gdb:
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
CommitLineData
3993f6b1 1/* GNU/Linux native-dependent code common to multiple platforms.
dba24537 2
0fb0cc75 3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
e26af52f 4 Free Software Foundation, Inc.
3993f6b1
DJ
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
3993f6b1
DJ
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
3993f6b1
DJ
20
21#include "defs.h"
22#include "inferior.h"
23#include "target.h"
d6b0e80f 24#include "gdb_string.h"
3993f6b1 25#include "gdb_wait.h"
d6b0e80f
AC
26#include "gdb_assert.h"
27#ifdef HAVE_TKILL_SYSCALL
28#include <unistd.h>
29#include <sys/syscall.h>
30#endif
3993f6b1 31#include <sys/ptrace.h>
0274a8ce 32#include "linux-nat.h"
ac264b3b 33#include "linux-fork.h"
d6b0e80f
AC
34#include "gdbthread.h"
35#include "gdbcmd.h"
36#include "regcache.h"
4f844a66 37#include "regset.h"
10d6c8cd
DJ
38#include "inf-ptrace.h"
39#include "auxv.h"
dba24537
AC
40#include <sys/param.h> /* for MAXPATHLEN */
41#include <sys/procfs.h> /* for elf_gregset etc. */
42#include "elf-bfd.h" /* for elfcore_write_* */
43#include "gregset.h" /* for gregset */
44#include "gdbcore.h" /* for get_exec_file */
45#include <ctype.h> /* for isdigit */
46#include "gdbthread.h" /* for struct thread_info etc. */
47#include "gdb_stat.h" /* for struct stat */
48#include <fcntl.h> /* for O_RDONLY */
b84876c2
PA
49#include "inf-loop.h"
50#include "event-loop.h"
51#include "event-top.h"
07e059b5
VP
52#include <pwd.h>
53#include <sys/types.h>
54#include "gdb_dirent.h"
55#include "xml-support.h"
191c4426 56#include "terminal.h"
dba24537 57
10568435
JK
58#ifdef HAVE_PERSONALITY
59# include <sys/personality.h>
60# if !HAVE_DECL_ADDR_NO_RANDOMIZE
61# define ADDR_NO_RANDOMIZE 0x0040000
62# endif
63#endif /* HAVE_PERSONALITY */
64
8a77dff3
VP
65/* This comment documents high-level logic of this file.
66
67Waiting for events in sync mode
68===============================
69
70When waiting for an event in a specific thread, we just use waitpid, passing
71the specific pid, and not passing WNOHANG.
72
73When waiting for an event in all threads, waitpid is not quite good. Prior to
74version 2.4, Linux can either wait for event in main thread, or in secondary
75threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
76miss an event. The solution is to use non-blocking waitpid, together with
77sigsuspend. First, we use non-blocking waitpid to get an event in the main
78process, if any. Second, we use non-blocking waitpid with the __WCLONED
79flag to check for events in cloned processes. If nothing is found, we use
80sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
81happened to a child process -- and SIGCHLD will be delivered both for events
82in main debugged process and in cloned processes. As soon as we know there's
83an event, we get back to calling nonblocking waitpid with and without __WCLONED.
84
85Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
86so that we don't miss a signal. If SIGCHLD arrives in between, when it's
87blocked, the signal becomes pending and sigsuspend immediately
88notices it and returns.
89
90Waiting for events in async mode
91================================
92
7feb7d06
PA
93In async mode, GDB should always be ready to handle both user input
94and target events, so neither blocking waitpid nor sigsuspend are
95viable options. Instead, we should asynchronously notify the GDB main
96event loop whenever there's an unprocessed event from the target. We
97detect asynchronous target events by handling SIGCHLD signals. To
98notify the event loop about target events, the self-pipe trick is used
99--- a pipe is registered as waitable event source in the event loop,
100the event loop select/poll's on the read end of this pipe (as well on
101other event sources, e.g., stdin), and the SIGCHLD handler writes a
102byte to this pipe. This is more portable than relying on
103pselect/ppoll, since on kernels that lack those syscalls, libc
104emulates them with select/poll+sigprocmask, and that is racy
105(a.k.a. plain broken).
106
107Obviously, if we fail to notify the event loop if there's a target
108event, it's bad. OTOH, if we notify the event loop when there's no
109event from the target, linux_nat_wait will detect that there's no real
110event to report, and return event of type TARGET_WAITKIND_IGNORE.
111This is mostly harmless, but it will waste time and is better avoided.
112
113The main design point is that every time GDB is outside linux-nat.c,
114we have a SIGCHLD handler installed that is called when something
115happens to the target and notifies the GDB event loop. Whenever GDB
116core decides to handle the event, and calls into linux-nat.c, we
117process things as in sync mode, except that the we never block in
118sigsuspend.
119
120While processing an event, we may end up momentarily blocked in
121waitpid calls. Those waitpid calls, while blocking, are guarantied to
122return quickly. E.g., in all-stop mode, before reporting to the core
123that an LWP hit a breakpoint, all LWPs are stopped by sending them
124SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
125Note that this is different from blocking indefinitely waiting for the
126next event --- here, we're already handling an event.
8a77dff3
VP
127
128Use of signals
129==============
130
131We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
132signal is not entirely significant; we just need for a signal to be delivered,
133so that we can intercept it. SIGSTOP's advantage is that it can not be
134blocked. A disadvantage is that it is not a real-time signal, so it can only
135be queued once; we do not keep track of other sources of SIGSTOP.
136
137Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
138use them, because they have special behavior when the signal is generated -
139not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
140kills the entire thread group.
141
142A delivered SIGSTOP would stop the entire thread group, not just the thread we
143tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
144cancel it (by PTRACE_CONT without passing SIGSTOP).
145
146We could use a real-time signal instead. This would solve those problems; we
147could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
148But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
149generates it, and there are races with trying to find a signal that is not
150blocked. */
a0ef4274 151
dba24537
AC
152#ifndef O_LARGEFILE
153#define O_LARGEFILE 0
154#endif
0274a8ce 155
3993f6b1
DJ
156/* If the system headers did not provide the constants, hard-code the normal
157 values. */
158#ifndef PTRACE_EVENT_FORK
159
160#define PTRACE_SETOPTIONS 0x4200
161#define PTRACE_GETEVENTMSG 0x4201
162
163/* options set using PTRACE_SETOPTIONS */
164#define PTRACE_O_TRACESYSGOOD 0x00000001
165#define PTRACE_O_TRACEFORK 0x00000002
166#define PTRACE_O_TRACEVFORK 0x00000004
167#define PTRACE_O_TRACECLONE 0x00000008
168#define PTRACE_O_TRACEEXEC 0x00000010
9016a515
DJ
169#define PTRACE_O_TRACEVFORKDONE 0x00000020
170#define PTRACE_O_TRACEEXIT 0x00000040
3993f6b1
DJ
171
172/* Wait extended result codes for the above trace options. */
173#define PTRACE_EVENT_FORK 1
174#define PTRACE_EVENT_VFORK 2
175#define PTRACE_EVENT_CLONE 3
176#define PTRACE_EVENT_EXEC 4
c874c7fc 177#define PTRACE_EVENT_VFORK_DONE 5
9016a515 178#define PTRACE_EVENT_EXIT 6
3993f6b1
DJ
179
180#endif /* PTRACE_EVENT_FORK */
181
182/* We can't always assume that this flag is available, but all systems
183 with the ptrace event handlers also have __WALL, so it's safe to use
184 here. */
185#ifndef __WALL
186#define __WALL 0x40000000 /* Wait for any child. */
187#endif
188
02d3ff8c 189#ifndef PTRACE_GETSIGINFO
1ef18d08
PA
190# define PTRACE_GETSIGINFO 0x4202
191# define PTRACE_SETSIGINFO 0x4203
02d3ff8c
UW
192#endif
193
10d6c8cd
DJ
194/* The single-threaded native GNU/Linux target_ops. We save a pointer for
195 the use of the multi-threaded target. */
196static struct target_ops *linux_ops;
f973ed9c 197static struct target_ops linux_ops_saved;
10d6c8cd 198
9f0bdab8
DJ
199/* The method to call, if any, when a new thread is attached. */
200static void (*linux_nat_new_thread) (ptid_t);
201
5b009018
PA
202/* The method to call, if any, when the siginfo object needs to be
203 converted between the layout returned by ptrace, and the layout in
204 the architecture of the inferior. */
205static int (*linux_nat_siginfo_fixup) (struct siginfo *,
206 gdb_byte *,
207 int);
208
ac264b3b
MS
209/* The saved to_xfer_partial method, inherited from inf-ptrace.c.
210 Called by our to_xfer_partial. */
211static LONGEST (*super_xfer_partial) (struct target_ops *,
212 enum target_object,
213 const char *, gdb_byte *,
214 const gdb_byte *,
10d6c8cd
DJ
215 ULONGEST, LONGEST);
216
d6b0e80f 217static int debug_linux_nat;
920d2a44
AC
218static void
219show_debug_linux_nat (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221{
222 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
223 value);
224}
d6b0e80f 225
b84876c2
PA
226static int debug_linux_nat_async = 0;
227static void
228show_debug_linux_nat_async (struct ui_file *file, int from_tty,
229 struct cmd_list_element *c, const char *value)
230{
231 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
232 value);
233}
234
10568435
JK
235static int disable_randomization = 1;
236
237static void
238show_disable_randomization (struct ui_file *file, int from_tty,
239 struct cmd_list_element *c, const char *value)
240{
241#ifdef HAVE_PERSONALITY
242 fprintf_filtered (file, _("\
243Disabling randomization of debuggee's virtual address space is %s.\n"),
244 value);
245#else /* !HAVE_PERSONALITY */
246 fputs_filtered (_("\
247Disabling randomization of debuggee's virtual address space is unsupported on\n\
248this platform.\n"), file);
249#endif /* !HAVE_PERSONALITY */
250}
251
252static void
253set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
254{
255#ifndef HAVE_PERSONALITY
256 error (_("\
257Disabling randomization of debuggee's virtual address space is unsupported on\n\
258this platform."));
259#endif /* !HAVE_PERSONALITY */
260}
261
9016a515
DJ
262static int linux_parent_pid;
263
ae087d01
DJ
264struct simple_pid_list
265{
266 int pid;
3d799a95 267 int status;
ae087d01
DJ
268 struct simple_pid_list *next;
269};
270struct simple_pid_list *stopped_pids;
271
3993f6b1
DJ
272/* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
273 can not be used, 1 if it can. */
274
275static int linux_supports_tracefork_flag = -1;
276
9016a515
DJ
277/* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
278 PTRACE_O_TRACEVFORKDONE. */
279
280static int linux_supports_tracevforkdone_flag = -1;
281
b84876c2
PA
282/* Async mode support */
283
b84876c2
PA
284/* Zero if the async mode, although enabled, is masked, which means
285 linux_nat_wait should behave as if async mode was off. */
286static int linux_nat_async_mask_value = 1;
287
288/* The read/write ends of the pipe registered as waitable file in the
289 event loop. */
290static int linux_nat_event_pipe[2] = { -1, -1 };
291
7feb7d06 292/* Flush the event pipe. */
b84876c2 293
7feb7d06
PA
294static void
295async_file_flush (void)
b84876c2 296{
7feb7d06
PA
297 int ret;
298 char buf;
b84876c2 299
7feb7d06 300 do
b84876c2 301 {
7feb7d06 302 ret = read (linux_nat_event_pipe[0], &buf, 1);
b84876c2 303 }
7feb7d06 304 while (ret >= 0 || (ret == -1 && errno == EINTR));
b84876c2
PA
305}
306
7feb7d06
PA
307/* Put something (anything, doesn't matter what, or how much) in event
308 pipe, so that the select/poll in the event-loop realizes we have
309 something to process. */
252fbfc8 310
b84876c2 311static void
7feb7d06 312async_file_mark (void)
b84876c2 313{
7feb7d06 314 int ret;
b84876c2 315
7feb7d06
PA
316 /* It doesn't really matter what the pipe contains, as long we end
317 up with something in it. Might as well flush the previous
318 left-overs. */
319 async_file_flush ();
b84876c2 320
7feb7d06 321 do
b84876c2 322 {
7feb7d06 323 ret = write (linux_nat_event_pipe[1], "+", 1);
b84876c2 324 }
7feb7d06 325 while (ret == -1 && errno == EINTR);
b84876c2 326
7feb7d06
PA
327 /* Ignore EAGAIN. If the pipe is full, the event loop will already
328 be awakened anyway. */
b84876c2
PA
329}
330
7feb7d06
PA
331static void linux_nat_async (void (*callback)
332 (enum inferior_event_type event_type, void *context),
333 void *context);
334static int linux_nat_async_mask (int mask);
335static int kill_lwp (int lwpid, int signo);
336
337static int stop_callback (struct lwp_info *lp, void *data);
338
339static void block_child_signals (sigset_t *prev_mask);
340static void restore_child_signals_mask (sigset_t *prev_mask);
ae087d01
DJ
341\f
342/* Trivial list manipulation functions to keep track of a list of
343 new stopped processes. */
344static void
3d799a95 345add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
ae087d01
DJ
346{
347 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
348 new_pid->pid = pid;
3d799a95 349 new_pid->status = status;
ae087d01
DJ
350 new_pid->next = *listp;
351 *listp = new_pid;
352}
353
354static int
3d799a95 355pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
ae087d01
DJ
356{
357 struct simple_pid_list **p;
358
359 for (p = listp; *p != NULL; p = &(*p)->next)
360 if ((*p)->pid == pid)
361 {
362 struct simple_pid_list *next = (*p)->next;
3d799a95 363 *status = (*p)->status;
ae087d01
DJ
364 xfree (*p);
365 *p = next;
366 return 1;
367 }
368 return 0;
369}
370
3d799a95
DJ
371static void
372linux_record_stopped_pid (int pid, int status)
ae087d01 373{
3d799a95 374 add_to_pid_list (&stopped_pids, pid, status);
ae087d01
DJ
375}
376
3993f6b1
DJ
377\f
378/* A helper function for linux_test_for_tracefork, called after fork (). */
379
380static void
381linux_tracefork_child (void)
382{
383 int ret;
384
385 ptrace (PTRACE_TRACEME, 0, 0, 0);
386 kill (getpid (), SIGSTOP);
387 fork ();
48bb3cce 388 _exit (0);
3993f6b1
DJ
389}
390
7feb7d06 391/* Wrapper function for waitpid which handles EINTR. */
b957e937
DJ
392
393static int
394my_waitpid (int pid, int *status, int flags)
395{
396 int ret;
b84876c2 397
b957e937
DJ
398 do
399 {
400 ret = waitpid (pid, status, flags);
401 }
402 while (ret == -1 && errno == EINTR);
403
404 return ret;
405}
406
407/* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
408
409 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
410 we know that the feature is not available. This may change the tracing
411 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
412
413 However, if it succeeds, we don't know for sure that the feature is
414 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
3993f6b1 415 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
b957e937
DJ
416 fork tracing, and let it fork. If the process exits, we assume that we
417 can't use TRACEFORK; if we get the fork notification, and we can extract
418 the new child's PID, then we assume that we can. */
3993f6b1
DJ
419
420static void
b957e937 421linux_test_for_tracefork (int original_pid)
3993f6b1
DJ
422{
423 int child_pid, ret, status;
424 long second_pid;
7feb7d06 425 sigset_t prev_mask;
4c28f408 426
7feb7d06
PA
427 /* We don't want those ptrace calls to be interrupted. */
428 block_child_signals (&prev_mask);
3993f6b1 429
b957e937
DJ
430 linux_supports_tracefork_flag = 0;
431 linux_supports_tracevforkdone_flag = 0;
432
433 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
434 if (ret != 0)
7feb7d06
PA
435 {
436 restore_child_signals_mask (&prev_mask);
437 return;
438 }
b957e937 439
3993f6b1
DJ
440 child_pid = fork ();
441 if (child_pid == -1)
e2e0b3e5 442 perror_with_name (("fork"));
3993f6b1
DJ
443
444 if (child_pid == 0)
445 linux_tracefork_child ();
446
b957e937 447 ret = my_waitpid (child_pid, &status, 0);
3993f6b1 448 if (ret == -1)
e2e0b3e5 449 perror_with_name (("waitpid"));
3993f6b1 450 else if (ret != child_pid)
8a3fe4f8 451 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
3993f6b1 452 if (! WIFSTOPPED (status))
8a3fe4f8 453 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
3993f6b1 454
3993f6b1
DJ
455 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
456 if (ret != 0)
457 {
b957e937
DJ
458 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
459 if (ret != 0)
460 {
8a3fe4f8 461 warning (_("linux_test_for_tracefork: failed to kill child"));
7feb7d06 462 restore_child_signals_mask (&prev_mask);
b957e937
DJ
463 return;
464 }
465
466 ret = my_waitpid (child_pid, &status, 0);
467 if (ret != child_pid)
8a3fe4f8 468 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
b957e937 469 else if (!WIFSIGNALED (status))
8a3fe4f8
AC
470 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
471 "killed child"), status);
b957e937 472
7feb7d06 473 restore_child_signals_mask (&prev_mask);
3993f6b1
DJ
474 return;
475 }
476
9016a515
DJ
477 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
478 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
479 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
480 linux_supports_tracevforkdone_flag = (ret == 0);
481
b957e937
DJ
482 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
483 if (ret != 0)
8a3fe4f8 484 warning (_("linux_test_for_tracefork: failed to resume child"));
b957e937
DJ
485
486 ret = my_waitpid (child_pid, &status, 0);
487
3993f6b1
DJ
488 if (ret == child_pid && WIFSTOPPED (status)
489 && status >> 16 == PTRACE_EVENT_FORK)
490 {
491 second_pid = 0;
492 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
493 if (ret == 0 && second_pid != 0)
494 {
495 int second_status;
496
497 linux_supports_tracefork_flag = 1;
b957e937
DJ
498 my_waitpid (second_pid, &second_status, 0);
499 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
500 if (ret != 0)
8a3fe4f8 501 warning (_("linux_test_for_tracefork: failed to kill second child"));
97725dc4 502 my_waitpid (second_pid, &status, 0);
3993f6b1
DJ
503 }
504 }
b957e937 505 else
8a3fe4f8
AC
506 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
507 "(%d, status 0x%x)"), ret, status);
3993f6b1 508
b957e937
DJ
509 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
510 if (ret != 0)
8a3fe4f8 511 warning (_("linux_test_for_tracefork: failed to kill child"));
b957e937 512 my_waitpid (child_pid, &status, 0);
4c28f408 513
7feb7d06 514 restore_child_signals_mask (&prev_mask);
3993f6b1
DJ
515}
516
517/* Return non-zero iff we have tracefork functionality available.
