* ldlang.c (lang_memory_region_lookup): Remove extraneous
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
7d9884b9 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
97e091b2 2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996
0434c1a0 3 Free Software Foundation, Inc.
bd5635a1
RP
4 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
5 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
6
7This file is part of GDB.
8
361bf6ee 9This program is free software; you can redistribute it and/or modify
bd5635a1 10it under the terms of the GNU General Public License as published by
361bf6ee
JG
11the Free Software Foundation; either version 2 of the License, or
12(at your option) any later version.
bd5635a1 13
361bf6ee 14This program is distributed in the hope that it will be useful,
bd5635a1
RP
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
361bf6ee 20along with this program; if not, write to the Free Software
09af5868 21Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
bd5635a1 22
bd5635a1 23#include "defs.h"
09af5868 24#include "gdb_string.h"
bd5635a1
RP
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "value.h"
29#include "gdbcmd.h"
ef08856f 30#include "language.h"
bd5635a1 31#include "gdbcore.h"
62a469e1
SG
32#include "symfile.h"
33#include "objfiles.h"
3fed1c4a 34#include "gdbtypes.h"
28444bf3 35#include "target.h"
bd5635a1 36
ee5fb959
JK
37#include "opcode/mips.h"
38
28444bf3 39#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
70126bf9
KH
40
41/* FIXME: Put this declaration in frame.h. */
42extern struct obstack frame_cache_obstack;
28444bf3 43
002a422b 44#if 0
ee5fb959 45static int mips_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR));
002a422b 46#endif
ee5fb959 47
28444bf3
DP
48static int gdb_print_insn_mips PARAMS ((bfd_vma, disassemble_info *));
49
f2bf454e
FF
50static void mips_print_register PARAMS ((int, int));
51
52static mips_extra_func_info_t
53heuristic_proc_desc PARAMS ((CORE_ADDR, CORE_ADDR, struct frame_info *));
54
55static CORE_ADDR heuristic_proc_start PARAMS ((CORE_ADDR));
56
28444bf3 57static CORE_ADDR read_next_frame_reg PARAMS ((struct frame_info *, int));
f2bf454e 58
e4dbd248
PS
59static void mips_set_fpu_command PARAMS ((char *, int,
60 struct cmd_list_element *));
61
62static void mips_show_fpu_command PARAMS ((char *, int,
63 struct cmd_list_element *));
64
9f9f94aa
SS
65void mips_set_processor_type_command PARAMS ((char *, int));
66
1d9489c1
JK
67int mips_set_processor_type PARAMS ((char *));
68
69static void mips_show_processor_type_command PARAMS ((char *, int));
70
9f9f94aa
SS
71static void reinit_frame_cache_sfunc PARAMS ((char *, int,
72 struct cmd_list_element *));
73
f2bf454e
FF
74static mips_extra_func_info_t
75 find_proc_desc PARAMS ((CORE_ADDR pc, struct frame_info *next_frame));
76
77static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc,
78 mips_extra_func_info_t proc_desc));
79
9f9f94aa
SS
80/* This value is the model of MIPS in use. It is derived from the value
81 of the PrID register. */
82
83char *mips_processor_type;
84
85char *tmp_mips_processor_type;
86
c2a0f1cb
ILT
87/* Some MIPS boards don't support floating point, so we permit the
88 user to turn it off. */
9f9f94aa 89
e4dbd248
PS
90enum mips_fpu_type mips_fpu;
91
92static char *mips_fpu_string;
c2a0f1cb 93
9f9f94aa
SS
94/* A set of original names, to be used when restoring back to generic
95 registers from a specific set. */
96
97char *mips_generic_reg_names[] = REGISTER_NAMES;
98
99/* Names of IDT R3041 registers. */
100
101char *mips_r3041_reg_names[] = {
102 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
103 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
104 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
105 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
106 "sr", "lo", "hi", "bad", "cause","pc",
107 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
108 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
109 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
110 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
111 "fsr", "fir", "fp", "",
112 "", "", "bus", "ccfg", "", "", "", "",
113 "", "", "port", "cmp", "", "", "epc", "prid",
114};
115
116/* Names of IDT R3051 registers. */
117
118char *mips_r3051_reg_names[] = {
119 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
120 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
121 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
122 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
123 "sr", "lo", "hi", "bad", "cause","pc",
124 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
125 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
126 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
127 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
128 "fsr", "fir", "fp", "",
129 "inx", "rand", "elo", "", "ctxt", "", "", "",
130 "", "", "ehi", "", "", "", "epc", "prid",
131};
132
133/* Names of IDT R3081 registers. */
134
135char *mips_r3081_reg_names[] = {
136 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
137 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
138 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
139 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
140 "sr", "lo", "hi", "bad", "cause","pc",
141 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
142 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
143 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
144 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
145 "fsr", "fir", "fp", "",
146 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
147 "", "", "ehi", "", "", "", "epc", "prid",
148};
149
e4dbd248
PS
150/* Names of LSI 33k registers. */
151
152char *mips_lsi33k_reg_names[] = {
153 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
154 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
155 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
156 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
157 "epc", "hi", "lo", "sr", "cause","badvaddr",
158 "dcic", "bpc", "bda", "", "", "", "", "",
159 "", "", "", "", "", "", "", "",
160 "", "", "", "", "", "", "", "",
161 "", "", "", "", "", "", "", "",
162 "", "", "", "",
163 "", "", "", "", "", "", "", "",
164 "", "", "", "", "", "", "", "",
165};
166
9f9f94aa
SS
167struct {
168 char *name;
169 char **regnames;
170} mips_processor_type_table[] = {
171 { "generic", mips_generic_reg_names },
172 { "r3041", mips_r3041_reg_names },
173 { "r3051", mips_r3051_reg_names },
174 { "r3071", mips_r3081_reg_names },
175 { "r3081", mips_r3081_reg_names },
e4dbd248 176 { "lsi33k", mips_lsi33k_reg_names },
9f9f94aa
SS
177 { NULL, NULL }
178};
179
f9f8c14b
MA
180/* Table to translate MIPS16 register field to actual register number. */
181static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
182
3127785a
RP
183/* Heuristic_proc_start may hunt through the text section for a long
184 time across a 2400 baud serial line. Allows the user to limit this
185 search. */
9f9f94aa 186
3127785a
RP
187static unsigned int heuristic_fence_post = 0;
188
0f552c5f 189#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
28444bf3 190#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
0f552c5f
JG
191#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
192#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
193#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
194#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
195#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
196#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
197#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
198#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
bd5635a1 199#define _PROC_MAGIC_ 0x0F0F0F0F
0f552c5f
JG
200#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
201#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
bd5635a1
RP
202
203struct linked_proc_info
204{
205 struct mips_extra_func_info info;
206 struct linked_proc_info *next;
dac4929a 207} *linked_proc_desc_table = NULL;
bd5635a1 208
f2bf454e
FF
209
210/* This returns the PC of the first inst after the prologue. If we can't
211 find the prologue, then return 0. */
212
213static CORE_ADDR
214after_prologue (pc, proc_desc)
215 CORE_ADDR pc;
216 mips_extra_func_info_t proc_desc;
217{
218 struct symtab_and_line sal;
219 CORE_ADDR func_addr, func_end;
220
221 if (!proc_desc)
222 proc_desc = find_proc_desc (pc, NULL);
223
224 if (proc_desc)
225 {
226 /* If function is frameless, then we need to do it the hard way. I
227 strongly suspect that frameless always means prologueless... */
228 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
229 && PROC_FRAME_OFFSET (proc_desc) == 0)
230 return 0;
231 }
232
233 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
234 return 0; /* Unknown */
235
236 sal = find_pc_line (func_addr, 0);
237
238 if (sal.end < func_end)
239 return sal.end;
240
241 /* The line after the prologue is after the end of the function. In this
242 case, tell the caller to find the prologue the hard way. */
243
244 return 0;
245}
246
f9f8c14b
MA
247/* Decode a MIPS32 instruction that saves a register in the stack, and
248 set the appropriate bit in the general register mask or float register mask
249 to indicate which register is saved. This is a helper function
250 for mips_find_saved_regs. */
251
252static void
253mips32_decode_reg_save (inst, gen_mask, float_mask)
254 t_inst inst;
255 unsigned long *gen_mask;
256 unsigned long *float_mask;
257{
258 int reg;
259
260 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
261 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
262 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
263 {
264 /* It might be possible to use the instruction to
265 find the offset, rather than the code below which
266 is based on things being in a certain order in the
267 frame, but figuring out what the instruction's offset
268 is relative to might be a little tricky. */
269 reg = (inst & 0x001f0000) >> 16;
270 *gen_mask |= (1 << reg);
271 }
272 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
273 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
274 || (inst & 0xffe00000) == 0xf7a00000)/* sdc1 freg,n($sp) */
275
276 {
277 reg = ((inst & 0x001f0000) >> 16);
278 *float_mask |= (1 << reg);
279 }
280}
281
282/* Decode a MIPS16 instruction that saves a register in the stack, and
283 set the appropriate bit in the general register or float register mask
284 to indicate which register is saved. This is a helper function
285 for mips_find_saved_regs. */
286
287static void
288mips16_decode_reg_save (inst, gen_mask)
289 t_inst inst;
290 unsigned long *gen_mask;
291{
b348b9fd 292 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
f9f8c14b 293 {
b348b9fd
MA
294 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
295 *gen_mask |= (1 << reg);
296 }
297 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
298 {
299 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
f9f8c14b
MA
300 *gen_mask |= (1 << reg);
301 }
302 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
303 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
304 *gen_mask |= (1 << 31);
305}
306
c81a76b3
MA
307
308/* Fetch and return instruction from the specified location. If the PC
309 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
310
311static t_inst
312mips_fetch_instruction (addr)
313 CORE_ADDR addr;
314{
315 char buf[MIPS_INSTLEN];
316 int instlen;
317 int status;
318
319 if (IS_MIPS16_ADDR (addr))
320 {
321 instlen = MIPS16_INSTLEN;
322 addr = UNMAKE_MIPS16_ADDR (addr);
323 }
324 else
325 instlen = MIPS_INSTLEN;
326 status = read_memory_nobpt (addr, buf, instlen);
327 if (status)
328 memory_error (status, addr);
329 return extract_unsigned_integer (buf, instlen);
330}
331
332
70126bf9
KH
333/* Guaranteed to set fci->saved_regs to some values (it never leaves it
334 NULL). */
335
336void
337mips_find_saved_regs (fci)
9f9f94aa 338 struct frame_info *fci;
70126bf9
KH
339{
340 int ireg;
341 CORE_ADDR reg_position;
342 /* r0 bit means kernel trap */
343 int kernel_trap;
344 /* What registers have been saved? Bitmasks. */
345 unsigned long gen_mask, float_mask;
346 mips_extra_func_info_t proc_desc;
c81a76b3 347 t_inst inst;
70126bf9
KH
348
349 fci->saved_regs = (struct frame_saved_regs *)
350 obstack_alloc (&frame_cache_obstack, sizeof(struct frame_saved_regs));
351 memset (fci->saved_regs, 0, sizeof (struct frame_saved_regs));
352
e4dbd248
PS
353 /* If it is the frame for sigtramp, the saved registers are located
354 in a sigcontext structure somewhere on the stack.
