* alpha-tdep.c (alpha_register_type): Use builtin_type (gdbarch)
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
CommitLineData
748894bf 1/* Target-dependent code for the Motorola 68000 series.
c6f0559b 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
9b254dd1 4 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
3f244638 22#include "dwarf2-frame.h"
c906108c 23#include "frame.h"
8de307e0
AS
24#include "frame-base.h"
25#include "frame-unwind.h"
e6bb342a 26#include "gdbtypes.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbcore.h"
29#include "value.h"
30#include "gdb_string.h"
8de307e0 31#include "gdb_assert.h"
7a292a7a 32#include "inferior.h"
4e052eda 33#include "regcache.h"
5d3ed2e3 34#include "arch-utils.h"
55809acb 35#include "osabi.h"
a89aa300 36#include "dis-asm.h"
8ed86d01 37#include "target-descriptions.h"
32eeb91a
AS
38
39#include "m68k-tdep.h"
c906108c 40\f
c5aa993b 41
89c3b6d3
PDM
42#define P_LINKL_FP 0x480e
43#define P_LINKW_FP 0x4e56
44#define P_PEA_FP 0x4856
8de307e0
AS
45#define P_MOVEAL_SP_FP 0x2c4f
46#define P_ADDAW_SP 0xdefc
47#define P_ADDAL_SP 0xdffc
48#define P_SUBQW_SP 0x514f
49#define P_SUBQL_SP 0x518f
50#define P_LEA_SP_SP 0x4fef
51#define P_LEA_PC_A5 0x4bfb0170
52#define P_FMOVEMX_SP 0xf227
53#define P_MOVEL_SP 0x2f00
54#define P_MOVEML_SP 0x48e7
89c3b6d3 55
103a1597 56/* Offset from SP to first arg on stack at first instruction of a function */
103a1597
GS
57#define SP_ARG0 (1 * 4)
58
103a1597
GS
59#if !defined (BPT_VECTOR)
60#define BPT_VECTOR 0xf
61#endif
62
f5cf7aa1 63static const gdb_byte *
67d57894
MD
64m68k_local_breakpoint_from_pc (struct gdbarch *gdbarch,
65 CORE_ADDR *pcptr, int *lenptr)
103a1597 66{
f5cf7aa1 67 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
103a1597
GS
68 *lenptr = sizeof (break_insn);
69 return break_insn;
70}
4713453b
AS
71\f
72
73/* Type for %ps. */
74struct type *m68k_ps_type;
75
76/* Construct types for ISA-specific registers. */
77static void
78m68k_init_types (void)
79{
80 struct type *type;
81
82 type = init_flags_type ("builtin_type_m68k_ps", 4);
83 append_flags_type_flag (type, 0, "C");
84 append_flags_type_flag (type, 1, "V");
85 append_flags_type_flag (type, 2, "Z");
86 append_flags_type_flag (type, 3, "N");
87 append_flags_type_flag (type, 4, "X");
88 append_flags_type_flag (type, 8, "I0");
89 append_flags_type_flag (type, 9, "I1");
90 append_flags_type_flag (type, 10, "I2");
91 append_flags_type_flag (type, 12, "M");
92 append_flags_type_flag (type, 13, "S");
93 append_flags_type_flag (type, 14, "T0");
94 append_flags_type_flag (type, 15, "T1");
95 m68k_ps_type = type;
96}
103a1597 97
d85fe7f7
AS
98/* Return the GDB type object for the "standard" data type of data in
99 register N. This should be int for D0-D7, SR, FPCONTROL and
100 FPSTATUS, long double for FP0-FP7, and void pointer for all others
101 (A0-A7, PC, FPIADDR). Note, for registers which contain
102 addresses return pointer to void, not pointer to char, because we
103 don't want to attempt to print the string after printing the
104 address. */
5d3ed2e3
GS
105
106static struct type *
8de307e0 107m68k_register_type (struct gdbarch *gdbarch, int regnum)
5d3ed2e3 108{
c984b7ff 109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
03dac896 110
8ed86d01
VP
111 if (tdep->fpregs_present)
112 {
c984b7ff
UW
113 if (regnum >= gdbarch_fp0_regnum (gdbarch)
114 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
8ed86d01
VP
115 {
116 if (tdep->flavour == m68k_coldfire_flavour)
117 return builtin_type (gdbarch)->builtin_double;
118 else
119 return builtin_type_m68881_ext;
120 }
121
122 if (regnum == M68K_FPI_REGNUM)
0dfff4cb 123 return builtin_type (gdbarch)->builtin_func_ptr;
8ed86d01
VP
124
125 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
126 return builtin_type_int32;
127 }
128 else
129 {
130 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
131 return builtin_type_int0;
132 }
03dac896 133
c984b7ff 134 if (regnum == gdbarch_pc_regnum (gdbarch))
0dfff4cb 135 return builtin_type (gdbarch)->builtin_func_ptr;
03dac896 136
32eeb91a 137 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
0dfff4cb 138 return builtin_type (gdbarch)->builtin_data_ptr;
03dac896 139
4713453b
AS
140 if (regnum == M68K_PS_REGNUM)
141 return m68k_ps_type;
142
03dac896 143 return builtin_type_int32;
5d3ed2e3
GS
144}
145
