8093 }
8094
8095 /* The behavior of this routine with respect to the source
8096 flag is:
8097 SRC_LINE: Print only source line
8098 LOCATION: Print only location
8099 SRC_AND_LOC: Print location and source line. */
8100 if (do_frame_printing)
8101 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8102}
8103
243a9253
PA
8104/* See infrun.h. */
8105
8106void
4c7d57e7 8107print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8108{
243a9253 8109 struct target_waitstatus last;
243a9253
PA
8110 struct thread_info *tp;
8111
5b6d1e4f 8112 get_last_target_status (nullptr, nullptr, &last);
243a9253 8113
67ad9399
TT
8114 {
8115 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8116
67ad9399 8117 print_stop_location (&last);
243a9253 8118
67ad9399 8119 /* Display the auto-display expressions. */
4c7d57e7
TT
8120 if (displays)
8121 do_displays ();
67ad9399 8122 }
243a9253
PA
8123
8124 tp = inferior_thread ();
8125 if (tp->thread_fsm != NULL
46e3ed7f 8126 && tp->thread_fsm->finished_p ())
243a9253
PA
8127 {
8128 struct return_value_info *rv;
8129
46e3ed7f 8130 rv = tp->thread_fsm->return_value ();
243a9253
PA
8131 if (rv != NULL)
8132 print_return_value (uiout, rv);
8133 }
0c7e1a46
PA
8134}
8135
388a7084
PA
8136/* See infrun.h. */
8137
8138void
8139maybe_remove_breakpoints (void)
8140{
55f6301a 8141 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
388a7084
PA
8142 {
8143 if (remove_breakpoints ())
8144 {
223ffa71 8145 target_terminal::ours_for_output ();
388a7084
PA
8146 printf_filtered (_("Cannot remove breakpoints because "
8147 "program is no longer writable.\nFurther "
8148 "execution is probably impossible.\n"));
8149 }
8150 }
8151}
8152
4c2f2a79
PA
8153/* The execution context that just caused a normal stop. */
8154
8155struct stop_context
8156{
2d844eaf 8157 stop_context ();
2d844eaf
TT
8158
8159 DISABLE_COPY_AND_ASSIGN (stop_context);
8160
8161 bool changed () const;
8162
4c2f2a79
PA
8163 /* The stop ID. */
8164 ULONGEST stop_id;
c906108c 8165
4c2f2a79 8166 /* The event PTID. */
c906108c 8167
4c2f2a79
PA
8168 ptid_t ptid;
8169
8170 /* If stopp for a thread event, this is the thread that caused the
8171 stop. */
d634cd0b 8172 thread_info_ref thread;
4c2f2a79
PA
8173
8174 /* The inferior that caused the stop. */
8175 int inf_num;
8176};
8177
2d844eaf 8178/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8179 takes a strong reference to the thread. */
8180
2d844eaf 8181stop_context::stop_context ()
4c2f2a79 8182{
2d844eaf
TT
8183 stop_id = get_stop_id ();
8184 ptid = inferior_ptid;
8185 inf_num = current_inferior ()->num;
4c2f2a79 8186
d7e15655 8187 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8188 {
8189 /* Take a strong reference so that the thread can't be deleted
8190 yet. */
d634cd0b 8191 thread = thread_info_ref::new_reference (inferior_thread ());
4c2f2a79 8192 }
4c2f2a79
PA
8193}
8194
8195/* Return true if the current context no longer matches the saved stop
8196 context. */
8197
2d844eaf
TT
8198bool
8199stop_context::changed () const
8200{
8201 if (ptid != inferior_ptid)
8202 return true;
8203 if (inf_num != current_inferior ()->num)
8204 return true;
8205 if (thread != NULL && thread->state != THREAD_STOPPED)
8206 return true;
8207 if (get_stop_id () != stop_id)
8208 return true;
8209 return false;
4c2f2a79
PA
8210}
8211
8212/* See infrun.h. */
8213
8214int
96baa820 8215normal_stop (void)
c906108c 8216{
73b65bb0 8217 struct target_waitstatus last;
73b65bb0 8218
5b6d1e4f 8219 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8220
4c2f2a79
PA
8221 new_stop_id ();
8222
29f49a6a
PA
8223 /* If an exception is thrown from this point on, make sure to
8224 propagate GDB's knowledge of the executing state to the
8225 frontend/user running state. A QUIT is an easy exception to see
8226 here, so do this before any filtered output. */
731f534f 8227
5b6d1e4f 8228 ptid_t finish_ptid = null_ptid;
731f534f 8229
c35b1492 8230 if (!non_stop)
5b6d1e4f 8231 finish_ptid = minus_one_ptid;
e1316e60
PA
8232 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8233 || last.kind == TARGET_WAITKIND_EXITED)
8234 {
8235 /* On some targets, we may still have live threads in the
8236 inferior when we get a process exit event. E.g., for
8237 "checkpoint", when the current checkpoint/fork exits,
8238 linux-fork.c automatically switches to another fork from
8239 within target_mourn_inferior. */
731f534f 8240 if (inferior_ptid != null_ptid)
5b6d1e4f 8241 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8242 }
8243 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8244 finish_ptid = inferior_ptid;
8245
8246 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8247 if (finish_ptid != null_ptid)
8248 {
8249 maybe_finish_thread_state.emplace
8250 (user_visible_resume_target (finish_ptid), finish_ptid);
8251 }
29f49a6a 8252
b57bacec
PA
8253 /* As we're presenting a stop, and potentially removing breakpoints,
8254 update the thread list so we can tell whether there are threads
8255 running on the target. With target remote, for example, we can
8256 only learn about new threads when we explicitly update the thread
8257 list. Do this before notifying the interpreters about signal
8258 stops, end of stepping ranges, etc., so that the "new thread"
8259 output is emitted before e.g., "Program received signal FOO",
8260 instead of after. */
8261 update_thread_list ();
8262
8263 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8264 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8265
c906108c
SS
8266 /* As with the notification of thread events, we want to delay
8267 notifying the user that we've switched thread context until
8268 the inferior actually stops.
8269
73b65bb0
DJ
8270 There's no point in saying anything if the inferior has exited.
8271 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8272 "received a signal".
