parse_number("0") reads uninitialized memory
[deliverable/binutils-gdb.git] / gdb / mips-linux-tdep.c
CommitLineData
75c9abc6 1/* Target-dependent code for GNU/Linux on MIPS processors.
a094c6fb 2
ecd75fc8 3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
2aa830e4
DJ
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
2aa830e4
DJ
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
2aa830e4
DJ
19
20#include "defs.h"
21#include "gdbcore.h"
22#include "target.h"
23#include "solib-svr4.h"
19ed69dd 24#include "osabi.h"
96f026fc 25#include "mips-tdep.h"
6de918a6 26#include "frame.h"
2fdf551c 27#include "regcache.h"
5792a79b
DJ
28#include "trad-frame.h"
29#include "tramp-frame.h"
e6bb342a 30#include "gdbtypes.h"
3e5d3a5a 31#include "objfiles.h"
5ea03926 32#include "solib.h"
7d522c90 33#include "solist.h"
982e9687 34#include "symtab.h"
822b6570 35#include "target-descriptions.h"
50e8a0d5 36#include "regset.h"
d37eb719 37#include "mips-linux-tdep.h"
db5f024e 38#include "glibc-tdep.h"
a5ee0f0c 39#include "linux-tdep.h"
385203ed 40#include "xml-syscall.h"
232b8704 41#include "gdb_signals.h"
2aa830e4 42
7d522c90
DJ
43static struct target_so_ops mips_svr4_so_ops;
44
eb14d406
SDJ
45/* This enum represents the signals' numbers on the MIPS
46 architecture. It just contains the signal definitions which are
47 different from the generic implementation.
48
49 It is derived from the file <arch/mips/include/uapi/asm/signal.h>,
50 from the Linux kernel tree. */
51
52enum
53 {
54 MIPS_LINUX_SIGEMT = 7,
55 MIPS_LINUX_SIGBUS = 10,
56 MIPS_LINUX_SIGSYS = 12,
57 MIPS_LINUX_SIGUSR1 = 16,
58 MIPS_LINUX_SIGUSR2 = 17,
59 MIPS_LINUX_SIGCHLD = 18,
60 MIPS_LINUX_SIGCLD = MIPS_LINUX_SIGCHLD,
61 MIPS_LINUX_SIGPWR = 19,
62 MIPS_LINUX_SIGWINCH = 20,
63 MIPS_LINUX_SIGURG = 21,
64 MIPS_LINUX_SIGIO = 22,
65 MIPS_LINUX_SIGPOLL = MIPS_LINUX_SIGIO,
66 MIPS_LINUX_SIGSTOP = 23,
67 MIPS_LINUX_SIGTSTP = 24,
68 MIPS_LINUX_SIGCONT = 25,
69 MIPS_LINUX_SIGTTIN = 26,
70 MIPS_LINUX_SIGTTOU = 27,
71 MIPS_LINUX_SIGVTALRM = 28,
72 MIPS_LINUX_SIGPROF = 29,
73 MIPS_LINUX_SIGXCPU = 30,
74 MIPS_LINUX_SIGXFSZ = 31,
75
76 MIPS_LINUX_SIGRTMIN = 32,
77 MIPS_LINUX_SIGRT64 = 64,
78 MIPS_LINUX_SIGRTMAX = 127,
79 };
80
2aa830e4 81/* Figure out where the longjmp will land.
295093a4
MS
82 We expect the first arg to be a pointer to the jmp_buf structure
83 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
84 at. The pc is copied into PC. This routine returns 1 on
85 success. */
2aa830e4 86
19ed69dd
KB
87#define MIPS_LINUX_JB_ELEMENT_SIZE 4
88#define MIPS_LINUX_JB_PC 0
89
90static int
60ade65d 91mips_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2aa830e4
DJ
92{
93 CORE_ADDR jb_addr;
2eb4d78b 94 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 95 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e362b510 96 gdb_byte buf[gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT];
2aa830e4 97
60ade65d 98 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
2aa830e4 99
7d266584
MR
100 if (target_read_memory ((jb_addr
101 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE),
2eb4d78b 102 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
2aa830e4
DJ
103 return 0;
104
819844ad 105 *pc = extract_unsigned_integer (buf,
e17a4113
UW
106 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
107 byte_order);
2aa830e4
DJ
108
109 return 1;
110}
111
4246e332 112/* Transform the bits comprising a 32-bit register to the right size
23a6d369
AC
113 for regcache_raw_supply(). This is needed when mips_isa_regsize()
114 is 8. */
96f026fc
KB
115
116static void
28f5035f 117supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
96f026fc 118{
e17a4113
UW
119 struct gdbarch *gdbarch = get_regcache_arch (regcache);
120 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d37eb719 121 gdb_byte buf[MAX_REGISTER_SIZE];
e17a4113 122 store_signed_integer (buf, register_size (gdbarch, regnum), byte_order,
7d266584 123 extract_signed_integer (addr, 4, byte_order));
28f5035f 124 regcache_raw_supply (regcache, regnum, buf);
96f026fc
KB
125}
126
2aa830e4
DJ
127/* Unpack an elf_gregset_t into GDB's register cache. */
128
d37eb719 129void
28f5035f
UW
130mips_supply_gregset (struct regcache *regcache,
131 const mips_elf_gregset_t *gregsetp)
2aa830e4
DJ
132{
133 int regi;
28f5035f 134 const mips_elf_greg_t *regp = *gregsetp;
d9d9c31f 135 char zerobuf[MAX_REGISTER_SIZE];
2eb4d78b 136 struct gdbarch *gdbarch = get_regcache_arch (regcache);
bf072999 137
d9d9c31f 138 memset (zerobuf, 0, MAX_REGISTER_SIZE);
2aa830e4 139
822b6570 140 for (regi = EF_REG0 + 1; regi <= EF_REG31; regi++)
28f5035f 141 supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
2aa830e4 142
2eb4d78b 143 if (mips_linux_restart_reg_p (gdbarch))
822b6570
DJ
144 supply_32bit_reg (regcache, MIPS_RESTART_REGNUM, regp + EF_REG0);
145
2eb4d78b
UW
146 supply_32bit_reg (regcache, mips_regnum (gdbarch)->lo, regp + EF_LO);
147 supply_32bit_reg (regcache, mips_regnum (gdbarch)->hi, regp + EF_HI);
56cea623 148
2eb4d78b 149 supply_32bit_reg (regcache, mips_regnum (gdbarch)->pc,
28f5035f 150 regp + EF_CP0_EPC);
2eb4d78b 151 supply_32bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
28f5035f
UW
152 regp + EF_CP0_BADVADDR);
153 supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
2eb4d78b 154 supply_32bit_reg (regcache, mips_regnum (gdbarch)->cause,
28f5035f 155 regp + EF_CP0_CAUSE);
2aa830e4 156
1faeff08 157 /* Fill the inaccessible zero register with zero. */
822b6570 158 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
2aa830e4
DJ
159}
160
50e8a0d5
HZ
161static void
162mips_supply_gregset_wrapper (const struct regset *regset,
7d266584
MR
163 struct regcache *regcache,
164 int regnum, const void *gregs, size_t len)
50e8a0d5
HZ
165{
166 gdb_assert (len == sizeof (mips_elf_gregset_t));
167
168 mips_supply_gregset (regcache, (const mips_elf_gregset_t *)gregs);
169}
170
2aa830e4
DJ
171/* Pack our registers (or one register) into an elf_gregset_t. */
172
d37eb719 173void
28f5035f
UW
174mips_fill_gregset (const struct regcache *regcache,
175 mips_elf_gregset_t *gregsetp, int regno)
2aa830e4 176{
2eb4d78b 177 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2aa830e4 178 int regaddr, regi;
d37eb719 179 mips_elf_greg_t *regp = *gregsetp;
96f026fc 180 void *dst;
2aa830e4
DJ
181
182 if (regno == -1)
183 {
d37eb719 184 memset (regp, 0, sizeof (mips_elf_gregset_t));
822b6570 185 for (regi = 1; regi < 32; regi++)
28f5035f 186 mips_fill_gregset (regcache, gregsetp, regi);
2eb4d78b
UW
187 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
188 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
189 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
190 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->badvaddr);
28f5035f 191 mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
2eb4d78b 192 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
822b6570 193 mips_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
2aa830e4
DJ
194 return;
195 }
196
822b6570 197 if (regno > 0 && regno < 32)
2aa830e4 198 {
2aa830e4 199 dst = regp + regno + EF_REG0;
28f5035f 200 regcache_raw_collect (regcache, regno, dst);
2aa830e4
DJ
201 return;
202 }
203
2eb4d78b
UW
204 if (regno == mips_regnum (gdbarch)->lo)
205 regaddr = EF_LO;
206 else if (regno == mips_regnum (gdbarch)->hi)
56cea623 207 regaddr = EF_HI;
2eb4d78b 208 else if (regno == mips_regnum (gdbarch)->pc)
56cea623 209 regaddr = EF_CP0_EPC;
2eb4d78b 210 else if (regno == mips_regnum (gdbarch)->badvaddr)
56cea623 211 regaddr = EF_CP0_BADVADDR;
24e05951 212 else if (regno == MIPS_PS_REGNUM)
56cea623 213 regaddr = EF_CP0_STATUS;
2eb4d78b 214 else if (regno == mips_regnum (gdbarch)->cause)
56cea623 215 regaddr = EF_CP0_CAUSE;
2eb4d78b 216 else if (mips_linux_restart_reg_p (gdbarch)
822b6570
DJ
217 && regno == MIPS_RESTART_REGNUM)
218 regaddr = EF_REG0;
56cea623
AC
219 else
220 regaddr = -1;
2aa830e4
DJ
221
222 if (regaddr != -1)
223 {
2aa830e4 224 dst = regp + regaddr;
28f5035f 225 regcache_raw_collect (regcache, regno, dst);
2aa830e4
DJ
226 }
227}
228
50e8a0d5
