2007-11-07 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
CommitLineData
908f682f 1/* Target-dependent code for Motorola 68HC11 & 68HC12
931aecf5 2
6aba47ca
DJ
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
931aecf5 5
ffe1f3ee 6 Contributed by Stephane Carrez, stcarrez@nerim.fr
78073dd8 7
a9762ec7
JB
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
78073dd8 22
78073dd8 23
82c230c2
SC
24#include "defs.h"
25#include "frame.h"
1ea653ae
SC
26#include "frame-unwind.h"
27#include "frame-base.h"
28#include "dwarf2-frame.h"
29#include "trad-frame.h"
82c230c2
SC
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "gdbcore.h"
34#include "gdb_string.h"
35#include "value.h"
36#include "inferior.h"
37#include "dis-asm.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "arch-utils.h"
4e052eda 41#include "regcache.h"
b631436b 42#include "reggroups.h"
78073dd8 43
82c230c2
SC
44#include "target.h"
45#include "opcode/m68hc11.h"
81967506
SC
46#include "elf/m68hc11.h"
47#include "elf-bfd.h"
78073dd8 48
7df11f59
SC
49/* Macros for setting and testing a bit in a minimal symbol.
50 For 68HC11/68HC12 we have two flags that tell which return
51 type the function is using. This is used for prologue and frame
52 analysis to compute correct stack frame layout.
53
54 The MSB of the minimal symbol's "info" field is used for this purpose.
7df11f59
SC
55
56 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
57 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
58 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
f594e5e9 59 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
7df11f59
SC
60
61#define MSYMBOL_SET_RTC(msym) \
62 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
63 | 0x80000000)
64
65#define MSYMBOL_SET_RTI(msym) \
66 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
67 | 0x40000000)
68
69#define MSYMBOL_IS_RTC(msym) \
70 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
71
72#define MSYMBOL_IS_RTI(msym) \
73 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
74
7df11f59
SC
75enum insn_return_kind {
76 RETURN_RTS,
77 RETURN_RTC,
78 RETURN_RTI
79};
80
81
7157eed4 82/* Register numbers of various important registers. */
78073dd8 83
82c230c2
SC
84#define HARD_X_REGNUM 0
85#define HARD_D_REGNUM 1
86#define HARD_Y_REGNUM 2
87#define HARD_SP_REGNUM 3
88#define HARD_PC_REGNUM 4
89
90#define HARD_A_REGNUM 5
91#define HARD_B_REGNUM 6
92#define HARD_CCR_REGNUM 7
5706502a
SC
93
94/* 68HC12 page number register.
95 Note: to keep a compatibility with gcc register naming, we must
96 not have to rename FP and other soft registers. The page register
f57d151a 97 is a real hard register and must therefore be counted by gdbarch_num_regs.
5706502a
SC
98 For this it has the same number as Z register (which is not used). */
99#define HARD_PAGE_REGNUM 8
100#define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
82c230c2
SC
101
102/* Z is replaced by X or Y by gcc during machine reorg.
103 ??? There is no way to get it and even know whether
104 it's in X or Y or in ZS. */
105#define SOFT_Z_REGNUM 8
106
107/* Soft registers. These registers are special. There are treated
108 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
109 They are physically located in memory. */
110#define SOFT_FP_REGNUM 9
111#define SOFT_TMP_REGNUM 10
112#define SOFT_ZS_REGNUM 11
113#define SOFT_XY_REGNUM 12
f91a8b6b
SC
114#define SOFT_UNUSED_REGNUM 13
115#define SOFT_D1_REGNUM 14
82c230c2
SC
116#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
117#define M68HC11_MAX_SOFT_REGS 32
118
119#define M68HC11_NUM_REGS (8)
120#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
121#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
122
123#define M68HC11_REG_SIZE (2)
124
548bcbec
SC
125#define M68HC12_NUM_REGS (9)
126#define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
127#define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
128
908f682f 129struct insn_sequence;
82c230c2
SC
130struct gdbarch_tdep
131 {
5d1a66bd
SC
132 /* Stack pointer correction value. For 68hc11, the stack pointer points
133 to the next push location. An offset of 1 must be applied to obtain
134 the address where the last value is saved. For 68hc12, the stack
135 pointer points to the last value pushed. No offset is necessary. */
136 int stack_correction;
908f682f
SC
137
138 /* Description of instructions in the prologue. */
139 struct insn_sequence *prologue;
81967506 140
7df11f59
SC
141 /* True if the page memory bank register is available
142 and must be used. */
143 int use_page_register;
144
81967506
SC
145 /* ELF flags for ABI. */
146 int elf_flags;
82c230c2
SC
147 };
148
5d1a66bd
SC
149#define M6811_TDEP gdbarch_tdep (current_gdbarch)
150#define STACK_CORRECTION (M6811_TDEP->stack_correction)
7df11f59 151#define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
5d1a66bd 152
1ea653ae
SC
153struct m68hc11_unwind_cache
154{
155 /* The previous frame's inner most stack address. Used as this
156 frame ID's stack_addr. */
157 CORE_ADDR prev_sp;
158 /* The frame's base, optionally used by the high-level debug info. */
159 CORE_ADDR base;
160 CORE_ADDR pc;
161 int size;
162 int prologue_type;
163 CORE_ADDR return_pc;
164 CORE_ADDR sp_offset;
165 int frameless;
166 enum insn_return_kind return_kind;
167
168 /* Table indicating the location of each and every register. */
169 struct trad_frame_saved_reg *saved_regs;
170};
171
82c230c2
SC
172/* Table of registers for 68HC11. This includes the hard registers
173 and the soft registers used by GCC. */
174static char *
175m68hc11_register_names[] =
176{
177 "x", "d", "y", "sp", "pc", "a", "b",
5706502a 178 "ccr", "page", "frame","tmp", "zs", "xy", 0,
82c230c2
SC
179 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
180 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
181 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
182 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
183 "d29", "d30", "d31", "d32"
184};
78073dd8 185
82c230c2
SC
186struct m68hc11_soft_reg
187{
188 const char *name;
189 CORE_ADDR addr;
190};
78073dd8 191
82c230c2 192static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
78073dd8 193
82c230c2 194#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
78073dd8 195
