2011-02-25 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
CommitLineData
908f682f 1/* Target-dependent code for Motorola 68HC11 & 68HC12
931aecf5 2
4c38e0a4 3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
7b6bb8da 4 2010, 2011 Free Software Foundation, Inc.
931aecf5 5
ffe1f3ee 6 Contributed by Stephane Carrez, stcarrez@nerim.fr
78073dd8 7
a9762ec7
JB
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
78073dd8 22
78073dd8 23
82c230c2
SC
24#include "defs.h"
25#include "frame.h"
1ea653ae
SC
26#include "frame-unwind.h"
27#include "frame-base.h"
28#include "dwarf2-frame.h"
29#include "trad-frame.h"
82c230c2
SC
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "gdbcore.h"
34#include "gdb_string.h"
35#include "value.h"
36#include "inferior.h"
37#include "dis-asm.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "arch-utils.h"
4e052eda 41#include "regcache.h"
b631436b 42#include "reggroups.h"
78073dd8 43
82c230c2
SC
44#include "target.h"
45#include "opcode/m68hc11.h"
81967506
SC
46#include "elf/m68hc11.h"
47#include "elf-bfd.h"
78073dd8 48
7df11f59
SC
49/* Macros for setting and testing a bit in a minimal symbol.
50 For 68HC11/68HC12 we have two flags that tell which return
51 type the function is using. This is used for prologue and frame
52 analysis to compute correct stack frame layout.
53
54 The MSB of the minimal symbol's "info" field is used for this purpose.
7df11f59
SC
55
56 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
57 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
58 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
f594e5e9 59 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
7df11f59 60
025bb325 61#define MSYMBOL_SET_RTC(msym) \
b887350f 62 MSYMBOL_TARGET_FLAG_1 (msym) = 1
7df11f59 63
025bb325 64#define MSYMBOL_SET_RTI(msym) \
b887350f 65 MSYMBOL_TARGET_FLAG_2 (msym) = 1
7df11f59
SC
66
67#define MSYMBOL_IS_RTC(msym) \
b887350f 68 MSYMBOL_TARGET_FLAG_1 (msym)
7df11f59
SC
69
70#define MSYMBOL_IS_RTI(msym) \
b887350f 71 MSYMBOL_TARGET_FLAG_2 (msym)
7df11f59 72
7df11f59
SC
73enum insn_return_kind {
74 RETURN_RTS,
75 RETURN_RTC,
76 RETURN_RTI
77};
78
79
7157eed4 80/* Register numbers of various important registers. */
78073dd8 81
82c230c2
SC
82#define HARD_X_REGNUM 0
83#define HARD_D_REGNUM 1
84#define HARD_Y_REGNUM 2
85#define HARD_SP_REGNUM 3
86#define HARD_PC_REGNUM 4
87
88#define HARD_A_REGNUM 5
89#define HARD_B_REGNUM 6
90#define HARD_CCR_REGNUM 7
5706502a
SC
91
92/* 68HC12 page number register.
93 Note: to keep a compatibility with gcc register naming, we must
94 not have to rename FP and other soft registers. The page register
f57d151a 95 is a real hard register and must therefore be counted by gdbarch_num_regs.
5706502a
SC
96 For this it has the same number as Z register (which is not used). */
97#define HARD_PAGE_REGNUM 8
98#define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
82c230c2
SC
99
100/* Z is replaced by X or Y by gcc during machine reorg.
101 ??? There is no way to get it and even know whether
102 it's in X or Y or in ZS. */
103#define SOFT_Z_REGNUM 8
104
105/* Soft registers. These registers are special. There are treated
106 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
107 They are physically located in memory. */
108#define SOFT_FP_REGNUM 9
109#define SOFT_TMP_REGNUM 10
110#define SOFT_ZS_REGNUM 11
111#define SOFT_XY_REGNUM 12
f91a8b6b
SC
112#define SOFT_UNUSED_REGNUM 13
113#define SOFT_D1_REGNUM 14
82c230c2
SC
114#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
115#define M68HC11_MAX_SOFT_REGS 32
116
117#define M68HC11_NUM_REGS (8)
118#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
119#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
120
121#define M68HC11_REG_SIZE (2)
122
548bcbec
SC
123#define M68HC12_NUM_REGS (9)
124#define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
125#define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
126
908f682f 127struct insn_sequence;
82c230c2
SC
128struct gdbarch_tdep
129 {
5d1a66bd
SC
130 /* Stack pointer correction value. For 68hc11, the stack pointer points
131 to the next push location. An offset of 1 must be applied to obtain
132 the address where the last value is saved. For 68hc12, the stack
133 pointer points to the last value pushed. No offset is necessary. */
134 int stack_correction;
908f682f
SC
135
136 /* Description of instructions in the prologue. */
137 struct insn_sequence *prologue;
81967506 138
7df11f59
SC
139 /* True if the page memory bank register is available
140 and must be used. */
141 int use_page_register;
142
81967506
SC
143 /* ELF flags for ABI. */
144 int elf_flags;
82c230c2
SC
145 };
146
be8626e0
MD
147#define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
148#define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
5d1a66bd 149
1ea653ae
SC
150struct m68hc11_unwind_cache
151{
152 /* The previous frame's inner most stack address. Used as this
153 frame ID's stack_addr. */
154 CORE_ADDR prev_sp;
155 /* The frame's base, optionally used by the high-level debug info. */
156 CORE_ADDR base;
157 CORE_ADDR pc;
158 int size;
159 int prologue_type;
160 CORE_ADDR return_pc;
161 CORE_ADDR sp_offset;
162 int frameless;
163 enum insn_return_kind return_kind;
164
165 /* Table indicating the location of each and every register. */
166 struct trad_frame_saved_reg *saved_regs;
167};
168
82c230c2
SC
169/* Table of registers for 68HC11. This includes the hard registers
170 and the soft registers used by GCC. */
171static char *
172m68hc11_register_names[] =
173{
174 "x", "d", "y", "sp", "pc", "a", "b",
5706502a 175 "ccr", "page", "frame","tmp", "zs", "xy", 0,
82c230c2
SC
176 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
177 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
178 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
179 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
180 "d29", "d30", "d31", "d32"
181};
78073dd8 182
82c230c2
SC
183struct m68hc11_soft_reg
184{
185 const char *name;
186 CORE_ADDR addr;
187};
78073dd8 188
82c230c2 189static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
78073dd8 190
82c230c2 191#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
