* elfxx-mips.h: Include "elf/mips.h".
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
CommitLineData
3993f6b1 1/* GNU/Linux native-dependent code common to multiple platforms.
dba24537 2
4c38e0a4 3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
e26af52f 4 Free Software Foundation, Inc.
3993f6b1
DJ
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
3993f6b1
DJ
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
3993f6b1
DJ
20
21#include "defs.h"
22#include "inferior.h"
23#include "target.h"
d6b0e80f 24#include "gdb_string.h"
3993f6b1 25#include "gdb_wait.h"
d6b0e80f
AC
26#include "gdb_assert.h"
27#ifdef HAVE_TKILL_SYSCALL
28#include <unistd.h>
29#include <sys/syscall.h>
30#endif
3993f6b1 31#include <sys/ptrace.h>
0274a8ce 32#include "linux-nat.h"
ac264b3b 33#include "linux-fork.h"
d6b0e80f
AC
34#include "gdbthread.h"
35#include "gdbcmd.h"
36#include "regcache.h"
4f844a66 37#include "regset.h"
10d6c8cd
DJ
38#include "inf-ptrace.h"
39#include "auxv.h"
dba24537
AC
40#include <sys/param.h> /* for MAXPATHLEN */
41#include <sys/procfs.h> /* for elf_gregset etc. */
42#include "elf-bfd.h" /* for elfcore_write_* */
43#include "gregset.h" /* for gregset */
44#include "gdbcore.h" /* for get_exec_file */
45#include <ctype.h> /* for isdigit */
46#include "gdbthread.h" /* for struct thread_info etc. */
47#include "gdb_stat.h" /* for struct stat */
48#include <fcntl.h> /* for O_RDONLY */
b84876c2
PA
49#include "inf-loop.h"
50#include "event-loop.h"
51#include "event-top.h"
07e059b5
VP
52#include <pwd.h>
53#include <sys/types.h>
54#include "gdb_dirent.h"
55#include "xml-support.h"
191c4426 56#include "terminal.h"
efcbbd14 57#include <sys/vfs.h>
6c95b8df 58#include "solib.h"
efcbbd14
UW
59
60#ifndef SPUFS_MAGIC
61#define SPUFS_MAGIC 0x23c9b64e
62#endif
dba24537 63
10568435
JK
64#ifdef HAVE_PERSONALITY
65# include <sys/personality.h>
66# if !HAVE_DECL_ADDR_NO_RANDOMIZE
67# define ADDR_NO_RANDOMIZE 0x0040000
68# endif
69#endif /* HAVE_PERSONALITY */
70
8a77dff3
VP
71/* This comment documents high-level logic of this file.
72
73Waiting for events in sync mode
74===============================
75
76When waiting for an event in a specific thread, we just use waitpid, passing
77the specific pid, and not passing WNOHANG.
78
79When waiting for an event in all threads, waitpid is not quite good. Prior to
80version 2.4, Linux can either wait for event in main thread, or in secondary
81threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82miss an event. The solution is to use non-blocking waitpid, together with
83sigsuspend. First, we use non-blocking waitpid to get an event in the main
84process, if any. Second, we use non-blocking waitpid with the __WCLONED
85flag to check for events in cloned processes. If nothing is found, we use
86sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87happened to a child process -- and SIGCHLD will be delivered both for events
88in main debugged process and in cloned processes. As soon as we know there's
89an event, we get back to calling nonblocking waitpid with and without __WCLONED.
90
91Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
92so that we don't miss a signal. If SIGCHLD arrives in between, when it's
93blocked, the signal becomes pending and sigsuspend immediately
94notices it and returns.
95
96Waiting for events in async mode
97================================
98
7feb7d06
PA
99In async mode, GDB should always be ready to handle both user input
100and target events, so neither blocking waitpid nor sigsuspend are
101viable options. Instead, we should asynchronously notify the GDB main
102event loop whenever there's an unprocessed event from the target. We
103detect asynchronous target events by handling SIGCHLD signals. To
104notify the event loop about target events, the self-pipe trick is used
105--- a pipe is registered as waitable event source in the event loop,
106the event loop select/poll's on the read end of this pipe (as well on
107other event sources, e.g., stdin), and the SIGCHLD handler writes a
108byte to this pipe. This is more portable than relying on
109pselect/ppoll, since on kernels that lack those syscalls, libc
110emulates them with select/poll+sigprocmask, and that is racy
111(a.k.a. plain broken).
112
113Obviously, if we fail to notify the event loop if there's a target
114event, it's bad. OTOH, if we notify the event loop when there's no
115event from the target, linux_nat_wait will detect that there's no real
116event to report, and return event of type TARGET_WAITKIND_IGNORE.
117This is mostly harmless, but it will waste time and is better avoided.
118
119The main design point is that every time GDB is outside linux-nat.c,
120we have a SIGCHLD handler installed that is called when something
121happens to the target and notifies the GDB event loop. Whenever GDB
122core decides to handle the event, and calls into linux-nat.c, we
123process things as in sync mode, except that the we never block in
124sigsuspend.
125
126While processing an event, we may end up momentarily blocked in
127waitpid calls. Those waitpid calls, while blocking, are guarantied to
128return quickly. E.g., in all-stop mode, before reporting to the core
129that an LWP hit a breakpoint, all LWPs are stopped by sending them
130SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
131Note that this is different from blocking indefinitely waiting for the
132next event --- here, we're already handling an event.
8a77dff3
VP
133
134Use of signals
135==============
136
137We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
138signal is not entirely significant; we just need for a signal to be delivered,
139so that we can intercept it. SIGSTOP's advantage is that it can not be
140blocked. A disadvantage is that it is not a real-time signal, so it can only
141be queued once; we do not keep track of other sources of SIGSTOP.
142
143Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
144use them, because they have special behavior when the signal is generated -
145not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
146kills the entire thread group.
147
148A delivered SIGSTOP would stop the entire thread group, not just the thread we
149tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
150cancel it (by PTRACE_CONT without passing SIGSTOP).
151
152We could use a real-time signal instead. This would solve those problems; we
153could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
154But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
155generates it, and there are races with trying to find a signal that is not
156blocked. */
a0ef4274 157
dba24537
AC
158#ifndef O_LARGEFILE
159#define O_LARGEFILE 0
160#endif
0274a8ce 161
3993f6b1
DJ
162/* If the system headers did not provide the constants, hard-code the normal
163 values. */
164#ifndef PTRACE_EVENT_FORK
165
166#define PTRACE_SETOPTIONS 0x4200
167#define PTRACE_GETEVENTMSG 0x4201
168
169/* options set using PTRACE_SETOPTIONS */
170#define PTRACE_O_TRACESYSGOOD 0x00000001
171#define PTRACE_O_TRACEFORK 0x00000002
172#define PTRACE_O_TRACEVFORK 0x00000004
173#define PTRACE_O_TRACECLONE 0x00000008
174#define PTRACE_O_TRACEEXEC 0x00000010
9016a515
DJ
175#define PTRACE_O_TRACEVFORKDONE 0x00000020
176#define PTRACE_O_TRACEEXIT 0x00000040
3993f6b1
DJ
177
178/* Wait extended result codes for the above trace options. */
179#define PTRACE_EVENT_FORK 1
180#define PTRACE_EVENT_VFORK 2
181#define PTRACE_EVENT_CLONE 3
182#define PTRACE_EVENT_EXEC 4
c874c7fc 183#define PTRACE_EVENT_VFORK_DONE 5
9016a515 184#define PTRACE_EVENT_EXIT 6
3993f6b1
DJ
185
186#endif /* PTRACE_EVENT_FORK */
187
ca2163eb
PA
188/* Unlike other extended result codes, WSTOPSIG (status) on
189 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
190 instead SIGTRAP with bit 7 set. */
191#define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
192
3993f6b1
DJ
193/* We can't always assume that this flag is available, but all systems
194 with the ptrace event handlers also have __WALL, so it's safe to use
195 here. */
196#ifndef __WALL
197#define __WALL 0x40000000 /* Wait for any child. */
198#endif
199
02d3ff8c 200#ifndef PTRACE_GETSIGINFO
1ef18d08
PA
201# define PTRACE_GETSIGINFO 0x4202
202# define PTRACE_SETSIGINFO 0x4203
02d3ff8c
UW
203#endif
204
10d6c8cd
DJ
205/* The single-threaded native GNU/Linux target_ops. We save a pointer for
206 the use of the multi-threaded target. */
207static struct target_ops *linux_ops;
f973ed9c 208static struct target_ops linux_ops_saved;
10d6c8cd 209
9f0bdab8
DJ
210/* The method to call, if any, when a new thread is attached. */
211static void (*linux_nat_new_thread) (ptid_t);
212
5b009018
PA
213/* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216static int (*linux_nat_siginfo_fixup) (struct siginfo *,
217 gdb_byte *,
218 int);
219
ac264b3b
MS
220/* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222static LONGEST (*super_xfer_partial) (struct target_ops *,
223 enum target_object,
224 const char *, gdb_byte *,
225 const gdb_byte *,
10d6c8cd
DJ
226 ULONGEST, LONGEST);
227
d6b0e80f 228static int debug_linux_nat;
920d2a44
AC
229static void
230show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232{
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235}
d6b0e80f 236
b84876c2
PA
237static int debug_linux_nat_async = 0;
238static void
239show_debug_linux_nat_async (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241{
242 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
243 value);
244}
245
10568435
JK
246static int disable_randomization = 1;
247
248static void
249show_disable_randomization (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251{
252#ifdef HAVE_PERSONALITY
253 fprintf_filtered (file, _("\
254Disabling randomization of debuggee's virtual address space is %s.\n"),
255 value);
256#else /* !HAVE_PERSONALITY */
257 fputs_filtered (_("\
258Disabling randomization of debuggee's virtual address space is unsupported on\n\
259this platform.\n"), file);
260#endif /* !HAVE_PERSONALITY */
261}
262
263static void
264set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
265{
266#ifndef HAVE_PERSONALITY
267 error (_("\
268Disabling randomization of debuggee's virtual address space is unsupported on\n\
269this platform."));
270#endif /* !HAVE_PERSONALITY */
271}
272
ae087d01
DJ
273struct simple_pid_list
274{
275 int pid;
3d799a95 276 int status;
ae087d01
DJ
277 struct simple_pid_list *next;
278};
279struct simple_pid_list *stopped_pids;
280
3993f6b1
DJ
281/* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
282 can not be used, 1 if it can. */
283
284static int linux_supports_tracefork_flag = -1;
285
a96d9b2e
SDJ
286/* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
287 can not be used, 1 if it can. */
288
289static int linux_supports_tracesysgood_flag = -1;
290
9016a515
DJ
291/* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
292 PTRACE_O_TRACEVFORKDONE. */
293
294static int linux_supports_tracevforkdone_flag = -1;
295
b84876c2
PA
296/* Async mode support */
297
b84876c2
PA
298/* Zero if the async mode, although enabled, is masked, which means
299 linux_nat_wait should behave as if async mode was off. */
300static int linux_nat_async_mask_value = 1;
301
a96d9b2e
SDJ
302/* Stores the current used ptrace() options. */
303static int current_ptrace_options = 0;
304
b84876c2
PA
305/* The read/write ends of the pipe registered as waitable file in the
306 event loop. */
307static int linux_nat_event_pipe[2] = { -1, -1 };
308
7feb7d06 309/* Flush the event pipe. */
b84876c2 310
7feb7d06
PA
311static void
312async_file_flush (void)
b84876c2 313{
7feb7d06
PA
314 int ret;
315 char buf;
b84876c2 316
7feb7d06 317 do
b84876c2 318 {
7feb7d06 319 ret = read (linux_nat_event_pipe[0], &buf, 1);
b84876c2 320 }
7feb7d06 321 while (ret >= 0 || (ret == -1 && errno == EINTR));
b84876c2
PA
322}
323
7feb7d06
PA
324/* Put something (anything, doesn't matter what, or how much) in event
325 pipe, so that the select/poll in the event-loop realizes we have
326 something to process. */
252fbfc8 327
b84876c2 328static void
7feb7d06 329async_file_mark (void)
b84876c2 330{
7feb7d06 331 int ret;
b84876c2 332
7feb7d06
PA
333 /* It doesn't really matter what the pipe contains, as long we end
334 up with something in it. Might as well flush the previous
335 left-overs. */
336 async_file_flush ();
b84876c2 337
7feb7d06 338 do
b84876c2 339 {
7feb7d06 340 ret = write (linux_nat_event_pipe[1], "+", 1);
b84876c2 341 }
7feb7d06 342 while (ret == -1 && errno == EINTR);
b84876c2 343
7feb7d06
PA
344 /* Ignore EAGAIN. If the pipe is full, the event loop will already
345 be awakened anyway. */
b84876c2
PA
346}
347
7feb7d06
PA
348static void linux_nat_async (void (*callback)
349 (enum inferior_event_type event_type, void *context),
350 void *context);
351static int linux_nat_async_mask (int mask);
352static int kill_lwp (int lwpid, int signo);
353
354static int stop_callback (struct lwp_info *lp, void *data);
355
356static void block_child_signals (sigset_t *prev_mask);
357static void restore_child_signals_mask (sigset_t *prev_mask);
2277426b
PA
358
359struct lwp_info;
360static struct lwp_info *add_lwp (ptid_t ptid);
361static void purge_lwp_list (int pid);
362static struct lwp_info *find_lwp_pid (ptid_t ptid);
363
ae087d01
DJ
364\f
365/* Trivial list manipulation functions to keep track of a list of
366 new stopped processes. */
367static void
3d799a95 368add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
ae087d01
DJ
369{
370 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
e0881a8e 371
ae087d01 372 new_pid->pid = pid;
3d799a95 373 new_pid->status = status;
ae087d01
DJ
374 new_pid->next = *listp;
375 *listp = new_pid;
376}
377
378static int
3d799a95 379pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
ae087d01
DJ
380{
381 struct simple_pid_list **p;
382
383 for (p = listp; *p != NULL; p = &(*p)->next)
384 if ((*p)->pid == pid)
385 {
386 struct simple_pid_list *next = (*p)->next;
e0881a8e 387
3d799a95 388 *status = (*p)->status;
ae087d01
DJ
389 xfree (*p);
390 *p = next;
391 return 1;
392 }
393 return 0;
394}
395
3d799a95
DJ
396static void
397linux_record_stopped_pid (int pid, int status)
ae087d01 398{
3d799a95 399 add_to_pid_list (&stopped_pids, pid, status);
ae087d01
DJ
400}
401
3993f6b1
DJ
402\f
403/* A helper function for linux_test_for_tracefork, called after fork (). */
404
405static void
406linux_tracefork_child (void)
407{
3993f6b1
DJ
408 ptrace (PTRACE_TRACEME, 0, 0, 0);
409 kill (getpid (), SIGSTOP);
410 fork ();
48bb3cce 411 _exit (0);
3993f6b1
DJ
412}
413
7feb7d06 414/* Wrapper function for waitpid which handles EINTR. */
b957e937
DJ
415
416static int
417my_waitpid (int pid, int *status, int flags)
418{
419 int ret;
b84876c2 420
b957e937
DJ
421 do
422 {
423 ret = waitpid (pid, status, flags);
424 }
425 while (ret == -1 && errno == EINTR);
426
427 return ret;
428}
429
430/* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
431
432 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
433 we know that the feature is not available. This may change the tracing
434 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
435
436 However, if it succeeds, we don't know for sure that the feature is
437 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
3993f6b1 438 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
b957e937
DJ
439 fork tracing, and let it fork. If the process exits, we assume that we
440 can't use TRACEFORK; if we get the fork notification, and we can extract
441 the new child's PID, then we assume that we can. */
3993f6b1
DJ
442
443static void
b957e937 444linux_test_for_tracefork (int original_pid)
3993f6b1
DJ
445{
446 int child_pid, ret, status;
447 long second_pid;
7feb7d06 448 sigset_t prev_mask;
4c28f408 449
7feb7d06
PA
450 /* We don't want those ptrace calls to be interrupted. */
451 block_child_signals (&prev_mask);
3993f6b1 452
b957e937
DJ
453 linux_supports_tracefork_flag = 0;
454 linux_supports_tracevforkdone_flag = 0;
455
456 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
457 if (ret != 0)
7feb7d06
PA
458 {
459 restore_child_signals_mask (&prev_mask);
460 return;
461 }
b957e937 462
3993f6b1
DJ
463 child_pid = fork ();
464 if (child_pid == -1)
e2e0b3e5 465 perror_with_name (("fork"));
3993f6b1
DJ
466
467 if (child_pid == 0)
468 linux_tracefork_child ();
469
b957e937 470 ret = my_waitpid (child_pid, &status, 0);
3993f6b1 471 if (ret == -1)
e2e0b3e5 472 perror_with_name (("waitpid"));
3993f6b1 473 else if (ret != child_pid)
8a3fe4f8 474 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
3993f6b1 475 if (! WIFSTOPPED (status))
8a3fe4f8 476 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
3993f6b1 477
3993f6b1
DJ
478 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
479 if (ret != 0)
480 {
b957e937
DJ
481 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
482 if (ret != 0)
483 {
8a3fe4f8 484 warning (_("linux_test_for_tracefork: failed to kill child"));
7feb7d06 485 restore_child_signals_mask (&prev_mask);
b957e937
DJ
486 return;
487 }
488
489 ret = my_waitpid (child_pid, &status, 0);
490 if (ret != child_pid)
8a3fe4f8 491 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
b957e937 492 else if (!WIFSIGNALED (status))
8a3fe4f8
AC
493 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
494 "killed child"), status);
b957e937 495
7feb7d06 496 restore_child_signals_mask (&prev_mask);
3993f6b1
DJ
497 return;
498 }
499
9016a515
DJ
500 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
501 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
502 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
503 linux_supports_tracevforkdone_flag = (ret == 0);
504
b957e937
DJ
505 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
506 if (ret != 0)
8a3fe4f8 507 warning (_("linux_test_for_tracefork: failed to resume child"));
b957e937
DJ
508
509 ret = my_waitpid (child_pid, &status, 0);
510
3993f6b1
DJ
511 if (ret == child_pid && WIFSTOPPED (status)
512 && status >> 16 == PTRACE_EVENT_FORK)
513 {
514 second_pid = 0;
515 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
516 if (ret == 0 && second_pid != 0)
517 {
518 int second_status;
519
520 linux_supports_tracefork_flag = 1;
b957e937
DJ
521 my_waitpid (second_pid, &second_status, 0);
522 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
523 if (ret != 0)
8a3fe4f8 524 warning (_("linux_test_for_tracefork: failed to kill second child"));
97725dc4 525 my_waitpid (second_pid, &status, 0);
3993f6b1
DJ
526 }
527 }
b957e937 528 else
8a3fe4f8
AC
529 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
530 "(%d, status 0x%x)"), ret, status);
3993f6b1 531
b957e937
DJ
532 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
533 if (ret != 0)
8a3fe4f8 534 warning (_("linux_test_for_tracefork: failed to kill child"));
b957e937 535 my_waitpid (child_pid, &status, 0);
4c28f408 536
7feb7d06 537 restore_child_signals_mask (&prev_mask);
3993f6b1
DJ
538}
539
a96d9b2e
SDJ
540/* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
541
542 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
543 we know that the feature is not available. This may change the tracing
544 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
545
546static void
547linux_test_for_tracesysgood (int original_pid)
548{
549 int ret;
550 sigset_t prev_mask;
551
552 /* We don't want those ptrace calls to be interrupted. */
553 block_child_signals (&prev_mask);
554
555 linux_supports_tracesysgood_flag = 0;
556
557 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
558 if (ret != 0)
559 goto out;
560
561 linux_supports_tracesysgood_flag = 1;
562out:
563 restore_child_signals_mask (&prev_mask);
564}
565
566/* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
567 This function also sets linux_supports_tracesysgood_flag. */
568
569static int
570linux_supports_tracesysgood (int pid)
571{
572 if (linux_supports_tracesysgood_flag == -1)
573 linux_test_for_tracesysgood (pid);
574 return linux_supports_tracesysgood_flag;
575}
576
3993f6b1
DJ
577/* Return non-zero iff we have tracefork functionality available.
578 This function also sets linux_supports_tracefork_flag. */
579
580static int
b957e937 581linux_supports_tracefork (int pid)
3993f6b1
DJ
582{
583 if (linux_supports_tracefork_flag == -1)
b957e937 584 linux_test_for_tracefork (pid);
3993f6b1
DJ
585 return linux_supports_tracefork_flag;
586}
587
9016a515 588static int
b957e937 589linux_supports_tracevforkdone (int pid)
9016a515
DJ
590{
591 if (linux_supports_tracefork_flag == -1)
b957e937 592 linux_test_for_tracefork (pid);
9016a515
DJ
593 return linux_supports_tracevforkdone_flag;
594}
595
a96d9b2e
SDJ
596static void
597linux_enable_tracesysgood (ptid_t ptid)
598{
599 int pid = ptid_get_lwp (ptid);
600
601 if (pid == 0)
602 pid = ptid_get_pid (ptid);
603
604 if (linux_supports_tracesysgood (pid) == 0)
605 return;
606
607 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
608
609 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
610}
611
3993f6b1 612\f
4de4c07c
DJ
613void
614linux_enable_event_reporting (ptid_t ptid)
615{
d3587048 616 int pid = ptid_get_lwp (ptid);
4de4c07c 617
d3587048
DJ
618 if (pid == 0)
619 pid = ptid_get_pid (ptid);
620
b957e937 621 if (! linux_supports_tracefork (pid))
4de4c07c
DJ
622 return;
623
a96d9b2e
SDJ
624 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
625 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
626
b957e937 627 if (linux_supports_tracevforkdone (pid))
a96d9b2e 628 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
9016a515
DJ
629
630 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
631 read-only process state. */
4de4c07c 632
a96d9b2e 633 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
4de4c07c
DJ
634}
635
6d8fd2b7
UW
636static void
637linux_child_post_attach (int pid)
4de4c07c
DJ
638{
639 linux_enable_event_reporting (pid_to_ptid (pid));
0ec9a092 640 check_for_thread_db ();
a96d9b2e 641 linux_enable_tracesysgood (pid_to_ptid (pid));
4de4c07c
DJ
642}
643
10d6c8cd 644static void
4de4c07c
DJ
645linux_child_post_startup_inferior (ptid_t ptid)
646{
647 linux_enable_event_reporting (ptid);
0ec9a092 648 check_for_thread_db ();
a96d9b2e 649 linux_enable_tracesysgood (ptid);
4de4c07c
DJ
650}
651
6d8fd2b7
UW
652static int
653linux_child_follow_fork (struct target_ops *ops, int follow_child)
3993f6b1 654{
7feb7d06 655 sigset_t prev_mask;
9016a515 656 int has_vforked;
4de4c07c
DJ
657 int parent_pid, child_pid;
658
7feb7d06 659 block_child_signals (&prev_mask);
b84876c2 660
e58b0e63
PA
661 has_vforked = (inferior_thread ()->pending_follow.kind
662 == TARGET_WAITKIND_VFORKED);
663 parent_pid = ptid_get_lwp (inferior_ptid);
d3587048 664 if (parent_pid == 0)
e58b0e63
PA
665 parent_pid = ptid_get_pid (inferior_ptid);
666 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
4de4c07c 667
2277426b
PA
668 if (!detach_fork)
669 linux_enable_event_reporting (pid_to_ptid (child_pid));
670
6c95b8df
PA
671 if (has_vforked
672 && !non_stop /* Non-stop always resumes both branches. */
673 && (!target_is_async_p () || sync_execution)
674 && !(follow_child || detach_fork || sched_multi))
675 {
676 /* The parent stays blocked inside the vfork syscall until the
677 child execs or exits. If we don't let the child run, then
678 the parent stays blocked. If we're telling the parent to run
679 in the foreground, the user will not be able to ctrl-c to get
680 back the terminal, effectively hanging the debug session. */
681 fprintf_filtered (gdb_stderr, _("\
cce7e648 682Can not resume the parent process over vfork in the foreground while\n\
6c95b8df
PA
683holding the child stopped. Try \"set detach-on-fork\" or \
684\"set schedule-multiple\".\n"));
685 return 1;
686 }
687
4de4c07c
DJ
688 if (! follow_child)
689 {
6c95b8df 690 struct lwp_info *child_lp = NULL;
4de4c07c 691
6c95b8df 692 /* We're already attached to the parent, by default. */
4de4c07c 693
ac264b3b
MS
694 /* Detach new forked process? */
695 if (detach_fork)
f75c00e4 696 {
6c95b8df
PA
697 /* Before detaching from the child, remove all breakpoints
698 from it. If we forked, then this has already been taken
699 care of by infrun.c. If we vforked however, any
700 breakpoint inserted in the parent is visible in the
701 child, even those added while stopped in a vfork
702 catchpoint. This will remove the breakpoints from the
703 parent also, but they'll be reinserted below. */
704 if (has_vforked)
705 {
706 /* keep breakpoints list in sync. */
707 remove_breakpoints_pid (GET_PID (inferior_ptid));
708 }
709
e85a822c 710 if (info_verbose || debug_linux_nat)
ac264b3b
MS
711 {
712 target_terminal_ours ();
713 fprintf_filtered (gdb_stdlog,
714 "Detaching after fork from child process %d.\n",
715 child_pid);
716 }
4de4c07c 717
ac264b3b
MS
718 ptrace (PTRACE_DETACH, child_pid, 0, 0);
719 }
720 else
721 {
77435e4c 722 struct inferior *parent_inf, *child_inf;
2277426b 723 struct cleanup *old_chain;
7f9f62ba
PA
724
725 /* Add process to GDB's tables. */
77435e4c
PA
726 child_inf = add_inferior (child_pid);
727
e58b0e63 728 parent_inf = current_inferior ();
77435e4c 729 child_inf->attach_flag = parent_inf->attach_flag;
191c4426 730 copy_terminal_info (child_inf, parent_inf);
7f9f62ba 731
2277426b 732 old_chain = save_inferior_ptid ();
6c95b8df 733 save_current_program_space ();
2277426b
PA
734
735 inferior_ptid = ptid_build (child_pid, child_pid, 0);
736 add_thread (inferior_ptid);
6c95b8df
PA
737 child_lp = add_lwp (inferior_ptid);
738 child_lp->stopped = 1;
739 child_lp->resumed = 1;
2277426b 740
6c95b8df
PA
741 /* If this is a vfork child, then the address-space is
742 shared with the parent. */
743 if (has_vforked)
744 {
745 child_inf->pspace = parent_inf->pspace;
746 child_inf->aspace = parent_inf->aspace;
747
748 /* The parent will be frozen until the child is done
749 with the shared region. Keep track of the
750 parent. */
751 child_inf->vfork_parent = parent_inf;
752 child_inf->pending_detach = 0;
753 parent_inf->vfork_child = child_inf;
754 parent_inf->pending_detach = 0;
755 }
756 else
757 {
758 child_inf->aspace = new_address_space ();
759 child_inf->pspace = add_program_space (child_inf->aspace);
760 child_inf->removable = 1;
761 set_current_program_space (child_inf->pspace);
762 clone_program_space (child_inf->pspace, parent_inf->pspace);
763
764 /* Let the shared library layer (solib-svr4) learn about
765 this new process, relocate the cloned exec, pull in
766 shared libraries, and install the solib event
767 breakpoint. If a "cloned-VM" event was propagated
768 better throughout the core, this wouldn't be
769 required. */
268a4a75 770 solib_create_inferior_hook (0);
6c95b8df
PA
771 }
772
773 /* Let the thread_db layer learn about this new process. */
2277426b
PA
774 check_for_thread_db ();
775
776 do_cleanups (old_chain);
ac264b3b 777 }
9016a515
DJ
778
779 if (has_vforked)
780 {
6c95b8df
PA
781 struct lwp_info *lp;
782 struct inferior *parent_inf;
783
784 parent_inf = current_inferior ();
785
786 /* If we detached from the child, then we have to be careful
787 to not insert breakpoints in the parent until the child
788 is done with the shared memory region. However, if we're
789 staying attached to the child, then we can and should
790 insert breakpoints, so that we can debug it. A
791 subsequent child exec or exit is enough to know when does
792 the child stops using the parent's address space. */
793 parent_inf->waiting_for_vfork_done = detach_fork;
56710373 794 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
6c95b8df
PA
795
796 lp = find_lwp_pid (pid_to_ptid (parent_pid));
b957e937
DJ
797 gdb_assert (linux_supports_tracefork_flag >= 0);
798 if (linux_supports_tracevforkdone (0))
9016a515 799 {
6c95b8df
PA
800 if (debug_linux_nat)
801 fprintf_unfiltered (gdb_stdlog,
802 "LCFF: waiting for VFORK_DONE on %d\n",
803 parent_pid);
804
805 lp->stopped = 1;
806 lp->resumed = 1;
9016a515 807
6c95b8df
PA
808 /* We'll handle the VFORK_DONE event like any other
809 event, in target_wait. */
9016a515
DJ
810 }
811 else
812 {
813 /* We can't insert breakpoints until the child has
814 finished with the shared memory region. We need to
815 wait until that happens. Ideal would be to just
816 call:
817 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
818 - waitpid (parent_pid, &status, __WALL);
819 However, most architectures can't handle a syscall
820 being traced on the way out if it wasn't traced on
821 the way in.