8ed86d01 146static const char *m68k_register_names[] = {
5d3ed2e3
GS
147 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
148 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
149 "ps", "pc",
150 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
8ed86d01 151 "fpcontrol", "fpstatus", "fpiaddr"
5d3ed2e3
GS
152 };
153
8ed86d01
VP
154/* Function: m68k_register_name
155 Returns the name of the standard m68k register regnum. */
156
157static const char *
d93859e2 158m68k_register_name (struct gdbarch *gdbarch, int regnum)
8ed86d01
VP
159{
160 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
5d3ed2e3 161 internal_error (__FILE__, __LINE__,
e2e0b3e5 162 _("m68k_register_name: illegal register number %d"), regnum);
5d3ed2e3 163 else
8ed86d01 164 return m68k_register_names[regnum];
5d3ed2e3 165}
e47577ab
MK
166\f
167/* Return nonzero if a value of type TYPE stored in register REGNUM
168 needs any special handling. */
169
170static int
0abe36f5 171m68k_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
e47577ab 172{
0abe36f5 173 if (!gdbarch_tdep (gdbarch)->fpregs_present)
8ed86d01 174 return 0;
83acabca
DJ
175 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
176 && type != builtin_type_m68881_ext);
e47577ab
MK
177}
178
179/* Read a value of type TYPE from register REGNUM in frame FRAME, and
180 return its contents in TO. */
181
182static void
183m68k_register_to_value (struct frame_info *frame, int regnum,
f5cf7aa1 184 struct type *type, gdb_byte *to)
e47577ab 185{
f5cf7aa1 186 gdb_byte from[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
187 struct type *fpreg_type = register_type (get_frame_arch (frame),
188 M68K_FP0_REGNUM);
e47577ab
MK
189
190 /* We only support floating-point values. */
191 if (TYPE_CODE (type) != TYPE_CODE_FLT)
192 {
8a3fe4f8
AC
193 warning (_("Cannot convert floating-point register value "
194 "to non-floating-point type."));
e47577ab
MK
195 return;
196 }
197
83acabca 198 /* Convert to TYPE. */
e47577ab 199 get_frame_register (frame, regnum, from);
8ed86d01 200 convert_typed_floating (from, fpreg_type, to, type);
e47577ab
MK
201}
202
203/* Write the contents FROM of a value of type TYPE into register
204 REGNUM in frame FRAME. */
205
206static void
207m68k_value_to_register (struct frame_info *frame, int regnum,
f5cf7aa1 208 struct type *type, const gdb_byte *from)
e47577ab 209{
f5cf7aa1 210 gdb_byte to[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
211 struct type *fpreg_type = register_type (get_frame_arch (frame),
212 M68K_FP0_REGNUM);
e47577ab
MK
213
214 /* We only support floating-point values. */
215 if (TYPE_CODE (type) != TYPE_CODE_FLT)
216 {
8a3fe4f8
AC
217 warning (_("Cannot convert non-floating-point type "
218 "to floating-point register value."));
e47577ab
MK
219 return;
220 }
221
83acabca 222 /* Convert from TYPE. */
8ed86d01 223 convert_typed_floating (from, type, to, fpreg_type);
e47577ab
MK
224 put_frame_register (frame, regnum, to);
225}
226
8de307e0 227\f
f595cb19
MK
228/* There is a fair number of calling conventions that are in somewhat
229 wide use. The 68000/08/10 don't support an FPU, not even as a
230 coprocessor. All function return values are stored in %d0/%d1.
231 Structures are returned in a static buffer, a pointer to which is
232 returned in %d0. This means that functions returning a structure
233 are not re-entrant. To avoid this problem some systems use a
234 convention where the caller passes a pointer to a buffer in %a1
235 where the return values is to be stored. This convention is the
236 default, and is implemented in the function m68k_return_value.
237
238 The 68020/030/040/060 do support an FPU, either as a coprocessor
239 (68881/2) or built-in (68040/68060). That's why System V release 4
240 (SVR4) instroduces a new calling convention specified by the SVR4
241 psABI. Integer values are returned in %d0/%d1, pointer return
242 values in %a0 and floating values in %fp0. When calling functions
243 returning a structure the caller should pass a pointer to a buffer
244 for the return value in %a0. This convention is implemented in the
245 function m68k_svr4_return_value, and by appropriately setting the
246 struct_value_regnum member of `struct gdbarch_tdep'.
247
248 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
249 for passing the structure return value buffer.
