gdb/
[deliverable/binutils-gdb.git] / gdb / m32c-tdep.c
CommitLineData
96309189
MS
1/* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
7b6bb8da
JB
3 Copyright 2004, 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
96309189
MS
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
96309189
MS
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
96309189
MS
20
21#include "defs.h"
22
23#include <stdarg.h>
24
25#if defined (HAVE_STRING_H)
26#include <string.h>
27#endif
28
29#include "gdb_assert.h"
30#include "elf-bfd.h"
31#include "elf/m32c.h"
32#include "gdb/sim-m32c.h"
33#include "dis-asm.h"
34#include "gdbtypes.h"
35#include "regcache.h"
36#include "arch-utils.h"
37#include "frame.h"
38#include "frame-unwind.h"
39#include "dwarf2-frame.h"
40#include "dwarf2expr.h"
41#include "symtab.h"
42#include "gdbcore.h"
43#include "value.h"
44#include "reggroups.h"
45#include "prologue-value.h"
46#include "target.h"
47
48\f
49/* The m32c tdep structure. */
50
51static struct reggroup *m32c_dma_reggroup;
52
53struct m32c_reg;
54
55/* The type of a function that moves the value of REG between CACHE or
56 BUF --- in either direction. */
05d1431c
PA
57typedef enum register_status (m32c_move_reg_t) (struct m32c_reg *reg,
58 struct regcache *cache,
59 void *buf);
96309189
MS
60
61struct m32c_reg
62{
63 /* The name of this register. */
64 const char *name;
65
66 /* Its type. */
67 struct type *type;
68
69 /* The architecture this register belongs to. */
70 struct gdbarch *arch;
71
72 /* Its GDB register number. */
73 int num;
74
75 /* Its sim register number. */
76 int sim_num;
77
78 /* Its DWARF register number, or -1 if it doesn't have one. */
79 int dwarf_num;
80
81 /* Register group memberships. */
82 unsigned int general_p : 1;
83 unsigned int dma_p : 1;
84 unsigned int system_p : 1;
85 unsigned int save_restore_p : 1;
86
87 /* Functions to read its value from a regcache, and write its value
88 to a regcache. */
89 m32c_move_reg_t *read, *write;
90
91 /* Data for READ and WRITE functions. The exact meaning depends on
92 the specific functions selected; see the comments for those
93 functions. */
94 struct m32c_reg *rx, *ry;
95 int n;
96};
97
98
99/* An overestimate of the number of raw and pseudoregisters we will
100 have. The exact answer depends on the variant of the architecture
101 at hand, but we can use this to declare statically allocated
102 arrays, and bump it up when needed. */
103#define M32C_MAX_NUM_REGS (75)
104
105/* The largest assigned DWARF register number. */
106#define M32C_MAX_DWARF_REGNUM (40)
107
108
109struct gdbarch_tdep
110{
111 /* All the registers for this variant, indexed by GDB register
112 number, and the number of registers present. */
113 struct m32c_reg regs[M32C_MAX_NUM_REGS];
114
115 /* The number of valid registers. */
116 int num_regs;
117
118 /* Interesting registers. These are pointers into REGS. */
119 struct m32c_reg *pc, *flg;
120 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
121 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
122 struct m32c_reg *sb, *fb, *sp;
123
124 /* A table indexed by DWARF register numbers, pointing into
125 REGS. */
126 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
127
128 /* Types for this architecture. We can't use the builtin_type_foo
129 types, because they're not initialized when building a gdbarch
130 structure. */
131 struct type *voyd, *ptr_voyd, *func_voyd;
132 struct type *uint8, *uint16;
133 struct type *int8, *int16, *int32, *int64;
134
135 /* The types for data address and code address registers. */
136 struct type *data_addr_reg_type, *code_addr_reg_type;
137
138 /* The number of bytes a return address pushed by a 'jsr' instruction
139 occupies on the stack. */
140 int ret_addr_bytes;
141
142 /* The number of bytes an address register occupies on the stack
143 when saved by an 'enter' or 'pushm' instruction. */
144 int push_addr_bytes;
145};
146
147\f
148/* Types. */
149
150static void
151make_types (struct gdbarch *arch)
152{
153 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
154 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
155 int data_addr_reg_bits, code_addr_reg_bits;
156 char type_name[50];
157
158#if 0
159 /* This is used to clip CORE_ADDR values, so this value is
160 appropriate both on the m32c, where pointers are 32 bits long,
161 and on the m16c, where pointers are sixteen bits long, but there
162 may be code above the 64k boundary. */
163 set_gdbarch_addr_bit (arch, 24);
164#else
165 /* GCC uses 32 bits for addrs in the dwarf info, even though
166 only 16/24 bits are used. Setting addr_bit to 24 causes
167 errors in reading the dwarf addresses. */
168 set_gdbarch_addr_bit (arch, 32);
169#endif
170
171 set_gdbarch_int_bit (arch, 16);
172 switch (mach)
173 {
174 case bfd_mach_m16c:
175 data_addr_reg_bits = 16;
176 code_addr_reg_bits = 24;
177 set_gdbarch_ptr_bit (arch, 16);
178 tdep->ret_addr_bytes = 3;
179 tdep->push_addr_bytes = 2;
180 break;
181
182 case bfd_mach_m32c:
183 data_addr_reg_bits = 24;
184 code_addr_reg_bits = 24;
185 set_gdbarch_ptr_bit (arch, 32);
186 tdep->ret_addr_bytes = 4;
187 tdep->push_addr_bytes = 4;
188 break;
189
190 default:
f3574227 191 gdb_assert_not_reached ("unexpected mach");
96309189
MS
192 }
193
194 /* The builtin_type_mumble variables are sometimes uninitialized when
195 this is called, so we avoid using them. */
e9bb382b
UW
196 tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
197 tdep->ptr_voyd
bd333fb7
KB
198 = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
199 NULL);
96309189 200 TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
e9bb382b 201 TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
96309189
MS
202 tdep->func_voyd = lookup_function_type (tdep->voyd);
203
204 sprintf (type_name, "%s_data_addr_t",
205 gdbarch_bfd_arch_info (arch)->printable_name);
206 tdep->data_addr_reg_type
bd333fb7
KB
207 = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
208 xstrdup (type_name));
96309189 209 TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
e9bb382b 210 TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
96309189
MS
211
212 sprintf (type_name, "%s_code_addr_t",
213 gdbarch_bfd_arch_info (arch)->printable_name);
214 tdep->code_addr_reg_type
bd333fb7
KB
215 = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
216 xstrdup (type_name));
96309189 217 TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
e9bb382b
UW
218 TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
219
220 tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
221 tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
222 tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
223 tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
224 tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
225 tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
96309189
MS
226}
227
228
229\f
230/* Register set. */
231
232static const char *
d93859e2 233m32c_register_name (struct gdbarch *gdbarch, int num)
96309189 234{
d93859e2 235 return gdbarch_tdep (gdbarch)->regs[num].name;
96309189
MS
236}
237
238
239static struct type *
240m32c_register_type (struct gdbarch *arch, int reg_nr)
241{
242 return gdbarch_tdep (arch)->regs[reg_nr].type;
243}
244
245
246static int
e7faf938 247m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
96309189 248{
e7faf938 249 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
96309189
MS
250}
251
252
253static int
d3f73121 254m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
96309189 255{
d3f73121 256 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
96309189
MS
257 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
258 && tdep->dwarf_regs[reg_nr])
259 return tdep->dwarf_regs[reg_nr]->num;
260 else
261 /* The DWARF CFI code expects to see -1 for invalid register
262 numbers. */
263 return -1;
264}
265
266
63807e1d 267static int
96309189
MS
268m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
269 struct reggroup *group)
270{
40a6adc1 271 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
96309189
MS
272 struct m32c_reg *reg = &tdep->regs[regnum];
273
274 /* The anonymous raw registers aren't in any groups. */
275 if (! reg->name)
276 return 0;
277
278 if (group == all_reggroup)
279 return 1;
280
281 if (group == general_reggroup
282 && reg->general_p)
283 return 1;
284
285 if (group == m32c_dma_reggroup
286 && reg->dma_p)
287 return 1;
288
289 if (group == system_reggroup
290 && reg->system_p)
291 return 1;
292
293 /* Since the m32c DWARF register numbers refer to cooked registers, not
294 raw registers, and frame_pop depends on the save and restore groups
295 containing registers the DWARF CFI will actually mention, our save
296 and restore groups are cooked registers, not raw registers. (This is
297 why we can't use the default reggroup function.) */
298 if ((group == save_reggroup
299 || group == restore_reggroup)
300 && reg->save_restore_p)
301 return 1;
302
303 return 0;
304}
305
306
307/* Register move functions. We declare them here using
308 m32c_move_reg_t to check the types. */
309static m32c_move_reg_t m32c_raw_read, m32c_raw_write;
310static m32c_move_reg_t m32c_banked_read, m32c_banked_write;
311static m32c_move_reg_t m32c_sb_read, m32c_sb_write;
312static m32c_move_reg_t m32c_part_read, m32c_part_write;
313static m32c_move_reg_t m32c_cat_read, m32c_cat_write;
314static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
315
316
317/* Copy the value of the raw register REG from CACHE to BUF. */
05d1431c 318static enum register_status
96309189
MS
319m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
320{
05d1431c 321 return regcache_raw_read (cache, reg->num, buf);
96309189
MS
322}
323
324
325/* Copy the value of the raw register REG from BUF to CACHE. */
05d1431c 326static enum register_status
96309189
MS
327m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
328{
329 regcache_raw_write (cache, reg->num, (const void *) buf);
05d1431c
PA
330
331 return REG_VALID;
96309189
MS
332}
333
334
335/* Return the value of the 'flg' register in CACHE. */
336static int
337m32c_read_flg (struct regcache *cache)
338{
339 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
340 ULONGEST flg;
341 regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
342 return flg & 0xffff;
343}
344
345
7830cb4f
CV
346/* Evaluate the real register number of a banked register. */
347static struct m32c_reg *
348m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
349{
350 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
351}
352
353
96309189
MS
354/* Move the value of a banked register from CACHE to BUF.
355 If the value of the 'flg' register in CACHE has any of the bits
356 masked in REG->n set, then read REG->ry. Otherwise, read
357 REG->rx. */
05d1431c 358static enum register_status
96309189
MS
359m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
360{
7830cb4f 361 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
05d1431c 362 return regcache_raw_read (cache, bank_reg->num, buf);
96309189
MS
363}
364
365
366/* Move the value of a banked register from BUF to CACHE.
