2007-05-31 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
CommitLineData
908f682f 1/* Target-dependent code for Motorola 68HC11 & 68HC12
931aecf5 2
6aba47ca
DJ
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
931aecf5 5
ffe1f3ee 6 Contributed by Stephane Carrez, stcarrez@nerim.fr
78073dd8
AC
7
8This file is part of GDB.
9
10This program is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2 of the License, or
13(at your option) any later version.
14
15This program is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with this program; if not, write to the Free Software
197e01b6
EZ
22Foundation, Inc., 51 Franklin Street, Fifth Floor,
23Boston, MA 02110-1301, USA. */
78073dd8 24
78073dd8 25
82c230c2
SC
26#include "defs.h"
27#include "frame.h"
1ea653ae
SC
28#include "frame-unwind.h"
29#include "frame-base.h"
30#include "dwarf2-frame.h"
31#include "trad-frame.h"
82c230c2
SC
32#include "symtab.h"
33#include "gdbtypes.h"
34#include "gdbcmd.h"
35#include "gdbcore.h"
36#include "gdb_string.h"
37#include "value.h"
38#include "inferior.h"
39#include "dis-asm.h"
40#include "symfile.h"
41#include "objfiles.h"
42#include "arch-utils.h"
4e052eda 43#include "regcache.h"
b631436b 44#include "reggroups.h"
78073dd8 45
82c230c2
SC
46#include "target.h"
47#include "opcode/m68hc11.h"
81967506
SC
48#include "elf/m68hc11.h"
49#include "elf-bfd.h"
78073dd8 50
7df11f59
SC
51/* Macros for setting and testing a bit in a minimal symbol.
52 For 68HC11/68HC12 we have two flags that tell which return
53 type the function is using. This is used for prologue and frame
54 analysis to compute correct stack frame layout.
55
56 The MSB of the minimal symbol's "info" field is used for this purpose.
7df11f59
SC
57
58 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
59 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
60 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
f594e5e9 61 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
7df11f59
SC
62
63#define MSYMBOL_SET_RTC(msym) \
64 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
65 | 0x80000000)
66
67#define MSYMBOL_SET_RTI(msym) \
68 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
69 | 0x40000000)
70
71#define MSYMBOL_IS_RTC(msym) \
72 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
73
74#define MSYMBOL_IS_RTI(msym) \
75 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
76
7df11f59
SC
77enum insn_return_kind {
78 RETURN_RTS,
79 RETURN_RTC,
80 RETURN_RTI
81};
82
83
7157eed4 84/* Register numbers of various important registers. */
78073dd8 85
82c230c2
SC
86#define HARD_X_REGNUM 0
87#define HARD_D_REGNUM 1
88#define HARD_Y_REGNUM 2
89#define HARD_SP_REGNUM 3
90#define HARD_PC_REGNUM 4
91
92#define HARD_A_REGNUM 5
93#define HARD_B_REGNUM 6
94#define HARD_CCR_REGNUM 7
5706502a
SC
95
96/* 68HC12 page number register.
97 Note: to keep a compatibility with gcc register naming, we must
98 not have to rename FP and other soft registers. The page register
99 is a real hard register and must therefore be counted by NUM_REGS.
100 For this it has the same number as Z register (which is not used). */
101#define HARD_PAGE_REGNUM 8
102#define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
82c230c2
SC
103
104/* Z is replaced by X or Y by gcc during machine reorg.
105 ??? There is no way to get it and even know whether
106 it's in X or Y or in ZS. */
107#define SOFT_Z_REGNUM 8
108
109/* Soft registers. These registers are special. There are treated
110 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
111 They are physically located in memory. */
112#define SOFT_FP_REGNUM 9
113#define SOFT_TMP_REGNUM 10
114#define SOFT_ZS_REGNUM 11
115#define SOFT_XY_REGNUM 12
f91a8b6b
SC
116#define SOFT_UNUSED_REGNUM 13
117#define SOFT_D1_REGNUM 14
82c230c2
SC
118#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
119#define M68HC11_MAX_SOFT_REGS 32
120
121#define M68HC11_NUM_REGS (8)
122#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
123#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
124
125#define M68HC11_REG_SIZE (2)
126
548bcbec
SC
127#define M68HC12_NUM_REGS (9)
128#define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
129#define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
130
908f682f 131struct insn_sequence;
82c230c2
SC
132struct gdbarch_tdep
133 {
5d1a66bd
SC
134 /* Stack pointer correction value. For 68hc11, the stack pointer points
135 to the next push location. An offset of 1 must be applied to obtain
136 the address where the last value is saved. For 68hc12, the stack
137 pointer points to the last value pushed. No offset is necessary. */
138 int stack_correction;
908f682f
SC
139
140 /* Description of instructions in the prologue. */
141 struct insn_sequence *prologue;
81967506 142
7df11f59
SC
143 /* True if the page memory bank register is available
144 and must be used. */
145 int use_page_register;
146
81967506
SC
147 /* ELF flags for ABI. */
148 int elf_flags;
82c230c2
SC
149 };
150
5d1a66bd
SC
151#define M6811_TDEP gdbarch_tdep (current_gdbarch)
152#define STACK_CORRECTION (M6811_TDEP->stack_correction)
7df11f59 153#define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
5d1a66bd 154
1ea653ae
SC
155struct m68hc11_unwind_cache
156{
157 /* The previous frame's inner most stack address. Used as this
158 frame ID's stack_addr. */
159 CORE_ADDR prev_sp;
160 /* The frame's base, optionally used by the high-level debug info. */
161 CORE_ADDR base;
162 CORE_ADDR pc;
163 int size;
164 int prologue_type;
165 CORE_ADDR return_pc;
166 CORE_ADDR sp_offset;
167 int frameless;
168 enum insn_return_kind return_kind;
169
170 /* Table indicating the location of each and every register. */
171 struct trad_frame_saved_reg *saved_regs;
172};
173
82c230c2
SC
174/* Table of registers for 68HC11. This includes the hard registers
175 and the soft registers used by GCC. */
176static char *
177m68hc11_register_names[] =
178{
179 "x", "d", "y", "sp", "pc", "a", "b",
5706502a 180 "ccr", "page", "frame","tmp", "zs", "xy", 0,
82c230c2
SC
181 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
182 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
183 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
184 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
185 "d29", "d30", "d31", "d32"
186};
78073dd8 187
82c230c2
SC
188struct m68hc11_soft_reg
189{
190 const char *name;
191 CORE_ADDR addr;
192};
