Display "main" on initial TUI startup
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
CommitLineData
908f682f 1/* Target-dependent code for Motorola 68HC11 & 68HC12
931aecf5 2
42a4f53d 3 Copyright (C) 1999-2019 Free Software Foundation, Inc.
931aecf5 4
ffe1f3ee 5 Contributed by Stephane Carrez, stcarrez@nerim.fr
78073dd8 6
a9762ec7
JB
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
78073dd8 21
78073dd8 22
82c230c2
SC
23#include "defs.h"
24#include "frame.h"
1ea653ae
SC
25#include "frame-unwind.h"
26#include "frame-base.h"
27#include "dwarf2-frame.h"
28#include "trad-frame.h"
82c230c2
SC
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "gdbcore.h"
82c230c2
SC
33#include "value.h"
34#include "inferior.h"
35#include "dis-asm.h"
36#include "symfile.h"
37#include "objfiles.h"
38#include "arch-utils.h"
4e052eda 39#include "regcache.h"
b631436b 40#include "reggroups.h"
78073dd8 41
82c230c2
SC
42#include "target.h"
43#include "opcode/m68hc11.h"
81967506
SC
44#include "elf/m68hc11.h"
45#include "elf-bfd.h"
78073dd8 46
7df11f59
SC
47/* Macros for setting and testing a bit in a minimal symbol.
48 For 68HC11/68HC12 we have two flags that tell which return
49 type the function is using. This is used for prologue and frame
50 analysis to compute correct stack frame layout.
51
52 The MSB of the minimal symbol's "info" field is used for this purpose.
7df11f59
SC
53
54 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
55 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
56 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
f594e5e9 57 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
7df11f59 58
025bb325 59#define MSYMBOL_SET_RTC(msym) \
b887350f 60 MSYMBOL_TARGET_FLAG_1 (msym) = 1
7df11f59 61
025bb325 62#define MSYMBOL_SET_RTI(msym) \
b887350f 63 MSYMBOL_TARGET_FLAG_2 (msym) = 1
7df11f59
SC
64
65#define MSYMBOL_IS_RTC(msym) \
b887350f 66 MSYMBOL_TARGET_FLAG_1 (msym)
7df11f59
SC
67
68#define MSYMBOL_IS_RTI(msym) \
b887350f 69 MSYMBOL_TARGET_FLAG_2 (msym)
7df11f59 70
7df11f59
SC
71enum insn_return_kind {
72 RETURN_RTS,
73 RETURN_RTC,
74 RETURN_RTI
75};
76
77
7157eed4 78/* Register numbers of various important registers. */
78073dd8 79
82c230c2
SC
80#define HARD_X_REGNUM 0
81#define HARD_D_REGNUM 1
82#define HARD_Y_REGNUM 2
83#define HARD_SP_REGNUM 3
84#define HARD_PC_REGNUM 4
85
86#define HARD_A_REGNUM 5
87#define HARD_B_REGNUM 6
88#define HARD_CCR_REGNUM 7
5706502a
SC
89
90/* 68HC12 page number register.
91 Note: to keep a compatibility with gcc register naming, we must
92 not have to rename FP and other soft registers. The page register
f57d151a 93 is a real hard register and must therefore be counted by gdbarch_num_regs.
5706502a
SC
94 For this it has the same number as Z register (which is not used). */
95#define HARD_PAGE_REGNUM 8
96#define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
82c230c2
SC
97
98/* Z is replaced by X or Y by gcc during machine reorg.
99 ??? There is no way to get it and even know whether
100 it's in X or Y or in ZS. */
101#define SOFT_Z_REGNUM 8
102
103/* Soft registers. These registers are special. There are treated
104 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
105 They are physically located in memory. */
106#define SOFT_FP_REGNUM 9
107#define SOFT_TMP_REGNUM 10
108#define SOFT_ZS_REGNUM 11
109#define SOFT_XY_REGNUM 12
f91a8b6b
SC
110#define SOFT_UNUSED_REGNUM 13
111#define SOFT_D1_REGNUM 14
82c230c2
SC
112#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
113#define M68HC11_MAX_SOFT_REGS 32
114
a714b0d6 115#define M68HC11_NUM_REGS (M68HC11_LAST_HARD_REG + 1)
82c230c2
SC
116#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
117#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
118
119#define M68HC11_REG_SIZE (2)
120
548bcbec
SC
121#define M68HC12_NUM_REGS (9)
122#define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
123#define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
124
908f682f 125struct insn_sequence;
82c230c2
SC
126struct gdbarch_tdep
127 {
5d1a66bd
SC
128 /* Stack pointer correction value. For 68hc11, the stack pointer points
129 to the next push location. An offset of 1 must be applied to obtain
130 the address where the last value is saved. For 68hc12, the stack
131 pointer points to the last value pushed. No offset is necessary. */
132 int stack_correction;
908f682f
SC
133
134 /* Description of instructions in the prologue. */
135 struct insn_sequence *prologue;
81967506 136
7df11f59
SC
137 /* True if the page memory bank register is available
138 and must be used. */
139 int use_page_register;
140
81967506
SC
141 /* ELF flags for ABI. */
142 int elf_flags;
82c230c2
SC
143 };
144
be8626e0
MD
145#define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
146#define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
5d1a66bd 147
1ea653ae
SC
148struct m68hc11_unwind_cache
149{
150 /* The previous frame's inner most stack address. Used as this
151 frame ID's stack_addr. */
152 CORE_ADDR prev_sp;
153 /* The frame's base, optionally used by the high-level debug info. */
154 CORE_ADDR base;
155 CORE_ADDR pc;
156 int size;
157 int prologue_type;
158 CORE_ADDR return_pc;
159 CORE_ADDR sp_offset;
160 int frameless;
161 enum insn_return_kind return_kind;
162
163 /* Table indicating the location of each and every register. */
164 struct trad_frame_saved_reg *saved_regs;
165};
166
82c230c2
SC
167/* Table of registers for 68HC11. This includes the hard registers
168 and the soft registers used by GCC. */
a121b7c1 169static const char *
82c230c2
SC
170m68hc11_register_names[] =
171{
172 "x", "d", "y", "sp", "pc", "a", "b",
5706502a 173 "ccr", "page", "frame","tmp", "zs", "xy", 0,
82c230c2
SC
174 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
175 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
176 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
177 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
178 "d29", "d30", "d31", "d32"
179};
78073dd8 180
82c230c2
SC
181struct m68hc11_soft_reg
182{
183 const char *name;
184 CORE_ADDR addr;
185};
78073dd8 186
82c230c2 187static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
78073dd8 188
82c230c2 189#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
78073dd8 190
82c230c2
SC
