* ppc-linux-tdep.c (INSTR_SC, INSTR_LI_R0_0x6666, INSTR_LI_R0_0x7777,
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
CommitLineData
748894bf 1/* Target-dependent code for the Motorola 68000 series.
c6f0559b 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
197e01b6
EZ
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
c906108c
SS
22
23#include "defs.h"
3f244638 24#include "dwarf2-frame.h"
c906108c 25#include "frame.h"
8de307e0
AS
26#include "frame-base.h"
27#include "frame-unwind.h"
e6bb342a 28#include "gdbtypes.h"
c906108c
SS
29#include "symtab.h"
30#include "gdbcore.h"
31#include "value.h"
32#include "gdb_string.h"
8de307e0 33#include "gdb_assert.h"
7a292a7a 34#include "inferior.h"
4e052eda 35#include "regcache.h"
5d3ed2e3 36#include "arch-utils.h"
55809acb 37#include "osabi.h"
a89aa300 38#include "dis-asm.h"
32eeb91a
AS
39
40#include "m68k-tdep.h"
c906108c 41\f
c5aa993b 42
89c3b6d3
PDM
43#define P_LINKL_FP 0x480e
44#define P_LINKW_FP 0x4e56
45#define P_PEA_FP 0x4856
8de307e0
AS
46#define P_MOVEAL_SP_FP 0x2c4f
47#define P_ADDAW_SP 0xdefc
48#define P_ADDAL_SP 0xdffc
49#define P_SUBQW_SP 0x514f
50#define P_SUBQL_SP 0x518f
51#define P_LEA_SP_SP 0x4fef
52#define P_LEA_PC_A5 0x4bfb0170
53#define P_FMOVEMX_SP 0xf227
54#define P_MOVEL_SP 0x2f00
55#define P_MOVEML_SP 0x48e7
89c3b6d3 56
103a1597 57
103a1597
GS
58#define REGISTER_BYTES_FP (16*4 + 8 + 8*12 + 3*4)
59#define REGISTER_BYTES_NOFP (16*4 + 8)
60
103a1597 61/* Offset from SP to first arg on stack at first instruction of a function */
103a1597
GS
62#define SP_ARG0 (1 * 4)
63
103a1597
GS
64#if !defined (BPT_VECTOR)
65#define BPT_VECTOR 0xf
66#endif
67
f5cf7aa1 68static const gdb_byte *
103a1597
GS
69m68k_local_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
70{
f5cf7aa1 71 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
103a1597
GS
72 *lenptr = sizeof (break_insn);
73 return break_insn;
74}
75
76
942dc0e9 77static int
5ae5f592 78m68k_register_bytes_ok (long numbytes)
942dc0e9
GS
79{
80 return ((numbytes == REGISTER_BYTES_FP)
81 || (numbytes == REGISTER_BYTES_NOFP));
82}
83
d85fe7f7
AS
84/* Return the GDB type object for the "standard" data type of data in
85 register N. This should be int for D0-D7, SR, FPCONTROL and
86 FPSTATUS, long double for FP0-FP7, and void pointer for all others
87 (A0-A7, PC, FPIADDR). Note, for registers which contain
88 addresses return pointer to void, not pointer to char, because we
89 don't want to attempt to print the string after printing the
90 address. */
5d3ed2e3
GS
91
92static struct type *
8de307e0 93m68k_register_type (struct gdbarch *gdbarch, int regnum)
5d3ed2e3 94{
03dac896
AS
95 if (regnum >= FP0_REGNUM && regnum <= FP0_REGNUM + 7)
96 return builtin_type_m68881_ext;
97
32eeb91a 98 if (regnum == M68K_FPI_REGNUM || regnum == PC_REGNUM)
03dac896
AS
99 return builtin_type_void_func_ptr;
100
32eeb91a
AS
101 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM
102 || regnum == PS_REGNUM)
03dac896
AS
103 return builtin_type_int32;
104
32eeb91a 105 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
03dac896
AS
106 return builtin_type_void_data_ptr;
107
108 return builtin_type_int32;
5d3ed2e3
GS
109}
110
111/* Function: m68k_register_name
112 Returns the name of the standard m68k register regnum. */
113
114static const char *
115m68k_register_name (int regnum)
116{
117 static char *register_names[] = {
118 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
119 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
120 "ps", "pc",
121 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
122 "fpcontrol", "fpstatus", "fpiaddr", "fpcode", "fpflags"
123 };
124
07652652 125 if (regnum < 0 || regnum >= ARRAY_SIZE (register_names))
5d3ed2e3 126 internal_error (__FILE__, __LINE__,
e2e0b3e5 127 _("m68k_register_name: illegal register number %d"), regnum);
5d3ed2e3
GS
128 else
129 return register_names[regnum];
130}
e47577ab
MK
131\f
132/* Return nonzero if a value of type TYPE stored in register REGNUM
133 needs any special handling. */
134
135static int
136m68k_convert_register_p (int regnum, struct type *type)
137{
138 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7);
139}
140
141/* Read a value of type TYPE from register REGNUM in frame FRAME, and
142 return its contents in TO. */
143
144static void
145m68k_register_to_value (struct frame_info *frame, int regnum,
f5cf7aa1 146 struct type *type, gdb_byte *to)
e47577ab 147{
f5cf7aa1 148 gdb_byte from[M68K_MAX_REGISTER_SIZE];
e47577ab
MK
149
150 /* We only support floating-point values. */
151 if (TYPE_CODE (type) != TYPE_CODE_FLT)
152 {
8a3fe4f8
AC