822
823 We might also think to loop, continuing the child
824 until it exits or gets a SIGTRAP. One problem is
825 that the child might call ptrace with PTRACE_TRACEME.
826
827 There's no simple and reliable way to figure out when
828 the vforked child will be done with its copy of the
829 shared memory. We could step it out of the syscall,
830 two instructions, let it go, and then single-step the
831 parent once. When we have hardware single-step, this
832 would work; with software single-step it could still
833 be made to work but we'd have to be able to insert
834 single-step breakpoints in the child, and we'd have
835 to insert -just- the single-step breakpoint in the
836 parent. Very awkward.
837
838 In the end, the best we can do is to make sure it
839 runs for a little while. Hopefully it will be out of
840 range of any breakpoints we reinsert. Usually this
841 is only the single-step breakpoint at vfork's return
842 point. */
843
6c95b8df
PA
844 if (debug_linux_nat)
845 fprintf_unfiltered (gdb_stdlog,
846 "LCFF: no VFORK_DONE support, sleeping a bit\n");
847
9016a515 848 usleep (10000);
9016a515 849
6c95b8df
PA
850 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
851 and leave it pending. The next linux_nat_resume call
852 will notice a pending event, and bypasses actually
853 resuming the inferior. */
854 lp->status = 0;
855 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
856 lp->stopped = 0;
857 lp->resumed = 1;
858
859 /* If we're in async mode, need to tell the event loop
860 there's something here to process. */
861 if (target_can_async_p ())
862 async_file_mark ();
863 }
9016a515 864 }
4de4c07c 865 }
3993f6b1 866 else
4de4c07c 867 {
77435e4c 868 struct inferior *parent_inf, *child_inf;
2277426b 869 struct lwp_info *lp;
6c95b8df 870 struct program_space *parent_pspace;
4de4c07c 871
e85a822c 872 if (info_verbose || debug_linux_nat)
f75c00e4
DJ
873 {
874 target_terminal_ours ();
6c95b8df
PA
875 if (has_vforked)
876 fprintf_filtered (gdb_stdlog, _("\
877Attaching after process %d vfork to child process %d.\n"),
878 parent_pid, child_pid);
879 else
880 fprintf_filtered (gdb_stdlog, _("\
881Attaching after process %d fork to child process %d.\n"),
882 parent_pid, child_pid);
f75c00e4 883 }
4de4c07c 884
7a7d3353
PA
885 /* Add the new inferior first, so that the target_detach below
886 doesn't unpush the target. */
887
77435e4c
PA
888 child_inf = add_inferior (child_pid);
889
e58b0e63 890 parent_inf = current_inferior ();
77435e4c 891 child_inf->attach_flag = parent_inf->attach_flag;
191c4426 892 copy_terminal_info (child_inf, parent_inf);
7a7d3353 893
6c95b8df 894 parent_pspace = parent_inf->pspace;
9016a515 895
6c95b8df
PA
896 /* If we're vforking, we want to hold on to the parent until the
897 child exits or execs. At child exec or exit time we can
898 remove the old breakpoints from the parent and detach or
899 resume debugging it. Otherwise, detach the parent now; we'll
900 want to reuse it's program/address spaces, but we can't set
901 them to the child before removing breakpoints from the
902 parent, otherwise, the breakpoints module could decide to
903 remove breakpoints from the wrong process (since they'd be
904 assigned to the same address space). */
9016a515
DJ
905
906 if (has_vforked)
7f9f62ba 907 {
6c95b8df
PA
908 gdb_assert (child_inf->vfork_parent == NULL);
909 gdb_assert (parent_inf->vfork_child == NULL);
910 child_inf->vfork_parent = parent_inf;
911 child_inf->pending_detach = 0;
912 parent_inf->vfork_child = child_inf;
913 parent_inf->pending_detach = detach_fork;
914 parent_inf->waiting_for_vfork_done = 0;
ac264b3b 915 }
2277426b 916 else if (detach_fork)
b84876c2 917 target_detach (NULL, 0);
4de4c07c 918
6c95b8df
PA
919 /* Note that the detach above makes PARENT_INF dangling. */
920
921 /* Add the child thread to the appropriate lists, and switch to
922 this new thread, before cloning the program space, and
923 informing the solib layer about this new process. */
924
9f0bdab8 925 inferior_ptid = ptid_build (child_pid, child_pid, 0);
2277426b
PA
926 add_thread (inferior_ptid);
927 lp = add_lwp (inferior_ptid);
928 lp->stopped = 1;
6c95b8df
PA
929 lp->resumed = 1;
930
931 /* If this is a vfork child, then the address-space is shared
932 with the parent. If we detached from the parent, then we can
933 reuse the parent's program/address spaces. */
934 if (has_vforked || detach_fork)
935 {
936 child_inf->pspace = parent_pspace;
937 child_inf->aspace = child_inf->pspace->aspace;
938 }
939 else
940 {
941 child_inf->aspace = new_address_space ();
942 child_inf->pspace = add_program_space (child_inf->aspace);
943 child_inf->removable = 1;
944 set_current_program_space (child_inf->pspace);
945 clone_program_space (child_inf->pspace, parent_pspace);
946
947 /* Let the shared library layer (solib-svr4) learn about
948 this new process, relocate the cloned exec, pull in
949 shared libraries, and install the solib event breakpoint.
950 If a "cloned-VM" event was propagated better throughout
951 the core, this wouldn't be required. */
268a4a75 952 solib_create_inferior_hook (0);
6c95b8df 953 }
ac264b3b 954
6c95b8df 955 /* Let the thread_db layer learn about this new process. */
ef29ce1a 956 check_for_thread_db ();
4de4c07c
DJ
957 }
958
7feb7d06 959 restore_child_signals_mask (&prev_mask);
4de4c07c
DJ
960 return 0;
961}
962
4de4c07c 963\f
6d8fd2b7
UW
964static void
965linux_child_insert_fork_catchpoint (int pid)
4de4c07c 966{
b957e937 967 if (! linux_supports_tracefork (pid))
8a3fe4f8 968 error (_("Your system does not support fork catchpoints."));
3993f6b1
DJ
969}
970
6d8fd2b7
UW
971static void
972linux_child_insert_vfork_catchpoint (int pid)
3993f6b1 973{
b957e937 974 if (!linux_supports_tracefork (pid))
8a3fe4f8 975 error (_("Your system does not support vfork catchpoints."));
3993f6b1
DJ
976}
977
6d8fd2b7
UW
978static void
979linux_child_insert_exec_catchpoint (int pid)
3993f6b1 980{
b957e937 981 if (!linux_supports_tracefork (pid))
8a3fe4f8 982 error (_("Your system does not support exec catchpoints."));
3993f6b1
DJ
983}
984
a96d9b2e
SDJ
985static int
986linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
987 int table_size, int *table)
988{
989 if (! linux_supports_tracesysgood (pid))
990 error (_("Your system does not support syscall catchpoints."));
991 /* On GNU/Linux, we ignore the arguments. It means that we only
992 enable the syscall catchpoints, but do not disable them.
993
994 Also, we do not use the `table' information because we do not
995 filter system calls here. We let GDB do the logic for us. */
996 return 0;
997}
998
d6b0e80f
AC
999/* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1000 are processes sharing the same VM space. A multi-threaded process
1001 is basically a group of such processes. However, such a grouping
1002 is almost entirely a user-space issue; the kernel doesn't enforce
1003 such a grouping at all (this might change in the future). In
1004 general, we'll rely on the threads library (i.e. the GNU/Linux
1005 Threads library) to provide such a grouping.
1006
1007 It is perfectly well possible to write a multi-threaded application
1008 without the assistance of a threads library, by using the clone
1009 system call directly. This module should be able to give some
1010 rudimentary support for debugging such applications if developers
1011 specify the CLONE_PTRACE flag in the clone system call, and are
1012 using the Linux kernel 2.4 or above.
1013
1014 Note that there are some peculiarities in GNU/Linux that affect
1015 this code:
1016
1017 - In general one should specify the __WCLONE flag to waitpid in
1018 order to make it report events for any of the cloned processes
1019 (and leave it out for the initial process). However, if a cloned
1020 process has exited the exit status is only reported if the
1021 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1022 we cannot use it since GDB must work on older systems too.
1023
1024 - When a traced, cloned process exits and is waited for by the
1025 debugger, the kernel reassigns it to the original parent and
1026 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1027 library doesn't notice this, which leads to the "zombie problem":
1028 When debugged a multi-threaded process that spawns a lot of
1029 threads will run out of processes, even if the threads exit,
1030 because the "zombies" stay around. */
1031
1032/* List of known LWPs. */
9f0bdab8 1033struct lwp_info *lwp_list;
d6b0e80f
AC
1034\f
1035
d6b0e80f
AC
1036/* Original signal mask. */
1037static sigset_t normal_mask;
1038
1039/* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1040 _initialize_linux_nat. */
1041static sigset_t suspend_mask;
1042
7feb7d06
PA
1043/* Signals to block to make that sigsuspend work. */
1044static sigset_t blocked_mask;
1045
1046/* SIGCHLD action. */
1047struct sigaction sigchld_action;
b84876c2 1048
7feb7d06
PA
1049/* Block child signals (SIGCHLD and linux threads signals), and store
1050 the previous mask in PREV_MASK. */
84e46146 1051
7feb7d06
PA
1052static void
1053block_child_signals (sigset_t *prev_mask)
1054{
1055 /* Make sure SIGCHLD is blocked. */
1056 if (!sigismember (&blocked_mask, SIGCHLD))
1057 sigaddset (&blocked_mask, SIGCHLD);
1058
1059 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1060}
1061
1062/* Restore child signals mask, previously returned by
1063 block_child_signals. */
1064
1065static void
1066restore_child_signals_mask (sigset_t *prev_mask)
1067{
1068 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1069}
d6b0e80f
AC
1070\f
1071
1072/* Prototypes for local functions. */
1073static int stop_wait_callback (struct lwp_info *lp, void *data);
28439f5e 1074static int linux_thread_alive (ptid_t ptid);
6d8fd2b7 1075static char *linux_child_pid_to_exec_file (int pid);
710151dd 1076
d6b0e80f
AC
1077\f
1078/* Convert wait status STATUS to a string. Used for printing debug
1079 messages only. */
1080
1081static char *
1082status_to_str (int status)
1083{
1084 static char buf[64];
1085
1086 if (WIFSTOPPED (status))
206aa767 1087 {
ca2163eb 1088 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
206aa767
DE
1089 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1090 strsignal (SIGTRAP));
1091 else
1092 snprintf (buf, sizeof (buf), "%s (stopped)",
1093 strsignal (WSTOPSIG (status)));
1094 }
d6b0e80f
AC
1095 else if (WIFSIGNALED (status))
1096 snprintf (buf, sizeof (buf), "%s (terminated)",
1097 strsignal (WSTOPSIG (status)));
1098 else
1099 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1100
1101 return buf;
1102}
1103
d90e17a7
PA
1104/* Remove all LWPs belong to PID from the lwp list. */
1105
1106static void
1107purge_lwp_list (int pid)
1108{
1109 struct lwp_info *lp, *lpprev, *lpnext;
1110
1111 lpprev = NULL;
1112
1113 for (lp = lwp_list; lp; lp = lpnext)
1114 {
1115 lpnext = lp->next;
1116
1117 if (ptid_get_pid (lp->ptid) == pid)
1118 {
1119 if (lp == lwp_list)
1120 lwp_list = lp->next;
1121 else
1122 lpprev->next = lp->next;
1123
1124 xfree (lp);
1125 }
1126 else
1127 lpprev = lp;
1128 }
1129}
1130
1131/* Return the number of known LWPs in the tgid given by PID. */
1132
1133static int
1134num_lwps (int pid)
1135{
1136 int count = 0;
1137 struct lwp_info *lp;
1138
1139 for (lp = lwp_list; lp; lp = lp->next)
1140 if (ptid_get_pid (lp->ptid) == pid)
1141 count++;
1142
1143 return count;
d6b0e80f
AC
1144}
1145
f973ed9c 1146/* Add the LWP specified by PID to the list. Return a pointer to the
9f0bdab8
DJ
1147 structure describing the new LWP. The LWP should already be stopped
1148 (with an exception for the very first LWP). */
d6b0e80f
AC
1149
1150static struct lwp_info *
1151add_lwp (ptid_t ptid)
1152{
1153 struct lwp_info *lp;
1154
1155 gdb_assert (is_lwp (ptid));
1156
1157 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1158
1159 memset (lp, 0, sizeof (struct lwp_info));
1160
1161 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1162
1163 lp->ptid = ptid;
dc146f7c 1164 lp->core = -1;
d6b0e80f
AC
1165
1166 lp->next = lwp_list;
1167 lwp_list = lp;
d6b0e80f 1168
d90e17a7 1169 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
9f0bdab8
DJ
1170 linux_nat_new_thread (ptid);
1171
d6b0e80f
AC
1172 return lp;
1173}
1174
1175/* Remove the LWP specified by PID from the list. */
1176
1177static void
1178delete_lwp (ptid_t ptid)
1179{
1180 struct lwp_info *lp, *lpprev;
1181
1182 lpprev = NULL;
1183
1184 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1185 if (ptid_equal (lp->ptid, ptid))
1186 break;
1187
1188 if (!lp)
1189 return;
1190
d6b0e80f
AC
1191 if (lpprev)
1192 lpprev->next = lp->next;
1193 else
1194 lwp_list = lp->next;
1195
1196 xfree (lp);
1197}
1198
1199/* Return a pointer to the structure describing the LWP corresponding
1200 to PID. If no corresponding LWP could be found, return NULL. */
1201
1202static struct lwp_info *
1203find_lwp_pid (ptid_t ptid)
1204{
1205 struct lwp_info *lp;
1206 int lwp;
1207
1208 if (is_lwp (ptid))
1209 lwp = GET_LWP (ptid);
1210 else
1211 lwp = GET_PID (ptid);
1212
1213 for (lp = lwp_list; lp; lp = lp->next)
1214 if (lwp == GET_LWP (lp->ptid))
1215 return lp;
1216
1217 return NULL;
1218}
1219
1220/* Call CALLBACK with its second argument set to DATA for every LWP in
1221 the list. If CALLBACK returns 1 for a particular LWP, return a
1222 pointer to the structure describing that LWP immediately.
1223 Otherwise return NULL. */
1224
1225struct lwp_info *
d90e17a7
PA
1226iterate_over_lwps (ptid_t filter,
1227 int (*callback) (struct lwp_info *, void *),
1228 void *data)
d6b0e80f
AC
1229{
1230 struct lwp_info *lp, *lpnext;
1231
1232 for (lp = lwp_list; lp; lp = lpnext)
1233 {
1234 lpnext = lp->next;
d90e17a7
PA
1235
1236 if (ptid_match (lp->ptid, filter))
1237 {
1238 if ((*callback) (lp, data))
1239 return lp;
1240 }
d6b0e80f
AC
1241 }
1242
1243 return NULL;
1244}
1245
2277426b
PA
1246/* Update our internal state when changing from one checkpoint to
1247 another indicated by NEW_PTID. We can only switch single-threaded
1248 applications, so we only create one new LWP, and the previous list
1249 is discarded. */
f973ed9c
DJ
1250
1251void
1252linux_nat_switch_fork (ptid_t new_ptid)
1253{
1254 struct lwp_info *lp;
1255
2277426b
PA
1256 purge_lwp_list (GET_PID (inferior_ptid));
1257
f973ed9c
DJ
1258 lp = add_lwp (new_ptid);
1259 lp->stopped = 1;
e26af52f 1260
2277426b
PA
1261 /* This changes the thread's ptid while preserving the gdb thread
1262 num. Also changes the inferior pid, while preserving the
1263 inferior num. */
1264 thread_change_ptid (inferior_ptid, new_ptid);
1265
1266 /* We've just told GDB core that the thread changed target id, but,
1267 in fact, it really is a different thread, with different register
1268 contents. */
1269 registers_changed ();
e26af52f
DJ
1270}
1271
e26af52f
DJ
1272/* Handle the exit of a single thread LP. */
1273
1274static void
1275exit_lwp (struct lwp_info *lp)
1276{
e09875d4 1277 struct thread_info *th = find_thread_ptid (lp->ptid);
063bfe2e
VP
1278
1279 if (th)
e26af52f 1280 {
17faa917
DJ
1281 if (print_thread_events)
1282 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1283
4f8d22e3 1284 delete_thread (lp->ptid);
e26af52f
DJ
1285 }
1286
1287 delete_lwp (lp->ptid);
1288}
1289
4d062f1a
PA
1290/* Return an lwp's tgid, found in `/proc/PID/status'. */
1291
1292int
1293linux_proc_get_tgid (int lwpid)
1294{
1295 FILE *status_file;
1296 char buf[100];
1297 int tgid = -1;
1298
1299 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1300 status_file = fopen (buf, "r");
1301 if (status_file != NULL)
1302 {
1303 while (fgets (buf, sizeof (buf), status_file))
1304 {
1305 if (strncmp (buf, "Tgid:", 5) == 0)
1306 {
1307 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1308 break;
1309 }
1310 }
1311
1312 fclose (status_file);
1313 }
1314
1315 return tgid;
1316}
1317
a0ef4274
DJ
1318/* Detect `T (stopped)' in `/proc/PID/status'.
1319 Other states including `T (tracing stop)' are reported as false. */
1320
1321static int
1322pid_is_stopped (pid_t pid)
1323{
1324 FILE *status_file;
1325 char buf[100];
1326 int retval = 0;
1327
1328 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1329 status_file = fopen (buf, "r");
1330 if (status_file != NULL)
1331 {
1332 int have_state = 0;
1333
1334 while (fgets (buf, sizeof (buf), status_file))
1335 {
1336 if (strncmp (buf, "State:", 6) == 0)
1337 {
1338 have_state = 1;
1339 break;
1340 }
1341 }
1342 if (have_state && strstr (buf, "T (stopped)") != NULL)
1343 retval = 1;
1344 fclose (status_file);
1345 }
1346 return retval;
1347}
1348
1349/* Wait for the LWP specified by LP, which we have just attached to.
1350 Returns a wait status for that LWP, to cache. */
1351
1352static int
1353linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1354 int *signalled)
1355{
1356 pid_t new_pid, pid = GET_LWP (ptid);
1357 int status;
1358
1359 if (pid_is_stopped (pid))
1360 {
1361 if (debug_linux_nat)
1362 fprintf_unfiltered (gdb_stdlog,
1363 "LNPAW: Attaching to a stopped process\n");
1364
1365 /* The process is definitely stopped. It is in a job control
1366 stop, unless the kernel predates the TASK_STOPPED /
1367 TASK_TRACED distinction, in which case it might be in a
1368 ptrace stop. Make sure it is in a ptrace stop; from there we
1369 can kill it, signal it, et cetera.