191static int soft_min_addr;
192static int soft_max_addr;
193static int soft_reg_initialized = 0;
78073dd8 194
82c230c2
SC
195/* Look in the symbol table for the address of a pseudo register
196 in memory. If we don't find it, pretend the register is not used
197 and not available. */
198static void
199m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
200{
3b7344d5 201 struct bound_minimal_symbol msymbol;
78073dd8 202
82c230c2 203 msymbol = lookup_minimal_symbol (name, NULL, NULL);
3b7344d5 204 if (msymbol.minsym)
82c230c2 205 {
77e371c0 206 reg->addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
82c230c2
SC
207 reg->name = xstrdup (name);
208
209 /* Keep track of the address range for soft registers. */
210 if (reg->addr < (CORE_ADDR) soft_min_addr)
211 soft_min_addr = reg->addr;
212 if (reg->addr > (CORE_ADDR) soft_max_addr)
213 soft_max_addr = reg->addr;
214 }
215 else
216 {
217 reg->name = 0;
218 reg->addr = 0;
219 }
220}
78073dd8 221
82c230c2
SC
222/* Initialize the table of soft register addresses according
223 to the symbol table. */
224 static void
225m68hc11_initialize_register_info (void)
226{
227 int i;
78073dd8 228
82c230c2
SC
229 if (soft_reg_initialized)
230 return;
231
232 soft_min_addr = INT_MAX;
233 soft_max_addr = 0;
234 for (i = 0; i < M68HC11_ALL_REGS; i++)
235 {
236 soft_regs[i].name = 0;
237 }
238
239 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
240 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
241 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
242 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
243 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
78073dd8 244
82c230c2
SC
245 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
246 {
247 char buf[10];
78073dd8 248
08850b56 249 xsnprintf (buf, sizeof (buf), "_.d%d", i - SOFT_D1_REGNUM + 1);
82c230c2
SC
250 m68hc11_get_register_info (&soft_regs[i], buf);
251 }
78073dd8 252
82c230c2 253 if (soft_regs[SOFT_FP_REGNUM].name == 0)
8a3fe4f8
AC
254 warning (_("No frame soft register found in the symbol table.\n"
255 "Stack backtrace will not work."));
82c230c2
SC
256 soft_reg_initialized = 1;
257}
78073dd8 258
82c230c2
SC
259/* Given an address in memory, return the soft register number if
260 that address corresponds to a soft register. Returns -1 if not. */
261static int
262m68hc11_which_soft_register (CORE_ADDR addr)
263{
264 int i;
265
266 if (addr < soft_min_addr || addr > soft_max_addr)
267 return -1;
268
269 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
270 {
271 if (soft_regs[i].name && soft_regs[i].addr == addr)
272 return i;
273 }
274 return -1;
275}
78073dd8 276
82c230c2
SC
277/* Fetch a pseudo register. The 68hc11 soft registers are treated like
278 pseudo registers. They are located in memory. Translate the register
279 fetch into a memory read. */
05d1431c 280static enum register_status
46ce284d 281m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
849d0ba8 282 readable_regcache *regcache,
ff1e98b9 283 int regno, gdb_byte *buf)
82c230c2 284{
e17a4113
UW
285 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
286
548bcbec
SC
287 /* The PC is a pseudo reg only for 68HC12 with the memory bank
288 addressing mode. */
289 if (regno == M68HC12_HARD_PC_REGNUM)
290 {
4db73d49 291 ULONGEST pc;
df4df182 292 const int regsize = 4;
05d1431c 293 enum register_status status;
548bcbec 294
11f57cb6 295 status = regcache->cooked_read (HARD_PC_REGNUM, &pc);
05d1431c
PA
296 if (status != REG_VALID)
297 return status;
548bcbec
SC
298 if (pc >= 0x8000 && pc < 0xc000)
299 {
4db73d49
SC
300 ULONGEST page;
301
11f57cb6 302 regcache->cooked_read (HARD_PAGE_REGNUM, &page);
548bcbec
SC
303 pc -= 0x8000;
304 pc += (page << 14);
305 pc += 0x1000000;
306 }
e17a4113 307 store_unsigned_integer (buf, regsize, byte_order, pc);
05d1431c 308 return REG_VALID;
548bcbec
SC
309 }
310
82c230c2
SC
311 m68hc11_initialize_register_info ();
312
313 /* Fetch a soft register: translate into a memory read. */
314 if (soft_regs[regno].name)
315 {
316 target_read_memory (soft_regs[regno].addr, buf, 2);
317 }
318 else
319 {
320 memset (buf, 0, 2);
321 }
05d1431c
PA
322
323 return REG_VALID;
82c230c2 324}
78073dd8 325
82c230c2
SC
326/* Store a pseudo register. Translate the register store
327 into a memory write. */
328static void
46ce284d
AC
329m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
330 struct regcache *regcache,
ff1e98b9 331 int regno, const gdb_byte *buf)
82c230c2 332{
e17a4113
UW
333 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
334
548bcbec
SC
335 /* The PC is a pseudo reg only for 68HC12 with the memory bank
336 addressing mode. */
337 if (regno == M68HC12_HARD_PC_REGNUM)
338 {
df4df182 339 const int regsize = 4;
224c3ddb 340 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
548bcbec
SC
341 CORE_ADDR pc;
342
343 memcpy (tmp, buf, regsize);
e17a4113 344 pc = extract_unsigned_integer (tmp, regsize, byte_order);
548bcbec
SC
345 if (pc >= 0x1000000)
346 {
347 pc -= 0x1000000;
4db73d49
SC
348 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
349 (pc >> 14) & 0x0ff);
548bcbec 350 pc &= 0x03fff;
4db73d49
SC
351 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
352 pc + 0x8000);
548bcbec
SC
353 }
354 else
4db73d49 355 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
548bcbec
SC
356 return;
357 }
358
82c230c2 359 m68hc11_initialize_register_info ();
78073dd8 360
82c230c2
SC
361 /* Store a soft register: translate into a memory write. */
362 if (soft_regs[regno].name)
363 {
46ce284d 364 const int regsize = 2;
224c3ddb 365 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
46ce284d
AC
366 memcpy (tmp, buf, regsize);
367 target_write_memory (soft_regs[regno].addr, tmp, regsize);
82c230c2
SC
368 }
369}
78073dd8 370
fa88f677 371static const char *
d93859e2 372m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
78073dd8 373{
be8626e0 374 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
548bcbec 375 return "pc";
be8626e0 376 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
548bcbec
SC
377 return "ppc";
378
82c230c2
SC
379 if (reg_nr < 0)
380 return NULL;
381 if (reg_nr >= M68HC11_ALL_REGS)
382 return NULL;
383
65760afb
SC
384 m68hc11_initialize_register_info ();
385
82c230c2
SC
