2001-02-19 Michael Snyder <msnyder@mvstp600e.cygnus.com>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4fcf66da 4 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
bf64bfd6 5
c906108c
SS
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "value.h"
32#include "gdbcmd.h"
33#include "language.h"
34#include "gdbcore.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "gdbtypes.h"
38#include "target.h"
28d069e6 39#include "arch-utils.h"
c906108c
SS
40
41#include "opcode/mips.h"
c2d11a7d
JM
42#include "elf/mips.h"
43#include "elf-bfd.h"
2475bac3 44#include "symcat.h"
c906108c 45
b0069a17
AC
46/* The sizes of floating point registers. */
47
48enum
49{
50 MIPS_FPU_SINGLE_REGSIZE = 4,
51 MIPS_FPU_DOUBLE_REGSIZE = 8
52};
53
0dadbba0
AC
54/* All the possible MIPS ABIs. */
55
56enum mips_abi
57 {
58 MIPS_ABI_UNKNOWN,
59 MIPS_ABI_N32,
60 MIPS_ABI_O32,
61 MIPS_ABI_O64,
62 MIPS_ABI_EABI32,
63 MIPS_ABI_EABI64
64 };
65
cce74817 66struct frame_extra_info
c5aa993b
JM
67 {
68 mips_extra_func_info_t proc_desc;
69 int num_args;
70 };
cce74817 71
d929b26f
AC
72/* Various MIPS ISA options (related to stack analysis) can be
73 overridden dynamically. Establish an enum/array for managing
74 them. */
75
53904c9e
AC
76static const char size_auto[] = "auto";
77static const char size_32[] = "32";
78static const char size_64[] = "64";
d929b26f 79
53904c9e 80static const char *size_enums[] = {
d929b26f
AC
81 size_auto,
82 size_32,
83 size_64,
a5ea2558
AC
84 0
85};
86
7a292a7a
SS
87/* Some MIPS boards don't support floating point while others only
88 support single-precision floating-point operations. See also
89 FP_REGISTER_DOUBLE. */
c906108c
SS
90
91enum mips_fpu_type
c5aa993b
JM
92 {
93 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
94 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
95 MIPS_FPU_NONE /* No floating point. */
96 };
c906108c
SS
97
98#ifndef MIPS_DEFAULT_FPU_TYPE
99#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
100#endif
101static int mips_fpu_type_auto = 1;
102static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
103#define MIPS_FPU_TYPE mips_fpu_type
104
c906108c 105/* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */
7a292a7a 106#ifndef FP_REGISTER_DOUBLE
c906108c 107#define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8)
7a292a7a
SS
108#endif
109
9ace0497 110static int mips_debug = 0;
7a292a7a 111
c2d11a7d
JM
112/* MIPS specific per-architecture information */
113struct gdbarch_tdep
114 {
115 /* from the elf header */
116 int elf_flags;
117 /* mips options */
0dadbba0 118 enum mips_abi mips_abi;
acdb74a0 119 const char *mips_abi_string;
c2d11a7d
JM
120 enum mips_fpu_type mips_fpu_type;
121 int mips_last_arg_regnum;
122 int mips_last_fp_arg_regnum;
a5ea2558 123 int mips_default_saved_regsize;
c2d11a7d 124 int mips_fp_register_double;
d929b26f
AC
125 int mips_regs_have_home_p;
126 int mips_default_stack_argsize;
5213ab06 127 int gdb_target_is_mips64;
4014092b 128 int default_mask_address_p;
c2d11a7d
JM
129 };
130
131#if GDB_MULTI_ARCH
132#undef MIPS_EABI
0dadbba0 133#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 134 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d
JM
135#endif
136
137#if GDB_MULTI_ARCH
138#undef MIPS_LAST_FP_ARG_REGNUM
139#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
140#endif
141
142#if GDB_MULTI_ARCH
143#undef MIPS_LAST_ARG_REGNUM
144#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
145#endif
146
147#if GDB_MULTI_ARCH
148#undef MIPS_FPU_TYPE
149#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
150#endif
151
d929b26f
AC
152/* Return the currently configured (or set) saved register size. */
153
c2d11a7d 154#if GDB_MULTI_ARCH
a5ea2558
AC
155#undef MIPS_DEFAULT_SAVED_REGSIZE
156#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
d929b26f
AC
157#elif !defined (MIPS_DEFAULT_SAVED_REGSIZE)
158#define MIPS_DEFAULT_SAVED_REGSIZE MIPS_REGSIZE
c2d11a7d
JM
159#endif
160
53904c9e 161static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
162
163#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
164
165static unsigned int
acdb74a0 166mips_saved_regsize (void)
d929b26f
AC
167{
168 if (mips_saved_regsize_string == size_auto)
169 return MIPS_DEFAULT_SAVED_REGSIZE;
170 else if (mips_saved_regsize_string == size_64)
171 return 8;
172 else /* if (mips_saved_regsize_string == size_32) */
173 return 4;
174}
175
c2d11a7d
JM
176/* Indicate that the ABI makes use of double-precision registers
177 provided by the FPU (rather than combining pairs of registers to
178 form double-precision values). Do not use "TARGET_IS_MIPS64" to
179 determine if the ABI is using double-precision registers. See also
180 MIPS_FPU_TYPE. */
181#if GDB_MULTI_ARCH
182#undef FP_REGISTER_DOUBLE
183#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
184#endif
185
d929b26f
AC
186/* Does the caller allocate a ``home'' for each register used in the
187 function call? The N32 ABI and MIPS_EABI do not, the others do. */
188
189#if GDB_MULTI_ARCH
190#undef MIPS_REGS_HAVE_HOME_P
191#define MIPS_REGS_HAVE_HOME_P (gdbarch_tdep (current_gdbarch)->mips_regs_have_home_p)
192#elif !defined (MIPS_REGS_HAVE_HOME_P)
193#define MIPS_REGS_HAVE_HOME_P (!MIPS_EABI)
194#endif
195
196/* The amount of space reserved on the stack for registers. This is
197 different to MIPS_SAVED_REGSIZE as it determines the alignment of
198 data allocated after the registers have run out. */
199
200#if GDB_MULTI_ARCH
201#undef MIPS_DEFAULT_STACK_ARGSIZE
0dadbba0 202#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
203#elif !defined (MIPS_DEFAULT_STACK_ARGSIZE)
204#define MIPS_DEFAULT_STACK_ARGSIZE (MIPS_DEFAULT_SAVED_REGSIZE)
205#endif
206
207#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
208
53904c9e 209static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
210
211static unsigned int
212mips_stack_argsize (void)
213{
214 if (mips_stack_argsize_string == size_auto)
215 return MIPS_DEFAULT_STACK_ARGSIZE;
216 else if (mips_stack_argsize_string == size_64)
217 return 8;
218 else /* if (mips_stack_argsize_string == size_32) */
219 return 4;
220}
221
5213ab06
AC
222#if GDB_MULTI_ARCH
223#undef GDB_TARGET_IS_MIPS64
224#define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
225#endif
c2d11a7d 226
92e1c15c
FF
227#if GDB_MULTI_ARCH
228#undef MIPS_DEFAULT_MASK_ADDRESS_P
229#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
230#elif !defined (MIPS_DEFAULT_MASK_ADDRESS_P)
231#define MIPS_DEFAULT_MASK_ADDRESS_P (0)
232#endif
233
7a292a7a 234#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 235
a14ed312 236int gdb_print_insn_mips (bfd_vma, disassemble_info *);
c906108c 237
a14ed312 238static void mips_print_register (int, int);
c906108c
SS
239
240static mips_extra_func_info_t
a14ed312 241heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *);
c906108c 242
a14ed312 243static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 244
a14ed312 245static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 246
a14ed312 247int mips_set_processor_type (char *);
c906108c 248
a14ed312 249static void mips_show_processor_type_command (char *, int);
c906108c 250
a14ed312 251static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c
SS
252
253static mips_extra_func_info_t
a14ed312 254find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame);
c906108c 255
a14ed312
KB
256static CORE_ADDR after_prologue (CORE_ADDR pc,
257 mips_extra_func_info_t proc_desc);
c906108c
SS
258
259/* This value is the model of MIPS in use. It is derived from the value
260 of the PrID register. */
261
262char *mips_processor_type;
263
264char *tmp_mips_processor_type;
265
acdb74a0
AC
266/* The list of available "set mips " and "show mips " commands */
267
268static struct cmd_list_element *setmipscmdlist = NULL;
269static struct cmd_list_element *showmipscmdlist = NULL;
270
c906108c
SS
271/* A set of original names, to be used when restoring back to generic
272 registers from a specific set. */
273
cce74817
JM
274char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
275char **mips_processor_reg_names = mips_generic_reg_names;
276
277char *
fba45db2 278mips_register_name (int i)
cce74817
JM
279{
280 return mips_processor_reg_names[i];
281}
9846de1b 282/* *INDENT-OFF* */
c906108c
SS
283/* Names of IDT R3041 registers. */
284
285char *mips_r3041_reg_names[] = {
286 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
287 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
288 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
289 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
290 "sr", "lo", "hi", "bad", "cause","pc",
291 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
292 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
293 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
294 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
295 "fsr", "fir", "fp", "",
296 "", "", "bus", "ccfg", "", "", "", "",
297 "", "", "port", "cmp", "", "", "epc", "prid",
298};
299
300/* Names of IDT R3051 registers. */
301
302char *mips_r3051_reg_names[] = {
303 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
304 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
305 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
306 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
307 "sr", "lo", "hi", "bad", "cause","pc",
308 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
309 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
310 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
311 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
312 "fsr", "fir", "fp", "",
313 "inx", "rand", "elo", "", "ctxt", "", "", "",
314 "", "", "ehi", "", "", "", "epc", "prid",
315};
316
317/* Names of IDT R3081 registers. */
318
319char *mips_r3081_reg_names[] = {
320 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
321 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
322 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
323 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
324 "sr", "lo", "hi", "bad", "cause","pc",
325 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
326 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
327 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
328 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
329 "fsr", "fir", "fp", "",
330 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
331 "", "", "ehi", "", "", "", "epc", "prid",
332};
333
334/* Names of LSI 33k registers. */
335
336char *mips_lsi33k_reg_names[] = {
337 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
338 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
339 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
340 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
341 "epc", "hi", "lo", "sr", "cause","badvaddr",
342 "dcic", "bpc", "bda", "", "", "", "", "",
343 "", "", "", "", "", "", "", "",
344 "", "", "", "", "", "", "", "",
345 "", "", "", "", "", "", "", "",
346 "", "", "", "",
347 "", "", "", "", "", "", "", "",
348 "", "", "", "", "", "", "", "",
349};
350
351struct {
352 char *name;
353 char **regnames;
354} mips_processor_type_table[] = {
355 { "generic", mips_generic_reg_names },
356 { "r3041", mips_r3041_reg_names },
357 { "r3051", mips_r3051_reg_names },
358 { "r3071", mips_r3081_reg_names },
359 { "r3081", mips_r3081_reg_names },
360 { "lsi33k", mips_lsi33k_reg_names },
361 { NULL, NULL }
362};
9846de1b 363/* *INDENT-ON* */
c906108c 364
c5aa993b
JM
365
366
367
c906108c 368/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
369static int mips16_to_32_reg[8] =
370{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
371
372/* Heuristic_proc_start may hunt through the text section for a long
373 time across a 2400 baud serial line. Allows the user to limit this
374 search. */
375
376static unsigned int heuristic_fence_post = 0;
377
c5aa993b
JM
378#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
379#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
380#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
381#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
382#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
383#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
384#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
385#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
386#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
387#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
388#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
389#define _PROC_MAGIC_ 0x0F0F0F0F
390#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
391#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
392
393struct linked_proc_info
c5aa993b
JM
394 {
395 struct mips_extra_func_info info;
396 struct linked_proc_info *next;
397 }
398 *linked_proc_desc_table = NULL;
c906108c 399
cce74817 400void
acdb74a0 401mips_print_extra_frame_info (struct frame_info *fi)
cce74817
JM
402{
403 if (fi
404 && fi->extra_info
405 && fi->extra_info->proc_desc
406 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
d4f3574e 407 printf_filtered (" frame pointer is at %s+%s\n",
cce74817 408 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
d4f3574e 409 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
cce74817 410}
c906108c 411
43e526b9
JM
412/* Convert between RAW and VIRTUAL registers. The RAW register size
413 defines the remote-gdb packet. */
414
415static int mips64_transfers_32bit_regs_p = 0;
416
417int
acdb74a0 418mips_register_raw_size (int reg_nr)
43e526b9
JM
419{
420 if (mips64_transfers_32bit_regs_p)
421 return REGISTER_VIRTUAL_SIZE (reg_nr);
422 else
423 return MIPS_REGSIZE;
424}
425
426int
acdb74a0 427mips_register_convertible (int reg_nr)
43e526b9
JM
428{
429 if (mips64_transfers_32bit_regs_p)
430 return 0;
431 else
432 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
433}
434
435void
acdb74a0
AC
436mips_register_convert_to_virtual (int n, struct type *virtual_type,
437 char *raw_buf, char *virt_buf)
43e526b9
JM
438{
439 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
440 memcpy (virt_buf,
441 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
442 TYPE_LENGTH (virtual_type));
443 else
444 memcpy (virt_buf,
445 raw_buf,
446 TYPE_LENGTH (virtual_type));
447}
448
449void
acdb74a0
AC
450mips_register_convert_to_raw (struct type *virtual_type, int n,
451 char *virt_buf, char *raw_buf)
43e526b9
JM
452{
453 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
454 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
455 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
456 virt_buf,
457 TYPE_LENGTH (virtual_type));
458 else
459 memcpy (raw_buf,
460 virt_buf,
461 TYPE_LENGTH (virtual_type));
462}
463
c906108c 464/* Should the upper word of 64-bit addresses be zeroed? */
4014092b
AC
465enum cmd_auto_boolean mask_address_var = CMD_AUTO_BOOLEAN_AUTO;
466
467static int
468mips_mask_address_p (void)
469{
470 switch (mask_address_var)
471 {
472 case CMD_AUTO_BOOLEAN_TRUE:
473 return 1;
474 case CMD_AUTO_BOOLEAN_FALSE:
475 return 0;
476 break;
477 case CMD_AUTO_BOOLEAN_AUTO:
92e1c15c 478 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b 479 default:
8e65ff28
AC
480 internal_error (__FILE__, __LINE__,
481 "mips_mask_address_p: bad switch");
4014092b
AC
482 return -1;
483 }
484}
485
486static void
487show_mask_address (char *cmd, int from_tty)
488{
489 switch (mask_address_var)
490 {
491 case CMD_AUTO_BOOLEAN_TRUE:
492 printf_filtered ("The 32 bit mips address mask is enabled\n");
493 break;
494 case CMD_AUTO_BOOLEAN_FALSE:
495 printf_filtered ("The 32 bit mips address mask is disabled\n");
496 break;
497 case CMD_AUTO_BOOLEAN_AUTO:
498 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
499 mips_mask_address_p () ? "enabled" : "disabled");
500 break;
501 default:
8e65ff28
AC
502 internal_error (__FILE__, __LINE__,
503 "show_mask_address: bad switch");
4014092b
AC
504 break;
505 }
506}
c906108c
SS
507
508/* Should call_function allocate stack space for a struct return? */
509int
fba45db2 510mips_use_struct_convention (int gcc_p, struct type *type)
c906108c
SS
511{
512 if (MIPS_EABI)
7a292a7a 513 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
c906108c 514 else
c5aa993b 515 return 1; /* Structures are returned by ref in extra arg0 */
c906108c
SS
516}
517
518/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
519
520static int
521pc_is_mips16 (bfd_vma memaddr)
522{
523 struct minimal_symbol *sym;
524
525 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
526 if (IS_MIPS16_ADDR (memaddr))
527 return 1;
528
529 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
530 the high bit of the info field. Use this to decide if the function is
531 MIPS16 or normal MIPS. */
532 sym = lookup_minimal_symbol_by_pc (memaddr);
533 if (sym)
534 return MSYMBOL_IS_SPECIAL (sym);
535 else
536 return 0;
537}
538
6c997a34
AC
539/* MIPS believes that the PC has a sign extended value. Perhaphs the
540 all registers should be sign extended for simplicity? */
541
542static CORE_ADDR
543mips_read_pc (int pid)
544{
545 return read_signed_register_pid (PC_REGNUM, pid);
546}
c906108c
SS
547
548/* This returns the PC of the first inst after the prologue. If we can't
549 find the prologue, then return 0. */
550
551static CORE_ADDR
acdb74a0
AC
552after_prologue (CORE_ADDR pc,
553 mips_extra_func_info_t proc_desc)
c906108c
SS
554{
555 struct symtab_and_line sal;
556 CORE_ADDR func_addr, func_end;
557
558 if (!proc_desc)
559 proc_desc = find_proc_desc (pc, NULL);
560
561 if (proc_desc)
562 {
563 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 564 strongly suspect that frameless always means prologueless... */
c906108c
SS
565 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
566 && PROC_FRAME_OFFSET (proc_desc) == 0)
567 return 0;
568 }
569
570 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
571 return 0; /* Unknown */
572
573 sal = find_pc_line (func_addr, 0);
574
575 if (sal.end < func_end)
576 return sal.end;
577
578 /* The line after the prologue is after the end of the function. In this
579 case, tell the caller to find the prologue the hard way. */
580
581 return 0;
582}
583
584/* Decode a MIPS32 instruction that saves a register in the stack, and
585 set the appropriate bit in the general register mask or float register mask
586 to indicate which register is saved. This is a helper function
587 for mips_find_saved_regs. */
588
589static void
acdb74a0
AC
590mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
591 unsigned long *float_mask)
c906108c
SS
592{
593 int reg;
594
595 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
596 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
597 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
598 {
599 /* It might be possible to use the instruction to
c5aa993b
JM
600 find the offset, rather than the code below which
601 is based on things being in a certain order in the
602 frame, but figuring out what the instruction's offset
603 is relative to might be a little tricky. */
c906108c
SS
604 reg = (inst & 0x001f0000) >> 16;
605 *gen_mask |= (1 << reg);
606 }
607 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
608 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
609 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
610
611 {
612 reg = ((inst & 0x001f0000) >> 16);
613 *float_mask |= (1 << reg);
614 }
615}
616
617/* Decode a MIPS16 instruction that saves a register in the stack, and
618 set the appropriate bit in the general register or float register mask
619 to indicate which register is saved. This is a helper function
620 for mips_find_saved_regs. */
621
622static void
acdb74a0 623mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 624{
c5aa993b 625 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
626 {
627 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
628 *gen_mask |= (1 << reg);
629 }
c5aa993b 630 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
631 {
632 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
633 *gen_mask |= (1 << reg);
634 }
c5aa993b 635 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
636 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
637 *gen_mask |= (1 << RA_REGNUM);
638}
639
640
641/* Fetch and return instruction from the specified location. If the PC
642 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
643
644static t_inst
acdb74a0 645mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
646{
647 char buf[MIPS_INSTLEN];
648 int instlen;
649 int status;
650
651 if (pc_is_mips16 (addr))
652 {
653 instlen = MIPS16_INSTLEN;
654 addr = UNMAKE_MIPS16_ADDR (addr);
655 }
656 else
c5aa993b 657 instlen = MIPS_INSTLEN;
c906108c
SS
658 status = read_memory_nobpt (addr, buf, instlen);
659 if (status)
660 memory_error (status, addr);
661 return extract_unsigned_integer (buf, instlen);
662}
663
664
665/* These the fields of 32 bit mips instructions */
666#define mips32_op(x) (x >> 25)
667#define itype_op(x) (x >> 25)
668#define itype_rs(x) ((x >> 21)& 0x1f)
669#define itype_rt(x) ((x >> 16) & 0x1f)
670#define itype_immediate(x) ( x & 0xffff)
671
672#define jtype_op(x) (x >> 25)
673#define jtype_target(x) ( x & 0x03fffff)
674
675#define rtype_op(x) (x >>25)
676#define rtype_rs(x) ((x>>21) & 0x1f)
677#define rtype_rt(x) ((x>>16) & 0x1f)
c5aa993b 678#define rtype_rd(x) ((x>>11) & 0x1f)
c906108c
SS
679#define rtype_shamt(x) ((x>>6) & 0x1f)
680#define rtype_funct(x) (x & 0x3f )
681
682static CORE_ADDR
c5aa993b
JM
683mips32_relative_offset (unsigned long inst)
684{
685 long x;
686 x = itype_immediate (inst);
687 if (x & 0x8000) /* sign bit set */
c906108c 688 {
c5aa993b 689 x |= 0xffff0000; /* sign extension */
c906108c 690 }
c5aa993b
JM
691 x = x << 2;
692 return x;
c906108c
SS
693}
694
695/* Determine whate to set a single step breakpoint while considering
696 branch prediction */
697CORE_ADDR
c5aa993b
JM
698mips32_next_pc (CORE_ADDR pc)
699{
700 unsigned long inst;
701 int op;
702 inst = mips_fetch_instruction (pc);
703 if ((inst & 0xe0000000) != 0) /* Not a special, junp or branch instruction */
704 {
705 if ((inst >> 27) == 5) /* BEQL BNEZ BLEZL BGTZE , bits 0101xx */
706 {
707 op = ((inst >> 25) & 0x03);
c906108c
SS
708 switch (op)
709 {
c5aa993b
JM
710 case 0:
711 goto equal_branch; /* BEQL */
712 case 1:
713 goto neq_branch; /* BNEZ */
714 case 2:
715 goto less_branch; /* BLEZ */
716 case 3:
717 goto greater_branch; /* BGTZ */
718 default:
719 pc += 4;
c906108c
SS
720 }
721 }
c5aa993b
JM
722 else
723 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
724 }
725 else
c5aa993b
JM
726 { /* This gets way messy */
727
c906108c 728 /* Further subdivide into SPECIAL, REGIMM and other */
c5aa993b 729 switch (op = ((inst >> 26) & 0x07)) /* extract bits 28,27,26 */
c906108c 730 {
c5aa993b
JM
731 case 0: /* SPECIAL */
732 op = rtype_funct (inst);
733 switch (op)
734 {
735 case 8: /* JR */
736 case 9: /* JALR */
6c997a34
AC
737 /* Set PC to that address */
738 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
739 break;
740 default:
741 pc += 4;
742 }
743
744 break; /* end special */
745 case 1: /* REGIMM */
c906108c 746 {
c5aa993b
JM
747 op = jtype_op (inst); /* branch condition */
748 switch (jtype_op (inst))
c906108c 749 {
c5aa993b
JM
750 case 0: /* BLTZ */
751 case 2: /* BLTXL */
752 case 16: /* BLTZALL */
753 case 18: /* BLTZALL */
c906108c 754 less_branch:
6c997a34 755 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
756 pc += mips32_relative_offset (inst) + 4;
757 else
758 pc += 8; /* after the delay slot */
759 break;
760 case 1: /* GEZ */
761 case 3: /* BGEZL */
762 case 17: /* BGEZAL */
763 case 19: /* BGEZALL */
c906108c 764 greater_equal_branch:
6c997a34 765 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
766 pc += mips32_relative_offset (inst) + 4;
767 else
768 pc += 8; /* after the delay slot */
769 break;
770 /* All of the other intructions in the REGIMM catagory */
771 default:
772 pc += 4;
c906108c
SS
773 }
774 }
c5aa993b
JM
775 break; /* end REGIMM */
776 case 2: /* J */
777 case 3: /* JAL */
778 {
779 unsigned long reg;
780 reg = jtype_target (inst) << 2;
781 pc = reg + ((pc + 4) & 0xf0000000);
c906108c
SS
782 /* Whats this mysterious 0xf000000 adjustment ??? */
783 }
c5aa993b
JM
784 break;
785 /* FIXME case JALX : */
786 {
787 unsigned long reg;
788 reg = jtype_target (inst) << 2;
789 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
790 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
791 }
c5aa993b
JM
792 break; /* The new PC will be alternate mode */
793 case 4: /* BEQ , BEQL */
794 equal_branch:
6c997a34
AC
795 if (read_signed_register (itype_rs (inst)) ==
796 read_signed_register (itype_rt (inst)))
c5aa993b
JM
797 pc += mips32_relative_offset (inst) + 4;
798 else
799 pc += 8;
800 break;
801 case 5: /* BNE , BNEL */
802 neq_branch:
6c997a34
AC
803 if (read_signed_register (itype_rs (inst)) !=
804 read_signed_register (itype_rs (inst)))
c5aa993b
JM
805 pc += mips32_relative_offset (inst) + 4;
806 else
807 pc += 8;
808 break;
809 case 6: /* BLEZ , BLEZL */
c906108c 810 less_zero_branch:
6c997a34 811 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
812 pc += mips32_relative_offset (inst) + 4;
813 else
814 pc += 8;
815 break;
816 case 7:
817 greater_branch: /* BGTZ BGTZL */
6c997a34 818 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
819 pc += mips32_relative_offset (inst) + 4;
820 else
821 pc += 8;
822 break;
823 default:
824 pc += 8;
825 } /* switch */
826 } /* else */
827 return pc;
828} /* mips32_next_pc */
c906108c
SS
829
830/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 831 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
832 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
833 We dont want to set a single step instruction on the extend instruction
834 either.