518 This function also sets linux_supports_tracefork_flag. */
519
520static int
b957e937 521linux_supports_tracefork (int pid)
3993f6b1
DJ
522{
523 if (linux_supports_tracefork_flag == -1)
b957e937 524 linux_test_for_tracefork (pid);
3993f6b1
DJ
525 return linux_supports_tracefork_flag;
526}
527
9016a515 528static int
b957e937 529linux_supports_tracevforkdone (int pid)
9016a515
DJ
530{
531 if (linux_supports_tracefork_flag == -1)
b957e937 532 linux_test_for_tracefork (pid);
9016a515
DJ
533 return linux_supports_tracevforkdone_flag;
534}
535
3993f6b1 536\f
4de4c07c
DJ
537void
538linux_enable_event_reporting (ptid_t ptid)
539{
d3587048 540 int pid = ptid_get_lwp (ptid);
4de4c07c
DJ
541 int options;
542
d3587048
DJ
543 if (pid == 0)
544 pid = ptid_get_pid (ptid);
545
b957e937 546 if (! linux_supports_tracefork (pid))
4de4c07c
DJ
547 return;
548
a2f23071
DJ
549 options = PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACEEXEC
550 | PTRACE_O_TRACECLONE;
b957e937 551 if (linux_supports_tracevforkdone (pid))
9016a515
DJ
552 options |= PTRACE_O_TRACEVFORKDONE;
553
554 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
555 read-only process state. */
4de4c07c
DJ
556
557 ptrace (PTRACE_SETOPTIONS, pid, 0, options);
558}
559
6d8fd2b7
UW
560static void
561linux_child_post_attach (int pid)
4de4c07c
DJ
562{
563 linux_enable_event_reporting (pid_to_ptid (pid));
0ec9a092 564 check_for_thread_db ();
4de4c07c
DJ
565}
566
10d6c8cd 567static void
4de4c07c
DJ
568linux_child_post_startup_inferior (ptid_t ptid)
569{
570 linux_enable_event_reporting (ptid);
0ec9a092 571 check_for_thread_db ();
4de4c07c
DJ
572}
573
6d8fd2b7
UW
574static int
575linux_child_follow_fork (struct target_ops *ops, int follow_child)
3993f6b1 576{
7feb7d06 577 sigset_t prev_mask;
9016a515 578 int has_vforked;
4de4c07c
DJ
579 int parent_pid, child_pid;
580
7feb7d06 581 block_child_signals (&prev_mask);
b84876c2 582
e58b0e63
PA
583 has_vforked = (inferior_thread ()->pending_follow.kind
584 == TARGET_WAITKIND_VFORKED);
585 parent_pid = ptid_get_lwp (inferior_ptid);
d3587048 586 if (parent_pid == 0)
e58b0e63
PA
587 parent_pid = ptid_get_pid (inferior_ptid);
588 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
4de4c07c
DJ
589
590 if (! follow_child)
591 {
592 /* We're already attached to the parent, by default. */
593
594 /* Before detaching from the child, remove all breakpoints from
b242c3c2
PA
595 it. If we forked, then this has already been taken care of
596 by infrun.c. If we vforked however, any breakpoint inserted
597 in the parent is visible in the child, even those added while
598 stopped in a vfork catchpoint. This won't actually modify
599 the breakpoint list, but will physically remove the
600 breakpoints from the child. This will remove the breakpoints
601 from the parent also, but they'll be reinserted below. */
602 if (has_vforked)
603 detach_breakpoints (child_pid);
4de4c07c 604
ac264b3b
MS
605 /* Detach new forked process? */
606 if (detach_fork)
f75c00e4 607 {
e85a822c 608 if (info_verbose || debug_linux_nat)
ac264b3b
MS
609 {
610 target_terminal_ours ();
611 fprintf_filtered (gdb_stdlog,
612 "Detaching after fork from child process %d.\n",
613 child_pid);
614 }
4de4c07c 615
ac264b3b
MS
616 ptrace (PTRACE_DETACH, child_pid, 0, 0);
617 }
618 else
619 {
620 struct fork_info *fp;
77435e4c 621 struct inferior *parent_inf, *child_inf;
7f9f62ba
PA
622
623 /* Add process to GDB's tables. */
77435e4c
PA
624 child_inf = add_inferior (child_pid);
625
e58b0e63 626 parent_inf = current_inferior ();
77435e4c 627 child_inf->attach_flag = parent_inf->attach_flag;
191c4426 628 copy_terminal_info (child_inf, parent_inf);
7f9f62ba 629
ac264b3b
MS
630 /* Retain child fork in ptrace (stopped) state. */
631 fp = find_fork_pid (child_pid);
632 if (!fp)
633 fp = add_fork (child_pid);
634 fork_save_infrun_state (fp, 0);
635 }
9016a515
DJ
636
637 if (has_vforked)
638 {
b957e937
DJ
639 gdb_assert (linux_supports_tracefork_flag >= 0);
640 if (linux_supports_tracevforkdone (0))
9016a515
DJ
641 {
642 int status;
643
644 ptrace (PTRACE_CONT, parent_pid, 0, 0);
58aecb61 645 my_waitpid (parent_pid, &status, __WALL);
c874c7fc 646 if ((status >> 16) != PTRACE_EVENT_VFORK_DONE)
8a3fe4f8
AC
647 warning (_("Unexpected waitpid result %06x when waiting for "
648 "vfork-done"), status);
9016a515
DJ
649 }
650 else
651 {
652 /* We can't insert breakpoints until the child has
653 finished with the shared memory region. We need to
654 wait until that happens. Ideal would be to just
655 call:
656 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
657 - waitpid (parent_pid, &status, __WALL);
658 However, most architectures can't handle a syscall
659 being traced on the way out if it wasn't traced on
660 the way in.
661
662 We might also think to loop, continuing the child
663 until it exits or gets a SIGTRAP. One problem is
664 that the child might call ptrace with PTRACE_TRACEME.
665
666 There's no simple and reliable way to figure out when
667 the vforked child will be done with its copy of the
668 shared memory. We could step it out of the syscall,
669 two instructions, let it go, and then single-step the
670 parent once. When we have hardware single-step, this
671 would work; with software single-step it could still
672 be made to work but we'd have to be able to insert
673 single-step breakpoints in the child, and we'd have
674 to insert -just- the single-step breakpoint in the
675 parent. Very awkward.
676
677 In the end, the best we can do is to make sure it
678 runs for a little while. Hopefully it will be out of
679 range of any breakpoints we reinsert. Usually this
680 is only the single-step breakpoint at vfork's return
681 point. */
682
683 usleep (10000);
684 }
685
686 /* Since we vforked, breakpoints were removed in the parent
687 too. Put them back. */
688 reattach_breakpoints (parent_pid);
689 }
4de4c07c 690 }
3993f6b1 691 else
4de4c07c 692 {
4e1c45ea 693 struct thread_info *tp;
77435e4c 694 struct inferior *parent_inf, *child_inf;
4de4c07c 695
4de4c07c
DJ
696 /* Before detaching from the parent, remove all breakpoints from it. */
697 remove_breakpoints ();
698
e85a822c 699 if (info_verbose || debug_linux_nat)
f75c00e4
DJ
700 {
701 target_terminal_ours ();
ac264b3b
MS
702 fprintf_filtered (gdb_stdlog,
703 "Attaching after fork to child process %d.\n",
704 child_pid);
f75c00e4 705 }
4de4c07c 706
7a7d3353
PA
707 /* Add the new inferior first, so that the target_detach below
708 doesn't unpush the target. */
709
77435e4c
PA
710 child_inf = add_inferior (child_pid);
711
e58b0e63 712 parent_inf = current_inferior ();
77435e4c 713 child_inf->attach_flag = parent_inf->attach_flag;
191c4426 714 copy_terminal_info (child_inf, parent_inf);
7a7d3353 715
9016a515
DJ
716 /* If we're vforking, we may want to hold on to the parent until
717 the child exits or execs. At exec time we can remove the old
718 breakpoints from the parent and detach it; at exit time we
719 could do the same (or even, sneakily, resume debugging it - the
720 child's exec has failed, or something similar).
721
722 This doesn't clean up "properly", because we can't call
723 target_detach, but that's OK; if the current target is "child",
724 then it doesn't need any further cleanups, and lin_lwp will
725 generally not encounter vfork (vfork is defined to fork
726 in libpthread.so).
727
728 The holding part is very easy if we have VFORKDONE events;
729 but keeping track of both processes is beyond GDB at the
730 moment. So we don't expose the parent to the rest of GDB.
731 Instead we quietly hold onto it until such time as we can
732 safely resume it. */
733
734 if (has_vforked)
7f9f62ba
PA
735 {
736 linux_parent_pid = parent_pid;
737 detach_inferior (parent_pid);
738 }
ac264b3b
MS
739 else if (!detach_fork)
740 {
741 struct fork_info *fp;
742 /* Retain parent fork in ptrace (stopped) state. */
743 fp = find_fork_pid (parent_pid);
744 if (!fp)
745 fp = add_fork (parent_pid);
746 fork_save_infrun_state (fp, 0);
0d14fc63
PA
747
748 /* Also add an entry for the child fork. */
749 fp = find_fork_pid (child_pid);
750 if (!fp)
751 fp = add_fork (child_pid);
752 fork_save_infrun_state (fp, 0);
ac264b3b 753 }
9016a515 754 else
b84876c2 755 target_detach (NULL, 0);
4de4c07c 756
9f0bdab8 757 inferior_ptid = ptid_build (child_pid, child_pid, 0);
ac264b3b 758
9f0bdab8 759 linux_nat_switch_fork (inferior_ptid);
ef29ce1a 760 check_for_thread_db ();
4de4c07c
DJ
761 }
762
7feb7d06 763 restore_child_signals_mask (&prev_mask);
4de4c07c
DJ
764 return 0;
765}
766
4de4c07c 767\f
6d8fd2b7
UW
768static void
769linux_child_insert_fork_catchpoint (int pid)
4de4c07c 770{
b957e937 771 if (! linux_supports_tracefork (pid))
8a3fe4f8 772 error (_("Your system does not support fork catchpoints."));
3993f6b1
DJ
773}
774
6d8fd2b7
UW
775static void
776linux_child_insert_vfork_catchpoint (int pid)
3993f6b1 777{
b957e937 778 if (!linux_supports_tracefork (pid))
8a3fe4f8 779 error (_("Your system does not support vfork catchpoints."));
3993f6b1
DJ
780}
781
6d8fd2b7
UW
782static void
783linux_child_insert_exec_catchpoint (int pid)
3993f6b1 784{
b957e937 785 if (!linux_supports_tracefork (pid))
8a3fe4f8 786 error (_("Your system does not support exec catchpoints."));
3993f6b1
DJ
787}
788
d6b0e80f
AC
789/* On GNU/Linux there are no real LWP's. The closest thing to LWP's
790 are processes sharing the same VM space. A multi-threaded process
791 is basically a group of such processes. However, such a grouping
792 is almost entirely a user-space issue; the kernel doesn't enforce
793 such a grouping at all (this might change in the future). In
794 general, we'll rely on the threads library (i.e. the GNU/Linux
795 Threads library) to provide such a grouping.
796
797 It is perfectly well possible to write a multi-threaded application
798 without the assistance of a threads library, by using the clone
799 system call directly. This module should be able to give some
800 rudimentary support for debugging such applications if developers
801 specify the CLONE_PTRACE flag in the clone system call, and are
802 using the Linux kernel 2.4 or above.
803
804 Note that there are some peculiarities in GNU/Linux that affect
805 this code:
806
807 - In general one should specify the __WCLONE flag to waitpid in
808 order to make it report events for any of the cloned processes
809 (and leave it out for the initial process). However, if a cloned
810 process has exited the exit status is only reported if the
811 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
812 we cannot use it since GDB must work on older systems too.
813
814 - When a traced, cloned process exits and is waited for by the
815 debugger, the kernel reassigns it to the original parent and
816 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
817 library doesn't notice this, which leads to the "zombie problem":
818 When debugged a multi-threaded process that spawns a lot of
819 threads will run out of processes, even if the threads exit,
820 because the "zombies" stay around. */
821
822/* List of known LWPs. */
9f0bdab8 823struct lwp_info *lwp_list;
d6b0e80f
AC
824\f
825
d6b0e80f
AC
826/* Original signal mask. */
827static sigset_t normal_mask;
828
829/* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
830 _initialize_linux_nat. */
831static sigset_t suspend_mask;
832
7feb7d06
PA
833/* Signals to block to make that sigsuspend work. */
834static sigset_t blocked_mask;
835
836/* SIGCHLD action. */
837struct sigaction sigchld_action;
b84876c2 838
7feb7d06
PA
839/* Block child signals (SIGCHLD and linux threads signals), and store
840 the previous mask in PREV_MASK. */
84e46146 841
7feb7d06
PA
842static void
843block_child_signals (sigset_t *prev_mask)
844{
845 /* Make sure SIGCHLD is blocked. */
846 if (!sigismember (&blocked_mask, SIGCHLD))
847 sigaddset (&blocked_mask, SIGCHLD);
848
849 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
850}
851
852/* Restore child signals mask, previously returned by
853 block_child_signals. */
854
855static void
856restore_child_signals_mask (sigset_t *prev_mask)
857{
858 sigprocmask (SIG_SETMASK, prev_mask, NULL);
859}
d6b0e80f
AC
860\f
861
862/* Prototypes for local functions. */
863static int stop_wait_callback (struct lwp_info *lp, void *data);
28439f5e 864static int linux_thread_alive (ptid_t ptid);
6d8fd2b7 865static char *linux_child_pid_to_exec_file (int pid);
710151dd
PA
866static int cancel_breakpoint (struct lwp_info *lp);
867
d6b0e80f
AC
868\f
869/* Convert wait status STATUS to a string. Used for printing debug
870 messages only. */
871
872static char *
873status_to_str (int status)
874{
875 static char buf[64];
876
877 if (WIFSTOPPED (status))
878 snprintf (buf, sizeof (buf), "%s (stopped)",
879 strsignal (WSTOPSIG (status)));
880 else if (WIFSIGNALED (status))
881 snprintf (buf, sizeof (buf), "%s (terminated)",
882 strsignal (WSTOPSIG (status)));
883 else
884 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
885
886 return buf;
887}
888
889/* Initialize the list of LWPs. Note that this module, contrary to
890 what GDB's generic threads layer does for its thread list,
891 re-initializes the LWP lists whenever we mourn or detach (which
892 doesn't involve mourning) the inferior. */
893
894static void
895init_lwp_list (void)
896{
897 struct lwp_info *lp, *lpnext;
898
899 for (lp = lwp_list; lp; lp = lpnext)
900 {
901 lpnext = lp->next;
902 xfree (lp);
903 }
904
905 lwp_list = NULL;
d90e17a7
PA
906}
907
908/* Remove all LWPs belong to PID from the lwp list. */
909
910static void
911purge_lwp_list (int pid)
912{
913 struct lwp_info *lp, *lpprev, *lpnext;
914
915 lpprev = NULL;
916
917 for (lp = lwp_list; lp; lp = lpnext)
918 {
919 lpnext = lp->next;
920
921 if (ptid_get_pid (lp->ptid) == pid)
922 {
923 if (lp == lwp_list)
924 lwp_list = lp->next;
925 else
926 lpprev->next = lp->next;
927
928 xfree (lp);
929 }
930 else
931 lpprev = lp;
932 }
933}
934
935/* Return the number of known LWPs in the tgid given by PID. */
936
937static int
938num_lwps (int pid)
939{
940 int count = 0;
941 struct lwp_info *lp;
942
943 for (lp = lwp_list; lp; lp = lp->next)
944 if (ptid_get_pid (lp->ptid) == pid)
945 count++;
946
947 return count;
d6b0e80f
AC
948}
949
f973ed9c 950/* Add the LWP specified by PID to the list. Return a pointer to the
9f0bdab8
DJ
951 structure describing the new LWP. The LWP should already be stopped
952 (with an exception for the very first LWP). */
d6b0e80f
AC
953
954static struct lwp_info *
955add_lwp (ptid_t ptid)
956{
957 struct lwp_info *lp;
958
959 gdb_assert (is_lwp (ptid));
960
961 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
962
963 memset (lp, 0, sizeof (struct lwp_info));
964
965 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
966
967 lp->ptid = ptid;
968
969 lp->next = lwp_list;
970 lwp_list = lp;
d6b0e80f 971
d90e17a7 972 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
9f0bdab8
DJ
973 linux_nat_new_thread (ptid);
974
d6b0e80f
AC
975 return lp;
976}
977
978/* Remove the LWP specified by PID from the list. */
979
980static void
981delete_lwp (ptid_t ptid)
982{
983 struct lwp_info *lp, *lpprev;
984
985 lpprev = NULL;
986
987 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
988 if (ptid_equal (lp->ptid, ptid))
989 break;
990
991 if (!lp)
992 return;
993
d6b0e80f
AC
994 if (lpprev)
995 lpprev->next = lp->next;
996 else
997 lwp_list = lp->next;
998
999 xfree (lp);
1000}
1001
1002/* Return a pointer to the structure describing the LWP corresponding
1003 to PID. If no corresponding LWP could be found, return NULL. */
1004
1005static struct lwp_info *
1006find_lwp_pid (ptid_t ptid)
1007{
1008 struct lwp_info *lp;
1009 int lwp;
1010
1011 if (is_lwp (ptid))
1012 lwp = GET_LWP (ptid);
1013 else
1014 lwp = GET_PID (ptid);
1015
1016 for (lp = lwp_list; lp; lp = lp->next)
1017 if (lwp == GET_LWP (lp->ptid))
1018 return lp;
1019
1020 return NULL;
1021}
1022
d90e17a7
PA
1023/* Returns true if PTID matches filter FILTER. FILTER can be the wild
1024 card MINUS_ONE_PTID (all ptid match it); can be a ptid representing
1025 a process (ptid_is_pid returns true), in which case, all lwps of
1026 that give process match, lwps of other process do not; or, it can
1027 represent a specific thread, in which case, only that thread will
1028 match true. PTID must represent an LWP, it can never be a wild
1029 card. */
1030
1031static int
1032ptid_match (ptid_t ptid, ptid_t filter)
1033{
1034 /* Since both parameters have the same type, prevent easy mistakes
1035 from happening. */
1036 gdb_assert (!ptid_equal (ptid, minus_one_ptid)
1037 && !ptid_equal (ptid, null_ptid));
1038
1039 if (ptid_equal (filter, minus_one_ptid))
1040 return 1;
1041 if (ptid_is_pid (filter)
1042 && ptid_get_pid (ptid) == ptid_get_pid (filter))
1043 return 1;
1044 else if (ptid_equal (ptid, filter))
1045 return 1;
1046
1047 return 0;
1048}
1049
d6b0e80f
AC
1050/* Call CALLBACK with its second argument set to DATA for every LWP in
1051 the list. If CALLBACK returns 1 for a particular LWP, return a
1052 pointer to the structure describing that LWP immediately.
1053 Otherwise return NULL. */
1054
1055struct lwp_info *
d90e17a7
PA
1056iterate_over_lwps (ptid_t filter,
1057 int (*callback) (struct lwp_info *, void *),
1058 void *data)
d6b0e80f
AC
1059{
1060 struct lwp_info *lp, *lpnext;
1061
1062 for (lp = lwp_list; lp; lp = lpnext)
1063 {
1064 lpnext = lp->next;
d90e17a7
PA
1065
1066 if (ptid_match (lp->ptid, filter))
1067 {
1068 if ((*callback) (lp, data))
1069 return lp;
1070 }
d6b0e80f
AC
1071 }
1072
1073 return NULL;
1074}
1075
f973ed9c
DJ
1076/* Update our internal state when changing from one fork (checkpoint,
1077 et cetera) to another indicated by NEW_PTID. We can only switch
1078 single-threaded applications, so we only create one new LWP, and
1079 the previous list is discarded. */
1080
1081void
1082linux_nat_switch_fork (ptid_t new_ptid)
1083{
1084 struct lwp_info *lp;
1085
1086 init_lwp_list ();
1087 lp = add_lwp (new_ptid);
1088 lp->stopped = 1;
e26af52f 1089
4f8d22e3
PA
1090 init_thread_list ();
1091 add_thread_silent (new_ptid);
e26af52f
DJ
1092}
1093
e26af52f
DJ
1094/* Handle the exit of a single thread LP. */
1095
1096static void
1097exit_lwp (struct lwp_info *lp)
1098{
e09875d4 1099 struct thread_info *th = find_thread_ptid (lp->ptid);
063bfe2e
VP
1100
1101 if (th)
e26af52f 1102 {
17faa917
DJ
1103 if (print_thread_events)
1104 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1105
4f8d22e3 1106 delete_thread (lp->ptid);
e26af52f
DJ
1107 }
1108
1109 delete_lwp (lp->ptid);
1110}
1111
4d062f1a
PA
1112/* Return an lwp's tgid, found in `/proc/PID/status'. */
1113
1114int
1115linux_proc_get_tgid (int lwpid)
1116{
1117 FILE *status_file;
1118 char buf[100];
1119 int tgid = -1;
1120
1121 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1122 status_file = fopen (buf, "r");
1123 if (status_file != NULL)
1124 {
1125 while (fgets (buf, sizeof (buf), status_file))
1126 {
1127 if (strncmp (buf, "Tgid:", 5) == 0)
1128 {
1129 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1130 break;
1131 }
1132 }
1133
1134 fclose (status_file);
1135 }
1136
1137 return tgid;
1138}
1139
a0ef4274
DJ
1140/* Detect `T (stopped)' in `/proc/PID/status'.
1141 Other states including `T (tracing stop)' are reported as false. */
1142
1143static int
1144pid_is_stopped (pid_t pid)
1145{
1146 FILE *status_file;
1147 char buf[100];
1148 int retval = 0;
1149
1150 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1151 status_file = fopen (buf, "r");
1152 if (status_file != NULL)
1153 {
1154 int have_state = 0;
1155
1156 while (fgets (buf, sizeof (buf), status_file))
1157 {
1158 if (strncmp (buf, "State:", 6) == 0)
1159 {
1160 have_state = 1;
1161 break;
1162 }
1163 }
1164 if (have_state && strstr (buf, "T (stopped)") != NULL)
1165 retval = 1;
1166 fclose (status_file);
1167 }
1168 return retval;
1169}
1170
1171/* Wait for the LWP specified by LP, which we have just attached to.
1172 Returns a wait status for that LWP, to cache. */
1173
1174static int
1175linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1176 int *signalled)
1177{
1178 pid_t new_pid, pid = GET_LWP (ptid);
1179 int status;
1180
1181 if (pid_is_stopped (pid))
1182 {
1183 if (debug_linux_nat)
1184 fprintf_unfiltered (gdb_stdlog,
1185 "LNPAW: Attaching to a stopped process\n");
1186
1187 /* The process is definitely stopped. It is in a job control
1188 stop, unless the kernel predates the TASK_STOPPED /
1189 TASK_TRACED distinction, in which case it might be in a
1190 ptrace stop. Make sure it is in a ptrace stop; from there we
1191 can kill it, signal it, et cetera.