367 If the value of the 'flg' register in CACHE has any of the bits
368 masked in REG->n set, then write REG->ry. Otherwise, write
369 REG->rx. */
05d1431c 370static enum register_status
96309189
MS
371m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
372{
7830cb4f 373 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
96309189 374 regcache_raw_write (cache, bank_reg->num, (const void *) buf);
05d1431c
PA
375
376 return REG_VALID;
96309189
MS
377}
378
379
380/* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
381 banked register; on bfd_mach_m16c, it's not. */
05d1431c 382static enum register_status
96309189
MS
383m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
384{
385 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
05d1431c 386 return m32c_raw_read (reg->rx, cache, buf);
96309189 387 else
05d1431c 388 return m32c_banked_read (reg, cache, buf);
96309189
MS
389}
390
391
392/* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
393 banked register; on bfd_mach_m16c, it's not. */
05d1431c 394static enum register_status
96309189
MS
395m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
396{
397 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
398 m32c_raw_write (reg->rx, cache, buf);
399 else
400 m32c_banked_write (reg, cache, buf);
05d1431c
PA
401
402 return REG_VALID;
96309189
MS
403}
404
405
406/* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
407 and *LEN_P to the offset and length, in bytes, of the part REG
408 occupies in its underlying register. The offset is from the
409 lower-addressed end, regardless of the architecture's endianness.
410 (The M32C family is always little-endian, but let's keep those
411 assumptions out of here.) */
412static void
413m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
414{
415 /* The length of the containing register, of which REG is one part. */
416 int containing_len = TYPE_LENGTH (reg->rx->type);
417
418 /* The length of one "element" in our imaginary array. */
419 int elt_len = TYPE_LENGTH (reg->type);
420
421 /* The offset of REG's "element" from the least significant end of
422 the containing register. */
423 int elt_offset = reg->n * elt_len;
424
425 /* If we extend off the end, trim the length of the element. */
426 if (elt_offset + elt_len > containing_len)
427 {
428 elt_len = containing_len - elt_offset;
429 /* We shouldn't be declaring partial registers that go off the
430 end of their containing registers. */
431 gdb_assert (elt_len > 0);
432 }
433
434 /* Flip the offset around if we're big-endian. */
435 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
436 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
437
438 *offset_p = elt_offset;
439 *len_p = elt_len;
440}
441
442
443/* Move the value of a partial register (r0h, intbl, etc.) from CACHE
444 to BUF. Treating the value of the register REG->rx as an array of
445 REG->type values, where higher indices refer to more significant
446 bits, read the value of the REG->n'th element. */
05d1431c 447static enum register_status
96309189
MS
448m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
449{
450 int offset, len;
05d1431c 451
96309189
MS
452 memset (buf, 0, TYPE_LENGTH (reg->type));
453 m32c_find_part (reg, &offset, &len);
05d1431c 454 return regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
96309189
MS
455}
456
457
458/* Move the value of a banked register from BUF to CACHE.
459 Treating the value of the register REG->rx as an array of REG->type
460 values, where higher indices refer to more significant bits, write
461 the value of the REG->n'th element. */
05d1431c 462static enum register_status
96309189
MS
463m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
464{
465 int offset, len;
05d1431c 466
96309189
MS
467 m32c_find_part (reg, &offset, &len);
468 regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
05d1431c
PA
469
470 return REG_VALID;
96309189
MS
471}
472
473
474/* Move the value of REG from CACHE to BUF. REG's value is the
475 concatenation of the values of the registers REG->rx and REG->ry,
476 with REG->rx contributing the more significant bits. */
05d1431c 477static enum register_status
96309189
MS
478m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
479{
480 int high_bytes = TYPE_LENGTH (reg->rx->type);
481 int low_bytes = TYPE_LENGTH (reg->ry->type);
482 /* For address arithmetic. */
483 unsigned char *cbuf = buf;
05d1431c 484 enum register_status status;
96309189
MS
485
486 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
487
488 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
489 {
05d1431c
PA
490 status = regcache_cooked_read (cache, reg->rx->num, cbuf);
491 if (status == REG_VALID)
492 status = regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
96309189
MS
493 }
494 else
495 {
05d1431c
PA
496 status = regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
497 if (status == REG_VALID)
498 status = regcache_cooked_read (cache, reg->ry->num, cbuf);
96309189 499 }
05d1431c
PA
500
501 return status;
96309189
MS
502}
503
504
505/* Move the value of REG from CACHE to BUF. REG's value is the
506 concatenation of the values of the registers REG->rx and REG->ry,
507 with REG->rx contributing the more significant bits. */
05d1431c 508static enum register_status
96309189
MS
509m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
510{
511 int high_bytes = TYPE_LENGTH (reg->rx->type);
512 int low_bytes = TYPE_LENGTH (reg->ry->type);
513 /* For address arithmetic. */
514 unsigned char *cbuf = buf;
515
516 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
517
518 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
519 {
520 regcache_cooked_write (cache, reg->rx->num, cbuf);
521 regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
522 }
523 else
524 {
525 regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
526 regcache_cooked_write (cache, reg->ry->num, cbuf);
527 }
05d1431c
PA
528
529 return REG_VALID;
96309189
MS
530}
531
532
533/* Copy the value of the raw register REG from CACHE to BUF. REG is
534 the concatenation (from most significant to least) of r3, r2, r1,
535 and r0. */
05d1431c 536static enum register_status
96309189
MS
537m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
538{
539 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
540 int len = TYPE_LENGTH (tdep->r0->type);
05d1431c 541 enum register_status status;
96309189
MS
542
543 /* For address arithmetic. */
544 unsigned char *cbuf = buf;
545
546 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
547 {
05d1431c
PA
548 status = regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
549 if (status == REG_VALID)
550 status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
551 if (status == REG_VALID)
552 status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
553 if (status == REG_VALID)
554 status = regcache_cooked_read (cache, tdep->r3->num, cbuf);
96309189
MS
555 }
556 else
557 {
05d1431c
PA
558 status = regcache_cooked_read (cache, tdep->r0->num, cbuf);
559 if (status == REG_VALID)
560 status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
561 if (status == REG_VALID)
562 status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
563 if (status == REG_VALID)
564 status = regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
96309189 565 }
05d1431c
PA
566
567 return status;
96309189
MS
568}
569
570
571/* Copy the value of the raw register REG from BUF to CACHE. REG is
572 the concatenation (from most significant to least) of r3, r2, r1,
573 and r0. */
05d1431c 574static enum register_status
96309189
MS
575m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
576{
577 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
578 int len = TYPE_LENGTH (tdep->r0->type);
579
580 /* For address arithmetic. */
581 unsigned char *cbuf = buf;
582
583 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
584 {
585 regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
586 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
587 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
588 regcache_cooked_write (cache, tdep->r3->num, cbuf);
589 }
590 else
591 {
592 regcache_cooked_write (cache, tdep->r0->num, cbuf);
593 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
594 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
595 regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
596 }
05d1431c
PA
597
598 return REG_VALID;
96309189
MS
599}
600
601
05d1431c 602static enum register_status
96309189
MS
603m32c_pseudo_register_read (struct gdbarch *arch,
604 struct regcache *cache,
605 int cookednum,
606 gdb_byte *buf)
607{
608 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
609 struct m32c_reg *reg;
610
611 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
612 gdb_assert (arch == get_regcache_arch (cache));
613 gdb_assert (arch == tdep->regs[cookednum].arch);
614 reg = &tdep->regs[cookednum];
615
05d1431c 616 return reg->read (reg, cache, buf);
96309189
MS
617}
618
619
620static void
621m32c_pseudo_register_write (struct gdbarch *arch,
622 struct regcache *cache,
623 int cookednum,
624 const gdb_byte *buf)
625{
626 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
627 struct m32c_reg *reg;
628
629 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
630 gdb_assert (arch == get_regcache_arch (cache));
631 gdb_assert (arch == tdep->regs[cookednum].arch);
632 reg = &tdep->regs[cookednum];
633
634 reg->write (reg, cache, (void *) buf);
635}
636
637
638/* Add a register with the given fields to the end of ARCH's table.
639 Return a pointer to the newly added register. */
640static struct m32c_reg *
641add_reg (struct gdbarch *arch,
642 const char *name,
643 struct type *type,
644 int sim_num,
645 m32c_move_reg_t *read,
646 m32c_move_reg_t *write,
647 struct m32c_reg *rx,
648 struct m32c_reg *ry,
649 int n)
650{
651 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
652 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
653
654 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
655
656 r->name = name;
657 r->type = type;
658 r->arch = arch;
659 r->num = tdep->num_regs;
660 r->sim_num = sim_num;
661 r->dwarf_num = -1;
662 r->general_p = 0;
663 r->dma_p = 0;
664 r->system_p = 0;
665 r->save_restore_p = 0;
666 r->read = read;
667 r->write = write;
668 r->rx = rx;
669 r->ry = ry;
670 r->n = n;
671
672 tdep->num_regs++;
673
674 return r;
675}
676
677
678/* Record NUM as REG's DWARF register number. */
679static void
680set_dwarf_regnum (struct m32c_reg *reg, int num)
681{
682 gdb_assert (num < M32C_MAX_NUM_REGS);
683
684 /* Update the reg->DWARF mapping. Only count the first number
685 assigned to this register. */
686 if (reg->dwarf_num == -1)
687 reg->dwarf_num = num;
688
689 /* Update the DWARF->reg mapping. */
690 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
691}
692
693
694/* Mark REG as a general-purpose register, and return it. */
695static struct m32c_reg *
696mark_general (struct m32c_reg *reg)
697{
698 reg->general_p = 1;
699 return reg;
700}
701
702
703/* Mark REG as a DMA register, and return it. */
704static struct m32c_reg *
705mark_dma (struct m32c_reg *reg)
706{
707 reg->dma_p = 1;
708 return reg;
709}
710
711
712/* Mark REG as a SYSTEM register, and return it. */
713static struct m32c_reg *
714mark_system (struct m32c_reg *reg)
715{
716 reg->system_p = 1;
717 return reg;
718}
719
720
721/* Mark REG as a save-restore register, and return it. */
722static struct m32c_reg *
723mark_save_restore (struct m32c_reg *reg)
724{
725 reg->save_restore_p = 1;
726 return reg;
727}
728
729
730#define FLAGBIT_B 0x0010
731#define FLAGBIT_U 0x0080
732
733/* Handy macros for declaring registers. These all evaluate to
734 pointers to the register declared. Macros that define two
735 registers evaluate to a pointer to the first. */
736
737/* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
738#define R(name, type, sim_num) \
739 (add_reg (arch, (name), (type), (sim_num), \
740 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
741
742/* The simulator register number for a raw register named NAME. */
743#define SIM(name) (m32c_sim_reg_ ## name)
744
745/* A raw unsigned 16-bit data register named NAME.
746 NAME should be an identifier, not a string. */
747#define R16U(name) \
748 (R(#name, tdep->uint16, SIM (name)))
749
750/* A raw data address register named NAME.
