*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
CommitLineData
748894bf 1/* Target-dependent code for the Motorola 68000 series.
c6f0559b
AC
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000,
4754a64e 4 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
3f244638 24#include "dwarf2-frame.h"
c906108c 25#include "frame.h"
8de307e0
AS
26#include "frame-base.h"
27#include "frame-unwind.h"
f595cb19 28#include "floatformat.h"
c906108c
SS
29#include "symtab.h"
30#include "gdbcore.h"
31#include "value.h"
32#include "gdb_string.h"
8de307e0 33#include "gdb_assert.h"
7a292a7a 34#include "inferior.h"
4e052eda 35#include "regcache.h"
5d3ed2e3 36#include "arch-utils.h"
55809acb 37#include "osabi.h"
a89aa300 38#include "dis-asm.h"
32eeb91a
AS
39
40#include "m68k-tdep.h"
c906108c 41\f
c5aa993b 42
89c3b6d3
PDM
43#define P_LINKL_FP 0x480e
44#define P_LINKW_FP 0x4e56
45#define P_PEA_FP 0x4856
8de307e0
AS
46#define P_MOVEAL_SP_FP 0x2c4f
47#define P_ADDAW_SP 0xdefc
48#define P_ADDAL_SP 0xdffc
49#define P_SUBQW_SP 0x514f
50#define P_SUBQL_SP 0x518f
51#define P_LEA_SP_SP 0x4fef
52#define P_LEA_PC_A5 0x4bfb0170
53#define P_FMOVEMX_SP 0xf227
54#define P_MOVEL_SP 0x2f00
55#define P_MOVEML_SP 0x48e7
89c3b6d3 56
103a1597 57
103a1597
GS
58#define REGISTER_BYTES_FP (16*4 + 8 + 8*12 + 3*4)
59#define REGISTER_BYTES_NOFP (16*4 + 8)
60
103a1597 61/* Offset from SP to first arg on stack at first instruction of a function */
103a1597
GS
62#define SP_ARG0 (1 * 4)
63
103a1597
GS
64#if !defined (BPT_VECTOR)
65#define BPT_VECTOR 0xf
66#endif
67
f5cf7aa1 68static const gdb_byte *
103a1597
GS
69m68k_local_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
70{
f5cf7aa1 71 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
103a1597
GS
72 *lenptr = sizeof (break_insn);
73 return break_insn;
74}
75
76
942dc0e9 77static int
5ae5f592 78m68k_register_bytes_ok (long numbytes)
942dc0e9
GS
79{
80 return ((numbytes == REGISTER_BYTES_FP)
81 || (numbytes == REGISTER_BYTES_NOFP));
82}
83
d85fe7f7
AS
84/* Return the GDB type object for the "standard" data type of data in
85 register N. This should be int for D0-D7, SR, FPCONTROL and
86 FPSTATUS, long double for FP0-FP7, and void pointer for all others
87 (A0-A7, PC, FPIADDR). Note, for registers which contain
88 addresses return pointer to void, not pointer to char, because we
89 don't want to attempt to print the string after printing the
90 address. */
5d3ed2e3
GS
91
92static struct type *
8de307e0 93m68k_register_type (struct gdbarch *gdbarch, int regnum)
5d3ed2e3 94{
03dac896
AS
95 if (regnum >= FP0_REGNUM && regnum <= FP0_REGNUM + 7)
96 return builtin_type_m68881_ext;
97
32eeb91a 98 if (regnum == M68K_FPI_REGNUM || regnum == PC_REGNUM)
03dac896
AS
99 return builtin_type_void_func_ptr;
100
32eeb91a
AS
101 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM
102 || regnum == PS_REGNUM)
03dac896
AS
103 return builtin_type_int32;
104
32eeb91a 105 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
03dac896
AS
106 return builtin_type_void_data_ptr;
107
108 return builtin_type_int32;
5d3ed2e3
GS
109}
110
111/* Function: m68k_register_name
112 Returns the name of the standard m68k register regnum. */
113
114static const char *
115m68k_register_name (int regnum)
116{
117 static char *register_names[] = {
118 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
119 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
120 "ps", "pc",
121 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
122 "fpcontrol", "fpstatus", "fpiaddr", "fpcode", "fpflags"
123 };
124
125 if (regnum < 0 ||
126 regnum >= sizeof (register_names) / sizeof (register_names[0]))
127 internal_error (__FILE__, __LINE__,
e2e0b3e5 128 _("m68k_register_name: illegal register number %d"), regnum);
5d3ed2e3
GS
129 else
130 return register_names[regnum];
131}
e47577ab
MK
132\f
133/* Return nonzero if a value of type TYPE stored in register REGNUM
134 needs any special handling. */
135
136static int
137m68k_convert_register_p (int regnum, struct type *type)
138{
139 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7);
140}
141
142/* Read a value of type TYPE from register REGNUM in frame FRAME, and
143 return its contents in TO. */
144
145static void
146m68k_register_to_value (struct frame_info *frame, int regnum,
f5cf7aa1 147 struct type *type, gdb_byte *to)
e47577ab 148{
f5cf7aa1 149 gdb_byte from[M68K_MAX_REGISTER_SIZE];
e47577ab
MK
150
151 /* We only support floating-point values. */
152 if (TYPE_CODE (type) != TYPE_CODE_FLT)
153 {
8a3fe4f8
AC
154 warning (_("Cannot convert floating-point register value "
155 "to non-floating-point type."));
e47577ab
MK
156 return;
157 }
158
159 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
160 the extended floating-point format used by the FPU. */
161 get_frame_register (frame, regnum, from);
162 convert_typed_floating (from, builtin_type_m68881_ext, to, type);
163}
164
165/* Write the contents FROM of a value of type TYPE into register
166 REGNUM in frame FRAME. */
167
168static void
169m68k_value_to_register (struct frame_info *frame, int regnum,
f5cf7aa1 170 struct type *type, const gdb_byte *from)
e47577ab 171{
f5cf7aa1 172 gdb_byte to[M68K_MAX_REGISTER_SIZE];
e47577ab
MK
173
174 /* We only support floating-point values. */
175 if (TYPE_CODE (type) != TYPE_CODE_FLT)
176 {
8a3fe4f8
AC
177 warning (_("Cannot convert non-floating-point type "
178 "to floating-point register value."));
e47577ab
MK
179 return;
180 }
181
182 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
183 to the extended floating-point format used by the FPU. */
184 convert_typed_floating (from, type, to, builtin_type_m68881_ext);
185 put_frame_register (frame, regnum, to);
186}
187
8de307e0 188\f
f595cb19
MK
189/* There is a fair number of calling conventions that are in somewhat
190 wide use. The 68000/08/10 don't support an FPU, not even as a
191 coprocessor. All function return values are stored in %d0/%d1.