1192
1193 First make sure there is a pending SIGSTOP. Since we are
1194 already attached, the process can not transition from stopped
1195 to running without a PTRACE_CONT; so we know this signal will
1196 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1197 probably already in the queue (unless this kernel is old
1198 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1199 is not an RT signal, it can only be queued once. */
1200 kill_lwp (pid, SIGSTOP);
1201
1202 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1203 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1204 ptrace (PTRACE_CONT, pid, 0, 0);
1205 }
1206
1207 /* Make sure the initial process is stopped. The user-level threads
1208 layer might want to poke around in the inferior, and that won't
1209 work if things haven't stabilized yet. */
1210 new_pid = my_waitpid (pid, &status, 0);
1211 if (new_pid == -1 && errno == ECHILD)
1212 {
1213 if (first)
1214 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1215
1216 /* Try again with __WCLONE to check cloned processes. */
1217 new_pid = my_waitpid (pid, &status, __WCLONE);
1218 *cloned = 1;
1219 }
1220
1221 gdb_assert (pid == new_pid && WIFSTOPPED (status));
1222
1223 if (WSTOPSIG (status) != SIGSTOP)
1224 {
1225 *signalled = 1;
1226 if (debug_linux_nat)
1227 fprintf_unfiltered (gdb_stdlog,
1228 "LNPAW: Received %s after attaching\n",
1229 status_to_str (status));
1230 }
1231
1232 return status;
1233}
1234
1235/* Attach to the LWP specified by PID. Return 0 if successful or -1
1236 if the new LWP could not be attached. */
d6b0e80f 1237
9ee57c33 1238int
93815fbf 1239lin_lwp_attach_lwp (ptid_t ptid)
d6b0e80f 1240{
9ee57c33 1241 struct lwp_info *lp;
7feb7d06 1242 sigset_t prev_mask;
d6b0e80f
AC
1243
1244 gdb_assert (is_lwp (ptid));
1245
7feb7d06 1246 block_child_signals (&prev_mask);
d6b0e80f 1247
9ee57c33 1248 lp = find_lwp_pid (ptid);
d6b0e80f
AC
1249
1250 /* We assume that we're already attached to any LWP that has an id
1251 equal to the overall process id, and to any LWP that is already
1252 in our list of LWPs. If we're not seeing exit events from threads
1253 and we've had PID wraparound since we last tried to stop all threads,
1254 this assumption might be wrong; fortunately, this is very unlikely
1255 to happen. */
9ee57c33 1256 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
d6b0e80f 1257 {
a0ef4274 1258 int status, cloned = 0, signalled = 0;
d6b0e80f
AC
1259
1260 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
9ee57c33
DJ
1261 {
1262 /* If we fail to attach to the thread, issue a warning,
1263 but continue. One way this can happen is if thread
e9efe249 1264 creation is interrupted; as of Linux kernel 2.6.19, a
9ee57c33
DJ
1265 bug may place threads in the thread list and then fail
1266 to create them. */
1267 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1268 safe_strerror (errno));
7feb7d06 1269 restore_child_signals_mask (&prev_mask);
9ee57c33
DJ
1270 return -1;
1271 }
1272
d6b0e80f
AC
1273 if (debug_linux_nat)
1274 fprintf_unfiltered (gdb_stdlog,
1275 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1276 target_pid_to_str (ptid));
1277
a0ef4274
DJ
1278 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1279 lp = add_lwp (ptid);
1280 lp->stopped = 1;
1281 lp->cloned = cloned;
1282 lp->signalled = signalled;
1283 if (WSTOPSIG (status) != SIGSTOP)
d6b0e80f 1284 {
a0ef4274
DJ
1285 lp->resumed = 1;
1286 lp->status = status;
d6b0e80f
AC
1287 }
1288
a0ef4274 1289 target_post_attach (GET_LWP (lp->ptid));
d6b0e80f
AC
1290
1291 if (debug_linux_nat)
1292 {
1293 fprintf_unfiltered (gdb_stdlog,
1294 "LLAL: waitpid %s received %s\n",
1295 target_pid_to_str (ptid),
1296 status_to_str (status));
1297 }
1298 }
1299 else
1300 {
1301 /* We assume that the LWP representing the original process is
1302 already stopped. Mark it as stopped in the data structure
155bd5d1
AC
1303 that the GNU/linux ptrace layer uses to keep track of
1304 threads. Note that this won't have already been done since
1305 the main thread will have, we assume, been stopped by an
1306 attach from a different layer. */
9ee57c33
DJ
1307 if (lp == NULL)
1308 lp = add_lwp (ptid);
d6b0e80f
AC
1309 lp->stopped = 1;
1310 }
9ee57c33 1311
7feb7d06 1312 restore_child_signals_mask (&prev_mask);
9ee57c33 1313 return 0;
d6b0e80f
AC
1314}
1315
b84876c2 1316static void
136d6dae
VP
1317linux_nat_create_inferior (struct target_ops *ops,
1318 char *exec_file, char *allargs, char **env,
b84876c2
PA
1319 int from_tty)
1320{
10568435
JK
1321#ifdef HAVE_PERSONALITY
1322 int personality_orig = 0, personality_set = 0;
1323#endif /* HAVE_PERSONALITY */
b84876c2
PA
1324
1325 /* The fork_child mechanism is synchronous and calls target_wait, so
1326 we have to mask the async mode. */
1327
10568435
JK
1328#ifdef HAVE_PERSONALITY
1329 if (disable_randomization)
1330 {
1331 errno = 0;
1332 personality_orig = personality (0xffffffff);
1333 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1334 {
1335 personality_set = 1;
1336 personality (personality_orig | ADDR_NO_RANDOMIZE);
1337 }
1338 if (errno != 0 || (personality_set
1339 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1340 warning (_("Error disabling address space randomization: %s"),
1341 safe_strerror (errno));
1342 }
1343#endif /* HAVE_PERSONALITY */
1344
136d6dae 1345 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
b84876c2 1346
10568435
JK
1347#ifdef HAVE_PERSONALITY
1348 if (personality_set)
1349 {
1350 errno = 0;
1351 personality (personality_orig);
1352 if (errno != 0)
1353 warning (_("Error restoring address space randomization: %s"),
1354 safe_strerror (errno));
1355 }
1356#endif /* HAVE_PERSONALITY */
b84876c2
PA
1357}
1358
d6b0e80f 1359static void
136d6dae 1360linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
d6b0e80f
AC
1361{
1362 struct lwp_info *lp;
d6b0e80f 1363 int status;
af990527 1364 ptid_t ptid;
d6b0e80f 1365
136d6dae 1366 linux_ops->to_attach (ops, args, from_tty);
d6b0e80f 1367
af990527
PA
1368 /* The ptrace base target adds the main thread with (pid,0,0)
1369 format. Decorate it with lwp info. */
1370 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1371 thread_change_ptid (inferior_ptid, ptid);
1372
9f0bdab8 1373 /* Add the initial process as the first LWP to the list. */
af990527 1374 lp = add_lwp (ptid);
a0ef4274
DJ
1375
1376 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1377 &lp->signalled);
1378 lp->stopped = 1;
9f0bdab8 1379
a0ef4274 1380 /* Save the wait status to report later. */
d6b0e80f 1381 lp->resumed = 1;
a0ef4274
DJ
1382 if (debug_linux_nat)
1383 fprintf_unfiltered (gdb_stdlog,
1384 "LNA: waitpid %ld, saving status %s\n",
1385 (long) GET_PID (lp->ptid), status_to_str (status));
710151dd 1386
7feb7d06
PA
1387 lp->status = status;
1388
1389 if (target_can_async_p ())
1390 target_async (inferior_event_handler, 0);
d6b0e80f
AC
1391}
1392
a0ef4274
DJ
1393/* Get pending status of LP. */
1394static int
1395get_pending_status (struct lwp_info *lp, int *status)
1396{
1397 struct target_waitstatus last;
1398 ptid_t last_ptid;
1399
1400 get_last_target_status (&last_ptid, &last);
1401
1402 /* If this lwp is the ptid that GDB is processing an event from, the
7feb7d06
PA
1403 signal will be in stop_signal. Otherwise, we may cache pending
1404 events in lp->status while trying to stop all threads (see
1405 stop_wait_callback). */
a0ef4274
DJ
1406
1407 *status = 0;
4c28f408
PA
1408
1409 if (non_stop)
a0ef4274 1410 {
4c28f408
PA
1411 enum target_signal signo = TARGET_SIGNAL_0;
1412
1413 if (is_executing (lp->ptid))
1414 {
1415 /* If the core thought this lwp was executing --- e.g., the
1416 executing property hasn't been updated yet, but the
1417 thread has been stopped with a stop_callback /
1418 stop_wait_callback sequence (see linux_nat_detach for
1419 example) --- we can only have pending events in the local
1420 queue. */
7feb7d06 1421 signo = target_signal_from_host (WSTOPSIG (lp->status));
4c28f408
PA
1422 }
1423 else
1424 {
1425 /* If the core knows the thread is not executing, then we
1426 have the last signal recorded in
2020b7ab 1427 thread_info->stop_signal. */
4c28f408 1428
e09875d4 1429 struct thread_info *tp = find_thread_ptid (lp->ptid);
2020b7ab 1430 signo = tp->stop_signal;
4c28f408
PA
1431 }
1432
1433 if (signo != TARGET_SIGNAL_0
1434 && !signal_pass_state (signo))
1435 {
1436 if (debug_linux_nat)
1437 fprintf_unfiltered (gdb_stdlog, "\
1438GPT: lwp %s had signal %s, but it is in no pass state\n",
1439 target_pid_to_str (lp->ptid),
1440 target_signal_to_string (signo));
1441 }
1442 else
1443 {
1444 if (signo != TARGET_SIGNAL_0)
1445 *status = W_STOPCODE (target_signal_to_host (signo));
1446
1447 if (debug_linux_nat)
1448 fprintf_unfiltered (gdb_stdlog,
1449 "GPT: lwp %s as pending signal %s\n",
1450 target_pid_to_str (lp->ptid),
1451 target_signal_to_string (signo));
1452 }
a0ef4274 1453 }
a0ef4274 1454 else
4c28f408
PA
1455 {
1456 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1457 {
e09875d4 1458 struct thread_info *tp = find_thread_ptid (lp->ptid);
2020b7ab
PA
1459 if (tp->stop_signal != TARGET_SIGNAL_0
1460 && signal_pass_state (tp->stop_signal))
1461 *status = W_STOPCODE (target_signal_to_host (tp->stop_signal));
4c28f408 1462 }
4c28f408
PA
1463 else
1464 *status = lp->status;
1465 }
a0ef4274
DJ
1466
1467 return 0;
1468}
1469
d6b0e80f
AC
1470static int
1471detach_callback (struct lwp_info *lp, void *data)
1472{
1473 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1474
1475 if (debug_linux_nat && lp->status)
1476 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1477 strsignal (WSTOPSIG (lp->status)),
1478 target_pid_to_str (lp->ptid));
1479
a0ef4274
DJ
1480 /* If there is a pending SIGSTOP, get rid of it. */
1481 if (lp->signalled)
d6b0e80f 1482 {
d6b0e80f
AC
1483 if (debug_linux_nat)
1484 fprintf_unfiltered (gdb_stdlog,
a0ef4274
DJ
1485 "DC: Sending SIGCONT to %s\n",
1486 target_pid_to_str (lp->ptid));
d6b0e80f 1487
a0ef4274 1488 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
d6b0e80f 1489 lp->signalled = 0;
d6b0e80f
AC
1490 }
1491
1492 /* We don't actually detach from the LWP that has an id equal to the
1493 overall process id just yet. */
1494 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1495 {
a0ef4274
DJ
1496 int status = 0;
1497
1498 /* Pass on any pending signal for this LWP. */
1499 get_pending_status (lp, &status);
1500
d6b0e80f
AC
1501 errno = 0;
1502 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
a0ef4274 1503 WSTOPSIG (status)) < 0)
8a3fe4f8 1504 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
d6b0e80f
AC
1505 safe_strerror (errno));
1506
1507 if (debug_linux_nat)
1508 fprintf_unfiltered (gdb_stdlog,
1509 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1510 target_pid_to_str (lp->ptid),
7feb7d06 1511 strsignal (WSTOPSIG (status)));
d6b0e80f
AC
1512
1513 delete_lwp (lp->ptid);
1514 }
1515
1516 return 0;
1517}
1518
1519static void
136d6dae 1520linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
d6b0e80f 1521{
b84876c2 1522 int pid;
a0ef4274
DJ
1523 int status;
1524 enum target_signal sig;
d90e17a7
PA
1525 struct lwp_info *main_lwp;
1526
1527 pid = GET_PID (inferior_ptid);
a0ef4274 1528
b84876c2
PA
1529 if (target_can_async_p ())
1530 linux_nat_async (NULL, 0);
1531
4c28f408
PA
1532 /* Stop all threads before detaching. ptrace requires that the
1533 thread is stopped to sucessfully detach. */
d90e17a7 1534 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
4c28f408
PA
1535 /* ... and wait until all of them have reported back that
1536 they're no longer running. */
d90e17a7 1537 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
4c28f408 1538
d90e17a7 1539 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
d6b0e80f
AC
1540
1541 /* Only the initial process should be left right now. */
d90e17a7
PA
1542 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1543
1544 main_lwp = find_lwp_pid (pid_to_ptid (pid));
d6b0e80f 1545
a0ef4274
DJ
1546 /* Pass on any pending signal for the last LWP. */
1547 if ((args == NULL || *args == '\0')
d90e17a7 1548 && get_pending_status (main_lwp, &status) != -1
a0ef4274
DJ
1549 && WIFSTOPPED (status))
1550 {
1551 /* Put the signal number in ARGS so that inf_ptrace_detach will
1552 pass it along with PTRACE_DETACH. */
1553 args = alloca (8);
1554 sprintf (args, "%d", (int) WSTOPSIG (status));
1555 fprintf_unfiltered (gdb_stdlog,
1556 "LND: Sending signal %s to %s\n",
1557 args,
d90e17a7 1558 target_pid_to_str (main_lwp->ptid));
a0ef4274
DJ
1559 }
1560
d90e17a7 1561 delete_lwp (main_lwp->ptid);
b84876c2 1562
7a7d3353
PA
1563 if (forks_exist_p ())
1564 {
1565 /* Multi-fork case. The current inferior_ptid is being detached
1566 from, but there are other viable forks to debug. Detach from
1567 the current fork, and context-switch to the first
1568 available. */
1569 linux_fork_detach (args, from_tty);
1570
1571 if (non_stop && target_can_async_p ())
1572 target_async (inferior_event_handler, 0);
1573 }
1574 else
1575 linux_ops->to_detach (ops, args, from_tty);
d6b0e80f
AC
1576}
1577
1578/* Resume LP. */
1579
1580static int
1581resume_callback (struct lwp_info *lp, void *data)
1582{
1583 if (lp->stopped && lp->status == 0)
1584 {
d90e17a7
PA
1585 if (debug_linux_nat)
1586 fprintf_unfiltered (gdb_stdlog,
1587 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1588 target_pid_to_str (lp->ptid));
1589
28439f5e
PA
1590 linux_ops->to_resume (linux_ops,
1591 pid_to_ptid (GET_LWP (lp->ptid)),
10d6c8cd 1592 0, TARGET_SIGNAL_0);
d6b0e80f
AC
1593 if (debug_linux_nat)
1594 fprintf_unfiltered (gdb_stdlog,
1595 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1596 target_pid_to_str (lp->ptid));
1597 lp->stopped = 0;
1598 lp->step = 0;
9f0bdab8 1599 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
d6b0e80f 1600 }
57380f4e
DJ
1601 else if (lp->stopped && debug_linux_nat)
1602 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1603 target_pid_to_str (lp->ptid));
1604 else if (debug_linux_nat)
1605 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1606 target_pid_to_str (lp->ptid));
d6b0e80f
AC
1607
1608 return 0;
1609}
1610
1611static int
1612resume_clear_callback (struct lwp_info *lp, void *data)
1613{
1614 lp->resumed = 0;
1615 return 0;
1616}
1617
1618static int
1619resume_set_callback (struct lwp_info *lp, void *data)
1620{
1621 lp->resumed = 1;
1622 return 0;
1623}
1624
1625static void
28439f5e
PA
1626linux_nat_resume (struct target_ops *ops,
1627 ptid_t ptid, int step, enum target_signal signo)
d6b0e80f 1628{
7feb7d06 1629 sigset_t prev_mask;
d6b0e80f 1630 struct lwp_info *lp;
d90e17a7 1631 int resume_many;
d6b0e80f 1632
76f50ad1
DJ
1633 if (debug_linux_nat)
1634 fprintf_unfiltered (gdb_stdlog,
1635 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1636 step ? "step" : "resume",
1637 target_pid_to_str (ptid),
1638 signo ? strsignal (signo) : "0",
1639 target_pid_to_str (inferior_ptid));
1640
7feb7d06 1641 block_child_signals (&prev_mask);
b84876c2 1642
d6b0e80f 1643 /* A specific PTID means `step only this process id'. */
d90e17a7
PA
1644 resume_many = (ptid_equal (minus_one_ptid, ptid)
1645 || ptid_is_pid (ptid));
4c28f408
PA
1646
1647 if (!non_stop)
1648 {
d90e17a7
PA
1649 /* Mark the lwps we're resuming as resumed. */
1650 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
1651 iterate_over_lwps (ptid, resume_set_callback, NULL);
4c28f408 1652 }
d90e17a7
PA
1653 else
1654 iterate_over_lwps (minus_one_ptid, resume_set_callback, NULL);
d6b0e80f 1655
d90e17a7
PA
1656 /* See if it's the current inferior that should be handled
1657 specially. */
1658 if (resume_many)
1659 lp = find_lwp_pid (inferior_ptid);
1660 else
1661 lp = find_lwp_pid (ptid);
9f0bdab8 1662 gdb_assert (lp != NULL);
d6b0e80f 1663
9f0bdab8
DJ
1664 /* Remember if we're stepping. */
1665 lp->step = step;
d6b0e80f 1666
9f0bdab8
DJ
1667 /* If we have a pending wait status for this thread, there is no
1668 point in resuming the process. But first make sure that
1669 linux_nat_wait won't preemptively handle the event - we
1670 should never take this short-circuit if we are going to
1671 leave LP running, since we have skipped resuming all the
1672 other threads. This bit of code needs to be synchronized
1673 with linux_nat_wait. */
76f50ad1 1674
9f0bdab8
DJ
1675 if (lp->status && WIFSTOPPED (lp->status))
1676 {
d6b48e9c
PA
1677 int saved_signo;
1678 struct inferior *inf;
76f50ad1 1679
d90e17a7 1680 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
d6b48e9c
PA
1681 gdb_assert (inf);
1682 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1683
1684 /* Defer to common code if we're gaining control of the
1685 inferior. */
1686 if (inf->stop_soon == NO_STOP_QUIETLY
1687 && signal_stop_state (saved_signo) == 0
9f0bdab8
DJ
1688 && signal_print_state (saved_signo) == 0
1689 && signal_pass_state (saved_signo) == 1)
d6b0e80f 1690 {
9f0bdab8
DJ
1691 if (debug_linux_nat)
1692 fprintf_unfiltered (gdb_stdlog,
1693 "LLR: Not short circuiting for ignored "
1694 "status 0x%x\n", lp->status);
1695
d6b0e80f
AC
1696 /* FIXME: What should we do if we are supposed to continue
1697 this thread with a signal? */
1698 gdb_assert (signo == TARGET_SIGNAL_0);
9f0bdab8
DJ
1699 signo = saved_signo;
1700 lp->status = 0;
1701 }
1702 }
76f50ad1 1703
9f0bdab8
DJ
1704 if (lp->status)
1705 {
1706 /* FIXME: What should we do if we are supposed to continue
1707 this thread with a signal? */
1708 gdb_assert (signo == TARGET_SIGNAL_0);
76f50ad1 1709
9f0bdab8
DJ
1710 if (debug_linux_nat)
1711 fprintf_unfiltered (gdb_stdlog,
1712 "LLR: Short circuiting for status 0x%x\n",
1713 lp->status);
d6b0e80f 1714
7feb7d06
PA
1715 restore_child_signals_mask (&prev_mask);
1716 if (target_can_async_p ())
1717 {
1718 target_async (inferior_event_handler, 0);
1719 /* Tell the event loop we have something to process. */
1720 async_file_mark ();
1721 }
9f0bdab8 1722 return;
d6b0e80f
AC
1723 }
1724
9f0bdab8
DJ
1725 /* Mark LWP as not stopped to prevent it from being continued by
1726 resume_callback. */
1727 lp->stopped = 0;
1728
d90e17a7
PA
1729 if (resume_many)
1730 iterate_over_lwps (ptid, resume_callback, NULL);
1731
1732 /* Convert to something the lower layer understands. */
1733 ptid = pid_to_ptid (GET_LWP (lp->ptid));
d6b0e80f 1734
28439f5e 1735 linux_ops->to_resume (linux_ops, ptid, step, signo);
9f0bdab8
DJ
1736 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1737
d6b0e80f
AC
1738 if (debug_linux_nat)
1739 fprintf_unfiltered (gdb_stdlog,
1740 "LLR: %s %s, %s (resume event thread)\n",
1741 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1742 target_pid_to_str (ptid),
1743 signo ? strsignal (signo) : "0");
b84876c2 1744
7feb7d06 1745 restore_child_signals_mask (&prev_mask);
b84876c2 1746 if (target_can_async_p ())
8ea051c5 1747 target_async (inferior_event_handler, 0);
d6b0e80f
AC
1748}
1749
1750/* Issue kill to specified lwp. */
1751
1752static int tkill_failed;
1753
1754static int
1755kill_lwp (int lwpid, int signo)
1756{
1757 errno = 0;
1758
1759/* Use tkill, if possible, in case we are using nptl threads. If tkill
1760 fails, then we are not using nptl threads and we should be using kill. */
1761
1762#ifdef HAVE_TKILL_SYSCALL
1763 if (!tkill_failed)
1764 {
1765 int ret = syscall (__NR_tkill, lwpid, signo);
1766 if (errno != ENOSYS)
1767 return ret;
1768 errno = 0;
1769 tkill_failed = 1;
1770 }
1771#endif
1772
1773 return kill (lwpid, signo);
1774}
1775
3d799a95
DJ
1776/* Handle a GNU/Linux extended wait response. If we see a clone
1777 event, we need to add the new LWP to our list (and not report the
1778 trap to higher layers). This function returns non-zero if the
1779 event should be ignored and we should wait again. If STOPPING is
1780 true, the new LWP remains stopped, otherwise it is continued. */
d6b0e80f
AC
1781
1782static int
3d799a95
DJ
1783linux_handle_extended_wait (struct lwp_info *lp, int status,
1784 int stopping)
d6b0e80f 1785{
3d799a95
DJ
1786 int pid = GET_LWP (lp->ptid);
1787 struct target_waitstatus *ourstatus = &lp->waitstatus;
1788 struct lwp_info *new_lp = NULL;
1789 int event = status >> 16;
d6b0e80f 1790
3d799a95
DJ
1791 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1792 || event == PTRACE_EVENT_CLONE)
d6b0e80f 1793 {
3d799a95
DJ
1794 unsigned long new_pid;
1795 int ret;
1796
1797 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
6fc19103 1798
3d799a95
DJ
1799 /* If we haven't already seen the new PID stop, wait for it now. */
1800 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1801 {
1802 /* The new child has a pending SIGSTOP. We can't affect it until it
1803 hits the SIGSTOP, but we're already attached. */
1804 ret = my_waitpid (new_pid, &status,
1805 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1806 if (ret == -1)
1807 perror_with_name (_("waiting for new child"));
1808 else if (ret != new_pid)
1809 internal_error (__FILE__, __LINE__,
1810 _("wait returned unexpected PID %d"), ret);
1811 else if (!WIFSTOPPED (status))
1812 internal_error (__FILE__, __LINE__,
1813 _("wait returned unexpected status 0x%x"), status);
1814 }
1815
3a3e9ee3 1816 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
3d799a95
DJ
1817
1818 if (event == PTRACE_EVENT_FORK)
1819 ourstatus->kind = TARGET_WAITKIND_FORKED;
1820 else if (event == PTRACE_EVENT_VFORK)
1821 ourstatus->kind = TARGET_WAITKIND_VFORKED;
6fc19103 1822 else
3d799a95 1823 {
4c28f408
PA
1824 struct cleanup *old_chain;
1825
3d799a95 1826 ourstatus->kind = TARGET_WAITKIND_IGNORE;
d90e17a7 1827 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
3d799a95 1828 new_lp->cloned = 1;
4c28f408 1829 new_lp->stopped = 1;
d6b0e80f 1830
3d799a95
DJ
1831 if (WSTOPSIG (status) != SIGSTOP)
1832 {
1833 /* This can happen if someone starts sending signals to
1834 the new thread before it gets a chance to run, which
1835 have a lower number than SIGSTOP (e.g. SIGUSR1).