82c230c2
SC
196static int soft_min_addr;
197static int soft_max_addr;
198static int soft_reg_initialized = 0;
78073dd8 199
82c230c2
SC
200/* Look in the symbol table for the address of a pseudo register
201 in memory. If we don't find it, pretend the register is not used
202 and not available. */
203static void
204m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
205{
206 struct minimal_symbol *msymbol;
78073dd8 207
82c230c2
SC
208 msymbol = lookup_minimal_symbol (name, NULL, NULL);
209 if (msymbol)
210 {
211 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
212 reg->name = xstrdup (name);
213
214 /* Keep track of the address range for soft registers. */
215 if (reg->addr < (CORE_ADDR) soft_min_addr)
216 soft_min_addr = reg->addr;
217 if (reg->addr > (CORE_ADDR) soft_max_addr)
218 soft_max_addr = reg->addr;
219 }
220 else
221 {
222 reg->name = 0;
223 reg->addr = 0;
224 }
225}
78073dd8 226
82c230c2
SC
227/* Initialize the table of soft register addresses according
228 to the symbol table. */
229 static void
230m68hc11_initialize_register_info (void)
231{
232 int i;
78073dd8 233
82c230c2
SC
234 if (soft_reg_initialized)
235 return;
236
237 soft_min_addr = INT_MAX;
238 soft_max_addr = 0;
239 for (i = 0; i < M68HC11_ALL_REGS; i++)
240 {
241 soft_regs[i].name = 0;
242 }
243
244 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
245 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
246 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
247 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
248 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
78073dd8 249
82c230c2
SC
250 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
251 {
252 char buf[10];
78073dd8 253
82c230c2
SC
254 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
255 m68hc11_get_register_info (&soft_regs[i], buf);
256 }
78073dd8 257
82c230c2 258 if (soft_regs[SOFT_FP_REGNUM].name == 0)
8a3fe4f8
AC
259 warning (_("No frame soft register found in the symbol table.\n"
260 "Stack backtrace will not work."));
82c230c2
SC
261 soft_reg_initialized = 1;
262}
78073dd8 263
82c230c2
SC
264/* Given an address in memory, return the soft register number if
265 that address corresponds to a soft register. Returns -1 if not. */
266static int
267m68hc11_which_soft_register (CORE_ADDR addr)
268{
269 int i;
270
271 if (addr < soft_min_addr || addr > soft_max_addr)
272 return -1;
273
274 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
275 {
276 if (soft_regs[i].name && soft_regs[i].addr == addr)
277 return i;
278 }
279 return -1;
280}
78073dd8 281
82c230c2
SC
282/* Fetch a pseudo register. The 68hc11 soft registers are treated like
283 pseudo registers. They are located in memory. Translate the register
284 fetch into a memory read. */
46ce284d
AC
285static void
286m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
287 struct regcache *regcache,
ff1e98b9 288 int regno, gdb_byte *buf)
82c230c2 289{
548bcbec
SC
290 /* The PC is a pseudo reg only for 68HC12 with the memory bank
291 addressing mode. */
292 if (regno == M68HC12_HARD_PC_REGNUM)
293 {
4db73d49 294 ULONGEST pc;
548bcbec 295 const int regsize = TYPE_LENGTH (builtin_type_uint32);
548bcbec 296
4db73d49 297 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
548bcbec
SC
298 if (pc >= 0x8000 && pc < 0xc000)
299 {
4db73d49
SC
300 ULONGEST page;
301
302 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
548bcbec
SC
303 pc -= 0x8000;
304 pc += (page << 14);
305 pc += 0x1000000;
306 }
307 store_unsigned_integer (buf, regsize, pc);
308 return;
309 }
310
82c230c2
SC
311 m68hc11_initialize_register_info ();
312
313 /* Fetch a soft register: translate into a memory read. */
314 if (soft_regs[regno].name)
315 {
316 target_read_memory (soft_regs[regno].addr, buf, 2);
317 }
318 else
319 {
320 memset (buf, 0, 2);
321 }
82c230c2 322}
78073dd8 323
82c230c2
SC
324/* Store a pseudo register. Translate the register store
325 into a memory write. */
326static void
46ce284d
AC
327m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
328 struct regcache *regcache,
ff1e98b9 329 int regno, const gdb_byte *buf)
82c230c2 330{
548bcbec
SC
331 /* The PC is a pseudo reg only for 68HC12 with the memory bank
332 addressing mode. */
333 if (regno == M68HC12_HARD_PC_REGNUM)
334 {
335 const int regsize = TYPE_LENGTH (builtin_type_uint32);
336 char *tmp = alloca (regsize);
337 CORE_ADDR pc;
338
339 memcpy (tmp, buf, regsize);
340 pc = extract_unsigned_integer (tmp, regsize);
341 if (pc >= 0x1000000)
342 {
343 pc -= 0x1000000;
4db73d49
SC
344 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
345 (pc >> 14) & 0x0ff);
548bcbec 346 pc &= 0x03fff;
4db73d49
SC
347 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
348 pc + 0x8000);
548bcbec
SC
349 }
350 else
4db73d49 351 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
548bcbec
SC
352 return;
353 }
354
82c230c2 355 m68hc11_initialize_register_info ();
78073dd8 356
82c230c2
SC
357 /* Store a soft register: translate into a memory write. */
358 if (soft_regs[regno].name)
359 {
46ce284d
AC
360 const int regsize = 2;
361 char *tmp = alloca (regsize);
362 memcpy (tmp, buf, regsize);
363 target_write_memory (soft_regs[regno].addr, tmp, regsize);
82c230c2
SC
364 }
365}
78073dd8 366
fa88f677 367static const char *
d93859e2 368m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
78073dd8 369{
548bcbec
SC
370 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
371 return "pc";
372 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
373 return "ppc";
374
82c230c2
SC
375 if (reg_nr < 0)
376 return NULL;
377 if (reg_nr >= M68HC11_ALL_REGS)
378 return NULL;
379
65760afb
SC
380 m68hc11_initialize_register_info ();
381
82c230c2
SC
382 /* If we don't know the address of a soft register, pretend it
383 does not exist. */
384 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
385 return NULL;
386 return m68hc11_register_names[reg_nr];
387}
78073dd8 388
f4f9705a 389static const unsigned char *
82c230c2 390m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
78073dd8 391{
82c230c2
SC
392 static unsigned char breakpoint[] = {0x0};
393
394 *lenptr = sizeof (breakpoint);
395 return breakpoint;
78073dd8
AC
396}
397
908f682f
SC
398\f
399/* 68HC11 & 68HC12 prologue analysis.