355 If the stack layout for sigtramp changes we might have to change these
356 constants and the companion fixup_sigtramp in mdebugread.c */
357#ifndef SIGFRAME_BASE
358/* To satisfy alignment restrictions, sigcontext is located 4 bytes
359 above the sigtramp frame. */
28444bf3
DP
360#define SIGFRAME_BASE MIPS_REGSIZE
361/* FIXME! Are these correct?? */
362#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
363#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
364#define SIGFRAME_FPREGSAVE_OFF \
365 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
e4dbd248
PS
366#endif
367#ifndef SIGFRAME_REG_SIZE
28444bf3
DP
368/* FIXME! Is this correct?? */
369#define SIGFRAME_REG_SIZE MIPS_REGSIZE
e4dbd248
PS
370#endif
371 if (fci->signal_handler_caller)
372 {
28444bf3 373 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
e4dbd248
PS
374 {
375 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
376 + ireg * SIGFRAME_REG_SIZE;
377 fci->saved_regs->regs[ireg] = reg_position;
378 }
28444bf3 379 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
e4dbd248
PS
380 {
381 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
382 + ireg * SIGFRAME_REG_SIZE;
383 fci->saved_regs->regs[FP0_REGNUM + ireg] = reg_position;
384 }
385 fci->saved_regs->regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
386 return;
387 }
388
70126bf9
KH
389 proc_desc = fci->proc_desc;
390 if (proc_desc == NULL)
391 /* I'm not sure how/whether this can happen. Normally when we can't
392 find a proc_desc, we "synthesize" one using heuristic_proc_desc
393 and set the saved_regs right away. */
394 return;
395
396 kernel_trap = PROC_REG_MASK(proc_desc) & 1;
397 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK(proc_desc);
398 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK(proc_desc);
399
f9f8c14b
MA
400 if (/* In any frame other than the innermost or a frame interrupted by
401 a signal, we assume that all registers have been saved.
402 This assumes that all register saves in a function happen before
403 the first function call. */
404 (fci->next == NULL || fci->next->signal_handler_caller)
70126bf9
KH
405
406 /* In a dummy frame we know exactly where things are saved. */
407 && !PROC_DESC_IS_DUMMY (proc_desc)
408
f2bf454e
FF
409 /* Don't bother unless we are inside a function prologue. Outside the
410 prologue, we know where everything is. */
411
412 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
413
70126bf9
KH
414 /* Not sure exactly what kernel_trap means, but if it means
415 the kernel saves the registers without a prologue doing it,
416 we better not examine the prologue to see whether registers
417 have been saved yet. */
418 && !kernel_trap)
419 {
420 /* We need to figure out whether the registers that the proc_desc
421 claims are saved have been saved yet. */
422
423 CORE_ADDR addr;
70126bf9
KH
424
425 /* Bitmasks; set if we have found a save for the register. */
426 unsigned long gen_save_found = 0;
427 unsigned long float_save_found = 0;
c81a76b3 428 int instlen;
70126bf9 429
c1fc0935
MA
430 /* If the address is odd, assume this is MIPS16 code. */
431 addr = PROC_LOW_ADDR (proc_desc);
c81a76b3 432 instlen = IS_MIPS16_ADDR (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
f9f8c14b 433
20fa0902
MA
434 /* Scan through this function's instructions preceding the current
435 PC, and look for those that save registers. */
f9f8c14b
MA
436 while (addr < fci->pc)
437 {
c81a76b3
MA
438 inst = mips_fetch_instruction (addr);
439 if (IS_MIPS16_ADDR (addr))
f9f8c14b
MA
440 mips16_decode_reg_save (inst, &gen_save_found);
441 else
442 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
443 addr += instlen;
70126bf9
KH
444 }
445 gen_mask = gen_save_found;
446 float_mask = float_save_found;
447 }
448
449 /* Fill in the offsets for the registers which gen_mask says
450 were saved. */
451 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
28444bf3 452 for (ireg= MIPS_NUMREGS-1; gen_mask; --ireg, gen_mask <<= 1)
70126bf9
KH
453 if (gen_mask & 0x80000000)
454 {
455 fci->saved_regs->regs[ireg] = reg_position;
456 reg_position -= MIPS_REGSIZE;
457 }
c81a76b3
MA
458
459 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
460 of that normally used by gcc. Therefore, we have to fetch the first
461 instruction of the function, and if it's an entry instruction that
462 saves $s0 or $s1, correct their saved addresses. */
463 if (IS_MIPS16_ADDR (PROC_LOW_ADDR (proc_desc)))
464 {
465 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
466 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
467 {
468 int reg;
469 int sreg_count = (inst >> 6) & 3;
470
471 /* Check if the ra register was pushed on the stack. */
472 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
473 if (inst & 0x20)
474 reg_position -= MIPS_REGSIZE;
475
476 /* Check if the s0 and s1 registers were pushed on the stack. */
477 for (reg = 16; reg < sreg_count+16; reg++)
478 {
479 fci->saved_regs->regs[reg] = reg_position;
480 reg_position -= MIPS_REGSIZE;
481 }
482 }
483 }
484
70126bf9
KH
485 /* Fill in the offsets for the registers which float_mask says
486 were saved. */
487 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
488
489 /* The freg_offset points to where the first *double* register
490 is saved. So skip to the high-order word. */
28444bf3 491 if (! GDB_TARGET_IS_MIPS64)
c81a76b3 492 reg_position += MIPS_REGSIZE;
28444bf3 493
20fa0902
MA
494 /* Fill in the offsets for the float registers which float_mask says
495 were saved. */
28444bf3 496 for (ireg = MIPS_NUMREGS-1; float_mask; --ireg, float_mask <<= 1)
70126bf9
KH
497 if (float_mask & 0x80000000)
498 {
499 fci->saved_regs->regs[FP0_REGNUM+ireg] = reg_position;
500 reg_position -= MIPS_REGSIZE;
501 }
502
503 fci->saved_regs->regs[PC_REGNUM] = fci->saved_regs->regs[RA_REGNUM];
504}
bd5635a1 505
28444bf3 506static CORE_ADDR
bd5635a1 507read_next_frame_reg(fi, regno)
9f9f94aa 508 struct frame_info *fi;
bd5635a1
RP
509 int regno;
510{
bd5635a1 511 for (; fi; fi = fi->next)
70126bf9 512 {
e4dbd248
PS
513 /* We have to get the saved sp from the sigcontext
514 if it is a signal handler frame. */
515 if (regno == SP_REGNUM && !fi->signal_handler_caller)
516 return fi->frame;
70126bf9
KH
517 else
518 {
519 if (fi->saved_regs == NULL)
520 mips_find_saved_regs (fi);
521 if (fi->saved_regs->regs[regno])
522 return read_memory_integer(fi->saved_regs->regs[regno], MIPS_REGSIZE);
523 }
524 }
525 return read_register (regno);
bd5635a1
RP
526}
527
96431497
MA
528/* mips_addr_bits_remove - remove useless address bits */
529
530CORE_ADDR
531mips_addr_bits_remove (addr)
532 CORE_ADDR addr;
533{
97e091b2
MA
534#if GDB_TARGET_IS_MIPS64
535 if ((addr >> 32 == (CORE_ADDR)0xffffffff)
f781fe93
MA
536 && (strcmp (target_shortname,"pmon")==0
537 || strcmp (target_shortname,"ddb")==0
538 || strcmp (target_shortname,"sim")==0))
96431497
MA
539 {
540 /* This hack is a work-around for existing boards using PMON,
541 the simulator, and any other 64-bit targets that doesn't have
542 true 64-bit addressing. On these targets, the upper 32 bits
543 of addresses are ignored by the hardware. Thus, the PC or SP
544 are likely to have been sign extended to all 1s by instruction
545 sequences that load 32-bit addresses. For example, a typical
546 piece of code that loads an address is this:
547 lui $r2, <upper 16 bits>
548 ori $r2, <lower 16 bits>
549 But the lui sign-extends the value such that the upper 32 bits
550 may be all 1s. The workaround is simply to mask off these bits.