HZ
229static void
230mips_fill_gregset_wrapper (const struct regset *regset,
231 const struct regcache *regcache,
232 int regnum, void *gregs, size_t len)
233{
234 gdb_assert (len == sizeof (mips_elf_gregset_t));
235
236 mips_fill_gregset (regcache, (mips_elf_gregset_t *)gregs, regnum);
237}
238
2aa830e4
DJ
239/* Likewise, unpack an elf_fpregset_t. */
240
d37eb719 241void
28f5035f
UW
242mips_supply_fpregset (struct regcache *regcache,
243 const mips_elf_fpregset_t *fpregsetp)
2aa830e4 244{
2eb4d78b 245 struct gdbarch *gdbarch = get_regcache_arch (regcache);
52f0bd74 246 int regi;
d9d9c31f 247 char zerobuf[MAX_REGISTER_SIZE];
bf072999 248
d9d9c31f 249 memset (zerobuf, 0, MAX_REGISTER_SIZE);
2aa830e4
DJ
250
251 for (regi = 0; regi < 32; regi++)
3e8c568d 252 regcache_raw_supply (regcache,
2eb4d78b 253 gdbarch_fp0_regnum (gdbarch) + regi,
3e8c568d 254 *fpregsetp + regi);
2aa830e4 255
28f5035f 256 regcache_raw_supply (regcache,
2eb4d78b 257 mips_regnum (gdbarch)->fp_control_status,
28f5035f 258 *fpregsetp + 32);
2aa830e4 259
295093a4 260 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
28f5035f 261 regcache_raw_supply (regcache,
2eb4d78b 262 mips_regnum (gdbarch)->fp_implementation_revision,
23a6d369 263 zerobuf);
2aa830e4
DJ
264}
265
50e8a0d5
HZ
266static void
267mips_supply_fpregset_wrapper (const struct regset *regset,
7d266584
MR
268 struct regcache *regcache,
269 int regnum, const void *gregs, size_t len)
50e8a0d5
HZ
270{
271 gdb_assert (len == sizeof (mips_elf_fpregset_t));
272
273 mips_supply_fpregset (regcache, (const mips_elf_fpregset_t *)gregs);
274}
275
2aa830e4
DJ
276/* Likewise, pack one or all floating point registers into an
277 elf_fpregset_t. */
278
d37eb719 279void
28f5035f
UW
280mips_fill_fpregset (const struct regcache *regcache,
281 mips_elf_fpregset_t *fpregsetp, int regno)
2aa830e4 282{
2eb4d78b 283 struct gdbarch *gdbarch = get_regcache_arch (regcache);
22e048c9 284 char *to;
2aa830e4 285
2eb4d78b
UW
286 if ((regno >= gdbarch_fp0_regnum (gdbarch))
287 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
2aa830e4 288 {
2eb4d78b 289 to = (char *) (*fpregsetp + regno - gdbarch_fp0_regnum (gdbarch));
28f5035f 290 regcache_raw_collect (regcache, regno, to);
2aa830e4 291 }
2eb4d78b 292 else if (regno == mips_regnum (gdbarch)->fp_control_status)
2aa830e4 293 {
2aa830e4 294 to = (char *) (*fpregsetp + 32);
28f5035f 295 regcache_raw_collect (regcache, regno, to);
2aa830e4
DJ
296 }
297 else if (regno == -1)
298 {
299 int regi;
300
301 for (regi = 0; regi < 32; regi++)
3e8c568d 302 mips_fill_fpregset (regcache, fpregsetp,
2eb4d78b 303 gdbarch_fp0_regnum (gdbarch) + regi);
28f5035f 304 mips_fill_fpregset (regcache, fpregsetp,
2eb4d78b 305 mips_regnum (gdbarch)->fp_control_status);
2aa830e4
DJ
306 }
307}
308
50e8a0d5
HZ
309static void
310mips_fill_fpregset_wrapper (const struct regset *regset,
311 const struct regcache *regcache,
312 int regnum, void *gregs, size_t len)
313{
314 gdb_assert (len == sizeof (mips_elf_fpregset_t));
315
316 mips_fill_fpregset (regcache, (mips_elf_fpregset_t *)gregs, regnum);
317}
318
96f026fc
KB
319/* Support for 64-bit ABIs. */
320
96f026fc 321/* Figure out where the longjmp will land.
295093a4
MS
322 We expect the first arg to be a pointer to the jmp_buf structure
323 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
324 at. The pc is copied into PC. This routine returns 1 on
325 success. */
96f026fc
KB
326
327/* Details about jmp_buf. */
328
329#define MIPS64_LINUX_JB_PC 0
330
331static int
60ade65d 332mips64_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
96f026fc
KB
333{
334 CORE_ADDR jb_addr;
2eb4d78b 335 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 336 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2eb4d78b
UW
337 void *buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
338 int element_size = gdbarch_ptr_bit (gdbarch) == 32 ? 4 : 8;
96f026fc 339
60ade65d 340 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
96f026fc
KB
341
342 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
819844ad 343 buf,
2eb4d78b 344 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
96f026fc
KB
345 return 0;
346
819844ad 347 *pc = extract_unsigned_integer (buf,
e17a4113
UW
348 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
349 byte_order);
96f026fc
KB
350
351 return 1;
352}
353
d37eb719
DJ
354/* Register set support functions. These operate on standard 64-bit
355 regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
356 target will still use the 64-bit format for PTRACE_GETREGS. */
357
358/* Supply a 64-bit register. */
96f026fc 359
63807e1d 360static void
28f5035f
UW
361supply_64bit_reg (struct regcache *regcache, int regnum,
362 const gdb_byte *buf)
d37eb719 363{
2eb4d78b
UW
364 struct gdbarch *gdbarch = get_regcache_arch (regcache);
365 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
366 && register_size (gdbarch, regnum) == 4)
28f5035f 367 regcache_raw_supply (regcache, regnum, buf + 4);
d37eb719 368 else
28f5035f 369 regcache_raw_supply (regcache, regnum, buf);
d37eb719
DJ
370}
371
372/* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
373
374void
28f5035f
UW
375mips64_supply_gregset (struct regcache *regcache,
376 const mips64_elf_gregset_t *gregsetp)
96f026fc
KB
377{
378 int regi;
28f5035f 379 const mips64_elf_greg_t *regp = *gregsetp;
d37eb719 380 gdb_byte zerobuf[MAX_REGISTER_SIZE];
2eb4d78b 381 struct gdbarch *gdbarch = get_regcache_arch (regcache);
96f026fc 382
d9d9c31f 383 memset (zerobuf, 0, MAX_REGISTER_SIZE);
96f026fc 384
822b6570 385 for (regi = MIPS64_EF_REG0 + 1; regi <= MIPS64_EF_REG31; regi++)
28f5035f 386 supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
7d266584 387 (const gdb_byte *) (regp + regi));
28f5035f 388
2eb4d78b 389 if (mips_linux_restart_reg_p (gdbarch))
822b6570 390 supply_64bit_reg (regcache, MIPS_RESTART_REGNUM,
7d266584 391 (const gdb_byte *) (regp + MIPS64_EF_REG0));
822b6570 392
2eb4d78b 393 supply_64bit_reg (regcache, mips_regnum (gdbarch)->lo,
28f5035f 394 (const gdb_byte *) (regp + MIPS64_EF_LO));
2eb4d78b 395 supply_64bit_reg (regcache, mips_regnum (gdbarch)->hi,
28f5035f
UW
396 (const gdb_byte *) (regp + MIPS64_EF_HI));
397
2eb4d78b 398 supply_64bit_reg (regcache, mips_regnum (gdbarch)->pc,
28f5035f 399 (const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
2eb4d78b 400 supply_64bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
28f5035f
UW
401 (const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
402 supply_64bit_reg (regcache, MIPS_PS_REGNUM,
403 (const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
2eb4d78b 404 supply_64bit_reg (regcache, mips_regnum (gdbarch)->cause,
28f5035f 405 (const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
96f026fc 406
1faeff08 407 /* Fill the inaccessible zero register with zero. */
822b6570 408 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
96f026fc
KB
409}
410
50e8a0d5
HZ
411static void
412mips64_supply_gregset_wrapper (const struct regset *regset,
7d266584
MR
413 struct regcache *regcache,
414 int regnum, const void *gregs, size_t len)
50e8a0d5
HZ
415{
416 gdb_assert (len == sizeof (mips64_elf_gregset_t));
417
418 mips64_supply_gregset (regcache, (const mips64_elf_gregset_t *)gregs);
419}
420
d37eb719 421/* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
96f026fc 422
d37eb719 423void
28f5035f
UW
424mips64_fill_gregset (const struct regcache *regcache,
425 mips64_elf_gregset_t *gregsetp, int regno)
96f026fc 426{
2eb4d78b 427 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 428 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96f026fc
KB
429 int regaddr, regi;
430 mips64_elf_greg_t *regp = *gregsetp;
2ba93934 431 void *dst;
96f026fc
KB
432
433 if (regno == -1)
434 {
435 memset (regp, 0, sizeof (mips64_elf_gregset_t));
822b6570 436 for (regi = 1; regi < 32; regi++)
7d266584 437 mips64_fill_gregset (regcache, gregsetp, regi);
2eb4d78b
UW
438 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
439 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
