2003-11-22 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a 3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
1e698235 4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
bf64bfd6 5
c906108c
SS
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
5e2e9765 28#include "gdb_assert.h"
c906108c
SS
29#include "frame.h"
30#include "inferior.h"
31#include "symtab.h"
32#include "value.h"
33#include "gdbcmd.h"
34#include "language.h"
35#include "gdbcore.h"
36#include "symfile.h"
37#include "objfiles.h"
38#include "gdbtypes.h"
39#include "target.h"
28d069e6 40#include "arch-utils.h"
4e052eda 41#include "regcache.h"
70f80edf 42#include "osabi.h"
d1973055 43#include "mips-tdep.h"
fe898f56 44#include "block.h"
a4b8ebc8 45#include "reggroups.h"
c906108c 46#include "opcode/mips.h"
c2d11a7d
JM
47#include "elf/mips.h"
48#include "elf-bfd.h"
2475bac3 49#include "symcat.h"
a4b8ebc8 50#include "sim-regno.h"
a89aa300 51#include "dis-asm.h"
c906108c 52
e0f7ec59 53static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
5bbcb741 54static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 55
dd824b04
DJ
56/* A useful bit in the CP0 status register (PS_REGNUM). */
57/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
58#define ST0_FR (1 << 26)
59
b0069a17
AC
60/* The sizes of floating point registers. */
61
62enum
63{
64 MIPS_FPU_SINGLE_REGSIZE = 4,
65 MIPS_FPU_DOUBLE_REGSIZE = 8
66};
67
0dadbba0 68
2e4ebe70
DJ
69static const char *mips_abi_string;
70
71static const char *mips_abi_strings[] = {
72 "auto",
73 "n32",
74 "o32",
28d169de 75 "n64",
2e4ebe70
DJ
76 "o64",
77 "eabi32",
78 "eabi64",
79 NULL
80};
81
cce74817 82struct frame_extra_info
c5aa993b
JM
83 {
84 mips_extra_func_info_t proc_desc;
85 int num_args;
86 };
cce74817 87
d929b26f
AC
88/* Various MIPS ISA options (related to stack analysis) can be
89 overridden dynamically. Establish an enum/array for managing
90 them. */
91
53904c9e
AC
92static const char size_auto[] = "auto";
93static const char size_32[] = "32";
94static const char size_64[] = "64";
d929b26f 95
53904c9e 96static const char *size_enums[] = {
d929b26f
AC
97 size_auto,
98 size_32,
99 size_64,
a5ea2558
AC
100 0
101};
102
7a292a7a
SS
103/* Some MIPS boards don't support floating point while others only
104 support single-precision floating-point operations. See also
105 FP_REGISTER_DOUBLE. */
c906108c
SS
106
107enum mips_fpu_type
c5aa993b
JM
108 {
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
112 };
c906108c
SS
113
114#ifndef MIPS_DEFAULT_FPU_TYPE
115#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
116#endif
117static int mips_fpu_type_auto = 1;
118static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 119
9ace0497 120static int mips_debug = 0;
7a292a7a 121
c2d11a7d
JM
122/* MIPS specific per-architecture information */
123struct gdbarch_tdep
124 {
125 /* from the elf header */
126 int elf_flags;
70f80edf 127
c2d11a7d 128 /* mips options */
0dadbba0 129 enum mips_abi mips_abi;
2e4ebe70 130 enum mips_abi found_abi;
c2d11a7d
JM
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
a5ea2558 134 int mips_default_saved_regsize;
c2d11a7d 135 int mips_fp_register_double;
d929b26f 136 int mips_default_stack_argsize;
4014092b 137 int default_mask_address_p;
719ec221
AC
138 /* Is the target using 64-bit raw integer registers but only
139 storing a left-aligned 32-bit value in each? */
140 int mips64_transfers_32bit_regs_p;
56cea623
AC
141 /* Indexes for various registers. IRIX and embedded have
142 different values. This contains the "public" fields. Don't
143 add any that do not need to be public. */
144 const struct mips_regnum *regnum;
691c0433
AC
145 /* Register names table for the current register set. */
146 const char **mips_processor_reg_names;
c2d11a7d
JM
147 };
148
56cea623
AC
149const struct mips_regnum *
150mips_regnum (struct gdbarch *gdbarch)
151{
152 return gdbarch_tdep (gdbarch)->regnum;
153}
154
155static int
156mips_fpa0_regnum (struct gdbarch *gdbarch)
157{
158 return mips_regnum (gdbarch)->fp0 + 12;
159}
160
0dadbba0 161#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 162 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 163
c2d11a7d 164#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 165
c2d11a7d 166#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 167
c2d11a7d 168#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 169
d929b26f
AC
170/* Return the currently configured (or set) saved register size. */
171
a5ea2558 172#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
c2d11a7d 173
53904c9e 174static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
175
176#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
177
95404a3e
AC
178/* MIPS16 function addresses are odd (bit 0 is set). Here are some
179 functions to test, set, or clear bit 0 of addresses. */
180
181static CORE_ADDR
182is_mips16_addr (CORE_ADDR addr)
183{
184 return ((addr) & 1);
185}
186
187static CORE_ADDR
188make_mips16_addr (CORE_ADDR addr)
189{
190 return ((addr) | 1);
191}
192
193static CORE_ADDR
194unmake_mips16_addr (CORE_ADDR addr)
195{
196 return ((addr) & ~1);
197}
198
22540ece
AC
199/* Return the contents of register REGNUM as a signed integer. */
200
201static LONGEST
202read_signed_register (int regnum)
203{
719ec221 204 void *buf = alloca (register_size (current_gdbarch, regnum));
22540ece 205 deprecated_read_register_gen (regnum, buf);
719ec221 206 return (extract_signed_integer (buf, register_size (current_gdbarch, regnum)));
22540ece
AC
207}
208
209static LONGEST
210read_signed_register_pid (int regnum, ptid_t ptid)
211{
212 ptid_t save_ptid;
213 LONGEST retval;
214
215 if (ptid_equal (ptid, inferior_ptid))
216 return read_signed_register (regnum);
217
218 save_ptid = inferior_ptid;
219
220 inferior_ptid = ptid;
221
222 retval = read_signed_register (regnum);
223
224 inferior_ptid = save_ptid;
225
226 return retval;
227}
228
d1973055
KB
229/* Return the MIPS ABI associated with GDBARCH. */
230enum mips_abi
231mips_abi (struct gdbarch *gdbarch)
232{
233 return gdbarch_tdep (gdbarch)->mips_abi;
234}
235
4246e332
AC
236int
237mips_regsize (struct gdbarch *gdbarch)
238{
239 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
240 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
241}
242
d929b26f 243static unsigned int
acdb74a0 244mips_saved_regsize (void)
d929b26f
AC
245{
246 if (mips_saved_regsize_string == size_auto)
247 return MIPS_DEFAULT_SAVED_REGSIZE;
248 else if (mips_saved_regsize_string == size_64)
249 return 8;
250 else /* if (mips_saved_regsize_string == size_32) */
251 return 4;
252}
253
71b8ef93 254/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa 255 marks it as 16-bit function. The MSB of the minimal symbol's
f594e5e9 256 "info" field is used for this purpose.
5a89d8aa
MS
257
258 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
259 i.e. refers to a 16-bit function, and sets a "special" bit in a
260 minimal symbol to mark it as a 16-bit function
261
f594e5e9 262 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
5a89d8aa 263
5a89d8aa
MS
264static void
265mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
266{
267 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
268 {
269 MSYMBOL_INFO (msym) = (char *)
270 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
271 SYMBOL_VALUE_ADDRESS (msym) |= 1;
272 }
273}
274
71b8ef93
MS
275static int
276msymbol_is_special (struct minimal_symbol *msym)
277{
278 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
279}
280
88658117
AC
281/* XFER a value from the big/little/left end of the register.
282 Depending on the size of the value it might occupy the entire
283 register or just part of it. Make an allowance for this, aligning
284 things accordingly. */
285
286static void
287mips_xfer_register (struct regcache *regcache, int reg_num, int length,
288 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
289 int buf_offset)
290{
d9d9c31f 291 bfd_byte reg[MAX_REGISTER_SIZE];
88658117 292 int reg_offset = 0;
a4b8ebc8 293 gdb_assert (reg_num >= NUM_REGS);
cb1d2653
AC
294 /* Need to transfer the left or right part of the register, based on
295 the targets byte order. */
88658117
AC
296 switch (endian)
297 {
298 case BFD_ENDIAN_BIG:
719ec221 299 reg_offset = register_size (current_gdbarch, reg_num) - length;
88658117
AC
300 break;
301 case BFD_ENDIAN_LITTLE:
302 reg_offset = 0;
303 break;
304 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
305 reg_offset = 0;
306 break;
307 default:
308 internal_error (__FILE__, __LINE__, "bad switch");
309 }
310 if (mips_debug)
cb1d2653
AC
311 fprintf_unfiltered (gdb_stderr,
312 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
313 reg_num, reg_offset, buf_offset, length);
88658117
AC
314 if (mips_debug && out != NULL)
315 {
316 int i;
cb1d2653 317 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 318 for (i = 0; i < length; i++)
cb1d2653 319 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
320 }
321 if (in != NULL)
a4b8ebc8 322 regcache_cooked_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
88658117 323 if (out != NULL)
a4b8ebc8 324 regcache_cooked_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
88658117
AC
325 if (mips_debug && in != NULL)
326 {
327 int i;
cb1d2653 328 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 329 for (i = 0; i < length; i++)
cb1d2653 330 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
331 }
332 if (mips_debug)
333 fprintf_unfiltered (gdb_stdlog, "\n");
334}
335
dd824b04
DJ
336/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
337 compatiblity mode. A return value of 1 means that we have
338 physical 64-bit registers, but should treat them as 32-bit registers. */
339
340static int
341mips2_fp_compat (void)
342{
343 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
344 meaningful. */
56cea623 345 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 4)
dd824b04
DJ
346 return 0;
347
348#if 0
349 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
350 in all the places we deal with FP registers. PR gdb/413. */
351 /* Otherwise check the FR bit in the status register - it controls
352 the FP compatiblity mode. If it is clear we are in compatibility
353 mode. */
354 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
355 return 1;
356#endif
361d1df0 357
dd824b04
DJ
358 return 0;
359}
360
c2d11a7d
JM
361/* Indicate that the ABI makes use of double-precision registers
362 provided by the FPU (rather than combining pairs of registers to
8fa9cfa1 363 form double-precision values). See also MIPS_FPU_TYPE. */
c2d11a7d 364#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
c2d11a7d 365
d929b26f
AC
366/* The amount of space reserved on the stack for registers. This is
367 different to MIPS_SAVED_REGSIZE as it determines the alignment of
368 data allocated after the registers have run out. */
369
0dadbba0 370#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
371
372#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
373
53904c9e 374static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
375
376static unsigned int
377mips_stack_argsize (void)
378{
379 if (mips_stack_argsize_string == size_auto)
380 return MIPS_DEFAULT_STACK_ARGSIZE;
381 else if (mips_stack_argsize_string == size_64)
382 return 8;
383 else /* if (mips_stack_argsize_string == size_32) */
384 return 4;
385}
386
92e1c15c 387#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
92e1c15c 388
7a292a7a 389#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 390
570b8f7c
AC
391static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
392 struct frame_info *, int);
c906108c 393
a14ed312 394static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 395
a14ed312 396static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 397
a14ed312 398static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 399
570b8f7c
AC
400static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
401 struct frame_info *next_frame,
402 int cur_frame);
c906108c 403
a14ed312
KB
404static CORE_ADDR after_prologue (CORE_ADDR pc,
405 mips_extra_func_info_t proc_desc);
c906108c 406
67b2c998
DJ
407static struct type *mips_float_register_type (void);
408static struct type *mips_double_register_type (void);
409
acdb74a0
AC
410/* The list of available "set mips " and "show mips " commands */
411
412static struct cmd_list_element *setmipscmdlist = NULL;
413static struct cmd_list_element *showmipscmdlist = NULL;
414
5e2e9765
KB
415/* Integer registers 0 thru 31 are handled explicitly by
416 mips_register_name(). Processor specific registers 32 and above
691c0433
AC
417 are listed in the followign tables. */
418
419enum { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
420
421/* Generic MIPS. */
422
423static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
424 "sr", "lo", "hi", "bad", "cause","pc",
425 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
426 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
427 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
428 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
429 "fsr", "fir", ""/*"fp"*/, "",
430 "", "", "", "", "", "", "", "",
431 "", "", "", "", "", "", "", "",
432};
433
434/* Names of IDT R3041 registers. */
435
436static const char *mips_r3041_reg_names[] = {
437 "sr", "lo", "hi", "bad", "cause","pc",
438 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
439 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
440 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
441 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
442 "fsr", "fir", "",/*"fp"*/ "",
443 "", "", "bus", "ccfg", "", "", "", "",
444 "", "", "port", "cmp", "", "", "epc", "prid",
445};
446
447/* Names of tx39 registers. */
448
449static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
450 "sr", "lo", "hi", "bad", "cause","pc",
451 "", "", "", "", "", "", "", "",
452 "", "", "", "", "", "", "", "",
453 "", "", "", "", "", "", "", "",
454 "", "", "", "", "", "", "", "",
455 "", "", "", "",
456 "", "", "", "", "", "", "", "",
457 "", "", "config", "cache", "debug", "depc", "epc", ""
458};
459
460/* Names of IRIX registers. */
461static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
462 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
463 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
464 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
465 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
466 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
467};
468
cce74817 469
5e2e9765 470/* Return the name of the register corresponding to REGNO. */
5a89d8aa 471static const char *
5e2e9765 472mips_register_name (int regno)
cce74817 473{
691c0433 474 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5e2e9765
KB
475 /* GPR names for all ABIs other than n32/n64. */
476 static char *mips_gpr_names[] = {
477 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
478 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
479 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
480 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
481 };
482
483 /* GPR names for n32 and n64 ABIs. */
484 static char *mips_n32_n64_gpr_names[] = {
485 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
486 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
487 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
488 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
489 };
490
491 enum mips_abi abi = mips_abi (current_gdbarch);
492
a4b8ebc8
AC
493 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
494 don't make the raw register names visible. */
495 int rawnum = regno % NUM_REGS;
496 if (regno < NUM_REGS)
497 return "";
498
5e2e9765
KB
499 /* The MIPS integer registers are always mapped from 0 to 31. The
500 names of the registers (which reflects the conventions regarding
501 register use) vary depending on the ABI. */
a4b8ebc8 502 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
503 {
504 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 505 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 506 else
a4b8ebc8 507 return mips_gpr_names[rawnum];
5e2e9765 508 }
a4b8ebc8 509 else if (32 <= rawnum && rawnum < NUM_REGS)
691c0433
AC
510 {
511 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
512 return tdep->mips_processor_reg_names[rawnum - 32];
513 }
5e2e9765
KB
514 else
515 internal_error (__FILE__, __LINE__,
a4b8ebc8 516 "mips_register_name: bad register number %d", rawnum);
cce74817 517}
5e2e9765 518
a4b8ebc8 519/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 520
a4b8ebc8
AC
521static int
522mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
523 struct reggroup *reggroup)
524{
525 int vector_p;
526 int float_p;
527 int raw_p;
528 int rawnum = regnum % NUM_REGS;
529 int pseudo = regnum / NUM_REGS;
530 if (reggroup == all_reggroup)
531 return pseudo;
532 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
533 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
534 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
535 (gdbarch), as not all architectures are multi-arch. */
536 raw_p = rawnum < NUM_REGS;
537 if (REGISTER_NAME (regnum) == NULL
538 || REGISTER_NAME (regnum)[0] == '\0')
539 return 0;
540 if (reggroup == float_reggroup)
541 return float_p && pseudo;
542 if (reggroup == vector_reggroup)
543 return vector_p && pseudo;
544 if (reggroup == general_reggroup)
545 return (!vector_p && !float_p) && pseudo;
546 /* Save the pseudo registers. Need to make certain that any code
547 extracting register values from a saved register cache also uses
548 pseudo registers. */
549 if (reggroup == save_reggroup)
550 return raw_p && pseudo;
551 /* Restore the same pseudo register. */
552 if (reggroup == restore_reggroup)
553 return raw_p && pseudo;
554 return 0;
555}
556
557/* Map the symbol table registers which live in the range [1 *
558 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
47ebcfbe 559 registers. Take care of alignment and size problems. */
c5aa993b 560
a4b8ebc8
AC
561static void
562mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
563 int cookednum, void *buf)
564{
47ebcfbe 565 int rawnum = cookednum % NUM_REGS;
a4b8ebc8 566 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
47ebcfbe
AC
567 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
568 return regcache_raw_read (regcache, rawnum, buf);
569 else if (register_size (gdbarch, rawnum) > register_size (gdbarch, cookednum))
570 {
571 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
572 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
573 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
574 else
575 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
576 }
577 else
578 internal_error (__FILE__, __LINE__, "bad register size");
a4b8ebc8
AC
579}
580
581static void
582mips_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
583 int cookednum, const void *buf)
584{
47ebcfbe 585 int rawnum = cookednum % NUM_REGS;
a4b8ebc8 586 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
47ebcfbe
AC
587 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
588 return regcache_raw_write (regcache, rawnum, buf);
589 else if (register_size (gdbarch, rawnum) > register_size (gdbarch, cookednum))
590 {
591 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
592 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
593 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
594 else
595 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
596 }
597 else
598 internal_error (__FILE__, __LINE__, "bad register size");
a4b8ebc8 599}
c5aa993b 600
c906108c 601/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
602static int mips16_to_32_reg[8] =
603{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
604
605/* Heuristic_proc_start may hunt through the text section for a long
606 time across a 2400 baud serial line. Allows the user to limit this
607 search. */
608
609static unsigned int heuristic_fence_post = 0;
610
c5aa993b
JM
611#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
612#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
613#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
614#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
615#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
616#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
617#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
618#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
619#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
620#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
6c0d6680
DJ
621/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
622 this will corrupt pdr.iline. Fortunately we don't use it. */
c906108c
SS
623#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
624#define _PROC_MAGIC_ 0x0F0F0F0F
625#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
626#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
627
628struct linked_proc_info
c5aa993b
JM
629 {
630 struct mips_extra_func_info info;
631 struct linked_proc_info *next;
632 }
633 *linked_proc_desc_table = NULL;
c906108c 634
46cd78fb 635/* Number of bytes of storage in the actual machine representation for
719ec221
AC
636 register N. NOTE: This defines the pseudo register type so need to
637 rebuild the architecture vector. */
43e526b9
JM
638
639static int mips64_transfers_32bit_regs_p = 0;
640
719ec221
AC
641static void
642set_mips64_transfers_32bit_regs (char *args, int from_tty,
643 struct cmd_list_element *c)
43e526b9 644{
719ec221
AC
645 struct gdbarch_info info;
646 gdbarch_info_init (&info);
647 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
648 instead of relying on globals. Doing that would let generic code
649 handle the search for this specific architecture. */
650 if (!gdbarch_update_p (info))
a4b8ebc8 651 {
719ec221
AC
652 mips64_transfers_32bit_regs_p = 0;
653 error ("32-bit compatibility mode not supported");
a4b8ebc8 654 }
a4b8ebc8
AC
655}
656
47ebcfbe 657/* Convert to/from a register and the corresponding memory value. */
43e526b9 658
ff2e87ac
AC
659static int
660mips_convert_register_p (int regnum, struct type *type)
661{
662 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
719ec221 663 && register_size (current_gdbarch, regnum) == 4
56cea623 664 && (regnum) >= mips_regnum (current_gdbarch)->fp0 && (regnum) < mips_regnum (current_gdbarch)->fp0 + 32
ff2e87ac
AC
665 && TYPE_CODE(type) == TYPE_CODE_FLT
666 && TYPE_LENGTH(type) == 8);
667}
668
42c466d7 669static void
ff2e87ac
AC
670mips_register_to_value (struct frame_info *frame, int regnum,
671 struct type *type, void *to)
102182a9 672{
7f5f525d
AC
673 get_frame_register (frame, regnum + 0, (char *) to + 4);
674 get_frame_register (frame, regnum + 1, (char *) to + 0);
102182a9
MS
675}
676
42c466d7 677static void
ff2e87ac
AC
678mips_value_to_register (struct frame_info *frame, int regnum,
679 struct type *type, const void *from)
102182a9 680{
ff2e87ac
AC
681 put_frame_register (frame, regnum + 0, (const char *) from + 4);
682 put_frame_register (frame, regnum + 1, (const char *) from + 0);
102182a9
MS
683}
684
a4b8ebc8
AC
685/* Return the GDB type object for the "standard" data type of data in
686 register REG. */
78fde5f8
KB
687
688static struct type *
a4b8ebc8
AC
689mips_register_type (struct gdbarch *gdbarch, int regnum)
690{
5ef80fb0 691 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
56cea623
AC
692 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
693 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
a6425924 694 {
5ef80fb0
AC
695 /* The floating-point registers raw, or cooked, always match
696 mips_regsize(), and also map 1:1, byte for byte. */
697 switch (gdbarch_byte_order (gdbarch))
698 {
699 case BFD_ENDIAN_BIG:
700 if (mips_regsize (gdbarch) == 4)
701 return builtin_type_ieee_single_big;
702 else
703 return builtin_type_ieee_double_big;
704 case BFD_ENDIAN_LITTLE:
705 if (mips_regsize (gdbarch) == 4)
706 return builtin_type_ieee_single_little;
707 else
708 return builtin_type_ieee_double_little;
709 case BFD_ENDIAN_UNKNOWN:
710 default:
711 internal_error (__FILE__, __LINE__, "bad switch");
712 }
a6425924 713 }
56cea623 714 else if (regnum >= (NUM_REGS + mips_regnum (current_gdbarch)->fp_control_status)
5ef80fb0
AC
715 && regnum <= NUM_REGS + LAST_EMBED_REGNUM)
716 /* The pseudo/cooked view of the embedded registers is always
717 32-bit. The raw view is handled below. */
718 return builtin_type_int32;
719ec221
AC
719 else if (regnum >= NUM_REGS && mips_regsize (gdbarch)
720 && gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
721 /* The target, while using a 64-bit register buffer, is only
722 transfering 32-bits of each integer register. Reflect this in
723 the cooked/pseudo register value. */
724 return builtin_type_int32;
5ef80fb0
AC
725 else if (mips_regsize (gdbarch) == 8)
726 /* 64-bit ISA. */
727 return builtin_type_int64;
78fde5f8 728 else
5ef80fb0
AC
729 /* 32-bit ISA. */
730 return builtin_type_int32;
78fde5f8
KB
731}
732
bcb0cc15
MS
733/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
734
735static CORE_ADDR
736mips_read_sp (void)
737{
e227b13c 738 return read_signed_register (SP_REGNUM);
bcb0cc15
MS
739}
740
c906108c 741/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 742enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
743
744static int
745mips_mask_address_p (void)
746{
747 switch (mask_address_var)
748 {
7f19b9a2 749 case AUTO_BOOLEAN_TRUE:
4014092b 750 return 1;
7f19b9a2 751 case AUTO_BOOLEAN_FALSE:
4014092b
AC
752 return 0;
753 break;
7f19b9a2 754 case AUTO_BOOLEAN_AUTO:
92e1c15c 755 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b 756 default:
8e65ff28
AC
757 internal_error (__FILE__, __LINE__,
758 "mips_mask_address_p: bad switch");
4014092b 759 return -1;
361d1df0 760 }
4014092b
AC
761}
762
763static void
e9e68a56 764show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
4014092b
AC
765{
766 switch (mask_address_var)
767 {
7f19b9a2 768 case AUTO_BOOLEAN_TRUE:
4014092b
AC
769 printf_filtered ("The 32 bit mips address mask is enabled\n");
770 break;
7f19b9a2 771 case AUTO_BOOLEAN_FALSE:
4014092b
AC
772 printf_filtered ("The 32 bit mips address mask is disabled\n");
773 break;
7f19b9a2 774 case AUTO_BOOLEAN_AUTO:
4014092b
AC
775 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
776 mips_mask_address_p () ? "enabled" : "disabled");
777 break;
778 default:
8e65ff28
AC
779 internal_error (__FILE__, __LINE__,
780 "show_mask_address: bad switch");
4014092b 781 break;
361d1df0 782 }
4014092b 783}
c906108c
SS
784
785/* Should call_function allocate stack space for a struct return? */
cb811fe7 786
f7ab6ec6 787static int
cb811fe7 788mips_eabi_use_struct_convention (int gcc_p, struct type *type)
c906108c 789{
cb811fe7
MS
790 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
791}
792
8b389c40
MS
793/* Should call_function pass struct by reference?