192 Structures are returned in a static buffer, a pointer to which is
193 returned in %d0. This means that functions returning a structure
194 are not re-entrant. To avoid this problem some systems use a
195 convention where the caller passes a pointer to a buffer in %a1
196 where the return values is to be stored. This convention is the
197 default, and is implemented in the function m68k_return_value.
198
199 The 68020/030/040/060 do support an FPU, either as a coprocessor
200 (68881/2) or built-in (68040/68060). That's why System V release 4
201 (SVR4) instroduces a new calling convention specified by the SVR4
202 psABI. Integer values are returned in %d0/%d1, pointer return
203 values in %a0 and floating values in %fp0. When calling functions
204 returning a structure the caller should pass a pointer to a buffer
205 for the return value in %a0. This convention is implemented in the
206 function m68k_svr4_return_value, and by appropriately setting the
207 struct_value_regnum member of `struct gdbarch_tdep'.
208
209 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
210 for passing the structure return value buffer.
211
212 GCC can also generate code where small structures are returned in
213 %d0/%d1 instead of in memory by using -freg-struct-return. This is
214 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
215 embedded systems. This convention is implemented by setting the
216 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
217
218/* Read a function return value of TYPE from REGCACHE, and copy that
8de307e0 219 into VALBUF. */
942dc0e9
GS
220
221static void
8de307e0 222m68k_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 223 gdb_byte *valbuf)
942dc0e9 224{
8de307e0 225 int len = TYPE_LENGTH (type);
f5cf7aa1 226 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
942dc0e9 227
8de307e0
AS
228 if (len <= 4)
229 {
230 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
231 memcpy (valbuf, buf + (4 - len), len);
232 }
233 else if (len <= 8)
234 {
235 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
236 memcpy (valbuf, buf + (8 - len), len - 4);
f5cf7aa1 237 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
238 }
239 else
240 internal_error (__FILE__, __LINE__,
e2e0b3e5 241 _("Cannot extract return value of %d bytes long."), len);
942dc0e9
GS
242}
243
942dc0e9 244static void
f595cb19 245m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 246 gdb_byte *valbuf)
942dc0e9 247{
8de307e0 248 int len = TYPE_LENGTH (type);
f5cf7aa1 249 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
942dc0e9 250
f595cb19 251 if (TYPE_CODE (type) == TYPE_CODE_FLT)
8de307e0 252 {
f595cb19
MK
253 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
254 convert_typed_floating (buf, builtin_type_m68881_ext, valbuf, type);
8de307e0 255 }
f595cb19
MK
256 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
257 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
258 else
259 m68k_extract_return_value (type, regcache, valbuf);
260}
261
262/* Write a function return value of TYPE from VALBUF into REGCACHE. */
263
264static void
265m68k_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 266 const gdb_byte *valbuf)
f595cb19
MK
267{
268 int len = TYPE_LENGTH (type);
942dc0e9 269
8de307e0
AS
270 if (len <= 4)
271 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
272 else if (len <= 8)
273 {
f595cb19 274 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
8de307e0 275 len - 4, valbuf);
f5cf7aa1 276 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
277 }
278 else
279 internal_error (__FILE__, __LINE__,
e2e0b3e5 280 _("Cannot store return value of %d bytes long."), len);
8de307e0 281}
942dc0e9 282
f595cb19
MK
283static void
284m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 285 const gdb_byte *valbuf)
942dc0e9 286{
f595cb19 287 int len = TYPE_LENGTH (type);
8de307e0 288
f595cb19
MK
289 if (TYPE_CODE (type) == TYPE_CODE_FLT)
290 {
f5cf7aa1 291 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
f595cb19
MK
292 convert_typed_floating (valbuf, type, buf, builtin_type_m68881_ext);
293 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
294 }
295 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
296 {
297 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
298 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
299 }
300 else
301 m68k_store_return_value (type, regcache, valbuf);
942dc0e9
GS
302}
303
f595cb19
MK
304/* Return non-zero if TYPE, which is assumed to be a structure or
305 union type, should be returned in registers for architecture
306 GDBARCH. */
307
c481dac7 308static int
f595cb19 309m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
c481dac7 310{
f595cb19
MK
311 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
312 enum type_code code = TYPE_CODE (type);
313 int len = TYPE_LENGTH (type);
c481dac7 314
f595cb19
MK
315 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
316
317 if (tdep->struct_return == pcc_struct_return)
318 return 0;
319
320 return (len == 1 || len == 2 || len == 4 || len == 8);
c481dac7
AS
321}
322
f595cb19
MK
323/* Determine, for architecture GDBARCH, how a return value of TYPE
324 should be returned. If it is supposed to be returned in registers,
325 and READBUF is non-zero, read the appropriate value from REGCACHE,
326 and copy it into READBUF. If WRITEBUF is non-zero, write the value
327 from WRITEBUF into REGCACHE. */
328
329static enum return_value_convention
330m68k_return_value (struct gdbarch *gdbarch, struct type *type,
f5cf7aa1
MK
331 struct regcache *regcache, gdb_byte *readbuf,