8273
8274 Also skip saying anything in non-stop mode. In that mode, as we
8275 don't want GDB to switch threads behind the user's back, to avoid
8276 races where the user is typing a command to apply to thread x,
8277 but GDB switches to thread y before the user finishes entering
8278 the command, fetch_inferior_event installs a cleanup to restore
8279 the current thread back to the thread the user had selected right
8280 after this event is handled, so we're not really switching, only
8281 informing of a stop. */
4f8d22e3 8282 if (!non_stop
731f534f 8283 && previous_inferior_ptid != inferior_ptid
55f6301a 8284 && target_has_execution ()
73b65bb0 8285 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8286 && last.kind != TARGET_WAITKIND_EXITED
8287 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8288 {
0e454242 8289 SWITCH_THRU_ALL_UIS ()
3b12939d 8290 {
223ffa71 8291 target_terminal::ours_for_output ();
3b12939d 8292 printf_filtered (_("[Switching to %s]\n"),
a068643d 8293 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8294 annotate_thread_changed ();
8295 }
39f77062 8296 previous_inferior_ptid = inferior_ptid;
c906108c 8297 }
c906108c 8298
0e5bf2a8
PA
8299 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8300 {
0e454242 8301 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8302 if (current_ui->prompt_state == PROMPT_BLOCKED)
8303 {
223ffa71 8304 target_terminal::ours_for_output ();
3b12939d
PA
8305 printf_filtered (_("No unwaited-for children left.\n"));
8306 }
0e5bf2a8
PA
8307 }
8308
b57bacec 8309 /* Note: this depends on the update_thread_list call above. */
388a7084 8310 maybe_remove_breakpoints ();
c906108c 8311
c906108c
SS
8312 /* If an auto-display called a function and that got a signal,
8313 delete that auto-display to avoid an infinite recursion. */
8314
8315 if (stopped_by_random_signal)
8316 disable_current_display ();
8317
0e454242 8318 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8319 {
8320 async_enable_stdin ();
8321 }
c906108c 8322
388a7084 8323 /* Let the user/frontend see the threads as stopped. */
731f534f 8324 maybe_finish_thread_state.reset ();
388a7084
PA
8325
8326 /* Select innermost stack frame - i.e., current frame is frame 0,
8327 and current location is based on that. Handle the case where the
8328 dummy call is returning after being stopped. E.g. the dummy call
8329 previously hit a breakpoint. (If the dummy call returns
8330 normally, we won't reach here.) Do this before the stop hook is
8331 run, so that it doesn't get to see the temporary dummy frame,
8332 which is not where we'll present the stop. */
8333 if (has_stack_frames ())
8334 {
8335 if (stop_stack_dummy == STOP_STACK_DUMMY)
8336 {
8337 /* Pop the empty frame that contains the stack dummy. This
8338 also restores inferior state prior to the call (struct
8339 infcall_suspend_state). */
8340 struct frame_info *frame = get_current_frame ();
8341
8342 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8343 frame_pop (frame);
8344 /* frame_pop calls reinit_frame_cache as the last thing it
8345 does which means there's now no selected frame. */
8346 }
8347
8348 select_frame (get_current_frame ());
8349
8350 /* Set the current source location. */
8351 set_current_sal_from_frame (get_current_frame ());
8352 }
dd7e2d2b
PA
8353
8354 /* Look up the hook_stop and run it (CLI internally handles problem
8355 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8356 if (stop_command != NULL)
8357 {
2d844eaf 8358 stop_context saved_context;
4c2f2a79 8359
a70b8144 8360 try
bf469271
PA
8361 {
8362 execute_cmd_pre_hook (stop_command);
8363 }
230d2906 8364 catch (const gdb_exception &ex)
bf469271
PA
8365 {
8366 exception_fprintf (gdb_stderr, ex,
8367 "Error while running hook_stop:\n");
8368 }
4c2f2a79
PA
8369
8370 /* If the stop hook resumes the target, then there's no point in
8371 trying to notify about the previous stop; its context is
8372 gone. Likewise if the command switches thread or inferior --
8373 the observers would print a stop for the wrong
8374 thread/inferior. */
2d844eaf
TT
8375 if (saved_context.changed ())
8376 return 1;
4c2f2a79 8377 }
dd7e2d2b 8378
388a7084
PA
8379 /* Notify observers about the stop. This is where the interpreters
8380 print the stop event. */
d7e15655 8381 if (inferior_ptid != null_ptid)
76727919 8382 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
24a7f1b5 8383 stop_print_frame);
388a7084 8384 else
76727919 8385 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8386
243a9253
PA
8387 annotate_stopped ();
8388
55f6301a 8389 if (target_has_execution ())
48844aa6
PA
8390 {
8391 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8392 && last.kind != TARGET_WAITKIND_EXITED
8393 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8394 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8395 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8396 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8397 }
6c95b8df
PA
8398
8399 /* Try to get rid of automatically added inferiors that are no
8400 longer needed. Keeping those around slows down things linearly.