440 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
025bb325
MS
441 mips64_fill_gregset (regcache, gregsetp,
442 mips_regnum (gdbarch)->badvaddr);
28f5035f 443 mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
2eb4d78b 444 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
822b6570 445 mips64_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
96f026fc
KB
446 return;
447 }
448
822b6570 449 if (regno > 0 && regno < 32)
d37eb719 450 regaddr = regno + MIPS64_EF_REG0;
2eb4d78b 451 else if (regno == mips_regnum (gdbarch)->lo)
56cea623 452 regaddr = MIPS64_EF_LO;
2eb4d78b 453 else if (regno == mips_regnum (gdbarch)->hi)
56cea623 454 regaddr = MIPS64_EF_HI;
2eb4d78b 455 else if (regno == mips_regnum (gdbarch)->pc)
56cea623 456 regaddr = MIPS64_EF_CP0_EPC;
2eb4d78b 457 else if (regno == mips_regnum (gdbarch)->badvaddr)
56cea623 458 regaddr = MIPS64_EF_CP0_BADVADDR;
24e05951 459 else if (regno == MIPS_PS_REGNUM)
56cea623 460 regaddr = MIPS64_EF_CP0_STATUS;
2eb4d78b 461 else if (regno == mips_regnum (gdbarch)->cause)
56cea623 462 regaddr = MIPS64_EF_CP0_CAUSE;
2eb4d78b 463 else if (mips_linux_restart_reg_p (gdbarch)
822b6570
DJ
464 && regno == MIPS_RESTART_REGNUM)
465 regaddr = MIPS64_EF_REG0;
56cea623
AC
466 else
467 regaddr = -1;
96f026fc
KB
468
469 if (regaddr != -1)
470 {
d37eb719
DJ
471 gdb_byte buf[MAX_REGISTER_SIZE];
472 LONGEST val;
473
28f5035f 474 regcache_raw_collect (regcache, regno, buf);
e17a4113
UW
475 val = extract_signed_integer (buf, register_size (gdbarch, regno),
476 byte_order);
96f026fc 477 dst = regp + regaddr;
e17a4113 478 store_signed_integer (dst, 8, byte_order, val);
96f026fc
KB
479 }
480}
481
50e8a0d5
HZ
482static void
483mips64_fill_gregset_wrapper (const struct regset *regset,
484 const struct regcache *regcache,
485 int regnum, void *gregs, size_t len)
486{
487 gdb_assert (len == sizeof (mips64_elf_gregset_t));
488
489 mips64_fill_gregset (regcache, (mips64_elf_gregset_t *)gregs, regnum);
490}
491
96f026fc
KB
492/* Likewise, unpack an elf_fpregset_t. */
493
d37eb719 494void
28f5035f
UW
495mips64_supply_fpregset (struct regcache *regcache,
496 const mips64_elf_fpregset_t *fpregsetp)
96f026fc 497{
2eb4d78b 498 struct gdbarch *gdbarch = get_regcache_arch (regcache);
52f0bd74 499 int regi;
96f026fc 500
d37eb719
DJ
501 /* See mips_linux_o32_sigframe_init for a description of the
502 peculiar FP register layout. */
2eb4d78b 503 if (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)) == 4)
d37eb719
DJ
504 for (regi = 0; regi < 32; regi++)
505 {
7d266584
MR
506 const gdb_byte *reg_ptr
507 = (const gdb_byte *) (*fpregsetp + (regi & ~1));
2eb4d78b 508 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
d37eb719 509 reg_ptr += 4;
3e8c568d 510 regcache_raw_supply (regcache,
2eb4d78b 511 gdbarch_fp0_regnum (gdbarch) + regi,
3e8c568d 512 reg_ptr);
d37eb719
DJ
513 }
514 else
515 for (regi = 0; regi < 32; regi++)
3e8c568d 516 regcache_raw_supply (regcache,
2eb4d78b 517 gdbarch_fp0_regnum (gdbarch) + regi,
7d266584 518 (const char *) (*fpregsetp + regi));
d37eb719 519
2eb4d78b 520 supply_32bit_reg (regcache, mips_regnum (gdbarch)->fp_control_status,
7d266584 521 (const gdb_byte *) (*fpregsetp + 32));
d37eb719
DJ
522
523 /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
524 include it - but the result of PTRACE_GETFPREGS does. The best we
525 can do is to assume that its value is present. */
28f5035f 526 supply_32bit_reg (regcache,
2eb4d78b 527 mips_regnum (gdbarch)->fp_implementation_revision,
7d266584 528 (const gdb_byte *) (*fpregsetp + 32) + 4);
96f026fc
KB
529}
530
50e8a0d5
HZ
531static void
532mips64_supply_fpregset_wrapper (const struct regset *regset,
7d266584
MR
533 struct regcache *regcache,
534 int regnum, const void *gregs, size_t len)
50e8a0d5
HZ
535{
536 gdb_assert (len == sizeof (mips64_elf_fpregset_t));
537
538 mips64_supply_fpregset (regcache, (const mips64_elf_fpregset_t *)gregs);
539}
540
96f026fc
KB
541/* Likewise, pack one or all floating point registers into an
542 elf_fpregset_t. */
543
d37eb719 544void
28f5035f
UW
545mips64_fill_fpregset (const struct regcache *regcache,
546 mips64_elf_fpregset_t *fpregsetp, int regno)
96f026fc 547{
2eb4d78b 548 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 549 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d37eb719 550 gdb_byte *to;
96f026fc 551
2eb4d78b
UW
552 if ((regno >= gdbarch_fp0_regnum (gdbarch))
553 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
96f026fc 554 {
d37eb719
DJ
555 /* See mips_linux_o32_sigframe_init for a description of the
556 peculiar FP register layout. */
2eb4d78b 557 if (register_size (gdbarch, regno) == 4)
d37eb719 558 {
2eb4d78b 559 int regi = regno - gdbarch_fp0_regnum (gdbarch);
d37eb719
DJ
560
561 to = (gdb_byte *) (*fpregsetp + (regi & ~1));
2eb4d78b 562 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
d37eb719 563 to += 4;
28f5035f 564 regcache_raw_collect (regcache, regno, to);
d37eb719
DJ
565 }
566 else
567 {
025bb325
MS
568 to = (gdb_byte *) (*fpregsetp + regno
569 - gdbarch_fp0_regnum (gdbarch));
28f5035f 570 regcache_raw_collect (regcache, regno, to);
d37eb719 571 }
96f026fc 572 }
2eb4d78b 573 else if (regno == mips_regnum (gdbarch)->fp_control_status)
96f026fc 574 {
d37eb719
DJ
575 gdb_byte buf[MAX_REGISTER_SIZE];
576 LONGEST val;
577
28f5035f 578 regcache_raw_collect (regcache, regno, buf);
e17a4113
UW
579 val = extract_signed_integer (buf, register_size (gdbarch, regno),
580 byte_order);
d37eb719 581 to = (gdb_byte *) (*fpregsetp + 32);
e17a4113 582 store_signed_integer (to, 4, byte_order, val);
d37eb719 583 }
2eb4d78b 584 else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
d37eb719
DJ
585 {
586 gdb_byte buf[MAX_REGISTER_SIZE];
587 LONGEST val;
588
28f5035f 589 regcache_raw_collect (regcache, regno, buf);
e17a4113
UW
590 val = extract_signed_integer (buf, register_size (gdbarch, regno),
591 byte_order);
d37eb719 592 to = (gdb_byte *) (*fpregsetp + 32) + 4;
e17a4113 593 store_signed_integer (to, 4, byte_order, val);
96f026fc
KB
594 }
595 else if (regno == -1)
596 {
597 int regi;
598
599 for (regi = 0; regi < 32; regi++)
3e8c568d 600 mips64_fill_fpregset (regcache, fpregsetp,
2eb4d78b 601 gdbarch_fp0_regnum (gdbarch) + regi);
28f5035f 602 mips64_fill_fpregset (regcache, fpregsetp,
2eb4d78b 603 mips_regnum (gdbarch)->fp_control_status);
28f5035f 604 mips64_fill_fpregset (regcache, fpregsetp,
7d266584 605 mips_regnum (gdbarch)->fp_implementation_revision);
96f026fc
KB
606 }
607}
608
50e8a0d5
HZ
609static void
610mips64_fill_fpregset_wrapper (const struct regset *regset,
611 const struct regcache *regcache,
612 int regnum, void *gregs, size_t len)
613{
614 gdb_assert (len == sizeof (mips64_elf_fpregset_t));
96f026fc 615
50e8a0d5
HZ
616 mips64_fill_fpregset (regcache, (mips64_elf_fpregset_t *)gregs, regnum);
617}
2aa830e4 618
b7195f27
AA
619static const struct regset mips_linux_gregset =
620 {
621 NULL, mips_supply_gregset_wrapper, mips_fill_gregset_wrapper
622 };
623
624static const struct regset mips64_linux_gregset =
625 {
626 NULL, mips64_supply_gregset_wrapper, mips64_fill_gregset_wrapper
627 };
628
629static const struct regset mips_linux_fpregset =
630 {
631 NULL, mips_supply_fpregset_wrapper, mips_fill_fpregset_wrapper
632 };
633
634static const struct regset mips64_linux_fpregset =
635 {
636 NULL, mips64_supply_fpregset_wrapper, mips64_fill_fpregset_wrapper
637 };
638
693be288 639static const struct regset *
50e8a0d5 640mips_linux_regset_from_core_section (struct gdbarch *gdbarch,
7d266584 641 const char *sect_name, size_t sect_size)
2aa830e4 642{
d37eb719
DJ
643 mips_elf_gregset_t gregset;
644 mips_elf_fpregset_t fpregset;
96f026fc
KB
645 mips64_elf_gregset_t gregset64;
646 mips64_elf_fpregset_t fpregset64;
2aa830e4 647
50e8a0d5 648 if (strcmp (sect_name, ".reg") == 0)
2aa830e4 649 {
50e8a0d5 650 if (sect_size == sizeof (gregset))
b7195f27 651 return &mips_linux_gregset;
50e8a0d5 652 else if (sect_size == sizeof (gregset64))
b7195f27 653 return &mips64_linux_gregset;
2aa830e4
DJ
654 else
655 {
8a3fe4f8 656 warning (_("wrong size gregset struct in core file"));