751 NAME should be an identifier, not a string. */
752#define RA(name) \
753 (R(#name, tdep->data_addr_reg_type, SIM (name)))
754
755/* A raw code address register named NAME. NAME should
756 be an identifier, not a string. */
757#define RC(name) \
758 (R(#name, tdep->code_addr_reg_type, SIM (name)))
759
760/* A pair of raw registers named NAME0 and NAME1, with type TYPE.
761 NAME should be an identifier, not a string. */
762#define RP(name, type) \
763 (R(#name "0", (type), SIM (name ## 0)), \
764 R(#name "1", (type), SIM (name ## 1)) - 1)
765
766/* A raw banked general-purpose data register named NAME.
767 NAME should be an identifier, not a string. */
768#define RBD(name) \
769 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
770 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
771
772/* A raw banked data address register named NAME.
773 NAME should be an identifier, not a string. */
774#define RBA(name) \
775 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
776 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
777
778/* A cooked register named NAME referring to a raw banked register
779 from the bank selected by the current value of FLG. RAW_PAIR
780 should be a pointer to the first register in the banked pair.
781 NAME must be an identifier, not a string. */
782#define CB(name, raw_pair) \
783 (add_reg (arch, #name, (raw_pair)->type, 0, \
784 m32c_banked_read, m32c_banked_write, \
785 (raw_pair), (raw_pair + 1), FLAGBIT_B))
786
787/* A pair of registers named NAMEH and NAMEL, of type TYPE, that
788 access the top and bottom halves of the register pointed to by
789 NAME. NAME should be an identifier. */
790#define CHL(name, type) \
791 (add_reg (arch, #name "h", (type), 0, \
792 m32c_part_read, m32c_part_write, name, NULL, 1), \
793 add_reg (arch, #name "l", (type), 0, \
794 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
795
796/* A register constructed by concatenating the two registers HIGH and
797 LOW, whose name is HIGHLOW and whose type is TYPE. */
798#define CCAT(high, low, type) \
799 (add_reg (arch, #high #low, (type), 0, \
800 m32c_cat_read, m32c_cat_write, (high), (low), 0))
801
802/* Abbreviations for marking register group membership. */
803#define G(reg) (mark_general (reg))
804#define S(reg) (mark_system (reg))
805#define DMA(reg) (mark_dma (reg))
806
807
808/* Construct the register set for ARCH. */
809static void
810make_regs (struct gdbarch *arch)
811{
812 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
813 int mach = gdbarch_bfd_arch_info (arch)->mach;
f79b9530
DJ
814 int num_raw_regs;
815 int num_cooked_regs;
816
817 struct m32c_reg *r0;
818 struct m32c_reg *r1;
819 struct m32c_reg *r2;
820 struct m32c_reg *r3;
821 struct m32c_reg *a0;
822 struct m32c_reg *a1;
823 struct m32c_reg *fb;
824 struct m32c_reg *sb;
825 struct m32c_reg *sp;
826 struct m32c_reg *r0hl;
827 struct m32c_reg *r1hl;
828 struct m32c_reg *r2hl;
829 struct m32c_reg *r3hl;
830 struct m32c_reg *intbhl;
831 struct m32c_reg *r2r0;
832 struct m32c_reg *r3r1;
833 struct m32c_reg *r3r1r2r0;
834 struct m32c_reg *r3r2r1r0;
835 struct m32c_reg *a1a0;
96309189
MS
836
837 struct m32c_reg *raw_r0_pair = RBD (r0);
838 struct m32c_reg *raw_r1_pair = RBD (r1);
839 struct m32c_reg *raw_r2_pair = RBD (r2);
840 struct m32c_reg *raw_r3_pair = RBD (r3);
841 struct m32c_reg *raw_a0_pair = RBA (a0);
842 struct m32c_reg *raw_a1_pair = RBA (a1);
843 struct m32c_reg *raw_fb_pair = RBA (fb);
844
845 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
846 We always declare both raw registers, and deal with the distinction
847 in the pseudoregister. */
848 struct m32c_reg *raw_sb_pair = RBA (sb);
849
850 struct m32c_reg *usp = S (RA (usp));
851 struct m32c_reg *isp = S (RA (isp));
852 struct m32c_reg *intb = S (RC (intb));
853 struct m32c_reg *pc = G (RC (pc));
854 struct m32c_reg *flg = G (R16U (flg));
855
856 if (mach == bfd_mach_m32c)
857 {
858 struct m32c_reg *svf = S (R16U (svf));
859 struct m32c_reg *svp = S (RC (svp));
860 struct m32c_reg *vct = S (RC (vct));
861
862 struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
863 struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
864 struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
865 struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
866 struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
867 struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
868 }
869
f79b9530 870 num_raw_regs = tdep->num_regs;
96309189 871
f79b9530
DJ
872 r0 = G (CB (r0, raw_r0_pair));
873 r1 = G (CB (r1, raw_r1_pair));
874 r2 = G (CB (r2, raw_r2_pair));
875 r3 = G (CB (r3, raw_r3_pair));
876 a0 = G (CB (a0, raw_a0_pair));
877 a1 = G (CB (a1, raw_a1_pair));
878 fb = G (CB (fb, raw_fb_pair));
96309189
MS
879
880 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
881 Specify custom read/write functions that do the right thing. */
f79b9530
DJ
882 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
883 m32c_sb_read, m32c_sb_write,
884 raw_sb_pair, raw_sb_pair + 1, 0));
96309189
MS
885
886 /* The current sp is either usp or isp, depending on the value of
887 the FLG register's U bit. */
f79b9530
DJ
888 sp = G (add_reg (arch, "sp", usp->type, 0,
889 m32c_banked_read, m32c_banked_write,
890 isp, usp, FLAGBIT_U));
96309189 891
f79b9530
DJ
892 r0hl = CHL (r0, tdep->int8);
893 r1hl = CHL (r1, tdep->int8);
894 r2hl = CHL (r2, tdep->int8);
895 r3hl = CHL (r3, tdep->int8);
896 intbhl = CHL (intb, tdep->int16);
96309189 897
f79b9530
DJ
898 r2r0 = CCAT (r2, r0, tdep->int32);
899 r3r1 = CCAT (r3, r1, tdep->int32);
900 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
96309189 901
f79b9530 902 r3r2r1r0
96309189
MS
903 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
904 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
905
96309189
MS
906 if (mach == bfd_mach_m16c)
907 a1a0 = CCAT (a1, a0, tdep->int32);
908 else
909 a1a0 = NULL;
910
f79b9530 911 num_cooked_regs = tdep->num_regs - num_raw_regs;
96309189
MS
912
913 tdep->pc = pc;
914 tdep->flg = flg;
915 tdep->r0 = r0;
916 tdep->r1 = r1;
917 tdep->r2 = r2;
918 tdep->r3 = r3;
919 tdep->r2r0 = r2r0;
920 tdep->r3r2r1r0 = r3r2r1r0;
921 tdep->r3r1r2r0 = r3r1r2r0;
922 tdep->a0 = a0;
923 tdep->a1 = a1;
924 tdep->sb = sb;
925 tdep->fb = fb;
926 tdep->sp = sp;
927
928 /* Set up the DWARF register table. */
929 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
930 set_dwarf_regnum (r0hl + 1, 0x01);
931 set_dwarf_regnum (r0hl + 0, 0x02);
932 set_dwarf_regnum (r1hl + 1, 0x03);
933 set_dwarf_regnum (r1hl + 0, 0x04);
934 set_dwarf_regnum (r0, 0x05);
935 set_dwarf_regnum (r1, 0x06);
936 set_dwarf_regnum (r2, 0x07);
937 set_dwarf_regnum (r3, 0x08);
938 set_dwarf_regnum (a0, 0x09);
939 set_dwarf_regnum (a1, 0x0a);
940 set_dwarf_regnum (fb, 0x0b);
941 set_dwarf_regnum (sp, 0x0c);
942 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
943 set_dwarf_regnum (sb, 0x13);
944 set_dwarf_regnum (r2r0, 0x15);
945 set_dwarf_regnum (r3r1, 0x16);
946 if (a1a0)
947 set_dwarf_regnum (a1a0, 0x17);
948
949 /* Enumerate the save/restore register group.
950
951 The regcache_save and regcache_restore functions apply their read
952 function to each register in this group.
953
954 Since frame_pop supplies frame_unwind_register as its read
955 function, the registers meaningful to the Dwarf unwinder need to
956 be in this group.
957
958 On the other hand, when we make inferior calls, save_inferior_status
959 and restore_inferior_status use them to preserve the current register
960 values across the inferior call. For this, you'd kind of like to
961 preserve all the raw registers, to protect the interrupted code from
962 any sort of bank switching the callee might have done. But we handle
963 those cases so badly anyway --- for example, it matters whether we
964 restore FLG before or after we restore the general-purpose registers,
965 but there's no way to express that --- that it isn't worth worrying
966 about.
967
968 We omit control registers like inthl: if you call a function that
969 changes those, it's probably because you wanted that change to be
970 visible to the interrupted code. */
971 mark_save_restore (r0);
972 mark_save_restore (r1);
973 mark_save_restore (r2);
974 mark_save_restore (r3);
975 mark_save_restore (a0);
976 mark_save_restore (a1);
977 mark_save_restore (sb);
978 mark_save_restore (fb);
979 mark_save_restore (sp);
980 mark_save_restore (pc);
981 mark_save_restore (flg);
982
983 set_gdbarch_num_regs (arch, num_raw_regs);
984 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
985 set_gdbarch_pc_regnum (arch, pc->num);
986 set_gdbarch_sp_regnum (arch, sp->num);
987 set_gdbarch_register_name (arch, m32c_register_name);
988 set_gdbarch_register_type (arch, m32c_register_type);
989 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
990 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
991 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
992 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
96309189
MS
993 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
994 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
995
996 reggroup_add (arch, general_reggroup);
997 reggroup_add (arch, all_reggroup);
998 reggroup_add (arch, save_reggroup);
999 reggroup_add (arch, restore_reggroup);
1000 reggroup_add (arch, system_reggroup);
1001 reggroup_add (arch, m32c_dma_reggroup);
1002}
1003
1004
1005\f
1006/* Breakpoints. */
1007
1008static const unsigned char *
67d57894 1009m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
96309189
MS
1010{
1011 static unsigned char break_insn[] = { 0x00 }; /* brk */
1012
1013 *len = sizeof (break_insn);
1014 return break_insn;
1015}
1016
1017
1018\f
1019/* Prologue analysis. */
1020
1021struct m32c_prologue
1022{
1023 /* For consistency with the DWARF 2 .debug_frame info generated by
1024 GCC, a frame's CFA is the address immediately after the saved
1025 return address. */
1026
1027 /* The architecture for which we generated this prologue info. */
1028 struct gdbarch *arch;
1029
1030 enum {
1031 /* This function uses a frame pointer. */
1032 prologue_with_frame_ptr,
1033
1034 /* This function has no frame pointer. */
1035 prologue_sans_frame_ptr,
1036
1037 /* This function sets up the stack, so its frame is the first
1038 frame on the stack. */
1039 prologue_first_frame
1040
1041 } kind;
1042
1043 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1044 CFA to where the frame pointer points. This is always zero or
1045 negative. */
1046 LONGEST frame_ptr_offset;
1047
1048 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1049 the stack pointer --- always zero or negative.