8401 Note that this never removes the current inferior. */
8402 prune_inferiors ();
4c2f2a79
PA
8403
8404 return 0;
c906108c 8405}
c906108c 8406\f
c5aa993b 8407int
96baa820 8408signal_stop_state (int signo)
c906108c 8409{
d6b48e9c 8410 return signal_stop[signo];
c906108c
SS
8411}
8412
c5aa993b 8413int
96baa820 8414signal_print_state (int signo)
c906108c
SS
8415{
8416 return signal_print[signo];
8417}
8418
c5aa993b 8419int
96baa820 8420signal_pass_state (int signo)
c906108c
SS
8421{
8422 return signal_program[signo];
8423}
8424
2455069d
UW
8425static void
8426signal_cache_update (int signo)
8427{
8428 if (signo == -1)
8429 {
a493e3e2 8430 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8431 signal_cache_update (signo);
8432
8433 return;
8434 }
8435
8436 signal_pass[signo] = (signal_stop[signo] == 0
8437 && signal_print[signo] == 0
ab04a2af
TT
8438 && signal_program[signo] == 1
8439 && signal_catch[signo] == 0);
2455069d
UW
8440}
8441
488f131b 8442int
7bda5e4a 8443signal_stop_update (int signo, int state)
d4f3574e
SS
8444{
8445 int ret = signal_stop[signo];
abbb1732 8446
d4f3574e 8447 signal_stop[signo] = state;
2455069d 8448 signal_cache_update (signo);
d4f3574e
SS
8449 return ret;
8450}
8451
488f131b 8452int
7bda5e4a 8453signal_print_update (int signo, int state)
d4f3574e
SS
8454{
8455 int ret = signal_print[signo];
abbb1732 8456
d4f3574e 8457 signal_print[signo] = state;
2455069d 8458 signal_cache_update (signo);
d4f3574e
SS
8459 return ret;
8460}
8461
488f131b 8462int
7bda5e4a 8463signal_pass_update (int signo, int state)
d4f3574e
SS
8464{
8465 int ret = signal_program[signo];
abbb1732 8466
d4f3574e 8467 signal_program[signo] = state;
2455069d 8468 signal_cache_update (signo);
d4f3574e
SS
8469 return ret;
8470}
8471
ab04a2af
TT
8472/* Update the global 'signal_catch' from INFO and notify the
8473 target. */
8474
8475void
8476signal_catch_update (const unsigned int *info)
8477{
8478 int i;
8479
8480 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8481 signal_catch[i] = info[i] > 0;
8482 signal_cache_update (-1);
adc6a863 8483 target_pass_signals (signal_pass);
ab04a2af
TT
8484}
8485
c906108c 8486static void
96baa820 8487sig_print_header (void)
c906108c 8488{
3e43a32a
MS
8489 printf_filtered (_("Signal Stop\tPrint\tPass "
8490 "to program\tDescription\n"));
c906108c
SS
8491}
8492
8493static void
2ea28649 8494sig_print_info (enum gdb_signal oursig)
c906108c 8495{
2ea28649 8496 const char *name = gdb_signal_to_name (oursig);
c906108c 8497 int name_padding = 13 - strlen (name);
96baa820 8498
c906108c
SS
8499 if (name_padding <= 0)
8500 name_padding = 0;
8501
8502 printf_filtered ("%s", name);
488f131b 8503 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8504 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8505 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8506 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8507 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8508}
8509
8510/* Specify how various signals in the inferior should be handled. */
8511
8512static void
0b39b52e 8513handle_command (const char *args, int from_tty)
c906108c 8514{
c906108c 8515 int digits, wordlen;
b926417a 8516 int sigfirst, siglast;
2ea28649 8517 enum gdb_signal oursig;
c906108c 8518 int allsigs;
c906108c
SS
8519
8520 if (args == NULL)
8521 {
e2e0b3e5 8522 error_no_arg (_("signal to handle"));
c906108c
SS
8523 }
8524
1777feb0 8525 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8526
adc6a863
PA
8527 const size_t nsigs = GDB_SIGNAL_LAST;
8528 unsigned char sigs[nsigs] {};
c906108c 8529
1777feb0 8530 /* Break the command line up into args. */
c906108c 8531
773a1edc 8532 gdb_argv built_argv (args);
c906108c
SS
8533
8534 /* Walk through the args, looking for signal oursigs, signal names, and
8535 actions. Signal numbers and signal names may be interspersed with
8536 actions, with the actions being performed for all signals cumulatively
1777feb0 8537 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8538
773a1edc 8539 for (char *arg : built_argv)
c906108c 8540 {
773a1edc
TT
8541 wordlen = strlen (arg);
8542 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8543 {;
8544 }
8545 allsigs = 0;
8546 sigfirst = siglast = -1;
8547
773a1edc 8548 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8549 {
8550 /* Apply action to all signals except those used by the
1777feb0 8551 debugger. Silently skip those. */
c906108c
SS
8552 allsigs = 1;
8553 sigfirst = 0;
8554 siglast = nsigs - 1;
8555 }
773a1edc 8556 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8557 {
8558 SET_SIGS (nsigs, sigs, signal_stop);
8559 SET_SIGS (nsigs, sigs, signal_print);
8560 }
773a1edc 8561 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8562 {
8563 UNSET_SIGS (nsigs, sigs, signal_program);
8564 }
773a1edc 8565 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8566 {
8567 SET_SIGS (nsigs, sigs, signal_print);
8568 }
773a1edc 8569 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8570 {
8571 SET_SIGS (nsigs, sigs, signal_program);
8572 }
773a1edc 8573 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8574 {
8575 UNSET_SIGS (nsigs, sigs, signal_stop);
8576 }
773a1edc 8577 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8578 {
8579 SET_SIGS (nsigs, sigs, signal_program);
8580 }
773a1edc 8581 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8582 {
8583 UNSET_SIGS (nsigs, sigs, signal_print);
8584 UNSET_SIGS (nsigs, sigs, signal_stop);
8585 }
773a1edc 8586 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8587 {
8588 UNSET_SIGS (nsigs, sigs, signal_program);
8589 }
8590 else if (digits > 0)
8591 {
8592 /* It is numeric. The numeric signal refers to our own
8593 internal signal numbering from target.h, not to host/target
8594 signal number. This is a feature; users really should be
8595 using symbolic names anyway, and the common ones like
8596 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8597
8598 sigfirst = siglast = (int)
773a1edc
TT
8599 gdb_signal_from_command (atoi (arg));
8600 if (arg[digits] == '-')
c906108c
SS
8601 {
8602 siglast = (int)
773a1edc 8603 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8604 }
8605 if (sigfirst > siglast)
8606 {
1777feb0 8607 /* Bet he didn't figure we'd think of this case... */
b926417a 8608 std::swap (sigfirst, siglast);
c906108c
SS
8609 }
8610 }
8611 else
8612 {
773a1edc 8613 oursig = gdb_signal_from_name (arg);
a493e3e2 8614 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8615 {
8616 sigfirst = siglast = (int) oursig;
8617 }
8618 else
8619 {
8620 /* Not a number and not a recognized flag word => complain. */
773a1edc 8621 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8622 }
8623 }
8624
8625 /* If any signal numbers or symbol names were found, set flags for
dda83cd7 8626 which signals to apply actions to. */
c906108c 8627
b926417a 8628 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8629 {
2ea28649 8630 switch ((enum gdb_signal) signum)
c906108c 8631 {
a493e3e2
PA
8632 case GDB_SIGNAL_TRAP:
8633 case GDB_SIGNAL_INT:
c906108c
SS
8634 if (!allsigs && !sigs[signum])
8635 {
9e2f0ad4 8636 if (query (_("%s is used by the debugger.\n\
3e43a32a 8637Are you sure you want to change it? "),
2ea28649 8638 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8639 {
8640 sigs[signum] = 1;
8641 }
8642 else
c119e040 8643 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8644 }
8645 break;
a493e3e2
PA
8646 case GDB_SIGNAL_0:
8647 case GDB_SIGNAL_DEFAULT:
8648 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8649 /* Make sure that "all" doesn't print these. */
8650 break;
8651 default:
8652 sigs[signum] = 1;
8653 break;
8654 }
8655 }
c906108c
SS
8656 }
8657
b926417a 8658 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8659 if (sigs[signum])
8660 {
2455069d 8661 signal_cache_update (-1);
adc6a863
PA
8662 target_pass_signals (signal_pass);
8663 target_program_signals (signal_program);
c906108c 8664
3a031f65
PA
8665 if (from_tty)
8666 {
8667 /* Show the results. */
8668 sig_print_header ();
8669 for (; signum < nsigs; signum++)
8670 if (sigs[signum])
aead7601 8671 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8672 }
8673
8674 break;
8675 }
c906108c
SS
8676}
8677
de0bea00
MF
8678/* Complete the "handle" command. */
8679
eb3ff9a5 8680static void
de0bea00 8681handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8682 completion_tracker &tracker,
6f937416 8683 const char *text, const char *word)
de0bea00 8684{
de0bea00
MF
8685 static const char * const keywords[] =
8686 {
8687 "all",
8688 "stop",
8689 "ignore",
8690 "print",
8691 "pass",
8692 "nostop",
8693 "noignore",
8694 "noprint",
8695 "nopass",
8696 NULL,
8697 };
8698
eb3ff9a5
PA
8699 signal_completer (ignore, tracker, text, word);
8700 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8701}
8702
2ea28649
PA
8703enum gdb_signal
8704gdb_signal_from_command (int num)
ed01b82c
PA
8705{
8706 if (num >= 1 && num <= 15)
2ea28649 8707 return (enum gdb_signal) num;
ed01b82c
PA
8708 error (_("Only signals 1-15 are valid as numeric signals.\n\
8709Use \"info signals\" for a list of symbolic signals."));
8710}
8711
c906108c
SS
8712/* Print current contents of the tables set by the handle command.