551 In the future, gcc may be changed to support true 64-bit
552 addressing, and this masking will have to be disabled. */
553 addr &= (CORE_ADDR)0xffffffff;
554 }
f9f8c14b
MA
555#else
556 /* Even when GDB is configured for some 32-bit targets (e.g. mips-elf),
557 BFD is configured to handle 64-bit targets, so CORE_ADDR is 64 bits.
558 So we still have to mask off useless bits from addresses. */
559 addr &= (CORE_ADDR)0xffffffff;
97e091b2 560#endif
96431497
MA
561
562 return addr;
563}
564
f781fe93
MA
565void
566mips_init_frame_pc_first (fromleaf, prev)
567 int fromleaf;
568 struct frame_info *prev;
569{
570 CORE_ADDR pc, tmp;
571
572 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
573 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
574 tmp = mips_skip_stub (pc);
575 prev->pc = tmp ? tmp : pc;
576}
577
578
28444bf3 579CORE_ADDR
bd5635a1 580mips_frame_saved_pc(frame)
9f9f94aa 581 struct frame_info *frame;
bd5635a1 582{
28444bf3 583 CORE_ADDR saved_pc;
0f552c5f 584 mips_extra_func_info_t proc_desc = frame->proc_desc;
0434c1a0
PS
585 /* We have to get the saved pc from the sigcontext
586 if it is a signal handler frame. */
587 int pcreg = frame->signal_handler_caller ? PC_REGNUM
588 : (proc_desc ? PROC_PC_REG(proc_desc) : RA_REGNUM);
0f552c5f 589
bd5635a1 590 if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
28444bf3
DP
591 saved_pc = read_memory_integer(frame->frame - MIPS_REGSIZE, MIPS_REGSIZE);
592 else
593 saved_pc = read_next_frame_reg(frame, pcreg);
0f552c5f 594
96431497 595 return ADDR_BITS_REMOVE (saved_pc);
bd5635a1
RP
596}
597
598static struct mips_extra_func_info temp_proc_desc;
599static struct frame_saved_regs temp_saved_regs;
600
a8172eea
RP
601/* This fencepost looks highly suspicious to me. Removing it also
602 seems suspicious as it could affect remote debugging across serial
3127785a 603 lines. */
a8172eea 604
0f552c5f
JG
605static CORE_ADDR
606heuristic_proc_start(pc)
bd5635a1
RP
607 CORE_ADDR pc;
608{
32dab603
MA
609 CORE_ADDR start_pc;
610 CORE_ADDR fence;
20fa0902 611 int instlen;
b348b9fd 612 int seen_adjsp = 0;
0f552c5f 613
32dab603
MA
614 pc = ADDR_BITS_REMOVE (pc);
615 start_pc = pc;
616 fence = start_pc - heuristic_fence_post;
0f552c5f 617 if (start_pc == 0) return 0;
3127785a
RP
618
619 if (heuristic_fence_post == UINT_MAX
620 || fence < VM_MIN_ADDRESS)
621 fence = VM_MIN_ADDRESS;
0f552c5f 622
c1fc0935 623 instlen = IS_MIPS16_ADDR (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
20fa0902 624
bd5635a1 625 /* search back for previous return */
20fa0902 626 for (start_pc -= instlen; ; start_pc -= instlen)
a8172eea
RP
627 if (start_pc < fence)
628 {
3127785a
RP
629 /* It's not clear to me why we reach this point when
630 stop_soon_quietly, but with this test, at least we
631 don't print out warnings for every child forked (eg, on
632 decstation). 22apr93 rich@cygnus.com. */
633 if (!stop_soon_quietly)
634 {
23d35572
JK
635 static int blurb_printed = 0;
636
3127785a
RP
637 if (fence == VM_MIN_ADDRESS)
638 warning("Hit beginning of text section without finding");
639 else
640 warning("Hit heuristic-fence-post without finding");
641
f781fe93 642 warning("enclosing function for address 0x%s", paddr_nz (pc));
23d35572
JK
643 if (!blurb_printed)
644 {
645 printf_filtered ("\
646This warning occurs if you are debugging a function without any symbols\n\
647(for example, in a stripped executable). In that case, you may wish to\n\
648increase the size of the search with the `set heuristic-fence-post' command.\n\
649\n\
650Otherwise, you told GDB there was a function where there isn't one, or\n\
651(more likely) you have encountered a bug in GDB.\n");
652 blurb_printed = 1;
653 }
3127785a
RP
654 }
655
a8172eea
RP
656 return 0;
657 }
c1fc0935 658 else if (IS_MIPS16_ADDR (start_pc))
20fa0902 659 {
c1fc0935
MA
660 unsigned short inst;
661
b348b9fd
MA
662 /* On MIPS16, any one of the following is likely to be the
663 start of a function:
664 entry
665 addiu sp,-n
666 daddiu sp,-n
667 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
c81a76b3 668 inst = mips_fetch_instruction (start_pc);
b348b9fd
MA
669 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
670 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
671 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
672 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
673 break;
674 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
675 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
676 seen_adjsp = 1;
677 else
678 seen_adjsp = 0;
20fa0902 679 }
bd5635a1 680 else if (ABOUT_TO_RETURN(start_pc))
20fa0902
MA
681 {
682 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
bd5635a1 683 break;
20fa0902 684 }
bd5635a1 685
bd5635a1
RP
686#if 0
687 /* skip nops (usually 1) 0 - is this */
28444bf3
DP
688 while (start_pc < pc && read_memory_integer (start_pc, MIPS_INSTLEN) == 0)
689 start_pc += MIPS_INSTLEN;
bd5635a1
RP
690#endif
691 return start_pc;
692}
693
c81a76b3 694/* Fetch the immediate value from a MIPS16 instruction.
b348b9fd
MA
695 If the previous instruction was an EXTEND, use it to extend
696 the upper bits of the immediate value. This is a helper function
697 for mips16_heuristic_proc_desc. */
698
699static int
700mips16_get_imm (prev_inst, inst, nbits, scale, is_signed)
701 unsigned short prev_inst; /* previous instruction */
702 unsigned short inst; /* current current instruction */
703 int nbits; /* number of bits in imm field */
704 int scale; /* scale factor to be applied to imm */
705 int is_signed; /* is the imm field signed? */
706{
707 int offset;
708
709 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
710 {
7d9e8fac 711 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
b348b9fd
MA
712 if (offset & 0x8000) /* check for negative extend */
713 offset = 0 - (0x10000 - (offset & 0xffff));
714 return offset | (inst & 0x1f);
715 }
716 else
717 {
718 int max_imm = 1 << nbits;
719 int mask = max_imm - 1;
720 int sign_bit = max_imm >> 1;
721
722 offset = inst & mask;
723 if (is_signed && (offset & sign_bit))
724 offset = 0 - (max_imm - offset);
725 return offset * scale;
726 }
727}
728
729
730/* Fill in values in temp_proc_desc based on the MIPS16 instruction
731 stream from start_pc to limit_pc. */
732
733static void
734mips16_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp)
bd5635a1 735 CORE_ADDR start_pc, limit_pc;
9f9f94aa 736 struct frame_info *next_frame;
b348b9fd 737 CORE_ADDR sp;
bd5635a1 738{
b348b9fd
MA
739 CORE_ADDR cur_pc;
740 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
741 unsigned short prev_inst = 0; /* saved copy of previous instruction */
742 unsigned inst = 0; /* current instruction */
bd5635a1 743
b348b9fd 744 PROC_FRAME_OFFSET(&temp_proc_desc) = 0;
34df79fc 745
b348b9fd
MA
746 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
747 {
c81a76b3 748 int reg, offset;
b348b9fd
MA
749
750 /* Save the previous instruction. If it's an EXTEND, we'll extract
751 the immediate offset extension from it in mips16_get_imm. */
752 prev_inst = inst;
753
c81a76b3
MA
754 /* Fetch and decode the instruction. */
755 inst = (unsigned short) mips_fetch_instruction (cur_pc);
b348b9fd
MA
756 if ((inst & 0xff00) == 0x6300 /* addiu sp */
757 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
758 {
759 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
760 if (offset < 0) /* negative stack adjustment? */
761 PROC_FRAME_OFFSET(&temp_proc_desc) -= offset;
762 else
763 /* Exit loop if a positive stack adjustment is found, which
764 usually means that the stack cleanup code in the function
765 epilogue is reached. */
766 break;
767 }
768 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
769 {
770 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
771 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
772 PROC_REG_MASK(&temp_proc_desc) |= (1 << reg);
773 temp_saved_regs.regs[reg] = sp + offset;
774 }
775 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
776 {
777 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
778 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
779 PROC_REG_MASK(&temp_proc_desc) |= (1 << reg);
780 temp_saved_regs.regs[reg] = sp + offset;
781 }
782 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
783 {
784 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
785 PROC_REG_MASK(&temp_proc_desc) |= (1 << 31);
786 temp_saved_regs.regs[31] = sp + offset;
97e091b2 787 }
b348b9fd
MA
788 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
789 {
790 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
791 PROC_REG_MASK(&temp_proc_desc) |= (1 << 31);
