daily update
[deliverable/binutils-gdb.git] / gdb / m32c-tdep.c
CommitLineData
96309189
MS
1/* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
4c38e0a4 3 Copyright 2004, 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
96309189
MS
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
96309189
MS
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
96309189
MS
19
20#include "defs.h"
21
22#include <stdarg.h>
23
24#if defined (HAVE_STRING_H)
25#include <string.h>
26#endif
27
28#include "gdb_assert.h"
29#include "elf-bfd.h"
30#include "elf/m32c.h"
31#include "gdb/sim-m32c.h"
32#include "dis-asm.h"
33#include "gdbtypes.h"
34#include "regcache.h"
35#include "arch-utils.h"
36#include "frame.h"
37#include "frame-unwind.h"
38#include "dwarf2-frame.h"
39#include "dwarf2expr.h"
40#include "symtab.h"
41#include "gdbcore.h"
42#include "value.h"
43#include "reggroups.h"
44#include "prologue-value.h"
45#include "target.h"
46
47\f
48/* The m32c tdep structure. */
49
50static struct reggroup *m32c_dma_reggroup;
51
52struct m32c_reg;
53
54/* The type of a function that moves the value of REG between CACHE or
55 BUF --- in either direction. */
56typedef void (m32c_move_reg_t) (struct m32c_reg *reg,
57 struct regcache *cache,
58 void *buf);
59
60struct m32c_reg
61{
62 /* The name of this register. */
63 const char *name;
64
65 /* Its type. */
66 struct type *type;
67
68 /* The architecture this register belongs to. */
69 struct gdbarch *arch;
70
71 /* Its GDB register number. */
72 int num;
73
74 /* Its sim register number. */
75 int sim_num;
76
77 /* Its DWARF register number, or -1 if it doesn't have one. */
78 int dwarf_num;
79
80 /* Register group memberships. */
81 unsigned int general_p : 1;
82 unsigned int dma_p : 1;
83 unsigned int system_p : 1;
84 unsigned int save_restore_p : 1;
85
86 /* Functions to read its value from a regcache, and write its value
87 to a regcache. */
88 m32c_move_reg_t *read, *write;
89
90 /* Data for READ and WRITE functions. The exact meaning depends on
91 the specific functions selected; see the comments for those
92 functions. */
93 struct m32c_reg *rx, *ry;
94 int n;
95};
96
97
98/* An overestimate of the number of raw and pseudoregisters we will
99 have. The exact answer depends on the variant of the architecture
100 at hand, but we can use this to declare statically allocated
101 arrays, and bump it up when needed. */
102#define M32C_MAX_NUM_REGS (75)
103
104/* The largest assigned DWARF register number. */
105#define M32C_MAX_DWARF_REGNUM (40)
106
107
108struct gdbarch_tdep
109{
110 /* All the registers for this variant, indexed by GDB register
111 number, and the number of registers present. */
112 struct m32c_reg regs[M32C_MAX_NUM_REGS];
113
114 /* The number of valid registers. */
115 int num_regs;
116
117 /* Interesting registers. These are pointers into REGS. */
118 struct m32c_reg *pc, *flg;
119 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
120 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
121 struct m32c_reg *sb, *fb, *sp;
122
123 /* A table indexed by DWARF register numbers, pointing into
124 REGS. */
125 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
126
127 /* Types for this architecture. We can't use the builtin_type_foo
128 types, because they're not initialized when building a gdbarch
129 structure. */
130 struct type *voyd, *ptr_voyd, *func_voyd;
131 struct type *uint8, *uint16;
132 struct type *int8, *int16, *int32, *int64;
133
134 /* The types for data address and code address registers. */
135 struct type *data_addr_reg_type, *code_addr_reg_type;
136
137 /* The number of bytes a return address pushed by a 'jsr' instruction
138 occupies on the stack. */
139 int ret_addr_bytes;
140
141 /* The number of bytes an address register occupies on the stack
142 when saved by an 'enter' or 'pushm' instruction. */
143 int push_addr_bytes;
144};
145
146\f
147/* Types. */
148
149static void
150make_types (struct gdbarch *arch)
151{
152 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
153 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
154 int data_addr_reg_bits, code_addr_reg_bits;
155 char type_name[50];
156
157#if 0
158 /* This is used to clip CORE_ADDR values, so this value is
159 appropriate both on the m32c, where pointers are 32 bits long,
160 and on the m16c, where pointers are sixteen bits long, but there
161 may be code above the 64k boundary. */
162 set_gdbarch_addr_bit (arch, 24);
163#else
164 /* GCC uses 32 bits for addrs in the dwarf info, even though
165 only 16/24 bits are used. Setting addr_bit to 24 causes
166 errors in reading the dwarf addresses. */
167 set_gdbarch_addr_bit (arch, 32);
168#endif
169
170 set_gdbarch_int_bit (arch, 16);
171 switch (mach)
172 {
173 case bfd_mach_m16c:
174 data_addr_reg_bits = 16;
175 code_addr_reg_bits = 24;
176 set_gdbarch_ptr_bit (arch, 16);
177 tdep->ret_addr_bytes = 3;
178 tdep->push_addr_bytes = 2;
179 break;
180
181 case bfd_mach_m32c:
182 data_addr_reg_bits = 24;
183 code_addr_reg_bits = 24;
184 set_gdbarch_ptr_bit (arch, 32);
185 tdep->ret_addr_bytes = 4;
186 tdep->push_addr_bytes = 4;
187 break;
188
189 default:
f3574227 190 gdb_assert_not_reached ("unexpected mach");
96309189
MS
191 }
192
193 /* The builtin_type_mumble variables are sometimes uninitialized when
194 this is called, so we avoid using them. */
e9bb382b
UW
195 tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
196 tdep->ptr_voyd
bd333fb7
KB
197 = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
198 NULL);
96309189 199 TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
e9bb382b 200 TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
96309189
MS
201 tdep->func_voyd = lookup_function_type (tdep->voyd);
202
203 sprintf (type_name, "%s_data_addr_t",
204 gdbarch_bfd_arch_info (arch)->printable_name);
205 tdep->data_addr_reg_type
bd333fb7
KB
206 = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
207 xstrdup (type_name));
96309189 208 TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
e9bb382b 209 TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
96309189
MS
210
211 sprintf (type_name, "%s_code_addr_t",
212 gdbarch_bfd_arch_info (arch)->printable_name);
213 tdep->code_addr_reg_type
bd333fb7
KB
214 = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
215 xstrdup (type_name));
96309189 216 TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
e9bb382b
UW
217 TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
218
219 tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
220 tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
221 tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
222 tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
223 tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
224 tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
96309189
MS
225}
226
227
228\f
229/* Register set. */
230
231static const char *
d93859e2 232m32c_register_name (struct gdbarch *gdbarch, int num)
96309189 233{
d93859e2 234 return gdbarch_tdep (gdbarch)->regs[num].name;
96309189
MS
235}
236
237
238static struct type *
239m32c_register_type (struct gdbarch *arch, int reg_nr)
240{
241 return gdbarch_tdep (arch)->regs[reg_nr].type;
242}
243
244
245static int
e7faf938 246m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
96309189 247{
e7faf938 248 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
96309189
MS
249}
250
251
252static int
d3f73121 253m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
96309189 254{
d3f73121 255 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
96309189
MS
256 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
257 && tdep->dwarf_regs[reg_nr])
258 return tdep->dwarf_regs[reg_nr]->num;
259 else
260 /* The DWARF CFI code expects to see -1 for invalid register
261 numbers. */
262 return -1;
263}
264
265
63807e1d 266static int
96309189
MS
267m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
268 struct reggroup *group)
269{
40a6adc1 270 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
96309189
MS
271 struct m32c_reg *reg = &tdep->regs[regnum];
272
273 /* The anonymous raw registers aren't in any groups. */
274 if (! reg->name)
275 return 0;
276
277 if (group == all_reggroup)
278 return 1;
279
280 if (group == general_reggroup
281 && reg->general_p)
282 return 1;
283
284 if (group == m32c_dma_reggroup
285 && reg->dma_p)
286 return 1;
287
288 if (group == system_reggroup
289 && reg->system_p)
290 return 1;
291
292 /* Since the m32c DWARF register numbers refer to cooked registers, not
293 raw registers, and frame_pop depends on the save and restore groups
294 containing registers the DWARF CFI will actually mention, our save
295 and restore groups are cooked registers, not raw registers. (This is
296 why we can't use the default reggroup function.) */
297 if ((group == save_reggroup
298 || group == restore_reggroup)
299 && reg->save_restore_p)
300 return 1;
301
302 return 0;
303}
304
305
306/* Register move functions. We declare them here using
307 m32c_move_reg_t to check the types. */
308static m32c_move_reg_t m32c_raw_read, m32c_raw_write;
309static m32c_move_reg_t m32c_banked_read, m32c_banked_write;
310static m32c_move_reg_t m32c_sb_read, m32c_sb_write;
311static m32c_move_reg_t m32c_part_read, m32c_part_write;
312static m32c_move_reg_t m32c_cat_read, m32c_cat_write;
313static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
314
315
316/* Copy the value of the raw register REG from CACHE to BUF. */
317static void
318m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
319{
320 regcache_raw_read (cache, reg->num, buf);
321}
322
323
324/* Copy the value of the raw register REG from BUF to CACHE. */
325static void
326m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
327{
328 regcache_raw_write (cache, reg->num, (const void *) buf);
329}
330
331
332/* Return the value of the 'flg' register in CACHE. */
333static int
334m32c_read_flg (struct regcache *cache)
335{
336 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
337 ULONGEST flg;
338 regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
339 return flg & 0xffff;
340}
341
342
7830cb4f
CV
343/* Evaluate the real register number of a banked register. */
344static struct m32c_reg *
345m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
346{
347 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
348}
349
350
96309189
MS
351/* Move the value of a banked register from CACHE to BUF.
352 If the value of the 'flg' register in CACHE has any of the bits
353 masked in REG->n set, then read REG->ry. Otherwise, read
354 REG->rx. */
355static void
356m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
357{
7830cb4f 358 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
96309189
MS
359 regcache_raw_read (cache, bank_reg->num, buf);
360}
361
362
363/* Move the value of a banked register from BUF to CACHE.