8713 It is possible we should just be printing signals actually used
8714 by the current target (but for things to work right when switching
8715 targets, all signals should be in the signal tables). */
8716
8717static void
1d12d88f 8718info_signals_command (const char *signum_exp, int from_tty)
c906108c 8719{
2ea28649 8720 enum gdb_signal oursig;
abbb1732 8721
c906108c
SS
8722 sig_print_header ();
8723
8724 if (signum_exp)
8725 {
8726 /* First see if this is a symbol name. */
2ea28649 8727 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8728 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8729 {
8730 /* No, try numeric. */
8731 oursig =
2ea28649 8732 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8733 }
8734 sig_print_info (oursig);
8735 return;
8736 }
8737
8738 printf_filtered ("\n");
8739 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8740 for (oursig = GDB_SIGNAL_FIRST;
8741 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8742 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8743 {
8744 QUIT;
8745
a493e3e2
PA
8746 if (oursig != GDB_SIGNAL_UNKNOWN
8747 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8748 sig_print_info (oursig);
8749 }
8750
3e43a32a
MS
8751 printf_filtered (_("\nUse the \"handle\" command "
8752 "to change these tables.\n"));
c906108c 8753}
4aa995e1
PA
8754
8755/* The $_siginfo convenience variable is a bit special. We don't know
8756 for sure the type of the value until we actually have a chance to
7a9dd1b2 8757 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8758 also dependent on which thread you have selected.
8759
8760 1. making $_siginfo be an internalvar that creates a new value on
8761 access.
8762
8763 2. making the value of $_siginfo be an lval_computed value. */
8764
8765/* This function implements the lval_computed support for reading a
8766 $_siginfo value. */
8767
8768static void
8769siginfo_value_read (struct value *v)
8770{
8771 LONGEST transferred;
8772
a911d87a
PA
8773 /* If we can access registers, so can we access $_siginfo. Likewise
8774 vice versa. */
8775 validate_registers_access ();
c709acd1 8776
4aa995e1 8777 transferred =
8b88a78e 8778 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8779 NULL,
8780 value_contents_all_raw (v),
8781 value_offset (v),
8782 TYPE_LENGTH (value_type (v)));
8783
8784 if (transferred != TYPE_LENGTH (value_type (v)))
8785 error (_("Unable to read siginfo"));
8786}
8787
8788/* This function implements the lval_computed support for writing a
8789 $_siginfo value. */
8790
8791static void
8792siginfo_value_write (struct value *v, struct value *fromval)
8793{
8794 LONGEST transferred;
8795
a911d87a
PA
8796 /* If we can access registers, so can we access $_siginfo. Likewise
8797 vice versa. */
8798 validate_registers_access ();
c709acd1 8799
8b88a78e 8800 transferred = target_write (current_top_target (),
4aa995e1
PA
8801 TARGET_OBJECT_SIGNAL_INFO,
8802 NULL,
8803 value_contents_all_raw (fromval),
8804 value_offset (v),
8805 TYPE_LENGTH (value_type (fromval)));
8806
8807 if (transferred != TYPE_LENGTH (value_type (fromval)))
8808 error (_("Unable to write siginfo"));
8809}
8810
c8f2448a 8811static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8812 {
8813 siginfo_value_read,
8814 siginfo_value_write
8815 };
8816
8817/* Return a new value with the correct type for the siginfo object of
78267919
UW
8818 the current thread using architecture GDBARCH. Return a void value
8819 if there's no object available. */
4aa995e1 8820
2c0b251b 8821static struct value *
22d2b532
SDJ
8822siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8823 void *ignore)
4aa995e1 8824{
841de120 8825 if (target_has_stack ()
d7e15655 8826 && inferior_ptid != null_ptid
78267919 8827 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8828 {
78267919 8829 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8830
78267919 8831 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8832 }
8833
78267919 8834 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8835}
8836
c906108c 8837\f
16c381f0
JK
8838/* infcall_suspend_state contains state about the program itself like its
8839 registers and any signal it received when it last stopped.