250
251 GCC can also generate code where small structures are returned in
252 %d0/%d1 instead of in memory by using -freg-struct-return. This is
253 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
254 embedded systems. This convention is implemented by setting the
255 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
256
257/* Read a function return value of TYPE from REGCACHE, and copy that
8de307e0 258 into VALBUF. */
942dc0e9
GS
259
260static void
8de307e0 261m68k_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 262 gdb_byte *valbuf)
942dc0e9 263{
8de307e0 264 int len = TYPE_LENGTH (type);
f5cf7aa1 265 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
942dc0e9 266
8de307e0
AS
267 if (len <= 4)
268 {
269 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
270 memcpy (valbuf, buf + (4 - len), len);
271 }
272 else if (len <= 8)
273 {
274 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
275 memcpy (valbuf, buf + (8 - len), len - 4);
f5cf7aa1 276 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
277 }
278 else
279 internal_error (__FILE__, __LINE__,
e2e0b3e5 280 _("Cannot extract return value of %d bytes long."), len);
942dc0e9
GS
281}
282
942dc0e9 283static void
f595cb19 284m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 285 gdb_byte *valbuf)
942dc0e9 286{
8de307e0 287 int len = TYPE_LENGTH (type);
f5cf7aa1 288 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
289 struct gdbarch *gdbarch = get_regcache_arch (regcache);
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
942dc0e9 291
8ed86d01 292 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
8de307e0 293 {
c984b7ff 294 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
f595cb19 295 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
8ed86d01 296 convert_typed_floating (buf, fpreg_type, valbuf, type);
8de307e0 297 }
f595cb19
MK
298 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
299 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
300 else
301 m68k_extract_return_value (type, regcache, valbuf);
302}
303
304/* Write a function return value of TYPE from VALBUF into REGCACHE. */
305
306static void
307m68k_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 308 const gdb_byte *valbuf)
f595cb19
MK
309{
310 int len = TYPE_LENGTH (type);
942dc0e9 311
8de307e0
AS
312 if (len <= 4)
313 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
314 else if (len <= 8)
315 {
f595cb19 316 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
8de307e0 317 len - 4, valbuf);
f5cf7aa1 318 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
319 }
320 else
321 internal_error (__FILE__, __LINE__,
e2e0b3e5 322 _("Cannot store return value of %d bytes long."), len);
8de307e0 323}
942dc0e9 324
f595cb19
MK
325static void
326m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 327 const gdb_byte *valbuf)
942dc0e9 328{
f595cb19 329 int len = TYPE_LENGTH (type);
c984b7ff
UW
330 struct gdbarch *gdbarch = get_regcache_arch (regcache);
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8de307e0 332
8ed86d01 333 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
f595cb19 334 {
c984b7ff 335 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
f5cf7aa1 336 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
8ed86d01 337 convert_typed_floating (valbuf, type, buf, fpreg_type);
f595cb19
MK
338 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
339 }
340 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
341 {
342 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
343 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
344 }
345 else
346 m68k_store_return_value (type, regcache, valbuf);
942dc0e9
GS
347}
348
f595cb19
MK
349/* Return non-zero if TYPE, which is assumed to be a structure or
350 union type, should be returned in registers for architecture
351 GDBARCH. */
352
c481dac7 353static int
f595cb19 354m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
c481dac7 355{
f595cb19
MK
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357 enum type_code code = TYPE_CODE (type);
358 int len = TYPE_LENGTH (type);
c481dac7 359
f595cb19
MK
360 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
361
362 if (tdep->struct_return == pcc_struct_return)
363 return 0;
364
365 return (len == 1 || len == 2 || len == 4 || len == 8);
c481dac7
AS
366}
367
f595cb19
MK
368/* Determine, for architecture GDBARCH, how a return value of TYPE
369 should be returned. If it is supposed to be returned in registers,
370 and READBUF is non-zero, read the appropriate value from REGCACHE,
371 and copy it into READBUF. If WRITEBUF is non-zero, write the value
372 from WRITEBUF into REGCACHE. */
373
374static enum return_value_convention
c055b101
CV
375m68k_return_value (struct gdbarch *gdbarch, struct type *func_type,
376 struct type *type, struct regcache *regcache,
377 gdb_byte *readbuf, const gdb_byte *writebuf)
f595cb19
MK
378{
379 enum type_code code = TYPE_CODE (type);
380
1c845060
MK
381 /* GCC returns a `long double' in memory too. */
382 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
383 && !m68k_reg_struct_return_p (gdbarch, type))
384 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
385 {
386 /* The default on m68k is to return structures in static memory.
387 Consequently a function must return the address where we can
388 find the return value. */
f595cb19 389
1c845060
MK
390 if (readbuf)
391 {
392 ULONGEST addr;
393
394 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
395 read_memory (addr, readbuf, TYPE_LENGTH (type));
396 }
397
398 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
399 }
f595cb19
MK
400
401 if (readbuf)
402 m68k_extract_return_value (type, regcache, readbuf);
403 if (writebuf)
404 m68k_store_return_value (type, regcache, writebuf);
405
406 return RETURN_VALUE_REGISTER_CONVENTION;
407}
408
409static enum return_value_convention
c055b101
CV
410m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *func_type,
411 struct type *type, struct regcache *regcache,
412 gdb_byte *readbuf, const gdb_byte *writebuf)
f595cb19
MK
413{
414 enum type_code code = TYPE_CODE (type);
415
416 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
417 && !m68k_reg_struct_return_p (gdbarch, type))
51da707a
MK
418 {
419 /* The System V ABI says that:
420
421 "A function returning a structure or union also sets %a0 to
422 the value it finds in %a0. Thus when the caller receives
423 control again, the address of the returned object resides in
424 register %a0."
425
426 So the ABI guarantees that we can always find the return
427 value just after the function has returned. */
428
429 if (readbuf)
430 {
431 ULONGEST addr;
432
433 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
434 read_memory (addr, readbuf, TYPE_LENGTH (type));
435 }
436
437 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
438 }
f595cb19
MK
439
440 /* This special case is for structures consisting of a single
441 `float' or `double' member. These structures are returned in
442 %fp0. For these structures, we call ourselves recursively,
443 changing TYPE into the type of the first member of the structure.