400
401 */
402#define MAX_CODES 12
403
404/* 68HC11 opcodes. */
405#undef M6811_OP_PAGE2
b94a41a1
SC
406#define M6811_OP_PAGE2 (0x18)
407#define M6811_OP_LDX (0xde)
408#define M6811_OP_LDX_EXT (0xfe)
409#define M6811_OP_PSHX (0x3c)
410#define M6811_OP_STS (0x9f)
411#define M6811_OP_STS_EXT (0xbf)
412#define M6811_OP_TSX (0x30)
413#define M6811_OP_XGDX (0x8f)
414#define M6811_OP_ADDD (0xc3)
415#define M6811_OP_TXS (0x35)
416#define M6811_OP_DES (0x34)
908f682f
SC
417
418/* 68HC12 opcodes. */
b94a41a1
SC
419#define M6812_OP_PAGE2 (0x18)
420#define M6812_OP_MOVW (0x01)
421#define M6812_PB_PSHW (0xae)
422#define M6812_OP_STS (0x5f)
423#define M6812_OP_STS_EXT (0x7f)
424#define M6812_OP_LEAS (0x1b)
425#define M6812_OP_PSHX (0x34)
426#define M6812_OP_PSHY (0x35)
908f682f
SC
427
428/* Operand extraction. */
429#define OP_DIRECT (0x100) /* 8-byte direct addressing. */
430#define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
431#define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
432#define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
433
434/* Identification of the sequence. */
435enum m6811_seq_type
436{
437 P_LAST = 0,
438 P_SAVE_REG, /* Save a register on the stack. */
439 P_SET_FRAME, /* Setup the frame pointer. */
440 P_LOCAL_1, /* Allocate 1 byte for locals. */
441 P_LOCAL_2, /* Allocate 2 bytes for locals. */
442 P_LOCAL_N /* Allocate N bytes for locals. */
443};
444
445struct insn_sequence {
446 enum m6811_seq_type type;
447 unsigned length;
448 unsigned short code[MAX_CODES];
449};
450
451/* Sequence of instructions in the 68HC11 function prologue. */
452static struct insn_sequence m6811_prologue[] = {
453 /* Sequences to save a soft-register. */
454 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
455 M6811_OP_PSHX } },
456 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
457 M6811_OP_PAGE2, M6811_OP_PSHX } },
b94a41a1
SC
458 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
459 M6811_OP_PSHX } },
460 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
461 M6811_OP_PAGE2, M6811_OP_PSHX } },
908f682f
SC
462
463 /* Sequences to allocate local variables. */
464 { P_LOCAL_N, 7, { M6811_OP_TSX,
465 M6811_OP_XGDX,
466 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
467 M6811_OP_XGDX,
468 M6811_OP_TXS } },
469 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
470 M6811_OP_PAGE2, M6811_OP_XGDX,
471 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
472 M6811_OP_PAGE2, M6811_OP_XGDX,
473 M6811_OP_PAGE2, M6811_OP_TXS } },
474 { P_LOCAL_1, 1, { M6811_OP_DES } },
475 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
476 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
477
478 /* Initialize the frame pointer. */
479 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
b94a41a1 480 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f
SC
481 { P_LAST, 0, { 0 } }
482};
483
484
485/* Sequence of instructions in the 68HC12 function prologue. */
486static struct insn_sequence m6812_prologue[] = {
487 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
488 OP_IMM_HIGH, OP_IMM_LOW } },
b94a41a1
SC
489 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
490 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f 491 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
ffe1f3ee
SC
492 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
493 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
908f682f
SC
494 { P_LAST, 0 }
495};
496
497
498/* Analyze the sequence of instructions starting at the given address.
499 Returns a pointer to the sequence when it is recognized and
c8a7f6ac 500 the optional value (constant/address) associated with it. */
908f682f 501static struct insn_sequence *
c8a7f6ac 502m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
908f682f
SC
503 CORE_ADDR *val)
504{
505 unsigned char buffer[MAX_CODES];
506 unsigned bufsize;
507 unsigned j;
508 CORE_ADDR cur_val;
509 short v = 0;
510
511 bufsize = 0;
512 for (; seq->type != P_LAST; seq++)
513 {
514 cur_val = 0;
515 for (j = 0; j < seq->length; j++)
516 {
517 if (bufsize < j + 1)
518 {
c8a7f6ac 519 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
908f682f
SC
520 1);
521 bufsize++;
522 }
523 /* Continue while we match the opcode. */
524 if (seq->code[j] == buffer[j])
525 continue;
526
527 if ((seq->code[j] & 0xf00) == 0)
528 break;
529
530 /* Extract a sequence parameter (address or constant). */
531 switch (seq->code[j])
532 {
533 case OP_DIRECT:
534 cur_val = (CORE_ADDR) buffer[j];
535 break;
536
537 case OP_IMM_HIGH:
538 cur_val = cur_val & 0x0ff;
539 cur_val |= (buffer[j] << 8);
540 break;
541
542 case OP_IMM_LOW:
543 cur_val &= 0x0ff00;
544 cur_val |= buffer[j];
545 break;
546
547 case OP_PBYTE:
548 if ((buffer[j] & 0xE0) == 0x80)
549 {
550 v = buffer[j] & 0x1f;
551 if (v & 0x10)
552 v |= 0xfff0;
553 }
554 else if ((buffer[j] & 0xfe) == 0xf0)
555 {
c8a7f6ac 556 v = read_memory_unsigned_integer (pc + j + 1, 1);
908f682f
SC
557 if (buffer[j] & 1)
558 v |= 0xff00;
559 }
560 else if (buffer[j] == 0xf2)
561 {
c8a7f6ac 562 v = read_memory_unsigned_integer (pc + j + 1, 2);
908f682f
SC
563 }
564 cur_val = v;
565 break;
566 }
567 }
568
569 /* We have a full match. */
570 if (j == seq->length)
571 {
572 *val = cur_val;
908f682f
SC
573 return seq;
574 }
575 }
576 return 0;
577}
578
7df11f59
SC
579/* Return the instruction that the function at the PC is using. */
580static enum insn_return_kind
581m68hc11_get_return_insn (CORE_ADDR pc)
582{
583 struct minimal_symbol *sym;
584
585 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
586 function is stored by elfread.c in the high bit of the info field.
