Fri Nov 1 13:59:28 1996 Martin M. Hunt <hunt@pizza.cygnus.com>
[deliverable/binutils-gdb.git] / gdb / irix5-nat.c
CommitLineData
a2f1e2e5 1/* Native support for the SGI Iris running IRIX version 5, for GDB.
87273c71 2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996
33c66e44 3 Free Software Foundation, Inc.
a2f1e2e5
ILT
4 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
5 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
6 Implemented for Irix 4.x by Garrett A. Wollman.
7 Modified for Irix 5.x by Ian Lance Taylor.
8
9This file is part of GDB.
10
11This program is free software; you can redistribute it and/or modify
12it under the terms of the GNU General Public License as published by
13the Free Software Foundation; either version 2 of the License, or
14(at your option) any later version.
15
16This program is distributed in the hope that it will be useful,
17but WITHOUT ANY WARRANTY; without even the implied warranty of
18MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19GNU General Public License for more details.
20
21You should have received a copy of the GNU General Public License
22along with this program; if not, write to the Free Software
6c9638b4 23Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
a2f1e2e5
ILT
24
25#include "defs.h"
26#include "inferior.h"
27#include "gdbcore.h"
28#include "target.h"
29
2b576293 30#include "gdb_string.h"
a2f1e2e5
ILT
31#include <sys/time.h>
32#include <sys/procfs.h>
33#include <setjmp.h> /* For JB_XXX. */
34
857dcde8 35static void
948a9d92 36fetch_core_registers PARAMS ((char *, unsigned int, int, CORE_ADDR));
857dcde8 37
a2f1e2e5
ILT
38/* Size of elements in jmpbuf */
39
40#define JB_ELEMENT_SIZE 4
41
42/*
43 * See the comment in m68k-tdep.c regarding the utility of these functions.
44 *
45 * These definitions are from the MIPS SVR4 ABI, so they may work for
46 * any MIPS SVR4 target.
47 */
48
49void
50supply_gregset (gregsetp)
51 gregset_t *gregsetp;
52{
53 register int regi;
54 register greg_t *regp = &(*gregsetp)[0];
3f403f6a 55 static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
a2f1e2e5
ILT
56
57 for(regi = 0; regi <= CTX_RA; regi++)
58 supply_register (regi, (char *)(regp + regi));
59
60 supply_register (PC_REGNUM, (char *)(regp + CTX_EPC));
61 supply_register (HI_REGNUM, (char *)(regp + CTX_MDHI));
62 supply_register (LO_REGNUM, (char *)(regp + CTX_MDLO));
63 supply_register (CAUSE_REGNUM, (char *)(regp + CTX_CAUSE));
3f403f6a
PS
64
65 /* Fill inaccessible registers with zero. */
66 supply_register (BADVADDR_REGNUM, zerobuf);
a2f1e2e5
ILT
67}
68
69void
70fill_gregset (gregsetp, regno)
71 gregset_t *gregsetp;
72 int regno;
73{
74 int regi;
75 register greg_t *regp = &(*gregsetp)[0];
76
77 for (regi = 0; regi <= CTX_RA; regi++)
78 if ((regno == -1) || (regno == regi))
79 *(regp + regi) = *(greg_t *) &registers[REGISTER_BYTE (regi)];
80
81 if ((regno == -1) || (regno == PC_REGNUM))
82 *(regp + CTX_EPC) = *(greg_t *) &registers[REGISTER_BYTE (PC_REGNUM)];
83
84 if ((regno == -1) || (regno == CAUSE_REGNUM))
3f403f6a 85 *(regp + CTX_CAUSE) = *(greg_t *) &registers[REGISTER_BYTE (CAUSE_REGNUM)];
a2f1e2e5
ILT
86
87 if ((regno == -1) || (regno == HI_REGNUM))
88 *(regp + CTX_MDHI) = *(greg_t *) &registers[REGISTER_BYTE (HI_REGNUM)];
89
90 if ((regno == -1) || (regno == LO_REGNUM))
91 *(regp + CTX_MDLO) = *(greg_t *) &registers[REGISTER_BYTE (LO_REGNUM)];
92}
93
94/*
95 * Now we do the same thing for floating-point registers.
96 * We don't bother to condition on FP0_REGNUM since any
97 * reasonable MIPS configuration has an R3010 in it.
98 *
99 * Again, see the comments in m68k-tdep.c.