364 If the value of the 'flg' register in CACHE has any of the bits
365 masked in REG->n set, then write REG->ry. Otherwise, write
366 REG->rx. */
367static void
368m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
369{
7830cb4f 370 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
96309189
MS
371 regcache_raw_write (cache, bank_reg->num, (const void *) buf);
372}
373
374
375/* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
376 banked register; on bfd_mach_m16c, it's not. */
377static void
378m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
379{
380 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
381 m32c_raw_read (reg->rx, cache, buf);
382 else
383 m32c_banked_read (reg, cache, buf);
384}
385
386
387/* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
388 banked register; on bfd_mach_m16c, it's not. */
389static void
390m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
391{
392 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
393 m32c_raw_write (reg->rx, cache, buf);
394 else
395 m32c_banked_write (reg, cache, buf);
396}
397
398
399/* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
400 and *LEN_P to the offset and length, in bytes, of the part REG
401 occupies in its underlying register. The offset is from the
402 lower-addressed end, regardless of the architecture's endianness.
403 (The M32C family is always little-endian, but let's keep those
404 assumptions out of here.) */
405static void
406m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
407{
408 /* The length of the containing register, of which REG is one part. */
409 int containing_len = TYPE_LENGTH (reg->rx->type);
410
411 /* The length of one "element" in our imaginary array. */
412 int elt_len = TYPE_LENGTH (reg->type);
413
414 /* The offset of REG's "element" from the least significant end of
415 the containing register. */
416 int elt_offset = reg->n * elt_len;
417
418 /* If we extend off the end, trim the length of the element. */
419 if (elt_offset + elt_len > containing_len)
420 {
421 elt_len = containing_len - elt_offset;
422 /* We shouldn't be declaring partial registers that go off the
423 end of their containing registers. */
424 gdb_assert (elt_len > 0);
425 }
426
427 /* Flip the offset around if we're big-endian. */
428 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
429 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
430
431 *offset_p = elt_offset;
432 *len_p = elt_len;
433}
434
435
436/* Move the value of a partial register (r0h, intbl, etc.) from CACHE
437 to BUF. Treating the value of the register REG->rx as an array of
438 REG->type values, where higher indices refer to more significant
439 bits, read the value of the REG->n'th element. */
440static void
441m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
442{
443 int offset, len;
444 memset (buf, 0, TYPE_LENGTH (reg->type));
445 m32c_find_part (reg, &offset, &len);
446 regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
447}
448
449
450/* Move the value of a banked register from BUF to CACHE.
451 Treating the value of the register REG->rx as an array of REG->type
452 values, where higher indices refer to more significant bits, write
453 the value of the REG->n'th element. */
454static void
455m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
456{
457 int offset, len;
458 m32c_find_part (reg, &offset, &len);
459 regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
460}
461
462
463/* Move the value of REG from CACHE to BUF. REG's value is the
464 concatenation of the values of the registers REG->rx and REG->ry,
465 with REG->rx contributing the more significant bits. */
466static void
467m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
468{
469 int high_bytes = TYPE_LENGTH (reg->rx->type);
470 int low_bytes = TYPE_LENGTH (reg->ry->type);
471 /* For address arithmetic. */
472 unsigned char *cbuf = buf;
473
474 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
475
476 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
477 {
478 regcache_cooked_read (cache, reg->rx->num, cbuf);
479 regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
480 }
481 else
482 {
483 regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
484 regcache_cooked_read (cache, reg->ry->num, cbuf);
485 }
486}
487
488
489/* Move the value of REG from CACHE to BUF. REG's value is the
490 concatenation of the values of the registers REG->rx and REG->ry,
491 with REG->rx contributing the more significant bits. */
492static void
493m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
494{
495 int high_bytes = TYPE_LENGTH (reg->rx->type);
496 int low_bytes = TYPE_LENGTH (reg->ry->type);
497 /* For address arithmetic. */
498 unsigned char *cbuf = buf;
499
500 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
501
502 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
503 {
504 regcache_cooked_write (cache, reg->rx->num, cbuf);
505 regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
506 }
507 else
508 {
509 regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
510 regcache_cooked_write (cache, reg->ry->num, cbuf);
511 }
512}
513
514
515/* Copy the value of the raw register REG from CACHE to BUF. REG is
516 the concatenation (from most significant to least) of r3, r2, r1,
517 and r0. */
518static void
519m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
520{
521 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
522 int len = TYPE_LENGTH (tdep->r0->type);
523
524 /* For address arithmetic. */
525 unsigned char *cbuf = buf;
526
527 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
528 {
529 regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
530 regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
531 regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
532 regcache_cooked_read (cache, tdep->r3->num, cbuf);
533 }
534 else
535 {
536 regcache_cooked_read (cache, tdep->r0->num, cbuf);
537 regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
538 regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
539 regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
540 }
541}
542
543
544/* Copy the value of the raw register REG from BUF to CACHE. REG is
545 the concatenation (from most significant to least) of r3, r2, r1,
546 and r0. */
547static void
548m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
549{
550 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
551 int len = TYPE_LENGTH (tdep->r0->type);
552
553 /* For address arithmetic. */
554 unsigned char *cbuf = buf;
555
556 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
557 {
558 regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
559 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
560 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
561 regcache_cooked_write (cache, tdep->r3->num, cbuf);
562 }
563 else
564 {
565 regcache_cooked_write (cache, tdep->r0->num, cbuf);
566 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
567 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
568 regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
569 }
570}
571
572
573static void
574m32c_pseudo_register_read (struct gdbarch *arch,
575 struct regcache *cache,
576 int cookednum,
577 gdb_byte *buf)
578{
579 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
580 struct m32c_reg *reg;
581
582 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
583 gdb_assert (arch == get_regcache_arch (cache));
584 gdb_assert (arch == tdep->regs[cookednum].arch);
585 reg = &tdep->regs[cookednum];
586
587 reg->read (reg, cache, buf);
588}
589
590
591static void
592m32c_pseudo_register_write (struct gdbarch *arch,
593 struct regcache *cache,
594 int cookednum,
595 const gdb_byte *buf)
596{
597 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
598 struct m32c_reg *reg;
599
600 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
601 gdb_assert (arch == get_regcache_arch (cache));
602 gdb_assert (arch == tdep->regs[cookednum].arch);
603 reg = &tdep->regs[cookednum];
604
605 reg->write (reg, cache, (void *) buf);
606}
607
608
609/* Add a register with the given fields to the end of ARCH's table.
610 Return a pointer to the newly added register. */
611static struct m32c_reg *
612add_reg (struct gdbarch *arch,
613 const char *name,
614 struct type *type,
615 int sim_num,
616 m32c_move_reg_t *read,
617 m32c_move_reg_t *write,
618 struct m32c_reg *rx,
619 struct m32c_reg *ry,
620 int n)
621{
622 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
623 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
624
625 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
626
627 r->name = name;
628 r->type = type;
629 r->arch = arch;
630 r->num = tdep->num_regs;
631 r->sim_num = sim_num;
632 r->dwarf_num = -1;
633 r->general_p = 0;
634 r->dma_p = 0;
635 r->system_p = 0;
636 r->save_restore_p = 0;
637 r->read = read;
638 r->write = write;
639 r->rx = rx;
640 r->ry = ry;
641 r->n = n;
642
643 tdep->num_regs++;
644
645 return r;
646}
647
648
649/* Record NUM as REG's DWARF register number. */
650static void
651set_dwarf_regnum (struct m32c_reg *reg, int num)
652{
653 gdb_assert (num < M32C_MAX_NUM_REGS);
654
655 /* Update the reg->DWARF mapping. Only count the first number
656 assigned to this register. */
657 if (reg->dwarf_num == -1)
658 reg->dwarf_num = num;
659
660 /* Update the DWARF->reg mapping. */
661 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
662}
663
664
665/* Mark REG as a general-purpose register, and return it. */
666static struct m32c_reg *
667mark_general (struct m32c_reg *reg)
668{
669 reg->general_p = 1;
670 return reg;
671}
672
673
674/* Mark REG as a DMA register, and return it. */
675static struct m32c_reg *
676mark_dma (struct m32c_reg *reg)
677{
678 reg->dma_p = 1;
679 return reg;
680}
681
682
683/* Mark REG as a SYSTEM register, and return it. */
684static struct m32c_reg *
685mark_system (struct m32c_reg *reg)
686{
687 reg->system_p = 1;
688 return reg;
689}
690
691
692/* Mark REG as a save-restore register, and return it. */
693static struct m32c_reg *
694mark_save_restore (struct m32c_reg *reg)
695{
696 reg->save_restore_p = 1;
697 return reg;
698}
699
700
701#define FLAGBIT_B 0x0010
702#define FLAGBIT_U 0x0080
703
704/* Handy macros for declaring registers. These all evaluate to
705 pointers to the register declared. Macros that define two
706 registers evaluate to a pointer to the first. */
707
708/* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
709#define R(name, type, sim_num) \
710 (add_reg (arch, (name), (type), (sim_num), \
711 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
712
713/* The simulator register number for a raw register named NAME. */
714#define SIM(name) (m32c_sim_reg_ ## name)
715
716/* A raw unsigned 16-bit data register named NAME.
717 NAME should be an identifier, not a string. */
718#define R16U(name) \
719 (R(#name, tdep->uint16, SIM (name)))
720
721/* A raw data address register named NAME.
722 NAME should be an identifier, not a string. */
723#define RA(name) \
724 (R(#name, tdep->data_addr_reg_type, SIM (name)))
725
726/* A raw code address register named NAME. NAME should
727 be an identifier, not a string. */
728#define RC(name) \
729 (R(#name, tdep->code_addr_reg_type, SIM (name)))
730
731/* A pair of raw registers named NAME0 and NAME1, with type TYPE.
732 NAME should be an identifier, not a string. */
733#define RP(name, type) \
734 (R(#name "0", (type), SIM (name ## 0)), \
735 R(#name "1", (type), SIM (name ## 1)) - 1)
736
737/* A raw banked general-purpose data register named NAME.
738 NAME should be an identifier, not a string. */
739#define RBD(name) \
740 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
741 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
742
743/* A raw banked data address register named NAME.
744 NAME should be an identifier, not a string. */
745#define RBA(name) \
746 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
747 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
748
749/* A cooked register named NAME referring to a raw banked register
750 from the bank selected by the current value of FLG. RAW_PAIR
751 should be a pointer to the first register in the banked pair.