1370
1371 First make sure there is a pending SIGSTOP. Since we are
1372 already attached, the process can not transition from stopped
1373 to running without a PTRACE_CONT; so we know this signal will
1374 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1375 probably already in the queue (unless this kernel is old
1376 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1377 is not an RT signal, it can only be queued once. */
1378 kill_lwp (pid, SIGSTOP);
1379
1380 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1381 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1382 ptrace (PTRACE_CONT, pid, 0, 0);
1383 }
1384
1385 /* Make sure the initial process is stopped. The user-level threads
1386 layer might want to poke around in the inferior, and that won't
1387 work if things haven't stabilized yet. */
1388 new_pid = my_waitpid (pid, &status, 0);
1389 if (new_pid == -1 && errno == ECHILD)
1390 {
1391 if (first)
1392 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1393
1394 /* Try again with __WCLONE to check cloned processes. */
1395 new_pid = my_waitpid (pid, &status, __WCLONE);
1396 *cloned = 1;
1397 }
1398
dacc9cb2
PP
1399 gdb_assert (pid == new_pid);
1400
1401 if (!WIFSTOPPED (status))
1402 {
1403 /* The pid we tried to attach has apparently just exited. */
1404 if (debug_linux_nat)
1405 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1406 pid, status_to_str (status));
1407 return status;
1408 }
a0ef4274
DJ
1409
1410 if (WSTOPSIG (status) != SIGSTOP)
1411 {
1412 *signalled = 1;
1413 if (debug_linux_nat)
1414 fprintf_unfiltered (gdb_stdlog,
1415 "LNPAW: Received %s after attaching\n",
1416 status_to_str (status));
1417 }
1418
1419 return status;
1420}
1421
1422/* Attach to the LWP specified by PID. Return 0 if successful or -1
1423 if the new LWP could not be attached. */
d6b0e80f 1424
9ee57c33 1425int
93815fbf 1426lin_lwp_attach_lwp (ptid_t ptid)
d6b0e80f 1427{
9ee57c33 1428 struct lwp_info *lp;
7feb7d06 1429 sigset_t prev_mask;
d6b0e80f
AC
1430
1431 gdb_assert (is_lwp (ptid));
1432
7feb7d06 1433 block_child_signals (&prev_mask);
d6b0e80f 1434
9ee57c33 1435 lp = find_lwp_pid (ptid);
d6b0e80f
AC
1436
1437 /* We assume that we're already attached to any LWP that has an id
1438 equal to the overall process id, and to any LWP that is already
1439 in our list of LWPs. If we're not seeing exit events from threads
1440 and we've had PID wraparound since we last tried to stop all threads,
1441 this assumption might be wrong; fortunately, this is very unlikely
1442 to happen. */
9ee57c33 1443 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
d6b0e80f 1444 {
a0ef4274 1445 int status, cloned = 0, signalled = 0;
d6b0e80f
AC
1446
1447 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
9ee57c33
DJ
1448 {
1449 /* If we fail to attach to the thread, issue a warning,
1450 but continue. One way this can happen is if thread
e9efe249 1451 creation is interrupted; as of Linux kernel 2.6.19, a
9ee57c33
DJ
1452 bug may place threads in the thread list and then fail
1453 to create them. */
1454 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1455 safe_strerror (errno));
7feb7d06 1456 restore_child_signals_mask (&prev_mask);
9ee57c33
DJ
1457 return -1;
1458 }
1459
d6b0e80f
AC
1460 if (debug_linux_nat)
1461 fprintf_unfiltered (gdb_stdlog,
1462 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1463 target_pid_to_str (ptid));
1464
a0ef4274 1465 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
dacc9cb2
PP
1466 if (!WIFSTOPPED (status))
1467 return -1;
1468
a0ef4274
DJ
1469 lp = add_lwp (ptid);
1470 lp->stopped = 1;
1471 lp->cloned = cloned;
1472 lp->signalled = signalled;
1473 if (WSTOPSIG (status) != SIGSTOP)
d6b0e80f 1474 {
a0ef4274
DJ
1475 lp->resumed = 1;
1476 lp->status = status;
d6b0e80f
AC
1477 }
1478
a0ef4274 1479 target_post_attach (GET_LWP (lp->ptid));
d6b0e80f
AC
1480
1481 if (debug_linux_nat)
1482 {
1483 fprintf_unfiltered (gdb_stdlog,
1484 "LLAL: waitpid %s received %s\n",
1485 target_pid_to_str (ptid),
1486 status_to_str (status));
1487 }
1488 }
1489 else
1490 {
1491 /* We assume that the LWP representing the original process is
1492 already stopped. Mark it as stopped in the data structure
155bd5d1
AC
1493 that the GNU/linux ptrace layer uses to keep track of
1494 threads. Note that this won't have already been done since
1495 the main thread will have, we assume, been stopped by an
1496 attach from a different layer. */
9ee57c33
DJ
1497 if (lp == NULL)
1498 lp = add_lwp (ptid);
d6b0e80f
AC
1499 lp->stopped = 1;
1500 }
9ee57c33 1501
7feb7d06 1502 restore_child_signals_mask (&prev_mask);
9ee57c33 1503 return 0;
d6b0e80f
AC
1504}
1505
b84876c2 1506static void
136d6dae
VP
1507linux_nat_create_inferior (struct target_ops *ops,
1508 char *exec_file, char *allargs, char **env,
b84876c2
PA
1509 int from_tty)
1510{
10568435
JK
1511#ifdef HAVE_PERSONALITY
1512 int personality_orig = 0, personality_set = 0;
1513#endif /* HAVE_PERSONALITY */
b84876c2
PA
1514
1515 /* The fork_child mechanism is synchronous and calls target_wait, so
1516 we have to mask the async mode. */
1517
10568435
JK
1518#ifdef HAVE_PERSONALITY
1519 if (disable_randomization)
1520 {
1521 errno = 0;
1522 personality_orig = personality (0xffffffff);
1523 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1524 {
1525 personality_set = 1;
1526 personality (personality_orig | ADDR_NO_RANDOMIZE);
1527 }
1528 if (errno != 0 || (personality_set
1529 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1530 warning (_("Error disabling address space randomization: %s"),
1531 safe_strerror (errno));
1532 }
1533#endif /* HAVE_PERSONALITY */
1534
136d6dae 1535 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
b84876c2 1536
10568435
JK
1537#ifdef HAVE_PERSONALITY
1538 if (personality_set)
1539 {
1540 errno = 0;
1541 personality (personality_orig);
1542 if (errno != 0)
1543 warning (_("Error restoring address space randomization: %s"),
1544 safe_strerror (errno));
1545 }
1546#endif /* HAVE_PERSONALITY */
b84876c2
PA
1547}
1548
d6b0e80f 1549static void
136d6dae 1550linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
d6b0e80f
AC
1551{
1552 struct lwp_info *lp;
d6b0e80f 1553 int status;
af990527 1554 ptid_t ptid;
d6b0e80f 1555
136d6dae 1556 linux_ops->to_attach (ops, args, from_tty);
d6b0e80f 1557
af990527
PA
1558 /* The ptrace base target adds the main thread with (pid,0,0)
1559 format. Decorate it with lwp info. */
1560 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1561 thread_change_ptid (inferior_ptid, ptid);
1562
9f0bdab8 1563 /* Add the initial process as the first LWP to the list. */
af990527 1564 lp = add_lwp (ptid);
a0ef4274
DJ
1565
1566 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1567 &lp->signalled);
dacc9cb2
PP
1568 if (!WIFSTOPPED (status))
1569 {
1570 if (WIFEXITED (status))
1571 {
1572 int exit_code = WEXITSTATUS (status);
1573
1574 target_terminal_ours ();
1575 target_mourn_inferior ();
1576 if (exit_code == 0)
1577 error (_("Unable to attach: program exited normally."));
1578 else
1579 error (_("Unable to attach: program exited with code %d."),
1580 exit_code);
1581 }
1582 else if (WIFSIGNALED (status))
1583 {
1584 enum target_signal signo;
1585
1586 target_terminal_ours ();
1587 target_mourn_inferior ();
1588
1589 signo = target_signal_from_host (WTERMSIG (status));
1590 error (_("Unable to attach: program terminated with signal "
1591 "%s, %s."),
1592 target_signal_to_name (signo),
1593 target_signal_to_string (signo));
1594 }
1595
1596 internal_error (__FILE__, __LINE__,
1597 _("unexpected status %d for PID %ld"),
1598 status, (long) GET_LWP (ptid));
1599 }
1600
a0ef4274 1601 lp->stopped = 1;
9f0bdab8 1602
a0ef4274 1603 /* Save the wait status to report later. */
d6b0e80f 1604 lp->resumed = 1;
a0ef4274
DJ
1605 if (debug_linux_nat)
1606 fprintf_unfiltered (gdb_stdlog,
1607 "LNA: waitpid %ld, saving status %s\n",
1608 (long) GET_PID (lp->ptid), status_to_str (status));
710151dd 1609
7feb7d06
PA
1610 lp->status = status;
1611
1612 if (target_can_async_p ())
1613 target_async (inferior_event_handler, 0);
d6b0e80f
AC
1614}
1615
a0ef4274
DJ
1616/* Get pending status of LP. */
1617static int
1618get_pending_status (struct lwp_info *lp, int *status)
1619{
ca2163eb
PA
1620 enum target_signal signo = TARGET_SIGNAL_0;
1621
1622 /* If we paused threads momentarily, we may have stored pending
1623 events in lp->status or lp->waitstatus (see stop_wait_callback),
1624 and GDB core hasn't seen any signal for those threads.
1625 Otherwise, the last signal reported to the core is found in the
1626 thread object's stop_signal.
1627
1628 There's a corner case that isn't handled here at present. Only
1629 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1630 stop_signal make sense as a real signal to pass to the inferior.
1631 Some catchpoint related events, like
1632 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1633 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1634 those traps are debug API (ptrace in our case) related and
1635 induced; the inferior wouldn't see them if it wasn't being
1636 traced. Hence, we should never pass them to the inferior, even
1637 when set to pass state. Since this corner case isn't handled by
1638 infrun.c when proceeding with a signal, for consistency, neither
1639 do we handle it here (or elsewhere in the file we check for
1640 signal pass state). Normally SIGTRAP isn't set to pass state, so
1641 this is really a corner case. */
1642
1643 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1644 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1645 else if (lp->status)
1646 signo = target_signal_from_host (WSTOPSIG (lp->status));
1647 else if (non_stop && !is_executing (lp->ptid))
1648 {
1649 struct thread_info *tp = find_thread_ptid (lp->ptid);
e0881a8e 1650
ca2163eb
PA
1651 signo = tp->stop_signal;
1652 }
1653 else if (!non_stop)
a0ef4274 1654 {
ca2163eb
PA
1655 struct target_waitstatus last;
1656 ptid_t last_ptid;
4c28f408 1657
ca2163eb 1658 get_last_target_status (&last_ptid, &last);
4c28f408 1659
ca2163eb
PA
1660 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1661 {
e09875d4 1662 struct thread_info *tp = find_thread_ptid (lp->ptid);
e0881a8e 1663
2020b7ab 1664 signo = tp->stop_signal;
4c28f408 1665 }
ca2163eb 1666 }
4c28f408 1667
ca2163eb 1668 *status = 0;
4c28f408 1669
ca2163eb
PA
1670 if (signo == TARGET_SIGNAL_0)
1671 {
1672 if (debug_linux_nat)
1673 fprintf_unfiltered (gdb_stdlog,
1674 "GPT: lwp %s has no pending signal\n",
1675 target_pid_to_str (lp->ptid));
1676 }
1677 else if (!signal_pass_state (signo))
1678 {
1679 if (debug_linux_nat)
1680 fprintf_unfiltered (gdb_stdlog, "\
1681GPT: lwp %s had signal %s, but it is in no pass state\n",
1682 target_pid_to_str (lp->ptid),
1683 target_signal_to_string (signo));
a0ef4274 1684 }
a0ef4274 1685 else
4c28f408 1686 {
ca2163eb
PA
1687 *status = W_STOPCODE (target_signal_to_host (signo));
1688
1689 if (debug_linux_nat)
1690 fprintf_unfiltered (gdb_stdlog,
1691 "GPT: lwp %s has pending signal %s\n",
1692 target_pid_to_str (lp->ptid),
1693 target_signal_to_string (signo));
4c28f408 1694 }
a0ef4274
DJ
1695
1696 return 0;
1697}
1698
d6b0e80f
AC
1699static int
1700detach_callback (struct lwp_info *lp, void *data)
1701{
1702 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1703
1704 if (debug_linux_nat && lp->status)
1705 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1706 strsignal (WSTOPSIG (lp->status)),
1707 target_pid_to_str (lp->ptid));
1708
a0ef4274
DJ
1709 /* If there is a pending SIGSTOP, get rid of it. */
1710 if (lp->signalled)
d6b0e80f 1711 {
d6b0e80f
AC
1712 if (debug_linux_nat)
1713 fprintf_unfiltered (gdb_stdlog,
a0ef4274
DJ
1714 "DC: Sending SIGCONT to %s\n",
1715 target_pid_to_str (lp->ptid));
d6b0e80f 1716
a0ef4274 1717 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
d6b0e80f 1718 lp->signalled = 0;
d6b0e80f
AC
1719 }
1720
1721 /* We don't actually detach from the LWP that has an id equal to the
1722 overall process id just yet. */
1723 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1724 {
a0ef4274
DJ
1725 int status = 0;
1726
1727 /* Pass on any pending signal for this LWP. */
1728 get_pending_status (lp, &status);
1729
d6b0e80f
AC
1730 errno = 0;
1731 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
a0ef4274 1732 WSTOPSIG (status)) < 0)
8a3fe4f8 1733 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
d6b0e80f
AC
1734 safe_strerror (errno));
1735
1736 if (debug_linux_nat)
1737 fprintf_unfiltered (gdb_stdlog,
1738 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1739 target_pid_to_str (lp->ptid),
7feb7d06 1740 strsignal (WSTOPSIG (status)));
d6b0e80f
AC
1741
1742 delete_lwp (lp->ptid);
1743 }
1744
1745 return 0;
1746}
1747
1748static void
136d6dae 1749linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
d6b0e80f 1750{
b84876c2 1751 int pid;
a0ef4274 1752 int status;
d90e17a7
PA
1753 struct lwp_info *main_lwp;
1754
1755 pid = GET_PID (inferior_ptid);
a0ef4274 1756
b84876c2
PA
1757 if (target_can_async_p ())
1758 linux_nat_async (NULL, 0);
1759
4c28f408
PA
1760 /* Stop all threads before detaching. ptrace requires that the
1761 thread is stopped to sucessfully detach. */
d90e17a7 1762 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
4c28f408
PA
1763 /* ... and wait until all of them have reported back that
1764 they're no longer running. */
d90e17a7 1765 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
4c28f408 1766
d90e17a7 1767 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
d6b0e80f
AC
1768
1769 /* Only the initial process should be left right now. */
d90e17a7
PA
1770 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1771
1772 main_lwp = find_lwp_pid (pid_to_ptid (pid));
d6b0e80f 1773
a0ef4274
DJ
1774 /* Pass on any pending signal for the last LWP. */
1775 if ((args == NULL || *args == '\0')
d90e17a7 1776 && get_pending_status (main_lwp, &status) != -1
a0ef4274
DJ
1777 && WIFSTOPPED (status))
1778 {
1779 /* Put the signal number in ARGS so that inf_ptrace_detach will
1780 pass it along with PTRACE_DETACH. */
1781 args = alloca (8);
1782 sprintf (args, "%d", (int) WSTOPSIG (status));
ddabfc73
TT
1783 if (debug_linux_nat)
1784 fprintf_unfiltered (gdb_stdlog,
1785 "LND: Sending signal %s to %s\n",
1786 args,
1787 target_pid_to_str (main_lwp->ptid));
a0ef4274
DJ
1788 }
1789
d90e17a7 1790 delete_lwp (main_lwp->ptid);
b84876c2 1791
7a7d3353
PA
1792 if (forks_exist_p ())
1793 {
1794 /* Multi-fork case. The current inferior_ptid is being detached
1795 from, but there are other viable forks to debug. Detach from
1796 the current fork, and context-switch to the first
1797 available. */
1798 linux_fork_detach (args, from_tty);
1799
1800 if (non_stop && target_can_async_p ())
1801 target_async (inferior_event_handler, 0);
1802 }
1803 else
1804 linux_ops->to_detach (ops, args, from_tty);
d6b0e80f
AC
1805}
1806
1807/* Resume LP. */
1808
1809static int
1810resume_callback (struct lwp_info *lp, void *data)
1811{
6c95b8df
PA
1812 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1813
1814 if (lp->stopped && inf->vfork_child != NULL)
1815 {
1816 if (debug_linux_nat)
1817 fprintf_unfiltered (gdb_stdlog,
1818 "RC: Not resuming %s (vfork parent)\n",
1819 target_pid_to_str (lp->ptid));
1820 }
1821 else if (lp->stopped && lp->status == 0)
d6b0e80f 1822 {
d90e17a7
PA
1823 if (debug_linux_nat)
1824 fprintf_unfiltered (gdb_stdlog,
1825 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1826 target_pid_to_str (lp->ptid));
1827
28439f5e
PA
1828 linux_ops->to_resume (linux_ops,
1829 pid_to_ptid (GET_LWP (lp->ptid)),
10d6c8cd 1830 0, TARGET_SIGNAL_0);
d6b0e80f
AC
1831 if (debug_linux_nat)
1832 fprintf_unfiltered (gdb_stdlog,
1833 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1834 target_pid_to_str (lp->ptid));
1835 lp->stopped = 0;
1836 lp->step = 0;
9f0bdab8 1837 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
ebec9a0f 1838 lp->stopped_by_watchpoint = 0;
d6b0e80f 1839 }
57380f4e
DJ
1840 else if (lp->stopped && debug_linux_nat)
1841 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1842 target_pid_to_str (lp->ptid));
1843 else if (debug_linux_nat)
1844 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1845 target_pid_to_str (lp->ptid));
d6b0e80f
AC
1846
1847 return 0;
1848}
1849
1850static int
1851resume_clear_callback (struct lwp_info *lp, void *data)
1852{
1853 lp->resumed = 0;
1854 return 0;
1855}
1856
1857static int
1858resume_set_callback (struct lwp_info *lp, void *data)
1859{
1860 lp->resumed = 1;
1861 return 0;
1862}
1863
1864static void
28439f5e
PA
1865linux_nat_resume (struct target_ops *ops,
1866 ptid_t ptid, int step, enum target_signal signo)
d6b0e80f 1867{
7feb7d06 1868 sigset_t prev_mask;
d6b0e80f 1869 struct lwp_info *lp;
d90e17a7 1870 int resume_many;
d6b0e80f 1871
76f50ad1
DJ
1872 if (debug_linux_nat)
1873 fprintf_unfiltered (gdb_stdlog,
1874 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1875 step ? "step" : "resume",
1876 target_pid_to_str (ptid),
1877 signo ? strsignal (signo) : "0",
1878 target_pid_to_str (inferior_ptid));
1879
7feb7d06 1880 block_child_signals (&prev_mask);
b84876c2 1881
d6b0e80f 1882 /* A specific PTID means `step only this process id'. */
d90e17a7
PA
1883 resume_many = (ptid_equal (minus_one_ptid, ptid)
1884 || ptid_is_pid (ptid));
4c28f408 1885
e3e9f5a2
PA
1886 /* Mark the lwps we're resuming as resumed. */
1887 iterate_over_lwps (ptid, resume_set_callback, NULL);
d6b0e80f 1888
d90e17a7
PA
1889 /* See if it's the current inferior that should be handled
1890 specially. */
1891 if (resume_many)
1892 lp = find_lwp_pid (inferior_ptid);
1893 else
1894 lp = find_lwp_pid (ptid);
9f0bdab8 1895 gdb_assert (lp != NULL);
d6b0e80f 1896
9f0bdab8
DJ
1897 /* Remember if we're stepping. */
1898 lp->step = step;
d6b0e80f 1899
9f0bdab8
DJ
1900 /* If we have a pending wait status for this thread, there is no
1901 point in resuming the process. But first make sure that
1902 linux_nat_wait won't preemptively handle the event - we
1903 should never take this short-circuit if we are going to
1904 leave LP running, since we have skipped resuming all the
1905 other threads. This bit of code needs to be synchronized
1906 with linux_nat_wait. */
76f50ad1 1907
9f0bdab8
DJ
1908 if (lp->status && WIFSTOPPED (lp->status))
1909 {
d6b48e9c
PA
1910 int saved_signo;
1911 struct inferior *inf;
76f50ad1 1912
d90e17a7 1913 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
d6b48e9c
PA
1914 gdb_assert (inf);
1915 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1916
1917 /* Defer to common code if we're gaining control of the
1918 inferior. */
1919 if (inf->stop_soon == NO_STOP_QUIETLY
1920 && signal_stop_state (saved_signo) == 0
9f0bdab8
DJ
1921 && signal_print_state (saved_signo) == 0
1922 && signal_pass_state (saved_signo) == 1)
d6b0e80f 1923 {
9f0bdab8
DJ
1924 if (debug_linux_nat)
1925 fprintf_unfiltered (gdb_stdlog,
1926 "LLR: Not short circuiting for ignored "
1927 "status 0x%x\n", lp->status);
1928
d6b0e80f
AC
1929 /* FIXME: What should we do if we are supposed to continue
1930 this thread with a signal? */
1931 gdb_assert (signo == TARGET_SIGNAL_0);
9f0bdab8
DJ
1932 signo = saved_signo;
1933 lp->status = 0;
1934 }
1935 }
76f50ad1 1936
6c95b8df 1937 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
9f0bdab8
DJ
1938 {
1939 /* FIXME: What should we do if we are supposed to continue
1940 this thread with a signal? */
1941 gdb_assert (signo == TARGET_SIGNAL_0);
76f50ad1 1942
9f0bdab8
DJ
1943 if (debug_linux_nat)
1944 fprintf_unfiltered (gdb_stdlog,
1945 "LLR: Short circuiting for status 0x%x\n",
1946 lp->status);
d6b0e80f 1947
7feb7d06
PA
1948 restore_child_signals_mask (&prev_mask);
1949 if (target_can_async_p ())
1950 {
1951 target_async (inferior_event_handler, 0);
1952 /* Tell the event loop we have something to process. */
1953 async_file_mark ();
1954 }
9f0bdab8 1955 return;
d6b0e80f
AC
1956 }
1957
9f0bdab8
DJ
1958 /* Mark LWP as not stopped to prevent it from being continued by
1959 resume_callback. */
1960 lp->stopped = 0;
1961
d90e17a7
PA
1962 if (resume_many)
1963 iterate_over_lwps (ptid, resume_callback, NULL);
1964
1965 /* Convert to something the lower layer understands. */
1966 ptid = pid_to_ptid (GET_LWP (lp->ptid));
d6b0e80f 1967
28439f5e 1968 linux_ops->to_resume (linux_ops, ptid, step, signo);
9f0bdab8 1969 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
ebec9a0f 1970 lp->stopped_by_watchpoint = 0;
9f0bdab8 1971
d6b0e80f
AC
1972 if (debug_linux_nat)
1973 fprintf_unfiltered (gdb_stdlog,
1974 "LLR: %s %s, %s (resume event thread)\n",
1975 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1976 target_pid_to_str (ptid),
1977 signo ? strsignal (signo) : "0");
b84876c2 1978
7feb7d06 1979 restore_child_signals_mask (&prev_mask);
b84876c2 1980 if (target_can_async_p ())
8ea051c5 1981 target_async (inferior_event_handler, 0);
d6b0e80f
AC
1982}
1983
c5f62d5f 1984/* Send a signal to an LWP. */
d6b0e80f
AC
1985
1986static int
1987kill_lwp (int lwpid, int signo)
1988{
c5f62d5f
DE
1989 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1990 fails, then we are not using nptl threads and we should be using kill. */
d6b0e80f
AC
1991
1992#ifdef HAVE_TKILL_SYSCALL
c5f62d5f
DE
1993 {
1994 static int tkill_failed;
1995
1996 if (!tkill_failed)
1997 {
1998 int ret;
1999
2000 errno = 0;
2001 ret = syscall (__NR_tkill, lwpid, signo);
2002 if (errno != ENOSYS)
2003 return ret;
2004 tkill_failed = 1;
2005 }
2006 }
d6b0e80f
AC
2007#endif
2008
2009 return kill (lwpid, signo);
2010}
2011
ca2163eb
PA
2012/* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2013 event, check if the core is interested in it: if not, ignore the
2014 event, and keep waiting; otherwise, we need to toggle the LWP's
2015 syscall entry/exit status, since the ptrace event itself doesn't
2016 indicate it, and report the trap to higher layers. */
2017
2018static int
2019linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2020{
2021 struct target_waitstatus *ourstatus = &lp->waitstatus;
2022 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2023 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2024
2025 if (stopping)
2026 {
2027 /* If we're stopping threads, there's a SIGSTOP pending, which
2028 makes it so that the LWP reports an immediate syscall return,
2029 followed by the SIGSTOP. Skip seeing that "return" using
2030 PTRACE_CONT directly, and let stop_wait_callback collect the
2031 SIGSTOP. Later when the thread is resumed, a new syscall
2032 entry event. If we didn't do this (and returned 0), we'd
2033 leave a syscall entry pending, and our caller, by using
2034 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2035 itself. Later, when the user re-resumes this LWP, we'd see
2036 another syscall entry event and we'd mistake it for a return.
2037
2038 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2039 (leaving immediately with LWP->signalled set, without issuing
2040 a PTRACE_CONT), it would still be problematic to leave this
2041 syscall enter pending, as later when the thread is resumed,
2042 it would then see the same syscall exit mentioned above,
2043 followed by the delayed SIGSTOP, while the syscall didn't
2044 actually get to execute. It seems it would be even more
2045 confusing to the user. */
2046
2047 if (debug_linux_nat)
2048 fprintf_unfiltered (gdb_stdlog,
2049 "LHST: ignoring syscall %d "
2050 "for LWP %ld (stopping threads), "
2051 "resuming with PTRACE_CONT for SIGSTOP\n",
2052 syscall_number,
2053 GET_LWP (lp->ptid));
2054
2055 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2056 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2057 return 1;
2058 }
2059
2060 if (catch_syscall_enabled ())
2061 {
2062 /* Always update the entry/return state, even if this particular
2063 syscall isn't interesting to the core now. In async mode,
2064 the user could install a new catchpoint for this syscall
2065 between syscall enter/return, and we'll need to know to
2066 report a syscall return if that happens. */
2067 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2068 ? TARGET_WAITKIND_SYSCALL_RETURN
2069 : TARGET_WAITKIND_SYSCALL_ENTRY);
2070
2071 if (catching_syscall_number (syscall_number))
2072 {
2073 /* Alright, an event to report. */
2074 ourstatus->kind = lp->syscall_state;
2075 ourstatus->value.syscall_number = syscall_number;
2076
2077 if (debug_linux_nat)
2078 fprintf_unfiltered (gdb_stdlog,
2079 "LHST: stopping for %s of syscall %d"
2080 " for LWP %ld\n",
2081 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2082 ? "entry" : "return",
2083 syscall_number,
2084 GET_LWP (lp->ptid));
2085 return 0;
2086 }
2087
2088 if (debug_linux_nat)
2089 fprintf_unfiltered (gdb_stdlog,
2090 "LHST: ignoring %s of syscall %d "
2091 "for LWP %ld\n",
2092 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2093 ? "entry" : "return",
2094 syscall_number,
2095 GET_LWP (lp->ptid));
2096 }
2097 else
2098 {
2099 /* If we had been syscall tracing, and hence used PT_SYSCALL
2100 before on this LWP, it could happen that the user removes all
2101 syscall catchpoints before we get to process this event.