78073dd8 193
82c230c2 194static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
78073dd8 195
82c230c2 196#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
78073dd8 197
82c230c2
SC
198static int soft_min_addr;
199static int soft_max_addr;
200static int soft_reg_initialized = 0;
78073dd8 201
82c230c2
SC
202/* Look in the symbol table for the address of a pseudo register
203 in memory. If we don't find it, pretend the register is not used
204 and not available. */
205static void
206m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
207{
208 struct minimal_symbol *msymbol;
78073dd8 209
82c230c2
SC
210 msymbol = lookup_minimal_symbol (name, NULL, NULL);
211 if (msymbol)
212 {
213 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
214 reg->name = xstrdup (name);
215
216 /* Keep track of the address range for soft registers. */
217 if (reg->addr < (CORE_ADDR) soft_min_addr)
218 soft_min_addr = reg->addr;
219 if (reg->addr > (CORE_ADDR) soft_max_addr)
220 soft_max_addr = reg->addr;
221 }
222 else
223 {
224 reg->name = 0;
225 reg->addr = 0;
226 }
227}
78073dd8 228
82c230c2
SC
229/* Initialize the table of soft register addresses according
230 to the symbol table. */
231 static void
232m68hc11_initialize_register_info (void)
233{
234 int i;
78073dd8 235
82c230c2
SC
236 if (soft_reg_initialized)
237 return;
238
239 soft_min_addr = INT_MAX;
240 soft_max_addr = 0;
241 for (i = 0; i < M68HC11_ALL_REGS; i++)
242 {
243 soft_regs[i].name = 0;
244 }
245
246 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
247 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
248 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
249 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
250 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
78073dd8 251
82c230c2
SC
252 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
253 {
254 char buf[10];
78073dd8 255
82c230c2
SC
256 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
257 m68hc11_get_register_info (&soft_regs[i], buf);
258 }
78073dd8 259
82c230c2 260 if (soft_regs[SOFT_FP_REGNUM].name == 0)
8a3fe4f8
AC
261 warning (_("No frame soft register found in the symbol table.\n"
262 "Stack backtrace will not work."));
82c230c2
SC
263 soft_reg_initialized = 1;
264}
78073dd8 265
82c230c2
SC
266/* Given an address in memory, return the soft register number if
267 that address corresponds to a soft register. Returns -1 if not. */
268static int
269m68hc11_which_soft_register (CORE_ADDR addr)
270{
271 int i;
272
273 if (addr < soft_min_addr || addr > soft_max_addr)
274 return -1;
275
276 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
277 {
278 if (soft_regs[i].name && soft_regs[i].addr == addr)
279 return i;
280 }
281 return -1;
282}
78073dd8 283
82c230c2
SC
284/* Fetch a pseudo register. The 68hc11 soft registers are treated like
285 pseudo registers. They are located in memory. Translate the register
286 fetch into a memory read. */
46ce284d
AC
287static void
288m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
289 struct regcache *regcache,
ff1e98b9 290 int regno, gdb_byte *buf)
82c230c2 291{
548bcbec
SC
292 /* The PC is a pseudo reg only for 68HC12 with the memory bank
293 addressing mode. */
294 if (regno == M68HC12_HARD_PC_REGNUM)
295 {
4db73d49 296 ULONGEST pc;
548bcbec 297 const int regsize = TYPE_LENGTH (builtin_type_uint32);
548bcbec 298
4db73d49 299 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
548bcbec
SC
300 if (pc >= 0x8000 && pc < 0xc000)
301 {
4db73d49
SC
302 ULONGEST page;
303
304 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
548bcbec
SC
305 pc -= 0x8000;
306 pc += (page << 14);
307 pc += 0x1000000;
308 }
309 store_unsigned_integer (buf, regsize, pc);
310 return;
311 }
312
82c230c2
SC
313 m68hc11_initialize_register_info ();
314
315 /* Fetch a soft register: translate into a memory read. */
316 if (soft_regs[regno].name)
317 {
318 target_read_memory (soft_regs[regno].addr, buf, 2);
319 }
320 else
321 {
322 memset (buf, 0, 2);
323 }
82c230c2 324}
78073dd8 325
82c230c2
SC
326/* Store a pseudo register. Translate the register store
327 into a memory write. */
328static void
46ce284d
AC
329m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
330 struct regcache *regcache,
ff1e98b9 331 int regno, const gdb_byte *buf)
82c230c2 332{
548bcbec
SC
333 /* The PC is a pseudo reg only for 68HC12 with the memory bank
334 addressing mode. */
335 if (regno == M68HC12_HARD_PC_REGNUM)
336 {
337 const int regsize = TYPE_LENGTH (builtin_type_uint32);
338 char *tmp = alloca (regsize);
339 CORE_ADDR pc;
340
341 memcpy (tmp, buf, regsize);
342 pc = extract_unsigned_integer (tmp, regsize);
343 if (pc >= 0x1000000)
344 {
345 pc -= 0x1000000;
4db73d49
SC
346 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
347 (pc >> 14) & 0x0ff);
548bcbec 348 pc &= 0x03fff;
4db73d49
SC
349 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
350 pc + 0x8000);
548bcbec
SC
351 }
352 else
4db73d49 353 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
548bcbec
SC
354 return;
355 }
356
82c230c2 357 m68hc11_initialize_register_info ();
78073dd8 358
82c230c2
SC
359 /* Store a soft register: translate into a memory write. */
360 if (soft_regs[regno].name)
361 {
46ce284d
AC
362 const int regsize = 2;
363 char *tmp = alloca (regsize);
364 memcpy (tmp, buf, regsize);
365 target_write_memory (soft_regs[regno].addr, tmp, regsize);
82c230c2
SC
366 }
367}
78073dd8 368
fa88f677 369static const char *
82c230c2 370m68hc11_register_name (int reg_nr)
78073dd8 371{
548bcbec
SC
372 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
373 return "pc";
374 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
375 return "ppc";
376
82c230c2
SC
377 if (reg_nr < 0)
378 return NULL;
379 if (reg_nr >= M68HC11_ALL_REGS)
380 return NULL;
381
65760afb
SC
382 m68hc11_initialize_register_info ();
383
82c230c2
SC
384 /* If we don't know the address of a soft register, pretend it
385 does not exist. */
386 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
387 return NULL;
388 return m68hc11_register_names[reg_nr];
389}
78073dd8 390
f4f9705a 391static const unsigned char *
82c230c2 392m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
78073dd8 393{
82c230c2
SC
394 static unsigned char breakpoint[] = {0x0};
395
396 *lenptr = sizeof (breakpoint);
397 return breakpoint;
78073dd8
AC
398}
399
908f682f
SC
400\f
401/* 68HC11 & 68HC12 prologue analysis.