752 NAME must be an identifier, not a string. */
753#define CB(name, raw_pair) \
754 (add_reg (arch, #name, (raw_pair)->type, 0, \
755 m32c_banked_read, m32c_banked_write, \
756 (raw_pair), (raw_pair + 1), FLAGBIT_B))
757
758/* A pair of registers named NAMEH and NAMEL, of type TYPE, that
759 access the top and bottom halves of the register pointed to by
760 NAME. NAME should be an identifier. */
761#define CHL(name, type) \
762 (add_reg (arch, #name "h", (type), 0, \
763 m32c_part_read, m32c_part_write, name, NULL, 1), \
764 add_reg (arch, #name "l", (type), 0, \
765 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
766
767/* A register constructed by concatenating the two registers HIGH and
768 LOW, whose name is HIGHLOW and whose type is TYPE. */
769#define CCAT(high, low, type) \
770 (add_reg (arch, #high #low, (type), 0, \
771 m32c_cat_read, m32c_cat_write, (high), (low), 0))
772
773/* Abbreviations for marking register group membership. */
774#define G(reg) (mark_general (reg))
775#define S(reg) (mark_system (reg))
776#define DMA(reg) (mark_dma (reg))
777
778
779/* Construct the register set for ARCH. */
780static void
781make_regs (struct gdbarch *arch)
782{
783 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
784 int mach = gdbarch_bfd_arch_info (arch)->mach;
f79b9530
DJ
785 int num_raw_regs;
786 int num_cooked_regs;
787
788 struct m32c_reg *r0;
789 struct m32c_reg *r1;
790 struct m32c_reg *r2;
791 struct m32c_reg *r3;
792 struct m32c_reg *a0;
793 struct m32c_reg *a1;
794 struct m32c_reg *fb;
795 struct m32c_reg *sb;
796 struct m32c_reg *sp;
797 struct m32c_reg *r0hl;
798 struct m32c_reg *r1hl;
799 struct m32c_reg *r2hl;
800 struct m32c_reg *r3hl;
801 struct m32c_reg *intbhl;
802 struct m32c_reg *r2r0;
803 struct m32c_reg *r3r1;
804 struct m32c_reg *r3r1r2r0;
805 struct m32c_reg *r3r2r1r0;
806 struct m32c_reg *a1a0;
96309189
MS
807
808 struct m32c_reg *raw_r0_pair = RBD (r0);
809 struct m32c_reg *raw_r1_pair = RBD (r1);
810 struct m32c_reg *raw_r2_pair = RBD (r2);
811 struct m32c_reg *raw_r3_pair = RBD (r3);
812 struct m32c_reg *raw_a0_pair = RBA (a0);
813 struct m32c_reg *raw_a1_pair = RBA (a1);
814 struct m32c_reg *raw_fb_pair = RBA (fb);
815
816 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
817 We always declare both raw registers, and deal with the distinction
818 in the pseudoregister. */
819 struct m32c_reg *raw_sb_pair = RBA (sb);
820
821 struct m32c_reg *usp = S (RA (usp));
822 struct m32c_reg *isp = S (RA (isp));
823 struct m32c_reg *intb = S (RC (intb));
824 struct m32c_reg *pc = G (RC (pc));
825 struct m32c_reg *flg = G (R16U (flg));
826
827 if (mach == bfd_mach_m32c)
828 {
829 struct m32c_reg *svf = S (R16U (svf));
830 struct m32c_reg *svp = S (RC (svp));
831 struct m32c_reg *vct = S (RC (vct));
832
833 struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
834 struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
835 struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
836 struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
837 struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
838 struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
839 }
840
f79b9530 841 num_raw_regs = tdep->num_regs;
96309189 842
f79b9530
DJ
843 r0 = G (CB (r0, raw_r0_pair));
844 r1 = G (CB (r1, raw_r1_pair));
845 r2 = G (CB (r2, raw_r2_pair));
846 r3 = G (CB (r3, raw_r3_pair));
847 a0 = G (CB (a0, raw_a0_pair));
848 a1 = G (CB (a1, raw_a1_pair));
849 fb = G (CB (fb, raw_fb_pair));
96309189
MS
850
851 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
852 Specify custom read/write functions that do the right thing. */
f79b9530
DJ
853 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
854 m32c_sb_read, m32c_sb_write,
855 raw_sb_pair, raw_sb_pair + 1, 0));
96309189
MS
856
857 /* The current sp is either usp or isp, depending on the value of
858 the FLG register's U bit. */
f79b9530
DJ
859 sp = G (add_reg (arch, "sp", usp->type, 0,
860 m32c_banked_read, m32c_banked_write,
861 isp, usp, FLAGBIT_U));
96309189 862
f79b9530
DJ
863 r0hl = CHL (r0, tdep->int8);
864 r1hl = CHL (r1, tdep->int8);
865 r2hl = CHL (r2, tdep->int8);
866 r3hl = CHL (r3, tdep->int8);
867 intbhl = CHL (intb, tdep->int16);
96309189 868
f79b9530
DJ
869 r2r0 = CCAT (r2, r0, tdep->int32);
870 r3r1 = CCAT (r3, r1, tdep->int32);
871 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
96309189 872
f79b9530 873 r3r2r1r0
96309189
MS
874 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
875 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
876
96309189
MS
877 if (mach == bfd_mach_m16c)
878 a1a0 = CCAT (a1, a0, tdep->int32);
879 else
880 a1a0 = NULL;
881
f79b9530 882 num_cooked_regs = tdep->num_regs - num_raw_regs;
96309189
MS
883
884 tdep->pc = pc;
885 tdep->flg = flg;
886 tdep->r0 = r0;
887 tdep->r1 = r1;
888 tdep->r2 = r2;
889 tdep->r3 = r3;
890 tdep->r2r0 = r2r0;
891 tdep->r3r2r1r0 = r3r2r1r0;
892 tdep->r3r1r2r0 = r3r1r2r0;
893 tdep->a0 = a0;
894 tdep->a1 = a1;
895 tdep->sb = sb;
896 tdep->fb = fb;
897 tdep->sp = sp;
898
899 /* Set up the DWARF register table. */
900 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
901 set_dwarf_regnum (r0hl + 1, 0x01);
902 set_dwarf_regnum (r0hl + 0, 0x02);
903 set_dwarf_regnum (r1hl + 1, 0x03);
904 set_dwarf_regnum (r1hl + 0, 0x04);
905 set_dwarf_regnum (r0, 0x05);
906 set_dwarf_regnum (r1, 0x06);
907 set_dwarf_regnum (r2, 0x07);
908 set_dwarf_regnum (r3, 0x08);
909 set_dwarf_regnum (a0, 0x09);
910 set_dwarf_regnum (a1, 0x0a);
911 set_dwarf_regnum (fb, 0x0b);
912 set_dwarf_regnum (sp, 0x0c);
913 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
914 set_dwarf_regnum (sb, 0x13);
915 set_dwarf_regnum (r2r0, 0x15);
916 set_dwarf_regnum (r3r1, 0x16);
917 if (a1a0)
918 set_dwarf_regnum (a1a0, 0x17);
919
920 /* Enumerate the save/restore register group.
921
922 The regcache_save and regcache_restore functions apply their read
923 function to each register in this group.
924
925 Since frame_pop supplies frame_unwind_register as its read
926 function, the registers meaningful to the Dwarf unwinder need to
927 be in this group.
928
929 On the other hand, when we make inferior calls, save_inferior_status
930 and restore_inferior_status use them to preserve the current register
931 values across the inferior call. For this, you'd kind of like to
932 preserve all the raw registers, to protect the interrupted code from
933 any sort of bank switching the callee might have done. But we handle
934 those cases so badly anyway --- for example, it matters whether we
935 restore FLG before or after we restore the general-purpose registers,
936 but there's no way to express that --- that it isn't worth worrying
937 about.
938
939 We omit control registers like inthl: if you call a function that
940 changes those, it's probably because you wanted that change to be
941 visible to the interrupted code. */
942 mark_save_restore (r0);
943 mark_save_restore (r1);
944 mark_save_restore (r2);
945 mark_save_restore (r3);
946 mark_save_restore (a0);
947 mark_save_restore (a1);
948 mark_save_restore (sb);
949 mark_save_restore (fb);
950 mark_save_restore (sp);
951 mark_save_restore (pc);
952 mark_save_restore (flg);
953
954 set_gdbarch_num_regs (arch, num_raw_regs);
955 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
956 set_gdbarch_pc_regnum (arch, pc->num);
957 set_gdbarch_sp_regnum (arch, sp->num);
958 set_gdbarch_register_name (arch, m32c_register_name);
959 set_gdbarch_register_type (arch, m32c_register_type);
960 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
961 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
962 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
963 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
96309189
MS
964 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
965 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
966
967 reggroup_add (arch, general_reggroup);
968 reggroup_add (arch, all_reggroup);
969 reggroup_add (arch, save_reggroup);
970 reggroup_add (arch, restore_reggroup);
971 reggroup_add (arch, system_reggroup);
972 reggroup_add (arch, m32c_dma_reggroup);
973}
974
975
976\f
977/* Breakpoints. */
978
979static const unsigned char *
67d57894 980m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
96309189
MS
981{
982 static unsigned char break_insn[] = { 0x00 }; /* brk */
983
984 *len = sizeof (break_insn);
985 return break_insn;
986}
987
988
989\f
990/* Prologue analysis. */
991
992struct m32c_prologue
993{
994 /* For consistency with the DWARF 2 .debug_frame info generated by
995 GCC, a frame's CFA is the address immediately after the saved
996 return address. */
997
998 /* The architecture for which we generated this prologue info. */
999 struct gdbarch *arch;
1000
1001 enum {
1002 /* This function uses a frame pointer. */
1003 prologue_with_frame_ptr,
1004
1005 /* This function has no frame pointer. */
1006 prologue_sans_frame_ptr,
1007
1008 /* This function sets up the stack, so its frame is the first
1009 frame on the stack. */
1010 prologue_first_frame
1011
1012 } kind;
1013
1014 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1015 CFA to where the frame pointer points. This is always zero or
1016 negative. */
1017 LONGEST frame_ptr_offset;
1018
1019 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1020 the stack pointer --- always zero or negative.
1021
1022 Calling this a "size" is a bit misleading, but given that the
1023 stack grows downwards, using offsets for everything keeps one
1024 from going completely sign-crazy: you never change anything's
1025 sign for an ADD instruction; always change the second operand's
1026 sign for a SUB instruction; and everything takes care of
1027 itself.