2aa830e4
DJ
657 }
658 }
50e8a0d5 659 else if (strcmp (sect_name, ".reg2") == 0)
2aa830e4 660 {
50e8a0d5 661 if (sect_size == sizeof (fpregset))
b7195f27 662 return &mips_linux_fpregset;
50e8a0d5 663 else if (sect_size == sizeof (fpregset64))
b7195f27 664 return &mips64_linux_fpregset;
2aa830e4
DJ
665 else
666 {
8a3fe4f8 667 warning (_("wrong size fpregset struct in core file"));
2aa830e4
DJ
668 }
669 }
2aa830e4 670
50e8a0d5
HZ
671 return NULL;
672}
2aa830e4 673
4eb0ad19
DJ
674static const struct target_desc *
675mips_linux_core_read_description (struct gdbarch *gdbarch,
676 struct target_ops *target,
677 bfd *abfd)
678{
679 asection *section = bfd_get_section_by_name (abfd, ".reg");
680 if (! section)
681 return NULL;
682
683 switch (bfd_section_size (abfd, section))
684 {
685 case sizeof (mips_elf_gregset_t):
686 return mips_tdesc_gp32;
687
688 case sizeof (mips64_elf_gregset_t):
689 return mips_tdesc_gp64;
690
691 default:
692 return NULL;
693 }
694}
695
96f026fc 696
295093a4 697/* Check the code at PC for a dynamic linker lazy resolution stub.
3e5d3a5a
MR
698 GNU ld for MIPS has put lazy resolution stubs into a ".MIPS.stubs"
699 section uniformly since version 2.15. If the pc is in that section,
700 then we are in such a stub. Before that ".stub" was used in 32-bit
701 ELF binaries, however we do not bother checking for that since we
702 have never had and that case should be extremely rare these days.
703 Instead we pattern-match on the code generated by GNU ld. They look
704 like this:
6de918a6
DJ
705
706 lw t9,0x8010(gp)
707 addu t7,ra
708 jalr t9,ra
709 addiu t8,zero,INDEX
710
3e5d3a5a
MR
711 (with the appropriate doubleword instructions for N64). As any lazy
712 resolution stubs in microMIPS binaries will always be in a
713 ".MIPS.stubs" section we only ever verify standard MIPS patterns. */
6de918a6
DJ
714
715static int
3e5d3a5a 716mips_linux_in_dynsym_stub (CORE_ADDR pc)
6de918a6 717{
e362b510 718 gdb_byte buf[28], *p;
6de918a6 719 ULONGEST insn, insn1;
f5656ead
TT
720 int n64 = (mips_abi (target_gdbarch ()) == MIPS_ABI_N64);
721 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
6de918a6 722
3e5d3a5a
MR
723 if (in_mips_stubs_section (pc))
724 return 1;
725
6de918a6
DJ
726 read_memory (pc - 12, buf, 28);
727
728 if (n64)
729 {
730 /* ld t9,0x8010(gp) */
731 insn1 = 0xdf998010;
732 }
733 else
734 {
735 /* lw t9,0x8010(gp) */
736 insn1 = 0x8f998010;
737 }
738
739 p = buf + 12;
740 while (p >= buf)
741 {
e17a4113 742 insn = extract_unsigned_integer (p, 4, byte_order);
6de918a6
DJ
743 if (insn == insn1)
744 break;
745 p -= 4;
746 }
747 if (p < buf)
748 return 0;
749
e17a4113 750 insn = extract_unsigned_integer (p + 4, 4, byte_order);
6de918a6
DJ
751 if (n64)
752 {
753 /* daddu t7,ra */
754 if (insn != 0x03e0782d)
755 return 0;
756 }
757 else
758 {
759 /* addu t7,ra */
760 if (insn != 0x03e07821)
761 return 0;
762 }
295093a4 763
e17a4113 764 insn = extract_unsigned_integer (p + 8, 4, byte_order);
6de918a6
DJ
765 /* jalr t9,ra */
766 if (insn != 0x0320f809)
767 return 0;
768
e17a4113 769 insn = extract_unsigned_integer (p + 12, 4, byte_order);
6de918a6
DJ
770 if (n64)
771 {
772 /* daddiu t8,zero,0 */
773 if ((insn & 0xffff0000) != 0x64180000)
774 return 0;
775 }
776 else
777 {
778 /* addiu t8,zero,0 */
779 if ((insn & 0xffff0000) != 0x24180000)
780 return 0;
781 }
782
3e5d3a5a 783 return 1;
6de918a6
DJ
784}
785
295093a4 786/* Return non-zero iff PC belongs to the dynamic linker resolution
db5f024e 787 code, a PLT entry, or a lazy binding stub. */
6de918a6 788
7d522c90 789static int
6de918a6
DJ
790mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
791{
295093a4 792 /* Check whether PC is in the dynamic linker. This also checks
db5f024e 793 whether it is in the .plt section, used by non-PIC executables. */
7d522c90 794 if (svr4_in_dynsym_resolve_code (pc))
6de918a6
DJ
795 return 1;
796
3e5d3a5a
MR
797 /* Likewise for the stubs. They live in the .MIPS.stubs section these
798 days, so we check if the PC is within, than fall back to a pattern
799 match. */
800 if (mips_linux_in_dynsym_stub (pc))
6de918a6
DJ
801 return 1;
802
803 return 0;
804}
805
806/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
807 and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
808 implementation of this triggers at "fixup" from the same objfile as
c4c5b7ba 809 "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
db5f024e
DJ
810 "__dl_runtime_resolve" directly. An unresolved lazy binding
811 stub will point to _dl_runtime_resolve, which will first call
c4c5b7ba
AC
812 __dl_runtime_resolve, and then pass control to the resolved
813 function. */
6de918a6
DJ
814
815static CORE_ADDR
816mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
817{
3b7344d5 818 struct bound_minimal_symbol resolver;
6de918a6
DJ
819
820 resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
821
77e371c0 822 if (resolver.minsym && BMSYMBOL_VALUE_ADDRESS (resolver) == pc)
c7ce8faa 823 return frame_unwind_caller_pc (get_current_frame ());
6de918a6 824
db5f024e 825 return glibc_skip_solib_resolver (gdbarch, pc);
295093a4 826}
6de918a6 827
5792a79b
DJ
828/* Signal trampoline support. There are four supported layouts for a
829 signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
830 n64 rt_sigframe. We handle them all independently; not the most
831 efficient way, but simplest. First, declare all the unwinders. */
832
833static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
b8a22b94 834 struct frame_info *this_frame,
5792a79b
DJ
835 struct trad_frame_cache *this_cache,
836 CORE_ADDR func);
837
838static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
b8a22b94 839 struct frame_info *this_frame,
5792a79b
DJ
840 struct trad_frame_cache *this_cache,
841 CORE_ADDR func);
842
843#define MIPS_NR_LINUX 4000
844#define MIPS_NR_N64_LINUX 5000
845#define MIPS_NR_N32_LINUX 6000
846
847#define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
848#define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
849#define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
850#define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
851
852#define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
853#define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
854#define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
855#define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
856#define MIPS_INST_SYSCALL 0x0000000c
857
2cd8546d
AC
858static const struct tramp_frame mips_linux_o32_sigframe = {
859 SIGTRAMP_FRAME,
5792a79b 860 4,
2cd8546d
AC
861 {
862 { MIPS_INST_LI_V0_SIGRETURN, -1 },
863 { MIPS_INST_SYSCALL, -1 },
864 { TRAMP_SENTINEL_INSN, -1 }
865 },
5792a79b
DJ
866 mips_linux_o32_sigframe_init
867};
868
2cd8546d
AC
869static const struct tramp_frame mips_linux_o32_rt_sigframe = {
870 SIGTRAMP_FRAME,
5792a79b 871 4,
2cd8546d
AC
872 {
873 { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
874 { MIPS_INST_SYSCALL, -1 },
875 { TRAMP_SENTINEL_INSN, -1 } },
5792a79b
DJ
876 mips_linux_o32_sigframe_init
877};
878
2cd8546d
AC
879static const struct tramp_frame mips_linux_n32_rt_sigframe = {
880 SIGTRAMP_FRAME,
5792a79b 881 4,
2cd8546d
AC
882 {
883 { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
884 { MIPS_INST_SYSCALL, -1 },
885 { TRAMP_SENTINEL_INSN, -1 }
886 },
5792a79b
DJ
887 mips_linux_n32n64_sigframe_init
888};
889
2cd8546d
AC
890static const struct tramp_frame mips_linux_n64_rt_sigframe = {
891 SIGTRAMP_FRAME,
5792a79b 892 4,
fcbd8a5c
TS
893 {
894 { MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
895 { MIPS_INST_SYSCALL, -1 },
896 { TRAMP_SENTINEL_INSN, -1 }
897 },
5792a79b
DJ
898 mips_linux_n32n64_sigframe_init
899};
900
901/* *INDENT-OFF* */
902/* The unwinder for o32 signal frames. The legacy structures look
903 like this:
904
905 struct sigframe {
906 u32 sf_ass[4]; [argument save space for o32]
eb195664 907 u32 sf_code[2]; [signal trampoline or fill]
5792a79b
DJ
908 struct sigcontext sf_sc;
909 sigset_t sf_mask;
910 };
911
d0e64392
MR
912 Pre-2.6.12 sigcontext:
913