78073dd8 192
82c230c2
SC
193static int soft_min_addr;
194static int soft_max_addr;
195static int soft_reg_initialized = 0;
78073dd8 196
82c230c2
SC
197/* Look in the symbol table for the address of a pseudo register
198 in memory. If we don't find it, pretend the register is not used
199 and not available. */
200static void
201m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
202{
203 struct minimal_symbol *msymbol;
78073dd8 204
82c230c2
SC
205 msymbol = lookup_minimal_symbol (name, NULL, NULL);
206 if (msymbol)
207 {
208 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
209 reg->name = xstrdup (name);
210
211 /* Keep track of the address range for soft registers. */
212 if (reg->addr < (CORE_ADDR) soft_min_addr)
213 soft_min_addr = reg->addr;
214 if (reg->addr > (CORE_ADDR) soft_max_addr)
215 soft_max_addr = reg->addr;
216 }
217 else
218 {
219 reg->name = 0;
220 reg->addr = 0;
221 }
222}
78073dd8 223
82c230c2
SC
224/* Initialize the table of soft register addresses according
225 to the symbol table. */
226 static void
227m68hc11_initialize_register_info (void)
228{
229 int i;
78073dd8 230
82c230c2
SC
231 if (soft_reg_initialized)
232 return;
233
234 soft_min_addr = INT_MAX;
235 soft_max_addr = 0;
236 for (i = 0; i < M68HC11_ALL_REGS; i++)
237 {
238 soft_regs[i].name = 0;
239 }
240
241 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
242 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
243 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
244 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
245 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
78073dd8 246
82c230c2
SC
247 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
248 {
249 char buf[10];
78073dd8 250
82c230c2
SC
251 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
252 m68hc11_get_register_info (&soft_regs[i], buf);
253 }
78073dd8 254
82c230c2 255 if (soft_regs[SOFT_FP_REGNUM].name == 0)
8a3fe4f8
AC
256 warning (_("No frame soft register found in the symbol table.\n"
257 "Stack backtrace will not work."));
82c230c2
SC
258 soft_reg_initialized = 1;
259}
78073dd8 260
82c230c2
SC
261/* Given an address in memory, return the soft register number if
262 that address corresponds to a soft register. Returns -1 if not. */
263static int
264m68hc11_which_soft_register (CORE_ADDR addr)
265{
266 int i;
267
268 if (addr < soft_min_addr || addr > soft_max_addr)
269 return -1;
270
271 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
272 {
273 if (soft_regs[i].name && soft_regs[i].addr == addr)
274 return i;
275 }
276 return -1;
277}
78073dd8 278
82c230c2
SC
279/* Fetch a pseudo register. The 68hc11 soft registers are treated like
280 pseudo registers. They are located in memory. Translate the register
281 fetch into a memory read. */
46ce284d
AC
282static void
283m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
284 struct regcache *regcache,
ff1e98b9 285 int regno, gdb_byte *buf)
82c230c2 286{
e17a4113
UW
287 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
288
548bcbec
SC
289 /* The PC is a pseudo reg only for 68HC12 with the memory bank
290 addressing mode. */
291 if (regno == M68HC12_HARD_PC_REGNUM)
292 {
4db73d49 293 ULONGEST pc;
df4df182 294 const int regsize = 4;
548bcbec 295
4db73d49 296 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
548bcbec
SC
297 if (pc >= 0x8000 && pc < 0xc000)
298 {
4db73d49
SC
299 ULONGEST page;
300
301 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
548bcbec
SC
302 pc -= 0x8000;
303 pc += (page << 14);
304 pc += 0x1000000;
305 }
e17a4113 306 store_unsigned_integer (buf, regsize, byte_order, pc);
548bcbec
SC
307 return;
308 }
309
82c230c2
SC
310 m68hc11_initialize_register_info ();
311
312 /* Fetch a soft register: translate into a memory read. */
313 if (soft_regs[regno].name)
314 {
315 target_read_memory (soft_regs[regno].addr, buf, 2);
316 }
317 else
318 {
319 memset (buf, 0, 2);
320 }
82c230c2 321}
78073dd8 322
82c230c2
SC
323/* Store a pseudo register. Translate the register store
324 into a memory write. */
325static void
46ce284d
AC
326m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
327 struct regcache *regcache,
ff1e98b9 328 int regno, const gdb_byte *buf)
82c230c2 329{
e17a4113
UW
330 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
331
548bcbec
SC
332 /* The PC is a pseudo reg only for 68HC12 with the memory bank
333 addressing mode. */
334 if (regno == M68HC12_HARD_PC_REGNUM)
335 {
df4df182 336 const int regsize = 4;
548bcbec
SC
337 char *tmp = alloca (regsize);
338 CORE_ADDR pc;
339
340 memcpy (tmp, buf, regsize);
e17a4113 341 pc = extract_unsigned_integer (tmp, regsize, byte_order);
548bcbec
SC
342 if (pc >= 0x1000000)
343 {
344 pc -= 0x1000000;
4db73d49
SC
345 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
346 (pc >> 14) & 0x0ff);
548bcbec 347 pc &= 0x03fff;
4db73d49
SC
348 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
349 pc + 0x8000);
548bcbec
SC
350 }
351 else
4db73d49 352 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
548bcbec
SC
353 return;
354 }
355
82c230c2 356 m68hc11_initialize_register_info ();
78073dd8 357
82c230c2
SC
358 /* Store a soft register: translate into a memory write. */
359 if (soft_regs[regno].name)
360 {
46ce284d
AC
361 const int regsize = 2;
362 char *tmp = alloca (regsize);
363 memcpy (tmp, buf, regsize);
364 target_write_memory (soft_regs[regno].addr, tmp, regsize);
82c230c2
SC
365 }
366}
78073dd8 367
fa88f677 368static const char *
d93859e2 369m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
78073dd8 370{
be8626e0 371 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
548bcbec 372 return "pc";
be8626e0 373 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
548bcbec
SC
374 return "ppc";
375
82c230c2
SC
376 if (reg_nr < 0)
377 return NULL;
378 if (reg_nr >= M68HC11_ALL_REGS)
379 return NULL;
380
65760afb
SC
381 m68hc11_initialize_register_info ();
382
82c230c2
SC
383 /* If we don't know the address of a soft register, pretend it
384 does not exist. */
385 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
386 return NULL;
387 return m68hc11_register_names[reg_nr];
388}
78073dd8 389