1050
1051 Calling this a "size" is a bit misleading, but given that the
1052 stack grows downwards, using offsets for everything keeps one
1053 from going completely sign-crazy: you never change anything's
1054 sign for an ADD instruction; always change the second operand's
1055 sign for a SUB instruction; and everything takes care of
1056 itself.
1057
1058 Functions that use alloca don't have a constant frame size. But
1059 they always have frame pointers, so we must use that to find the
1060 CFA (and perhaps to unwind the stack pointer). */
1061 LONGEST frame_size;
1062
1063 /* The address of the first instruction at which the frame has been
1064 set up and the arguments are where the debug info says they are
1065 --- as best as we can tell. */
1066 CORE_ADDR prologue_end;
1067
1068 /* reg_offset[R] is the offset from the CFA at which register R is
1069 saved, or 1 if register R has not been saved. (Real values are
1070 always zero or negative.) */
1071 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1072};
1073
1074
1075/* The longest I've seen, anyway. */
1076#define M32C_MAX_INSN_LEN (9)
1077
1078/* Processor state, for the prologue analyzer. */
1079struct m32c_pv_state
1080{
1081 struct gdbarch *arch;
1082 pv_t r0, r1, r2, r3;
1083 pv_t a0, a1;
1084 pv_t sb, fb, sp;
1085 pv_t pc;
1086 struct pv_area *stack;
1087
1088 /* Bytes from the current PC, the address they were read from,
1089 and the address of the next unconsumed byte. */
1090 gdb_byte insn[M32C_MAX_INSN_LEN];
1091 CORE_ADDR scan_pc, next_addr;
1092};
1093
1094
1095/* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1096 all went well, or non-zero if simulating the action would trash our
1097 state. */
1098static int
1099m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1100{
1101 if (pv_area_store_would_trash (state->stack, state->sp))
1102 return 1;
1103
1104 state->sp = pv_add_constant (state->sp, -size);
1105 pv_area_store (state->stack, state->sp, size, value);
1106
1107 return 0;
1108}
1109
1110
1111/* A source or destination location for an m16c or m32c
1112 instruction. */
1113struct srcdest
1114{
1115 /* If srcdest_reg, the location is a register pointed to by REG.
1116 If srcdest_partial_reg, the location is part of a register pointed
1117 to by REG. We don't try to handle this too well.
1118 If srcdest_mem, the location is memory whose address is ADDR. */
1119 enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
1120 pv_t *reg, addr;
1121};
1122
1123
1124/* Return the SIZE-byte value at LOC in STATE. */
1125static pv_t
1126m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1127{
1128 if (loc.kind == srcdest_mem)
1129 return pv_area_fetch (state->stack, loc.addr, size);
1130 else if (loc.kind == srcdest_partial_reg)
1131 return pv_unknown ();
1132 else
1133 return *loc.reg;
1134}
1135
1136
1137/* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1138 all went well, or non-zero if simulating the store would trash our
1139 state. */
1140static int
1141m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1142 pv_t value, int size)
1143{
1144 if (loc.kind == srcdest_mem)
1145 {
1146 if (pv_area_store_would_trash (state->stack, loc.addr))
1147 return 1;
1148 pv_area_store (state->stack, loc.addr, size, value);
1149 }
1150 else if (loc.kind == srcdest_partial_reg)
1151 *loc.reg = pv_unknown ();
1152 else
1153 *loc.reg = value;
1154
1155 return 0;
1156}
1157
1158
1159static int
1160m32c_sign_ext (int v, int bits)
1161{
1162 int mask = 1 << (bits - 1);
1163 return (v ^ mask) - mask;
1164}
1165
1166static unsigned int
1167m32c_next_byte (struct m32c_pv_state *st)
1168{
1169 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1170 return st->insn[st->next_addr++ - st->scan_pc];
1171}
1172
1173static int
1174m32c_udisp8 (struct m32c_pv_state *st)
1175{
1176 return m32c_next_byte (st);
1177}
1178
1179
1180static int
1181m32c_sdisp8 (struct m32c_pv_state *st)
1182{
1183 return m32c_sign_ext (m32c_next_byte (st), 8);
1184}
1185
1186
1187static int
1188m32c_udisp16 (struct m32c_pv_state *st)
1189{
1190 int low = m32c_next_byte (st);
1191 int high = m32c_next_byte (st);
1192
1193 return low + (high << 8);
1194}
1195
1196
1197static int
1198m32c_sdisp16 (struct m32c_pv_state *st)
1199{
1200 int low = m32c_next_byte (st);
1201 int high = m32c_next_byte (st);
1202
1203 return m32c_sign_ext (low + (high << 8), 16);
1204}
1205
1206
1207static int
1208m32c_udisp24 (struct m32c_pv_state *st)
1209{
1210 int low = m32c_next_byte (st);
1211 int mid = m32c_next_byte (st);
1212 int high = m32c_next_byte (st);
1213
1214 return low + (mid << 8) + (high << 16);
1215}
1216
1217
1218/* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1219static int
1220m32c_get_src23 (unsigned char *i)
1221{
1222 return (((i[0] & 0x70) >> 2)
1223 | ((i[1] & 0x30) >> 4));
1224}
1225
1226
1227/* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1228static int
1229m32c_get_dest23 (unsigned char *i)
1230{
1231 return (((i[0] & 0x0e) << 1)
1232 | ((i[1] & 0xc0) >> 6));
1233}
1234
1235
1236static struct srcdest
1237m32c_decode_srcdest4 (struct m32c_pv_state *st,
1238 int code, int size)
1239{
1240 struct srcdest sd;
1241
1242 if (code < 6)
1243 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1244 else
1245 sd.kind = srcdest_mem;
1246
d56874a7
DD
1247 sd.addr = pv_unknown ();
1248 sd.reg = 0;
1249
96309189
MS
1250 switch (code)
1251 {
1252 case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1253 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1254 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1255 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1256
1257 case 0x4: sd.reg = &st->a0; break;
1258 case 0x5: sd.reg = &st->a1; break;
1259
1260 case 0x6: sd.addr = st->a0; break;
1261 case 0x7: sd.addr = st->a1; break;
1262
1263 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1264 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1265 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1266 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1267
1268 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1269 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1270 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1271 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1272
1273 default:
f3574227 1274 gdb_assert_not_reached ("unexpected srcdest4");
96309189
MS
1275 }
1276
1277 return sd;
1278}
1279
1280
1281static struct srcdest
1282m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1283{
1284 struct srcdest sd;
1285
d56874a7
DD
1286 sd.addr = pv_unknown ();
1287 sd.reg = 0;
1288
96309189
MS
1289 switch (code)
1290 {
1291 case 0x12:
1292 case 0x13:
1293 case 0x10:
1294 case 0x11:
1295 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1296 break;
1297
1298 case 0x02:
1299 case 0x03:
1300 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1301 break;
1302
1303 default:
1304 sd.kind = srcdest_mem;
1305 break;
1306
1307 }
1308
1309 switch (code)
1310 {
1311 case 0x12: sd.reg = &st->r0; break;
1312 case 0x13: sd.reg = &st->r1; break;
1313 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1314 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1315 case 0x02: sd.reg = &st->a0; break;
1316 case 0x03: sd.reg = &st->a1; break;
1317
1318 case 0x00: sd.addr = st->a0; break;
1319 case 0x01: sd.addr = st->a1; break;
1320 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1321 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1322 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1323 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1324 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1325 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1326 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1327 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1328 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1329 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1330 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1331 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1332 default:
f3574227 1333 gdb_assert_not_reached ("unexpected sd23");
96309189
MS
1334 }
1335
1336 if (ind)
1337 {
1338 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1339 sd.kind = srcdest_mem;
1340 }
1341
1342 return sd;
1343}
1344
1345
1346/* The r16c and r32c machines have instructions with similar
1347 semantics, but completely different machine language encodings. So
1348 we break out the semantics into their own functions, and leave
1349 machine-specific decoding in m32c_analyze_prologue.
1350
1351 The following functions all expect their arguments already decoded,
1352 and they all return zero if analysis should continue past this
1353 instruction, or non-zero if analysis should stop. */
1354
1355
1356/* Simulate an 'enter SIZE' instruction in STATE. */
1357static int
1358m32c_pv_enter (struct m32c_pv_state *state, int size)
1359{
1360 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1361
1362 /* If simulating this store would require us to forget
1363 everything we know about the stack frame in the name of
1364 accuracy, it would be better to just quit now. */
1365 if (pv_area_store_would_trash (state->stack, state->sp))
1366 return 1;
1367
1368 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1369 return 1;
1370 state->fb = state->sp;
1371 state->sp = pv_add_constant (state->sp, -size);
1372
1373 return 0;
1374}
1375
1376
1377static int
1378m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1379 int bit, int src, int size)
1380{
1381 if (bit & src)
1382 {
1383 if (m32c_pv_push (state, reg, size))
1384 return 1;
1385 }
1386
1387 return 0;
1388}
1389
1390
1391/* Simulate a 'pushm SRC' instruction in STATE. */
1392static int
1393m32c_pv_pushm (struct m32c_pv_state *state, int src)
1394{
1395 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1396
1397 /* The bits in SRC indicating which registers to save are:
1398 r0 r1 r2 r3 a0 a1 sb fb */
1399 return
1400 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1401 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1402 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1403 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1404 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1405 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1406 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1407 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1408}
1409
1410/* Return non-zero if VALUE is the first incoming argument register. */
1411
1412static int
1413m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1414{
1415 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1416 return (value.kind == pvk_register
1417 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1418 ? (value.reg == tdep->r1->num)
1419 : (value.reg == tdep->r0->num))
1420 && value.k == 0);
1421}
1422
1423/* Return non-zero if VALUE is an incoming argument register. */
1424
1425static int
1426m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1427{
1428 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1429 return (value.kind == pvk_register
1430 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1431 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1432 : (value.reg == tdep->r0->num))
1433 && value.k == 0);
1434}
1435
1436/* Return non-zero if a store of VALUE to LOC is probably spilling an
1437 argument register to its stack slot in STATE. Such instructions
1438 should be included in the prologue, if possible.
