Commit | Line | Data |
---|---|---|
bd5635a1 | 1 | /* Target dependent code for the Motorola 68000 series. |
f4992534 | 2 | Copyright (C) 1990, 1992 Free Software Foundation, Inc. |
bd5635a1 RP |
3 | |
4 | This file is part of GDB. | |
5 | ||
b6666a5d | 6 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 7 | it under the terms of the GNU General Public License as published by |
b6666a5d FF |
8 | the Free Software Foundation; either version 2 of the License, or |
9 | (at your option) any later version. | |
bd5635a1 | 10 | |
b6666a5d | 11 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
b6666a5d FF |
17 | along with this program; if not, write to the Free Software |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
bd5635a1 RP |
19 | |
20 | #include "defs.h" | |
b6666a5d FF |
21 | #include "frame.h" |
22 | #include "symtab.h" | |
bd5635a1 | 23 | |
b6666a5d | 24 | \f |
b6666a5d FF |
25 | /* Push an empty stack frame, to record the current PC, etc. */ |
26 | ||
27 | void | |
28 | m68k_push_dummy_frame () | |
29 | { | |
30 | register CORE_ADDR sp = read_register (SP_REGNUM); | |
31 | register int regnum; | |
32 | char raw_buffer[12]; | |
33 | ||
34 | sp = push_word (sp, read_register (PC_REGNUM)); | |
35 | sp = push_word (sp, read_register (FP_REGNUM)); | |
36 | write_register (FP_REGNUM, sp); | |
37 | #if defined (HAVE_68881) | |
38 | for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--) | |
39 | { | |
40 | read_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12); | |
41 | sp = push_bytes (sp, raw_buffer, 12); | |
42 | } | |
43 | #endif | |
44 | for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) | |
45 | { | |
46 | sp = push_word (sp, read_register (regnum)); | |
47 | } | |
48 | sp = push_word (sp, read_register (PS_REGNUM)); | |
49 | write_register (SP_REGNUM, sp); | |
50 | } | |
51 | ||
52 | /* Discard from the stack the innermost frame, | |
53 | restoring all saved registers. */ | |
54 | ||
55 | void | |
56 | m68k_pop_frame () | |
57 | { | |
58 | register FRAME frame = get_current_frame (); | |
59 | register CORE_ADDR fp; | |
60 | register int regnum; | |
61 | struct frame_saved_regs fsr; | |
62 | struct frame_info *fi; | |
63 | char raw_buffer[12]; | |
64 | ||
65 | fi = get_frame_info (frame); | |
66 | fp = fi -> frame; | |
67 | get_frame_saved_regs (fi, &fsr); | |
68 | #if defined (HAVE_68881) | |
69 | for (regnum = FP0_REGNUM + 7 ; regnum >= FP0_REGNUM ; regnum--) | |
70 | { | |
71 | if (fsr.regs[regnum]) | |
72 | { | |
73 | read_memory (fsr.regs[regnum], raw_buffer, 12); | |
74 | write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12); | |
75 | } | |
76 | } | |
77 | #endif | |
78 | for (regnum = FP_REGNUM - 1 ; regnum >= 0 ; regnum--) | |
79 | { | |
80 | if (fsr.regs[regnum]) | |
81 | { | |
82 | write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); | |
83 | } | |
84 | } | |
85 | if (fsr.regs[PS_REGNUM]) | |
86 | { | |
87 | write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); | |
88 | } | |
89 | write_register (FP_REGNUM, read_memory_integer (fp, 4)); | |
90 | write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); | |
91 | write_register (SP_REGNUM, fp + 8); | |
92 | flush_cached_frames (); | |
93 | set_current_frame (create_new_frame (read_register (FP_REGNUM), | |
94 | read_pc ())); | |
95 | } | |
96 | ||
97 | \f | |
98 | /* Given an ip value corresponding to the start of a function, | |
99 | return the ip of the first instruction after the function | |
100 | prologue. This is the generic m68k support. Machines which | |
101 | require something different can override the SKIP_PROLOGUE | |
102 | macro to point elsewhere. | |
103 | ||