332 const gdb_byte *writebuf)
f595cb19
MK
333{
334 enum type_code code = TYPE_CODE (type);
335
336 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
337 && !m68k_reg_struct_return_p (gdbarch, type))
338 return RETURN_VALUE_STRUCT_CONVENTION;
339
340 /* GCC returns a `long double' in memory. */
341 if (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12)
342 return RETURN_VALUE_STRUCT_CONVENTION;
343
344 if (readbuf)
345 m68k_extract_return_value (type, regcache, readbuf);
346 if (writebuf)
347 m68k_store_return_value (type, regcache, writebuf);
348
349 return RETURN_VALUE_REGISTER_CONVENTION;
350}
351
352static enum return_value_convention
353m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *type,
f5cf7aa1
MK
354 struct regcache *regcache, gdb_byte *readbuf,
355 const gdb_byte *writebuf)
f595cb19
MK
356{
357 enum type_code code = TYPE_CODE (type);
358
359 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
360 && !m68k_reg_struct_return_p (gdbarch, type))
51da707a
MK
361 {
362 /* The System V ABI says that:
363
364 "A function returning a structure or union also sets %a0 to
365 the value it finds in %a0. Thus when the caller receives
366 control again, the address of the returned object resides in
367 register %a0."
368
369 So the ABI guarantees that we can always find the return
370 value just after the function has returned. */
371
372 if (readbuf)
373 {
374 ULONGEST addr;
375
376 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
377 read_memory (addr, readbuf, TYPE_LENGTH (type));
378 }
379
380 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
381 }
f595cb19
MK
382
383 /* This special case is for structures consisting of a single
384 `float' or `double' member. These structures are returned in
385 %fp0. For these structures, we call ourselves recursively,
386 changing TYPE into the type of the first member of the structure.
387 Since that should work for all structures that have only one
388 member, we don't bother to check the member's type here. */
389 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
390 {
391 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
392 return m68k_svr4_return_value (gdbarch, type, regcache,
393 readbuf, writebuf);
394 }
395
396 if (readbuf)
397 m68k_svr4_extract_return_value (type, regcache, readbuf);
398 if (writebuf)
399 m68k_svr4_store_return_value (type, regcache, writebuf);
400
401 return RETURN_VALUE_REGISTER_CONVENTION;
402}
403\f
392a587b 404
8de307e0 405static CORE_ADDR
7d9b040b 406m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
8de307e0
AS
407 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
408 struct value **args, CORE_ADDR sp, int struct_return,
409 CORE_ADDR struct_addr)
7f8e7424 410{
f595cb19 411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
f5cf7aa1 412 gdb_byte buf[4];
8de307e0
AS
413 int i;
414
415 /* Push arguments in reverse order. */
416 for (i = nargs - 1; i >= 0; i--)
417 {
4754a64e 418 struct type *value_type = value_enclosing_type (args[i]);
c481dac7 419 int len = TYPE_LENGTH (value_type);
8de307e0 420 int container_len = (len + 3) & ~3;
c481dac7
AS
421 int offset;
422
423 /* Non-scalars bigger than 4 bytes are left aligned, others are
424 right aligned. */
425 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
426 || TYPE_CODE (value_type) == TYPE_CODE_UNION
427 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
428 && len > 4)
429 offset = 0;
430 else
431 offset = container_len - len;
8de307e0 432 sp -= container_len;
46615f07 433 write_memory (sp + offset, value_contents_all (args[i]), len);
8de307e0
AS
434 }
435
c481dac7 436 /* Store struct value address. */
8de307e0
AS
437 if (struct_return)
438 {
8de307e0 439 store_unsigned_integer (buf, 4, struct_addr);
f595cb19 440 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
8de307e0
AS
441 }
442
443 /* Store return address. */
444 sp -= 4;
445 store_unsigned_integer (buf, 4, bp_addr);
446 write_memory (sp, buf, 4);
447
448 /* Finally, update the stack pointer... */
449 store_unsigned_integer (buf, 4, sp);
450 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
451
452 /* ...and fake a frame pointer. */
453 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
454
455 /* DWARF2/GCC uses the stack address *before* the function call as a
456 frame's CFA. */
457 return sp + 8;
7f8e7424 458}
8de307e0
AS
459\f
460struct m68k_frame_cache
461{
462 /* Base address. */
463 CORE_ADDR base;
464 CORE_ADDR sp_offset;
465 CORE_ADDR pc;
7f8e7424 466
8de307e0
AS
467 /* Saved registers. */
468 CORE_ADDR saved_regs[M68K_NUM_REGS];
469 CORE_ADDR saved_sp;
7f8e7424 470
8de307e0
AS
471 /* Stack space reserved for local variables. */
472 long locals;
473};
c906108c 474
8de307e0
AS
475/* Allocate and initialize a frame cache. */
476
477static struct m68k_frame_cache *
478m68k_alloc_frame_cache (void)
c906108c 479{
8de307e0
AS
480 struct m68k_frame_cache *cache;
481 int i;
c906108c 482
8de307e0 483 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
c906108c 484
8de307e0
AS
485 /* Base address. */
486 cache->base = 0;
487 cache->sp_offset = -4;
488 cache->pc = 0;
c906108c 489
8de307e0
AS
490 /* Saved registers. We initialize these to -1 since zero is a valid
491 offset (that's where %fp is supposed to be stored). */
492 for (i = 0; i < M68K_NUM_REGS; i++)
493 cache->saved_regs[i] = -1;
494
495 /* Frameless until proven otherwise. */
496 cache->locals = -1;
497
498 return cache;
c906108c
SS
499}
500
8de307e0
AS
501/* Check whether PC points at a code that sets up a new stack frame.