794 For each architecture, structs are passed either by
795 value or by reference, depending on their size. */
796
797static int
798mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
799{
800 enum type_code typecode = TYPE_CODE (check_typedef (type));
801 int len = TYPE_LENGTH (check_typedef (type));
802
803 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
804 return (len > MIPS_SAVED_REGSIZE);
805
806 return 0;
807}
808
809static int
810mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
811{
812 return 0; /* Assumption: N32/N64 never passes struct by ref. */
813}
814
f7ab6ec6 815static int
8b389c40
MS
816mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
817{
818 return 0; /* Assumption: O32/O64 never passes struct by ref. */
819}
820
c906108c
SS
821/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
822
823static int
824pc_is_mips16 (bfd_vma memaddr)
825{
826 struct minimal_symbol *sym;
827
828 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 829 if (is_mips16_addr (memaddr))
c906108c
SS
830 return 1;
831
832 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
833 the high bit of the info field. Use this to decide if the function is
834 MIPS16 or normal MIPS. */
835 sym = lookup_minimal_symbol_by_pc (memaddr);
836 if (sym)
71b8ef93 837 return msymbol_is_special (sym);
c906108c
SS
838 else
839 return 0;
840}
841
6c997a34
AC
842/* MIPS believes that the PC has a sign extended value. Perhaphs the
843 all registers should be sign extended for simplicity? */
844
845static CORE_ADDR
39f77062 846mips_read_pc (ptid_t ptid)
6c997a34 847{
39f77062 848 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 849}
c906108c
SS
850
851/* This returns the PC of the first inst after the prologue. If we can't
852 find the prologue, then return 0. */
853
854static CORE_ADDR
acdb74a0
AC
855after_prologue (CORE_ADDR pc,
856 mips_extra_func_info_t proc_desc)
c906108c
SS
857{
858 struct symtab_and_line sal;
859 CORE_ADDR func_addr, func_end;
860
479412cd
DJ
861 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
862 to read the stack pointer from the current machine state, because
863 the current machine state has nothing to do with the information
864 we need from the proc_desc; and the process may or may not exist
865 right now. */
c906108c 866 if (!proc_desc)
479412cd 867 proc_desc = find_proc_desc (pc, NULL, 0);
c906108c
SS
868
869 if (proc_desc)
870 {
871 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 872 strongly suspect that frameless always means prologueless... */
c906108c
SS
873 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
874 && PROC_FRAME_OFFSET (proc_desc) == 0)
875 return 0;
876 }
877
878 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
879 return 0; /* Unknown */
880
881 sal = find_pc_line (func_addr, 0);
882
883 if (sal.end < func_end)
884 return sal.end;
885
886 /* The line after the prologue is after the end of the function. In this
887 case, tell the caller to find the prologue the hard way. */
888
889 return 0;
890}
891
892/* Decode a MIPS32 instruction that saves a register in the stack, and
893 set the appropriate bit in the general register mask or float register mask
894 to indicate which register is saved. This is a helper function
895 for mips_find_saved_regs. */
896
897static void
acdb74a0
AC
898mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
899 unsigned long *float_mask)
c906108c
SS
900{
901 int reg;
902
903 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
904 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
905 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
906 {
907 /* It might be possible to use the instruction to
c5aa993b
JM
908 find the offset, rather than the code below which
909 is based on things being in a certain order in the
910 frame, but figuring out what the instruction's offset
911 is relative to might be a little tricky. */
c906108c
SS
912 reg = (inst & 0x001f0000) >> 16;
913 *gen_mask |= (1 << reg);
914 }
915 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
916 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
917 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
918
919 {
920 reg = ((inst & 0x001f0000) >> 16);
921 *float_mask |= (1 << reg);
922 }
923}
924
925/* Decode a MIPS16 instruction that saves a register in the stack, and
926 set the appropriate bit in the general register or float register mask
927 to indicate which register is saved. This is a helper function
928 for mips_find_saved_regs. */
929
930static void
acdb74a0 931mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 932{
c5aa993b 933 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
934 {
935 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
936 *gen_mask |= (1 << reg);
937 }
c5aa993b 938 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
939 {
940 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
941 *gen_mask |= (1 << reg);
942 }
c5aa993b 943 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
944 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
945 *gen_mask |= (1 << RA_REGNUM);
946}
947
948
949/* Fetch and return instruction from the specified location. If the PC
950 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
951
952static t_inst
acdb74a0 953mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
954{
955 char buf[MIPS_INSTLEN];
956 int instlen;
957 int status;
958
959 if (pc_is_mips16 (addr))
960 {
961 instlen = MIPS16_INSTLEN;
95404a3e 962 addr = unmake_mips16_addr (addr);
c906108c
SS
963 }
964 else
c5aa993b 965 instlen = MIPS_INSTLEN;
c906108c
SS
966 status = read_memory_nobpt (addr, buf, instlen);
967 if (status)
968 memory_error (status, addr);
969 return extract_unsigned_integer (buf, instlen);
970}
971
972
973/* These the fields of 32 bit mips instructions */
e135b889
DJ
974#define mips32_op(x) (x >> 26)
975#define itype_op(x) (x >> 26)
976#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 977#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 978#define itype_immediate(x) (x & 0xffff)
c906108c 979
e135b889
DJ
980#define jtype_op(x) (x >> 26)
981#define jtype_target(x) (x & 0x03ffffff)
c906108c 982
e135b889
DJ
983#define rtype_op(x) (x >> 26)
984#define rtype_rs(x) ((x >> 21) & 0x1f)
985#define rtype_rt(x) ((x >> 16) & 0x1f)
986#define rtype_rd(x) ((x >> 11) & 0x1f)
987#define rtype_shamt(x) ((x >> 6) & 0x1f)
988#define rtype_funct(x) (x & 0x3f)
c906108c
SS
989
990static CORE_ADDR
c5aa993b
JM
991mips32_relative_offset (unsigned long inst)
992{
993 long x;
994 x = itype_immediate (inst);
995 if (x & 0x8000) /* sign bit set */
c906108c 996 {
c5aa993b 997 x |= 0xffff0000; /* sign extension */
c906108c 998 }
c5aa993b
JM
999 x = x << 2;
1000 return x;
c906108c
SS
1001}
1002
1003/* Determine whate to set a single step breakpoint while considering
1004 branch prediction */
5a89d8aa 1005static CORE_ADDR
c5aa993b
JM
1006mips32_next_pc (CORE_ADDR pc)
1007{
1008 unsigned long inst;
1009 int op;
1010 inst = mips_fetch_instruction (pc);
e135b889 1011 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 1012 {
e135b889
DJ
1013 if (itype_op (inst) >> 2 == 5)
1014 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1015 {
e135b889 1016 op = (itype_op (inst) & 0x03);
c906108c
SS
1017 switch (op)
1018 {
e135b889
DJ
1019 case 0: /* BEQL */
1020 goto equal_branch;
1021 case 1: /* BNEL */
1022 goto neq_branch;
1023 case 2: /* BLEZL */
1024 goto less_branch;
1025 case 3: /* BGTZ */
1026 goto greater_branch;
c5aa993b
JM
1027 default:
1028 pc += 4;
c906108c
SS
1029 }
1030 }
e135b889
DJ
1031 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1032 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1033 {
1034 int tf = itype_rt (inst) & 0x01;
1035 int cnum = itype_rt (inst) >> 2;
56cea623 1036 int fcrcs = read_signed_register (mips_regnum (current_gdbarch)->fp_control_status);
e135b889
DJ
1037 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1038
1039 if (((cond >> cnum) & 0x01) == tf)
1040 pc += mips32_relative_offset (inst) + 4;
1041 else
1042 pc += 8;
1043 }
c5aa993b
JM
1044 else
1045 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
1046 }
1047 else
c5aa993b
JM
1048 { /* This gets way messy */
1049
c906108c 1050 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 1051 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 1052 {
c5aa993b
JM
1053 case 0: /* SPECIAL */
1054 op = rtype_funct (inst);
1055 switch (op)
1056 {
1057 case 8: /* JR */
1058 case 9: /* JALR */
6c997a34
AC
1059 /* Set PC to that address */
1060 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
1061 break;
1062 default:
1063 pc += 4;
1064 }
1065
e135b889 1066 break; /* end SPECIAL */
c5aa993b 1067 case 1: /* REGIMM */
c906108c 1068 {
e135b889
DJ
1069 op = itype_rt (inst); /* branch condition */
1070 switch (op)
c906108c 1071 {
c5aa993b 1072 case 0: /* BLTZ */
e135b889
DJ
1073 case 2: /* BLTZL */
1074 case 16: /* BLTZAL */
c5aa993b 1075 case 18: /* BLTZALL */
c906108c 1076 less_branch:
6c997a34 1077 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
1078 pc += mips32_relative_offset (inst) + 4;
1079 else
1080 pc += 8; /* after the delay slot */
1081 break;
e135b889 1082 case 1: /* BGEZ */
c5aa993b
JM
1083 case 3: /* BGEZL */
1084 case 17: /* BGEZAL */
1085 case 19: /* BGEZALL */
c906108c 1086 greater_equal_branch:
6c997a34 1087 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
1088 pc += mips32_relative_offset (inst) + 4;
1089 else
1090 pc += 8; /* after the delay slot */
1091 break;
e135b889 1092 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1093 default:
1094 pc += 4;
c906108c
SS
1095 }
1096 }
e135b889 1097 break; /* end REGIMM */
c5aa993b
JM
1098 case 2: /* J */
1099 case 3: /* JAL */
1100 {
1101 unsigned long reg;
1102 reg = jtype_target (inst) << 2;
e135b889 1103 /* Upper four bits get never changed... */
c5aa993b 1104 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 1105 }
c5aa993b
JM
1106 break;
1107 /* FIXME case JALX : */
1108 {
1109 unsigned long reg;
1110 reg = jtype_target (inst) << 2;
1111 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
1112 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1113 }
c5aa993b 1114 break; /* The new PC will be alternate mode */
e135b889 1115 case 4: /* BEQ, BEQL */
c5aa993b 1116 equal_branch:
6c997a34
AC
1117 if (read_signed_register (itype_rs (inst)) ==
1118 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1119 pc += mips32_relative_offset (inst) + 4;
1120 else
1121 pc += 8;
1122 break;
e135b889 1123 case 5: /* BNE, BNEL */
c5aa993b 1124 neq_branch:
6c997a34 1125 if (read_signed_register (itype_rs (inst)) !=
e135b889 1126 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1127 pc += mips32_relative_offset (inst) + 4;
1128 else
1129 pc += 8;
1130 break;
e135b889 1131 case 6: /* BLEZ, BLEZL */
c906108c 1132 less_zero_branch:
6c997a34 1133 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
1134 pc += mips32_relative_offset (inst) + 4;
1135 else
1136 pc += 8;
1137 break;
1138 case 7:
e135b889
DJ
1139 default:
1140 greater_branch: /* BGTZ, BGTZL */
6c997a34 1141 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
1142 pc += mips32_relative_offset (inst) + 4;
1143 else
1144 pc += 8;
1145 break;
c5aa993b
JM
1146 } /* switch */
1147 } /* else */
1148 return pc;
1149} /* mips32_next_pc */
c906108c
SS
1150
1151/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1152 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1153 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1154 We dont want to set a single step instruction on the extend instruction
1155 either.
c5aa993b 1156 */
c906108c
SS
1157
1158/* Lots of mips16 instruction formats */
1159/* Predicting jumps requires itype,ritype,i8type
1160 and their extensions extItype,extritype,extI8type
c5aa993b 1161 */
c906108c
SS
1162enum mips16_inst_fmts
1163{
c5aa993b
JM
1164 itype, /* 0 immediate 5,10 */
1165 ritype, /* 1 5,3,8 */
1166 rrtype, /* 2 5,3,3,5 */
1167 rritype, /* 3 5,3,3,5 */
1168 rrrtype, /* 4 5,3,3,3,2 */
1169 rriatype, /* 5 5,3,3,1,4 */
1170 shifttype, /* 6 5,3,3,3,2 */
1171 i8type, /* 7 5,3,8 */
1172 i8movtype, /* 8 5,3,3,5 */
1173 i8mov32rtype, /* 9 5,3,5,3 */
1174 i64type, /* 10 5,3,8 */
1175 ri64type, /* 11 5,3,3,5 */
1176 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1177 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1178 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1179 extRRItype, /* 15 5,5,5,5,3,3,5 */
1180 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1181 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1182 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1183 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1184 extRi64type, /* 20 5,6,5,5,3,3,5 */
1185 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1186};
12f02c2a
AC
1187/* I am heaping all the fields of the formats into one structure and
1188 then, only the fields which are involved in instruction extension */
c906108c 1189struct upk_mips16
c5aa993b 1190 {
12f02c2a 1191 CORE_ADDR offset;
c5aa993b
JM
1192 unsigned int regx; /* Function in i8 type */
1193 unsigned int regy;
1194 };
c906108c
SS
1195
1196
12f02c2a
AC
1197/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1198 for the bits which make up the immediatate extension. */
c906108c 1199
12f02c2a
AC
1200static CORE_ADDR
1201extended_offset (unsigned int extension)
c906108c 1202{
12f02c2a 1203 CORE_ADDR value;
c5aa993b
JM
1204 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1205 value = value << 6;
1206 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1207 value = value << 5;
1208 value |= extension & 0x01f; /* extract 4:0 */
1209 return value;
c906108c
SS
1210}
1211
1212/* Only call this function if you know that this is an extendable
1213 instruction, It wont malfunction, but why make excess remote memory references?
1214 If the immediate operands get sign extended or somthing, do it after
1215 the extension is performed.
c5aa993b 1216 */
c906108c
SS
1217/* FIXME: Every one of these cases needs to worry about sign extension
1218 when the offset is to be used in relative addressing */
1219
1220
12f02c2a 1221static unsigned int
c5aa993b 1222fetch_mips_16 (CORE_ADDR pc)
c906108c 1223{
c5aa993b
JM
1224 char buf[8];
1225 pc &= 0xfffffffe; /* clear the low order bit */
1226 target_read_memory (pc, buf, 2);
1227 return extract_unsigned_integer (buf, 2);
c906108c
SS
1228}
1229
1230static void
c5aa993b 1231unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1232 unsigned int extension,
1233 unsigned int inst,
1234 enum mips16_inst_fmts insn_format,
c5aa993b 1235 struct upk_mips16 *upk)
c906108c 1236{
12f02c2a
AC
1237 CORE_ADDR offset;
1238 int regx;
1239 int regy;
1240 switch (insn_format)
c906108c 1241 {
c5aa993b 1242 case itype:
c906108c 1243 {
12f02c2a
AC
1244 CORE_ADDR value;
1245 if (extension)
c5aa993b
JM
1246 {
1247 value = extended_offset (extension);
1248 value = value << 11; /* rom for the original value */
12f02c2a 1249 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1250 }
1251 else
c5aa993b 1252 {
12f02c2a 1253 value = inst & 0x7ff;
c5aa993b 1254 /* FIXME : Consider sign extension */
c906108c 1255 }
12f02c2a
AC
1256 offset = value;
1257 regx = -1;
1258 regy = -1;
c906108c 1259 }
c5aa993b
JM
1260 break;
1261 case ritype:
1262 case i8type:
1263 { /* A register identifier and an offset */
c906108c
SS
1264 /* Most of the fields are the same as I type but the
1265 immediate value is of a different length */
12f02c2a
AC
1266 CORE_ADDR value;
1267 if (extension)
c906108c 1268 {
c5aa993b
JM
1269 value = extended_offset (extension);
1270 value = value << 8; /* from the original instruction */
12f02c2a
AC
1271 value |= inst & 0xff; /* eleven bits from instruction */
1272 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1273 if (value & 0x4000) /* test the sign bit , bit 26 */
1274 {
1275 value &= ~0x3fff; /* remove the sign bit */
1276 value = -value;
c906108c
SS
1277 }
1278 }
c5aa993b
JM
1279 else
1280 {
12f02c2a
AC
1281 value = inst & 0xff; /* 8 bits */
1282 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1283 /* FIXME: Do sign extension , this format needs it */
1284 if (value & 0x80) /* THIS CONFUSES ME */
1285 {
1286 value &= 0xef; /* remove the sign bit */
1287 value = -value;
1288 }
c5aa993b 1289 }
12f02c2a
AC
1290 offset = value;
1291 regy = -1;
c5aa993b 1292 break;
c906108c 1293 }
c5aa993b 1294 case jalxtype:
c906108c 1295 {
c5aa993b 1296 unsigned long value;
12f02c2a
AC
1297 unsigned int nexthalf;
1298 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1299 value = value << 16;
1300 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1301 value |= nexthalf;
12f02c2a
AC
1302 offset = value;
1303 regx = -1;
1304 regy = -1;
c5aa993b 1305 break;
c906108c
SS
1306 }
1307 default:
8e65ff28
AC
1308 internal_error (__FILE__, __LINE__,
1309 "bad switch");
c906108c 1310 }
12f02c2a
AC
1311 upk->offset = offset;
1312 upk->regx = regx;
1313 upk->regy = regy;
c906108c
SS
1314}
1315
1316
c5aa993b
JM
1317static CORE_ADDR
1318add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1319{
c5aa993b 1320 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
c906108c
SS
1321}
1322
12f02c2a
AC
1323static CORE_ADDR
1324extended_mips16_next_pc (CORE_ADDR pc,
1325 unsigned int extension,
1326 unsigned int insn)
c906108c 1327{
12f02c2a
AC
1328 int op = (insn >> 11);
1329 switch (op)
c906108c 1330 {
12f02c2a
AC
1331 case 2: /* Branch */
1332 {
1333 CORE_ADDR offset;
1334 struct upk_mips16 upk;
1335 unpack_mips16 (pc, extension, insn, itype, &upk);
1336 offset = upk.offset;
1337 if (offset & 0x800)
1338 {
1339 offset &= 0xeff;
1340 offset = -offset;
1341 }
1342 pc += (offset << 1) + 2;
1343 break;
1344 }
1345 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1346 {
1347 struct upk_mips16 upk;
1348 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1349 pc = add_offset_16 (pc, upk.offset);
1350 if ((insn >> 10) & 0x01) /* Exchange mode */
1351 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1352 else
1353 pc |= 0x01;
1354 break;
1355 }
1356 case 4: /* beqz */
1357 {
1358 struct upk_mips16 upk;
1359 int reg;
1360 unpack_mips16 (pc, extension, insn, ritype, &upk);
1361 reg = read_signed_register (upk.regx);
1362 if (reg == 0)
1363 pc += (upk.offset << 1) + 2;
1364 else
1365 pc += 2;
1366 break;
1367 }
1368 case 5: /* bnez */
1369 {
1370 struct upk_mips16 upk;
1371 int reg;
1372 unpack_mips16 (pc, extension, insn, ritype, &upk);
1373 reg = read_signed_register (upk.regx);
1374 if (reg != 0)
1375 pc += (upk.offset << 1) + 2;
1376 else
1377 pc += 2;
1378 break;
1379 }
1380 case 12: /* I8 Formats btez btnez */
1381 {
1382 struct upk_mips16 upk;
1383 int reg;
1384 unpack_mips16 (pc, extension, insn, i8type, &upk);
1385 /* upk.regx contains the opcode */
1386 reg = read_signed_register (24); /* Test register is 24 */
1387 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1388 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1389 /* pc = add_offset_16(pc,upk.offset) ; */
1390 pc += (upk.offset << 1) + 2;
1391 else
1392 pc += 2;
1393 break;
1394 }
1395 case 29: /* RR Formats JR, JALR, JALR-RA */
1396 {
1397 struct upk_mips16 upk;
1398 /* upk.fmt = rrtype; */
1399 op = insn & 0x1f;
1400 if (op == 0)
c5aa993b 1401 {
12f02c2a
AC
1402 int reg;
1403 upk.regx = (insn >> 8) & 0x07;
1404 upk.regy = (insn >> 5) & 0x07;
1405 switch (upk.regy)
c5aa993b 1406 {
12f02c2a
AC
1407 case 0:
1408 reg = upk.regx;
1409 break;
1410 case 1:
1411 reg = 31;
1412 break; /* Function return instruction */
1413 case 2:
1414 reg = upk.regx;
1415 break;
1416 default:
1417 reg = 31;
1418 break; /* BOGUS Guess */
c906108c 1419 }
12f02c2a 1420 pc = read_signed_register (reg);
c906108c 1421 }
12f02c2a 1422 else
c5aa993b 1423 pc += 2;
12f02c2a
AC
1424 break;
1425 }
1426 case 30:
1427 /* This is an instruction extension. Fetch the real instruction
1428 (which follows the extension) and decode things based on
1429 that. */
1430 {
1431 pc += 2;
1432 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1433 break;
1434 }
1435 default:
1436 {
1437 pc += 2;
1438 break;
1439 }
c906108c 1440 }
c5aa993b 1441 return pc;
12f02c2a 1442}
c906108c 1443
5a89d8aa 1444static CORE_ADDR
12f02c2a
AC
1445mips16_next_pc (CORE_ADDR pc)
1446{
1447 unsigned int insn = fetch_mips_16 (pc);
1448 return extended_mips16_next_pc (pc, 0, insn);
1449}
1450
1451/* The mips_next_pc function supports single_step when the remote
7e73cedf 1452 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1453 It works by decoding the current instruction and predicting where a
1454 branch will go. This isnt hard because all the data is available.
1455 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1456CORE_ADDR
1457mips_next_pc (CORE_ADDR pc)
c906108c 1458{
c5aa993b
JM
1459 if (pc & 0x01)
1460 return mips16_next_pc (pc);
1461 else
1462 return mips32_next_pc (pc);
12f02c2a 1463}
c906108c 1464
e0f7ec59
AC
1465/* Set up the 'saved_regs' array. This is a data structure containing
1466 the addresses on the stack where each register has been saved, for
1467 each stack frame. Registers that have not been saved will have
1468 zero here. The stack pointer register is special: rather than the
1469 address where the stack register has been saved,
1470 saved_regs[SP_REGNUM] will have the actual value of the previous
1471 frame's stack register. */
c906108c 1472
d28e01f4 1473static void
acdb74a0 1474mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1475{
1476 int ireg;
c906108c
SS
1477 /* r0 bit means kernel trap */
1478 int kernel_trap;
1479 /* What registers have been saved? Bitmasks. */
1480 unsigned long gen_mask, float_mask;
1481 mips_extra_func_info_t proc_desc;
1482 t_inst inst;
e0f7ec59 1483 CORE_ADDR *saved_regs;
c906108c 1484
1b1d3794 1485 if (deprecated_get_frame_saved_regs (fci) != NULL)
e0f7ec59
AC
1486 return;
1487 saved_regs = frame_saved_regs_zalloc (fci);
c906108c
SS
1488
1489 /* If it is the frame for sigtramp, the saved registers are located
e0f7ec59
AC
1490 in a sigcontext structure somewhere on the stack. If the stack
1491 layout for sigtramp changes we might have to change these
1492 constants and the companion fixup_sigtramp in mdebugread.c */
c906108c 1493#ifndef SIGFRAME_BASE
e0f7ec59
AC
1494 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1495 above the sigtramp frame. */
4246e332 1496#define SIGFRAME_BASE mips_regsize (current_gdbarch)
c906108c 1497/* FIXME! Are these correct?? */
4246e332
AC
1498#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * mips_regsize (current_gdbarch))
1499#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * mips_regsize (current_gdbarch))
c906108c 1500#define SIGFRAME_FPREGSAVE_OFF \
4246e332 1501 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * mips_regsize (current_gdbarch) + 3 * mips_regsize (current_gdbarch))
c906108c 1502#endif
5a203e44 1503 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
c906108c
SS
1504 {
1505 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1506 {
e0f7ec59 1507 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
10a08821 1508 + ireg * mips_regsize (current_gdbarch));
e0f7ec59 1509 set_reg_offset (saved_regs, ireg, reg_position);
c906108c
SS
1510 }
1511 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1512 {
e0f7ec59
AC
1513 CORE_ADDR reg_position = (get_frame_base (fci)
1514 + SIGFRAME_FPREGSAVE_OFF
10a08821 1515 + ireg * mips_regsize (current_gdbarch));
56cea623 1516 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg, reg_position);
c906108c 1517 }
e0f7ec59
AC
1518
1519 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1520 /* SP_REGNUM, contains the value and not the address. */
1521 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
c906108c
SS
1522 return;
1523 }
1524
da50a4b7 1525 proc_desc = get_frame_extra_info (fci)->proc_desc;
c906108c 1526 if (proc_desc == NULL)
e0f7ec59
AC
1527 /* I'm not sure how/whether this can happen. Normally when we
1528 can't find a proc_desc, we "synthesize" one using
1529 heuristic_proc_desc and set the saved_regs right away. */
c906108c
SS
1530 return;
1531
c5aa993b
JM
1532 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1533 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1534 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1535
e0f7ec59
AC
1536 if (/* In any frame other than the innermost or a frame interrupted
1537 by a signal, we assume that all registers have been saved.
1538 This assumes that all register saves in a function happen
1539 before the first function call. */
11c02a10
AC
1540 (get_next_frame (fci) == NULL
1541 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
c906108c 1542
e0f7ec59 1543 /* In a dummy frame we know exactly where things are saved. */
c5aa993b 1544 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1545
e0f7ec59
AC
1546 /* Don't bother unless we are inside a function prologue.
1547 Outside the prologue, we know where everything is. */
c906108c 1548
50abf9e5 1549 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
c906108c 1550
e0f7ec59
AC
1551 /* Not sure exactly what kernel_trap means, but if it means the
1552 kernel saves the registers without a prologue doing it, we
1553 better not examine the prologue to see whether registers
1554 have been saved yet. */
c5aa993b 1555 && !kernel_trap)
c906108c 1556 {
e0f7ec59
AC
1557 /* We need to figure out whether the registers that the
1558 proc_desc claims are saved have been saved yet. */
c906108c
SS
1559
1560 CORE_ADDR addr;
1561
1562 /* Bitmasks; set if we have found a save for the register. */
1563 unsigned long gen_save_found = 0;
1564 unsigned long float_save_found = 0;
1565 int instlen;
1566
1567 /* If the address is odd, assume this is MIPS16 code. */
1568 addr = PROC_LOW_ADDR (proc_desc);
1569 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1570
e0f7ec59
AC
1571 /* Scan through this function's instructions preceding the
1572 current PC, and look for those that save registers. */
50abf9e5 1573 while (addr < get_frame_pc (fci))
c906108c
SS
1574 {
1575 inst = mips_fetch_instruction (addr);
1576 if (pc_is_mips16 (addr))
1577 mips16_decode_reg_save (inst, &gen_save_found);
1578 else
1579 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1580 addr += instlen;
1581 }
1582 gen_mask = gen_save_found;
1583 float_mask = float_save_found;
1584 }
1585
e0f7ec59
AC
1586 /* Fill in the offsets for the registers which gen_mask says were
1587 saved. */
1588 {
1589 CORE_ADDR reg_position = (get_frame_base (fci)
1590 + PROC_REG_OFFSET (proc_desc));
1591 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1592 if (gen_mask & 0x80000000)
1593 {
1594 set_reg_offset (saved_regs, ireg, reg_position);
1595 reg_position -= MIPS_SAVED_REGSIZE;
1596 }
1597 }
c906108c 1598
e0f7ec59
AC
1599 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1600 order of that normally used by gcc. Therefore, we have to fetch
1601 the first instruction of the function, and if it's an entry
1602 instruction that saves $s0 or $s1, correct their saved addresses. */
c906108c
SS
1603 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1604 {
1605 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
e0f7ec59
AC
1606 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1607 /* entry */
c906108c
SS
1608 {
1609 int reg;
1610 int sreg_count = (inst >> 6) & 3;
c5aa993b 1611
c906108c 1612 /* Check if the ra register was pushed on the stack. */
e0f7ec59
AC
1613 CORE_ADDR reg_position = (get_frame_base (fci)
1614 + PROC_REG_OFFSET (proc_desc));
c906108c 1615 if (inst & 0x20)
7a292a7a 1616 reg_position -= MIPS_SAVED_REGSIZE;
c906108c 1617
e0f7ec59
AC
1618 /* Check if the s0 and s1 registers were pushed on the
1619 stack. */
c5aa993b 1620 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c 1621 {
e0f7ec59 1622 set_reg_offset (saved_regs, reg, reg_position);
7a292a7a 1623 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1624 }
1625 }
1626 }
1627
e0f7ec59
AC
1628 /* Fill in the offsets for the registers which float_mask says were
1629 saved. */
1630 {
1631 CORE_ADDR reg_position = (get_frame_base (fci)
1632 + PROC_FREG_OFFSET (proc_desc));
6acdf5c7 1633
e0f7ec59
AC
1634 /* Fill in the offsets for the float registers which float_mask
1635 says were saved. */
1636 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1637 if (float_mask & 0x80000000)
1638 {
c57bb9fa
AC
1639 if (MIPS_SAVED_REGSIZE == 4 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1640 {
1641 /* On a big endian 32 bit ABI, floating point registers
1642 are paired to form doubles such that the most
1643 significant part is in $f[N+1] and the least
1644 significant in $f[N] vis: $f[N+1] ||| $f[N]. The
1645 registers are also spilled as a pair and stored as a
1646 double.
1647
1648 When little-endian the least significant part is
1649 stored first leading to the memory order $f[N] and
1650 then $f[N+1].
1651
ce2826aa 1652 Unfortunately, when big-endian the most significant
c57bb9fa
AC
1653 part of the double is stored first, and the least
1654 significant is stored second. This leads to the
1655 registers being ordered in memory as firt $f[N+1] and
1656 then $f[N].
1657
1658 For the big-endian case make certain that the
1659 addresses point at the correct (swapped) locations
1660 $f[N] and $f[N+1] pair (keep in mind that
1661 reg_position is decremented each time through the
1662 loop). */
1663 if ((ireg & 1))
56cea623 1664 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg,
c57bb9fa
AC
1665 reg_position - MIPS_SAVED_REGSIZE);
1666 else
56cea623 1667 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg,
c57bb9fa
AC
1668 reg_position + MIPS_SAVED_REGSIZE);
1669 }
1670 else
56cea623 1671 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg, reg_position);
e0f7ec59
AC
1672 reg_position -= MIPS_SAVED_REGSIZE;
1673 }
c906108c 1674
e0f7ec59
AC
1675 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1676 }
d28e01f4 1677
e0f7ec59
AC
1678 /* SP_REGNUM, contains the value and not the address. */
1679 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
d28e01f4
KB
1680}
1681
c906108c 1682static CORE_ADDR
acdb74a0 1683read_next_frame_reg (struct frame_info *fi, int regno)
c906108c 1684{
a4b8ebc8
AC
1685 /* Always a pseudo. */
1686 gdb_assert (regno >= NUM_REGS);
f796e4be 1687 if (fi == NULL)
c906108c 1688 {
a4b8ebc8
AC
1689 LONGEST val;
1690 regcache_cooked_read_signed (current_regcache, regno, &val);
1691 return val;
f796e4be 1692 }
a4b8ebc8
AC
1693 else if ((regno % NUM_REGS) == SP_REGNUM)
1694 /* The SP_REGNUM is special, its value is stored in saved_regs.