2102 There are two noteworthy issues here:
2103
2104 - When stopped at a syscall entry event, resuming with
2105 PT_STEP still resumes executing the syscall and reports a
2106 syscall return.
2107
2108 - Only PT_SYSCALL catches syscall enters. If we last
2109 single-stepped this thread, then this event can't be a
2110 syscall enter. If we last single-stepped this thread, this
2111 has to be a syscall exit.
2112
2113 The points above mean that the next resume, be it PT_STEP or
2114 PT_CONTINUE, can not trigger a syscall trace event. */
2115 if (debug_linux_nat)
2116 fprintf_unfiltered (gdb_stdlog,
2117 "LHST: caught syscall event with no syscall catchpoints."
2118 " %d for LWP %ld, ignoring\n",
2119 syscall_number,
2120 GET_LWP (lp->ptid));
2121 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2122 }
2123
2124 /* The core isn't interested in this event. For efficiency, avoid
2125 stopping all threads only to have the core resume them all again.
2126 Since we're not stopping threads, if we're still syscall tracing
2127 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2128 subsequent syscall. Simply resume using the inf-ptrace layer,
2129 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2130
2131 /* Note that gdbarch_get_syscall_number may access registers, hence
2132 fill a regcache. */
2133 registers_changed ();
2134 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2135 lp->step, TARGET_SIGNAL_0);
2136 return 1;
2137}
2138
3d799a95
DJ
2139/* Handle a GNU/Linux extended wait response. If we see a clone
2140 event, we need to add the new LWP to our list (and not report the
2141 trap to higher layers). This function returns non-zero if the
2142 event should be ignored and we should wait again. If STOPPING is
2143 true, the new LWP remains stopped, otherwise it is continued. */
d6b0e80f
AC
2144
2145static int
3d799a95
DJ
2146linux_handle_extended_wait (struct lwp_info *lp, int status,
2147 int stopping)
d6b0e80f 2148{
3d799a95
DJ
2149 int pid = GET_LWP (lp->ptid);
2150 struct target_waitstatus *ourstatus = &lp->waitstatus;
3d799a95 2151 int event = status >> 16;
d6b0e80f 2152
3d799a95
DJ
2153 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2154 || event == PTRACE_EVENT_CLONE)
d6b0e80f 2155 {
3d799a95
DJ
2156 unsigned long new_pid;
2157 int ret;
2158
2159 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
6fc19103 2160
3d799a95
DJ
2161 /* If we haven't already seen the new PID stop, wait for it now. */
2162 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2163 {
2164 /* The new child has a pending SIGSTOP. We can't affect it until it
2165 hits the SIGSTOP, but we're already attached. */
2166 ret = my_waitpid (new_pid, &status,
2167 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2168 if (ret == -1)
2169 perror_with_name (_("waiting for new child"));
2170 else if (ret != new_pid)
2171 internal_error (__FILE__, __LINE__,
2172 _("wait returned unexpected PID %d"), ret);
2173 else if (!WIFSTOPPED (status))
2174 internal_error (__FILE__, __LINE__,
2175 _("wait returned unexpected status 0x%x"), status);
2176 }
2177
3a3e9ee3 2178 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
3d799a95 2179
2277426b
PA
2180 if (event == PTRACE_EVENT_FORK
2181 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2182 {
2183 struct fork_info *fp;
2184
2185 /* Handle checkpointing by linux-fork.c here as a special
2186 case. We don't want the follow-fork-mode or 'catch fork'
2187 to interfere with this. */
2188
2189 /* This won't actually modify the breakpoint list, but will
2190 physically remove the breakpoints from the child. */
2191 detach_breakpoints (new_pid);
2192
2193 /* Retain child fork in ptrace (stopped) state. */
2194 fp = find_fork_pid (new_pid);
2195 if (!fp)
2196 fp = add_fork (new_pid);
2197
2198 /* Report as spurious, so that infrun doesn't want to follow
2199 this fork. We're actually doing an infcall in
2200 linux-fork.c. */
2201 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2202 linux_enable_event_reporting (pid_to_ptid (new_pid));
2203
2204 /* Report the stop to the core. */
2205 return 0;
2206 }
2207
3d799a95
DJ
2208 if (event == PTRACE_EVENT_FORK)
2209 ourstatus->kind = TARGET_WAITKIND_FORKED;
2210 else if (event == PTRACE_EVENT_VFORK)
2211 ourstatus->kind = TARGET_WAITKIND_VFORKED;
6fc19103 2212 else
3d799a95 2213 {
78768c4a
JK
2214 struct lwp_info *new_lp;
2215
3d799a95 2216 ourstatus->kind = TARGET_WAITKIND_IGNORE;
78768c4a 2217
d90e17a7 2218 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
3d799a95 2219 new_lp->cloned = 1;
4c28f408 2220 new_lp->stopped = 1;
d6b0e80f 2221
3d799a95
DJ
2222 if (WSTOPSIG (status) != SIGSTOP)
2223 {
2224 /* This can happen if someone starts sending signals to
2225 the new thread before it gets a chance to run, which
2226 have a lower number than SIGSTOP (e.g. SIGUSR1).
2227 This is an unlikely case, and harder to handle for
2228 fork / vfork than for clone, so we do not try - but
2229 we handle it for clone events here. We'll send
2230 the other signal on to the thread below. */
2231
2232 new_lp->signalled = 1;
2233 }
2234 else
2235 status = 0;
d6b0e80f 2236
4c28f408 2237 if (non_stop)
3d799a95 2238 {
4c28f408
PA
2239 /* Add the new thread to GDB's lists as soon as possible
2240 so that:
2241
2242 1) the frontend doesn't have to wait for a stop to
2243 display them, and,
2244
2245 2) we tag it with the correct running state. */
2246
2247 /* If the thread_db layer is active, let it know about
2248 this new thread, and add it to GDB's list. */
2249 if (!thread_db_attach_lwp (new_lp->ptid))
2250 {
2251 /* We're not using thread_db. Add it to GDB's
2252 list. */
2253 target_post_attach (GET_LWP (new_lp->ptid));
2254 add_thread (new_lp->ptid);
2255 }
2256
2257 if (!stopping)
2258 {
2259 set_running (new_lp->ptid, 1);
2260 set_executing (new_lp->ptid, 1);
2261 }
2262 }
2263
ca2163eb
PA
2264 /* Note the need to use the low target ops to resume, to
2265 handle resuming with PT_SYSCALL if we have syscall
2266 catchpoints. */
4c28f408
PA
2267 if (!stopping)
2268 {
ca2163eb
PA
2269 int signo;
2270
4c28f408 2271 new_lp->stopped = 0;
3d799a95 2272 new_lp->resumed = 1;
ca2163eb
PA
2273
2274 signo = (status
2275 ? target_signal_from_host (WSTOPSIG (status))
2276 : TARGET_SIGNAL_0);
2277
2278 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2279 0, signo);
3d799a95 2280 }
ad34eb2f
JK
2281 else
2282 {
2283 if (status != 0)
2284 {
2285 /* We created NEW_LP so it cannot yet contain STATUS. */
2286 gdb_assert (new_lp->status == 0);
2287
2288 /* Save the wait status to report later. */
2289 if (debug_linux_nat)
2290 fprintf_unfiltered (gdb_stdlog,
2291 "LHEW: waitpid of new LWP %ld, "
2292 "saving status %s\n",
2293 (long) GET_LWP (new_lp->ptid),
2294 status_to_str (status));
2295 new_lp->status = status;
2296 }
2297 }
d6b0e80f 2298
3d799a95
DJ
2299 if (debug_linux_nat)
2300 fprintf_unfiltered (gdb_stdlog,
2301 "LHEW: Got clone event from LWP %ld, resuming\n",
2302 GET_LWP (lp->ptid));
ca2163eb
PA
2303 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2304 0, TARGET_SIGNAL_0);
3d799a95
DJ
2305
2306 return 1;
2307 }
2308
2309 return 0;
d6b0e80f
AC
2310 }
2311
3d799a95
DJ
2312 if (event == PTRACE_EVENT_EXEC)
2313 {
a75724bc
PA
2314 if (debug_linux_nat)
2315 fprintf_unfiltered (gdb_stdlog,
2316 "LHEW: Got exec event from LWP %ld\n",
2317 GET_LWP (lp->ptid));
2318
3d799a95
DJ
2319 ourstatus->kind = TARGET_WAITKIND_EXECD;
2320 ourstatus->value.execd_pathname
6d8fd2b7 2321 = xstrdup (linux_child_pid_to_exec_file (pid));
3d799a95 2322
6c95b8df
PA
2323 return 0;
2324 }
2325
2326 if (event == PTRACE_EVENT_VFORK_DONE)
2327 {
2328 if (current_inferior ()->waiting_for_vfork_done)
3d799a95 2329 {
6c95b8df
PA
2330 if (debug_linux_nat)
2331 fprintf_unfiltered (gdb_stdlog, "\
2332LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
2333 GET_LWP (lp->ptid));
3d799a95 2334
6c95b8df
PA
2335 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2336 return 0;
3d799a95
DJ
2337 }
2338
6c95b8df
PA
2339 if (debug_linux_nat)
2340 fprintf_unfiltered (gdb_stdlog, "\
2341LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
2342 GET_LWP (lp->ptid));
2343 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2344 return 1;
3d799a95
DJ
2345 }
2346
2347 internal_error (__FILE__, __LINE__,
2348 _("unknown ptrace event %d"), event);
d6b0e80f
AC
2349}
2350
2351/* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2352 exited. */
2353
2354static int
2355wait_lwp (struct lwp_info *lp)
2356{
2357 pid_t pid;
2358 int status;
2359 int thread_dead = 0;
2360
2361 gdb_assert (!lp->stopped);
2362 gdb_assert (lp->status == 0);
2363
58aecb61 2364 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
d6b0e80f
AC
2365 if (pid == -1 && errno == ECHILD)
2366 {
58aecb61 2367 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
d6b0e80f
AC
2368 if (pid == -1 && errno == ECHILD)
2369 {
2370 /* The thread has previously exited. We need to delete it
2371 now because, for some vendor 2.4 kernels with NPTL
2372 support backported, there won't be an exit event unless
2373 it is the main thread. 2.6 kernels will report an exit
2374 event for each thread that exits, as expected. */
2375 thread_dead = 1;
2376 if (debug_linux_nat)
2377 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2378 target_pid_to_str (lp->ptid));
2379 }
2380 }
2381
2382 if (!thread_dead)
2383 {
2384 gdb_assert (pid == GET_LWP (lp->ptid));
2385
2386 if (debug_linux_nat)
2387 {
2388 fprintf_unfiltered (gdb_stdlog,
2389 "WL: waitpid %s received %s\n",
2390 target_pid_to_str (lp->ptid),
2391 status_to_str (status));
2392 }
2393 }
2394
2395 /* Check if the thread has exited. */
2396 if (WIFEXITED (status) || WIFSIGNALED (status))
2397 {
2398 thread_dead = 1;
2399 if (debug_linux_nat)
2400 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2401 target_pid_to_str (lp->ptid));
2402 }
2403
2404 if (thread_dead)
2405 {
e26af52f 2406 exit_lwp (lp);
d6b0e80f
AC
2407 return 0;
2408 }
2409
2410 gdb_assert (WIFSTOPPED (status));
2411
ca2163eb
PA
2412 /* Handle GNU/Linux's syscall SIGTRAPs. */
2413 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2414 {
2415 /* No longer need the sysgood bit. The ptrace event ends up
2416 recorded in lp->waitstatus if we care for it. We can carry
2417 on handling the event like a regular SIGTRAP from here
2418 on. */
2419 status = W_STOPCODE (SIGTRAP);
2420 if (linux_handle_syscall_trap (lp, 1))
2421 return wait_lwp (lp);
2422 }
2423
d6b0e80f
AC
2424 /* Handle GNU/Linux's extended waitstatus for trace events. */
2425 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2426 {
2427 if (debug_linux_nat)
2428 fprintf_unfiltered (gdb_stdlog,
2429 "WL: Handling extended status 0x%06x\n",
2430 status);
3d799a95 2431 if (linux_handle_extended_wait (lp, status, 1))
d6b0e80f
AC
2432 return wait_lwp (lp);
2433 }
2434
2435 return status;
2436}
2437
9f0bdab8
DJ
2438/* Save the most recent siginfo for LP. This is currently only called
2439 for SIGTRAP; some ports use the si_addr field for
2440 target_stopped_data_address. In the future, it may also be used to
2441 restore the siginfo of requeued signals. */
2442
2443static void
2444save_siginfo (struct lwp_info *lp)
2445{
2446 errno = 0;
2447 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2448 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2449
2450 if (errno != 0)
2451 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2452}
2453
d6b0e80f
AC
2454/* Send a SIGSTOP to LP. */
2455
2456static int
2457stop_callback (struct lwp_info *lp, void *data)
2458{
2459 if (!lp->stopped && !lp->signalled)
2460 {
2461 int ret;
2462
2463 if (debug_linux_nat)
2464 {
2465 fprintf_unfiltered (gdb_stdlog,
2466 "SC: kill %s **<SIGSTOP>**\n",
2467 target_pid_to_str (lp->ptid));
2468 }
2469 errno = 0;
2470 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2471 if (debug_linux_nat)
2472 {
2473 fprintf_unfiltered (gdb_stdlog,
2474 "SC: lwp kill %d %s\n",
2475 ret,
2476 errno ? safe_strerror (errno) : "ERRNO-OK");
2477 }
2478
2479 lp->signalled = 1;
2480 gdb_assert (lp->status == 0);
2481 }
2482
2483 return 0;
2484}
2485
57380f4e 2486/* Return non-zero if LWP PID has a pending SIGINT. */
d6b0e80f
AC
2487
2488static int
57380f4e
DJ
2489linux_nat_has_pending_sigint (int pid)
2490{
2491 sigset_t pending, blocked, ignored;
57380f4e
DJ
2492
2493 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2494
2495 if (sigismember (&pending, SIGINT)
2496 && !sigismember (&ignored, SIGINT))
2497 return 1;
2498
2499 return 0;
2500}
2501
2502/* Set a flag in LP indicating that we should ignore its next SIGINT. */
2503
2504static int
2505set_ignore_sigint (struct lwp_info *lp, void *data)
d6b0e80f 2506{
57380f4e
DJ
2507 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2508 flag to consume the next one. */
2509 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2510 && WSTOPSIG (lp->status) == SIGINT)
2511 lp->status = 0;
2512 else
2513 lp->ignore_sigint = 1;
2514
2515 return 0;
2516}
2517
2518/* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2519 This function is called after we know the LWP has stopped; if the LWP
2520 stopped before the expected SIGINT was delivered, then it will never have
2521 arrived. Also, if the signal was delivered to a shared queue and consumed
2522 by a different thread, it will never be delivered to this LWP. */
d6b0e80f 2523
57380f4e
DJ
2524static void
2525maybe_clear_ignore_sigint (struct lwp_info *lp)
2526{
2527 if (!lp->ignore_sigint)
2528 return;
2529
2530 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2531 {
2532 if (debug_linux_nat)
2533 fprintf_unfiltered (gdb_stdlog,
2534 "MCIS: Clearing bogus flag for %s\n",
2535 target_pid_to_str (lp->ptid));
2536 lp->ignore_sigint = 0;
2537 }
2538}
2539
ebec9a0f
PA
2540/* Fetch the possible triggered data watchpoint info and store it in
2541 LP.
2542
2543 On some archs, like x86, that use debug registers to set
2544 watchpoints, it's possible that the way to know which watched
2545 address trapped, is to check the register that is used to select
2546 which address to watch. Problem is, between setting the watchpoint
2547 and reading back which data address trapped, the user may change
2548 the set of watchpoints, and, as a consequence, GDB changes the
2549 debug registers in the inferior. To avoid reading back a stale
2550 stopped-data-address when that happens, we cache in LP the fact
2551 that a watchpoint trapped, and the corresponding data address, as
2552 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2553 registers meanwhile, we have the cached data we can rely on. */
2554
2555static void
2556save_sigtrap (struct lwp_info *lp)
2557{
2558 struct cleanup *old_chain;
2559
2560 if (linux_ops->to_stopped_by_watchpoint == NULL)
2561 {
2562 lp->stopped_by_watchpoint = 0;
2563 return;
2564 }
2565
2566 old_chain = save_inferior_ptid ();
2567 inferior_ptid = lp->ptid;
2568
2569 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2570
2571 if (lp->stopped_by_watchpoint)
2572 {
2573 if (linux_ops->to_stopped_data_address != NULL)
2574 lp->stopped_data_address_p =
2575 linux_ops->to_stopped_data_address (&current_target,
2576 &lp->stopped_data_address);
2577 else
2578 lp->stopped_data_address_p = 0;
2579 }
2580
2581 do_cleanups (old_chain);
2582}
2583
2584/* See save_sigtrap. */
2585
2586static int
2587linux_nat_stopped_by_watchpoint (void)
2588{
2589 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2590
2591 gdb_assert (lp != NULL);
2592
2593 return lp->stopped_by_watchpoint;
2594}
2595
2596static int
2597linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2598{
2599 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2600
2601 gdb_assert (lp != NULL);
2602
2603 *addr_p = lp->stopped_data_address;
2604
2605 return lp->stopped_data_address_p;
2606}
2607
26ab7092
JK
2608/* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2609
2610static int
2611sigtrap_is_event (int status)
2612{
2613 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2614}
2615
2616/* SIGTRAP-like events recognizer. */
2617
2618static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2619
2620/* Set alternative SIGTRAP-like events recognizer. If
2621 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2622 applied. */
2623
2624void
2625linux_nat_set_status_is_event (struct target_ops *t,
2626 int (*status_is_event) (int status))
2627{
2628 linux_nat_status_is_event = status_is_event;
2629}
2630
57380f4e
DJ
2631/* Wait until LP is stopped. */
2632
2633static int
2634stop_wait_callback (struct lwp_info *lp, void *data)
2635{
6c95b8df
PA
2636 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2637
2638 /* If this is a vfork parent, bail out, it is not going to report
2639 any SIGSTOP until the vfork is done with. */
2640 if (inf->vfork_child != NULL)
2641 return 0;
2642
d6b0e80f
AC
2643 if (!lp->stopped)
2644 {
2645 int status;
2646
2647 status = wait_lwp (lp);
2648 if (status == 0)
2649 return 0;
2650
57380f4e
DJ
2651 if (lp->ignore_sigint && WIFSTOPPED (status)
2652 && WSTOPSIG (status) == SIGINT)
d6b0e80f 2653 {
57380f4e 2654 lp->ignore_sigint = 0;
d6b0e80f
AC
2655
2656 errno = 0;
2657 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2658 if (debug_linux_nat)
2659 fprintf_unfiltered (gdb_stdlog,
57380f4e 2660 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
d6b0e80f
AC
2661 target_pid_to_str (lp->ptid),
2662 errno ? safe_strerror (errno) : "OK");
2663
57380f4e 2664 return stop_wait_callback (lp, NULL);
d6b0e80f
AC
2665 }
2666
57380f4e
DJ
2667 maybe_clear_ignore_sigint (lp);
2668
d6b0e80f
AC
2669 if (WSTOPSIG (status) != SIGSTOP)
2670 {
26ab7092 2671 if (linux_nat_status_is_event (status))
d6b0e80f
AC
2672 {
2673 /* If a LWP other than the LWP that we're reporting an
2674 event for has hit a GDB breakpoint (as opposed to
2675 some random trap signal), then just arrange for it to
2676 hit it again later. We don't keep the SIGTRAP status
2677 and don't forward the SIGTRAP signal to the LWP. We
2678 will handle the current event, eventually we will
2679 resume all LWPs, and this one will get its breakpoint
2680 trap again.
2681
2682 If we do not do this, then we run the risk that the
2683 user will delete or disable the breakpoint, but the
2684 thread will have already tripped on it. */
2685
9f0bdab8
DJ
2686 /* Save the trap's siginfo in case we need it later. */
2687 save_siginfo (lp);
2688
ebec9a0f
PA
2689 save_sigtrap (lp);
2690
d6b0e80f
AC
2691 /* Now resume this LWP and get the SIGSTOP event. */
2692 errno = 0;
2693 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2694 if (debug_linux_nat)
2695 {
2696 fprintf_unfiltered (gdb_stdlog,
2697 "PTRACE_CONT %s, 0, 0 (%s)\n",
2698 target_pid_to_str (lp->ptid),
2699 errno ? safe_strerror (errno) : "OK");
2700
2701 fprintf_unfiltered (gdb_stdlog,
2702 "SWC: Candidate SIGTRAP event in %s\n",
2703 target_pid_to_str (lp->ptid));
2704 }
710151dd
PA
2705 /* Hold this event/waitstatus while we check to see if
2706 there are any more (we still want to get that SIGSTOP). */
57380f4e 2707 stop_wait_callback (lp, NULL);
710151dd 2708
7feb7d06
PA
2709 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2710 there's another event, throw it back into the
2711 queue. */
2712 if (lp->status)
710151dd 2713 {
7feb7d06
PA
2714 if (debug_linux_nat)
2715 fprintf_unfiltered (gdb_stdlog,
2716 "SWC: kill %s, %s\n",
2717 target_pid_to_str (lp->ptid),
2718 status_to_str ((int) status));
2719 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
d6b0e80f 2720 }
7feb7d06
PA
2721
2722 /* Save the sigtrap event. */
2723 lp->status = status;
d6b0e80f
AC
2724 return 0;
2725 }
2726 else
2727 {
2728 /* The thread was stopped with a signal other than
2729 SIGSTOP, and didn't accidentally trip a breakpoint. */
2730
2731 if (debug_linux_nat)
2732 {
2733 fprintf_unfiltered (gdb_stdlog,
2734 "SWC: Pending event %s in %s\n",
2735 status_to_str ((int) status),
2736 target_pid_to_str (lp->ptid));
2737 }
2738 /* Now resume this LWP and get the SIGSTOP event. */
2739 errno = 0;
2740 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2741 if (debug_linux_nat)
2742 fprintf_unfiltered (gdb_stdlog,
2743 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2744 target_pid_to_str (lp->ptid),
2745 errno ? safe_strerror (errno) : "OK");
2746
2747 /* Hold this event/waitstatus while we check to see if
2748 there are any more (we still want to get that SIGSTOP). */
57380f4e 2749 stop_wait_callback (lp, NULL);
710151dd
PA
2750
2751 /* If the lp->status field is still empty, use it to
2752 hold this event. If not, then this event must be
2753 returned to the event queue of the LWP. */
7feb7d06 2754 if (lp->status)
d6b0e80f
AC
2755 {
2756 if (debug_linux_nat)
2757 {
2758 fprintf_unfiltered (gdb_stdlog,
2759 "SWC: kill %s, %s\n",
2760 target_pid_to_str (lp->ptid),
2761 status_to_str ((int) status));
2762 }
2763 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2764 }
710151dd
PA
2765 else
2766 lp->status = status;
d6b0e80f
AC
2767 return 0;
2768 }
2769 }
2770 else
2771 {
2772 /* We caught the SIGSTOP that we intended to catch, so
2773 there's no SIGSTOP pending. */
2774 lp->stopped = 1;
2775 lp->signalled = 0;
2776 }
2777 }
2778
2779 return 0;
2780}
2781
d6b0e80f
AC
2782/* Return non-zero if LP has a wait status pending. */
2783
2784static int
2785status_callback (struct lwp_info *lp, void *data)
2786{
2787 /* Only report a pending wait status if we pretend that this has
2788 indeed been resumed. */
ca2163eb
PA
2789 if (!lp->resumed)
2790 return 0;
2791
2792 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2793 {
2794 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2795 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2796 0', so a clean process exit can not be stored pending in
2797 lp->status, it is indistinguishable from
2798 no-pending-status. */
2799 return 1;
2800 }
2801
2802 if (lp->status != 0)
2803 return 1;
2804
2805 return 0;
d6b0e80f
AC
2806}
2807
2808/* Return non-zero if LP isn't stopped. */
2809
2810static int
2811running_callback (struct lwp_info *lp, void *data)
2812{
2813 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2814}
2815
2816/* Count the LWP's that have had events. */
2817
2818static int
2819count_events_callback (struct lwp_info *lp, void *data)
2820{
2821 int *count = data;
2822
2823 gdb_assert (count != NULL);
2824
e09490f1
DJ
2825 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2826 if (lp->status != 0 && lp->resumed
26ab7092 2827 && linux_nat_status_is_event (lp->status))
d6b0e80f
AC
2828 (*count)++;
2829
2830 return 0;
2831}
2832
2833/* Select the LWP (if any) that is currently being single-stepped. */
2834
2835static int
2836select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2837{
2838 if (lp->step && lp->status != 0)
2839 return 1;
2840 else
2841 return 0;
2842}
2843
2844/* Select the Nth LWP that has had a SIGTRAP event. */
2845
2846static int
2847select_event_lwp_callback (struct lwp_info *lp, void *data)
2848{
2849 int *selector = data;
2850
2851 gdb_assert (selector != NULL);
2852
e09490f1
DJ
2853 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2854 if (lp->status != 0 && lp->resumed
26ab7092 2855 && linux_nat_status_is_event (lp->status))
d6b0e80f
AC
2856 if ((*selector)-- == 0)
2857 return 1;
2858
2859 return 0;
2860}
2861
710151dd
PA
2862static int
2863cancel_breakpoint (struct lwp_info *lp)
2864{
2865 /* Arrange for a breakpoint to be hit again later. We don't keep
2866 the SIGTRAP status and don't forward the SIGTRAP signal to the
2867 LWP. We will handle the current event, eventually we will resume
2868 this LWP, and this breakpoint will trap again.