100 */
101
102void
103supply_fpregset (fpregsetp)
104 fpregset_t *fpregsetp;
105{
106 register int regi;
3f403f6a 107 static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
a2f1e2e5
ILT
108
109 for (regi = 0; regi < 32; regi++)
110 supply_register (FP0_REGNUM + regi,
111 (char *)&fpregsetp->fp_r.fp_regs[regi]);
112
113 supply_register (FCRCS_REGNUM, (char *)&fpregsetp->fp_csr);
114
115 /* FIXME: how can we supply FCRIR_REGNUM? SGI doesn't tell us. */
3f403f6a 116 supply_register (FCRIR_REGNUM, zerobuf);
a2f1e2e5
ILT
117}
118
119void
120fill_fpregset (fpregsetp, regno)
121 fpregset_t *fpregsetp;
122 int regno;
123{
124 int regi;
125 char *from, *to;
126
127 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
128 {
129 if ((regno == -1) || (regno == regi))
130 {
131 from = (char *) &registers[REGISTER_BYTE (regi)];
132 to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]);
133 memcpy(to, from, REGISTER_RAW_SIZE (regi));
134 }
135 }
136
137 if ((regno == -1) || (regno == FCRCS_REGNUM))
138 fpregsetp->fp_csr = *(unsigned *) &registers[REGISTER_BYTE(FCRCS_REGNUM)];
139}
140
141
142/* Figure out where the longjmp will land.
143 We expect the first arg to be a pointer to the jmp_buf structure from which
144 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
145 This routine returns true on success. */
146
147int
148get_longjmp_target (pc)
149 CORE_ADDR *pc;
150{
151 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
152 CORE_ADDR jb_addr;
153
154 jb_addr = read_register (A0_REGNUM);
155
156 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
157 TARGET_PTR_BIT / TARGET_CHAR_BIT))
158 return 0;
159
160 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
161
162 return 1;
163}
164
a1df8e78 165static void
a2f1e2e5
ILT
166fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
167 char *core_reg_sect;
168 unsigned core_reg_size;
169 int which; /* Unused */
948a9d92 170 CORE_ADDR reg_addr; /* Unused */
a2f1e2e5
ILT
171{
172 if (core_reg_size != REGISTER_BYTES)
173 {
174 warning ("wrong size gregset struct in core file");
175 return;
176 }
177
178 memcpy ((char *)registers, core_reg_sect, core_reg_size);
179}
180\f
181/* Irix 5 uses what appears to be a unique form of shared library
182 support. This is a copy of solib.c modified for Irix 5. */
183
184#include <sys/types.h>
185#include <signal.h>
a2f1e2e5
ILT
186#include <sys/param.h>
187#include <fcntl.h>
188
189/* <obj.h> includes <sym.h> and <symconst.h>, which causes conflicts
190 with our versions of those files included by tm-mips.h. Prevent
191 <obj.h> from including them with some appropriate defines. */
192#define __SYM_H__
193#define __SYMCONST_H__
194#include <obj.h>
195
196#include "symtab.h"
197#include "bfd.h"
198#include "symfile.h"
199#include "objfiles.h"
200#include "command.h"
201#include "frame.h"
811f1bdc 202#include "gnu-regex.h"
a2f1e2e5
ILT
203#include "inferior.h"
204#include "language.h"
2e11fdd8 205#include "gdbcmd.h"
a2f1e2e5 206
a2f1e2e5
ILT
207/* The symbol which starts off the list of shared libraries. */
208#define DEBUG_BASE "__rld_obj_head"
209
210/* How to get the loaded address of a shared library. */
33c66e44 211#define LM_ADDR(so) ((so)->lm.o_praw)
a2f1e2e5
ILT
212
213char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
214
a2f1e2e5
ILT
215struct so_list {
216 struct so_list *next; /* next structure in linked list */
217 struct obj_list ll;
218 struct obj lm; /* copy of link map from inferior */
219 struct obj_list *lladdr; /* addr in inferior lm was read from */
220 CORE_ADDR lmend; /* upper addr bound of mapped object */
221 char symbols_loaded; /* flag: symbols read in yet? */
222 char from_tty; /* flag: print msgs? */
223 struct objfile *objfile; /* objfile for loaded lib */
224 struct section_table *sections;
225 struct section_table *sections_end;
226 struct section_table *textsection;
227 bfd *abfd;
228};
229
230static struct so_list *so_list_head; /* List of known shared objects */
231static CORE_ADDR debug_base; /* Base of dynamic linker structures */
232static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
233
234/* Local function prototypes */
235
236static void
237sharedlibrary_command PARAMS ((char *, int));
238
239static int
240enable_break PARAMS ((void));
241
242static int
243disable_break PARAMS ((void));