1695 In fact, it is so special that it can even only be fetched
1696 using a raw register number! Once this code as been converted
1697 to frame-unwind the problem goes away. */
1698 return frame_unwind_register_signed (fi, regno % NUM_REGS);
f796e4be 1699 else
a4b8ebc8 1700 return frame_unwind_register_signed (fi, regno);
64159455 1701
c906108c
SS
1702}
1703
1704/* mips_addr_bits_remove - remove useless address bits */
1705
875e1767 1706static CORE_ADDR
acdb74a0 1707mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1708{
8fa9cfa1
AC
1709 if (mips_mask_address_p ()
1710 && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
1711 /* This hack is a work-around for existing boards using PMON, the
1712 simulator, and any other 64-bit targets that doesn't have true
1713 64-bit addressing. On these targets, the upper 32 bits of
1714 addresses are ignored by the hardware. Thus, the PC or SP are
1715 likely to have been sign extended to all 1s by instruction
1716 sequences that load 32-bit addresses. For example, a typical
1717 piece of code that loads an address is this:
1718
1719 lui $r2, <upper 16 bits>
1720 ori $r2, <lower 16 bits>
1721
1722 But the lui sign-extends the value such that the upper 32 bits
1723 may be all 1s. The workaround is simply to mask off these
1724 bits. In the future, gcc may be changed to support true 64-bit
1725 addressing, and this masking will have to be disabled. */
1726 return addr &= 0xffffffffUL;
1727 else
1728 return addr;
c906108c
SS
1729}
1730
9022177c
DJ
1731/* mips_software_single_step() is called just before we want to resume
1732 the inferior, if we want to single-step it but there is no hardware
75c9abc6 1733 or kernel single-step support (MIPS on GNU/Linux for example). We find
9022177c
DJ
1734 the target of the coming instruction and breakpoint it.
1735
1736 single_step is also called just after the inferior stops. If we had
1737 set up a simulated single-step, we undo our damage. */
1738
1739void
1740mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1741{
1742 static CORE_ADDR next_pc;
1743 typedef char binsn_quantum[BREAKPOINT_MAX];
1744 static binsn_quantum break_mem;
1745 CORE_ADDR pc;
1746
1747 if (insert_breakpoints_p)
1748 {
1749 pc = read_register (PC_REGNUM);
1750 next_pc = mips_next_pc (pc);
1751
1752 target_insert_breakpoint (next_pc, break_mem);
1753 }
1754 else
1755 target_remove_breakpoint (next_pc, break_mem);
1756}
1757
97f46953 1758static CORE_ADDR
acdb74a0 1759mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1760{
1761 CORE_ADDR pc, tmp;
1762
11c02a10 1763 pc = ((fromleaf)
6913c89a 1764 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
11c02a10 1765 : get_next_frame (prev)
8bedc050 1766 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
11c02a10 1767 : read_pc ());
5a89d8aa 1768 tmp = SKIP_TRAMPOLINE_CODE (pc);
97f46953 1769 return tmp ? tmp : pc;
c906108c
SS
1770}
1771
1772
f7ab6ec6 1773static CORE_ADDR
acdb74a0 1774mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1775{
1776 CORE_ADDR saved_pc;
c906108c 1777
50abf9e5 1778 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
1779 {
1780 LONGEST tmp;
a4b8ebc8
AC
1781 /* Always unwind the cooked PC register value. */
1782 frame_unwind_signed_register (frame, NUM_REGS + PC_REGNUM, &tmp);
cedea778
AC
1783 saved_pc = tmp;
1784 }
c906108c 1785 else
a4b8ebc8
AC
1786 {
1787 mips_extra_func_info_t proc_desc
1788 = get_frame_extra_info (frame)->proc_desc;
1789 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1790 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1791 else
1792 {
1793 /* We have to get the saved pc from the sigcontext if it is
1794 a signal handler frame. */
1795 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME ? PC_REGNUM
1796 : proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1797 saved_pc = read_next_frame_reg (frame, NUM_REGS + pcreg);
1798 }
1799 }
c906108c
SS
1800 return ADDR_BITS_REMOVE (saved_pc);
1801}
1802
1803static struct mips_extra_func_info temp_proc_desc;
fe29b929
KB
1804
1805/* This hack will go away once the get_prev_frame() code has been
1806 modified to set the frame's type first. That is BEFORE init extra
1807 frame info et.al. is called. This is because it will become
1808 possible to skip the init extra info call for sigtramp and dummy
1809 frames. */
1810static CORE_ADDR *temp_saved_regs;
c906108c 1811
e0f7ec59
AC
1812/* Set a register's saved stack address in temp_saved_regs. If an
1813 address has already been set for this register, do nothing; this
1814 way we will only recognize the first save of a given register in a
a4b8ebc8
AC
1815 function prologue.
1816
1817 For simplicity, save the address in both [0 .. NUM_REGS) and
1818 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1819 is used as it is only second range (the ABI instead of ISA
1820 registers) that comes into play when finding saved registers in a
1821 frame. */
c906108c
SS
1822
1823static void
e0f7ec59 1824set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
c906108c 1825{
e0f7ec59 1826 if (saved_regs[regno] == 0)
a4b8ebc8
AC
1827 {
1828 saved_regs[regno + 0 * NUM_REGS] = offset;
1829 saved_regs[regno + 1 * NUM_REGS] = offset;
1830 }
c906108c
SS
1831}
1832
1833
1834/* Test whether the PC points to the return instruction at the
1835 end of a function. */
1836
c5aa993b 1837static int
acdb74a0 1838mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1839{
1840 if (pc_is_mips16 (pc))
1841 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1842 generates a "jr $ra"; other times it generates code to load
1843 the return address from the stack to an accessible register (such
1844 as $a3), then a "jr" using that register. This second case
1845 is almost impossible to distinguish from an indirect jump
1846 used for switch statements, so we don't even try. */
1847 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1848 else
1849 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1850}
1851
1852
1853/* This fencepost looks highly suspicious to me. Removing it also
1854 seems suspicious as it could affect remote debugging across serial
1855 lines. */
1856
1857static CORE_ADDR
acdb74a0 1858heuristic_proc_start (CORE_ADDR pc)
c906108c 1859{
c5aa993b
JM
1860 CORE_ADDR start_pc;
1861 CORE_ADDR fence;
1862 int instlen;
1863 int seen_adjsp = 0;
c906108c 1864
c5aa993b
JM
1865 pc = ADDR_BITS_REMOVE (pc);
1866 start_pc = pc;
1867 fence = start_pc - heuristic_fence_post;
1868 if (start_pc == 0)
1869 return 0;
c906108c 1870
c5aa993b
JM
1871 if (heuristic_fence_post == UINT_MAX
1872 || fence < VM_MIN_ADDRESS)
1873 fence = VM_MIN_ADDRESS;
c906108c 1874
c5aa993b 1875 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1876
c5aa993b
JM
1877 /* search back for previous return */
1878 for (start_pc -= instlen;; start_pc -= instlen)
1879 if (start_pc < fence)
1880 {
1881 /* It's not clear to me why we reach this point when
c0236d92 1882 stop_soon, but with this test, at least we
c5aa993b
JM
1883 don't print out warnings for every child forked (eg, on
1884 decstation). 22apr93 rich@cygnus.com. */
c0236d92 1885 if (stop_soon == NO_STOP_QUIETLY)
c906108c 1886 {
c5aa993b
JM
1887 static int blurb_printed = 0;
1888
1889 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1890 paddr_nz (pc));
1891
1892 if (!blurb_printed)
c906108c 1893 {
c5aa993b
JM
1894 /* This actually happens frequently in embedded
1895 development, when you first connect to a board
1896 and your stack pointer and pc are nowhere in
1897 particular. This message needs to give people
1898 in that situation enough information to
1899 determine that it's no big deal. */
1900 printf_filtered ("\n\
cd0fc7c3
SS
1901 GDB is unable to find the start of the function at 0x%s\n\
1902and thus can't determine the size of that function's stack frame.\n\
1903This means that GDB may be unable to access that stack frame, or\n\
1904the frames below it.\n\
1905 This problem is most likely caused by an invalid program counter or\n\
1906stack pointer.\n\
1907 However, if you think GDB should simply search farther back\n\
1908from 0x%s for code which looks like the beginning of a\n\
1909function, you can increase the range of the search using the `set\n\
1910heuristic-fence-post' command.\n",
c5aa993b
JM
1911 paddr_nz (pc), paddr_nz (pc));
1912 blurb_printed = 1;
c906108c 1913 }
c906108c
SS
1914 }
1915
c5aa993b
JM
1916 return 0;
1917 }
1918 else if (pc_is_mips16 (start_pc))
1919 {
1920 unsigned short inst;
1921
1922 /* On MIPS16, any one of the following is likely to be the
1923 start of a function:
1924 entry
1925 addiu sp,-n
1926 daddiu sp,-n
1927 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1928 inst = mips_fetch_instruction (start_pc);
1929 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1930 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1931 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1932 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1933 break;
1934 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1935 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1936 seen_adjsp = 1;
1937 else
1938 seen_adjsp = 0;
1939 }
1940 else if (mips_about_to_return (start_pc))
1941 {
1942 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1943 break;
1944 }
1945
c5aa993b 1946 return start_pc;
c906108c
SS
1947}
1948
1949/* Fetch the immediate value from a MIPS16 instruction.
1950 If the previous instruction was an EXTEND, use it to extend
1951 the upper bits of the immediate value. This is a helper function
1952 for mips16_heuristic_proc_desc. */
1953
1954static int
acdb74a0
AC
1955mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1956 unsigned short inst, /* current instruction */
1957 int nbits, /* number of bits in imm field */
1958 int scale, /* scale factor to be applied to imm */
1959 int is_signed) /* is the imm field signed? */
c906108c
SS
1960{
1961 int offset;
1962
1963 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1964 {
1965 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1966 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1967 offset = 0 - (0x10000 - (offset & 0xffff));
1968 return offset | (inst & 0x1f);
1969 }
1970 else
1971 {
1972 int max_imm = 1 << nbits;
1973 int mask = max_imm - 1;
1974 int sign_bit = max_imm >> 1;
1975
1976 offset = inst & mask;
1977 if (is_signed && (offset & sign_bit))
1978 offset = 0 - (max_imm - offset);
1979 return offset * scale;
1980 }
1981}
1982
1983
1984/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1985 stream from start_pc to limit_pc. */
1986
1987static void
acdb74a0
AC
1988mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1989 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1990{
1991 CORE_ADDR cur_pc;
1992 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1993 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1994 unsigned inst = 0; /* current instruction */
1995 unsigned entry_inst = 0; /* the entry instruction */
1996 int reg, offset;
1997
c5aa993b
JM
1998 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1999 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
2000
2001 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
2002 {
2003 /* Save the previous instruction. If it's an EXTEND, we'll extract
2004 the immediate offset extension from it in mips16_get_imm. */
2005 prev_inst = inst;
2006
2007 /* Fetch and decode the instruction. */
2008 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 2009 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
2010 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2011 {
2012 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
2013 if (offset < 0) /* negative stack adjustment? */
2014 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
2015 else
2016 /* Exit loop if a positive stack adjustment is found, which
2017 usually means that the stack cleanup code in the function
2018 epilogue is reached. */
2019 break;
2020 }
2021 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2022 {
2023 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2024 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 2025 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
e0f7ec59 2026 set_reg_offset (temp_saved_regs, reg, sp + offset);
c906108c
SS
2027 }
2028 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2029 {
2030 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2031 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2032 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
e0f7ec59 2033 set_reg_offset (temp_saved_regs, reg, sp + offset);
c906108c
SS
2034 }
2035 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2036 {
2037 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 2038 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
e0f7ec59 2039 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c906108c
SS
2040 }
2041 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2042 {
2043 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 2044 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
e0f7ec59 2045 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c906108c 2046 }
c5aa993b 2047 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
2048 {
2049 frame_addr = sp;
2050 PROC_FRAME_REG (&temp_proc_desc) = 17;
2051 }
2052 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2053 {
2054 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2055 frame_addr = sp + offset;
2056 PROC_FRAME_REG (&temp_proc_desc) = 17;
2057 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2058 }
2059 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2060 {
2061 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2062 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2063 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2064 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
c906108c
SS
2065 }
2066 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2067 {
2068 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2069 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2070 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2071 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
c906108c 2072 }
c5aa993b
JM
2073 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2074 entry_inst = inst; /* save for later processing */
c906108c 2075 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 2076 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
2077 }
2078
c5aa993b
JM
2079 /* The entry instruction is typically the first instruction in a function,
2080 and it stores registers at offsets relative to the value of the old SP
2081 (before the prologue). But the value of the sp parameter to this
2082 function is the new SP (after the prologue has been executed). So we
2083 can't calculate those offsets until we've seen the entire prologue,
2084 and can calculate what the old SP must have been. */
2085 if (entry_inst != 0)
2086 {
2087 int areg_count = (entry_inst >> 8) & 7;
2088 int sreg_count = (entry_inst >> 6) & 3;
c906108c 2089
c5aa993b
JM
2090 /* The entry instruction always subtracts 32 from the SP. */
2091 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 2092
c5aa993b
JM
2093 /* Now we can calculate what the SP must have been at the
2094 start of the function prologue. */
2095 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 2096
c5aa993b
JM
2097 /* Check if a0-a3 were saved in the caller's argument save area. */
2098 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2099 {
2100 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2101 set_reg_offset (temp_saved_regs, reg, sp + offset);
c5aa993b
JM
2102 offset += MIPS_SAVED_REGSIZE;
2103 }
c906108c 2104
c5aa993b
JM
2105 /* Check if the ra register was pushed on the stack. */
2106 offset = -4;
2107 if (entry_inst & 0x20)
2108 {
2109 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
e0f7ec59 2110 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c5aa993b
JM
2111 offset -= MIPS_SAVED_REGSIZE;
2112 }
c906108c 2113
c5aa993b
JM
2114 /* Check if the s0 and s1 registers were pushed on the stack. */
2115 for (reg = 16; reg < sreg_count + 16; reg++)
2116 {
2117 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2118 set_reg_offset (temp_saved_regs, reg, sp + offset);
c5aa993b
JM
2119 offset -= MIPS_SAVED_REGSIZE;
2120 }
2121 }
c906108c
SS
2122}
2123
2124static void
fba45db2
KB
2125mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2126 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
2127{
2128 CORE_ADDR cur_pc;
c5aa993b 2129 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 2130restart:
fe29b929 2131 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
cce74817 2132 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 2133 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
2134 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2135 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2136 {
2137 unsigned long inst, high_word, low_word;
2138 int reg;
2139
2140 /* Fetch the instruction. */
2141 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2142
2143 /* Save some code by pre-extracting some useful fields. */
2144 high_word = (inst >> 16) & 0xffff;
2145 low_word = inst & 0xffff;
2146 reg = high_word & 0x1f;
2147
c5aa993b 2148 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
2149 || high_word == 0x23bd /* addi $sp,$sp,-i */
2150 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2151 {
2152 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 2153 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
2154 else
2155 /* Exit loop if a positive stack adjustment is found, which
2156 usually means that the stack cleanup code in the function
2157 epilogue is reached. */
2158 break;
2159 }
2160 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2161 {
c5aa993b 2162 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2163 set_reg_offset (temp_saved_regs, reg, sp + low_word);
c906108c
SS
2164 }
2165 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2166 {
2167 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2168 but the register size used is only 32 bits. Make the address
2169 for the saved register point to the lower 32 bits. */
c5aa993b 2170 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
4246e332 2171 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - mips_regsize (current_gdbarch));
c906108c 2172 }
c5aa993b 2173 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
2174 {
2175 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
2176 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2177 frame_addr = sp + low_word;
c906108c
SS
2178 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2179 {
2180 unsigned alloca_adjust;
2181 PROC_FRAME_REG (&temp_proc_desc) = 30;
a4b8ebc8 2182 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
c5aa993b 2183 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
2184 if (alloca_adjust > 0)
2185 {
2186 /* FP > SP + frame_size. This may be because
2187 * of an alloca or somethings similar.
2188 * Fix sp to "pre-alloca" value, and try again.
2189 */
2190 sp += alloca_adjust;
2191 goto restart;
2192 }
2193 }
2194 }
c5aa993b
JM
2195 /* move $30,$sp. With different versions of gas this will be either
2196 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2197 Accept any one of these. */
c906108c
SS
2198 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2199 {
2200 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2201 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2202 {
2203 unsigned alloca_adjust;
2204 PROC_FRAME_REG (&temp_proc_desc) = 30;
a4b8ebc8 2205 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
c5aa993b 2206 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
2207 if (alloca_adjust > 0)
2208 {
2209 /* FP > SP + frame_size. This may be because
2210 * of an alloca or somethings similar.
2211 * Fix sp to "pre-alloca" value, and try again.
2212 */
2213 sp += alloca_adjust;
2214 goto restart;
2215 }
2216 }
2217 }
c5aa993b 2218 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 2219 {
c5aa993b 2220 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2221 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
c906108c
SS
2222 }
2223 }
2224}
2225
2226static mips_extra_func_info_t
acdb74a0 2227heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
479412cd 2228 struct frame_info *next_frame, int cur_frame)
c906108c 2229{
479412cd
DJ
2230 CORE_ADDR sp;
2231
2232 if (cur_frame)
a4b8ebc8 2233 sp = read_next_frame_reg (next_frame, NUM_REGS + SP_REGNUM);
479412cd
DJ
2234 else
2235 sp = 0;
c906108c 2236
c5aa993b
JM
2237 if (start_pc == 0)
2238 return NULL;
2239 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
fe29b929 2240 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
3758ac48 2241 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2242 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2243 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2244 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2245
2246 if (start_pc + 200 < limit_pc)
2247 limit_pc = start_pc + 200;
2248 if (pc_is_mips16 (start_pc))
2249 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2250 else
2251 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2252 return &temp_proc_desc;
2253}
2254
6c0d6680
DJ
2255struct mips_objfile_private
2256{
2257 bfd_size_type size;
2258 char *contents;
2259};
2260
2261/* Global used to communicate between non_heuristic_proc_desc and
2262 compare_pdr_entries within qsort (). */
2263static bfd *the_bfd;
2264
2265static int
2266compare_pdr_entries (const void *a, const void *b)
2267{
2268 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2269 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2270
2271 if (lhs < rhs)
2272 return -1;
2273 else if (lhs == rhs)
2274 return 0;
2275 else
2276 return 1;
2277}
2278
c906108c 2279static mips_extra_func_info_t
acdb74a0 2280non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
2281{
2282 CORE_ADDR startaddr;
2283 mips_extra_func_info_t proc_desc;
c5aa993b 2284 struct block *b = block_for_pc (pc);
c906108c 2285 struct symbol *sym;
6c0d6680
DJ
2286 struct obj_section *sec;
2287 struct mips_objfile_private *priv;
2288
ae45cd16 2289 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
6c0d6680 2290 return NULL;
c906108c
SS
2291
2292 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2293 if (addrptr)
2294 *addrptr = startaddr;
6c0d6680
DJ
2295
2296 priv = NULL;
2297
2298 sec = find_pc_section (pc);
2299 if (sec != NULL)
c906108c 2300 {
6c0d6680
DJ
2301 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2302
2303 /* Search the ".pdr" section generated by GAS. This includes most of
2304 the information normally found in ECOFF PDRs. */
2305
2306 the_bfd = sec->objfile->obfd;
2307 if (priv == NULL
2308 && (the_bfd->format == bfd_object
2309 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2310 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2311 {
2312 /* Right now GAS only outputs the address as a four-byte sequence.
2313 This means that we should not bother with this method on 64-bit
2314 targets (until that is fixed). */
2315
2316 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2317 sizeof (struct mips_objfile_private));
2318 priv->size = 0;
2319 sec->objfile->obj_private = priv;
2320 }
2321 else if (priv == NULL)
2322 {
2323 asection *bfdsec;
2324
2325 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2326 sizeof (struct mips_objfile_private));
2327
2328 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2329 if (bfdsec != NULL)
2330 {
2331 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2332 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2333 priv->size);
2334 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2335 priv->contents, 0, priv->size);
2336
2337 /* In general, the .pdr section is sorted. However, in the
2338 presence of multiple code sections (and other corner cases)
2339 it can become unsorted. Sort it so that we can use a faster
2340 binary search. */
2341 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2342 }
2343 else
2344 priv->size = 0;
2345
2346 sec->objfile->obj_private = priv;
2347 }
2348 the_bfd = NULL;
2349
2350 if (priv->size != 0)
2351 {
2352 int low, mid, high;
2353 char *ptr;
2354
2355 low = 0;
2356 high = priv->size / 32;
2357
2358 do
2359 {
2360 CORE_ADDR pdr_pc;
2361
2362 mid = (low + high) / 2;
2363
2364 ptr = priv->contents + mid * 32;
2365 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2366 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2367 SECT_OFF_TEXT (sec->objfile));
2368 if (pdr_pc == startaddr)
2369 break;
2370 if (pdr_pc > startaddr)
2371 high = mid;
2372 else
2373 low = mid + 1;
2374 }
2375 while (low != high);
2376
2377 if (low != high)
2378 {
2379 struct symbol *sym = find_pc_function (pc);
2380
2381 /* Fill in what we need of the proc_desc. */
2382 proc_desc = (mips_extra_func_info_t)
2383 obstack_alloc (&sec->objfile->psymbol_obstack,
2384 sizeof (struct mips_extra_func_info));
2385 PROC_LOW_ADDR (proc_desc) = startaddr;
2386
2387 /* Only used for dummy frames. */
2388 PROC_HIGH_ADDR (proc_desc) = 0;
2389
2390 PROC_FRAME_OFFSET (proc_desc)
2391 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2392 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2393 ptr + 24);
2394 PROC_FRAME_ADJUST (proc_desc) = 0;
2395 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2396 ptr + 4);
2397 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2398 ptr + 12);
2399 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2400 ptr + 8);
2401 PROC_FREG_OFFSET (proc_desc)
2402 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2403 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2404 ptr + 28);
2405 proc_desc->pdr.isym = (long) sym;
2406
2407 return proc_desc;
2408 }
2409 }
c906108c
SS
2410 }
2411
6c0d6680
DJ
2412 if (b == NULL)
2413 return NULL;
2414
2415 if (startaddr > BLOCK_START (b))
2416 {
2417 /* This is the "pathological" case referred to in a comment in
2418 print_frame_info. It might be better to move this check into
2419 symbol reading. */
2420 return NULL;
2421 }
2422
176620f1 2423 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
6c0d6680 2424
c906108c
SS
2425 /* If we never found a PDR for this function in symbol reading, then
2426 examine prologues to find the information. */
2427 if (sym)
2428 {
2429 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2430 if (PROC_FRAME_REG (proc_desc) == -1)
2431 return NULL;
2432 else
2433 return proc_desc;
2434 }
2435 else
2436 return NULL;
2437}
2438
2439
2440static mips_extra_func_info_t
479412cd 2441find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
c906108c
SS
2442{
2443 mips_extra_func_info_t proc_desc;
4e0df2df 2444 CORE_ADDR startaddr = 0;
c906108c
SS
2445
2446 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2447
2448 if (proc_desc)
2449 {
2450 /* IF this is the topmost frame AND
2451 * (this proc does not have debugging information OR
2452 * the PC is in the procedure prologue)
2453 * THEN create a "heuristic" proc_desc (by analyzing
2454 * the actual code) to replace the "official" proc_desc.
2455 */
2456 if (next_frame == NULL)
2457 {
2458 struct symtab_and_line val;
2459 struct symbol *proc_symbol =
c86b5b38 2460 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
2461
2462 if (proc_symbol)
2463 {
2464 val = find_pc_line (BLOCK_START
c5aa993b 2465 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
2466 0);
2467 val.pc = val.end ? val.end : pc;
2468 }
2469 if (!proc_symbol || pc < val.pc)
2470 {
2471 mips_extra_func_info_t found_heuristic =
c86b5b38
MS
2472 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2473 pc, next_frame, cur_frame);
c906108c
SS
2474 if (found_heuristic)
2475 proc_desc = found_heuristic;
2476 }
2477 }
2478 }
2479 else
2480 {
2481 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
2482 by procedure call dummys. However, the procedures being called ought
2483 to have their own proc_descs, and even if they don't,
2484 heuristic_proc_desc knows how to create them! */
c906108c 2485
aa1ee363 2486 struct linked_proc_info *link;
c906108c
SS
2487
2488 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
2489 if (PROC_LOW_ADDR (&link->info) <= pc
2490 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
2491 return &link->info;
2492
2493 if (startaddr == 0)
2494 startaddr = heuristic_proc_start (pc);
2495
2496 proc_desc =
479412cd 2497 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
c906108c
SS
2498 }
2499 return proc_desc;
2500}
2501
2502static CORE_ADDR
acdb74a0
AC
2503get_frame_pointer (struct frame_info *frame,
2504 mips_extra_func_info_t proc_desc)
c906108c 2505{
a4b8ebc8 2506 return (read_next_frame_reg (frame, NUM_REGS + PROC_FRAME_REG (proc_desc))
e227b13c
AC
2507 + PROC_FRAME_OFFSET (proc_desc)
2508 - PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
2509}
2510
5a89d8aa 2511static mips_extra_func_info_t cached_proc_desc;
c906108c 2512
f7ab6ec6 2513static CORE_ADDR
acdb74a0 2514mips_frame_chain (struct frame_info *frame)
c906108c
SS
2515{
2516 mips_extra_func_info_t proc_desc;
2517 CORE_ADDR tmp;
8bedc050 2518 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
c906108c 2519
627b3ba2 2520 if (saved_pc == 0 || deprecated_inside_entry_file (saved_pc))
c906108c
SS
2521 return 0;
2522
2523 /* Check if the PC is inside a call stub. If it is, fetch the
2524 PC of the caller of that stub. */
5a89d8aa 2525 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
c906108c
SS
2526 saved_pc = tmp;
2527
ae45cd16 2528 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
cedea778
AC
2529 {
2530 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2531 is well, frame->frame the bottom of the current frame will
2532 contain that value. */
1e2330ba 2533 return get_frame_base (frame);
cedea778
AC
2534 }
2535
c906108c 2536 /* Look up the procedure descriptor for this PC. */
479412cd 2537 proc_desc = find_proc_desc (saved_pc, frame, 1);
c906108c
SS
2538 if (!proc_desc)
2539 return 0;
2540
2541 cached_proc_desc = proc_desc;
2542
2543 /* If no frame pointer and frame size is zero, we must be at end
2544 of stack (or otherwise hosed). If we don't check frame size,
2545 we loop forever if we see a zero size frame. */
2546 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2547 && PROC_FRAME_OFFSET (proc_desc) == 0
7807aa61
MS
2548 /* The previous frame from a sigtramp frame might be frameless
2549 and have frame size zero. */
5a203e44 2550 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
cedea778
AC
2551 /* For a generic dummy frame, let get_frame_pointer() unwind a
2552 register value saved as part of the dummy frame call. */
50abf9e5 2553 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
c906108c
SS
2554 return 0;
2555 else
2556 return get_frame_pointer (frame, proc_desc);
2557}
2558
f7ab6ec6 2559static void
acdb74a0 2560mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2561{
2562 int regnum;
f2c16bd6
KB
2563 mips_extra_func_info_t proc_desc;
2564
2565 if (get_frame_type (fci) == DUMMY_FRAME)
2566 return;
c906108c 2567
f796e4be
KB
2568 /* Use proc_desc calculated in frame_chain. When there is no
2569 next frame, i.e, get_next_frame (fci) == NULL, we call
2570 find_proc_desc () to calculate it, passing an explicit
2571 NULL as the frame parameter. */
f2c16bd6 2572 proc_desc =
11c02a10
AC
2573 get_next_frame (fci)
2574 ? cached_proc_desc
f796e4be
KB
2575 : find_proc_desc (get_frame_pc (fci),
2576 NULL /* i.e, get_next_frame (fci) */,
2577 1);
c906108c 2578
a00a19e9 2579 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
cce74817 2580
7b5849cc 2581 deprecated_set_frame_saved_regs_hack (fci, NULL);
da50a4b7 2582 get_frame_extra_info (fci)->proc_desc =
c906108c
SS
2583 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2584 if (proc_desc)
2585 {
2586 /* Fixup frame-pointer - only needed for top frame */
2587 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2588 Get the value of the frame relative sp, procedure might have been
2589 interrupted by a signal at it's very start. */
50abf9e5 2590 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
c906108c 2591 && !PROC_DESC_IS_DUMMY (proc_desc))
a4b8ebc8 2592 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), NUM_REGS + SP_REGNUM));
50abf9e5 2593 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
cedea778
AC
2594 /* Do not ``fix'' fci->frame. It will have the value of the
2595 generic dummy frame's top-of-stack (since the draft
2596 fci->frame is obtained by returning the unwound stack
2597 pointer) and that is what we want. That way the fci->frame
2598 value will match the top-of-stack value that was saved as
2599 part of the dummy frames data. */
2600 /* Do nothing. */;
c906108c 2601 else
11c02a10 2602 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
c906108c
SS
2603
2604 if (proc_desc == &temp_proc_desc)
2605 {
2606 char *name;
2607
2608 /* Do not set the saved registers for a sigtramp frame,
5a203e44
AC
2609 mips_find_saved_registers will do that for us. We can't
2610 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2611 yet set. */
2612 /* FIXME: cagney/2002-11-18: This problem will go away once
2613 frame.c:get_prev_frame() is modified to set the frame's
2614 type before calling functions like this. */
50abf9e5 2615 find_pc_partial_function (get_frame_pc (fci), &name,
c5aa993b 2616 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
50abf9e5 2617 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
c906108c 2618 {
c5aa993b 2619 frame_saved_regs_zalloc (fci);
e0f7ec59
AC
2620 /* Set value of previous frame's stack pointer.