1836 This is an unlikely case, and harder to handle for
1837 fork / vfork than for clone, so we do not try - but
1838 we handle it for clone events here. We'll send
1839 the other signal on to the thread below. */
1840
1841 new_lp->signalled = 1;
1842 }
1843 else
1844 status = 0;
d6b0e80f 1845
4c28f408 1846 if (non_stop)
3d799a95 1847 {
4c28f408
PA
1848 /* Add the new thread to GDB's lists as soon as possible
1849 so that:
1850
1851 1) the frontend doesn't have to wait for a stop to
1852 display them, and,
1853
1854 2) we tag it with the correct running state. */
1855
1856 /* If the thread_db layer is active, let it know about
1857 this new thread, and add it to GDB's list. */
1858 if (!thread_db_attach_lwp (new_lp->ptid))
1859 {
1860 /* We're not using thread_db. Add it to GDB's
1861 list. */
1862 target_post_attach (GET_LWP (new_lp->ptid));
1863 add_thread (new_lp->ptid);
1864 }
1865
1866 if (!stopping)
1867 {
1868 set_running (new_lp->ptid, 1);
1869 set_executing (new_lp->ptid, 1);
1870 }
1871 }
1872
1873 if (!stopping)
1874 {
1875 new_lp->stopped = 0;
3d799a95 1876 new_lp->resumed = 1;
4c28f408 1877 ptrace (PTRACE_CONT, new_pid, 0,
3d799a95
DJ
1878 status ? WSTOPSIG (status) : 0);
1879 }
d6b0e80f 1880
3d799a95
DJ
1881 if (debug_linux_nat)
1882 fprintf_unfiltered (gdb_stdlog,
1883 "LHEW: Got clone event from LWP %ld, resuming\n",
1884 GET_LWP (lp->ptid));
1885 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1886
1887 return 1;
1888 }
1889
1890 return 0;
d6b0e80f
AC
1891 }
1892
3d799a95
DJ
1893 if (event == PTRACE_EVENT_EXEC)
1894 {
1895 ourstatus->kind = TARGET_WAITKIND_EXECD;
1896 ourstatus->value.execd_pathname
6d8fd2b7 1897 = xstrdup (linux_child_pid_to_exec_file (pid));
3d799a95
DJ
1898
1899 if (linux_parent_pid)
1900 {
1901 detach_breakpoints (linux_parent_pid);
1902 ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0);
1903
1904 linux_parent_pid = 0;
1905 }
1906
25b22b0a
PA
1907 /* At this point, all inserted breakpoints are gone. Doing this
1908 as soon as we detect an exec prevents the badness of deleting
1909 a breakpoint writing the current "shadow contents" to lift
1910 the bp. That shadow is NOT valid after an exec.
1911
1912 Note that we have to do this after the detach_breakpoints
1913 call above, otherwise breakpoints wouldn't be lifted from the
1914 parent on a vfork, because detach_breakpoints would think
1915 that breakpoints are not inserted. */
1916 mark_breakpoints_out ();
3d799a95
DJ
1917 return 0;
1918 }
1919
1920 internal_error (__FILE__, __LINE__,
1921 _("unknown ptrace event %d"), event);
d6b0e80f
AC
1922}
1923
1924/* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
1925 exited. */
1926
1927static int
1928wait_lwp (struct lwp_info *lp)
1929{
1930 pid_t pid;
1931 int status;
1932 int thread_dead = 0;
1933
1934 gdb_assert (!lp->stopped);
1935 gdb_assert (lp->status == 0);
1936
58aecb61 1937 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
d6b0e80f
AC
1938 if (pid == -1 && errno == ECHILD)
1939 {
58aecb61 1940 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
d6b0e80f
AC
1941 if (pid == -1 && errno == ECHILD)
1942 {
1943 /* The thread has previously exited. We need to delete it
1944 now because, for some vendor 2.4 kernels with NPTL
1945 support backported, there won't be an exit event unless
1946 it is the main thread. 2.6 kernels will report an exit
1947 event for each thread that exits, as expected. */
1948 thread_dead = 1;
1949 if (debug_linux_nat)
1950 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
1951 target_pid_to_str (lp->ptid));
1952 }
1953 }
1954
1955 if (!thread_dead)
1956 {
1957 gdb_assert (pid == GET_LWP (lp->ptid));
1958
1959 if (debug_linux_nat)
1960 {
1961 fprintf_unfiltered (gdb_stdlog,
1962 "WL: waitpid %s received %s\n",
1963 target_pid_to_str (lp->ptid),
1964 status_to_str (status));
1965 }
1966 }
1967
1968 /* Check if the thread has exited. */
1969 if (WIFEXITED (status) || WIFSIGNALED (status))
1970 {
1971 thread_dead = 1;
1972 if (debug_linux_nat)
1973 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
1974 target_pid_to_str (lp->ptid));
1975 }
1976
1977 if (thread_dead)
1978 {
e26af52f 1979 exit_lwp (lp);
d6b0e80f
AC
1980 return 0;
1981 }
1982
1983 gdb_assert (WIFSTOPPED (status));
1984
1985 /* Handle GNU/Linux's extended waitstatus for trace events. */
1986 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
1987 {
1988 if (debug_linux_nat)
1989 fprintf_unfiltered (gdb_stdlog,
1990 "WL: Handling extended status 0x%06x\n",
1991 status);
3d799a95 1992 if (linux_handle_extended_wait (lp, status, 1))
d6b0e80f
AC
1993 return wait_lwp (lp);
1994 }
1995
1996 return status;
1997}
1998
9f0bdab8
DJ
1999/* Save the most recent siginfo for LP. This is currently only called
2000 for SIGTRAP; some ports use the si_addr field for
2001 target_stopped_data_address. In the future, it may also be used to
2002 restore the siginfo of requeued signals. */
2003
2004static void
2005save_siginfo (struct lwp_info *lp)
2006{
2007 errno = 0;
2008 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2009 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2010
2011 if (errno != 0)
2012 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2013}
2014
d6b0e80f
AC
2015/* Send a SIGSTOP to LP. */
2016
2017static int
2018stop_callback (struct lwp_info *lp, void *data)
2019{
2020 if (!lp->stopped && !lp->signalled)
2021 {
2022 int ret;
2023
2024 if (debug_linux_nat)
2025 {
2026 fprintf_unfiltered (gdb_stdlog,
2027 "SC: kill %s **<SIGSTOP>**\n",
2028 target_pid_to_str (lp->ptid));
2029 }
2030 errno = 0;
2031 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2032 if (debug_linux_nat)
2033 {
2034 fprintf_unfiltered (gdb_stdlog,
2035 "SC: lwp kill %d %s\n",
2036 ret,
2037 errno ? safe_strerror (errno) : "ERRNO-OK");
2038 }
2039
2040 lp->signalled = 1;
2041 gdb_assert (lp->status == 0);
2042 }
2043
2044 return 0;
2045}
2046
57380f4e 2047/* Return non-zero if LWP PID has a pending SIGINT. */
d6b0e80f
AC
2048
2049static int
57380f4e
DJ
2050linux_nat_has_pending_sigint (int pid)
2051{
2052 sigset_t pending, blocked, ignored;
2053 int i;
2054
2055 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2056
2057 if (sigismember (&pending, SIGINT)
2058 && !sigismember (&ignored, SIGINT))
2059 return 1;
2060
2061 return 0;
2062}
2063
2064/* Set a flag in LP indicating that we should ignore its next SIGINT. */
2065
2066static int
2067set_ignore_sigint (struct lwp_info *lp, void *data)
d6b0e80f 2068{
57380f4e
DJ
2069 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2070 flag to consume the next one. */
2071 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2072 && WSTOPSIG (lp->status) == SIGINT)
2073 lp->status = 0;
2074 else
2075 lp->ignore_sigint = 1;
2076
2077 return 0;
2078}
2079
2080/* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2081 This function is called after we know the LWP has stopped; if the LWP
2082 stopped before the expected SIGINT was delivered, then it will never have
2083 arrived. Also, if the signal was delivered to a shared queue and consumed
2084 by a different thread, it will never be delivered to this LWP. */
d6b0e80f 2085
57380f4e
DJ
2086static void
2087maybe_clear_ignore_sigint (struct lwp_info *lp)
2088{
2089 if (!lp->ignore_sigint)
2090 return;
2091
2092 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2093 {
2094 if (debug_linux_nat)
2095 fprintf_unfiltered (gdb_stdlog,
2096 "MCIS: Clearing bogus flag for %s\n",
2097 target_pid_to_str (lp->ptid));
2098 lp->ignore_sigint = 0;
2099 }
2100}
2101
2102/* Wait until LP is stopped. */
2103
2104static int
2105stop_wait_callback (struct lwp_info *lp, void *data)
2106{
d6b0e80f
AC
2107 if (!lp->stopped)
2108 {
2109 int status;
2110
2111 status = wait_lwp (lp);
2112 if (status == 0)
2113 return 0;
2114
57380f4e
DJ
2115 if (lp->ignore_sigint && WIFSTOPPED (status)
2116 && WSTOPSIG (status) == SIGINT)
d6b0e80f 2117 {
57380f4e 2118 lp->ignore_sigint = 0;
d6b0e80f
AC
2119
2120 errno = 0;
2121 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2122 if (debug_linux_nat)
2123 fprintf_unfiltered (gdb_stdlog,
57380f4e 2124 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
d6b0e80f
AC
2125 target_pid_to_str (lp->ptid),
2126 errno ? safe_strerror (errno) : "OK");
2127
57380f4e 2128 return stop_wait_callback (lp, NULL);
d6b0e80f
AC
2129 }
2130
57380f4e
DJ
2131 maybe_clear_ignore_sigint (lp);
2132
d6b0e80f
AC
2133 if (WSTOPSIG (status) != SIGSTOP)
2134 {
2135 if (WSTOPSIG (status) == SIGTRAP)
2136 {
2137 /* If a LWP other than the LWP that we're reporting an
2138 event for has hit a GDB breakpoint (as opposed to
2139 some random trap signal), then just arrange for it to
2140 hit it again later. We don't keep the SIGTRAP status
2141 and don't forward the SIGTRAP signal to the LWP. We
2142 will handle the current event, eventually we will
2143 resume all LWPs, and this one will get its breakpoint
2144 trap again.
2145
2146 If we do not do this, then we run the risk that the
2147 user will delete or disable the breakpoint, but the
2148 thread will have already tripped on it. */
2149
9f0bdab8
DJ
2150 /* Save the trap's siginfo in case we need it later. */
2151 save_siginfo (lp);
2152
d6b0e80f
AC
2153 /* Now resume this LWP and get the SIGSTOP event. */
2154 errno = 0;
2155 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2156 if (debug_linux_nat)
2157 {
2158 fprintf_unfiltered (gdb_stdlog,
2159 "PTRACE_CONT %s, 0, 0 (%s)\n",
2160 target_pid_to_str (lp->ptid),
2161 errno ? safe_strerror (errno) : "OK");
2162
2163 fprintf_unfiltered (gdb_stdlog,
2164 "SWC: Candidate SIGTRAP event in %s\n",
2165 target_pid_to_str (lp->ptid));
2166 }
710151dd
PA
2167 /* Hold this event/waitstatus while we check to see if
2168 there are any more (we still want to get that SIGSTOP). */
57380f4e 2169 stop_wait_callback (lp, NULL);
710151dd 2170
7feb7d06
PA
2171 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2172 there's another event, throw it back into the
2173 queue. */
2174 if (lp->status)
710151dd 2175 {
7feb7d06
PA
2176 if (debug_linux_nat)
2177 fprintf_unfiltered (gdb_stdlog,
2178 "SWC: kill %s, %s\n",
2179 target_pid_to_str (lp->ptid),
2180 status_to_str ((int) status));
2181 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
d6b0e80f 2182 }
7feb7d06
PA
2183
2184 /* Save the sigtrap event. */
2185 lp->status = status;
d6b0e80f
AC
2186 return 0;
2187 }
2188 else
2189 {
2190 /* The thread was stopped with a signal other than
2191 SIGSTOP, and didn't accidentally trip a breakpoint. */
2192
2193 if (debug_linux_nat)
2194 {
2195 fprintf_unfiltered (gdb_stdlog,
2196 "SWC: Pending event %s in %s\n",
2197 status_to_str ((int) status),
2198 target_pid_to_str (lp->ptid));
2199 }
2200 /* Now resume this LWP and get the SIGSTOP event. */
2201 errno = 0;
2202 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2203 if (debug_linux_nat)
2204 fprintf_unfiltered (gdb_stdlog,
2205 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2206 target_pid_to_str (lp->ptid),
2207 errno ? safe_strerror (errno) : "OK");
2208
2209 /* Hold this event/waitstatus while we check to see if
2210 there are any more (we still want to get that SIGSTOP). */
57380f4e 2211 stop_wait_callback (lp, NULL);
710151dd
PA
2212
2213 /* If the lp->status field is still empty, use it to
2214 hold this event. If not, then this event must be
2215 returned to the event queue of the LWP. */
7feb7d06 2216 if (lp->status)
d6b0e80f
AC
2217 {
2218 if (debug_linux_nat)
2219 {
2220 fprintf_unfiltered (gdb_stdlog,
2221 "SWC: kill %s, %s\n",
2222 target_pid_to_str (lp->ptid),
2223 status_to_str ((int) status));
2224 }
2225 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2226 }
710151dd
PA
2227 else
2228 lp->status = status;
d6b0e80f
AC
2229 return 0;
2230 }
2231 }
2232 else
2233 {
2234 /* We caught the SIGSTOP that we intended to catch, so
2235 there's no SIGSTOP pending. */
2236 lp->stopped = 1;
2237 lp->signalled = 0;
2238 }
2239 }
2240
2241 return 0;
2242}
2243
d6b0e80f
AC
2244/* Return non-zero if LP has a wait status pending. */
2245
2246static int
2247status_callback (struct lwp_info *lp, void *data)
2248{
2249 /* Only report a pending wait status if we pretend that this has
2250 indeed been resumed. */
d90e17a7
PA
2251 /* We check for lp->waitstatus in addition to lp->status, because we
2252 can have pending process exits recorded in lp->waitstatus, and
2253 W_EXITCODE(0,0) == 0. */
2254 return ((lp->status != 0
2255 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2256 && lp->resumed);
d6b0e80f
AC
2257}
2258
2259/* Return non-zero if LP isn't stopped. */
2260
2261static int
2262running_callback (struct lwp_info *lp, void *data)
2263{
2264 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2265}
2266
2267/* Count the LWP's that have had events. */
2268
2269static int
2270count_events_callback (struct lwp_info *lp, void *data)
2271{
2272 int *count = data;
2273
2274 gdb_assert (count != NULL);
2275
e09490f1
DJ
2276 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2277 if (lp->status != 0 && lp->resumed
d6b0e80f
AC
2278 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2279 (*count)++;
2280
2281 return 0;
2282}
2283
2284/* Select the LWP (if any) that is currently being single-stepped. */
2285
2286static int
2287select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2288{
2289 if (lp->step && lp->status != 0)
2290 return 1;
2291 else
2292 return 0;
2293}
2294
2295/* Select the Nth LWP that has had a SIGTRAP event. */
2296
2297static int
2298select_event_lwp_callback (struct lwp_info *lp, void *data)
2299{
2300 int *selector = data;
2301
2302 gdb_assert (selector != NULL);
2303
e09490f1
DJ
2304 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2305 if (lp->status != 0 && lp->resumed
d6b0e80f
AC
2306 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2307 if ((*selector)-- == 0)
2308 return 1;
2309
2310 return 0;
2311}
2312
710151dd
PA
2313static int
2314cancel_breakpoint (struct lwp_info *lp)
2315{
2316 /* Arrange for a breakpoint to be hit again later. We don't keep
2317 the SIGTRAP status and don't forward the SIGTRAP signal to the
2318 LWP. We will handle the current event, eventually we will resume
2319 this LWP, and this breakpoint will trap again.
2320
2321 If we do not do this, then we run the risk that the user will
2322 delete or disable the breakpoint, but the LWP will have already
2323 tripped on it. */
2324
515630c5
UW
2325 struct regcache *regcache = get_thread_regcache (lp->ptid);
2326 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2327 CORE_ADDR pc;
2328
2329 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2330 if (breakpoint_inserted_here_p (pc))
710151dd
PA
2331 {
2332 if (debug_linux_nat)
2333 fprintf_unfiltered (gdb_stdlog,
2334 "CB: Push back breakpoint for %s\n",
2335 target_pid_to_str (lp->ptid));
2336
2337 /* Back up the PC if necessary. */
515630c5
UW
2338 if (gdbarch_decr_pc_after_break (gdbarch))
2339 regcache_write_pc (regcache, pc);
2340
710151dd
PA
2341 return 1;
2342 }
2343 return 0;
2344}
2345
d6b0e80f
AC
2346static int
2347cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2348{
2349 struct lwp_info *event_lp = data;
2350
2351 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2352 if (lp == event_lp)
2353 return 0;
2354
2355 /* If a LWP other than the LWP that we're reporting an event for has
2356 hit a GDB breakpoint (as opposed to some random trap signal),
2357 then just arrange for it to hit it again later. We don't keep
2358 the SIGTRAP status and don't forward the SIGTRAP signal to the
2359 LWP. We will handle the current event, eventually we will resume
2360 all LWPs, and this one will get its breakpoint trap again.