587 Use this to decide which instruction the function uses to return. */
588 sym = lookup_minimal_symbol_by_pc (pc);
589 if (sym == 0)
590 return RETURN_RTS;
591
592 if (MSYMBOL_IS_RTC (sym))
593 return RETURN_RTC;
594 else if (MSYMBOL_IS_RTI (sym))
595 return RETURN_RTI;
596 else
597 return RETURN_RTS;
598}
599
78073dd8
AC
600/* Analyze the function prologue to find some information
601 about the function:
602 - the PC of the first line (for m68hc11_skip_prologue)
603 - the offset of the previous frame saved address (from current frame)
604 - the soft registers which are pushed. */
1ea653ae
SC
605static CORE_ADDR
606m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
607 struct m68hc11_unwind_cache *info)
78073dd8 608{
1ea653ae 609 LONGEST save_addr;
78073dd8 610 CORE_ADDR func_end;
78073dd8
AC
611 int size;
612 int found_frame_point;
82c230c2 613 int saved_reg;
908f682f
SC
614 int done = 0;
615 struct insn_sequence *seq_table;
1ea653ae
SC
616
617 info->size = 0;
618 info->sp_offset = 0;
619 if (pc >= current_pc)
620 return current_pc;
621
78073dd8
AC
622 size = 0;
623
82c230c2 624 m68hc11_initialize_register_info ();
1ea653ae 625 if (pc == 0)
78073dd8 626 {
1ea653ae
SC
627 info->size = 0;
628 return pc;
78073dd8
AC
629 }
630
908f682f
SC
631 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
632
78073dd8
AC
633 /* The 68hc11 stack is as follows:
634
635
636 | |
637 +-----------+
638 | |
639 | args |
640 | |
641 +-----------+
642 | PC-return |
643 +-----------+
644 | Old frame |
645 +-----------+
646 | |
647 | Locals |
648 | |
649 +-----------+ <--- current frame
650 | |
651
652 With most processors (like 68K) the previous frame can be computed
653 easily because it is always at a fixed offset (see link/unlink).
654 That is, locals are accessed with negative offsets, arguments are
655 accessed with positive ones. Since 68hc11 only supports offsets
656 in the range [0..255], the frame is defined at the bottom of
657 locals (see picture).
658
659 The purpose of the analysis made here is to find out the size
660 of locals in this function. An alternative to this is to use
661 DWARF2 info. This would be better but I don't know how to
662 access dwarf2 debug from this function.
663
664 Walk from the function entry point to the point where we save
665 the frame. While walking instructions, compute the size of bytes
666 which are pushed. This gives us the index to access the previous
667 frame.
668
669 We limit the search to 128 bytes so that the algorithm is bounded
670 in case of random and wrong code. We also stop and abort if
671 we find an instruction which is not supposed to appear in the
672 prologue (as generated by gcc 2.95, 2.96).
673 */
78073dd8 674 func_end = pc + 128;
78073dd8 675 found_frame_point = 0;
1ea653ae
SC
676 info->size = 0;
677 save_addr = 0;
908f682f 678 while (!done && pc + 2 < func_end)
78073dd8 679 {
908f682f
SC
680 struct insn_sequence *seq;
681 CORE_ADDR val;
1ea653ae 682
c8a7f6ac 683 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
908f682f
SC
684 if (seq == 0)
685 break;
78073dd8 686
c8a7f6ac
SC
687 /* If we are within the instruction group, we can't advance the
688 pc nor the stack offset. Otherwise the caller's stack computed
689 from the current stack can be wrong. */
690 if (pc + seq->length > current_pc)
691 break;
692
693 pc = pc + seq->length;
908f682f 694 if (seq->type == P_SAVE_REG)
78073dd8 695 {
908f682f
SC
696 if (found_frame_point)
697 {
698 saved_reg = m68hc11_which_soft_register (val);
699 if (saved_reg < 0)
700 break;
78073dd8 701
908f682f 702 save_addr -= 2;
ff1e98b9
SC
703 if (info->saved_regs)
704 info->saved_regs[saved_reg].addr = save_addr;
908f682f
SC
705 }
706 else
707 {
708 size += 2;
709 }
78073dd8 710 }
908f682f 711 else if (seq->type == P_SET_FRAME)
78073dd8
AC
712 {
713 found_frame_point = 1;
1ea653ae 714 info->size = size;
78073dd8 715 }
908f682f 716 else if (seq->type == P_LOCAL_1)
78073dd8 717 {
6148eca7
SC
718 size += 1;
719 }
908f682f 720 else if (seq->type == P_LOCAL_2)
78073dd8 721 {
908f682f 722 size += 2;
78073dd8 723 }
908f682f 724 else if (seq->type == P_LOCAL_N)
78073dd8 725 {
908f682f
SC
726 /* Stack pointer is decremented for the allocation. */
727 if (val & 0x8000)
728 size -= (int) (val) | 0xffff0000;
729 else
730 size -= val;
78073dd8
AC
731 }
732 }
1ea653ae
SC
733 if (found_frame_point == 0)
734 info->sp_offset = size;
735 else
736 info->sp_offset = -1;
737 return pc;
78073dd8
AC
738}
739
82c230c2 740static CORE_ADDR
78073dd8
AC
741m68hc11_skip_prologue (CORE_ADDR pc)
742{
743 CORE_ADDR func_addr, func_end;
744 struct symtab_and_line sal;
1ea653ae 745 struct m68hc11_unwind_cache tmp_cache = { 0 };
78073dd8 746
82c230c2
SC
747 /* If we have line debugging information, then the end of the
748 prologue should be the first assembly instruction of the
78073dd8
AC
749 first source line. */
750 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
751 {
752 sal = find_pc_line (func_addr, 0);
753 if (sal.end && sal.end < func_end)
754 return sal.end;
755 }
756
1ea653ae 757 pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
78073dd8
AC
758 return pc;
759}
760
1ea653ae
SC
761static CORE_ADDR
762m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
763{
764 ULONGEST pc;
765
11411de3 766 pc = frame_unwind_register_unsigned (next_frame, gdbarch_pc_regnum (gdbarch));
1ea653ae
SC
767 return pc;
768}
769
770/* Put here the code to store, into fi->saved_regs, the addresses of
771 the saved registers of frame described by FRAME_INFO. This
772 includes special registers such as pc and fp saved in special ways
773 in the stack frame. sp is even more special: the address we return
774 for it IS the sp for the next frame. */
775
776struct m68hc11_unwind_cache *
777m68hc11_frame_unwind_cache (struct frame_info *next_frame,