1439
1440 The store is a spill if:
1441 - the value being stored is the original value of an argument register;
1442 - the value has not already been stored somewhere in STACK; and
1443 - LOC is a stack slot (e.g., a memory location whose address is
1444 relative to the original value of the SP). */
1445
1446static int
1447m32c_is_arg_spill (struct m32c_pv_state *st,
1448 struct srcdest loc,
1449 pv_t value)
1450{
1451 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1452
1453 return (m32c_is_arg_reg (st, value)
1454 && loc.kind == srcdest_mem
1455 && pv_is_register (loc.addr, tdep->sp->num)
1456 && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1457}
1458
1459/* Return non-zero if a store of VALUE to LOC is probably
1460 copying the struct return address into an address register
1461 for immediate use. This is basically a "spill" into the
1462 address register, instead of onto the stack.
1463
1464 The prerequisites are:
1465 - value being stored is original value of the FIRST arg register;
1466 - value has not already been stored on stack; and
1467 - LOC is an address register (a0 or a1). */
1468
1469static int
1470m32c_is_struct_return (struct m32c_pv_state *st,
1471 struct srcdest loc,
1472 pv_t value)
1473{
1474 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1475
1476 return (m32c_is_1st_arg_reg (st, value)
1477 && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1478 && loc.kind == srcdest_reg
1479 && (pv_is_register (*loc.reg, tdep->a0->num)
1480 || pv_is_register (*loc.reg, tdep->a1->num)));
1481}
1482
1483/* Return non-zero if a 'pushm' saving the registers indicated by SRC
1484 was a register save:
1485 - all the named registers should have their original values, and
1486 - the stack pointer should be at a constant offset from the
1487 original stack pointer. */
1488static int
1489m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1490{
1491 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1492 /* The bits in SRC indicating which registers to save are:
1493 r0 r1 r2 r3 a0 a1 sb fb */
1494 return
1495 (pv_is_register (st->sp, tdep->sp->num)
1496 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1497 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1498 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1499 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1500 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1501 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1502 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1503 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1504}
1505
1506
1507/* Function for finding saved registers in a 'struct pv_area'; we pass
1508 this to pv_area_scan.
1509
1510 If VALUE is a saved register, ADDR says it was saved at a constant
1511 offset from the frame base, and SIZE indicates that the whole
1512 register was saved, record its offset in RESULT_UNTYPED. */
1513static void
1514check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1515{
1516 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1517 struct gdbarch *arch = prologue->arch;
1518 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1519
1520 /* Is this the unchanged value of some register being saved on the
1521 stack? */
1522 if (value.kind == pvk_register
1523 && value.k == 0
1524 && pv_is_register (addr, tdep->sp->num))
1525 {
1526 /* Some registers require special handling: they're saved as a
1527 larger value than the register itself. */
1528 CORE_ADDR saved_size = register_size (arch, value.reg);
1529
1530 if (value.reg == tdep->pc->num)
1531 saved_size = tdep->ret_addr_bytes;
7b9ee6a8 1532 else if (register_type (arch, value.reg)
96309189
MS
1533 == tdep->data_addr_reg_type)
1534 saved_size = tdep->push_addr_bytes;
1535
1536 if (size == saved_size)
1537 {
1538 /* Find which end of the saved value corresponds to our
1539 register. */
1540 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1541 prologue->reg_offset[value.reg]
1542 = (addr.k + saved_size - register_size (arch, value.reg));
1543 else
1544 prologue->reg_offset[value.reg] = addr.k;
1545 }
1546 }
1547}
1548
1549
1550/* Analyze the function prologue for ARCH at START, going no further
1551 than LIMIT, and place a description of what we found in
1552 PROLOGUE. */
63807e1d 1553static void
96309189
MS
1554m32c_analyze_prologue (struct gdbarch *arch,
1555 CORE_ADDR start, CORE_ADDR limit,
1556 struct m32c_prologue *prologue)
1557{
1558 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1559 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1560 CORE_ADDR after_last_frame_related_insn;
1561 struct cleanup *back_to;
1562 struct m32c_pv_state st;
1563
1564 st.arch = arch;
1565 st.r0 = pv_register (tdep->r0->num, 0);
1566 st.r1 = pv_register (tdep->r1->num, 0);
1567 st.r2 = pv_register (tdep->r2->num, 0);
1568 st.r3 = pv_register (tdep->r3->num, 0);
1569 st.a0 = pv_register (tdep->a0->num, 0);
1570 st.a1 = pv_register (tdep->a1->num, 0);
1571 st.sb = pv_register (tdep->sb->num, 0);
1572 st.fb = pv_register (tdep->fb->num, 0);
1573 st.sp = pv_register (tdep->sp->num, 0);
1574 st.pc = pv_register (tdep->pc->num, 0);
55f960e1 1575 st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
96309189
MS
1576 back_to = make_cleanup_free_pv_area (st.stack);
1577
1578 /* Record that the call instruction has saved the return address on
1579 the stack. */
1580 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1581
1582 memset (prologue, 0, sizeof (*prologue));
1583 prologue->arch = arch;
1584 {
1585 int i;
1586 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1587 prologue->reg_offset[i] = 1;
1588 }
1589
1590 st.scan_pc = after_last_frame_related_insn = start;
1591
1592 while (st.scan_pc < limit)
1593 {
1594 pv_t pre_insn_fb = st.fb;
1595 pv_t pre_insn_sp = st.sp;
1596
1597 /* In theory we could get in trouble by trying to read ahead
1598 here, when we only know we're expecting one byte. In
1599 practice I doubt anyone will care, and it makes the rest of
1600 the code easier. */
1601 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1602 /* If we can't fetch the instruction from memory, stop here
1603 and hope for the best. */
1604 break;
1605 st.next_addr = st.scan_pc;
1606
1607 /* The assembly instructions are written as they appear in the
1608 section of the processor manuals that describe the
1609 instruction encodings.
1610
1611 When a single assembly language instruction has several
1612 different machine-language encodings, the manual
1613 distinguishes them by a number in parens, before the
1614 mnemonic. Those numbers are included, as well.
1615
1616 The srcdest decoding instructions have the same names as the
1617 analogous functions in the simulator. */
1618 if (mach == bfd_mach_m16c)
1619 {
1620 /* (1) ENTER #imm8 */
1621 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1622 {
1623 if (m32c_pv_enter (&st, st.insn[2]))
1624 break;
1625 st.next_addr += 3;
1626 }
1627 /* (1) PUSHM src */
1628 else if (st.insn[0] == 0xec)
1629 {
1630 int src = st.insn[1];
1631 if (m32c_pv_pushm (&st, src))
1632 break;
1633 st.next_addr += 2;
1634
1635 if (m32c_pushm_is_reg_save (&st, src))
1636 after_last_frame_related_insn = st.next_addr;
1637 }
1638
1639 /* (6) MOV.size:G src, dest */
1640 else if ((st.insn[0] & 0xfe) == 0x72)
1641 {
1642 int size = (st.insn[0] & 0x01) ? 2 : 1;
f79b9530
DJ
1643 struct srcdest src;
1644 struct srcdest dest;
1645 pv_t src_value;
96309189
MS
1646 st.next_addr += 2;
1647
f79b9530 1648 src
96309189 1649 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
f79b9530 1650 dest
96309189 1651 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
f79b9530 1652 src_value = m32c_srcdest_fetch (&st, src, size);
96309189
MS
1653
1654 if (m32c_is_arg_spill (&st, dest, src_value))
1655 after_last_frame_related_insn = st.next_addr;
1656 else if (m32c_is_struct_return (&st, dest, src_value))
1657 after_last_frame_related_insn = st.next_addr;
1658
1659 if (m32c_srcdest_store (&st, dest, src_value, size))
1660 break;
1661 }
1662
1663 /* (1) LDC #IMM16, sp */
1664 else if (st.insn[0] == 0xeb
1665 && st.insn[1] == 0x50)
1666 {
1667 st.next_addr += 2;
1668 st.sp = pv_constant (m32c_udisp16 (&st));
1669 }
1670
1671 else
1672 /* We've hit some instruction we don't know how to simulate.
1673 Strictly speaking, we should set every value we're
1674 tracking to "unknown". But we'll be optimistic, assume
1675 that we have enough information already, and stop
1676 analysis here. */
1677 break;
1678 }
1679 else
1680 {
1681 int src_indirect = 0;
1682 int dest_indirect = 0;
1683 int i = 0;
1684
1685 gdb_assert (mach == bfd_mach_m32c);
1686
1687 /* Check for prefix bytes indicating indirect addressing. */
1688 if (st.insn[0] == 0x41)
1689 {
1690 src_indirect = 1;
1691 i++;
1692 }
1693 else if (st.insn[0] == 0x09)
1694 {
1695 dest_indirect = 1;
1696 i++;
1697 }
1698 else if (st.insn[0] == 0x49)
1699 {
1700 src_indirect = dest_indirect = 1;
1701 i++;
1702 }
1703
1704 /* (1) ENTER #imm8 */
1705 if (st.insn[i] == 0xec)
1706 {
1707 if (m32c_pv_enter (&st, st.insn[i + 1]))
1708 break;
1709 st.next_addr += 2;
1710 }
1711
1712 /* (1) PUSHM src */
1713 else if (st.insn[i] == 0x8f)
1714 {
1715 int src = st.insn[i + 1];
1716 if (m32c_pv_pushm (&st, src))
1717 break;
1718 st.next_addr += 2;
1719
1720 if (m32c_pushm_is_reg_save (&st, src))
1721 after_last_frame_related_insn = st.next_addr;
1722 }
1723
1724 /* (7) MOV.size:G src, dest */
1725 else if ((st.insn[i] & 0x80) == 0x80
1726 && (st.insn[i + 1] & 0x0f) == 0x0b
1727 && m32c_get_src23 (&st.insn[i]) < 20
1728 && m32c_get_dest23 (&st.insn[i]) < 20)
1729 {
f79b9530
DJ
1730 struct srcdest src;
1731 struct srcdest dest;
1732 pv_t src_value;
96309189
MS
1733 int bw = st.insn[i] & 0x01;
1734 int size = bw ? 2 : 1;
96309189
MS
1735 st.next_addr += 2;
1736
f79b9530 1737 src
96309189
MS
1738 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1739 size, src_indirect);
f79b9530 1740 dest
96309189
MS
1741 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1742 size, dest_indirect);
f79b9530 1743 src_value = m32c_srcdest_fetch (&st, src, size);
96309189
MS
1744
1745 if (m32c_is_arg_spill (&st, dest, src_value))
1746 after_last_frame_related_insn = st.next_addr;
1747
1748 if (m32c_srcdest_store (&st, dest, src_value, size))
1749 break;
1750 }
1751 /* (2) LDC #IMM24, sp */
1752 else if (st.insn[i] == 0xd5
1753 && st.insn[i + 1] == 0x29)
1754 {
1755 st.next_addr += 2;
1756 st.sp = pv_constant (m32c_udisp24 (&st));
1757 }
1758 else
1759 /* We've hit some instruction we don't know how to simulate.