386 /* If we don't know the address of a soft register, pretend it
387 does not exist. */
388 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
389 return NULL;
390 return m68hc11_register_names[reg_nr];
391}
78073dd8 392
04180708 393constexpr gdb_byte m68hc11_break_insn[] = {0x0};
78073dd8 394
04180708 395typedef BP_MANIPULATION (m68hc11_break_insn) m68hc11_breakpoint;
908f682f 396\f
025bb325 397/* 68HC11 & 68HC12 prologue analysis. */
908f682f 398
908f682f
SC
399#define MAX_CODES 12
400
401/* 68HC11 opcodes. */
402#undef M6811_OP_PAGE2
b94a41a1
SC
403#define M6811_OP_PAGE2 (0x18)
404#define M6811_OP_LDX (0xde)
405#define M6811_OP_LDX_EXT (0xfe)
406#define M6811_OP_PSHX (0x3c)
407#define M6811_OP_STS (0x9f)
408#define M6811_OP_STS_EXT (0xbf)
409#define M6811_OP_TSX (0x30)
410#define M6811_OP_XGDX (0x8f)
411#define M6811_OP_ADDD (0xc3)
412#define M6811_OP_TXS (0x35)
413#define M6811_OP_DES (0x34)
908f682f
SC
414
415/* 68HC12 opcodes. */
b94a41a1
SC
416#define M6812_OP_PAGE2 (0x18)
417#define M6812_OP_MOVW (0x01)
418#define M6812_PB_PSHW (0xae)
419#define M6812_OP_STS (0x5f)
420#define M6812_OP_STS_EXT (0x7f)
421#define M6812_OP_LEAS (0x1b)
422#define M6812_OP_PSHX (0x34)
423#define M6812_OP_PSHY (0x35)
908f682f
SC
424
425/* Operand extraction. */
426#define OP_DIRECT (0x100) /* 8-byte direct addressing. */
427#define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
428#define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
429#define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
430
431/* Identification of the sequence. */
432enum m6811_seq_type
433{
434 P_LAST = 0,
435 P_SAVE_REG, /* Save a register on the stack. */
436 P_SET_FRAME, /* Setup the frame pointer. */
437 P_LOCAL_1, /* Allocate 1 byte for locals. */
438 P_LOCAL_2, /* Allocate 2 bytes for locals. */
439 P_LOCAL_N /* Allocate N bytes for locals. */
440};
441
442struct insn_sequence {
443 enum m6811_seq_type type;
444 unsigned length;
445 unsigned short code[MAX_CODES];
446};
447
448/* Sequence of instructions in the 68HC11 function prologue. */
449static struct insn_sequence m6811_prologue[] = {
450 /* Sequences to save a soft-register. */
451 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
452 M6811_OP_PSHX } },
453 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
454 M6811_OP_PAGE2, M6811_OP_PSHX } },
b94a41a1
SC
455 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
456 M6811_OP_PSHX } },
457 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
458 M6811_OP_PAGE2, M6811_OP_PSHX } },
908f682f
SC
459
460 /* Sequences to allocate local variables. */
461 { P_LOCAL_N, 7, { M6811_OP_TSX,
462 M6811_OP_XGDX,
463 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
464 M6811_OP_XGDX,
465 M6811_OP_TXS } },
466 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
467 M6811_OP_PAGE2, M6811_OP_XGDX,
468 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
469 M6811_OP_PAGE2, M6811_OP_XGDX,
470 M6811_OP_PAGE2, M6811_OP_TXS } },
471 { P_LOCAL_1, 1, { M6811_OP_DES } },
472 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
473 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
474
475 /* Initialize the frame pointer. */
476 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
b94a41a1 477 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f
SC
478 { P_LAST, 0, { 0 } }
479};
480
481
482/* Sequence of instructions in the 68HC12 function prologue. */
483static struct insn_sequence m6812_prologue[] = {
484 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
485 OP_IMM_HIGH, OP_IMM_LOW } },
b94a41a1
SC
486 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
487 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f 488 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
ffe1f3ee
SC
489 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
490 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
908f682f
SC
491 { P_LAST, 0 }
492};
493
494
495/* Analyze the sequence of instructions starting at the given address.
496 Returns a pointer to the sequence when it is recognized and
c8a7f6ac 497 the optional value (constant/address) associated with it. */
908f682f 498static struct insn_sequence *
e17a4113
UW
499m68hc11_analyze_instruction (struct gdbarch *gdbarch,
500 struct insn_sequence *seq, CORE_ADDR pc,
908f682f
SC
501 CORE_ADDR *val)
502{
e17a4113 503 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
908f682f
SC
504 unsigned char buffer[MAX_CODES];
505 unsigned bufsize;
506 unsigned j;
507 CORE_ADDR cur_val;
508 short v = 0;
509
510 bufsize = 0;
511 for (; seq->type != P_LAST; seq++)
512 {
513 cur_val = 0;
514 for (j = 0; j < seq->length; j++)
515 {
516 if (bufsize < j + 1)
517 {
c8a7f6ac 518 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
e17a4113 519 1, byte_order);
908f682f
SC
520 bufsize++;
521 }
522 /* Continue while we match the opcode. */
523 if (seq->code[j] == buffer[j])
524 continue;
525
526 if ((seq->code[j] & 0xf00) == 0)
527 break;
528
529 /* Extract a sequence parameter (address or constant). */
530 switch (seq->code[j])
531 {
532 case OP_DIRECT:
533 cur_val = (CORE_ADDR) buffer[j];
534 break;
535
536 case OP_IMM_HIGH:
537 cur_val = cur_val & 0x0ff;
538 cur_val |= (buffer[j] << 8);
539 break;
540
541 case OP_IMM_LOW:
542 cur_val &= 0x0ff00;
543 cur_val |= buffer[j];
544 break;
545
546 case OP_PBYTE:
547 if ((buffer[j] & 0xE0) == 0x80)
548 {
549 v = buffer[j] & 0x1f;
550 if (v & 0x10)
551 v |= 0xfff0;
552 }
553 else if ((buffer[j] & 0xfe) == 0xf0)
554 {
e17a4113 555 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order);
908f682f
SC
556 if (buffer[j] & 1)
557 v |= 0xff00;
558 }
559 else if (buffer[j] == 0xf2)
560 {
e17a4113 561 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order);
908f682f
SC
562 }
563 cur_val = v;
564 break;
565 }
566 }
567
568 /* We have a full match. */
569 if (j == seq->length)
570 {
571 *val = cur_val;
908f682f
SC
572 return seq;
573 }
574 }
575 return 0;
576}
577
7df11f59
SC
578/* Return the instruction that the function at the PC is using. */
579static enum insn_return_kind
580m68hc11_get_return_insn (CORE_ADDR pc)
581{
7cbd4a93 582 struct bound_minimal_symbol sym;
7df11f59
SC
583
584 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
585 function is stored by elfread.c in the high bit of the info field.