402
403 */
404#define MAX_CODES 12
405
406/* 68HC11 opcodes. */
407#undef M6811_OP_PAGE2
b94a41a1
SC
408#define M6811_OP_PAGE2 (0x18)
409#define M6811_OP_LDX (0xde)
410#define M6811_OP_LDX_EXT (0xfe)
411#define M6811_OP_PSHX (0x3c)
412#define M6811_OP_STS (0x9f)
413#define M6811_OP_STS_EXT (0xbf)
414#define M6811_OP_TSX (0x30)
415#define M6811_OP_XGDX (0x8f)
416#define M6811_OP_ADDD (0xc3)
417#define M6811_OP_TXS (0x35)
418#define M6811_OP_DES (0x34)
908f682f
SC
419
420/* 68HC12 opcodes. */
b94a41a1
SC
421#define M6812_OP_PAGE2 (0x18)
422#define M6812_OP_MOVW (0x01)
423#define M6812_PB_PSHW (0xae)
424#define M6812_OP_STS (0x5f)
425#define M6812_OP_STS_EXT (0x7f)
426#define M6812_OP_LEAS (0x1b)
427#define M6812_OP_PSHX (0x34)
428#define M6812_OP_PSHY (0x35)
908f682f
SC
429
430/* Operand extraction. */
431#define OP_DIRECT (0x100) /* 8-byte direct addressing. */
432#define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
433#define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
434#define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
435
436/* Identification of the sequence. */
437enum m6811_seq_type
438{
439 P_LAST = 0,
440 P_SAVE_REG, /* Save a register on the stack. */
441 P_SET_FRAME, /* Setup the frame pointer. */
442 P_LOCAL_1, /* Allocate 1 byte for locals. */
443 P_LOCAL_2, /* Allocate 2 bytes for locals. */
444 P_LOCAL_N /* Allocate N bytes for locals. */
445};
446
447struct insn_sequence {
448 enum m6811_seq_type type;
449 unsigned length;
450 unsigned short code[MAX_CODES];
451};
452
453/* Sequence of instructions in the 68HC11 function prologue. */
454static struct insn_sequence m6811_prologue[] = {
455 /* Sequences to save a soft-register. */
456 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
457 M6811_OP_PSHX } },
458 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
459 M6811_OP_PAGE2, M6811_OP_PSHX } },
b94a41a1
SC
460 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
461 M6811_OP_PSHX } },
462 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
463 M6811_OP_PAGE2, M6811_OP_PSHX } },
908f682f
SC
464
465 /* Sequences to allocate local variables. */
466 { P_LOCAL_N, 7, { M6811_OP_TSX,
467 M6811_OP_XGDX,
468 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
469 M6811_OP_XGDX,
470 M6811_OP_TXS } },
471 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
472 M6811_OP_PAGE2, M6811_OP_XGDX,
473 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
474 M6811_OP_PAGE2, M6811_OP_XGDX,
475 M6811_OP_PAGE2, M6811_OP_TXS } },
476 { P_LOCAL_1, 1, { M6811_OP_DES } },
477 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
478 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
479
480 /* Initialize the frame pointer. */
481 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
b94a41a1 482 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f
SC
483 { P_LAST, 0, { 0 } }
484};
485
486
487/* Sequence of instructions in the 68HC12 function prologue. */
488static struct insn_sequence m6812_prologue[] = {
489 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
490 OP_IMM_HIGH, OP_IMM_LOW } },
b94a41a1
SC
491 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
492 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f 493 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
ffe1f3ee
SC
494 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
495 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
908f682f
SC
496 { P_LAST, 0 }
497};
498
499
500/* Analyze the sequence of instructions starting at the given address.
501 Returns a pointer to the sequence when it is recognized and
c8a7f6ac 502 the optional value (constant/address) associated with it. */
908f682f 503static struct insn_sequence *
c8a7f6ac 504m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
908f682f
SC
505 CORE_ADDR *val)
506{
507 unsigned char buffer[MAX_CODES];
508 unsigned bufsize;
509 unsigned j;
510 CORE_ADDR cur_val;
511 short v = 0;
512
513 bufsize = 0;
514 for (; seq->type != P_LAST; seq++)
515 {
516 cur_val = 0;
517 for (j = 0; j < seq->length; j++)
518 {
519 if (bufsize < j + 1)
520 {
c8a7f6ac 521 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
908f682f
SC
522 1);
523 bufsize++;
524 }
525 /* Continue while we match the opcode. */
526 if (seq->code[j] == buffer[j])
527 continue;
528
529 if ((seq->code[j] & 0xf00) == 0)
530 break;
531
532 /* Extract a sequence parameter (address or constant). */
533 switch (seq->code[j])
534 {
535 case OP_DIRECT:
536 cur_val = (CORE_ADDR) buffer[j];
537 break;
538
539 case OP_IMM_HIGH:
540 cur_val = cur_val & 0x0ff;
541 cur_val |= (buffer[j] << 8);
542 break;
543
544 case OP_IMM_LOW:
545 cur_val &= 0x0ff00;
546 cur_val |= buffer[j];
547 break;
548
549 case OP_PBYTE:
550 if ((buffer[j] & 0xE0) == 0x80)
551 {
552 v = buffer[j] & 0x1f;
553 if (v & 0x10)
554 v |= 0xfff0;
555 }
556 else if ((buffer[j] & 0xfe) == 0xf0)
557 {
c8a7f6ac 558 v = read_memory_unsigned_integer (pc + j + 1, 1);
908f682f
SC
559 if (buffer[j] & 1)
560 v |= 0xff00;
561 }
562 else if (buffer[j] == 0xf2)
563 {
c8a7f6ac 564 v = read_memory_unsigned_integer (pc + j + 1, 2);
908f682f
SC
565 }
566 cur_val = v;
567 break;
568 }
569 }
570
571 /* We have a full match. */
572 if (j == seq->length)
573 {
574 *val = cur_val;
908f682f
SC
575 return seq;
576 }
577 }
578 return 0;
579}
580
7df11f59
SC
581/* Return the instruction that the function at the PC is using. */
582static enum insn_return_kind
583m68hc11_get_return_insn (CORE_ADDR pc)
584{
585 struct minimal_symbol *sym;
586
587 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
588 function is stored by elfread.c in the high bit of the info field.