792 temp_saved_regs.regs[31] = sp + offset;
bd5635a1 793 }
b348b9fd
MA
794 else if (inst == 0x673d) /* move $s1, $sp */
795 {
796 frame_addr = read_next_frame_reg(next_frame, 30);
797 PROC_FRAME_REG (&temp_proc_desc) = 17;
97e091b2 798 }
32dab603
MA
799 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
800 {
801 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
802 frame_addr = sp + offset;
803 PROC_FRAME_REG (&temp_proc_desc) = 17;
804 }
b348b9fd
MA
805 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
806 {
807 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
808 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
809 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
810 temp_saved_regs.regs[reg] = frame_addr + offset;
811 }
812 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
813 {
814 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
815 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
816 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
817 temp_saved_regs.regs[reg] = frame_addr + offset;
818 }
819 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
820 {
821 int areg_count = (inst >> 8) & 7;
822 int sreg_count = (inst >> 6) & 3;
823
824 /* The entry instruction always subtracts 32 from the SP. */
825 PROC_FRAME_OFFSET(&temp_proc_desc) += 32;
826
827 /* Check if a0-a3 were saved in the caller's argument save area. */
c81a76b3 828 for (reg = 4, offset = 32; reg < areg_count+4; reg++)
b348b9fd
MA
829 {
830 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
831 temp_saved_regs.regs[reg] = sp + offset;
c81a76b3 832 offset -= MIPS_REGSIZE;
b348b9fd
MA
833 }
834
835 /* Check if the ra register was pushed on the stack. */
836 offset = 28;
837 if (inst & 0x20)
838 {
839 PROC_REG_MASK(&temp_proc_desc) |= 1 << 31;
840 temp_saved_regs.regs[31] = sp + offset;
c81a76b3 841 offset -= MIPS_REGSIZE;
b348b9fd
MA
842 }
843
844 /* Check if the s0 and s1 registers were pushed on the stack. */
c81a76b3 845 for (reg = 16; reg < sreg_count+16; reg++)
b348b9fd
MA
846 {
847 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
848 temp_saved_regs.regs[reg] = sp + offset;
c81a76b3 849 offset -= MIPS_REGSIZE;
b348b9fd
MA
850 }
851 }
7d9e8fac
MA
852 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
853 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
b348b9fd
MA
854 }
855}
856
857static void
858mips32_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp)
859 CORE_ADDR start_pc, limit_pc;
860 struct frame_info *next_frame;
861 CORE_ADDR sp;
862{
863 CORE_ADDR cur_pc;
864 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
865restart:
866 PROC_FRAME_OFFSET(&temp_proc_desc) = 0;
867 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
868 {
b348b9fd 869 unsigned long inst, high_word, low_word;
c81a76b3 870 int reg;
b348b9fd
MA
871
872 /* Fetch the instruction. */
c81a76b3 873 inst = (unsigned long) mips_fetch_instruction (cur_pc);
b348b9fd
MA
874
875 /* Save some code by pre-extracting some useful fields. */
876 high_word = (inst >> 16) & 0xffff;
877 low_word = inst & 0xffff;
878 reg = high_word & 0x1f;
879
880 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
881 || high_word == 0x23bd /* addi $sp,$sp,-i */
882 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
883 {
884 if (low_word & 0x8000) /* negative stack adjustment? */
885 PROC_FRAME_OFFSET(&temp_proc_desc) += 0x10000 - low_word;
886 else
887 /* Exit loop if a positive stack adjustment is found, which
888 usually means that the stack cleanup code in the function
889 epilogue is reached. */
890 break;
891 }
892 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
893 {
894 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
895 temp_saved_regs.regs[reg] = sp + low_word;
896 }
897 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
898 {
899 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
900 but the register size used is only 32 bits. Make the address
901 for the saved register point to the lower 32 bits. */
902 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
903 temp_saved_regs.regs[reg] = sp + low_word + 8 - MIPS_REGSIZE;
904 }
905 else if (high_word == 0x27be) /* addiu $30,$sp,size */
906 {
907 /* Old gcc frame, r30 is virtual frame pointer. */
32dab603 908 if ((long)low_word != PROC_FRAME_OFFSET(&temp_proc_desc))
b348b9fd
MA
909 frame_addr = sp + low_word;
910 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
911 {
912 unsigned alloca_adjust;
913 PROC_FRAME_REG (&temp_proc_desc) = 30;
914 frame_addr = read_next_frame_reg(next_frame, 30);
915 alloca_adjust = (unsigned)(frame_addr - (sp + low_word));
916 if (alloca_adjust > 0)
917 {
918 /* FP > SP + frame_size. This may be because
919 * of an alloca or somethings similar.
920 * Fix sp to "pre-alloca" value, and try again.
921 */
922 sp += alloca_adjust;
923 goto restart;
bd5635a1
RP
924 }
925 }
926 }
b348b9fd
MA
927 /* move $30,$sp. With different versions of gas this will be either
928 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
929 Accept any one of these. */
930 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
931 {
932 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
933 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
934 {
935 unsigned alloca_adjust;
936 PROC_FRAME_REG (&temp_proc_desc) = 30;
937 frame_addr = read_next_frame_reg(next_frame, 30);
938 alloca_adjust = (unsigned)(frame_addr - sp);
939 if (alloca_adjust > 0)
940 {
941 /* FP > SP + frame_size. This may be because
942 * of an alloca or somethings similar.
943 * Fix sp to "pre-alloca" value, and try again.
944 */
945 sp += alloca_adjust;
946 goto restart;
97e091b2
MA
947 }
948 }
949 }
b348b9fd
MA
950 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
951 {
952 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
953 temp_saved_regs.regs[reg] = frame_addr + low_word;
bd5635a1
RP
954 }
955 }
b348b9fd
MA
956}
957
958static mips_extra_func_info_t
959heuristic_proc_desc(start_pc, limit_pc, next_frame)
960 CORE_ADDR start_pc, limit_pc;
961 struct frame_info *next_frame;
962{
963 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
964
965 if (start_pc == 0) return NULL;
966 memset (&temp_proc_desc, '\0', sizeof(temp_proc_desc));
967 memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs));
968 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
969 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
970 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
971
972 if (start_pc + 200 < limit_pc)
973 limit_pc = start_pc + 200;
c1fc0935 974 if (IS_MIPS16_ADDR (start_pc))
b348b9fd
MA
975 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
976 else
977 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
978 return &temp_proc_desc;
bd5635a1
RP
979}
980
0f552c5f 981static mips_extra_func_info_t
c1fc0935 982non_heuristic_proc_desc (pc, addrptr)
9f9f94aa 983 CORE_ADDR pc;
c1fc0935 984 CORE_ADDR *addrptr;
bd5635a1 985{
c1fc0935 986 CORE_ADDR startaddr;
bd5635a1 987 mips_extra_func_info_t proc_desc;
0f552c5f 988 struct block *b = block_for_pc(pc);
48be4c35 989 struct symbol *sym;
48be4c35
JK
990
991 find_pc_partial_function (pc, NULL, &startaddr, NULL);
c1fc0935
MA
992 if (addrptr)
993 *addrptr = startaddr;
97e091b2 994 if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
48be4c35
JK
995 sym = NULL;
996 else
997 {
998 if (startaddr > BLOCK_START (b))
999 /* This is the "pathological" case referred to in a comment in
1000 print_frame_info. It might be better to move this check into
1001 symbol reading. */
1002 sym = NULL;
1003 else
c1fc0935 1004 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
48be4c35 1005 }
0f552c5f 1006
e4dbd248
PS
1007 /* If we never found a PDR for this function in symbol reading, then
1008 examine prologues to find the information. */
0f552c5f 1009 if (sym)
bd5635a1 1010 {
c1fc0935
MA
1011 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
1012 if (PROC_FRAME_REG (proc_desc) == -1)
1013 return NULL;
1014 else
1015 return proc_desc;
1016 }
1017 else
1018 return NULL;
1019}
1020
1021
1022static mips_extra_func_info_t
1023find_proc_desc (pc, next_frame)
1024 CORE_ADDR pc;
1025 struct frame_info *next_frame;
1026{
1027 mips_extra_func_info_t proc_desc;
1028 CORE_ADDR startaddr;
1029
1030 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
1031
1032 if (proc_desc)
1033 {
1034 /* IF this is the topmost frame AND
1035 * (this proc does not have debugging information OR
1036 * the PC is in the procedure prologue)
1037 * THEN create a "heuristic" proc_desc (by analyzing
1038 * the actual code) to replace the "official" proc_desc.