104 | Some instructions which typically may appear in a function | |
105 | prologue include: | |
106 | ||
107 | A link instruction, word form: | |
108 | ||
109 | link.w %a6,&0 4e56 XXXX | |
110 | ||
111 | A link instruction, long form: | |
112 | ||
113 | link.l %fp,&F%1 480e XXXX XXXX | |
114 | ||
115 | A movm instruction to preserve integer regs: | |
116 | ||
117 | movm.l &M%1,(4,%sp) 48ef XXXX XXXX | |
118 | ||
119 | A fmovm instruction to preserve float regs: | |
120 | ||
121 | fmovm &FPM%1,(FPO%1,%sp) f237 XXXX XXXX XXXX XXXX | |
122 | ||
123 | Some profiling setup code (FIXME, not recognized yet): | |
124 | ||
125 | lea.l (.L3,%pc),%a1 43fb XXXX XXXX XXXX | |
126 | bsr _mcount 61ff XXXX XXXX | |
127 | ||
128 | */ | |
129 | ||
130 | #define P_LINK_L 0x480e | |
131 | #define P_LINK_W 0x4e56 | |
132 | #define P_MOV_L 0x207c | |
133 | #define P_JSR 0x4eb9 | |
134 | #define P_BSR 0x61ff | |
135 | #define P_LEA_L 0x43fb | |
136 | #define P_MOVM_L 0x48ef | |
137 | #define P_FMOVM 0xf237 | |
f4992534 | 138 | #define P_TRAP 0x4e40 |
b6666a5d FF |
139 | |
140 | CORE_ADDR | |
141 | m68k_skip_prologue (ip) | |
142 | CORE_ADDR ip; | |
143 | { | |
144 | register CORE_ADDR limit; | |
145 | struct symtab_and_line sal; | |
146 | register int op; | |
147 | ||
148 | /* Find out if there is a known limit for the extent of the prologue. | |
149 | If so, ensure we don't go past it. If not, assume "infinity". */ | |
150 | ||
151 | sal = find_pc_line (ip, 0); | |
152 | limit = (sal.end) ? sal.end : (CORE_ADDR) ~0; | |
153 | ||
154 | while (ip < limit) | |
155 | { | |
156 | op = read_memory_integer (ip, 2); | |
157 | op &= 0xFFFF; | |
158 | ||
159 | if (op == P_LINK_W) | |
160 | { | |
161 | ip += 4; /* Skip link.w */ | |
162 | } | |
163 | else if (op == P_LINK_L) | |
164 | { | |
165 | ip += 6; /* Skip link.l */ | |
166 | } | |
167 | else if (op == P_MOVM_L) | |
168 | { | |
169 | ip += 6; /* Skip movm.l */ | |
170 | } | |
171 | else if (op == P_FMOVM) | |
172 | { | |
173 | ip += 10; /* Skip fmovm */ | |
174 | } | |
175 | else | |
176 | { | |
177 | break; /* Found unknown code, bail out. */ | |
178 | } | |
179 | } | |
180 | return (ip); | |
181 | } | |
182 | ||
ade40d31 RP |
183 | void |
184 | m68k_find_saved_regs (frame_info, saved_regs) | |
185 | struct frame_info *frame_info; | |
186 | struct frame_saved_regs *saved_regs; | |
187 | { | |
188 | register int regnum; | |
189 | register int regmask; | |
190 | register CORE_ADDR next_addr; | |
191 | register CORE_ADDR pc; | |
192 | ||
193 | /* First possible address for a pc in a call dummy for this frame. */ | |
194 | CORE_ADDR possible_call_dummy_start = | |
195 | (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM*4 - 4 | |
196 | #if defined (HAVE_68881) | |
197 | - 8*12 | |
198 | #endif | |
199 | ; | |
200 | ||
201 | int nextinsn; | |
202 | memset (saved_regs, 0, sizeof (*saved_regs)); | |
203 | if ((frame_info)->pc >= possible_call_dummy_start | |
204 | && (frame_info)->pc <= (frame_info)->frame) | |
205 | { | |
206 | ||
207 | /* It is a call dummy. We could just stop now, since we know | |
208 | what the call dummy saves and where. But this code proceeds | |
209 | to parse the "prologue" which is part of the call dummy. | |
210 | This is needlessly complex, confusing, and also is the only | |
211 | reason that the call dummy is customized based on HAVE_68881. | |
212 | FIXME. */ | |
213 | ||
214 | next_addr = (frame_info)->frame; | |
215 | pc = possible_call_dummy_start; | |
216 | } | |
217 | else | |
218 | { | |
219 | pc = get_pc_function_start ((frame_info)->pc); | |
220 | /* Verify we have a link a6 instruction next; | |
221 | if not we lose. If we win, find the address above the saved | |