244
245static void
246info_sharedlibrary_command PARAMS ((char *, int));
247
248static int
249symbol_add_stub PARAMS ((char *));
250
251static struct so_list *
252find_solib PARAMS ((struct so_list *));
253
254static struct obj_list *
255first_link_map_member PARAMS ((void));
256
257static CORE_ADDR
258locate_base PARAMS ((void));
259
260static void
261solib_map_sections PARAMS ((struct so_list *));
262
263/*
264
265LOCAL FUNCTION
266
267 solib_map_sections -- open bfd and build sections for shared lib
268
269SYNOPSIS
270
271 static void solib_map_sections (struct so_list *so)
272
273DESCRIPTION
274
275 Given a pointer to one of the shared objects in our list
276 of mapped objects, use the recorded name to open a bfd
277 descriptor for the object, build a section table, and then
278 relocate all the section addresses by the base address at
279 which the shared object was mapped.
280
281FIXMES
282
283 In most (all?) cases the shared object file name recorded in the
284 dynamic linkage tables will be a fully qualified pathname. For
285 cases where it isn't, do we really mimic the systems search
286 mechanism correctly in the below code (particularly the tilde
287 expansion stuff?).
288 */
289
290static void
291solib_map_sections (so)
292 struct so_list *so;
293{
294 char *filename;
295 char *scratch_pathname;
296 int scratch_chan;
297 struct section_table *p;
298 struct cleanup *old_chain;
299 bfd *abfd;
33c66e44 300 CORE_ADDR offset;
a2f1e2e5
ILT
301
302 filename = tilde_expand (so -> lm.o_path);
303 old_chain = make_cleanup (free, filename);
304
305 scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
306 &scratch_pathname);
307 if (scratch_chan < 0)
308 {
309 scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
310 O_RDONLY, 0, &scratch_pathname);
311 }
312 if (scratch_chan < 0)
313 {
314 perror_with_name (filename);
315 }
316 /* Leave scratch_pathname allocated. abfd->name will point to it. */
317
318 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
319 if (!abfd)
320 {
321 close (scratch_chan);
322 error ("Could not open `%s' as an executable file: %s",
c4a081e1 323 scratch_pathname, bfd_errmsg (bfd_get_error ()));
a2f1e2e5
ILT
324 }
325 /* Leave bfd open, core_xfer_memory and "info files" need it. */
326 so -> abfd = abfd;
327 abfd -> cacheable = true;
328
329 if (!bfd_check_format (abfd, bfd_object))
330 {
331 error ("\"%s\": not in executable format: %s.",
c4a081e1 332 scratch_pathname, bfd_errmsg (bfd_get_error ()));
a2f1e2e5
ILT
333 }
334 if (build_section_table (abfd, &so -> sections, &so -> sections_end))
335 {
336 error ("Can't find the file sections in `%s': %s",
c4a081e1 337 bfd_get_filename (exec_bfd), bfd_errmsg (bfd_get_error ()));
a2f1e2e5
ILT
338 }
339
33c66e44
PS
340 /* Irix 5 shared objects are pre-linked to particular addresses
341 although the dynamic linker may have to relocate them if the
342 address ranges of the libraries used by the main program clash.
343 The offset is the difference between the address where the object
344 is mapped and the binding address of the shared library. */
345 offset = (CORE_ADDR) LM_ADDR (so) - so -> lm.o_base_address;
346
a2f1e2e5
ILT
347 for (p = so -> sections; p < so -> sections_end; p++)
348 {
349 /* Relocate the section binding addresses as recorded in the shared
33c66e44
PS
350 object's file by the offset to get the address to which the
351 object was actually mapped. */
352 p -> addr += offset;
353 p -> endaddr += offset;
a2f1e2e5 354 so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend);
94d4b713 355 if (STREQ (p -> the_bfd_section -> name, ".text"))
a2f1e2e5
ILT
356 {
357 so -> textsection = p;
358 }
359 }
360
361 /* Free the file names, close the file now. */
362 do_cleanups (old_chain);
363}
364
365/*
366
367LOCAL FUNCTION
368
369 locate_base -- locate the base address of dynamic linker structs
370
371SYNOPSIS
372
373 CORE_ADDR locate_base (void)
374
375DESCRIPTION
376
377 For both the SunOS and SVR4 shared library implementations, if the
378 inferior executable has been linked dynamically, there is a single
379 address somewhere in the inferior's data space which is the key to
380 locating all of the dynamic linker's runtime structures. This
381 address is the value of the symbol defined by the macro DEBUG_BASE.