5792a79b
DJ
914 struct sigcontext {
915 unsigned int sc_regmask; [Unused]
916 unsigned int sc_status;
917 unsigned long long sc_pc;
918 unsigned long long sc_regs[32];
919 unsigned long long sc_fpregs[32];
920 unsigned int sc_ownedfp;
921 unsigned int sc_fpc_csr;
922 unsigned int sc_fpc_eir; [Unused]
923 unsigned int sc_used_math;
924 unsigned int sc_ssflags; [Unused]
925 [Alignment hole of four bytes]
926 unsigned long long sc_mdhi;
927 unsigned long long sc_mdlo;
928
929 unsigned int sc_cause; [Unused]
930 unsigned int sc_badvaddr; [Unused]
931
932 unsigned long sc_sigset[4]; [kernel's sigset_t]
933 };
934
d0e64392
MR
935 Post-2.6.12 sigcontext (SmartMIPS/DSP support added):
936
937 struct sigcontext {
938 unsigned int sc_regmask; [Unused]
939 unsigned int sc_status; [Unused]
940 unsigned long long sc_pc;
941 unsigned long long sc_regs[32];
942 unsigned long long sc_fpregs[32];
943 unsigned int sc_acx;
944 unsigned int sc_fpc_csr;
945 unsigned int sc_fpc_eir; [Unused]
946 unsigned int sc_used_math;
947 unsigned int sc_dsp;
948 [Alignment hole of four bytes]
949 unsigned long long sc_mdhi;
950 unsigned long long sc_mdlo;
951 unsigned long sc_hi1;
952 unsigned long sc_lo1;
953 unsigned long sc_hi2;
954 unsigned long sc_lo2;
955 unsigned long sc_hi3;
956 unsigned long sc_lo3;
957 };
958
5792a79b
DJ
959 The RT signal frames look like this:
960
961 struct rt_sigframe {
962 u32 rs_ass[4]; [argument save space for o32]
eb195664 963 u32 rs_code[2] [signal trampoline or fill]
5792a79b
DJ
964 struct siginfo rs_info;
965 struct ucontext rs_uc;
966 };
967
968 struct ucontext {
969 unsigned long uc_flags;
970 struct ucontext *uc_link;
971 stack_t uc_stack;
972 [Alignment hole of four bytes]
973 struct sigcontext uc_mcontext;
974 sigset_t uc_sigmask;
975 }; */
976/* *INDENT-ON* */
977
5792a79b
DJ
978#define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
979
980#define RTSIGFRAME_SIGINFO_SIZE 128
981#define STACK_T_SIZE (3 * 4)
982#define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
983#define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
984 + RTSIGFRAME_SIGINFO_SIZE \
985 + UCONTEXT_SIGCONTEXT_OFFSET)
986
987#define SIGCONTEXT_PC (1 * 8)
988#define SIGCONTEXT_REGS (2 * 8)
989#define SIGCONTEXT_FPREGS (34 * 8)
990#define SIGCONTEXT_FPCSR (66 * 8 + 4)
d0e64392 991#define SIGCONTEXT_DSPCTL (68 * 8 + 0)
5792a79b
DJ
992#define SIGCONTEXT_HI (69 * 8)
993#define SIGCONTEXT_LO (70 * 8)
994#define SIGCONTEXT_CAUSE (71 * 8 + 0)
995#define SIGCONTEXT_BADVADDR (71 * 8 + 4)
d0e64392
MR
996#define SIGCONTEXT_HI1 (71 * 8 + 0)
997#define SIGCONTEXT_LO1 (71 * 8 + 4)
998#define SIGCONTEXT_HI2 (72 * 8 + 0)
999#define SIGCONTEXT_LO2 (72 * 8 + 4)
1000#define SIGCONTEXT_HI3 (73 * 8 + 0)
1001#define SIGCONTEXT_LO3 (73 * 8 + 4)
5792a79b
DJ
1002
1003#define SIGCONTEXT_REG_SIZE 8
1004
1005static void
1006mips_linux_o32_sigframe_init (const struct tramp_frame *self,
b8a22b94 1007 struct frame_info *this_frame,
5792a79b
DJ
1008 struct trad_frame_cache *this_cache,
1009 CORE_ADDR func)
1010{
b8a22b94 1011 struct gdbarch *gdbarch = get_frame_arch (this_frame);
22e048c9 1012 int ireg;
eb195664
DD
1013 CORE_ADDR frame_sp = get_frame_sp (this_frame);
1014 CORE_ADDR sigcontext_base;
2eb4d78b 1015 const struct mips_regnum *regs = mips_regnum (gdbarch);
37c4d197 1016 CORE_ADDR regs_base;
5792a79b
DJ
1017
1018 if (self == &mips_linux_o32_sigframe)
eb195664 1019 sigcontext_base = frame_sp + SIGFRAME_SIGCONTEXT_OFFSET;
5792a79b 1020 else
eb195664 1021 sigcontext_base = frame_sp + RTSIGFRAME_SIGCONTEXT_OFFSET;
295093a4
MS
1022
1023 /* I'm not proud of this hack. Eventually we will have the
1024 infrastructure to indicate the size of saved registers on a
1025 per-frame basis, but right now we don't; the kernel saves eight
37c4d197
DJ
1026 bytes but we only want four. Use regs_base to access any
1027 64-bit fields. */
2eb4d78b 1028 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
37c4d197
DJ
1029 regs_base = sigcontext_base + 4;
1030 else
1031 regs_base = sigcontext_base;
5792a79b 1032
2eb4d78b 1033 if (mips_linux_restart_reg_p (gdbarch))
822b6570
DJ
1034 trad_frame_set_reg_addr (this_cache,
1035 (MIPS_RESTART_REGNUM
2eb4d78b 1036 + gdbarch_num_regs (gdbarch)),
822b6570 1037 regs_base + SIGCONTEXT_REGS);
5792a79b
DJ
1038
1039 for (ireg = 1; ireg < 32; ireg++)
295093a4 1040 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1041 (ireg + MIPS_ZERO_REGNUM
1042 + gdbarch_num_regs (gdbarch)),
1043 (regs_base + SIGCONTEXT_REGS
1044 + ireg * SIGCONTEXT_REG_SIZE));
5792a79b 1045
37c4d197
DJ
1046 /* The way that floating point registers are saved, unfortunately,
1047 depends on the architecture the kernel is built for. For the r3000 and
1048 tx39, four bytes of each register are at the beginning of each of the
1049 32 eight byte slots. For everything else, the registers are saved
1050 using double precision; only the even-numbered slots are initialized,
1051 and the high bits are the odd-numbered register. Assume the latter
1052 layout, since we can't tell, and it's much more common. Which bits are
1053 the "high" bits depends on endianness. */
5792a79b 1054 for (ireg = 0; ireg < 32; ireg++)
2eb4d78b 1055 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (ireg & 1))
f57d151a 1056 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1057 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1058 (sigcontext_base + SIGCONTEXT_FPREGS + 4
1059 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
37c4d197 1060 else
f57d151a 1061 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1062 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1063 (sigcontext_base + SIGCONTEXT_FPREGS
1064 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
5792a79b 1065
f57d151a 1066 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1067 regs->pc + gdbarch_num_regs (gdbarch),
37c4d197 1068 regs_base + SIGCONTEXT_PC);
5792a79b 1069
295093a4 1070 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1071 (regs->fp_control_status
1072 + gdbarch_num_regs (gdbarch)),
5792a79b 1073 sigcontext_base + SIGCONTEXT_FPCSR);
d0e64392
MR
1074
1075 if (regs->dspctl != -1)
1076 trad_frame_set_reg_addr (this_cache,
1077 regs->dspctl + gdbarch_num_regs (gdbarch),
1078 sigcontext_base + SIGCONTEXT_DSPCTL);
1079
f57d151a 1080 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1081 regs->hi + gdbarch_num_regs (gdbarch),
37c4d197 1082 regs_base + SIGCONTEXT_HI);
f57d151a 1083 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1084 regs->lo + gdbarch_num_regs (gdbarch),
37c4d197 1085 regs_base + SIGCONTEXT_LO);
d0e64392
MR
1086
1087 if (regs->dspacc != -1)
1088 {
1089 trad_frame_set_reg_addr (this_cache,
1090 regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1091 sigcontext_base + SIGCONTEXT_HI1);
1092 trad_frame_set_reg_addr (this_cache,
1093 regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1094 sigcontext_base + SIGCONTEXT_LO1);
1095 trad_frame_set_reg_addr (this_cache,
1096 regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1097 sigcontext_base + SIGCONTEXT_HI2);
1098 trad_frame_set_reg_addr (this_cache,
1099 regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1100 sigcontext_base + SIGCONTEXT_LO2);
1101 trad_frame_set_reg_addr (this_cache,
1102 regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1103 sigcontext_base + SIGCONTEXT_HI3);
1104 trad_frame_set_reg_addr (this_cache,
1105 regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1106 sigcontext_base + SIGCONTEXT_LO3);
1107 }
1108 else
1109 {
1110 trad_frame_set_reg_addr (this_cache,
1111 regs->cause + gdbarch_num_regs (gdbarch),
1112 sigcontext_base + SIGCONTEXT_CAUSE);
1113 trad_frame_set_reg_addr (this_cache,
1114 regs->badvaddr + gdbarch_num_regs (gdbarch),
1115 sigcontext_base + SIGCONTEXT_BADVADDR);
1116 }
5792a79b
DJ
1117
1118 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
eb195664 1119 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
5792a79b
DJ
1120}
1121
1122/* *INDENT-OFF* */
1123/* For N32/N64 things look different. There is no non-rt signal frame.