502 If so, it updates CACHE and returns the address of the first
503 instruction after the sequence that sets removes the "hidden"
504 argument from the stack or CURRENT_PC, whichever is smaller.
505 Otherwise, return PC. */
c906108c 506
8de307e0
AS
507static CORE_ADDR
508m68k_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
509 struct m68k_frame_cache *cache)
c906108c 510{
8de307e0
AS
511 int op;
512
513 if (pc >= current_pc)
514 return current_pc;
c906108c 515
8de307e0
AS
516 op = read_memory_unsigned_integer (pc, 2);
517
518 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
c906108c 519 {
8de307e0
AS
520 cache->saved_regs[M68K_FP_REGNUM] = 0;
521 cache->sp_offset += 4;
522 if (op == P_LINKW_FP)
523 {
524 /* link.w %fp, #-N */
525 /* link.w %fp, #0; adda.l #-N, %sp */
526 cache->locals = -read_memory_integer (pc + 2, 2);
527
528 if (pc + 4 < current_pc && cache->locals == 0)
529 {
530 op = read_memory_unsigned_integer (pc + 4, 2);
531 if (op == P_ADDAL_SP)
532 {
533 cache->locals = read_memory_integer (pc + 6, 4);
534 return pc + 10;
535 }
536 }
537
538 return pc + 4;
539 }
540 else if (op == P_LINKL_FP)
c906108c 541 {
8de307e0
AS
542 /* link.l %fp, #-N */
543 cache->locals = -read_memory_integer (pc + 2, 4);
544 return pc + 6;
545 }
546 else
547 {
548 /* pea (%fp); movea.l %sp, %fp */
549 cache->locals = 0;
550
551 if (pc + 2 < current_pc)
552 {
553 op = read_memory_unsigned_integer (pc + 2, 2);
554
555 if (op == P_MOVEAL_SP_FP)
556 {
557 /* move.l %sp, %fp */
558 return pc + 4;
559 }
560 }
561
562 return pc + 2;
c906108c
SS
563 }
564 }
8de307e0 565 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
c906108c 566 {
8de307e0
AS
567 /* subq.[wl] #N,%sp */
568 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
569 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
570 if (pc + 2 < current_pc)
c906108c 571 {
8de307e0
AS
572 op = read_memory_unsigned_integer (pc + 2, 2);
573 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
574 {
575 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
576 return pc + 4;
577 }
c906108c 578 }
8de307e0
AS
579 return pc + 2;
580 }
581 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
582 {
583 /* adda.w #-N,%sp */
584 /* lea (-N,%sp),%sp */
585 cache->locals = -read_memory_integer (pc + 2, 2);
586 return pc + 4;
c906108c 587 }
8de307e0 588 else if (op == P_ADDAL_SP)
c906108c 589 {
8de307e0
AS
590 /* adda.l #-N,%sp */
591 cache->locals = -read_memory_integer (pc + 2, 4);
592 return pc + 6;
c906108c 593 }
8de307e0
AS
594
595 return pc;
c906108c 596}
c5aa993b 597
8de307e0
AS
598/* Check whether PC points at code that saves registers on the stack.