382 The job of this function is to find and return that address, or to
383 return 0 if there is no such address (the executable is statically
384 linked for example).
385
386 For SunOS, the job is almost trivial, since the dynamic linker and
387 all of it's structures are statically linked to the executable at
388 link time. Thus the symbol for the address we are looking for has
389 already been added to the minimal symbol table for the executable's
390 objfile at the time the symbol file's symbols were read, and all we
391 have to do is look it up there. Note that we explicitly do NOT want
392 to find the copies in the shared library.
393
394 The SVR4 version is much more complicated because the dynamic linker
395 and it's structures are located in the shared C library, which gets
396 run as the executable's "interpreter" by the kernel. We have to go
397 to a lot more work to discover the address of DEBUG_BASE. Because
398 of this complexity, we cache the value we find and return that value
399 on subsequent invocations. Note there is no copy in the executable
400 symbol tables.
401
402 Irix 5 is basically like SunOS.
403
404 Note that we can assume nothing about the process state at the time
405 we need to find this address. We may be stopped on the first instruc-
406 tion of the interpreter (C shared library), the first instruction of
407 the executable itself, or somewhere else entirely (if we attached
408 to the process for example).
409
410 */
411
412static CORE_ADDR
413locate_base ()
414{
415 struct minimal_symbol *msymbol;
416 CORE_ADDR address = 0;
417
2d336b1b 418 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
a2f1e2e5
ILT
419 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
420 {
421 address = SYMBOL_VALUE_ADDRESS (msymbol);
422 }
423 return (address);
424}
425
426/*
427
428LOCAL FUNCTION
429
430 first_link_map_member -- locate first member in dynamic linker's map
431
432SYNOPSIS
433
434 static struct link_map *first_link_map_member (void)
435
436DESCRIPTION
437
438 Read in a copy of the first member in the inferior's dynamic
439 link map from the inferior's dynamic linker structures, and return
440 a pointer to the copy in our address space.
441*/
442
443static struct obj_list *
444first_link_map_member ()
445{
446 struct obj_list *lm;
447 struct obj_list s;
448
449 read_memory (debug_base, (char *) &lm, sizeof (struct obj_list *));
450
451 if (lm == NULL)
452 return NULL;
453
454 /* The first entry in the list is the object file we are debugging,
455 so skip it. */
456 read_memory ((CORE_ADDR) lm, (char *) &s, sizeof (struct obj_list));
457
458 return s.next;
459}
460
461/*
462
463LOCAL FUNCTION
464
465 find_solib -- step through list of shared objects
466
467SYNOPSIS
468
469 struct so_list *find_solib (struct so_list *so_list_ptr)
470
471DESCRIPTION
472
473 This module contains the routine which finds the names of any
474 loaded "images" in the current process. The argument in must be
475 NULL on the first call, and then the returned value must be passed
476 in on subsequent calls. This provides the capability to "step" down
477 the list of loaded objects. On the last object, a NULL value is
478 returned.