2621 Remember that saved_regs[SP_REGNUM] is special in
2622 that it contains the value of the stack pointer
2623 register. The other saved_regs values are addresses
2624 (in the inferior) at which a given register's value
2625 may be found. */
2626 set_reg_offset (temp_saved_regs, SP_REGNUM,
2627 get_frame_base (fci));
2628 set_reg_offset (temp_saved_regs, PC_REGNUM,
2629 temp_saved_regs[RA_REGNUM]);
1b1d3794 2630 memcpy (deprecated_get_frame_saved_regs (fci), temp_saved_regs,
e0f7ec59 2631 SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2632 }
2633 }
2634
2635 /* hack: if argument regs are saved, guess these contain args */
cce74817 2636 /* assume we can't tell how many args for now */
da50a4b7 2637 get_frame_extra_info (fci)->num_args = -1;
c906108c
SS
2638 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2639 {
c5aa993b 2640 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2641 {
da50a4b7 2642 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2643 break;
2644 }
c5aa993b 2645 }
c906108c
SS
2646 }
2647}
2648
2649/* MIPS stack frames are almost impenetrable. When execution stops,
2650 we basically have to look at symbol information for the function
2651 that we stopped in, which tells us *which* register (if any) is
2652 the base of the frame pointer, and what offset from that register
361d1df0 2653 the frame itself is at.
c906108c
SS
2654
2655 This presents a problem when trying to examine a stack in memory
2656 (that isn't executing at the moment), using the "frame" command. We
2657 don't have a PC, nor do we have any registers except SP.
2658
2659 This routine takes two arguments, SP and PC, and tries to make the
2660 cached frames look as if these two arguments defined a frame on the
2661 cache. This allows the rest of info frame to extract the important
2662 arguments without difficulty. */
2663
2664struct frame_info *
acdb74a0 2665setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2666{
2667 if (argc != 2)
2668 error ("MIPS frame specifications require two arguments: sp and pc");
2669
2670 return create_new_frame (argv[0], argv[1]);
2671}
2672
f09ded24
AC
2673/* According to the current ABI, should the type be passed in a
2674 floating-point register (assuming that there is space)? When there
2675 is no FPU, FP are not even considered as possibile candidates for
2676 FP registers and, consequently this returns false - forces FP
2677 arguments into integer registers. */
2678
2679static int
2680fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2681{
2682 return ((typecode == TYPE_CODE_FLT
2683 || (MIPS_EABI
2684 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2685 && TYPE_NFIELDS (arg_type) == 1
2686 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2687 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2688}
2689
49e790b0
DJ
2690/* On o32, argument passing in GPRs depends on the alignment of the type being
2691 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2692
2693static int
2694mips_type_needs_double_align (struct type *type)
2695{
2696 enum type_code typecode = TYPE_CODE (type);
361d1df0 2697
49e790b0
DJ
2698 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2699 return 1;
2700 else if (typecode == TYPE_CODE_STRUCT)
2701 {
2702 if (TYPE_NFIELDS (type) < 1)
2703 return 0;
2704 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2705 }
2706 else if (typecode == TYPE_CODE_UNION)
2707 {
361d1df0 2708 int i, n;
49e790b0
DJ
2709
2710 n = TYPE_NFIELDS (type);
2711 for (i = 0; i < n; i++)
2712 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2713 return 1;
2714 return 0;
2715 }
2716 return 0;
2717}
2718
dc604539
AC
2719/* Adjust the address downward (direction of stack growth) so that it
2720 is correctly aligned for a new stack frame. */
2721static CORE_ADDR
2722mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2723{
5b03f266 2724 return align_down (addr, 16);
dc604539
AC
2725}
2726
f7ab6ec6 2727static CORE_ADDR
25ab4790
AC
2728mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2729 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2730 struct value **args, CORE_ADDR sp, int struct_return,
2731 CORE_ADDR struct_addr)
c906108c
SS
2732{
2733 int argreg;
2734 int float_argreg;
2735 int argnum;
2736 int len = 0;
2737 int stack_offset = 0;
2738
25ab4790
AC
2739 /* For shared libraries, "t9" needs to point at the function
2740 address. */
2741 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2742
2743 /* Set the return address register to point to the entry point of
2744 the program, where a breakpoint lies in wait. */
2745 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2746
c906108c 2747 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2748 are properly aligned. The stack has to be at least 64-bit
2749 aligned even on 32-bit machines, because doubles must be 64-bit
2750 aligned. For n32 and n64, stack frames need to be 128-bit
2751 aligned, so we round to this widest known alignment. */
2752
5b03f266
AC
2753 sp = align_down (sp, 16);
2754 struct_addr = align_down (struct_addr, 16);
c5aa993b 2755
46e0f506 2756 /* Now make space on the stack for the args. We allocate more
c906108c 2757 than necessary for EABI, because the first few arguments are
46e0f506 2758 passed in registers, but that's OK. */
c906108c 2759 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 2760 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
46e0f506 2761 MIPS_STACK_ARGSIZE);
5b03f266 2762 sp -= align_up (len, 16);
c906108c 2763
9ace0497 2764 if (mips_debug)
46e0f506 2765 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2766 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2767 paddr_nz (sp), (long) align_up (len, 16));
9ace0497 2768
c906108c
SS
2769 /* Initialize the integer and float register pointers. */
2770 argreg = A0_REGNUM;
56cea623 2771 float_argreg = mips_fpa0_regnum (current_gdbarch);
c906108c 2772
46e0f506 2773 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2774 if (struct_return)
9ace0497
AC
2775 {
2776 if (mips_debug)
2777 fprintf_unfiltered (gdb_stdlog,
25ab4790 2778 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2779 argreg, paddr_nz (struct_addr));
9ace0497
AC
2780 write_register (argreg++, struct_addr);
2781 }
c906108c
SS
2782
2783 /* Now load as many as possible of the first arguments into
2784 registers, and push the rest onto the stack. Loop thru args
2785 from first to last. */
2786 for (argnum = 0; argnum < nargs; argnum++)
2787 {
2788 char *val;
d9d9c31f 2789 char valbuf[MAX_REGISTER_SIZE];
ea7c478f 2790 struct value *arg = args[argnum];
c906108c
SS
2791 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2792 int len = TYPE_LENGTH (arg_type);
2793 enum type_code typecode = TYPE_CODE (arg_type);
2794
9ace0497
AC
2795 if (mips_debug)
2796 fprintf_unfiltered (gdb_stdlog,
25ab4790 2797 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2798 argnum + 1, len, (int) typecode);
9ace0497 2799
c906108c 2800 /* The EABI passes structures that do not fit in a register by
46e0f506
MS
2801 reference. */
2802 if (len > MIPS_SAVED_REGSIZE
9ace0497 2803 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2804 {
fbd9dcd3 2805 store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2806 typecode = TYPE_CODE_PTR;
7a292a7a 2807 len = MIPS_SAVED_REGSIZE;
c906108c 2808 val = valbuf;
9ace0497
AC
2809 if (mips_debug)
2810 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2811 }
2812 else
c5aa993b 2813 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2814
2815 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2816 even-numbered floating point register. Round the FP register
2817 up before the check to see if there are any FP registers
46e0f506
MS
2818 left. Non MIPS_EABI targets also pass the FP in the integer
2819 registers so also round up normal registers. */
acdb74a0
AC
2820 if (!FP_REGISTER_DOUBLE
2821 && fp_register_arg_p (typecode, arg_type))
2822 {
2823 if ((float_argreg & 1))
2824 float_argreg++;
2825 }
c906108c
SS
2826
2827 /* Floating point arguments passed in registers have to be
2828 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2829 are passed in register pairs; the even register gets
2830 the low word, and the odd register gets the high word.
2831 On non-EABI processors, the first two floating point arguments are
2832 also copied to general registers, because MIPS16 functions
2833 don't use float registers for arguments. This duplication of
2834 arguments in general registers can't hurt non-MIPS16 functions
2835 because those registers are normally skipped. */
1012bd0e
EZ
2836 /* MIPS_EABI squeezes a struct that contains a single floating
2837 point value into an FP register instead of pushing it onto the
46e0f506 2838 stack. */
f09ded24
AC
2839 if (fp_register_arg_p (typecode, arg_type)
2840 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2841 {
2842 if (!FP_REGISTER_DOUBLE && len == 8)
2843 {
d7449b42 2844 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2845 unsigned long regval;
2846
2847 /* Write the low word of the double to the even register(s). */
c5aa993b 2848 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2849 if (mips_debug)
acdb74a0 2850 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2851 float_argreg, phex (regval, 4));
c906108c 2852 write_register (float_argreg++, regval);
c906108c
SS
2853
2854 /* Write the high word of the double to the odd register(s). */
c5aa993b 2855 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2856 if (mips_debug)
acdb74a0 2857 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2858 float_argreg, phex (regval, 4));
c906108c 2859 write_register (float_argreg++, regval);
c906108c
SS
2860 }
2861 else
2862 {
2863 /* This is a floating point value that fits entirely
2864 in a single register. */
53a5351d 2865 /* On 32 bit ABI's the float_argreg is further adjusted
46e0f506 2866 above to ensure that it is even register aligned. */
9ace0497
AC
2867 LONGEST regval = extract_unsigned_integer (val, len);
2868 if (mips_debug)
acdb74a0 2869 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2870 float_argreg, phex (regval, len));
c906108c 2871 write_register (float_argreg++, regval);
c906108c
SS
2872 }
2873 }
2874 else
2875 {
2876 /* Copy the argument to general registers or the stack in
2877 register-sized pieces. Large arguments are split between
2878 registers and stack. */
4246e332
AC
2879 /* Note: structs whose size is not a multiple of
2880 mips_regsize() are treated specially: Irix cc passes them
2881 in registers where gcc sometimes puts them on the stack.
2882 For maximum compatibility, we will put them in both
2883 places. */
c5aa993b 2884 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2885 (len % MIPS_SAVED_REGSIZE != 0));
46e0f506 2886
f09ded24 2887 /* Note: Floating-point values that didn't fit into an FP
46e0f506 2888 register are only written to memory. */
c906108c
SS
2889 while (len > 0)
2890 {
ebafbe83 2891 /* Remember if the argument was written to the stack. */
566f0f7a 2892 int stack_used_p = 0;
46e0f506
MS
2893 int partial_len =
2894 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 2895
acdb74a0
AC
2896 if (mips_debug)
2897 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2898 partial_len);
2899
566f0f7a 2900 /* Write this portion of the argument to the stack. */
f09ded24
AC
2901 if (argreg > MIPS_LAST_ARG_REGNUM
2902 || odd_sized_struct
2903 || fp_register_arg_p (typecode, arg_type))
c906108c 2904 {
c906108c
SS
2905 /* Should shorter than int integer values be
2906 promoted to int before being stored? */
c906108c 2907 int longword_offset = 0;
9ace0497 2908 CORE_ADDR addr;
566f0f7a 2909 stack_used_p = 1;
d7449b42 2910 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2911 {
d929b26f 2912 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2913 (typecode == TYPE_CODE_INT ||
2914 typecode == TYPE_CODE_PTR ||
2915 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2916 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2917 else if ((typecode == TYPE_CODE_STRUCT ||
2918 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2919 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2920 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2921 }
c5aa993b 2922
9ace0497
AC
2923 if (mips_debug)
2924 {
cb3d25d1
MS
2925 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2926 paddr_nz (stack_offset));
2927 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2928 paddr_nz (longword_offset));
9ace0497 2929 }
361d1df0 2930
9ace0497
AC
2931 addr = sp + stack_offset + longword_offset;
2932
2933 if (mips_debug)
2934 {
2935 int i;
cb3d25d1
MS
2936 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2937 paddr_nz (addr));
9ace0497
AC
2938 for (i = 0; i < partial_len; i++)
2939 {
cb3d25d1
MS
2940 fprintf_unfiltered (gdb_stdlog, "%02x",
2941 val[i] & 0xff);
9ace0497
AC
2942 }
2943 }
2944 write_memory (addr, val, partial_len);
c906108c
SS
2945 }
2946
f09ded24
AC
2947 /* Note!!! This is NOT an else clause. Odd sized
2948 structs may go thru BOTH paths. Floating point
46e0f506 2949 arguments will not. */
566f0f7a 2950 /* Write this portion of the argument to a general
46e0f506 2951 purpose register. */
f09ded24
AC
2952 if (argreg <= MIPS_LAST_ARG_REGNUM
2953 && !fp_register_arg_p (typecode, arg_type))
c906108c 2954 {
9ace0497 2955 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c 2956
9ace0497 2957 if (mips_debug)
acdb74a0 2958 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2959 argreg,
2960 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
2961 write_register (argreg, regval);
2962 argreg++;
c906108c 2963 }
c5aa993b 2964
c906108c
SS
2965 len -= partial_len;
2966 val += partial_len;
2967
566f0f7a
AC
2968 /* Compute the the offset into the stack at which we
2969 will copy the next parameter.
2970
566f0f7a 2971 In the new EABI (and the NABI32), the stack_offset
46e0f506 2972 only needs to be adjusted when it has been used. */
c906108c 2973
46e0f506 2974 if (stack_used_p)
5b03f266 2975 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
2976 }
2977 }
9ace0497
AC
2978 if (mips_debug)
2979 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2980 }
2981
310e9b6a
AC
2982 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
2983
0f71a2f6
JM
2984 /* Return adjusted stack pointer. */
2985 return sp;
2986}
2987
25ab4790 2988/* N32/N64 version of push_dummy_call. */
ebafbe83 2989
f7ab6ec6 2990static CORE_ADDR
25ab4790
AC
2991mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2992 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2993 struct value **args, CORE_ADDR sp, int struct_return,
2994 CORE_ADDR struct_addr)
cb3d25d1
MS
2995{
2996 int argreg;
2997 int float_argreg;
2998 int argnum;
2999 int len = 0;
3000 int stack_offset = 0;
3001
25ab4790
AC
3002 /* For shared libraries, "t9" needs to point at the function
3003 address. */
3004 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3005
3006 /* Set the return address register to point to the entry point of
3007 the program, where a breakpoint lies in wait. */
3008 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3009
cb3d25d1
MS
3010 /* First ensure that the stack and structure return address (if any)
3011 are properly aligned. The stack has to be at least 64-bit
3012 aligned even on 32-bit machines, because doubles must be 64-bit
3013 aligned. For n32 and n64, stack frames need to be 128-bit
3014 aligned, so we round to this widest known alignment. */
3015
5b03f266
AC
3016 sp = align_down (sp, 16);
3017 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
3018
3019 /* Now make space on the stack for the args. */
3020 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 3021 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
cb3d25d1 3022 MIPS_STACK_ARGSIZE);
5b03f266 3023 sp -= align_up (len, 16);
cb3d25d1
MS
3024
3025 if (mips_debug)
3026 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3027 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
3028 paddr_nz (sp), (long) align_up (len, 16));
cb3d25d1
MS
3029
3030 /* Initialize the integer and float register pointers. */
3031 argreg = A0_REGNUM;
56cea623 3032 float_argreg = mips_fpa0_regnum (current_gdbarch);
cb3d25d1 3033
46e0f506 3034 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
3035 if (struct_return)
3036 {
3037 if (mips_debug)
3038 fprintf_unfiltered (gdb_stdlog,
25ab4790 3039 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1
MS
3040 argreg, paddr_nz (struct_addr));
3041 write_register (argreg++, struct_addr);
3042 }
3043
3044 /* Now load as many as possible of the first arguments into
3045 registers, and push the rest onto the stack. Loop thru args
3046 from first to last. */
3047 for (argnum = 0; argnum < nargs; argnum++)
3048 {
3049 char *val;
d9d9c31f 3050 char valbuf[MAX_REGISTER_SIZE];
cb3d25d1
MS
3051 struct value *arg = args[argnum];
3052 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3053 int len = TYPE_LENGTH (arg_type);
3054 enum type_code typecode = TYPE_CODE (arg_type);
3055
3056 if (mips_debug)
3057 fprintf_unfiltered (gdb_stdlog,
25ab4790 3058 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
3059 argnum + 1, len, (int) typecode);
3060
3061 val = (char *) VALUE_CONTENTS (arg);
3062
3063 if (fp_register_arg_p (typecode, arg_type)
3064 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3065 {
3066 /* This is a floating point value that fits entirely
3067 in a single register. */
3068 /* On 32 bit ABI's the float_argreg is further adjusted
3069 above to ensure that it is even register aligned. */
3070 LONGEST regval = extract_unsigned_integer (val, len);
3071 if (mips_debug)
3072 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3073 float_argreg, phex (regval, len));
3074 write_register (float_argreg++, regval);
3075
3076 if (mips_debug)
3077 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3078 argreg, phex (regval, len));
3079 write_register (argreg, regval);
3080 argreg += 1;
3081 }
3082 else
3083 {
3084 /* Copy the argument to general registers or the stack in
3085 register-sized pieces. Large arguments are split between
3086 registers and stack. */
4246e332
AC
3087 /* Note: structs whose size is not a multiple of
3088 mips_regsize() are treated specially: Irix cc passes them
3089 in registers where gcc sometimes puts them on the stack.
3090 For maximum compatibility, we will put them in both
3091 places. */
cb3d25d1
MS
3092 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3093 (len % MIPS_SAVED_REGSIZE != 0));
3094 /* Note: Floating-point values that didn't fit into an FP
3095 register are only written to memory. */
3096 while (len > 0)
3097 {
3098 /* Rememer if the argument was written to the stack. */
3099 int stack_used_p = 0;
3100 int partial_len = len < MIPS_SAVED_REGSIZE ?
3101 len : MIPS_SAVED_REGSIZE;
3102
3103 if (mips_debug)
3104 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3105 partial_len);
3106
3107 /* Write this portion of the argument to the stack. */
3108 if (argreg > MIPS_LAST_ARG_REGNUM
3109 || odd_sized_struct
3110 || fp_register_arg_p (typecode, arg_type))
3111 {
3112 /* Should shorter than int integer values be
3113 promoted to int before being stored? */
3114 int longword_offset = 0;
3115 CORE_ADDR addr;
3116 stack_used_p = 1;
3117 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3118 {
3119 if (MIPS_STACK_ARGSIZE == 8 &&
3120 (typecode == TYPE_CODE_INT ||
3121 typecode == TYPE_CODE_PTR ||
3122 typecode == TYPE_CODE_FLT) && len <= 4)
3123 longword_offset = MIPS_STACK_ARGSIZE - len;
cb3d25d1
MS
3124 }
3125
3126 if (mips_debug)
3127 {
3128 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3129 paddr_nz (stack_offset));
3130 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3131 paddr_nz (longword_offset));
3132 }
3133
3134 addr = sp + stack_offset + longword_offset;
3135
3136 if (mips_debug)
3137 {
3138 int i;
3139 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3140 paddr_nz (addr));
3141 for (i = 0; i < partial_len; i++)
3142 {
3143 fprintf_unfiltered (gdb_stdlog, "%02x",
3144 val[i] & 0xff);
3145 }
3146 }
3147 write_memory (addr, val, partial_len);
3148 }
3149
3150 /* Note!!! This is NOT an else clause. Odd sized
3151 structs may go thru BOTH paths. Floating point
3152 arguments will not. */
3153 /* Write this portion of the argument to a general
3154 purpose register. */
3155 if (argreg <= MIPS_LAST_ARG_REGNUM
3156 && !fp_register_arg_p (typecode, arg_type))
3157 {
3158 LONGEST regval = extract_unsigned_integer (val, partial_len);
3159
3160 /* A non-floating-point argument being passed in a
3161 general register. If a struct or union, and if
3162 the remaining length is smaller than the register
3163 size, we have to adjust the register value on
3164 big endian targets.
3165
3166 It does not seem to be necessary to do the
3167 same for integral types.
3168
3169 cagney/2001-07-23: gdb/179: Also, GCC, when
3170 outputting LE O32 with sizeof (struct) <
3171 MIPS_SAVED_REGSIZE, generates a left shift as
3172 part of storing the argument in a register a
3173 register (the left shift isn't generated when
3174 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3175 is quite possible that this is GCC contradicting
3176 the LE/O32 ABI, GDB has not been adjusted to
3177 accommodate this. Either someone needs to
3178 demonstrate that the LE/O32 ABI specifies such a
3179 left shift OR this new ABI gets identified as
3180 such and GDB gets tweaked accordingly. */
3181
3182 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3183 && partial_len < MIPS_SAVED_REGSIZE
3184 && (typecode == TYPE_CODE_STRUCT ||
3185 typecode == TYPE_CODE_UNION))
3186 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3187 TARGET_CHAR_BIT);
3188
3189 if (mips_debug)
3190 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3191 argreg,
3192 phex (regval, MIPS_SAVED_REGSIZE));
3193 write_register (argreg, regval);
3194 argreg++;
3195 }
3196
3197 len -= partial_len;
3198 val += partial_len;
3199
3200 /* Compute the the offset into the stack at which we
3201 will copy the next parameter.
3202
3203 In N32 (N64?), the stack_offset only needs to be
3204 adjusted when it has been used. */
3205
3206 if (stack_used_p)
5b03f266 3207 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
cb3d25d1
MS
3208 }
3209 }
3210 if (mips_debug)
3211 fprintf_unfiltered (gdb_stdlog, "\n");
3212 }
3213
310e9b6a
AC
3214 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3215
cb3d25d1
MS
3216 /* Return adjusted stack pointer. */
3217 return sp;
3218}
3219
25ab4790 3220/* O32 version of push_dummy_call. */
ebafbe83 3221
46cac009 3222static CORE_ADDR
25ab4790
AC
3223mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3224 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3225 struct value **args, CORE_ADDR sp, int struct_return,
3226 CORE_ADDR struct_addr)
ebafbe83
MS
3227{
3228 int argreg;
3229 int float_argreg;
3230 int argnum;
3231 int len = 0;
3232 int stack_offset = 0;
ebafbe83 3233
25ab4790
AC
3234 /* For shared libraries, "t9" needs to point at the function
3235 address. */
3236 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3237
3238 /* Set the return address register to point to the entry point of
3239 the program, where a breakpoint lies in wait. */
3240 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3241
ebafbe83
MS
3242 /* First ensure that the stack and structure return address (if any)
3243 are properly aligned. The stack has to be at least 64-bit
3244 aligned even on 32-bit machines, because doubles must be 64-bit
3245 aligned. For n32 and n64, stack frames need to be 128-bit
3246 aligned, so we round to this widest known alignment. */
3247
5b03f266
AC
3248 sp = align_down (sp, 16);
3249 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
3250
3251 /* Now make space on the stack for the args. */
3252 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 3253 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
ebafbe83 3254 MIPS_STACK_ARGSIZE);
5b03f266 3255 sp -= align_up (len, 16);
ebafbe83
MS
3256
3257 if (mips_debug)
3258 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3259 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3260 paddr_nz (sp), (long) align_up (len, 16));
ebafbe83
MS
3261
3262 /* Initialize the integer and float register pointers. */
3263 argreg = A0_REGNUM;
56cea623 3264 float_argreg = mips_fpa0_regnum (current_gdbarch);
ebafbe83 3265
bcb0cc15 3266 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3267 if (struct_return)
3268 {
3269 if (mips_debug)
3270 fprintf_unfiltered (gdb_stdlog,
25ab4790 3271 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3272 argreg, paddr_nz (struct_addr));
3273 write_register (argreg++, struct_addr);
3274 stack_offset += MIPS_STACK_ARGSIZE;
3275 }
3276
3277 /* Now load as many as possible of the first arguments into
3278 registers, and push the rest onto the stack. Loop thru args
3279 from first to last. */
3280 for (argnum = 0; argnum < nargs; argnum++)
3281 {
3282 char *val;
d9d9c31f 3283 char valbuf[MAX_REGISTER_SIZE];
ebafbe83
MS
3284 struct value *arg = args[argnum];
3285 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3286 int len = TYPE_LENGTH (arg_type);
3287 enum type_code typecode = TYPE_CODE (arg_type);
3288
3289 if (mips_debug)
3290 fprintf_unfiltered (gdb_stdlog,
25ab4790 3291 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3292 argnum + 1, len, (int) typecode);
3293
3294 val = (char *) VALUE_CONTENTS (arg);
3295
3296 /* 32-bit ABIs always start floating point arguments in an
3297 even-numbered floating point register. Round the FP register
3298 up before the check to see if there are any FP registers
3299 left. O32/O64 targets also pass the FP in the integer
3300 registers so also round up normal registers. */
3301 if (!FP_REGISTER_DOUBLE
3302 && fp_register_arg_p (typecode, arg_type))
3303 {
3304 if ((float_argreg & 1))
3305 float_argreg++;
3306 }
3307
3308 /* Floating point arguments passed in registers have to be
3309 treated specially. On 32-bit architectures, doubles
3310 are passed in register pairs; the even register gets
3311 the low word, and the odd register gets the high word.
3312 On O32/O64, the first two floating point arguments are
3313 also copied to general registers, because MIPS16 functions
3314 don't use float registers for arguments. This duplication of
3315 arguments in general registers can't hurt non-MIPS16 functions
3316 because those registers are normally skipped. */
3317
3318 if (fp_register_arg_p (typecode, arg_type)
3319 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3320 {
3321 if (!FP_REGISTER_DOUBLE && len == 8)
3322 {
3323 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3324 unsigned long regval;
3325
3326 /* Write the low word of the double to the even register(s). */
3327 regval = extract_unsigned_integer (val + low_offset, 4);
3328 if (mips_debug)
3329 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3330 float_argreg, phex (regval, 4));
3331 write_register (float_argreg++, regval);
3332 if (mips_debug)
3333 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3334 argreg, phex (regval, 4));
3335 write_register (argreg++, regval);
3336
3337 /* Write the high word of the double to the odd register(s). */
3338 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3339 if (mips_debug)
3340 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3341 float_argreg, phex (regval, 4));
3342 write_register (float_argreg++, regval);
3343
3344 if (mips_debug)
3345 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3346 argreg, phex (regval, 4));
3347 write_register (argreg++, regval);
3348 }
3349 else
3350 {
3351 /* This is a floating point value that fits entirely
3352 in a single register. */
3353 /* On 32 bit ABI's the float_argreg is further adjusted
3354 above to ensure that it is even register aligned. */
3355 LONGEST regval = extract_unsigned_integer (val, len);
3356 if (mips_debug)
3357 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3358 float_argreg, phex (regval, len));
3359 write_register (float_argreg++, regval);
3360 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3361 registers for each argument. The below is (my
3362 guess) to ensure that the corresponding integer
3363 register has reserved the same space. */
3364 if (mips_debug)
3365 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3366 argreg, phex (regval, len));
3367 write_register (argreg, regval);
3368 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3369 }
3370 /* Reserve space for the FP register. */
5b03f266 3371 stack_offset += align_up (len, MIPS_STACK_ARGSIZE);
46cac009
AC
3372 }
3373 else
3374 {
3375 /* Copy the argument to general registers or the stack in
3376 register-sized pieces. Large arguments are split between
3377 registers and stack. */
4246e332
AC
3378 /* Note: structs whose size is not a multiple of
3379 mips_regsize() are treated specially: Irix cc passes them
3380 in registers where gcc sometimes puts them on the stack.