1760 Strictly speaking, we should set every value we're
1761 tracking to "unknown". But we'll be optimistic, assume
1762 that we have enough information already, and stop
1763 analysis here. */
1764 break;
1765 }
1766
1767 /* If this instruction changed the FB or decreased the SP (i.e.,
1768 allocated more stack space), then this may be a good place to
1769 declare the prologue finished. However, there are some
1770 exceptions:
1771
1772 - If the instruction just changed the FB back to its original
1773 value, then that's probably a restore instruction. The
1774 prologue should definitely end before that.
1775
1776 - If the instruction increased the value of the SP (that is,
1777 shrunk the frame), then it's probably part of a frame
1778 teardown sequence, and the prologue should end before
1779 that. */
1780
1781 if (! pv_is_identical (st.fb, pre_insn_fb))
1782 {
1783 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1784 after_last_frame_related_insn = st.next_addr;
1785 }
1786 else if (! pv_is_identical (st.sp, pre_insn_sp))
1787 {
1788 /* The comparison of the constants looks odd, there, because
1789 .k is unsigned. All it really means is that the SP is
1790 lower than it was before the instruction. */
1791 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1792 && pv_is_register (st.sp, tdep->sp->num)
1793 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1794 after_last_frame_related_insn = st.next_addr;
1795 }
1796
1797 st.scan_pc = st.next_addr;
1798 }
1799
1800 /* Did we load a constant value into the stack pointer? */
1801 if (pv_is_constant (st.sp))
1802 prologue->kind = prologue_first_frame;
1803
1804 /* Alternatively, did we initialize the frame pointer? Remember
1805 that the CFA is the address after the return address. */
1806 if (pv_is_register (st.fb, tdep->sp->num))
1807 {
1808 prologue->kind = prologue_with_frame_ptr;
1809 prologue->frame_ptr_offset = st.fb.k;
1810 }
1811
1812 /* Is the frame size a known constant? Remember that frame_size is
1813 actually the offset from the CFA to the SP (i.e., a negative
1814 value). */
1815 else if (pv_is_register (st.sp, tdep->sp->num))
1816 {
1817 prologue->kind = prologue_sans_frame_ptr;
1818 prologue->frame_size = st.sp.k;
1819 }
1820
1821 /* We haven't been able to make sense of this function's frame. Treat
1822 it as the first frame. */
1823 else
1824 prologue->kind = prologue_first_frame;
1825
1826 /* Record where all the registers were saved. */
1827 pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1828
1829 prologue->prologue_end = after_last_frame_related_insn;
1830
1831 do_cleanups (back_to);
1832}
1833
1834
1835static CORE_ADDR
6093d2eb 1836m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
96309189
MS
1837{
1838 char *name;
1839 CORE_ADDR func_addr, func_end, sal_end;
1840 struct m32c_prologue p;
1841
1842 /* Try to find the extent of the function that contains IP. */
1843 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1844 return ip;
1845
1846 /* Find end by prologue analysis. */
6093d2eb 1847 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
96309189 1848 /* Find end by line info. */
d80b854b 1849 sal_end = skip_prologue_using_sal (gdbarch, ip);
96309189
MS
1850 /* Return whichever is lower. */
1851 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1852 return sal_end;
1853 else
1854 return p.prologue_end;
1855}
1856
1857
1858\f
1859/* Stack unwinding. */
1860
1861static struct m32c_prologue *
94afd7a6 1862m32c_analyze_frame_prologue (struct frame_info *this_frame,
96309189
MS
1863 void **this_prologue_cache)
1864{
1865 if (! *this_prologue_cache)
1866 {
94afd7a6
UW
1867 CORE_ADDR func_start = get_frame_func (this_frame);
1868 CORE_ADDR stop_addr = get_frame_pc (this_frame);
96309189
MS
1869
1870 /* If we couldn't find any function containing the PC, then
1871 just initialize the prologue cache, but don't do anything. */
1872 if (! func_start)
1873 stop_addr = func_start;
1874
1875 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
94afd7a6 1876 m32c_analyze_prologue (get_frame_arch (this_frame),
96309189
MS
1877 func_start, stop_addr, *this_prologue_cache);
1878 }
1879
1880 return *this_prologue_cache;
1881}
1882
1883
1884static CORE_ADDR
94afd7a6 1885m32c_frame_base (struct frame_info *this_frame,
96309189
MS
1886 void **this_prologue_cache)
1887{
1888 struct m32c_prologue *p
94afd7a6
UW
1889 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1890 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
96309189
MS
1891
1892 /* In functions that use alloca, the distance between the stack
1893 pointer and the frame base varies dynamically, so we can't use
1894 the SP plus static information like prologue analysis to find the
1895 frame base. However, such functions must have a frame pointer,
1896 to be able to restore the SP on exit. So whenever we do have a
1897 frame pointer, use that to find the base. */
1898 switch (p->kind)
1899 {
1900 case prologue_with_frame_ptr:
1901 {
1902 CORE_ADDR fb
94afd7a6 1903 = get_frame_register_unsigned (this_frame, tdep->fb->num);
96309189
MS
1904 return fb - p->frame_ptr_offset;
1905 }
1906
1907 case prologue_sans_frame_ptr:
1908 {
1909 CORE_ADDR sp
94afd7a6 1910 = get_frame_register_unsigned (this_frame, tdep->sp->num);
96309189
MS
1911 return sp - p->frame_size;
1912 }
1913
1914 case prologue_first_frame:
1915 return 0;
1916
1917 default:
f3574227 1918 gdb_assert_not_reached ("unexpected prologue kind");
96309189
MS
1919 }
1920}
1921
1922
1923static void
94afd7a6 1924m32c_this_id (struct frame_info *this_frame,
96309189
MS
1925 void **this_prologue_cache,
1926 struct frame_id *this_id)
1927{
94afd7a6 1928 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
96309189
MS
1929
1930 if (base)
94afd7a6 1931 *this_id = frame_id_build (base, get_frame_func (this_frame));
96309189
MS
1932 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1933}
1934
1935
94afd7a6
UW
1936static struct value *
1937m32c_prev_register (struct frame_info *this_frame,
1938 void **this_prologue_cache, int regnum)
96309189 1939{
94afd7a6 1940 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
96309189 1941 struct m32c_prologue *p
94afd7a6
UW
1942 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1943 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1944 int reg_size = register_size (get_frame_arch (this_frame), regnum);
96309189
MS
1945
1946 if (regnum == tdep->sp->num)
94afd7a6 1947 return frame_unwind_got_constant (this_frame, regnum, frame_base);
96309189
MS
1948
1949 /* If prologue analysis says we saved this register somewhere,
1950 return a description of the stack slot holding it. */
94afd7a6
UW
1951 if (p->reg_offset[regnum] != 1)
1952 return frame_unwind_got_memory (this_frame, regnum,
1953 frame_base + p->reg_offset[regnum]);
96309189
MS
1954
1955 /* Otherwise, presume we haven't changed the value of this
1956 register, and get it from the next frame. */
94afd7a6 1957 return frame_unwind_got_register (this_frame, regnum, regnum);
96309189
MS
1958}
1959
1960
1961static const struct frame_unwind m32c_unwind = {
1962 NORMAL_FRAME,
1963 m32c_this_id,
94afd7a6
UW
1964 m32c_prev_register,
1965 NULL,
1966 default_frame_sniffer
96309189
MS
1967};
1968
1969
96309189
MS
1970static CORE_ADDR
1971m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1972{
1973 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1974 return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1975}
1976
1977
1978static CORE_ADDR
1979m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1980{
1981 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1982 return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1983}
1984
1985\f
1986/* Inferior calls. */
1987
1988/* The calling conventions, according to GCC:
1989
1990 r8c, m16c
1991 ---------
1992 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1993 HImode), (2) is named, and (3) is an integer or pointer type (no
1994 structs, floats, etc). Otherwise, it's passed on the stack.
1995
1996 Second arg may be passed in r2, same restrictions (but not QImode),
1997 even if the first arg is passed on the stack.
1998
1999 Third and further args are passed on the stack. No padding is
2000 used, stack "alignment" is 8 bits.
2001
2002 m32cm, m32c
2003 -----------
2004
2005 First arg may be passed in r0l or r0, same restrictions as above.
2006
2007 Second and further args are passed on the stack. Padding is used
2008 after QImode parameters (i.e. lower-addressed byte is the value,
2009 higher-addressed byte is the padding), stack "alignment" is 16
2010 bits. */
2011
2012
2013/* Return true if TYPE is a type that can be passed in registers. (We
2014 ignore the size, and pay attention only to the type code;
2015 acceptable sizes depends on which register is being considered to
2016 hold it.) */
2017static int
2018m32c_reg_arg_type (struct type *type)
2019{
2020 enum type_code code = TYPE_CODE (type);
2021
2022 return (code == TYPE_CODE_INT
2023 || code == TYPE_CODE_ENUM
2024 || code == TYPE_CODE_PTR
2025 || code == TYPE_CODE_REF
2026 || code == TYPE_CODE_BOOL
2027 || code == TYPE_CODE_CHAR);
2028}
2029
2030
2031static CORE_ADDR
2032m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2033 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2034 struct value **args, CORE_ADDR sp, int struct_return,
2035 CORE_ADDR struct_addr)
2036{
2037 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 2038 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96309189
MS
2039 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2040 CORE_ADDR cfa;
2041 int i;
2042
2043 /* The number of arguments given in this function's prototype, or
2044 zero if it has a non-prototyped function type. The m32c ABI
2045 passes arguments mentioned in the prototype differently from
2046 those in the ellipsis of a varargs function, or from those passed
2047 to a non-prototyped function. */
2048 int num_prototyped_args = 0;
2049
2050 {
2051 struct type *func_type = value_type (function);
2052
ed09d7da
KB
2053 /* Dereference function pointer types. */
2054 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2055 func_type = TYPE_TARGET_TYPE (func_type);
2056
96309189
MS
2057 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2058 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2059
2060#if 0
2061 /* The ABI description in gcc/config/m32c/m32c.abi says that
2062 we need to handle prototyped and non-prototyped functions
2063 separately, but the code in GCC doesn't actually do so. */
2064 if (TYPE_PROTOTYPED (func_type))
2065#endif
2066 num_prototyped_args = TYPE_NFIELDS (func_type);
2067 }
2068
2069 /* First, if the function returns an aggregate by value, push a
2070 pointer to a buffer for it. This doesn't affect the way
2071 subsequent arguments are allocated to registers. */
2072 if (struct_return)
2073 {
2074 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2075 sp -= ptr_len;
e17a4113 2076 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
96309189
MS
2077 }
2078
2079 /* Push the arguments. */
2080 for (i = nargs - 1; i >= 0; i--)
2081 {
2082 struct value *arg = args[i];
2083 const gdb_byte *arg_bits = value_contents (arg);
2084 struct type *arg_type = value_type (arg);
2085 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2086
2087 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2088 if (i == 0
2089 && arg_size <= 2
2090 && i < num_prototyped_args
2091 && m32c_reg_arg_type (arg_type))
2092 {
2093 /* Extract and re-store as an integer as a terse way to make
2094 sure it ends up in the least significant end of r1. (GDB
2095 should avoid assuming endianness, even on uni-endian
2096 processors.) */
e17a4113
UW
2097 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2098 byte_order);
96309189
MS
2099 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2100 regcache_cooked_write_unsigned (regcache, reg->num, u);
2101 }
2102
2103 /* Can it go in r2? */
2104 else if (mach == bfd_mach_m16c
2105 && i == 1
2106 && arg_size == 2
2107 && i < num_prototyped_args
2108 && m32c_reg_arg_type (arg_type))
2109 regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2110
2111 /* Everything else goes on the stack. */
2112 else
2113 {
2114 sp -= arg_size;
2115
2116 /* Align the stack. */
2117 if (mach == bfd_mach_m32c)
2118 sp &= ~1;
2119
2120 write_memory (sp, arg_bits, arg_size);
2121 }
2122 }
2123
2124 /* This is the CFA we use to identify the dummy frame. */
2125 cfa = sp;
2126
2127 /* Push the return address. */
2128 sp -= tdep->ret_addr_bytes;
e17a4113
UW
2129 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2130 bp_addr);
96309189
MS
2131
2132 /* Update the stack pointer. */
2133 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2134
2135 /* We need to borrow an odd trick from the i386 target here.