444 Since that should work for all structures that have only one
445 member, we don't bother to check the member's type here. */
446 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
447 {
448 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
c055b101 449 return m68k_svr4_return_value (gdbarch, func_type, type, regcache,
f595cb19
MK
450 readbuf, writebuf);
451 }
452
453 if (readbuf)
454 m68k_svr4_extract_return_value (type, regcache, readbuf);
455 if (writebuf)
456 m68k_svr4_store_return_value (type, regcache, writebuf);
457
458 return RETURN_VALUE_REGISTER_CONVENTION;
459}
460\f
392a587b 461
9bb47d95
NS
462/* Always align the frame to a 4-byte boundary. This is required on
463 coldfire and harmless on the rest. */
464
465static CORE_ADDR
466m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
467{
468 /* Align the stack to four bytes. */
469 return sp & ~3;
470}
471
8de307e0 472static CORE_ADDR
7d9b040b 473m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
8de307e0
AS
474 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
475 struct value **args, CORE_ADDR sp, int struct_return,
476 CORE_ADDR struct_addr)
7f8e7424 477{
f595cb19 478 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
f5cf7aa1 479 gdb_byte buf[4];
8de307e0
AS
480 int i;
481
482 /* Push arguments in reverse order. */
483 for (i = nargs - 1; i >= 0; i--)
484 {
4754a64e 485 struct type *value_type = value_enclosing_type (args[i]);
c481dac7 486 int len = TYPE_LENGTH (value_type);
8de307e0 487 int container_len = (len + 3) & ~3;
c481dac7
AS
488 int offset;
489
490 /* Non-scalars bigger than 4 bytes are left aligned, others are
491 right aligned. */
492 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
493 || TYPE_CODE (value_type) == TYPE_CODE_UNION
494 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
495 && len > 4)
496 offset = 0;
497 else
498 offset = container_len - len;
8de307e0 499 sp -= container_len;
46615f07 500 write_memory (sp + offset, value_contents_all (args[i]), len);
8de307e0
AS
501 }
502
c481dac7 503 /* Store struct value address. */
8de307e0
AS
504 if (struct_return)
505 {
8de307e0 506 store_unsigned_integer (buf, 4, struct_addr);
f595cb19 507 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
8de307e0
AS
508 }
509
510 /* Store return address. */
511 sp -= 4;
512 store_unsigned_integer (buf, 4, bp_addr);
513 write_memory (sp, buf, 4);
514
515 /* Finally, update the stack pointer... */
516 store_unsigned_integer (buf, 4, sp);
517 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
518
519 /* ...and fake a frame pointer. */
520 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
521
522 /* DWARF2/GCC uses the stack address *before* the function call as a
523 frame's CFA. */
524 return sp + 8;
7f8e7424 525}
6dd0fba6
NS
526
527/* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
528
529static int
d3f73121 530m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
6dd0fba6
NS
531{
532 if (num < 8)
533 /* d0..7 */
534 return (num - 0) + M68K_D0_REGNUM;
535 else if (num < 16)
536 /* a0..7 */
537 return (num - 8) + M68K_A0_REGNUM;
d3f73121 538 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
6dd0fba6
NS
539 /* fp0..7 */
540 return (num - 16) + M68K_FP0_REGNUM;
541 else if (num == 25)
542 /* pc */
543 return M68K_PC_REGNUM;
544 else
d3f73121 545 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
6dd0fba6
NS
546}
547
8de307e0
AS
548\f
549struct m68k_frame_cache
550{
551 /* Base address. */
552 CORE_ADDR base;
553 CORE_ADDR sp_offset;
554 CORE_ADDR pc;
7f8e7424 555
8de307e0
AS
556 /* Saved registers. */
557 CORE_ADDR saved_regs[M68K_NUM_REGS];
558 CORE_ADDR saved_sp;
7f8e7424 559
8de307e0
AS
560 /* Stack space reserved for local variables. */
561 long locals;
562};
c906108c 563
8de307e0
AS
564/* Allocate and initialize a frame cache. */
565
566static struct m68k_frame_cache *
567m68k_alloc_frame_cache (void)
c906108c 568{
8de307e0
AS
569 struct m68k_frame_cache *cache;
570 int i;
c906108c 571
8de307e0 572 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
c906108c 573
8de307e0
AS
574 /* Base address. */
575 cache->base = 0;
576 cache->sp_offset = -4;
577 cache->pc = 0;
c906108c 578
8de307e0
AS
579 /* Saved registers. We initialize these to -1 since zero is a valid
580 offset (that's where %fp is supposed to be stored). */
581 for (i = 0; i < M68K_NUM_REGS; i++)
582 cache->saved_regs[i] = -1;
583
584 /* Frameless until proven otherwise. */
585 cache->locals = -1;
586
587 return cache;
c906108c
SS
588}
589
8de307e0
AS
590/* Check whether PC points at a code that sets up a new stack frame.
591 If so, it updates CACHE and returns the address of the first
592 instruction after the sequence that sets removes the "hidden"
593 argument from the stack or CURRENT_PC, whichever is smaller.