1039 */
1040 if (next_frame == NULL)
1041 {
1042 struct symtab_and_line val;
1043 struct symbol *proc_symbol =
1044 PROC_DESC_IS_DUMMY(proc_desc) ? 0 : PROC_SYMBOL(proc_desc);
1045
1046 if (proc_symbol)
1047 {
1048 val = find_pc_line (BLOCK_START
1049 (SYMBOL_BLOCK_VALUE(proc_symbol)),
1050 0);
1051 val.pc = val.end ? val.end : pc;
bd5635a1 1052 }
c1fc0935
MA
1053 if (!proc_symbol || pc < val.pc)
1054 {
1055 mips_extra_func_info_t found_heuristic =
1056 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
1057 pc, next_frame);
1058 if (found_heuristic)
1059 proc_desc = found_heuristic;
bd5635a1
RP
1060 }
1061 }
1062 }
1063 else
1064 {
0f552c5f
JG
1065 /* Is linked_proc_desc_table really necessary? It only seems to be used
1066 by procedure call dummys. However, the procedures being called ought
1067 to have their own proc_descs, and even if they don't,
1068 heuristic_proc_desc knows how to create them! */
1069
bd5635a1 1070 register struct linked_proc_info *link;
9f9f94aa 1071
bd5635a1 1072 for (link = linked_proc_desc_table; link; link = link->next)
9f9f94aa
SS
1073 if (PROC_LOW_ADDR(&link->info) <= pc
1074 && PROC_HIGH_ADDR(&link->info) > pc)
1075 return &link->info;
23d35572 1076
48be4c35
JK
1077 if (startaddr == 0)
1078 startaddr = heuristic_proc_start (pc);
1079
bd5635a1 1080 proc_desc =
48be4c35 1081 heuristic_proc_desc (startaddr, pc, next_frame);
bd5635a1
RP
1082 }
1083 return proc_desc;
1084}
1085
96431497
MA
1086static CORE_ADDR
1087get_frame_pointer(frame, proc_desc)
1088 struct frame_info *frame;
1089 mips_extra_func_info_t proc_desc;
1090{
1091 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
1092 PROC_FRAME_REG(proc_desc)) + PROC_FRAME_OFFSET(proc_desc));
1093}
1094
bd5635a1
RP
1095mips_extra_func_info_t cached_proc_desc;
1096
9f9f94aa 1097CORE_ADDR
0f552c5f 1098mips_frame_chain(frame)
9f9f94aa 1099 struct frame_info *frame;
bd5635a1 1100{
f781fe93
MA
1101 mips_extra_func_info_t proc_desc;
1102 CORE_ADDR tmp;
1103 CORE_ADDR saved_pc = FRAME_SAVED_PC(frame);
1104
1105 if (saved_pc == 0 || inside_entry_file (saved_pc))
1106 return 0;
1107
1108 /* Check if the PC is inside a call stub. If it is, fetch the
1109 PC of the caller of that stub. */
1110 if ((tmp = mips_skip_stub (saved_pc)) != 0)
1111 saved_pc = tmp;
1112
1113 /* Look up the procedure descriptor for this PC. */
1114 proc_desc = find_proc_desc(saved_pc, frame);
1115 if (!proc_desc)
1116 return 0;
1117
1118 cached_proc_desc = proc_desc;
1119
1120 /* If no frame pointer and frame size is zero, we must be at end
1121 of stack (or otherwise hosed). If we don't check frame size,
1122 we loop forever if we see a zero size frame. */
1123 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
1124 && PROC_FRAME_OFFSET (proc_desc) == 0
1125 /* The previous frame from a sigtramp frame might be frameless
1126 and have frame size zero. */
1127 && !frame->signal_handler_caller)
1128 return 0;
1129 else
1130 return get_frame_pointer (frame, proc_desc);
bd5635a1
RP
1131}
1132
1133void
1134init_extra_frame_info(fci)
1135 struct frame_info *fci;
1136{
96431497
MA
1137 int regnum;
1138
bd5635a1 1139 /* Use proc_desc calculated in frame_chain */
ee5fb959
JK
1140 mips_extra_func_info_t proc_desc =
1141 fci->next ? cached_proc_desc : find_proc_desc(fci->pc, fci->next);
0f552c5f 1142
70126bf9 1143 fci->saved_regs = NULL;
bd5635a1 1144 fci->proc_desc =
ee5fb959 1145 proc_desc == &temp_proc_desc ? 0 : proc_desc;
bd5635a1
RP
1146 if (proc_desc)
1147 {
c2a0f1cb 1148 /* Fixup frame-pointer - only needed for top frame */
5efd597b
PS
1149 /* This may not be quite right, if proc has a real frame register.
1150 Get the value of the frame relative sp, procedure might have been
1151 interrupted by a signal at it's very start. */
70126bf9
KH
1152 if (fci->pc == PROC_LOW_ADDR (proc_desc)
1153 && !PROC_DESC_IS_DUMMY (proc_desc))
1154 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
c2a0f1cb 1155 else
96431497 1156 fci->frame = get_frame_pointer (fci->next, proc_desc);
bd5635a1 1157
48be4c35 1158 if (proc_desc == &temp_proc_desc)
ee5fb959 1159 {
09af5868
PS
1160 char *name;
1161
1162 /* Do not set the saved registers for a sigtramp frame,
1163 mips_find_saved_registers will do that for us.
1164 We can't use fci->signal_handler_caller, it is not yet set. */
1165 find_pc_partial_function (fci->pc, &name,
1166 (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
1167 if (!IN_SIGTRAMP (fci->pc, name))
1168 {
1169 fci->saved_regs = (struct frame_saved_regs*)
1170 obstack_alloc (&frame_cache_obstack,
1171 sizeof (struct frame_saved_regs));
1172 *fci->saved_regs = temp_saved_regs;
1173 fci->saved_regs->regs[PC_REGNUM]
1174 = fci->saved_regs->regs[RA_REGNUM];
1175 }
ee5fb959 1176 }
bd5635a1
RP
1177
1178 /* hack: if argument regs are saved, guess these contain args */
96431497
MA
1179 fci->num_args = -1; /* assume we can't tell how many args for now */
1180 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
1181 {
1182 if (PROC_REG_MASK(proc_desc) & (1 << regnum))
1183 {
1184 fci->num_args = regnum - A0_REGNUM + 1;
1185 break;
1186 }
1187 }
bd5635a1 1188 }
bd5635a1
RP
1189}
1190
a70dc898
RP
1191/* MIPS stack frames are almost impenetrable. When execution stops,
1192 we basically have to look at symbol information for the function
1193 that we stopped in, which tells us *which* register (if any) is
1194 the base of the frame pointer, and what offset from that register
1195 the frame itself is at.
1196
1197 This presents a problem when trying to examine a stack in memory
1198 (that isn't executing at the moment), using the "frame" command. We
1199 don't have a PC, nor do we have any registers except SP.
1200
1201 This routine takes two arguments, SP and PC, and tries to make the
1202 cached frames look as if these two arguments defined a frame on the
1203 cache. This allows the rest of info frame to extract the important
1204 arguments without difficulty. */
1205
9f9f94aa 1206struct frame_info *
c2a0f1cb
ILT
1207setup_arbitrary_frame (argc, argv)
1208 int argc;
9f9f94aa 1209 CORE_ADDR *argv;
a70dc898 1210{
c2a0f1cb
ILT
1211 if (argc != 2)
1212 error ("MIPS frame specifications require two arguments: sp and pc");
1213
1214 return create_new_frame (argv[0], argv[1]);
a70dc898
RP
1215}
1216
0f552c5f
JG
1217CORE_ADDR
1218mips_push_arguments(nargs, args, sp, struct_return, struct_addr)
97e091b2
MA
1219 int nargs;
1220 value_ptr *args;
1221 CORE_ADDR sp;
1222 int struct_return;
1223 CORE_ADDR struct_addr;
bd5635a1 1224{
97e091b2
MA
1225 int argreg;
1226 int float_argreg;
1227 int argnum;
1228 int len = 0;
781a59b2 1229 int stack_offset = 0;
97e091b2
MA
1230
1231 /* Macros to round N up or down to the next A boundary; A must be
1232 a power of two. */
1233#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
1234#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
28444bf3
DP
1235
1236 /* First ensure that the stack and structure return address (if any)
97e091b2
MA
1237 are properly aligned. The stack has to be 64-bit aligned even
1238 on 32-bit machines, because doubles must be 64-bit aligned. */
1239 sp = ROUND_DOWN (sp, 8);
1240 struct_addr = ROUND_DOWN (struct_addr, MIPS_REGSIZE);
28444bf3 1241
97e091b2
MA
1242 /* Now make space on the stack for the args. We allocate more
1243 than necessary for EABI, because the first few arguments are
1244 passed in registers, but that's OK. */
1245 for (argnum = 0; argnum < nargs; argnum++)
1246 len += ROUND_UP (TYPE_LENGTH(VALUE_TYPE(args[argnum])), MIPS_REGSIZE);
61d2d19a 1247 sp -= ROUND_UP (len, 8);
97e091b2
MA
1248
1249 /* Initialize the integer and float register pointers. */
1250 argreg = A0_REGNUM;
1251 float_argreg = FPA0_REGNUM;
1252
1253 /* the struct_return pointer occupies the first parameter-passing reg */
5efd597b 1254 if (struct_return)
97e091b2
MA
1255 write_register (argreg++, struct_addr);
1256
97e091b2
MA
1257 /* Now load as many as possible of the first arguments into
1258 registers, and push the rest onto the stack. Loop thru args
1259 from first to last. */
1260 for (argnum = 0; argnum < nargs; argnum++)
5efd597b 1261 {
97e091b2
MA
1262 char *val;
1263 char valbuf[REGISTER_RAW_SIZE(A0_REGNUM)];
1264 value_ptr arg = args[argnum];
1265 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1266 int len = TYPE_LENGTH (arg_type);
1267 enum type_code typecode = TYPE_CODE (arg_type);
1268
61d2d19a
PS
1269 /* The EABI passes structures that do not fit in a register by
1270 reference. In all other cases, pass the structure by value. */
781a59b2
MS
1271 if (MIPS_EABI && len > MIPS_REGSIZE &&
1272 (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
97e091b2
MA
1273 {
1274 store_address (valbuf, MIPS_REGSIZE, VALUE_ADDRESS (arg));
08d8f995 1275 typecode = TYPE_CODE_PTR;
97e091b2
MA
1276 len = MIPS_REGSIZE;
1277 val = valbuf;
1278 }
1279 else
1280 val = (char *)VALUE_CONTENTS (arg);
1281
1282 /* 32-bit ABIs always start floating point arguments in an
1283 even-numbered floating point register. */
1284 if (!GDB_TARGET_IS_MIPS64 && typecode == TYPE_CODE_FLT
1285 && (float_argreg & 1))
1286 float_argreg++;
1287
1288 /* Floating point arguments passed in registers have to be
1289 treated specially. On 32-bit architectures, doubles
1290 are passed in register pairs; the even register gets
c81a76b3
MA
1291 the low word, and the odd register gets the high word.