c5aa993b 835 */
c906108c
SS
836
837/* Lots of mips16 instruction formats */
838/* Predicting jumps requires itype,ritype,i8type
839 and their extensions extItype,extritype,extI8type
c5aa993b 840 */
c906108c
SS
841enum mips16_inst_fmts
842{
c5aa993b
JM
843 itype, /* 0 immediate 5,10 */
844 ritype, /* 1 5,3,8 */
845 rrtype, /* 2 5,3,3,5 */
846 rritype, /* 3 5,3,3,5 */
847 rrrtype, /* 4 5,3,3,3,2 */
848 rriatype, /* 5 5,3,3,1,4 */
849 shifttype, /* 6 5,3,3,3,2 */
850 i8type, /* 7 5,3,8 */
851 i8movtype, /* 8 5,3,3,5 */
852 i8mov32rtype, /* 9 5,3,5,3 */
853 i64type, /* 10 5,3,8 */
854 ri64type, /* 11 5,3,3,5 */
855 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
856 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
857 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
858 extRRItype, /* 15 5,5,5,5,3,3,5 */
859 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
860 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
861 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
862 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
863 extRi64type, /* 20 5,6,5,5,3,3,5 */
864 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
865};
12f02c2a
AC
866/* I am heaping all the fields of the formats into one structure and
867 then, only the fields which are involved in instruction extension */
c906108c 868struct upk_mips16
c5aa993b 869 {
12f02c2a 870 CORE_ADDR offset;
c5aa993b
JM
871 unsigned int regx; /* Function in i8 type */
872 unsigned int regy;
873 };
c906108c
SS
874
875
12f02c2a
AC
876/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
877 for the bits which make up the immediatate extension. */
c906108c 878
12f02c2a
AC
879static CORE_ADDR
880extended_offset (unsigned int extension)
c906108c 881{
12f02c2a 882 CORE_ADDR value;
c5aa993b
JM
883 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
884 value = value << 6;
885 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
886 value = value << 5;
887 value |= extension & 0x01f; /* extract 4:0 */
888 return value;
c906108c
SS
889}
890
891/* Only call this function if you know that this is an extendable
892 instruction, It wont malfunction, but why make excess remote memory references?
893 If the immediate operands get sign extended or somthing, do it after
894 the extension is performed.
c5aa993b 895 */
c906108c
SS
896/* FIXME: Every one of these cases needs to worry about sign extension
897 when the offset is to be used in relative addressing */
898
899
12f02c2a 900static unsigned int
c5aa993b 901fetch_mips_16 (CORE_ADDR pc)
c906108c 902{
c5aa993b
JM
903 char buf[8];
904 pc &= 0xfffffffe; /* clear the low order bit */
905 target_read_memory (pc, buf, 2);
906 return extract_unsigned_integer (buf, 2);
c906108c
SS
907}
908
909static void
c5aa993b 910unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
911 unsigned int extension,
912 unsigned int inst,
913 enum mips16_inst_fmts insn_format,
c5aa993b 914 struct upk_mips16 *upk)
c906108c 915{
12f02c2a
AC
916 CORE_ADDR offset;
917 int regx;
918 int regy;
919 switch (insn_format)
c906108c 920 {
c5aa993b 921 case itype:
c906108c 922 {
12f02c2a
AC
923 CORE_ADDR value;
924 if (extension)
c5aa993b
JM
925 {
926 value = extended_offset (extension);
927 value = value << 11; /* rom for the original value */
12f02c2a 928 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
929 }
930 else
c5aa993b 931 {
12f02c2a 932 value = inst & 0x7ff;
c5aa993b 933 /* FIXME : Consider sign extension */
c906108c 934 }
12f02c2a
AC
935 offset = value;
936 regx = -1;
937 regy = -1;
c906108c 938 }
c5aa993b
JM
939 break;
940 case ritype:
941 case i8type:
942 { /* A register identifier and an offset */
c906108c
SS
943 /* Most of the fields are the same as I type but the
944 immediate value is of a different length */
12f02c2a
AC
945 CORE_ADDR value;
946 if (extension)
c906108c 947 {
c5aa993b
JM
948 value = extended_offset (extension);
949 value = value << 8; /* from the original instruction */
12f02c2a
AC
950 value |= inst & 0xff; /* eleven bits from instruction */
951 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
952 if (value & 0x4000) /* test the sign bit , bit 26 */
953 {
954 value &= ~0x3fff; /* remove the sign bit */
955 value = -value;
c906108c
SS
956 }
957 }
c5aa993b
JM
958 else
959 {
12f02c2a
AC
960 value = inst & 0xff; /* 8 bits */
961 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
962 /* FIXME: Do sign extension , this format needs it */
963 if (value & 0x80) /* THIS CONFUSES ME */
964 {
965 value &= 0xef; /* remove the sign bit */
966 value = -value;
967 }
c5aa993b 968 }
12f02c2a
AC
969 offset = value;
970 regy = -1;
c5aa993b 971 break;
c906108c 972 }
c5aa993b 973 case jalxtype:
c906108c 974 {
c5aa993b 975 unsigned long value;
12f02c2a
AC
976 unsigned int nexthalf;
977 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
978 value = value << 16;
979 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
980 value |= nexthalf;
12f02c2a
AC
981 offset = value;
982 regx = -1;
983 regy = -1;
c5aa993b 984 break;
c906108c
SS
985 }
986 default:
8e65ff28
AC
987 internal_error (__FILE__, __LINE__,
988 "bad switch");
c906108c 989 }
12f02c2a
AC
990 upk->offset = offset;
991 upk->regx = regx;
992 upk->regy = regy;
c906108c
SS
993}
994
995
c5aa993b
JM
996static CORE_ADDR
997add_offset_16 (CORE_ADDR pc, int offset)
c906108c 998{
c5aa993b
JM
999 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1000
c906108c
SS
1001}
1002
12f02c2a
AC
1003static CORE_ADDR
1004extended_mips16_next_pc (CORE_ADDR pc,
1005 unsigned int extension,
1006 unsigned int insn)
c906108c 1007{
12f02c2a
AC
1008 int op = (insn >> 11);
1009 switch (op)
c906108c 1010 {
12f02c2a
AC
1011 case 2: /* Branch */
1012 {
1013 CORE_ADDR offset;
1014 struct upk_mips16 upk;
1015 unpack_mips16 (pc, extension, insn, itype, &upk);
1016 offset = upk.offset;
1017 if (offset & 0x800)
1018 {
1019 offset &= 0xeff;
1020 offset = -offset;
1021 }
1022 pc += (offset << 1) + 2;
1023 break;
1024 }
1025 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1026 {
1027 struct upk_mips16 upk;
1028 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1029 pc = add_offset_16 (pc, upk.offset);
1030 if ((insn >> 10) & 0x01) /* Exchange mode */
1031 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1032 else
1033 pc |= 0x01;
1034 break;
1035 }
1036 case 4: /* beqz */
1037 {
1038 struct upk_mips16 upk;
1039 int reg;
1040 unpack_mips16 (pc, extension, insn, ritype, &upk);
1041 reg = read_signed_register (upk.regx);
1042 if (reg == 0)
1043 pc += (upk.offset << 1) + 2;
1044 else
1045 pc += 2;
1046 break;
1047 }
1048 case 5: /* bnez */
1049 {
1050 struct upk_mips16 upk;
1051 int reg;
1052 unpack_mips16 (pc, extension, insn, ritype, &upk);
1053 reg = read_signed_register (upk.regx);
1054 if (reg != 0)
1055 pc += (upk.offset << 1) + 2;
1056 else
1057 pc += 2;
1058 break;
1059 }
1060 case 12: /* I8 Formats btez btnez */
1061 {
1062 struct upk_mips16 upk;
1063 int reg;
1064 unpack_mips16 (pc, extension, insn, i8type, &upk);
1065 /* upk.regx contains the opcode */
1066 reg = read_signed_register (24); /* Test register is 24 */
1067 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1068 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1069 /* pc = add_offset_16(pc,upk.offset) ; */
1070 pc += (upk.offset << 1) + 2;
1071 else
1072 pc += 2;
1073 break;
1074 }
1075 case 29: /* RR Formats JR, JALR, JALR-RA */
1076 {
1077 struct upk_mips16 upk;
1078 /* upk.fmt = rrtype; */
1079 op = insn & 0x1f;
1080 if (op == 0)
c5aa993b 1081 {
12f02c2a
AC
1082 int reg;
1083 upk.regx = (insn >> 8) & 0x07;
1084 upk.regy = (insn >> 5) & 0x07;
1085 switch (upk.regy)
c5aa993b 1086 {
12f02c2a
AC
1087 case 0:
1088 reg = upk.regx;
1089 break;
1090 case 1:
1091 reg = 31;
1092 break; /* Function return instruction */
1093 case 2:
1094 reg = upk.regx;
1095 break;
1096 default:
1097 reg = 31;
1098 break; /* BOGUS Guess */
c906108c 1099 }
12f02c2a 1100 pc = read_signed_register (reg);
c906108c 1101 }
12f02c2a 1102 else
c5aa993b 1103 pc += 2;
12f02c2a
AC
1104 break;
1105 }
1106 case 30:
1107 /* This is an instruction extension. Fetch the real instruction
1108 (which follows the extension) and decode things based on
1109 that. */
1110 {
1111 pc += 2;
1112 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1113 break;
1114 }
1115 default:
1116 {
1117 pc += 2;
1118 break;
1119 }
c906108c 1120 }
c5aa993b 1121 return pc;
12f02c2a 1122}
c906108c 1123
12f02c2a
AC
1124CORE_ADDR
1125mips16_next_pc (CORE_ADDR pc)
1126{
1127 unsigned int insn = fetch_mips_16 (pc);
1128 return extended_mips16_next_pc (pc, 0, insn);
1129}
1130
1131/* The mips_next_pc function supports single_step when the remote
7e73cedf 1132 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1133 It works by decoding the current instruction and predicting where a
1134 branch will go. This isnt hard because all the data is available.
1135 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1136CORE_ADDR
1137mips_next_pc (CORE_ADDR pc)
c906108c 1138{
c5aa993b
JM
1139 if (pc & 0x01)
1140 return mips16_next_pc (pc);
1141 else
1142 return mips32_next_pc (pc);
12f02c2a 1143}
c906108c
SS
1144
1145/* Guaranteed to set fci->saved_regs to some values (it never leaves it
1146 NULL). */
1147
1148void
acdb74a0 1149mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1150{
1151 int ireg;
1152 CORE_ADDR reg_position;
1153 /* r0 bit means kernel trap */
1154 int kernel_trap;
1155 /* What registers have been saved? Bitmasks. */
1156 unsigned long gen_mask, float_mask;
1157 mips_extra_func_info_t proc_desc;
1158 t_inst inst;
1159
1160 frame_saved_regs_zalloc (fci);
1161
1162 /* If it is the frame for sigtramp, the saved registers are located
1163 in a sigcontext structure somewhere on the stack.
1164 If the stack layout for sigtramp changes we might have to change these
1165 constants and the companion fixup_sigtramp in mdebugread.c */
1166#ifndef SIGFRAME_BASE
1167/* To satisfy alignment restrictions, sigcontext is located 4 bytes
1168 above the sigtramp frame. */
1169#define SIGFRAME_BASE MIPS_REGSIZE
1170/* FIXME! Are these correct?? */
1171#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1172#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1173#define SIGFRAME_FPREGSAVE_OFF \
1174 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1175#endif
1176#ifndef SIGFRAME_REG_SIZE
1177/* FIXME! Is this correct?? */
1178#define SIGFRAME_REG_SIZE MIPS_REGSIZE
1179#endif
1180 if (fci->signal_handler_caller)
1181 {
1182 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1183 {
c5aa993b
JM
1184 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1185 + ireg * SIGFRAME_REG_SIZE;
1186 fci->saved_regs[ireg] = reg_position;
c906108c
SS
1187 }
1188 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1189 {
c5aa993b
JM
1190 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1191 + ireg * SIGFRAME_REG_SIZE;
1192 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
c906108c
SS
1193 }
1194 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1195 return;
1196 }
1197
cce74817 1198 proc_desc = fci->extra_info->proc_desc;
c906108c
SS
1199 if (proc_desc == NULL)
1200 /* I'm not sure how/whether this can happen. Normally when we can't
1201 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1202 and set the saved_regs right away. */
1203 return;
1204
c5aa993b
JM
1205 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1206 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1207 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1208
c5aa993b
JM
1209 if ( /* In any frame other than the innermost or a frame interrupted by
1210 a signal, we assume that all registers have been saved.