2361
2362 If we do not do this, then we run the risk that the user will
2363 delete or disable the breakpoint, but the LWP will have already
2364 tripped on it. */
2365
2366 if (lp->status != 0
2367 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
710151dd
PA
2368 && cancel_breakpoint (lp))
2369 /* Throw away the SIGTRAP. */
2370 lp->status = 0;
d6b0e80f
AC
2371
2372 return 0;
2373}
2374
2375/* Select one LWP out of those that have events pending. */
2376
2377static void
d90e17a7 2378select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
d6b0e80f
AC
2379{
2380 int num_events = 0;
2381 int random_selector;
2382 struct lwp_info *event_lp;
2383
ac264b3b 2384 /* Record the wait status for the original LWP. */
d6b0e80f
AC
2385 (*orig_lp)->status = *status;
2386
2387 /* Give preference to any LWP that is being single-stepped. */
d90e17a7
PA
2388 event_lp = iterate_over_lwps (filter,
2389 select_singlestep_lwp_callback, NULL);
d6b0e80f
AC
2390 if (event_lp != NULL)
2391 {
2392 if (debug_linux_nat)
2393 fprintf_unfiltered (gdb_stdlog,
2394 "SEL: Select single-step %s\n",
2395 target_pid_to_str (event_lp->ptid));
2396 }
2397 else
2398 {
2399 /* No single-stepping LWP. Select one at random, out of those
2400 which have had SIGTRAP events. */
2401
2402 /* First see how many SIGTRAP events we have. */
d90e17a7 2403 iterate_over_lwps (filter, count_events_callback, &num_events);
d6b0e80f
AC
2404
2405 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2406 random_selector = (int)
2407 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2408
2409 if (debug_linux_nat && num_events > 1)
2410 fprintf_unfiltered (gdb_stdlog,
2411 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2412 num_events, random_selector);
2413
d90e17a7
PA
2414 event_lp = iterate_over_lwps (filter,
2415 select_event_lwp_callback,
d6b0e80f
AC
2416 &random_selector);
2417 }
2418
2419 if (event_lp != NULL)
2420 {
2421 /* Switch the event LWP. */
2422 *orig_lp = event_lp;
2423 *status = event_lp->status;
2424 }
2425
2426 /* Flush the wait status for the event LWP. */
2427 (*orig_lp)->status = 0;
2428}
2429
2430/* Return non-zero if LP has been resumed. */
2431
2432static int
2433resumed_callback (struct lwp_info *lp, void *data)
2434{
2435 return lp->resumed;
2436}
2437
d6b0e80f
AC
2438/* Stop an active thread, verify it still exists, then resume it. */
2439
2440static int
2441stop_and_resume_callback (struct lwp_info *lp, void *data)
2442{
2443 struct lwp_info *ptr;
2444
2445 if (!lp->stopped && !lp->signalled)
2446 {
2447 stop_callback (lp, NULL);
2448 stop_wait_callback (lp, NULL);
2449 /* Resume if the lwp still exists. */
2450 for (ptr = lwp_list; ptr; ptr = ptr->next)
2451 if (lp == ptr)
2452 {
2453 resume_callback (lp, NULL);
2454 resume_set_callback (lp, NULL);
2455 }
2456 }
2457 return 0;
2458}
2459
02f3fc28 2460/* Check if we should go on and pass this event to common code.
fa2c6a57 2461 Return the affected lwp if we are, or NULL otherwise. */
02f3fc28
PA
2462static struct lwp_info *
2463linux_nat_filter_event (int lwpid, int status, int options)
2464{
2465 struct lwp_info *lp;
2466
2467 lp = find_lwp_pid (pid_to_ptid (lwpid));
2468
2469 /* Check for stop events reported by a process we didn't already
2470 know about - anything not already in our LWP list.
2471
2472 If we're expecting to receive stopped processes after
2473 fork, vfork, and clone events, then we'll just add the
2474 new one to our list and go back to waiting for the event
2475 to be reported - the stopped process might be returned
2476 from waitpid before or after the event is. */
2477 if (WIFSTOPPED (status) && !lp)
2478 {
2479 linux_record_stopped_pid (lwpid, status);
2480 return NULL;
2481 }
2482
2483 /* Make sure we don't report an event for the exit of an LWP not in
2484 our list, i.e. not part of the current process. This can happen
2485 if we detach from a program we original forked and then it
2486 exits. */
2487 if (!WIFSTOPPED (status) && !lp)
2488 return NULL;
2489
2490 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
2491 CLONE_PTRACE processes which do not use the thread library -
2492 otherwise we wouldn't find the new LWP this way. That doesn't
2493 currently work, and the following code is currently unreachable
2494 due to the two blocks above. If it's fixed some day, this code
2495 should be broken out into a function so that we can also pick up
2496 LWPs from the new interface. */
2497 if (!lp)
2498 {
2499 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
2500 if (options & __WCLONE)
2501 lp->cloned = 1;
2502
2503 gdb_assert (WIFSTOPPED (status)
2504 && WSTOPSIG (status) == SIGSTOP);
2505 lp->signalled = 1;
2506
2507 if (!in_thread_list (inferior_ptid))
2508 {
2509 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2510 GET_PID (inferior_ptid));
2511 add_thread (inferior_ptid);
2512 }
2513
2514 add_thread (lp->ptid);
2515 }
2516
2517 /* Save the trap's siginfo in case we need it later. */
2518 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2519 save_siginfo (lp);
2520
2521 /* Handle GNU/Linux's extended waitstatus for trace events. */
2522 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2523 {
2524 if (debug_linux_nat)
2525 fprintf_unfiltered (gdb_stdlog,
2526 "LLW: Handling extended status 0x%06x\n",
2527 status);
2528 if (linux_handle_extended_wait (lp, status, 0))
2529 return NULL;
2530 }
2531
2532 /* Check if the thread has exited. */
d90e17a7
PA
2533 if ((WIFEXITED (status) || WIFSIGNALED (status))
2534 && num_lwps (GET_PID (lp->ptid)) > 1)
02f3fc28 2535 {
9db03742
JB
2536 /* If this is the main thread, we must stop all threads and verify
2537 if they are still alive. This is because in the nptl thread model
2538 on Linux 2.4, there is no signal issued for exiting LWPs
02f3fc28
PA
2539 other than the main thread. We only get the main thread exit
2540 signal once all child threads have already exited. If we
2541 stop all the threads and use the stop_wait_callback to check
2542 if they have exited we can determine whether this signal
2543 should be ignored or whether it means the end of the debugged
2544 application, regardless of which threading model is being
5d3b6af6 2545 used. */
02f3fc28
PA
2546 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
2547 {
2548 lp->stopped = 1;
d90e17a7
PA
2549 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
2550 stop_and_resume_callback, NULL);
02f3fc28
PA
2551 }
2552
2553 if (debug_linux_nat)
2554 fprintf_unfiltered (gdb_stdlog,
2555 "LLW: %s exited.\n",
2556 target_pid_to_str (lp->ptid));
2557
d90e17a7 2558 if (num_lwps (GET_PID (lp->ptid)) > 1)
9db03742
JB
2559 {
2560 /* If there is at least one more LWP, then the exit signal
2561 was not the end of the debugged application and should be
2562 ignored. */
2563 exit_lwp (lp);
2564 return NULL;
2565 }
02f3fc28
PA
2566 }
2567
2568 /* Check if the current LWP has previously exited. In the nptl
2569 thread model, LWPs other than the main thread do not issue
2570 signals when they exit so we must check whenever the thread has
2571 stopped. A similar check is made in stop_wait_callback(). */
d90e17a7 2572 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
02f3fc28 2573 {
d90e17a7
PA
2574 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
2575
02f3fc28
PA
2576 if (debug_linux_nat)
2577 fprintf_unfiltered (gdb_stdlog,
2578 "LLW: %s exited.\n",
2579 target_pid_to_str (lp->ptid));
2580
2581 exit_lwp (lp);
2582
2583 /* Make sure there is at least one thread running. */
d90e17a7 2584 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
02f3fc28
PA
2585
2586 /* Discard the event. */
2587 return NULL;
2588 }
2589
2590 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2591 an attempt to stop an LWP. */
2592 if (lp->signalled
2593 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2594 {
2595 if (debug_linux_nat)
2596 fprintf_unfiltered (gdb_stdlog,
2597 "LLW: Delayed SIGSTOP caught for %s.\n",
2598 target_pid_to_str (lp->ptid));
2599
2600 /* This is a delayed SIGSTOP. */
2601 lp->signalled = 0;
2602
2603 registers_changed ();
2604
28439f5e 2605 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
02f3fc28
PA
2606 lp->step, TARGET_SIGNAL_0);
2607 if (debug_linux_nat)
2608 fprintf_unfiltered (gdb_stdlog,
2609 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
2610 lp->step ?
2611 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2612 target_pid_to_str (lp->ptid));
2613
2614 lp->stopped = 0;
2615 gdb_assert (lp->resumed);
2616
2617 /* Discard the event. */
2618 return NULL;
2619 }
2620
57380f4e
DJ
2621 /* Make sure we don't report a SIGINT that we have already displayed
2622 for another thread. */
2623 if (lp->ignore_sigint
2624 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
2625 {
2626 if (debug_linux_nat)
2627 fprintf_unfiltered (gdb_stdlog,
2628 "LLW: Delayed SIGINT caught for %s.\n",
2629 target_pid_to_str (lp->ptid));
2630
2631 /* This is a delayed SIGINT. */
2632 lp->ignore_sigint = 0;
2633
2634 registers_changed ();
28439f5e 2635 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
57380f4e
DJ
2636 lp->step, TARGET_SIGNAL_0);
2637 if (debug_linux_nat)
2638 fprintf_unfiltered (gdb_stdlog,
2639 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
2640 lp->step ?
2641 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2642 target_pid_to_str (lp->ptid));
2643
2644 lp->stopped = 0;
2645 gdb_assert (lp->resumed);
2646
2647 /* Discard the event. */
2648 return NULL;
2649 }
2650
02f3fc28
PA
2651 /* An interesting event. */
2652 gdb_assert (lp);
2653 return lp;
2654}
2655
d6b0e80f 2656static ptid_t
7feb7d06 2657linux_nat_wait_1 (struct target_ops *ops,
47608cb1
PA
2658 ptid_t ptid, struct target_waitstatus *ourstatus,
2659 int target_options)
d6b0e80f 2660{
7feb7d06 2661 static sigset_t prev_mask;
d6b0e80f
AC
2662 struct lwp_info *lp = NULL;
2663 int options = 0;
2664 int status = 0;
d90e17a7 2665 pid_t pid;
d6b0e80f 2666
b84876c2
PA
2667 if (debug_linux_nat_async)
2668 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
2669
f973ed9c
DJ
2670 /* The first time we get here after starting a new inferior, we may
2671 not have added it to the LWP list yet - this is the earliest
2672 moment at which we know its PID. */
d90e17a7 2673 if (ptid_is_pid (inferior_ptid))
f973ed9c 2674 {
27c9d204
PA
2675 /* Upgrade the main thread's ptid. */
2676 thread_change_ptid (inferior_ptid,
2677 BUILD_LWP (GET_PID (inferior_ptid),
2678 GET_PID (inferior_ptid)));
2679
f973ed9c
DJ
2680 lp = add_lwp (inferior_ptid);
2681 lp->resumed = 1;
2682 }
2683
7feb7d06
PA
2684 /* Make sure SIGCHLD is blocked. */
2685 block_child_signals (&prev_mask);
d6b0e80f 2686
d90e17a7
PA
2687 if (ptid_equal (ptid, minus_one_ptid))
2688 pid = -1;
2689 else if (ptid_is_pid (ptid))
2690 /* A request to wait for a specific tgid. This is not possible
2691 with waitpid, so instead, we wait for any child, and leave
2692 children we're not interested in right now with a pending
2693 status to report later. */
2694 pid = -1;
2695 else
2696 pid = GET_LWP (ptid);
2697
d6b0e80f 2698retry:
d90e17a7
PA
2699 lp = NULL;
2700 status = 0;
d6b0e80f 2701
f973ed9c 2702 /* Make sure there is at least one LWP that has been resumed. */
d90e17a7 2703 gdb_assert (iterate_over_lwps (ptid, resumed_callback, NULL));
d6b0e80f
AC
2704
2705 /* First check if there is a LWP with a wait status pending. */
2706 if (pid == -1)
2707 {
2708 /* Any LWP that's been resumed will do. */
d90e17a7 2709 lp = iterate_over_lwps (ptid, status_callback, NULL);
d6b0e80f
AC
2710 if (lp)
2711 {
2712 status = lp->status;
2713 lp->status = 0;
2714
2715 if (debug_linux_nat && status)
2716 fprintf_unfiltered (gdb_stdlog,
2717 "LLW: Using pending wait status %s for %s.\n",
2718 status_to_str (status),
2719 target_pid_to_str (lp->ptid));
2720 }
2721
b84876c2 2722 /* But if we don't find one, we'll have to wait, and check both
7feb7d06
PA
2723 cloned and uncloned processes. We start with the cloned
2724 processes. */
d6b0e80f
AC
2725 options = __WCLONE | WNOHANG;
2726 }
2727 else if (is_lwp (ptid))
2728 {
2729 if (debug_linux_nat)
2730 fprintf_unfiltered (gdb_stdlog,
2731 "LLW: Waiting for specific LWP %s.\n",
2732 target_pid_to_str (ptid));
2733
2734 /* We have a specific LWP to check. */
2735 lp = find_lwp_pid (ptid);
2736 gdb_assert (lp);
2737 status = lp->status;
2738 lp->status = 0;
2739
2740 if (debug_linux_nat && status)
2741 fprintf_unfiltered (gdb_stdlog,
2742 "LLW: Using pending wait status %s for %s.\n",
2743 status_to_str (status),
2744 target_pid_to_str (lp->ptid));
2745
2746 /* If we have to wait, take into account whether PID is a cloned
2747 process or not. And we have to convert it to something that
2748 the layer beneath us can understand. */
2749 options = lp->cloned ? __WCLONE : 0;
2750 pid = GET_LWP (ptid);
d90e17a7
PA
2751
2752 /* We check for lp->waitstatus in addition to lp->status,
2753 because we can have pending process exits recorded in
2754 lp->status and W_EXITCODE(0,0) == 0. We should probably have
2755 an additional lp->status_p flag. */
2756 if (status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
2757 lp = NULL;
d6b0e80f
AC
2758 }
2759
d90e17a7 2760 if (lp && lp->signalled)
d6b0e80f
AC
2761 {
2762 /* A pending SIGSTOP may interfere with the normal stream of
2763 events. In a typical case where interference is a problem,
2764 we have a SIGSTOP signal pending for LWP A while
2765 single-stepping it, encounter an event in LWP B, and take the
2766 pending SIGSTOP while trying to stop LWP A. After processing
2767 the event in LWP B, LWP A is continued, and we'll never see
2768 the SIGTRAP associated with the last time we were
2769 single-stepping LWP A. */
2770
2771 /* Resume the thread. It should halt immediately returning the
2772 pending SIGSTOP. */
2773 registers_changed ();
28439f5e 2774 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
10d6c8cd 2775 lp->step, TARGET_SIGNAL_0);
d6b0e80f
AC
2776 if (debug_linux_nat)
2777 fprintf_unfiltered (gdb_stdlog,
2778 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
2779 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2780 target_pid_to_str (lp->ptid));
2781 lp->stopped = 0;
2782 gdb_assert (lp->resumed);
2783
2784 /* This should catch the pending SIGSTOP. */
2785 stop_wait_callback (lp, NULL);
2786 }
2787
b84876c2
PA
2788 if (!target_can_async_p ())
2789 {
2790 /* Causes SIGINT to be passed on to the attached process. */
2791 set_sigint_trap ();
b84876c2 2792 }
d6b0e80f 2793
47608cb1
PA
2794 /* Translate generic target_wait options into waitpid options. */
2795 if (target_options & TARGET_WNOHANG)
2796 options |= WNOHANG;
7feb7d06 2797
d90e17a7 2798 while (lp == NULL)
d6b0e80f
AC
2799 {
2800 pid_t lwpid;
2801
7feb7d06 2802 lwpid = my_waitpid (pid, &status, options);
b84876c2 2803
d6b0e80f
AC
2804 if (lwpid > 0)
2805 {
2806 gdb_assert (pid == -1 || lwpid == pid);
2807
2808 if (debug_linux_nat)
2809 {
2810 fprintf_unfiltered (gdb_stdlog,
2811 "LLW: waitpid %ld received %s\n",
2812 (long) lwpid, status_to_str (status));
2813 }
2814
02f3fc28 2815 lp = linux_nat_filter_event (lwpid, status, options);
d90e17a7
PA
2816
2817 if (lp
2818 && ptid_is_pid (ptid)
2819 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
d6b0e80f 2820 {
d90e17a7
PA
2821 if (debug_linux_nat)
2822 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
2823 ptid_get_lwp (lp->ptid), status);
2824
2825 if (WIFSTOPPED (status))
2826 {
2827 if (WSTOPSIG (status) != SIGSTOP)
2828 {
2829 lp->status = status;
2830
2831 stop_callback (lp, NULL);
2832
2833 /* Resume in order to collect the sigstop. */
2834 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2835
2836 stop_wait_callback (lp, NULL);
2837 }
2838 else
2839 {
2840 lp->stopped = 1;
2841 lp->signalled = 0;
2842 }
2843 }
2844 else if (WIFEXITED (status) || WIFSIGNALED (status))
2845 {
2846 if (debug_linux_nat)
2847 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
2848 ptid_get_lwp (lp->ptid));
2849
2850 /* This was the last lwp in the process. Since
2851 events are serialized to GDB core, and we can't
2852 report this one right now, but GDB core and the
2853 other target layers will want to be notified
2854 about the exit code/signal, leave the status
2855 pending for the next time we're able to report
2856 it. */
2857 lp->status = status;
2858
2859 /* Prevent trying to stop this thread again. We'll
2860 never try to resume it because it has a pending
2861 status. */
2862 lp->stopped = 1;
2863
2864 /* Dead LWP's aren't expected to reported a pending
2865 sigstop. */
2866 lp->signalled = 0;
2867
2868 /* Store the pending event in the waitstatus as
2869 well, because W_EXITCODE(0,0) == 0. */
2870 store_waitstatus (&lp->waitstatus, status);
2871 }
2872
2873 /* Keep looking. */
2874 lp = NULL;
d6b0e80f
AC
2875 continue;
2876 }
2877
d90e17a7
PA
2878 if (lp)
2879 break;
2880 else
2881 {
2882 if (pid == -1)
2883 {
2884 /* waitpid did return something. Restart over. */
2885 options |= __WCLONE;
2886 }
2887 continue;
2888 }
d6b0e80f
AC
2889 }
2890
2891 if (pid == -1)
2892 {
2893 /* Alternate between checking cloned and uncloned processes. */
2894 options ^= __WCLONE;
2895
b84876c2
PA
2896 /* And every time we have checked both:
2897 In async mode, return to event loop;
2898 In sync mode, suspend waiting for a SIGCHLD signal. */
d6b0e80f 2899 if (options & __WCLONE)
b84876c2 2900 {
47608cb1 2901 if (target_options & TARGET_WNOHANG)
b84876c2
PA
2902 {
2903 /* No interesting event. */
2904 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2905
b84876c2
PA
2906 if (debug_linux_nat_async)
2907 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
2908
7feb7d06 2909 restore_child_signals_mask (&prev_mask);
b84876c2
PA
2910 return minus_one_ptid;
2911 }
2912
2913 sigsuspend (&suspend_mask);
2914 }
d6b0e80f
AC
2915 }
2916
2917 /* We shouldn't end up here unless we want to try again. */
d90e17a7 2918 gdb_assert (lp == NULL);
d6b0e80f
AC
2919 }
2920
b84876c2 2921 if (!target_can_async_p ())
d26b5354 2922 clear_sigint_trap ();
d6b0e80f
AC
2923
2924 gdb_assert (lp);
2925
2926 /* Don't report signals that GDB isn't interested in, such as
2927 signals that are neither printed nor stopped upon. Stopping all
2928 threads can be a bit time-consuming so if we want decent
2929 performance with heavily multi-threaded programs, especially when
2930 they're using a high frequency timer, we'd better avoid it if we
2931 can. */
2932
2933 if (WIFSTOPPED (status))
2934 {
2935 int signo = target_signal_from_host (WSTOPSIG (status));
d6b48e9c
PA
2936 struct inferior *inf;
2937
2938 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2939 gdb_assert (inf);
d6b0e80f 2940
d6b48e9c
PA
2941 /* Defer to common code if we get a signal while
2942 single-stepping, since that may need special care, e.g. to
2943 skip the signal handler, or, if we're gaining control of the
2944 inferior. */
d539ed7e 2945 if (!lp->step
d6b48e9c 2946 && inf->stop_soon == NO_STOP_QUIETLY
d539ed7e 2947 && signal_stop_state (signo) == 0
d6b0e80f
AC
2948 && signal_print_state (signo) == 0
2949 && signal_pass_state (signo) == 1)
2950 {
2951 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
2952 here? It is not clear we should. GDB may not expect
2953 other threads to run. On the other hand, not resuming
2954 newly attached threads may cause an unwanted delay in
2955 getting them running. */
2956 registers_changed ();
28439f5e 2957 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
10d6c8cd 2958 lp->step, signo);
d6b0e80f
AC
2959 if (debug_linux_nat)
2960 fprintf_unfiltered (gdb_stdlog,
2961 "LLW: %s %s, %s (preempt 'handle')\n",
2962 lp->step ?