1028
1029 Functions that use alloca don't have a constant frame size. But
1030 they always have frame pointers, so we must use that to find the
1031 CFA (and perhaps to unwind the stack pointer). */
1032 LONGEST frame_size;
1033
1034 /* The address of the first instruction at which the frame has been
1035 set up and the arguments are where the debug info says they are
1036 --- as best as we can tell. */
1037 CORE_ADDR prologue_end;
1038
1039 /* reg_offset[R] is the offset from the CFA at which register R is
1040 saved, or 1 if register R has not been saved. (Real values are
1041 always zero or negative.) */
1042 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1043};
1044
1045
1046/* The longest I've seen, anyway. */
1047#define M32C_MAX_INSN_LEN (9)
1048
1049/* Processor state, for the prologue analyzer. */
1050struct m32c_pv_state
1051{
1052 struct gdbarch *arch;
1053 pv_t r0, r1, r2, r3;
1054 pv_t a0, a1;
1055 pv_t sb, fb, sp;
1056 pv_t pc;
1057 struct pv_area *stack;
1058
1059 /* Bytes from the current PC, the address they were read from,
1060 and the address of the next unconsumed byte. */
1061 gdb_byte insn[M32C_MAX_INSN_LEN];
1062 CORE_ADDR scan_pc, next_addr;
1063};
1064
1065
1066/* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1067 all went well, or non-zero if simulating the action would trash our
1068 state. */
1069static int
1070m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1071{
1072 if (pv_area_store_would_trash (state->stack, state->sp))
1073 return 1;
1074
1075 state->sp = pv_add_constant (state->sp, -size);
1076 pv_area_store (state->stack, state->sp, size, value);
1077
1078 return 0;
1079}
1080
1081
1082/* A source or destination location for an m16c or m32c
1083 instruction. */
1084struct srcdest
1085{
1086 /* If srcdest_reg, the location is a register pointed to by REG.
1087 If srcdest_partial_reg, the location is part of a register pointed
1088 to by REG. We don't try to handle this too well.
1089 If srcdest_mem, the location is memory whose address is ADDR. */
1090 enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
1091 pv_t *reg, addr;
1092};
1093
1094
1095/* Return the SIZE-byte value at LOC in STATE. */
1096static pv_t
1097m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1098{
1099 if (loc.kind == srcdest_mem)
1100 return pv_area_fetch (state->stack, loc.addr, size);
1101 else if (loc.kind == srcdest_partial_reg)
1102 return pv_unknown ();
1103 else
1104 return *loc.reg;
1105}
1106
1107
1108/* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1109 all went well, or non-zero if simulating the store would trash our
1110 state. */
1111static int
1112m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1113 pv_t value, int size)
1114{
1115 if (loc.kind == srcdest_mem)
1116 {
1117 if (pv_area_store_would_trash (state->stack, loc.addr))
1118 return 1;
1119 pv_area_store (state->stack, loc.addr, size, value);
1120 }
1121 else if (loc.kind == srcdest_partial_reg)
1122 *loc.reg = pv_unknown ();
1123 else
1124 *loc.reg = value;
1125
1126 return 0;
1127}
1128
1129
1130static int
1131m32c_sign_ext (int v, int bits)
1132{
1133 int mask = 1 << (bits - 1);
1134 return (v ^ mask) - mask;
1135}
1136
1137static unsigned int
1138m32c_next_byte (struct m32c_pv_state *st)
1139{
1140 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1141 return st->insn[st->next_addr++ - st->scan_pc];
1142}
1143
1144static int
1145m32c_udisp8 (struct m32c_pv_state *st)
1146{
1147 return m32c_next_byte (st);
1148}
1149
1150
1151static int
1152m32c_sdisp8 (struct m32c_pv_state *st)
1153{
1154 return m32c_sign_ext (m32c_next_byte (st), 8);
1155}
1156
1157
1158static int
1159m32c_udisp16 (struct m32c_pv_state *st)
1160{
1161 int low = m32c_next_byte (st);
1162 int high = m32c_next_byte (st);
1163
1164 return low + (high << 8);
1165}
1166
1167
1168static int
1169m32c_sdisp16 (struct m32c_pv_state *st)
1170{
1171 int low = m32c_next_byte (st);
1172 int high = m32c_next_byte (st);
1173
1174 return m32c_sign_ext (low + (high << 8), 16);
1175}
1176
1177
1178static int
1179m32c_udisp24 (struct m32c_pv_state *st)
1180{
1181 int low = m32c_next_byte (st);
1182 int mid = m32c_next_byte (st);
1183 int high = m32c_next_byte (st);
1184
1185 return low + (mid << 8) + (high << 16);
1186}
1187
1188
1189/* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1190static int
1191m32c_get_src23 (unsigned char *i)
1192{
1193 return (((i[0] & 0x70) >> 2)
1194 | ((i[1] & 0x30) >> 4));
1195}
1196
1197
1198/* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1199static int
1200m32c_get_dest23 (unsigned char *i)
1201{
1202 return (((i[0] & 0x0e) << 1)
1203 | ((i[1] & 0xc0) >> 6));
1204}
1205
1206
1207static struct srcdest
1208m32c_decode_srcdest4 (struct m32c_pv_state *st,
1209 int code, int size)
1210{
1211 struct srcdest sd;
1212
1213 if (code < 6)
1214 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1215 else
1216 sd.kind = srcdest_mem;
1217
d56874a7
DD
1218 sd.addr = pv_unknown ();
1219 sd.reg = 0;
1220
96309189
MS
1221 switch (code)
1222 {
1223 case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1224 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1225 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1226 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1227
1228 case 0x4: sd.reg = &st->a0; break;
1229 case 0x5: sd.reg = &st->a1; break;
1230
1231 case 0x6: sd.addr = st->a0; break;
1232 case 0x7: sd.addr = st->a1; break;
1233
1234 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1235 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1236 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1237 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1238
1239 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1240 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1241 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1242 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1243
1244 default:
f3574227 1245 gdb_assert_not_reached ("unexpected srcdest4");
96309189
MS
1246 }
1247
1248 return sd;
1249}
1250
1251
1252static struct srcdest
1253m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1254{
1255 struct srcdest sd;
1256
d56874a7
DD
1257 sd.addr = pv_unknown ();
1258 sd.reg = 0;
1259
96309189
MS
1260 switch (code)
1261 {
1262 case 0x12:
1263 case 0x13:
1264 case 0x10:
1265 case 0x11:
1266 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1267 break;
1268
1269 case 0x02:
1270 case 0x03:
1271 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1272 break;
1273
1274 default:
1275 sd.kind = srcdest_mem;
1276 break;
1277
1278 }
1279
1280 switch (code)
1281 {
1282 case 0x12: sd.reg = &st->r0; break;
1283 case 0x13: sd.reg = &st->r1; break;
1284 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1285 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1286 case 0x02: sd.reg = &st->a0; break;
1287 case 0x03: sd.reg = &st->a1; break;
1288
1289 case 0x00: sd.addr = st->a0; break;
1290 case 0x01: sd.addr = st->a1; break;
1291 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1292 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1293 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1294 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1295 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1296 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1297 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1298 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1299 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1300 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1301 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1302 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1303 default:
f3574227 1304 gdb_assert_not_reached ("unexpected sd23");
96309189
MS
1305 }
1306
1307 if (ind)
1308 {
1309 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1310 sd.kind = srcdest_mem;
1311 }
1312
1313 return sd;
1314}
1315
1316
1317/* The r16c and r32c machines have instructions with similar
1318 semantics, but completely different machine language encodings. So
1319 we break out the semantics into their own functions, and leave
1320 machine-specific decoding in m32c_analyze_prologue.
1321
1322 The following functions all expect their arguments already decoded,
1323 and they all return zero if analysis should continue past this
1324 instruction, or non-zero if analysis should stop. */
1325
1326
1327/* Simulate an 'enter SIZE' instruction in STATE. */
1328static int
1329m32c_pv_enter (struct m32c_pv_state *state, int size)
1330{
1331 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1332
1333 /* If simulating this store would require us to forget
1334 everything we know about the stack frame in the name of
1335 accuracy, it would be better to just quit now. */
1336 if (pv_area_store_would_trash (state->stack, state->sp))
1337 return 1;
1338
1339 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1340 return 1;
1341 state->fb = state->sp;
1342 state->sp = pv_add_constant (state->sp, -size);
1343
1344 return 0;
1345}
1346
1347
1348static int
1349m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1350 int bit, int src, int size)
1351{
1352 if (bit & src)
1353 {
1354 if (m32c_pv_push (state, reg, size))
1355 return 1;
1356 }
1357
1358 return 0;
1359}
1360
1361
1362/* Simulate a 'pushm SRC' instruction in STATE. */
1363static int
1364m32c_pv_pushm (struct m32c_pv_state *state, int src)
1365{
1366 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1367
1368 /* The bits in SRC indicating which registers to save are:
1369 r0 r1 r2 r3 a0 a1 sb fb */
1370 return
1371 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1372 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1373 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1374 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1375 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1376 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1377 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1378 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1379}
1380
1381/* Return non-zero if VALUE is the first incoming argument register. */
1382
1383static int
1384m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1385{
1386 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1387 return (value.kind == pvk_register
1388 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1389 ? (value.reg == tdep->r1->num)
1390 : (value.reg == tdep->r0->num))
1391 && value.k == 0);
1392}
1393
1394/* Return non-zero if VALUE is an incoming argument register. */
1395
1396static int
1397m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1398{
1399 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1400 return (value.kind == pvk_register
1401 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1402 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1403 : (value.reg == tdep->r0->num))
1404 && value.k == 0);
1405}
1406
1407/* Return non-zero if a store of VALUE to LOC is probably spilling an
1408 argument register to its stack slot in STATE. Such instructions
1409 should be included in the prologue, if possible.
1410
1411 The store is a spill if:
1412 - the value being stored is the original value of an argument register;
1413 - the value has not already been stored somewhere in STACK; and
1414 - LOC is a stack slot (e.g., a memory location whose address is
1415 relative to the original value of the SP). */
1416
1417static int
1418m32c_is_arg_spill (struct m32c_pv_state *st,
1419 struct srcdest loc,
1420 pv_t value)
1421{
1422 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1423
1424 return (m32c_is_arg_reg (st, value)
1425 && loc.kind == srcdest_mem
1426 && pv_is_register (loc.addr, tdep->sp->num)
1427 && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1428}
1429
1430/* Return non-zero if a store of VALUE to LOC is probably
1431 copying the struct return address into an address register
1432 for immediate use. This is basically a "spill" into the
1433 address register, instead of onto the stack.