153 warning (_("Cannot convert floating-point register value "
154 "to non-floating-point type."));
e47577ab
MK
155 return;
156 }
157
158 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
159 the extended floating-point format used by the FPU. */
160 get_frame_register (frame, regnum, from);
161 convert_typed_floating (from, builtin_type_m68881_ext, to, type);
162}
163
164/* Write the contents FROM of a value of type TYPE into register
165 REGNUM in frame FRAME. */
166
167static void
168m68k_value_to_register (struct frame_info *frame, int regnum,
f5cf7aa1 169 struct type *type, const gdb_byte *from)
e47577ab 170{
f5cf7aa1 171 gdb_byte to[M68K_MAX_REGISTER_SIZE];
e47577ab
MK
172
173 /* We only support floating-point values. */
174 if (TYPE_CODE (type) != TYPE_CODE_FLT)
175 {
8a3fe4f8
AC
176 warning (_("Cannot convert non-floating-point type "
177 "to floating-point register value."));
e47577ab
MK
178 return;
179 }
180
181 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
182 to the extended floating-point format used by the FPU. */
183 convert_typed_floating (from, type, to, builtin_type_m68881_ext);
184 put_frame_register (frame, regnum, to);
185}
186
8de307e0 187\f
f595cb19
MK
188/* There is a fair number of calling conventions that are in somewhat
189 wide use. The 68000/08/10 don't support an FPU, not even as a
190 coprocessor. All function return values are stored in %d0/%d1.
191 Structures are returned in a static buffer, a pointer to which is
192 returned in %d0. This means that functions returning a structure
193 are not re-entrant. To avoid this problem some systems use a
194 convention where the caller passes a pointer to a buffer in %a1
195 where the return values is to be stored. This convention is the
196 default, and is implemented in the function m68k_return_value.
197
198 The 68020/030/040/060 do support an FPU, either as a coprocessor
199 (68881/2) or built-in (68040/68060). That's why System V release 4
200 (SVR4) instroduces a new calling convention specified by the SVR4
201 psABI. Integer values are returned in %d0/%d1, pointer return
202 values in %a0 and floating values in %fp0. When calling functions
203 returning a structure the caller should pass a pointer to a buffer
204 for the return value in %a0. This convention is implemented in the
205 function m68k_svr4_return_value, and by appropriately setting the
206 struct_value_regnum member of `struct gdbarch_tdep'.
207
208 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
209 for passing the structure return value buffer.
210
211 GCC can also generate code where small structures are returned in
212 %d0/%d1 instead of in memory by using -freg-struct-return. This is
213 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
214 embedded systems. This convention is implemented by setting the
215 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
216
217/* Read a function return value of TYPE from REGCACHE, and copy that
8de307e0 218 into VALBUF. */
942dc0e9
GS
219
220static void
8de307e0 221m68k_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 222 gdb_byte *valbuf)
942dc0e9 223{
8de307e0 224 int len = TYPE_LENGTH (type);
f5cf7aa1 225 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
942dc0e9 226
8de307e0
AS
227 if (len <= 4)
228 {
229 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
230 memcpy (valbuf, buf + (4 - len), len);
231 }
232 else if (len <= 8)
233 {
234 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
235 memcpy (valbuf, buf + (8 - len), len - 4);
f5cf7aa1 236 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
237 }
238 else
239 internal_error (__FILE__, __LINE__,
e2e0b3e5 240 _("Cannot extract return value of %d bytes long."), len);
942dc0e9
GS
241}
242
942dc0e9 243static void
f595cb19 244m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 245 gdb_byte *valbuf)
942dc0e9 246{
8de307e0 247 int len = TYPE_LENGTH (type);
f5cf7aa1 248 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
942dc0e9 249
f595cb19 250 if (TYPE_CODE (type) == TYPE_CODE_FLT)
8de307e0 251 {
f595cb19
MK
252 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
253 convert_typed_floating (buf, builtin_type_m68881_ext, valbuf, type);
8de307e0 254 }
f595cb19
MK
255 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
256 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
257 else
258 m68k_extract_return_value (type, regcache, valbuf);
259}
260
261/* Write a function return value of TYPE from VALBUF into REGCACHE. */
262
263static void
264m68k_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 265 const gdb_byte *valbuf)
f595cb19
MK
266{