2963 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2964 target_pid_to_str (lp->ptid),
2965 signo ? strsignal (signo) : "0");
2966 lp->stopped = 0;
d6b0e80f
AC
2967 goto retry;
2968 }
2969
1ad15515 2970 if (!non_stop)
d6b0e80f 2971 {
1ad15515
PA
2972 /* Only do the below in all-stop, as we currently use SIGINT
2973 to implement target_stop (see linux_nat_stop) in
2974 non-stop. */
2975 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
2976 {
2977 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
2978 forwarded to the entire process group, that is, all LWPs
2979 will receive it - unless they're using CLONE_THREAD to
2980 share signals. Since we only want to report it once, we
2981 mark it as ignored for all LWPs except this one. */
d90e17a7
PA
2982 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
2983 set_ignore_sigint, NULL);
1ad15515
PA
2984 lp->ignore_sigint = 0;
2985 }
2986 else
2987 maybe_clear_ignore_sigint (lp);
d6b0e80f
AC
2988 }
2989 }
2990
2991 /* This LWP is stopped now. */
2992 lp->stopped = 1;
2993
2994 if (debug_linux_nat)
2995 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
2996 status_to_str (status), target_pid_to_str (lp->ptid));
2997
4c28f408
PA
2998 if (!non_stop)
2999 {
3000 /* Now stop all other LWP's ... */
d90e17a7 3001 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
4c28f408
PA
3002
3003 /* ... and wait until all of them have reported back that
3004 they're no longer running. */
d90e17a7 3005 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
4c28f408
PA
3006
3007 /* If we're not waiting for a specific LWP, choose an event LWP
3008 from among those that have had events. Giving equal priority
3009 to all LWPs that have had events helps prevent
3010 starvation. */
3011 if (pid == -1)
d90e17a7 3012 select_event_lwp (ptid, &lp, &status);
4c28f408 3013 }
d6b0e80f
AC
3014
3015 /* Now that we've selected our final event LWP, cancel any
3016 breakpoints in other LWPs that have hit a GDB breakpoint. See
3017 the comment in cancel_breakpoints_callback to find out why. */
d90e17a7 3018 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
d6b0e80f 3019
d6b0e80f
AC
3020 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3021 {
d6b0e80f
AC
3022 if (debug_linux_nat)
3023 fprintf_unfiltered (gdb_stdlog,
4fdebdd0
PA
3024 "LLW: trap ptid is %s.\n",
3025 target_pid_to_str (lp->ptid));
d6b0e80f 3026 }
d6b0e80f
AC
3027
3028 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3029 {
3030 *ourstatus = lp->waitstatus;
3031 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3032 }
3033 else
3034 store_waitstatus (ourstatus, status);
3035
b84876c2
PA
3036 if (debug_linux_nat_async)
3037 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3038
7feb7d06 3039 restore_child_signals_mask (&prev_mask);
f973ed9c 3040 return lp->ptid;
d6b0e80f
AC
3041}
3042
7feb7d06
PA
3043static ptid_t
3044linux_nat_wait (struct target_ops *ops,
47608cb1
PA
3045 ptid_t ptid, struct target_waitstatus *ourstatus,
3046 int target_options)
7feb7d06
PA
3047{
3048 ptid_t event_ptid;
3049
3050 if (debug_linux_nat)
3051 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3052
3053 /* Flush the async file first. */
3054 if (target_can_async_p ())
3055 async_file_flush ();
3056
47608cb1 3057 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
7feb7d06
PA
3058
3059 /* If we requested any event, and something came out, assume there
3060 may be more. If we requested a specific lwp or process, also
3061 assume there may be more. */
3062 if (target_can_async_p ()
3063 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3064 || !ptid_equal (ptid, minus_one_ptid)))
3065 async_file_mark ();
3066
3067 /* Get ready for the next event. */
3068 if (target_can_async_p ())
3069 target_async (inferior_event_handler, 0);
3070
3071 return event_ptid;
3072}
3073
d6b0e80f
AC
3074static int
3075kill_callback (struct lwp_info *lp, void *data)
3076{
3077 errno = 0;
3078 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3079 if (debug_linux_nat)
3080 fprintf_unfiltered (gdb_stdlog,
3081 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3082 target_pid_to_str (lp->ptid),
3083 errno ? safe_strerror (errno) : "OK");
3084
3085 return 0;
3086}
3087
3088static int
3089kill_wait_callback (struct lwp_info *lp, void *data)
3090{
3091 pid_t pid;
3092
3093 /* We must make sure that there are no pending events (delayed
3094 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3095 program doesn't interfere with any following debugging session. */
3096
3097 /* For cloned processes we must check both with __WCLONE and
3098 without, since the exit status of a cloned process isn't reported
3099 with __WCLONE. */
3100 if (lp->cloned)
3101 {
3102 do
3103 {
58aecb61 3104 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
e85a822c 3105 if (pid != (pid_t) -1)
d6b0e80f 3106 {
e85a822c
DJ
3107 if (debug_linux_nat)
3108 fprintf_unfiltered (gdb_stdlog,
3109 "KWC: wait %s received unknown.\n",
3110 target_pid_to_str (lp->ptid));
3111 /* The Linux kernel sometimes fails to kill a thread
3112 completely after PTRACE_KILL; that goes from the stop
3113 point in do_fork out to the one in
3114 get_signal_to_deliever and waits again. So kill it
3115 again. */
3116 kill_callback (lp, NULL);
d6b0e80f
AC
3117 }
3118 }
3119 while (pid == GET_LWP (lp->ptid));
3120
3121 gdb_assert (pid == -1 && errno == ECHILD);
3122 }
3123
3124 do
3125 {
58aecb61 3126 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
e85a822c 3127 if (pid != (pid_t) -1)
d6b0e80f 3128 {
e85a822c
DJ
3129 if (debug_linux_nat)
3130 fprintf_unfiltered (gdb_stdlog,
3131 "KWC: wait %s received unk.\n",
3132 target_pid_to_str (lp->ptid));
3133 /* See the call to kill_callback above. */
3134 kill_callback (lp, NULL);
d6b0e80f
AC
3135 }
3136 }
3137 while (pid == GET_LWP (lp->ptid));
3138
3139 gdb_assert (pid == -1 && errno == ECHILD);
3140 return 0;
3141}
3142
3143static void
7d85a9c0 3144linux_nat_kill (struct target_ops *ops)
d6b0e80f 3145{
f973ed9c
DJ
3146 struct target_waitstatus last;
3147 ptid_t last_ptid;
3148 int status;
d6b0e80f 3149
f973ed9c
DJ
3150 /* If we're stopped while forking and we haven't followed yet,
3151 kill the other task. We need to do this first because the
3152 parent will be sleeping if this is a vfork. */
d6b0e80f 3153
f973ed9c 3154 get_last_target_status (&last_ptid, &last);
d6b0e80f 3155
f973ed9c
DJ
3156 if (last.kind == TARGET_WAITKIND_FORKED
3157 || last.kind == TARGET_WAITKIND_VFORKED)
3158 {
3a3e9ee3 3159 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
f973ed9c
DJ
3160 wait (&status);
3161 }
3162
3163 if (forks_exist_p ())
7feb7d06 3164 linux_fork_killall ();
f973ed9c
DJ
3165 else
3166 {
d90e17a7 3167 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
4c28f408
PA
3168 /* Stop all threads before killing them, since ptrace requires
3169 that the thread is stopped to sucessfully PTRACE_KILL. */
d90e17a7 3170 iterate_over_lwps (ptid, stop_callback, NULL);
4c28f408
PA
3171 /* ... and wait until all of them have reported back that
3172 they're no longer running. */
d90e17a7 3173 iterate_over_lwps (ptid, stop_wait_callback, NULL);
4c28f408 3174
f973ed9c 3175 /* Kill all LWP's ... */
d90e17a7 3176 iterate_over_lwps (ptid, kill_callback, NULL);
f973ed9c
DJ
3177
3178 /* ... and wait until we've flushed all events. */
d90e17a7 3179 iterate_over_lwps (ptid, kill_wait_callback, NULL);
f973ed9c
DJ
3180 }
3181
3182 target_mourn_inferior ();
d6b0e80f
AC
3183}
3184
3185static void
136d6dae 3186linux_nat_mourn_inferior (struct target_ops *ops)
d6b0e80f 3187{
d90e17a7 3188 purge_lwp_list (ptid_get_pid (inferior_ptid));
d6b0e80f 3189
f973ed9c 3190 if (! forks_exist_p ())
d90e17a7
PA
3191 /* Normal case, no other forks available. */
3192 linux_ops->to_mourn_inferior (ops);
f973ed9c
DJ
3193 else
3194 /* Multi-fork case. The current inferior_ptid has exited, but
3195 there are other viable forks to debug. Delete the exiting
3196 one and context-switch to the first available. */
3197 linux_fork_mourn_inferior ();
d6b0e80f
AC
3198}
3199
5b009018
PA
3200/* Convert a native/host siginfo object, into/from the siginfo in the
3201 layout of the inferiors' architecture. */
3202
3203static void
3204siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3205{
3206 int done = 0;
3207
3208 if (linux_nat_siginfo_fixup != NULL)
3209 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3210
3211 /* If there was no callback, or the callback didn't do anything,
3212 then just do a straight memcpy. */
3213 if (!done)
3214 {
3215 if (direction == 1)
3216 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3217 else
3218 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3219 }
3220}
3221
4aa995e1
PA
3222static LONGEST
3223linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3224 const char *annex, gdb_byte *readbuf,
3225 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3226{
4aa995e1
PA
3227 int pid;
3228 struct siginfo siginfo;
5b009018 3229 gdb_byte inf_siginfo[sizeof (struct siginfo)];
4aa995e1
PA
3230
3231 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3232 gdb_assert (readbuf || writebuf);
3233
3234 pid = GET_LWP (inferior_ptid);
3235 if (pid == 0)
3236 pid = GET_PID (inferior_ptid);
3237
3238 if (offset > sizeof (siginfo))
3239 return -1;
3240
3241 errno = 0;
3242 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3243 if (errno != 0)
3244 return -1;
3245
5b009018
PA
3246 /* When GDB is built as a 64-bit application, ptrace writes into
3247 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3248 inferior with a 64-bit GDB should look the same as debugging it
3249 with a 32-bit GDB, we need to convert it. GDB core always sees
3250 the converted layout, so any read/write will have to be done
3251 post-conversion. */
3252 siginfo_fixup (&siginfo, inf_siginfo, 0);
3253
4aa995e1
PA
3254 if (offset + len > sizeof (siginfo))
3255 len = sizeof (siginfo) - offset;
3256
3257 if (readbuf != NULL)
5b009018 3258 memcpy (readbuf, inf_siginfo + offset, len);
4aa995e1
PA
3259 else
3260 {
5b009018
PA
3261 memcpy (inf_siginfo + offset, writebuf, len);
3262
3263 /* Convert back to ptrace layout before flushing it out. */
3264 siginfo_fixup (&siginfo, inf_siginfo, 1);
3265
4aa995e1
PA
3266 errno = 0;
3267 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3268 if (errno != 0)
3269 return -1;
3270 }
3271
3272 return len;
3273}
3274
10d6c8cd
DJ
3275static LONGEST
3276linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3277 const char *annex, gdb_byte *readbuf,
3278 const gdb_byte *writebuf,
3279 ULONGEST offset, LONGEST len)
d6b0e80f 3280{
4aa995e1 3281 struct cleanup *old_chain;
10d6c8cd 3282 LONGEST xfer;
d6b0e80f 3283
4aa995e1
PA
3284 if (object == TARGET_OBJECT_SIGNAL_INFO)
3285 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3286 offset, len);
3287
3288 old_chain = save_inferior_ptid ();
3289
d6b0e80f
AC
3290 if (is_lwp (inferior_ptid))
3291 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3292
10d6c8cd
DJ
3293 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3294 offset, len);
d6b0e80f
AC
3295
3296 do_cleanups (old_chain);
3297 return xfer;
3298}
3299
3300static int
28439f5e 3301linux_thread_alive (ptid_t ptid)
d6b0e80f 3302{
4c28f408
PA
3303 int err;
3304
d6b0e80f
AC
3305 gdb_assert (is_lwp (ptid));
3306
4c28f408
PA
3307 /* Send signal 0 instead of anything ptrace, because ptracing a
3308 running thread errors out claiming that the thread doesn't
3309 exist. */
3310 err = kill_lwp (GET_LWP (ptid), 0);
3311
d6b0e80f
AC
3312 if (debug_linux_nat)
3313 fprintf_unfiltered (gdb_stdlog,
4c28f408 3314 "LLTA: KILL(SIG0) %s (%s)\n",
d6b0e80f 3315 target_pid_to_str (ptid),
4c28f408 3316 err ? safe_strerror (err) : "OK");
9c0dd46b 3317
4c28f408 3318 if (err != 0)
d6b0e80f
AC
3319 return 0;
3320
3321 return 1;
3322}
3323
28439f5e
PA
3324static int
3325linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3326{
3327 return linux_thread_alive (ptid);
3328}
3329
d6b0e80f 3330static char *
117de6a9 3331linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
d6b0e80f
AC
3332{
3333 static char buf[64];
3334
a0ef4274 3335 if (is_lwp (ptid)
d90e17a7
PA
3336 && (GET_PID (ptid) != GET_LWP (ptid)
3337 || num_lwps (GET_PID (ptid)) > 1))
d6b0e80f
AC
3338 {
3339 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3340 return buf;
3341 }
3342
3343 return normal_pid_to_str (ptid);
3344}
3345
dba24537
AC
3346/* Accepts an integer PID; Returns a string representing a file that
3347 can be opened to get the symbols for the child process. */
3348
6d8fd2b7
UW
3349static char *
3350linux_child_pid_to_exec_file (int pid)
dba24537
AC
3351{
3352 char *name1, *name2;
3353
3354 name1 = xmalloc (MAXPATHLEN);
3355 name2 = xmalloc (MAXPATHLEN);
3356 make_cleanup (xfree, name1);
3357 make_cleanup (xfree, name2);
3358 memset (name2, 0, MAXPATHLEN);
3359
3360 sprintf (name1, "/proc/%d/exe", pid);
3361 if (readlink (name1, name2, MAXPATHLEN) > 0)
3362 return name2;
3363 else
3364 return name1;
3365}
3366
3367/* Service function for corefiles and info proc. */
3368
3369static int
3370read_mapping (FILE *mapfile,
3371 long long *addr,
3372 long long *endaddr,
3373 char *permissions,
3374 long long *offset,
3375 char *device, long long *inode, char *filename)
3376{
3377 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3378 addr, endaddr, permissions, offset, device, inode);
3379
2e14c2ea
MS
3380 filename[0] = '\0';
3381 if (ret > 0 && ret != EOF)
dba24537
AC
3382 {
3383 /* Eat everything up to EOL for the filename. This will prevent
3384 weird filenames (such as one with embedded whitespace) from
3385 confusing this code. It also makes this code more robust in
3386 respect to annotations the kernel may add after the filename.