3381 For maximum compatibility, we will put them in both
3382 places. */
46cac009
AC
3383 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3384 (len % MIPS_SAVED_REGSIZE != 0));
3385 /* Structures should be aligned to eight bytes (even arg registers)
3386 on MIPS_ABI_O32, if their first member has double precision. */
3387 if (MIPS_SAVED_REGSIZE < 8
3388 && mips_type_needs_double_align (arg_type))
3389 {
3390 if ((argreg & 1))
3391 argreg++;
3392 }
3393 /* Note: Floating-point values that didn't fit into an FP
3394 register are only written to memory. */
3395 while (len > 0)
3396 {
3397 /* Remember if the argument was written to the stack. */
3398 int stack_used_p = 0;
3399 int partial_len =
3400 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3401
3402 if (mips_debug)
3403 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3404 partial_len);
3405
3406 /* Write this portion of the argument to the stack. */
3407 if (argreg > MIPS_LAST_ARG_REGNUM
3408 || odd_sized_struct
3409 || fp_register_arg_p (typecode, arg_type))
3410 {
3411 /* Should shorter than int integer values be
3412 promoted to int before being stored? */
3413 int longword_offset = 0;
3414 CORE_ADDR addr;
3415 stack_used_p = 1;
3416 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3417 {
3418 if (MIPS_STACK_ARGSIZE == 8 &&
3419 (typecode == TYPE_CODE_INT ||
3420 typecode == TYPE_CODE_PTR ||
3421 typecode == TYPE_CODE_FLT) && len <= 4)
3422 longword_offset = MIPS_STACK_ARGSIZE - len;
3423 }
3424
3425 if (mips_debug)
3426 {
3427 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3428 paddr_nz (stack_offset));
3429 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3430 paddr_nz (longword_offset));
3431 }
3432
3433 addr = sp + stack_offset + longword_offset;
3434
3435 if (mips_debug)
3436 {
3437 int i;
3438 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3439 paddr_nz (addr));
3440 for (i = 0; i < partial_len; i++)
3441 {
3442 fprintf_unfiltered (gdb_stdlog, "%02x",
3443 val[i] & 0xff);
3444 }
3445 }
3446 write_memory (addr, val, partial_len);
3447 }
3448
3449 /* Note!!! This is NOT an else clause. Odd sized
3450 structs may go thru BOTH paths. Floating point
3451 arguments will not. */
3452 /* Write this portion of the argument to a general
3453 purpose register. */
3454 if (argreg <= MIPS_LAST_ARG_REGNUM
3455 && !fp_register_arg_p (typecode, arg_type))
3456 {
3457 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332
AC
3458 /* Value may need to be sign extended, because
3459 mips_regsize() != MIPS_SAVED_REGSIZE. */
46cac009
AC
3460
3461 /* A non-floating-point argument being passed in a
3462 general register. If a struct or union, and if
3463 the remaining length is smaller than the register
3464 size, we have to adjust the register value on
3465 big endian targets.
3466
3467 It does not seem to be necessary to do the
3468 same for integral types.
3469
3470 Also don't do this adjustment on O64 binaries.
3471
3472 cagney/2001-07-23: gdb/179: Also, GCC, when
3473 outputting LE O32 with sizeof (struct) <
3474 MIPS_SAVED_REGSIZE, generates a left shift as
3475 part of storing the argument in a register a
3476 register (the left shift isn't generated when
3477 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3478 is quite possible that this is GCC contradicting
3479 the LE/O32 ABI, GDB has not been adjusted to
3480 accommodate this. Either someone needs to
3481 demonstrate that the LE/O32 ABI specifies such a
3482 left shift OR this new ABI gets identified as
3483 such and GDB gets tweaked accordingly. */
3484
3485 if (MIPS_SAVED_REGSIZE < 8
3486 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3487 && partial_len < MIPS_SAVED_REGSIZE
3488 && (typecode == TYPE_CODE_STRUCT ||
3489 typecode == TYPE_CODE_UNION))
3490 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3491 TARGET_CHAR_BIT);
3492
3493 if (mips_debug)
3494 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3495 argreg,
3496 phex (regval, MIPS_SAVED_REGSIZE));
3497 write_register (argreg, regval);
3498 argreg++;
3499
3500 /* Prevent subsequent floating point arguments from
3501 being passed in floating point registers. */
3502 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3503 }
3504
3505 len -= partial_len;
3506 val += partial_len;
3507
3508 /* Compute the the offset into the stack at which we
3509 will copy the next parameter.
3510
3511 In older ABIs, the caller reserved space for
3512 registers that contained arguments. This was loosely
3513 refered to as their "home". Consequently, space is
3514 always allocated. */
3515
5b03f266 3516 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
46cac009
AC
3517 }
3518 }
3519 if (mips_debug)
3520 fprintf_unfiltered (gdb_stdlog, "\n");
3521 }
3522
310e9b6a
AC
3523 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3524
46cac009
AC
3525 /* Return adjusted stack pointer. */
3526 return sp;
3527}
3528
25ab4790 3529/* O64 version of push_dummy_call. */
46cac009
AC
3530
3531static CORE_ADDR
25ab4790
AC
3532mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3533 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3534 struct value **args, CORE_ADDR sp, int struct_return,
3535 CORE_ADDR struct_addr)
46cac009
AC
3536{
3537 int argreg;
3538 int float_argreg;
3539 int argnum;
3540 int len = 0;
3541 int stack_offset = 0;
3542
25ab4790
AC
3543 /* For shared libraries, "t9" needs to point at the function
3544 address. */
3545 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3546
3547 /* Set the return address register to point to the entry point of
3548 the program, where a breakpoint lies in wait. */
3549 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3550
46cac009
AC
3551 /* First ensure that the stack and structure return address (if any)
3552 are properly aligned. The stack has to be at least 64-bit
3553 aligned even on 32-bit machines, because doubles must be 64-bit
3554 aligned. For n32 and n64, stack frames need to be 128-bit
3555 aligned, so we round to this widest known alignment. */
3556
5b03f266
AC
3557 sp = align_down (sp, 16);
3558 struct_addr = align_down (struct_addr, 16);
46cac009
AC
3559
3560 /* Now make space on the stack for the args. */
3561 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 3562 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
46cac009 3563 MIPS_STACK_ARGSIZE);
5b03f266 3564 sp -= align_up (len, 16);
46cac009
AC
3565
3566 if (mips_debug)
3567 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3568 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3569 paddr_nz (sp), (long) align_up (len, 16));
46cac009
AC
3570
3571 /* Initialize the integer and float register pointers. */
3572 argreg = A0_REGNUM;
56cea623 3573 float_argreg = mips_fpa0_regnum (current_gdbarch);
46cac009
AC
3574
3575 /* The struct_return pointer occupies the first parameter-passing reg. */
3576 if (struct_return)
3577 {
3578 if (mips_debug)
3579 fprintf_unfiltered (gdb_stdlog,
25ab4790 3580 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009
AC
3581 argreg, paddr_nz (struct_addr));
3582 write_register (argreg++, struct_addr);
3583 stack_offset += MIPS_STACK_ARGSIZE;
3584 }
3585
3586 /* Now load as many as possible of the first arguments into
3587 registers, and push the rest onto the stack. Loop thru args
3588 from first to last. */
3589 for (argnum = 0; argnum < nargs; argnum++)
3590 {
3591 char *val;
d9d9c31f 3592 char valbuf[MAX_REGISTER_SIZE];
46cac009
AC
3593 struct value *arg = args[argnum];
3594 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3595 int len = TYPE_LENGTH (arg_type);
3596 enum type_code typecode = TYPE_CODE (arg_type);
3597
3598 if (mips_debug)
3599 fprintf_unfiltered (gdb_stdlog,
25ab4790 3600 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3601 argnum + 1, len, (int) typecode);
3602
3603 val = (char *) VALUE_CONTENTS (arg);
3604
3605 /* 32-bit ABIs always start floating point arguments in an
3606 even-numbered floating point register. Round the FP register
3607 up before the check to see if there are any FP registers
3608 left. O32/O64 targets also pass the FP in the integer
3609 registers so also round up normal registers. */
3610 if (!FP_REGISTER_DOUBLE
3611 && fp_register_arg_p (typecode, arg_type))
3612 {
3613 if ((float_argreg & 1))
3614 float_argreg++;
3615 }
3616
3617 /* Floating point arguments passed in registers have to be
3618 treated specially. On 32-bit architectures, doubles
3619 are passed in register pairs; the even register gets
3620 the low word, and the odd register gets the high word.
3621 On O32/O64, the first two floating point arguments are
3622 also copied to general registers, because MIPS16 functions
3623 don't use float registers for arguments. This duplication of
3624 arguments in general registers can't hurt non-MIPS16 functions
3625 because those registers are normally skipped. */
3626
3627 if (fp_register_arg_p (typecode, arg_type)
3628 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3629 {
3630 if (!FP_REGISTER_DOUBLE && len == 8)
3631 {
3632 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3633 unsigned long regval;
3634
3635 /* Write the low word of the double to the even register(s). */
3636 regval = extract_unsigned_integer (val + low_offset, 4);
3637 if (mips_debug)
3638 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3639 float_argreg, phex (regval, 4));
3640 write_register (float_argreg++, regval);
3641 if (mips_debug)
3642 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3643 argreg, phex (regval, 4));
3644 write_register (argreg++, regval);
3645
3646 /* Write the high word of the double to the odd register(s). */
3647 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3648 if (mips_debug)
3649 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3650 float_argreg, phex (regval, 4));
3651 write_register (float_argreg++, regval);
3652
3653 if (mips_debug)
3654 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3655 argreg, phex (regval, 4));
3656 write_register (argreg++, regval);
3657 }
3658 else
3659 {
3660 /* This is a floating point value that fits entirely
3661 in a single register. */
3662 /* On 32 bit ABI's the float_argreg is further adjusted
3663 above to ensure that it is even register aligned. */
3664 LONGEST regval = extract_unsigned_integer (val, len);
3665 if (mips_debug)
3666 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3667 float_argreg, phex (regval, len));
3668 write_register (float_argreg++, regval);
3669 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3670 registers for each argument. The below is (my
3671 guess) to ensure that the corresponding integer
3672 register has reserved the same space. */
3673 if (mips_debug)
3674 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3675 argreg, phex (regval, len));
3676 write_register (argreg, regval);
3677 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3678 }
3679 /* Reserve space for the FP register. */
5b03f266 3680 stack_offset += align_up (len, MIPS_STACK_ARGSIZE);
ebafbe83
MS
3681 }
3682 else
3683 {
3684 /* Copy the argument to general registers or the stack in
3685 register-sized pieces. Large arguments are split between
3686 registers and stack. */
4246e332
AC
3687 /* Note: structs whose size is not a multiple of
3688 mips_regsize() are treated specially: Irix cc passes them
3689 in registers where gcc sometimes puts them on the stack.
3690 For maximum compatibility, we will put them in both
3691 places. */
ebafbe83
MS
3692 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3693 (len % MIPS_SAVED_REGSIZE != 0));
3694 /* Structures should be aligned to eight bytes (even arg registers)
3695 on MIPS_ABI_O32, if their first member has double precision. */
3696 if (MIPS_SAVED_REGSIZE < 8
3697 && mips_type_needs_double_align (arg_type))
3698 {
3699 if ((argreg & 1))
3700 argreg++;
3701 }
3702 /* Note: Floating-point values that didn't fit into an FP
3703 register are only written to memory. */
3704 while (len > 0)
3705 {
3706 /* Remember if the argument was written to the stack. */
3707 int stack_used_p = 0;
3708 int partial_len =
3709 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3710
3711 if (mips_debug)
3712 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3713 partial_len);
3714
3715 /* Write this portion of the argument to the stack. */
3716 if (argreg > MIPS_LAST_ARG_REGNUM
3717 || odd_sized_struct
3718 || fp_register_arg_p (typecode, arg_type))
3719 {
3720 /* Should shorter than int integer values be
3721 promoted to int before being stored? */
3722 int longword_offset = 0;
3723 CORE_ADDR addr;
3724 stack_used_p = 1;
3725 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3726 {
3727 if (MIPS_STACK_ARGSIZE == 8 &&
3728 (typecode == TYPE_CODE_INT ||
3729 typecode == TYPE_CODE_PTR ||
3730 typecode == TYPE_CODE_FLT) && len <= 4)
3731 longword_offset = MIPS_STACK_ARGSIZE - len;
3732 }
3733
3734 if (mips_debug)
3735 {
3736 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3737 paddr_nz (stack_offset));
3738 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3739 paddr_nz (longword_offset));
3740 }
3741
3742 addr = sp + stack_offset + longword_offset;
3743
3744 if (mips_debug)
3745 {
3746 int i;
3747 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3748 paddr_nz (addr));
3749 for (i = 0; i < partial_len; i++)
3750 {
3751 fprintf_unfiltered (gdb_stdlog, "%02x",
3752 val[i] & 0xff);
3753 }
3754 }
3755 write_memory (addr, val, partial_len);
3756 }
3757
3758 /* Note!!! This is NOT an else clause. Odd sized
3759 structs may go thru BOTH paths. Floating point
3760 arguments will not. */
3761 /* Write this portion of the argument to a general
3762 purpose register. */
3763 if (argreg <= MIPS_LAST_ARG_REGNUM
3764 && !fp_register_arg_p (typecode, arg_type))
3765 {
3766 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332
AC
3767 /* Value may need to be sign extended, because
3768 mips_regsize() != MIPS_SAVED_REGSIZE. */
ebafbe83
MS
3769
3770 /* A non-floating-point argument being passed in a
3771 general register. If a struct or union, and if
3772 the remaining length is smaller than the register
3773 size, we have to adjust the register value on
3774 big endian targets.
3775
3776 It does not seem to be necessary to do the
3777 same for integral types.
3778
3779 Also don't do this adjustment on O64 binaries.
3780
3781 cagney/2001-07-23: gdb/179: Also, GCC, when
3782 outputting LE O32 with sizeof (struct) <
3783 MIPS_SAVED_REGSIZE, generates a left shift as
3784 part of storing the argument in a register a
3785 register (the left shift isn't generated when
3786 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3787 is quite possible that this is GCC contradicting
3788 the LE/O32 ABI, GDB has not been adjusted to
3789 accommodate this. Either someone needs to
3790 demonstrate that the LE/O32 ABI specifies such a
3791 left shift OR this new ABI gets identified as
3792 such and GDB gets tweaked accordingly. */
3793
3794 if (MIPS_SAVED_REGSIZE < 8
3795 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3796 && partial_len < MIPS_SAVED_REGSIZE
3797 && (typecode == TYPE_CODE_STRUCT ||
3798 typecode == TYPE_CODE_UNION))
3799 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3800 TARGET_CHAR_BIT);
3801
3802 if (mips_debug)
3803 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3804 argreg,
3805 phex (regval, MIPS_SAVED_REGSIZE));
3806 write_register (argreg, regval);
3807 argreg++;
3808
3809 /* Prevent subsequent floating point arguments from
3810 being passed in floating point registers. */
3811 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3812 }
3813
3814 len -= partial_len;
3815 val += partial_len;
3816
3817 /* Compute the the offset into the stack at which we
3818 will copy the next parameter.
3819
3820 In older ABIs, the caller reserved space for
3821 registers that contained arguments. This was loosely
3822 refered to as their "home". Consequently, space is
3823 always allocated. */
3824
5b03f266 3825 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
ebafbe83
MS
3826 }
3827 }
3828 if (mips_debug)
3829 fprintf_unfiltered (gdb_stdlog, "\n");
3830 }
3831
310e9b6a
AC
3832 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3833
ebafbe83
MS
3834 /* Return adjusted stack pointer. */
3835 return sp;
3836}
3837
f7ab6ec6 3838static void
acdb74a0 3839mips_pop_frame (void)
c906108c 3840{
52f0bd74 3841 int regnum;
c906108c 3842 struct frame_info *frame = get_current_frame ();
c193f6ac 3843 CORE_ADDR new_sp = get_frame_base (frame);
e227b13c 3844 mips_extra_func_info_t proc_desc;
c906108c 3845
50abf9e5 3846 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
3847 {
3848 generic_pop_dummy_frame ();
3849 flush_cached_frames ();
3850 return;
3851 }
3852
e227b13c 3853 proc_desc = get_frame_extra_info (frame)->proc_desc;
8bedc050 3854 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
e0f7ec59 3855 mips_find_saved_regs (frame);
c906108c 3856 for (regnum = 0; regnum < NUM_REGS; regnum++)
21f87145 3857 if (regnum != SP_REGNUM && regnum != PC_REGNUM
1b1d3794 3858 && deprecated_get_frame_saved_regs (frame)[regnum])
21f87145
MS
3859 {
3860 /* Floating point registers must not be sign extended,
3861 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3862
56cea623 3863 if (mips_regnum (current_gdbarch)->fp0 <= regnum && regnum < mips_regnum (current_gdbarch)->fp0 + 32)
21f87145 3864 write_register (regnum,
1b1d3794 3865 read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum],
21f87145
MS
3866 MIPS_SAVED_REGSIZE));
3867 else
3868 write_register (regnum,
1b1d3794 3869 read_memory_integer (deprecated_get_frame_saved_regs (frame)[regnum],
21f87145
MS
3870 MIPS_SAVED_REGSIZE));
3871 }
757a7cc6 3872
c906108c
SS
3873 write_register (SP_REGNUM, new_sp);
3874 flush_cached_frames ();
3875
c5aa993b 3876 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
3877 {
3878 struct linked_proc_info *pi_ptr, *prev_ptr;
3879
3880 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3881 pi_ptr != NULL;
3882 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3883 {
3884 if (&pi_ptr->info == proc_desc)
3885 break;
3886 }
3887
3888 if (pi_ptr == NULL)
3889 error ("Can't locate dummy extra frame info\n");
3890
3891 if (prev_ptr != NULL)
3892 prev_ptr->next = pi_ptr->next;
3893 else
3894 linked_proc_desc_table = pi_ptr->next;
3895
b8c9b27d 3896 xfree (pi_ptr);
c906108c 3897
56cea623 3898 write_register (mips_regnum (current_gdbarch)->hi,
c5aa993b 3899 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 3900 MIPS_SAVED_REGSIZE));
56cea623 3901 write_register (mips_regnum (current_gdbarch)->lo,
c5aa993b 3902 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 3903 MIPS_SAVED_REGSIZE));
c906108c 3904 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
56cea623 3905 write_register (mips_regnum (current_gdbarch)->fp_control_status,
c5aa993b 3906 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 3907 MIPS_SAVED_REGSIZE));
c906108c
SS
3908 }
3909}
3910
dd824b04
DJ
3911/* Floating point register management.
3912
3913 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3914 64bit operations, these early MIPS cpus treat fp register pairs
3915 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3916 registers and offer a compatibility mode that emulates the MIPS2 fp
3917 model. When operating in MIPS2 fp compat mode, later cpu's split
3918 double precision floats into two 32-bit chunks and store them in
3919 consecutive fp regs. To display 64-bit floats stored in this
3920 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3921 Throw in user-configurable endianness and you have a real mess.
3922
3923 The way this works is:
3924 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3925 double-precision value will be split across two logical registers.
3926 The lower-numbered logical register will hold the low-order bits,
3927 regardless of the processor's endianness.
3928 - If we are on a 64-bit processor, and we are looking for a
3929 single-precision value, it will be in the low ordered bits
3930 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3931 save slot in memory.
3932 - If we are in 64-bit mode, everything is straightforward.
3933
3934 Note that this code only deals with "live" registers at the top of the
3935 stack. We will attempt to deal with saved registers later, when
3936 the raw/cooked register interface is in place. (We need a general
3937 interface that can deal with dynamic saved register sizes -- fp
3938 regs could be 32 bits wide in one frame and 64 on the frame above
3939 and below). */
3940
67b2c998
DJ
3941static struct type *
3942mips_float_register_type (void)
3943{
361d1df0 3944 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3945 return builtin_type_ieee_single_big;
3946 else
3947 return builtin_type_ieee_single_little;
3948}
3949
3950static struct type *
3951mips_double_register_type (void)
3952{
361d1df0 3953 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3954 return builtin_type_ieee_double_big;
3955 else
3956 return builtin_type_ieee_double_little;
3957}
3958
dd824b04
DJ
3959/* Copy a 32-bit single-precision value from the current frame
3960 into rare_buffer. */
3961
3962static void
e11c53d2
AC
3963mips_read_fp_register_single (struct frame_info *frame, int regno,
3964 char *rare_buffer)
dd824b04 3965{
719ec221 3966 int raw_size = register_size (current_gdbarch, regno);
dd824b04
DJ
3967 char *raw_buffer = alloca (raw_size);
3968
e11c53d2 3969 if (!frame_register_read (frame, regno, raw_buffer))
dd824b04
DJ
3970 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3971 if (raw_size == 8)
3972 {
3973 /* We have a 64-bit value for this register. Find the low-order
3974 32 bits. */
3975 int offset;
3976
3977 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3978 offset = 4;
3979 else
3980 offset = 0;
3981
3982 memcpy (rare_buffer, raw_buffer + offset, 4);
3983 }
3984 else
3985 {
3986 memcpy (rare_buffer, raw_buffer, 4);
3987 }
3988}
3989
3990/* Copy a 64-bit double-precision value from the current frame into
3991 rare_buffer. This may include getting half of it from the next
3992 register. */
3993
3994static void
e11c53d2
AC
3995mips_read_fp_register_double (struct frame_info *frame, int regno,
3996 char *rare_buffer)
dd824b04 3997{
719ec221 3998 int raw_size = register_size (current_gdbarch, regno);
dd824b04
DJ
3999
4000 if (raw_size == 8 && !mips2_fp_compat ())
4001 {
4002 /* We have a 64-bit value for this register, and we should use
4003 all 64 bits. */
e11c53d2 4004 if (!frame_register_read (frame, regno, rare_buffer))
dd824b04
DJ
4005 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4006 }
4007 else
4008 {
56cea623 4009 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
dd824b04
DJ
4010 internal_error (__FILE__, __LINE__,
4011 "mips_read_fp_register_double: bad access to "
4012 "odd-numbered FP register");
4013
4014 /* mips_read_fp_register_single will find the correct 32 bits from
4015 each register. */
4016 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4017 {
e11c53d2
AC
4018 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4019 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 4020 }
361d1df0 4021 else
dd824b04 4022 {
e11c53d2
AC
4023 mips_read_fp_register_single (frame, regno, rare_buffer);
4024 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
4025 }
4026 }
4027}
4028
c906108c 4029static void
e11c53d2
AC
4030mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4031 int regnum)
c5aa993b 4032{ /* do values for FP (float) regs */
dd824b04 4033 char *raw_buffer;
c906108c 4034 double doub, flt1, flt2; /* doubles extracted from raw hex data */
f0ef6b29 4035 int inv1, inv2, namelen;
c5aa993b 4036
56cea623 4037 raw_buffer = (char *) alloca (2 * register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0));
c906108c 4038
e11c53d2
AC
4039 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4040 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4041 "");
f0ef6b29 4042
719ec221 4043 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
c906108c 4044 {
f0ef6b29
KB
4045 /* 4-byte registers: Print hex and floating. Also print even
4046 numbered registers as doubles. */
e11c53d2 4047 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 4048 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4049
e11c53d2 4050 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
dd824b04 4051
e11c53d2 4052 fprintf_filtered (file, " flt: ");
1adad886 4053 if (inv1)
e11c53d2 4054 fprintf_filtered (file, " <invalid float> ");
1adad886 4055 else
e11c53d2 4056 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4057
f0ef6b29
KB
4058 if (regnum % 2 == 0)
4059 {
e11c53d2 4060 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4061 doub = unpack_double (mips_double_register_type (), raw_buffer,
4062 &inv2);
1adad886 4063
e11c53d2 4064 fprintf_filtered (file, " dbl: ");
f0ef6b29 4065 if (inv2)
e11c53d2 4066 fprintf_filtered (file, "<invalid double>");
f0ef6b29 4067 else
e11c53d2 4068 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 4069 }
c906108c
SS
4070 }
4071 else
dd824b04 4072 {
f0ef6b29 4073 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 4074 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 4075 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 4076
e11c53d2 4077 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4078 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4079
361d1df0 4080
e11c53d2 4081 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
f0ef6b29 4082
e11c53d2 4083 fprintf_filtered (file, " flt: ");
1adad886 4084 if (inv1)
e11c53d2 4085 fprintf_filtered (file, "<invalid float>");
1adad886 4086 else
e11c53d2 4087 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4088
e11c53d2 4089 fprintf_filtered (file, " dbl: ");
f0ef6b29 4090 if (inv2)
e11c53d2 4091 fprintf_filtered (file, "<invalid double>");
1adad886 4092 else
e11c53d2 4093 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
4094 }
4095}
4096
4097static void
e11c53d2
AC
4098mips_print_register (struct ui_file *file, struct frame_info *frame,
4099 int regnum, int all)
f0ef6b29 4100{
a4b8ebc8 4101 struct gdbarch *gdbarch = get_frame_arch (frame);
d9d9c31f 4102 char raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 4103 int offset;
1adad886 4104
a4b8ebc8 4105 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
f0ef6b29 4106 {
e11c53d2 4107 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
4108 return;
4109 }
4110
4111 /* Get the data in raw format. */
e11c53d2 4112 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 4113 {
e11c53d2 4114 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
f0ef6b29 4115 return;
c906108c 4116 }
f0ef6b29 4117
e11c53d2 4118 fputs_filtered (REGISTER_NAME (regnum), file);
f0ef6b29
KB
4119
4120 /* The problem with printing numeric register names (r26, etc.) is that
4121 the user can't use them on input. Probably the best solution is to
4122 fix it so that either the numeric or the funky (a2, etc.) names
4123 are accepted on input. */
4124 if (regnum < MIPS_NUMREGS)
e11c53d2 4125 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 4126 else
e11c53d2 4127 fprintf_filtered (file, ": ");
f0ef6b29
KB
4128
4129 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
719ec221 4130 offset = register_size (current_gdbarch, regnum) - register_size (current_gdbarch, regnum);
f0ef6b29
KB
4131 else
4132 offset = 0;
4133
a4b8ebc8 4134 print_scalar_formatted (raw_buffer + offset, gdbarch_register_type (gdbarch, regnum),
e11c53d2 4135 'x', 0, file);
c906108c
SS
4136}
4137
f0ef6b29
KB
4138/* Replacement for generic do_registers_info.