1292 On non-EABI processors, the first two floating point arguments are
1293 also copied to general registers, because MIPS16 functions
1294 don't use float registers for arguments. This duplication of
1295 arguments in general registers can't hurt non-MIPS16 functions
1296 because those registers are normally skipped. */
97e091b2
MA
1297 if (typecode == TYPE_CODE_FLT
1298 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM
1299 && mips_fpu != MIPS_FPU_NONE)
1300 {
1301 if (!GDB_TARGET_IS_MIPS64 && len == 8)
1302 {
1303 int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
1304 unsigned long regval;
1305
c81a76b3 1306 /* Write the low word of the double to the even register(s). */
97e091b2 1307 regval = extract_unsigned_integer (val+low_offset, 4);
c81a76b3
MA
1308 write_register (float_argreg++, regval);
1309 if (!MIPS_EABI)
1310 write_register (argreg+1, regval);
1311
1312 /* Write the high word of the double to the odd register(s). */
97e091b2 1313 regval = extract_unsigned_integer (val+4-low_offset, 4);
c81a76b3
MA
1314 write_register (float_argreg++, regval);
1315 if (!MIPS_EABI)
1316 {
1317 write_register (argreg, regval);
1318 argreg += 2;
1319 }
97e091b2
MA
1320
1321 }
1322 else
1323 {
c81a76b3
MA
1324 /* This is a floating point value that fits entirely
1325 in a single register. */
97e091b2
MA
1326 CORE_ADDR regval = extract_address (val, len);
1327 write_register (float_argreg++, regval);
c81a76b3
MA
1328 if (!MIPS_EABI)
1329 {
1330 write_register (argreg, regval);
1331 argreg += GDB_TARGET_IS_MIPS64 ? 1 : 2;
1332 }
97e091b2 1333 }
97e091b2
MA
1334 }
1335 else
1336 {
1337 /* Copy the argument to general registers or the stack in
1338 register-sized pieces. Large arguments are split between
1339 registers and stack. */
781a59b2
MS
1340 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
1341 are treated specially: Irix cc passes them in registers
1342 where gcc sometimes puts them on the stack. For maximum
1343 compatibility, we will put them in both places. */
1344
1345 int odd_sized_struct = ((len > MIPS_REGSIZE) &&
1346 (len % MIPS_REGSIZE != 0));
97e091b2
MA
1347 while (len > 0)
1348 {
1349 int partial_len = len < MIPS_REGSIZE ? len : MIPS_REGSIZE;
61d2d19a 1350
781a59b2
MS
1351 if (argreg > MIPS_LAST_ARG_REGNUM || odd_sized_struct)
1352 {
1353 /* Write this portion of the argument to the stack. */
1354 int longword_offset;
1355
1356 longword_offset = 0;
1357 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1358 if (MIPS_REGSIZE == 8 &&
1359 (typecode == TYPE_CODE_INT ||
1360 typecode == TYPE_CODE_PTR ||
1361 typecode == TYPE_CODE_FLT) && len <= 4)
1362 longword_offset = 4;
1363 else if ((typecode == TYPE_CODE_STRUCT ||
1364 typecode == TYPE_CODE_UNION) &&
1365 TYPE_LENGTH (arg_type) < MIPS_REGSIZE)
1366 longword_offset = MIPS_REGSIZE - len;
1367
1368 write_memory (sp + stack_offset + longword_offset,
1369 val, partial_len);
1370 }
1371
1372 /* Note!!! This is NOT an else clause.
1373 Odd sized structs may go thru BOTH paths. */
97e091b2
MA
1374 if (argreg <= MIPS_LAST_ARG_REGNUM)
1375 {
61d2d19a
PS
1376 CORE_ADDR regval = extract_address (val, partial_len);
1377
c430260c
MS
1378 /* A non-floating-point argument being passed in a
1379 general register. If a struct or union, and if
1380 small enough for a single register, we have to
1381 adjust the alignment.
158bda58 1382
c430260c
MS
1383 It does not seem to be necessary to do the
1384 same for integral types.
158bda58 1385
c430260c 1386 Also don't do this adjustment on EABI targets. */
158bda58
MS
1387
1388 if (!MIPS_EABI &&
1389 TYPE_LENGTH (arg_type) < MIPS_REGSIZE &&
c430260c 1390 (typecode == TYPE_CODE_STRUCT ||
158bda58
MS
1391 typecode == TYPE_CODE_UNION))
1392 regval <<= ((MIPS_REGSIZE - partial_len) *
1393 TARGET_CHAR_BIT);
1394
97e091b2
MA
1395 write_register (argreg, regval);
1396 argreg++;
1397
1398 /* If this is the old ABI, prevent subsequent floating
1399 point arguments from being passed in floating point
1400 registers. */
1401 if (!MIPS_EABI)
1402 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
1403 }
97e091b2
MA
1404
1405 len -= partial_len;
1406 val += partial_len;
781a59b2
MS
1407
1408 /* The offset onto the stack at which we will start
1409 copying parameters (after the registers are used up)
1410 begins at (4 * MIPS_REGSIZE) in the old ABI. This
1411 leaves room for the "home" area for register parameters.
1412
1413 In the new EABI, the 8 register parameters do not
1414 have "home" stack space reserved for them, so the
1415 stack offset does not get incremented until after
1416 we have used up the 8 parameter registers. */
1417 if (!(MIPS_EABI && argnum < 8))
1418 stack_offset += ROUND_UP (partial_len, MIPS_REGSIZE);
97e091b2
MA
1419 }
1420 }
5efd597b 1421 }
97e091b2
MA
1422
1423 /* Set the return address register to point to the entry
1424 point of the program, where a breakpoint lies in wait. */
1425 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS());
1426
1427 /* Return adjusted stack pointer. */
bd5635a1
RP
1428 return sp;
1429}
1430
c81a76b3 1431static void
28444bf3
DP
1432mips_push_register(CORE_ADDR *sp, int regno)
1433{
1434 char buffer[MAX_REGISTER_RAW_SIZE];
1435 int regsize = REGISTER_RAW_SIZE (regno);
1436
1437 *sp -= regsize;
1438 read_register_gen (regno, buffer);
1439 write_memory (*sp, buffer, regsize);
1440}
1441
1442/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
e03c0cc6 1443#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
bd5635a1
RP
1444
1445void
1446mips_push_dummy_frame()
1447{
1448 int ireg;
1449 struct linked_proc_info *link = (struct linked_proc_info*)
1450 xmalloc(sizeof(struct linked_proc_info));
1451 mips_extra_func_info_t proc_desc = &link->info;
96431497 1452 CORE_ADDR sp = ADDR_BITS_REMOVE (read_register (SP_REGNUM));
28444bf3 1453 CORE_ADDR old_sp = sp;
bd5635a1
RP
1454 link->next = linked_proc_desc_table;
1455 linked_proc_desc_table = link;
28444bf3
DP
1456
1457/* FIXME! are these correct ? */
bd5635a1 1458#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
28444bf3 1459#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
bd5635a1 1460#define FLOAT_REG_SAVE_MASK MASK(0,19)
e4dbd248
PS
1461#define FLOAT_SINGLE_REG_SAVE_MASK \
1462 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
bd5635a1
RP
1463 /*
1464 * The registers we must save are all those not preserved across
1465 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
28444bf3
DP
1466 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
1467 * and FP Control/Status registers.
1468 *
bd5635a1
RP
1469 *
1470 * Dummy frame layout:
1471 * (high memory)
1472 * Saved PC
1473 * Saved MMHI, MMLO, FPC_CSR
1474 * Saved R31
1475 * Saved R28
1476 * ...
1477 * Saved R1
1478 * Saved D18 (i.e. F19, F18)
1479 * ...
1480 * Saved D0 (i.e. F1, F0)
f9f8c14b 1481 * Argument build area and stack arguments written via mips_push_arguments
bd5635a1
RP
1482 * (low memory)
1483 */
28444bf3
DP
1484
1485 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
28444bf3
DP
1486 PROC_FRAME_REG(proc_desc) = PUSH_FP_REGNUM;
1487 PROC_FRAME_OFFSET(proc_desc) = 0;
1488 mips_push_register (&sp, PC_REGNUM);
1489 mips_push_register (&sp, HI_REGNUM);
1490 mips_push_register (&sp, LO_REGNUM);
1491 mips_push_register (&sp, mips_fpu == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
1492
1493 /* Save general CPU registers */
bd5635a1 1494 PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK;
28444bf3 1495 PROC_REG_OFFSET(proc_desc) = sp - old_sp; /* offset of (Saved R31) from FP */
bd5635a1
RP
1496 for (ireg = 32; --ireg >= 0; )
1497 if (PROC_REG_MASK(proc_desc) & (1 << ireg))
28444bf3 1498 mips_push_register (&sp, ireg);
3fed1c4a 1499
28444bf3
DP
1500 /* Save floating point registers starting with high order word */
1501 PROC_FREG_MASK(proc_desc) =
1502 mips_fpu == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
1503 : mips_fpu == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
1504 PROC_FREG_OFFSET(proc_desc) = sp - old_sp; /* offset of (Saved D18) from FP */
bd5635a1
RP
1505 for (ireg = 32; --ireg >= 0; )
1506 if (PROC_FREG_MASK(proc_desc) & (1 << ireg))
28444bf3 1507 mips_push_register (&sp, ireg + FP0_REGNUM);
3fed1c4a 1508
f9f8c14b
MA
1509 /* Update the frame pointer for the call dummy and the stack pointer.