778 void **this_prologue_cache)
779{
780 ULONGEST prev_sp;
781 ULONGEST this_base;
782 struct m68hc11_unwind_cache *info;
783 CORE_ADDR current_pc;
784 int i;
785
786 if ((*this_prologue_cache))
787 return (*this_prologue_cache);
788
789 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
790 (*this_prologue_cache) = info;
791 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
792
93d42b30 793 info->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
1ea653ae
SC
794
795 info->size = 0;
796 info->return_kind = m68hc11_get_return_insn (info->pc);
797
798 /* The SP was moved to the FP. This indicates that a new frame
799 was created. Get THIS frame's FP value by unwinding it from
800 the next frame. */
11411de3 801 this_base = frame_unwind_register_unsigned (next_frame, SOFT_FP_REGNUM);
1ea653ae
SC
802 if (this_base == 0)
803 {
804 info->base = 0;
805 return info;
806 }
807
808 current_pc = frame_pc_unwind (next_frame);
809 if (info->pc != 0)
810 m68hc11_scan_prologue (info->pc, current_pc, info);
811
812 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
813
814 if (info->sp_offset != (CORE_ADDR) -1)
815 {
816 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
11411de3 817 this_base = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
1ea653ae
SC
818 prev_sp = this_base + info->sp_offset + 2;
819 this_base += STACK_CORRECTION;
820 }
821 else
822 {
823 /* The FP points at the last saved register. Adjust the FP back
824 to before the first saved register giving the SP. */
825 prev_sp = this_base + info->size + 2;
826
827 this_base += STACK_CORRECTION;
828 if (soft_regs[SOFT_FP_REGNUM].name)
829 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
830 }
831
832 if (info->return_kind == RETURN_RTC)
833 {
834 prev_sp += 1;
835 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
836 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
837 }
838 else if (info->return_kind == RETURN_RTI)
839 {
840 prev_sp += 7;
841 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
842 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
843 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
844 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
845 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
846 }
847
848 /* Add 1 here to adjust for the post-decrement nature of the push
849 instruction.*/
850 info->prev_sp = prev_sp;
851
852 info->base = this_base;
853
854 /* Adjust all the saved registers so that they contain addresses and not
855 offsets. */
f57d151a
UW
856 for (i = 0;
857 i < gdbarch_num_regs (current_gdbarch)
858 + gdbarch_num_pseudo_regs (current_gdbarch) - 1;
859 i++)
1ea653ae
SC
860 if (trad_frame_addr_p (info->saved_regs, i))
861 {
862 info->saved_regs[i].addr += this_base;
863 }
864
865 /* The previous frame's SP needed to be computed. Save the computed
866 value. */
867 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
868
869 return info;
870}
871
872/* Given a GDB frame, determine the address of the calling function's
873 frame. This will be used to create a new GDB frame struct. */
874
875static void
876m68hc11_frame_this_id (struct frame_info *next_frame,
877 void **this_prologue_cache,
878 struct frame_id *this_id)
879{
880 struct m68hc11_unwind_cache *info
881 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
882 CORE_ADDR base;
883 CORE_ADDR func;
884 struct frame_id id;
885
886 /* The FUNC is easy. */
93d42b30 887 func = frame_func_unwind (next_frame, NORMAL_FRAME);
1ea653ae 888
1ea653ae
SC
889 /* Hopefully the prologue analysis either correctly determined the
890 frame's base (which is the SP from the previous frame), or set
891 that base to "NULL". */
892 base = info->prev_sp;
893 if (base == 0)
894 return;
895
896 id = frame_id_build (base, func);
1ea653ae
SC
897 (*this_id) = id;
898}
899
900static void
901m68hc11_frame_prev_register (struct frame_info *next_frame,
902 void **this_prologue_cache,
903 int regnum, int *optimizedp,
904 enum lval_type *lvalp, CORE_ADDR *addrp,
ff1e98b9 905 int *realnump, gdb_byte *bufferp)
1ea653ae
SC
906{
907 struct m68hc11_unwind_cache *info
908 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
909
1f67027d
AC
910 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
911 optimizedp, lvalp, addrp, realnump, bufferp);
1ea653ae
SC
912
913 if (regnum == HARD_PC_REGNUM)
914 {
915 /* Take into account the 68HC12 specific call (PC + page). */
916 if (info->return_kind == RETURN_RTC
917 && *addrp >= 0x08000 && *addrp < 0x0c000
918 && USE_PAGE_REGISTER)
919 {
920 int page_optimized;
921
922 CORE_ADDR page;
923
1f67027d
AC
924 trad_frame_get_prev_register (next_frame, info->saved_regs,
925 HARD_PAGE_REGNUM, &page_optimized,
926 0, &page, 0, 0);
1ea653ae
SC
927 *addrp -= 0x08000;
928 *addrp += ((page & 0x0ff) << 14);
929 *addrp += 0x1000000;
930 }
931 }
932}
933
934static const struct frame_unwind m68hc11_frame_unwind = {
935 NORMAL_FRAME,
936 m68hc11_frame_this_id,
937 m68hc11_frame_prev_register
938};
939
940const struct frame_unwind *
1a241548 941m68hc11_frame_sniffer (struct frame_info *next_frame)
1ea653ae
SC
942{
943 return &m68hc11_frame_unwind;
944}
945
946static CORE_ADDR
947m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
948{
949 struct m68hc11_unwind_cache *info
950 = m68hc11_frame_unwind_cache (next_frame, this_cache);
951
952 return info->base;
953}
954
955static CORE_ADDR
956m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
957{
958 CORE_ADDR addr;
959 struct m68hc11_unwind_cache *info
960 = m68hc11_frame_unwind_cache (next_frame, this_cache);
961
962 addr = info->base + info->size;
963 if (info->return_kind == RETURN_RTC)
964 addr += 1;
965 else if (info->return_kind == RETURN_RTI)
966 addr += 7;
967
968 return addr;
969}
970
971static const struct frame_base m68hc11_frame_base = {
972 &m68hc11_frame_unwind,