589 Use this to decide which instruction the function uses to return. */
590 sym = lookup_minimal_symbol_by_pc (pc);
591 if (sym == 0)
592 return RETURN_RTS;
593
594 if (MSYMBOL_IS_RTC (sym))
595 return RETURN_RTC;
596 else if (MSYMBOL_IS_RTI (sym))
597 return RETURN_RTI;
598 else
599 return RETURN_RTS;
600}
601
78073dd8
AC
602/* Analyze the function prologue to find some information
603 about the function:
604 - the PC of the first line (for m68hc11_skip_prologue)
605 - the offset of the previous frame saved address (from current frame)
606 - the soft registers which are pushed. */
1ea653ae
SC
607static CORE_ADDR
608m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
609 struct m68hc11_unwind_cache *info)
78073dd8 610{
1ea653ae 611 LONGEST save_addr;
78073dd8 612 CORE_ADDR func_end;
78073dd8
AC
613 int size;
614 int found_frame_point;
82c230c2 615 int saved_reg;
908f682f
SC
616 int done = 0;
617 struct insn_sequence *seq_table;
1ea653ae
SC
618
619 info->size = 0;
620 info->sp_offset = 0;
621 if (pc >= current_pc)
622 return current_pc;
623
78073dd8
AC
624 size = 0;
625
82c230c2 626 m68hc11_initialize_register_info ();
1ea653ae 627 if (pc == 0)
78073dd8 628 {
1ea653ae
SC
629 info->size = 0;
630 return pc;
78073dd8
AC
631 }
632
908f682f
SC
633 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
634
78073dd8
AC
635 /* The 68hc11 stack is as follows:
636
637
638 | |
639 +-----------+
640 | |
641 | args |
642 | |
643 +-----------+
644 | PC-return |
645 +-----------+
646 | Old frame |
647 +-----------+
648 | |
649 | Locals |
650 | |
651 +-----------+ <--- current frame
652 | |
653
654 With most processors (like 68K) the previous frame can be computed
655 easily because it is always at a fixed offset (see link/unlink).
656 That is, locals are accessed with negative offsets, arguments are
657 accessed with positive ones. Since 68hc11 only supports offsets
658 in the range [0..255], the frame is defined at the bottom of
659 locals (see picture).
660
661 The purpose of the analysis made here is to find out the size
662 of locals in this function. An alternative to this is to use
663 DWARF2 info. This would be better but I don't know how to
664 access dwarf2 debug from this function.
665
666 Walk from the function entry point to the point where we save
667 the frame. While walking instructions, compute the size of bytes
668 which are pushed. This gives us the index to access the previous
669 frame.
670
671 We limit the search to 128 bytes so that the algorithm is bounded
672 in case of random and wrong code. We also stop and abort if
673 we find an instruction which is not supposed to appear in the
674 prologue (as generated by gcc 2.95, 2.96).
675 */
78073dd8 676 func_end = pc + 128;
78073dd8 677 found_frame_point = 0;
1ea653ae
SC
678 info->size = 0;
679 save_addr = 0;
908f682f 680 while (!done && pc + 2 < func_end)
78073dd8 681 {
908f682f
SC
682 struct insn_sequence *seq;
683 CORE_ADDR val;
1ea653ae 684
c8a7f6ac 685 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
908f682f
SC
686 if (seq == 0)
687 break;
78073dd8 688
c8a7f6ac
SC
689 /* If we are within the instruction group, we can't advance the
690 pc nor the stack offset. Otherwise the caller's stack computed
691 from the current stack can be wrong. */
692 if (pc + seq->length > current_pc)
693 break;
694
695 pc = pc + seq->length;
908f682f 696 if (seq->type == P_SAVE_REG)
78073dd8 697 {
908f682f
SC
698 if (found_frame_point)
699 {
700 saved_reg = m68hc11_which_soft_register (val);
701 if (saved_reg < 0)
702 break;
78073dd8 703
908f682f 704 save_addr -= 2;
ff1e98b9
SC
705 if (info->saved_regs)
706 info->saved_regs[saved_reg].addr = save_addr;
908f682f
SC
707 }
708 else
709 {
710 size += 2;
711 }
78073dd8 712 }
908f682f 713 else if (seq->type == P_SET_FRAME)
78073dd8
AC
714 {
715 found_frame_point = 1;
1ea653ae 716 info->size = size;
78073dd8 717 }
908f682f 718 else if (seq->type == P_LOCAL_1)
78073dd8 719 {
6148eca7
SC
720 size += 1;
721 }
908f682f 722 else if (seq->type == P_LOCAL_2)
78073dd8 723 {
908f682f 724 size += 2;
78073dd8 725 }
908f682f 726 else if (seq->type == P_LOCAL_N)
78073dd8 727 {
908f682f
SC
728 /* Stack pointer is decremented for the allocation. */
729 if (val & 0x8000)
730 size -= (int) (val) | 0xffff0000;
731 else
732 size -= val;
78073dd8
AC
733 }
734 }
1ea653ae
SC
735 if (found_frame_point == 0)
736 info->sp_offset = size;
737 else
738 info->sp_offset = -1;
739 return pc;
78073dd8
AC
740}
741
82c230c2 742static CORE_ADDR
78073dd8
AC
743m68hc11_skip_prologue (CORE_ADDR pc)
744{
745 CORE_ADDR func_addr, func_end;
746 struct symtab_and_line sal;
1ea653ae 747 struct m68hc11_unwind_cache tmp_cache = { 0 };
78073dd8 748
82c230c2
SC
749 /* If we have line debugging information, then the end of the
750 prologue should be the first assembly instruction of the
78073dd8
AC
751 first source line. */
752 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
753 {
754 sal = find_pc_line (func_addr, 0);
755 if (sal.end && sal.end < func_end)
756 return sal.end;
757 }
758
1ea653ae 759 pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
78073dd8
AC
760 return pc;
761}
762
1ea653ae
SC
763static CORE_ADDR
764m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
765{
766 ULONGEST pc;
767
768 frame_unwind_unsigned_register (next_frame, gdbarch_pc_regnum (gdbarch),
769 &pc);
770 return pc;
771}
772
773/* Put here the code to store, into fi->saved_regs, the addresses of
774 the saved registers of frame described by FRAME_INFO. This
775 includes special registers such as pc and fp saved in special ways
776 in the stack frame. sp is even more special: the address we return
777 for it IS the sp for the next frame. */
778
779struct m68hc11_unwind_cache *