586 Use this to decide which instruction the function uses to return. */
587 sym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 588 if (sym.minsym == 0)
7df11f59
SC
589 return RETURN_RTS;
590
7cbd4a93 591 if (MSYMBOL_IS_RTC (sym.minsym))
7df11f59 592 return RETURN_RTC;
7cbd4a93 593 else if (MSYMBOL_IS_RTI (sym.minsym))
7df11f59
SC
594 return RETURN_RTI;
595 else
596 return RETURN_RTS;
597}
598
78073dd8
AC
599/* Analyze the function prologue to find some information
600 about the function:
601 - the PC of the first line (for m68hc11_skip_prologue)
602 - the offset of the previous frame saved address (from current frame)
603 - the soft registers which are pushed. */
1ea653ae 604static CORE_ADDR
be8626e0
MD
605m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
606 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
78073dd8 607{
1ea653ae 608 LONGEST save_addr;
78073dd8 609 CORE_ADDR func_end;
78073dd8
AC
610 int size;
611 int found_frame_point;
82c230c2 612 int saved_reg;
908f682f
SC
613 int done = 0;
614 struct insn_sequence *seq_table;
1ea653ae
SC
615
616 info->size = 0;
617 info->sp_offset = 0;
618 if (pc >= current_pc)
619 return current_pc;
620
78073dd8
AC
621 size = 0;
622
82c230c2 623 m68hc11_initialize_register_info ();
1ea653ae 624 if (pc == 0)
78073dd8 625 {
1ea653ae
SC
626 info->size = 0;
627 return pc;
78073dd8
AC
628 }
629
be8626e0 630 seq_table = gdbarch_tdep (gdbarch)->prologue;
908f682f 631
78073dd8
AC
632 /* The 68hc11 stack is as follows:
633
634
635 | |
636 +-----------+
637 | |
638 | args |
639 | |
640 +-----------+
641 | PC-return |
642 +-----------+
643 | Old frame |
644 +-----------+
645 | |
646 | Locals |
647 | |
648 +-----------+ <--- current frame
649 | |
650
651 With most processors (like 68K) the previous frame can be computed
652 easily because it is always at a fixed offset (see link/unlink).
653 That is, locals are accessed with negative offsets, arguments are
654 accessed with positive ones. Since 68hc11 only supports offsets
655 in the range [0..255], the frame is defined at the bottom of
656 locals (see picture).
657
658 The purpose of the analysis made here is to find out the size
659 of locals in this function. An alternative to this is to use
660 DWARF2 info. This would be better but I don't know how to
661 access dwarf2 debug from this function.
662
663 Walk from the function entry point to the point where we save
664 the frame. While walking instructions, compute the size of bytes
665 which are pushed. This gives us the index to access the previous
666 frame.
667
668 We limit the search to 128 bytes so that the algorithm is bounded
669 in case of random and wrong code. We also stop and abort if
670 we find an instruction which is not supposed to appear in the
025bb325
MS
671 prologue (as generated by gcc 2.95, 2.96). */
672
78073dd8 673 func_end = pc + 128;
78073dd8 674 found_frame_point = 0;
1ea653ae
SC
675 info->size = 0;
676 save_addr = 0;
908f682f 677 while (!done && pc + 2 < func_end)
78073dd8 678 {
908f682f
SC
679 struct insn_sequence *seq;
680 CORE_ADDR val;
1ea653ae 681
e17a4113 682 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val);
908f682f
SC
683 if (seq == 0)
684 break;
78073dd8 685
c8a7f6ac
SC
686 /* If we are within the instruction group, we can't advance the
687 pc nor the stack offset. Otherwise the caller's stack computed
688 from the current stack can be wrong. */
689 if (pc + seq->length > current_pc)
690 break;
691
692 pc = pc + seq->length;
908f682f 693 if (seq->type == P_SAVE_REG)
78073dd8 694 {
908f682f
SC
695 if (found_frame_point)
696 {
697 saved_reg = m68hc11_which_soft_register (val);
698 if (saved_reg < 0)
699 break;
78073dd8 700
908f682f 701 save_addr -= 2;
ff1e98b9
SC
702 if (info->saved_regs)
703 info->saved_regs[saved_reg].addr = save_addr;
908f682f
SC
704 }
705 else
706 {
707 size += 2;
708 }
78073dd8 709 }
908f682f 710 else if (seq->type == P_SET_FRAME)
78073dd8
AC
711 {
712 found_frame_point = 1;
1ea653ae 713 info->size = size;
78073dd8 714 }
908f682f 715 else if (seq->type == P_LOCAL_1)
78073dd8 716 {
6148eca7
SC
717 size += 1;
718 }
908f682f 719 else if (seq->type == P_LOCAL_2)
78073dd8 720 {
908f682f 721 size += 2;
78073dd8 722 }
908f682f 723 else if (seq->type == P_LOCAL_N)
78073dd8 724 {
908f682f
SC
725 /* Stack pointer is decremented for the allocation. */
726 if (val & 0x8000)
727 size -= (int) (val) | 0xffff0000;
728 else
729 size -= val;
78073dd8
AC
730 }
731 }
1ea653ae
SC
732 if (found_frame_point == 0)
733 info->sp_offset = size;
734 else
735 info->sp_offset = -1;
736 return pc;
78073dd8
AC
737}
738
82c230c2 739static CORE_ADDR
6093d2eb 740m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
78073dd8
AC
741{
742 CORE_ADDR func_addr, func_end;
743 struct symtab_and_line sal;
1ea653ae 744 struct m68hc11_unwind_cache tmp_cache = { 0 };
78073dd8 745
82c230c2
SC
746 /* If we have line debugging information, then the end of the
747 prologue should be the first assembly instruction of the
78073dd8
AC
748 first source line. */
749 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
750 {
751 sal = find_pc_line (func_addr, 0);
752 if (sal.end && sal.end < func_end)
753 return sal.end;
754 }
755
be8626e0 756 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
78073dd8
AC
757 return pc;
758}
759
1ea653ae
SC
760/* Put here the code to store, into fi->saved_regs, the addresses of
761 the saved registers of frame described by FRAME_INFO. This
762 includes special registers such as pc and fp saved in special ways
763 in the stack frame. sp is even more special: the address we return
025bb325 764 for it IS the sp for the next frame. */
1ea653ae 765
63807e1d 766static struct m68hc11_unwind_cache *
94afd7a6 767m68hc11_frame_unwind_cache (struct frame_info *this_frame,
1ea653ae
SC
768 void **this_prologue_cache)
769{
94afd7a6 770 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1ea653ae