267 int len = TYPE_LENGTH (type);
942dc0e9 268
8de307e0
AS
269 if (len <= 4)
270 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
271 else if (len <= 8)
272 {
f595cb19 273 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
8de307e0 274 len - 4, valbuf);
f5cf7aa1 275 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
276 }
277 else
278 internal_error (__FILE__, __LINE__,
e2e0b3e5 279 _("Cannot store return value of %d bytes long."), len);
8de307e0 280}
942dc0e9 281
f595cb19
MK
282static void
283m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 284 const gdb_byte *valbuf)
942dc0e9 285{
f595cb19 286 int len = TYPE_LENGTH (type);
8de307e0 287
f595cb19
MK
288 if (TYPE_CODE (type) == TYPE_CODE_FLT)
289 {
f5cf7aa1 290 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
f595cb19
MK
291 convert_typed_floating (valbuf, type, buf, builtin_type_m68881_ext);
292 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
293 }
294 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
295 {
296 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
297 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
298 }
299 else
300 m68k_store_return_value (type, regcache, valbuf);
942dc0e9
GS
301}
302
f595cb19
MK
303/* Return non-zero if TYPE, which is assumed to be a structure or
304 union type, should be returned in registers for architecture
305 GDBARCH. */
306
c481dac7 307static int
f595cb19 308m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
c481dac7 309{
f595cb19
MK
310 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
311 enum type_code code = TYPE_CODE (type);
312 int len = TYPE_LENGTH (type);
c481dac7 313
f595cb19
MK
314 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
315
316 if (tdep->struct_return == pcc_struct_return)
317 return 0;
318
319 return (len == 1 || len == 2 || len == 4 || len == 8);
c481dac7
AS
320}
321
f595cb19
MK
322/* Determine, for architecture GDBARCH, how a return value of TYPE
323 should be returned. If it is supposed to be returned in registers,
324 and READBUF is non-zero, read the appropriate value from REGCACHE,
325 and copy it into READBUF. If WRITEBUF is non-zero, write the value
326 from WRITEBUF into REGCACHE. */
327
328static enum return_value_convention
329m68k_return_value (struct gdbarch *gdbarch, struct type *type,
f5cf7aa1
MK
330 struct regcache *regcache, gdb_byte *readbuf,
331 const gdb_byte *writebuf)
f595cb19
MK
332{
333 enum type_code code = TYPE_CODE (type);
334
1c845060
MK
335 /* GCC returns a `long double' in memory too. */
336 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
337 && !m68k_reg_struct_return_p (gdbarch, type))
338 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
339 {
340 /* The default on m68k is to return structures in static memory.
341 Consequently a function must return the address where we can
342 find the return value. */
f595cb19 343
1c845060
MK
344 if (readbuf)
345 {
346 ULONGEST addr;
347
348 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
349 read_memory (addr, readbuf, TYPE_LENGTH (type));
350 }
351
352 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
353 }
f595cb19
MK
354
355 if (readbuf)
356 m68k_extract_return_value (type, regcache, readbuf);
357 if (writebuf)
358 m68k_store_return_value (type, regcache, writebuf);
359
360 return RETURN_VALUE_REGISTER_CONVENTION;
361}
362
363static enum return_value_convention
364m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *type,
f5cf7aa1
MK
365 struct regcache *regcache, gdb_byte *readbuf,
366 const gdb_byte *writebuf)
f595cb19
MK
367{
368 enum type_code code = TYPE_CODE (type);
369
370 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
371 && !m68k_reg_struct_return_p (gdbarch, type))
51da707a
MK
372 {
373 /* The System V ABI says that:
374
375 "A function returning a structure or union also sets %a0 to
376 the value it finds in %a0. Thus when the caller receives
377 control again, the address of the returned object resides in
378 register %a0."
379
380 So the ABI guarantees that we can always find the return
381 value just after the function has returned. */
382
383 if (readbuf)
384 {
385 ULONGEST addr;
386
387 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
388 read_memory (addr, readbuf, TYPE_LENGTH (type));
389 }
390
391 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
392 }
f595cb19
MK
393
394 /* This special case is for structures consisting of a single
395 `float' or `double' member. These structures are returned in
396 %fp0. For these structures, we call ourselves recursively,
397 changing TYPE into the type of the first member of the structure.