594 Otherwise, return PC. */
c906108c 595
8de307e0
AS
596static CORE_ADDR
597m68k_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
598 struct m68k_frame_cache *cache)
c906108c 599{
8de307e0
AS
600 int op;
601
602 if (pc >= current_pc)
603 return current_pc;
c906108c 604
8de307e0
AS
605 op = read_memory_unsigned_integer (pc, 2);
606
607 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
c906108c 608 {
8de307e0
AS
609 cache->saved_regs[M68K_FP_REGNUM] = 0;
610 cache->sp_offset += 4;
611 if (op == P_LINKW_FP)
612 {
613 /* link.w %fp, #-N */
614 /* link.w %fp, #0; adda.l #-N, %sp */
615 cache->locals = -read_memory_integer (pc + 2, 2);
616
617 if (pc + 4 < current_pc && cache->locals == 0)
618 {
619 op = read_memory_unsigned_integer (pc + 4, 2);
620 if (op == P_ADDAL_SP)
621 {
622 cache->locals = read_memory_integer (pc + 6, 4);
623 return pc + 10;
624 }
625 }
626
627 return pc + 4;
628 }
629 else if (op == P_LINKL_FP)
c906108c 630 {
8de307e0
AS
631 /* link.l %fp, #-N */
632 cache->locals = -read_memory_integer (pc + 2, 4);
633 return pc + 6;
634 }
635 else
636 {
637 /* pea (%fp); movea.l %sp, %fp */
638 cache->locals = 0;
639
640 if (pc + 2 < current_pc)
641 {
642 op = read_memory_unsigned_integer (pc + 2, 2);
643
644 if (op == P_MOVEAL_SP_FP)
645 {
646 /* move.l %sp, %fp */
647 return pc + 4;
648 }
649 }
650
651 return pc + 2;
c906108c
SS
652 }
653 }
8de307e0 654 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
c906108c 655 {
8de307e0
AS
656 /* subq.[wl] #N,%sp */
657 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
658 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
659 if (pc + 2 < current_pc)
c906108c 660 {
8de307e0
AS
661 op = read_memory_unsigned_integer (pc + 2, 2);
662 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
663 {
664 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
665 return pc + 4;
666 }
c906108c 667 }
8de307e0
AS
668 return pc + 2;
669 }
670 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
671 {
672 /* adda.w #-N,%sp */
673 /* lea (-N,%sp),%sp */
674 cache->locals = -read_memory_integer (pc + 2, 2);
675 return pc + 4;
c906108c 676 }
8de307e0 677 else if (op == P_ADDAL_SP)
c906108c 678 {
8de307e0
AS
679 /* adda.l #-N,%sp */
680 cache->locals = -read_memory_integer (pc + 2, 4);
681 return pc + 6;
c906108c 682 }
8de307e0
AS
683
684 return pc;
c906108c 685}
c5aa993b 686
8de307e0
AS
687/* Check whether PC points at code that saves registers on the stack.
688 If so, it updates CACHE and returns the address of the first
689 instruction after the register saves or CURRENT_PC, whichever is
690 smaller. Otherwise, return PC. */
c906108c 691
8de307e0 692static CORE_ADDR
be8626e0
MD
693m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
694 CORE_ADDR current_pc,
8de307e0
AS
695 struct m68k_frame_cache *cache)
696{
697 if (cache->locals >= 0)
698 {
699 CORE_ADDR offset;
700 int op;
701 int i, mask, regno;
c906108c 702
8de307e0
AS
703 offset = -4 - cache->locals;
704 while (pc < current_pc)
705 {
706 op = read_memory_unsigned_integer (pc, 2);
8ed86d01 707 if (op == P_FMOVEMX_SP
be8626e0 708 && gdbarch_tdep (gdbarch)->fpregs_present)
8de307e0
AS
709 {
710 /* fmovem.x REGS,-(%sp) */
711 op = read_memory_unsigned_integer (pc + 2, 2);
712 if ((op & 0xff00) == 0xe000)
713 {
714 mask = op & 0xff;
715 for (i = 0; i < 16; i++, mask >>= 1)
716 {
717 if (mask & 1)
718 {
719 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
720 offset -= 12;
721 }
722 }
723 pc += 4;
724 }
725 else
726 break;
727 }
0ba5a932 728 else if ((op & 0177760) == P_MOVEL_SP)
8de307e0
AS
729 {
730 /* move.l %R,-(%sp) */
0ba5a932 731 regno = op & 017;
8de307e0
AS
732 cache->saved_regs[regno] = offset;
733 offset -= 4;
734 pc += 2;
735 }
736 else if (op == P_MOVEML_SP)
737 {
738 /* movem.l REGS,-(%sp) */
739 mask = read_memory_unsigned_integer (pc + 2, 2);
740 for (i = 0; i < 16; i++, mask >>= 1)
741 {
742 if (mask & 1)
743 {
744 cache->saved_regs[15 - i] = offset;
745 offset -= 4;
746 }
747 }
748 pc += 4;
749 }
750 else
751 break;
752 }
753 }
754
755 return pc;
756}
c906108c 757
c906108c 758
8de307e0
AS
759/* Do a full analysis of the prologue at PC and update CACHE
760 accordingly. Bail out early if CURRENT_PC is reached. Return the
761 address where the analysis stopped.
c906108c 762
8de307e0 763 We handle all cases that can be generated by gcc.