1211 This assumes that all register saves in a function happen before
1212 the first function call. */
1213 (fci->next == NULL || fci->next->signal_handler_caller)
c906108c 1214
c5aa993b
JM
1215 /* In a dummy frame we know exactly where things are saved. */
1216 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1217
c5aa993b
JM
1218 /* Don't bother unless we are inside a function prologue. Outside the
1219 prologue, we know where everything is. */
c906108c 1220
c5aa993b 1221 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
c906108c 1222
c5aa993b
JM
1223 /* Not sure exactly what kernel_trap means, but if it means
1224 the kernel saves the registers without a prologue doing it,
1225 we better not examine the prologue to see whether registers
1226 have been saved yet. */
1227 && !kernel_trap)
c906108c
SS
1228 {
1229 /* We need to figure out whether the registers that the proc_desc
c5aa993b 1230 claims are saved have been saved yet. */
c906108c
SS
1231
1232 CORE_ADDR addr;
1233
1234 /* Bitmasks; set if we have found a save for the register. */
1235 unsigned long gen_save_found = 0;
1236 unsigned long float_save_found = 0;
1237 int instlen;
1238
1239 /* If the address is odd, assume this is MIPS16 code. */
1240 addr = PROC_LOW_ADDR (proc_desc);
1241 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1242
1243 /* Scan through this function's instructions preceding the current
1244 PC, and look for those that save registers. */
1245 while (addr < fci->pc)
1246 {
1247 inst = mips_fetch_instruction (addr);
1248 if (pc_is_mips16 (addr))
1249 mips16_decode_reg_save (inst, &gen_save_found);
1250 else
1251 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1252 addr += instlen;
1253 }
1254 gen_mask = gen_save_found;
1255 float_mask = float_save_found;
1256 }
1257
1258 /* Fill in the offsets for the registers which gen_mask says
1259 were saved. */
1260 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
c5aa993b 1261 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
c906108c
SS
1262 if (gen_mask & 0x80000000)
1263 {
1264 fci->saved_regs[ireg] = reg_position;
7a292a7a 1265 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1266 }
1267
1268 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1269 of that normally used by gcc. Therefore, we have to fetch the first
1270 instruction of the function, and if it's an entry instruction that
1271 saves $s0 or $s1, correct their saved addresses. */
1272 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1273 {
1274 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
c5aa993b 1275 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
c906108c
SS
1276 {
1277 int reg;
1278 int sreg_count = (inst >> 6) & 3;
c5aa993b 1279
c906108c
SS
1280 /* Check if the ra register was pushed on the stack. */
1281 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1282 if (inst & 0x20)
7a292a7a 1283 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1284
1285 /* Check if the s0 and s1 registers were pushed on the stack. */
c5aa993b 1286 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c
SS
1287 {
1288 fci->saved_regs[reg] = reg_position;
7a292a7a 1289 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1290 }
1291 }
1292 }
1293
1294 /* Fill in the offsets for the registers which float_mask says
1295 were saved. */
1296 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1297
1298 /* The freg_offset points to where the first *double* register
1299 is saved. So skip to the high-order word. */
c5aa993b 1300 if (!GDB_TARGET_IS_MIPS64)
7a292a7a 1301 reg_position += MIPS_SAVED_REGSIZE;
c906108c
SS
1302
1303 /* Fill in the offsets for the float registers which float_mask says
1304 were saved. */
c5aa993b 1305 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
c906108c
SS
1306 if (float_mask & 0x80000000)
1307 {
c5aa993b 1308 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
7a292a7a 1309 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1310 }
1311
1312 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1313}
1314
1315static CORE_ADDR
acdb74a0 1316read_next_frame_reg (struct frame_info *fi, int regno)
c906108c
SS
1317{
1318 for (; fi; fi = fi->next)
1319 {
1320 /* We have to get the saved sp from the sigcontext
c5aa993b 1321 if it is a signal handler frame. */
c906108c
SS
1322 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1323 return fi->frame;
1324 else
1325 {
1326 if (fi->saved_regs == NULL)
1327 mips_find_saved_regs (fi);
1328 if (fi->saved_regs[regno])
2acceee2 1329 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
c906108c
SS
1330 }
1331 }
6c997a34 1332 return read_signed_register (regno);
c906108c
SS
1333}
1334
1335/* mips_addr_bits_remove - remove useless address bits */
1336
1337CORE_ADDR
acdb74a0 1338mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1339{
5213ab06
AC
1340 if (GDB_TARGET_IS_MIPS64)
1341 {
4014092b 1342 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
5213ab06
AC
1343 {
1344 /* This hack is a work-around for existing boards using
1345 PMON, the simulator, and any other 64-bit targets that
1346 doesn't have true 64-bit addressing. On these targets,
1347 the upper 32 bits of addresses are ignored by the
1348 hardware. Thus, the PC or SP are likely to have been
1349 sign extended to all 1s by instruction sequences that
1350 load 32-bit addresses. For example, a typical piece of
4014092b
AC
1351 code that loads an address is this:
1352 lui $r2, <upper 16 bits>
1353 ori $r2, <lower 16 bits>
1354 But the lui sign-extends the value such that the upper 32
1355 bits may be all 1s. The workaround is simply to mask off
1356 these bits. In the future, gcc may be changed to support
1357 true 64-bit addressing, and this masking will have to be
1358 disabled. */
5213ab06
AC
1359 addr &= (CORE_ADDR) 0xffffffff;
1360 }
1361 }
4014092b 1362 else if (mips_mask_address_p ())
5213ab06 1363 {
4014092b
AC
1364 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1365 masking off bits, instead, the actual target should be asking
1366 for the address to be converted to a valid pointer. */
5213ab06
AC
1367 /* Even when GDB is configured for some 32-bit targets
1368 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1369 so CORE_ADDR is 64 bits. So we still have to mask off
1370 useless bits from addresses. */
c5aa993b 1371 addr &= (CORE_ADDR) 0xffffffff;
c906108c 1372 }
c906108c
SS
1373 return addr;
1374}
1375
1376void
acdb74a0 1377mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1378{
1379 CORE_ADDR pc, tmp;
1380
1381 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
c5aa993b 1382 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
c906108c 1383 tmp = mips_skip_stub (pc);
c5aa993b 1384 prev->pc = tmp ? tmp : pc;
c906108c
SS
1385}
1386
1387
1388CORE_ADDR
acdb74a0 1389mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1390{
1391 CORE_ADDR saved_pc;
cce74817 1392 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c
SS
1393 /* We have to get the saved pc from the sigcontext
1394 if it is a signal handler frame. */
1395 int pcreg = frame->signal_handler_caller ? PC_REGNUM
c5aa993b 1396 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
c906108c 1397
c5aa993b 1398 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
7a292a7a 1399 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
c906108c 1400 else
7a292a7a 1401 saved_pc = read_next_frame_reg (frame, pcreg);
c906108c
SS
1402
1403 return ADDR_BITS_REMOVE (saved_pc);
1404}
1405
1406static struct mips_extra_func_info temp_proc_desc;
cce74817 1407static CORE_ADDR temp_saved_regs[NUM_REGS];
c906108c
SS
1408
1409/* Set a register's saved stack address in temp_saved_regs. If an address
1410 has already been set for this register, do nothing; this way we will
1411 only recognize the first save of a given register in a function prologue.
1412 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1413
1414static void
acdb74a0 1415set_reg_offset (int regno, CORE_ADDR offset)
c906108c 1416{
cce74817
JM
1417 if (temp_saved_regs[regno] == 0)
1418 temp_saved_regs[regno] = offset;
c906108c
SS
1419}
1420
1421
1422/* Test whether the PC points to the return instruction at the
1423 end of a function. */
1424
c5aa993b 1425static int
acdb74a0 1426mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1427{
1428 if (pc_is_mips16 (pc))
1429 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1430 generates a "jr $ra"; other times it generates code to load
1431 the return address from the stack to an accessible register (such
1432 as $a3), then a "jr" using that register. This second case
1433 is almost impossible to distinguish from an indirect jump
1434 used for switch statements, so we don't even try. */
1435 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1436 else
1437 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1438}
1439
1440
1441/* This fencepost looks highly suspicious to me. Removing it also
1442 seems suspicious as it could affect remote debugging across serial
1443 lines. */
1444
1445static CORE_ADDR
acdb74a0 1446heuristic_proc_start (CORE_ADDR pc)
c906108c 1447{
c5aa993b
JM
1448 CORE_ADDR start_pc;
1449 CORE_ADDR fence;
1450 int instlen;
1451 int seen_adjsp = 0;
c906108c 1452
c5aa993b
JM
1453 pc = ADDR_BITS_REMOVE (pc);
1454 start_pc = pc;
1455 fence = start_pc - heuristic_fence_post;
1456 if (start_pc == 0)
1457 return 0;
c906108c 1458
c5aa993b
JM
1459 if (heuristic_fence_post == UINT_MAX
1460 || fence < VM_MIN_ADDRESS)
1461 fence = VM_MIN_ADDRESS;
c906108c 1462
c5aa993b 1463 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1464
c5aa993b
JM
1465 /* search back for previous return */
1466 for (start_pc -= instlen;; start_pc -= instlen)
1467 if (start_pc < fence)
1468 {
1469 /* It's not clear to me why we reach this point when
1470 stop_soon_quietly, but with this test, at least we
1471 don't print out warnings for every child forked (eg, on
1472 decstation). 22apr93 rich@cygnus.com. */
1473 if (!stop_soon_quietly)
c906108c 1474 {
c5aa993b
JM
1475 static int blurb_printed = 0;
1476
1477 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1478 paddr_nz (pc));
1479
1480 if (!blurb_printed)
c906108c 1481 {
c5aa993b
JM
1482 /* This actually happens frequently in embedded
1483 development, when you first connect to a board
1484 and your stack pointer and pc are nowhere in
1485 particular. This message needs to give people
1486 in that situation enough information to
1487 determine that it's no big deal. */
1488 printf_filtered ("\n\
cd0fc7c3
SS
1489 GDB is unable to find the start of the function at 0x%s\n\
1490and thus can't determine the size of that function's stack frame.\n\
1491This means that GDB may be unable to access that stack frame, or\n\
1492the frames below it.\n\
1493 This problem is most likely caused by an invalid program counter or\n\
1494stack pointer.\n\
1495 However, if you think GDB should simply search farther back\n\
1496from 0x%s for code which looks like the beginning of a\n\
1497function, you can increase the range of the search using the `set\n\
1498heuristic-fence-post' command.\n",
c5aa993b
JM
1499 paddr_nz (pc), paddr_nz (pc));
1500 blurb_printed = 1;
c906108c 1501 }
c906108c
SS
1502 }
1503
c5aa993b
JM
1504 return 0;
1505 }
1506 else if (pc_is_mips16 (start_pc))
1507 {
1508 unsigned short inst;
1509
1510 /* On MIPS16, any one of the following is likely to be the
1511 start of a function:
1512 entry
1513 addiu sp,-n
1514 daddiu sp,-n
1515 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1516 inst = mips_fetch_instruction (start_pc);
1517 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1518 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1519 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1520 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1521 break;
1522 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1523 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1524 seen_adjsp = 1;
1525 else
1526 seen_adjsp = 0;
1527 }
1528 else if (mips_about_to_return (start_pc))
1529 {
1530 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1531 break;
1532 }
1533
c5aa993b 1534 return start_pc;
c906108c
SS
1535}
1536
1537/* Fetch the immediate value from a MIPS16 instruction.
1538 If the previous instruction was an EXTEND, use it to extend
1539 the upper bits of the immediate value. This is a helper function
1540 for mips16_heuristic_proc_desc. */
1541
1542static int
acdb74a0
AC
1543mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1544 unsigned short inst, /* current instruction */
1545 int nbits, /* number of bits in imm field */
1546 int scale, /* scale factor to be applied to imm */
1547 int is_signed) /* is the imm field signed? */
c906108c
SS
1548{
1549 int offset;
1550
1551 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1552 {
1553 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1554 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1555 offset = 0 - (0x10000 - (offset & 0xffff));
1556 return offset | (inst & 0x1f);
1557 }
1558 else
1559 {
1560 int max_imm = 1 << nbits;
1561 int mask = max_imm - 1;
1562 int sign_bit = max_imm >> 1;
1563
1564 offset = inst & mask;
1565 if (is_signed && (offset & sign_bit))
1566 offset = 0 - (max_imm - offset);
1567 return offset * scale;
1568 }
1569}
1570
1571
1572/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1573 stream from start_pc to limit_pc. */
1574
1575static void
acdb74a0
AC
1576mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1577 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1578{
1579 CORE_ADDR cur_pc;
1580 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1581 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1582 unsigned inst = 0; /* current instruction */
1583 unsigned entry_inst = 0; /* the entry instruction */
1584 int reg, offset;
1585
c5aa993b
JM
1586 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1587 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1588
1589 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1590 {
1591 /* Save the previous instruction. If it's an EXTEND, we'll extract
1592 the immediate offset extension from it in mips16_get_imm. */
1593 prev_inst = inst;
1594
1595 /* Fetch and decode the instruction. */
1596 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 1597 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
1598 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1599 {
1600 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
1601 if (offset < 0) /* negative stack adjustment? */
1602 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
1603 else
1604 /* Exit loop if a positive stack adjustment is found, which
1605 usually means that the stack cleanup code in the function
1606 epilogue is reached. */
1607 break;
1608 }
1609 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1610 {
1611 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1612 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 1613 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1614 set_reg_offset (reg, sp + offset);
1615 }
1616 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1617 {
1618 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1619 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1620 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1621 set_reg_offset (reg, sp + offset);
1622 }
1623 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1624 {
1625 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 1626 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1627 set_reg_offset (RA_REGNUM, sp + offset);
1628 }
1629 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1630 {
1631 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 1632 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1633 set_reg_offset (RA_REGNUM, sp + offset);
1634 }
c5aa993b 1635 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
1636 {
1637 frame_addr = sp;
1638 PROC_FRAME_REG (&temp_proc_desc) = 17;
1639 }
1640 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1641 {
1642 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1643 frame_addr = sp + offset;
1644 PROC_FRAME_REG (&temp_proc_desc) = 17;
1645 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1646 }
1647 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1648 {
1649 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1650 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1651 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1652 set_reg_offset (reg, frame_addr + offset);
1653 }
1654 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1655 {
1656 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1657 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1658 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1659 set_reg_offset (reg, frame_addr + offset);
1660 }
c5aa993b
JM
1661 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1662 entry_inst = inst; /* save for later processing */
c906108c 1663 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 1664 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
1665 }
1666
c5aa993b
JM
1667 /* The entry instruction is typically the first instruction in a function,
1668 and it stores registers at offsets relative to the value of the old SP
1669 (before the prologue). But the value of the sp parameter to this
1670 function is the new SP (after the prologue has been executed). So we
1671 can't calculate those offsets until we've seen the entire prologue,
1672 and can calculate what the old SP must have been. */
1673 if (entry_inst != 0)
1674 {
1675 int areg_count = (entry_inst >> 8) & 7;
1676 int sreg_count = (entry_inst >> 6) & 3;
c906108c 1677
c5aa993b
JM
1678 /* The entry instruction always subtracts 32 from the SP. */
1679 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 1680
c5aa993b
JM
1681 /* Now we can calculate what the SP must have been at the
1682 start of the function prologue. */
1683 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 1684
c5aa993b
JM
1685 /* Check if a0-a3 were saved in the caller's argument save area. */
1686 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1687 {
1688 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1689 set_reg_offset (reg, sp + offset);
1690 offset += MIPS_SAVED_REGSIZE;
1691 }
c906108c 1692
c5aa993b
JM
1693 /* Check if the ra register was pushed on the stack. */
1694 offset = -4;
1695 if (entry_inst & 0x20)
1696 {
1697 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1698 set_reg_offset (RA_REGNUM, sp + offset);
1699 offset -= MIPS_SAVED_REGSIZE;
1700 }
c906108c 1701
c5aa993b
JM
1702 /* Check if the s0 and s1 registers were pushed on the stack. */
1703 for (reg = 16; reg < sreg_count + 16; reg++)
1704 {
1705 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1706 set_reg_offset (reg, sp + offset);
1707 offset -= MIPS_SAVED_REGSIZE;
1708 }
1709 }
c906108c
SS
1710}
1711
1712static void
fba45db2
KB
1713mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1714 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1715{
1716 CORE_ADDR cur_pc;
c5aa993b 1717 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 1718restart:
cce74817 1719 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 1720 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
1721 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1722 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
1723 {
1724 unsigned long inst, high_word, low_word;
1725 int reg;
1726
1727 /* Fetch the instruction. */
1728 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1729
1730 /* Save some code by pre-extracting some useful fields. */
1731 high_word = (inst >> 16) & 0xffff;
1732 low_word = inst & 0xffff;
1733 reg = high_word & 0x1f;
1734
c5aa993b 1735 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
1736 || high_word == 0x23bd /* addi $sp,$sp,-i */
1737 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1738 {
1739 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 1740 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
1741 else
1742 /* Exit loop if a positive stack adjustment is found, which
1743 usually means that the stack cleanup code in the function
1744 epilogue is reached. */
1745 break;
1746 }
1747 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1748 {
c5aa993b 1749 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1750 set_reg_offset (reg, sp + low_word);
1751 }
1752 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1753 {
1754 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
1755 but the register size used is only 32 bits. Make the address
1756 for the saved register point to the lower 32 bits. */
c5aa993b 1757 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1758 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
1759 }
c5aa993b 1760 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
1761 {
1762 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
1763 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
1764 frame_addr = sp + low_word;
c906108c
SS
1765 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1766 {
1767 unsigned alloca_adjust;
1768 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
1769 frame_addr = read_next_frame_reg (next_frame, 30);
1770 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
1771 if (alloca_adjust > 0)
1772 {
1773 /* FP > SP + frame_size. This may be because
1774 * of an alloca or somethings similar.
1775 * Fix sp to "pre-alloca" value, and try again.
1776 */
1777 sp += alloca_adjust;
1778 goto restart;
1779 }
1780 }
1781 }
c5aa993b
JM
1782 /* move $30,$sp. With different versions of gas this will be either
1783 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1784 Accept any one of these. */
c906108c
SS
1785 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1786 {
1787 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1788 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1789 {
1790 unsigned alloca_adjust;
1791 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
1792 frame_addr = read_next_frame_reg (next_frame, 30);
1793 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
1794 if (alloca_adjust > 0)
1795 {
1796 /* FP > SP + frame_size. This may be because
1797 * of an alloca or somethings similar.
1798 * Fix sp to "pre-alloca" value, and try again.
1799 */
1800 sp += alloca_adjust;
1801 goto restart;
1802 }
1803 }
1804 }
c5aa993b 1805 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 1806 {
c5aa993b 1807 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1808 set_reg_offset (reg, frame_addr + low_word);
1809 }
1810 }
1811}
1812
1813static mips_extra_func_info_t
acdb74a0
AC
1814heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1815 struct frame_info *next_frame)
c906108c
SS
1816{
1817 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
1818
c5aa993b
JM
1819 if (start_pc == 0)
1820 return NULL;
1821 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
cce74817 1822 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
1823 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
1824 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
1825 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
1826
1827 if (start_pc + 200 < limit_pc)
1828 limit_pc = start_pc + 200;
1829 if (pc_is_mips16 (start_pc))
1830 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1831 else
1832 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1833 return &temp_proc_desc;
1834}
1835
1836static mips_extra_func_info_t
acdb74a0 1837non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
1838{
1839 CORE_ADDR startaddr;
1840 mips_extra_func_info_t proc_desc;
c5aa993b 1841 struct block *b = block_for_pc (pc);
c906108c
SS
1842 struct symbol *sym;
1843
1844 find_pc_partial_function (pc, NULL, &startaddr, NULL);
1845 if (addrptr)
1846 *addrptr = startaddr;
1847 if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
1848 sym = NULL;
1849 else
1850 {
1851 if (startaddr > BLOCK_START (b))
1852 /* This is the "pathological" case referred to in a comment in
1853 print_frame_info. It might be better to move this check into
1854 symbol reading. */
1855 sym = NULL;
1856 else
1857 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
1858 }
1859
1860 /* If we never found a PDR for this function in symbol reading, then
1861 examine prologues to find the information. */
1862 if (sym)
1863 {
1864 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
1865 if (PROC_FRAME_REG (proc_desc) == -1)
1866 return NULL;
1867 else
1868 return proc_desc;
1869 }
1870 else
1871 return NULL;
1872}
1873
1874
1875static mips_extra_func_info_t
acdb74a0 1876find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame)
c906108c
SS
1877{
1878 mips_extra_func_info_t proc_desc;
1879 CORE_ADDR startaddr;
1880
1881 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
1882
1883 if (proc_desc)
1884 {
1885 /* IF this is the topmost frame AND
1886 * (this proc does not have debugging information OR
1887 * the PC is in the procedure prologue)
1888 * THEN create a "heuristic" proc_desc (by analyzing
1889 * the actual code) to replace the "official" proc_desc.