1124
1125 struct rt_sigframe_n32 {
1126 u32 rs_ass[4]; [ argument save space for o32 ]
eb195664 1127 u32 rs_code[2]; [ signal trampoline or fill ]
5792a79b
DJ
1128 struct siginfo rs_info;
1129 struct ucontextn32 rs_uc;
1130 };
1131
1132 struct ucontextn32 {
1133 u32 uc_flags;
1134 s32 uc_link;
1135 stack32_t uc_stack;
1136 struct sigcontext uc_mcontext;
1137 sigset_t uc_sigmask; [ mask last for extensibility ]
1138 };
295093a4 1139
e741f4d4 1140 struct rt_sigframe {
5792a79b
DJ
1141 u32 rs_ass[4]; [ argument save space for o32 ]
1142 u32 rs_code[2]; [ signal trampoline ]
1143 struct siginfo rs_info;
1144 struct ucontext rs_uc;
1145 };
1146
1147 struct ucontext {
1148 unsigned long uc_flags;
1149 struct ucontext *uc_link;
1150 stack_t uc_stack;
1151 struct sigcontext uc_mcontext;
1152 sigset_t uc_sigmask; [ mask last for extensibility ]
1153 };
1154
1155 And the sigcontext is different (this is for both n32 and n64):
1156
1157 struct sigcontext {
1158 unsigned long long sc_regs[32];
1159 unsigned long long sc_fpregs[32];
1160 unsigned long long sc_mdhi;
e741f4d4
DJ
1161 unsigned long long sc_hi1;
1162 unsigned long long sc_hi2;
1163 unsigned long long sc_hi3;
5792a79b 1164 unsigned long long sc_mdlo;
e741f4d4
DJ
1165 unsigned long long sc_lo1;
1166 unsigned long long sc_lo2;
1167 unsigned long long sc_lo3;
5792a79b 1168 unsigned long long sc_pc;
5792a79b 1169 unsigned int sc_fpc_csr;
5792a79b 1170 unsigned int sc_used_math;
e741f4d4
DJ
1171 unsigned int sc_dsp;
1172 unsigned int sc_reserved;
1173 };
1174
1175 That is the post-2.6.12 definition of the 64-bit sigcontext; before
1176 then, there were no hi1-hi3 or lo1-lo3. Cause and badvaddr were
1177 included too. */
5792a79b
DJ
1178/* *INDENT-ON* */
1179
1180#define N32_STACK_T_SIZE STACK_T_SIZE
1181#define N64_STACK_T_SIZE (2 * 8 + 4)
1182#define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
1183#define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
1184#define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1185 + RTSIGFRAME_SIGINFO_SIZE \
1186 + N32_UCONTEXT_SIGCONTEXT_OFFSET)
1187#define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1188 + RTSIGFRAME_SIGINFO_SIZE \
1189 + N64_UCONTEXT_SIGCONTEXT_OFFSET)
1190
1191#define N64_SIGCONTEXT_REGS (0 * 8)
1192#define N64_SIGCONTEXT_FPREGS (32 * 8)
1193#define N64_SIGCONTEXT_HI (64 * 8)
d0e64392
MR
1194#define N64_SIGCONTEXT_HI1 (65 * 8)
1195#define N64_SIGCONTEXT_HI2 (66 * 8)
1196#define N64_SIGCONTEXT_HI3 (67 * 8)
e741f4d4 1197#define N64_SIGCONTEXT_LO (68 * 8)
d0e64392
MR
1198#define N64_SIGCONTEXT_LO1 (69 * 8)
1199#define N64_SIGCONTEXT_LO2 (70 * 8)
1200#define N64_SIGCONTEXT_LO3 (71 * 8)
e741f4d4 1201#define N64_SIGCONTEXT_PC (72 * 8)
d0e64392
MR
1202#define N64_SIGCONTEXT_FPCSR (73 * 8 + 0)
1203#define N64_SIGCONTEXT_DSPCTL (74 * 8 + 0)
5792a79b
DJ
1204
1205#define N64_SIGCONTEXT_REG_SIZE 8
295093a4 1206
5792a79b
DJ
1207static void
1208mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
b8a22b94 1209 struct frame_info *this_frame,
5792a79b
DJ
1210 struct trad_frame_cache *this_cache,
1211 CORE_ADDR func)
1212{
b8a22b94 1213 struct gdbarch *gdbarch = get_frame_arch (this_frame);
22e048c9 1214 int ireg;
eb195664
DD
1215 CORE_ADDR frame_sp = get_frame_sp (this_frame);
1216 CORE_ADDR sigcontext_base;
2eb4d78b 1217 const struct mips_regnum *regs = mips_regnum (gdbarch);
5792a79b
DJ
1218
1219 if (self == &mips_linux_n32_rt_sigframe)
eb195664 1220 sigcontext_base = frame_sp + N32_SIGFRAME_SIGCONTEXT_OFFSET;
5792a79b 1221 else
eb195664 1222 sigcontext_base = frame_sp + N64_SIGFRAME_SIGCONTEXT_OFFSET;
295093a4 1223
2eb4d78b 1224 if (mips_linux_restart_reg_p (gdbarch))
822b6570
DJ
1225 trad_frame_set_reg_addr (this_cache,
1226 (MIPS_RESTART_REGNUM
2eb4d78b 1227 + gdbarch_num_regs (gdbarch)),
822b6570 1228 sigcontext_base + N64_SIGCONTEXT_REGS);
5792a79b
DJ
1229
1230 for (ireg = 1; ireg < 32; ireg++)
295093a4 1231 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1232 (ireg + MIPS_ZERO_REGNUM
1233 + gdbarch_num_regs (gdbarch)),
1234 (sigcontext_base + N64_SIGCONTEXT_REGS
1235 + ireg * N64_SIGCONTEXT_REG_SIZE));
5792a79b
DJ
1236
1237 for (ireg = 0; ireg < 32; ireg++)
f57d151a 1238 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1239 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1240 (sigcontext_base + N64_SIGCONTEXT_FPREGS
1241 + ireg * N64_SIGCONTEXT_REG_SIZE));
5792a79b 1242
f57d151a 1243 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1244 regs->pc + gdbarch_num_regs (gdbarch),
5792a79b
DJ
1245 sigcontext_base + N64_SIGCONTEXT_PC);
1246
295093a4 1247 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1248 (regs->fp_control_status
1249 + gdbarch_num_regs (gdbarch)),
5792a79b 1250 sigcontext_base + N64_SIGCONTEXT_FPCSR);
d0e64392 1251
f57d151a 1252 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1253 regs->hi + gdbarch_num_regs (gdbarch),
5792a79b 1254 sigcontext_base + N64_SIGCONTEXT_HI);
f57d151a 1255 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1256 regs->lo + gdbarch_num_regs (gdbarch),
5792a79b 1257 sigcontext_base + N64_SIGCONTEXT_LO);
5792a79b 1258
d0e64392
MR
1259 if (regs->dspacc != -1)
1260 {
1261 trad_frame_set_reg_addr (this_cache,
1262 regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1263 sigcontext_base + N64_SIGCONTEXT_HI1);
1264 trad_frame_set_reg_addr (this_cache,
1265 regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1266 sigcontext_base + N64_SIGCONTEXT_LO1);
1267 trad_frame_set_reg_addr (this_cache,
1268 regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1269 sigcontext_base + N64_SIGCONTEXT_HI2);
1270 trad_frame_set_reg_addr (this_cache,
1271 regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1272 sigcontext_base + N64_SIGCONTEXT_LO2);
1273 trad_frame_set_reg_addr (this_cache,
1274 regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1275 sigcontext_base + N64_SIGCONTEXT_HI3);
1276 trad_frame_set_reg_addr (this_cache,
1277 regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1278 sigcontext_base + N64_SIGCONTEXT_LO3);
1279 }
1280 if (regs->dspctl != -1)
1281 trad_frame_set_reg_addr (this_cache,
1282 regs->dspctl + gdbarch_num_regs (gdbarch),
1283 sigcontext_base + N64_SIGCONTEXT_DSPCTL);
1284
5792a79b 1285 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