f4f9705a 390static const unsigned char *
67d57894
MD
391m68hc11_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
392 int *lenptr)
78073dd8 393{
82c230c2 394 static unsigned char breakpoint[] = {0x0};
67d57894 395
82c230c2
SC
396 *lenptr = sizeof (breakpoint);
397 return breakpoint;
78073dd8
AC
398}
399
908f682f 400\f
025bb325 401/* 68HC11 & 68HC12 prologue analysis. */
908f682f 402
908f682f
SC
403#define MAX_CODES 12
404
405/* 68HC11 opcodes. */
406#undef M6811_OP_PAGE2
b94a41a1
SC
407#define M6811_OP_PAGE2 (0x18)
408#define M6811_OP_LDX (0xde)
409#define M6811_OP_LDX_EXT (0xfe)
410#define M6811_OP_PSHX (0x3c)
411#define M6811_OP_STS (0x9f)
412#define M6811_OP_STS_EXT (0xbf)
413#define M6811_OP_TSX (0x30)
414#define M6811_OP_XGDX (0x8f)
415#define M6811_OP_ADDD (0xc3)
416#define M6811_OP_TXS (0x35)
417#define M6811_OP_DES (0x34)
908f682f
SC
418
419/* 68HC12 opcodes. */
b94a41a1
SC
420#define M6812_OP_PAGE2 (0x18)
421#define M6812_OP_MOVW (0x01)
422#define M6812_PB_PSHW (0xae)
423#define M6812_OP_STS (0x5f)
424#define M6812_OP_STS_EXT (0x7f)
425#define M6812_OP_LEAS (0x1b)
426#define M6812_OP_PSHX (0x34)
427#define M6812_OP_PSHY (0x35)
908f682f
SC
428
429/* Operand extraction. */
430#define OP_DIRECT (0x100) /* 8-byte direct addressing. */
431#define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
432#define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
433#define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
434
435/* Identification of the sequence. */
436enum m6811_seq_type
437{
438 P_LAST = 0,
439 P_SAVE_REG, /* Save a register on the stack. */
440 P_SET_FRAME, /* Setup the frame pointer. */
441 P_LOCAL_1, /* Allocate 1 byte for locals. */
442 P_LOCAL_2, /* Allocate 2 bytes for locals. */
443 P_LOCAL_N /* Allocate N bytes for locals. */
444};
445
446struct insn_sequence {
447 enum m6811_seq_type type;
448 unsigned length;
449 unsigned short code[MAX_CODES];
450};
451
452/* Sequence of instructions in the 68HC11 function prologue. */
453static struct insn_sequence m6811_prologue[] = {
454 /* Sequences to save a soft-register. */
455 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
456 M6811_OP_PSHX } },
457 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
458 M6811_OP_PAGE2, M6811_OP_PSHX } },
b94a41a1
SC
459 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
460 M6811_OP_PSHX } },
461 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
462 M6811_OP_PAGE2, M6811_OP_PSHX } },
908f682f
SC
463
464 /* Sequences to allocate local variables. */
465 { P_LOCAL_N, 7, { M6811_OP_TSX,
466 M6811_OP_XGDX,
467 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
468 M6811_OP_XGDX,
469 M6811_OP_TXS } },
470 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
471 M6811_OP_PAGE2, M6811_OP_XGDX,
472 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
473 M6811_OP_PAGE2, M6811_OP_XGDX,
474 M6811_OP_PAGE2, M6811_OP_TXS } },
475 { P_LOCAL_1, 1, { M6811_OP_DES } },
476 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
477 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
478
479 /* Initialize the frame pointer. */
480 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
b94a41a1 481 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f
SC
482 { P_LAST, 0, { 0 } }
483};
484
485
486/* Sequence of instructions in the 68HC12 function prologue. */
487static struct insn_sequence m6812_prologue[] = {
488 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
489 OP_IMM_HIGH, OP_IMM_LOW } },
b94a41a1
SC
490 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
491 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f 492 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
ffe1f3ee
SC
493 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
494 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
908f682f
SC
495 { P_LAST, 0 }
496};
497
498
499/* Analyze the sequence of instructions starting at the given address.
500 Returns a pointer to the sequence when it is recognized and
c8a7f6ac 501 the optional value (constant/address) associated with it. */
908f682f 502static struct insn_sequence *
e17a4113
UW
503m68hc11_analyze_instruction (struct gdbarch *gdbarch,
504 struct insn_sequence *seq, CORE_ADDR pc,
908f682f
SC
505 CORE_ADDR *val)
506{
e17a4113 507 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
908f682f
SC
508 unsigned char buffer[MAX_CODES];
509 unsigned bufsize;
510 unsigned j;
511 CORE_ADDR cur_val;
512 short v = 0;
513
514 bufsize = 0;
515 for (; seq->type != P_LAST; seq++)
516 {
517 cur_val = 0;
518 for (j = 0; j < seq->length; j++)
519 {
520 if (bufsize < j + 1)
521 {
c8a7f6ac 522 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
e17a4113 523 1, byte_order);
908f682f
SC
524 bufsize++;
525 }
526 /* Continue while we match the opcode. */
527 if (seq->code[j] == buffer[j])
528 continue;
529
530 if ((seq->code[j] & 0xf00) == 0)
531 break;
532
533 /* Extract a sequence parameter (address or constant). */
534 switch (seq->code[j])
535 {
536 case OP_DIRECT:
537 cur_val = (CORE_ADDR) buffer[j];
538 break;
539
540 case OP_IMM_HIGH:
541 cur_val = cur_val & 0x0ff;
542 cur_val |= (buffer[j] << 8);
543 break;
544
545 case OP_IMM_LOW:
546 cur_val &= 0x0ff00;
547 cur_val |= buffer[j];
548 break;
549
550 case OP_PBYTE:
551 if ((buffer[j] & 0xE0) == 0x80)
552 {
553 v = buffer[j] & 0x1f;
554 if (v & 0x10)
555 v |= 0xfff0;
556 }
557 else if ((buffer[j] & 0xfe) == 0xf0)
558 {
e17a4113 559 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order);
908f682f
SC
560 if (buffer[j] & 1)
561 v |= 0xff00;
562 }
563 else if (buffer[j] == 0xf2)
564 {
e17a4113 565 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order);
908f682f
SC
566 }
567 cur_val = v;
568 break;
569 }
570 }
571
572 /* We have a full match. */
573 if (j == seq->length)
574 {
575 *val = cur_val;
908f682f
SC
576 return seq;
577 }
578 }
579 return 0;
580}
581
7df11f59
SC
582/* Return the instruction that the function at the PC is using. */
583static enum insn_return_kind
584m68hc11_get_return_insn (CORE_ADDR pc)
585{
586 struct minimal_symbol *sym;
587
588 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
589 function is stored by elfread.c in the high bit of the info field.