1434
1435 The prerequisites are:
1436 - value being stored is original value of the FIRST arg register;
1437 - value has not already been stored on stack; and
1438 - LOC is an address register (a0 or a1). */
1439
1440static int
1441m32c_is_struct_return (struct m32c_pv_state *st,
1442 struct srcdest loc,
1443 pv_t value)
1444{
1445 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1446
1447 return (m32c_is_1st_arg_reg (st, value)
1448 && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1449 && loc.kind == srcdest_reg
1450 && (pv_is_register (*loc.reg, tdep->a0->num)
1451 || pv_is_register (*loc.reg, tdep->a1->num)));
1452}
1453
1454/* Return non-zero if a 'pushm' saving the registers indicated by SRC
1455 was a register save:
1456 - all the named registers should have their original values, and
1457 - the stack pointer should be at a constant offset from the
1458 original stack pointer. */
1459static int
1460m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1461{
1462 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1463 /* The bits in SRC indicating which registers to save are:
1464 r0 r1 r2 r3 a0 a1 sb fb */
1465 return
1466 (pv_is_register (st->sp, tdep->sp->num)
1467 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1468 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1469 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1470 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1471 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1472 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1473 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1474 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1475}
1476
1477
1478/* Function for finding saved registers in a 'struct pv_area'; we pass
1479 this to pv_area_scan.
1480
1481 If VALUE is a saved register, ADDR says it was saved at a constant
1482 offset from the frame base, and SIZE indicates that the whole
1483 register was saved, record its offset in RESULT_UNTYPED. */
1484static void
1485check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1486{
1487 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1488 struct gdbarch *arch = prologue->arch;
1489 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1490
1491 /* Is this the unchanged value of some register being saved on the
1492 stack? */
1493 if (value.kind == pvk_register
1494 && value.k == 0
1495 && pv_is_register (addr, tdep->sp->num))
1496 {
1497 /* Some registers require special handling: they're saved as a
1498 larger value than the register itself. */
1499 CORE_ADDR saved_size = register_size (arch, value.reg);
1500
1501 if (value.reg == tdep->pc->num)
1502 saved_size = tdep->ret_addr_bytes;
7b9ee6a8 1503 else if (register_type (arch, value.reg)
96309189
MS
1504 == tdep->data_addr_reg_type)
1505 saved_size = tdep->push_addr_bytes;
1506
1507 if (size == saved_size)
1508 {
1509 /* Find which end of the saved value corresponds to our
1510 register. */
1511 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1512 prologue->reg_offset[value.reg]
1513 = (addr.k + saved_size - register_size (arch, value.reg));
1514 else
1515 prologue->reg_offset[value.reg] = addr.k;
1516 }
1517 }
1518}
1519
1520
1521/* Analyze the function prologue for ARCH at START, going no further
1522 than LIMIT, and place a description of what we found in
1523 PROLOGUE. */
63807e1d 1524static void
96309189
MS
1525m32c_analyze_prologue (struct gdbarch *arch,
1526 CORE_ADDR start, CORE_ADDR limit,
1527 struct m32c_prologue *prologue)
1528{
1529 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1530 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1531 CORE_ADDR after_last_frame_related_insn;
1532 struct cleanup *back_to;
1533 struct m32c_pv_state st;
1534
1535 st.arch = arch;
1536 st.r0 = pv_register (tdep->r0->num, 0);
1537 st.r1 = pv_register (tdep->r1->num, 0);
1538 st.r2 = pv_register (tdep->r2->num, 0);
1539 st.r3 = pv_register (tdep->r3->num, 0);
1540 st.a0 = pv_register (tdep->a0->num, 0);
1541 st.a1 = pv_register (tdep->a1->num, 0);
1542 st.sb = pv_register (tdep->sb->num, 0);
1543 st.fb = pv_register (tdep->fb->num, 0);
1544 st.sp = pv_register (tdep->sp->num, 0);
1545 st.pc = pv_register (tdep->pc->num, 0);
55f960e1 1546 st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
96309189
MS
1547 back_to = make_cleanup_free_pv_area (st.stack);
1548
1549 /* Record that the call instruction has saved the return address on
1550 the stack. */
1551 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1552
1553 memset (prologue, 0, sizeof (*prologue));
1554 prologue->arch = arch;
1555 {
1556 int i;
1557 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1558 prologue->reg_offset[i] = 1;
1559 }
1560
1561 st.scan_pc = after_last_frame_related_insn = start;
1562
1563 while (st.scan_pc < limit)
1564 {
1565 pv_t pre_insn_fb = st.fb;
1566 pv_t pre_insn_sp = st.sp;
1567
1568 /* In theory we could get in trouble by trying to read ahead
1569 here, when we only know we're expecting one byte. In
1570 practice I doubt anyone will care, and it makes the rest of
1571 the code easier. */
1572 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1573 /* If we can't fetch the instruction from memory, stop here
1574 and hope for the best. */
1575 break;
1576 st.next_addr = st.scan_pc;
1577
1578 /* The assembly instructions are written as they appear in the
1579 section of the processor manuals that describe the
1580 instruction encodings.
1581
1582 When a single assembly language instruction has several
1583 different machine-language encodings, the manual
1584 distinguishes them by a number in parens, before the
1585 mnemonic. Those numbers are included, as well.
1586
1587 The srcdest decoding instructions have the same names as the
1588 analogous functions in the simulator. */
1589 if (mach == bfd_mach_m16c)
1590 {
1591 /* (1) ENTER #imm8 */
1592 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1593 {
1594 if (m32c_pv_enter (&st, st.insn[2]))
1595 break;
1596 st.next_addr += 3;
1597 }
1598 /* (1) PUSHM src */
1599 else if (st.insn[0] == 0xec)
1600 {
1601 int src = st.insn[1];
1602 if (m32c_pv_pushm (&st, src))
1603 break;
1604 st.next_addr += 2;
1605
1606 if (m32c_pushm_is_reg_save (&st, src))
1607 after_last_frame_related_insn = st.next_addr;
1608 }
1609
1610 /* (6) MOV.size:G src, dest */
1611 else if ((st.insn[0] & 0xfe) == 0x72)
1612 {
1613 int size = (st.insn[0] & 0x01) ? 2 : 1;
f79b9530
DJ
1614 struct srcdest src;
1615 struct srcdest dest;
1616 pv_t src_value;
96309189
MS
1617 st.next_addr += 2;
1618
f79b9530 1619 src
96309189 1620 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
f79b9530 1621 dest
96309189 1622 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
f79b9530 1623 src_value = m32c_srcdest_fetch (&st, src, size);
96309189
MS
1624
1625 if (m32c_is_arg_spill (&st, dest, src_value))
1626 after_last_frame_related_insn = st.next_addr;
1627 else if (m32c_is_struct_return (&st, dest, src_value))
1628 after_last_frame_related_insn = st.next_addr;
1629
1630 if (m32c_srcdest_store (&st, dest, src_value, size))
1631 break;
1632 }
1633
1634 /* (1) LDC #IMM16, sp */
1635 else if (st.insn[0] == 0xeb
1636 && st.insn[1] == 0x50)
1637 {
1638 st.next_addr += 2;
1639 st.sp = pv_constant (m32c_udisp16 (&st));
1640 }
1641
1642 else
1643 /* We've hit some instruction we don't know how to simulate.
1644 Strictly speaking, we should set every value we're
1645 tracking to "unknown". But we'll be optimistic, assume
1646 that we have enough information already, and stop
1647 analysis here. */
1648 break;
1649 }
1650 else
1651 {
1652 int src_indirect = 0;
1653 int dest_indirect = 0;
1654 int i = 0;
1655
1656 gdb_assert (mach == bfd_mach_m32c);
1657
1658 /* Check for prefix bytes indicating indirect addressing. */
1659 if (st.insn[0] == 0x41)
1660 {
1661 src_indirect = 1;
1662 i++;
1663 }
1664 else if (st.insn[0] == 0x09)
1665 {
1666 dest_indirect = 1;
1667 i++;
1668 }
1669 else if (st.insn[0] == 0x49)
1670 {
1671 src_indirect = dest_indirect = 1;
1672 i++;
1673 }
1674
1675 /* (1) ENTER #imm8 */
1676 if (st.insn[i] == 0xec)
1677 {
1678 if (m32c_pv_enter (&st, st.insn[i + 1]))
1679 break;
1680 st.next_addr += 2;
1681 }
1682
1683 /* (1) PUSHM src */
1684 else if (st.insn[i] == 0x8f)
1685 {
1686 int src = st.insn[i + 1];
1687 if (m32c_pv_pushm (&st, src))
1688 break;
1689 st.next_addr += 2;
1690
1691 if (m32c_pushm_is_reg_save (&st, src))
1692 after_last_frame_related_insn = st.next_addr;
1693 }
1694
1695 /* (7) MOV.size:G src, dest */
1696 else if ((st.insn[i] & 0x80) == 0x80
1697 && (st.insn[i + 1] & 0x0f) == 0x0b
1698 && m32c_get_src23 (&st.insn[i]) < 20
1699 && m32c_get_dest23 (&st.insn[i]) < 20)
1700 {
f79b9530
DJ
1701 struct srcdest src;
1702 struct srcdest dest;
1703 pv_t src_value;
96309189
MS
1704 int bw = st.insn[i] & 0x01;
1705 int size = bw ? 2 : 1;
96309189
MS
1706 st.next_addr += 2;
1707
f79b9530 1708 src
96309189
MS
1709 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1710 size, src_indirect);
f79b9530 1711 dest
96309189
MS
1712 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1713 size, dest_indirect);
f79b9530 1714 src_value = m32c_srcdest_fetch (&st, src, size);
96309189
MS
1715
1716 if (m32c_is_arg_spill (&st, dest, src_value))
1717 after_last_frame_related_insn = st.next_addr;
1718
1719 if (m32c_srcdest_store (&st, dest, src_value, size))
1720 break;
1721 }
1722 /* (2) LDC #IMM24, sp */
1723 else if (st.insn[i] == 0xd5
1724 && st.insn[i + 1] == 0x29)
1725 {
1726 st.next_addr += 2;
1727 st.sp = pv_constant (m32c_udisp24 (&st));
1728 }
1729 else
1730 /* We've hit some instruction we don't know how to simulate.
1731 Strictly speaking, we should set every value we're
1732 tracking to "unknown". But we'll be optimistic, assume
1733 that we have enough information already, and stop
1734 analysis here. */
1735 break;
1736 }
1737
1738 /* If this instruction changed the FB or decreased the SP (i.e.,
1739 allocated more stack space), then this may be a good place to
1740 declare the prologue finished. However, there are some
1741 exceptions:
1742
1743 - If the instruction just changed the FB back to its original
1744 value, then that's probably a restore instruction. The
1745 prologue should definitely end before that.