1890 */
1891 if (next_frame == NULL)
1892 {
1893 struct symtab_and_line val;
1894 struct symbol *proc_symbol =
c5aa993b 1895 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
1896
1897 if (proc_symbol)
1898 {
1899 val = find_pc_line (BLOCK_START
c5aa993b 1900 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
1901 0);
1902 val.pc = val.end ? val.end : pc;
1903 }
1904 if (!proc_symbol || pc < val.pc)
1905 {
1906 mips_extra_func_info_t found_heuristic =
c5aa993b
JM
1907 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
1908 pc, next_frame);
c906108c
SS
1909 if (found_heuristic)
1910 proc_desc = found_heuristic;
1911 }
1912 }
1913 }
1914 else
1915 {
1916 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
1917 by procedure call dummys. However, the procedures being called ought
1918 to have their own proc_descs, and even if they don't,
1919 heuristic_proc_desc knows how to create them! */
c906108c
SS
1920
1921 register struct linked_proc_info *link;
1922
1923 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
1924 if (PROC_LOW_ADDR (&link->info) <= pc
1925 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
1926 return &link->info;
1927
1928 if (startaddr == 0)
1929 startaddr = heuristic_proc_start (pc);
1930
1931 proc_desc =
1932 heuristic_proc_desc (startaddr, pc, next_frame);
1933 }
1934 return proc_desc;
1935}
1936
1937static CORE_ADDR
acdb74a0
AC
1938get_frame_pointer (struct frame_info *frame,
1939 mips_extra_func_info_t proc_desc)
c906108c
SS
1940{
1941 return ADDR_BITS_REMOVE (
c5aa993b
JM
1942 read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) +
1943 PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
1944}
1945
1946mips_extra_func_info_t cached_proc_desc;
1947
1948CORE_ADDR
acdb74a0 1949mips_frame_chain (struct frame_info *frame)
c906108c
SS
1950{
1951 mips_extra_func_info_t proc_desc;
1952 CORE_ADDR tmp;
c5aa993b 1953 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
c906108c
SS
1954
1955 if (saved_pc == 0 || inside_entry_file (saved_pc))
1956 return 0;
1957
1958 /* Check if the PC is inside a call stub. If it is, fetch the
1959 PC of the caller of that stub. */
1960 if ((tmp = mips_skip_stub (saved_pc)) != 0)
1961 saved_pc = tmp;
1962
1963 /* Look up the procedure descriptor for this PC. */
c5aa993b 1964 proc_desc = find_proc_desc (saved_pc, frame);
c906108c
SS
1965 if (!proc_desc)
1966 return 0;
1967
1968 cached_proc_desc = proc_desc;
1969
1970 /* If no frame pointer and frame size is zero, we must be at end
1971 of stack (or otherwise hosed). If we don't check frame size,
1972 we loop forever if we see a zero size frame. */
1973 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
1974 && PROC_FRAME_OFFSET (proc_desc) == 0
c5aa993b
JM
1975 /* The previous frame from a sigtramp frame might be frameless
1976 and have frame size zero. */
c906108c
SS
1977 && !frame->signal_handler_caller)
1978 return 0;
1979 else
1980 return get_frame_pointer (frame, proc_desc);
1981}
1982
1983void
acdb74a0 1984mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
1985{
1986 int regnum;
1987
1988 /* Use proc_desc calculated in frame_chain */
1989 mips_extra_func_info_t proc_desc =
c5aa993b 1990 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next);
c906108c 1991
cce74817
JM
1992 fci->extra_info = (struct frame_extra_info *)
1993 frame_obstack_alloc (sizeof (struct frame_extra_info));
1994
c906108c 1995 fci->saved_regs = NULL;
cce74817 1996 fci->extra_info->proc_desc =
c906108c
SS
1997 proc_desc == &temp_proc_desc ? 0 : proc_desc;
1998 if (proc_desc)
1999 {
2000 /* Fixup frame-pointer - only needed for top frame */
2001 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2002 Get the value of the frame relative sp, procedure might have been
2003 interrupted by a signal at it's very start. */
c906108c
SS
2004 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2005 && !PROC_DESC_IS_DUMMY (proc_desc))
2006 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2007 else
2008 fci->frame = get_frame_pointer (fci->next, proc_desc);
2009
2010 if (proc_desc == &temp_proc_desc)
2011 {
2012 char *name;
2013
2014 /* Do not set the saved registers for a sigtramp frame,
2015 mips_find_saved_registers will do that for us.
2016 We can't use fci->signal_handler_caller, it is not yet set. */
2017 find_pc_partial_function (fci->pc, &name,
c5aa993b 2018 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
c906108c
SS
2019 if (!IN_SIGTRAMP (fci->pc, name))
2020 {
c5aa993b 2021 frame_saved_regs_zalloc (fci);
cce74817 2022 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2023 fci->saved_regs[PC_REGNUM]
2024 = fci->saved_regs[RA_REGNUM];
2025 }
2026 }
2027
2028 /* hack: if argument regs are saved, guess these contain args */
cce74817
JM
2029 /* assume we can't tell how many args for now */
2030 fci->extra_info->num_args = -1;
c906108c
SS
2031 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2032 {
c5aa993b 2033 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2034 {
cce74817 2035 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2036 break;
2037 }
c5aa993b 2038 }
c906108c
SS
2039 }
2040}
2041
2042/* MIPS stack frames are almost impenetrable. When execution stops,
2043 we basically have to look at symbol information for the function
2044 that we stopped in, which tells us *which* register (if any) is
2045 the base of the frame pointer, and what offset from that register
2046 the frame itself is at.
2047
2048 This presents a problem when trying to examine a stack in memory
2049 (that isn't executing at the moment), using the "frame" command. We
2050 don't have a PC, nor do we have any registers except SP.
2051
2052 This routine takes two arguments, SP and PC, and tries to make the
2053 cached frames look as if these two arguments defined a frame on the
2054 cache. This allows the rest of info frame to extract the important
2055 arguments without difficulty. */
2056
2057struct frame_info *
acdb74a0 2058setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2059{
2060 if (argc != 2)
2061 error ("MIPS frame specifications require two arguments: sp and pc");
2062
2063 return create_new_frame (argv[0], argv[1]);
2064}
2065
f09ded24
AC
2066/* According to the current ABI, should the type be passed in a
2067 floating-point register (assuming that there is space)? When there
2068 is no FPU, FP are not even considered as possibile candidates for
2069 FP registers and, consequently this returns false - forces FP
2070 arguments into integer registers. */
2071
2072static int
2073fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2074{
2075 return ((typecode == TYPE_CODE_FLT
2076 || (MIPS_EABI
2077 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2078 && TYPE_NFIELDS (arg_type) == 1
2079 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2080 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2081}
2082
c906108c 2083CORE_ADDR
acdb74a0
AC
2084mips_push_arguments (int nargs,
2085 value_ptr *args,
2086 CORE_ADDR sp,
2087 int struct_return,
2088 CORE_ADDR struct_addr)
c906108c
SS
2089{
2090 int argreg;
2091 int float_argreg;
2092 int argnum;
2093 int len = 0;
2094 int stack_offset = 0;
2095
2096 /* Macros to round N up or down to the next A boundary; A must be
2097 a power of two. */
2098#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2099#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
c5aa993b 2100
c906108c
SS
2101 /* First ensure that the stack and structure return address (if any)
2102 are properly aligned. The stack has to be at least 64-bit aligned
2103 even on 32-bit machines, because doubles must be 64-bit aligned.
2104 On at least one MIPS variant, stack frames need to be 128-bit
2105 aligned, so we round to this widest known alignment. */
2106 sp = ROUND_DOWN (sp, 16);
cce41527 2107 struct_addr = ROUND_DOWN (struct_addr, 16);
c5aa993b 2108
c906108c
SS
2109 /* Now make space on the stack for the args. We allocate more
2110 than necessary for EABI, because the first few arguments are
2111 passed in registers, but that's OK. */
2112 for (argnum = 0; argnum < nargs; argnum++)
cce41527 2113 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), MIPS_STACK_ARGSIZE);
c906108c
SS
2114 sp -= ROUND_UP (len, 16);
2115
9ace0497
AC
2116 if (mips_debug)
2117 fprintf_unfiltered (gdb_stdlog, "mips_push_arguments: sp=0x%lx allocated %d\n",
2118 (long) sp, ROUND_UP (len, 16));
2119
c906108c
SS
2120 /* Initialize the integer and float register pointers. */
2121 argreg = A0_REGNUM;
2122 float_argreg = FPA0_REGNUM;
2123
2124 /* the struct_return pointer occupies the first parameter-passing reg */
2125 if (struct_return)
9ace0497
AC
2126 {
2127 if (mips_debug)
2128 fprintf_unfiltered (gdb_stdlog,
cce41527 2129 "mips_push_arguments: struct_return reg=%d 0x%lx\n",
9ace0497
AC
2130 argreg, (long) struct_addr);
2131 write_register (argreg++, struct_addr);
cce41527
AC
2132 if (MIPS_REGS_HAVE_HOME_P)
2133 stack_offset += MIPS_STACK_ARGSIZE;
9ace0497 2134 }
c906108c
SS
2135
2136 /* Now load as many as possible of the first arguments into
2137 registers, and push the rest onto the stack. Loop thru args
2138 from first to last. */
2139 for (argnum = 0; argnum < nargs; argnum++)
2140 {
2141 char *val;
2142 char valbuf[MAX_REGISTER_RAW_SIZE];
2143 value_ptr arg = args[argnum];
2144 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2145 int len = TYPE_LENGTH (arg_type);
2146 enum type_code typecode = TYPE_CODE (arg_type);
2147
9ace0497
AC
2148 if (mips_debug)
2149 fprintf_unfiltered (gdb_stdlog,
2150 "mips_push_arguments: %d len=%d type=%d",
acdb74a0 2151 argnum + 1, len, (int) typecode);
9ace0497 2152
c906108c 2153 /* The EABI passes structures that do not fit in a register by
c5aa993b 2154 reference. In all other cases, pass the structure by value. */
9ace0497
AC
2155 if (MIPS_EABI
2156 && len > MIPS_SAVED_REGSIZE
2157 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2158 {
7a292a7a 2159 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2160 typecode = TYPE_CODE_PTR;
7a292a7a 2161 len = MIPS_SAVED_REGSIZE;
c906108c 2162 val = valbuf;
9ace0497
AC
2163 if (mips_debug)
2164 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2165 }
2166 else
c5aa993b 2167 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2168
2169 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2170 even-numbered floating point register. Round the FP register
2171 up before the check to see if there are any FP registers
2172 left. Non MIPS_EABI targets also pass the FP in the integer
2173 registers so also round up normal registers. */
2174 if (!FP_REGISTER_DOUBLE
2175 && fp_register_arg_p (typecode, arg_type))
2176 {
2177 if ((float_argreg & 1))
2178 float_argreg++;
2179 }
c906108c
SS
2180
2181 /* Floating point arguments passed in registers have to be
2182 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2183 are passed in register pairs; the even register gets
2184 the low word, and the odd register gets the high word.
2185 On non-EABI processors, the first two floating point arguments are
2186 also copied to general registers, because MIPS16 functions
2187 don't use float registers for arguments. This duplication of
2188 arguments in general registers can't hurt non-MIPS16 functions
2189 because those registers are normally skipped. */
9a0149c6
AC
2190 /* MIPS_EABI squeeses a struct that contains a single floating
2191 point value into an FP register instead of pusing it onto the
2192 stack. */
f09ded24
AC
2193 if (fp_register_arg_p (typecode, arg_type)
2194 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2195 {
2196 if (!FP_REGISTER_DOUBLE && len == 8)
2197 {
2198 int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
2199 unsigned long regval;
2200
2201 /* Write the low word of the double to the even register(s). */
c5aa993b 2202 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2203 if (mips_debug)
acdb74a0 2204 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2205 float_argreg, phex (regval, 4));
c906108c
SS
2206 write_register (float_argreg++, regval);
2207 if (!MIPS_EABI)
9ace0497
AC
2208 {
2209 if (mips_debug)
acdb74a0 2210 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2211 argreg, phex (regval, 4));
2212 write_register (argreg++, regval);
2213 }
c906108c
SS
2214
2215 /* Write the high word of the double to the odd register(s). */
c5aa993b 2216 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2217 if (mips_debug)
acdb74a0 2218 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2219 float_argreg, phex (regval, 4));
c906108c
SS
2220 write_register (float_argreg++, regval);
2221 if (!MIPS_EABI)
c5aa993b 2222 {
9ace0497 2223 if (mips_debug)
acdb74a0 2224 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2225 argreg, phex (regval, 4));
2226 write_register (argreg++, regval);
c906108c
SS
2227 }
2228
2229 }
2230 else
2231 {
2232 /* This is a floating point value that fits entirely
2233 in a single register. */
53a5351d
JM
2234 /* On 32 bit ABI's the float_argreg is further adjusted
2235 above to ensure that it is even register aligned. */
9ace0497
AC
2236 LONGEST regval = extract_unsigned_integer (val, len);
2237 if (mips_debug)
acdb74a0 2238 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2239 float_argreg, phex (regval, len));
c906108c
SS
2240 write_register (float_argreg++, regval);
2241 if (!MIPS_EABI)
c5aa993b 2242 {
53a5351d
JM
2243 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
2244 registers for each argument. The below is (my
2245 guess) to ensure that the corresponding integer
2246 register has reserved the same space. */
9ace0497 2247 if (mips_debug)
acdb74a0 2248 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 2249 argreg, phex (regval, len));
c906108c
SS
2250 write_register (argreg, regval);
2251 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
2252 }
2253 }
cce41527
AC
2254 /* Reserve space for the FP register. */
2255 if (MIPS_REGS_HAVE_HOME_P)
2256 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
c906108c
SS
2257 }
2258 else
2259 {
2260 /* Copy the argument to general registers or the stack in
2261 register-sized pieces. Large arguments are split between
2262 registers and stack. */
2263 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2264 are treated specially: Irix cc passes them in registers
2265 where gcc sometimes puts them on the stack. For maximum
2266 compatibility, we will put them in both places. */
c5aa993b 2267 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2268 (len % MIPS_SAVED_REGSIZE != 0));
f09ded24
AC
2269 /* Note: Floating-point values that didn't fit into an FP
2270 register are only written to memory. */
c906108c
SS
2271 while (len > 0)
2272 {
566f0f7a
AC
2273 /* Rememer if the argument was written to the stack. */
2274 int stack_used_p = 0;
7a292a7a 2275 int partial_len = len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 2276
acdb74a0
AC
2277 if (mips_debug)
2278 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2279 partial_len);
2280
566f0f7a 2281 /* Write this portion of the argument to the stack. */
f09ded24
AC
2282 if (argreg > MIPS_LAST_ARG_REGNUM
2283 || odd_sized_struct
2284 || fp_register_arg_p (typecode, arg_type))
c906108c 2285 {
c906108c
SS
2286 /* Should shorter than int integer values be
2287 promoted to int before being stored? */
c906108c 2288 int longword_offset = 0;
9ace0497 2289 CORE_ADDR addr;
566f0f7a 2290 stack_used_p = 1;
c906108c 2291 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
7a292a7a 2292 {
d929b26f 2293 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2294 (typecode == TYPE_CODE_INT ||
2295 typecode == TYPE_CODE_PTR ||
2296 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2297 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2298 else if ((typecode == TYPE_CODE_STRUCT ||
2299 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2300 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2301 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2302 }
c5aa993b 2303
9ace0497
AC
2304 if (mips_debug)
2305 {
acdb74a0 2306 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%lx",
9ace0497
AC
2307 (long) stack_offset);
2308 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%lx",
2309 (long) longword_offset);
2310 }
2311
2312 addr = sp + stack_offset + longword_offset;
2313
2314 if (mips_debug)
2315 {
2316 int i;
2317 fprintf_unfiltered (gdb_stdlog, " @0x%lx ", (long) addr);
2318 for (i = 0; i < partial_len; i++)
2319 {
2320 fprintf_unfiltered (gdb_stdlog, "%02x", val[i] & 0xff);
2321 }
2322 }
2323 write_memory (addr, val, partial_len);
c906108c
SS
2324 }
2325
f09ded24
AC
2326 /* Note!!! This is NOT an else clause. Odd sized
2327 structs may go thru BOTH paths. Floating point
2328 arguments will not. */
566f0f7a
AC
2329 /* Write this portion of the argument to a general
2330 purpose register. */
f09ded24
AC
2331 if (argreg <= MIPS_LAST_ARG_REGNUM
2332 && !fp_register_arg_p (typecode, arg_type))
c906108c 2333 {
9ace0497 2334 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c
SS
2335
2336 /* A non-floating-point argument being passed in a
2337 general register. If a struct or union, and if
2338 the remaining length is smaller than the register
2339 size, we have to adjust the register value on
2340 big endian targets.
2341
2342 It does not seem to be necessary to do the
2343 same for integral types.
2344
2345 Also don't do this adjustment on EABI and O64
2346 binaries. */
2347
2348 if (!MIPS_EABI
7a292a7a 2349 && MIPS_SAVED_REGSIZE < 8
c906108c 2350 && TARGET_BYTE_ORDER == BIG_ENDIAN
7a292a7a 2351 && partial_len < MIPS_SAVED_REGSIZE
c906108c
SS
2352 && (typecode == TYPE_CODE_STRUCT ||
2353 typecode == TYPE_CODE_UNION))
c5aa993b 2354 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
c906108c
SS
2355 TARGET_CHAR_BIT);
2356
9ace0497 2357 if (mips_debug)
acdb74a0 2358 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2359 argreg,
2360 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
2361 write_register (argreg, regval);
2362 argreg++;
c5aa993b 2363
c906108c
SS
2364 /* If this is the old ABI, prevent subsequent floating
2365 point arguments from being passed in floating point
2366 registers. */
2367 if (!MIPS_EABI)
2368 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
2369 }
c5aa993b 2370
c906108c
SS
2371 len -= partial_len;
2372 val += partial_len;
2373
566f0f7a
AC
2374 /* Compute the the offset into the stack at which we
2375 will copy the next parameter.
2376
2377 In older ABIs, the caller reserved space for
2378 registers that contained arguments. This was loosely
2379 refered to as their "home". Consequently, space is
2380 always allocated.
c906108c 2381
566f0f7a
AC
2382 In the new EABI (and the NABI32), the stack_offset
2383 only needs to be adjusted when it has been used.. */
c906108c 2384
566f0f7a 2385 if (MIPS_REGS_HAVE_HOME_P || stack_used_p)
d929b26f 2386 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
2387 }
2388 }
9ace0497
AC
2389 if (mips_debug)
2390 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2391 }
2392
0f71a2f6
JM
2393 /* Return adjusted stack pointer. */
2394 return sp;
2395}
2396
2397CORE_ADDR
acdb74a0 2398mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
0f71a2f6 2399{
c906108c
SS
2400 /* Set the return address register to point to the entry
2401 point of the program, where a breakpoint lies in wait. */
c5aa993b 2402 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
c906108c
SS
2403 return sp;
2404}
2405
2406static void
c5aa993b 2407mips_push_register (CORE_ADDR * sp, int regno)
c906108c
SS
2408{
2409 char buffer[MAX_REGISTER_RAW_SIZE];
7a292a7a
SS
2410 int regsize;
2411 int offset;
2412 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
2413 {
2414 regsize = MIPS_SAVED_REGSIZE;
2415 offset = (TARGET_BYTE_ORDER == BIG_ENDIAN
2416 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
2417 : 0);
2418 }
2419 else
2420 {
2421 regsize = REGISTER_RAW_SIZE (regno);
2422 offset = 0;
2423 }
c906108c
SS
2424 *sp -= regsize;
2425 read_register_gen (regno, buffer);
7a292a7a 2426 write_memory (*sp, buffer + offset, regsize);
c906108c
SS
2427}
2428
2429/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
2430#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
2431
2432void
acdb74a0 2433mips_push_dummy_frame (void)
c906108c
SS
2434{
2435 int ireg;
c5aa993b
JM
2436 struct linked_proc_info *link = (struct linked_proc_info *)
2437 xmalloc (sizeof (struct linked_proc_info));
c906108c 2438 mips_extra_func_info_t proc_desc = &link->info;
6c997a34 2439 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
c906108c
SS
2440 CORE_ADDR old_sp = sp;
2441 link->next = linked_proc_desc_table;
2442 linked_proc_desc_table = link;
2443
2444/* FIXME! are these correct ? */
c5aa993b 2445#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
c906108c
SS
2446#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
2447#define FLOAT_REG_SAVE_MASK MASK(0,19)
2448#define FLOAT_SINGLE_REG_SAVE_MASK \
2449 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
2450 /*
2451 * The registers we must save are all those not preserved across
2452 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
2453 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
2454 * and FP Control/Status registers.