590 Use this to decide which instruction the function uses to return. */
591 sym = lookup_minimal_symbol_by_pc (pc);
592 if (sym == 0)
593 return RETURN_RTS;
594
595 if (MSYMBOL_IS_RTC (sym))
596 return RETURN_RTC;
597 else if (MSYMBOL_IS_RTI (sym))
598 return RETURN_RTI;
599 else
600 return RETURN_RTS;
601}
602
78073dd8
AC
603/* Analyze the function prologue to find some information
604 about the function:
605 - the PC of the first line (for m68hc11_skip_prologue)
606 - the offset of the previous frame saved address (from current frame)
607 - the soft registers which are pushed. */
1ea653ae 608static CORE_ADDR
be8626e0
MD
609m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
610 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
78073dd8 611{
1ea653ae 612 LONGEST save_addr;
78073dd8 613 CORE_ADDR func_end;
78073dd8
AC
614 int size;
615 int found_frame_point;
82c230c2 616 int saved_reg;
908f682f
SC
617 int done = 0;
618 struct insn_sequence *seq_table;
1ea653ae
SC
619
620 info->size = 0;
621 info->sp_offset = 0;
622 if (pc >= current_pc)
623 return current_pc;
624
78073dd8
AC
625 size = 0;
626
82c230c2 627 m68hc11_initialize_register_info ();
1ea653ae 628 if (pc == 0)
78073dd8 629 {
1ea653ae
SC
630 info->size = 0;
631 return pc;
78073dd8
AC
632 }
633
be8626e0 634 seq_table = gdbarch_tdep (gdbarch)->prologue;
908f682f 635
78073dd8
AC
636 /* The 68hc11 stack is as follows:
637
638
639 | |
640 +-----------+
641 | |
642 | args |
643 | |
644 +-----------+
645 | PC-return |
646 +-----------+
647 | Old frame |
648 +-----------+
649 | |
650 | Locals |
651 | |
652 +-----------+ <--- current frame
653 | |
654
655 With most processors (like 68K) the previous frame can be computed
656 easily because it is always at a fixed offset (see link/unlink).
657 That is, locals are accessed with negative offsets, arguments are
658 accessed with positive ones. Since 68hc11 only supports offsets
659 in the range [0..255], the frame is defined at the bottom of
660 locals (see picture).
661
662 The purpose of the analysis made here is to find out the size
663 of locals in this function. An alternative to this is to use
664 DWARF2 info. This would be better but I don't know how to
665 access dwarf2 debug from this function.
666
667 Walk from the function entry point to the point where we save
668 the frame. While walking instructions, compute the size of bytes
669 which are pushed. This gives us the index to access the previous
670 frame.
671
672 We limit the search to 128 bytes so that the algorithm is bounded
673 in case of random and wrong code. We also stop and abort if
674 we find an instruction which is not supposed to appear in the
025bb325
MS
675 prologue (as generated by gcc 2.95, 2.96). */
676
78073dd8 677 func_end = pc + 128;
78073dd8 678 found_frame_point = 0;
1ea653ae
SC
679 info->size = 0;
680 save_addr = 0;
908f682f 681 while (!done && pc + 2 < func_end)
78073dd8 682 {
908f682f
SC
683 struct insn_sequence *seq;
684 CORE_ADDR val;
1ea653ae 685
e17a4113 686 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val);
908f682f
SC
687 if (seq == 0)
688 break;
78073dd8 689
c8a7f6ac
SC
690 /* If we are within the instruction group, we can't advance the
691 pc nor the stack offset. Otherwise the caller's stack computed
692 from the current stack can be wrong. */
693 if (pc + seq->length > current_pc)
694 break;
695
696 pc = pc + seq->length;
908f682f 697 if (seq->type == P_SAVE_REG)
78073dd8 698 {
908f682f
SC
699 if (found_frame_point)
700 {
701 saved_reg = m68hc11_which_soft_register (val);
702 if (saved_reg < 0)
703 break;
78073dd8 704
908f682f 705 save_addr -= 2;
ff1e98b9
SC
706 if (info->saved_regs)
707 info->saved_regs[saved_reg].addr = save_addr;
908f682f
SC
708 }
709 else
710 {
711 size += 2;
712 }
78073dd8 713 }
908f682f 714 else if (seq->type == P_SET_FRAME)
78073dd8
AC
715 {
716 found_frame_point = 1;
1ea653ae 717 info->size = size;
78073dd8 718 }
908f682f 719 else if (seq->type == P_LOCAL_1)
78073dd8 720 {
6148eca7
SC
721 size += 1;
722 }
908f682f 723 else if (seq->type == P_LOCAL_2)
78073dd8 724 {
908f682f 725 size += 2;
78073dd8 726 }
908f682f 727 else if (seq->type == P_LOCAL_N)
78073dd8 728 {
908f682f
SC
729 /* Stack pointer is decremented for the allocation. */
730 if (val & 0x8000)
731 size -= (int) (val) | 0xffff0000;
732 else
733 size -= val;
78073dd8
AC
734 }
735 }
1ea653ae
SC
736 if (found_frame_point == 0)
737 info->sp_offset = size;
738 else
739 info->sp_offset = -1;
740 return pc;
78073dd8
AC
741}
742
82c230c2 743static CORE_ADDR
6093d2eb 744m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
78073dd8
AC
745{
746 CORE_ADDR func_addr, func_end;
747 struct symtab_and_line sal;
1ea653ae 748 struct m68hc11_unwind_cache tmp_cache = { 0 };
78073dd8 749
82c230c2
SC
750 /* If we have line debugging information, then the end of the
751 prologue should be the first assembly instruction of the
78073dd8
AC
752 first source line. */
753 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
754 {
755 sal = find_pc_line (func_addr, 0);
756 if (sal.end && sal.end < func_end)
757 return sal.end;
758 }
759
be8626e0 760 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
78073dd8
AC
761 return pc;
762}
763
1ea653ae
SC
764static CORE_ADDR
765m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
766{
767 ULONGEST pc;
768
025bb325
MS
769 pc = frame_unwind_register_unsigned (next_frame,
770 gdbarch_pc_regnum (gdbarch));
1ea653ae
SC
771 return pc;
772}
773
774/* Put here the code to store, into fi->saved_regs, the addresses of
775 the saved registers of frame described by FRAME_INFO. This
776 includes special registers such as pc and fp saved in special ways
777 in the stack frame. sp is even more special: the address we return
025bb325 778 for it IS the sp for the next frame. */
1ea653ae 779
63807e1d 780static struct m68hc11_unwind_cache *
94afd7a6 781m68hc11_frame_unwind_cache (struct frame_info *this_frame,
1ea653ae
SC
782 void **this_prologue_cache)
783{
94afd7a6 784 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1ea653ae