8840 This state must be restored regardless of how the inferior function call
8841 ends (either successfully, or after it hits a breakpoint or signal)
8842 if the program is to properly continue where it left off. */
8843
6bf78e29 8844class infcall_suspend_state
7a292a7a 8845{
6bf78e29
AB
8846public:
8847 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8848 once the inferior function call has finished. */
8849 infcall_suspend_state (struct gdbarch *gdbarch,
dda83cd7
SM
8850 const struct thread_info *tp,
8851 struct regcache *regcache)
6bf78e29
AB
8852 : m_thread_suspend (tp->suspend),
8853 m_registers (new readonly_detached_regcache (*regcache))
8854 {
8855 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8856
8857 if (gdbarch_get_siginfo_type_p (gdbarch))
8858 {
dda83cd7
SM
8859 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8860 size_t len = TYPE_LENGTH (type);
6bf78e29 8861
dda83cd7 8862 siginfo_data.reset ((gdb_byte *) xmalloc (len));
6bf78e29 8863
dda83cd7
SM
8864 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8865 siginfo_data.get (), 0, len) != len)
8866 {
8867 /* Errors ignored. */
8868 siginfo_data.reset (nullptr);
8869 }
6bf78e29
AB
8870 }
8871
8872 if (siginfo_data)
8873 {
dda83cd7
SM
8874 m_siginfo_gdbarch = gdbarch;
8875 m_siginfo_data = std::move (siginfo_data);
6bf78e29
AB
8876 }
8877 }
8878
8879 /* Return a pointer to the stored register state. */
16c381f0 8880
6bf78e29
AB
8881 readonly_detached_regcache *registers () const
8882 {
8883 return m_registers.get ();
8884 }
8885
8886 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8887
8888 void restore (struct gdbarch *gdbarch,
dda83cd7
SM
8889 struct thread_info *tp,
8890 struct regcache *regcache) const
6bf78e29
AB
8891 {
8892 tp->suspend = m_thread_suspend;
8893
8894 if (m_siginfo_gdbarch == gdbarch)
8895 {
dda83cd7 8896 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6bf78e29 8897
dda83cd7
SM
8898 /* Errors ignored. */
8899 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8900 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
6bf78e29
AB
8901 }
8902
8903 /* The inferior can be gone if the user types "print exit(0)"
8904 (and perhaps other times). */
55f6301a 8905 if (target_has_execution ())
6bf78e29
AB
8906 /* NB: The register write goes through to the target. */
8907 regcache->restore (registers ());
8908 }
8909
8910private:
8911 /* How the current thread stopped before the inferior function call was
8912 executed. */
8913 struct thread_suspend_state m_thread_suspend;
8914
8915 /* The registers before the inferior function call was executed. */
8916 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8917
35515841 8918 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8919 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8920
8921 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8922 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8923 content would be invalid. */
6bf78e29 8924 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8925};
8926
cb524840
TT
8927infcall_suspend_state_up
8928save_infcall_suspend_state ()
b89667eb 8929{
b89667eb 8930 struct thread_info *tp = inferior_thread ();
1736ad11 8931 struct regcache *regcache = get_current_regcache ();
ac7936df 8932 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8933
6bf78e29
AB
8934 infcall_suspend_state_up inf_state
8935 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8936
6bf78e29
AB
8937 /* Having saved the current state, adjust the thread state, discarding
8938 any stop signal information. The stop signal is not useful when
8939 starting an inferior function call, and run_inferior_call will not use
8940 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8941 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8942
b89667eb
DE
8943 return inf_state;
8944}
8945
8946/* Restore inferior session state to INF_STATE. */
8947
8948void
16c381f0 8949restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8950{
8951 struct thread_info *tp = inferior_thread ();
1736ad11 8952 struct regcache *regcache = get_current_regcache ();
ac7936df 8953 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8954
6bf78e29 8955 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8956 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8957}
8958
b89667eb 8959void
16c381f0 8960discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8961{
dd848631 8962 delete inf_state;
b89667eb
DE
8963}
8964
daf6667d 8965readonly_detached_regcache *
16c381f0 8966get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8967{
6bf78e29 8968 return inf_state->registers ();
b89667eb
DE
8969}
8970
16c381f0
JK
8971/* infcall_control_state contains state regarding gdb's control of the
8972 inferior itself like stepping control. It also contains session state like
8973 the user's currently selected frame. */
b89667eb 8974
16c381f0 8975struct infcall_control_state
b89667eb 8976{
16c381f0
JK
8977 struct thread_control_state thread_control;
8978 struct inferior_control_state inferior_control;
d82142e2
JK
8979
8980 /* Other fields: */
ee841dd8
TT
8981 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8982 int stopped_by_random_signal = 0;
7a292a7a 8983
79952e69
PA
8984 /* ID and level of the selected frame when the inferior function
8985 call was made. */
ee841dd8 8986 struct frame_id selected_frame_id {};
79952e69 8987 int selected_frame_level = -1;
7a292a7a
SS
8988};
8989
c906108c 8990/* Save all of the information associated with the inferior<==>gdb
b89667eb 8991 connection. */
c906108c 8992
cb524840
TT
8993infcall_control_state_up
8994save_infcall_control_state ()
c906108c 8995{
cb524840 8996 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 8997 struct thread_info *tp = inferior_thread ();
d6b48e9c 8998 struct inferior *inf = current_inferior ();
7a292a7a 8999
16c381f0
JK
9000 inf_status->thread_control = tp->control;
9001 inf_status->inferior_control = inf->control;
d82142e2 9002
8358c15c 9003 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9004 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9005
16c381f0
JK
9006 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9007 chain. If caller's caller is walking the chain, they'll be happier if we
9008 hand them back the original chain when restore_infcall_control_state is
9009 called. */
9010 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9011
9012 /* Other fields: */
9013 inf_status->stop_stack_dummy = stop_stack_dummy;
9014 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9015
79952e69
PA
9016 save_selected_frame (&inf_status->selected_frame_id,
9017 &inf_status->selected_frame_level);
b89667eb 9018
7a292a7a 9019 return inf_status;
c906108c
SS
9020}
9021
b89667eb
DE
9022/* Restore inferior session state to INF_STATUS. */
9023
c906108c 9024void
16c381f0 9025restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9026{
4e1c45ea 9027 struct thread_info *tp = inferior_thread ();