2455 *
2456 *
2457 * Dummy frame layout:
2458 * (high memory)
c5aa993b
JM
2459 * Saved PC
2460 * Saved MMHI, MMLO, FPC_CSR
2461 * Saved R31
2462 * Saved R28
2463 * ...
2464 * Saved R1
c906108c
SS
2465 * Saved D18 (i.e. F19, F18)
2466 * ...
2467 * Saved D0 (i.e. F1, F0)
c5aa993b 2468 * Argument build area and stack arguments written via mips_push_arguments
c906108c
SS
2469 * (low memory)
2470 */
2471
2472 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
c5aa993b
JM
2473 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
2474 PROC_FRAME_OFFSET (proc_desc) = 0;
2475 PROC_FRAME_ADJUST (proc_desc) = 0;
c906108c
SS
2476 mips_push_register (&sp, PC_REGNUM);
2477 mips_push_register (&sp, HI_REGNUM);
2478 mips_push_register (&sp, LO_REGNUM);
2479 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
2480
2481 /* Save general CPU registers */
c5aa993b 2482 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
c906108c 2483 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
c5aa993b
JM
2484 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
2485 for (ireg = 32; --ireg >= 0;)
2486 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
2487 mips_push_register (&sp, ireg);
2488
2489 /* Save floating point registers starting with high order word */
c5aa993b 2490 PROC_FREG_MASK (proc_desc) =
c906108c
SS
2491 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
2492 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
2493 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
2494 from FP. */
c5aa993b
JM
2495 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
2496 for (ireg = 32; --ireg >= 0;)
2497 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
2498 mips_push_register (&sp, ireg + FP0_REGNUM);
2499
2500 /* Update the frame pointer for the call dummy and the stack pointer.
2501 Set the procedure's starting and ending addresses to point to the
2502 call dummy address at the entry point. */
2503 write_register (PUSH_FP_REGNUM, old_sp);
2504 write_register (SP_REGNUM, sp);
c5aa993b
JM
2505 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
2506 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
2507 SET_PROC_DESC_IS_DUMMY (proc_desc);
2508 PROC_PC_REG (proc_desc) = RA_REGNUM;
c906108c
SS
2509}
2510
2511void
acdb74a0 2512mips_pop_frame (void)
c906108c
SS
2513{
2514 register int regnum;
2515 struct frame_info *frame = get_current_frame ();
2516 CORE_ADDR new_sp = FRAME_FP (frame);
2517
cce74817 2518 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c 2519
c5aa993b 2520 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
c906108c
SS
2521 if (frame->saved_regs == NULL)
2522 mips_find_saved_regs (frame);
2523 for (regnum = 0; regnum < NUM_REGS; regnum++)
2524 {
2525 if (regnum != SP_REGNUM && regnum != PC_REGNUM
2526 && frame->saved_regs[regnum])
2527 write_register (regnum,
2528 read_memory_integer (frame->saved_regs[regnum],
c5aa993b 2529 MIPS_SAVED_REGSIZE));
c906108c
SS
2530 }
2531 write_register (SP_REGNUM, new_sp);
2532 flush_cached_frames ();
2533
c5aa993b 2534 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
2535 {
2536 struct linked_proc_info *pi_ptr, *prev_ptr;
2537
2538 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
2539 pi_ptr != NULL;
2540 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
2541 {
2542 if (&pi_ptr->info == proc_desc)
2543 break;
2544 }
2545
2546 if (pi_ptr == NULL)
2547 error ("Can't locate dummy extra frame info\n");
2548
2549 if (prev_ptr != NULL)
2550 prev_ptr->next = pi_ptr->next;
2551 else
2552 linked_proc_desc_table = pi_ptr->next;
2553
b8c9b27d 2554 xfree (pi_ptr);
c906108c
SS
2555
2556 write_register (HI_REGNUM,
c5aa993b 2557 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 2558 MIPS_SAVED_REGSIZE));
c906108c 2559 write_register (LO_REGNUM,
c5aa993b 2560 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 2561 MIPS_SAVED_REGSIZE));
c906108c
SS
2562 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
2563 write_register (FCRCS_REGNUM,
c5aa993b 2564 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 2565 MIPS_SAVED_REGSIZE));
c906108c
SS
2566 }
2567}
2568
2569static void
acdb74a0 2570mips_print_register (int regnum, int all)
c906108c
SS
2571{
2572 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2573
2574 /* Get the data in raw format. */
2575 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2576 {
2577 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
2578 return;
2579 }
2580
2581 /* If an even floating point register, also print as double. */
2582 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
c5aa993b
JM
2583 && !((regnum - FP0_REGNUM) & 1))
2584 if (REGISTER_RAW_SIZE (regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */
c906108c 2585 {
c5aa993b 2586 char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
c906108c
SS
2587
2588 read_relative_register_raw_bytes (regnum, dbuffer);
c5aa993b 2589 read_relative_register_raw_bytes (regnum + 1, dbuffer + MIPS_REGSIZE);
c906108c
SS
2590 REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
2591
c5aa993b 2592 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
c906108c
SS
2593 val_print (builtin_type_double, dbuffer, 0, 0,
2594 gdb_stdout, 0, 1, 0, Val_pretty_default);
2595 printf_filtered ("); ");
2596 }
2597 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
2598
2599 /* The problem with printing numeric register names (r26, etc.) is that
2600 the user can't use them on input. Probably the best solution is to
2601 fix it so that either the numeric or the funky (a2, etc.) names
2602 are accepted on input. */
2603 if (regnum < MIPS_NUMREGS)
2604 printf_filtered ("(r%d): ", regnum);
2605 else
2606 printf_filtered (": ");
2607
2608 /* If virtual format is floating, print it that way. */
2609 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2610 if (FP_REGISTER_DOUBLE)
c5aa993b 2611 { /* show 8-byte floats as float AND double: */
c906108c
SS
2612 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2613
2614 printf_filtered (" (float) ");
2615 val_print (builtin_type_float, raw_buffer + offset, 0, 0,
2616 gdb_stdout, 0, 1, 0, Val_pretty_default);
2617 printf_filtered (", (double) ");
2618 val_print (builtin_type_double, raw_buffer, 0, 0,
2619 gdb_stdout, 0, 1, 0, Val_pretty_default);
2620 }
2621 else
2622 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
2623 gdb_stdout, 0, 1, 0, Val_pretty_default);
2624 /* Else print as integer in hex. */
2625 else
ed9a39eb
JM
2626 {
2627 int offset;
2628
2629 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2630 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2631 else
2632 offset = 0;
2633
2634 print_scalar_formatted (raw_buffer + offset,
2635 REGISTER_VIRTUAL_TYPE (regnum),
2636 'x', 0, gdb_stdout);
2637 }
c906108c
SS
2638}
2639
2640/* Replacement for generic do_registers_info.
2641 Print regs in pretty columns. */
2642
2643static int
acdb74a0 2644do_fp_register_row (int regnum)
c5aa993b 2645{ /* do values for FP (float) regs */
c906108c
SS
2646 char *raw_buffer[2];
2647 char *dbl_buffer;
2648 /* use HI and LO to control the order of combining two flt regs */
2649 int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN);
2650 int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN);
2651 double doub, flt1, flt2; /* doubles extracted from raw hex data */
2652 int inv1, inv2, inv3;
c5aa993b 2653
c906108c
SS
2654 raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2655 raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2656 dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2657
2658 /* Get the data in raw format. */
2659 if (read_relative_register_raw_bytes (regnum, raw_buffer[HI]))
2660 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
c5aa993b 2661 if (REGISTER_RAW_SIZE (regnum) == 4)
c906108c
SS
2662 {
2663 /* 4-byte registers: we can fit two registers per row. */
2664 /* Also print every pair of 4-byte regs as an 8-byte double. */
2665 if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO]))
c5aa993b 2666 error ("can't read register %d (%s)",
c906108c
SS
2667 regnum + 1, REGISTER_NAME (regnum + 1));
2668
2669 /* copy the two floats into one double, and unpack both */
65edb64b 2670 memcpy (dbl_buffer, raw_buffer, 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c5aa993b
JM
2671 flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1);
2672 flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2);
2673 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
2674
2675 printf_filtered (inv1 ? " %-5s: <invalid float>" :
2676 " %-5s%-17.9g", REGISTER_NAME (regnum), flt1);
2677 printf_filtered (inv2 ? " %-5s: <invalid float>" :
c906108c 2678 " %-5s%-17.9g", REGISTER_NAME (regnum + 1), flt2);
c5aa993b 2679 printf_filtered (inv3 ? " dbl: <invalid double>\n" :
c906108c
SS
2680 " dbl: %-24.17g\n", doub);
2681 /* may want to do hex display here (future enhancement) */
c5aa993b 2682 regnum += 2;
c906108c
SS
2683 }
2684 else
c5aa993b 2685 { /* eight byte registers: print each one as float AND as double. */
c906108c
SS
2686 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2687
65edb64b 2688 memcpy (dbl_buffer, raw_buffer[HI], 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c5aa993b 2689 flt1 = unpack_double (builtin_type_float,
c906108c 2690 &raw_buffer[HI][offset], &inv1);
c5aa993b 2691 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
c906108c 2692
c5aa993b 2693 printf_filtered (inv1 ? " %-5s: <invalid float>" :
c906108c 2694 " %-5s flt: %-17.9g", REGISTER_NAME (regnum), flt1);
c5aa993b 2695 printf_filtered (inv3 ? " dbl: <invalid double>\n" :
c906108c
SS
2696 " dbl: %-24.17g\n", doub);
2697 /* may want to do hex display here (future enhancement) */
2698 regnum++;
2699 }
2700 return regnum;
2701}
2702
2703/* Print a row's worth of GP (int) registers, with name labels above */
2704
2705static int
acdb74a0 2706do_gp_register_row (int regnum)
c906108c
SS
2707{
2708 /* do values for GP (int) regs */
2709 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2710 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
2711 int col, byte;
2712 int start_regnum = regnum;
2713 int numregs = NUM_REGS;
2714
2715
2716 /* For GP registers, we print a separate row of names above the vals */
2717 printf_filtered (" ");
2718 for (col = 0; col < ncols && regnum < numregs; regnum++)
2719 {
2720 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 2721 continue; /* unused register */
c906108c 2722 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b
JM
2723 break; /* end the row: reached FP register */
2724 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
c906108c
SS
2725 REGISTER_NAME (regnum));
2726 col++;
2727 }
c5aa993b 2728 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
c906108c
SS
2729 start_regnum); /* print the R0 to R31 names */
2730
2731 regnum = start_regnum; /* go back to start of row */
2732 /* now print the values in hex, 4 or 8 to the row */
2733 for (col = 0; col < ncols && regnum < numregs; regnum++)
2734 {
2735 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 2736 continue; /* unused register */
c906108c 2737 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 2738 break; /* end row: reached FP register */
c906108c
SS
2739 /* OK: get the data in raw format. */
2740 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2741 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2742 /* pad small registers */
43e526b9 2743 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
c906108c
SS
2744 printf_filtered (" ");
2745 /* Now print the register value in hex, endian order. */
2746 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
43e526b9
JM
2747 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2748 byte < REGISTER_RAW_SIZE (regnum);
2749 byte++)
c906108c
SS
2750 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2751 else
43e526b9
JM
2752 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
2753 byte >= 0;
2754 byte--)
c906108c
SS
2755 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2756 printf_filtered (" ");
2757 col++;
2758 }
c5aa993b 2759 if (col > 0) /* ie. if we actually printed anything... */
c906108c
SS
2760 printf_filtered ("\n");
2761
2762 return regnum;
2763}
2764
2765/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
2766
2767void
acdb74a0 2768mips_do_registers_info (int regnum, int fpregs)
c906108c 2769{
c5aa993b 2770 if (regnum != -1) /* do one specified register */
c906108c
SS
2771 {
2772 if (*(REGISTER_NAME (regnum)) == '\0')
2773 error ("Not a valid register for the current processor type");
2774
2775 mips_print_register (regnum, 0);
2776 printf_filtered ("\n");
2777 }
c5aa993b
JM
2778 else
2779 /* do all (or most) registers */
c906108c
SS
2780 {
2781 regnum = 0;
2782 while (regnum < NUM_REGS)
2783 {
c5aa993b
JM
2784 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2785 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
c906108c
SS
2786 regnum = do_fp_register_row (regnum); /* FP regs */
2787 else
2788 regnum += MIPS_NUMREGS; /* skip floating point regs */
2789 else
2790 regnum = do_gp_register_row (regnum); /* GP (int) regs */
2791 }
2792 }
2793}
2794
2795/* Return number of args passed to a frame. described by FIP.
2796 Can return -1, meaning no way to tell. */
2797
2798int
acdb74a0 2799mips_frame_num_args (struct frame_info *frame)
c906108c 2800{
c906108c
SS
2801 return -1;
2802}
2803
2804/* Is this a branch with a delay slot? */
2805
a14ed312 2806static int is_delayed (unsigned long);
c906108c
SS
2807
2808static int
acdb74a0 2809is_delayed (unsigned long insn)
c906108c
SS
2810{
2811 int i;
2812 for (i = 0; i < NUMOPCODES; ++i)
2813 if (mips_opcodes[i].pinfo != INSN_MACRO
2814 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
2815 break;
2816 return (i < NUMOPCODES
2817 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
2818 | INSN_COND_BRANCH_DELAY
2819 | INSN_COND_BRANCH_LIKELY)));
2820}
2821
2822int
acdb74a0 2823mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
2824{
2825 char buf[MIPS_INSTLEN];
2826
2827 /* There is no branch delay slot on MIPS16. */
2828 if (pc_is_mips16 (pc))
2829 return 0;
2830
2831 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
2832 /* If error reading memory, guess that it is not a delayed branch. */
2833 return 0;
c5aa993b 2834 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
2835}
2836
2837
2838/* Skip the PC past function prologue instructions (32-bit version).
2839 This is a helper function for mips_skip_prologue. */
2840
2841static CORE_ADDR
f7b9e9fc 2842mips32_skip_prologue (CORE_ADDR pc)
c906108c 2843{
c5aa993b
JM
2844 t_inst inst;
2845 CORE_ADDR end_pc;
2846 int seen_sp_adjust = 0;
2847 int load_immediate_bytes = 0;
2848
2849 /* Skip the typical prologue instructions. These are the stack adjustment
2850 instruction and the instructions that save registers on the stack
2851 or in the gcc frame. */
2852 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
2853 {
2854 unsigned long high_word;
c906108c 2855
c5aa993b
JM
2856 inst = mips_fetch_instruction (pc);
2857 high_word = (inst >> 16) & 0xffff;
c906108c 2858
c5aa993b
JM
2859 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
2860 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
2861 seen_sp_adjust = 1;
2862 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
2863 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
2864 seen_sp_adjust = 1;
2865 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
2866 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
2867 && (inst & 0x001F0000)) /* reg != $zero */
2868 continue;
2869
2870 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
2871 continue;
2872 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
2873 /* sx reg,n($s8) */
2874 continue; /* reg != $zero */
2875
2876 /* move $s8,$sp. With different versions of gas this will be either
2877 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
2878 Accept any one of these. */
2879 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2880 continue;
2881
2882 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
2883 continue;
2884 else if (high_word == 0x3c1c) /* lui $gp,n */
2885 continue;
2886 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
2887 continue;
2888 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
2889 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
2890 continue;
2891 /* The following instructions load $at or $t0 with an immediate
2892 value in preparation for a stack adjustment via
2893 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
2894 a local variable, so we accept them only before a stack adjustment
2895 instruction was seen. */
2896 else if (!seen_sp_adjust)
2897 {
2898 if (high_word == 0x3c01 || /* lui $at,n */
2899 high_word == 0x3c08) /* lui $t0,n */
2900 {
2901 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
2902 continue;
2903 }
2904 else if (high_word == 0x3421 || /* ori $at,$at,n */
2905 high_word == 0x3508 || /* ori $t0,$t0,n */
2906 high_word == 0x3401 || /* ori $at,$zero,n */
2907 high_word == 0x3408) /* ori $t0,$zero,n */
2908 {
2909 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
2910 continue;
2911 }
2912 else
2913 break;
2914 }
2915 else
2916 break;
c906108c
SS
2917 }
2918
c5aa993b
JM
2919 /* In a frameless function, we might have incorrectly
2920 skipped some load immediate instructions. Undo the skipping
2921 if the load immediate was not followed by a stack adjustment. */
2922 if (load_immediate_bytes && !seen_sp_adjust)
2923 pc -= load_immediate_bytes;
2924 return pc;
c906108c
SS
2925}
2926
2927/* Skip the PC past function prologue instructions (16-bit version).