2136
2137 The value we return from this function gets used as the stack
2138 address (the CFA) for the dummy frame's ID. The obvious thing is
2139 to return the new TOS. However, that points at the return
2140 address, saved on the stack, which is inconsistent with the CFA's
2141 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2142 .debug_frame info uses the address immediately after the saved
2143 return address. So you end up with a dummy frame whose CFA
2144 points at the return address, but the frame for the function
2145 being called has a CFA pointing after the return address: the
2146 younger CFA is *greater than* the older CFA. The sanity checks
2147 in frame.c don't like that.
2148
2149 So we try to be consistent with the CFA's used by DWARF 2.
2150 Having a dummy frame and a real frame with the *same* CFA is
2151 tolerable. */
2152 return cfa;
2153}
2154
2155
2156static struct frame_id
94afd7a6 2157m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
96309189
MS
2158{
2159 /* This needs to return a frame ID whose PC is the return address
2160 passed to m32c_push_dummy_call, and whose stack_addr is the SP
2161 m32c_push_dummy_call returned.
2162
2163 m32c_unwind_sp gives us the CFA, which is the value the SP had
2164 before the return address was pushed. */
94afd7a6
UW
2165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2166 CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2167 return frame_id_build (sp, get_frame_pc (this_frame));
96309189
MS
2168}
2169
2170
2171\f
2172/* Return values. */
2173
2174/* Return value conventions, according to GCC:
2175
2176 r8c, m16c
2177 ---------
2178
2179 QImode in r0l
2180 HImode in r0
2181 SImode in r2r0
2182 near pointer in r0
2183 far pointer in r2r0
2184
2185 Aggregate values (regardless of size) are returned by pushing a
2186 pointer to a temporary area on the stack after the args are pushed.
2187 The function fills in this area with the value. Note that this
2188 pointer on the stack does not affect how register arguments, if any,
2189 are configured.
2190
2191 m32cm, m32c
2192 -----------
2193 Same. */
2194
2195/* Return non-zero if values of type TYPE are returned by storing them
2196 in a buffer whose address is passed on the stack, ahead of the
2197 other arguments. */
2198static int
2199m32c_return_by_passed_buf (struct type *type)
2200{
2201 enum type_code code = TYPE_CODE (type);
2202
2203 return (code == TYPE_CODE_STRUCT
2204 || code == TYPE_CODE_UNION);
2205}
2206
2207static enum return_value_convention
2208m32c_return_value (struct gdbarch *gdbarch,
c055b101 2209 struct type *func_type,
96309189
MS
2210 struct type *valtype,
2211 struct regcache *regcache,
2212 gdb_byte *readbuf,
2213 const gdb_byte *writebuf)
2214{
2215 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 2216 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96309189
MS
2217 enum return_value_convention conv;
2218 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2219
2220 if (m32c_return_by_passed_buf (valtype))
2221 conv = RETURN_VALUE_STRUCT_CONVENTION;
2222 else
2223 conv = RETURN_VALUE_REGISTER_CONVENTION;
2224
2225 if (readbuf)
2226 {
2227 /* We should never be called to find values being returned by
2228 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2229 unless we made the call ourselves. */
2230 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2231
2232 gdb_assert (valtype_len <= 8);
2233
2234 /* Anything that fits in r0 is returned there. */
2235 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2236 {
2237 ULONGEST u;
2238 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
e17a4113 2239 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
96309189
MS
2240 }
2241 else
2242 {
2243 /* Everything else is passed in mem0, using as many bytes as
2244 needed. This is not what the Renesas tools do, but it's
2245 what GCC does at the moment. */
2246 struct minimal_symbol *mem0
2247 = lookup_minimal_symbol ("mem0", NULL, NULL);
2248
2249 if (! mem0)
a73c6dcd
MS
2250 error (_("The return value is stored in memory at 'mem0', "
2251 "but GDB cannot find\n"
2252 "its address."));
96309189
MS
2253 read_memory (SYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2254 }
2255 }
2256
2257 if (writebuf)
2258 {
2259 /* We should never be called to store values to be returned
2260 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2261 finding the buffer, unless we made the call ourselves. */
2262 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2263
2264 gdb_assert (valtype_len <= 8);
2265
2266 /* Anything that fits in r0 is returned there. */
2267 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2268 {
e17a4113
UW
2269 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2270 byte_order);
96309189
MS
2271 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2272 }
2273 else
2274 {
2275 /* Everything else is passed in mem0, using as many bytes as
2276 needed. This is not what the Renesas tools do, but it's
2277 what GCC does at the moment. */
2278 struct minimal_symbol *mem0
2279 = lookup_minimal_symbol ("mem0", NULL, NULL);
2280
2281 if (! mem0)
a73c6dcd
MS
2282 error (_("The return value is stored in memory at 'mem0', "
2283 "but GDB cannot find\n"
2284 " its address."));
96309189
MS
2285 write_memory (SYMBOL_VALUE_ADDRESS (mem0),
2286 (char *) writebuf, valtype_len);
2287 }
2288 }
2289
2290 return conv;
2291}
2292
2293
2294\f
2295/* Trampolines. */
2296
2297/* The m16c and m32c use a trampoline function for indirect function
2298 calls. An indirect call looks like this:
2299
2300 ... push arguments ...
2301 ... push target function address ...
2302 jsr.a m32c_jsri16
2303
2304 The code for m32c_jsri16 looks like this:
2305
2306 m32c_jsri16:
2307
2308 # Save return address.
2309 pop.w m32c_jsri_ret
2310 pop.b m32c_jsri_ret+2
2311
2312 # Store target function address.
2313 pop.w m32c_jsri_addr
2314
2315 # Re-push return address.
2316 push.b m32c_jsri_ret+2
2317 push.w m32c_jsri_ret
2318
2319 # Call the target function.
2320 jmpi.a m32c_jsri_addr
2321
2322 Without further information, GDB will treat calls to m32c_jsri16
2323 like calls to any other function. Since m32c_jsri16 doesn't have
2324 debugging information, that normally means that GDB sets a step-
2325 resume breakpoint and lets the program continue --- which is not
2326 what the user wanted. (Giving the trampoline debugging info
2327 doesn't help: the user expects the program to stop in the function
2328 their program is calling, not in some trampoline code they've never
2329 seen before.)
2330
e76f05fa 2331 The gdbarch_skip_trampoline_code method tells GDB how to step
96309189
MS
2332 through such trampoline functions transparently to the user. When
2333 given the address of a trampoline function's first instruction,
e76f05fa 2334 gdbarch_skip_trampoline_code should return the address of the first
96309189
MS
2335 instruction of the function really being called. If GDB decides it
2336 wants to step into that function, it will set a breakpoint there
2337 and silently continue to it.
2338
2339 We recognize the trampoline by name, and extract the target address
2340 directly from the stack. This isn't great, but recognizing by its
2341 code sequence seems more fragile. */
2342
2343static CORE_ADDR
52f729a7 2344m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
96309189 2345{
e17a4113
UW
2346 struct gdbarch *gdbarch = get_frame_arch (frame);
2347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2348 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96309189
MS
2349
2350 /* It would be nicer to simply look up the addresses of known
2351 trampolines once, and then compare stop_pc with them. However,
2352 we'd need to ensure that that cached address got invalidated when
2353 someone loaded a new executable, and I'm not quite sure of the
2354 best way to do that. find_pc_partial_function does do some
2355 caching, so we'll see how this goes. */
2356 char *name;
2357 CORE_ADDR start, end;
2358
2359 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2360 {
2361 /* Are we stopped at the beginning of the trampoline function? */
2362 if (strcmp (name, "m32c_jsri16") == 0
2363 && stop_pc == start)
2364 {
2365 /* Get the stack pointer. The return address is at the top,
2366 and the target function's address is just below that. We
2367 know it's a two-byte address, since the trampoline is
2368 m32c_jsri*16*. */
2369 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2370 CORE_ADDR target
e17a4113
UW
2371 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2372 2, byte_order);
96309189
MS
2373
2374 /* What we have now is the address of a jump instruction.
2375 What we need is the destination of that jump.
025bb325
MS
2376 The opcode is 1 byte, and the destination is the next 3 bytes. */
2377
e17a4113 2378 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
96309189
MS
2379 return target;
2380 }
2381 }
2382
2383 return 0;
2384}
2385
2386
2387/* Address/pointer conversions. */
2388
2389/* On the m16c, there is a 24-bit address space, but only a very few
2390 instructions can generate addresses larger than 0xffff: jumps,
2391 jumps to subroutines, and the lde/std (load/store extended)
2392 instructions.
2393
2394 Since GCC can only support one size of pointer, we can't have
2395 distinct 'near' and 'far' pointer types; we have to pick one size
2396 for everything. If we wanted to use 24-bit pointers, then GCC
2397 would have to use lde and ste for all memory references, which
2398 would be terrible for performance and code size. So the GNU
2399 toolchain uses 16-bit pointers for everything, and gives up the
2400 ability to have pointers point outside the first 64k of memory.