3387
3388 Note the filename is used for informational purposes
3389 only. */
3390 ret += fscanf (mapfile, "%[^\n]\n", filename);
3391 }
2e14c2ea 3392
dba24537
AC
3393 return (ret != 0 && ret != EOF);
3394}
3395
3396/* Fills the "to_find_memory_regions" target vector. Lists the memory
3397 regions in the inferior for a corefile. */
3398
3399static int
3400linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
3401 unsigned long,
3402 int, int, int, void *), void *obfd)
3403{
89ecc4f5 3404 int pid = PIDGET (inferior_ptid);
dba24537
AC
3405 char mapsfilename[MAXPATHLEN];
3406 FILE *mapsfile;
3407 long long addr, endaddr, size, offset, inode;
3408 char permissions[8], device[8], filename[MAXPATHLEN];
3409 int read, write, exec;
3410 int ret;
7c8a8b04 3411 struct cleanup *cleanup;
dba24537
AC
3412
3413 /* Compose the filename for the /proc memory map, and open it. */
89ecc4f5 3414 sprintf (mapsfilename, "/proc/%d/maps", pid);
dba24537 3415 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
8a3fe4f8 3416 error (_("Could not open %s."), mapsfilename);
7c8a8b04 3417 cleanup = make_cleanup_fclose (mapsfile);
dba24537
AC
3418
3419 if (info_verbose)
3420 fprintf_filtered (gdb_stdout,
3421 "Reading memory regions from %s\n", mapsfilename);
3422
3423 /* Now iterate until end-of-file. */
3424 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
3425 &offset, &device[0], &inode, &filename[0]))
3426 {
3427 size = endaddr - addr;
3428
3429 /* Get the segment's permissions. */
3430 read = (strchr (permissions, 'r') != 0);
3431 write = (strchr (permissions, 'w') != 0);
3432 exec = (strchr (permissions, 'x') != 0);
3433
3434 if (info_verbose)
3435 {
3436 fprintf_filtered (gdb_stdout,
3437 "Save segment, %lld bytes at 0x%s (%c%c%c)",
3438 size, paddr_nz (addr),
3439 read ? 'r' : ' ',
3440 write ? 'w' : ' ', exec ? 'x' : ' ');
b260b6c1 3441 if (filename[0])
dba24537
AC
3442 fprintf_filtered (gdb_stdout, " for %s", filename);
3443 fprintf_filtered (gdb_stdout, "\n");
3444 }
3445
3446 /* Invoke the callback function to create the corefile
3447 segment. */
3448 func (addr, size, read, write, exec, obfd);
3449 }
7c8a8b04 3450 do_cleanups (cleanup);
dba24537
AC
3451 return 0;
3452}
3453
2020b7ab
PA
3454static int
3455find_signalled_thread (struct thread_info *info, void *data)
3456{
3457 if (info->stop_signal != TARGET_SIGNAL_0
3458 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
3459 return 1;
3460
3461 return 0;
3462}
3463
3464static enum target_signal
3465find_stop_signal (void)
3466{
3467 struct thread_info *info =
3468 iterate_over_threads (find_signalled_thread, NULL);
3469
3470 if (info)
3471 return info->stop_signal;
3472 else
3473 return TARGET_SIGNAL_0;
3474}
3475
dba24537
AC
3476/* Records the thread's register state for the corefile note
3477 section. */
3478
3479static char *
3480linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
2020b7ab
PA
3481 char *note_data, int *note_size,
3482 enum target_signal stop_signal)
dba24537
AC
3483{
3484 gdb_gregset_t gregs;
3485 gdb_fpregset_t fpregs;
dba24537 3486 unsigned long lwp = ptid_get_lwp (ptid);
594f7785
UW
3487 struct regcache *regcache = get_thread_regcache (ptid);
3488 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4f844a66 3489 const struct regset *regset;
55e969c1 3490 int core_regset_p;
594f7785 3491 struct cleanup *old_chain;
17ea7499
CES
3492 struct core_regset_section *sect_list;
3493 char *gdb_regset;
594f7785
UW
3494
3495 old_chain = save_inferior_ptid ();
3496 inferior_ptid = ptid;
3497 target_fetch_registers (regcache, -1);
3498 do_cleanups (old_chain);
4f844a66
DM
3499
3500 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
17ea7499
CES
3501 sect_list = gdbarch_core_regset_sections (gdbarch);
3502
55e969c1
DM
3503 if (core_regset_p
3504 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
3505 sizeof (gregs))) != NULL
3506 && regset->collect_regset != NULL)
594f7785 3507 regset->collect_regset (regset, regcache, -1,
55e969c1 3508 &gregs, sizeof (gregs));
4f844a66 3509 else
594f7785 3510 fill_gregset (regcache, &gregs, -1);
4f844a66 3511
55e969c1
DM
3512 note_data = (char *) elfcore_write_prstatus (obfd,
3513 note_data,
3514 note_size,
3515 lwp,
3516 stop_signal, &gregs);
3517
17ea7499
CES
3518 /* The loop below uses the new struct core_regset_section, which stores
3519 the supported section names and sizes for the core file. Note that
3520 note PRSTATUS needs to be treated specially. But the other notes are
3521 structurally the same, so they can benefit from the new struct. */
3522 if (core_regset_p && sect_list != NULL)
3523 while (sect_list->sect_name != NULL)
3524 {
3525 /* .reg was already handled above. */
3526 if (strcmp (sect_list->sect_name, ".reg") == 0)
3527 {
3528 sect_list++;
3529 continue;
3530 }
3531 regset = gdbarch_regset_from_core_section (gdbarch,
3532 sect_list->sect_name,
3533 sect_list->size);
3534 gdb_assert (regset && regset->collect_regset);
3535 gdb_regset = xmalloc (sect_list->size);
3536 regset->collect_regset (regset, regcache, -1,
3537 gdb_regset, sect_list->size);
3538 note_data = (char *) elfcore_write_register_note (obfd,
3539 note_data,
3540 note_size,
3541 sect_list->sect_name,
3542 gdb_regset,
3543 sect_list->size);
3544 xfree (gdb_regset);
3545 sect_list++;
3546 }
dba24537 3547
17ea7499
CES
3548 /* For architectures that does not have the struct core_regset_section
3549 implemented, we use the old method. When all the architectures have
3550 the new support, the code below should be deleted. */
4f844a66 3551 else
17ea7499
CES
3552 {
3553 if (core_regset_p
3554 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
3555 sizeof (fpregs))) != NULL
3556 && regset->collect_regset != NULL)
3557 regset->collect_regset (regset, regcache, -1,
3558 &fpregs, sizeof (fpregs));
3559 else
3560 fill_fpregset (regcache, &fpregs, -1);
3561
3562 note_data = (char *) elfcore_write_prfpreg (obfd,
3563 note_data,
3564 note_size,
3565 &fpregs, sizeof (fpregs));
3566 }
4f844a66 3567
dba24537
AC
3568 return note_data;
3569}
3570
3571struct linux_nat_corefile_thread_data
3572{
3573 bfd *obfd;
3574 char *note_data;
3575 int *note_size;
3576 int num_notes;
2020b7ab 3577 enum target_signal stop_signal;
dba24537
AC
3578};
3579
3580/* Called by gdbthread.c once per thread. Records the thread's
3581 register state for the corefile note section. */
3582
3583static int
3584linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
3585{
3586 struct linux_nat_corefile_thread_data *args = data;
dba24537 3587
dba24537
AC
3588 args->note_data = linux_nat_do_thread_registers (args->obfd,
3589 ti->ptid,
3590 args->note_data,
2020b7ab
PA
3591 args->note_size,
3592 args->stop_signal);
dba24537 3593 args->num_notes++;
56be3814 3594
dba24537
AC
3595 return 0;
3596}
3597
dba24537
AC
3598/* Fills the "to_make_corefile_note" target vector. Builds the note
3599 section for a corefile, and returns it in a malloc buffer. */
3600
3601static char *
3602linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
3603{
3604 struct linux_nat_corefile_thread_data thread_args;
3605 struct cleanup *old_chain;
d99148ef 3606 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
dba24537 3607 char fname[16] = { '\0' };
d99148ef 3608 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
dba24537
AC
3609 char psargs[80] = { '\0' };
3610 char *note_data = NULL;
3611 ptid_t current_ptid = inferior_ptid;
d90e17a7 3612 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
c6826062 3613 gdb_byte *auxv;
dba24537
AC
3614 int auxv_len;
3615
3616 if (get_exec_file (0))
3617 {
3618 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
3619 strncpy (psargs, get_exec_file (0), sizeof (psargs));
3620 if (get_inferior_args ())
3621 {
d99148ef
JK
3622 char *string_end;
3623 char *psargs_end = psargs + sizeof (psargs);
3624
3625 /* linux_elfcore_write_prpsinfo () handles zero unterminated
3626 strings fine. */
3627 string_end = memchr (psargs, 0, sizeof (psargs));
3628 if (string_end != NULL)
3629 {
3630 *string_end++ = ' ';
3631 strncpy (string_end, get_inferior_args (),
3632 psargs_end - string_end);
3633 }
dba24537
AC
3634 }
3635 note_data = (char *) elfcore_write_prpsinfo (obfd,
3636 note_data,
3637 note_size, fname, psargs);
3638 }
3639
3640 /* Dump information for threads. */
3641 thread_args.obfd = obfd;
3642 thread_args.note_data = note_data;
3643 thread_args.note_size = note_size;
3644 thread_args.num_notes = 0;
2020b7ab 3645 thread_args.stop_signal = find_stop_signal ();
d90e17a7 3646 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
2020b7ab
PA
3647 gdb_assert (thread_args.num_notes != 0);
3648 note_data = thread_args.note_data;
dba24537 3649
13547ab6
DJ
3650 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
3651 NULL, &auxv);
dba24537
AC
3652 if (auxv_len > 0)
3653 {
3654 note_data = elfcore_write_note (obfd, note_data, note_size,
3655 "CORE", NT_AUXV, auxv, auxv_len);
3656 xfree (auxv);
3657 }
3658
3659 make_cleanup (xfree, note_data);
3660 return note_data;
3661}
3662
3663/* Implement the "info proc" command. */
3664
3665static void
3666linux_nat_info_proc_cmd (char *args, int from_tty)
3667{
89ecc4f5
DE
3668 /* A long is used for pid instead of an int to avoid a loss of precision
3669 compiler warning from the output of strtoul. */
3670 long pid = PIDGET (inferior_ptid);
dba24537
AC
3671 FILE *procfile;
3672 char **argv = NULL;
3673 char buffer[MAXPATHLEN];
3674 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
3675 int cmdline_f = 1;
3676 int cwd_f = 1;
3677 int exe_f = 1;
3678 int mappings_f = 0;
3679 int environ_f = 0;
3680 int status_f = 0;
3681 int stat_f = 0;
3682 int all = 0;
3683 struct stat dummy;
3684
3685 if (args)
3686 {
3687 /* Break up 'args' into an argv array. */
d1a41061
PP
3688 argv = gdb_buildargv (args);
3689 make_cleanup_freeargv (argv);
dba24537
AC
3690 }
3691 while (argv != NULL && *argv != NULL)
3692 {
3693 if (isdigit (argv[0][0]))
3694 {
3695 pid = strtoul (argv[0], NULL, 10);
3696 }
3697 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
3698 {
3699 mappings_f = 1;
3700 }
3701 else if (strcmp (argv[0], "status") == 0)
3702 {
3703 status_f = 1;
3704 }
3705 else if (strcmp (argv[0], "stat") == 0)
3706 {
3707 stat_f = 1;
3708 }
3709 else if (strcmp (argv[0], "cmd") == 0)
3710 {
3711 cmdline_f = 1;
3712 }
3713 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
3714 {
3715 exe_f = 1;
3716 }
3717 else if (strcmp (argv[0], "cwd") == 0)
3718 {
3719 cwd_f = 1;
3720 }
3721 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
3722 {
3723 all = 1;
3724 }
3725 else
3726 {
3727 /* [...] (future options here) */
3728 }
3729 argv++;
3730 }
3731 if (pid == 0)
8a3fe4f8 3732 error (_("No current process: you must name one."));
dba24537 3733
89ecc4f5 3734 sprintf (fname1, "/proc/%ld", pid);
dba24537 3735 if (stat (fname1, &dummy) != 0)
8a3fe4f8 3736 error (_("No /proc directory: '%s'"), fname1);
dba24537 3737
89ecc4f5 3738 printf_filtered (_("process %ld\n"), pid);
dba24537
AC
3739 if (cmdline_f || all)
3740 {
89ecc4f5 3741 sprintf (fname1, "/proc/%ld/cmdline", pid);
d5d6fca5 3742 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537 3743 {
7c8a8b04 3744 struct cleanup *cleanup = make_cleanup_fclose (procfile);
bf1d7d9c
JB
3745 if (fgets (buffer, sizeof (buffer), procfile))
3746 printf_filtered ("cmdline = '%s'\n", buffer);
3747 else
3748 warning (_("unable to read '%s'"), fname1);
7c8a8b04 3749 do_cleanups (cleanup);
dba24537
AC
3750 }
3751 else
8a3fe4f8 3752 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
3753 }
3754 if (cwd_f || all)
3755 {
89ecc4f5 3756 sprintf (fname1, "/proc/%ld/cwd", pid);
dba24537
AC
3757 memset (fname2, 0, sizeof (fname2));
3758 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3759 printf_filtered ("cwd = '%s'\n", fname2);
3760 else
8a3fe4f8 3761 warning (_("unable to read link '%s'"), fname1);
dba24537
AC
3762 }
3763 if (exe_f || all)
3764 {
89ecc4f5 3765 sprintf (fname1, "/proc/%ld/exe", pid);
dba24537
AC
3766 memset (fname2, 0, sizeof (fname2));
3767 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3768 printf_filtered ("exe = '%s'\n", fname2);
3769 else
8a3fe4f8 3770 warning (_("unable to read link '%s'"), fname1);
dba24537
AC
3771 }
3772 if (mappings_f || all)
3773 {
89ecc4f5 3774 sprintf (fname1, "/proc/%ld/maps", pid);
d5d6fca5 3775 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537
AC
3776 {
3777 long long addr, endaddr, size, offset, inode;
3778 char permissions[8], device[8], filename[MAXPATHLEN];
7c8a8b04 3779 struct cleanup *cleanup;
dba24537 3780
7c8a8b04 3781 cleanup = make_cleanup_fclose (procfile);
a3f17187 3782 printf_filtered (_("Mapped address spaces:\n\n"));
17a912b6 3783 if (gdbarch_addr_bit (current_gdbarch) == 32)
dba24537
AC
3784 {
3785 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
3786 "Start Addr",
3787 " End Addr",
3788 " Size", " Offset", "objfile");
3789 }
3790 else
3791 {
3792 printf_filtered (" %18s %18s %10s %10s %7s\n",
3793 "Start Addr",
3794 " End Addr",
3795 " Size", " Offset", "objfile");
3796 }
3797
3798 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
3799 &offset, &device[0], &inode, &filename[0]))
3800 {
3801 size = endaddr - addr;
3802
3803 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
3804 calls here (and possibly above) should be abstracted
3805 out into their own functions? Andrew suggests using
3806 a generic local_address_string instead to print out
3807 the addresses; that makes sense to me, too. */
3808
17a912b6 3809 if (gdbarch_addr_bit (current_gdbarch) == 32)
dba24537
AC
3810 {
3811 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
3812 (unsigned long) addr, /* FIXME: pr_addr */
3813 (unsigned long) endaddr,
3814 (int) size,
3815 (unsigned int) offset,
3816 filename[0] ? filename : "");
3817 }
3818 else
3819 {
3820 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
3821 (unsigned long) addr, /* FIXME: pr_addr */
3822 (unsigned long) endaddr,
3823 (int) size,
3824 (unsigned int) offset,
3825 filename[0] ? filename : "");
3826 }
3827 }
3828
7c8a8b04 3829 do_cleanups (cleanup);
dba24537
AC
3830 }
3831 else
8a3fe4f8 3832 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
3833 }
3834 if (status_f || all)
3835 {
89ecc4f5 3836 sprintf (fname1, "/proc/%ld/status", pid);
d5d6fca5 3837 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537 3838 {
7c8a8b04 3839 struct cleanup *cleanup = make_cleanup_fclose (procfile);
dba24537
AC
3840 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
3841 puts_filtered (buffer);
7c8a8b04 3842 do_cleanups (cleanup);
dba24537
AC
3843 }
3844 else
8a3fe4f8 3845 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
3846 }
3847 if (stat_f || all)
3848 {
89ecc4f5 3849 sprintf (fname1, "/proc/%ld/stat", pid);
d5d6fca5 3850 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537
AC
3851 {
3852 int itmp;
3853 char ctmp;
a25694b4 3854 long ltmp;
7c8a8b04 3855 struct cleanup *cleanup = make_cleanup_fclose (procfile);
dba24537
AC
3856
3857 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3858 printf_filtered (_("Process: %d\n"), itmp);
a25694b4 3859 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
a3f17187 3860 printf_filtered (_("Exec file: %s\n"), buffer);
dba24537 3861 if (fscanf (procfile, "%c ", &ctmp) > 0)
a3f17187 3862 printf_filtered (_("State: %c\n"), ctmp);
dba24537 3863 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3864 printf_filtered (_("Parent process: %d\n"), itmp);
dba24537 3865 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3866 printf_filtered (_("Process group: %d\n"), itmp);
dba24537 3867 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3868 printf_filtered (_("Session id: %d\n"), itmp);
dba24537 3869 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3870 printf_filtered (_("TTY: %d\n"), itmp);
dba24537 3871 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3872 printf_filtered (_("TTY owner process group: %d\n"), itmp);
a25694b4
AS
3873 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3874 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
3875 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3876 printf_filtered (_("Minor faults (no memory page): %lu\n"),
3877 (unsigned long) ltmp);
3878 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3879 printf_filtered (_("Minor faults, children: %lu\n"),
3880 (unsigned long) ltmp);
3881 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3882 printf_filtered (_("Major faults (memory page faults): %lu\n"),
3883 (unsigned long) ltmp);
3884 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3885 printf_filtered (_("Major faults, children: %lu\n"),
3886 (unsigned long) ltmp);
3887 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3888 printf_filtered (_("utime: %ld\n"), ltmp);
3889 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3890 printf_filtered (_("stime: %ld\n"), ltmp);
3891 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3892 printf_filtered (_("utime, children: %ld\n"), ltmp);
3893 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3894 printf_filtered (_("stime, children: %ld\n"), ltmp);
3895 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3896 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
3897 ltmp);
3898 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3899 printf_filtered (_("'nice' value: %ld\n"), ltmp);
3900 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3901 printf_filtered (_("jiffies until next timeout: %lu\n"),
3902 (unsigned long) ltmp);
3903 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3904 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
3905 (unsigned long) ltmp);
3906 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3907 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
3908 ltmp);
3909 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3910 printf_filtered (_("Virtual memory size: %lu\n"),
3911 (unsigned long) ltmp);
3912 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3913 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
3914 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3915 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
3916 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3917 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
3918 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3919 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
3920 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3921 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
dba24537
AC
3922#if 0 /* Don't know how architecture-dependent the rest is...
3923 Anyway the signal bitmap info is available from "status". */
a25694b4
AS
3924 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3925 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
3926 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3927 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
3928 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3929 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
3930 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3931 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
3932 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3933 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
3934 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3935 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
3936 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3937 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
dba24537 3938#endif
7c8a8b04 3939 do_cleanups (cleanup);
dba24537
AC
3940 }
3941 else
8a3fe4f8 3942 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
3943 }
3944}
3945
10d6c8cd
DJ
3946/* Implement the to_xfer_partial interface for memory reads using the /proc
3947 filesystem. Because we can use a single read() call for /proc, this
3948 can be much more efficient than banging away at PTRACE_PEEKTEXT,
3949 but it doesn't support writes. */
3950
3951static LONGEST
3952linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3953 const char *annex, gdb_byte *readbuf,
3954 const gdb_byte *writebuf,
3955 ULONGEST offset, LONGEST len)
dba24537 3956{
10d6c8cd
DJ
3957 LONGEST ret;
3958 int fd;
dba24537
AC
3959 char filename[64];
3960
10d6c8cd 3961 if (object != TARGET_OBJECT_MEMORY || !readbuf)
dba24537
AC
3962 return 0;
3963
3964 /* Don't bother for one word. */
3965 if (len < 3 * sizeof (long))
3966 return 0;
3967
3968 /* We could keep this file open and cache it - possibly one per
3969 thread. That requires some juggling, but is even faster. */
3970 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
3971 fd = open (filename, O_RDONLY | O_LARGEFILE);
3972 if (fd == -1)
3973 return 0;
3974
3975 /* If pread64 is available, use it. It's faster if the kernel
3976 supports it (only one syscall), and it's 64-bit safe even on
3977 32-bit platforms (for instance, SPARC debugging a SPARC64
3978 application). */
3979#ifdef HAVE_PREAD64
10d6c8cd 3980 if (pread64 (fd, readbuf, len, offset) != len)
dba24537 3981#else
10d6c8cd 3982 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
dba24537
AC
3983#endif
3984 ret = 0;
3985 else
3986 ret = len;
3987
3988 close (fd);
3989 return ret;
3990}
3991
3992/* Parse LINE as a signal set and add its set bits to SIGS. */
3993
3994static void
3995add_line_to_sigset (const char *line, sigset_t *sigs)
3996{
3997 int len = strlen (line) - 1;
3998 const char *p;
3999 int signum;
4000
4001 if (line[len] != '\n')
8a3fe4f8 4002 error (_("Could not parse signal set: %s"), line);
dba24537
AC
4003
4004 p = line;
4005 signum = len * 4;
4006 while (len-- > 0)
4007 {
4008 int digit;
4009
4010 if (*p >= '0' && *p <= '9')
4011 digit = *p - '0';
4012 else if (*p >= 'a' && *p <= 'f')
4013 digit = *p - 'a' + 10;
4014 else
8a3fe4f8 4015 error (_("Could not parse signal set: %s"), line);
dba24537
AC
4016
4017 signum -= 4;
4018
4019 if (digit & 1)
4020 sigaddset (sigs, signum + 1);
4021 if (digit & 2)
4022 sigaddset (sigs, signum + 2);
4023 if (digit & 4)
4024 sigaddset (sigs, signum + 3);
4025 if (digit & 8)
4026 sigaddset (sigs, signum + 4);
4027
4028 p++;
4029 }
4030}
4031
4032/* Find process PID's pending signals from /proc/pid/status and set
4033 SIGS to match. */
4034
4035void
4036linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4037{
4038 FILE *procfile;
4039 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4040 int signum;
7c8a8b04 4041 struct cleanup *cleanup;
dba24537
AC
4042
4043 sigemptyset (pending);
4044 sigemptyset (blocked);
4045 sigemptyset (ignored);
4046 sprintf (fname, "/proc/%d/status", pid);
4047 procfile = fopen (fname, "r");
4048 if (procfile == NULL)
8a3fe4f8 4049 error (_("Could not open %s"), fname);
7c8a8b04 4050 cleanup = make_cleanup_fclose (procfile);
dba24537
AC
4051
4052 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4053 {
4054 /* Normal queued signals are on the SigPnd line in the status
4055 file. However, 2.6 kernels also have a "shared" pending
4056 queue for delivering signals to a thread group, so check for
4057 a ShdPnd line also.
4058
4059 Unfortunately some Red Hat kernels include the shared pending
4060 queue but not the ShdPnd status field. */
4061
4062 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4063 add_line_to_sigset (buffer + 8, pending);
4064 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4065 add_line_to_sigset (buffer + 8, pending);
4066 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4067 add_line_to_sigset (buffer + 8, blocked);
4068 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4069 add_line_to_sigset (buffer + 8, ignored);
4070 }
4071
7c8a8b04 4072 do_cleanups (cleanup);
dba24537
AC
4073}
4074
07e059b5
VP
4075static LONGEST
4076linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4077 const char *annex, gdb_byte *readbuf,
4078 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4079{
4080 /* We make the process list snapshot when the object starts to be
4081 read. */
4082 static const char *buf;
4083 static LONGEST len_avail = -1;
4084 static struct obstack obstack;
4085
4086 DIR *dirp;
4087
4088 gdb_assert (object == TARGET_OBJECT_OSDATA);
4089
4090 if (strcmp (annex, "processes") != 0)
4091 return 0;
4092
4093 gdb_assert (readbuf && !writebuf);
4094
4095 if (offset == 0)
4096 {
4097 if (len_avail != -1 && len_avail != 0)
4098 obstack_free (&obstack, NULL);
4099 len_avail = 0;
4100 buf = NULL;
4101 obstack_init (&obstack);
4102 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
4103
4104 dirp = opendir ("/proc");
4105 if (dirp)
4106 {
4107 struct dirent *dp;
4108 while ((dp = readdir (dirp)) != NULL)
4109 {
4110 struct stat statbuf;
4111 char procentry[sizeof ("/proc/4294967295")];
4112
4113 if (!isdigit (dp->d_name[0])
1a6d2f2f 4114 || NAMELEN (dp) > sizeof ("4294967295") - 1)
07e059b5
VP
4115 continue;
4116
4117 sprintf (procentry, "/proc/%s", dp->d_name);
4118 if (stat (procentry, &statbuf) == 0
4119 && S_ISDIR (statbuf.st_mode))
4120 {
4121 char *pathname;
4122 FILE *f;
4123 char cmd[MAXPATHLEN + 1];
4124 struct passwd *entry;
4125
4126 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
4127 entry = getpwuid (statbuf.st_uid);
4128
4129 if ((f = fopen (pathname, "r")) != NULL)
4130 {
4131 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
4132 if (len > 0)
4133 {
4134 int i;
4135 for (i = 0; i < len; i++)
4136 if (cmd[i] == '\0')
4137 cmd[i] = ' ';
4138 cmd[len] = '\0';
4139
4140 obstack_xml_printf (
4141 &obstack,
4142 "<item>"
4143 "<column name=\"pid\">%s</column>"
4144 "<column name=\"user\">%s</column>"
4145 "<column name=\"command\">%s</column>"
4146 "</item>",
4147 dp->d_name,
4148 entry ? entry->pw_name : "?",
4149 cmd);
4150 }
4151 fclose (f);
4152 }
4153
4154 xfree (pathname);
4155 }
4156 }
4157
4158 closedir (dirp);
4159 }
4160
4161 obstack_grow_str0 (&obstack, "</osdata>\n");
4162 buf = obstack_finish (&obstack);
4163 len_avail = strlen (buf);
4164 }
4165
4166 if (offset >= len_avail)
4167 {
4168 /* Done. Get rid of the obstack. */
4169 obstack_free (&obstack, NULL);
4170 buf = NULL;
4171 len_avail = 0;
4172 return 0;
4173 }
4174
4175 if (len > len_avail - offset)
4176 len = len_avail - offset;
4177 memcpy (readbuf, buf + offset, len);
4178
4179 return len;
4180}
4181
10d6c8cd
DJ
4182static LONGEST
4183linux_xfer_partial (struct target_ops *ops, enum target_object object,
4184 const char *annex, gdb_byte *readbuf,
4185 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4186{
4187 LONGEST xfer;
4188
4189 if (object == TARGET_OBJECT_AUXV)
4190 return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
4191 offset, len);
4192
07e059b5
VP
4193 if (object == TARGET_OBJECT_OSDATA)
4194 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4195 offset, len);
4196
10d6c8cd
DJ
4197 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4198 offset, len);
4199 if (xfer != 0)
4200 return xfer;
4201
4202 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4203 offset, len);
4204}
4205
e9efe249 4206/* Create a prototype generic GNU/Linux target. The client can override
10d6c8cd
DJ
4207 it with local methods. */
4208
910122bf
UW
4209static void
4210linux_target_install_ops (struct target_ops *t)
10d6c8cd 4211{
6d8fd2b7
UW
4212 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4213 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4214 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4215 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
10d6c8cd 4216 t->to_post_startup_inferior = linux_child_post_startup_inferior;
6d8fd2b7
UW
4217 t->to_post_attach = linux_child_post_attach;
4218 t->to_follow_fork = linux_child_follow_fork;
10d6c8cd
DJ
4219 t->to_find_memory_regions = linux_nat_find_memory_regions;
4220 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4221
4222 super_xfer_partial = t->to_xfer_partial;
4223 t->to_xfer_partial = linux_xfer_partial;
910122bf
UW
4224}
4225
4226struct target_ops *
4227linux_target (void)
4228{
4229 struct target_ops *t;
4230
4231 t = inf_ptrace_target ();
4232 linux_target_install_ops (t);
4233
4234 return t;
4235}
4236
4237struct target_ops *
7714d83a 4238linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
910122bf
UW
4239{
4240 struct target_ops *t;
4241
4242 t = inf_ptrace_trad_target (register_u_offset);
4243 linux_target_install_ops (t);
10d6c8cd 4244
10d6c8cd
DJ
4245 return t;
4246}
4247
b84876c2
PA
4248/* target_is_async_p implementation. */
4249
4250static int
4251linux_nat_is_async_p (void)
4252{
4253 /* NOTE: palves 2008-03-21: We're only async when the user requests
7feb7d06 4254 it explicitly with the "set target-async" command.