1510 Set the procedure's starting and ending addresses to point to the
1511 call dummy address at the entry point. */
1512 write_register (PUSH_FP_REGNUM, old_sp);
bd5635a1 1513 write_register (SP_REGNUM, sp);
97e091b2
MA
1514 PROC_LOW_ADDR(proc_desc) = CALL_DUMMY_ADDRESS();
1515 PROC_HIGH_ADDR(proc_desc) = CALL_DUMMY_ADDRESS() + 4;
bd5635a1
RP
1516 SET_PROC_DESC_IS_DUMMY(proc_desc);
1517 PROC_PC_REG(proc_desc) = RA_REGNUM;
1518}
1519
1520void
1521mips_pop_frame()
dac4929a
SG
1522{
1523 register int regnum;
9f9f94aa
SS
1524 struct frame_info *frame = get_current_frame ();
1525 CORE_ADDR new_sp = FRAME_FP (frame);
dac4929a 1526
a70dc898 1527 mips_extra_func_info_t proc_desc = frame->proc_desc;
dac4929a
SG
1528
1529 write_register (PC_REGNUM, FRAME_SAVED_PC(frame));
70126bf9
KH
1530 if (frame->saved_regs == NULL)
1531 mips_find_saved_regs (frame);
61d2d19a 1532 for (regnum = 0; regnum < NUM_REGS; regnum++)
dac4929a 1533 {
61d2d19a
PS
1534 if (regnum != SP_REGNUM && regnum != PC_REGNUM
1535 && frame->saved_regs->regs[regnum])
1536 write_register (regnum,
1537 read_memory_integer (frame->saved_regs->regs[regnum],
1538 MIPS_REGSIZE));
dac4929a
SG
1539 }
1540 write_register (SP_REGNUM, new_sp);
1541 flush_cached_frames ();
dac4929a 1542
199b2450 1543 if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
bd5635a1 1544 {
dac4929a
SG
1545 struct linked_proc_info *pi_ptr, *prev_ptr;
1546
1547 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
1548 pi_ptr != NULL;
1549 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
1550 {
1551 if (&pi_ptr->info == proc_desc)
1552 break;
1553 }
1554
1555 if (pi_ptr == NULL)
1556 error ("Can't locate dummy extra frame info\n");
1557
1558 if (prev_ptr != NULL)
1559 prev_ptr->next = pi_ptr->next;
1560 else
1561 linked_proc_desc_table = pi_ptr->next;
1562
1563 free (pi_ptr);
1564
28444bf3
DP
1565 write_register (HI_REGNUM,
1566 read_memory_integer (new_sp - 2*MIPS_REGSIZE, MIPS_REGSIZE));
1567 write_register (LO_REGNUM,
1568 read_memory_integer (new_sp - 3*MIPS_REGSIZE, MIPS_REGSIZE));
e4dbd248 1569 if (mips_fpu != MIPS_FPU_NONE)
28444bf3
DP
1570 write_register (FCRCS_REGNUM,
1571 read_memory_integer (new_sp - 4*MIPS_REGSIZE, MIPS_REGSIZE));
bd5635a1 1572 }
bd5635a1
RP
1573}
1574
0f552c5f 1575static void
a70dc898 1576mips_print_register (regnum, all)
bd5635a1
RP
1577 int regnum, all;
1578{
e4dbd248 1579 char raw_buffer[MAX_REGISTER_RAW_SIZE];
bd5635a1 1580
48be4c35
JK
1581 /* Get the data in raw format. */
1582 if (read_relative_register_raw_bytes (regnum, raw_buffer))
1583 {
1584 printf_filtered ("%s: [Invalid]", reg_names[regnum]);
1585 return;
1586 }
1587
781a59b2 1588 /* If an even floating point register, also print as double. */
28444bf3 1589 if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM+MIPS_NUMREGS
e4dbd248
PS
1590 && !((regnum-FP0_REGNUM) & 1))
1591 {
f781fe93 1592 char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
48be4c35 1593
f781fe93
MA
1594 read_relative_register_raw_bytes (regnum, dbuffer);
1595 read_relative_register_raw_bytes (regnum+1, dbuffer+MIPS_REGSIZE);
1596 REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
c81a76b3 1597
e4dbd248
PS
1598 printf_filtered ("(d%d: ", regnum-FP0_REGNUM);
1599 val_print (builtin_type_double, dbuffer, 0,
1600 gdb_stdout, 0, 1, 0, Val_pretty_default);
1601 printf_filtered ("); ");
1602 }
199b2450 1603 fputs_filtered (reg_names[regnum], gdb_stdout);
48be4c35
JK
1604
1605 /* The problem with printing numeric register names (r26, etc.) is that
1606 the user can't use them on input. Probably the best solution is to
1607 fix it so that either the numeric or the funky (a2, etc.) names
1608 are accepted on input. */
28444bf3 1609 if (regnum < MIPS_NUMREGS)
48be4c35
JK
1610 printf_filtered ("(r%d): ", regnum);
1611 else
1612 printf_filtered (": ");
bd5635a1 1613
48be4c35 1614 /* If virtual format is floating, print it that way. */
ac57e5ad 1615 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
48be4c35 1616 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0,
199b2450 1617 gdb_stdout, 0, 1, 0, Val_pretty_default);
48be4c35
JK
1618 /* Else print as integer in hex. */
1619 else
ac57e5ad
SS
1620 print_scalar_formatted (raw_buffer, REGISTER_VIRTUAL_TYPE (regnum),
1621 'x', 0, gdb_stdout);
bd5635a1
RP
1622}
1623
d8b3b00e 1624/* Replacement for generic do_registers_info. */
9f9f94aa 1625
0f552c5f 1626void
361bf6ee 1627mips_do_registers_info (regnum, fpregs)
bd5635a1 1628 int regnum;
361bf6ee 1629 int fpregs;
bd5635a1 1630{
9f9f94aa
SS
1631 if (regnum != -1)
1632 {
1633 if (*(reg_names[regnum]) == '\0')
1634 error ("Not a valid register for the current processor type");
1635
bd5635a1
RP
1636 mips_print_register (regnum, 0);
1637 printf_filtered ("\n");
9f9f94aa
SS
1638 }
1639 else
1640 {
09af5868 1641 int did_newline = 0;
9f9f94aa
SS
1642
1643 for (regnum = 0; regnum < NUM_REGS; )
1644 {
1645 if (((!fpregs) && regnum >= FP0_REGNUM && regnum <= FCRIR_REGNUM)
1646 || *(reg_names[regnum]) == '\0')
1647 {
1648 regnum++;
1649 continue;
1650 }
bd5635a1
RP
1651 mips_print_register (regnum, 1);
1652 regnum++;
9f9f94aa
SS
1653 printf_filtered ("; ");
1654 did_newline = 0;
1655 if ((regnum & 3) == 0)
1656 {
1657 printf_filtered ("\n");
1658 did_newline = 1;
1659 }
1660 }
1661 if (!did_newline)
1662 printf_filtered ("\n");
1663 }
bd5635a1 1664}
9f9f94aa 1665
bd5635a1
RP
1666/* Return number of args passed to a frame. described by FIP.
1667 Can return -1, meaning no way to tell. */
1668
0f552c5f 1669int
9f9f94aa
SS
1670mips_frame_num_args (frame)
1671 struct frame_info *frame;
bd5635a1 1672{
9f9f94aa
SS
1673#if 0 /* FIXME Use or lose this! */
1674 struct chain_info_t *p;
bd5635a1 1675
9f9f94aa
SS
1676 p = mips_find_cached_frame (FRAME_FP (frame));
1677 if (p->valid)
1678 return p->the_info.numargs;
bd5635a1 1679#endif
9f9f94aa 1680 return -1;
bd5635a1 1681}
96431497 1682
427fec5d 1683/* Is this a branch with a delay slot? */
9f9f94aa 1684
b5aff268
JK
1685static int is_delayed PARAMS ((unsigned long));
1686
ee5fb959
JK
1687static int
1688is_delayed (insn)
1689 unsigned long insn;
1690{
1691 int i;
1692 for (i = 0; i < NUMOPCODES; ++i)
1693 if (mips_opcodes[i].pinfo != INSN_MACRO
1694 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
1695 break;
427fec5d
JK
1696 return (i < NUMOPCODES
1697 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
1698 | INSN_COND_BRANCH_DELAY
1699 | INSN_COND_BRANCH_LIKELY)));
ee5fb959 1700}
b5aff268
JK
1701
1702int
1703mips_step_skips_delay (pc)
1704 CORE_ADDR pc;
1705{
96431497 1706 char buf[MIPS_INSTLEN];
b5aff268 1707
f9f8c14b 1708 /* There is no branch delay slot on MIPS16. */
c1fc0935 1709 if (IS_MIPS16_ADDR (pc))
f9f8c14b
MA
1710 return 0;
1711
96431497 1712 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
b5aff268
JK
1713 /* If error reading memory, guess that it is not a delayed branch. */
1714 return 0;
96431497 1715 return is_delayed ((unsigned long)extract_unsigned_integer (buf, MIPS_INSTLEN));
b5aff268 1716}
ee5fb959 1717
bd5635a1 1718
20fa0902
MA
1719/* Skip the PC past function prologue instructions (32-bit version).