479 */
480
481static struct so_list *
482find_solib (so_list_ptr)
483 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
484{
485 struct so_list *so_list_next = NULL;
486 struct obj_list *lm = NULL;
487 struct so_list *new;
488
489 if (so_list_ptr == NULL)
490 {
491 /* We are setting up for a new scan through the loaded images. */
492 if ((so_list_next = so_list_head) == NULL)
493 {
494 /* We have not already read in the dynamic linking structures
495 from the inferior, lookup the address of the base structure. */
496 debug_base = locate_base ();
497 if (debug_base != 0)
498 {
499 /* Read the base structure in and find the address of the first
500 link map list member. */
501 lm = first_link_map_member ();
502 }
503 }
504 }
505 else
506 {
507 /* We have been called before, and are in the process of walking
508 the shared library list. Advance to the next shared object. */
509 if ((lm = so_list_ptr->ll.next) == NULL)
510 {
511 /* We have hit the end of the list, so check to see if any were
512 added, but be quiet if we can't read from the target any more. */
513 int status = target_read_memory ((CORE_ADDR) so_list_ptr -> lladdr,
514 (char *) &(so_list_ptr -> ll),
515 sizeof (struct obj_list));
516 if (status == 0)
517 {
518 lm = so_list_ptr->ll.next;
519 }
520 else
521 {
522 lm = NULL;
523 }
524 }
525 so_list_next = so_list_ptr -> next;
526 }
527 if ((so_list_next == NULL) && (lm != NULL))
528 {
4ad0021e
JK
529 int errcode;
530 char *buffer;
531
a2f1e2e5
ILT
532 /* Get next link map structure from inferior image and build a local
533 abbreviated load_map structure */
534 new = (struct so_list *) xmalloc (sizeof (struct so_list));
535 memset ((char *) new, 0, sizeof (struct so_list));
536 new -> lladdr = lm;
537 /* Add the new node as the next node in the list, or as the root
538 node if this is the first one. */
539 if (so_list_ptr != NULL)
540 {
541 so_list_ptr -> next = new;
542 }
543 else
544 {
545 so_list_head = new;
546 }
547 so_list_next = new;
548 read_memory ((CORE_ADDR) lm, (char *) &(new -> ll),
549 sizeof (struct obj_list));
550 read_memory ((CORE_ADDR) new->ll.data, (char *) &(new -> lm),
551 sizeof (struct obj));
ce2f21b2
JK
552 target_read_string ((CORE_ADDR)new->lm.o_path, &buffer,
553 INT_MAX, &errcode);
4ad0021e 554 if (errcode != 0)
ce2f21b2 555 memory_error (errcode, (CORE_ADDR)new->lm.o_path);
4ad0021e 556 new->lm.o_path = buffer;
a2f1e2e5
ILT
557 solib_map_sections (new);
558 }
559 return (so_list_next);
560}
561
562/* A small stub to get us past the arg-passing pinhole of catch_errors. */
563
564static int
565symbol_add_stub (arg)
566 char *arg;
567{
568 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
569
570 so -> objfile = symbol_file_add (so -> lm.o_path, so -> from_tty,
571 (unsigned int) so -> textsection -> addr,
572 0, 0, 0);
573 return (1);
574}
575
576/*
577
578GLOBAL FUNCTION
579
580 solib_add -- add a shared library file to the symtab and section list
581
582SYNOPSIS
583
584 void solib_add (char *arg_string, int from_tty,
585 struct target_ops *target)
586
587DESCRIPTION
588
589*/
590
591void
592solib_add (arg_string, from_tty, target)
593 char *arg_string;
594 int from_tty;
595 struct target_ops *target;
596{
597 register struct so_list *so = NULL; /* link map state variable */
598
599 /* Last shared library that we read. */
600 struct so_list *so_last = NULL;
601
602 char *re_err;
603 int count;
604 int old;
605
606 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
607 {
608 error ("Invalid regexp: %s", re_err);
609 }
610
0d98155c 611 /* Add the shared library sections to the section table of the
46d185d3 612 specified target, if any. */
a2f1e2e5
ILT
613 if (target)
614 {
615 /* Count how many new section_table entries there are. */
616 so = NULL;
617 count = 0;
618 while ((so = find_solib (so)) != NULL)
619 {
620 if (so -> lm.o_path[0])
621 {
622 count += so -> sections_end - so -> sections;
623 }
624 }
625
626 if (count)
627 {
148070cc
JL
628 int update_coreops;
629
630 /* We must update the to_sections field in the core_ops structure