973 m68hc11_frame_base_address,
974 m68hc11_frame_base_address,
975 m68hc11_frame_args_address
976};
977
978static CORE_ADDR
979m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
980{
981 ULONGEST sp;
11411de3 982 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
1ea653ae
SC
983 return sp;
984}
985
986/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
987 dummy frame. The frame ID's base needs to match the TOS value
988 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
989 breakpoint. */
990
991static struct frame_id
992m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
993{
994 ULONGEST tos;
995 CORE_ADDR pc = frame_pc_unwind (next_frame);
996
11411de3 997 tos = frame_unwind_register_unsigned (next_frame, SOFT_FP_REGNUM);
1ea653ae
SC
998 tos += 2;
999 return frame_id_build (tos, pc);
1000}
78073dd8 1001
e286caf2
SC
1002\f
1003/* Get and print the register from the given frame. */
78073dd8 1004static void
e286caf2
SC
1005m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1006 struct frame_info *frame, int regno)
78073dd8 1007{
e286caf2
SC
1008 LONGEST rval;
1009
1010 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1011 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
7f5f525d 1012 rval = get_frame_register_unsigned (frame, regno);
e286caf2 1013 else
7f5f525d 1014 rval = get_frame_register_signed (frame, regno);
e286caf2
SC
1015
1016 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1017 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
7df11f59 1018 {
e286caf2
SC
1019 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1020 if (regno != HARD_CCR_REGNUM)
1021 print_longest (file, 'd', 1, rval);
7df11f59 1022 }
e286caf2
SC
1023 else
1024 {
1025 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1026 {
1027 ULONGEST page;
7df11f59 1028
7f5f525d 1029 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
e286caf2
SC
1030 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1031 (unsigned) rval);
1032 }
1033 else
1034 {
1035 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1036 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1037 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1038 print_longest (file, 'd', 1, rval);
1039 }
1040 }
1041
1042 if (regno == HARD_CCR_REGNUM)
78073dd8 1043 {
e286caf2
SC
1044 /* CCR register */
1045 int C, Z, N, V;
1046 unsigned char l = rval & 0xff;
1047
1048 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1049 l & M6811_S_BIT ? 'S' : '-',
1050 l & M6811_X_BIT ? 'X' : '-',
1051 l & M6811_H_BIT ? 'H' : '-',
1052 l & M6811_I_BIT ? 'I' : '-',
1053 l & M6811_N_BIT ? 'N' : '-',
1054 l & M6811_Z_BIT ? 'Z' : '-',
1055 l & M6811_V_BIT ? 'V' : '-',
1056 l & M6811_C_BIT ? 'C' : '-');
1057 N = (l & M6811_N_BIT) != 0;
1058 Z = (l & M6811_Z_BIT) != 0;
1059 V = (l & M6811_V_BIT) != 0;
1060 C = (l & M6811_C_BIT) != 0;
1061
1062 /* Print flags following the h8300 */
1063 if ((C | Z) == 0)
1064 fprintf_filtered (file, "u> ");
1065 else if ((C | Z) == 1)
1066 fprintf_filtered (file, "u<= ");
1067 else if (C == 0)
1068 fprintf_filtered (file, "u< ");
1069
1070 if (Z == 0)
1071 fprintf_filtered (file, "!= ");
1072 else
1073 fprintf_filtered (file, "== ");
1074
1075 if ((N ^ V) == 0)
1076 fprintf_filtered (file, ">= ");
1077 else
1078 fprintf_filtered (file, "< ");
1079
1080 if ((Z | (N ^ V)) == 0)
1081 fprintf_filtered (file, "> ");
78073dd8 1082 else
e286caf2 1083 fprintf_filtered (file, "<= ");
78073dd8 1084 }
e286caf2
SC
1085}
1086
1087/* Same as 'info reg' but prints the registers in a different way. */
1088static void
1089m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1090 struct frame_info *frame, int regno, int cpregs)
1091{
1092 if (regno >= 0)
1093 {
1094 const char *name = gdbarch_register_name (gdbarch, regno);
1095
1096 if (!name || !*name)
1097 return;
1098
1099 fprintf_filtered (file, "%-10s ", name);
1100 m68hc11_print_register (gdbarch, file, frame, regno);
1101 fprintf_filtered (file, "\n");
1102 }
1103 else
1104 {
1105 int i, nr;
1106
1107 fprintf_filtered (file, "PC=");
1108 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1109
1110 fprintf_filtered (file, " SP=");
1111 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1112
1113 fprintf_filtered (file, " FP=");
1114 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1115
1116 fprintf_filtered (file, "\nCCR=");
1117 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1118
1119 fprintf_filtered (file, "\nD=");
1120 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1121
1122 fprintf_filtered (file, " X=");
1123 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1124
1125 fprintf_filtered (file, " Y=");
1126 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1127
1128 if (gdbarch_tdep (gdbarch)->use_page_register)
1129 {
1130 fprintf_filtered (file, "\nPage=");
1131 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1132 }
1133 fprintf_filtered (file, "\n");
1134
1135 nr = 0;
1136 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1137 {
1138 /* Skip registers which are not defined in the symbol table. */
1139 if (soft_regs[i].name == 0)
1140 continue;
1141
1142 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1143 m68hc11_print_register (gdbarch, file, frame, i);
1144 nr++;
1145 if ((nr % 8) == 7)
1146 fprintf_filtered (file, "\n");
1147 else
1148 fprintf_filtered (file, " ");
1149 }
1150 if (nr && (nr % 8) != 7)
1151 fprintf_filtered (file, "\n");
1152 }
1153}
1154
82c230c2 1155static CORE_ADDR
7d9b040b 1156m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3dc990bf
SC
1157 struct regcache *regcache, CORE_ADDR bp_addr,
1158 int nargs, struct value **args, CORE_ADDR sp,
1159 int struct_return, CORE_ADDR struct_addr)
78073dd8 1160{
82c230c2
SC
1161 int argnum;
1162 int first_stack_argnum;
82c230c2
SC
1163 struct type *type;