599 If so, it updates CACHE and returns the address of the first
600 instruction after the register saves or CURRENT_PC, whichever is
601 smaller. Otherwise, return PC. */
c906108c 602
8de307e0
AS
603static CORE_ADDR
604m68k_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
605 struct m68k_frame_cache *cache)
606{
607 if (cache->locals >= 0)
608 {
609 CORE_ADDR offset;
610 int op;
611 int i, mask, regno;
c906108c 612
8de307e0
AS
613 offset = -4 - cache->locals;
614 while (pc < current_pc)
615 {
616 op = read_memory_unsigned_integer (pc, 2);
617 if (op == P_FMOVEMX_SP)
618 {
619 /* fmovem.x REGS,-(%sp) */
620 op = read_memory_unsigned_integer (pc + 2, 2);
621 if ((op & 0xff00) == 0xe000)
622 {
623 mask = op & 0xff;
624 for (i = 0; i < 16; i++, mask >>= 1)
625 {
626 if (mask & 1)
627 {
628 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
629 offset -= 12;
630 }
631 }
632 pc += 4;
633 }
634 else
635 break;
636 }
637 else if ((op & 0170677) == P_MOVEL_SP)
638 {
639 /* move.l %R,-(%sp) */
640 regno = ((op & 07000) >> 9) | ((op & 0100) >> 3);
641 cache->saved_regs[regno] = offset;
642 offset -= 4;
643 pc += 2;
644 }
645 else if (op == P_MOVEML_SP)
646 {
647 /* movem.l REGS,-(%sp) */
648 mask = read_memory_unsigned_integer (pc + 2, 2);
649 for (i = 0; i < 16; i++, mask >>= 1)
650 {
651 if (mask & 1)
652 {
653 cache->saved_regs[15 - i] = offset;
654 offset -= 4;
655 }
656 }
657 pc += 4;
658 }
659 else
660 break;
661 }
662 }
663
664 return pc;
665}
c906108c 666
c906108c 667
8de307e0
AS
668/* Do a full analysis of the prologue at PC and update CACHE
669 accordingly. Bail out early if CURRENT_PC is reached. Return the
670 address where the analysis stopped.
c906108c 671
8de307e0 672 We handle all cases that can be generated by gcc.
c906108c 673
8de307e0 674 For allocating a stack frame:
c906108c 675
8de307e0
AS
676 link.w %a6,#-N
677 link.l %a6,#-N
678 pea (%fp); move.l %sp,%fp
679 link.w %a6,#0; add.l #-N,%sp
680 subq.l #N,%sp
681 subq.w #N,%sp
682 subq.w #8,%sp; subq.w #N-8,%sp
683 add.w #-N,%sp
684 lea (-N,%sp),%sp
685 add.l #-N,%sp
c906108c 686
8de307e0 687 For saving registers:
c906108c 688
8de307e0
AS
689 fmovem.x REGS,-(%sp)
690 move.l R1,-(%sp)
691 move.l R1,-(%sp); move.l R2,-(%sp)
692 movem.l REGS,-(%sp)
c906108c 693
8de307e0 694 For setting up the PIC register:
c906108c 695
8de307e0 696 lea (%pc,N),%a5
c906108c 697
8de307e0 698 */
c906108c 699
eb2e12d7 700static CORE_ADDR
8de307e0
AS
701m68k_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
702 struct m68k_frame_cache *cache)
c906108c 703{
8de307e0 704 unsigned int op;
c906108c 705
8de307e0
AS
706 pc = m68k_analyze_frame_setup (pc, current_pc, cache);
707 pc = m68k_analyze_register_saves (pc, current_pc, cache);
708 if (pc >= current_pc)
709 return current_pc;
c906108c 710
8de307e0
AS
711 /* Check for GOT setup. */
712 op = read_memory_unsigned_integer (pc, 4);
713 if (op == P_LEA_PC_A5)
c906108c 714 {
8de307e0
AS
715 /* lea (%pc,N),%a5 */
716 return pc + 6;
c906108c 717 }
8de307e0
AS
718
719 return pc;
c906108c
SS
720}
721
8de307e0 722/* Return PC of first real instruction. */
7f8e7424 723
8de307e0
AS
724static CORE_ADDR
725m68k_skip_prologue (CORE_ADDR start_pc)
c906108c 726{
8de307e0
AS
727 struct m68k_frame_cache cache;
728 CORE_ADDR pc;
729 int op;
c906108c 730
8de307e0
AS
731 cache.locals = -1;
732 pc = m68k_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
733 if (cache.locals < 0)
734 return start_pc;
735 return pc;
736}
c906108c 737
8de307e0
AS
738static CORE_ADDR
739m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
740{
f5cf7aa1 741 gdb_byte buf[8];
7f8e7424 742
8de307e0
AS
743 frame_unwind_register (next_frame, PC_REGNUM, buf);
744 return extract_typed_address (buf, builtin_type_void_func_ptr);
745}
746\f
747/* Normal frames. */
7f8e7424 748
8de307e0
AS
749static struct m68k_frame_cache *
750m68k_frame_cache (struct frame_info *next_frame, void **this_cache)
751{
752 struct m68k_frame_cache *cache;
f5cf7aa1 753 gdb_byte buf[4];
8de307e0
AS
754 int i;
755
756 if (*this_cache)
757 return *this_cache;
758
759 cache = m68k_alloc_frame_cache ();
760 *this_cache = cache;
761
762 /* In principle, for normal frames, %fp holds the frame pointer,
763 which holds the base address for the current stack frame.
764 However, for functions that don't need it, the frame pointer is
765 optional. For these "frameless" functions the frame pointer is
766 actually the frame pointer of the calling frame. Signal
767 trampolines are just a special case of a "frameless" function.