780m68hc11_frame_unwind_cache (struct frame_info *next_frame,
781 void **this_prologue_cache)
782{
783 ULONGEST prev_sp;
784 ULONGEST this_base;
785 struct m68hc11_unwind_cache *info;
786 CORE_ADDR current_pc;
787 int i;
788
789 if ((*this_prologue_cache))
790 return (*this_prologue_cache);
791
792 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
793 (*this_prologue_cache) = info;
794 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
795
93d42b30 796 info->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
1ea653ae
SC
797
798 info->size = 0;
799 info->return_kind = m68hc11_get_return_insn (info->pc);
800
801 /* The SP was moved to the FP. This indicates that a new frame
802 was created. Get THIS frame's FP value by unwinding it from
803 the next frame. */
804 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &this_base);
805 if (this_base == 0)
806 {
807 info->base = 0;
808 return info;
809 }
810
811 current_pc = frame_pc_unwind (next_frame);
812 if (info->pc != 0)
813 m68hc11_scan_prologue (info->pc, current_pc, info);
814
815 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
816
817 if (info->sp_offset != (CORE_ADDR) -1)
818 {
819 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
820 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &this_base);
821 prev_sp = this_base + info->sp_offset + 2;
822 this_base += STACK_CORRECTION;
823 }
824 else
825 {
826 /* The FP points at the last saved register. Adjust the FP back
827 to before the first saved register giving the SP. */
828 prev_sp = this_base + info->size + 2;
829
830 this_base += STACK_CORRECTION;
831 if (soft_regs[SOFT_FP_REGNUM].name)
832 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
833 }
834
835 if (info->return_kind == RETURN_RTC)
836 {
837 prev_sp += 1;
838 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
839 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
840 }
841 else if (info->return_kind == RETURN_RTI)
842 {
843 prev_sp += 7;
844 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
845 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
846 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
847 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
848 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
849 }
850
851 /* Add 1 here to adjust for the post-decrement nature of the push
852 instruction.*/
853 info->prev_sp = prev_sp;
854
855 info->base = this_base;
856
857 /* Adjust all the saved registers so that they contain addresses and not
858 offsets. */
859 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS - 1; i++)
860 if (trad_frame_addr_p (info->saved_regs, i))
861 {
862 info->saved_regs[i].addr += this_base;
863 }
864
865 /* The previous frame's SP needed to be computed. Save the computed
866 value. */
867 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
868
869 return info;
870}
871
872/* Given a GDB frame, determine the address of the calling function's
873 frame. This will be used to create a new GDB frame struct. */
874
875static void
876m68hc11_frame_this_id (struct frame_info *next_frame,
877 void **this_prologue_cache,
878 struct frame_id *this_id)
879{
880 struct m68hc11_unwind_cache *info
881 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
882 CORE_ADDR base;
883 CORE_ADDR func;
884 struct frame_id id;
885
886 /* The FUNC is easy. */
93d42b30 887 func = frame_func_unwind (next_frame, NORMAL_FRAME);
1ea653ae 888
1ea653ae
SC
889 /* Hopefully the prologue analysis either correctly determined the
890 frame's base (which is the SP from the previous frame), or set
891 that base to "NULL". */
892 base = info->prev_sp;
893 if (base == 0)
894 return;
895
896 id = frame_id_build (base, func);
1ea653ae
SC
897 (*this_id) = id;
898}
899
900static void
901m68hc11_frame_prev_register (struct frame_info *next_frame,
902 void **this_prologue_cache,
903 int regnum, int *optimizedp,
904 enum lval_type *lvalp, CORE_ADDR *addrp,
ff1e98b9 905 int *realnump, gdb_byte *bufferp)
1ea653ae
SC
906{
907 struct m68hc11_unwind_cache *info
908 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
909
1f67027d
AC
910 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
911 optimizedp, lvalp, addrp, realnump, bufferp);
1ea653ae
SC
912
913 if (regnum == HARD_PC_REGNUM)
914 {
915 /* Take into account the 68HC12 specific call (PC + page). */
916 if (info->return_kind == RETURN_RTC
917 && *addrp >= 0x08000 && *addrp < 0x0c000
918 && USE_PAGE_REGISTER)
919 {
920 int page_optimized;
921
922 CORE_ADDR page;
923
1f67027d
AC
924 trad_frame_get_prev_register (next_frame, info->saved_regs,
925 HARD_PAGE_REGNUM, &page_optimized,
926 0, &page, 0, 0);
1ea653ae
SC
927 *addrp -= 0x08000;
928 *addrp += ((page & 0x0ff) << 14);
929 *addrp += 0x1000000;
930 }
931 }
932}
933
934static const struct frame_unwind m68hc11_frame_unwind = {
935 NORMAL_FRAME,
936 m68hc11_frame_this_id,
937 m68hc11_frame_prev_register
938};
939
940const struct frame_unwind *
1a241548 941m68hc11_frame_sniffer (struct frame_info *next_frame)
1ea653ae
SC
942{
943 return &m68hc11_frame_unwind;
944}
945
946static CORE_ADDR
947m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
948{
949 struct m68hc11_unwind_cache *info
950 = m68hc11_frame_unwind_cache (next_frame, this_cache);
951
952 return info->base;
953}
954
955static CORE_ADDR
956m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
957{
958 CORE_ADDR addr;
959 struct m68hc11_unwind_cache *info
960 = m68hc11_frame_unwind_cache (next_frame, this_cache);
961
962 addr = info->base + info->size;
963 if (info->return_kind == RETURN_RTC)
964 addr += 1;
965 else if (info->return_kind == RETURN_RTI)
966 addr += 7;
967
968 return addr;
969}
970
971static const struct frame_base m68hc11_frame_base = {
972 &m68hc11_frame_unwind,
973 m68hc11_frame_base_address,