2928 This is a helper function for mips_skip_prologue. */
2929
2930static CORE_ADDR
f7b9e9fc 2931mips16_skip_prologue (CORE_ADDR pc)
c906108c 2932{
c5aa993b
JM
2933 CORE_ADDR end_pc;
2934 int extend_bytes = 0;
2935 int prev_extend_bytes;
c906108c 2936
c5aa993b
JM
2937 /* Table of instructions likely to be found in a function prologue. */
2938 static struct
c906108c
SS
2939 {
2940 unsigned short inst;
2941 unsigned short mask;
c5aa993b
JM
2942 }
2943 table[] =
2944 {
c906108c 2945 {
c5aa993b
JM
2946 0x6300, 0xff00
2947 }
2948 , /* addiu $sp,offset */
2949 {
2950 0xfb00, 0xff00
2951 }
2952 , /* daddiu $sp,offset */
2953 {
2954 0xd000, 0xf800
2955 }
2956 , /* sw reg,n($sp) */
2957 {
2958 0xf900, 0xff00
2959 }
2960 , /* sd reg,n($sp) */
2961 {
2962 0x6200, 0xff00
2963 }
2964 , /* sw $ra,n($sp) */
2965 {
2966 0xfa00, 0xff00
2967 }
2968 , /* sd $ra,n($sp) */
2969 {
2970 0x673d, 0xffff
2971 }
2972 , /* move $s1,sp */
2973 {
2974 0xd980, 0xff80
2975 }
2976 , /* sw $a0-$a3,n($s1) */
2977 {
2978 0x6704, 0xff1c
2979 }
2980 , /* move reg,$a0-$a3 */
2981 {
2982 0xe809, 0xf81f
2983 }
2984 , /* entry pseudo-op */
2985 {
2986 0x0100, 0xff00
2987 }
2988 , /* addiu $s1,$sp,n */
2989 {
2990 0, 0
2991 } /* end of table marker */
2992 };
2993
2994 /* Skip the typical prologue instructions. These are the stack adjustment
2995 instruction and the instructions that save registers on the stack
2996 or in the gcc frame. */
2997 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
2998 {
2999 unsigned short inst;
3000 int i;
c906108c 3001
c5aa993b 3002 inst = mips_fetch_instruction (pc);
c906108c 3003
c5aa993b
JM
3004 /* Normally we ignore an extend instruction. However, if it is
3005 not followed by a valid prologue instruction, we must adjust
3006 the pc back over the extend so that it won't be considered
3007 part of the prologue. */
3008 if ((inst & 0xf800) == 0xf000) /* extend */
3009 {
3010 extend_bytes = MIPS16_INSTLEN;
3011 continue;
3012 }
3013 prev_extend_bytes = extend_bytes;
3014 extend_bytes = 0;
c906108c 3015
c5aa993b
JM
3016 /* Check for other valid prologue instructions besides extend. */
3017 for (i = 0; table[i].mask != 0; i++)
3018 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
3019 break;
3020 if (table[i].mask != 0) /* it was in table? */
3021 continue; /* ignore it */
3022 else
3023 /* non-prologue */
3024 {
3025 /* Return the current pc, adjusted backwards by 2 if
3026 the previous instruction was an extend. */
3027 return pc - prev_extend_bytes;
3028 }
c906108c
SS
3029 }
3030 return pc;
3031}
3032
3033/* To skip prologues, I use this predicate. Returns either PC itself
3034 if the code at PC does not look like a function prologue; otherwise
3035 returns an address that (if we're lucky) follows the prologue. If
3036 LENIENT, then we must skip everything which is involved in setting
3037 up the frame (it's OK to skip more, just so long as we don't skip
3038 anything which might clobber the registers which are being saved.
3039 We must skip more in the case where part of the prologue is in the
3040 delay slot of a non-prologue instruction). */
3041
3042CORE_ADDR
f7b9e9fc 3043mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
3044{
3045 /* See if we can determine the end of the prologue via the symbol table.
3046 If so, then return either PC, or the PC after the prologue, whichever
3047 is greater. */
3048
3049 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
3050
3051 if (post_prologue_pc != 0)
3052 return max (pc, post_prologue_pc);
3053
3054 /* Can't determine prologue from the symbol table, need to examine
3055 instructions. */
3056
3057 if (pc_is_mips16 (pc))
f7b9e9fc 3058 return mips16_skip_prologue (pc);
c906108c 3059 else
f7b9e9fc 3060 return mips32_skip_prologue (pc);
c906108c 3061}
c906108c 3062
7a292a7a
SS
3063/* Determine how a return value is stored within the MIPS register
3064 file, given the return type `valtype'. */
3065
3066struct return_value_word
3067{
3068 int len;
3069 int reg;
3070 int reg_offset;
3071 int buf_offset;
3072};
3073
7a292a7a 3074static void
acdb74a0
AC
3075return_value_location (struct type *valtype,
3076 struct return_value_word *hi,
3077 struct return_value_word *lo)
7a292a7a
SS
3078{
3079 int len = TYPE_LENGTH (valtype);
c5aa993b 3080
7a292a7a
SS
3081 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3082 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
3083 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
3084 {
3085 if (!FP_REGISTER_DOUBLE && len == 8)
3086 {
3087 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 3088 spread them across a floating-point register pair. */
7a292a7a
SS
3089 lo->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
3090 hi->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 0 : 4;
3091 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3092 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
3093 ? 4 : 0);
3094 hi->reg_offset = lo->reg_offset;
3095 lo->reg = FP0_REGNUM + 0;
3096 hi->reg = FP0_REGNUM + 1;
3097 lo->len = 4;
3098 hi->len = 4;
3099 }
3100 else
3101 {
3102 /* The floating point value fits in a single floating-point
c5aa993b 3103 register. */
7a292a7a
SS
3104 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3105 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
3106 && len == 4)
3107 ? 4 : 0);
3108 lo->reg = FP0_REGNUM;
3109 lo->len = len;
3110 lo->buf_offset = 0;
3111 hi->len = 0;
3112 hi->reg_offset = 0;
3113 hi->buf_offset = 0;
3114 hi->reg = 0;
3115 }
3116 }
3117 else
3118 {
3119 /* Locate a result possibly spread across two registers. */
3120 int regnum = 2;
3121 lo->reg = regnum + 0;
3122 hi->reg = regnum + 1;
3123 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3124 && len < MIPS_SAVED_REGSIZE)
3125 {
3126 /* "un-left-justify" the value in the low register */
3127 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
3128 lo->len = len;
3129 hi->reg_offset = 0;
3130 hi->len = 0;
3131 }
3132 else if (TARGET_BYTE_ORDER == BIG_ENDIAN
3133 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
3134 && len < MIPS_SAVED_REGSIZE * 2
3135 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3136 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3137 {
3138 /* "un-left-justify" the value spread across two registers. */
3139 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
3140 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
3141 hi->reg_offset = 0;
3142 hi->len = len - lo->len;
3143 }
3144 else
3145 {
3146 /* Only perform a partial copy of the second register. */
3147 lo->reg_offset = 0;
3148 hi->reg_offset = 0;
3149 if (len > MIPS_SAVED_REGSIZE)
3150 {
3151 lo->len = MIPS_SAVED_REGSIZE;
3152 hi->len = len - MIPS_SAVED_REGSIZE;
3153 }
3154 else
3155 {
3156 lo->len = len;
3157 hi->len = 0;
3158 }
3159 }
3160 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3161 && REGISTER_RAW_SIZE (regnum) == 8
3162 && MIPS_SAVED_REGSIZE == 4)
3163 {
3164 /* Account for the fact that only the least-signficant part
c5aa993b 3165 of the register is being used */
7a292a7a
SS
3166 lo->reg_offset += 4;
3167 hi->reg_offset += 4;
3168 }
3169 lo->buf_offset = 0;
3170 hi->buf_offset = lo->len;
3171 }
3172}
3173
3174/* Given a return value in `regbuf' with a type `valtype', extract and
3175 copy its value into `valbuf'. */
3176
c906108c 3177void
acdb74a0
AC
3178mips_extract_return_value (struct type *valtype,
3179 char regbuf[REGISTER_BYTES],
3180 char *valbuf)
c906108c 3181{
7a292a7a
SS
3182 struct return_value_word lo;
3183 struct return_value_word hi;
3184 return_value_location (valtype, &lo, &hi);
3185
3186 memcpy (valbuf + lo.buf_offset,
3187 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
3188 lo.len);
3189
3190 if (hi.len > 0)
3191 memcpy (valbuf + hi.buf_offset,
3192 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
3193 hi.len);
c906108c
SS
3194}
3195
7a292a7a
SS
3196/* Given a return value in `valbuf' with a type `valtype', write it's
3197 value into the appropriate register. */
3198
c906108c 3199void
acdb74a0 3200mips_store_return_value (struct type *valtype, char *valbuf)
c906108c 3201{
7a292a7a
SS
3202 char raw_buffer[MAX_REGISTER_RAW_SIZE];
3203 struct return_value_word lo;
3204 struct return_value_word hi;
3205 return_value_location (valtype, &lo, &hi);
3206
3207 memset (raw_buffer, 0, sizeof (raw_buffer));
3208 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
3209 write_register_bytes (REGISTER_BYTE (lo.reg),
3210 raw_buffer,
3211 REGISTER_RAW_SIZE (lo.reg));
c5aa993b 3212
7a292a7a
SS
3213 if (hi.len > 0)
3214 {
3215 memset (raw_buffer, 0, sizeof (raw_buffer));
3216 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
3217 write_register_bytes (REGISTER_BYTE (hi.reg),
3218 raw_buffer,
3219 REGISTER_RAW_SIZE (hi.reg));
3220 }
c906108c
SS
3221}
3222
3223/* Exported procedure: Is PC in the signal trampoline code */
3224
3225int
acdb74a0 3226in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
3227{
3228 if (sigtramp_address == 0)
3229 fixup_sigtramp ();
3230 return (pc >= sigtramp_address && pc < sigtramp_end);
3231}
3232
a5ea2558
AC
3233/* Root of all "set mips "/"show mips " commands. This will eventually be
3234 used for all MIPS-specific commands. */
3235
a5ea2558 3236static void
acdb74a0 3237show_mips_command (char *args, int from_tty)
a5ea2558
AC
3238{
3239 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
3240}
3241
a5ea2558 3242static void
acdb74a0 3243set_mips_command (char *args, int from_tty)
a5ea2558
AC
3244{
3245 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
3246 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
3247}
3248
c906108c
SS
3249/* Commands to show/set the MIPS FPU type. */
3250
c906108c 3251static void
acdb74a0 3252show_mipsfpu_command (char *args, int from_tty)
c906108c
SS
3253{
3254 char *msg;
3255 char *fpu;
3256 switch (MIPS_FPU_TYPE)
3257 {
3258 case MIPS_FPU_SINGLE:
3259 fpu = "single-precision";
3260 break;
3261 case MIPS_FPU_DOUBLE:
3262 fpu = "double-precision";
3263 break;
3264 case MIPS_FPU_NONE:
3265 fpu = "absent (none)";
3266 break;
3267 }
3268 if (mips_fpu_type_auto)
3269 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
3270 fpu);
3271 else
3272 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
3273 fpu);
3274}
3275
3276
c906108c 3277static void
acdb74a0 3278set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
3279{
3280 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
3281 show_mipsfpu_command (args, from_tty);
3282}
3283
c906108c 3284static void
acdb74a0 3285set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
3286{
3287 mips_fpu_type = MIPS_FPU_SINGLE;
3288 mips_fpu_type_auto = 0;
c2d11a7d
JM
3289 if (GDB_MULTI_ARCH)
3290 {
3291 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
3292 }
c906108c
SS
3293}
3294
c906108c 3295static void
acdb74a0 3296set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
3297{
3298 mips_fpu_type = MIPS_FPU_DOUBLE;
3299 mips_fpu_type_auto = 0;
c2d11a7d
JM
3300 if (GDB_MULTI_ARCH)
3301 {
3302 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
3303 }
c906108c
SS
3304}
3305
c906108c 3306static void
acdb74a0 3307set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
3308{
3309 mips_fpu_type = MIPS_FPU_NONE;
3310 mips_fpu_type_auto = 0;
c2d11a7d
JM
3311 if (GDB_MULTI_ARCH)
3312 {
3313 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
3314 }
c906108c
SS
3315}
3316
c906108c 3317static void
acdb74a0 3318set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
3319{
3320 mips_fpu_type_auto = 1;
3321}
3322
3323/* Command to set the processor type. */
3324
3325void
acdb74a0 3326mips_set_processor_type_command (char *args, int from_tty)
c906108c
SS
3327{
3328 int i;
3329
3330 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
3331 {
3332 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
3333 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3334 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
3335
3336 /* Restore the value. */
4fcf66da 3337 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
3338
3339 return;
3340 }
c5aa993b 3341
c906108c
SS
3342 if (!mips_set_processor_type (tmp_mips_processor_type))
3343 {
3344 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
3345 /* Restore its value. */
4fcf66da 3346 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
3347 }
3348}
3349
3350static void
acdb74a0 3351mips_show_processor_type_command (char *args, int from_tty)
c906108c
SS
3352{
3353}
3354
3355/* Modify the actual processor type. */
3356
3357int
acdb74a0 3358mips_set_processor_type (char *str)
c906108c
SS
3359{
3360 int i, j;
3361
3362 if (str == NULL)
3363 return 0;
3364
3365 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3366 {
3367 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
3368 {
3369 mips_processor_type = str;
cce74817 3370 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 3371 return 1;
c906108c
SS
3372 /* FIXME tweak fpu flag too */
3373 }
3374 }
3375
3376 return 0;
3377}
3378
3379/* Attempt to identify the particular processor model by reading the
3380 processor id. */
3381
3382char *
acdb74a0 3383mips_read_processor_type (void)
c906108c
SS
3384{
3385 CORE_ADDR prid;
3386
3387 prid = read_register (PRID_REGNUM);
3388
3389 if ((prid & ~0xf) == 0x700)
c5aa993b 3390 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
3391
3392 return NULL;
3393}
3394
3395/* Just like reinit_frame_cache, but with the right arguments to be
3396 callable as an sfunc. */
3397
3398static void
acdb74a0
AC
3399reinit_frame_cache_sfunc (char *args, int from_tty,
3400 struct cmd_list_element *c)
c906108c
SS
3401{
3402 reinit_frame_cache ();
3403}
3404
3405int
acdb74a0 3406gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
3407{
3408 mips_extra_func_info_t proc_desc;
3409
3410 /* Search for the function containing this address. Set the low bit
3411 of the address when searching, in case we were given an even address
3412 that is the start of a 16-bit function. If we didn't do this,
3413 the search would fail because the symbol table says the function
3414 starts at an odd address, i.e. 1 byte past the given address. */
3415 memaddr = ADDR_BITS_REMOVE (memaddr);
3416 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
3417
3418 /* Make an attempt to determine if this is a 16-bit function. If
3419 the procedure descriptor exists and the address therein is odd,
3420 it's definitely a 16-bit function. Otherwise, we have to just
3421 guess that if the address passed in is odd, it's 16-bits. */
3422 if (proc_desc)
65c11066
MS
3423 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
3424 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c 3425 else
65c11066
MS
3426 info->mach = pc_is_mips16 (memaddr) ?
3427 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c
SS
3428
3429 /* Round down the instruction address to the appropriate boundary. */
65c11066 3430 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 3431
c906108c
SS
3432 /* Call the appropriate disassembler based on the target endian-ness. */
3433 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3434 return print_insn_big_mips (memaddr, info);
3435 else
3436 return print_insn_little_mips (memaddr, info);
3437}
3438
3439/* Old-style breakpoint macros.
3440 The IDT board uses an unusual breakpoint value, and sometimes gets
3441 confused when it sees the usual MIPS breakpoint instruction. */
3442
3443#define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
3444#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
3445#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
3446#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
3447#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
3448#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
3449#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
3450#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
3451
3452/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
3453 counter value to determine whether a 16- or 32-bit breakpoint should be
3454 used. It returns a pointer to a string of bytes that encode a breakpoint
3455 instruction, stores the length of the string to *lenptr, and adjusts pc
3456 (if necessary) to point to the actual memory location where the
3457 breakpoint should be inserted. */
3458
c5aa993b 3459unsigned char *
acdb74a0 3460mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c
SS
3461{
3462 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3463 {
3464 if (pc_is_mips16 (*pcptr))
3465 {
3466 static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT;
3467 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 3468 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
3469 return mips16_big_breakpoint;
3470 }
3471 else
3472 {
3473 static char big_breakpoint[] = BIG_BREAKPOINT;
3474 static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
3475 static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
3476
c5aa993b 3477 *lenptr = sizeof (big_breakpoint);
c906108c
SS
3478
3479 if (strcmp (target_shortname, "mips") == 0)
3480 return idt_big_breakpoint;
3481 else if (strcmp (target_shortname, "ddb") == 0
3482 || strcmp (target_shortname, "pmon") == 0
3483 || strcmp (target_shortname, "lsi") == 0)
3484 return pmon_big_breakpoint;
3485 else
3486 return big_breakpoint;
3487 }
3488 }
3489 else
3490 {
3491 if (pc_is_mips16 (*pcptr))
3492 {
3493 static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT;
3494 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 3495 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
3496 return mips16_little_breakpoint;
3497 }
3498 else
3499 {
3500 static char little_breakpoint[] = LITTLE_BREAKPOINT;
3501 static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT;
3502 static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT;
3503
c5aa993b 3504 *lenptr = sizeof (little_breakpoint);
c906108c
SS
3505
3506 if (strcmp (target_shortname, "mips") == 0)
3507 return idt_little_breakpoint;
3508 else if (strcmp (target_shortname, "ddb") == 0
3509 || strcmp (target_shortname, "pmon") == 0
3510 || strcmp (target_shortname, "lsi") == 0)
3511 return pmon_little_breakpoint;
3512 else
3513 return little_breakpoint;
3514 }
3515 }
3516}
3517
3518/* If PC is in a mips16 call or return stub, return the address of the target
3519 PC, which is either the callee or the caller. There are several
3520 cases which must be handled:
3521
3522 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 3523 target PC is in $31 ($ra).
c906108c 3524 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 3525 and the target PC is in $2.
c906108c 3526 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
3527 before the jal instruction, this is effectively a call stub
3528 and the the target PC is in $2. Otherwise this is effectively
3529 a return stub and the target PC is in $18.
c906108c
SS
3530
3531 See the source code for the stubs in gcc/config/mips/mips16.S for
3532 gory details.
3533
3534 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 3535 */
c906108c
SS
3536
3537CORE_ADDR
acdb74a0 3538mips_skip_stub (CORE_ADDR pc)
c906108c
SS
3539{
3540 char *name;
3541 CORE_ADDR start_addr;
3542
3543 /* Find the starting address and name of the function containing the PC. */
3544 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
3545 return 0;
3546
3547 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3548 target PC is in $31 ($ra). */
3549 if (strcmp (name, "__mips16_ret_sf") == 0
3550 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 3551 return read_signed_register (RA_REGNUM);
c906108c
SS
3552
3553 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3554 {
3555 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3556 and the target PC is in $2. */
3557 if (name[19] >= '0' && name[19] <= '9')
6c997a34 3558 return read_signed_register (2);
c906108c
SS
3559
3560 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
3561 before the jal instruction, this is effectively a call stub
3562 and the the target PC is in $2. Otherwise this is effectively
3563 a return stub and the target PC is in $18. */
c906108c
SS
3564 else if (name[19] == 's' || name[19] == 'd')
3565 {
3566 if (pc == start_addr)
3567 {
3568 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
3569 stub. Such a stub for a function bar might have a name
3570 like __fn_stub_bar, and might look like this:
3571 mfc1 $4,$f13
3572 mfc1 $5,$f12
3573 mfc1 $6,$f15
3574 mfc1 $7,$f14
3575 la $1,bar (becomes a lui/addiu pair)
3576 jr $1
3577 So scan down to the lui/addi and extract the target
3578 address from those two instructions. */
c906108c 3579
6c997a34 3580 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
3581 t_inst inst;
3582 int i;
3583
3584 /* See if the name of the target function is __fn_stub_*. */
3585 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
3586 return target_pc;
3587 if (strncmp (name, "__fn_stub_", 10) != 0
3588 && strcmp (name, "etext") != 0
3589 && strcmp (name, "_etext") != 0)
3590 return target_pc;
3591
3592 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
3593 The limit on the search is arbitrarily set to 20
3594 instructions. FIXME. */
c906108c
SS
3595 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
3596 {
c5aa993b
JM
3597 inst = mips_fetch_instruction (target_pc);
3598 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
3599 pc = (inst << 16) & 0xffff0000; /* high word */
3600 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
3601 return pc | (inst & 0xffff); /* low word */
c906108c
SS
3602 }
3603
3604 /* Couldn't find the lui/addui pair, so return stub address. */
3605 return target_pc;
3606 }
3607 else
3608 /* This is the 'return' part of a call stub. The return
3609 address is in $r18. */
6c997a34 3610 return read_signed_register (18);
c906108c
SS
3611 }
3612 }
c5aa993b 3613 return 0; /* not a stub */
c906108c
SS
3614}
3615
3616
3617/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
3618 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
3619
3620int
acdb74a0 3621mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
3622{
3623 CORE_ADDR start_addr;
3624
3625 /* Find the starting address of the function containing the PC. If the
3626 caller didn't give us a name, look it up at the same time. */
3627 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
3628 return 0;
3629
3630 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3631 {
3632 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
3633 if (name[19] >= '0' && name[19] <= '9')
3634 return 1;
3635 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 3636 before the jal instruction, this is effectively a call stub. */
c906108c
SS
3637 else if (name[19] == 's' || name[19] == 'd')
3638 return pc == start_addr;
3639 }
3640
c5aa993b 3641 return 0; /* not a stub */
c906108c
SS
3642}
3643
3644
3645/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
3646 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
3647
3648int
acdb74a0 3649mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
3650{
3651 CORE_ADDR start_addr;
3652
3653 /* Find the starting address of the function containing the PC. */
3654 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
3655 return 0;
3656
3657 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
3658 if (strcmp (name, "__mips16_ret_sf") == 0
3659 || strcmp (name, "__mips16_ret_df") == 0)
3660 return 1;
3661
3662 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 3663 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
3664 if (strncmp (name, "__mips16_call_stub_", 19) == 0
3665 && (name[19] == 's' || name[19] == 'd')
3666 && pc != start_addr)
3667 return 1;
3668
c5aa993b 3669 return 0; /* not a stub */
c906108c
SS
3670}
3671
3672
3673/* Return non-zero if the PC is in a library helper function that should
3674 be ignored. This implements the IGNORE_HELPER_CALL macro. */
3675
3676int
acdb74a0 3677mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
3678{
3679 char *name;
3680
3681 /* Find the starting address and name of the function containing the PC. */
3682 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
3683 return 0;
3684
3685 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
3686 that we want to ignore. */
3687 return (strcmp (name, "__mips16_ret_sf") == 0
3688 || strcmp (name, "__mips16_ret_df") == 0);
3689}
3690
3691
3692/* Return a location where we can set a breakpoint that will be hit
3693 when an inferior function call returns. This is normally the
3694 program's entry point. Executables that don't have an entry
3695 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
3696 whose address is the location where the breakpoint should be placed. */
3697
3698CORE_ADDR
acdb74a0 3699mips_call_dummy_address (void)
c906108c
SS
3700{
3701 struct minimal_symbol *sym;
3702
3703 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
3704 if (sym)
3705 return SYMBOL_VALUE_ADDRESS (sym);
3706 else
3707 return entry_point_address ();
3708}
3709
3710
9dcb560c 3711/* If the current gcc for this target does not produce correct debugging
b9a8e3bf
JB
3712 information for float parameters, both prototyped and unprototyped, then
3713 define this macro. This forces gdb to always assume that floats are
3714 passed as doubles and then converted in the callee.