4139 Print regs in pretty columns. */
4140
4141static int
e11c53d2
AC
4142print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4143 int regnum)
f0ef6b29 4144{
e11c53d2
AC
4145 fprintf_filtered (file, " ");
4146 mips_print_fp_register (file, frame, regnum);
4147 fprintf_filtered (file, "\n");
f0ef6b29
KB
4148 return regnum + 1;
4149}
4150
4151
c906108c
SS
4152/* Print a row's worth of GP (int) registers, with name labels above */
4153
4154static int
e11c53d2 4155print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 4156 int start_regnum)
c906108c 4157{
a4b8ebc8 4158 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 4159 /* do values for GP (int) regs */
d9d9c31f 4160 char raw_buffer[MAX_REGISTER_SIZE];
4246e332 4161 int ncols = (mips_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
c906108c 4162 int col, byte;
a4b8ebc8 4163 int regnum;
c906108c
SS
4164
4165 /* For GP registers, we print a separate row of names above the vals */
e11c53d2 4166 fprintf_filtered (file, " ");
a4b8ebc8
AC
4167 for (col = 0, regnum = start_regnum;
4168 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4169 regnum++)
c906108c
SS
4170 {
4171 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4172 continue; /* unused register */
a4b8ebc8 4173 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c5aa993b 4174 break; /* end the row: reached FP register */
4246e332 4175 fprintf_filtered (file, mips_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
e11c53d2 4176 REGISTER_NAME (regnum));
c906108c
SS
4177 col++;
4178 }
a4b8ebc8 4179 /* print the R0 to R31 names */
20e6603c
AC
4180 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4181 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4182 else
4183 fprintf_filtered (file, "\n ");
c906108c 4184
c906108c 4185 /* now print the values in hex, 4 or 8 to the row */
a4b8ebc8
AC
4186 for (col = 0, regnum = start_regnum;
4187 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4188 regnum++)
c906108c
SS
4189 {
4190 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4191 continue; /* unused register */
a4b8ebc8 4192 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c5aa993b 4193 break; /* end row: reached FP register */
c906108c 4194 /* OK: get the data in raw format. */
e11c53d2 4195 if (!frame_register_read (frame, regnum, raw_buffer))
c906108c
SS
4196 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4197 /* pad small registers */
4246e332
AC
4198 for (byte = 0;
4199 byte < (mips_regsize (current_gdbarch)
c73e8f27 4200 - register_size (current_gdbarch, regnum));
4246e332 4201 byte++)
c906108c
SS
4202 printf_filtered (" ");
4203 /* Now print the register value in hex, endian order. */
d7449b42 4204 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
719ec221
AC
4205 for (byte = register_size (current_gdbarch, regnum) - register_size (current_gdbarch, regnum);
4206 byte < register_size (current_gdbarch, regnum);
43e526b9 4207 byte++)
e11c53d2 4208 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
c906108c 4209 else
c73e8f27 4210 for (byte = register_size (current_gdbarch, regnum) - 1;
43e526b9
JM
4211 byte >= 0;
4212 byte--)
e11c53d2
AC
4213 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4214 fprintf_filtered (file, " ");
c906108c
SS
4215 col++;
4216 }
c5aa993b 4217 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4218 fprintf_filtered (file, "\n");
c906108c
SS
4219
4220 return regnum;
4221}
4222
4223/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4224
bf1f5b4c 4225static void
e11c53d2
AC
4226mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4227 struct frame_info *frame, int regnum, int all)
c906108c 4228{
c5aa993b 4229 if (regnum != -1) /* do one specified register */
c906108c 4230 {
a4b8ebc8 4231 gdb_assert (regnum >= NUM_REGS);
c906108c
SS
4232 if (*(REGISTER_NAME (regnum)) == '\0')
4233 error ("Not a valid register for the current processor type");
4234
e11c53d2
AC
4235 mips_print_register (file, frame, regnum, 0);
4236 fprintf_filtered (file, "\n");
c906108c 4237 }
c5aa993b
JM
4238 else
4239 /* do all (or most) registers */
c906108c 4240 {
a4b8ebc8
AC
4241 regnum = NUM_REGS;
4242 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
c906108c 4243 {
a4b8ebc8 4244 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
e11c53d2
AC
4245 {
4246 if (all) /* true for "INFO ALL-REGISTERS" command */
4247 regnum = print_fp_register_row (file, frame, regnum);
4248 else
4249 regnum += MIPS_NUMREGS; /* skip floating point regs */
4250 }
c906108c 4251 else
e11c53d2 4252 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4253 }
4254 }
4255}
4256
c906108c
SS
4257/* Is this a branch with a delay slot? */
4258
a14ed312 4259static int is_delayed (unsigned long);
c906108c
SS
4260
4261static int
acdb74a0 4262is_delayed (unsigned long insn)
c906108c
SS
4263{
4264 int i;
4265 for (i = 0; i < NUMOPCODES; ++i)
4266 if (mips_opcodes[i].pinfo != INSN_MACRO
4267 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4268 break;
4269 return (i < NUMOPCODES
4270 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4271 | INSN_COND_BRANCH_DELAY
4272 | INSN_COND_BRANCH_LIKELY)));
4273}
4274
4275int
acdb74a0 4276mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
4277{
4278 char buf[MIPS_INSTLEN];
4279
4280 /* There is no branch delay slot on MIPS16. */
4281 if (pc_is_mips16 (pc))
4282 return 0;
4283
4284 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4285 /* If error reading memory, guess that it is not a delayed branch. */
4286 return 0;
c5aa993b 4287 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
4288}
4289
4290
74da7425
AC
4291/* Given PC at the function's start address, attempt to find the
4292 prologue end using SAL information. Return zero if the skip fails.
4293
4294 A non-optimized prologue traditionally has one SAL for the function
4295 and a second for the function body. A single line function has
4296 them both pointing at the same line.
4297
4298 An optimized prologue is similar but the prologue may contain
4299 instructions (SALs) from the instruction body. Need to skip those
4300 while not getting into the function body.
4301
4302 The functions end point and an increasing SAL line are used as
4303 indicators of the prologue's endpoint.
4304
4305 This code is based on the function refine_prologue_limit (versions
4306 found in both ia64 and ppc). */
4307
4308static CORE_ADDR
4309skip_prologue_using_sal (CORE_ADDR func_addr)
4310{
4311 struct symtab_and_line prologue_sal;
4312 CORE_ADDR start_pc;
4313 CORE_ADDR end_pc;
4314
4315 /* Get an initial range for the function. */
4316 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4317 start_pc += FUNCTION_START_OFFSET;
4318
4319 prologue_sal = find_pc_line (start_pc, 0);
4320 if (prologue_sal.line != 0)
4321 {
4322 while (prologue_sal.end < end_pc)
4323 {
4324 struct symtab_and_line sal;
4325
4326 sal = find_pc_line (prologue_sal.end, 0);
4327 if (sal.line == 0)
4328 break;
4329 /* Assume that a consecutive SAL for the same (or larger)
4330 line mark the prologue -> body transition. */
4331 if (sal.line >= prologue_sal.line)
4332 break;
4333 /* The case in which compiler's optimizer/scheduler has
4334 moved instructions into the prologue. We look ahead in
4335 the function looking for address ranges whose
4336 corresponding line number is less the first one that we
4337 found for the function. This is more conservative then
4338 refine_prologue_limit which scans a large number of SALs
4339 looking for any in the prologue */
4340 prologue_sal = sal;
4341 }
4342 }
4343 return prologue_sal.end;
4344}
4345
c906108c
SS
4346/* Skip the PC past function prologue instructions (32-bit version).
4347 This is a helper function for mips_skip_prologue. */
4348
4349static CORE_ADDR
f7b9e9fc 4350mips32_skip_prologue (CORE_ADDR pc)
c906108c 4351{
c5aa993b
JM
4352 t_inst inst;
4353 CORE_ADDR end_pc;
4354 int seen_sp_adjust = 0;
4355 int load_immediate_bytes = 0;
4356
74da7425
AC
4357 /* Find an upper bound on the prologue. */
4358 end_pc = skip_prologue_using_sal (pc);
4359 if (end_pc == 0)
4360 end_pc = pc + 100; /* Magic. */
4361
c5aa993b
JM
4362 /* Skip the typical prologue instructions. These are the stack adjustment
4363 instruction and the instructions that save registers on the stack
4364 or in the gcc frame. */
74da7425 4365 for (; pc < end_pc; pc += MIPS_INSTLEN)
c5aa993b
JM
4366 {
4367 unsigned long high_word;
c906108c 4368
c5aa993b
JM
4369 inst = mips_fetch_instruction (pc);
4370 high_word = (inst >> 16) & 0xffff;
c906108c 4371
c5aa993b
JM
4372 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4373 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4374 seen_sp_adjust = 1;
4375 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4376 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4377 seen_sp_adjust = 1;
4378 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4379 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4380 && (inst & 0x001F0000)) /* reg != $zero */
4381 continue;
4382
4383 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4384 continue;
4385 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4386 /* sx reg,n($s8) */
4387 continue; /* reg != $zero */
4388
4389 /* move $s8,$sp. With different versions of gas this will be either
4390 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4391 Accept any one of these. */
4392 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4393 continue;
4394
4395 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4396 continue;
4397 else if (high_word == 0x3c1c) /* lui $gp,n */
4398 continue;
4399 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4400 continue;
4401 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4402 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4403 continue;
4404 /* The following instructions load $at or $t0 with an immediate
4405 value in preparation for a stack adjustment via
4406 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4407 a local variable, so we accept them only before a stack adjustment
4408 instruction was seen. */
4409 else if (!seen_sp_adjust)
4410 {
4411 if (high_word == 0x3c01 || /* lui $at,n */
4412 high_word == 0x3c08) /* lui $t0,n */
4413 {
4414 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4415 continue;
4416 }
4417 else if (high_word == 0x3421 || /* ori $at,$at,n */
4418 high_word == 0x3508 || /* ori $t0,$t0,n */
4419 high_word == 0x3401 || /* ori $at,$zero,n */
4420 high_word == 0x3408) /* ori $t0,$zero,n */
4421 {
4422 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4423 continue;
4424 }
4425 else
4426 break;
4427 }
4428 else
4429 break;
c906108c
SS
4430 }
4431
c5aa993b
JM
4432 /* In a frameless function, we might have incorrectly
4433 skipped some load immediate instructions. Undo the skipping
4434 if the load immediate was not followed by a stack adjustment. */
4435 if (load_immediate_bytes && !seen_sp_adjust)
4436 pc -= load_immediate_bytes;
4437 return pc;
c906108c
SS
4438}
4439
4440/* Skip the PC past function prologue instructions (16-bit version).
4441 This is a helper function for mips_skip_prologue. */
4442
4443static CORE_ADDR
f7b9e9fc 4444mips16_skip_prologue (CORE_ADDR pc)
c906108c 4445{
c5aa993b
JM
4446 CORE_ADDR end_pc;
4447 int extend_bytes = 0;
4448 int prev_extend_bytes;
c906108c 4449
c5aa993b
JM
4450 /* Table of instructions likely to be found in a function prologue. */
4451 static struct
c906108c
SS
4452 {
4453 unsigned short inst;
4454 unsigned short mask;
c5aa993b
JM
4455 }
4456 table[] =
4457 {
c906108c 4458 {
c5aa993b
JM
4459 0x6300, 0xff00
4460 }
4461 , /* addiu $sp,offset */
4462 {
4463 0xfb00, 0xff00
4464 }
4465 , /* daddiu $sp,offset */
4466 {
4467 0xd000, 0xf800
4468 }
4469 , /* sw reg,n($sp) */
4470 {
4471 0xf900, 0xff00
4472 }
4473 , /* sd reg,n($sp) */
4474 {
4475 0x6200, 0xff00
4476 }
4477 , /* sw $ra,n($sp) */
4478 {
4479 0xfa00, 0xff00
4480 }
4481 , /* sd $ra,n($sp) */
4482 {
4483 0x673d, 0xffff
4484 }
4485 , /* move $s1,sp */
4486 {
4487 0xd980, 0xff80
4488 }
4489 , /* sw $a0-$a3,n($s1) */
4490 {
4491 0x6704, 0xff1c
4492 }
4493 , /* move reg,$a0-$a3 */
4494 {
4495 0xe809, 0xf81f
4496 }
4497 , /* entry pseudo-op */
4498 {
4499 0x0100, 0xff00
4500 }
4501 , /* addiu $s1,$sp,n */
4502 {
4503 0, 0
4504 } /* end of table marker */
4505 };
4506
74da7425
AC
4507 /* Find an upper bound on the prologue. */
4508 end_pc = skip_prologue_using_sal (pc);
4509 if (end_pc == 0)
4510 end_pc = pc + 100; /* Magic. */
4511
c5aa993b
JM
4512 /* Skip the typical prologue instructions. These are the stack adjustment
4513 instruction and the instructions that save registers on the stack
4514 or in the gcc frame. */
74da7425 4515 for (; pc < end_pc; pc += MIPS16_INSTLEN)
c5aa993b
JM
4516 {
4517 unsigned short inst;
4518 int i;
c906108c 4519
c5aa993b 4520 inst = mips_fetch_instruction (pc);
c906108c 4521
c5aa993b
JM
4522 /* Normally we ignore an extend instruction. However, if it is
4523 not followed by a valid prologue instruction, we must adjust
4524 the pc back over the extend so that it won't be considered
4525 part of the prologue. */
4526 if ((inst & 0xf800) == 0xf000) /* extend */
4527 {
4528 extend_bytes = MIPS16_INSTLEN;
4529 continue;
4530 }
4531 prev_extend_bytes = extend_bytes;
4532 extend_bytes = 0;
c906108c 4533
c5aa993b
JM
4534 /* Check for other valid prologue instructions besides extend. */
4535 for (i = 0; table[i].mask != 0; i++)
4536 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4537 break;
4538 if (table[i].mask != 0) /* it was in table? */
4539 continue; /* ignore it */
4540 else
4541 /* non-prologue */
4542 {
4543 /* Return the current pc, adjusted backwards by 2 if
4544 the previous instruction was an extend. */
4545 return pc - prev_extend_bytes;
4546 }
c906108c
SS
4547 }
4548 return pc;
4549}
4550
4551/* To skip prologues, I use this predicate. Returns either PC itself
4552 if the code at PC does not look like a function prologue; otherwise
4553 returns an address that (if we're lucky) follows the prologue. If
4554 LENIENT, then we must skip everything which is involved in setting
4555 up the frame (it's OK to skip more, just so long as we don't skip
4556 anything which might clobber the registers which are being saved.
4557 We must skip more in the case where part of the prologue is in the
4558 delay slot of a non-prologue instruction). */
4559
f7ab6ec6 4560static CORE_ADDR
f7b9e9fc 4561mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
4562{
4563 /* See if we can determine the end of the prologue via the symbol table.
4564 If so, then return either PC, or the PC after the prologue, whichever
4565 is greater. */
4566
4567 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4568
4569 if (post_prologue_pc != 0)
4570 return max (pc, post_prologue_pc);
4571
4572 /* Can't determine prologue from the symbol table, need to examine
4573 instructions. */
4574
4575 if (pc_is_mips16 (pc))
f7b9e9fc 4576 return mips16_skip_prologue (pc);
c906108c 4577 else
f7b9e9fc 4578 return mips32_skip_prologue (pc);
c906108c 4579}
c906108c 4580
7a292a7a
SS
4581/* Determine how a return value is stored within the MIPS register
4582 file, given the return type `valtype'. */
4583
4584struct return_value_word
4585{
4586 int len;
4587 int reg;
4588 int reg_offset;
4589 int buf_offset;
4590};
4591
7a292a7a 4592static void
acdb74a0
AC
4593return_value_location (struct type *valtype,
4594 struct return_value_word *hi,
4595 struct return_value_word *lo)
7a292a7a
SS
4596{
4597 int len = TYPE_LENGTH (valtype);
c5aa993b 4598
7a292a7a
SS
4599 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4600 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4601 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4602 {
4603 if (!FP_REGISTER_DOUBLE && len == 8)
4604 {
4605 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 4606 spread them across a floating-point register pair. */
d7449b42
AC
4607 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4608 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4609 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
56cea623 4610 && register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 8)
7a292a7a
SS
4611 ? 4 : 0);
4612 hi->reg_offset = lo->reg_offset;
56cea623
AC
4613 lo->reg = mips_regnum (current_gdbarch)->fp0 + 0;
4614 hi->reg = mips_regnum (current_gdbarch)->fp0 + 1;
7a292a7a
SS
4615 lo->len = 4;
4616 hi->len = 4;
4617 }
4618 else
4619 {
4620 /* The floating point value fits in a single floating-point
c5aa993b 4621 register. */
d7449b42 4622 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
56cea623 4623 && register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 8
7a292a7a
SS
4624 && len == 4)
4625 ? 4 : 0);
56cea623 4626 lo->reg = mips_regnum (current_gdbarch)->fp0;
7a292a7a
SS
4627 lo->len = len;
4628 lo->buf_offset = 0;
4629 hi->len = 0;
4630 hi->reg_offset = 0;
4631 hi->buf_offset = 0;
4632 hi->reg = 0;
4633 }
4634 }
4635 else
4636 {
4637 /* Locate a result possibly spread across two registers. */
4638 int regnum = 2;
4639 lo->reg = regnum + 0;
4640 hi->reg = regnum + 1;
d7449b42 4641 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4642 && len < MIPS_SAVED_REGSIZE)
4643 {
bf1f5b4c
MS
4644 /* "un-left-justify" the value in the low register */
4645 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
bcb0cc15 4646 lo->len = len;
bf1f5b4c 4647 hi->reg_offset = 0;
7a292a7a
SS
4648 hi->len = 0;
4649 }
d7449b42 4650 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4651 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4652 && len < MIPS_SAVED_REGSIZE * 2
4653 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4654 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4655 {
4656 /* "un-left-justify" the value spread across two registers. */
4657 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4658 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4659 hi->reg_offset = 0;
4660 hi->len = len - lo->len;
4661 }
4662 else
4663 {
4664 /* Only perform a partial copy of the second register. */
4665 lo->reg_offset = 0;
4666 hi->reg_offset = 0;
4667 if (len > MIPS_SAVED_REGSIZE)
4668 {
4669 lo->len = MIPS_SAVED_REGSIZE;
4670 hi->len = len - MIPS_SAVED_REGSIZE;
4671 }
4672 else
4673 {
4674 lo->len = len;
4675 hi->len = 0;
4676 }
4677 }
d7449b42 4678 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
719ec221 4679 && register_size (current_gdbarch, regnum) == 8
7a292a7a
SS
4680 && MIPS_SAVED_REGSIZE == 4)
4681 {
4682 /* Account for the fact that only the least-signficant part
c5aa993b 4683 of the register is being used */
7a292a7a
SS
4684 lo->reg_offset += 4;
4685 hi->reg_offset += 4;
4686 }
4687 lo->buf_offset = 0;
4688 hi->buf_offset = lo->len;
4689 }
4690}
4691
4692/* Given a return value in `regbuf' with a type `valtype', extract and
4693 copy its value into `valbuf'. */
4694
46cac009
AC
4695static void
4696mips_eabi_extract_return_value (struct type *valtype,
b8b527c5 4697 char regbuf[],
46cac009
AC
4698 char *valbuf)
4699{
4700 struct return_value_word lo;
4701 struct return_value_word hi;
4702 return_value_location (valtype, &hi, &lo);
4703
4704 memcpy (valbuf + lo.buf_offset,
62700349 4705 regbuf + DEPRECATED_REGISTER_BYTE (lo.reg) + lo.reg_offset,
46cac009
AC
4706 lo.len);
4707
4708 if (hi.len > 0)
4709 memcpy (valbuf + hi.buf_offset,
62700349 4710 regbuf + DEPRECATED_REGISTER_BYTE (hi.reg) + hi.reg_offset,
46cac009
AC
4711 hi.len);
4712}
4713
46cac009
AC
4714static void
4715mips_o64_extract_return_value (struct type *valtype,
b8b527c5 4716 char regbuf[],
46cac009
AC
4717 char *valbuf)
4718{
4719 struct return_value_word lo;
4720 struct return_value_word hi;
4721 return_value_location (valtype, &hi, &lo);
4722
4723 memcpy (valbuf + lo.buf_offset,
62700349 4724 regbuf + DEPRECATED_REGISTER_BYTE (lo.reg) + lo.reg_offset,
46cac009
AC
4725 lo.len);
4726
4727 if (hi.len > 0)
4728 memcpy (valbuf + hi.buf_offset,
62700349 4729 regbuf + DEPRECATED_REGISTER_BYTE (hi.reg) + hi.reg_offset,
46cac009
AC
4730 hi.len);
4731}
4732
7a292a7a
SS
4733/* Given a return value in `valbuf' with a type `valtype', write it's
4734 value into the appropriate register. */
4735
46cac009
AC
4736static void
4737mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4738{
d9d9c31f 4739 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4740 struct return_value_word lo;
4741 struct return_value_word hi;
4742 return_value_location (valtype, &hi, &lo);
4743
4744 memset (raw_buffer, 0, sizeof (raw_buffer));
4745 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
62700349 4746 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
719ec221 4747 register_size (current_gdbarch, lo.reg));
46cac009
AC
4748
4749 if (hi.len > 0)
4750 {
4751 memset (raw_buffer, 0, sizeof (raw_buffer));
4752 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
62700349 4753 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
719ec221 4754 register_size (current_gdbarch, hi.reg));
46cac009
AC
4755 }
4756}
4757
4758static void
cb1d2653 4759mips_o64_store_return_value (struct type *valtype, char *valbuf)
46cac009 4760{
d9d9c31f 4761 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4762 struct return_value_word lo;
4763 struct return_value_word hi;
4764 return_value_location (valtype, &hi, &lo);
4765
4766 memset (raw_buffer, 0, sizeof (raw_buffer));
4767 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
62700349 4768 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
719ec221 4769 register_size (current_gdbarch, lo.reg));
46cac009
AC
4770
4771 if (hi.len > 0)
4772 {
4773 memset (raw_buffer, 0, sizeof (raw_buffer));
4774 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
62700349 4775 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
719ec221 4776 register_size (current_gdbarch, hi.reg));
46cac009
AC
4777 }
4778}
4779
cb1d2653
AC
4780/* O32 ABI stuff. */
4781
29dfb2ac
AC
4782static enum return_value_convention
4783mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
4784 struct regcache *regcache,
4785 void *readbuf, const void *writebuf)
46cac009 4786{
cb1d2653 4787 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
29dfb2ac
AC
4788
4789 if (TYPE_CODE (type)== TYPE_CODE_STRUCT
4790 || TYPE_CODE (type)== TYPE_CODE_UNION
4791 || TYPE_CODE (type)== TYPE_CODE_ARRAY)
4792 return RETURN_VALUE_STRUCT_CONVENTION;
4793 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4794 && TYPE_LENGTH (type) == 4
4795 && tdep->mips_fpu_type != MIPS_FPU_NONE)
46cac009 4796 {
cb1d2653
AC
4797 /* A single-precision floating-point value. It fits in the
4798 least significant part of FP0. */
4799 if (mips_debug)
4800 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
29dfb2ac
AC
4801 mips_xfer_register (regcache,
4802 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
4803 TYPE_LENGTH (type),
4804 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4805 return RETURN_VALUE_REGISTER_CONVENTION;
cb1d2653
AC
4806 }
4807 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4808 && TYPE_LENGTH (type) == 8
4809 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4810 {
a4b8ebc8
AC
4811 /* A double-precision floating-point value. The most
4812 significant part goes in FP1, and the least significant in
4813 FP0. */
cb1d2653 4814 if (mips_debug)
a4b8ebc8 4815 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
cb1d2653
AC
4816 switch (TARGET_BYTE_ORDER)
4817 {
4818 case BFD_ENDIAN_LITTLE:
29dfb2ac
AC
4819 mips_xfer_register (regcache,
4820 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 0,
4821 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4822 mips_xfer_register (regcache,
4823 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 1,
4824 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
cb1d2653
AC
4825 break;
4826 case BFD_ENDIAN_BIG:
29dfb2ac
AC
4827 mips_xfer_register (regcache,
4828 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 1,
4829 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4830 mips_xfer_register (regcache,
4831 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 0,
4832 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
cb1d2653
AC
4833 break;
4834 default:
4835 internal_error (__FILE__, __LINE__, "bad switch");
4836 }
29dfb2ac 4837 return RETURN_VALUE_REGISTER_CONVENTION;
cb1d2653
AC
4838 }
4839#if 0
4840 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4841 && TYPE_NFIELDS (type) <= 2
4842 && TYPE_NFIELDS (type) >= 1
4843 && ((TYPE_NFIELDS (type) == 1
4844 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4845 == TYPE_CODE_FLT))
4846 || (TYPE_NFIELDS (type) == 2
4847 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4848 == TYPE_CODE_FLT)
4849 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4850 == TYPE_CODE_FLT)))
4851 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4852 {
4853 /* A struct that contains one or two floats. Each value is part
4854 in the least significant part of their floating point
4855 register.. */
d9d9c31f 4856 bfd_byte reg[MAX_REGISTER_SIZE];
cb1d2653
AC
4857 int regnum;
4858 int field;
56cea623 4859 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
cb1d2653
AC
4860 field < TYPE_NFIELDS (type);
4861 field++, regnum += 2)
4862 {
4863 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4864 / TARGET_CHAR_BIT);
4865 if (mips_debug)
4866 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
a4b8ebc8
AC
4867 mips_xfer_register (regcache, NUM_REGS + regnum,
4868 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
29dfb2ac 4869 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
cb1d2653 4870 }
29dfb2ac 4871 return RETURN_VALUE_REGISTER_CONVENTION;
cb1d2653
AC
4872 }
4873#endif
4874#if 0
4875 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4876 || TYPE_CODE (type) == TYPE_CODE_UNION)
4877 {
4878 /* A structure or union. Extract the left justified value,
4879 regardless of the byte order. I.e. DO NOT USE
4880 mips_xfer_lower. */
4881 int offset;
4882 int regnum;
4883 for (offset = 0, regnum = V0_REGNUM;
4884 offset < TYPE_LENGTH (type);
719ec221 4885 offset += register_size (current_gdbarch, regnum), regnum++)
cb1d2653 4886 {
719ec221 4887 int xfer = register_size (current_gdbarch, regnum);
cb1d2653
AC
4888 if (offset + xfer > TYPE_LENGTH (type))
4889 xfer = TYPE_LENGTH (type) - offset;
4890 if (mips_debug)
4891 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4892 offset, xfer, regnum);
a4b8ebc8 4893 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
29dfb2ac 4894 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
cb1d2653 4895 }
29dfb2ac 4896 return RETURN_VALUE_REGISTER_CONVENTION;
cb1d2653
AC
4897 }
4898#endif
4899 else
4900 {
4901 /* A scalar extract each part but least-significant-byte
4902 justified. o32 thinks registers are 4 byte, regardless of
4903 the ISA. mips_stack_argsize controls this. */
4904 int offset;
4905 int regnum;
4906 for (offset = 0, regnum = V0_REGNUM;
4907 offset < TYPE_LENGTH (type);
4908 offset += mips_stack_argsize (), regnum++)
4909 {
4910 int xfer = mips_stack_argsize ();
4911 int pos = 0;
4912 if (offset + xfer > TYPE_LENGTH (type))
4913 xfer = TYPE_LENGTH (type) - offset;
4914 if (mips_debug)
4915 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4916 offset, xfer, regnum);
a4b8ebc8 4917 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
29dfb2ac 4918 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
cb1d2653 4919 }
29dfb2ac 4920 return RETURN_VALUE_REGISTER_CONVENTION;
46cac009
AC
4921 }
4922}
4923
cb1d2653
AC
4924/* N32/N44 ABI stuff. */
4925
29dfb2ac
AC
4926static enum return_value_convention
4927mips_n32n64_return_value (struct gdbarch *gdbarch,
4928 struct type *type, struct regcache *regcache,
4929 void *readbuf, const void *writebuf)
c906108c 4930{
88658117 4931 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
29dfb2ac
AC
4932 if (TYPE_CODE (type)== TYPE_CODE_STRUCT
4933 || TYPE_CODE (type)== TYPE_CODE_UNION
4934 || TYPE_CODE (type)== TYPE_CODE_ARRAY
4935 || TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE)
4936 return RETURN_VALUE_STRUCT_CONVENTION;
4937 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4938 && tdep->mips_fpu_type != MIPS_FPU_NONE)
7a292a7a 4939 {
88658117
AC
4940 /* A floating-point value belongs in the least significant part
4941 of FP0. */
4942 if (mips_debug)
4943 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
29dfb2ac
AC
4944 mips_xfer_register (regcache,
4945 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
4946 TYPE_LENGTH (type),
4947 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4948 return RETURN_VALUE_REGISTER_CONVENTION;
88658117
AC
4949 }
4950 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4951 && TYPE_NFIELDS (type) <= 2
4952 && TYPE_NFIELDS (type) >= 1
4953 && ((TYPE_NFIELDS (type) == 1
4954 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4955 == TYPE_CODE_FLT))
4956 || (TYPE_NFIELDS (type) == 2
4957 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4958 == TYPE_CODE_FLT)
4959 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4960 == TYPE_CODE_FLT)))
4961 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4962 {
4963 /* A struct that contains one or two floats. Each value is part
4964 in the least significant part of their floating point
4965 register.. */
d9d9c31f 4966 bfd_byte reg[MAX_REGISTER_SIZE];
88658117
AC
4967 int regnum;
4968 int field;
56cea623 4969 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
88658117
AC
4970 field < TYPE_NFIELDS (type);
4971 field++, regnum += 2)
4972 {
4973 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4974 / TARGET_CHAR_BIT);
4975 if (mips_debug)
4976 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
a4b8ebc8
AC
4977 mips_xfer_register (regcache, NUM_REGS + regnum,
4978 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
29dfb2ac 4979 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
88658117 4980 }
29dfb2ac 4981 return RETURN_VALUE_REGISTER_CONVENTION;
7a292a7a 4982 }
88658117
AC
4983 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4984 || TYPE_CODE (type) == TYPE_CODE_UNION)
4985 {
4986 /* A structure or union. Extract the left justified value,
4987 regardless of the byte order. I.e. DO NOT USE
4988 mips_xfer_lower. */
4989 int offset;
4990 int regnum;
4991 for (offset = 0, regnum = V0_REGNUM;
4992 offset < TYPE_LENGTH (type);
719ec221 4993 offset += register_size (current_gdbarch, regnum), regnum++)
88658117 4994 {
719ec221 4995 int xfer = register_size (current_gdbarch, regnum);
88658117
AC
4996 if (offset + xfer > TYPE_LENGTH (type))
4997 xfer = TYPE_LENGTH (type) - offset;
4998 if (mips_debug)
4999 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5000 offset, xfer, regnum);
a4b8ebc8 5001 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
29dfb2ac 5002 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
88658117 5003 }
29dfb2ac 5004 return RETURN_VALUE_REGISTER_CONVENTION;
88658117
AC
5005 }
5006 else
5007 {
5008 /* A scalar extract each part but least-significant-byte
5009 justified. */
5010 int offset;
5011 int regnum;
5012 for (offset = 0, regnum = V0_REGNUM;
5013 offset < TYPE_LENGTH (type);
719ec221 5014 offset += register_size (current_gdbarch, regnum), regnum++)
88658117 5015 {
719ec221 5016 int xfer = register_size (current_gdbarch, regnum);
88658117
AC
5017 int pos = 0;
5018 if (offset + xfer > TYPE_LENGTH (type))
5019 xfer = TYPE_LENGTH (type) - offset;
5020 if (mips_debug)
5021 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5022 offset, xfer, regnum);
a4b8ebc8 5023 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
29dfb2ac 5024 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
88658117 5025 }
29dfb2ac 5026 return RETURN_VALUE_REGISTER_CONVENTION;
88658117
AC
5027 }
5028}
5029
2f1488ce 5030static CORE_ADDR
6672060b 5031mips_extract_struct_value_address (struct regcache *regcache)
2f1488ce
MS
5032{
5033 /* FIXME: This will only work at random. The caller passes the
5034 struct_return address in V0, but it is not preserved. It may
5035 still be there, or this may be a random value. */
77d8f2b4
MS
5036 LONGEST val;
5037
5038 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
6672060b 5039 return val;
2f1488ce
MS
5040}
5041
c906108c
SS
5042/* Exported procedure: Is PC in the signal trampoline code */
5043
102182a9
MS
5044static int
5045mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
5046{
5047 if (sigtramp_address == 0)
5048 fixup_sigtramp ();
5049 return (pc >= sigtramp_address && pc < sigtramp_end);
5050}
5051
a5ea2558
AC
5052/* Root of all "set mips "/"show mips " commands. This will eventually be
5053 used for all MIPS-specific commands. */
5054
a5ea2558 5055static void
acdb74a0 5056show_mips_command (char *args, int from_tty)