222 | regs using the amount of storage from the link instruction. */ | |
223 | if (044016 == read_memory_integer (pc, 2)) | |
224 | next_addr = (frame_info)->frame + read_memory_integer (pc += 2, 4), pc+=4; | |
225 | else if (047126 == read_memory_integer (pc, 2)) | |
226 | next_addr = (frame_info)->frame + read_memory_integer (pc += 2, 2), pc+=2; | |
227 | else goto lose; | |
228 | /* If have an addal #-n, sp next, adjust next_addr. */ | |
229 | if ((0177777 & read_memory_integer (pc, 2)) == 0157774) | |
230 | next_addr += read_memory_integer (pc += 2, 4), pc += 4; | |
231 | } | |
232 | regmask = read_memory_integer (pc + 2, 2); | |
233 | #if defined (HAVE_68881) | |
234 | /* Here can come an fmovem. Check for it. */ | |
235 | nextinsn = 0xffff & read_memory_integer (pc, 2); | |
236 | if (0xf227 == nextinsn | |
237 | && (regmask & 0xff00) == 0xe000) | |
238 | { pc += 4; /* Regmask's low bit is for register fp7, the first pushed */ | |
239 | for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--, regmask >>= 1) | |
240 | if (regmask & 1) | |
241 | saved_regs->regs[regnum] = (next_addr -= 12); | |
242 | regmask = read_memory_integer (pc + 2, 2); } | |
243 | #endif | |
244 | /* next should be a moveml to (sp) or -(sp) or a movl r,-(sp) */ | |
245 | if (0044327 == read_memory_integer (pc, 2)) | |
246 | { pc += 4; /* Regmask's low bit is for register 0, the first written */ | |
247 | for (regnum = 0; regnum < 16; regnum++, regmask >>= 1) | |
248 | if (regmask & 1) | |
249 | saved_regs->regs[regnum] = (next_addr += 4) - 4; } | |
250 | else if (0044347 == read_memory_integer (pc, 2)) | |
251 | { | |
252 | pc += 4; /* Regmask's low bit is for register 15, the first pushed */ | |
253 | for (regnum = 15; regnum >= 0; regnum--, regmask >>= 1) | |
254 | if (regmask & 1) | |
255 | saved_regs->regs[regnum] = (next_addr -= 4); | |
256 | } | |
257 | else if (0x2f00 == (0xfff0 & read_memory_integer (pc, 2))) | |
258 | { | |
259 | regnum = 0xf & read_memory_integer (pc, 2); pc += 2; | |
260 | saved_regs->regs[regnum] = (next_addr -= 4); | |
261 | /* gcc, at least, may use a pair of movel instructions when saving | |
262 | exactly 2 registers. */ | |
263 | if (0x2f00 == (0xfff0 & read_memory_integer (pc, 2))) | |
264 | { | |
265 | regnum = 0xf & read_memory_integer (pc, 2); | |
266 | pc += 2; | |
267 | saved_regs->regs[regnum] = (next_addr -= 4); | |
268 | } | |
269 | } | |
270 | #if defined (HAVE_68881) | |
271 | /* fmovemx to index of sp may follow. */ | |
272 | regmask = read_memory_integer (pc + 2, 2); | |
273 | nextinsn = 0xffff & read_memory_integer (pc, 2); | |
274 | if (0xf236 == nextinsn | |
275 | && (regmask & 0xff00) == 0xf000) | |
276 | { pc += 10; /* Regmask's low bit is for register fp0, the first written */ | |
277 | for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--, regmask >>= 1) | |
278 | if (regmask & 1) | |
279 | saved_regs->regs[regnum] = (next_addr += 12) - 12; | |
280 | regmask = read_memory_integer (pc + 2, 2); } | |
281 | #endif | |
282 | /* clrw -(sp); movw ccr,-(sp) may follow. */ | |
283 | if (0x426742e7 == read_memory_integer (pc, 4)) | |
284 | saved_regs->regs[PS_REGNUM] = (next_addr -= 4); | |
285 | lose: ; | |
286 | saved_regs->regs[SP_REGNUM] = (frame_info)->frame + 8; | |
287 | saved_regs->regs[FP_REGNUM] = (frame_info)->frame; | |
288 | saved_regs->regs[PC_REGNUM] = (frame_info)->frame + 4; | |
289 | #ifdef SIG_SP_FP_OFFSET | |
290 | /* Adjust saved SP_REGNUM for fake _sigtramp frames. */ | |
291 | if (frame_info->signal_handler_caller && frame_info->next) | |
292 | saved_regs->regs[SP_REGNUM] = frame_info->next->frame + SIG_SP_FP_OFFSET; | |
293 | #endif | |