3715
3716 For the mips chip, it appears that the debug info marks the parameters as
3717 floats regardless of whether the function is prototyped, but the actual
3718 values are passed as doubles for the non-prototyped case and floats for
3719 the prototyped case. Thus we choose to make the non-prototyped case work
3720 for C and break the prototyped case, since the non-prototyped case is
3721 probably much more common. (FIXME). */
3722
3723static int
3724mips_coerce_float_to_double (struct type *formal, struct type *actual)
3725{
3726 return current_language->la_language == language_c;
3727}
3728
47a8d4ba
AC
3729/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
3730 the register stored on the stack (32) is different to its real raw
3731 size (64). The below ensures that registers are fetched from the
3732 stack using their ABI size and then stored into the RAW_BUFFER
3733 using their raw size.
3734
3735 The alternative to adding this function would be to add an ABI
3736 macro - REGISTER_STACK_SIZE(). */
3737
3738static void
acdb74a0
AC
3739mips_get_saved_register (char *raw_buffer,
3740 int *optimized,
3741 CORE_ADDR *addrp,
3742 struct frame_info *frame,
3743 int regnum,
3744 enum lval_type *lval)
47a8d4ba
AC
3745{
3746 CORE_ADDR addr;
3747
3748 if (!target_has_registers)
3749 error ("No registers.");
3750
3751 /* Normal systems don't optimize out things with register numbers. */
3752 if (optimized != NULL)
3753 *optimized = 0;
3754 addr = find_saved_register (frame, regnum);
3755 if (addr != 0)
3756 {
3757 if (lval != NULL)
3758 *lval = lval_memory;
3759 if (regnum == SP_REGNUM)
3760 {
3761 if (raw_buffer != NULL)
3762 {
3763 /* Put it back in target format. */
3764 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
3765 (LONGEST) addr);
3766 }
3767 if (addrp != NULL)
3768 *addrp = 0;
3769 return;
3770 }
3771 if (raw_buffer != NULL)
3772 {
3773 LONGEST val;
3774 if (regnum < 32)
3775 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
3776 saved. */
3777 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
3778 else
3779 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
3780 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
3781 }
3782 }
3783 else
3784 {
3785 if (lval != NULL)
3786 *lval = lval_register;
3787 addr = REGISTER_BYTE (regnum);
3788 if (raw_buffer != NULL)
3789 read_register_gen (regnum, raw_buffer);
3790 }
3791 if (addrp != NULL)
3792 *addrp = addr;
3793}
2acceee2 3794
f7b9e9fc
AC
3795/* Immediately after a function call, return the saved pc.
3796 Can't always go through the frames for this because on some machines
3797 the new frame is not set up until the new function executes
3798 some instructions. */
3799
3800static CORE_ADDR
3801mips_saved_pc_after_call (struct frame_info *frame)
3802{
6c997a34 3803 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
3804}
3805
3806
88c72b7d
AC
3807/* Convert a dbx stab register number (from `r' declaration) to a gdb
3808 REGNUM */
3809
3810static int
3811mips_stab_reg_to_regnum (int num)
3812{
3813 if (num < 32)
3814 return num;
3815 else
3816 return num + FP0_REGNUM - 38;
3817}
3818
3819/* Convert a ecoff register number to a gdb REGNUM */
3820
3821static int
3822mips_ecoff_reg_to_regnum (int num)
3823{
3824 if (num < 32)
3825 return num;
3826 else
3827 return num + FP0_REGNUM - 32;
3828}
3829
c2d11a7d 3830static struct gdbarch *
acdb74a0
AC
3831mips_gdbarch_init (struct gdbarch_info info,
3832 struct gdbarch_list *arches)
c2d11a7d
JM
3833{
3834 static LONGEST mips_call_dummy_words[] =
3835 {0};
3836 struct gdbarch *gdbarch;
3837 struct gdbarch_tdep *tdep;
3838 int elf_flags;
0dadbba0 3839 enum mips_abi mips_abi;
c2d11a7d
JM
3840
3841 /* Extract the elf_flags if available */
3842 if (info.abfd != NULL
3843 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
3844 elf_flags = elf_elfheader (info.abfd)->e_flags;
3845 else
3846 elf_flags = 0;
3847
0dadbba0
AC
3848 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
3849 switch ((elf_flags & EF_MIPS_ABI))
3850 {
3851 case E_MIPS_ABI_O32:
3852 mips_abi = MIPS_ABI_O32;
3853 break;
3854 case E_MIPS_ABI_O64:
3855 mips_abi = MIPS_ABI_O64;
3856 break;
3857 case E_MIPS_ABI_EABI32:
3858 mips_abi = MIPS_ABI_EABI32;
3859 break;
3860 case E_MIPS_ABI_EABI64:
4a7f7ba8 3861 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
3862 break;
3863 default:
acdb74a0
AC
3864 if ((elf_flags & EF_MIPS_ABI2))
3865 mips_abi = MIPS_ABI_N32;
3866 else
3867 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
3868 break;
3869 }
acdb74a0 3870
bf64bfd6
AC
3871 /* Try the architecture for any hint of the corect ABI */
3872 if (mips_abi == MIPS_ABI_UNKNOWN
3873 && info.bfd_arch_info != NULL
3874 && info.bfd_arch_info->arch == bfd_arch_mips)
3875 {
3876 switch (info.bfd_arch_info->mach)
3877 {
3878 case bfd_mach_mips3900:
3879 mips_abi = MIPS_ABI_EABI32;
3880 break;
3881 case bfd_mach_mips4100:
3882 case bfd_mach_mips5000:
3883 mips_abi = MIPS_ABI_EABI64;
3884 break;
3885 }
3886 }
0dadbba0
AC
3887#ifdef MIPS_DEFAULT_ABI
3888 if (mips_abi == MIPS_ABI_UNKNOWN)
3889 mips_abi = MIPS_DEFAULT_ABI;
3890#endif
4b9b3959
AC
3891
3892 if (gdbarch_debug)
3893 {
3894 fprintf_unfiltered (gdb_stdlog,
9ace0497 3895 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 3896 elf_flags);
4b9b3959
AC
3897 fprintf_unfiltered (gdb_stdlog,
3898 "mips_gdbarch_init: mips_abi = %d\n",
3899 mips_abi);
3900 }
0dadbba0 3901
c2d11a7d
JM
3902 /* try to find a pre-existing architecture */
3903 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3904 arches != NULL;
3905 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3906 {
3907 /* MIPS needs to be pedantic about which ABI the object is
3908 using. */
9103eae0 3909 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 3910 continue;
9103eae0 3911 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 3912 continue;
c2d11a7d
JM
3913 return arches->gdbarch;
3914 }
3915
3916 /* Need a new architecture. Fill in a target specific vector. */
3917 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
3918 gdbarch = gdbarch_alloc (&info, tdep);
3919 tdep->elf_flags = elf_flags;
3920
3921 /* Initially set everything according to the ABI. */
3922 set_gdbarch_short_bit (gdbarch, 16);
3923 set_gdbarch_int_bit (gdbarch, 32);
3924 set_gdbarch_float_bit (gdbarch, 32);
3925 set_gdbarch_double_bit (gdbarch, 64);
3926 set_gdbarch_long_double_bit (gdbarch, 64);
0dadbba0
AC
3927 tdep->mips_abi = mips_abi;
3928 switch (mips_abi)
c2d11a7d 3929 {
0dadbba0 3930 case MIPS_ABI_O32:
acdb74a0 3931 tdep->mips_abi_string = "o32";
a5ea2558 3932 tdep->mips_default_saved_regsize = 4;
0dadbba0 3933 tdep->mips_default_stack_argsize = 4;
c2d11a7d 3934 tdep->mips_fp_register_double = 0;
acdb74a0
AC
3935 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
3936 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
0dadbba0 3937 tdep->mips_regs_have_home_p = 1;
5213ab06 3938 tdep->gdb_target_is_mips64 = 0;
4014092b 3939 tdep->default_mask_address_p = 0;
c2d11a7d
JM
3940 set_gdbarch_long_bit (gdbarch, 32);
3941 set_gdbarch_ptr_bit (gdbarch, 32);
3942 set_gdbarch_long_long_bit (gdbarch, 64);
3943 break;
0dadbba0 3944 case MIPS_ABI_O64:
acdb74a0 3945 tdep->mips_abi_string = "o64";
a5ea2558 3946 tdep->mips_default_saved_regsize = 8;
0dadbba0 3947 tdep->mips_default_stack_argsize = 8;
c2d11a7d 3948 tdep->mips_fp_register_double = 1;
acdb74a0
AC
3949 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
3950 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
0dadbba0 3951 tdep->mips_regs_have_home_p = 1;
5213ab06 3952 tdep->gdb_target_is_mips64 = 1;
4014092b 3953 tdep->default_mask_address_p = 0;
c2d11a7d
JM
3954 set_gdbarch_long_bit (gdbarch, 32);
3955 set_gdbarch_ptr_bit (gdbarch, 32);
3956 set_gdbarch_long_long_bit (gdbarch, 64);
3957 break;
0dadbba0 3958 case MIPS_ABI_EABI32:
acdb74a0 3959 tdep->mips_abi_string = "eabi32";
a5ea2558 3960 tdep->mips_default_saved_regsize = 4;
0dadbba0 3961 tdep->mips_default_stack_argsize = 4;
c2d11a7d 3962 tdep->mips_fp_register_double = 0;
acdb74a0
AC
3963 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
3964 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
0dadbba0 3965 tdep->mips_regs_have_home_p = 0;
5213ab06 3966 tdep->gdb_target_is_mips64 = 0;
4014092b 3967 tdep->default_mask_address_p = 0;
c2d11a7d
JM
3968 set_gdbarch_long_bit (gdbarch, 32);
3969 set_gdbarch_ptr_bit (gdbarch, 32);
3970 set_gdbarch_long_long_bit (gdbarch, 64);
3971 break;
0dadbba0 3972 case MIPS_ABI_EABI64:
acdb74a0 3973 tdep->mips_abi_string = "eabi64";
a5ea2558 3974 tdep->mips_default_saved_regsize = 8;
0dadbba0 3975 tdep->mips_default_stack_argsize = 8;
c2d11a7d 3976 tdep->mips_fp_register_double = 1;
acdb74a0
AC
3977 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
3978 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
0dadbba0 3979 tdep->mips_regs_have_home_p = 0;
5213ab06 3980 tdep->gdb_target_is_mips64 = 1;
4014092b 3981 tdep->default_mask_address_p = 0;
c2d11a7d
JM
3982 set_gdbarch_long_bit (gdbarch, 64);
3983 set_gdbarch_ptr_bit (gdbarch, 64);
3984 set_gdbarch_long_long_bit (gdbarch, 64);
3985 break;
0dadbba0 3986 case MIPS_ABI_N32:
acdb74a0 3987 tdep->mips_abi_string = "n32";
0dadbba0
AC
3988 tdep->mips_default_saved_regsize = 4;
3989 tdep->mips_default_stack_argsize = 8;
3990 tdep->mips_fp_register_double = 1;
acdb74a0
AC
3991 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
3992 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
0dadbba0 3993 tdep->mips_regs_have_home_p = 0;
5213ab06 3994 tdep->gdb_target_is_mips64 = 0;
4014092b 3995 tdep->default_mask_address_p = 0;
0dadbba0
AC
3996 set_gdbarch_long_bit (gdbarch, 32);
3997 set_gdbarch_ptr_bit (gdbarch, 32);
3998 set_gdbarch_long_long_bit (gdbarch, 64);
3999 break;
c2d11a7d 4000 default:
acdb74a0 4001 tdep->mips_abi_string = "default";
a5ea2558 4002 tdep->mips_default_saved_regsize = MIPS_REGSIZE;
0dadbba0 4003 tdep->mips_default_stack_argsize = MIPS_REGSIZE;
c2d11a7d 4004 tdep->mips_fp_register_double = (REGISTER_VIRTUAL_SIZE (FP0_REGNUM) == 8);
acdb74a0
AC
4005 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4006 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
0dadbba0 4007 tdep->mips_regs_have_home_p = 1;
5213ab06 4008 tdep->gdb_target_is_mips64 = 0;
4014092b 4009 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4010 set_gdbarch_long_bit (gdbarch, 32);
4011 set_gdbarch_ptr_bit (gdbarch, 32);
4012 set_gdbarch_long_long_bit (gdbarch, 64);
4013 break;
4014 }
4015
a5ea2558
AC
4016 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4017 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4018 comment:
4019
4020 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4021 flag in object files because to do so would make it impossible to
4022 link with libraries compiled without "-gp32". This is
4023 unnecessarily restrictive.
4024
4025 We could solve this problem by adding "-gp32" multilibs to gcc,
4026 but to set this flag before gcc is built with such multilibs will
4027 break too many systems.''