398 Since that should work for all structures that have only one
399 member, we don't bother to check the member's type here. */
400 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
401 {
402 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
403 return m68k_svr4_return_value (gdbarch, type, regcache,
404 readbuf, writebuf);
405 }
406
407 if (readbuf)
408 m68k_svr4_extract_return_value (type, regcache, readbuf);
409 if (writebuf)
410 m68k_svr4_store_return_value (type, regcache, writebuf);
411
412 return RETURN_VALUE_REGISTER_CONVENTION;
413}
414\f
392a587b 415
9bb47d95
NS
416/* Always align the frame to a 4-byte boundary. This is required on
417 coldfire and harmless on the rest. */
418
419static CORE_ADDR
420m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
421{
422 /* Align the stack to four bytes. */
423 return sp & ~3;
424}
425
8de307e0 426static CORE_ADDR
7d9b040b 427m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
8de307e0
AS
428 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
429 struct value **args, CORE_ADDR sp, int struct_return,
430 CORE_ADDR struct_addr)
7f8e7424 431{
f595cb19 432 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
f5cf7aa1 433 gdb_byte buf[4];
8de307e0
AS
434 int i;
435
436 /* Push arguments in reverse order. */
437 for (i = nargs - 1; i >= 0; i--)
438 {
4754a64e 439 struct type *value_type = value_enclosing_type (args[i]);
c481dac7 440 int len = TYPE_LENGTH (value_type);
8de307e0 441 int container_len = (len + 3) & ~3;
c481dac7
AS
442 int offset;
443
444 /* Non-scalars bigger than 4 bytes are left aligned, others are
445 right aligned. */
446 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
447 || TYPE_CODE (value_type) == TYPE_CODE_UNION
448 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
449 && len > 4)
450 offset = 0;
451 else
452 offset = container_len - len;
8de307e0 453 sp -= container_len;
46615f07 454 write_memory (sp + offset, value_contents_all (args[i]), len);
8de307e0
AS
455 }
456
c481dac7 457 /* Store struct value address. */
8de307e0
AS
458 if (struct_return)
459 {
8de307e0 460 store_unsigned_integer (buf, 4, struct_addr);
f595cb19 461 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
8de307e0
AS
462 }
463
464 /* Store return address. */
465 sp -= 4;
466 store_unsigned_integer (buf, 4, bp_addr);
467 write_memory (sp, buf, 4);
468
469 /* Finally, update the stack pointer... */
470 store_unsigned_integer (buf, 4, sp);
471 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
472
473 /* ...and fake a frame pointer. */
474 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
475
476 /* DWARF2/GCC uses the stack address *before* the function call as a
477 frame's CFA. */
478 return sp + 8;
7f8e7424 479}
6dd0fba6
NS
480
481/* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
482
483static int
484m68k_dwarf_reg_to_regnum (int num)
485{
486 if (num < 8)
487 /* d0..7 */
488 return (num - 0) + M68K_D0_REGNUM;
489 else if (num < 16)
490 /* a0..7 */
491 return (num - 8) + M68K_A0_REGNUM;
492 else if (num < 24)
493 /* fp0..7 */
494 return (num - 16) + M68K_FP0_REGNUM;
495 else if (num == 25)
496 /* pc */
497 return M68K_PC_REGNUM;
498 else
f57d151a
UW
499 return gdbarch_num_regs (current_gdbarch)
500 + gdbarch_num_pseudo_regs (current_gdbarch);
6dd0fba6
NS
501}
502
8de307e0
AS
503\f
504struct m68k_frame_cache
505{
506 /* Base address. */
507 CORE_ADDR base;
508 CORE_ADDR sp_offset;
509 CORE_ADDR pc;
7f8e7424 510
8de307e0
AS
511 /* Saved registers. */
512 CORE_ADDR saved_regs[M68K_NUM_REGS];
513 CORE_ADDR saved_sp;
7f8e7424 514
8de307e0
AS
515 /* Stack space reserved for local variables. */
516 long locals;
517};
c906108c 518
8de307e0
AS
519/* Allocate and initialize a frame cache. */
520
521static struct m68k_frame_cache *
522m68k_alloc_frame_cache (void)
c906108c 523{
8de307e0
AS
524 struct m68k_frame_cache *cache;
525 int i;
c906108c 526
8de307e0 527 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
c906108c 528
8de307e0
AS
529 /* Base address. */
530 cache->base = 0;
531 cache->sp_offset = -4;
532 cache->pc = 0;
c906108c 533
8de307e0
AS
534 /* Saved registers. We initialize these to -1 since zero is a valid
535 offset (that's where %fp is supposed to be stored). */
536 for (i = 0; i < M68K_NUM_REGS; i++)
537 cache->saved_regs[i] = -1;
538
539 /* Frameless until proven otherwise. */
540 cache->locals = -1;
541
542 return cache;
c906108c
SS
543}
544
8de307e0
AS
545/* Check whether PC points at a code that sets up a new stack frame.