eb195664 1286 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
5792a79b
DJ
1287}
1288
5a439849
MR
1289/* Implement the "write_pc" gdbarch method. */
1290
822b6570 1291static void
61a1198a 1292mips_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
822b6570 1293{
2eb4d78b 1294 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5a439849
MR
1295
1296 mips_write_pc (regcache, pc);
822b6570
DJ
1297
1298 /* Clear the syscall restart flag. */
2eb4d78b 1299 if (mips_linux_restart_reg_p (gdbarch))
61a1198a 1300 regcache_cooked_write_unsigned (regcache, MIPS_RESTART_REGNUM, 0);
822b6570
DJ
1301}
1302
1303/* Return 1 if MIPS_RESTART_REGNUM is usable. */
1304
1305int
1306mips_linux_restart_reg_p (struct gdbarch *gdbarch)
1307{
1308 /* If we do not have a target description with registers, then
1309 MIPS_RESTART_REGNUM will not be included in the register set. */
1310 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
1311 return 0;
1312
1313 /* If we do, then MIPS_RESTART_REGNUM is safe to check; it will
1314 either be GPR-sized or missing. */
1315 return register_size (gdbarch, MIPS_RESTART_REGNUM) > 0;
1316}
9f62d0e2 1317
e38d4e1a
DJ
1318/* When FRAME is at a syscall instruction, return the PC of the next
1319 instruction to be executed. */
1320
63807e1d 1321static CORE_ADDR
e38d4e1a
DJ
1322mips_linux_syscall_next_pc (struct frame_info *frame)
1323{
1324 CORE_ADDR pc = get_frame_pc (frame);
1325 ULONGEST v0 = get_frame_register_unsigned (frame, MIPS_V0_REGNUM);
1326
1327 /* If we are about to make a sigreturn syscall, use the unwinder to
1328 decode the signal frame. */
1329 if (v0 == MIPS_NR_sigreturn
1330 || v0 == MIPS_NR_rt_sigreturn
1331 || v0 == MIPS_NR_N64_rt_sigreturn
1332 || v0 == MIPS_NR_N32_rt_sigreturn)
c7ce8faa 1333 return frame_unwind_caller_pc (get_current_frame ());
e38d4e1a
DJ
1334
1335 return pc + 4;
1336}
1337
385203ed
DD
1338/* Return the current system call's number present in the
1339 v0 register. When the function fails, it returns -1. */
1340
1341static LONGEST
1342mips_linux_get_syscall_number (struct gdbarch *gdbarch,
1343 ptid_t ptid)
1344{
1345 struct regcache *regcache = get_thread_regcache (ptid);
1346 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1347 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1348 int regsize = register_size (gdbarch, MIPS_V0_REGNUM);
1349 /* The content of a register */
1350 gdb_byte buf[8];
1351 /* The result */
1352 LONGEST ret;
1353
1354 /* Make sure we're in a known ABI */
1355 gdb_assert (tdep->mips_abi == MIPS_ABI_O32
1356 || tdep->mips_abi == MIPS_ABI_N32
1357 || tdep->mips_abi == MIPS_ABI_N64);
1358
1359 gdb_assert (regsize <= sizeof (buf));
1360
1361 /* Getting the system call number from the register.
1362 syscall number is in v0 or $2. */
1363 regcache_cooked_read (regcache, MIPS_V0_REGNUM, buf);
1364
1365 ret = extract_signed_integer (buf, regsize, byte_order);
1366
1367 return ret;
1368}
1369
eb14d406
SDJ
1370/* Implementation of `gdbarch_gdb_signal_to_target', as defined in
1371 gdbarch.h. */
1372
1373static int
1374mips_gdb_signal_to_target (struct gdbarch *gdbarch,
1375 enum gdb_signal signal)
1376{
1377 switch (signal)
1378 {
1379 case GDB_SIGNAL_EMT:
1380 return MIPS_LINUX_SIGEMT;
1381
1382 case GDB_SIGNAL_BUS:
1383 return MIPS_LINUX_SIGBUS;
1384
1385 case GDB_SIGNAL_SYS:
1386 return MIPS_LINUX_SIGSYS;
1387
1388 case GDB_SIGNAL_USR1:
1389 return MIPS_LINUX_SIGUSR1;
1390
1391 case GDB_SIGNAL_USR2:
1392 return MIPS_LINUX_SIGUSR2;
1393
1394 case GDB_SIGNAL_CHLD:
1395 return MIPS_LINUX_SIGCHLD;
1396
1397 case GDB_SIGNAL_PWR:
1398 return MIPS_LINUX_SIGPWR;
1399
1400 case GDB_SIGNAL_WINCH:
1401 return MIPS_LINUX_SIGWINCH;
1402
1403 case GDB_SIGNAL_URG:
1404 return MIPS_LINUX_SIGURG;
1405
1406 case GDB_SIGNAL_IO:
1407 return MIPS_LINUX_SIGIO;
1408
1409 case GDB_SIGNAL_POLL:
1410 return MIPS_LINUX_SIGPOLL;
1411
1412 case GDB_SIGNAL_STOP:
1413 return MIPS_LINUX_SIGSTOP;
1414
1415 case GDB_SIGNAL_TSTP:
1416 return MIPS_LINUX_SIGTSTP;
1417
1418 case GDB_SIGNAL_CONT:
1419 return MIPS_LINUX_SIGCONT;
1420
1421 case GDB_SIGNAL_TTIN:
1422 return MIPS_LINUX_SIGTTIN;
1423
1424 case GDB_SIGNAL_TTOU:
1425 return MIPS_LINUX_SIGTTOU;
1426
1427 case GDB_SIGNAL_VTALRM:
1428 return MIPS_LINUX_SIGVTALRM;
1429
1430 case GDB_SIGNAL_PROF:
1431 return MIPS_LINUX_SIGPROF;
1432
1433 case GDB_SIGNAL_XCPU:
1434 return MIPS_LINUX_SIGXCPU;
1435
1436 case GDB_SIGNAL_XFSZ:
1437 return MIPS_LINUX_SIGXFSZ;
1438
1439 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
1440 therefore we have to handle it here. */
1441 case GDB_SIGNAL_REALTIME_32:
1442 return MIPS_LINUX_SIGRTMIN;
1443 }
1444
1445 if (signal >= GDB_SIGNAL_REALTIME_33
1446 && signal <= GDB_SIGNAL_REALTIME_63)
1447 {
1448 int offset = signal - GDB_SIGNAL_REALTIME_33;
1449
1450 return MIPS_LINUX_SIGRTMIN + 1 + offset;
1451 }
1452 else if (signal >= GDB_SIGNAL_REALTIME_64
1453 && signal <= GDB_SIGNAL_REALTIME_127)
1454 {
1455 int offset = signal - GDB_SIGNAL_REALTIME_64;
1456
1457 return MIPS_LINUX_SIGRT64 + offset;
1458 }
1459
1460 return linux_gdb_signal_to_target (gdbarch, signal);
1461}
1462
7d266584 1463/* Translate signals based on MIPS signal values.
232b8704
ME
1464 Adapted from gdb/common/signals.c. */
1465
1466static enum gdb_signal
eb14d406 1467mips_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
232b8704 1468{
eb14d406 1469 switch (signal)
232b8704 1470 {
eb14d406 1471 case MIPS_LINUX_SIGEMT:
232b8704 1472 return GDB_SIGNAL_EMT;
eb14d406
SDJ
1473
1474 case MIPS_LINUX_SIGBUS:
232b8704 1475 return GDB_SIGNAL_BUS;
eb14d406
SDJ
1476
1477 case MIPS_LINUX_SIGSYS:
232b8704 1478 return GDB_SIGNAL_SYS;
eb14d406
SDJ
1479
1480 case MIPS_LINUX_SIGUSR1:
232b8704 1481 return GDB_SIGNAL_USR1;
eb14d406
SDJ
1482
1483 case MIPS_LINUX_SIGUSR2:
232b8704 1484 return GDB_SIGNAL_USR2;
eb14d406
SDJ
1485
1486 case MIPS_LINUX_SIGCHLD:
232b8704 1487 return GDB_SIGNAL_CHLD;
eb14d406
SDJ
1488
1489 case MIPS_LINUX_SIGPWR:
232b8704 1490 return GDB_SIGNAL_PWR;
eb14d406
SDJ
1491
1492 case MIPS_LINUX_SIGWINCH:
232b8704 1493 return GDB_SIGNAL_WINCH;
eb14d406
SDJ
1494
1495 case MIPS_LINUX_SIGURG:
232b8704 1496 return GDB_SIGNAL_URG;
eb14d406
SDJ
1497
1498 /* No way to differentiate between SIGIO and SIGPOLL.