SC
771 ULONGEST prev_sp;
772 ULONGEST this_base;
773 struct m68hc11_unwind_cache *info;
774 CORE_ADDR current_pc;
775 int i;
776
777 if ((*this_prologue_cache))
9a3c8263 778 return (struct m68hc11_unwind_cache *) (*this_prologue_cache);
1ea653ae
SC
779
780 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
781 (*this_prologue_cache) = info;
94afd7a6 782 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1ea653ae 783
94afd7a6 784 info->pc = get_frame_func (this_frame);
1ea653ae
SC
785
786 info->size = 0;
787 info->return_kind = m68hc11_get_return_insn (info->pc);
788
789 /* The SP was moved to the FP. This indicates that a new frame
790 was created. Get THIS frame's FP value by unwinding it from
791 the next frame. */
94afd7a6 792 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1ea653ae
SC
793 if (this_base == 0)
794 {
795 info->base = 0;
796 return info;
797 }
798
94afd7a6 799 current_pc = get_frame_pc (this_frame);
1ea653ae 800 if (info->pc != 0)
be8626e0 801 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
1ea653ae
SC
802
803 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
804
805 if (info->sp_offset != (CORE_ADDR) -1)
806 {
807 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
94afd7a6 808 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
1ea653ae 809 prev_sp = this_base + info->sp_offset + 2;
be8626e0 810 this_base += STACK_CORRECTION (gdbarch);
1ea653ae
SC
811 }
812 else
813 {
814 /* The FP points at the last saved register. Adjust the FP back
815 to before the first saved register giving the SP. */
816 prev_sp = this_base + info->size + 2;
817
be8626e0 818 this_base += STACK_CORRECTION (gdbarch);
1ea653ae
SC
819 if (soft_regs[SOFT_FP_REGNUM].name)
820 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
821 }
822
823 if (info->return_kind == RETURN_RTC)
824 {
825 prev_sp += 1;
826 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
827 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
828 }
829 else if (info->return_kind == RETURN_RTI)
830 {
831 prev_sp += 7;
832 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
833 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
834 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
835 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
836 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
837 }
838
839 /* Add 1 here to adjust for the post-decrement nature of the push
025bb325 840 instruction. */
1ea653ae
SC
841 info->prev_sp = prev_sp;
842
843 info->base = this_base;
844
845 /* Adjust all the saved registers so that they contain addresses and not
846 offsets. */
f6efe3f8 847 for (i = 0; i < gdbarch_num_cooked_regs (gdbarch); i++)
1ea653ae
SC
848 if (trad_frame_addr_p (info->saved_regs, i))
849 {
850 info->saved_regs[i].addr += this_base;
851 }
852
853 /* The previous frame's SP needed to be computed. Save the computed
854 value. */
855 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
856
857 return info;
858}
859
860/* Given a GDB frame, determine the address of the calling function's
861 frame. This will be used to create a new GDB frame struct. */
862
863static void
94afd7a6 864m68hc11_frame_this_id (struct frame_info *this_frame,
1ea653ae
SC
865 void **this_prologue_cache,
866 struct frame_id *this_id)
867{
868 struct m68hc11_unwind_cache *info
94afd7a6 869 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
1ea653ae
SC
870 CORE_ADDR base;
871 CORE_ADDR func;
872 struct frame_id id;
873
874 /* The FUNC is easy. */
94afd7a6 875 func = get_frame_func (this_frame);
1ea653ae 876
1ea653ae
SC
877 /* Hopefully the prologue analysis either correctly determined the
878 frame's base (which is the SP from the previous frame), or set
879 that base to "NULL". */
880 base = info->prev_sp;
881 if (base == 0)
882 return;
883
884 id = frame_id_build (base, func);
1ea653ae
SC
885 (*this_id) = id;
886}
887
94afd7a6
UW
888static struct value *
889m68hc11_frame_prev_register (struct frame_info *this_frame,
890 void **this_prologue_cache, int regnum)
1ea653ae 891{
94afd7a6 892 struct value *value;
1ea653ae 893 struct m68hc11_unwind_cache *info
94afd7a6 894 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
1ea653ae 895
94afd7a6 896 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1ea653ae 897
94afd7a6
UW
898 /* Take into account the 68HC12 specific call (PC + page). */
899 if (regnum == HARD_PC_REGNUM
900 && info->return_kind == RETURN_RTC
901 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
1ea653ae 902 {
94afd7a6
UW
903 CORE_ADDR pc = value_as_long (value);
904 if (pc >= 0x08000 && pc < 0x0c000)
1ea653ae 905 {
1ea653ae
SC
906 CORE_ADDR page;
907
94afd7a6 908 release_value (value);
94afd7a6
UW
909
910 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
911 HARD_PAGE_REGNUM);
912 page = value_as_long (value);
913 release_value (value);
94afd7a6
UW
914
915 pc -= 0x08000;
916 pc += ((page & 0x0ff) << 14);
917 pc += 0x1000000;
918
919 return frame_unwind_got_constant (this_frame, regnum, pc);
1ea653ae
SC
920 }
921 }
94afd7a6
UW
922
923 return value;
1ea653ae
SC
924}
925
926static const struct frame_unwind m68hc11_frame_unwind = {
927 NORMAL_FRAME,
8fbca658 928 default_frame_unwind_stop_reason,
1ea653ae 929 m68hc11_frame_this_id,
94afd7a6
UW
930 m68hc11_frame_prev_register,
931 NULL,
932 default_frame_sniffer
1ea653ae
SC
933};
934
1ea653ae 935static CORE_ADDR
94afd7a6 936m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
1ea653ae
SC
937{
938 struct m68hc11_unwind_cache *info
94afd7a6 939 = m68hc11_frame_unwind_cache (this_frame, this_cache);
1ea653ae
SC
940
941 return info->base;
942}
943
944static CORE_ADDR
94afd7a6 945m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
1ea653ae
SC
946{
947 CORE_ADDR addr;
948 struct m68hc11_unwind_cache *info
94afd7a6 949 = m68hc11_frame_unwind_cache (this_frame, this_cache);
1ea653ae
SC
950
951 addr = info->base + info->size;