546 If so, it updates CACHE and returns the address of the first
547 instruction after the sequence that sets removes the "hidden"
548 argument from the stack or CURRENT_PC, whichever is smaller.
549 Otherwise, return PC. */
c906108c 550
8de307e0
AS
551static CORE_ADDR
552m68k_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
553 struct m68k_frame_cache *cache)
c906108c 554{
8de307e0
AS
555 int op;
556
557 if (pc >= current_pc)
558 return current_pc;
c906108c 559
8de307e0
AS
560 op = read_memory_unsigned_integer (pc, 2);
561
562 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
c906108c 563 {
8de307e0
AS
564 cache->saved_regs[M68K_FP_REGNUM] = 0;
565 cache->sp_offset += 4;
566 if (op == P_LINKW_FP)
567 {
568 /* link.w %fp, #-N */
569 /* link.w %fp, #0; adda.l #-N, %sp */
570 cache->locals = -read_memory_integer (pc + 2, 2);
571
572 if (pc + 4 < current_pc && cache->locals == 0)
573 {
574 op = read_memory_unsigned_integer (pc + 4, 2);
575 if (op == P_ADDAL_SP)
576 {
577 cache->locals = read_memory_integer (pc + 6, 4);
578 return pc + 10;
579 }
580 }
581
582 return pc + 4;
583 }
584 else if (op == P_LINKL_FP)
c906108c 585 {
8de307e0
AS
586 /* link.l %fp, #-N */
587 cache->locals = -read_memory_integer (pc + 2, 4);
588 return pc + 6;
589 }
590 else
591 {
592 /* pea (%fp); movea.l %sp, %fp */
593 cache->locals = 0;
594
595 if (pc + 2 < current_pc)
596 {
597 op = read_memory_unsigned_integer (pc + 2, 2);
598
599 if (op == P_MOVEAL_SP_FP)
600 {
601 /* move.l %sp, %fp */
602 return pc + 4;
603 }
604 }
605
606 return pc + 2;
c906108c
SS
607 }
608 }
8de307e0 609 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
c906108c 610 {
8de307e0
AS
611 /* subq.[wl] #N,%sp */
612 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
613 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
614 if (pc + 2 < current_pc)
c906108c 615 {
8de307e0
AS
616 op = read_memory_unsigned_integer (pc + 2, 2);
617 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
618 {
619 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
620 return pc + 4;
621 }
c906108c 622 }
8de307e0
AS
623 return pc + 2;
624 }
625 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
626 {
627 /* adda.w #-N,%sp */
628 /* lea (-N,%sp),%sp */
629 cache->locals = -read_memory_integer (pc + 2, 2);
630 return pc + 4;
c906108c 631 }
8de307e0 632 else if (op == P_ADDAL_SP)
c906108c 633 {
8de307e0
AS
634 /* adda.l #-N,%sp */
635 cache->locals = -read_memory_integer (pc + 2, 4);
636 return pc + 6;
c906108c 637 }
8de307e0
AS
638
639 return pc;
c906108c 640}
c5aa993b 641
8de307e0
AS
642/* Check whether PC points at code that saves registers on the stack.
643 If so, it updates CACHE and returns the address of the first
644 instruction after the register saves or CURRENT_PC, whichever is
645 smaller. Otherwise, return PC. */
c906108c 646
8de307e0
AS
647static CORE_ADDR
648m68k_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
649 struct m68k_frame_cache *cache)
650{
651 if (cache->locals >= 0)
652 {
653 CORE_ADDR offset;
654 int op;
655 int i, mask, regno;
c906108c 656
8de307e0
AS
657 offset = -4 - cache->locals;
658 while (pc < current_pc)
659 {
660 op = read_memory_unsigned_integer (pc, 2);
661 if (op == P_FMOVEMX_SP)
662 {
663 /* fmovem.x REGS,-(%sp) */
664 op = read_memory_unsigned_integer (pc + 2, 2);
665 if ((op & 0xff00) == 0xe000)
666 {
667 mask = op & 0xff;
668 for (i = 0; i < 16; i++, mask >>= 1)
669 {
670 if (mask & 1)
671 {
672 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
673 offset -= 12;
674 }
675 }
676 pc += 4;
677 }
678 else
679 break;
680 }
0ba5a932 681 else if ((op & 0177760) == P_MOVEL_SP)
8de307e0
AS
682 {
683 /* move.l %R,-(%sp) */
0ba5a932 684 regno = op & 017;
8de307e0
AS
685 cache->saved_regs[regno] = offset;
686 offset -= 4;
687 pc += 2;
688 }
689 else if (op == P_MOVEML_SP)
690 {
691 /* movem.l REGS,-(%sp) */
692 mask = read_memory_unsigned_integer (pc + 2, 2);
693 for (i = 0; i < 16; i++, mask >>= 1)
694 {
695 if (mask & 1)
696 {
697 cache->saved_regs[15 - i] = offset;
698 offset -= 4;
699 }
700 }
701 pc += 4;
702 }
703 else
704 break;
705 }
706 }
707
708 return pc;
709}
c906108c 710
c906108c 711
8de307e0
AS
712/* Do a full analysis of the prologue at PC and update CACHE
713 accordingly. Bail out early if CURRENT_PC is reached. Return the
714 address where the analysis stopped.