768 They (usually) share their frame pointer with the frame that was
769 in progress when the signal occurred. */
770
771 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
772 cache->base = extract_unsigned_integer (buf, 4);
773 if (cache->base == 0)
774 return cache;
775
776 /* For normal frames, %pc is stored at 4(%fp). */
777 cache->saved_regs[M68K_PC_REGNUM] = 4;
778
779 cache->pc = frame_func_unwind (next_frame);
780 if (cache->pc != 0)
781 m68k_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
782
783 if (cache->locals < 0)
784 {
785 /* We didn't find a valid frame, which means that CACHE->base
786 currently holds the frame pointer for our calling frame. If
787 we're at the start of a function, or somewhere half-way its
788 prologue, the function's frame probably hasn't been fully
789 setup yet. Try to reconstruct the base address for the stack
790 frame by looking at the stack pointer. For truly "frameless"
791 functions this might work too. */
792
793 frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
794 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
795 }
7f8e7424 796
8de307e0
AS
797 /* Now that we have the base address for the stack frame we can
798 calculate the value of %sp in the calling frame. */
799 cache->saved_sp = cache->base + 8;
7f8e7424 800
8de307e0
AS
801 /* Adjust all the saved registers such that they contain addresses
802 instead of offsets. */
803 for (i = 0; i < M68K_NUM_REGS; i++)
804 if (cache->saved_regs[i] != -1)
805 cache->saved_regs[i] += cache->base;
c906108c 806
8de307e0
AS
807 return cache;
808}
c906108c 809
8de307e0
AS
810static void
811m68k_frame_this_id (struct frame_info *next_frame, void **this_cache,
812 struct frame_id *this_id)
813{
814 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
c906108c 815
8de307e0
AS
816 /* This marks the outermost frame. */
817 if (cache->base == 0)
818 return;
c5aa993b 819
8de307e0
AS
820 /* See the end of m68k_push_dummy_call. */
821 *this_id = frame_id_build (cache->base + 8, cache->pc);
822}
c5aa993b 823
8de307e0
AS
824static void
825m68k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
826 int regnum, int *optimizedp,
827 enum lval_type *lvalp, CORE_ADDR *addrp,
60b04da5 828 int *realnump, gdb_byte *valuep)
8de307e0
AS
829{
830 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
831
832 gdb_assert (regnum >= 0);
833
834 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
c5aa993b 835 {
8de307e0
AS
836 *optimizedp = 0;
837 *lvalp = not_lval;
838 *addrp = 0;
839 *realnump = -1;
840 if (valuep)
c906108c 841 {
8de307e0
AS
842 /* Store the value. */
843 store_unsigned_integer (valuep, 4, cache->saved_sp);
89c3b6d3 844 }
8de307e0
AS
845 return;
846 }
847
848 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
849 {
850 *optimizedp = 0;
851 *lvalp = lval_memory;
852 *addrp = cache->saved_regs[regnum];
853 *realnump = -1;
854 if (valuep)
89c3b6d3 855 {
8de307e0
AS
856 /* Read the value in from memory. */
857 read_memory (*addrp, valuep,
858 register_size (current_gdbarch, regnum));
89c3b6d3 859 }
8de307e0 860 return;
c906108c 861 }
8de307e0 862
00b25ff3
AC
863 *optimizedp = 0;
864 *lvalp = lval_register;
865 *addrp = 0;
866 *realnump = regnum;
867 if (valuep)
868 frame_unwind_register (next_frame, (*realnump), valuep);
8de307e0
AS
869}
870
871static const struct frame_unwind m68k_frame_unwind =
872{
873 NORMAL_FRAME,
874 m68k_frame_this_id,
875 m68k_frame_prev_register
876};
877
878static const struct frame_unwind *
336d1bba 879m68k_frame_sniffer (struct frame_info *next_frame)
8de307e0
AS
880{
881 return &m68k_frame_unwind;
882}
883\f
8de307e0
AS
884static CORE_ADDR
885m68k_frame_base_address (struct frame_info *next_frame, void **this_cache)
886{
887 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
888
889 return cache->base;
890}
891
892static const struct frame_base m68k_frame_base =
893{
894 &m68k_frame_unwind,
895 m68k_frame_base_address,
896 m68k_frame_base_address,
897 m68k_frame_base_address
898};
899
900static struct frame_id
901m68k_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
902{
f5cf7aa1 903 gdb_byte buf[4];
8de307e0 904 CORE_ADDR fp;
c906108c 905
8de307e0
AS
906 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
907 fp = extract_unsigned_integer (buf, 4);
c906108c 908
8de307e0
AS
909 /* See the end of m68k_push_dummy_call. */
910 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
911}
912\f
c5aa993b 913#ifdef USE_PROC_FS /* Target dependent support for /proc */
c906108c
SS
914
915#include <sys/procfs.h>
916
c60c0f5f
MS
917/* Prototypes for supply_gregset etc. */
918#include "gregset.h"
919
c906108c 920/* The /proc interface divides the target machine's register set up into
c5aa993b
JM
921 two different sets, the general register set (gregset) and the floating
922 point register set (fpregset). For each set, there is an ioctl to get
923 the current register set and another ioctl to set the current values.
c906108c 924
c5aa993b
JM
925 The actual structure passed through the ioctl interface is, of course,
926 naturally machine dependent, and is different for each set of registers.
927 For the m68k for example, the general register set is typically defined
928 by:
c906108c 929
c5aa993b 930 typedef int gregset_t[18];
c906108c 931
c5aa993b
JM
932 #define R_D0 0
933 ...