952 if (info->return_kind == RETURN_RTC)
953 addr += 1;
954 else if (info->return_kind == RETURN_RTI)
955 addr += 7;
956
957 return addr;
958}
959
960static const struct frame_base m68hc11_frame_base = {
961 &m68hc11_frame_unwind,
962 m68hc11_frame_base_address,
963 m68hc11_frame_base_address,
964 m68hc11_frame_args_address
965};
966
94afd7a6
UW
967/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
968 frame. The frame ID's base needs to match the TOS value saved by
969 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1ea653ae
SC
970
971static struct frame_id
94afd7a6 972m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1ea653ae
SC
973{
974 ULONGEST tos;
94afd7a6 975 CORE_ADDR pc = get_frame_pc (this_frame);
1ea653ae 976
94afd7a6 977 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1ea653ae
SC
978 tos += 2;
979 return frame_id_build (tos, pc);
980}
78073dd8 981
e286caf2
SC
982\f
983/* Get and print the register from the given frame. */
78073dd8 984static void
e286caf2
SC
985m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
986 struct frame_info *frame, int regno)
78073dd8 987{
e286caf2
SC
988 LONGEST rval;
989
990 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
991 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
7f5f525d 992 rval = get_frame_register_unsigned (frame, regno);
e286caf2 993 else
7f5f525d 994 rval = get_frame_register_signed (frame, regno);
e286caf2
SC
995
996 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
997 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
7df11f59 998 {
e286caf2
SC
999 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1000 if (regno != HARD_CCR_REGNUM)
1001 print_longest (file, 'd', 1, rval);
7df11f59 1002 }
e286caf2
SC
1003 else
1004 {
1005 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1006 {
1007 ULONGEST page;
7df11f59 1008
7f5f525d 1009 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
e286caf2
SC
1010 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1011 (unsigned) rval);
1012 }
1013 else
1014 {
1015 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1016 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1017 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1018 print_longest (file, 'd', 1, rval);
1019 }
1020 }
1021
1022 if (regno == HARD_CCR_REGNUM)
78073dd8 1023 {
e286caf2
SC
1024 /* CCR register */
1025 int C, Z, N, V;
1026 unsigned char l = rval & 0xff;
1027
1028 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1029 l & M6811_S_BIT ? 'S' : '-',
1030 l & M6811_X_BIT ? 'X' : '-',
1031 l & M6811_H_BIT ? 'H' : '-',
1032 l & M6811_I_BIT ? 'I' : '-',
1033 l & M6811_N_BIT ? 'N' : '-',
1034 l & M6811_Z_BIT ? 'Z' : '-',
1035 l & M6811_V_BIT ? 'V' : '-',
1036 l & M6811_C_BIT ? 'C' : '-');
1037 N = (l & M6811_N_BIT) != 0;
1038 Z = (l & M6811_Z_BIT) != 0;
1039 V = (l & M6811_V_BIT) != 0;
1040 C = (l & M6811_C_BIT) != 0;
1041
025bb325 1042 /* Print flags following the h8300. */
e286caf2
SC
1043 if ((C | Z) == 0)
1044 fprintf_filtered (file, "u> ");
1045 else if ((C | Z) == 1)
1046 fprintf_filtered (file, "u<= ");
1047 else if (C == 0)
1048 fprintf_filtered (file, "u< ");
1049
1050 if (Z == 0)
1051 fprintf_filtered (file, "!= ");
1052 else
1053 fprintf_filtered (file, "== ");
1054
1055 if ((N ^ V) == 0)
1056 fprintf_filtered (file, ">= ");
1057 else
1058 fprintf_filtered (file, "< ");
1059
1060 if ((Z | (N ^ V)) == 0)
1061 fprintf_filtered (file, "> ");
78073dd8 1062 else
e286caf2 1063 fprintf_filtered (file, "<= ");
78073dd8 1064 }
e286caf2
SC
1065}
1066
1067/* Same as 'info reg' but prints the registers in a different way. */
1068static void
1069m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1070 struct frame_info *frame, int regno, int cpregs)
1071{
1072 if (regno >= 0)
1073 {
1074 const char *name = gdbarch_register_name (gdbarch, regno);
1075
1076 if (!name || !*name)
1077 return;
1078
1079 fprintf_filtered (file, "%-10s ", name);
1080 m68hc11_print_register (gdbarch, file, frame, regno);
1081 fprintf_filtered (file, "\n");
1082 }
1083 else
1084 {
1085 int i, nr;
1086
1087 fprintf_filtered (file, "PC=");
1088 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1089
1090 fprintf_filtered (file, " SP=");
1091 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1092
1093 fprintf_filtered (file, " FP=");
1094 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1095
1096 fprintf_filtered (file, "\nCCR=");
1097 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1098
1099 fprintf_filtered (file, "\nD=");
1100 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1101
1102 fprintf_filtered (file, " X=");
1103 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1104
1105 fprintf_filtered (file, " Y=");
1106 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1107
1108 if (gdbarch_tdep (gdbarch)->use_page_register)
1109 {
1110 fprintf_filtered (file, "\nPage=");
1111 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1112 }
1113 fprintf_filtered (file, "\n");
1114
1115 nr = 0;
1116 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1117 {
1118 /* Skip registers which are not defined in the symbol table. */
1119 if (soft_regs[i].name == 0)
1120 continue;
1121
1122 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1123 m68hc11_print_register (gdbarch, file, frame, i);
1124 nr++;
1125 if ((nr % 8) == 7)
1126 fprintf_filtered (file, "\n");
1127 else
1128 fprintf_filtered (file, " ");
1129 }
1130 if (nr && (nr % 8) != 7)
1131 fprintf_filtered (file, "\n");
1132 }
1133}
1134
82c230c2 1135static CORE_ADDR
7d9b040b 1136m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3dc990bf
SC
1137 struct regcache *regcache, CORE_ADDR bp_addr,
1138 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1139 function_call_return_method return_method,
1140 CORE_ADDR struct_addr)
78073dd8 1141{
e17a4113 1142 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
82c230c2
SC
1143 int argnum;