1164 char *val;
1165 int len;
3dc990bf 1166 char buf[2];
82c230c2 1167
82c230c2
SC
1168 first_stack_argnum = 0;
1169 if (struct_return)
1170 {
ff1e98b9 1171 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
82c230c2
SC
1172 }
1173 else if (nargs > 0)
1174 {
4991999e 1175 type = value_type (args[0]);
82c230c2 1176 len = TYPE_LENGTH (type);
3dc990bf 1177
82c230c2
SC
1178 /* First argument is passed in D and X registers. */
1179 if (len <= 4)
1180 {
3dc990bf
SC
1181 ULONGEST v;
1182
0fd88904 1183 v = extract_unsigned_integer (value_contents (args[0]), len);
82c230c2 1184 first_stack_argnum = 1;
3dc990bf
SC
1185
1186 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
82c230c2
SC
1187 if (len > 2)
1188 {
1189 v >>= 16;
3dc990bf 1190 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
82c230c2
SC
1191 }
1192 }
1193 }
82c230c2 1194
3dc990bf 1195 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
82c230c2 1196 {
4991999e 1197 type = value_type (args[argnum]);
82c230c2
SC
1198 len = TYPE_LENGTH (type);
1199
22df305e
SC
1200 if (len & 1)
1201 {
1202 static char zero = 0;
1203
3dc990bf
SC
1204 sp--;
1205 write_memory (sp, &zero, 1);
22df305e 1206 }
0fd88904 1207 val = (char*) value_contents (args[argnum]);
3dc990bf
SC
1208 sp -= len;
1209 write_memory (sp, val, len);
82c230c2 1210 }
3dc990bf
SC
1211
1212 /* Store return address. */
1213 sp -= 2;
1214 store_unsigned_integer (buf, 2, bp_addr);
1215 write_memory (sp, buf, 2);
1216
1217 /* Finally, update the stack pointer... */
1218 sp -= STACK_CORRECTION;
1219 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1220
1221 /* ...and fake a frame pointer. */
1222 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1223
1224 /* DWARF2/GCC uses the stack address *before* the function call as a
1225 frame's CFA. */
1226 return sp + 2;
78073dd8
AC
1227}
1228
1229
4db73d49
SC
1230/* Return the GDB type object for the "standard" data type
1231 of data in register N. */
1232
82c230c2 1233static struct type *
4db73d49 1234m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
82c230c2 1235{
5706502a
SC
1236 switch (reg_nr)
1237 {
1238 case HARD_PAGE_REGNUM:
1239 case HARD_A_REGNUM:
1240 case HARD_B_REGNUM:
1241 case HARD_CCR_REGNUM:
1242 return builtin_type_uint8;
1243
548bcbec
SC
1244 case M68HC12_HARD_PC_REGNUM:
1245 return builtin_type_uint32;
1246
5706502a
SC
1247 default:
1248 return builtin_type_uint16;
1249 }
82c230c2
SC
1250}
1251
82c230c2 1252static void
4db73d49
SC
1253m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1254 const void *valbuf)
82c230c2 1255{
22df305e
SC
1256 int len;
1257
1258 len = TYPE_LENGTH (type);
1259
1260 /* First argument is passed in D and X registers. */
4db73d49
SC
1261 if (len <= 2)
1262 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1263 else if (len <= 4)
22df305e 1264 {
4db73d49
SC
1265 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1266 len - 2, valbuf);
1267 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
22df305e
SC
1268 }
1269 else
8a3fe4f8 1270 error (_("return of value > 4 is not supported."));
82c230c2
SC
1271}
1272
1273
ef2b8fcd 1274/* Given a return value in `regcache' with a type `type',
78073dd8
AC
1275 extract and copy its value into `valbuf'. */
1276
82c230c2 1277static void
ef2b8fcd
SC
1278m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1279 void *valbuf)
78073dd8 1280{
82c230c2 1281 int len = TYPE_LENGTH (type);
ef2b8fcd
SC
1282 char buf[M68HC11_REG_SIZE];
1283
1284 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
22df305e 1285 switch (len)
82c230c2 1286 {
22df305e 1287 case 1:
ef2b8fcd 1288 memcpy (valbuf, buf + 1, 1);
22df305e 1289 break;
ef2b8fcd 1290
22df305e 1291 case 2:
ef2b8fcd 1292 memcpy (valbuf, buf, 2);
22df305e 1293 break;
ef2b8fcd 1294
22df305e 1295 case 3:
ef2b8fcd
SC
1296 memcpy ((char*) valbuf + 1, buf, 2);
1297 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1298 memcpy (valbuf, buf + 1, 1);
22df305e 1299 break;
ef2b8fcd 1300
22df305e 1301 case 4:
ef2b8fcd
SC
1302 memcpy ((char*) valbuf + 2, buf, 2);
1303 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1304 memcpy (valbuf, buf, 2);
22df305e
SC
1305 break;
1306
1307 default:
8a3fe4f8 1308 error (_("bad size for return value"));
82c230c2
SC
1309 }
1310}
1311
97092415
AC
1312enum return_value_convention
1313m68hc11_return_value (struct gdbarch *gdbarch, struct type *valtype,
ff1e98b9
SC
1314 struct regcache *regcache, gdb_byte *readbuf,
1315 const gdb_byte *writebuf)
82c230c2 1316{
97092415
AC
1317 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1318 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1319 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1320 || TYPE_LENGTH (valtype) > 4)
1321 return RETURN_VALUE_STRUCT_CONVENTION;
1322 else
1323 {
1324 if (readbuf != NULL)
1325 m68hc11_extract_return_value (valtype, regcache, readbuf);
1326 if (writebuf != NULL)
1327 m68hc11_store_return_value (valtype, regcache, writebuf);
1328 return RETURN_VALUE_REGISTER_CONVENTION;
1329 }
82c230c2
SC
1330}
1331
7df11f59
SC
1332/* Test whether the ELF symbol corresponds to a function using rtc or
1333 rti to return. */
1334
1335static void
1336m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1337{
1338 unsigned char flags;
1339
1340 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1341 if (flags & STO_M68HC12_FAR)
1342 MSYMBOL_SET_RTC (msym);
1343 if (flags & STO_M68HC12_INTERRUPT)
1344 MSYMBOL_SET_RTI (msym);
1345}
1346
ea3881d9
SC
1347static int
1348gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1349{
1143fffb 1350 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_m68hc11)
ea3881d9
SC
1351 return print_insn_m68hc11 (memaddr, info);
1352 else
1353 return print_insn_m68hc12 (memaddr, info);
1354}
1355
b631436b
SC
1356\f
1357
1358/* 68HC11/68HC12 register groups.