2869
2870 If we do not do this, then we run the risk that the user will
2871 delete or disable the breakpoint, but the LWP will have already
2872 tripped on it. */
2873
515630c5
UW
2874 struct regcache *regcache = get_thread_regcache (lp->ptid);
2875 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2876 CORE_ADDR pc;
2877
2878 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
6c95b8df 2879 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
710151dd
PA
2880 {
2881 if (debug_linux_nat)
2882 fprintf_unfiltered (gdb_stdlog,
2883 "CB: Push back breakpoint for %s\n",
2884 target_pid_to_str (lp->ptid));
2885
2886 /* Back up the PC if necessary. */
515630c5
UW
2887 if (gdbarch_decr_pc_after_break (gdbarch))
2888 regcache_write_pc (regcache, pc);
2889
710151dd
PA
2890 return 1;
2891 }
2892 return 0;
2893}
2894
d6b0e80f
AC
2895static int
2896cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2897{
2898 struct lwp_info *event_lp = data;
2899
2900 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2901 if (lp == event_lp)
2902 return 0;
2903
2904 /* If a LWP other than the LWP that we're reporting an event for has
2905 hit a GDB breakpoint (as opposed to some random trap signal),
2906 then just arrange for it to hit it again later. We don't keep
2907 the SIGTRAP status and don't forward the SIGTRAP signal to the
2908 LWP. We will handle the current event, eventually we will resume
2909 all LWPs, and this one will get its breakpoint trap again.
2910
2911 If we do not do this, then we run the risk that the user will
2912 delete or disable the breakpoint, but the LWP will have already
2913 tripped on it. */
2914
ca2163eb
PA
2915 if (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2916 && lp->status != 0
26ab7092 2917 && linux_nat_status_is_event (lp->status)
710151dd
PA
2918 && cancel_breakpoint (lp))
2919 /* Throw away the SIGTRAP. */
2920 lp->status = 0;
d6b0e80f
AC
2921
2922 return 0;
2923}
2924
2925/* Select one LWP out of those that have events pending. */
2926
2927static void
d90e17a7 2928select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
d6b0e80f
AC
2929{
2930 int num_events = 0;
2931 int random_selector;
2932 struct lwp_info *event_lp;
2933
ac264b3b 2934 /* Record the wait status for the original LWP. */
d6b0e80f
AC
2935 (*orig_lp)->status = *status;
2936
2937 /* Give preference to any LWP that is being single-stepped. */
d90e17a7
PA
2938 event_lp = iterate_over_lwps (filter,
2939 select_singlestep_lwp_callback, NULL);
d6b0e80f
AC
2940 if (event_lp != NULL)
2941 {
2942 if (debug_linux_nat)
2943 fprintf_unfiltered (gdb_stdlog,
2944 "SEL: Select single-step %s\n",
2945 target_pid_to_str (event_lp->ptid));
2946 }
2947 else
2948 {
2949 /* No single-stepping LWP. Select one at random, out of those
2950 which have had SIGTRAP events. */
2951
2952 /* First see how many SIGTRAP events we have. */
d90e17a7 2953 iterate_over_lwps (filter, count_events_callback, &num_events);
d6b0e80f
AC
2954
2955 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2956 random_selector = (int)
2957 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2958
2959 if (debug_linux_nat && num_events > 1)
2960 fprintf_unfiltered (gdb_stdlog,
2961 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2962 num_events, random_selector);
2963
d90e17a7
PA
2964 event_lp = iterate_over_lwps (filter,
2965 select_event_lwp_callback,
d6b0e80f
AC
2966 &random_selector);
2967 }
2968
2969 if (event_lp != NULL)
2970 {
2971 /* Switch the event LWP. */
2972 *orig_lp = event_lp;
2973 *status = event_lp->status;
2974 }
2975
2976 /* Flush the wait status for the event LWP. */
2977 (*orig_lp)->status = 0;
2978}
2979
2980/* Return non-zero if LP has been resumed. */
2981
2982static int
2983resumed_callback (struct lwp_info *lp, void *data)
2984{
2985 return lp->resumed;
2986}
2987
d6b0e80f
AC
2988/* Stop an active thread, verify it still exists, then resume it. */
2989
2990static int
2991stop_and_resume_callback (struct lwp_info *lp, void *data)
2992{
2993 struct lwp_info *ptr;
2994
2995 if (!lp->stopped && !lp->signalled)
2996 {
2997 stop_callback (lp, NULL);
2998 stop_wait_callback (lp, NULL);
2999 /* Resume if the lwp still exists. */
3000 for (ptr = lwp_list; ptr; ptr = ptr->next)
3001 if (lp == ptr)
3002 {
3003 resume_callback (lp, NULL);
3004 resume_set_callback (lp, NULL);
3005 }
3006 }
3007 return 0;
3008}
3009
02f3fc28 3010/* Check if we should go on and pass this event to common code.
fa2c6a57 3011 Return the affected lwp if we are, or NULL otherwise. */
02f3fc28
PA
3012static struct lwp_info *
3013linux_nat_filter_event (int lwpid, int status, int options)
3014{
3015 struct lwp_info *lp;
3016
3017 lp = find_lwp_pid (pid_to_ptid (lwpid));
3018
3019 /* Check for stop events reported by a process we didn't already
3020 know about - anything not already in our LWP list.
3021
3022 If we're expecting to receive stopped processes after
3023 fork, vfork, and clone events, then we'll just add the
3024 new one to our list and go back to waiting for the event
3025 to be reported - the stopped process might be returned
3026 from waitpid before or after the event is. */
3027 if (WIFSTOPPED (status) && !lp)
3028 {
3029 linux_record_stopped_pid (lwpid, status);
3030 return NULL;
3031 }
3032
3033 /* Make sure we don't report an event for the exit of an LWP not in
3034 our list, i.e. not part of the current process. This can happen
3035 if we detach from a program we original forked and then it
3036 exits. */
3037 if (!WIFSTOPPED (status) && !lp)
3038 return NULL;
3039
3040 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3041 CLONE_PTRACE processes which do not use the thread library -
3042 otherwise we wouldn't find the new LWP this way. That doesn't
3043 currently work, and the following code is currently unreachable
3044 due to the two blocks above. If it's fixed some day, this code
3045 should be broken out into a function so that we can also pick up
3046 LWPs from the new interface. */
3047 if (!lp)
3048 {
3049 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3050 if (options & __WCLONE)
3051 lp->cloned = 1;
3052
3053 gdb_assert (WIFSTOPPED (status)
3054 && WSTOPSIG (status) == SIGSTOP);
3055 lp->signalled = 1;
3056
3057 if (!in_thread_list (inferior_ptid))
3058 {
3059 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3060 GET_PID (inferior_ptid));
3061 add_thread (inferior_ptid);
3062 }
3063
3064 add_thread (lp->ptid);
3065 }
3066
ca2163eb
PA
3067 /* Handle GNU/Linux's syscall SIGTRAPs. */
3068 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3069 {
3070 /* No longer need the sysgood bit. The ptrace event ends up
3071 recorded in lp->waitstatus if we care for it. We can carry
3072 on handling the event like a regular SIGTRAP from here
3073 on. */
3074 status = W_STOPCODE (SIGTRAP);
3075 if (linux_handle_syscall_trap (lp, 0))
3076 return NULL;
3077 }
02f3fc28 3078
ca2163eb
PA
3079 /* Handle GNU/Linux's extended waitstatus for trace events. */
3080 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
02f3fc28
PA
3081 {
3082 if (debug_linux_nat)
3083 fprintf_unfiltered (gdb_stdlog,
3084 "LLW: Handling extended status 0x%06x\n",
3085 status);
3086 if (linux_handle_extended_wait (lp, status, 0))
3087 return NULL;
3088 }
3089
26ab7092 3090 if (linux_nat_status_is_event (status))
ebec9a0f
PA
3091 {
3092 /* Save the trap's siginfo in case we need it later. */
3093 save_siginfo (lp);
3094
3095 save_sigtrap (lp);
3096 }
ca2163eb 3097
02f3fc28 3098 /* Check if the thread has exited. */
d90e17a7
PA
3099 if ((WIFEXITED (status) || WIFSIGNALED (status))
3100 && num_lwps (GET_PID (lp->ptid)) > 1)
02f3fc28 3101 {
9db03742
JB
3102 /* If this is the main thread, we must stop all threads and verify
3103 if they are still alive. This is because in the nptl thread model
3104 on Linux 2.4, there is no signal issued for exiting LWPs
02f3fc28
PA
3105 other than the main thread. We only get the main thread exit
3106 signal once all child threads have already exited. If we
3107 stop all the threads and use the stop_wait_callback to check
3108 if they have exited we can determine whether this signal
3109 should be ignored or whether it means the end of the debugged
3110 application, regardless of which threading model is being
5d3b6af6 3111 used. */
02f3fc28
PA
3112 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3113 {
3114 lp->stopped = 1;
d90e17a7
PA
3115 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3116 stop_and_resume_callback, NULL);
02f3fc28
PA
3117 }
3118
3119 if (debug_linux_nat)
3120 fprintf_unfiltered (gdb_stdlog,
3121 "LLW: %s exited.\n",
3122 target_pid_to_str (lp->ptid));
3123
d90e17a7 3124 if (num_lwps (GET_PID (lp->ptid)) > 1)
9db03742
JB
3125 {
3126 /* If there is at least one more LWP, then the exit signal
3127 was not the end of the debugged application and should be
3128 ignored. */
3129 exit_lwp (lp);
3130 return NULL;
3131 }
02f3fc28
PA
3132 }
3133
3134 /* Check if the current LWP has previously exited. In the nptl
3135 thread model, LWPs other than the main thread do not issue
3136 signals when they exit so we must check whenever the thread has
3137 stopped. A similar check is made in stop_wait_callback(). */
d90e17a7 3138 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
02f3fc28 3139 {
d90e17a7
PA
3140 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3141
02f3fc28
PA
3142 if (debug_linux_nat)
3143 fprintf_unfiltered (gdb_stdlog,
3144 "LLW: %s exited.\n",
3145 target_pid_to_str (lp->ptid));
3146
3147 exit_lwp (lp);
3148
3149 /* Make sure there is at least one thread running. */
d90e17a7 3150 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
02f3fc28
PA
3151
3152 /* Discard the event. */
3153 return NULL;
3154 }
3155
3156 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3157 an attempt to stop an LWP. */
3158 if (lp->signalled
3159 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3160 {
3161 if (debug_linux_nat)
3162 fprintf_unfiltered (gdb_stdlog,
3163 "LLW: Delayed SIGSTOP caught for %s.\n",
3164 target_pid_to_str (lp->ptid));
3165
3166 /* This is a delayed SIGSTOP. */
3167 lp->signalled = 0;
3168
3169 registers_changed ();
3170
28439f5e 3171 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
02f3fc28
PA
3172 lp->step, TARGET_SIGNAL_0);
3173 if (debug_linux_nat)
3174 fprintf_unfiltered (gdb_stdlog,
3175 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3176 lp->step ?
3177 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3178 target_pid_to_str (lp->ptid));
3179
3180 lp->stopped = 0;
3181 gdb_assert (lp->resumed);
3182
3183 /* Discard the event. */
3184 return NULL;
3185 }
3186
57380f4e
DJ
3187 /* Make sure we don't report a SIGINT that we have already displayed
3188 for another thread. */
3189 if (lp->ignore_sigint
3190 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3191 {
3192 if (debug_linux_nat)
3193 fprintf_unfiltered (gdb_stdlog,
3194 "LLW: Delayed SIGINT caught for %s.\n",
3195 target_pid_to_str (lp->ptid));
3196
3197 /* This is a delayed SIGINT. */
3198 lp->ignore_sigint = 0;
3199
3200 registers_changed ();
28439f5e 3201 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
57380f4e
DJ
3202 lp->step, TARGET_SIGNAL_0);
3203 if (debug_linux_nat)
3204 fprintf_unfiltered (gdb_stdlog,
3205 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3206 lp->step ?
3207 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3208 target_pid_to_str (lp->ptid));
3209
3210 lp->stopped = 0;
3211 gdb_assert (lp->resumed);
3212
3213 /* Discard the event. */
3214 return NULL;
3215 }
3216
02f3fc28
PA
3217 /* An interesting event. */
3218 gdb_assert (lp);
ca2163eb 3219 lp->status = status;
02f3fc28
PA
3220 return lp;
3221}
3222
d6b0e80f 3223static ptid_t
7feb7d06 3224linux_nat_wait_1 (struct target_ops *ops,
47608cb1
PA
3225 ptid_t ptid, struct target_waitstatus *ourstatus,
3226 int target_options)
d6b0e80f 3227{
7feb7d06 3228 static sigset_t prev_mask;
d6b0e80f
AC
3229 struct lwp_info *lp = NULL;
3230 int options = 0;
3231 int status = 0;
d90e17a7 3232 pid_t pid;
d6b0e80f 3233
b84876c2
PA
3234 if (debug_linux_nat_async)
3235 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3236
f973ed9c
DJ
3237 /* The first time we get here after starting a new inferior, we may
3238 not have added it to the LWP list yet - this is the earliest
3239 moment at which we know its PID. */
d90e17a7 3240 if (ptid_is_pid (inferior_ptid))
f973ed9c 3241 {
27c9d204
PA
3242 /* Upgrade the main thread's ptid. */
3243 thread_change_ptid (inferior_ptid,
3244 BUILD_LWP (GET_PID (inferior_ptid),
3245 GET_PID (inferior_ptid)));
3246
f973ed9c
DJ
3247 lp = add_lwp (inferior_ptid);
3248 lp->resumed = 1;
3249 }
3250
7feb7d06
PA
3251 /* Make sure SIGCHLD is blocked. */
3252 block_child_signals (&prev_mask);
d6b0e80f 3253
d90e17a7
PA
3254 if (ptid_equal (ptid, minus_one_ptid))
3255 pid = -1;
3256 else if (ptid_is_pid (ptid))
3257 /* A request to wait for a specific tgid. This is not possible
3258 with waitpid, so instead, we wait for any child, and leave
3259 children we're not interested in right now with a pending
3260 status to report later. */
3261 pid = -1;
3262 else
3263 pid = GET_LWP (ptid);
3264
d6b0e80f 3265retry:
d90e17a7
PA
3266 lp = NULL;
3267 status = 0;
d6b0e80f 3268
e3e9f5a2
PA
3269 /* Make sure that of those LWPs we want to get an event from, there
3270 is at least one LWP that has been resumed. If there's none, just
3271 bail out. The core may just be flushing asynchronously all
3272 events. */
3273 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3274 {
3275 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3276
3277 if (debug_linux_nat_async)
3278 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3279
3280 restore_child_signals_mask (&prev_mask);
3281 return minus_one_ptid;
3282 }
d6b0e80f
AC
3283
3284 /* First check if there is a LWP with a wait status pending. */
3285 if (pid == -1)
3286 {
3287 /* Any LWP that's been resumed will do. */
d90e17a7 3288 lp = iterate_over_lwps (ptid, status_callback, NULL);
d6b0e80f
AC
3289 if (lp)
3290 {
ca2163eb 3291 if (debug_linux_nat && lp->status)
d6b0e80f
AC
3292 fprintf_unfiltered (gdb_stdlog,
3293 "LLW: Using pending wait status %s for %s.\n",
ca2163eb 3294 status_to_str (lp->status),
d6b0e80f
AC
3295 target_pid_to_str (lp->ptid));
3296 }
3297
b84876c2 3298 /* But if we don't find one, we'll have to wait, and check both
7feb7d06
PA
3299 cloned and uncloned processes. We start with the cloned
3300 processes. */
d6b0e80f
AC
3301 options = __WCLONE | WNOHANG;
3302 }
3303 else if (is_lwp (ptid))
3304 {
3305 if (debug_linux_nat)
3306 fprintf_unfiltered (gdb_stdlog,
3307 "LLW: Waiting for specific LWP %s.\n",
3308 target_pid_to_str (ptid));
3309
3310 /* We have a specific LWP to check. */
3311 lp = find_lwp_pid (ptid);
3312 gdb_assert (lp);
d6b0e80f 3313
ca2163eb 3314 if (debug_linux_nat && lp->status)
d6b0e80f
AC
3315 fprintf_unfiltered (gdb_stdlog,
3316 "LLW: Using pending wait status %s for %s.\n",
ca2163eb 3317 status_to_str (lp->status),
d6b0e80f
AC
3318 target_pid_to_str (lp->ptid));
3319
3320 /* If we have to wait, take into account whether PID is a cloned
3321 process or not. And we have to convert it to something that
3322 the layer beneath us can understand. */
3323 options = lp->cloned ? __WCLONE : 0;
3324 pid = GET_LWP (ptid);
d90e17a7
PA
3325
3326 /* We check for lp->waitstatus in addition to lp->status,
3327 because we can have pending process exits recorded in
3328 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3329 an additional lp->status_p flag. */
ca2163eb 3330 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
d90e17a7 3331 lp = NULL;
d6b0e80f
AC
3332 }
3333
d90e17a7 3334 if (lp && lp->signalled)
d6b0e80f
AC
3335 {
3336 /* A pending SIGSTOP may interfere with the normal stream of
3337 events. In a typical case where interference is a problem,
3338 we have a SIGSTOP signal pending for LWP A while
3339 single-stepping it, encounter an event in LWP B, and take the
3340 pending SIGSTOP while trying to stop LWP A. After processing
3341 the event in LWP B, LWP A is continued, and we'll never see
3342 the SIGTRAP associated with the last time we were
3343 single-stepping LWP A. */
3344
3345 /* Resume the thread. It should halt immediately returning the
3346 pending SIGSTOP. */
3347 registers_changed ();
28439f5e 3348 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
10d6c8cd 3349 lp->step, TARGET_SIGNAL_0);
d6b0e80f
AC
3350 if (debug_linux_nat)
3351 fprintf_unfiltered (gdb_stdlog,
3352 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3353 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3354 target_pid_to_str (lp->ptid));
3355 lp->stopped = 0;
3356 gdb_assert (lp->resumed);
3357
ca2163eb
PA
3358 /* Catch the pending SIGSTOP. */
3359 status = lp->status;
3360 lp->status = 0;
3361
d6b0e80f 3362 stop_wait_callback (lp, NULL);
ca2163eb
PA
3363
3364 /* If the lp->status field isn't empty, we caught another signal
3365 while flushing the SIGSTOP. Return it back to the event
3366 queue of the LWP, as we already have an event to handle. */
3367 if (lp->status)
3368 {
3369 if (debug_linux_nat)
3370 fprintf_unfiltered (gdb_stdlog,
3371 "LLW: kill %s, %s\n",
3372 target_pid_to_str (lp->ptid),
3373 status_to_str (lp->status));
3374 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3375 }
3376
3377 lp->status = status;
d6b0e80f
AC
3378 }
3379
b84876c2
PA
3380 if (!target_can_async_p ())
3381 {
3382 /* Causes SIGINT to be passed on to the attached process. */
3383 set_sigint_trap ();
b84876c2 3384 }
d6b0e80f 3385
47608cb1
PA
3386 /* Translate generic target_wait options into waitpid options. */
3387 if (target_options & TARGET_WNOHANG)
3388 options |= WNOHANG;
7feb7d06 3389
d90e17a7 3390 while (lp == NULL)
d6b0e80f
AC
3391 {
3392 pid_t lwpid;
3393
7feb7d06 3394 lwpid = my_waitpid (pid, &status, options);
b84876c2 3395
d6b0e80f
AC
3396 if (lwpid > 0)
3397 {
3398 gdb_assert (pid == -1 || lwpid == pid);
3399
3400 if (debug_linux_nat)
3401 {
3402 fprintf_unfiltered (gdb_stdlog,
3403 "LLW: waitpid %ld received %s\n",
3404 (long) lwpid, status_to_str (status));
3405 }
3406
02f3fc28 3407 lp = linux_nat_filter_event (lwpid, status, options);
d90e17a7 3408
33355866
JK
3409 /* STATUS is now no longer valid, use LP->STATUS instead. */
3410 status = 0;
3411
d90e17a7
PA
3412 if (lp
3413 && ptid_is_pid (ptid)
3414 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
d6b0e80f 3415 {
e3e9f5a2
PA
3416 gdb_assert (lp->resumed);
3417
d90e17a7
PA
3418 if (debug_linux_nat)
3419 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
33355866 3420 ptid_get_lwp (lp->ptid), lp->status);
d90e17a7 3421
ca2163eb 3422 if (WIFSTOPPED (lp->status))
d90e17a7 3423 {
ca2163eb 3424 if (WSTOPSIG (lp->status) != SIGSTOP)
d90e17a7 3425 {
e3e9f5a2
PA
3426 /* Cancel breakpoint hits. The breakpoint may
3427 be removed before we fetch events from this
3428 process to report to the core. It is best
3429 not to assume the moribund breakpoints
3430 heuristic always handles these cases --- it
3431 could be too many events go through to the
3432 core before this one is handled. All-stop
3433 always cancels breakpoint hits in all
3434 threads. */
3435 if (non_stop
3436 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
26ab7092 3437 && linux_nat_status_is_event (lp->status)
e3e9f5a2
PA
3438 && cancel_breakpoint (lp))
3439 {
3440 /* Throw away the SIGTRAP. */
3441 lp->status = 0;
3442
3443 if (debug_linux_nat)
3444 fprintf (stderr,
3445 "LLW: LWP %ld hit a breakpoint while waiting "
3446 "for another process; cancelled it\n",
3447 ptid_get_lwp (lp->ptid));
3448 }
3449 lp->stopped = 1;
d90e17a7
PA
3450 }
3451 else
3452 {
3453 lp->stopped = 1;
3454 lp->signalled = 0;
3455 }
3456 }
33355866 3457 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
d90e17a7
PA
3458 {
3459 if (debug_linux_nat)
3460 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3461 ptid_get_lwp (lp->ptid));
3462
3463 /* This was the last lwp in the process. Since
3464 events are serialized to GDB core, and we can't
3465 report this one right now, but GDB core and the
3466 other target layers will want to be notified
3467 about the exit code/signal, leave the status
3468 pending for the next time we're able to report
3469 it. */
d90e17a7
PA
3470
3471 /* Prevent trying to stop this thread again. We'll
3472 never try to resume it because it has a pending
3473 status. */
3474 lp->stopped = 1;
3475
3476 /* Dead LWP's aren't expected to reported a pending
3477 sigstop. */
3478 lp->signalled = 0;
3479
3480 /* Store the pending event in the waitstatus as
3481 well, because W_EXITCODE(0,0) == 0. */
ca2163eb 3482 store_waitstatus (&lp->waitstatus, lp->status);
d90e17a7
PA
3483 }
3484
3485 /* Keep looking. */
3486 lp = NULL;
d6b0e80f
AC
3487 continue;
3488 }
3489
d90e17a7
PA
3490 if (lp)
3491 break;
3492 else
3493 {
3494 if (pid == -1)
3495 {
3496 /* waitpid did return something. Restart over. */
3497 options |= __WCLONE;
3498 }
3499 continue;
3500 }
d6b0e80f
AC
3501 }
3502
3503 if (pid == -1)
3504 {
3505 /* Alternate between checking cloned and uncloned processes. */
3506 options ^= __WCLONE;
3507
b84876c2
PA
3508 /* And every time we have checked both:
3509 In async mode, return to event loop;
3510 In sync mode, suspend waiting for a SIGCHLD signal. */
d6b0e80f 3511 if (options & __WCLONE)
b84876c2 3512 {
47608cb1 3513 if (target_options & TARGET_WNOHANG)
b84876c2
PA
3514 {
3515 /* No interesting event. */
3516 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3517
b84876c2
PA
3518 if (debug_linux_nat_async)
3519 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3520
7feb7d06 3521 restore_child_signals_mask (&prev_mask);
b84876c2
PA
3522 return minus_one_ptid;
3523 }
3524
3525 sigsuspend (&suspend_mask);
3526 }
d6b0e80f 3527 }
28736962
PA
3528 else if (target_options & TARGET_WNOHANG)
3529 {
3530 /* No interesting event for PID yet. */
3531 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3532
3533 if (debug_linux_nat_async)
3534 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3535
3536 restore_child_signals_mask (&prev_mask);
3537 return minus_one_ptid;
3538 }
d6b0e80f
AC
3539
3540 /* We shouldn't end up here unless we want to try again. */
d90e17a7 3541 gdb_assert (lp == NULL);
d6b0e80f
AC
3542 }
3543
b84876c2 3544 if (!target_can_async_p ())
d26b5354 3545 clear_sigint_trap ();
d6b0e80f
AC
3546
3547 gdb_assert (lp);
3548
ca2163eb
PA
3549 status = lp->status;
3550 lp->status = 0;
3551
d6b0e80f
AC
3552 /* Don't report signals that GDB isn't interested in, such as
3553 signals that are neither printed nor stopped upon. Stopping all
3554 threads can be a bit time-consuming so if we want decent
3555 performance with heavily multi-threaded programs, especially when
3556 they're using a high frequency timer, we'd better avoid it if we
3557 can. */
3558
3559 if (WIFSTOPPED (status))
3560 {
3561 int signo = target_signal_from_host (WSTOPSIG (status));
d6b48e9c
PA
3562 struct inferior *inf;
3563
3564 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3565 gdb_assert (inf);
d6b0e80f 3566
d6b48e9c
PA
3567 /* Defer to common code if we get a signal while
3568 single-stepping, since that may need special care, e.g. to
3569 skip the signal handler, or, if we're gaining control of the
3570 inferior. */
d539ed7e 3571 if (!lp->step
d6b48e9c 3572 && inf->stop_soon == NO_STOP_QUIETLY
d539ed7e 3573 && signal_stop_state (signo) == 0
d6b0e80f
AC
3574 && signal_print_state (signo) == 0
3575 && signal_pass_state (signo) == 1)
3576 {
3577 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3578 here? It is not clear we should. GDB may not expect
3579 other threads to run. On the other hand, not resuming
3580 newly attached threads may cause an unwanted delay in
3581 getting them running. */
3582 registers_changed ();
28439f5e 3583 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
10d6c8cd 3584 lp->step, signo);
d6b0e80f
AC
3585 if (debug_linux_nat)
3586 fprintf_unfiltered (gdb_stdlog,
3587 "LLW: %s %s, %s (preempt 'handle')\n",
3588 lp->step ?