294 | } | |
295 | ||
296 | ||
b6666a5d FF |
297 | #ifdef USE_PROC_FS /* Target dependent support for /proc */ |
298 | ||
299 | #include <sys/procfs.h> | |
300 | ||
301 | /* The /proc interface divides the target machine's register set up into | |
302 | two different sets, the general register set (gregset) and the floating | |
303 | point register set (fpregset). For each set, there is an ioctl to get | |
304 | the current register set and another ioctl to set the current values. | |
305 | ||
306 | The actual structure passed through the ioctl interface is, of course, | |
307 | naturally machine dependent, and is different for each set of registers. | |
308 | For the m68k for example, the general register set is typically defined | |
309 | by: | |
310 | ||
311 | typedef int gregset_t[18]; | |
312 | ||
313 | #define R_D0 0 | |
314 | ... | |
315 | #define R_PS 17 | |
316 | ||
317 | and the floating point set by: | |
318 | ||
319 | typedef struct fpregset { | |
320 | int f_pcr; | |
321 | int f_psr; | |
322 | int f_fpiaddr; | |
323 | int f_fpregs[8][3]; (8 regs, 96 bits each) | |
324 | } fpregset_t; | |
325 | ||
326 | These routines provide the packing and unpacking of gregset_t and | |
327 | fpregset_t formatted data. | |
328 | ||
329 | */ | |
330 | ||
331 | ||
332 | /* Given a pointer to a general register set in /proc format (gregset_t *), | |
333 | unpack the register contents and supply them as gdb's idea of the current | |
334 | register values. */ | |
335 | ||
336 | void | |
337 | supply_gregset (gregsetp) | |
338 | gregset_t *gregsetp; | |
339 | { | |
f4992534 | 340 | register int regi; |
b6666a5d FF |
341 | register greg_t *regp = (greg_t *) gregsetp; |
342 | ||
f4992534 | 343 | for (regi = 0 ; regi < R_PC ; regi++) |
b6666a5d | 344 | { |
f4992534 | 345 | supply_register (regi, (char *) (regp + regi)); |
b6666a5d FF |
346 | } |
347 | supply_register (PS_REGNUM, (char *) (regp + R_PS)); | |
348 | supply_register (PC_REGNUM, (char *) (regp + R_PC)); | |
349 | } | |
350 | ||
351 | void | |
352 | fill_gregset (gregsetp, regno) | |
353 | gregset_t *gregsetp; | |
354 | int regno; | |
355 | { | |
f4992534 | 356 | register int regi; |
b6666a5d FF |
357 | register greg_t *regp = (greg_t *) gregsetp; |
358 | extern char registers[]; | |
359 | ||
360 | for (regi = 0 ; regi < R_PC ; regi++) | |
361 | { | |
362 | if ((regno == -1) || (regno == regi)) | |
363 | { | |
f4992534 | 364 | *(regp + regi) = *(int *) ®isters[REGISTER_BYTE (regi)]; |
b6666a5d FF |
365 | } |
366 | } | |
367 | if ((regno == -1) || (regno == PS_REGNUM)) | |
368 | { | |
369 | *(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)]; | |
370 | } | |
371 | if ((regno == -1) || (regno == PC_REGNUM)) | |
372 | { | |
373 | *(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)]; | |
374 | } | |
375 | } | |
376 | ||
377 | #if defined (FP0_REGNUM) | |
378 | ||
379 | /* Given a pointer to a floating point register set in /proc format | |
380 | (fpregset_t *), unpack the register contents and supply them as gdb's | |
381 | idea of the current floating point register values. */ | |
382 | ||
383 | void | |
384 | supply_fpregset (fpregsetp) | |
385 | fpregset_t *fpregsetp; | |
386 | { | |
f4992534 SG |
387 | register int regi; |
388 | char *from; | |
b6666a5d | 389 | |
f4992534 | 390 | for (regi = FP0_REGNUM ; regi < FPC_REGNUM ; regi++) |
b6666a5d | 391 | { |
f4992534 SG |
392 | from = (char *) &(fpregsetp -> f_fpregs[regi-FP0_REGNUM][0]); |
393 | supply_register (regi, from); | |
b6666a5d FF |
394 | } |
395 | supply_register (FPC_REGNUM, (char *) &(fpregsetp -> f_pcr)); | |
396 | supply_register (FPS_REGNUM, (char *) &(fpregsetp -> f_psr)); | |