631 here, otherwise we dereference a potential dangling pointer
632 for each call to target_read/write_memory within this routine. */
633 update_coreops = core_ops.to_sections == target->to_sections;
634
a2f1e2e5
ILT
635 /* Reallocate the target's section table including the new size. */
636 if (target -> to_sections)
637 {
638 old = target -> to_sections_end - target -> to_sections;
639 target -> to_sections = (struct section_table *)
640 xrealloc ((char *)target -> to_sections,
641 (sizeof (struct section_table)) * (count + old));
642 }
643 else
644 {
645 old = 0;
646 target -> to_sections = (struct section_table *)
647 xmalloc ((sizeof (struct section_table)) * count);
648 }
649 target -> to_sections_end = target -> to_sections + (count + old);
650
148070cc
JL
651 /* Update the to_sections field in the core_ops structure
652 if needed. */
653 if (update_coreops)
654 {
655 core_ops.to_sections = target->to_sections;
656 core_ops.to_sections_end = target->to_sections_end;
657 }
658
a2f1e2e5
ILT
659 /* Add these section table entries to the target's table. */
660 while ((so = find_solib (so)) != NULL)
661 {
662 if (so -> lm.o_path[0])
663 {
664 count = so -> sections_end - so -> sections;
665 memcpy ((char *) (target -> to_sections + old),
666 so -> sections,
667 (sizeof (struct section_table)) * count);
668 old += count;
669 }
670 }
671 }
672 }
0d98155c
PS
673
674 /* Now add the symbol files. */
675 while ((so = find_solib (so)) != NULL)
676 {
677 if (so -> lm.o_path[0] && re_exec (so -> lm.o_path))
678 {
679 so -> from_tty = from_tty;
680 if (so -> symbols_loaded)
681 {
682 if (from_tty)
683 {
684 printf_unfiltered ("Symbols already loaded for %s\n", so -> lm.o_path);
685 }
686 }
687 else if (catch_errors
688 (symbol_add_stub, (char *) so,
689 "Error while reading shared library symbols:\n",
690 RETURN_MASK_ALL))
691 {
692 so_last = so;
693 so -> symbols_loaded = 1;
694 }
695 }
696 }
46d185d3
PS
697
698 /* Getting new symbols may change our opinion about what is
699 frameless. */
54d478cd 700 if (so_last)
46d185d3 701 reinit_frame_cache ();
a2f1e2e5
ILT
702}
703
704/*
705
706LOCAL FUNCTION
707
708 info_sharedlibrary_command -- code for "info sharedlibrary"
709
710SYNOPSIS
711
712 static void info_sharedlibrary_command ()
713
714DESCRIPTION
715
716 Walk through the shared library list and print information
717 about each attached library.
718*/
719
720static void
721info_sharedlibrary_command (ignore, from_tty)
722 char *ignore;
723 int from_tty;
724{
725 register struct so_list *so = NULL; /* link map state variable */
726 int header_done = 0;
727
728 if (exec_bfd == NULL)
729 {
730 printf_unfiltered ("No exec file.\n");
731 return;
732 }
733 while ((so = find_solib (so)) != NULL)
734 {
735 if (so -> lm.o_path[0])
736 {
737 if (!header_done)
738 {
739 printf_unfiltered("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
740 "Shared Object Library");
741 header_done++;
742 }
743 printf_unfiltered ("%-12s",
744 local_hex_string_custom ((unsigned long) LM_ADDR (so),
745 "08l"));
746 printf_unfiltered ("%-12s",
747 local_hex_string_custom ((unsigned long) so -> lmend,
748 "08l"));
749 printf_unfiltered ("%-12s", so -> symbols_loaded ? "Yes" : "No");
750 printf_unfiltered ("%s\n", so -> lm.o_path);
751 }
752 }
753 if (so_list_head == NULL)
754 {
755 printf_unfiltered ("No shared libraries loaded at this time.\n");
756 }
757}
758
759/*
760
761GLOBAL FUNCTION
762
763 solib_address -- check to see if an address is in a shared lib
764
765SYNOPSIS
766
f2ebb24d 767 char *solib_address (CORE_ADDR address)
a2f1e2e5
ILT
768
769DESCRIPTION
770
771 Provides a hook for other gdb routines to discover whether or
772 not a particular address is within the mapped address space of
773 a shared library. Any address between the base mapping address
774 and the first address beyond the end of the last mapping, is
775 considered to be within the shared library address space, for
776 our purposes.
777
778 For example, this routine is called at one point to disable
779 breakpoints which are in shared libraries that are not currently
780 mapped in.