974 m68hc11_frame_base_address,
975 m68hc11_frame_args_address
976};
977
978static CORE_ADDR
979m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
980{
981 ULONGEST sp;
982 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &sp);
983 return sp;
984}
985
986/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
987 dummy frame. The frame ID's base needs to match the TOS value
988 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
989 breakpoint. */
990
991static struct frame_id
992m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
993{
994 ULONGEST tos;
995 CORE_ADDR pc = frame_pc_unwind (next_frame);
996
997 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &tos);
998 tos += 2;
999 return frame_id_build (tos, pc);
1000}
78073dd8 1001
e286caf2
SC
1002\f
1003/* Get and print the register from the given frame. */
78073dd8 1004static void
e286caf2
SC
1005m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1006 struct frame_info *frame, int regno)
78073dd8 1007{
e286caf2
SC
1008 LONGEST rval;
1009
1010 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1011 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
7f5f525d 1012 rval = get_frame_register_unsigned (frame, regno);
e286caf2 1013 else
7f5f525d 1014 rval = get_frame_register_signed (frame, regno);
e286caf2
SC
1015
1016 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1017 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
7df11f59 1018 {
e286caf2
SC
1019 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1020 if (regno != HARD_CCR_REGNUM)
1021 print_longest (file, 'd', 1, rval);
7df11f59 1022 }
e286caf2
SC
1023 else
1024 {
1025 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1026 {
1027 ULONGEST page;
7df11f59 1028
7f5f525d 1029 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
e286caf2
SC
1030 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1031 (unsigned) rval);
1032 }
1033 else
1034 {
1035 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1036 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1037 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1038 print_longest (file, 'd', 1, rval);
1039 }
1040 }
1041
1042 if (regno == HARD_CCR_REGNUM)
78073dd8 1043 {
e286caf2
SC
1044 /* CCR register */
1045 int C, Z, N, V;
1046 unsigned char l = rval & 0xff;
1047
1048 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1049 l & M6811_S_BIT ? 'S' : '-',
1050 l & M6811_X_BIT ? 'X' : '-',
1051 l & M6811_H_BIT ? 'H' : '-',
1052 l & M6811_I_BIT ? 'I' : '-',
1053 l & M6811_N_BIT ? 'N' : '-',
1054 l & M6811_Z_BIT ? 'Z' : '-',
1055 l & M6811_V_BIT ? 'V' : '-',
1056 l & M6811_C_BIT ? 'C' : '-');
1057 N = (l & M6811_N_BIT) != 0;
1058 Z = (l & M6811_Z_BIT) != 0;
1059 V = (l & M6811_V_BIT) != 0;
1060 C = (l & M6811_C_BIT) != 0;
1061
1062 /* Print flags following the h8300 */
1063 if ((C | Z) == 0)
1064 fprintf_filtered (file, "u> ");
1065 else if ((C | Z) == 1)
1066 fprintf_filtered (file, "u<= ");
1067 else if (C == 0)
1068 fprintf_filtered (file, "u< ");
1069
1070 if (Z == 0)
1071 fprintf_filtered (file, "!= ");
1072 else
1073 fprintf_filtered (file, "== ");
1074
1075 if ((N ^ V) == 0)
1076 fprintf_filtered (file, ">= ");
1077 else
1078 fprintf_filtered (file, "< ");
1079
1080 if ((Z | (N ^ V)) == 0)
1081 fprintf_filtered (file, "> ");
78073dd8 1082 else
e286caf2 1083 fprintf_filtered (file, "<= ");
78073dd8 1084 }
e286caf2
SC
1085}
1086
1087/* Same as 'info reg' but prints the registers in a different way. */
1088static void
1089m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1090 struct frame_info *frame, int regno, int cpregs)
1091{
1092 if (regno >= 0)
1093 {
1094 const char *name = gdbarch_register_name (gdbarch, regno);
1095
1096 if (!name || !*name)
1097 return;
1098
1099 fprintf_filtered (file, "%-10s ", name);
1100 m68hc11_print_register (gdbarch, file, frame, regno);
1101 fprintf_filtered (file, "\n");
1102 }
1103 else
1104 {
1105 int i, nr;
1106
1107 fprintf_filtered (file, "PC=");
1108 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1109
1110 fprintf_filtered (file, " SP=");
1111 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1112
1113 fprintf_filtered (file, " FP=");
1114 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1115
1116 fprintf_filtered (file, "\nCCR=");
1117 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1118
1119 fprintf_filtered (file, "\nD=");
1120 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1121
1122 fprintf_filtered (file, " X=");
1123 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1124
1125 fprintf_filtered (file, " Y=");
1126 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1127
1128 if (gdbarch_tdep (gdbarch)->use_page_register)
1129 {
1130 fprintf_filtered (file, "\nPage=");
1131 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1132 }
1133 fprintf_filtered (file, "\n");
1134
1135 nr = 0;
1136 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1137 {
1138 /* Skip registers which are not defined in the symbol table. */
1139 if (soft_regs[i].name == 0)
1140 continue;
1141
1142 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1143 m68hc11_print_register (gdbarch, file, frame, i);
1144 nr++;
1145 if ((nr % 8) == 7)
1146 fprintf_filtered (file, "\n");
1147 else
1148 fprintf_filtered (file, " ");
1149 }
1150 if (nr && (nr % 8) != 7)
1151 fprintf_filtered (file, "\n");
1152 }
1153}
1154
82c230c2 1155static CORE_ADDR
7d9b040b 1156m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3dc990bf
SC
1157 struct regcache *regcache, CORE_ADDR bp_addr,
1158 int nargs, struct value **args, CORE_ADDR sp,
1159 int struct_return, CORE_ADDR struct_addr)
78073dd8 1160{
82c230c2
SC
1161 int argnum;
1162 int first_stack_argnum;
82c230c2
SC
1163 struct type *type;
1164 char *val;