c906108c 764
8de307e0 765 For allocating a stack frame:
c906108c 766
8de307e0
AS
767 link.w %a6,#-N
768 link.l %a6,#-N
769 pea (%fp); move.l %sp,%fp
770 link.w %a6,#0; add.l #-N,%sp
771 subq.l #N,%sp
772 subq.w #N,%sp
773 subq.w #8,%sp; subq.w #N-8,%sp
774 add.w #-N,%sp
775 lea (-N,%sp),%sp
776 add.l #-N,%sp
c906108c 777
8de307e0 778 For saving registers:
c906108c 779
8de307e0
AS
780 fmovem.x REGS,-(%sp)
781 move.l R1,-(%sp)
782 move.l R1,-(%sp); move.l R2,-(%sp)
783 movem.l REGS,-(%sp)
c906108c 784
8de307e0 785 For setting up the PIC register:
c906108c 786
8de307e0 787 lea (%pc,N),%a5
c906108c 788
8de307e0 789 */
c906108c 790
eb2e12d7 791static CORE_ADDR
be8626e0
MD
792m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
793 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
c906108c 794{
8de307e0 795 unsigned int op;
c906108c 796
8de307e0 797 pc = m68k_analyze_frame_setup (pc, current_pc, cache);
be8626e0 798 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
8de307e0
AS
799 if (pc >= current_pc)
800 return current_pc;
c906108c 801
8de307e0
AS
802 /* Check for GOT setup. */
803 op = read_memory_unsigned_integer (pc, 4);
804 if (op == P_LEA_PC_A5)
c906108c 805 {
8de307e0 806 /* lea (%pc,N),%a5 */
e4d8bc08 807 return pc + 8;
c906108c 808 }
8de307e0
AS
809
810 return pc;
c906108c
SS
811}
812
8de307e0 813/* Return PC of first real instruction. */
7f8e7424 814
8de307e0 815static CORE_ADDR
6093d2eb 816m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 817{
8de307e0
AS
818 struct m68k_frame_cache cache;
819 CORE_ADDR pc;
820 int op;
c906108c 821
8de307e0 822 cache.locals = -1;
be8626e0 823 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
8de307e0
AS
824 if (cache.locals < 0)
825 return start_pc;
826 return pc;
827}
c906108c 828
8de307e0
AS
829static CORE_ADDR
830m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
831{
f5cf7aa1 832 gdb_byte buf[8];
7f8e7424 833
c984b7ff 834 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 835 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
8de307e0
AS
836}
837\f
838/* Normal frames. */
7f8e7424 839
8de307e0 840static struct m68k_frame_cache *
f36bf22c 841m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
8de307e0
AS
842{
843 struct m68k_frame_cache *cache;
f5cf7aa1 844 gdb_byte buf[4];
8de307e0
AS
845 int i;
846
847 if (*this_cache)
848 return *this_cache;
849
850 cache = m68k_alloc_frame_cache ();
851 *this_cache = cache;
852
853 /* In principle, for normal frames, %fp holds the frame pointer,
854 which holds the base address for the current stack frame.
855 However, for functions that don't need it, the frame pointer is
856 optional. For these "frameless" functions the frame pointer is
857 actually the frame pointer of the calling frame. Signal
858 trampolines are just a special case of a "frameless" function.
859 They (usually) share their frame pointer with the frame that was
860 in progress when the signal occurred. */
861
f36bf22c 862 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
8de307e0
AS
863 cache->base = extract_unsigned_integer (buf, 4);
864 if (cache->base == 0)
865 return cache;
866
867 /* For normal frames, %pc is stored at 4(%fp). */
868 cache->saved_regs[M68K_PC_REGNUM] = 4;
869
f36bf22c 870 cache->pc = get_frame_func (this_frame);
8de307e0 871 if (cache->pc != 0)
f36bf22c
AS
872 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
873 get_frame_pc (this_frame), cache);
8de307e0
AS
874
875 if (cache->locals < 0)
876 {
877 /* We didn't find a valid frame, which means that CACHE->base
878 currently holds the frame pointer for our calling frame. If
879 we're at the start of a function, or somewhere half-way its
880 prologue, the function's frame probably hasn't been fully
881 setup yet. Try to reconstruct the base address for the stack
882 frame by looking at the stack pointer. For truly "frameless"
883 functions this might work too. */
884
f36bf22c 885 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
8de307e0
AS
886 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
887 }
7f8e7424 888
8de307e0
AS
889 /* Now that we have the base address for the stack frame we can
890 calculate the value of %sp in the calling frame. */
891 cache->saved_sp = cache->base + 8;
7f8e7424 892
8de307e0
AS
893 /* Adjust all the saved registers such that they contain addresses
894 instead of offsets. */
895 for (i = 0; i < M68K_NUM_REGS; i++)
896 if (cache->saved_regs[i] != -1)
897 cache->saved_regs[i] += cache->base;
c906108c 898
8de307e0
AS
899 return cache;
900}
c906108c 901
8de307e0 902static void
f36bf22c 903m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
8de307e0
AS
904 struct frame_id *this_id)
905{
f36bf22c 906 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
c906108c 907
8de307e0
AS
908 /* This marks the outermost frame. */
909 if (cache->base == 0)
910 return;
c5aa993b 911
8de307e0
AS
912 /* See the end of m68k_push_dummy_call. */
913 *this_id = frame_id_build (cache->base + 8, cache->pc);
914}
c5aa993b 915
f36bf22c
AS
916static struct value *
917m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
918 int regnum)
8de307e0 919{
f36bf22c 920 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
8de307e0
AS
921
922 gdb_assert (regnum >= 0);
923
924 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
f36bf22c 925 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
8de307e0
AS
926
927 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
f36bf22c
AS
928 return frame_unwind_got_memory (this_frame, regnum,
929 cache->saved_regs[regnum]);
8de307e0 930
f36bf22c 931 return frame_unwind_got_register (this_frame, regnum, regnum);
8de307e0
AS
932}
933
934static const struct frame_unwind m68k_frame_unwind =
935{
936 NORMAL_FRAME,
937 m68k_frame_this_id,
f36bf22c
AS
938 m68k_frame_prev_register,
939 NULL,
940 default_frame_sniffer
8de307e0 941};
8de307e0 942\f
8de307e0 943static CORE_ADDR
f36bf22c 944m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
8de307e0 945{
f36bf22c 946 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
8de307e0
AS
947
948 return cache->base;
949}
950
951static const struct frame_base m68k_frame_base =
952{
953 &m68k_frame_unwind,
954 m68k_frame_base_address,
955 m68k_frame_base_address,
956 m68k_frame_base_address
957};
958
959static struct frame_id
f36bf22c 960m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
8de307e0 961{
8de307e0 962 CORE_ADDR fp;
c906108c 963
f36bf22c 964 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
c906108c 965
8de307e0 966 /* See the end of m68k_push_dummy_call. */
f36bf22c 967 return frame_id_build (fp + 8, get_frame_pc (this_frame));
8de307e0
AS
968}
969\f
c906108c 970
c906108c
SS
971/* Figure out where the longjmp will land. Slurp the args out of the stack.