781 */
782
f2ebb24d 783char *
a2f1e2e5
ILT
784solib_address (address)
785 CORE_ADDR address;
786{
787 register struct so_list *so = 0; /* link map state variable */
788
789 while ((so = find_solib (so)) != NULL)
790 {
791 if (so -> lm.o_path[0])
792 {
33c66e44 793 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
a2f1e2e5 794 (address < (CORE_ADDR) so -> lmend))
f2ebb24d 795 return (so->lm.o_path);
a2f1e2e5
ILT
796 }
797 }
798 return (0);
799}
800
801/* Called by free_all_symtabs */
802
803void
804clear_solib()
805{
806 struct so_list *next;
807 char *bfd_filename;
808
809 while (so_list_head)
810 {
811 if (so_list_head -> sections)
812 {
813 free ((PTR)so_list_head -> sections);
814 }
815 if (so_list_head -> abfd)
816 {
817 bfd_filename = bfd_get_filename (so_list_head -> abfd);
9de0904c
JK
818 if (!bfd_close (so_list_head -> abfd))
819 warning ("cannot close \"%s\": %s",
820 bfd_filename, bfd_errmsg (bfd_get_error ()));
a2f1e2e5
ILT
821 }
822 else
823 /* This happens for the executable on SVR4. */
824 bfd_filename = NULL;
4ad0021e 825
a2f1e2e5
ILT
826 next = so_list_head -> next;
827 if (bfd_filename)
828 free ((PTR)bfd_filename);
4ad0021e 829 free (so_list_head->lm.o_path);
a2f1e2e5
ILT
830 free ((PTR)so_list_head);
831 so_list_head = next;
832 }
833 debug_base = 0;
834}
835
836/*
837
838LOCAL FUNCTION
839
840 disable_break -- remove the "mapping changed" breakpoint
841
842SYNOPSIS
843
844 static int disable_break ()
845
846DESCRIPTION
847
848 Removes the breakpoint that gets hit when the dynamic linker
849 completes a mapping change.
850
851*/
852
853static int
854disable_break ()
855{
856 int status = 1;
857
858
859 /* Note that breakpoint address and original contents are in our address
860 space, so we just need to write the original contents back. */
861
862 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
863 {
864 status = 0;
865 }
866
867 /* For the SVR4 version, we always know the breakpoint address. For the
868 SunOS version we don't know it until the above code is executed.
869 Grumble if we are stopped anywhere besides the breakpoint address. */
870
871 if (stop_pc != breakpoint_addr)
872 {
873 warning ("stopped at unknown breakpoint while handling shared libraries");
874 }
875
876 return (status);
877}
878
879/*
880
881LOCAL FUNCTION
882
883 enable_break -- arrange for dynamic linker to hit breakpoint
884
885SYNOPSIS
886
887 int enable_break (void)
888
889DESCRIPTION
890
76212295
PS
891 This functions inserts a breakpoint at the entry point of the
892 main executable, where all shared libraries are mapped in.
a2f1e2e5
ILT
893*/
894
895static int
896enable_break ()
897{
76212295
PS
898 if (symfile_objfile != NULL
899 && target_insert_breakpoint (symfile_objfile->ei.entry_point,
900 shadow_contents) == 0)
a2f1e2e5 901 {
76212295
PS
902 breakpoint_addr = symfile_objfile->ei.entry_point;
903 return 1;
a2f1e2e5
ILT
904 }
905
76212295 906 return 0;
a2f1e2e5
ILT
907}
908
909/*
910
911GLOBAL FUNCTION
912
913 solib_create_inferior_hook -- shared library startup support
914
915SYNOPSIS
916
917 void solib_create_inferior_hook()
918
919DESCRIPTION
920
921 When gdb starts up the inferior, it nurses it along (through the
922 shell) until it is ready to execute it's first instruction. At this
923 point, this function gets called via expansion of the macro
924 SOLIB_CREATE_INFERIOR_HOOK.
925
926 For SunOS executables, this first instruction is typically the
927 one at "_start", or a similar text label, regardless of whether
928 the executable is statically or dynamically linked. The runtime
929 startup code takes care of dynamically linking in any shared
930 libraries, once gdb allows the inferior to continue.
931
932 For SVR4 executables, this first instruction is either the first
933 instruction in the dynamic linker (for dynamically linked
934 executables) or the instruction at "start" for statically linked
935 executables. For dynamically linked executables, the system
936 first exec's /lib/libc.so.N, which contains the dynamic linker,
937 and starts it running. The dynamic linker maps in any needed
938 shared libraries, maps in the actual user executable, and then
939 jumps to "start" in the user executable.
940
941 For both SunOS shared libraries, and SVR4 shared libraries, we
942 can arrange to cooperate with the dynamic linker to discover the
943 names of shared libraries that are dynamically linked, and the
944 base addresses to which they are linked.