c906108c 715
8de307e0 716 We handle all cases that can be generated by gcc.
c906108c 717
8de307e0 718 For allocating a stack frame:
c906108c 719
8de307e0
AS
720 link.w %a6,#-N
721 link.l %a6,#-N
722 pea (%fp); move.l %sp,%fp
723 link.w %a6,#0; add.l #-N,%sp
724 subq.l #N,%sp
725 subq.w #N,%sp
726 subq.w #8,%sp; subq.w #N-8,%sp
727 add.w #-N,%sp
728 lea (-N,%sp),%sp
729 add.l #-N,%sp
c906108c 730
8de307e0 731 For saving registers:
c906108c 732
8de307e0
AS
733 fmovem.x REGS,-(%sp)
734 move.l R1,-(%sp)
735 move.l R1,-(%sp); move.l R2,-(%sp)
736 movem.l REGS,-(%sp)
c906108c 737
8de307e0 738 For setting up the PIC register:
c906108c 739
8de307e0 740 lea (%pc,N),%a5
c906108c 741
8de307e0 742 */
c906108c 743
eb2e12d7 744static CORE_ADDR
8de307e0
AS
745m68k_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
746 struct m68k_frame_cache *cache)
c906108c 747{
8de307e0 748 unsigned int op;
c906108c 749
8de307e0
AS
750 pc = m68k_analyze_frame_setup (pc, current_pc, cache);
751 pc = m68k_analyze_register_saves (pc, current_pc, cache);
752 if (pc >= current_pc)
753 return current_pc;
c906108c 754
8de307e0
AS
755 /* Check for GOT setup. */
756 op = read_memory_unsigned_integer (pc, 4);
757 if (op == P_LEA_PC_A5)
c906108c 758 {
8de307e0
AS
759 /* lea (%pc,N),%a5 */
760 return pc + 6;
c906108c 761 }
8de307e0
AS
762
763 return pc;
c906108c
SS
764}
765
8de307e0 766/* Return PC of first real instruction. */
7f8e7424 767
8de307e0
AS
768static CORE_ADDR
769m68k_skip_prologue (CORE_ADDR start_pc)
c906108c 770{
8de307e0
AS
771 struct m68k_frame_cache cache;
772 CORE_ADDR pc;
773 int op;
c906108c 774
8de307e0
AS
775 cache.locals = -1;
776 pc = m68k_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
777 if (cache.locals < 0)
778 return start_pc;
779 return pc;
780}
c906108c 781
8de307e0
AS
782static CORE_ADDR
783m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
784{
f5cf7aa1 785 gdb_byte buf[8];
7f8e7424 786
8de307e0
AS
787 frame_unwind_register (next_frame, PC_REGNUM, buf);
788 return extract_typed_address (buf, builtin_type_void_func_ptr);
789}
790\f
791/* Normal frames. */
7f8e7424 792
8de307e0
AS
793static struct m68k_frame_cache *
794m68k_frame_cache (struct frame_info *next_frame, void **this_cache)
795{
796 struct m68k_frame_cache *cache;
f5cf7aa1 797 gdb_byte buf[4];
8de307e0
AS
798 int i;
799
800 if (*this_cache)
801 return *this_cache;
802
803 cache = m68k_alloc_frame_cache ();
804 *this_cache = cache;
805
806 /* In principle, for normal frames, %fp holds the frame pointer,
807 which holds the base address for the current stack frame.
808 However, for functions that don't need it, the frame pointer is
809 optional. For these "frameless" functions the frame pointer is
810 actually the frame pointer of the calling frame. Signal
811 trampolines are just a special case of a "frameless" function.