a5ea2558
AC
5057{
5058 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
5059}
5060
a5ea2558 5061static void
acdb74a0 5062set_mips_command (char *args, int from_tty)
a5ea2558
AC
5063{
5064 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
5065 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5066}
5067
c906108c
SS
5068/* Commands to show/set the MIPS FPU type. */
5069
c906108c 5070static void
acdb74a0 5071show_mipsfpu_command (char *args, int from_tty)
c906108c 5072{
c906108c
SS
5073 char *fpu;
5074 switch (MIPS_FPU_TYPE)
5075 {
5076 case MIPS_FPU_SINGLE:
5077 fpu = "single-precision";
5078 break;
5079 case MIPS_FPU_DOUBLE:
5080 fpu = "double-precision";
5081 break;
5082 case MIPS_FPU_NONE:
5083 fpu = "absent (none)";
5084 break;
93d56215
AC
5085 default:
5086 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
5087 }
5088 if (mips_fpu_type_auto)
5089 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5090 fpu);
5091 else
5092 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5093 fpu);
5094}
5095
5096
c906108c 5097static void
acdb74a0 5098set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
5099{
5100 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5101 show_mipsfpu_command (args, from_tty);
5102}
5103
c906108c 5104static void
acdb74a0 5105set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
5106{
5107 mips_fpu_type = MIPS_FPU_SINGLE;
5108 mips_fpu_type_auto = 0;
9e364162 5109 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
c906108c
SS
5110}
5111
c906108c 5112static void
acdb74a0 5113set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
5114{
5115 mips_fpu_type = MIPS_FPU_DOUBLE;
5116 mips_fpu_type_auto = 0;
9e364162 5117 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
c906108c
SS
5118}
5119
c906108c 5120static void
acdb74a0 5121set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
5122{
5123 mips_fpu_type = MIPS_FPU_NONE;
5124 mips_fpu_type_auto = 0;
9e364162 5125 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
c906108c
SS
5126}
5127
c906108c 5128static void
acdb74a0 5129set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
5130{
5131 mips_fpu_type_auto = 1;
5132}
5133
c906108c 5134/* Attempt to identify the particular processor model by reading the
691c0433
AC
5135 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
5136 the relevant processor still exists (it dates back to '94) and
5137 secondly this is not the way to do this. The processor type should
5138 be set by forcing an architecture change. */
c906108c 5139
691c0433
AC
5140void
5141deprecated_mips_set_processor_regs_hack (void)
c906108c 5142{
691c0433 5143 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
5144 CORE_ADDR prid;
5145
5146 prid = read_register (PRID_REGNUM);
5147
5148 if ((prid & ~0xf) == 0x700)
691c0433 5149 tdep->mips_processor_reg_names = mips_r3041_reg_names;
c906108c
SS
5150}
5151
5152/* Just like reinit_frame_cache, but with the right arguments to be
5153 callable as an sfunc. */
5154
5155static void
acdb74a0
AC
5156reinit_frame_cache_sfunc (char *args, int from_tty,
5157 struct cmd_list_element *c)
c906108c
SS
5158{
5159 reinit_frame_cache ();
5160}
5161
a89aa300
AC
5162static int
5163gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 5164{
e5ab0dce 5165 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
5166 mips_extra_func_info_t proc_desc;
5167
5168 /* Search for the function containing this address. Set the low bit
5169 of the address when searching, in case we were given an even address
5170 that is the start of a 16-bit function. If we didn't do this,
5171 the search would fail because the symbol table says the function
5172 starts at an odd address, i.e. 1 byte past the given address. */
5173 memaddr = ADDR_BITS_REMOVE (memaddr);
95404a3e 5174 proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
c906108c
SS
5175
5176 /* Make an attempt to determine if this is a 16-bit function. If
5177 the procedure descriptor exists and the address therein is odd,
5178 it's definitely a 16-bit function. Otherwise, we have to just
5179 guess that if the address passed in is odd, it's 16-bits. */
d31431ed
AC
5180 /* FIXME: cagney/2003-06-26: Is this even necessary? The
5181 disassembler needs to be able to locally determine the ISA, and
5182 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
5183 work. */
c906108c 5184 if (proc_desc)
d31431ed
AC
5185 {
5186 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
5187 info->mach = bfd_mach_mips16;
5188 }
c906108c 5189 else
d31431ed
AC
5190 {
5191 if (pc_is_mips16 (memaddr))
5192 info->mach = bfd_mach_mips16;
5193 }
c906108c
SS
5194
5195 /* Round down the instruction address to the appropriate boundary. */
65c11066 5196 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 5197
e5ab0dce
AC
5198 /* Set the disassembler options. */
5199 if (tdep->mips_abi == MIPS_ABI_N32
5200 || tdep->mips_abi == MIPS_ABI_N64)
5201 {
5202 /* Set up the disassembler info, so that we get the right
5203 register names from libopcodes. */
5204 if (tdep->mips_abi == MIPS_ABI_N32)
5205 info->disassembler_options = "gpr-names=n32";
5206 else
5207 info->disassembler_options = "gpr-names=64";
5208 info->flavour = bfd_target_elf_flavour;
5209 }
5210 else
5211 /* This string is not recognized explicitly by the disassembler,
5212 but it tells the disassembler to not try to guess the ABI from
5213 the bfd elf headers, such that, if the user overrides the ABI
5214 of a program linked as NewABI, the disassembly will follow the
5215 register naming conventions specified by the user. */
5216 info->disassembler_options = "gpr-names=32";
5217
c906108c 5218 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 5219 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5220 return print_insn_big_mips (memaddr, info);
5221 else
5222 return print_insn_little_mips (memaddr, info);
5223}
5224
c906108c
SS
5225/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5226 counter value to determine whether a 16- or 32-bit breakpoint should be
5227 used. It returns a pointer to a string of bytes that encode a breakpoint
5228 instruction, stores the length of the string to *lenptr, and adjusts pc
5229 (if necessary) to point to the actual memory location where the
5230 breakpoint should be inserted. */
5231
f7ab6ec6 5232static const unsigned char *
acdb74a0 5233mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c 5234{
d7449b42 5235 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5236 {
5237 if (pc_is_mips16 (*pcptr))
5238 {
aaab4dba 5239 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
95404a3e 5240 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 5241 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
5242 return mips16_big_breakpoint;
5243 }
5244 else
5245 {
aaab4dba
AC
5246 /* The IDT board uses an unusual breakpoint value, and
5247 sometimes gets confused when it sees the usual MIPS
5248 breakpoint instruction. */
5249 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5250 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5251 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
c906108c 5252
c5aa993b 5253 *lenptr = sizeof (big_breakpoint);
c906108c
SS
5254
5255 if (strcmp (target_shortname, "mips") == 0)
5256 return idt_big_breakpoint;
5257 else if (strcmp (target_shortname, "ddb") == 0
5258 || strcmp (target_shortname, "pmon") == 0
5259 || strcmp (target_shortname, "lsi") == 0)
5260 return pmon_big_breakpoint;
5261 else
5262 return big_breakpoint;
5263 }
5264 }
5265 else
5266 {
5267 if (pc_is_mips16 (*pcptr))
5268 {
aaab4dba 5269 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
95404a3e 5270 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 5271 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
5272 return mips16_little_breakpoint;
5273 }
5274 else
5275 {
aaab4dba
AC
5276 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5277 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5278 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
c906108c 5279
c5aa993b 5280 *lenptr = sizeof (little_breakpoint);
c906108c
SS
5281
5282 if (strcmp (target_shortname, "mips") == 0)
5283 return idt_little_breakpoint;
5284 else if (strcmp (target_shortname, "ddb") == 0
5285 || strcmp (target_shortname, "pmon") == 0
5286 || strcmp (target_shortname, "lsi") == 0)
5287 return pmon_little_breakpoint;
5288 else
5289 return little_breakpoint;
5290 }
5291 }
5292}
5293
5294/* If PC is in a mips16 call or return stub, return the address of the target
5295 PC, which is either the callee or the caller. There are several
5296 cases which must be handled:
5297
5298 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 5299 target PC is in $31 ($ra).
c906108c 5300 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 5301 and the target PC is in $2.
c906108c 5302 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5303 before the jal instruction, this is effectively a call stub
5304 and the the target PC is in $2. Otherwise this is effectively
5305 a return stub and the target PC is in $18.
c906108c
SS
5306
5307 See the source code for the stubs in gcc/config/mips/mips16.S for
5308 gory details.
5309
5310 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 5311 */
c906108c 5312
757a7cc6 5313static CORE_ADDR
acdb74a0 5314mips_skip_stub (CORE_ADDR pc)
c906108c
SS
5315{
5316 char *name;
5317 CORE_ADDR start_addr;
5318
5319 /* Find the starting address and name of the function containing the PC. */
5320 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5321 return 0;
5322
5323 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5324 target PC is in $31 ($ra). */
5325 if (strcmp (name, "__mips16_ret_sf") == 0
5326 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 5327 return read_signed_register (RA_REGNUM);
c906108c
SS
5328
5329 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5330 {
5331 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5332 and the target PC is in $2. */
5333 if (name[19] >= '0' && name[19] <= '9')
6c997a34 5334 return read_signed_register (2);
c906108c
SS
5335
5336 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5337 before the jal instruction, this is effectively a call stub
5338 and the the target PC is in $2. Otherwise this is effectively
5339 a return stub and the target PC is in $18. */
c906108c
SS
5340 else if (name[19] == 's' || name[19] == 'd')
5341 {
5342 if (pc == start_addr)
5343 {
5344 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
5345 stub. Such a stub for a function bar might have a name
5346 like __fn_stub_bar, and might look like this:
5347 mfc1 $4,$f13
5348 mfc1 $5,$f12
5349 mfc1 $6,$f15
5350 mfc1 $7,$f14
5351 la $1,bar (becomes a lui/addiu pair)
5352 jr $1
5353 So scan down to the lui/addi and extract the target
5354 address from those two instructions. */
c906108c 5355
6c997a34 5356 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
5357 t_inst inst;
5358 int i;
5359
5360 /* See if the name of the target function is __fn_stub_*. */
5361 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5362 return target_pc;
5363 if (strncmp (name, "__fn_stub_", 10) != 0
5364 && strcmp (name, "etext") != 0
5365 && strcmp (name, "_etext") != 0)
5366 return target_pc;
5367
5368 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
5369 The limit on the search is arbitrarily set to 20
5370 instructions. FIXME. */
c906108c
SS
5371 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5372 {
c5aa993b
JM
5373 inst = mips_fetch_instruction (target_pc);
5374 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5375 pc = (inst << 16) & 0xffff0000; /* high word */
5376 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5377 return pc | (inst & 0xffff); /* low word */
c906108c
SS
5378 }
5379
5380 /* Couldn't find the lui/addui pair, so return stub address. */
5381 return target_pc;
5382 }
5383 else
5384 /* This is the 'return' part of a call stub. The return
5385 address is in $r18. */
6c997a34 5386 return read_signed_register (18);
c906108c
SS
5387 }
5388 }
c5aa993b 5389 return 0; /* not a stub */
c906108c
SS
5390}
5391
5392
5393/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5394 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5395
757a7cc6 5396static int
acdb74a0 5397mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
5398{
5399 CORE_ADDR start_addr;
5400
5401 /* Find the starting address of the function containing the PC. If the
5402 caller didn't give us a name, look it up at the same time. */
5403 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5404 return 0;
5405
5406 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5407 {
5408 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5409 if (name[19] >= '0' && name[19] <= '9')
5410 return 1;
5411 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 5412 before the jal instruction, this is effectively a call stub. */
c906108c
SS
5413 else if (name[19] == 's' || name[19] == 'd')
5414 return pc == start_addr;
5415 }
5416
c5aa993b 5417 return 0; /* not a stub */
c906108c
SS
5418}
5419
5420
5421/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5422 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5423
e41b17f0 5424static int
acdb74a0 5425mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
5426{
5427 CORE_ADDR start_addr;
5428
5429 /* Find the starting address of the function containing the PC. */
5430 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5431 return 0;
5432
5433 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5434 if (strcmp (name, "__mips16_ret_sf") == 0
5435 || strcmp (name, "__mips16_ret_df") == 0)
5436 return 1;
5437
5438 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 5439 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
5440 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5441 && (name[19] == 's' || name[19] == 'd')
5442 && pc != start_addr)
5443 return 1;
5444
c5aa993b 5445 return 0; /* not a stub */
c906108c
SS
5446}
5447
5448
5449/* Return non-zero if the PC is in a library helper function that should
5450 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5451
5452int
acdb74a0 5453mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
5454{
5455 char *name;
5456
5457 /* Find the starting address and name of the function containing the PC. */
5458 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5459 return 0;
5460
5461 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5462 that we want to ignore. */
5463 return (strcmp (name, "__mips16_ret_sf") == 0
5464 || strcmp (name, "__mips16_ret_df") == 0);
5465}
5466
5467
47a8d4ba
AC
5468/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5469 the register stored on the stack (32) is different to its real raw
5470 size (64). The below ensures that registers are fetched from the
5471 stack using their ABI size and then stored into the RAW_BUFFER
5472 using their raw size.
5473
5474 The alternative to adding this function would be to add an ABI
5475 macro - REGISTER_STACK_SIZE(). */
5476
5477static void
acdb74a0 5478mips_get_saved_register (char *raw_buffer,
795e1e11 5479 int *optimizedp,
acdb74a0
AC
5480 CORE_ADDR *addrp,
5481 struct frame_info *frame,
5482 int regnum,
795e1e11 5483 enum lval_type *lvalp)
47a8d4ba 5484{
795e1e11
AC
5485 CORE_ADDR addrx;
5486 enum lval_type lvalx;
5487 int optimizedx;
6e51443a 5488 int realnumx;
47a8d4ba 5489
a4b8ebc8
AC
5490 /* Always a pseudo. */
5491 gdb_assert (regnum >= NUM_REGS);
47a8d4ba 5492
795e1e11
AC
5493 /* Make certain that all needed parameters are present. */
5494 if (addrp == NULL)
5495 addrp = &addrx;
5496 if (lvalp == NULL)
5497 lvalp = &lvalx;
5498 if (optimizedp == NULL)
5499 optimizedp = &optimizedx;
a4b8ebc8
AC
5500
5501 if ((regnum % NUM_REGS) == SP_REGNUM)
5502 /* The SP_REGNUM is special, its value is stored in saved_regs.
5503 In fact, it is so special that it can even only be fetched
5504 using a raw register number! Once this code as been converted
5505 to frame-unwind the problem goes away. */
5506 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5507 regnum % NUM_REGS, optimizedp, lvalp, addrp,
5508 &realnumx, raw_buffer);
5509 else
5510 /* Get it from the next frame. */
5511 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5512 regnum, optimizedp, lvalp, addrp,
5513 &realnumx, raw_buffer);
47a8d4ba 5514}
2acceee2 5515
f7b9e9fc
AC
5516/* Immediately after a function call, return the saved pc.
5517 Can't always go through the frames for this because on some machines
5518 the new frame is not set up until the new function executes
5519 some instructions. */
5520
5521static CORE_ADDR
5522mips_saved_pc_after_call (struct frame_info *frame)
5523{
6c997a34 5524 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
5525}
5526
5527
a4b8ebc8
AC
5528/* Convert a dbx stab register number (from `r' declaration) to a GDB
5529 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
5530
5531static int
5532mips_stab_reg_to_regnum (int num)
5533{
a4b8ebc8 5534 int regnum;
2f38ef89 5535 if (num >= 0 && num < 32)
a4b8ebc8 5536 regnum = num;
2f38ef89 5537 else if (num >= 38 && num < 70)
56cea623 5538 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
040b99fd 5539 else if (num == 70)
56cea623 5540 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 5541 else if (num == 71)
56cea623 5542 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 5543 else
a4b8ebc8
AC
5544 /* This will hopefully (eventually) provoke a warning. Should
5545 we be calling complaint() here? */
5546 return NUM_REGS + NUM_PSEUDO_REGS;
5547 return NUM_REGS + regnum;
88c72b7d
AC
5548}
5549
2f38ef89 5550
a4b8ebc8
AC
5551/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5552 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
5553
5554static int
2f38ef89 5555mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 5556{
a4b8ebc8 5557 int regnum;
2f38ef89 5558 if (num >= 0 && num < 32)
a4b8ebc8 5559 regnum = num;
2f38ef89 5560 else if (num >= 32 && num < 64)
56cea623 5561 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
040b99fd 5562 else if (num == 64)
56cea623 5563 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 5564 else if (num == 65)
56cea623 5565 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 5566 else
a4b8ebc8
AC
5567 /* This will hopefully (eventually) provoke a warning. Should we
5568 be calling complaint() here? */
5569 return NUM_REGS + NUM_PSEUDO_REGS;
5570 return NUM_REGS + regnum;
5571}
5572
5573static int
5574mips_register_sim_regno (int regnum)
5575{
5576 /* Only makes sense to supply raw registers. */
5577 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
5578 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5579 decide if it is valid. Should instead define a standard sim/gdb
5580 register numbering scheme. */
5581 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
5582 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
5583 return regnum;
5584 else
5585 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
5586}
5587
2f38ef89 5588
fc0c74b1
AC
5589/* Convert an integer into an address. By first converting the value
5590 into a pointer and then extracting it signed, the address is
5591 guarenteed to be correctly sign extended. */
5592
5593static CORE_ADDR
5594mips_integer_to_address (struct type *type, void *buf)
5595{
5596 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5597 LONGEST val = unpack_long (type, buf);
5598 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5599 return extract_signed_integer (tmp,
5600 TYPE_LENGTH (builtin_type_void_data_ptr));
5601}
5602
caaa3122
DJ
5603static void
5604mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5605{
5606 enum mips_abi *abip = (enum mips_abi *) obj;
5607 const char *name = bfd_get_section_name (abfd, sect);
5608
5609 if (*abip != MIPS_ABI_UNKNOWN)
5610 return;
5611
5612 if (strncmp (name, ".mdebug.", 8) != 0)
5613 return;
5614
5615 if (strcmp (name, ".mdebug.abi32") == 0)
5616 *abip = MIPS_ABI_O32;
5617 else if (strcmp (name, ".mdebug.abiN32") == 0)
5618 *abip = MIPS_ABI_N32;
62a49b2c 5619 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 5620 *abip = MIPS_ABI_N64;
caaa3122
DJ
5621 else if (strcmp (name, ".mdebug.abiO64") == 0)
5622 *abip = MIPS_ABI_O64;
5623 else if (strcmp (name, ".mdebug.eabi32") == 0)
5624 *abip = MIPS_ABI_EABI32;
5625 else if (strcmp (name, ".mdebug.eabi64") == 0)
5626 *abip = MIPS_ABI_EABI64;
5627 else
5628 warning ("unsupported ABI %s.", name + 8);
5629}
5630
2e4ebe70
DJ
5631static enum mips_abi
5632global_mips_abi (void)
5633{
5634 int i;
5635
5636 for (i = 0; mips_abi_strings[i] != NULL; i++)
5637 if (mips_abi_strings[i] == mips_abi_string)
5638 return (enum mips_abi) i;
5639
5640 internal_error (__FILE__, __LINE__,
5641 "unknown ABI string");
5642}
5643
c2d11a7d 5644static struct gdbarch *
acdb74a0
AC
5645mips_gdbarch_init (struct gdbarch_info info,
5646 struct gdbarch_list *arches)
c2d11a7d 5647{
c2d11a7d
JM
5648 struct gdbarch *gdbarch;
5649 struct gdbarch_tdep *tdep;
5650 int elf_flags;
2e4ebe70 5651 enum mips_abi mips_abi, found_abi, wanted_abi;
a4b8ebc8 5652 int num_regs;
c2d11a7d 5653
70f80edf
JT
5654 elf_flags = 0;
5655
5656 if (info.abfd)
5657 {
5658 /* First of all, extract the elf_flags, if available. */
5659 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5660 elf_flags = elf_elfheader (info.abfd)->e_flags;
70f80edf 5661 }
c2d11a7d 5662
102182a9 5663 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5664 switch ((elf_flags & EF_MIPS_ABI))
5665 {
5666 case E_MIPS_ABI_O32:
5667 mips_abi = MIPS_ABI_O32;
5668 break;
5669 case E_MIPS_ABI_O64:
5670 mips_abi = MIPS_ABI_O64;
5671 break;
5672 case E_MIPS_ABI_EABI32:
5673 mips_abi = MIPS_ABI_EABI32;
5674 break;
5675 case E_MIPS_ABI_EABI64:
4a7f7ba8 5676 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5677 break;
5678 default:
acdb74a0
AC
5679 if ((elf_flags & EF_MIPS_ABI2))
5680 mips_abi = MIPS_ABI_N32;
5681 else
5682 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5683 break;
5684 }
acdb74a0 5685
caaa3122
DJ
5686 /* GCC creates a pseudo-section whose name describes the ABI. */
5687 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5688 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5689
2e4ebe70
DJ
5690 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5691 Use the ABI from the last architecture if there is one. */
5692 if (info.abfd == NULL && arches != NULL)
5693 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5694
32a6503c 5695 /* Try the architecture for any hint of the correct ABI. */
bf64bfd6
AC
5696 if (mips_abi == MIPS_ABI_UNKNOWN
5697 && info.bfd_arch_info != NULL
5698 && info.bfd_arch_info->arch == bfd_arch_mips)
5699 {
5700 switch (info.bfd_arch_info->mach)
5701 {
5702 case bfd_mach_mips3900:
5703 mips_abi = MIPS_ABI_EABI32;
5704 break;
5705 case bfd_mach_mips4100:
5706 case bfd_mach_mips5000:
5707 mips_abi = MIPS_ABI_EABI64;
5708 break;
1d06468c
EZ
5709 case bfd_mach_mips8000:
5710 case bfd_mach_mips10000:
32a6503c
KB
5711 /* On Irix, ELF64 executables use the N64 ABI. The
5712 pseudo-sections which describe the ABI aren't present
5713 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5714 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5715 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5716 mips_abi = MIPS_ABI_N64;
5717 else
5718 mips_abi = MIPS_ABI_N32;
1d06468c 5719 break;
bf64bfd6
AC
5720 }
5721 }
2e4ebe70 5722
2e4ebe70
DJ
5723 if (mips_abi == MIPS_ABI_UNKNOWN)
5724 mips_abi = MIPS_ABI_O32;
5725
5726 /* Now that we have found what the ABI for this binary would be,
5727 check whether the user is overriding it. */
5728 found_abi = mips_abi;
5729 wanted_abi = global_mips_abi ();
5730 if (wanted_abi != MIPS_ABI_UNKNOWN)
5731 mips_abi = wanted_abi;
5732
4b9b3959
AC
5733 if (gdbarch_debug)
5734 {
5735 fprintf_unfiltered (gdb_stdlog,
9ace0497 5736 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 5737 elf_flags);
4b9b3959
AC
5738 fprintf_unfiltered (gdb_stdlog,
5739 "mips_gdbarch_init: mips_abi = %d\n",
5740 mips_abi);
2e4ebe70
DJ
5741 fprintf_unfiltered (gdb_stdlog,
5742 "mips_gdbarch_init: found_mips_abi = %d\n",
5743 found_abi);
4b9b3959 5744 }
0dadbba0 5745
c2d11a7d
JM
5746 /* try to find a pre-existing architecture */
5747 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5748 arches != NULL;
5749 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5750 {
5751 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5752 using. */
9103eae0 5753 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5754 continue;
9103eae0 5755 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5756 continue;
719ec221
AC
5757 /* Need to be pedantic about which register virtual size is
5758 used. */
5759 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5760 != mips64_transfers_32bit_regs_p)
5761 continue;
4be87837 5762 return arches->gdbarch;
c2d11a7d
JM
5763 }
5764
102182a9 5765 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5766 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5767 gdbarch = gdbarch_alloc (&info, tdep);
5768 tdep->elf_flags = elf_flags;
719ec221 5769 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
c2d11a7d 5770
102182a9 5771 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5772 set_gdbarch_short_bit (gdbarch, 16);
5773 set_gdbarch_int_bit (gdbarch, 32);
5774 set_gdbarch_float_bit (gdbarch, 32);
5775 set_gdbarch_double_bit (gdbarch, 64);
5776 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
5777 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5778 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5779 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
2e4ebe70 5780 tdep->found_abi = found_abi;
0dadbba0 5781 tdep->mips_abi = mips_abi;
1d06468c 5782
f7ab6ec6
MS
5783 set_gdbarch_elf_make_msymbol_special (gdbarch,
5784 mips_elf_make_msymbol_special);
5785
56cea623
AC
5786 /* Fill in the OS dependant register numbers. */
5787 {
5788 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5789 struct mips_regnum);
5790 tdep->regnum = regnum;
5791 if (info.osabi == GDB_OSABI_IRIX)
5792 {
5793 regnum->fp0 = 32;
5794 regnum->pc = 64;
5795 regnum->cause = 65;
5796 regnum->badvaddr = 66;
5797 regnum->hi = 67;
5798 regnum->lo = 68;
5799 regnum->fp_control_status = 69;
5800 regnum->fp_implementation_revision = 70;
5801 num_regs = 71;
5802 }
5803 else
5804 {
5805 regnum->lo = MIPS_EMBED_LO_REGNUM;
5806 regnum->hi = MIPS_EMBED_HI_REGNUM;
5807 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5808 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5809 regnum->pc = MIPS_EMBED_PC_REGNUM;
5810 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5811 regnum->fp_control_status = 70;
5812 regnum->fp_implementation_revision = 71;
5813 num_regs = 90;
5814 }
5815 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
5816 replaced by read_pc? */
5817 set_gdbarch_pc_regnum (gdbarch, regnum->pc);
5818 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5819 set_gdbarch_num_regs (gdbarch, num_regs);
5820 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5821 }
fe29b929 5822
0dadbba0 5823 switch (mips_abi)
c2d11a7d 5824 {
0dadbba0 5825 case MIPS_ABI_O32:
25ab4790 5826 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 5827 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
a5ea2558 5828 tdep->mips_default_saved_regsize = 4;
0dadbba0 5829 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5830 tdep->mips_fp_register_double = 0;
acdb74a0 5831 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
56cea623 5832 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 5833 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5834 set_gdbarch_long_bit (gdbarch, 32);
5835 set_gdbarch_ptr_bit (gdbarch, 32);
5836 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5837 set_gdbarch_deprecated_reg_struct_has_addr
5838 (gdbarch, mips_o32_reg_struct_has_addr);
c2d11a7d 5839 break;
0dadbba0 5840 case MIPS_ABI_O64:
25ab4790 5841 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
ebba8386 5842 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
46cac009 5843 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
a5ea2558 5844 tdep->mips_default_saved_regsize = 8;
0dadbba0 5845 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5846 tdep->mips_fp_register_double = 1;
acdb74a0 5847 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
56cea623 5848 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 5849 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5850 set_gdbarch_long_bit (gdbarch, 32);
5851 set_gdbarch_ptr_bit (gdbarch, 32);
5852 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5853 set_gdbarch_deprecated_reg_struct_has_addr
5854 (gdbarch, mips_o32_reg_struct_has_addr);
b060cbea 5855 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
c2d11a7d 5856 break;
0dadbba0 5857 case MIPS_ABI_EABI32:
25ab4790 5858 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
ebba8386 5859 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5860 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5861 tdep->mips_default_saved_regsize = 4;
0dadbba0 5862 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5863 tdep->mips_fp_register_double = 0;
acdb74a0 5864 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
56cea623 5865 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5866 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5867 set_gdbarch_long_bit (gdbarch, 32);
5868 set_gdbarch_ptr_bit (gdbarch, 32);
5869 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5870 set_gdbarch_deprecated_reg_struct_has_addr
5871 (gdbarch, mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5872 set_gdbarch_use_struct_convention (gdbarch,
5873 mips_eabi_use_struct_convention);
c2d11a7d 5874 break;
0dadbba0 5875 case MIPS_ABI_EABI64:
25ab4790 5876 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
ebba8386 5877 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5878 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5879 tdep->mips_default_saved_regsize = 8;
0dadbba0 5880 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5881 tdep->mips_fp_register_double = 1;
acdb74a0 5882 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
56cea623 5883 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5884 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5885 set_gdbarch_long_bit (gdbarch, 64);
5886 set_gdbarch_ptr_bit (gdbarch, 64);
5887 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5888 set_gdbarch_deprecated_reg_struct_has_addr
5889 (gdbarch, mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5890 set_gdbarch_use_struct_convention (gdbarch,
5891 mips_eabi_use_struct_convention);
c2d11a7d 5892 break;
0dadbba0 5893 case MIPS_ABI_N32:
25ab4790 5894 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5895 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
63db5580 5896 tdep->mips_default_saved_regsize = 8;
0dadbba0
AC
5897 tdep->mips_default_stack_argsize = 8;
5898 tdep->mips_fp_register_double = 1;
acdb74a0 5899 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
56cea623 5900 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5901 tdep->default_mask_address_p = 0;
0dadbba0
AC
5902 set_gdbarch_long_bit (gdbarch, 32);
5903 set_gdbarch_ptr_bit (gdbarch, 32);
5904 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5905 set_gdbarch_deprecated_reg_struct_has_addr
5906 (gdbarch, mips_n32n64_reg_struct_has_addr);
28d169de
KB
5907 break;
5908 case MIPS_ABI_N64:
25ab4790 5909 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5910 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
28d169de
KB
5911 tdep->mips_default_saved_regsize = 8;
5912 tdep->mips_default_stack_argsize = 8;
5913 tdep->mips_fp_register_double = 1;
5914 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
56cea623 5915 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
5916 tdep->default_mask_address_p = 0;
5917 set_gdbarch_long_bit (gdbarch, 64);
5918 set_gdbarch_ptr_bit (gdbarch, 64);
5919 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5920 set_gdbarch_deprecated_reg_struct_has_addr
5921 (gdbarch, mips_n32n64_reg_struct_has_addr);
0dadbba0 5922 break;
c2d11a7d 5923 default:
2e4ebe70
DJ
5924 internal_error (__FILE__, __LINE__,
5925 "unknown ABI in switch");
c2d11a7d
JM
5926 }
5927
a5ea2558
AC
5928 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5929 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5930 comment:
5931
5932 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5933 flag in object files because to do so would make it impossible to
102182a9 5934 link with libraries compiled without "-gp32". This is
a5ea2558 5935 unnecessarily restrictive.