3589 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3590 target_pid_to_str (lp->ptid),
3591 signo ? strsignal (signo) : "0");
3592 lp->stopped = 0;
d6b0e80f
AC
3593 goto retry;
3594 }
3595
1ad15515 3596 if (!non_stop)
d6b0e80f 3597 {
1ad15515
PA
3598 /* Only do the below in all-stop, as we currently use SIGINT
3599 to implement target_stop (see linux_nat_stop) in
3600 non-stop. */
3601 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3602 {
3603 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3604 forwarded to the entire process group, that is, all LWPs
3605 will receive it - unless they're using CLONE_THREAD to
3606 share signals. Since we only want to report it once, we
3607 mark it as ignored for all LWPs except this one. */
d90e17a7
PA
3608 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3609 set_ignore_sigint, NULL);
1ad15515
PA
3610 lp->ignore_sigint = 0;
3611 }
3612 else
3613 maybe_clear_ignore_sigint (lp);
d6b0e80f
AC
3614 }
3615 }
3616
3617 /* This LWP is stopped now. */
3618 lp->stopped = 1;
3619
3620 if (debug_linux_nat)
3621 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3622 status_to_str (status), target_pid_to_str (lp->ptid));
3623
4c28f408
PA
3624 if (!non_stop)
3625 {
3626 /* Now stop all other LWP's ... */
d90e17a7 3627 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
4c28f408
PA
3628
3629 /* ... and wait until all of them have reported back that
3630 they're no longer running. */
d90e17a7 3631 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
4c28f408
PA
3632
3633 /* If we're not waiting for a specific LWP, choose an event LWP
3634 from among those that have had events. Giving equal priority
3635 to all LWPs that have had events helps prevent
3636 starvation. */
3637 if (pid == -1)
d90e17a7 3638 select_event_lwp (ptid, &lp, &status);
d6b0e80f 3639
e3e9f5a2
PA
3640 /* Now that we've selected our final event LWP, cancel any
3641 breakpoints in other LWPs that have hit a GDB breakpoint.
3642 See the comment in cancel_breakpoints_callback to find out
3643 why. */
3644 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3645
3646 /* In all-stop, from the core's perspective, all LWPs are now
3647 stopped until a new resume action is sent over. */
3648 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3649 }
3650 else
3651 lp->resumed = 0;
d6b0e80f 3652
26ab7092 3653 if (linux_nat_status_is_event (status))
d6b0e80f 3654 {
d6b0e80f
AC
3655 if (debug_linux_nat)
3656 fprintf_unfiltered (gdb_stdlog,
4fdebdd0
PA
3657 "LLW: trap ptid is %s.\n",
3658 target_pid_to_str (lp->ptid));
d6b0e80f 3659 }
d6b0e80f
AC
3660
3661 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3662 {
3663 *ourstatus = lp->waitstatus;
3664 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3665 }
3666 else
3667 store_waitstatus (ourstatus, status);
3668
b84876c2
PA
3669 if (debug_linux_nat_async)
3670 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3671
7feb7d06 3672 restore_child_signals_mask (&prev_mask);
1e225492
JK
3673
3674 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3675 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3676 lp->core = -1;
3677 else
3678 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3679
f973ed9c 3680 return lp->ptid;
d6b0e80f
AC
3681}
3682
e3e9f5a2
PA
3683/* Resume LWPs that are currently stopped without any pending status
3684 to report, but are resumed from the core's perspective. */
3685
3686static int
3687resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3688{
3689 ptid_t *wait_ptid_p = data;
3690
3691 if (lp->stopped
3692 && lp->resumed
3693 && lp->status == 0
3694 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3695 {
3696 gdb_assert (is_executing (lp->ptid));
3697
3698 /* Don't bother if there's a breakpoint at PC that we'd hit
3699 immediately, and we're not waiting for this LWP. */
3700 if (!ptid_match (lp->ptid, *wait_ptid_p))
3701 {
3702 struct regcache *regcache = get_thread_regcache (lp->ptid);
3703 CORE_ADDR pc = regcache_read_pc (regcache);
3704
3705 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3706 return 0;
3707 }
3708
3709 if (debug_linux_nat)
3710 fprintf_unfiltered (gdb_stdlog,
3711 "RSRL: resuming stopped-resumed LWP %s\n",
3712 target_pid_to_str (lp->ptid));
3713
3714 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3715 lp->step, TARGET_SIGNAL_0);
3716 lp->stopped = 0;
3717 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3718 lp->stopped_by_watchpoint = 0;
3719 }
3720
3721 return 0;
3722}
3723
7feb7d06
PA
3724static ptid_t
3725linux_nat_wait (struct target_ops *ops,
47608cb1
PA
3726 ptid_t ptid, struct target_waitstatus *ourstatus,
3727 int target_options)
7feb7d06
PA
3728{
3729 ptid_t event_ptid;
3730
3731 if (debug_linux_nat)
3732 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3733
3734 /* Flush the async file first. */
3735 if (target_can_async_p ())
3736 async_file_flush ();
3737
e3e9f5a2
PA
3738 /* Resume LWPs that are currently stopped without any pending status
3739 to report, but are resumed from the core's perspective. LWPs get
3740 in this state if we find them stopping at a time we're not
3741 interested in reporting the event (target_wait on a
3742 specific_process, for example, see linux_nat_wait_1), and
3743 meanwhile the event became uninteresting. Don't bother resuming
3744 LWPs we're not going to wait for if they'd stop immediately. */
3745 if (non_stop)
3746 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3747
47608cb1 3748 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
7feb7d06
PA
3749
3750 /* If we requested any event, and something came out, assume there
3751 may be more. If we requested a specific lwp or process, also
3752 assume there may be more. */
3753 if (target_can_async_p ()
3754 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3755 || !ptid_equal (ptid, minus_one_ptid)))
3756 async_file_mark ();
3757
3758 /* Get ready for the next event. */
3759 if (target_can_async_p ())
3760 target_async (inferior_event_handler, 0);
3761
3762 return event_ptid;
3763}
3764
d6b0e80f
AC
3765static int
3766kill_callback (struct lwp_info *lp, void *data)
3767{
3768 errno = 0;
3769 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3770 if (debug_linux_nat)
3771 fprintf_unfiltered (gdb_stdlog,
3772 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3773 target_pid_to_str (lp->ptid),
3774 errno ? safe_strerror (errno) : "OK");
3775
3776 return 0;
3777}
3778
3779static int
3780kill_wait_callback (struct lwp_info *lp, void *data)
3781{
3782 pid_t pid;
3783
3784 /* We must make sure that there are no pending events (delayed
3785 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3786 program doesn't interfere with any following debugging session. */
3787
3788 /* For cloned processes we must check both with __WCLONE and
3789 without, since the exit status of a cloned process isn't reported
3790 with __WCLONE. */
3791 if (lp->cloned)
3792 {
3793 do
3794 {
58aecb61 3795 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
e85a822c 3796 if (pid != (pid_t) -1)
d6b0e80f 3797 {
e85a822c
DJ
3798 if (debug_linux_nat)
3799 fprintf_unfiltered (gdb_stdlog,
3800 "KWC: wait %s received unknown.\n",
3801 target_pid_to_str (lp->ptid));
3802 /* The Linux kernel sometimes fails to kill a thread
3803 completely after PTRACE_KILL; that goes from the stop
3804 point in do_fork out to the one in
3805 get_signal_to_deliever and waits again. So kill it
3806 again. */
3807 kill_callback (lp, NULL);
d6b0e80f
AC
3808 }
3809 }
3810 while (pid == GET_LWP (lp->ptid));
3811
3812 gdb_assert (pid == -1 && errno == ECHILD);
3813 }
3814
3815 do
3816 {
58aecb61 3817 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
e85a822c 3818 if (pid != (pid_t) -1)
d6b0e80f 3819 {
e85a822c
DJ
3820 if (debug_linux_nat)
3821 fprintf_unfiltered (gdb_stdlog,
3822 "KWC: wait %s received unk.\n",
3823 target_pid_to_str (lp->ptid));
3824 /* See the call to kill_callback above. */
3825 kill_callback (lp, NULL);
d6b0e80f
AC
3826 }
3827 }
3828 while (pid == GET_LWP (lp->ptid));
3829
3830 gdb_assert (pid == -1 && errno == ECHILD);
3831 return 0;
3832}
3833
3834static void
7d85a9c0 3835linux_nat_kill (struct target_ops *ops)
d6b0e80f 3836{
f973ed9c
DJ
3837 struct target_waitstatus last;
3838 ptid_t last_ptid;
3839 int status;
d6b0e80f 3840
f973ed9c
DJ
3841 /* If we're stopped while forking and we haven't followed yet,
3842 kill the other task. We need to do this first because the
3843 parent will be sleeping if this is a vfork. */
d6b0e80f 3844
f973ed9c 3845 get_last_target_status (&last_ptid, &last);
d6b0e80f 3846
f973ed9c
DJ
3847 if (last.kind == TARGET_WAITKIND_FORKED
3848 || last.kind == TARGET_WAITKIND_VFORKED)
3849 {
3a3e9ee3 3850 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
f973ed9c
DJ
3851 wait (&status);
3852 }
3853
3854 if (forks_exist_p ())
7feb7d06 3855 linux_fork_killall ();
f973ed9c
DJ
3856 else
3857 {
d90e17a7 3858 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
e0881a8e 3859
4c28f408
PA
3860 /* Stop all threads before killing them, since ptrace requires
3861 that the thread is stopped to sucessfully PTRACE_KILL. */
d90e17a7 3862 iterate_over_lwps (ptid, stop_callback, NULL);
4c28f408
PA
3863 /* ... and wait until all of them have reported back that
3864 they're no longer running. */
d90e17a7 3865 iterate_over_lwps (ptid, stop_wait_callback, NULL);
4c28f408 3866
f973ed9c 3867 /* Kill all LWP's ... */
d90e17a7 3868 iterate_over_lwps (ptid, kill_callback, NULL);
f973ed9c
DJ
3869
3870 /* ... and wait until we've flushed all events. */
d90e17a7 3871 iterate_over_lwps (ptid, kill_wait_callback, NULL);
f973ed9c
DJ
3872 }
3873
3874 target_mourn_inferior ();
d6b0e80f
AC
3875}
3876
3877static void
136d6dae 3878linux_nat_mourn_inferior (struct target_ops *ops)
d6b0e80f 3879{
d90e17a7 3880 purge_lwp_list (ptid_get_pid (inferior_ptid));
d6b0e80f 3881
f973ed9c 3882 if (! forks_exist_p ())
d90e17a7
PA
3883 /* Normal case, no other forks available. */
3884 linux_ops->to_mourn_inferior (ops);
f973ed9c
DJ
3885 else
3886 /* Multi-fork case. The current inferior_ptid has exited, but
3887 there are other viable forks to debug. Delete the exiting
3888 one and context-switch to the first available. */
3889 linux_fork_mourn_inferior ();
d6b0e80f
AC
3890}
3891
5b009018
PA
3892/* Convert a native/host siginfo object, into/from the siginfo in the
3893 layout of the inferiors' architecture. */
3894
3895static void
3896siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3897{
3898 int done = 0;
3899
3900 if (linux_nat_siginfo_fixup != NULL)
3901 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3902
3903 /* If there was no callback, or the callback didn't do anything,
3904 then just do a straight memcpy. */
3905 if (!done)
3906 {
3907 if (direction == 1)
3908 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3909 else
3910 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3911 }
3912}
3913
4aa995e1
PA
3914static LONGEST
3915linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3916 const char *annex, gdb_byte *readbuf,
3917 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3918{
4aa995e1
PA
3919 int pid;
3920 struct siginfo siginfo;
5b009018 3921 gdb_byte inf_siginfo[sizeof (struct siginfo)];
4aa995e1
PA
3922
3923 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3924 gdb_assert (readbuf || writebuf);
3925
3926 pid = GET_LWP (inferior_ptid);
3927 if (pid == 0)
3928 pid = GET_PID (inferior_ptid);
3929
3930 if (offset > sizeof (siginfo))
3931 return -1;
3932
3933 errno = 0;
3934 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3935 if (errno != 0)
3936 return -1;
3937
5b009018
PA
3938 /* When GDB is built as a 64-bit application, ptrace writes into
3939 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3940 inferior with a 64-bit GDB should look the same as debugging it
3941 with a 32-bit GDB, we need to convert it. GDB core always sees
3942 the converted layout, so any read/write will have to be done
3943 post-conversion. */
3944 siginfo_fixup (&siginfo, inf_siginfo, 0);
3945
4aa995e1
PA
3946 if (offset + len > sizeof (siginfo))
3947 len = sizeof (siginfo) - offset;
3948
3949 if (readbuf != NULL)
5b009018 3950 memcpy (readbuf, inf_siginfo + offset, len);
4aa995e1
PA
3951 else
3952 {
5b009018
PA
3953 memcpy (inf_siginfo + offset, writebuf, len);
3954
3955 /* Convert back to ptrace layout before flushing it out. */
3956 siginfo_fixup (&siginfo, inf_siginfo, 1);
3957
4aa995e1
PA
3958 errno = 0;
3959 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3960 if (errno != 0)
3961 return -1;
3962 }
3963
3964 return len;
3965}
3966
10d6c8cd
DJ
3967static LONGEST
3968linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3969 const char *annex, gdb_byte *readbuf,
3970 const gdb_byte *writebuf,
3971 ULONGEST offset, LONGEST len)
d6b0e80f 3972{
4aa995e1 3973 struct cleanup *old_chain;
10d6c8cd 3974 LONGEST xfer;
d6b0e80f 3975
4aa995e1
PA
3976 if (object == TARGET_OBJECT_SIGNAL_INFO)
3977 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3978 offset, len);
3979
c35b1492
PA
3980 /* The target is connected but no live inferior is selected. Pass
3981 this request down to a lower stratum (e.g., the executable
3982 file). */
3983 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3984 return 0;
3985
4aa995e1
PA
3986 old_chain = save_inferior_ptid ();
3987
d6b0e80f
AC
3988 if (is_lwp (inferior_ptid))
3989 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3990
10d6c8cd
DJ
3991 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3992 offset, len);
d6b0e80f
AC
3993
3994 do_cleanups (old_chain);
3995 return xfer;
3996}
3997
3998static int
28439f5e 3999linux_thread_alive (ptid_t ptid)
d6b0e80f 4000{
4c28f408
PA
4001 int err;
4002
d6b0e80f
AC
4003 gdb_assert (is_lwp (ptid));
4004
4c28f408
PA
4005 /* Send signal 0 instead of anything ptrace, because ptracing a
4006 running thread errors out claiming that the thread doesn't
4007 exist. */
4008 err = kill_lwp (GET_LWP (ptid), 0);
4009
d6b0e80f
AC
4010 if (debug_linux_nat)
4011 fprintf_unfiltered (gdb_stdlog,
4c28f408 4012 "LLTA: KILL(SIG0) %s (%s)\n",
d6b0e80f 4013 target_pid_to_str (ptid),
4c28f408 4014 err ? safe_strerror (err) : "OK");
9c0dd46b 4015
4c28f408 4016 if (err != 0)
d6b0e80f
AC
4017 return 0;
4018
4019 return 1;
4020}
4021
28439f5e
PA
4022static int
4023linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4024{
4025 return linux_thread_alive (ptid);
4026}
4027
d6b0e80f 4028static char *
117de6a9 4029linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
d6b0e80f
AC
4030{
4031 static char buf[64];
4032
a0ef4274 4033 if (is_lwp (ptid)
d90e17a7
PA
4034 && (GET_PID (ptid) != GET_LWP (ptid)
4035 || num_lwps (GET_PID (ptid)) > 1))
d6b0e80f
AC
4036 {
4037 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4038 return buf;
4039 }
4040
4041 return normal_pid_to_str (ptid);
4042}
4043
dba24537
AC
4044/* Accepts an integer PID; Returns a string representing a file that
4045 can be opened to get the symbols for the child process. */
4046
6d8fd2b7
UW
4047static char *
4048linux_child_pid_to_exec_file (int pid)
dba24537
AC
4049{
4050 char *name1, *name2;
4051
4052 name1 = xmalloc (MAXPATHLEN);
4053 name2 = xmalloc (MAXPATHLEN);
4054 make_cleanup (xfree, name1);
4055 make_cleanup (xfree, name2);
4056 memset (name2, 0, MAXPATHLEN);
4057
4058 sprintf (name1, "/proc/%d/exe", pid);
4059 if (readlink (name1, name2, MAXPATHLEN) > 0)
4060 return name2;
4061 else
4062 return name1;
4063}
4064
4065/* Service function for corefiles and info proc. */
4066
4067static int
4068read_mapping (FILE *mapfile,
4069 long long *addr,
4070 long long *endaddr,
4071 char *permissions,
4072 long long *offset,
4073 char *device, long long *inode, char *filename)
4074{
4075 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4076 addr, endaddr, permissions, offset, device, inode);
4077
2e14c2ea
MS
4078 filename[0] = '\0';
4079 if (ret > 0 && ret != EOF)
dba24537
AC
4080 {
4081 /* Eat everything up to EOL for the filename. This will prevent
4082 weird filenames (such as one with embedded whitespace) from
4083 confusing this code. It also makes this code more robust in
4084 respect to annotations the kernel may add after the filename.