d6b48e9c 9028 struct inferior *inf = current_inferior ();
4e1c45ea 9029
8358c15c
JK
9030 if (tp->control.step_resume_breakpoint)
9031 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9032
5b79abe7
TT
9033 if (tp->control.exception_resume_breakpoint)
9034 tp->control.exception_resume_breakpoint->disposition
9035 = disp_del_at_next_stop;
9036
d82142e2 9037 /* Handle the bpstat_copy of the chain. */
16c381f0 9038 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9039
16c381f0
JK
9040 tp->control = inf_status->thread_control;
9041 inf->control = inf_status->inferior_control;
d82142e2
JK
9042
9043 /* Other fields: */
9044 stop_stack_dummy = inf_status->stop_stack_dummy;
9045 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9046
841de120 9047 if (target_has_stack ())
c906108c 9048 {
79952e69
PA
9049 restore_selected_frame (inf_status->selected_frame_id,
9050 inf_status->selected_frame_level);
c906108c 9051 }
c906108c 9052
ee841dd8 9053 delete inf_status;
7a292a7a 9054}
c906108c
SS
9055
9056void
16c381f0 9057discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9058{
8358c15c
JK
9059 if (inf_status->thread_control.step_resume_breakpoint)
9060 inf_status->thread_control.step_resume_breakpoint->disposition
9061 = disp_del_at_next_stop;
9062
5b79abe7
TT
9063 if (inf_status->thread_control.exception_resume_breakpoint)
9064 inf_status->thread_control.exception_resume_breakpoint->disposition
9065 = disp_del_at_next_stop;
9066
1777feb0 9067 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9068 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9069
ee841dd8 9070 delete inf_status;
7a292a7a 9071}
b89667eb 9072\f
7f89fd65 9073/* See infrun.h. */
0c557179
SDJ
9074
9075void
9076clear_exit_convenience_vars (void)
9077{
9078 clear_internalvar (lookup_internalvar ("_exitsignal"));
9079 clear_internalvar (lookup_internalvar ("_exitcode"));
9080}
c5aa993b 9081\f
488f131b 9082
b2175913
MS
9083/* User interface for reverse debugging:
9084 Set exec-direction / show exec-direction commands
9085 (returns error unless target implements to_set_exec_direction method). */
9086
170742de 9087enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9088static const char exec_forward[] = "forward";
9089static const char exec_reverse[] = "reverse";
9090static const char *exec_direction = exec_forward;
40478521 9091static const char *const exec_direction_names[] = {
b2175913
MS
9092 exec_forward,
9093 exec_reverse,
9094 NULL
9095};
9096
9097static void
eb4c3f4a 9098set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9099 struct cmd_list_element *cmd)
9100{
05374cfd 9101 if (target_can_execute_reverse ())
b2175913
MS
9102 {
9103 if (!strcmp (exec_direction, exec_forward))
9104 execution_direction = EXEC_FORWARD;
9105 else if (!strcmp (exec_direction, exec_reverse))
9106 execution_direction = EXEC_REVERSE;
9107 }
8bbed405
MS
9108 else
9109 {
9110 exec_direction = exec_forward;
9111 error (_("Target does not support this operation."));
9112 }
b2175913
MS
9113}
9114
9115static void
9116show_exec_direction_func (struct ui_file *out, int from_tty,
9117 struct cmd_list_element *cmd, const char *value)
9118{
9119 switch (execution_direction) {
9120 case EXEC_FORWARD:
9121 fprintf_filtered (out, _("Forward.\n"));
9122 break;
9123 case EXEC_REVERSE:
9124 fprintf_filtered (out, _("Reverse.\n"));
9125 break;
b2175913 9126 default:
d8b34453
PA
9127 internal_error (__FILE__, __LINE__,
9128 _("bogus execution_direction value: %d"),
9129 (int) execution_direction);
b2175913
MS
9130 }
9131}
9132
d4db2f36
PA
9133static void
9134show_schedule_multiple (struct ui_file *file, int from_tty,
9135 struct cmd_list_element *c, const char *value)
9136{
3e43a32a
MS
9137 fprintf_filtered (file, _("Resuming the execution of threads "
9138 "of all processes is %s.\n"), value);
d4db2f36 9139}
ad52ddc6 9140
22d2b532
SDJ
9141/* Implementation of `siginfo' variable. */
9142
9143static const struct internalvar_funcs siginfo_funcs =
9144{
9145 siginfo_make_value,
9146 NULL,
9147 NULL
9148};
9149
372316f1
PA
9150/* Callback for infrun's target events source. This is marked when a
9151 thread has a pending status to process. */
9152
9153static void
9154infrun_async_inferior_event_handler (gdb_client_data data)
9155{
b1a35af2 9156 inferior_event_handler (INF_REG_EVENT);
372316f1
PA
9157}
9158
8087c3fa 9159#if GDB_SELF_TEST
b161a60d
SM
9160namespace selftests
9161{
9162
9163/* Verify that when two threads with the same ptid exist (from two different
9164 targets) and one of them changes ptid, we only update inferior_ptid if
9165 it is appropriate. */
9166
9167static void
9168infrun_thread_ptid_changed ()
9169{
9170 gdbarch *arch = current_inferior ()->gdbarch;
9171
9172 /* The thread which inferior_ptid represents changes ptid. */
9173 {
9174 scoped_restore_current_pspace_and_thread restore;
9175
9176 scoped_mock_context<test_target_ops> target1 (arch);
9177 scoped_mock_context<test_target_ops> target2 (arch);
9178 target2.mock_inferior.next = &target1.mock_inferior;
9179
9180 ptid_t old_ptid (111, 222);
9181 ptid_t new_ptid (111, 333);
9182
9183 target1.mock_inferior.pid = old_ptid.pid ();
9184 target1.mock_thread.ptid = old_ptid;
9185 target2.mock_inferior.pid = old_ptid.pid ();
9186 target2.mock_thread.ptid = old_ptid;
9187
9188 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9189 set_current_inferior (&target1.mock_inferior);
9190
9191 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9192
9193 gdb_assert (inferior_ptid == new_ptid);
9194 }
9195
9196 /* A thread with the same ptid as inferior_ptid, but from another target,
9197 changes ptid. */
9198 {
9199 scoped_restore_current_pspace_and_thread restore;
9200
9201 scoped_mock_context<test_target_ops> target1 (arch);
9202 scoped_mock_context<test_target_ops> target2 (arch);
9203 target2.mock_inferior.next = &target1.mock_inferior;
9204
9205 ptid_t old_ptid (111, 222);
9206 ptid_t new_ptid (111, 333);
9207
9208 target1.mock_inferior.pid = old_ptid.pid ();
9209 target1.mock_thread.ptid = old_ptid;
9210 target2.mock_inferior.pid = old_ptid.pid ();
9211 target2.mock_thread.ptid = old_ptid;
9212
9213 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9214 set_current_inferior (&target2.mock_inferior);
9215
9216 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9217
9218 gdb_assert (inferior_ptid == old_ptid);
9219 }
9220}
9221
9222} /* namespace selftests */
9223
8087c3fa
JB
9224#endif /* GDB_SELF_TEST */
9225
6c265988 9226void _initialize_infrun ();
c906108c 9227void
6c265988 9228_initialize_infrun ()
c906108c 9229{
de0bea00 9230 struct cmd_list_element *c;
c906108c 9231
372316f1
PA
9232 /* Register extra event sources in the event loop. */
9233 infrun_async_inferior_event_token
db20ebdf
SM
9234 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9235 "infrun");
372316f1 9236
11db9430 9237 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9238What debugger does when program gets various signals.\n\