397 | supply_register (FPI_REGNUM, (char *) &(fpregsetp -> f_fpiaddr)); | |
398 | } | |
399 | ||
400 | /* Given a pointer to a floating point register set in /proc format | |
401 | (fpregset_t *), update the register specified by REGNO from gdb's idea | |
402 | of the current floating point register set. If REGNO is -1, update | |
403 | them all. */ | |
404 | ||
405 | void | |
406 | fill_fpregset (fpregsetp, regno) | |
407 | fpregset_t *fpregsetp; | |
408 | int regno; | |
409 | { | |
410 | int regi; | |
411 | char *to; | |
412 | char *from; | |
413 | extern char registers[]; | |
414 | ||
415 | for (regi = FP0_REGNUM ; regi < FPC_REGNUM ; regi++) | |
416 | { | |
417 | if ((regno == -1) || (regno == regi)) | |
418 | { | |
419 | from = (char *) ®isters[REGISTER_BYTE (regi)]; | |
f4992534 | 420 | to = (char *) &(fpregsetp -> f_fpregs[regi-FP0_REGNUM][0]); |
ade40d31 | 421 | memcpy (to, from, REGISTER_RAW_SIZE (regi)); |
b6666a5d FF |
422 | } |
423 | } | |
424 | if ((regno == -1) || (regno == FPC_REGNUM)) | |
425 | { | |
426 | fpregsetp -> f_pcr = *(int *) ®isters[REGISTER_BYTE (FPC_REGNUM)]; | |
427 | } | |
428 | if ((regno == -1) || (regno == FPS_REGNUM)) | |
429 | { | |
430 | fpregsetp -> f_psr = *(int *) ®isters[REGISTER_BYTE (FPS_REGNUM)]; | |
431 | } | |
432 | if ((regno == -1) || (regno == FPI_REGNUM)) | |
433 | { | |
434 | fpregsetp -> f_fpiaddr = *(int *) ®isters[REGISTER_BYTE (FPI_REGNUM)]; | |
435 | } | |
436 | } | |
437 | ||
438 | #endif /* defined (FP0_REGNUM) */ | |
439 | ||
440 | #endif /* USE_PROC_FS */ | |
f4992534 SG |
441 | |
442 | #ifdef GET_LONGJMP_TARGET | |
443 | /* Figure out where the longjmp will land. Slurp the args out of the stack. | |
444 | We expect the first arg to be a pointer to the jmp_buf structure from which | |
445 | we extract the pc (JB_PC) that we will land at. The pc is copied into PC. | |
446 | This routine returns true on success. */ | |
447 | ||
448 | int | |
449 | get_longjmp_target(pc) | |
450 | CORE_ADDR *pc; | |
451 | { | |
ade40d31 | 452 | char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT]; |
f4992534 SG |
453 | CORE_ADDR sp, jb_addr; |
454 | ||
455 | sp = read_register(SP_REGNUM); | |
456 | ||
ade40d31 RP |
457 | if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */ |
458 | buf, | |
459 | TARGET_PTR_BIT / TARGET_CHAR_BIT)) | |
f4992534 SG |
460 | return 0; |
461 | ||
ade40d31 | 462 | jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT); |
f4992534 | 463 | |
ade40d31 RP |
464 | if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf, |
465 | TARGET_PTR_BIT / TARGET_CHAR_BIT)) | |
f4992534 SG |
466 | return 0; |
467 | ||
ade40d31 | 468 | *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT); |
f4992534 SG |
469 | |
470 | return 1; | |
471 | } | |
472 | #endif /* GET_LONGJMP_TARGET */ | |
473 | ||
474 | /* Immediately after a function call, return the saved pc before the frame | |
ade40d31 RP |
475 | is setup. For sun3's, we check for the common case of being inside of a |
476 | system call, and if so, we know that Sun pushes the call # on the stack | |
477 | prior to doing the trap. */ | |
f4992534 SG |
478 | |
479 | CORE_ADDR | |
480 | m68k_saved_pc_after_call(frame) | |
481 | struct frame_info *frame; | |
482 | { | |
ade40d31 | 483 | #ifdef GDB_TARGET_IS_SUN3 |
f4992534 SG |
484 | int op; |
485 | ||
486 | op = read_memory_integer (frame->pc, 2); | |
487 | op &= 0xFFFF; | |
488 | ||
489 | if (op == P_TRAP) | |
490 | return read_memory_integer (read_register (SP_REGNUM) + 4, 4); | |
491 | else | |
ade40d31 | 492 | #endif /* GDB_TARGET_IS_SUN3 */ |
f4992534 SG |
493 | return read_memory_integer (read_register (SP_REGNUM), 4); |
494 | } |