1359 Identify real hard registers and soft registers used by gcc. */
1360
1361static struct reggroup *m68hc11_soft_reggroup;
1362static struct reggroup *m68hc11_hard_reggroup;
1363
1364static void
1365m68hc11_init_reggroups (void)
1366{
1367 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1368 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1369}
1370
1371static void
1372m68hc11_add_reggroups (struct gdbarch *gdbarch)
1373{
1374 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1375 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1376 reggroup_add (gdbarch, general_reggroup);
1377 reggroup_add (gdbarch, float_reggroup);
1378 reggroup_add (gdbarch, all_reggroup);
1379 reggroup_add (gdbarch, save_reggroup);
1380 reggroup_add (gdbarch, restore_reggroup);
1381 reggroup_add (gdbarch, vector_reggroup);
1382 reggroup_add (gdbarch, system_reggroup);
1383}
1384
1385static int
1386m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1387 struct reggroup *group)
1388{
1389 /* We must save the real hard register as well as gcc
1390 soft registers including the frame pointer. */
1391 if (group == save_reggroup || group == restore_reggroup)
1392 {
1393 return (regnum <= gdbarch_num_regs (gdbarch)
1394 || ((regnum == SOFT_FP_REGNUM
1395 || regnum == SOFT_TMP_REGNUM
1396 || regnum == SOFT_ZS_REGNUM
1397 || regnum == SOFT_XY_REGNUM)
d93859e2 1398 && m68hc11_register_name (gdbarch, regnum)));
b631436b
SC
1399 }
1400
1401 /* Group to identify gcc soft registers (d1..dN). */
1402 if (group == m68hc11_soft_reggroup)
1403 {
d93859e2
UW
1404 return regnum >= SOFT_D1_REGNUM
1405 && m68hc11_register_name (gdbarch, regnum);
b631436b
SC
1406 }
1407
1408 if (group == m68hc11_hard_reggroup)
1409 {
1410 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1411 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1412 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1413 }
1414 return default_register_reggroup_p (gdbarch, regnum, group);
1415}
1416
82c230c2
SC
1417static struct gdbarch *
1418m68hc11_gdbarch_init (struct gdbarch_info info,
1419 struct gdbarch_list *arches)
1420{
82c230c2
SC
1421 struct gdbarch *gdbarch;
1422 struct gdbarch_tdep *tdep;
81967506 1423 int elf_flags;
82c230c2
SC
1424
1425 soft_reg_initialized = 0;
81967506
SC
1426
1427 /* Extract the elf_flags if available. */
1428 if (info.abfd != NULL
1429 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1430 elf_flags = elf_elfheader (info.abfd)->e_flags;
1431 else
1432 elf_flags = 0;
1433
82c230c2
SC
1434 /* try to find a pre-existing architecture */
1435 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1436 arches != NULL;
1437 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1438 {
81967506
SC
1439 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1440 continue;
1441
82c230c2
SC
1442 return arches->gdbarch;
1443 }
1444
1445 /* Need a new architecture. Fill in a target specific vector. */
1446 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1447 gdbarch = gdbarch_alloc (&info, tdep);
81967506 1448 tdep->elf_flags = elf_flags;
ed99b3d0 1449
5d1a66bd
SC
1450 switch (info.bfd_arch_info->arch)
1451 {
1452 case bfd_arch_m68hc11:
1453 tdep->stack_correction = 1;
7df11f59 1454 tdep->use_page_register = 0;
908f682f 1455 tdep->prologue = m6811_prologue;
548bcbec
SC
1456 set_gdbarch_addr_bit (gdbarch, 16);
1457 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1458 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1459 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
5d1a66bd 1460 break;
82c230c2 1461
5d1a66bd
SC
1462 case bfd_arch_m68hc12:
1463 tdep->stack_correction = 0;
7df11f59 1464 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
908f682f 1465 tdep->prologue = m6812_prologue;
548bcbec
SC
1466 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1467 set_gdbarch_num_pseudo_regs (gdbarch,
1468 elf_flags & E_M68HC12_BANKS
1469 ? M68HC12_NUM_PSEUDO_REGS
1470 : M68HC11_NUM_PSEUDO_REGS);
1471 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1472 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1473 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1474 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
5d1a66bd
SC
1475 break;
1476
1477 default:
1478 break;
1479 }
7d32ba20
SC
1480
1481 /* Initially set everything according to the ABI.
1482 Use 16-bit integers since it will be the case for most
1483 programs. The size of these types should normally be set
1484 according to the dwarf2 debug information. */
82c230c2 1485 set_gdbarch_short_bit (gdbarch, 16);
81967506 1486 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
82c230c2 1487 set_gdbarch_float_bit (gdbarch, 32);
81967506 1488 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
2417dd25 1489 set_gdbarch_long_double_bit (gdbarch, 64);
82c230c2
SC
1490 set_gdbarch_long_bit (gdbarch, 32);
1491 set_gdbarch_ptr_bit (gdbarch, 16);
1492 set_gdbarch_long_long_bit (gdbarch, 64);
1493
b2a02dda
SC
1494 /* Characters are unsigned. */
1495 set_gdbarch_char_signed (gdbarch, 0);
1496
1ea653ae
SC
1497 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1498 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1499
82c230c2
SC
1500 /* Set register info. */
1501 set_gdbarch_fp0_regnum (gdbarch, -1);
82c230c2 1502
82c230c2 1503 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
82c230c2 1504 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
4db73d49 1505 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
46ce284d
AC
1506 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1507 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
82c230c2 1508
3dc990bf
SC
1509 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1510
97092415 1511 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
82c230c2
SC
1512 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1513 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
82c230c2 1514 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
70ed8774 1515 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
82c230c2 1516
b631436b
SC
1517 m68hc11_add_reggroups (gdbarch);
1518 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
e286caf2 1519 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
b631436b 1520
1ea653ae
SC
1521 /* Hook in the DWARF CFI frame unwinder. */
1522 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1ea653ae 1523
1a241548 1524 frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
1ea653ae
SC
1525 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1526
1527 /* Methods for saving / extracting a dummy frame's ID. The ID's
1528 stack address must match the SP value returned by
1529 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1530 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1531
1532 /* Return the unwound PC value. */
1533 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1534
7df11f59
SC
1535 /* Minsymbol frobbing. */
1536 set_gdbarch_elf_make_msymbol_special (gdbarch,
1537 m68hc11_elf_make_msymbol_special);
1538
82c230c2 1539 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
82c230c2
SC
1540
1541 return gdbarch;
78073dd8
AC
1542}
1543
a78f21af
AC
1544extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1545
78073dd8 1546void
fba45db2 1547_initialize_m68hc11_tdep (void)
78073dd8 1548{
82c230c2 1549 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
ea3881d9 1550 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
b631436b 1551 m68hc11_init_reggroups ();
78073dd8
AC
1552}
1553
This page took 0.634208 seconds and 4 git commands to generate.