1499 Therefore, we just handle the first one. */
1500 case MIPS_LINUX_SIGIO:
1501 return GDB_SIGNAL_IO;
1502
1503 case MIPS_LINUX_SIGSTOP:
232b8704 1504 return GDB_SIGNAL_STOP;
eb14d406
SDJ
1505
1506 case MIPS_LINUX_SIGTSTP:
232b8704 1507 return GDB_SIGNAL_TSTP;
eb14d406
SDJ
1508
1509 case MIPS_LINUX_SIGCONT:
232b8704 1510 return GDB_SIGNAL_CONT;
eb14d406
SDJ
1511
1512 case MIPS_LINUX_SIGTTIN:
232b8704 1513 return GDB_SIGNAL_TTIN;
eb14d406
SDJ
1514
1515 case MIPS_LINUX_SIGTTOU:
232b8704 1516 return GDB_SIGNAL_TTOU;
eb14d406
SDJ
1517
1518 case MIPS_LINUX_SIGVTALRM:
232b8704 1519 return GDB_SIGNAL_VTALRM;
eb14d406
SDJ
1520
1521 case MIPS_LINUX_SIGPROF:
232b8704 1522 return GDB_SIGNAL_PROF;
eb14d406
SDJ
1523
1524 case MIPS_LINUX_SIGXCPU:
232b8704 1525 return GDB_SIGNAL_XCPU;
eb14d406
SDJ
1526
1527 case MIPS_LINUX_SIGXFSZ:
232b8704 1528 return GDB_SIGNAL_XFSZ;
eb14d406 1529 }
232b8704 1530
eb14d406 1531 if (signal >= MIPS_LINUX_SIGRTMIN && signal <= MIPS_LINUX_SIGRTMAX)
232b8704
ME
1532 {
1533 /* GDB_SIGNAL_REALTIME values are not contiguous, map parts of
1534 the MIPS block to the respective GDB_SIGNAL_REALTIME blocks. */
eb14d406
SDJ
1535 int offset = signal - MIPS_LINUX_SIGRTMIN;
1536
1537 if (offset == 0)
232b8704 1538 return GDB_SIGNAL_REALTIME_32;
eb14d406
SDJ
1539 else if (offset < 32)
1540 return (enum gdb_signal) (offset - 1
1541 + (int) GDB_SIGNAL_REALTIME_33);
232b8704 1542 else
eb14d406
SDJ
1543 return (enum gdb_signal) (offset - 32
1544 + (int) GDB_SIGNAL_REALTIME_64);
232b8704
ME
1545 }
1546
eb14d406 1547 return linux_gdb_signal_from_target (gdbarch, signal);
232b8704
ME
1548}
1549
5792a79b
DJ
1550/* Initialize one of the GNU/Linux OS ABIs. */
1551
19ed69dd 1552static void
295093a4
MS
1553mips_linux_init_abi (struct gdbarch_info info,
1554 struct gdbarch *gdbarch)
19ed69dd 1555{
96f026fc
KB
1556 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1557 enum mips_abi abi = mips_abi (gdbarch);
822b6570 1558 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
96f026fc 1559
a5ee0f0c
PA
1560 linux_init_abi (info, gdbarch);
1561
385203ed
DD
1562 /* Get the syscall number from the arch's register. */
1563 set_gdbarch_get_syscall_number (gdbarch, mips_linux_get_syscall_number);
1564
96f026fc
KB
1565 switch (abi)
1566 {
1567 case MIPS_ABI_O32:
1568 set_gdbarch_get_longjmp_target (gdbarch,
7d266584 1569 mips_linux_get_longjmp_target);
96f026fc 1570 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1571 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
fb2be677
AC
1572 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
1573 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
385203ed 1574 set_xml_syscall_file_name ("syscalls/mips-o32-linux.xml");
96f026fc
KB
1575 break;
1576 case MIPS_ABI_N32:
1577 set_gdbarch_get_longjmp_target (gdbarch,
7d266584 1578 mips_linux_get_longjmp_target);
96f026fc 1579 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1580 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
d05f6826
DJ
1581 set_gdbarch_long_double_bit (gdbarch, 128);
1582 /* These floatformats should probably be renamed. MIPS uses
1583 the same 128-bit IEEE floating point format that IA-64 uses,
1584 except that the quiet/signalling NaN bit is reversed (GDB
1585 does not distinguish between quiet and signalling NaNs). */
8da61cc4 1586 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
fb2be677 1587 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
385203ed 1588 set_xml_syscall_file_name ("syscalls/mips-n32-linux.xml");
96f026fc
KB
1589 break;
1590 case MIPS_ABI_N64:
1591 set_gdbarch_get_longjmp_target (gdbarch,
7d266584 1592 mips64_linux_get_longjmp_target);
96f026fc 1593 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1594 (gdbarch, svr4_lp64_fetch_link_map_offsets);
d05f6826
DJ
1595 set_gdbarch_long_double_bit (gdbarch, 128);
1596 /* These floatformats should probably be renamed. MIPS uses
1597 the same 128-bit IEEE floating point format that IA-64 uses,
1598 except that the quiet/signalling NaN bit is reversed (GDB
1599 does not distinguish between quiet and signalling NaNs). */
8da61cc4 1600 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
fb2be677 1601 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
385203ed 1602 set_xml_syscall_file_name ("syscalls/mips-n64-linux.xml");
96f026fc
KB
1603 break;
1604 default:
96f026fc
KB
1605 break;
1606 }
6de918a6
DJ
1607
1608 set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
1609
0d0266c6 1610 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
b2756930
KB
1611
1612 /* Enable TLS support. */
1613 set_gdbarch_fetch_tls_load_module_address (gdbarch,
7d266584 1614 svr4_fetch_objfile_link_map);
7d522c90
DJ
1615
1616 /* Initialize this lazily, to avoid an initialization order
1617 dependency on solib-svr4.c's _initialize routine. */
1618 if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
1619 {
1620 mips_svr4_so_ops = svr4_so_ops;
1621 mips_svr4_so_ops.in_dynsym_resolve_code
1622 = mips_linux_in_dynsym_resolve_code;
1623 }
1624 set_solib_ops (gdbarch, &mips_svr4_so_ops);
822b6570
DJ
1625
1626 set_gdbarch_write_pc (gdbarch, mips_linux_write_pc);
1627
4eb0ad19
DJ
1628 set_gdbarch_core_read_description (gdbarch,
1629 mips_linux_core_read_description);
1630
50e8a0d5
HZ
1631 set_gdbarch_regset_from_core_section (gdbarch,
1632 mips_linux_regset_from_core_section);
1633
232b8704
ME
1634 set_gdbarch_gdb_signal_from_target (gdbarch,
1635 mips_gdb_signal_from_target);
1636
eb14d406
SDJ
1637 set_gdbarch_gdb_signal_to_target (gdbarch,
1638 mips_gdb_signal_to_target);
1639
e38d4e1a
DJ
1640 tdep->syscall_next_pc = mips_linux_syscall_next_pc;
1641
822b6570
DJ
1642 if (tdesc_data)
1643 {
1644 const struct tdesc_feature *feature;
1645
1646 /* If we have target-described registers, then we can safely
1647 reserve a number for MIPS_RESTART_REGNUM (whether it is
1648 described or not). */
1649 gdb_assert (gdbarch_num_regs (gdbarch) <= MIPS_RESTART_REGNUM);
1650 set_gdbarch_num_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
cf233303 1651 set_gdbarch_num_pseudo_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
822b6570
DJ
1652
1653 /* If it's present, then assign it to the reserved number. */
1654 feature = tdesc_find_feature (info.target_desc,
1655 "org.gnu.gdb.mips.linux");
1656 if (feature != NULL)
1657 tdesc_numbered_register (feature, tdesc_data, MIPS_RESTART_REGNUM,
1658 "restart");
1659 }
19ed69dd
KB
1660}
1661
63807e1d
PA
1662/* Provide a prototype to silence -Wmissing-prototypes. */
1663extern initialize_file_ftype _initialize_mips_linux_tdep;
1664
2aa830e4 1665void
d1bacddc 1666_initialize_mips_linux_tdep (void)
2aa830e4 1667{
96f026fc
KB
1668 const struct bfd_arch_info *arch_info;
1669
96f026fc
KB
1670 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
1671 arch_info != NULL;
1672 arch_info = arch_info->next)
1673 {
295093a4
MS
1674 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
1675 GDB_OSABI_LINUX,
96f026fc
KB
1676 mips_linux_init_abi);
1677 }
2aa830e4 1678}
This page took 1.18746 seconds and 4 git commands to generate.