9239Specify a signal as argument to print info on that signal only."));
c906108c
SS
9240 add_info_alias ("handle", "signals", 0);
9241
de0bea00 9242 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9243Specify how to handle signals.\n\
486c7739 9244Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9245Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9246If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9247will be displayed instead.\n\
9248\n\
c906108c
SS
9249Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9250from 1-15 are allowed for compatibility with old versions of GDB.\n\
9251Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9252The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9253used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9254\n\
1bedd215 9255Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9256\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9257Stop means reenter debugger if this signal happens (implies print).\n\
9258Print means print a message if this signal happens.\n\
9259Pass means let program see this signal; otherwise program doesn't know.\n\
9260Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9261Pass and Stop may be combined.\n\
9262\n\
9263Multiple signals may be specified. Signal numbers and signal names\n\
9264may be interspersed with actions, with the actions being performed for\n\
9265all signals cumulatively specified."));
de0bea00 9266 set_cmd_completer (c, handle_completer);
486c7739 9267
c906108c 9268 if (!dbx_commands)
1a966eab
AC
9269 stop_command = add_cmd ("stop", class_obscure,
9270 not_just_help_class_command, _("\
9271There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9272This allows you to set a list of commands to be run each time execution\n\
1a966eab 9273of the program stops."), &cmdlist);
c906108c 9274
94ba44a6
SM
9275 add_setshow_boolean_cmd
9276 ("infrun", class_maintenance, &debug_infrun,
9277 _("Set inferior debugging."),
9278 _("Show inferior debugging."),
9279 _("When non-zero, inferior specific debugging is enabled."),
9280 NULL, show_debug_infrun, &setdebuglist, &showdebuglist);
527159b7 9281
ad52ddc6
PA
9282 add_setshow_boolean_cmd ("non-stop", no_class,
9283 &non_stop_1, _("\
9284Set whether gdb controls the inferior in non-stop mode."), _("\
9285Show whether gdb controls the inferior in non-stop mode."), _("\
9286When debugging a multi-threaded program and this setting is\n\
9287off (the default, also called all-stop mode), when one thread stops\n\
9288(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9289all other threads in the program while you interact with the thread of\n\
9290interest. When you continue or step a thread, you can allow the other\n\
9291threads to run, or have them remain stopped, but while you inspect any\n\
9292thread's state, all threads stop.\n\
9293\n\
9294In non-stop mode, when one thread stops, other threads can continue\n\
9295to run freely. You'll be able to step each thread independently,\n\
9296leave it stopped or free to run as needed."),
9297 set_non_stop,
9298 show_non_stop,
9299 &setlist,
9300 &showlist);
9301
adc6a863 9302 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9303 {
9304 signal_stop[i] = 1;
9305 signal_print[i] = 1;
9306 signal_program[i] = 1;
ab04a2af 9307 signal_catch[i] = 0;
c906108c
SS
9308 }
9309
4d9d9d04
PA
9310 /* Signals caused by debugger's own actions should not be given to
9311 the program afterwards.
9312
9313 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9314 explicitly specifies that it should be delivered to the target
9315 program. Typically, that would occur when a user is debugging a
9316 target monitor on a simulator: the target monitor sets a
9317 breakpoint; the simulator encounters this breakpoint and halts
9318 the simulation handing control to GDB; GDB, noting that the stop
9319 address doesn't map to any known breakpoint, returns control back
9320 to the simulator; the simulator then delivers the hardware
9321 equivalent of a GDB_SIGNAL_TRAP to the program being
9322 debugged. */
a493e3e2
PA
9323 signal_program[GDB_SIGNAL_TRAP] = 0;
9324 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9325
9326 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9327 signal_stop[GDB_SIGNAL_ALRM] = 0;
9328 signal_print[GDB_SIGNAL_ALRM] = 0;
9329 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9330 signal_print[GDB_SIGNAL_VTALRM] = 0;
9331 signal_stop[GDB_SIGNAL_PROF] = 0;
9332 signal_print[GDB_SIGNAL_PROF] = 0;
9333 signal_stop[GDB_SIGNAL_CHLD] = 0;
9334 signal_print[GDB_SIGNAL_CHLD] = 0;
9335 signal_stop[GDB_SIGNAL_IO] = 0;
9336 signal_print[GDB_SIGNAL_IO] = 0;
9337 signal_stop[GDB_SIGNAL_POLL] = 0;
9338 signal_print[GDB_SIGNAL_POLL] = 0;
9339 signal_stop[GDB_SIGNAL_URG] = 0;
9340 signal_print[GDB_SIGNAL_URG] = 0;
9341 signal_stop[GDB_SIGNAL_WINCH] = 0;
9342 signal_print[GDB_SIGNAL_WINCH] = 0;
9343 signal_stop[GDB_SIGNAL_PRIO] = 0;
9344 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9345
cd0fc7c3
SS
9346 /* These signals are used internally by user-level thread
9347 implementations. (See signal(5) on Solaris.) Like the above
9348 signals, a healthy program receives and handles them as part of
9349 its normal operation. */
a493e3e2
PA
9350 signal_stop[GDB_SIGNAL_LWP] = 0;
9351 signal_print[GDB_SIGNAL_LWP] = 0;
9352 signal_stop[GDB_SIGNAL_WAITING] = 0;
9353 signal_print[GDB_SIGNAL_WAITING] = 0;
9354 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9355 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9356 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9357 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9358
2455069d
UW
9359 /* Update cached state. */
9360 signal_cache_update (-1);
9361
85c07804
AC
9362 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9363 &stop_on_solib_events, _("\
9364Set stopping for shared library events."), _("\
9365Show stopping for shared library events."), _("\
c906108c
SS
9366If nonzero, gdb will give control to the user when the dynamic linker\n\
9367notifies gdb of shared library events. The most common event of interest\n\
85c07804 9368to the user would be loading/unloading of a new library."),
f9e14852 9369 set_stop_on_solib_events,
920d2a44 9370 show_stop_on_solib_events,
85c07804 9371 &setlist, &showlist);
c906108c 9372
7ab04401
AC
9373 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9374 follow_fork_mode_kind_names,
9375 &follow_fork_mode_string, _("\
9376Set debugger response to a program call of fork or vfork."), _("\
9377Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9378A fork or vfork creates a new process. follow-fork-mode can be:\n\
9379 parent - the original process is debugged after a fork\n\
9380 child - the new process is debugged after a fork\n\
ea1dd7bc 9381The unfollowed process will continue to run.\n\
7ab04401
AC