SC
785 ULONGEST prev_sp;
786 ULONGEST this_base;
787 struct m68hc11_unwind_cache *info;
788 CORE_ADDR current_pc;
789 int i;
790
791 if ((*this_prologue_cache))
792 return (*this_prologue_cache);
793
794 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
795 (*this_prologue_cache) = info;
94afd7a6 796 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1ea653ae 797
94afd7a6 798 info->pc = get_frame_func (this_frame);
1ea653ae
SC
799
800 info->size = 0;
801 info->return_kind = m68hc11_get_return_insn (info->pc);
802
803 /* The SP was moved to the FP. This indicates that a new frame
804 was created. Get THIS frame's FP value by unwinding it from
805 the next frame. */
94afd7a6 806 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1ea653ae
SC
807 if (this_base == 0)
808 {
809 info->base = 0;
810 return info;
811 }
812
94afd7a6 813 current_pc = get_frame_pc (this_frame);
1ea653ae 814 if (info->pc != 0)
be8626e0 815 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
1ea653ae
SC
816
817 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
818
819 if (info->sp_offset != (CORE_ADDR) -1)
820 {
821 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
94afd7a6 822 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
1ea653ae 823 prev_sp = this_base + info->sp_offset + 2;
be8626e0 824 this_base += STACK_CORRECTION (gdbarch);
1ea653ae
SC
825 }
826 else
827 {
828 /* The FP points at the last saved register. Adjust the FP back
829 to before the first saved register giving the SP. */
830 prev_sp = this_base + info->size + 2;
831
be8626e0 832 this_base += STACK_CORRECTION (gdbarch);
1ea653ae
SC
833 if (soft_regs[SOFT_FP_REGNUM].name)
834 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
835 }
836
837 if (info->return_kind == RETURN_RTC)
838 {
839 prev_sp += 1;
840 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
841 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
842 }
843 else if (info->return_kind == RETURN_RTI)
844 {
845 prev_sp += 7;
846 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
847 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
848 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
849 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
850 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
851 }
852
853 /* Add 1 here to adjust for the post-decrement nature of the push
025bb325 854 instruction. */
1ea653ae
SC
855 info->prev_sp = prev_sp;
856
857 info->base = this_base;
858
859 /* Adjust all the saved registers so that they contain addresses and not
860 offsets. */
f57d151a 861 for (i = 0;
be8626e0
MD
862 i < gdbarch_num_regs (gdbarch)
863 + gdbarch_num_pseudo_regs (gdbarch) - 1;
f57d151a 864 i++)
1ea653ae
SC
865 if (trad_frame_addr_p (info->saved_regs, i))
866 {
867 info->saved_regs[i].addr += this_base;
868 }
869
870 /* The previous frame's SP needed to be computed. Save the computed
871 value. */
872 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
873
874 return info;
875}
876
877/* Given a GDB frame, determine the address of the calling function's
878 frame. This will be used to create a new GDB frame struct. */
879
880static void
94afd7a6 881m68hc11_frame_this_id (struct frame_info *this_frame,
1ea653ae
SC
882 void **this_prologue_cache,
883 struct frame_id *this_id)
884{
885 struct m68hc11_unwind_cache *info
94afd7a6 886 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
1ea653ae
SC
887 CORE_ADDR base;
888 CORE_ADDR func;
889 struct frame_id id;
890
891 /* The FUNC is easy. */
94afd7a6 892 func = get_frame_func (this_frame);
1ea653ae 893
1ea653ae
SC
894 /* Hopefully the prologue analysis either correctly determined the
895 frame's base (which is the SP from the previous frame), or set
896 that base to "NULL". */
897 base = info->prev_sp;
898 if (base == 0)
899 return;
900
901 id = frame_id_build (base, func);
1ea653ae
SC
902 (*this_id) = id;
903}
904
94afd7a6
UW
905static struct value *
906m68hc11_frame_prev_register (struct frame_info *this_frame,
907 void **this_prologue_cache, int regnum)
1ea653ae 908{
94afd7a6 909 struct value *value;
1ea653ae 910 struct m68hc11_unwind_cache *info
94afd7a6 911 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
1ea653ae 912
94afd7a6 913 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1ea653ae 914
94afd7a6
UW
915 /* Take into account the 68HC12 specific call (PC + page). */
916 if (regnum == HARD_PC_REGNUM
917 && info->return_kind == RETURN_RTC
918 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
1ea653ae 919 {
94afd7a6
UW
920 CORE_ADDR pc = value_as_long (value);
921 if (pc >= 0x08000 && pc < 0x0c000)
1ea653ae 922 {
1ea653ae
SC
923 CORE_ADDR page;
924
94afd7a6
UW
925 release_value (value);
926 value_free (value);
927
928 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
929 HARD_PAGE_REGNUM);
930 page = value_as_long (value);
931 release_value (value);
932 value_free (value);
933
934 pc -= 0x08000;
935 pc += ((page & 0x0ff) << 14);
936 pc += 0x1000000;
937
938 return frame_unwind_got_constant (this_frame, regnum, pc);
1ea653ae
SC
939 }
940 }
94afd7a6
UW
941
942 return value;
1ea653ae
SC
943}
944
945static const struct frame_unwind m68hc11_frame_unwind = {
946 NORMAL_FRAME,
947 m68hc11_frame_this_id,
94afd7a6
UW
948 m68hc11_frame_prev_register,
949 NULL,
950 default_frame_sniffer
1ea653ae
SC
951};
952
1ea653ae 953static CORE_ADDR
94afd7a6 954m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
1ea653ae
SC
955{
956 struct m68hc11_unwind_cache *info
94afd7a6 957 = m68hc11_frame_unwind_cache (this_frame, this_cache);
1ea653ae
SC
958
959 return info->base;
960}
961
962static CORE_ADDR
94afd7a6 963m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
1ea653ae
SC
964{
965 CORE_ADDR addr;
966 struct m68hc11_unwind_cache *info
94afd7a6 967 = m68hc11_frame_unwind_cache (this_frame, this_cache);
1ea653ae
SC
968
969 addr = info->base + info->size;
970 if (info->return_kind == RETURN_RTC)
971 addr += 1;
972 else if (info->return_kind == RETURN_RTI)
973 addr += 7;