1746
1747 - If the instruction increased the value of the SP (that is,
1748 shrunk the frame), then it's probably part of a frame
1749 teardown sequence, and the prologue should end before
1750 that. */
1751
1752 if (! pv_is_identical (st.fb, pre_insn_fb))
1753 {
1754 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1755 after_last_frame_related_insn = st.next_addr;
1756 }
1757 else if (! pv_is_identical (st.sp, pre_insn_sp))
1758 {
1759 /* The comparison of the constants looks odd, there, because
1760 .k is unsigned. All it really means is that the SP is
1761 lower than it was before the instruction. */
1762 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1763 && pv_is_register (st.sp, tdep->sp->num)
1764 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1765 after_last_frame_related_insn = st.next_addr;
1766 }
1767
1768 st.scan_pc = st.next_addr;
1769 }
1770
1771 /* Did we load a constant value into the stack pointer? */
1772 if (pv_is_constant (st.sp))
1773 prologue->kind = prologue_first_frame;
1774
1775 /* Alternatively, did we initialize the frame pointer? Remember
1776 that the CFA is the address after the return address. */
1777 if (pv_is_register (st.fb, tdep->sp->num))
1778 {
1779 prologue->kind = prologue_with_frame_ptr;
1780 prologue->frame_ptr_offset = st.fb.k;
1781 }
1782
1783 /* Is the frame size a known constant? Remember that frame_size is
1784 actually the offset from the CFA to the SP (i.e., a negative
1785 value). */
1786 else if (pv_is_register (st.sp, tdep->sp->num))
1787 {
1788 prologue->kind = prologue_sans_frame_ptr;
1789 prologue->frame_size = st.sp.k;
1790 }
1791
1792 /* We haven't been able to make sense of this function's frame. Treat
1793 it as the first frame. */
1794 else
1795 prologue->kind = prologue_first_frame;
1796
1797 /* Record where all the registers were saved. */
1798 pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1799
1800 prologue->prologue_end = after_last_frame_related_insn;
1801
1802 do_cleanups (back_to);
1803}
1804
1805
1806static CORE_ADDR
6093d2eb 1807m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
96309189
MS
1808{
1809 char *name;
1810 CORE_ADDR func_addr, func_end, sal_end;
1811 struct m32c_prologue p;
1812
1813 /* Try to find the extent of the function that contains IP. */
1814 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1815 return ip;
1816
1817 /* Find end by prologue analysis. */
6093d2eb 1818 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
96309189 1819 /* Find end by line info. */
d80b854b 1820 sal_end = skip_prologue_using_sal (gdbarch, ip);
96309189
MS
1821 /* Return whichever is lower. */
1822 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1823 return sal_end;
1824 else
1825 return p.prologue_end;
1826}
1827
1828
1829\f
1830/* Stack unwinding. */
1831
1832static struct m32c_prologue *
94afd7a6 1833m32c_analyze_frame_prologue (struct frame_info *this_frame,
96309189
MS
1834 void **this_prologue_cache)
1835{
1836 if (! *this_prologue_cache)
1837 {
94afd7a6
UW
1838 CORE_ADDR func_start = get_frame_func (this_frame);
1839 CORE_ADDR stop_addr = get_frame_pc (this_frame);
96309189
MS
1840
1841 /* If we couldn't find any function containing the PC, then
1842 just initialize the prologue cache, but don't do anything. */
1843 if (! func_start)
1844 stop_addr = func_start;
1845
1846 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
94afd7a6 1847 m32c_analyze_prologue (get_frame_arch (this_frame),
96309189
MS
1848 func_start, stop_addr, *this_prologue_cache);
1849 }
1850
1851 return *this_prologue_cache;
1852}
1853
1854
1855static CORE_ADDR
94afd7a6 1856m32c_frame_base (struct frame_info *this_frame,
96309189
MS
1857 void **this_prologue_cache)
1858{
1859 struct m32c_prologue *p
94afd7a6
UW
1860 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1861 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
96309189
MS
1862
1863 /* In functions that use alloca, the distance between the stack
1864 pointer and the frame base varies dynamically, so we can't use
1865 the SP plus static information like prologue analysis to find the
1866 frame base. However, such functions must have a frame pointer,
1867 to be able to restore the SP on exit. So whenever we do have a
1868 frame pointer, use that to find the base. */
1869 switch (p->kind)
1870 {
1871 case prologue_with_frame_ptr:
1872 {
1873 CORE_ADDR fb
94afd7a6 1874 = get_frame_register_unsigned (this_frame, tdep->fb->num);
96309189
MS
1875 return fb - p->frame_ptr_offset;
1876 }
1877
1878 case prologue_sans_frame_ptr:
1879 {
1880 CORE_ADDR sp
94afd7a6 1881 = get_frame_register_unsigned (this_frame, tdep->sp->num);
96309189
MS
1882 return sp - p->frame_size;
1883 }
1884
1885 case prologue_first_frame:
1886 return 0;
1887
1888 default:
f3574227 1889 gdb_assert_not_reached ("unexpected prologue kind");
96309189
MS
1890 }
1891}
1892
1893
1894static void
94afd7a6 1895m32c_this_id (struct frame_info *this_frame,
96309189
MS
1896 void **this_prologue_cache,
1897 struct frame_id *this_id)
1898{
94afd7a6 1899 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
96309189
MS
1900
1901 if (base)
94afd7a6 1902 *this_id = frame_id_build (base, get_frame_func (this_frame));
96309189
MS
1903 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1904}
1905
1906
94afd7a6
UW
1907static struct value *
1908m32c_prev_register (struct frame_info *this_frame,
1909 void **this_prologue_cache, int regnum)
96309189 1910{
94afd7a6 1911 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
96309189 1912 struct m32c_prologue *p
94afd7a6
UW
1913 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1914 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1915 int reg_size = register_size (get_frame_arch (this_frame), regnum);
96309189
MS
1916
1917 if (regnum == tdep->sp->num)
94afd7a6 1918 return frame_unwind_got_constant (this_frame, regnum, frame_base);
96309189
MS
1919
1920 /* If prologue analysis says we saved this register somewhere,
1921 return a description of the stack slot holding it. */
94afd7a6
UW
1922 if (p->reg_offset[regnum] != 1)
1923 return frame_unwind_got_memory (this_frame, regnum,
1924 frame_base + p->reg_offset[regnum]);
96309189
MS
1925
1926 /* Otherwise, presume we haven't changed the value of this
1927 register, and get it from the next frame. */
94afd7a6 1928 return frame_unwind_got_register (this_frame, regnum, regnum);
96309189
MS
1929}
1930
1931
1932static const struct frame_unwind m32c_unwind = {
1933 NORMAL_FRAME,
1934 m32c_this_id,
94afd7a6
UW
1935 m32c_prev_register,
1936 NULL,
1937 default_frame_sniffer
96309189
MS
1938};
1939
1940
96309189
MS
1941static CORE_ADDR
1942m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1943{
1944 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1945 return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1946}
1947
1948
1949static CORE_ADDR
1950m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1951{
1952 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1953 return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1954}
1955
1956\f
1957/* Inferior calls. */
1958
1959/* The calling conventions, according to GCC:
1960
1961 r8c, m16c
1962 ---------
1963 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1964 HImode), (2) is named, and (3) is an integer or pointer type (no
1965 structs, floats, etc). Otherwise, it's passed on the stack.
1966
1967 Second arg may be passed in r2, same restrictions (but not QImode),
1968 even if the first arg is passed on the stack.
1969
1970 Third and further args are passed on the stack. No padding is
1971 used, stack "alignment" is 8 bits.
1972
1973 m32cm, m32c
1974 -----------
1975
1976 First arg may be passed in r0l or r0, same restrictions as above.
1977
1978 Second and further args are passed on the stack. Padding is used
1979 after QImode parameters (i.e. lower-addressed byte is the value,
1980 higher-addressed byte is the padding), stack "alignment" is 16
1981 bits. */
1982
1983
1984/* Return true if TYPE is a type that can be passed in registers. (We
1985 ignore the size, and pay attention only to the type code;
1986 acceptable sizes depends on which register is being considered to
1987 hold it.) */
1988static int
1989m32c_reg_arg_type (struct type *type)
1990{
1991 enum type_code code = TYPE_CODE (type);
1992
1993 return (code == TYPE_CODE_INT
1994 || code == TYPE_CODE_ENUM
1995 || code == TYPE_CODE_PTR
1996 || code == TYPE_CODE_REF
1997 || code == TYPE_CODE_BOOL
1998 || code == TYPE_CODE_CHAR);
1999}
2000
2001
2002static CORE_ADDR
2003m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2004 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2005 struct value **args, CORE_ADDR sp, int struct_return,
2006 CORE_ADDR struct_addr)
2007{
2008 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 2009 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96309189
MS
2010 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2011 CORE_ADDR cfa;
2012 int i;
2013
2014 /* The number of arguments given in this function's prototype, or
2015 zero if it has a non-prototyped function type. The m32c ABI
2016 passes arguments mentioned in the prototype differently from
2017 those in the ellipsis of a varargs function, or from those passed
2018 to a non-prototyped function. */
2019 int num_prototyped_args = 0;
2020
2021 {
2022 struct type *func_type = value_type (function);
2023
ed09d7da
KB
2024 /* Dereference function pointer types. */
2025 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2026 func_type = TYPE_TARGET_TYPE (func_type);
2027
96309189
MS
2028 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2029 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2030
2031#if 0
2032 /* The ABI description in gcc/config/m32c/m32c.abi says that
2033 we need to handle prototyped and non-prototyped functions
2034 separately, but the code in GCC doesn't actually do so. */
2035 if (TYPE_PROTOTYPED (func_type))
2036#endif
2037 num_prototyped_args = TYPE_NFIELDS (func_type);
2038 }
2039
2040 /* First, if the function returns an aggregate by value, push a
2041 pointer to a buffer for it. This doesn't affect the way
2042 subsequent arguments are allocated to registers. */
2043 if (struct_return)
2044 {
2045 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2046 sp -= ptr_len;
e17a4113 2047 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
96309189
MS
2048 }
2049
2050 /* Push the arguments. */
2051 for (i = nargs - 1; i >= 0; i--)
2052 {
2053 struct value *arg = args[i];
2054 const gdb_byte *arg_bits = value_contents (arg);
2055 struct type *arg_type = value_type (arg);
2056 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2057
2058 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2059 if (i == 0
2060 && arg_size <= 2
2061 && i < num_prototyped_args
2062 && m32c_reg_arg_type (arg_type))
2063 {
2064 /* Extract and re-store as an integer as a terse way to make
2065 sure it ends up in the least significant end of r1. (GDB
2066 should avoid assuming endianness, even on uni-endian
2067 processors.) */
e17a4113
UW
2068 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2069 byte_order);
96309189
MS
2070 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2071 regcache_cooked_write_unsigned (regcache, reg->num, u);
2072 }
2073
2074 /* Can it go in r2? */
2075 else if (mach == bfd_mach_m16c
2076 && i == 1
2077 && arg_size == 2
2078 && i < num_prototyped_args
2079 && m32c_reg_arg_type (arg_type))
2080 regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2081
2082 /* Everything else goes on the stack. */
2083 else
2084 {
2085 sp -= arg_size;
2086
2087 /* Align the stack. */
2088 if (mach == bfd_mach_m32c)
2089 sp &= ~1;
2090
2091 write_memory (sp, arg_bits, arg_size);
2092 }
2093 }
2094
2095 /* This is the CFA we use to identify the dummy frame. */
2096 cfa = sp;
2097
2098 /* Push the return address. */
2099 sp -= tdep->ret_addr_bytes;
e17a4113
UW
2100 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2101 bp_addr);
96309189
MS
2102
2103 /* Update the stack pointer. */
2104 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2105
2106 /* We need to borrow an odd trick from the i386 target here.