1144 int first_stack_argnum;
82c230c2 1145 struct type *type;
948f8e3d 1146 const gdb_byte *val;
e362b510 1147 gdb_byte buf[2];
82c230c2 1148
82c230c2 1149 first_stack_argnum = 0;
cf84fa6b
AH
1150 if (return_method == return_method_struct)
1151 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
82c230c2
SC
1152 else if (nargs > 0)
1153 {
4991999e 1154 type = value_type (args[0]);
3dc990bf 1155
82c230c2 1156 /* First argument is passed in D and X registers. */
744a8059 1157 if (TYPE_LENGTH (type) <= 4)
82c230c2 1158 {
3dc990bf
SC
1159 ULONGEST v;
1160
e17a4113 1161 v = extract_unsigned_integer (value_contents (args[0]),
744a8059 1162 TYPE_LENGTH (type), byte_order);
82c230c2 1163 first_stack_argnum = 1;
3dc990bf
SC
1164
1165 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
744a8059 1166 if (TYPE_LENGTH (type) > 2)
82c230c2
SC
1167 {
1168 v >>= 16;
3dc990bf 1169 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
82c230c2
SC
1170 }
1171 }
1172 }
82c230c2 1173
3dc990bf 1174 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
82c230c2 1175 {
4991999e 1176 type = value_type (args[argnum]);
82c230c2 1177
744a8059 1178 if (TYPE_LENGTH (type) & 1)
22df305e 1179 {
948f8e3d 1180 static gdb_byte zero = 0;
22df305e 1181
3dc990bf
SC
1182 sp--;
1183 write_memory (sp, &zero, 1);
22df305e 1184 }
948f8e3d 1185 val = value_contents (args[argnum]);
744a8059
SP
1186 sp -= TYPE_LENGTH (type);
1187 write_memory (sp, val, TYPE_LENGTH (type));
82c230c2 1188 }
3dc990bf
SC
1189
1190 /* Store return address. */
1191 sp -= 2;
e17a4113 1192 store_unsigned_integer (buf, 2, byte_order, bp_addr);
3dc990bf
SC
1193 write_memory (sp, buf, 2);
1194
1195 /* Finally, update the stack pointer... */
be8626e0 1196 sp -= STACK_CORRECTION (gdbarch);
3dc990bf
SC
1197 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1198
1199 /* ...and fake a frame pointer. */
1200 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1201
1202 /* DWARF2/GCC uses the stack address *before* the function call as a
1203 frame's CFA. */
1204 return sp + 2;
78073dd8
AC
1205}
1206
1207
4db73d49
SC
1208/* Return the GDB type object for the "standard" data type
1209 of data in register N. */
1210
82c230c2 1211static struct type *
4db73d49 1212m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
82c230c2 1213{
5706502a
SC
1214 switch (reg_nr)
1215 {
1216 case HARD_PAGE_REGNUM:
1217 case HARD_A_REGNUM:
1218 case HARD_B_REGNUM:
1219 case HARD_CCR_REGNUM:
df4df182 1220 return builtin_type (gdbarch)->builtin_uint8;
5706502a 1221
548bcbec 1222 case M68HC12_HARD_PC_REGNUM:
df4df182 1223 return builtin_type (gdbarch)->builtin_uint32;
548bcbec 1224
5706502a 1225 default:
df4df182 1226 return builtin_type (gdbarch)->builtin_uint16;
5706502a 1227 }
82c230c2
SC
1228}
1229
82c230c2 1230static void
4db73d49 1231m68hc11_store_return_value (struct type *type, struct regcache *regcache,
948f8e3d 1232 const gdb_byte *valbuf)
82c230c2 1233{
22df305e
SC
1234 int len;
1235
1236 len = TYPE_LENGTH (type);
1237
1238 /* First argument is passed in D and X registers. */
4db73d49 1239 if (len <= 2)
4f0420fd 1240 regcache->raw_write_part (HARD_D_REGNUM, 2 - len, len, valbuf);
4db73d49 1241 else if (len <= 4)
22df305e 1242 {
4f0420fd 1243 regcache->raw_write_part (HARD_X_REGNUM, 4 - len, len - 2, valbuf);
10eaee5f 1244 regcache->raw_write (HARD_D_REGNUM, valbuf + (len - 2));
22df305e
SC
1245 }
1246 else
8a3fe4f8 1247 error (_("return of value > 4 is not supported."));
82c230c2
SC
1248}
1249
1250
ef2b8fcd 1251/* Given a return value in `regcache' with a type `type',
78073dd8
AC
1252 extract and copy its value into `valbuf'. */
1253
82c230c2 1254static void
ef2b8fcd
SC
1255m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1256 void *valbuf)
78073dd8 1257{
e362b510 1258 gdb_byte buf[M68HC11_REG_SIZE];
ef2b8fcd 1259
0b883586 1260 regcache->raw_read (HARD_D_REGNUM, buf);
744a8059 1261 switch (TYPE_LENGTH (type))
82c230c2 1262 {
22df305e 1263 case 1:
ef2b8fcd 1264 memcpy (valbuf, buf + 1, 1);
22df305e 1265 break;
ef2b8fcd 1266
22df305e 1267 case 2:
ef2b8fcd 1268 memcpy (valbuf, buf, 2);
22df305e 1269 break;
ef2b8fcd 1270
22df305e 1271 case 3:
ef2b8fcd 1272 memcpy ((char*) valbuf + 1, buf, 2);
0b883586 1273 regcache->raw_read (HARD_X_REGNUM, buf);
ef2b8fcd 1274 memcpy (valbuf, buf + 1, 1);
22df305e 1275 break;
ef2b8fcd 1276
22df305e 1277 case 4:
ef2b8fcd 1278 memcpy ((char*) valbuf + 2, buf, 2);
0b883586 1279 regcache->raw_read (HARD_X_REGNUM, buf);
ef2b8fcd 1280 memcpy (valbuf, buf, 2);
22df305e
SC
1281 break;
1282
1283 default:
8a3fe4f8 1284 error (_("bad size for return value"));
82c230c2
SC
1285 }
1286}
1287
63807e1d 1288static enum return_value_convention
6a3a010b 1289m68hc11_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1290 struct type *valtype, struct regcache *regcache,
1291 gdb_byte *readbuf, const gdb_byte *writebuf)
82c230c2 1292{
97092415
AC
1293 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1294 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1295 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1296 || TYPE_LENGTH (valtype) > 4)
1297 return RETURN_VALUE_STRUCT_CONVENTION;
1298 else
1299 {
1300 if (readbuf != NULL)
1301 m68hc11_extract_return_value (valtype, regcache, readbuf);
1302 if (writebuf != NULL)
1303 m68hc11_store_return_value (valtype, regcache, writebuf);
1304 return RETURN_VALUE_REGISTER_CONVENTION;
1305 }
82c230c2
SC
1306}
1307
7df11f59
SC
1308/* Test whether the ELF symbol corresponds to a function using rtc or
1309 rti to return. */
1310
1311static void
1312m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1313{
1314 unsigned char flags;
1315
1316 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1317 if (flags & STO_M68HC12_FAR)
1318 MSYMBOL_SET_RTC (msym);
1319 if (flags & STO_M68HC12_INTERRUPT)
1320 MSYMBOL_SET_RTI (msym);
1321}
b631436b
SC
1322\f
1323
1324/* 68HC11/68HC12 register groups.