974
975 return addr;
976}
977
978static const struct frame_base m68hc11_frame_base = {
979 &m68hc11_frame_unwind,
980 m68hc11_frame_base_address,
981 m68hc11_frame_base_address,
982 m68hc11_frame_args_address
983};
984
985static CORE_ADDR
986m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
987{
988 ULONGEST sp;
11411de3 989 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
1ea653ae
SC
990 return sp;
991}
992
94afd7a6
UW
993/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
994 frame. The frame ID's base needs to match the TOS value saved by
995 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1ea653ae
SC
996
997static struct frame_id
94afd7a6 998m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1ea653ae
SC
999{
1000 ULONGEST tos;
94afd7a6 1001 CORE_ADDR pc = get_frame_pc (this_frame);
1ea653ae 1002
94afd7a6 1003 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1ea653ae
SC
1004 tos += 2;
1005 return frame_id_build (tos, pc);
1006}
78073dd8 1007
e286caf2
SC
1008\f
1009/* Get and print the register from the given frame. */
78073dd8 1010static void
e286caf2
SC
1011m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1012 struct frame_info *frame, int regno)
78073dd8 1013{
e286caf2
SC
1014 LONGEST rval;
1015
1016 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1017 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
7f5f525d 1018 rval = get_frame_register_unsigned (frame, regno);
e286caf2 1019 else
7f5f525d 1020 rval = get_frame_register_signed (frame, regno);
e286caf2
SC
1021
1022 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1023 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
7df11f59 1024 {
e286caf2
SC
1025 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1026 if (regno != HARD_CCR_REGNUM)
1027 print_longest (file, 'd', 1, rval);
7df11f59 1028 }
e286caf2
SC
1029 else
1030 {
1031 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1032 {
1033 ULONGEST page;
7df11f59 1034
7f5f525d 1035 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
e286caf2
SC
1036 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1037 (unsigned) rval);
1038 }
1039 else
1040 {
1041 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1042 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1043 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1044 print_longest (file, 'd', 1, rval);
1045 }
1046 }
1047
1048 if (regno == HARD_CCR_REGNUM)
78073dd8 1049 {
e286caf2
SC
1050 /* CCR register */
1051 int C, Z, N, V;
1052 unsigned char l = rval & 0xff;
1053
1054 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1055 l & M6811_S_BIT ? 'S' : '-',
1056 l & M6811_X_BIT ? 'X' : '-',
1057 l & M6811_H_BIT ? 'H' : '-',
1058 l & M6811_I_BIT ? 'I' : '-',
1059 l & M6811_N_BIT ? 'N' : '-',
1060 l & M6811_Z_BIT ? 'Z' : '-',
1061 l & M6811_V_BIT ? 'V' : '-',
1062 l & M6811_C_BIT ? 'C' : '-');
1063 N = (l & M6811_N_BIT) != 0;
1064 Z = (l & M6811_Z_BIT) != 0;
1065 V = (l & M6811_V_BIT) != 0;
1066 C = (l & M6811_C_BIT) != 0;
1067
025bb325 1068 /* Print flags following the h8300. */
e286caf2
SC
1069 if ((C | Z) == 0)
1070 fprintf_filtered (file, "u> ");
1071 else if ((C | Z) == 1)
1072 fprintf_filtered (file, "u<= ");
1073 else if (C == 0)
1074 fprintf_filtered (file, "u< ");
1075
1076 if (Z == 0)
1077 fprintf_filtered (file, "!= ");
1078 else
1079 fprintf_filtered (file, "== ");
1080
1081 if ((N ^ V) == 0)
1082 fprintf_filtered (file, ">= ");
1083 else
1084 fprintf_filtered (file, "< ");
1085
1086 if ((Z | (N ^ V)) == 0)
1087 fprintf_filtered (file, "> ");
78073dd8 1088 else
e286caf2 1089 fprintf_filtered (file, "<= ");
78073dd8 1090 }
e286caf2
SC
1091}
1092
1093/* Same as 'info reg' but prints the registers in a different way. */
1094static void
1095m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1096 struct frame_info *frame, int regno, int cpregs)
1097{
1098 if (regno >= 0)
1099 {
1100 const char *name = gdbarch_register_name (gdbarch, regno);
1101
1102 if (!name || !*name)
1103 return;
1104
1105 fprintf_filtered (file, "%-10s ", name);
1106 m68hc11_print_register (gdbarch, file, frame, regno);
1107 fprintf_filtered (file, "\n");
1108 }
1109 else
1110 {
1111 int i, nr;
1112
1113 fprintf_filtered (file, "PC=");
1114 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1115
1116 fprintf_filtered (file, " SP=");
1117 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1118
1119 fprintf_filtered (file, " FP=");
1120 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1121
1122 fprintf_filtered (file, "\nCCR=");
1123 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1124
1125 fprintf_filtered (file, "\nD=");
1126 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1127
1128 fprintf_filtered (file, " X=");
1129 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1130
1131 fprintf_filtered (file, " Y=");
1132 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1133
1134 if (gdbarch_tdep (gdbarch)->use_page_register)
1135 {
1136 fprintf_filtered (file, "\nPage=");
1137 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1138 }
1139 fprintf_filtered (file, "\n");
1140
1141 nr = 0;
1142 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1143 {
1144 /* Skip registers which are not defined in the symbol table. */
1145 if (soft_regs[i].name == 0)
1146 continue;
1147
1148 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1149 m68hc11_print_register (gdbarch, file, frame, i);
1150 nr++;
1151 if ((nr % 8) == 7)
1152 fprintf_filtered (file, "\n");
1153 else
1154 fprintf_filtered (file, " ");
1155 }
1156 if (nr && (nr % 8) != 7)
1157 fprintf_filtered (file, "\n");
1158 }
1159}
1160
82c230c2 1161static CORE_ADDR
7d9b040b 1162m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3dc990bf
SC
1163 struct regcache *regcache, CORE_ADDR bp_addr,
1164 int nargs, struct value **args, CORE_ADDR sp,
1165 int struct_return, CORE_ADDR struct_addr)
78073dd8 1166{
e17a4113 1167 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
82c230c2
SC
1168 int argnum;
1169 int first_stack_argnum;
82c230c2