972 We expect the first arg to be a pointer to the jmp_buf structure from which
973 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
974 This routine returns true on success. */
975
c34d127c 976static int
60ade65d 977m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 978{
f5cf7aa1 979 gdb_byte *buf;
c906108c 980 CORE_ADDR sp, jb_addr;
c984b7ff 981 struct gdbarch *gdbarch = get_frame_arch (frame);
60ade65d 982 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
eb2e12d7
AS
983
984 if (tdep->jb_pc < 0)
985 {
986 internal_error (__FILE__, __LINE__,
e2e0b3e5 987 _("m68k_get_longjmp_target: not implemented"));
eb2e12d7
AS
988 return 0;
989 }
c906108c 990
c984b7ff
UW
991 buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
992 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
c906108c 993
b5d78d39 994 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
c984b7ff 995 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
c906108c
SS
996 return 0;
997
c984b7ff 998 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
819844ad 999 / TARGET_CHAR_BIT);
c906108c 1000
eb2e12d7 1001 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
c984b7ff 1002 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
c906108c
SS
1003 return 0;
1004
c984b7ff 1005 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
819844ad 1006 / TARGET_CHAR_BIT);
c906108c
SS
1007 return 1;
1008}
f595cb19
MK
1009\f
1010
1011/* System V Release 4 (SVR4). */
1012
1013void
1014m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1015{
1016 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1017
1018 /* SVR4 uses a different calling convention. */
1019 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1020
1021 /* SVR4 uses %a0 instead of %a1. */
1022 tdep->struct_value_regnum = M68K_A0_REGNUM;
1023}
1024\f
c906108c 1025
152d9db6
GS
1026/* Function: m68k_gdbarch_init
1027 Initializer function for the m68k gdbarch vector.
1028 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1029
1030static struct gdbarch *
1031m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1032{
1033 struct gdbarch_tdep *tdep = NULL;
1034 struct gdbarch *gdbarch;
8ed86d01
VP
1035 struct gdbarch_list *best_arch;
1036 struct tdesc_arch_data *tdesc_data = NULL;
1037 int i;
1038 enum m68k_flavour flavour = m68k_no_flavour;
1039 int has_fp = 1;
1040 const struct floatformat **long_double_format = floatformats_m68881_ext;
1041
1042 /* Check any target description for validity. */
1043 if (tdesc_has_registers (info.target_desc))
1044 {
1045 const struct tdesc_feature *feature;
1046 int valid_p;
152d9db6 1047
8ed86d01
VP
1048 feature = tdesc_find_feature (info.target_desc,
1049 "org.gnu.gdb.m68k.core");
1050 if (feature != NULL)
1051 /* Do nothing. */
1052 ;
1053
1054 if (feature == NULL)
1055 {
1056 feature = tdesc_find_feature (info.target_desc,
1057 "org.gnu.gdb.coldfire.core");
1058 if (feature != NULL)
1059 flavour = m68k_coldfire_flavour;
1060 }
1061
1062 if (feature == NULL)
1063 {
1064 feature = tdesc_find_feature (info.target_desc,
1065 "org.gnu.gdb.fido.core");
1066 if (feature != NULL)
1067 flavour = m68k_fido_flavour;
1068 }
1069
1070 if (feature == NULL)
1071 return NULL;
1072
1073 tdesc_data = tdesc_data_alloc ();
1074
1075 valid_p = 1;
1076 for (i = 0; i <= M68K_PC_REGNUM; i++)
1077 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1078 m68k_register_names[i]);
1079
1080 if (!valid_p)
1081 {
1082 tdesc_data_cleanup (tdesc_data);
1083 return NULL;
1084 }
1085
1086 feature = tdesc_find_feature (info.target_desc,
1087 "org.gnu.gdb.coldfire.fp");
1088 if (feature != NULL)
1089 {
1090 valid_p = 1;
1091 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1092 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1093 m68k_register_names[i]);
1094 if (!valid_p)
1095 {
1096 tdesc_data_cleanup (tdesc_data);
1097 return NULL;
1098 }
1099 }
1100 else
1101 has_fp = 0;
1102 }
1103
1104 /* The mechanism for returning floating values from function
1105 and the type of long double depend on whether we're
1106 on ColdFire or standard m68k. */
1107
4ed77933 1108 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
8ed86d01
VP
1109 {
1110 const bfd_arch_info_type *coldfire_arch =
1111 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1112
1113 if (coldfire_arch
4ed77933
AS
1114 && ((*info.bfd_arch_info->compatible)
1115 (info.bfd_arch_info, coldfire_arch)))
8ed86d01
VP
1116 flavour = m68k_coldfire_flavour;
1117 }
1118
1119 /* If there is already a candidate, use it. */
1120 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1121 best_arch != NULL;
1122 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1123 {
1124 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1125 continue;