9382By default, the debugger will follow the parent process."),
9383 NULL,
920d2a44 9384 show_follow_fork_mode_string,
7ab04401
AC
9385 &setlist, &showlist);
9386
6c95b8df
PA
9387 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9388 follow_exec_mode_names,
9389 &follow_exec_mode_string, _("\
9390Set debugger response to a program call of exec."), _("\
9391Show debugger response to a program call of exec."), _("\
9392An exec call replaces the program image of a process.\n\
9393\n\
9394follow-exec-mode can be:\n\
9395\n\
cce7e648 9396 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9397to this new inferior. The program the process was running before\n\
9398the exec call can be restarted afterwards by restarting the original\n\
9399inferior.\n\
9400\n\
9401 same - the debugger keeps the process bound to the same inferior.\n\
9402The new executable image replaces the previous executable loaded in\n\
9403the inferior. Restarting the inferior after the exec call restarts\n\
9404the executable the process was running after the exec call.\n\
9405\n\
9406By default, the debugger will use the same inferior."),
9407 NULL,
9408 show_follow_exec_mode_string,
9409 &setlist, &showlist);
9410
7ab04401
AC
9411 add_setshow_enum_cmd ("scheduler-locking", class_run,
9412 scheduler_enums, &scheduler_mode, _("\
9413Set mode for locking scheduler during execution."), _("\
9414Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9415off == no locking (threads may preempt at any time)\n\
9416on == full locking (no thread except the current thread may run)\n\
dda83cd7 9417 This applies to both normal execution and replay mode.\n\
f2665db5 9418step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
dda83cd7
SM
9419 In this mode, other threads may run during other commands.\n\
9420 This applies to both normal execution and replay mode.\n\
f2665db5 9421replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9422 set_schedlock_func, /* traps on target vector */
920d2a44 9423 show_scheduler_mode,
7ab04401 9424 &setlist, &showlist);
5fbbeb29 9425
d4db2f36
PA
9426 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9427Set mode for resuming threads of all processes."), _("\
9428Show mode for resuming threads of all processes."), _("\
9429When on, execution commands (such as 'continue' or 'next') resume all\n\
9430threads of all processes. When off (which is the default), execution\n\
9431commands only resume the threads of the current process. The set of\n\
9432threads that are resumed is further refined by the scheduler-locking\n\
9433mode (see help set scheduler-locking)."),
9434 NULL,
9435 show_schedule_multiple,
9436 &setlist, &showlist);
9437
5bf193a2
AC
9438 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9439Set mode of the step operation."), _("\
9440Show mode of the step operation."), _("\
9441When set, doing a step over a function without debug line information\n\
9442will stop at the first instruction of that function. Otherwise, the\n\
9443function is skipped and the step command stops at a different source line."),
9444 NULL,
920d2a44 9445 show_step_stop_if_no_debug,
5bf193a2 9446 &setlist, &showlist);
ca6724c1 9447
72d0e2c5
YQ
9448 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9449 &can_use_displaced_stepping, _("\
237fc4c9
PA
9450Set debugger's willingness to use displaced stepping."), _("\
9451Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9452If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9453supported by the target architecture. If off, gdb will not use displaced\n\
9454stepping to step over breakpoints, even if such is supported by the target\n\
9455architecture. If auto (which is the default), gdb will use displaced stepping\n\
9456if the target architecture supports it and non-stop mode is active, but will not\n\
9457use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9458 NULL,
9459 show_can_use_displaced_stepping,
9460 &setlist, &showlist);
237fc4c9 9461
b2175913
MS
9462 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9463 &exec_direction, _("Set direction of execution.\n\
9464Options are 'forward' or 'reverse'."),
9465 _("Show direction of execution (forward/reverse)."),
9466 _("Tells gdb whether to execute forward or backward."),
9467 set_exec_direction_func, show_exec_direction_func,
9468 &setlist, &showlist);
9469
6c95b8df
PA
9470 /* Set/show detach-on-fork: user-settable mode. */
9471
9472 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9473Set whether gdb will detach the child of a fork."), _("\
9474Show whether gdb will detach the child of a fork."), _("\
9475Tells gdb whether to detach the child of a fork."),
9476 NULL, NULL, &setlist, &showlist);
9477
03583c20
UW
9478 /* Set/show disable address space randomization mode. */
9479
9480 add_setshow_boolean_cmd ("disable-randomization", class_support,
9481 &disable_randomization, _("\
9482Set disabling of debuggee's virtual address space randomization."), _("\
9483Show disabling of debuggee's virtual address space randomization."), _("\
9484When this mode is on (which is the default), randomization of the virtual\n\
9485address space is disabled. Standalone programs run with the randomization\n\
9486enabled by default on some platforms."),
9487 &set_disable_randomization,
9488 &show_disable_randomization,
9489 &setlist, &showlist);
9490
ca6724c1 9491 /* ptid initializations */
ca6724c1
KB
9492 inferior_ptid = null_ptid;
9493 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9494
76727919
TT
9495 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9496 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9497 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9498 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
3b7a962d 9499 gdb::observers::inferior_execd.attach (infrun_inferior_execd);
4aa995e1
PA
9500
9501 /* Explicitly create without lookup, since that tries to create a
9502 value with a void typed value, and when we get here, gdbarch
9503 isn't initialized yet. At this point, we're quite sure there
9504 isn't another convenience variable of the same name. */
22d2b532 9505 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9506
9507 add_setshow_boolean_cmd ("observer", no_class,
9508 &observer_mode_1, _("\
9509Set whether gdb controls the inferior in observer mode."), _("\
9510Show whether gdb controls the inferior in observer mode."), _("\
9511In observer mode, GDB can get data from the inferior, but not\n\
9512affect its execution. Registers and memory may not be changed,\n\
9513breakpoints may not be set, and the program cannot be interrupted\n\
9514or signalled."),
9515 set_observer_mode,
9516 show_observer_mode,
9517 &setlist,
9518 &showlist);
b161a60d
SM
9519
9520#if GDB_SELF_TEST
9521 selftests::register_test ("infrun_thread_ptid_changed",
9522 selftests::infrun_thread_ptid_changed);
9523#endif
c906108c 9524}
This page took 2.785689 seconds and 4 git commands to generate.