2401
2402 However, as a special hack, we let the linker place functions at
2403 addresses above 0xffff, as long as it also places a trampoline in
2404 the low 64k for every function whose address is taken. Each
2405 trampoline consists of a single jmp.a instruction that jumps to the
2406 function's real entry point. Pointers to functions can be 16 bits
2407 long, even though the functions themselves are at higher addresses:
2408 the pointers refer to the trampolines, not the functions.
2409
2410 This complicates things for GDB, however: given the address of a
2411 function (from debug info or linker symbols, say) which could be
2412 anywhere in the 24-bit address space, how can we find an
2413 appropriate 16-bit value to use as a pointer to it?
2414
2415 If the linker has not generated a trampoline for the function,
2416 we're out of luck. Well, I guess we could malloc some space and
2417 write a jmp.a instruction to it, but I'm not going to get into that
2418 at the moment.
2419
2420 If the linker has generated a trampoline for the function, then it
2421 also emitted a symbol for the trampoline: if the function's linker
2422 symbol is named NAME, then the function's trampoline's linker
2423 symbol is named NAME.plt.
2424
2425 So, given a code address:
2426 - We try to find a linker symbol at that address.
2427 - If we find such a symbol named NAME, we look for a linker symbol
2428 named NAME.plt.
2429 - If we find such a symbol, we assume it is a trampoline, and use
2430 its address as the pointer value.
2431
2432 And, given a function pointer:
2433 - We try to find a linker symbol at that address named NAME.plt.
2434 - If we find such a symbol, we look for a linker symbol named NAME.
2435 - If we find that, we provide that as the function's address.
2436 - If any of the above steps fail, we return the original address
2437 unchanged; it might really be a function in the low 64k.
2438
2439 See? You *knew* there was a reason you wanted to be a computer
2440 programmer! :) */
2441
2442static void
9898f801
UW
2443m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2444 struct type *type, gdb_byte *buf, CORE_ADDR addr)
96309189 2445{
e17a4113 2446 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f79b9530 2447 enum type_code target_code;
96309189
MS
2448 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2449 TYPE_CODE (type) == TYPE_CODE_REF);
2450
f79b9530 2451 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
96309189
MS
2452
2453 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2454 {
f79b9530
DJ
2455 char *func_name;
2456 char *tramp_name;
2457 struct minimal_symbol *tramp_msym;
2458
96309189
MS
2459 /* Try to find a linker symbol at this address. */
2460 struct minimal_symbol *func_msym = lookup_minimal_symbol_by_pc (addr);
2461
2462 if (! func_msym)
d77b48cf
KB
2463 error (_("Cannot convert code address %s to function pointer:\n"
2464 "couldn't find a symbol at that address, to find trampoline."),
5af949e3 2465 paddress (gdbarch, addr));
96309189 2466
f79b9530
DJ
2467 func_name = SYMBOL_LINKAGE_NAME (func_msym);
2468 tramp_name = xmalloc (strlen (func_name) + 5);
96309189
MS
2469 strcpy (tramp_name, func_name);
2470 strcat (tramp_name, ".plt");
2471
2472 /* Try to find a linker symbol for the trampoline. */
f79b9530 2473 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
96309189
MS
2474
2475 /* We've either got another copy of the name now, or don't need
2476 the name any more. */
2477 xfree (tramp_name);
2478
2479 if (! tramp_msym)
d77b48cf
KB
2480 {
2481 CORE_ADDR ptrval;
2482
2483 /* No PLT entry found. Mask off the upper bits of the address
2484 to make a pointer. As noted in the warning to the user
2485 below, this value might be useful if converted back into
2486 an address by GDB, but will otherwise, almost certainly,
2487 be garbage.
2488
2489 Using this masked result does seem to be useful
2490 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2491 PASSes. These results appear to be correct as well.
2492
2493 We print a warning here so that the user can make a
2494 determination about whether the result is useful or not. */
2495 ptrval = addr & 0xffff;
2496
2497 warning (_("Cannot convert code address %s to function pointer:\n"
2498 "couldn't find trampoline named '%s.plt'.\n"
2499 "Returning pointer value %s instead; this may produce\n"
2500 "a useful result if converted back into an address by GDB,\n"
2501 "but will most likely not be useful otherwise.\n"),
2502 paddress (gdbarch, addr), func_name,
2503 paddress (gdbarch, ptrval));
2504
2505 addr = ptrval;
96309189 2506
d77b48cf
KB
2507 }
2508 else
2509 {
2510 /* The trampoline's address is our pointer. */
2511 addr = SYMBOL_VALUE_ADDRESS (tramp_msym);
2512 }
96309189
MS
2513 }
2514
e17a4113 2515 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
96309189
MS
2516}
2517
2518
2519static CORE_ADDR
9898f801
UW
2520m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2521 struct type *type, const gdb_byte *buf)
96309189 2522{
e17a4113 2523 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f79b9530
DJ
2524 CORE_ADDR ptr;
2525 enum type_code target_code;
2526
96309189
MS
2527 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2528 TYPE_CODE (type) == TYPE_CODE_REF);
2529
e17a4113 2530 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
96309189 2531
f79b9530 2532 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
96309189
MS
2533
2534 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2535 {
2536 /* See if there is a minimal symbol at that address whose name is
2537 "NAME.plt". */
2538 struct minimal_symbol *ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2539
2540 if (ptr_msym)
2541 {
2542 char *ptr_msym_name = SYMBOL_LINKAGE_NAME (ptr_msym);
2543 int len = strlen (ptr_msym_name);
2544
2545 if (len > 4
2546 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2547 {
f79b9530 2548 struct minimal_symbol *func_msym;
96309189
MS
2549 /* We have a .plt symbol; try to find the symbol for the
2550 corresponding function.
2551
2552 Since the trampoline contains a jump instruction, we
2553 could also just extract the jump's target address. I
2554 don't see much advantage one way or the other. */
2555 char *func_name = xmalloc (len - 4 + 1);
2556 memcpy (func_name, ptr_msym_name, len - 4);
2557 func_name[len - 4] = '\0';
f79b9530 2558 func_msym
96309189
MS
2559 = lookup_minimal_symbol (func_name, NULL, NULL);
2560
2561 /* If we do have such a symbol, return its value as the
2562 function's true address. */
2563 if (func_msym)
2564 ptr = SYMBOL_VALUE_ADDRESS (func_msym);
2565 }
2566 }
d77b48cf
KB
2567 else
2568 {
2569 int aspace;
2570
2571 for (aspace = 1; aspace <= 15; aspace++)
2572 {
2573 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2574
2575 if (ptr_msym)
2576 ptr |= aspace << 16;
2577 }
2578 }
96309189
MS
2579 }
2580
2581 return ptr;
2582}
2583
63807e1d 2584static void
a54fba4c 2585m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
7830cb4f
CV
2586 int *frame_regnum,
2587 LONGEST *frame_offset)
2588{
2589 char *name;
2590 CORE_ADDR func_addr, func_end, sal_end;
2591 struct m32c_prologue p;
2592
594f7785 2593 struct regcache *regcache = get_current_regcache ();
a54fba4c 2594 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7830cb4f
CV
2595
2596 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
025bb325
MS
2597 internal_error (__FILE__, __LINE__,
2598 _("No virtual frame pointer available"));
7830cb4f 2599
a54fba4c 2600 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
7830cb4f
CV
2601 switch (p.kind)
2602 {
2603 case prologue_with_frame_ptr:
594f7785 2604 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
7830cb4f
CV
2605 *frame_offset = p.frame_ptr_offset;
2606 break;
2607 case prologue_sans_frame_ptr:
594f7785 2608 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
7830cb4f
CV
2609 *frame_offset = p.frame_size;
2610 break;
2611 default:
594f7785 2612 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
7830cb4f
CV
2613 *frame_offset = 0;
2614 break;
2615 }
2616 /* Sanity check */
a54fba4c 2617 if (*frame_regnum > gdbarch_num_regs (gdbarch))
025bb325
MS
2618 internal_error (__FILE__, __LINE__,
2619 _("No virtual frame pointer available"));
7830cb4f 2620}
96309189
MS
2621
2622\f
2623/* Initialization. */
2624
2625static struct gdbarch *
2626m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2627{
2628 struct gdbarch *arch;
2629 struct gdbarch_tdep *tdep;
2630 unsigned long mach = info.bfd_arch_info->mach;
2631
2632 /* Find a candidate among the list of architectures we've created
2633 already. */
2634 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2635 arches != NULL;
2636 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2637 return arches->gdbarch;
2638
2639 tdep = xcalloc (1, sizeof (*tdep));
2640 arch = gdbarch_alloc (&info, tdep);
2641
2642 /* Essential types. */
2643 make_types (arch);
2644
2645 /* Address/pointer conversions. */
2646 if (mach == bfd_mach_m16c)
2647 {
2648 set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2649 set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2650 }
2651
2652 /* Register set. */
2653 make_regs (arch);
2654
2655 /* Disassembly. */
2656 set_gdbarch_print_insn (arch, print_insn_m32c);
2657
2658 /* Breakpoints. */
2659 set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2660
2661 /* Prologue analysis and unwinding. */
2662 set_gdbarch_inner_than (arch, core_addr_lessthan);
2663 set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2664 set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2665 set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2666#if 0
2667 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2668 They may be in the dwarf2 cfi code in GDB, or they may be in
2669 the debug info emitted by the upstream toolchain. I don't
2670 know which, but I do know that the prologue analyzer works better.
025bb325 2671 MVS 04/13/06 */
94afd7a6 2672 dwarf2_append_sniffers (arch);
96309189 2673#endif
94afd7a6 2674 frame_unwind_append_unwinder (arch, &m32c_unwind);
96309189
MS
2675
2676 /* Inferior calls. */
2677 set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2678 set_gdbarch_return_value (arch, m32c_return_value);
94afd7a6 2679 set_gdbarch_dummy_id (arch, m32c_dummy_id);
96309189
MS
2680
2681 /* Trampolines. */
2682 set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2683
7830cb4f
CV
2684 set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2685
ed09d7da
KB
2686 /* m32c function boundary addresses are not necessarily even.
2687 Therefore, the `vbit', which indicates a pointer to a virtual
2688 member function, is stored in the delta field, rather than as
025bb325 2689 the low bit of a function pointer address.
ed09d7da
KB
2690
2691 In order to verify this, see the definition of
2692 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2693 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2694 set_gdbarch_vbit_in_delta (arch, 1);
2695
96309189
MS
2696 return arch;
2697}
2698
63807e1d
PA
2699/* Provide a prototype to silence -Wmissing-prototypes. */
2700extern initialize_file_ftype _initialize_m32c_tdep;
96309189
MS
2701
2702void
2703_initialize_m32c_tdep (void)
2704{
2705 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2706
2707 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2708}
This page took 0.516553 seconds and 4 git commands to generate.