4085
4086 Note the filename is used for informational purposes
4087 only. */
4088 ret += fscanf (mapfile, "%[^\n]\n", filename);
4089 }
2e14c2ea 4090
dba24537
AC
4091 return (ret != 0 && ret != EOF);
4092}
4093
4094/* Fills the "to_find_memory_regions" target vector. Lists the memory
4095 regions in the inferior for a corefile. */
4096
4097static int
4098linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
4099 unsigned long,
4100 int, int, int, void *), void *obfd)
4101{
89ecc4f5 4102 int pid = PIDGET (inferior_ptid);
dba24537
AC
4103 char mapsfilename[MAXPATHLEN];
4104 FILE *mapsfile;
4105 long long addr, endaddr, size, offset, inode;
4106 char permissions[8], device[8], filename[MAXPATHLEN];
4107 int read, write, exec;
7c8a8b04 4108 struct cleanup *cleanup;
dba24537
AC
4109
4110 /* Compose the filename for the /proc memory map, and open it. */
89ecc4f5 4111 sprintf (mapsfilename, "/proc/%d/maps", pid);
dba24537 4112 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
8a3fe4f8 4113 error (_("Could not open %s."), mapsfilename);
7c8a8b04 4114 cleanup = make_cleanup_fclose (mapsfile);
dba24537
AC
4115
4116 if (info_verbose)
4117 fprintf_filtered (gdb_stdout,
4118 "Reading memory regions from %s\n", mapsfilename);
4119
4120 /* Now iterate until end-of-file. */
4121 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4122 &offset, &device[0], &inode, &filename[0]))
4123 {
4124 size = endaddr - addr;
4125
4126 /* Get the segment's permissions. */
4127 read = (strchr (permissions, 'r') != 0);
4128 write = (strchr (permissions, 'w') != 0);
4129 exec = (strchr (permissions, 'x') != 0);
4130
4131 if (info_verbose)
4132 {
4133 fprintf_filtered (gdb_stdout,
2244ba2e
PM
4134 "Save segment, %s bytes at %s (%c%c%c)",
4135 plongest (size), paddress (target_gdbarch, addr),
dba24537
AC
4136 read ? 'r' : ' ',
4137 write ? 'w' : ' ', exec ? 'x' : ' ');
b260b6c1 4138 if (filename[0])
dba24537
AC
4139 fprintf_filtered (gdb_stdout, " for %s", filename);
4140 fprintf_filtered (gdb_stdout, "\n");
4141 }
4142
4143 /* Invoke the callback function to create the corefile
4144 segment. */
4145 func (addr, size, read, write, exec, obfd);
4146 }
7c8a8b04 4147 do_cleanups (cleanup);
dba24537
AC
4148 return 0;
4149}
4150
2020b7ab
PA
4151static int
4152find_signalled_thread (struct thread_info *info, void *data)
4153{
4154 if (info->stop_signal != TARGET_SIGNAL_0
4155 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4156 return 1;
4157
4158 return 0;
4159}
4160
4161static enum target_signal
4162find_stop_signal (void)
4163{
4164 struct thread_info *info =
4165 iterate_over_threads (find_signalled_thread, NULL);
4166
4167 if (info)
4168 return info->stop_signal;
4169 else
4170 return TARGET_SIGNAL_0;
4171}
4172
dba24537
AC
4173/* Records the thread's register state for the corefile note
4174 section. */
4175
4176static char *
4177linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
2020b7ab
PA
4178 char *note_data, int *note_size,
4179 enum target_signal stop_signal)
dba24537 4180{
dba24537 4181 unsigned long lwp = ptid_get_lwp (ptid);
c2250ad1
UW
4182 struct gdbarch *gdbarch = target_gdbarch;
4183 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4f844a66 4184 const struct regset *regset;
55e969c1 4185 int core_regset_p;
594f7785 4186 struct cleanup *old_chain;
17ea7499
CES
4187 struct core_regset_section *sect_list;
4188 char *gdb_regset;
594f7785
UW
4189
4190 old_chain = save_inferior_ptid ();
4191 inferior_ptid = ptid;
4192 target_fetch_registers (regcache, -1);
4193 do_cleanups (old_chain);
4f844a66
DM
4194
4195 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
17ea7499
CES
4196 sect_list = gdbarch_core_regset_sections (gdbarch);
4197
17ea7499
CES
4198 /* The loop below uses the new struct core_regset_section, which stores
4199 the supported section names and sizes for the core file. Note that
4200 note PRSTATUS needs to be treated specially. But the other notes are
4201 structurally the same, so they can benefit from the new struct. */
4202 if (core_regset_p && sect_list != NULL)
4203 while (sect_list->sect_name != NULL)
4204 {
17ea7499
CES
4205 regset = gdbarch_regset_from_core_section (gdbarch,
4206 sect_list->sect_name,
4207 sect_list->size);
4208 gdb_assert (regset && regset->collect_regset);
4209 gdb_regset = xmalloc (sect_list->size);
4210 regset->collect_regset (regset, regcache, -1,
4211 gdb_regset, sect_list->size);
2f2241f1
UW
4212
4213 if (strcmp (sect_list->sect_name, ".reg") == 0)
4214 note_data = (char *) elfcore_write_prstatus
4215 (obfd, note_data, note_size,
857d11d0
JK
4216 lwp, target_signal_to_host (stop_signal),
4217 gdb_regset);
2f2241f1
UW
4218 else
4219 note_data = (char *) elfcore_write_register_note
4220 (obfd, note_data, note_size,
4221 sect_list->sect_name, gdb_regset,
4222 sect_list->size);
17ea7499
CES
4223 xfree (gdb_regset);
4224 sect_list++;
4225 }
dba24537 4226
17ea7499
CES
4227 /* For architectures that does not have the struct core_regset_section
4228 implemented, we use the old method. When all the architectures have
4229 the new support, the code below should be deleted. */
4f844a66 4230 else
17ea7499 4231 {
2f2241f1
UW
4232 gdb_gregset_t gregs;
4233 gdb_fpregset_t fpregs;
4234
4235 if (core_regset_p
4236 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4237 sizeof (gregs))) != NULL
4238 && regset->collect_regset != NULL)
4239 regset->collect_regset (regset, regcache, -1,
4240 &gregs, sizeof (gregs));
4241 else
4242 fill_gregset (regcache, &gregs, -1);
4243
857d11d0
JK
4244 note_data = (char *) elfcore_write_prstatus
4245 (obfd, note_data, note_size, lwp, target_signal_to_host (stop_signal),
4246 &gregs);
2f2241f1 4247
17ea7499
CES
4248 if (core_regset_p
4249 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4250 sizeof (fpregs))) != NULL
4251 && regset->collect_regset != NULL)
4252 regset->collect_regset (regset, regcache, -1,
4253 &fpregs, sizeof (fpregs));
4254 else
4255 fill_fpregset (regcache, &fpregs, -1);
4256
4257 note_data = (char *) elfcore_write_prfpreg (obfd,
4258 note_data,
4259 note_size,
4260 &fpregs, sizeof (fpregs));
4261 }
4f844a66 4262
dba24537
AC
4263 return note_data;
4264}
4265
4266struct linux_nat_corefile_thread_data
4267{
4268 bfd *obfd;
4269 char *note_data;
4270 int *note_size;
4271 int num_notes;
2020b7ab 4272 enum target_signal stop_signal;
dba24537
AC
4273};
4274
4275/* Called by gdbthread.c once per thread. Records the thread's
4276 register state for the corefile note section. */
4277
4278static int
4279linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4280{
4281 struct linux_nat_corefile_thread_data *args = data;
dba24537 4282
dba24537
AC
4283 args->note_data = linux_nat_do_thread_registers (args->obfd,
4284 ti->ptid,
4285 args->note_data,
2020b7ab
PA
4286 args->note_size,
4287 args->stop_signal);
dba24537 4288 args->num_notes++;
56be3814 4289
dba24537
AC
4290 return 0;
4291}
4292
efcbbd14
UW
4293/* Enumerate spufs IDs for process PID. */
4294
4295static void
4296iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4297{
4298 char path[128];
4299 DIR *dir;
4300 struct dirent *entry;
4301
4302 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4303 dir = opendir (path);
4304 if (!dir)
4305 return;
4306
4307 rewinddir (dir);
4308 while ((entry = readdir (dir)) != NULL)
4309 {
4310 struct stat st;
4311 struct statfs stfs;
4312 int fd;
4313
4314 fd = atoi (entry->d_name);
4315 if (!fd)
4316 continue;
4317
4318 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4319 if (stat (path, &st) != 0)
4320 continue;
4321 if (!S_ISDIR (st.st_mode))
4322 continue;
4323
4324 if (statfs (path, &stfs) != 0)
4325 continue;
4326 if (stfs.f_type != SPUFS_MAGIC)
4327 continue;
4328
4329 callback (data, fd);
4330 }
4331
4332 closedir (dir);
4333}
4334
4335/* Generate corefile notes for SPU contexts. */
4336
4337struct linux_spu_corefile_data
4338{
4339 bfd *obfd;
4340 char *note_data;
4341 int *note_size;
4342};
4343
4344static void
4345linux_spu_corefile_callback (void *data, int fd)
4346{
4347 struct linux_spu_corefile_data *args = data;
4348 int i;
4349
4350 static const char *spu_files[] =
4351 {
4352 "object-id",
4353 "mem",
4354 "regs",
4355 "fpcr",
4356 "lslr",
4357 "decr",
4358 "decr_status",
4359 "signal1",
4360 "signal1_type",
4361 "signal2",
4362 "signal2_type",
4363 "event_mask",
4364 "event_status",
4365 "mbox_info",
4366 "ibox_info",
4367 "wbox_info",
4368 "dma_info",
4369 "proxydma_info",
4370 };
4371
4372 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4373 {
4374 char annex[32], note_name[32];
4375 gdb_byte *spu_data;
4376 LONGEST spu_len;
4377
4378 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4379 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4380 annex, &spu_data);
4381 if (spu_len > 0)
4382 {
4383 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4384 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4385 args->note_size, note_name,
4386 NT_SPU, spu_data, spu_len);
4387 xfree (spu_data);
4388 }
4389 }
4390}
4391
4392static char *
4393linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4394{
4395 struct linux_spu_corefile_data args;
e0881a8e 4396
efcbbd14
UW
4397 args.obfd = obfd;
4398 args.note_data = note_data;
4399 args.note_size = note_size;
4400
4401 iterate_over_spus (PIDGET (inferior_ptid),
4402 linux_spu_corefile_callback, &args);
4403
4404 return args.note_data;
4405}
4406
dba24537
AC
4407/* Fills the "to_make_corefile_note" target vector. Builds the note
4408 section for a corefile, and returns it in a malloc buffer. */
4409
4410static char *
4411linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4412{
4413 struct linux_nat_corefile_thread_data thread_args;
d99148ef 4414 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
dba24537 4415 char fname[16] = { '\0' };
d99148ef 4416 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
dba24537
AC
4417 char psargs[80] = { '\0' };
4418 char *note_data = NULL;
d90e17a7 4419 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
c6826062 4420 gdb_byte *auxv;
dba24537
AC
4421 int auxv_len;
4422
4423 if (get_exec_file (0))
4424 {
4425 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4426 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4427 if (get_inferior_args ())
4428 {
d99148ef
JK
4429 char *string_end;
4430 char *psargs_end = psargs + sizeof (psargs);
4431
4432 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4433 strings fine. */
4434 string_end = memchr (psargs, 0, sizeof (psargs));
4435 if (string_end != NULL)
4436 {
4437 *string_end++ = ' ';
4438 strncpy (string_end, get_inferior_args (),
4439 psargs_end - string_end);
4440 }
dba24537
AC
4441 }
4442 note_data = (char *) elfcore_write_prpsinfo (obfd,
4443 note_data,
4444 note_size, fname, psargs);
4445 }
4446
4447 /* Dump information for threads. */
4448 thread_args.obfd = obfd;
4449 thread_args.note_data = note_data;
4450 thread_args.note_size = note_size;
4451 thread_args.num_notes = 0;
2020b7ab 4452 thread_args.stop_signal = find_stop_signal ();
d90e17a7 4453 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
2020b7ab
PA
4454 gdb_assert (thread_args.num_notes != 0);
4455 note_data = thread_args.note_data;
dba24537 4456
13547ab6
DJ
4457 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4458 NULL, &auxv);
dba24537
AC
4459 if (auxv_len > 0)
4460 {
4461 note_data = elfcore_write_note (obfd, note_data, note_size,
4462 "CORE", NT_AUXV, auxv, auxv_len);
4463 xfree (auxv);
4464 }
4465
efcbbd14
UW
4466 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4467
dba24537
AC
4468 make_cleanup (xfree, note_data);
4469 return note_data;
4470}
4471
4472/* Implement the "info proc" command. */
4473
4474static void
4475linux_nat_info_proc_cmd (char *args, int from_tty)
4476{
89ecc4f5
DE
4477 /* A long is used for pid instead of an int to avoid a loss of precision
4478 compiler warning from the output of strtoul. */
4479 long pid = PIDGET (inferior_ptid);
dba24537
AC
4480 FILE *procfile;
4481 char **argv = NULL;
4482 char buffer[MAXPATHLEN];
4483 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4484 int cmdline_f = 1;
4485 int cwd_f = 1;
4486 int exe_f = 1;
4487 int mappings_f = 0;
dba24537
AC
4488 int status_f = 0;
4489 int stat_f = 0;
4490 int all = 0;
4491 struct stat dummy;
4492
4493 if (args)
4494 {
4495 /* Break up 'args' into an argv array. */
d1a41061
PP
4496 argv = gdb_buildargv (args);
4497 make_cleanup_freeargv (argv);
dba24537
AC
4498 }
4499 while (argv != NULL && *argv != NULL)
4500 {
4501 if (isdigit (argv[0][0]))
4502 {
4503 pid = strtoul (argv[0], NULL, 10);
4504 }
4505 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4506 {
4507 mappings_f = 1;
4508 }
4509 else if (strcmp (argv[0], "status") == 0)
4510 {
4511 status_f = 1;
4512 }
4513 else if (strcmp (argv[0], "stat") == 0)
4514 {
4515 stat_f = 1;
4516 }
4517 else if (strcmp (argv[0], "cmd") == 0)
4518 {
4519 cmdline_f = 1;
4520 }
4521 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4522 {
4523 exe_f = 1;
4524 }
4525 else if (strcmp (argv[0], "cwd") == 0)
4526 {
4527 cwd_f = 1;
4528 }
4529 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4530 {
4531 all = 1;
4532 }
4533 else
4534 {
4535 /* [...] (future options here) */
4536 }
4537 argv++;
4538 }
4539 if (pid == 0)
8a3fe4f8 4540 error (_("No current process: you must name one."));
dba24537 4541
89ecc4f5 4542 sprintf (fname1, "/proc/%ld", pid);
dba24537 4543 if (stat (fname1, &dummy) != 0)
8a3fe4f8 4544 error (_("No /proc directory: '%s'"), fname1);
dba24537 4545
89ecc4f5 4546 printf_filtered (_("process %ld\n"), pid);
dba24537
AC
4547 if (cmdline_f || all)
4548 {
89ecc4f5 4549 sprintf (fname1, "/proc/%ld/cmdline", pid);
d5d6fca5 4550 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537 4551 {
7c8a8b04 4552 struct cleanup *cleanup = make_cleanup_fclose (procfile);
e0881a8e 4553
bf1d7d9c
JB
4554 if (fgets (buffer, sizeof (buffer), procfile))
4555 printf_filtered ("cmdline = '%s'\n", buffer);
4556 else
4557 warning (_("unable to read '%s'"), fname1);
7c8a8b04 4558 do_cleanups (cleanup);
dba24537
AC
4559 }
4560 else
8a3fe4f8 4561 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
4562 }
4563 if (cwd_f || all)
4564 {
89ecc4f5 4565 sprintf (fname1, "/proc/%ld/cwd", pid);
dba24537
AC
4566 memset (fname2, 0, sizeof (fname2));
4567 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4568 printf_filtered ("cwd = '%s'\n", fname2);
4569 else
8a3fe4f8 4570 warning (_("unable to read link '%s'"), fname1);
dba24537
AC
4571 }
4572 if (exe_f || all)
4573 {
89ecc4f5 4574 sprintf (fname1, "/proc/%ld/exe", pid);
dba24537
AC
4575 memset (fname2, 0, sizeof (fname2));
4576 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4577 printf_filtered ("exe = '%s'\n", fname2);
4578 else
8a3fe4f8 4579 warning (_("unable to read link '%s'"), fname1);
dba24537
AC
4580 }
4581 if (mappings_f || all)
4582 {
89ecc4f5 4583 sprintf (fname1, "/proc/%ld/maps", pid);
d5d6fca5 4584 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537
AC
4585 {
4586 long long addr, endaddr, size, offset, inode;
4587 char permissions[8], device[8], filename[MAXPATHLEN];
7c8a8b04 4588 struct cleanup *cleanup;
dba24537 4589
7c8a8b04 4590 cleanup = make_cleanup_fclose (procfile);
a3f17187 4591 printf_filtered (_("Mapped address spaces:\n\n"));
a97b0ac8 4592 if (gdbarch_addr_bit (target_gdbarch) == 32)
dba24537
AC
4593 {
4594 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4595 "Start Addr",
4596 " End Addr",
4597 " Size", " Offset", "objfile");
4598 }
4599 else
4600 {
4601 printf_filtered (" %18s %18s %10s %10s %7s\n",
4602 "Start Addr",
4603 " End Addr",
4604 " Size", " Offset", "objfile");
4605 }
4606
4607 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4608 &offset, &device[0], &inode, &filename[0]))
4609 {
4610 size = endaddr - addr;
4611
4612 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4613 calls here (and possibly above) should be abstracted
4614 out into their own functions? Andrew suggests using
4615 a generic local_address_string instead to print out
4616 the addresses; that makes sense to me, too. */
4617
a97b0ac8 4618 if (gdbarch_addr_bit (target_gdbarch) == 32)
dba24537
AC
4619 {
4620 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4621 (unsigned long) addr, /* FIXME: pr_addr */
4622 (unsigned long) endaddr,
4623 (int) size,
4624 (unsigned int) offset,
4625 filename[0] ? filename : "");
4626 }
4627 else
4628 {
4629 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4630 (unsigned long) addr, /* FIXME: pr_addr */
4631 (unsigned long) endaddr,
4632 (int) size,
4633 (unsigned int) offset,
4634 filename[0] ? filename : "");
4635 }
4636 }
4637
7c8a8b04 4638 do_cleanups (cleanup);
dba24537
AC
4639 }
4640 else
8a3fe4f8 4641 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
4642 }
4643 if (status_f || all)
4644 {
89ecc4f5 4645 sprintf (fname1, "/proc/%ld/status", pid);
d5d6fca5 4646 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537 4647 {
7c8a8b04 4648 struct cleanup *cleanup = make_cleanup_fclose (procfile);
e0881a8e 4649
dba24537
AC
4650 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4651 puts_filtered (buffer);
7c8a8b04 4652 do_cleanups (cleanup);
dba24537
AC
4653 }
4654 else
8a3fe4f8 4655 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
4656 }
4657 if (stat_f || all)
4658 {
89ecc4f5 4659 sprintf (fname1, "/proc/%ld/stat", pid);
d5d6fca5 4660 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537
AC
4661 {
4662 int itmp;
4663 char ctmp;
a25694b4 4664 long ltmp;
7c8a8b04 4665 struct cleanup *cleanup = make_cleanup_fclose (procfile);
dba24537
AC
4666
4667 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 4668 printf_filtered (_("Process: %d\n"), itmp);
a25694b4 4669 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
a3f17187 4670 printf_filtered (_("Exec file: %s\n"), buffer);
dba24537 4671 if (fscanf (procfile, "%c ", &ctmp) > 0)
a3f17187 4672 printf_filtered (_("State: %c\n"), ctmp);
dba24537 4673 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 4674 printf_filtered (_("Parent process: %d\n"), itmp);
dba24537 4675 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 4676 printf_filtered (_("Process group: %d\n"), itmp);
dba24537 4677 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 4678 printf_filtered (_("Session id: %d\n"), itmp);
dba24537 4679 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 4680 printf_filtered (_("TTY: %d\n"), itmp);
dba24537 4681 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 4682 printf_filtered (_("TTY owner process group: %d\n"), itmp);
a25694b4
AS
4683 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4684 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4685 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4686 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4687 (unsigned long) ltmp);
4688 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4689 printf_filtered (_("Minor faults, children: %lu\n"),
4690 (unsigned long) ltmp);
4691 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4692 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4693 (unsigned long) ltmp);
4694 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4695 printf_filtered (_("Major faults, children: %lu\n"),
4696 (unsigned long) ltmp);
4697 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4698 printf_filtered (_("utime: %ld\n"), ltmp);
4699 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4700 printf_filtered (_("stime: %ld\n"), ltmp);
4701 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4702 printf_filtered (_("utime, children: %ld\n"), ltmp);
4703 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4704 printf_filtered (_("stime, children: %ld\n"), ltmp);
4705 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4706 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4707 ltmp);
4708 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4709 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4710 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4711 printf_filtered (_("jiffies until next timeout: %lu\n"),
4712 (unsigned long) ltmp);
4713 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4714 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4715 (unsigned long) ltmp);
4716 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4717 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4718 ltmp);
4719 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4720 printf_filtered (_("Virtual memory size: %lu\n"),
4721 (unsigned long) ltmp);
4722 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4723 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4724 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4725 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4726 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4727 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4728 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4729 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4730 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4731 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
dba24537
AC
4732#if 0 /* Don't know how architecture-dependent the rest is...
4733 Anyway the signal bitmap info is available from "status". */
a25694b4
AS
4734 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4735 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4736 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4737 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4738 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4739 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4740 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4741 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4742 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4743 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4744 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4745 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4746 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4747 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
dba24537 4748#endif
7c8a8b04 4749 do_cleanups (cleanup);
dba24537
AC
4750 }
4751 else
8a3fe4f8 4752 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
4753 }
4754}
4755
10d6c8cd
DJ
4756/* Implement the to_xfer_partial interface for memory reads using the /proc
4757 filesystem. Because we can use a single read() call for /proc, this
4758 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4759 but it doesn't support writes. */
4760
4761static LONGEST
4762linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4763 const char *annex, gdb_byte *readbuf,
4764 const gdb_byte *writebuf,
4765 ULONGEST offset, LONGEST len)
dba24537 4766{
10d6c8cd
DJ
4767 LONGEST ret;
4768 int fd;
dba24537
AC
4769 char filename[64];
4770
10d6c8cd 4771 if (object != TARGET_OBJECT_MEMORY || !readbuf)
dba24537
AC
4772 return 0;
4773
4774 /* Don't bother for one word. */
4775 if (len < 3 * sizeof (long))
4776 return 0;
4777
4778 /* We could keep this file open and cache it - possibly one per
4779 thread. That requires some juggling, but is even faster. */
4780 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4781 fd = open (filename, O_RDONLY | O_LARGEFILE);
4782 if (fd == -1)
4783 return 0;
4784
4785 /* If pread64 is available, use it. It's faster if the kernel
4786 supports it (only one syscall), and it's 64-bit safe even on
4787 32-bit platforms (for instance, SPARC debugging a SPARC64
4788 application). */
4789#ifdef HAVE_PREAD64
10d6c8cd 4790 if (pread64 (fd, readbuf, len, offset) != len)
dba24537 4791#else
10d6c8cd 4792 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
dba24537
AC
4793#endif
4794 ret = 0;
4795 else
4796 ret = len;
4797
4798 close (fd);
4799 return ret;
4800}
4801
efcbbd14
UW
4802
4803/* Enumerate spufs IDs for process PID. */
4804static LONGEST
4805spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4806{
4807 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4808 LONGEST pos = 0;
4809 LONGEST written = 0;
4810 char path[128];
4811 DIR *dir;
4812 struct dirent *entry;
4813
4814 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4815 dir = opendir (path);
4816 if (!dir)
4817 return -1;
4818
4819 rewinddir (dir);
4820 while ((entry = readdir (dir)) != NULL)
4821 {
4822 struct stat st;
4823 struct statfs stfs;
4824 int fd;
4825
4826 fd = atoi (entry->d_name);
4827 if (!fd)
4828 continue;
4829
4830 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4831 if (stat (path, &st) != 0)
4832 continue;
4833 if (!S_ISDIR (st.st_mode))
4834 continue;
4835
4836 if (statfs (path, &stfs) != 0)
4837 continue;
4838 if (stfs.f_type != SPUFS_MAGIC)
4839 continue;
4840
4841 if (pos >= offset && pos + 4 <= offset + len)
4842 {
4843 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4844 written += 4;
4845 }
4846 pos += 4;
4847 }
4848
4849 closedir (dir);
4850 return written;
4851}
4852
4853/* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4854 object type, using the /proc file system. */
4855static LONGEST
4856linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4857 const char *annex, gdb_byte *readbuf,
4858 const gdb_byte *writebuf,
4859 ULONGEST offset, LONGEST len)
4860{
4861 char buf[128];
4862 int fd = 0;
4863 int ret = -1;
4864 int pid = PIDGET (inferior_ptid);
4865
4866 if (!annex)
4867 {
4868 if (!readbuf)
4869 return -1;
4870 else
4871 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4872 }
4873
4874 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4875 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4876 if (fd <= 0)
4877 return -1;
4878
4879 if (offset != 0
4880 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4881 {
4882 close (fd);
4883 return 0;
4884 }
4885
4886 if (writebuf)
4887 ret = write (fd, writebuf, (size_t) len);
4888 else if (readbuf)
4889 ret = read (fd, readbuf, (size_t) len);
4890
4891 close (fd);
4892 return ret;
4893}
4894
4895
dba24537
AC
4896/* Parse LINE as a signal set and add its set bits to SIGS. */
4897
4898static void
4899add_line_to_sigset (const char *line, sigset_t *sigs)
4900{
4901 int len = strlen (line) - 1;
4902 const char *p;
4903 int signum;
4904
4905 if (line[len] != '\n')
8a3fe4f8 4906 error (_("Could not parse signal set: %s"), line);
dba24537
AC
4907
4908 p = line;
4909 signum = len * 4;
4910 while (len-- > 0)
4911 {
4912 int digit;
4913
4914 if (*p >= '0' && *p <= '9')
4915 digit = *p - '0';
4916 else if (*p >= 'a' && *p <= 'f')
4917 digit = *p - 'a' + 10;
4918 else
8a3fe4f8 4919 error (_("Could not parse signal set: %s"), line);
dba24537
AC
4920
4921 signum -= 4;
4922
4923 if (digit & 1)
4924 sigaddset (sigs, signum + 1);
4925 if (digit & 2)
4926 sigaddset (sigs, signum + 2);
4927 if (digit & 4)
4928 sigaddset (sigs, signum + 3);
4929 if (digit & 8)
4930 sigaddset (sigs, signum + 4);
4931
4932 p++;
4933 }
4934}
4935
4936/* Find process PID's pending signals from /proc/pid/status and set
4937 SIGS to match. */
4938
4939void
4940linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4941{
4942 FILE *procfile;
4943 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
7c8a8b04 4944 struct cleanup *cleanup;
dba24537
AC
4945
4946 sigemptyset (pending);
4947 sigemptyset (blocked);
4948 sigemptyset (ignored);
4949 sprintf (fname, "/proc/%d/status", pid);
4950 procfile = fopen (fname, "r");
4951 if (procfile == NULL)
8a3fe4f8 4952 error (_("Could not open %s"), fname);
7c8a8b04 4953 cleanup = make_cleanup_fclose (procfile);
dba24537
AC
4954
4955 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4956 {
4957 /* Normal queued signals are on the SigPnd line in the status
4958 file. However, 2.6 kernels also have a "shared" pending
4959 queue for delivering signals to a thread group, so check for
4960 a ShdPnd line also.
4961
4962 Unfortunately some Red Hat kernels include the shared pending
4963 queue but not the ShdPnd status field. */
4964
4965 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4966 add_line_to_sigset (buffer + 8, pending);
4967 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4968 add_line_to_sigset (buffer + 8, pending);
4969 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4970 add_line_to_sigset (buffer + 8, blocked);
4971 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4972 add_line_to_sigset (buffer + 8, ignored);
4973 }
4974
7c8a8b04 4975 do_cleanups (cleanup);
dba24537
AC
4976}
4977
07e059b5
VP
4978static LONGEST
4979linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
e0881a8e
MS
4980 const char *annex, gdb_byte *readbuf,
4981 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
07e059b5
VP
4982{
4983 /* We make the process list snapshot when the object starts to be
4984 read. */
4985 static const char *buf;
4986 static LONGEST len_avail = -1;
4987 static struct obstack obstack;
4988
4989 DIR *dirp;
4990
4991 gdb_assert (object == TARGET_OBJECT_OSDATA);
4992
a61408f8
SS
4993 if (!annex)
4994 {
4995 if (offset == 0)
4996 {
4997 if (len_avail != -1 && len_avail != 0)
4998 obstack_free (&obstack, NULL);
4999 len_avail = 0;
5000 buf = NULL;
5001 obstack_init (&obstack);
5002 obstack_grow_str (&obstack, "<osdata type=\"types\">\n");
5003
5004 obstack_xml_printf (
5005 &obstack,
5006 "<item>"
5007 "<column name=\"Type\">processes</column>"
5008 "<column name=\"Description\">Listing of all processes</column>"
5009 "</item>");
5010
5011 obstack_grow_str0 (&obstack, "</osdata>\n");
5012 buf = obstack_finish (&obstack);
5013 len_avail = strlen (buf);
5014 }
5015
5016 if (offset >= len_avail)
5017 {
5018 /* Done. Get rid of the obstack. */
5019 obstack_free (&obstack, NULL);
5020 buf = NULL;
5021 len_avail = 0;
5022 return 0;
5023 }
5024
5025 if (len > len_avail - offset)
5026 len = len_avail - offset;
5027 memcpy (readbuf, buf + offset, len);
5028
5029 return len;
5030 }
5031
07e059b5
VP
5032 if (strcmp (annex, "processes") != 0)
5033 return 0;
5034
5035 gdb_assert (readbuf && !writebuf);
5036
5037 if (offset == 0)
5038 {
5039 if (len_avail != -1 && len_avail != 0)
e0881a8e 5040 obstack_free (&obstack, NULL);
07e059b5
VP
5041 len_avail = 0;
5042 buf = NULL;
5043 obstack_init (&obstack);
5044 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
5045
5046 dirp = opendir ("/proc");
5047 if (dirp)
e0881a8e
MS
5048 {
5049 struct dirent *dp;
5050
5051 while ((dp = readdir (dirp)) != NULL)
5052 {
5053 struct stat statbuf;
5054 char procentry[sizeof ("/proc/4294967295")];
5055
5056 if (!isdigit (dp->d_name[0])
5057 || NAMELEN (dp) > sizeof ("4294967295") - 1)
5058 continue;
5059
5060 sprintf (procentry, "/proc/%s", dp->d_name);
5061 if (stat (procentry, &statbuf) == 0
5062 && S_ISDIR (statbuf.st_mode))
5063 {
5064 char *pathname;
5065 FILE *f;
5066 char cmd[MAXPATHLEN + 1];
5067 struct passwd *entry;
5068
5069 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
5070 entry = getpwuid (statbuf.st_uid);
5071
5072 if ((f = fopen (pathname, "r")) != NULL)
5073 {
5074 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
5075
5076 if (len > 0)
5077 {
5078 int i;
5079
5080 for (i = 0; i < len; i++)
5081 if (cmd[i] == '\0')
5082 cmd[i] = ' ';
5083 cmd[len] = '\0';
5084
5085 obstack_xml_printf (
5086 &obstack,
5087 "<item>"
5088 "<column name=\"pid\">%s</column>"
5089 "<column name=\"user\">%s</column>"
5090 "<column name=\"command\">%s</column>"
5091 "</item>",
5092 dp->d_name,
5093 entry ? entry->pw_name : "?",
5094 cmd);
5095 }
5096 fclose (f);
5097 }
5098
5099 xfree (pathname);
5100 }
5101 }
5102
5103 closedir (dirp);
5104 }
07e059b5
VP
5105
5106 obstack_grow_str0 (&obstack, "</osdata>\n");
5107 buf = obstack_finish (&obstack);
5108 len_avail = strlen (buf);
5109 }
5110
5111 if (offset >= len_avail)
5112 {
5113 /* Done. Get rid of the obstack. */
5114 obstack_free (&obstack, NULL);
5115 buf = NULL;
5116 len_avail = 0;
5117 return 0;
5118 }
5119
5120 if (len > len_avail - offset)
5121 len = len_avail - offset;
5122 memcpy (readbuf, buf + offset, len);
5123
5124 return len;
5125}
5126
10d6c8cd
DJ
5127static LONGEST
5128linux_xfer_partial (struct target_ops *ops, enum target_object object,
5129 const char *annex, gdb_byte *readbuf,
5130 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5131{
5132 LONGEST xfer;
5133
5134 if (object == TARGET_OBJECT_AUXV)
9f2982ff 5135 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
10d6c8cd
DJ
5136 offset, len);
5137
07e059b5
VP
5138 if (object == TARGET_OBJECT_OSDATA)
5139 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5140 offset, len);
5141
efcbbd14
UW
5142 if (object == TARGET_OBJECT_SPU)
5143 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5144 offset, len);
5145
8f313923
JK
5146 /* GDB calculates all the addresses in possibly larget width of the address.