SC
1170 struct type *type;
1171 char *val;
1172 int len;
3dc990bf 1173 char buf[2];
82c230c2 1174
82c230c2
SC
1175 first_stack_argnum = 0;
1176 if (struct_return)
1177 {
ff1e98b9 1178 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
82c230c2
SC
1179 }
1180 else if (nargs > 0)
1181 {
4991999e 1182 type = value_type (args[0]);
82c230c2 1183 len = TYPE_LENGTH (type);
3dc990bf 1184
82c230c2
SC
1185 /* First argument is passed in D and X registers. */
1186 if (len <= 4)
1187 {
3dc990bf
SC
1188 ULONGEST v;
1189
e17a4113
UW
1190 v = extract_unsigned_integer (value_contents (args[0]),
1191 len, byte_order);
82c230c2 1192 first_stack_argnum = 1;
3dc990bf
SC
1193
1194 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
82c230c2
SC
1195 if (len > 2)
1196 {
1197 v >>= 16;
3dc990bf 1198 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
82c230c2
SC
1199 }
1200 }
1201 }
82c230c2 1202
3dc990bf 1203 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
82c230c2 1204 {
4991999e 1205 type = value_type (args[argnum]);
82c230c2
SC
1206 len = TYPE_LENGTH (type);
1207
22df305e
SC
1208 if (len & 1)
1209 {
1210 static char zero = 0;
1211
3dc990bf
SC
1212 sp--;
1213 write_memory (sp, &zero, 1);
22df305e 1214 }
0fd88904 1215 val = (char*) value_contents (args[argnum]);
3dc990bf
SC
1216 sp -= len;
1217 write_memory (sp, val, len);
82c230c2 1218 }
3dc990bf
SC
1219
1220 /* Store return address. */
1221 sp -= 2;
e17a4113 1222 store_unsigned_integer (buf, 2, byte_order, bp_addr);
3dc990bf
SC
1223 write_memory (sp, buf, 2);
1224
1225 /* Finally, update the stack pointer... */
be8626e0 1226 sp -= STACK_CORRECTION (gdbarch);
3dc990bf
SC
1227 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1228
1229 /* ...and fake a frame pointer. */
1230 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1231
1232 /* DWARF2/GCC uses the stack address *before* the function call as a
1233 frame's CFA. */
1234 return sp + 2;
78073dd8
AC
1235}
1236
1237
4db73d49
SC
1238/* Return the GDB type object for the "standard" data type
1239 of data in register N. */
1240
82c230c2 1241static struct type *
4db73d49 1242m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
82c230c2 1243{
5706502a
SC
1244 switch (reg_nr)
1245 {
1246 case HARD_PAGE_REGNUM:
1247 case HARD_A_REGNUM:
1248 case HARD_B_REGNUM:
1249 case HARD_CCR_REGNUM:
df4df182 1250 return builtin_type (gdbarch)->builtin_uint8;
5706502a 1251
548bcbec 1252 case M68HC12_HARD_PC_REGNUM:
df4df182 1253 return builtin_type (gdbarch)->builtin_uint32;
548bcbec 1254
5706502a 1255 default:
df4df182 1256 return builtin_type (gdbarch)->builtin_uint16;
5706502a 1257 }
82c230c2
SC
1258}
1259
82c230c2 1260static void
4db73d49
SC
1261m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1262 const void *valbuf)
82c230c2 1263{
22df305e
SC
1264 int len;
1265
1266 len = TYPE_LENGTH (type);
1267
1268 /* First argument is passed in D and X registers. */
4db73d49
SC
1269 if (len <= 2)
1270 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1271 else if (len <= 4)
22df305e 1272 {
4db73d49
SC
1273 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1274 len - 2, valbuf);
1275 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
22df305e
SC
1276 }
1277 else
8a3fe4f8 1278 error (_("return of value > 4 is not supported."));
82c230c2
SC
1279}
1280
1281
ef2b8fcd 1282/* Given a return value in `regcache' with a type `type',
78073dd8
AC
1283 extract and copy its value into `valbuf'. */
1284
82c230c2 1285static void
ef2b8fcd
SC
1286m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1287 void *valbuf)
78073dd8 1288{
82c230c2 1289 int len = TYPE_LENGTH (type);
ef2b8fcd
SC
1290 char buf[M68HC11_REG_SIZE];
1291
1292 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
22df305e 1293 switch (len)
82c230c2 1294 {
22df305e 1295 case 1:
ef2b8fcd 1296 memcpy (valbuf, buf + 1, 1);
22df305e 1297 break;
ef2b8fcd 1298
22df305e 1299 case 2:
ef2b8fcd 1300 memcpy (valbuf, buf, 2);
22df305e 1301 break;
ef2b8fcd 1302
22df305e 1303 case 3:
ef2b8fcd
SC
1304 memcpy ((char*) valbuf + 1, buf, 2);
1305 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1306 memcpy (valbuf, buf + 1, 1);
22df305e 1307 break;
ef2b8fcd 1308
22df305e 1309 case 4:
ef2b8fcd
SC
1310 memcpy ((char*) valbuf + 2, buf, 2);
1311 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1312 memcpy (valbuf, buf, 2);
22df305e
SC
1313 break;
1314
1315 default:
8a3fe4f8 1316 error (_("bad size for return value"));
82c230c2
SC
1317 }
1318}
1319
63807e1d 1320static enum return_value_convention
c055b101
CV
1321m68hc11_return_value (struct gdbarch *gdbarch, struct type *func_type,
1322 struct type *valtype, struct regcache *regcache,
1323 gdb_byte *readbuf, const gdb_byte *writebuf)
82c230c2 1324{
97092415
AC
1325 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1326 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1327 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1328 || TYPE_LENGTH (valtype) > 4)
1329 return RETURN_VALUE_STRUCT_CONVENTION;
1330 else
1331 {
1332 if (readbuf != NULL)
1333 m68hc11_extract_return_value (valtype, regcache, readbuf);
1334 if (writebuf != NULL)
1335 m68hc11_store_return_value (valtype, regcache, writebuf);
1336 return RETURN_VALUE_REGISTER_CONVENTION;
1337 }
82c230c2
SC
1338}
1339
7df11f59
SC
1340/* Test whether the ELF symbol corresponds to a function using rtc or
1341 rti to return. */
1342
1343static void
1344m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1345{
1346 unsigned char flags;
1347
1348 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1349 if (flags & STO_M68HC12_FAR)
1350 MSYMBOL_SET_RTC (msym);
1351 if (flags & STO_M68HC12_INTERRUPT)
1352 MSYMBOL_SET_RTI (msym);
1353}
1354
ea3881d9
SC
1355static int
1356gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1357{
9dae60cc 1358 if (info->arch == bfd_arch_m68hc11)
ea3881d9
SC
1359 return print_insn_m68hc11 (memaddr, info);
1360 else
1361 return print_insn_m68hc12 (memaddr, info);
1362}
1363
b631436b
SC
1364\f
1365
1366/* 68HC11/68HC12 register groups.