1325 Identify real hard registers and soft registers used by gcc. */
1326
1327static struct reggroup *m68hc11_soft_reggroup;
1328static struct reggroup *m68hc11_hard_reggroup;
1329
1330static void
1331m68hc11_init_reggroups (void)
1332{
1333 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1334 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1335}
1336
1337static void
1338m68hc11_add_reggroups (struct gdbarch *gdbarch)
1339{
1340 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1341 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1342 reggroup_add (gdbarch, general_reggroup);
1343 reggroup_add (gdbarch, float_reggroup);
1344 reggroup_add (gdbarch, all_reggroup);
1345 reggroup_add (gdbarch, save_reggroup);
1346 reggroup_add (gdbarch, restore_reggroup);
1347 reggroup_add (gdbarch, vector_reggroup);
1348 reggroup_add (gdbarch, system_reggroup);
1349}
1350
1351static int
1352m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1353 struct reggroup *group)
1354{
1355 /* We must save the real hard register as well as gcc
1356 soft registers including the frame pointer. */
1357 if (group == save_reggroup || group == restore_reggroup)
1358 {
1359 return (regnum <= gdbarch_num_regs (gdbarch)
1360 || ((regnum == SOFT_FP_REGNUM
1361 || regnum == SOFT_TMP_REGNUM
1362 || regnum == SOFT_ZS_REGNUM
1363 || regnum == SOFT_XY_REGNUM)
d93859e2 1364 && m68hc11_register_name (gdbarch, regnum)));
b631436b
SC
1365 }
1366
1367 /* Group to identify gcc soft registers (d1..dN). */
1368 if (group == m68hc11_soft_reggroup)
1369 {
d93859e2
UW
1370 return regnum >= SOFT_D1_REGNUM
1371 && m68hc11_register_name (gdbarch, regnum);
b631436b
SC
1372 }
1373
1374 if (group == m68hc11_hard_reggroup)
1375 {
1376 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1377 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1378 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1379 }
1380 return default_register_reggroup_p (gdbarch, regnum, group);
1381}
1382
82c230c2
SC
1383static struct gdbarch *
1384m68hc11_gdbarch_init (struct gdbarch_info info,
1385 struct gdbarch_list *arches)
1386{
82c230c2
SC
1387 struct gdbarch *gdbarch;
1388 struct gdbarch_tdep *tdep;
81967506 1389 int elf_flags;
82c230c2
SC
1390
1391 soft_reg_initialized = 0;
81967506
SC
1392
1393 /* Extract the elf_flags if available. */
1394 if (info.abfd != NULL
1395 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1396 elf_flags = elf_elfheader (info.abfd)->e_flags;
1397 else
1398 elf_flags = 0;
1399
025bb325 1400 /* Try to find a pre-existing architecture. */
82c230c2
SC
1401 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1402 arches != NULL;
1403 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1404 {
81967506
SC
1405 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1406 continue;
1407
82c230c2
SC
1408 return arches->gdbarch;
1409 }
1410
025bb325 1411 /* Need a new architecture. Fill in a target specific vector. */
cdd238da 1412 tdep = XCNEW (struct gdbarch_tdep);
82c230c2 1413 gdbarch = gdbarch_alloc (&info, tdep);
81967506 1414 tdep->elf_flags = elf_flags;
ed99b3d0 1415
5d1a66bd
SC
1416 switch (info.bfd_arch_info->arch)
1417 {
1418 case bfd_arch_m68hc11:
1419 tdep->stack_correction = 1;
7df11f59 1420 tdep->use_page_register = 0;
908f682f 1421 tdep->prologue = m6811_prologue;
548bcbec
SC
1422 set_gdbarch_addr_bit (gdbarch, 16);
1423 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1424 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1425 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
5d1a66bd 1426 break;
82c230c2 1427
5d1a66bd
SC
1428 case bfd_arch_m68hc12:
1429 tdep->stack_correction = 0;
7df11f59 1430 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
908f682f 1431 tdep->prologue = m6812_prologue;
548bcbec
SC
1432 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1433 set_gdbarch_num_pseudo_regs (gdbarch,
1434 elf_flags & E_M68HC12_BANKS
1435 ? M68HC12_NUM_PSEUDO_REGS
1436 : M68HC11_NUM_PSEUDO_REGS);
1437 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1438 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1439 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1440 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
5d1a66bd
SC
1441 break;
1442
1443 default:
1444 break;
1445 }
7d32ba20
SC
1446
1447 /* Initially set everything according to the ABI.
1448 Use 16-bit integers since it will be the case for most
1449 programs. The size of these types should normally be set
1450 according to the dwarf2 debug information. */
82c230c2 1451 set_gdbarch_short_bit (gdbarch, 16);
81967506 1452 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
82c230c2 1453 set_gdbarch_float_bit (gdbarch, 32);
f92589cb
TS
1454 if (elf_flags & E_M68HC11_F64)
1455 {
1456 set_gdbarch_double_bit (gdbarch, 64);
1457 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1458 }
1459 else
1460 {
1461 set_gdbarch_double_bit (gdbarch, 32);
1462 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1463 }
2417dd25 1464 set_gdbarch_long_double_bit (gdbarch, 64);
82c230c2
SC
1465 set_gdbarch_long_bit (gdbarch, 32);
1466 set_gdbarch_ptr_bit (gdbarch, 16);
1467 set_gdbarch_long_long_bit (gdbarch, 64);
1468
b2a02dda
SC
1469 /* Characters are unsigned. */
1470 set_gdbarch_char_signed (gdbarch, 0);
1471
82c230c2
SC
1472 /* Set register info. */
1473 set_gdbarch_fp0_regnum (gdbarch, -1);
82c230c2 1474
82c230c2 1475 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
82c230c2 1476 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
4db73d49 1477 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
46ce284d
AC
1478 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1479 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
82c230c2 1480
3dc990bf
SC
1481 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1482
97092415 1483 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
82c230c2
SC
1484 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1485 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
04180708
YQ
1486 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1487 m68hc11_breakpoint::kind_from_pc);
1488 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1489 m68hc11_breakpoint::bp_from_kind);
82c230c2 1490
b631436b
SC
1491 m68hc11_add_reggroups (gdbarch);
1492 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
e286caf2 1493 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
b631436b 1494
1ea653ae 1495 /* Hook in the DWARF CFI frame unwinder. */
94afd7a6 1496 dwarf2_append_unwinders (gdbarch);
1ea653ae 1497
94afd7a6 1498 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1ea653ae
SC
1499 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1500
1501 /* Methods for saving / extracting a dummy frame's ID. The ID's
1502 stack address must match the SP value returned by
1503 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
94afd7a6 1504 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1ea653ae 1505
7df11f59
SC
1506 /* Minsymbol frobbing. */
1507 set_gdbarch_elf_make_msymbol_special (gdbarch,
1508 m68hc11_elf_make_msymbol_special);
1509
82c230c2 1510 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
82c230c2
SC
1511
1512 return gdbarch;
78073dd8
AC
1513}
1514
1515void
fba45db2 1516_initialize_m68hc11_tdep (void)
78073dd8 1517{
82c230c2 1518 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
ea3881d9 1519 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
b631436b 1520 m68hc11_init_reggroups ();
78073dd8
AC
1521}
1522
This page took 2.094702 seconds and 4 git commands to generate.