934 #define R_PS 17
c906108c 935
c5aa993b 936 and the floating point set by:
c906108c 937
c5aa993b
JM
938 typedef struct fpregset {
939 int f_pcr;
940 int f_psr;
941 int f_fpiaddr;
942 int f_fpregs[8][3]; (8 regs, 96 bits each)
943 } fpregset_t;
c906108c 944
c5aa993b
JM
945 These routines provide the packing and unpacking of gregset_t and
946 fpregset_t formatted data.
c906108c
SS
947
948 */
949
950/* Atari SVR4 has R_SR but not R_PS */
951
952#if !defined (R_PS) && defined (R_SR)
953#define R_PS R_SR
954#endif
955
956/* Given a pointer to a general register set in /proc format (gregset_t *),
c5aa993b
JM
957 unpack the register contents and supply them as gdb's idea of the current
958 register values. */
c906108c
SS
959
960void
fba45db2 961supply_gregset (gregset_t *gregsetp)
c906108c 962{
52f0bd74
AC
963 int regi;
964 greg_t *regp = (greg_t *) gregsetp;
c906108c 965
c5aa993b 966 for (regi = 0; regi < R_PC; regi++)
c906108c 967 {
23a6d369 968 regcache_raw_supply (current_regcache, regi, (char *) (regp + regi));
c906108c 969 }
23a6d369
AC
970 regcache_raw_supply (current_regcache, PS_REGNUM, (char *) (regp + R_PS));
971 regcache_raw_supply (current_regcache, PC_REGNUM, (char *) (regp + R_PC));
c906108c
SS
972}
973
974void
fba45db2 975fill_gregset (gregset_t *gregsetp, int regno)
c906108c 976{
52f0bd74
AC
977 int regi;
978 greg_t *regp = (greg_t *) gregsetp;
c906108c 979
c5aa993b 980 for (regi = 0; regi < R_PC; regi++)
c906108c 981 {
8de307e0 982 if (regno == -1 || regno == regi)
822c9732 983 regcache_raw_collect (current_regcache, regi, regp + regi);
c906108c 984 }
8de307e0 985 if (regno == -1 || regno == PS_REGNUM)
822c9732 986 regcache_raw_collect (current_regcache, PS_REGNUM, regp + R_PS);
8de307e0 987 if (regno == -1 || regno == PC_REGNUM)
822c9732 988 regcache_raw_collect (current_regcache, PC_REGNUM, regp + R_PC);
c906108c
SS
989}
990
991#if defined (FP0_REGNUM)
992
993/* Given a pointer to a floating point register set in /proc format
c5aa993b
JM
994 (fpregset_t *), unpack the register contents and supply them as gdb's
995 idea of the current floating point register values. */
c906108c 996
c5aa993b 997void
fba45db2 998supply_fpregset (fpregset_t *fpregsetp)
c906108c 999{
52f0bd74 1000 int regi;
c906108c 1001 char *from;
c5aa993b 1002
32eeb91a 1003 for (regi = FP0_REGNUM; regi < M68K_FPC_REGNUM; regi++)
c906108c 1004 {
c5aa993b 1005 from = (char *) &(fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
23a6d369 1006 regcache_raw_supply (current_regcache, regi, from);
c906108c 1007 }
23a6d369
AC
1008 regcache_raw_supply (current_regcache, M68K_FPC_REGNUM,
1009 (char *) &(fpregsetp->f_pcr));
1010 regcache_raw_supply (current_regcache, M68K_FPS_REGNUM,
1011 (char *) &(fpregsetp->f_psr));
1012 regcache_raw_supply (current_regcache, M68K_FPI_REGNUM,
1013 (char *) &(fpregsetp->f_fpiaddr));
c906108c
SS
1014}
1015
1016/* Given a pointer to a floating point register set in /proc format
c5aa993b
JM
1017 (fpregset_t *), update the register specified by REGNO from gdb's idea
1018 of the current floating point register set. If REGNO is -1, update
1019 them all. */
c906108c
SS
1020
1021void
fba45db2 1022fill_fpregset (fpregset_t *fpregsetp, int regno)
c906108c
SS
1023{
1024 int regi;
c906108c 1025
32eeb91a 1026 for (regi = FP0_REGNUM; regi < M68K_FPC_REGNUM; regi++)
c906108c 1027 {
8de307e0 1028 if (regno == -1 || regno == regi)
822c9732
AC
1029 regcache_raw_collect (current_regcache, regi,
1030 &fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
c906108c 1031 }
8de307e0 1032 if (regno == -1 || regno == M68K_FPC_REGNUM)
822c9732
AC
1033 regcache_raw_collect (current_regcache, M68K_FPC_REGNUM,
1034 &fpregsetp->f_pcr);
8de307e0 1035 if (regno == -1 || regno == M68K_FPS_REGNUM)
822c9732
AC
1036 regcache_raw_collect (current_regcache, M68K_FPS_REGNUM,
1037 &fpregsetp->f_psr);
8de307e0 1038 if (regno == -1 || regno == M68K_FPI_REGNUM)
822c9732
AC
1039 regcache_raw_collect (current_regcache, M68K_FPI_REGNUM,
1040 &fpregsetp->f_fpiaddr);
c906108c
SS
1041}
1042
c5aa993b 1043#endif /* defined (FP0_REGNUM) */
c906108c 1044
c5aa993b 1045#endif /* USE_PROC_FS */
c906108c 1046
c906108c
SS
1047/* Figure out where the longjmp will land. Slurp the args out of the stack.