361d1df0 5936
a5ea2558
AC
5937 We could solve this problem by adding "-gp32" multilibs to gcc,
5938 but to set this flag before gcc is built with such multilibs will
5939 break too many systems.''
5940
5941 But even more unhelpfully, the default linker output target for
5942 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5943 for 64-bit programs - you need to change the ABI to change this,
102182a9 5944 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5945 this flag to detect 32-bit mode would do the wrong thing given
5946 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5947 as 32-bit programs by default. */
a5ea2558 5948
c2d11a7d
JM
5949 /* enable/disable the MIPS FPU */
5950 if (!mips_fpu_type_auto)
5951 tdep->mips_fpu_type = mips_fpu_type;
5952 else if (info.bfd_arch_info != NULL
5953 && info.bfd_arch_info->arch == bfd_arch_mips)
5954 switch (info.bfd_arch_info->mach)
5955 {
b0069a17 5956 case bfd_mach_mips3900:
c2d11a7d 5957 case bfd_mach_mips4100:
ed9a39eb 5958 case bfd_mach_mips4111:
c2d11a7d
JM
5959 tdep->mips_fpu_type = MIPS_FPU_NONE;
5960 break;
bf64bfd6
AC
5961 case bfd_mach_mips4650:
5962 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5963 break;
c2d11a7d
JM
5964 default:
5965 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5966 break;
5967 }
5968 else
5969 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5970
691c0433 5971 /* MIPS version of register names. */
c2d11a7d 5972 set_gdbarch_register_name (gdbarch, mips_register_name);
691c0433
AC
5973 if (info.osabi == GDB_OSABI_IRIX)
5974 tdep->mips_processor_reg_names = mips_irix_reg_names;
5975 else if (info.bfd_arch_info != NULL && info.bfd_arch_info->mach == bfd_mach_mips3900)
5976 tdep->mips_processor_reg_names = mips_tx39_reg_names;
5977 else
5978 tdep->mips_processor_reg_names = mips_generic_reg_names;
6c997a34 5979 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d 5980 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
0ba6dca9 5981 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
bcb0cc15 5982 set_gdbarch_read_sp (gdbarch, mips_read_sp);
c2d11a7d 5983
102182a9
MS
5984 /* Add/remove bits from an address. The MIPS needs be careful to
5985 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5986 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5987
10312cc4 5988 /* There's a mess in stack frame creation. See comments in
2ca6c561
AC
5989 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
5990 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
10312cc4 5991
102182a9 5992 /* Map debug register numbers onto internal register numbers. */
88c72b7d 5993 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
2f38ef89
KB
5994 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5995 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5996 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 5997 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 5998
c2d11a7d 5999 /* Initialize a frame */
e0f7ec59 6000 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
e9582e71 6001 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
c2d11a7d
JM
6002
6003 /* MIPS version of CALL_DUMMY */
6004
9710e734
AC
6005 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
6006 replaced by a command, and all targets will default to on stack
6007 (regardless of the stack's execute status). */
6008 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
749b82f6 6009 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
dc604539 6010 set_gdbarch_frame_align (gdbarch, mips_frame_align);
a59fe496 6011 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
d05285fa 6012
618ce49f 6013 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
b5d1566e
MS
6014 set_gdbarch_frameless_function_invocation (gdbarch,
6015 generic_frameless_function_invocation_not);
8bedc050 6016 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
b5d1566e
MS
6017 set_gdbarch_frame_args_skip (gdbarch, 0);
6018
129c1cd6 6019 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 6020
f7b9e9fc
AC
6021 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6022 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6023 set_gdbarch_decr_pc_after_break (gdbarch, 0);
f7b9e9fc
AC
6024
6025 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6913c89a 6026 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
f7b9e9fc 6027
fc0c74b1
AC
6028 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6029 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6030 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 6031
102182a9
MS
6032 set_gdbarch_function_start_offset (gdbarch, 0);
6033
a4b8ebc8 6034 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 6035
e11c53d2 6036 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
102182a9 6037 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
bf1f5b4c 6038
e5ab0dce
AC
6039 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
6040
3a3bc038
AC
6041 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
6042 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
6043 need to all be folded into the target vector. Since they are
6044 being used as guards for STOPPED_BY_WATCHPOINT, why not have
6045 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
6046 is sitting on? */
6047 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6048
70f80edf 6049 /* Hook in OS ABI-specific overrides, if they have been registered. */
4be87837 6050 gdbarch_init_osabi (info, gdbarch);
70f80edf 6051
2f1488ce
MS
6052 set_gdbarch_extract_struct_value_address (gdbarch,
6053 mips_extract_struct_value_address);
757a7cc6
MS
6054
6055 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6056
6057 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
e41b17f0 6058 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
757a7cc6 6059
4b9b3959
AC
6060 return gdbarch;
6061}
6062
2e4ebe70
DJ
6063static void
6064mips_abi_update (char *ignore_args, int from_tty,
6065 struct cmd_list_element *c)
6066{
6067 struct gdbarch_info info;
6068
6069 /* Force the architecture to update, and (if it's a MIPS architecture)
6070 mips_gdbarch_init will take care of the rest. */
6071 gdbarch_info_init (&info);
6072 gdbarch_update_p (info);
6073}
6074
ad188201
KB
6075/* Print out which MIPS ABI is in use. */
6076
6077static void
6078show_mips_abi (char *ignore_args, int from_tty)
6079{
6080 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6081 printf_filtered (
6082 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6083 else
6084 {
6085 enum mips_abi global_abi = global_mips_abi ();
6086 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6087 const char *actual_abi_str = mips_abi_strings[actual_abi];
6088
6089 if (global_abi == MIPS_ABI_UNKNOWN)
6090 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6091 actual_abi_str);
6092 else if (global_abi == actual_abi)
6093 printf_filtered (
6094 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6095 actual_abi_str);
6096 else
6097 {
6098 /* Probably shouldn't happen... */
6099 printf_filtered (
6100 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6101 actual_abi_str,
6102 mips_abi_strings[global_abi]);
6103 }
6104 }
6105}
6106
4b9b3959
AC
6107static void
6108mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6109{
6110 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6111 if (tdep != NULL)
c2d11a7d 6112 {
acdb74a0
AC
6113 int ef_mips_arch;
6114 int ef_mips_32bitmode;
6115 /* determine the ISA */
6116 switch (tdep->elf_flags & EF_MIPS_ARCH)
6117 {
6118 case E_MIPS_ARCH_1:
6119 ef_mips_arch = 1;
6120 break;
6121 case E_MIPS_ARCH_2:
6122 ef_mips_arch = 2;
6123 break;
6124 case E_MIPS_ARCH_3:
6125 ef_mips_arch = 3;
6126 break;
6127 case E_MIPS_ARCH_4:
93d56215 6128 ef_mips_arch = 4;
acdb74a0
AC
6129 break;
6130 default:
93d56215 6131 ef_mips_arch = 0;
acdb74a0
AC
6132 break;
6133 }
6134 /* determine the size of a pointer */
6135 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
6136 fprintf_unfiltered (file,
6137 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 6138 tdep->elf_flags);
4b9b3959 6139 fprintf_unfiltered (file,
acdb74a0
AC
6140 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6141 ef_mips_32bitmode);
6142 fprintf_unfiltered (file,
6143 "mips_dump_tdep: ef_mips_arch = %d\n",
6144 ef_mips_arch);
6145 fprintf_unfiltered (file,
6146 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6147 tdep->mips_abi,
2e4ebe70 6148 mips_abi_strings[tdep->mips_abi]);
4014092b
AC
6149 fprintf_unfiltered (file,
6150 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6151 mips_mask_address_p (),
6152 tdep->default_mask_address_p);
c2d11a7d 6153 }
4b9b3959
AC
6154 fprintf_unfiltered (file,
6155 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6156 FP_REGISTER_DOUBLE);
6157 fprintf_unfiltered (file,
6158 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6159 MIPS_DEFAULT_FPU_TYPE,
6160 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6161 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6162 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6163 : "???"));
6164 fprintf_unfiltered (file,
6165 "mips_dump_tdep: MIPS_EABI = %d\n",
6166 MIPS_EABI);
4b9b3959
AC
6167 fprintf_unfiltered (file,
6168 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6169 MIPS_FPU_TYPE,
6170 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6171 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6172 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6173 : "???"));
6174 fprintf_unfiltered (file,
6175 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6176 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
6177 fprintf_unfiltered (file,
6178 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6179 FP_REGISTER_DOUBLE);
4b9b3959
AC
6180 fprintf_unfiltered (file,
6181 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6182 MIPS_DEFAULT_STACK_ARGSIZE);
6183 fprintf_unfiltered (file,
6184 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6185 MIPS_STACK_ARGSIZE);
2475bac3
AC
6186 fprintf_unfiltered (file,
6187 "mips_dump_tdep: A0_REGNUM = %d\n",
6188 A0_REGNUM);
6189 fprintf_unfiltered (file,
6190 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6191 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6192 fprintf_unfiltered (file,
6193 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6194 XSTRING (ATTACH_DETACH));
2475bac3
AC
6195 fprintf_unfiltered (file,
6196 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6197 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6198 fprintf_unfiltered (file,
6199 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6200 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
2475bac3
AC
6201 fprintf_unfiltered (file,
6202 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6203 FIRST_EMBED_REGNUM);
2475bac3
AC
6204 fprintf_unfiltered (file,
6205 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6206 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
6207 fprintf_unfiltered (file,
6208 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6209 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6210 fprintf_unfiltered (file,
6211 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6212 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
2475bac3
AC
6213 fprintf_unfiltered (file,
6214 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6215 LAST_EMBED_REGNUM);
2475bac3
AC
6216#ifdef MACHINE_CPROC_FP_OFFSET
6217 fprintf_unfiltered (file,
6218 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6219 MACHINE_CPROC_FP_OFFSET);
6220#endif
6221#ifdef MACHINE_CPROC_PC_OFFSET
6222 fprintf_unfiltered (file,
6223 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6224 MACHINE_CPROC_PC_OFFSET);
6225#endif
6226#ifdef MACHINE_CPROC_SP_OFFSET
6227 fprintf_unfiltered (file,
6228 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6229 MACHINE_CPROC_SP_OFFSET);
6230#endif
2475bac3
AC
6231 fprintf_unfiltered (file,
6232 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6233 MIPS16_INSTLEN);
2475bac3
AC
6234 fprintf_unfiltered (file,
6235 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6236 fprintf_unfiltered (file,
6237 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6238 fprintf_unfiltered (file,
6239 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6240 MIPS_INSTLEN);
6241 fprintf_unfiltered (file,
acdb74a0
AC
6242 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6243 MIPS_LAST_ARG_REGNUM,
6244 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
6245 fprintf_unfiltered (file,
6246 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6247 MIPS_NUMREGS);
2475bac3
AC
6248 fprintf_unfiltered (file,
6249 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6250 MIPS_SAVED_REGSIZE);
2475bac3
AC
6251 fprintf_unfiltered (file,
6252 "mips_dump_tdep: PRID_REGNUM = %d\n",
6253 PRID_REGNUM);
2475bac3
AC
6254 fprintf_unfiltered (file,
6255 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6258 fprintf_unfiltered (file,
6259 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6260 fprintf_unfiltered (file,
6261 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6262 fprintf_unfiltered (file,
6263 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6264 fprintf_unfiltered (file,
6265 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6266 fprintf_unfiltered (file,
6267 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6268 fprintf_unfiltered (file,
6269 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6270 fprintf_unfiltered (file,
6271 "mips_dump_tdep: PROC_PC_REG = function?\n");
6272 fprintf_unfiltered (file,
6273 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6274 fprintf_unfiltered (file,
6275 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6276 fprintf_unfiltered (file,
6277 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6278 fprintf_unfiltered (file,
6279 "mips_dump_tdep: PS_REGNUM = %d\n",
6280 PS_REGNUM);
2475bac3
AC
6281 fprintf_unfiltered (file,
6282 "mips_dump_tdep: RA_REGNUM = %d\n",
6283 RA_REGNUM);
2475bac3
AC
6284#ifdef SAVED_BYTES
6285 fprintf_unfiltered (file,
6286 "mips_dump_tdep: SAVED_BYTES = %d\n",
6287 SAVED_BYTES);
6288#endif
6289#ifdef SAVED_FP
6290 fprintf_unfiltered (file,
6291 "mips_dump_tdep: SAVED_FP = %d\n",
6292 SAVED_FP);
6293#endif
6294#ifdef SAVED_PC
6295 fprintf_unfiltered (file,
6296 "mips_dump_tdep: SAVED_PC = %d\n",
6297 SAVED_PC);
6298#endif
6299 fprintf_unfiltered (file,
6300 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6301 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6302 fprintf_unfiltered (file,
6303 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6304 fprintf_unfiltered (file,
6305 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6306 SIGFRAME_BASE);
6307 fprintf_unfiltered (file,
6308 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6309 SIGFRAME_FPREGSAVE_OFF);
6310 fprintf_unfiltered (file,
6311 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6312 SIGFRAME_PC_OFF);
6313 fprintf_unfiltered (file,
6314 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6315 SIGFRAME_REGSAVE_OFF);
2475bac3
AC
6316 fprintf_unfiltered (file,
6317 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6318 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6321 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6322 fprintf_unfiltered (file,
b0ed3589
AC
6323 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6324 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
6325 fprintf_unfiltered (file,
6326 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6327 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6328#ifdef STACK_END_ADDR
6329 fprintf_unfiltered (file,
6330 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6331 STACK_END_ADDR);
6332#endif
6333 fprintf_unfiltered (file,
6334 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6335 XSTRING (STEP_SKIPS_DELAY (PC)));
6336 fprintf_unfiltered (file,
6337 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6338 STEP_SKIPS_DELAY_P);
6339 fprintf_unfiltered (file,
6340 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6341 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6342 fprintf_unfiltered (file,
6343 "mips_dump_tdep: T9_REGNUM = %d\n",
6344 T9_REGNUM);
6345 fprintf_unfiltered (file,
6346 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6347 fprintf_unfiltered (file,
6348 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6349 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6350 fprintf_unfiltered (file,
6351 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6352 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
2475bac3
AC
6353#ifdef TRACE_CLEAR
6354 fprintf_unfiltered (file,
6355 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6356 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6357#endif
6358#ifdef TRACE_FLAVOR
6359 fprintf_unfiltered (file,
6360 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6361 TRACE_FLAVOR);
6362#endif
6363#ifdef TRACE_FLAVOR_SIZE
6364 fprintf_unfiltered (file,
6365 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6366 TRACE_FLAVOR_SIZE);
6367#endif
6368#ifdef TRACE_SET
6369 fprintf_unfiltered (file,
6370 "mips_dump_tdep: TRACE_SET # %s\n",
6371 XSTRING (TRACE_SET (X,STATE)));
6372#endif
2475bac3
AC
6373#ifdef UNUSED_REGNUM
6374 fprintf_unfiltered (file,
6375 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6376 UNUSED_REGNUM);
6377#endif
6378 fprintf_unfiltered (file,
6379 "mips_dump_tdep: V0_REGNUM = %d\n",
6380 V0_REGNUM);
6381 fprintf_unfiltered (file,
6382 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6383 (long) VM_MIN_ADDRESS);
2475bac3
AC
6384 fprintf_unfiltered (file,
6385 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6386 ZERO_REGNUM);
6387 fprintf_unfiltered (file,
6388 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6389 _PROC_MAGIC_);
c2d11a7d
JM
6390}
6391
a78f21af
AC
6392extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6393
c906108c 6394void
acdb74a0 6395_initialize_mips_tdep (void)
c906108c
SS
6396{
6397 static struct cmd_list_element *mipsfpulist = NULL;
6398 struct cmd_list_element *c;
6399
2e4ebe70
DJ
6400 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6401 if (MIPS_ABI_LAST + 1
6402 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6403 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6404
4b9b3959 6405 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 6406
a5ea2558
AC
6407 /* Add root prefix command for all "set mips"/"show mips" commands */
6408 add_prefix_cmd ("mips", no_class, set_mips_command,
6409 "Various MIPS specific commands.",
6410 &setmipscmdlist, "set mips ", 0, &setlist);
6411
6412 add_prefix_cmd ("mips", no_class, show_mips_command,
6413 "Various MIPS specific commands.",
6414 &showmipscmdlist, "show mips ", 0, &showlist);
6415
6416 /* Allow the user to override the saved register size. */
6417 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
6418 class_obscure,
6419 size_enums,
6420 &mips_saved_regsize_string, "\
a5ea2558
AC
6421Set size of general purpose registers saved on the stack.\n\
6422This option can be set to one of:\n\
6423 32 - Force GDB to treat saved GP registers as 32-bit\n\
6424 64 - Force GDB to treat saved GP registers as 64-bit\n\
6425 auto - Allow GDB to use the target's default setting or autodetect the\n\
6426 saved GP register size from information contained in the executable.\n\
6427 (default: auto)",
1ed2a135 6428 &setmipscmdlist),
a5ea2558
AC
6429 &showmipscmdlist);
6430
d929b26f
AC
6431 /* Allow the user to override the argument stack size. */
6432 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6433 class_obscure,
6434 size_enums,
1ed2a135 6435 &mips_stack_argsize_string, "\
d929b26f
AC
6436Set the amount of stack space reserved for each argument.\n\
6437This option can be set to one of:\n\
6438 32 - Force GDB to allocate 32-bit chunks per argument\n\
6439 64 - Force GDB to allocate 64-bit chunks per argument\n\
6440 auto - Allow GDB to determine the correct setting from the current\n\
6441 target and executable (default)",
6442 &setmipscmdlist),
6443 &showmipscmdlist);
6444
2e4ebe70
DJ
6445 /* Allow the user to override the ABI. */
6446 c = add_set_enum_cmd
6447 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6448 "Set the ABI used by this program.\n"
6449 "This option can be set to one of:\n"
6450 " auto - the default ABI associated with the current binary\n"
6451 " o32\n"
6452 " o64\n"
6453 " n32\n"
f3a7b3a5 6454 " n64\n"
2e4ebe70
DJ
6455 " eabi32\n"
6456 " eabi64",
6457 &setmipscmdlist);
2e4ebe70 6458 set_cmd_sfunc (c, mips_abi_update);
ad188201
KB
6459 add_cmd ("abi", class_obscure, show_mips_abi,
6460 "Show ABI in use by MIPS target", &showmipscmdlist);
2e4ebe70 6461
c906108c
SS
6462 /* Let the user turn off floating point and set the fence post for
6463 heuristic_proc_start. */
6464
6465 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6466 "Set use of MIPS floating-point coprocessor.",
6467 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6468 add_cmd ("single", class_support, set_mipsfpu_single_command,
6469 "Select single-precision MIPS floating-point coprocessor.",
6470 &mipsfpulist);
6471 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 6472 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
6473 &mipsfpulist);
6474 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6475 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6476 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6477 add_cmd ("none", class_support, set_mipsfpu_none_command,
6478 "Select no MIPS floating-point coprocessor.",
6479 &mipsfpulist);
6480 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6481 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6482 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6483 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6484 "Select MIPS floating-point coprocessor automatically.",
6485 &mipsfpulist);
6486 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6487 "Show current use of MIPS floating-point coprocessor target.",
6488 &showlist);
6489
c906108c
SS
6490 /* We really would like to have both "0" and "unlimited" work, but
6491 command.c doesn't deal with that. So make it a var_zinteger
6492 because the user can always use "999999" or some such for unlimited. */
6493 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6494 (char *) &heuristic_fence_post,
6495 "\
6496Set the distance searched for the start of a function.\n\
6497If you are debugging a stripped executable, GDB needs to search through the\n\
6498program for the start of a function. This command sets the distance of the\n\
6499search. The only need to set it is when debugging a stripped executable.",
6500 &setlist);
6501 /* We need to throw away the frame cache when we set this, since it
6502 might change our ability to get backtraces. */
9f60d481 6503 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
6504 add_show_from_set (c, &showlist);
6505
6506 /* Allow the user to control whether the upper bits of 64-bit
6507 addresses should be zeroed. */
e9e68a56
AC
6508 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6509Set zeroing of upper 32 bits of 64-bit addresses.\n\
6510Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6511allow GDB to determine the correct value.\n", "\
6512Show zeroing of upper 32 bits of 64-bit addresses.",
6513 NULL, show_mask_address,
6514 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
6515
6516 /* Allow the user to control the size of 32 bit registers within the
6517 raw remote packet. */
719ec221
AC
6518 add_setshow_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
6519 var_boolean, &mips64_transfers_32bit_regs_p, "\
6520Set compatibility with 64-bit MIPS targets that transfer 32-bit quantities.\n\
6521Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6522that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
652364 bits for others. Use \"off\" to disable compatibility mode", "\
6524Show compatibility with 64-bit MIPS targets that transfer 32-bit quantities.\n\
43e526b9
JM
6525Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6526that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
652764 bits for others. Use \"off\" to disable compatibility mode",
719ec221
AC
6528 set_mips64_transfers_32bit_regs, NULL,
6529 &setlist, &showlist);
9ace0497
AC
6530
6531 /* Debug this files internals. */
6532 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6533 &mips_debug, "Set mips debugging.\n\
6534When non-zero, mips specific debugging is enabled.", &setdebuglist),
6535 &showdebuglist);
c906108c 6536}
This page took 0.807757 seconds and 4 git commands to generate.