1367 Identify real hard registers and soft registers used by gcc. */
1368
1369static struct reggroup *m68hc11_soft_reggroup;
1370static struct reggroup *m68hc11_hard_reggroup;
1371
1372static void
1373m68hc11_init_reggroups (void)
1374{
1375 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1376 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1377}
1378
1379static void
1380m68hc11_add_reggroups (struct gdbarch *gdbarch)
1381{
1382 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1383 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1384 reggroup_add (gdbarch, general_reggroup);
1385 reggroup_add (gdbarch, float_reggroup);
1386 reggroup_add (gdbarch, all_reggroup);
1387 reggroup_add (gdbarch, save_reggroup);
1388 reggroup_add (gdbarch, restore_reggroup);
1389 reggroup_add (gdbarch, vector_reggroup);
1390 reggroup_add (gdbarch, system_reggroup);
1391}
1392
1393static int
1394m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1395 struct reggroup *group)
1396{
1397 /* We must save the real hard register as well as gcc
1398 soft registers including the frame pointer. */
1399 if (group == save_reggroup || group == restore_reggroup)
1400 {
1401 return (regnum <= gdbarch_num_regs (gdbarch)
1402 || ((regnum == SOFT_FP_REGNUM
1403 || regnum == SOFT_TMP_REGNUM
1404 || regnum == SOFT_ZS_REGNUM
1405 || regnum == SOFT_XY_REGNUM)
d93859e2 1406 && m68hc11_register_name (gdbarch, regnum)));
b631436b
SC
1407 }
1408
1409 /* Group to identify gcc soft registers (d1..dN). */
1410 if (group == m68hc11_soft_reggroup)
1411 {
d93859e2
UW
1412 return regnum >= SOFT_D1_REGNUM
1413 && m68hc11_register_name (gdbarch, regnum);
b631436b
SC
1414 }
1415
1416 if (group == m68hc11_hard_reggroup)
1417 {
1418 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1419 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1420 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1421 }
1422 return default_register_reggroup_p (gdbarch, regnum, group);
1423}
1424
82c230c2
SC
1425static struct gdbarch *
1426m68hc11_gdbarch_init (struct gdbarch_info info,
1427 struct gdbarch_list *arches)
1428{
82c230c2
SC
1429 struct gdbarch *gdbarch;
1430 struct gdbarch_tdep *tdep;
81967506 1431 int elf_flags;
82c230c2
SC
1432
1433 soft_reg_initialized = 0;
81967506
SC
1434
1435 /* Extract the elf_flags if available. */
1436 if (info.abfd != NULL
1437 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1438 elf_flags = elf_elfheader (info.abfd)->e_flags;
1439 else
1440 elf_flags = 0;
1441
025bb325 1442 /* Try to find a pre-existing architecture. */
82c230c2
SC
1443 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1444 arches != NULL;
1445 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1446 {
81967506
SC
1447 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1448 continue;
1449
82c230c2
SC
1450 return arches->gdbarch;
1451 }
1452
025bb325 1453 /* Need a new architecture. Fill in a target specific vector. */
82c230c2
SC
1454 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1455 gdbarch = gdbarch_alloc (&info, tdep);
81967506 1456 tdep->elf_flags = elf_flags;
ed99b3d0 1457
5d1a66bd
SC
1458 switch (info.bfd_arch_info->arch)
1459 {
1460 case bfd_arch_m68hc11:
1461 tdep->stack_correction = 1;
7df11f59 1462 tdep->use_page_register = 0;
908f682f 1463 tdep->prologue = m6811_prologue;
548bcbec
SC
1464 set_gdbarch_addr_bit (gdbarch, 16);
1465 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1466 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1467 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
5d1a66bd 1468 break;
82c230c2 1469
5d1a66bd
SC
1470 case bfd_arch_m68hc12:
1471 tdep->stack_correction = 0;
7df11f59 1472 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
908f682f 1473 tdep->prologue = m6812_prologue;
548bcbec
SC
1474 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1475 set_gdbarch_num_pseudo_regs (gdbarch,
1476 elf_flags & E_M68HC12_BANKS
1477 ? M68HC12_NUM_PSEUDO_REGS
1478 : M68HC11_NUM_PSEUDO_REGS);
1479 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1480 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1481 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1482 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
5d1a66bd
SC
1483 break;
1484
1485 default:
1486 break;
1487 }
7d32ba20
SC
1488
1489 /* Initially set everything according to the ABI.
1490 Use 16-bit integers since it will be the case for most
1491 programs. The size of these types should normally be set
1492 according to the dwarf2 debug information. */
82c230c2 1493 set_gdbarch_short_bit (gdbarch, 16);
81967506 1494 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
82c230c2 1495 set_gdbarch_float_bit (gdbarch, 32);
81967506 1496 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
2417dd25 1497 set_gdbarch_long_double_bit (gdbarch, 64);
82c230c2
SC
1498 set_gdbarch_long_bit (gdbarch, 32);
1499 set_gdbarch_ptr_bit (gdbarch, 16);
1500 set_gdbarch_long_long_bit (gdbarch, 64);
1501
b2a02dda
SC
1502 /* Characters are unsigned. */
1503 set_gdbarch_char_signed (gdbarch, 0);
1504
1ea653ae
SC
1505 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1506 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1507
82c230c2
SC
1508 /* Set register info. */
1509 set_gdbarch_fp0_regnum (gdbarch, -1);
82c230c2 1510
82c230c2 1511 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
82c230c2 1512 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
4db73d49 1513 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
46ce284d
AC
1514 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1515 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
82c230c2 1516
3dc990bf
SC
1517 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1518
97092415 1519 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
82c230c2
SC
1520 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1521 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
82c230c2 1522 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
70ed8774 1523 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
82c230c2 1524
b631436b
SC
1525 m68hc11_add_reggroups (gdbarch);
1526 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
e286caf2 1527 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
b631436b 1528
1ea653ae 1529 /* Hook in the DWARF CFI frame unwinder. */
94afd7a6 1530 dwarf2_append_unwinders (gdbarch);
1ea653ae 1531
94afd7a6 1532 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1ea653ae
SC
1533 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1534
1535 /* Methods for saving / extracting a dummy frame's ID. The ID's
1536 stack address must match the SP value returned by
1537 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
94afd7a6 1538 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1ea653ae
SC
1539
1540 /* Return the unwound PC value. */
1541 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1542
7df11f59
SC
1543 /* Minsymbol frobbing. */
1544 set_gdbarch_elf_make_msymbol_special (gdbarch,
1545 m68hc11_elf_make_msymbol_special);
1546
82c230c2 1547 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
82c230c2
SC
1548
1549 return gdbarch;
78073dd8
AC
1550}
1551
025bb325
MS
1552/* -Wmissing-prototypes */
1553extern initialize_file_ftype _initialize_m68hc11_tdep;
a78f21af 1554
78073dd8 1555void
fba45db2 1556_initialize_m68hc11_tdep (void)
78073dd8 1557{
82c230c2 1558 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
ea3881d9 1559 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
b631436b 1560 m68hc11_init_reggroups ();
78073dd8
AC
1561}
1562
This page took 1.008959 seconds and 4 git commands to generate.