1048 We expect the first arg to be a pointer to the jmp_buf structure from which
1049 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1050 This routine returns true on success. */
1051
c34d127c 1052static int
f4281f55 1053m68k_get_longjmp_target (CORE_ADDR *pc)
c906108c 1054{
f5cf7aa1 1055 gdb_byte *buf;
c906108c 1056 CORE_ADDR sp, jb_addr;
eb2e12d7
AS
1057 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1058
1059 if (tdep->jb_pc < 0)
1060 {
1061 internal_error (__FILE__, __LINE__,
e2e0b3e5 1062 _("m68k_get_longjmp_target: not implemented"));
eb2e12d7
AS
1063 return 0;
1064 }
c906108c 1065
35fc8285 1066 buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
c5aa993b 1067 sp = read_register (SP_REGNUM);
c906108c 1068
b5d78d39
GS
1069 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
1070 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
c906108c
SS
1071 return 0;
1072
7c0b4a20 1073 jb_addr = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
c906108c 1074
eb2e12d7 1075 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
c906108c
SS
1076 TARGET_PTR_BIT / TARGET_CHAR_BIT))
1077 return 0;
1078
7c0b4a20 1079 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
c906108c
SS
1080 return 1;
1081}
f595cb19
MK
1082\f
1083
1084/* System V Release 4 (SVR4). */
1085
1086void
1087m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1088{
1089 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1090
1091 /* SVR4 uses a different calling convention. */
1092 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1093
1094 /* SVR4 uses %a0 instead of %a1. */
1095 tdep->struct_value_regnum = M68K_A0_REGNUM;
1096}
1097\f
c906108c 1098
152d9db6
GS
1099/* Function: m68k_gdbarch_init
1100 Initializer function for the m68k gdbarch vector.
1101 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1102
1103static struct gdbarch *
1104m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1105{
1106 struct gdbarch_tdep *tdep = NULL;
1107 struct gdbarch *gdbarch;
1108
1109 /* find a candidate among the list of pre-declared architectures. */
1110 arches = gdbarch_list_lookup_by_info (arches, &info);
1111 if (arches != NULL)
1112 return (arches->gdbarch);
1113
eb2e12d7
AS
1114 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1115 gdbarch = gdbarch_alloc (&info, tdep);
152d9db6 1116
5d3ed2e3
GS
1117 set_gdbarch_long_double_format (gdbarch, &floatformat_m68881_ext);
1118 set_gdbarch_long_double_bit (gdbarch, 96);
1119
5d3ed2e3 1120 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
103a1597 1121 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
5d3ed2e3
GS
1122
1123 /* Stack grows down. */
1124 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6300c360
GS
1125
1126 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
942dc0e9
GS
1127 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1128
6300c360 1129 set_gdbarch_frame_args_skip (gdbarch, 8);
942dc0e9 1130
8de307e0 1131 set_gdbarch_register_type (gdbarch, m68k_register_type);
5d3ed2e3 1132 set_gdbarch_register_name (gdbarch, m68k_register_name);
942dc0e9
GS
1133 set_gdbarch_num_regs (gdbarch, 29);
1134 set_gdbarch_register_bytes_ok (gdbarch, m68k_register_bytes_ok);
32eeb91a 1135 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
32eeb91a
AS
1136 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1137 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1138 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
e47577ab
MK
1139 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1140 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1141 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
a2c6a6d5 1142
8de307e0 1143 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
f595cb19 1144 set_gdbarch_return_value (gdbarch, m68k_return_value);
6c0e89ed 1145
650fcc91
AS
1146 /* Disassembler. */
1147 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1148
eb2e12d7
AS
1149#if defined JB_PC && defined JB_ELEMENT_SIZE
1150 tdep->jb_pc = JB_PC;
1151 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1152#else
1153 tdep->jb_pc = -1;
1154#endif
f595cb19 1155 tdep->struct_value_regnum = M68K_A1_REGNUM;
66894781 1156 tdep->struct_return = reg_struct_return;
8de307e0
AS
1157
1158 /* Frame unwinder. */
1159 set_gdbarch_unwind_dummy_id (gdbarch, m68k_unwind_dummy_id);
1160 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
3f244638
AS
1161
1162 /* Hook in the DWARF CFI frame unwinder. */
1163 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1164
8de307e0 1165 frame_base_set_default (gdbarch, &m68k_frame_base);
eb2e12d7 1166
55809acb
AS
1167 /* Hook in ABI-specific overrides, if they have been registered. */
1168 gdbarch_init_osabi (info, gdbarch);
1169
eb2e12d7
AS
1170 /* Now we have tuned the configuration, set a few final things,
1171 based on what the OS ABI has told us. */
1172
1173 if (tdep->jb_pc >= 0)
1174 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1175
336d1bba 1176 frame_unwind_append_sniffer (gdbarch, m68k_frame_sniffer);
8de307e0 1177
152d9db6
GS
1178 return gdbarch;
1179}
1180
1181
1182static void
1183m68k_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1184{
eb2e12d7 1185 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
152d9db6 1186
eb2e12d7
AS
1187 if (tdep == NULL)
1188 return;
152d9db6 1189}
2acceee2 1190
a78f21af
AC
1191extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1192
c906108c 1193void
fba45db2 1194_initialize_m68k_tdep (void)
c906108c 1195{
152d9db6 1196 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
c906108c 1197}
This page took 0.544786 seconds and 4 git commands to generate.