b84876c2 4255 Someday, linux will always be async. */
c6ebd6cf 4256 if (!target_async_permitted)
b84876c2
PA
4257 return 0;
4258
d90e17a7
PA
4259 /* See target.h/target_async_mask. */
4260 return linux_nat_async_mask_value;
b84876c2
PA
4261}
4262
4263/* target_can_async_p implementation. */
4264
4265static int
4266linux_nat_can_async_p (void)
4267{
4268 /* NOTE: palves 2008-03-21: We're only async when the user requests
7feb7d06 4269 it explicitly with the "set target-async" command.
b84876c2 4270 Someday, linux will always be async. */
c6ebd6cf 4271 if (!target_async_permitted)
b84876c2
PA
4272 return 0;
4273
4274 /* See target.h/target_async_mask. */
4275 return linux_nat_async_mask_value;
4276}
4277
9908b566
VP
4278static int
4279linux_nat_supports_non_stop (void)
4280{
4281 return 1;
4282}
4283
d90e17a7
PA
4284/* True if we want to support multi-process. To be removed when GDB
4285 supports multi-exec. */
4286
4287int linux_multi_process = 0;
4288
4289static int
4290linux_nat_supports_multi_process (void)
4291{
4292 return linux_multi_process;
4293}
4294
b84876c2
PA
4295/* target_async_mask implementation. */
4296
4297static int
7feb7d06 4298linux_nat_async_mask (int new_mask)
b84876c2 4299{
7feb7d06 4300 int curr_mask = linux_nat_async_mask_value;
b84876c2 4301
7feb7d06 4302 if (curr_mask != new_mask)
b84876c2 4303 {
7feb7d06 4304 if (new_mask == 0)
b84876c2
PA
4305 {
4306 linux_nat_async (NULL, 0);
7feb7d06 4307 linux_nat_async_mask_value = new_mask;
b84876c2
PA
4308 }
4309 else
4310 {
7feb7d06 4311 linux_nat_async_mask_value = new_mask;
84e46146 4312
7feb7d06
PA
4313 /* If we're going out of async-mask in all-stop, then the
4314 inferior is stopped. The next resume will call
4315 target_async. In non-stop, the target event source
4316 should be always registered in the event loop. Do so
4317 now. */
4318 if (non_stop)
4319 linux_nat_async (inferior_event_handler, 0);
b84876c2
PA
4320 }
4321 }
4322
7feb7d06 4323 return curr_mask;
b84876c2
PA
4324}
4325
4326static int async_terminal_is_ours = 1;
4327
4328/* target_terminal_inferior implementation. */
4329
4330static void
4331linux_nat_terminal_inferior (void)
4332{
4333 if (!target_is_async_p ())
4334 {
4335 /* Async mode is disabled. */
4336 terminal_inferior ();
4337 return;
4338 }
4339
b84876c2
PA
4340 terminal_inferior ();
4341
d9d2d8b6 4342 /* Calls to target_terminal_*() are meant to be idempotent. */
b84876c2
PA
4343 if (!async_terminal_is_ours)
4344 return;
4345
4346 delete_file_handler (input_fd);
4347 async_terminal_is_ours = 0;
4348 set_sigint_trap ();
4349}
4350
4351/* target_terminal_ours implementation. */
4352
2c0b251b 4353static void
b84876c2
PA
4354linux_nat_terminal_ours (void)
4355{
4356 if (!target_is_async_p ())
4357 {
4358 /* Async mode is disabled. */
4359 terminal_ours ();
4360 return;
4361 }
4362
4363 /* GDB should never give the terminal to the inferior if the
4364 inferior is running in the background (run&, continue&, etc.),
4365 but claiming it sure should. */
4366 terminal_ours ();
4367
b84876c2
PA
4368 if (async_terminal_is_ours)
4369 return;
4370
4371 clear_sigint_trap ();
4372 add_file_handler (input_fd, stdin_event_handler, 0);
4373 async_terminal_is_ours = 1;
4374}
4375
4376static void (*async_client_callback) (enum inferior_event_type event_type,
4377 void *context);
4378static void *async_client_context;
4379
7feb7d06
PA
4380/* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4381 so we notice when any child changes state, and notify the
4382 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4383 above to wait for the arrival of a SIGCHLD. */
4384
b84876c2 4385static void
7feb7d06 4386sigchld_handler (int signo)
b84876c2 4387{
7feb7d06
PA
4388 int old_errno = errno;
4389
4390 if (debug_linux_nat_async)
4391 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
4392
4393 if (signo == SIGCHLD
4394 && linux_nat_event_pipe[0] != -1)
4395 async_file_mark (); /* Let the event loop know that there are
4396 events to handle. */
4397
4398 errno = old_errno;
4399}
4400
4401/* Callback registered with the target events file descriptor. */
4402
4403static void
4404handle_target_event (int error, gdb_client_data client_data)
4405{
4406 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4407}
4408
4409/* Create/destroy the target events pipe. Returns previous state. */
4410
4411static int
4412linux_async_pipe (int enable)
4413{
4414 int previous = (linux_nat_event_pipe[0] != -1);
4415
4416 if (previous != enable)
4417 {
4418 sigset_t prev_mask;
4419
4420 block_child_signals (&prev_mask);
4421
4422 if (enable)
4423 {
4424 if (pipe (linux_nat_event_pipe) == -1)
4425 internal_error (__FILE__, __LINE__,
4426 "creating event pipe failed.");
4427
4428 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4429 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4430 }
4431 else
4432 {
4433 close (linux_nat_event_pipe[0]);
4434 close (linux_nat_event_pipe[1]);
4435 linux_nat_event_pipe[0] = -1;
4436 linux_nat_event_pipe[1] = -1;
4437 }
4438
4439 restore_child_signals_mask (&prev_mask);
4440 }
4441
4442 return previous;
b84876c2
PA
4443}
4444
4445/* target_async implementation. */
4446
4447static void
4448linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4449 void *context), void *context)
4450{
c6ebd6cf 4451 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
b84876c2
PA
4452 internal_error (__FILE__, __LINE__,
4453 "Calling target_async when async is masked");
4454
4455 if (callback != NULL)
4456 {
4457 async_client_callback = callback;
4458 async_client_context = context;
7feb7d06
PA
4459 if (!linux_async_pipe (1))
4460 {
4461 add_file_handler (linux_nat_event_pipe[0],
4462 handle_target_event, NULL);
4463 /* There may be pending events to handle. Tell the event loop
4464 to poll them. */
4465 async_file_mark ();
4466 }
b84876c2
PA
4467 }
4468 else
4469 {
4470 async_client_callback = callback;
4471 async_client_context = context;
b84876c2 4472 delete_file_handler (linux_nat_event_pipe[0]);
7feb7d06 4473 linux_async_pipe (0);
b84876c2
PA
4474 }
4475 return;
4476}
4477
252fbfc8
PA
4478/* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
4479 event came out. */
4480
4c28f408 4481static int
252fbfc8 4482linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4c28f408 4483{
d90e17a7 4484 if (!lwp->stopped)
252fbfc8 4485 {
d90e17a7
PA
4486 int pid, status;
4487 ptid_t ptid = lwp->ptid;
252fbfc8 4488
d90e17a7
PA
4489 if (debug_linux_nat)
4490 fprintf_unfiltered (gdb_stdlog,
4491 "LNSL: running -> suspending %s\n",
4492 target_pid_to_str (lwp->ptid));
252fbfc8 4493
252fbfc8 4494
d90e17a7
PA
4495 stop_callback (lwp, NULL);
4496 stop_wait_callback (lwp, NULL);
252fbfc8 4497
d90e17a7
PA
4498 /* If the lwp exits while we try to stop it, there's nothing
4499 else to do. */
4500 lwp = find_lwp_pid (ptid);
4501 if (lwp == NULL)
4502 return 0;
252fbfc8 4503
d90e17a7
PA
4504 /* If we didn't collect any signal other than SIGSTOP while
4505 stopping the LWP, push a SIGNAL_0 event. In either case, the
4506 event-loop will end up calling target_wait which will collect
4507 these. */
4508 if (lwp->status == 0)
4509 lwp->status = W_STOPCODE (0);
4510 async_file_mark ();
4511 }
4512 else
4513 {
4514 /* Already known to be stopped; do nothing. */
252fbfc8 4515
d90e17a7
PA
4516 if (debug_linux_nat)
4517 {
e09875d4 4518 if (find_thread_ptid (lwp->ptid)->stop_requested)
d90e17a7 4519 fprintf_unfiltered (gdb_stdlog, "\
252fbfc8 4520LNSL: already stopped/stop_requested %s\n",
d90e17a7
PA
4521 target_pid_to_str (lwp->ptid));
4522 else
4523 fprintf_unfiltered (gdb_stdlog, "\
252fbfc8 4524LNSL: already stopped/no stop_requested yet %s\n",
d90e17a7 4525 target_pid_to_str (lwp->ptid));
252fbfc8
PA
4526 }
4527 }
4c28f408
PA
4528 return 0;
4529}
4530
4531static void
4532linux_nat_stop (ptid_t ptid)
4533{
4534 if (non_stop)
d90e17a7 4535 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4c28f408
PA
4536 else
4537 linux_ops->to_stop (ptid);
4538}
4539
d90e17a7
PA
4540static void
4541linux_nat_close (int quitting)
4542{
4543 /* Unregister from the event loop. */
4544 if (target_is_async_p ())
4545 target_async (NULL, 0);
4546
4547 /* Reset the async_masking. */
4548 linux_nat_async_mask_value = 1;
4549
4550 if (linux_ops->to_close)
4551 linux_ops->to_close (quitting);
4552}
4553
f973ed9c
DJ
4554void
4555linux_nat_add_target (struct target_ops *t)
4556{
f973ed9c
DJ
4557 /* Save the provided single-threaded target. We save this in a separate
4558 variable because another target we've inherited from (e.g. inf-ptrace)
4559 may have saved a pointer to T; we want to use it for the final
4560 process stratum target. */
4561 linux_ops_saved = *t;
4562 linux_ops = &linux_ops_saved;
4563
4564 /* Override some methods for multithreading. */
b84876c2 4565 t->to_create_inferior = linux_nat_create_inferior;
f973ed9c
DJ
4566 t->to_attach = linux_nat_attach;
4567 t->to_detach = linux_nat_detach;
4568 t->to_resume = linux_nat_resume;
4569 t->to_wait = linux_nat_wait;
4570 t->to_xfer_partial = linux_nat_xfer_partial;
4571 t->to_kill = linux_nat_kill;
4572 t->to_mourn_inferior = linux_nat_mourn_inferior;
4573 t->to_thread_alive = linux_nat_thread_alive;
4574 t->to_pid_to_str = linux_nat_pid_to_str;
4575 t->to_has_thread_control = tc_schedlock;
4576
b84876c2
PA
4577 t->to_can_async_p = linux_nat_can_async_p;
4578 t->to_is_async_p = linux_nat_is_async_p;
9908b566 4579 t->to_supports_non_stop = linux_nat_supports_non_stop;
b84876c2
PA
4580 t->to_async = linux_nat_async;
4581 t->to_async_mask = linux_nat_async_mask;
4582 t->to_terminal_inferior = linux_nat_terminal_inferior;
4583 t->to_terminal_ours = linux_nat_terminal_ours;
d90e17a7 4584 t->to_close = linux_nat_close;
b84876c2 4585
4c28f408
PA
4586 /* Methods for non-stop support. */
4587 t->to_stop = linux_nat_stop;
4588
d90e17a7
PA
4589 t->to_supports_multi_process = linux_nat_supports_multi_process;
4590
f973ed9c
DJ
4591 /* We don't change the stratum; this target will sit at
4592 process_stratum and thread_db will set at thread_stratum. This
4593 is a little strange, since this is a multi-threaded-capable
4594 target, but we want to be on the stack below thread_db, and we
4595 also want to be used for single-threaded processes. */
4596
4597 add_target (t);
f973ed9c
DJ
4598}
4599
9f0bdab8
DJ
4600/* Register a method to call whenever a new thread is attached. */
4601void
4602linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
4603{
4604 /* Save the pointer. We only support a single registered instance
4605 of the GNU/Linux native target, so we do not need to map this to
4606 T. */
4607 linux_nat_new_thread = new_thread;
4608}
4609
5b009018
PA
4610/* Register a method that converts a siginfo object between the layout
4611 that ptrace returns, and the layout in the architecture of the
4612 inferior. */
4613void
4614linux_nat_set_siginfo_fixup (struct target_ops *t,
4615 int (*siginfo_fixup) (struct siginfo *,
4616 gdb_byte *,
4617 int))
4618{
4619 /* Save the pointer. */
4620 linux_nat_siginfo_fixup = siginfo_fixup;
4621}
4622
9f0bdab8
DJ
4623/* Return the saved siginfo associated with PTID. */
4624struct siginfo *
4625linux_nat_get_siginfo (ptid_t ptid)
4626{
4627 struct lwp_info *lp = find_lwp_pid (ptid);
4628
4629 gdb_assert (lp != NULL);
4630
4631 return &lp->siginfo;
4632}
4633
2c0b251b
PA
4634/* Provide a prototype to silence -Wmissing-prototypes. */
4635extern initialize_file_ftype _initialize_linux_nat;
4636
d6b0e80f
AC
4637void
4638_initialize_linux_nat (void)
4639{
b84876c2 4640 sigset_t mask;
dba24537 4641
1bedd215
AC
4642 add_info ("proc", linux_nat_info_proc_cmd, _("\
4643Show /proc process information about any running process.\n\
dba24537
AC
4644Specify any process id, or use the program being debugged by default.\n\
4645Specify any of the following keywords for detailed info:\n\
4646 mappings -- list of mapped memory regions.\n\
4647 stat -- list a bunch of random process info.\n\
4648 status -- list a different bunch of random process info.\n\
1bedd215 4649 all -- list all available /proc info."));
d6b0e80f 4650
b84876c2
PA
4651 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
4652 &debug_linux_nat, _("\
4653Set debugging of GNU/Linux lwp module."), _("\
4654Show debugging of GNU/Linux lwp module."), _("\
4655Enables printf debugging output."),
4656 NULL,
4657 show_debug_linux_nat,
4658 &setdebuglist, &showdebuglist);
4659
4660 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
4661 &debug_linux_nat_async, _("\
4662Set debugging of GNU/Linux async lwp module."), _("\
4663Show debugging of GNU/Linux async lwp module."), _("\
4664Enables printf debugging output."),
4665 NULL,
4666 show_debug_linux_nat_async,
4667 &setdebuglist, &showdebuglist);
4668
b84876c2 4669 /* Save this mask as the default. */
d6b0e80f
AC
4670 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4671
7feb7d06
PA
4672 /* Install a SIGCHLD handler. */
4673 sigchld_action.sa_handler = sigchld_handler;
4674 sigemptyset (&sigchld_action.sa_mask);
4675 sigchld_action.sa_flags = SA_RESTART;
b84876c2
PA
4676
4677 /* Make it the default. */
7feb7d06 4678 sigaction (SIGCHLD, &sigchld_action, NULL);
d6b0e80f
AC
4679
4680 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4681 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4682 sigdelset (&suspend_mask, SIGCHLD);
4683
7feb7d06 4684 sigemptyset (&blocked_mask);
10568435
JK
4685
4686 add_setshow_boolean_cmd ("disable-randomization", class_support,
4687 &disable_randomization, _("\
4688Set disabling of debuggee's virtual address space randomization."), _("\
4689Show disabling of debuggee's virtual address space randomization."), _("\
4690When this mode is on (which is the default), randomization of the virtual\n\
4691address space is disabled. Standalone programs run with the randomization\n\
4692enabled by default on some platforms."),
4693 &set_disable_randomization,
4694 &show_disable_randomization,
4695 &setlist, &showlist);
d6b0e80f
AC
4696}
4697\f
4698
4699/* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4700 the GNU/Linux Threads library and therefore doesn't really belong
4701 here. */
4702
4703/* Read variable NAME in the target and return its value if found.
4704 Otherwise return zero. It is assumed that the type of the variable
4705 is `int'. */
4706
4707static int
4708get_signo (const char *name)
4709{
4710 struct minimal_symbol *ms;
4711 int signo;
4712
4713 ms = lookup_minimal_symbol (name, NULL, NULL);
4714 if (ms == NULL)
4715 return 0;
4716
8e70166d 4717 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
d6b0e80f
AC
4718 sizeof (signo)) != 0)
4719 return 0;
4720
4721 return signo;
4722}
4723
4724/* Return the set of signals used by the threads library in *SET. */
4725
4726void
4727lin_thread_get_thread_signals (sigset_t *set)
4728{
4729 struct sigaction action;
4730 int restart, cancel;
4731
b84876c2 4732 sigemptyset (&blocked_mask);
d6b0e80f
AC
4733 sigemptyset (set);
4734
4735 restart = get_signo ("__pthread_sig_restart");
17fbb0bd
DJ
4736 cancel = get_signo ("__pthread_sig_cancel");
4737
4738 /* LinuxThreads normally uses the first two RT signals, but in some legacy
4739 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
4740 not provide any way for the debugger to query the signal numbers -
4741 fortunately they don't change! */
4742
d6b0e80f 4743 if (restart == 0)
17fbb0bd 4744 restart = __SIGRTMIN;
d6b0e80f 4745
d6b0e80f 4746 if (cancel == 0)
17fbb0bd 4747 cancel = __SIGRTMIN + 1;
d6b0e80f
AC
4748
4749 sigaddset (set, restart);
4750 sigaddset (set, cancel);
4751
4752 /* The GNU/Linux Threads library makes terminating threads send a
4753 special "cancel" signal instead of SIGCHLD. Make sure we catch
4754 those (to prevent them from terminating GDB itself, which is
4755 likely to be their default action) and treat them the same way as
4756 SIGCHLD. */
4757
4758 action.sa_handler = sigchld_handler;
4759 sigemptyset (&action.sa_mask);
58aecb61 4760 action.sa_flags = SA_RESTART;
d6b0e80f
AC
4761 sigaction (cancel, &action, NULL);
4762
4763 /* We block the "cancel" signal throughout this code ... */
4764 sigaddset (&blocked_mask, cancel);
4765 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
4766
4767 /* ... except during a sigsuspend. */
4768 sigdelset (&suspend_mask, cancel);
4769}
This page took 0.874606 seconds and 4 git commands to generate.