2107
2108 The value we return from this function gets used as the stack
2109 address (the CFA) for the dummy frame's ID. The obvious thing is
2110 to return the new TOS. However, that points at the return
2111 address, saved on the stack, which is inconsistent with the CFA's
2112 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2113 .debug_frame info uses the address immediately after the saved
2114 return address. So you end up with a dummy frame whose CFA
2115 points at the return address, but the frame for the function
2116 being called has a CFA pointing after the return address: the
2117 younger CFA is *greater than* the older CFA. The sanity checks
2118 in frame.c don't like that.
2119
2120 So we try to be consistent with the CFA's used by DWARF 2.
2121 Having a dummy frame and a real frame with the *same* CFA is
2122 tolerable. */
2123 return cfa;
2124}
2125
2126
2127static struct frame_id
94afd7a6 2128m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
96309189
MS
2129{
2130 /* This needs to return a frame ID whose PC is the return address
2131 passed to m32c_push_dummy_call, and whose stack_addr is the SP
2132 m32c_push_dummy_call returned.
2133
2134 m32c_unwind_sp gives us the CFA, which is the value the SP had
2135 before the return address was pushed. */
94afd7a6
UW
2136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2137 CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2138 return frame_id_build (sp, get_frame_pc (this_frame));
96309189
MS
2139}
2140
2141
2142\f
2143/* Return values. */
2144
2145/* Return value conventions, according to GCC:
2146
2147 r8c, m16c
2148 ---------
2149
2150 QImode in r0l
2151 HImode in r0
2152 SImode in r2r0
2153 near pointer in r0
2154 far pointer in r2r0
2155
2156 Aggregate values (regardless of size) are returned by pushing a
2157 pointer to a temporary area on the stack after the args are pushed.
2158 The function fills in this area with the value. Note that this
2159 pointer on the stack does not affect how register arguments, if any,
2160 are configured.
2161
2162 m32cm, m32c
2163 -----------
2164 Same. */
2165
2166/* Return non-zero if values of type TYPE are returned by storing them
2167 in a buffer whose address is passed on the stack, ahead of the
2168 other arguments. */
2169static int
2170m32c_return_by_passed_buf (struct type *type)
2171{
2172 enum type_code code = TYPE_CODE (type);
2173
2174 return (code == TYPE_CODE_STRUCT
2175 || code == TYPE_CODE_UNION);
2176}
2177
2178static enum return_value_convention
2179m32c_return_value (struct gdbarch *gdbarch,
c055b101 2180 struct type *func_type,
96309189
MS
2181 struct type *valtype,
2182 struct regcache *regcache,
2183 gdb_byte *readbuf,
2184 const gdb_byte *writebuf)
2185{
2186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 2187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96309189
MS
2188 enum return_value_convention conv;
2189 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2190
2191 if (m32c_return_by_passed_buf (valtype))
2192 conv = RETURN_VALUE_STRUCT_CONVENTION;
2193 else
2194 conv = RETURN_VALUE_REGISTER_CONVENTION;
2195
2196 if (readbuf)
2197 {
2198 /* We should never be called to find values being returned by
2199 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2200 unless we made the call ourselves. */
2201 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2202
2203 gdb_assert (valtype_len <= 8);
2204
2205 /* Anything that fits in r0 is returned there. */
2206 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2207 {
2208 ULONGEST u;
2209 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
e17a4113 2210 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
96309189
MS
2211 }
2212 else
2213 {
2214 /* Everything else is passed in mem0, using as many bytes as
2215 needed. This is not what the Renesas tools do, but it's
2216 what GCC does at the moment. */
2217 struct minimal_symbol *mem0
2218 = lookup_minimal_symbol ("mem0", NULL, NULL);
2219
2220 if (! mem0)
2221 error ("The return value is stored in memory at 'mem0', "
2222 "but GDB cannot find\n"
2223 "its address.");
2224 read_memory (SYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2225 }
2226 }
2227
2228 if (writebuf)
2229 {
2230 /* We should never be called to store values to be returned
2231 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2232 finding the buffer, unless we made the call ourselves. */
2233 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2234
2235 gdb_assert (valtype_len <= 8);
2236
2237 /* Anything that fits in r0 is returned there. */
2238 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2239 {
e17a4113
UW
2240 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2241 byte_order);
96309189
MS
2242 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2243 }
2244 else
2245 {
2246 /* Everything else is passed in mem0, using as many bytes as
2247 needed. This is not what the Renesas tools do, but it's
2248 what GCC does at the moment. */
2249 struct minimal_symbol *mem0
2250 = lookup_minimal_symbol ("mem0", NULL, NULL);
2251
2252 if (! mem0)
2253 error ("The return value is stored in memory at 'mem0', "
2254 "but GDB cannot find\n"
2255 " its address.");
2256 write_memory (SYMBOL_VALUE_ADDRESS (mem0),
2257 (char *) writebuf, valtype_len);
2258 }
2259 }
2260
2261 return conv;
2262}
2263
2264
2265\f
2266/* Trampolines. */
2267
2268/* The m16c and m32c use a trampoline function for indirect function
2269 calls. An indirect call looks like this:
2270
2271 ... push arguments ...
2272 ... push target function address ...
2273 jsr.a m32c_jsri16
2274
2275 The code for m32c_jsri16 looks like this:
2276
2277 m32c_jsri16:
2278
2279 # Save return address.
2280 pop.w m32c_jsri_ret
2281 pop.b m32c_jsri_ret+2
2282
2283 # Store target function address.
2284 pop.w m32c_jsri_addr
2285
2286 # Re-push return address.
2287 push.b m32c_jsri_ret+2
2288 push.w m32c_jsri_ret
2289
2290 # Call the target function.
2291 jmpi.a m32c_jsri_addr
2292
2293 Without further information, GDB will treat calls to m32c_jsri16
2294 like calls to any other function. Since m32c_jsri16 doesn't have
2295 debugging information, that normally means that GDB sets a step-
2296 resume breakpoint and lets the program continue --- which is not
2297 what the user wanted. (Giving the trampoline debugging info
2298 doesn't help: the user expects the program to stop in the function
2299 their program is calling, not in some trampoline code they've never
2300 seen before.)
2301
e76f05fa 2302 The gdbarch_skip_trampoline_code method tells GDB how to step
96309189
MS
2303 through such trampoline functions transparently to the user. When
2304 given the address of a trampoline function's first instruction,
e76f05fa 2305 gdbarch_skip_trampoline_code should return the address of the first
96309189
MS
2306 instruction of the function really being called. If GDB decides it
2307 wants to step into that function, it will set a breakpoint there
2308 and silently continue to it.
2309
2310 We recognize the trampoline by name, and extract the target address
2311 directly from the stack. This isn't great, but recognizing by its
2312 code sequence seems more fragile. */
2313
2314static CORE_ADDR
52f729a7 2315m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
96309189 2316{
e17a4113
UW
2317 struct gdbarch *gdbarch = get_frame_arch (frame);
2318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2319 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96309189
MS
2320
2321 /* It would be nicer to simply look up the addresses of known
2322 trampolines once, and then compare stop_pc with them. However,
2323 we'd need to ensure that that cached address got invalidated when
2324 someone loaded a new executable, and I'm not quite sure of the
2325 best way to do that. find_pc_partial_function does do some
2326 caching, so we'll see how this goes. */
2327 char *name;
2328 CORE_ADDR start, end;
2329
2330 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2331 {
2332 /* Are we stopped at the beginning of the trampoline function? */
2333 if (strcmp (name, "m32c_jsri16") == 0
2334 && stop_pc == start)
2335 {
2336 /* Get the stack pointer. The return address is at the top,
2337 and the target function's address is just below that. We
2338 know it's a two-byte address, since the trampoline is
2339 m32c_jsri*16*. */
2340 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2341 CORE_ADDR target
e17a4113
UW
2342 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2343 2, byte_order);
96309189
MS
2344
2345 /* What we have now is the address of a jump instruction.
2346 What we need is the destination of that jump.
2347 The opcode is 1 byte, and the destination is the next 3 bytes.
2348 */
e17a4113 2349 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
96309189
MS
2350 return target;
2351 }
2352 }
2353
2354 return 0;
2355}
2356
2357
2358/* Address/pointer conversions. */
2359
2360/* On the m16c, there is a 24-bit address space, but only a very few
2361 instructions can generate addresses larger than 0xffff: jumps,
2362 jumps to subroutines, and the lde/std (load/store extended)
2363 instructions.
2364
2365 Since GCC can only support one size of pointer, we can't have
2366 distinct 'near' and 'far' pointer types; we have to pick one size
2367 for everything. If we wanted to use 24-bit pointers, then GCC
2368 would have to use lde and ste for all memory references, which
2369 would be terrible for performance and code size. So the GNU
2370 toolchain uses 16-bit pointers for everything, and gives up the
2371 ability to have pointers point outside the first 64k of memory.