5147 Address width needs to be masked before its final use - either by
5148 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5149
5150 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5151
5152 if (object == TARGET_OBJECT_MEMORY)
5153 {
5154 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5155
5156 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5157 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5158 }
5159
10d6c8cd
DJ
5160 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5161 offset, len);
5162 if (xfer != 0)
5163 return xfer;
5164
5165 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5166 offset, len);
5167}
5168
e9efe249 5169/* Create a prototype generic GNU/Linux target. The client can override
10d6c8cd
DJ
5170 it with local methods. */
5171
910122bf
UW
5172static void
5173linux_target_install_ops (struct target_ops *t)
10d6c8cd 5174{
6d8fd2b7
UW
5175 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5176 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5177 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
a96d9b2e 5178 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
6d8fd2b7 5179 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
10d6c8cd 5180 t->to_post_startup_inferior = linux_child_post_startup_inferior;
6d8fd2b7
UW
5181 t->to_post_attach = linux_child_post_attach;
5182 t->to_follow_fork = linux_child_follow_fork;
10d6c8cd
DJ
5183 t->to_find_memory_regions = linux_nat_find_memory_regions;
5184 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5185
5186 super_xfer_partial = t->to_xfer_partial;
5187 t->to_xfer_partial = linux_xfer_partial;
910122bf
UW
5188}
5189
5190struct target_ops *
5191linux_target (void)
5192{
5193 struct target_ops *t;
5194
5195 t = inf_ptrace_target ();
5196 linux_target_install_ops (t);
5197
5198 return t;
5199}
5200
5201struct target_ops *
7714d83a 5202linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
910122bf
UW
5203{
5204 struct target_ops *t;
5205
5206 t = inf_ptrace_trad_target (register_u_offset);
5207 linux_target_install_ops (t);
10d6c8cd 5208
10d6c8cd
DJ
5209 return t;
5210}
5211
b84876c2
PA
5212/* target_is_async_p implementation. */
5213
5214static int
5215linux_nat_is_async_p (void)
5216{
5217 /* NOTE: palves 2008-03-21: We're only async when the user requests
7feb7d06 5218 it explicitly with the "set target-async" command.
b84876c2 5219 Someday, linux will always be async. */
c6ebd6cf 5220 if (!target_async_permitted)
b84876c2
PA
5221 return 0;
5222
d90e17a7
PA
5223 /* See target.h/target_async_mask. */
5224 return linux_nat_async_mask_value;
b84876c2
PA
5225}
5226
5227/* target_can_async_p implementation. */
5228
5229static int
5230linux_nat_can_async_p (void)
5231{
5232 /* NOTE: palves 2008-03-21: We're only async when the user requests
7feb7d06 5233 it explicitly with the "set target-async" command.
b84876c2 5234 Someday, linux will always be async. */
c6ebd6cf 5235 if (!target_async_permitted)
b84876c2
PA
5236 return 0;
5237
5238 /* See target.h/target_async_mask. */
5239 return linux_nat_async_mask_value;
5240}
5241
9908b566
VP
5242static int
5243linux_nat_supports_non_stop (void)
5244{
5245 return 1;
5246}
5247
d90e17a7
PA
5248/* True if we want to support multi-process. To be removed when GDB
5249 supports multi-exec. */
5250
2277426b 5251int linux_multi_process = 1;
d90e17a7
PA
5252
5253static int
5254linux_nat_supports_multi_process (void)
5255{
5256 return linux_multi_process;
5257}
5258
b84876c2
PA
5259/* target_async_mask implementation. */
5260
5261static int
7feb7d06 5262linux_nat_async_mask (int new_mask)
b84876c2 5263{
7feb7d06 5264 int curr_mask = linux_nat_async_mask_value;
b84876c2 5265
7feb7d06 5266 if (curr_mask != new_mask)
b84876c2 5267 {
7feb7d06 5268 if (new_mask == 0)
b84876c2
PA
5269 {
5270 linux_nat_async (NULL, 0);
7feb7d06 5271 linux_nat_async_mask_value = new_mask;
b84876c2
PA
5272 }
5273 else
5274 {
7feb7d06 5275 linux_nat_async_mask_value = new_mask;
84e46146 5276
7feb7d06
PA
5277 /* If we're going out of async-mask in all-stop, then the
5278 inferior is stopped. The next resume will call
5279 target_async. In non-stop, the target event source
5280 should be always registered in the event loop. Do so
5281 now. */
5282 if (non_stop)
5283 linux_nat_async (inferior_event_handler, 0);
b84876c2
PA
5284 }
5285 }
5286
7feb7d06 5287 return curr_mask;
b84876c2
PA
5288}
5289
5290static int async_terminal_is_ours = 1;
5291
5292/* target_terminal_inferior implementation. */
5293
5294static void
5295linux_nat_terminal_inferior (void)
5296{
5297 if (!target_is_async_p ())
5298 {
5299 /* Async mode is disabled. */
5300 terminal_inferior ();
5301 return;
5302 }
5303
b84876c2
PA
5304 terminal_inferior ();
5305
d9d2d8b6 5306 /* Calls to target_terminal_*() are meant to be idempotent. */
b84876c2
PA
5307 if (!async_terminal_is_ours)
5308 return;
5309
5310 delete_file_handler (input_fd);
5311 async_terminal_is_ours = 0;
5312 set_sigint_trap ();
5313}
5314
5315/* target_terminal_ours implementation. */
5316
2c0b251b 5317static void
b84876c2
PA
5318linux_nat_terminal_ours (void)
5319{
5320 if (!target_is_async_p ())
5321 {
5322 /* Async mode is disabled. */
5323 terminal_ours ();
5324 return;
5325 }
5326
5327 /* GDB should never give the terminal to the inferior if the
5328 inferior is running in the background (run&, continue&, etc.),
5329 but claiming it sure should. */
5330 terminal_ours ();
5331
b84876c2
PA
5332 if (async_terminal_is_ours)
5333 return;
5334
5335 clear_sigint_trap ();
5336 add_file_handler (input_fd, stdin_event_handler, 0);
5337 async_terminal_is_ours = 1;
5338}
5339
5340static void (*async_client_callback) (enum inferior_event_type event_type,
5341 void *context);
5342static void *async_client_context;
5343
7feb7d06
PA
5344/* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5345 so we notice when any child changes state, and notify the
5346 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5347 above to wait for the arrival of a SIGCHLD. */
5348
b84876c2 5349static void
7feb7d06 5350sigchld_handler (int signo)
b84876c2 5351{
7feb7d06
PA
5352 int old_errno = errno;
5353
5354 if (debug_linux_nat_async)
5355 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5356
5357 if (signo == SIGCHLD
5358 && linux_nat_event_pipe[0] != -1)
5359 async_file_mark (); /* Let the event loop know that there are
5360 events to handle. */
5361
5362 errno = old_errno;
5363}
5364
5365/* Callback registered with the target events file descriptor. */
5366
5367static void
5368handle_target_event (int error, gdb_client_data client_data)
5369{
5370 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5371}
5372
5373/* Create/destroy the target events pipe. Returns previous state. */
5374
5375static int
5376linux_async_pipe (int enable)
5377{
5378 int previous = (linux_nat_event_pipe[0] != -1);
5379
5380 if (previous != enable)
5381 {
5382 sigset_t prev_mask;
5383
5384 block_child_signals (&prev_mask);
5385
5386 if (enable)
5387 {
5388 if (pipe (linux_nat_event_pipe) == -1)
5389 internal_error (__FILE__, __LINE__,
5390 "creating event pipe failed.");
5391
5392 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5393 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5394 }
5395 else
5396 {
5397 close (linux_nat_event_pipe[0]);
5398 close (linux_nat_event_pipe[1]);
5399 linux_nat_event_pipe[0] = -1;
5400 linux_nat_event_pipe[1] = -1;
5401 }
5402
5403 restore_child_signals_mask (&prev_mask);
5404 }
5405
5406 return previous;
b84876c2
PA
5407}
5408
5409/* target_async implementation. */
5410
5411static void
5412linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5413 void *context), void *context)
5414{
c6ebd6cf 5415 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
b84876c2
PA
5416 internal_error (__FILE__, __LINE__,
5417 "Calling target_async when async is masked");
5418
5419 if (callback != NULL)
5420 {
5421 async_client_callback = callback;
5422 async_client_context = context;
7feb7d06
PA
5423 if (!linux_async_pipe (1))
5424 {
5425 add_file_handler (linux_nat_event_pipe[0],
5426 handle_target_event, NULL);
5427 /* There may be pending events to handle. Tell the event loop
5428 to poll them. */
5429 async_file_mark ();
5430 }
b84876c2
PA
5431 }
5432 else
5433 {
5434 async_client_callback = callback;
5435 async_client_context = context;
b84876c2 5436 delete_file_handler (linux_nat_event_pipe[0]);
7feb7d06 5437 linux_async_pipe (0);
b84876c2
PA
5438 }
5439 return;
5440}
5441
252fbfc8
PA
5442/* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5443 event came out. */
5444
4c28f408 5445static int
252fbfc8 5446linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4c28f408 5447{
d90e17a7 5448 if (!lwp->stopped)
252fbfc8 5449 {
d90e17a7 5450 ptid_t ptid = lwp->ptid;
252fbfc8 5451
d90e17a7
PA
5452 if (debug_linux_nat)
5453 fprintf_unfiltered (gdb_stdlog,
5454 "LNSL: running -> suspending %s\n",
5455 target_pid_to_str (lwp->ptid));
252fbfc8 5456
252fbfc8 5457
d90e17a7
PA
5458 stop_callback (lwp, NULL);
5459 stop_wait_callback (lwp, NULL);
252fbfc8 5460
d90e17a7
PA
5461 /* If the lwp exits while we try to stop it, there's nothing
5462 else to do. */
5463 lwp = find_lwp_pid (ptid);
5464 if (lwp == NULL)
5465 return 0;
252fbfc8 5466
d90e17a7
PA
5467 /* If we didn't collect any signal other than SIGSTOP while
5468 stopping the LWP, push a SIGNAL_0 event. In either case, the
5469 event-loop will end up calling target_wait which will collect
5470 these. */
5471 if (lwp->status == 0)
5472 lwp->status = W_STOPCODE (0);
5473 async_file_mark ();
5474 }
5475 else
5476 {
5477 /* Already known to be stopped; do nothing. */
252fbfc8 5478
d90e17a7
PA
5479 if (debug_linux_nat)
5480 {
e09875d4 5481 if (find_thread_ptid (lwp->ptid)->stop_requested)
d90e17a7 5482 fprintf_unfiltered (gdb_stdlog, "\
252fbfc8 5483LNSL: already stopped/stop_requested %s\n",
d90e17a7
PA
5484 target_pid_to_str (lwp->ptid));
5485 else
5486 fprintf_unfiltered (gdb_stdlog, "\
252fbfc8 5487LNSL: already stopped/no stop_requested yet %s\n",
d90e17a7 5488 target_pid_to_str (lwp->ptid));
252fbfc8
PA
5489 }
5490 }
4c28f408
PA
5491 return 0;
5492}
5493
5494static void
5495linux_nat_stop (ptid_t ptid)
5496{
5497 if (non_stop)
d90e17a7 5498 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4c28f408
PA
5499 else
5500 linux_ops->to_stop (ptid);
5501}
5502
d90e17a7
PA
5503static void
5504linux_nat_close (int quitting)
5505{
5506 /* Unregister from the event loop. */
5507 if (target_is_async_p ())
5508 target_async (NULL, 0);
5509
5510 /* Reset the async_masking. */
5511 linux_nat_async_mask_value = 1;
5512
5513 if (linux_ops->to_close)
5514 linux_ops->to_close (quitting);
5515}
5516
c0694254
PA
5517/* When requests are passed down from the linux-nat layer to the
5518 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5519 used. The address space pointer is stored in the inferior object,
5520 but the common code that is passed such ptid can't tell whether
5521 lwpid is a "main" process id or not (it assumes so). We reverse
5522 look up the "main" process id from the lwp here. */
5523
5524struct address_space *
5525linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5526{
5527 struct lwp_info *lwp;
5528 struct inferior *inf;
5529 int pid;
5530
5531 pid = GET_LWP (ptid);
5532 if (GET_LWP (ptid) == 0)
5533 {
5534 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5535 tgid. */
5536 lwp = find_lwp_pid (ptid);
5537 pid = GET_PID (lwp->ptid);
5538 }
5539 else
5540 {
5541 /* A (pid,lwpid,0) ptid. */
5542 pid = GET_PID (ptid);
5543 }
5544
5545 inf = find_inferior_pid (pid);
5546 gdb_assert (inf != NULL);
5547 return inf->aspace;
5548}
5549
dc146f7c
VP
5550int
5551linux_nat_core_of_thread_1 (ptid_t ptid)
5552{
5553 struct cleanup *back_to;
5554 char *filename;
5555 FILE *f;
5556 char *content = NULL;
5557 char *p;
5558 char *ts = 0;
5559 int content_read = 0;
5560 int i;
5561 int core;
5562
5563 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5564 GET_PID (ptid), GET_LWP (ptid));
5565 back_to = make_cleanup (xfree, filename);
5566
5567 f = fopen (filename, "r");
5568 if (!f)
5569 {
5570 do_cleanups (back_to);
5571 return -1;
5572 }
5573
5574 make_cleanup_fclose (f);
5575
5576 for (;;)
5577 {
5578 int n;
e0881a8e 5579
dc146f7c
VP
5580 content = xrealloc (content, content_read + 1024);
5581 n = fread (content + content_read, 1, 1024, f);
5582 content_read += n;
5583 if (n < 1024)
5584 {
5585 content[content_read] = '\0';
5586 break;
5587 }
5588 }
5589
5590 make_cleanup (xfree, content);
5591
5592 p = strchr (content, '(');
ca2a87a0
JK
5593
5594 /* Skip ")". */
5595 if (p != NULL)
5596 p = strchr (p, ')');
5597 if (p != NULL)
5598 p++;
dc146f7c
VP
5599
5600 /* If the first field after program name has index 0, then core number is
5601 the field with index 36. There's no constant for that anywhere. */
ca2a87a0
JK
5602 if (p != NULL)
5603 p = strtok_r (p, " ", &ts);
5604 for (i = 0; p != NULL && i != 36; ++i)
dc146f7c
VP
5605 p = strtok_r (NULL, " ", &ts);
5606
ca2a87a0 5607 if (p == NULL || sscanf (p, "%d", &core) == 0)
dc146f7c
VP
5608 core = -1;
5609
5610 do_cleanups (back_to);
5611
5612 return core;
5613}
5614
5615/* Return the cached value of the processor core for thread PTID. */
5616
5617int
5618linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5619{
5620 struct lwp_info *info = find_lwp_pid (ptid);
e0881a8e 5621
dc146f7c
VP
5622 if (info)
5623 return info->core;
5624 return -1;
5625}
5626
f973ed9c
DJ
5627void
5628linux_nat_add_target (struct target_ops *t)
5629{
f973ed9c
DJ
5630 /* Save the provided single-threaded target. We save this in a separate
5631 variable because another target we've inherited from (e.g. inf-ptrace)
5632 may have saved a pointer to T; we want to use it for the final
5633 process stratum target. */
5634 linux_ops_saved = *t;
5635 linux_ops = &linux_ops_saved;
5636
5637 /* Override some methods for multithreading. */
b84876c2 5638 t->to_create_inferior = linux_nat_create_inferior;
f973ed9c
DJ
5639 t->to_attach = linux_nat_attach;
5640 t->to_detach = linux_nat_detach;
5641 t->to_resume = linux_nat_resume;
5642 t->to_wait = linux_nat_wait;
5643 t->to_xfer_partial = linux_nat_xfer_partial;
5644 t->to_kill = linux_nat_kill;
5645 t->to_mourn_inferior = linux_nat_mourn_inferior;
5646 t->to_thread_alive = linux_nat_thread_alive;
5647 t->to_pid_to_str = linux_nat_pid_to_str;
5648 t->to_has_thread_control = tc_schedlock;
c0694254 5649 t->to_thread_address_space = linux_nat_thread_address_space;
ebec9a0f
PA
5650 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5651 t->to_stopped_data_address = linux_nat_stopped_data_address;
f973ed9c 5652
b84876c2
PA
5653 t->to_can_async_p = linux_nat_can_async_p;
5654 t->to_is_async_p = linux_nat_is_async_p;
9908b566 5655 t->to_supports_non_stop = linux_nat_supports_non_stop;
b84876c2
PA
5656 t->to_async = linux_nat_async;
5657 t->to_async_mask = linux_nat_async_mask;
5658 t->to_terminal_inferior = linux_nat_terminal_inferior;
5659 t->to_terminal_ours = linux_nat_terminal_ours;
d90e17a7 5660 t->to_close = linux_nat_close;
b84876c2 5661
4c28f408
PA
5662 /* Methods for non-stop support. */
5663 t->to_stop = linux_nat_stop;
5664
d90e17a7
PA
5665 t->to_supports_multi_process = linux_nat_supports_multi_process;
5666
dc146f7c
VP
5667 t->to_core_of_thread = linux_nat_core_of_thread;
5668
f973ed9c
DJ
5669 /* We don't change the stratum; this target will sit at
5670 process_stratum and thread_db will set at thread_stratum. This
5671 is a little strange, since this is a multi-threaded-capable
5672 target, but we want to be on the stack below thread_db, and we
5673 also want to be used for single-threaded processes. */
5674
5675 add_target (t);
f973ed9c
DJ
5676}
5677
9f0bdab8
DJ
5678/* Register a method to call whenever a new thread is attached. */
5679void
5680linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5681{
5682 /* Save the pointer. We only support a single registered instance
5683 of the GNU/Linux native target, so we do not need to map this to
5684 T. */
5685 linux_nat_new_thread = new_thread;
5686}
5687
5b009018
PA
5688/* Register a method that converts a siginfo object between the layout
5689 that ptrace returns, and the layout in the architecture of the
5690 inferior. */
5691void
5692linux_nat_set_siginfo_fixup (struct target_ops *t,
5693 int (*siginfo_fixup) (struct siginfo *,
5694 gdb_byte *,
5695 int))
5696{
5697 /* Save the pointer. */
5698 linux_nat_siginfo_fixup = siginfo_fixup;
5699}
5700
9f0bdab8
DJ
5701/* Return the saved siginfo associated with PTID. */
5702struct siginfo *
5703linux_nat_get_siginfo (ptid_t ptid)
5704{
5705 struct lwp_info *lp = find_lwp_pid (ptid);
5706
5707 gdb_assert (lp != NULL);
5708
5709 return &lp->siginfo;
5710}
5711
2c0b251b
PA
5712/* Provide a prototype to silence -Wmissing-prototypes. */
5713extern initialize_file_ftype _initialize_linux_nat;
5714
d6b0e80f
AC
5715void
5716_initialize_linux_nat (void)
5717{
1bedd215
AC
5718 add_info ("proc", linux_nat_info_proc_cmd, _("\
5719Show /proc process information about any running process.\n\
dba24537
AC
5720Specify any process id, or use the program being debugged by default.\n\
5721Specify any of the following keywords for detailed info:\n\
5722 mappings -- list of mapped memory regions.\n\
5723 stat -- list a bunch of random process info.\n\
5724 status -- list a different bunch of random process info.\n\
1bedd215 5725 all -- list all available /proc info."));
d6b0e80f 5726
b84876c2
PA
5727 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5728 &debug_linux_nat, _("\
5729Set debugging of GNU/Linux lwp module."), _("\
5730Show debugging of GNU/Linux lwp module."), _("\
5731Enables printf debugging output."),
5732 NULL,
5733 show_debug_linux_nat,
5734 &setdebuglist, &showdebuglist);
5735
5736 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5737 &debug_linux_nat_async, _("\
5738Set debugging of GNU/Linux async lwp module."), _("\
5739Show debugging of GNU/Linux async lwp module."), _("\
5740Enables printf debugging output."),
5741 NULL,
5742 show_debug_linux_nat_async,
5743 &setdebuglist, &showdebuglist);
5744
b84876c2 5745 /* Save this mask as the default. */
d6b0e80f
AC
5746 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5747
7feb7d06
PA
5748 /* Install a SIGCHLD handler. */
5749 sigchld_action.sa_handler = sigchld_handler;
5750 sigemptyset (&sigchld_action.sa_mask);
5751 sigchld_action.sa_flags = SA_RESTART;
b84876c2
PA
5752
5753 /* Make it the default. */
7feb7d06 5754 sigaction (SIGCHLD, &sigchld_action, NULL);
d6b0e80f
AC
5755
5756 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5757 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5758 sigdelset (&suspend_mask, SIGCHLD);
5759
7feb7d06 5760 sigemptyset (&blocked_mask);
10568435
JK
5761
5762 add_setshow_boolean_cmd ("disable-randomization", class_support,
5763 &disable_randomization, _("\
5764Set disabling of debuggee's virtual address space randomization."), _("\
5765Show disabling of debuggee's virtual address space randomization."), _("\
5766When this mode is on (which is the default), randomization of the virtual\n\
5767address space is disabled. Standalone programs run with the randomization\n\
5768enabled by default on some platforms."),
5769 &set_disable_randomization,
5770 &show_disable_randomization,
5771 &setlist, &showlist);
d6b0e80f
AC
5772}
5773\f
5774
5775/* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5776 the GNU/Linux Threads library and therefore doesn't really belong
5777 here. */
5778
5779/* Read variable NAME in the target and return its value if found.
5780 Otherwise return zero. It is assumed that the type of the variable
5781 is `int'. */
5782
5783static int
5784get_signo (const char *name)
5785{
5786 struct minimal_symbol *ms;
5787 int signo;
5788
5789 ms = lookup_minimal_symbol (name, NULL, NULL);
5790 if (ms == NULL)
5791 return 0;
5792
8e70166d 5793 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
d6b0e80f
AC
5794 sizeof (signo)) != 0)
5795 return 0;
5796
5797 return signo;
5798}
5799
5800/* Return the set of signals used by the threads library in *SET. */
5801
5802void
5803lin_thread_get_thread_signals (sigset_t *set)
5804{
5805 struct sigaction action;
5806 int restart, cancel;
5807
b84876c2 5808 sigemptyset (&blocked_mask);
d6b0e80f
AC
5809 sigemptyset (set);
5810
5811 restart = get_signo ("__pthread_sig_restart");
17fbb0bd
DJ
5812 cancel = get_signo ("__pthread_sig_cancel");
5813
5814 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5815 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5816 not provide any way for the debugger to query the signal numbers -
5817 fortunately they don't change! */
5818
d6b0e80f 5819 if (restart == 0)
17fbb0bd 5820 restart = __SIGRTMIN;
d6b0e80f 5821
d6b0e80f 5822 if (cancel == 0)
17fbb0bd 5823 cancel = __SIGRTMIN + 1;
d6b0e80f
AC
5824
5825 sigaddset (set, restart);
5826 sigaddset (set, cancel);
5827
5828 /* The GNU/Linux Threads library makes terminating threads send a
5829 special "cancel" signal instead of SIGCHLD. Make sure we catch
5830 those (to prevent them from terminating GDB itself, which is
5831 likely to be their default action) and treat them the same way as
5832 SIGCHLD. */
5833
5834 action.sa_handler = sigchld_handler;
5835 sigemptyset (&action.sa_mask);
58aecb61 5836 action.sa_flags = SA_RESTART;
d6b0e80f
AC
5837 sigaction (cancel, &action, NULL);
5838
5839 /* We block the "cancel" signal throughout this code ... */
5840 sigaddset (&blocked_mask, cancel);
5841 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5842
5843 /* ... except during a sigsuspend. */
5844 sigdelset (&suspend_mask, cancel);
5845}
This page took 0.904886 seconds and 4 git commands to generate.