1165 int len;
3dc990bf 1166 char buf[2];
82c230c2 1167
82c230c2
SC
1168 first_stack_argnum = 0;
1169 if (struct_return)
1170 {
ff1e98b9 1171 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
82c230c2
SC
1172 }
1173 else if (nargs > 0)
1174 {
4991999e 1175 type = value_type (args[0]);
82c230c2 1176 len = TYPE_LENGTH (type);
3dc990bf 1177
82c230c2
SC
1178 /* First argument is passed in D and X registers. */
1179 if (len <= 4)
1180 {
3dc990bf
SC
1181 ULONGEST v;
1182
0fd88904 1183 v = extract_unsigned_integer (value_contents (args[0]), len);
82c230c2 1184 first_stack_argnum = 1;
3dc990bf
SC
1185
1186 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
82c230c2
SC
1187 if (len > 2)
1188 {
1189 v >>= 16;
3dc990bf 1190 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
82c230c2
SC
1191 }
1192 }
1193 }
82c230c2 1194
3dc990bf 1195 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
82c230c2 1196 {
4991999e 1197 type = value_type (args[argnum]);
82c230c2
SC
1198 len = TYPE_LENGTH (type);
1199
22df305e
SC
1200 if (len & 1)
1201 {
1202 static char zero = 0;
1203
3dc990bf
SC
1204 sp--;
1205 write_memory (sp, &zero, 1);
22df305e 1206 }
0fd88904 1207 val = (char*) value_contents (args[argnum]);
3dc990bf
SC
1208 sp -= len;
1209 write_memory (sp, val, len);
82c230c2 1210 }
3dc990bf
SC
1211
1212 /* Store return address. */
1213 sp -= 2;
1214 store_unsigned_integer (buf, 2, bp_addr);
1215 write_memory (sp, buf, 2);
1216
1217 /* Finally, update the stack pointer... */
1218 sp -= STACK_CORRECTION;
1219 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1220
1221 /* ...and fake a frame pointer. */
1222 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1223
1224 /* DWARF2/GCC uses the stack address *before* the function call as a
1225 frame's CFA. */
1226 return sp + 2;
78073dd8
AC
1227}
1228
1229
4db73d49
SC
1230/* Return the GDB type object for the "standard" data type
1231 of data in register N. */
1232
82c230c2 1233static struct type *
4db73d49 1234m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
82c230c2 1235{
5706502a
SC
1236 switch (reg_nr)
1237 {
1238 case HARD_PAGE_REGNUM:
1239 case HARD_A_REGNUM:
1240 case HARD_B_REGNUM:
1241 case HARD_CCR_REGNUM:
1242 return builtin_type_uint8;
1243
548bcbec
SC
1244 case M68HC12_HARD_PC_REGNUM:
1245 return builtin_type_uint32;
1246
5706502a
SC
1247 default:
1248 return builtin_type_uint16;
1249 }
82c230c2
SC
1250}
1251
82c230c2 1252static void
4db73d49
SC
1253m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1254 const void *valbuf)
82c230c2 1255{
22df305e
SC
1256 int len;
1257
1258 len = TYPE_LENGTH (type);
1259
1260 /* First argument is passed in D and X registers. */
4db73d49
SC
1261 if (len <= 2)
1262 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1263 else if (len <= 4)
22df305e 1264 {
4db73d49
SC
1265 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1266 len - 2, valbuf);
1267 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
22df305e
SC
1268 }
1269 else
8a3fe4f8 1270 error (_("return of value > 4 is not supported."));
82c230c2
SC
1271}
1272
1273
ef2b8fcd 1274/* Given a return value in `regcache' with a type `type',
78073dd8
AC
1275 extract and copy its value into `valbuf'. */
1276
82c230c2 1277static void
ef2b8fcd
SC
1278m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1279 void *valbuf)
78073dd8 1280{
82c230c2 1281 int len = TYPE_LENGTH (type);
ef2b8fcd
SC
1282 char buf[M68HC11_REG_SIZE];
1283
1284 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
22df305e 1285 switch (len)
82c230c2 1286 {
22df305e 1287 case 1:
ef2b8fcd 1288 memcpy (valbuf, buf + 1, 1);
22df305e 1289 break;
ef2b8fcd 1290
22df305e 1291 case 2:
ef2b8fcd 1292 memcpy (valbuf, buf, 2);
22df305e 1293 break;
ef2b8fcd 1294
22df305e 1295 case 3:
ef2b8fcd
SC
1296 memcpy ((char*) valbuf + 1, buf, 2);
1297 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1298 memcpy (valbuf, buf + 1, 1);
22df305e 1299 break;
ef2b8fcd 1300
22df305e 1301 case 4:
ef2b8fcd
SC
1302 memcpy ((char*) valbuf + 2, buf, 2);
1303 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1304 memcpy (valbuf, buf, 2);
22df305e
SC
1305 break;
1306
1307 default:
8a3fe4f8 1308 error (_("bad size for return value"));
82c230c2
SC
1309 }
1310}
1311
97092415
AC
1312enum return_value_convention
1313m68hc11_return_value (struct gdbarch *gdbarch, struct type *valtype,
ff1e98b9
SC
1314 struct regcache *regcache, gdb_byte *readbuf,
1315 const gdb_byte *writebuf)
82c230c2 1316{
97092415
AC
1317 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1318 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1319 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1320 || TYPE_LENGTH (valtype) > 4)
1321 return RETURN_VALUE_STRUCT_CONVENTION;
1322 else
1323 {
1324 if (readbuf != NULL)
1325 m68hc11_extract_return_value (valtype, regcache, readbuf);
1326 if (writebuf != NULL)
1327 m68hc11_store_return_value (valtype, regcache, writebuf);
1328 return RETURN_VALUE_REGISTER_CONVENTION;
1329 }
82c230c2
SC
1330}
1331
7df11f59
SC
1332/* Test whether the ELF symbol corresponds to a function using rtc or
1333 rti to return. */
1334
1335static void
1336m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1337{
1338 unsigned char flags;
1339
1340 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1341 if (flags & STO_M68HC12_FAR)
1342 MSYMBOL_SET_RTC (msym);
1343 if (flags & STO_M68HC12_INTERRUPT)
1344 MSYMBOL_SET_RTI (msym);
1345}
1346
ea3881d9
SC
1347static int
1348gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1349{
1350 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1351 return print_insn_m68hc11 (memaddr, info);
1352 else
1353 return print_insn_m68hc12 (memaddr, info);
1354}
1355
b631436b
SC
1356\f
1357
1358/* 68HC11/68HC12 register groups.