812 They (usually) share their frame pointer with the frame that was
813 in progress when the signal occurred. */
814
815 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
816 cache->base = extract_unsigned_integer (buf, 4);
817 if (cache->base == 0)
818 return cache;
819
820 /* For normal frames, %pc is stored at 4(%fp). */
821 cache->saved_regs[M68K_PC_REGNUM] = 4;
822
93d42b30 823 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
8de307e0
AS
824 if (cache->pc != 0)
825 m68k_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
826
827 if (cache->locals < 0)
828 {
829 /* We didn't find a valid frame, which means that CACHE->base
830 currently holds the frame pointer for our calling frame. If
831 we're at the start of a function, or somewhere half-way its
832 prologue, the function's frame probably hasn't been fully
833 setup yet. Try to reconstruct the base address for the stack
834 frame by looking at the stack pointer. For truly "frameless"
835 functions this might work too. */
836
837 frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
838 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
839 }
7f8e7424 840
8de307e0
AS
841 /* Now that we have the base address for the stack frame we can
842 calculate the value of %sp in the calling frame. */
843 cache->saved_sp = cache->base + 8;
7f8e7424 844
8de307e0
AS
845 /* Adjust all the saved registers such that they contain addresses
846 instead of offsets. */
847 for (i = 0; i < M68K_NUM_REGS; i++)
848 if (cache->saved_regs[i] != -1)
849 cache->saved_regs[i] += cache->base;
c906108c 850
8de307e0
AS
851 return cache;
852}
c906108c 853
8de307e0
AS
854static void
855m68k_frame_this_id (struct frame_info *next_frame, void **this_cache,
856 struct frame_id *this_id)
857{
858 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
c906108c 859
8de307e0
AS
860 /* This marks the outermost frame. */
861 if (cache->base == 0)
862 return;
c5aa993b 863
8de307e0
AS
864 /* See the end of m68k_push_dummy_call. */
865 *this_id = frame_id_build (cache->base + 8, cache->pc);
866}
c5aa993b 867
8de307e0
AS
868static void
869m68k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
870 int regnum, int *optimizedp,
871 enum lval_type *lvalp, CORE_ADDR *addrp,
60b04da5 872 int *realnump, gdb_byte *valuep)
8de307e0
AS
873{
874 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
875
876 gdb_assert (regnum >= 0);
877
878 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
c5aa993b 879 {
8de307e0
AS
880 *optimizedp = 0;
881 *lvalp = not_lval;
882 *addrp = 0;
883 *realnump = -1;
884 if (valuep)
c906108c 885 {
8de307e0
AS
886 /* Store the value. */
887 store_unsigned_integer (valuep, 4, cache->saved_sp);
89c3b6d3 888 }
8de307e0
AS
889 return;
890 }
891
892 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
893 {
894 *optimizedp = 0;
895 *lvalp = lval_memory;
896 *addrp = cache->saved_regs[regnum];
897 *realnump = -1;
898 if (valuep)
89c3b6d3 899 {
8de307e0
AS
900 /* Read the value in from memory. */
901 read_memory (*addrp, valuep,
902 register_size (current_gdbarch, regnum));
89c3b6d3 903 }
8de307e0 904 return;
c906108c 905 }
8de307e0 906
00b25ff3
AC
907 *optimizedp = 0;
908 *lvalp = lval_register;
909 *addrp = 0;
910 *realnump = regnum;
911 if (valuep)
912 frame_unwind_register (next_frame, (*realnump), valuep);
8de307e0
AS
913}
914
915static const struct frame_unwind m68k_frame_unwind =
916{
917 NORMAL_FRAME,
918 m68k_frame_this_id,
919 m68k_frame_prev_register
920};
921
922static const struct frame_unwind *
336d1bba 923m68k_frame_sniffer (struct frame_info *next_frame)
8de307e0
AS
924{
925 return &m68k_frame_unwind;
926}
927\f
8de307e0
AS
928static CORE_ADDR
929m68k_frame_base_address (struct frame_info *next_frame, void **this_cache)
930{
931 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
932
933 return cache->base;
934}
935
936static const struct frame_base m68k_frame_base =
937{
938 &m68k_frame_unwind,
939 m68k_frame_base_address,
940 m68k_frame_base_address,
941 m68k_frame_base_address
942};
943
944static struct frame_id
945m68k_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
946{
f5cf7aa1 947 gdb_byte buf[4];
8de307e0 948 CORE_ADDR fp;
c906108c 949
8de307e0
AS
950 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
951 fp = extract_unsigned_integer (buf, 4);
c906108c 952
8de307e0
AS
953 /* See the end of m68k_push_dummy_call. */
954 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
955}
956\f
c906108c 957
c906108c
SS
958/* Figure out where the longjmp will land. Slurp the args out of the stack.