945
946 This function is responsible for discovering those names and
947 addresses, and saving sufficient information about them to allow
948 their symbols to be read at a later time.
949
950FIXME
951
952 Between enable_break() and disable_break(), this code does not
953 properly handle hitting breakpoints which the user might have
954 set in the startup code or in the dynamic linker itself. Proper
955 handling will probably have to wait until the implementation is
956 changed to use the "breakpoint handler function" method.
957
958 Also, what if child has exit()ed? Must exit loop somehow.
959 */
960
961void
962solib_create_inferior_hook()
963{
964 if (!enable_break ())
965 {
966 warning ("shared library handler failed to enable breakpoint");
967 return;
968 }
969
970 /* Now run the target. It will eventually hit the breakpoint, at
971 which point all of the libraries will have been mapped in and we
972 can go groveling around in the dynamic linker structures to find
973 out what we need to know about them. */
974
975 clear_proceed_status ();
976 stop_soon_quietly = 1;
977 stop_signal = 0;
978 do
979 {
980 target_resume (-1, 0, stop_signal);
981 wait_for_inferior ();
982 }
983 while (stop_signal != SIGTRAP);
a2f1e2e5
ILT
984
985 /* We are now either at the "mapping complete" breakpoint (or somewhere
986 else, a condition we aren't prepared to deal with anyway), so adjust
987 the PC as necessary after a breakpoint, disable the breakpoint, and
988 add any shared libraries that were mapped in. */
989
990 if (DECR_PC_AFTER_BREAK)
991 {
992 stop_pc -= DECR_PC_AFTER_BREAK;
993 write_register (PC_REGNUM, stop_pc);
994 }
995
996 if (!disable_break ())
997 {
998 warning ("shared library handler failed to disable breakpoint");
999 }
1000
76212295
PS
1001 /* solib_add will call reinit_frame_cache.
1002 But we are stopped in the startup code and we might not have symbols
1003 for the startup code, so heuristic_proc_start could be called
1004 and will put out an annoying warning.
1005 Delaying the resetting of stop_soon_quietly until after symbol loading
1006 suppresses the warning. */
87273c71 1007 if (auto_solib_add)
2e11fdd8 1008 solib_add ((char *) 0, 0, (struct target_ops *) 0);
76212295 1009 stop_soon_quietly = 0;
a2f1e2e5
ILT
1010}
1011
1012/*
1013
1014LOCAL FUNCTION
1015
1016 sharedlibrary_command -- handle command to explicitly add library
1017
1018SYNOPSIS
1019
1020 static void sharedlibrary_command (char *args, int from_tty)
1021
1022DESCRIPTION
1023
1024*/
1025
1026static void
1027sharedlibrary_command (args, from_tty)
1028char *args;
1029int from_tty;
1030{
1031 dont_repeat ();
1032 solib_add (args, from_tty, (struct target_ops *) 0);
1033}
1034
1035void
1036_initialize_solib()
1037{
a2f1e2e5
ILT
1038 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1039 "Load shared object library symbols for files matching REGEXP.");
1040 add_info ("sharedlibrary", info_sharedlibrary_command,
1041 "Status of loaded shared object libraries.");
2e11fdd8
PS
1042
1043 add_show_from_set
1044 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
87273c71
JL
1045 (char *) &auto_solib_add,
1046 "Set autoloading of shared library symbols.\n\
2e11fdd8 1047If nonzero, symbols from all shared object libraries will be loaded\n\
87273c71
JL
1048automatically when the inferior begins execution or when the dynamic linker\n\
1049informs gdb that a new library has been loaded. Otherwise, symbols\n\
2e11fdd8
PS
1050must be loaded manually, using `sharedlibrary'.",
1051 &setlist),
1052 &showlist);
a2f1e2e5 1053}
a1df8e78
FF
1054
1055\f
1056/* Register that we are able to handle irix5 core file formats.
1057 This really is bfd_target_unknown_flavour */
1058
1059static struct core_fns irix5_core_fns =
1060{
1061 bfd_target_unknown_flavour,
1062 fetch_core_registers,
1063 NULL
1064};
1065
1066void
1067_initialize_core_irix5 ()
1068{
1069 add_core_fns (&irix5_core_fns);
1070}
This page took 0.183473 seconds and 4 git commands to generate.