1359 Identify real hard registers and soft registers used by gcc. */
1360
1361static struct reggroup *m68hc11_soft_reggroup;
1362static struct reggroup *m68hc11_hard_reggroup;
1363
1364static void
1365m68hc11_init_reggroups (void)
1366{
1367 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1368 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1369}
1370
1371static void
1372m68hc11_add_reggroups (struct gdbarch *gdbarch)
1373{
1374 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1375 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1376 reggroup_add (gdbarch, general_reggroup);
1377 reggroup_add (gdbarch, float_reggroup);
1378 reggroup_add (gdbarch, all_reggroup);
1379 reggroup_add (gdbarch, save_reggroup);
1380 reggroup_add (gdbarch, restore_reggroup);
1381 reggroup_add (gdbarch, vector_reggroup);
1382 reggroup_add (gdbarch, system_reggroup);
1383}
1384
1385static int
1386m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1387 struct reggroup *group)
1388{
1389 /* We must save the real hard register as well as gcc
1390 soft registers including the frame pointer. */
1391 if (group == save_reggroup || group == restore_reggroup)
1392 {
1393 return (regnum <= gdbarch_num_regs (gdbarch)
1394 || ((regnum == SOFT_FP_REGNUM
1395 || regnum == SOFT_TMP_REGNUM
1396 || regnum == SOFT_ZS_REGNUM
1397 || regnum == SOFT_XY_REGNUM)
1398 && m68hc11_register_name (regnum)));
1399 }
1400
1401 /* Group to identify gcc soft registers (d1..dN). */
1402 if (group == m68hc11_soft_reggroup)
1403 {
1404 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1405 }
1406
1407 if (group == m68hc11_hard_reggroup)
1408 {
1409 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1410 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1411 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1412 }
1413 return default_register_reggroup_p (gdbarch, regnum, group);
1414}
1415
82c230c2
SC
1416static struct gdbarch *
1417m68hc11_gdbarch_init (struct gdbarch_info info,
1418 struct gdbarch_list *arches)
1419{
82c230c2
SC
1420 struct gdbarch *gdbarch;
1421 struct gdbarch_tdep *tdep;
81967506 1422 int elf_flags;
82c230c2
SC
1423
1424 soft_reg_initialized = 0;
81967506
SC
1425
1426 /* Extract the elf_flags if available. */
1427 if (info.abfd != NULL
1428 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1429 elf_flags = elf_elfheader (info.abfd)->e_flags;
1430 else
1431 elf_flags = 0;
1432
82c230c2
SC
1433 /* try to find a pre-existing architecture */
1434 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1435 arches != NULL;
1436 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1437 {
81967506
SC
1438 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1439 continue;
1440
82c230c2
SC
1441 return arches->gdbarch;
1442 }
1443
1444 /* Need a new architecture. Fill in a target specific vector. */
1445 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1446 gdbarch = gdbarch_alloc (&info, tdep);
81967506 1447 tdep->elf_flags = elf_flags;
ed99b3d0 1448
5d1a66bd
SC
1449 switch (info.bfd_arch_info->arch)
1450 {
1451 case bfd_arch_m68hc11:
1452 tdep->stack_correction = 1;
7df11f59 1453 tdep->use_page_register = 0;
908f682f 1454 tdep->prologue = m6811_prologue;
548bcbec
SC
1455 set_gdbarch_addr_bit (gdbarch, 16);
1456 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1457 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1458 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
5d1a66bd 1459 break;
82c230c2 1460
5d1a66bd
SC
1461 case bfd_arch_m68hc12:
1462 tdep->stack_correction = 0;
7df11f59 1463 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
908f682f 1464 tdep->prologue = m6812_prologue;
548bcbec
SC
1465 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1466 set_gdbarch_num_pseudo_regs (gdbarch,
1467 elf_flags & E_M68HC12_BANKS
1468 ? M68HC12_NUM_PSEUDO_REGS
1469 : M68HC11_NUM_PSEUDO_REGS);
1470 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1471 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1472 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1473 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
5d1a66bd
SC
1474 break;
1475
1476 default:
1477 break;
1478 }
7d32ba20
SC
1479
1480 /* Initially set everything according to the ABI.
1481 Use 16-bit integers since it will be the case for most
1482 programs. The size of these types should normally be set
1483 according to the dwarf2 debug information. */
82c230c2 1484 set_gdbarch_short_bit (gdbarch, 16);
81967506 1485 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
82c230c2 1486 set_gdbarch_float_bit (gdbarch, 32);
81967506 1487 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
2417dd25 1488 set_gdbarch_long_double_bit (gdbarch, 64);
82c230c2
SC
1489 set_gdbarch_long_bit (gdbarch, 32);
1490 set_gdbarch_ptr_bit (gdbarch, 16);
1491 set_gdbarch_long_long_bit (gdbarch, 64);
1492
b2a02dda
SC
1493 /* Characters are unsigned. */
1494 set_gdbarch_char_signed (gdbarch, 0);
1495
1ea653ae
SC
1496 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1497 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1498
82c230c2
SC
1499 /* Set register info. */
1500 set_gdbarch_fp0_regnum (gdbarch, -1);
82c230c2 1501
82c230c2 1502 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
82c230c2 1503
82c230c2 1504 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
82c230c2 1505 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
4db73d49 1506 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
46ce284d
AC
1507 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1508 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
82c230c2 1509
3dc990bf
SC
1510 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1511
97092415 1512 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
82c230c2
SC
1513 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1514 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
82c230c2 1515 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
70ed8774 1516 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
82c230c2 1517
b631436b
SC
1518 m68hc11_add_reggroups (gdbarch);
1519 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
e286caf2 1520 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
b631436b 1521
1ea653ae
SC
1522 /* Hook in the DWARF CFI frame unwinder. */
1523 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1ea653ae 1524
1a241548 1525 frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
1ea653ae
SC
1526 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1527
1528 /* Methods for saving / extracting a dummy frame's ID. The ID's
1529 stack address must match the SP value returned by
1530 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1531 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1532
1533 /* Return the unwound PC value. */
1534 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1535
7df11f59
SC
1536 /* Minsymbol frobbing. */
1537 set_gdbarch_elf_make_msymbol_special (gdbarch,
1538 m68hc11_elf_make_msymbol_special);
1539
82c230c2 1540 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
82c230c2
SC
1541
1542 return gdbarch;
78073dd8
AC
1543}
1544
a78f21af
AC
1545extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1546
78073dd8 1547void
fba45db2 1548_initialize_m68hc11_tdep (void)
78073dd8 1549{
82c230c2 1550 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
ea3881d9 1551 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
b631436b 1552 m68hc11_init_reggroups ();
78073dd8
AC
1553}
1554
This page took 0.585795 seconds and 4 git commands to generate.