959 We expect the first arg to be a pointer to the jmp_buf structure from which
960 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
961 This routine returns true on success. */
962
c34d127c 963static int
f4281f55 964m68k_get_longjmp_target (CORE_ADDR *pc)
c906108c 965{
f5cf7aa1 966 gdb_byte *buf;
c906108c 967 CORE_ADDR sp, jb_addr;
eb2e12d7
AS
968 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
969
970 if (tdep->jb_pc < 0)
971 {
972 internal_error (__FILE__, __LINE__,
e2e0b3e5 973 _("m68k_get_longjmp_target: not implemented"));
eb2e12d7
AS
974 return 0;
975 }
c906108c 976
35fc8285 977 buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
c5aa993b 978 sp = read_register (SP_REGNUM);
c906108c 979
b5d78d39
GS
980 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
981 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
c906108c
SS
982 return 0;
983
7c0b4a20 984 jb_addr = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
c906108c 985
eb2e12d7 986 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
c906108c
SS
987 TARGET_PTR_BIT / TARGET_CHAR_BIT))
988 return 0;
989
7c0b4a20 990 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
c906108c
SS
991 return 1;
992}
f595cb19
MK
993\f
994
995/* System V Release 4 (SVR4). */
996
997void
998m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
999{
1000 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1001
1002 /* SVR4 uses a different calling convention. */
1003 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1004
1005 /* SVR4 uses %a0 instead of %a1. */
1006 tdep->struct_value_regnum = M68K_A0_REGNUM;
1007}
1008\f
c906108c 1009
152d9db6
GS
1010/* Function: m68k_gdbarch_init
1011 Initializer function for the m68k gdbarch vector.
1012 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1013
1014static struct gdbarch *
1015m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1016{
1017 struct gdbarch_tdep *tdep = NULL;
1018 struct gdbarch *gdbarch;
1019
1020 /* find a candidate among the list of pre-declared architectures. */
1021 arches = gdbarch_list_lookup_by_info (arches, &info);
1022 if (arches != NULL)
1023 return (arches->gdbarch);
1024
eb2e12d7
AS
1025 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1026 gdbarch = gdbarch_alloc (&info, tdep);
152d9db6 1027
8da61cc4 1028 set_gdbarch_long_double_format (gdbarch, floatformats_m68881_ext);
5d3ed2e3
GS
1029 set_gdbarch_long_double_bit (gdbarch, 96);
1030
5d3ed2e3 1031 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
103a1597 1032 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
5d3ed2e3
GS
1033
1034 /* Stack grows down. */
1035 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9bb47d95 1036 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
6300c360
GS
1037
1038 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
942dc0e9 1039
6300c360 1040 set_gdbarch_frame_args_skip (gdbarch, 8);
6dd0fba6
NS
1041 set_gdbarch_dwarf_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1042 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
942dc0e9 1043
8de307e0 1044 set_gdbarch_register_type (gdbarch, m68k_register_type);
5d3ed2e3 1045 set_gdbarch_register_name (gdbarch, m68k_register_name);
6dd0fba6 1046 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
942dc0e9 1047 set_gdbarch_register_bytes_ok (gdbarch, m68k_register_bytes_ok);
32eeb91a 1048 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
32eeb91a
AS
1049 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1050 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1051 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
e47577ab
MK
1052 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1053 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1054 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
a2c6a6d5 1055
8de307e0 1056 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
f595cb19 1057 set_gdbarch_return_value (gdbarch, m68k_return_value);
6c0e89ed 1058
650fcc91
AS
1059 /* Disassembler. */
1060 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1061
eb2e12d7
AS
1062#if defined JB_PC && defined JB_ELEMENT_SIZE
1063 tdep->jb_pc = JB_PC;
1064 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1065#else
1066 tdep->jb_pc = -1;
1067#endif
f595cb19 1068 tdep->struct_value_regnum = M68K_A1_REGNUM;
66894781 1069 tdep->struct_return = reg_struct_return;
8de307e0
AS
1070
1071 /* Frame unwinder. */
1072 set_gdbarch_unwind_dummy_id (gdbarch, m68k_unwind_dummy_id);
1073 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
3f244638
AS
1074
1075 /* Hook in the DWARF CFI frame unwinder. */
1076 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1077
8de307e0 1078 frame_base_set_default (gdbarch, &m68k_frame_base);
eb2e12d7 1079
55809acb
AS
1080 /* Hook in ABI-specific overrides, if they have been registered. */
1081 gdbarch_init_osabi (info, gdbarch);
1082
eb2e12d7
AS
1083 /* Now we have tuned the configuration, set a few final things,
1084 based on what the OS ABI has told us. */
1085
1086 if (tdep->jb_pc >= 0)
1087 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1088
336d1bba 1089 frame_unwind_append_sniffer (gdbarch, m68k_frame_sniffer);
8de307e0 1090
152d9db6
GS
1091 return gdbarch;
1092}
1093
1094
1095static void
1096m68k_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1097{
eb2e12d7 1098 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
152d9db6 1099
eb2e12d7
AS
1100 if (tdep == NULL)
1101 return;
152d9db6 1102}
2acceee2 1103
a78f21af
AC
1104extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1105
c906108c 1106void
fba45db2 1107_initialize_m68k_tdep (void)
c906108c 1108{
152d9db6 1109 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
c906108c 1110}
This page took 0.673035 seconds and 4 git commands to generate.