2372
2373 However, as a special hack, we let the linker place functions at
2374 addresses above 0xffff, as long as it also places a trampoline in
2375 the low 64k for every function whose address is taken. Each
2376 trampoline consists of a single jmp.a instruction that jumps to the
2377 function's real entry point. Pointers to functions can be 16 bits
2378 long, even though the functions themselves are at higher addresses:
2379 the pointers refer to the trampolines, not the functions.
2380
2381 This complicates things for GDB, however: given the address of a
2382 function (from debug info or linker symbols, say) which could be
2383 anywhere in the 24-bit address space, how can we find an
2384 appropriate 16-bit value to use as a pointer to it?
2385
2386 If the linker has not generated a trampoline for the function,
2387 we're out of luck. Well, I guess we could malloc some space and
2388 write a jmp.a instruction to it, but I'm not going to get into that
2389 at the moment.
2390
2391 If the linker has generated a trampoline for the function, then it
2392 also emitted a symbol for the trampoline: if the function's linker
2393 symbol is named NAME, then the function's trampoline's linker
2394 symbol is named NAME.plt.
2395
2396 So, given a code address:
2397 - We try to find a linker symbol at that address.
2398 - If we find such a symbol named NAME, we look for a linker symbol
2399 named NAME.plt.
2400 - If we find such a symbol, we assume it is a trampoline, and use
2401 its address as the pointer value.
2402
2403 And, given a function pointer:
2404 - We try to find a linker symbol at that address named NAME.plt.
2405 - If we find such a symbol, we look for a linker symbol named NAME.
2406 - If we find that, we provide that as the function's address.
2407 - If any of the above steps fail, we return the original address
2408 unchanged; it might really be a function in the low 64k.
2409
2410 See? You *knew* there was a reason you wanted to be a computer
2411 programmer! :) */
2412
2413static void
9898f801
UW
2414m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2415 struct type *type, gdb_byte *buf, CORE_ADDR addr)
96309189 2416{
e17a4113 2417 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f79b9530 2418 enum type_code target_code;
96309189
MS
2419 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2420 TYPE_CODE (type) == TYPE_CODE_REF);
2421
f79b9530 2422 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
96309189
MS
2423
2424 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2425 {
f79b9530
DJ
2426 char *func_name;
2427 char *tramp_name;
2428 struct minimal_symbol *tramp_msym;
2429
96309189
MS
2430 /* Try to find a linker symbol at this address. */
2431 struct minimal_symbol *func_msym = lookup_minimal_symbol_by_pc (addr);
2432
2433 if (! func_msym)
d77b48cf
KB
2434 error (_("Cannot convert code address %s to function pointer:\n"
2435 "couldn't find a symbol at that address, to find trampoline."),
5af949e3 2436 paddress (gdbarch, addr));
96309189 2437
f79b9530
DJ
2438 func_name = SYMBOL_LINKAGE_NAME (func_msym);
2439 tramp_name = xmalloc (strlen (func_name) + 5);
96309189
MS
2440 strcpy (tramp_name, func_name);
2441 strcat (tramp_name, ".plt");
2442
2443 /* Try to find a linker symbol for the trampoline. */
f79b9530 2444 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
96309189
MS
2445
2446 /* We've either got another copy of the name now, or don't need
2447 the name any more. */
2448 xfree (tramp_name);
2449
2450 if (! tramp_msym)
d77b48cf
KB
2451 {
2452 CORE_ADDR ptrval;
2453
2454 /* No PLT entry found. Mask off the upper bits of the address
2455 to make a pointer. As noted in the warning to the user
2456 below, this value might be useful if converted back into
2457 an address by GDB, but will otherwise, almost certainly,
2458 be garbage.
2459
2460 Using this masked result does seem to be useful
2461 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2462 PASSes. These results appear to be correct as well.
2463
2464 We print a warning here so that the user can make a
2465 determination about whether the result is useful or not. */
2466 ptrval = addr & 0xffff;
2467
2468 warning (_("Cannot convert code address %s to function pointer:\n"
2469 "couldn't find trampoline named '%s.plt'.\n"
2470 "Returning pointer value %s instead; this may produce\n"
2471 "a useful result if converted back into an address by GDB,\n"
2472 "but will most likely not be useful otherwise.\n"),
2473 paddress (gdbarch, addr), func_name,
2474 paddress (gdbarch, ptrval));
2475
2476 addr = ptrval;
96309189 2477
d77b48cf
KB
2478 }
2479 else
2480 {
2481 /* The trampoline's address is our pointer. */
2482 addr = SYMBOL_VALUE_ADDRESS (tramp_msym);
2483 }
96309189
MS
2484 }
2485
e17a4113 2486 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
96309189
MS
2487}
2488
2489
2490static CORE_ADDR
9898f801
UW
2491m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2492 struct type *type, const gdb_byte *buf)
96309189 2493{
e17a4113 2494 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f79b9530
DJ
2495 CORE_ADDR ptr;
2496 enum type_code target_code;
2497
96309189
MS
2498 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2499 TYPE_CODE (type) == TYPE_CODE_REF);
2500
e17a4113 2501 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
96309189 2502
f79b9530 2503 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
96309189
MS
2504
2505 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2506 {
2507 /* See if there is a minimal symbol at that address whose name is
2508 "NAME.plt". */
2509 struct minimal_symbol *ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2510
2511 if (ptr_msym)
2512 {
2513 char *ptr_msym_name = SYMBOL_LINKAGE_NAME (ptr_msym);
2514 int len = strlen (ptr_msym_name);
2515
2516 if (len > 4
2517 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2518 {
f79b9530 2519 struct minimal_symbol *func_msym;
96309189
MS
2520 /* We have a .plt symbol; try to find the symbol for the
2521 corresponding function.
2522
2523 Since the trampoline contains a jump instruction, we
2524 could also just extract the jump's target address. I
2525 don't see much advantage one way or the other. */
2526 char *func_name = xmalloc (len - 4 + 1);
2527 memcpy (func_name, ptr_msym_name, len - 4);
2528 func_name[len - 4] = '\0';
f79b9530 2529 func_msym
96309189
MS
2530 = lookup_minimal_symbol (func_name, NULL, NULL);
2531
2532 /* If we do have such a symbol, return its value as the
2533 function's true address. */
2534 if (func_msym)
2535 ptr = SYMBOL_VALUE_ADDRESS (func_msym);
2536 }
2537 }
d77b48cf
KB
2538 else
2539 {
2540 int aspace;
2541
2542 for (aspace = 1; aspace <= 15; aspace++)
2543 {
2544 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2545
2546 if (ptr_msym)
2547 ptr |= aspace << 16;
2548 }
2549 }
96309189
MS
2550 }
2551
2552 return ptr;
2553}
2554
63807e1d 2555static void
a54fba4c 2556m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
7830cb4f
CV
2557 int *frame_regnum,
2558 LONGEST *frame_offset)
2559{
2560 char *name;
2561 CORE_ADDR func_addr, func_end, sal_end;
2562 struct m32c_prologue p;
2563
594f7785 2564 struct regcache *regcache = get_current_regcache ();
a54fba4c 2565 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7830cb4f
CV
2566
2567 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2568 internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
2569
a54fba4c 2570 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
7830cb4f
CV
2571 switch (p.kind)
2572 {
2573 case prologue_with_frame_ptr:
594f7785 2574 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
7830cb4f
CV
2575 *frame_offset = p.frame_ptr_offset;
2576 break;
2577 case prologue_sans_frame_ptr:
594f7785 2578 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
7830cb4f
CV
2579 *frame_offset = p.frame_size;
2580 break;
2581 default:
594f7785 2582 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
7830cb4f
CV
2583 *frame_offset = 0;
2584 break;
2585 }
2586 /* Sanity check */
a54fba4c 2587 if (*frame_regnum > gdbarch_num_regs (gdbarch))
7830cb4f
CV
2588 internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
2589}
96309189
MS
2590
2591\f
2592/* Initialization. */
2593
2594static struct gdbarch *
2595m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2596{
2597 struct gdbarch *arch;
2598 struct gdbarch_tdep *tdep;
2599 unsigned long mach = info.bfd_arch_info->mach;
2600
2601 /* Find a candidate among the list of architectures we've created
2602 already. */
2603 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2604 arches != NULL;
2605 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2606 return arches->gdbarch;
2607
2608 tdep = xcalloc (1, sizeof (*tdep));
2609 arch = gdbarch_alloc (&info, tdep);
2610
2611 /* Essential types. */
2612 make_types (arch);
2613
2614 /* Address/pointer conversions. */
2615 if (mach == bfd_mach_m16c)
2616 {
2617 set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2618 set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2619 }
2620
2621 /* Register set. */
2622 make_regs (arch);
2623
2624 /* Disassembly. */
2625 set_gdbarch_print_insn (arch, print_insn_m32c);
2626
2627 /* Breakpoints. */
2628 set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2629
2630 /* Prologue analysis and unwinding. */
2631 set_gdbarch_inner_than (arch, core_addr_lessthan);
2632 set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2633 set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2634 set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2635#if 0
2636 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2637 They may be in the dwarf2 cfi code in GDB, or they may be in
2638 the debug info emitted by the upstream toolchain. I don't
2639 know which, but I do know that the prologue analyzer works better.
2640 MVS 04/13/06
2641 */
94afd7a6 2642 dwarf2_append_sniffers (arch);
96309189 2643#endif
94afd7a6 2644 frame_unwind_append_unwinder (arch, &m32c_unwind);
96309189
MS
2645
2646 /* Inferior calls. */
2647 set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2648 set_gdbarch_return_value (arch, m32c_return_value);
94afd7a6 2649 set_gdbarch_dummy_id (arch, m32c_dummy_id);
96309189
MS
2650
2651 /* Trampolines. */
2652 set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2653
7830cb4f
CV
2654 set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2655
ed09d7da
KB
2656 /* m32c function boundary addresses are not necessarily even.
2657 Therefore, the `vbit', which indicates a pointer to a virtual
2658 member function, is stored in the delta field, rather than as
2659 the low bit of a function pointer address.
2660
2661 In order to verify this, see the definition of
2662 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2663 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2664 set_gdbarch_vbit_in_delta (arch, 1);
2665
96309189
MS
2666 return arch;
2667}
2668
63807e1d
PA
2669/* Provide a prototype to silence -Wmissing-prototypes. */
2670extern initialize_file_ftype _initialize_m32c_tdep;
96309189
MS
2671
2672void
2673_initialize_m32c_tdep (void)
2674{
2675 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2676
2677 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2678}
This page took 0.466171 seconds and 4 git commands to generate.