1126
1127 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1128 continue;
1129
1130 break;
1131 }
152d9db6 1132
eb2e12d7
AS
1133 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1134 gdbarch = gdbarch_alloc (&info, tdep);
8ed86d01
VP
1135 tdep->fpregs_present = has_fp;
1136 tdep->flavour = flavour;
152d9db6 1137
8ed86d01
VP
1138 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1139 long_double_format = floatformats_ieee_double;
1140 set_gdbarch_long_double_format (gdbarch, long_double_format);
1141 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
5d3ed2e3 1142
5d3ed2e3 1143 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
103a1597 1144 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
5d3ed2e3
GS
1145
1146 /* Stack grows down. */
1147 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9bb47d95 1148 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
6300c360
GS
1149
1150 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
8ed86d01
VP
1151 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1152 set_gdbarch_decr_pc_after_break (gdbarch, 2);
942dc0e9 1153
6300c360 1154 set_gdbarch_frame_args_skip (gdbarch, 8);
6dd0fba6 1155 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
942dc0e9 1156
8de307e0 1157 set_gdbarch_register_type (gdbarch, m68k_register_type);
5d3ed2e3 1158 set_gdbarch_register_name (gdbarch, m68k_register_name);
6dd0fba6 1159 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
32eeb91a 1160 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
32eeb91a
AS
1161 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1162 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1163 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
e47577ab
MK
1164 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1165 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1166 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
a2c6a6d5 1167
8ed86d01
VP
1168 if (has_fp)
1169 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1170
1171 /* Try to figure out if the arch uses floating registers to return
1172 floating point values from functions. */
1173 if (has_fp)
1174 {
1175 /* On ColdFire, floating point values are returned in D0. */
1176 if (flavour == m68k_coldfire_flavour)
1177 tdep->float_return = 0;
1178 else
1179 tdep->float_return = 1;
1180 }
1181 else
1182 {
1183 /* No floating registers, so can't use them for returning values. */
1184 tdep->float_return = 0;
1185 }
1186
1187 /* Function call & return */
8de307e0 1188 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
f595cb19 1189 set_gdbarch_return_value (gdbarch, m68k_return_value);
6c0e89ed 1190
8ed86d01 1191
650fcc91
AS
1192 /* Disassembler. */
1193 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1194
eb2e12d7
AS
1195#if defined JB_PC && defined JB_ELEMENT_SIZE
1196 tdep->jb_pc = JB_PC;
1197 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1198#else
1199 tdep->jb_pc = -1;
1200#endif
f595cb19 1201 tdep->struct_value_regnum = M68K_A1_REGNUM;
66894781 1202 tdep->struct_return = reg_struct_return;
8de307e0
AS
1203
1204 /* Frame unwinder. */
f36bf22c 1205 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
8de307e0 1206 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
3f244638
AS
1207
1208 /* Hook in the DWARF CFI frame unwinder. */
f36bf22c 1209 dwarf2_append_unwinders (gdbarch);
3f244638 1210
8de307e0 1211 frame_base_set_default (gdbarch, &m68k_frame_base);
eb2e12d7 1212
55809acb
AS
1213 /* Hook in ABI-specific overrides, if they have been registered. */
1214 gdbarch_init_osabi (info, gdbarch);
1215
eb2e12d7
AS
1216 /* Now we have tuned the configuration, set a few final things,
1217 based on what the OS ABI has told us. */
1218
1219 if (tdep->jb_pc >= 0)
1220 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1221
f36bf22c 1222 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
8de307e0 1223
8ed86d01 1224 if (tdesc_data)
7cc46491 1225 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8ed86d01 1226
152d9db6
GS
1227 return gdbarch;
1228}
1229
1230
1231static void
c984b7ff 1232m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
152d9db6 1233{
c984b7ff 1234 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
152d9db6 1235
eb2e12d7
AS
1236 if (tdep == NULL)
1237 return;
152d9db6 1238}
2acceee2 1239
a78f21af
AC
1240extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1241
c906108c 1242void
fba45db2 1243_initialize_m68k_tdep (void)
c906108c 1244{
152d9db6 1245 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
4713453b
AS
1246
1247 /* Initialize the m68k-specific register types. */
1248 m68k_init_types ();
c906108c 1249}
This page took 1.025833 seconds and 4 git commands to generate.