4028
4029 But even more unhelpfully, the default linker output target for
4030 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
4031 for 64-bit programs - you need to change the ABI to change this,
4032 and not all gcc targets support that currently. Therefore using
4033 this flag to detect 32-bit mode would do the wrong thing given
4034 the current gcc - it would make GDB treat these 64-bit programs
4035 as 32-bit programs by default. */
4036
c2d11a7d
JM
4037 /* enable/disable the MIPS FPU */
4038 if (!mips_fpu_type_auto)
4039 tdep->mips_fpu_type = mips_fpu_type;
4040 else if (info.bfd_arch_info != NULL
4041 && info.bfd_arch_info->arch == bfd_arch_mips)
4042 switch (info.bfd_arch_info->mach)
4043 {
b0069a17 4044 case bfd_mach_mips3900:
c2d11a7d 4045 case bfd_mach_mips4100:
ed9a39eb 4046 case bfd_mach_mips4111:
c2d11a7d
JM
4047 tdep->mips_fpu_type = MIPS_FPU_NONE;
4048 break;
bf64bfd6
AC
4049 case bfd_mach_mips4650:
4050 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
4051 break;
c2d11a7d
JM
4052 default:
4053 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4054 break;
4055 }
4056 else
4057 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4058
4059 /* MIPS version of register names. NOTE: At present the MIPS
4060 register name management is part way between the old -
4061 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
4062 Further work on it is required. */
4063 set_gdbarch_register_name (gdbarch, mips_register_name);
6c997a34 4064 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d
JM
4065 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
4066 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
4067 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
4068 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
4069 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
4070
88c72b7d
AC
4071 /* Map debug register numbers onto internal register numbers. */
4072 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
4073 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
4074
c2d11a7d
JM
4075 /* Initialize a frame */
4076 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
4077
4078 /* MIPS version of CALL_DUMMY */
4079
4080 set_gdbarch_call_dummy_p (gdbarch, 1);
4081 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
4082 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
4083 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
4084 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
4085 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
4086 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
4087 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
4088 set_gdbarch_call_dummy_length (gdbarch, 0);
4089 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
4090 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
4091 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
4092 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
4093 set_gdbarch_push_arguments (gdbarch, mips_push_arguments);
4094 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
b9a8e3bf 4095 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
c2d11a7d 4096
c4093a6a 4097 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
47a8d4ba 4098 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 4099
f7b9e9fc
AC
4100 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4101 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
4102 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4103 set_gdbarch_ieee_float (gdbarch, 1);
4104
4105 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
4106 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
4107
4b9b3959
AC
4108 return gdbarch;
4109}
4110
4111static void
4112mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
4113{
4114 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4115 if (tdep != NULL)
c2d11a7d 4116 {
acdb74a0
AC
4117 int ef_mips_arch;
4118 int ef_mips_32bitmode;
4119 /* determine the ISA */
4120 switch (tdep->elf_flags & EF_MIPS_ARCH)
4121 {
4122 case E_MIPS_ARCH_1:
4123 ef_mips_arch = 1;
4124 break;
4125 case E_MIPS_ARCH_2:
4126 ef_mips_arch = 2;
4127 break;
4128 case E_MIPS_ARCH_3:
4129 ef_mips_arch = 3;
4130 break;
4131 case E_MIPS_ARCH_4:
4132 ef_mips_arch = 0;
4133 break;
4134 default:
4135 break;
4136 }
4137 /* determine the size of a pointer */
4138 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
4139 fprintf_unfiltered (file,
4140 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 4141 tdep->elf_flags);
4b9b3959 4142 fprintf_unfiltered (file,
acdb74a0
AC
4143 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
4144 ef_mips_32bitmode);
4145 fprintf_unfiltered (file,
4146 "mips_dump_tdep: ef_mips_arch = %d\n",
4147 ef_mips_arch);
4148 fprintf_unfiltered (file,
4149 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
4150 tdep->mips_abi,
4151 tdep->mips_abi_string);
4014092b
AC
4152 fprintf_unfiltered (file,
4153 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
4154 mips_mask_address_p (),
4155 tdep->default_mask_address_p);
c2d11a7d 4156 }
4b9b3959
AC
4157 fprintf_unfiltered (file,
4158 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4159 FP_REGISTER_DOUBLE);
4160 fprintf_unfiltered (file,
4161 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
4162 MIPS_DEFAULT_FPU_TYPE,
4163 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
4164 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4165 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4166 : "???"));
4167 fprintf_unfiltered (file,
4168 "mips_dump_tdep: MIPS_EABI = %d\n",
4169 MIPS_EABI);
4170 fprintf_unfiltered (file,
acdb74a0
AC
4171 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
4172 MIPS_LAST_FP_ARG_REGNUM,
4173 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4b9b3959
AC
4174 fprintf_unfiltered (file,
4175 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
4176 MIPS_FPU_TYPE,
4177 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
4178 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4179 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4180 : "???"));
4181 fprintf_unfiltered (file,
4182 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
4183 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
4184 fprintf_unfiltered (file,
4185 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4186 FP_REGISTER_DOUBLE);
4187 fprintf_unfiltered (file,
4188 "mips_dump_tdep: MIPS_REGS_HAVE_HOME_P = %d\n",
4189 MIPS_REGS_HAVE_HOME_P);
4190 fprintf_unfiltered (file,
4191 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
4192 MIPS_DEFAULT_STACK_ARGSIZE);
4193 fprintf_unfiltered (file,
4194 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
4195 MIPS_STACK_ARGSIZE);
4196 fprintf_unfiltered (file,
4197 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
4198 MIPS_REGSIZE);
2475bac3
AC
4199 fprintf_unfiltered (file,
4200 "mips_dump_tdep: A0_REGNUM = %d\n",
4201 A0_REGNUM);
4202 fprintf_unfiltered (file,
4203 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
4204 XSTRING (ADDR_BITS_REMOVE(ADDR)));
4205 fprintf_unfiltered (file,
4206 "mips_dump_tdep: ATTACH_DETACH # %s\n",
4207 XSTRING (ATTACH_DETACH));
4208 fprintf_unfiltered (file,
4209 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
4210 BADVADDR_REGNUM);
4211 fprintf_unfiltered (file,
4212 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
4213 fprintf_unfiltered (file,
4214 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
4215 CAUSE_REGNUM);
4216 fprintf_unfiltered (file,
4217 "mips_dump_tdep: CPLUS_MARKER = %c\n",
4218 CPLUS_MARKER);
4219 fprintf_unfiltered (file,
4220 "mips_dump_tdep: DEFAULT_MIPS_TYPE = %s\n",
4221 DEFAULT_MIPS_TYPE);
4222 fprintf_unfiltered (file,
4223 "mips_dump_tdep: DO_REGISTERS_INFO # %s\n",
4224 XSTRING (DO_REGISTERS_INFO));
4225 fprintf_unfiltered (file,
4226 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
4227 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
4228 fprintf_unfiltered (file,
4229 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
4230 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
4231 fprintf_unfiltered (file,
4232 "mips_dump_tdep: ELF_MAKE_MSYMBOL_SPECIAL # %s\n",
4233 XSTRING (ELF_MAKE_MSYMBOL_SPECIAL (SYM, MSYM)));
4234 fprintf_unfiltered (file,
4235 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
4236 FCRCS_REGNUM);
4237 fprintf_unfiltered (file,
4238 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
4239 FCRIR_REGNUM);
4240 fprintf_unfiltered (file,
4241 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
4242 FIRST_EMBED_REGNUM);
4243 fprintf_unfiltered (file,
4244 "mips_dump_tdep: FPA0_REGNUM = %d\n",
4245 FPA0_REGNUM);
4246 fprintf_unfiltered (file,
4247 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
4248 GDB_TARGET_IS_MIPS64);
4249 fprintf_unfiltered (file,
4250 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
4251 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
4252 fprintf_unfiltered (file,
4253 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
4254 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
4255 fprintf_unfiltered (file,
4256 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
4257 GEN_REG_SAVE_MASK);
4258 fprintf_unfiltered (file,
4259 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
4260 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
4261 fprintf_unfiltered (file,
4262 "mips_dump_tdep: HI_REGNUM = %d\n",
4263 HI_REGNUM);
4264 fprintf_unfiltered (file,
4265 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
4266 fprintf_unfiltered (file,
4267 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
4268 fprintf_unfiltered (file,
4269 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
4270 XSTRING (IGNORE_HELPER_CALL (PC)));
4271 fprintf_unfiltered (file,
4272 "mips_dump_tdep: INIT_FRAME_PC # %s\n",
4273 XSTRING (INIT_FRAME_PC (FROMLEAF, PREV)));
4274 fprintf_unfiltered (file,
4275 "mips_dump_tdep: INIT_FRAME_PC_FIRST # %s\n",
4276 XSTRING (INIT_FRAME_PC_FIRST (FROMLEAF, PREV)));
4277 fprintf_unfiltered (file,
4278 "mips_dump_tdep: IN_SIGTRAMP # %s\n",
4279 XSTRING (IN_SIGTRAMP (PC, NAME)));
4280 fprintf_unfiltered (file,
4281 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
4282 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
4283 fprintf_unfiltered (file,
4284 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
4285 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
4286 fprintf_unfiltered (file,
4287 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
4288 fprintf_unfiltered (file,
4289 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
4290 LAST_EMBED_REGNUM);
4291 fprintf_unfiltered (file,
4292 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
4293 fprintf_unfiltered (file,
4294 "mips_dump_tdep: LO_REGNUM = %d\n",
4295 LO_REGNUM);
4296#ifdef MACHINE_CPROC_FP_OFFSET
4297 fprintf_unfiltered (file,
4298 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
4299 MACHINE_CPROC_FP_OFFSET);
4300#endif
4301#ifdef MACHINE_CPROC_PC_OFFSET
4302 fprintf_unfiltered (file,
4303 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
4304 MACHINE_CPROC_PC_OFFSET);
4305#endif
4306#ifdef MACHINE_CPROC_SP_OFFSET
4307 fprintf_unfiltered (file,
4308 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
4309 MACHINE_CPROC_SP_OFFSET);
4310#endif
4311 fprintf_unfiltered (file,
4312 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
4313 fprintf_unfiltered (file,
4314 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
4315 fprintf_unfiltered (file,
4316 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
4317 MIPS16_INSTLEN);
4318 fprintf_unfiltered (file,
4319 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
4320 fprintf_unfiltered (file,
4321 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
4322 fprintf_unfiltered (file,
4323 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
4324 fprintf_unfiltered (file,
4325 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
4326 MIPS_INSTLEN);
4327 fprintf_unfiltered (file,
acdb74a0
AC
4328 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
4329 MIPS_LAST_ARG_REGNUM,
4330 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
4331 fprintf_unfiltered (file,
4332 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
4333 MIPS_NUMREGS);
4334 fprintf_unfiltered (file,
4335 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
4336 fprintf_unfiltered (file,
4337 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
4338 MIPS_SAVED_REGSIZE);
4339 fprintf_unfiltered (file,
4340 "mips_dump_tdep: MSYMBOL_IS_SPECIAL = function?\n");
4341 fprintf_unfiltered (file,
4342 "mips_dump_tdep: MSYMBOL_SIZE # %s\n",
4343 XSTRING (MSYMBOL_SIZE (MSYM)));
4344 fprintf_unfiltered (file,
4345 "mips_dump_tdep: OP_LDFPR = used?\n");
4346 fprintf_unfiltered (file,
4347 "mips_dump_tdep: OP_LDGPR = used?\n");
4348 fprintf_unfiltered (file,
4349 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
4350 fprintf_unfiltered (file,
4351 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
4352 fprintf_unfiltered (file,
4353 "mips_dump_tdep: PRID_REGNUM = %d\n",
4354 PRID_REGNUM);
4355 fprintf_unfiltered (file,
4356 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
4357 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
4358 fprintf_unfiltered (file,
4359 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
4360 fprintf_unfiltered (file,
4361 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
4362 fprintf_unfiltered (file,
4363 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
4364 fprintf_unfiltered (file,
4365 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
4366 fprintf_unfiltered (file,
4367 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
4368 fprintf_unfiltered (file,
4369 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
4370 fprintf_unfiltered (file,
4371 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
4372 fprintf_unfiltered (file,
4373 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
4374 fprintf_unfiltered (file,
4375 "mips_dump_tdep: PROC_PC_REG = function?\n");
4376 fprintf_unfiltered (file,
4377 "mips_dump_tdep: PROC_REG_MASK = function?\n");
4378 fprintf_unfiltered (file,
4379 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
4380 fprintf_unfiltered (file,
4381 "mips_dump_tdep: PROC_SYMBOL = function?\n");
4382 fprintf_unfiltered (file,
4383 "mips_dump_tdep: PS_REGNUM = %d\n",
4384 PS_REGNUM);
4385 fprintf_unfiltered (file,
4386 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
4387 PUSH_FP_REGNUM);
4388 fprintf_unfiltered (file,
4389 "mips_dump_tdep: RA_REGNUM = %d\n",
4390 RA_REGNUM);
4391 fprintf_unfiltered (file,
4392 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
4393 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4394 fprintf_unfiltered (file,
4395 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
4396 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4397 fprintf_unfiltered (file,
4398 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
4399 fprintf_unfiltered (file,
4400 "mips_dump_tdep: ROUND_DOWN = function?\n");
4401 fprintf_unfiltered (file,
4402 "mips_dump_tdep: ROUND_UP = function?\n");
4403#ifdef SAVED_BYTES
4404 fprintf_unfiltered (file,
4405 "mips_dump_tdep: SAVED_BYTES = %d\n",
4406 SAVED_BYTES);
4407#endif
4408#ifdef SAVED_FP
4409 fprintf_unfiltered (file,
4410 "mips_dump_tdep: SAVED_FP = %d\n",
4411 SAVED_FP);
4412#endif
4413#ifdef SAVED_PC
4414 fprintf_unfiltered (file,
4415 "mips_dump_tdep: SAVED_PC = %d\n",
4416 SAVED_PC);
4417#endif
4418 fprintf_unfiltered (file,
4419 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
4420 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
4421 fprintf_unfiltered (file,
4422 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
4423 fprintf_unfiltered (file,
4424 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
4425 SIGFRAME_BASE);
4426 fprintf_unfiltered (file,
4427 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
4428 SIGFRAME_FPREGSAVE_OFF);
4429 fprintf_unfiltered (file,
4430 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
4431 SIGFRAME_PC_OFF);
4432 fprintf_unfiltered (file,
4433 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
4434 SIGFRAME_REGSAVE_OFF);
4435 fprintf_unfiltered (file,
4436 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
4437 SIGFRAME_REG_SIZE);
4438 fprintf_unfiltered (file,
4439 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
4440 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
4441 fprintf_unfiltered (file,
4442 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
4443 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
4444 fprintf_unfiltered (file,
4445 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P = %d\n",
4446 SOFTWARE_SINGLE_STEP_P);
4447 fprintf_unfiltered (file,
4448 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P = %d\n",
4449 SOFTWARE_SINGLE_STEP_P);
4450 fprintf_unfiltered (file,
4451 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
4452 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
4453#ifdef STACK_END_ADDR
4454 fprintf_unfiltered (file,
4455 "mips_dump_tdep: STACK_END_ADDR = %d\n",
4456 STACK_END_ADDR);
4457#endif
4458 fprintf_unfiltered (file,
4459 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
4460 XSTRING (STEP_SKIPS_DELAY (PC)));
4461 fprintf_unfiltered (file,
4462 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
4463 STEP_SKIPS_DELAY_P);
4464 fprintf_unfiltered (file,
4465 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
4466 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
4467 fprintf_unfiltered (file,
4468 "mips_dump_tdep: T9_REGNUM = %d\n",
4469 T9_REGNUM);
4470 fprintf_unfiltered (file,
4471 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
4472 fprintf_unfiltered (file,
4473 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
4474 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
4475 fprintf_unfiltered (file,
4476 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
4477 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
4478 fprintf_unfiltered (file,
4479 "mips_dump_tdep: TARGET_MIPS = used?\n");
4480 fprintf_unfiltered (file,
4481 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
4482 XSTRING (TM_PRINT_INSN_MACH));
4483#ifdef TRACE_CLEAR
4484 fprintf_unfiltered (file,
4485 "mips_dump_tdep: TRACE_CLEAR # %s\n",
4486 XSTRING (TRACE_CLEAR (THREAD, STATE)));
4487#endif
4488#ifdef TRACE_FLAVOR
4489 fprintf_unfiltered (file,
4490 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
4491 TRACE_FLAVOR);
4492#endif
4493#ifdef TRACE_FLAVOR_SIZE
4494 fprintf_unfiltered (file,
4495 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
4496 TRACE_FLAVOR_SIZE);
4497#endif
4498#ifdef TRACE_SET
4499 fprintf_unfiltered (file,
4500 "mips_dump_tdep: TRACE_SET # %s\n",
4501 XSTRING (TRACE_SET (X,STATE)));
4502#endif
4503 fprintf_unfiltered (file,
4504 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
4505#ifdef UNUSED_REGNUM
4506 fprintf_unfiltered (file,
4507 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
4508 UNUSED_REGNUM);
4509#endif
4510 fprintf_unfiltered (file,
4511 "mips_dump_tdep: V0_REGNUM = %d\n",
4512 V0_REGNUM);
4513 fprintf_unfiltered (file,
4514 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
4515 (long) VM_MIN_ADDRESS);
4516#ifdef VX_NUM_REGS
4517 fprintf_unfiltered (file,
4518 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
4519 VX_NUM_REGS);
4520#endif
4521 fprintf_unfiltered (file,
4522 "mips_dump_tdep: ZERO_REGNUM = %d\n",
4523 ZERO_REGNUM);
4524 fprintf_unfiltered (file,
4525 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
4526 _PROC_MAGIC_);
c2d11a7d
JM
4527}
4528
c906108c 4529void
acdb74a0 4530_initialize_mips_tdep (void)
c906108c
SS
4531{
4532 static struct cmd_list_element *mipsfpulist = NULL;
4533 struct cmd_list_element *c;
4534
4b9b3959 4535 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c5aa993b 4536 if (!tm_print_insn) /* Someone may have already set it */
c906108c
SS
4537 tm_print_insn = gdb_print_insn_mips;
4538
a5ea2558
AC
4539 /* Add root prefix command for all "set mips"/"show mips" commands */
4540 add_prefix_cmd ("mips", no_class, set_mips_command,
4541 "Various MIPS specific commands.",
4542 &setmipscmdlist, "set mips ", 0, &setlist);
4543
4544 add_prefix_cmd ("mips", no_class, show_mips_command,
4545 "Various MIPS specific commands.",
4546 &showmipscmdlist, "show mips ", 0, &showlist);
4547
4548 /* Allow the user to override the saved register size. */
4549 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
4550 class_obscure,
4551 size_enums,
4552 &mips_saved_regsize_string, "\
a5ea2558
AC
4553Set size of general purpose registers saved on the stack.\n\
4554This option can be set to one of:\n\
4555 32 - Force GDB to treat saved GP registers as 32-bit\n\
4556 64 - Force GDB to treat saved GP registers as 64-bit\n\
4557 auto - Allow GDB to use the target's default setting or autodetect the\n\
4558 saved GP register size from information contained in the executable.\n\
4559 (default: auto)",
1ed2a135 4560 &setmipscmdlist),
a5ea2558
AC
4561 &showmipscmdlist);
4562
d929b26f
AC
4563 /* Allow the user to override the argument stack size. */
4564 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
4565 class_obscure,
4566 size_enums,
1ed2a135 4567 &mips_stack_argsize_string, "\
d929b26f
AC
4568Set the amount of stack space reserved for each argument.\n\
4569This option can be set to one of:\n\
4570 32 - Force GDB to allocate 32-bit chunks per argument\n\
4571 64 - Force GDB to allocate 64-bit chunks per argument\n\
4572 auto - Allow GDB to determine the correct setting from the current\n\
4573 target and executable (default)",
4574 &setmipscmdlist),
4575 &showmipscmdlist);
4576
c906108c
SS
4577 /* Let the user turn off floating point and set the fence post for
4578 heuristic_proc_start. */
4579
4580 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
4581 "Set use of MIPS floating-point coprocessor.",
4582 &mipsfpulist, "set mipsfpu ", 0, &setlist);
4583 add_cmd ("single", class_support, set_mipsfpu_single_command,
4584 "Select single-precision MIPS floating-point coprocessor.",
4585 &mipsfpulist);
4586 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 4587 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
4588 &mipsfpulist);
4589 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
4590 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
4591 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
4592 add_cmd ("none", class_support, set_mipsfpu_none_command,
4593 "Select no MIPS floating-point coprocessor.",
4594 &mipsfpulist);
4595 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
4596 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
4597 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
4598 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
4599 "Select MIPS floating-point coprocessor automatically.",
4600 &mipsfpulist);
4601 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
4602 "Show current use of MIPS floating-point coprocessor target.",
4603 &showlist);
4604
c2d11a7d 4605#if !GDB_MULTI_ARCH
c906108c
SS
4606 c = add_set_cmd ("processor", class_support, var_string_noescape,
4607 (char *) &tmp_mips_processor_type,
4608 "Set the type of MIPS processor in use.\n\
4609Set this to be able to access processor-type-specific registers.\n\
4610",
4611 &setlist);
4612 c->function.cfunc = mips_set_processor_type_command;
4613 c = add_show_from_set (c, &showlist);
4614 c->function.cfunc = mips_show_processor_type_command;
4615
4fcf66da
AC
4616 tmp_mips_processor_type = xstrdup (DEFAULT_MIPS_TYPE);
4617 mips_set_processor_type_command (xstrdup (DEFAULT_MIPS_TYPE), 0);
c2d11a7d 4618#endif
c906108c
SS
4619
4620 /* We really would like to have both "0" and "unlimited" work, but
4621 command.c doesn't deal with that. So make it a var_zinteger
4622 because the user can always use "999999" or some such for unlimited. */
4623 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
4624 (char *) &heuristic_fence_post,
4625 "\
4626Set the distance searched for the start of a function.\n\
4627If you are debugging a stripped executable, GDB needs to search through the\n\
4628program for the start of a function. This command sets the distance of the\n\
4629search. The only need to set it is when debugging a stripped executable.",
4630 &setlist);
4631 /* We need to throw away the frame cache when we set this, since it
4632 might change our ability to get backtraces. */
4633 c->function.sfunc = reinit_frame_cache_sfunc;
4634 add_show_from_set (c, &showlist);
4635
4636 /* Allow the user to control whether the upper bits of 64-bit
4637 addresses should be zeroed. */
4014092b
AC
4638 c = add_set_auto_boolean_cmd ("mask-address", no_class, &mask_address_var,
4639 "Set zeroing of upper 32 bits of 64-bit addresses.\n\
4640Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to allow GDB to determine\n\
4641the correct value.\n",
4642 &setmipscmdlist);
4643 add_cmd ("mask-address", no_class, show_mask_address,
4644 "Show current mask-address value", &showmipscmdlist);
43e526b9
JM
4645
4646 /* Allow the user to control the size of 32 bit registers within the
4647 raw remote packet. */
4648 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
4649 class_obscure,
4650 var_boolean,
4651 (char *)&mips64_transfers_32bit_regs_p, "\
4652Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
4653Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
4654that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
465564 bits for others. Use \"off\" to disable compatibility mode",
4656 &setlist),
4657 &showlist);
9ace0497
AC
4658
4659 /* Debug this files internals. */
4660 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
4661 &mips_debug, "Set mips debugging.\n\
4662When non-zero, mips specific debugging is enabled.", &setdebuglist),
4663 &showdebuglist);
c906108c 4664}
9ace0497 4665
This page took 0.316632 seconds and 4 git commands to generate.