1720 This is a helper function for mips_skip_prologue. */
1721
1722static CORE_ADDR
1723mips32_skip_prologue (pc, lenient)
1724 CORE_ADDR pc; /* starting PC to search from */
ee5fb959 1725 int lenient;
bd5635a1 1726{
28444bf3 1727 t_inst inst;
20fa0902 1728 CORE_ADDR end_pc;
0b0d6c3f 1729 int seen_sp_adjust = 0;
ac57e5ad 1730 int load_immediate_bytes = 0;
bd5635a1 1731
e157305c
PS
1732 /* Skip the typical prologue instructions. These are the stack adjustment
1733 instruction and the instructions that save registers on the stack
1734 or in the gcc frame. */
20fa0902 1735 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
ee5fb959 1736 {
b348b9fd 1737 unsigned long high_word;
ee5fb959 1738
c81a76b3 1739 inst = mips_fetch_instruction (pc);
b348b9fd 1740 high_word = (inst >> 16) & 0xffff;
ee5fb959 1741
002a422b 1742#if 0
ee5fb959
JK
1743 if (lenient && is_delayed (inst))
1744 continue;
002a422b 1745#endif
ee5fb959 1746
b348b9fd
MA
1747 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
1748 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
0b0d6c3f 1749 seen_sp_adjust = 1;
ac57e5ad
SS
1750 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
1751 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
1752 seen_sp_adjust = 1;
97e091b2
MA
1753 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
1754 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
1755 && (inst & 0x001F0000)) /* reg != $zero */
1756 continue;
1757
e157305c
PS
1758 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
1759 continue;
1760 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
1761 /* sx reg,n($s8) */
1762 continue; /* reg != $zero */
1d9489c1
JK
1763
1764 /* move $s8,$sp. With different versions of gas this will be either
20fa0902
MA
1765 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
1766 Accept any one of these. */
1767 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
0b0d6c3f 1768 continue;
1d9489c1 1769
1b71de8e
PS
1770 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
1771 continue;
b348b9fd 1772 else if (high_word == 0x3c1c) /* lui $gp,n */
e03c0cc6 1773 continue;
b348b9fd 1774 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
e03c0cc6
ILT
1775 continue;
1776 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1777 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
1778 continue;
ac57e5ad
SS
1779 /* The following instructions load $at or $t0 with an immediate
1780 value in preparation for a stack adjustment via
1781 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
1782 a local variable, so we accept them only before a stack adjustment
1783 instruction was seen. */
1784 else if (!seen_sp_adjust)
1785 {
b348b9fd
MA
1786 if (high_word == 0x3c01 || /* lui $at,n */
1787 high_word == 0x3c08) /* lui $t0,n */
ac57e5ad 1788 {
28444bf3 1789 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
ac57e5ad
SS
1790 continue;
1791 }
b348b9fd
MA
1792 else if (high_word == 0x3421 || /* ori $at,$at,n */
1793 high_word == 0x3508 || /* ori $t0,$t0,n */
1794 high_word == 0x3401 || /* ori $at,$zero,n */
1795 high_word == 0x3408) /* ori $t0,$zero,n */
ac57e5ad 1796 {
28444bf3 1797 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
ac57e5ad
SS
1798 continue;
1799 }
1800 else
1801 break;
1802 }
0b0d6c3f 1803 else
ac57e5ad 1804 break;
d747e0af 1805 }
e157305c 1806
ac57e5ad
SS
1807 /* In a frameless function, we might have incorrectly
1808 skipped some load immediate instructions. Undo the skipping
1809 if the load immediate was not followed by a stack adjustment. */
1810 if (load_immediate_bytes && !seen_sp_adjust)
20fa0902
MA
1811 pc -= load_immediate_bytes;
1812 return pc;
1813}
1814
1815/* Skip the PC past function prologue instructions (16-bit version).
1816 This is a helper function for mips_skip_prologue. */
1817
1818static CORE_ADDR
1819mips16_skip_prologue (pc, lenient)
1820 CORE_ADDR pc; /* starting PC to search from */
1821 int lenient;
1822{
1823 CORE_ADDR end_pc;
c81a76b3
MA
1824 int extend_bytes = 0;
1825 int prev_extend_bytes;
20fa0902
MA
1826
1827 /* Table of instructions likely to be found in a function prologue. */
1828 static struct
1829 {
1830 unsigned short inst;
1831 unsigned short mask;
1832 } table[] =
1833 {
1834 { 0x6300, 0xff00 }, /* addiu $sp,offset */
1835 { 0xfb00, 0xff00 }, /* daddiu $sp,offset */
1836 { 0xd000, 0xf800 }, /* sw reg,n($sp) */
1837 { 0xf900, 0xff00 }, /* sd reg,n($sp) */
1838 { 0x6200, 0xff00 }, /* sw $ra,n($sp) */
1839 { 0xfa00, 0xff00 }, /* sd $ra,n($sp) */
1840 { 0x673d, 0xffff }, /* move $s1,sp */
1841 { 0xd980, 0xff80 }, /* sw $a0-$a3,n($s1) */
1842 { 0x6704, 0xff1c }, /* move reg,$a0-$a3 */
1843 { 0xe809, 0xf81f }, /* entry pseudo-op */
32dab603 1844 { 0x0100, 0xff00 }, /* addiu $s1,$sp,n */
20fa0902
MA
1845 { 0, 0 } /* end of table marker */
1846 };
1847
1848 /* Skip the typical prologue instructions. These are the stack adjustment
1849 instruction and the instructions that save registers on the stack
1850 or in the gcc frame. */
1851 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
1852 {
20fa0902 1853 unsigned short inst;
20fa0902
MA
1854 int i;
1855
c81a76b3 1856 inst = mips_fetch_instruction (pc);
20fa0902
MA
1857
1858 /* Normally we ignore an extend instruction. However, if it is
1859 not followed by a valid prologue instruction, we must adjust
1860 the pc back over the extend so that it won't be considered
1861 part of the prologue. */
1862 if ((inst & 0xf800) == 0xf000) /* extend */
1863 {
1864 extend_bytes = MIPS16_INSTLEN;
1865 continue;
1866 }
1867 prev_extend_bytes = extend_bytes;
1868 extend_bytes = 0;
1869
1870 /* Check for other valid prologue instructions besides extend. */
1871 for (i = 0; table[i].mask != 0; i++)
1872 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
1873 break;
1874 if (table[i].mask != 0) /* it was in table? */
32dab603 1875 continue; /* ignore it */
20fa0902
MA
1876 else /* non-prologue */
1877 {
1878 /* Return the current pc, adjusted backwards by 2 if
1879 the previous instruction was an extend. */
1880 return pc - prev_extend_bytes;
1881 }
1882 }
32dab603 1883 return pc;
20fa0902
MA
1884}
1885
1886/* To skip prologues, I use this predicate. Returns either PC itself
1887 if the code at PC does not look like a function prologue; otherwise
1888 returns an address that (if we're lucky) follows the prologue. If
1889 LENIENT, then we must skip everything which is involved in setting
1890 up the frame (it's OK to skip more, just so long as we don't skip
1891 anything which might clobber the registers which are being saved.
1892 We must skip more in the case where part of the prologue is in the
1893 delay slot of a non-prologue instruction). */
1894
1895CORE_ADDR
1896mips_skip_prologue (pc, lenient)
1897 CORE_ADDR pc;
1898 int lenient;
1899{
1900 /* See if we can determine the end of the prologue via the symbol table.
1901 If so, then return either PC, or the PC after the prologue, whichever
1902 is greater. */
1903
1904 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
1905
1906 if (post_prologue_pc != 0)
1907 return max (pc, post_prologue_pc);
1908
1909 /* Can't determine prologue from the symbol table, need to examine
1910 instructions. */
1911
c1fc0935 1912 if (IS_MIPS16_ADDR (pc))
20fa0902
MA
1913 return mips16_skip_prologue (pc, lenient);
1914 else
1915 return mips32_skip_prologue (pc, lenient);
bd5635a1 1916}
c2a0f1cb 1917
002a422b 1918#if 0
20fa0902 1919/* The lenient prologue stuff should be superseded by the code in
002a422b
JK
1920 init_extra_frame_info which looks to see whether the stores mentioned
1921 in the proc_desc have actually taken place. */
1922
ee5fb959
JK
1923/* Is address PC in the prologue (loosely defined) for function at
1924 STARTADDR? */
1925
1926static int
1927mips_in_lenient_prologue (startaddr, pc)
1928 CORE_ADDR startaddr;
1929 CORE_ADDR pc;
1930{
1931 CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1);
1932 return pc >= startaddr && pc < end_prologue;
1933}
002a422b 1934#endif
ee5fb959 1935
ac8cf67d
PS
1936/* Given a return value in `regbuf' with a type `valtype',
1937 extract and copy its value into `valbuf'. */
1938void
1939mips_extract_return_value (valtype, regbuf, valbuf)
1940 struct type *valtype;
1941 char regbuf[REGISTER_BYTES];
1942 char *valbuf;
1943{
1944 int regnum;
92a6d600 1945 int offset = 0;
c81a76b3 1946 int len = TYPE_LENGTH (valtype);
ac8cf67d 1947
e4dbd248
PS
1948 regnum = 2;
1949 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
0af60e03
MS
1950 && (mips_fpu == MIPS_FPU_DOUBLE
1951 || (mips_fpu == MIPS_FPU_SINGLE && len <= MIPS_REGSIZE)))
f781fe93 1952 regnum = FP0_REGNUM;
ac8cf67d 1953
0af60e03
MS
1954 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1955 { /* "un-left-justify" the value from the register */
87910097 1956 if (len < REGISTER_RAW_SIZE (regnum))
0af60e03
MS
1957 offset = REGISTER_RAW_SIZE (regnum) - len;
1958 if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
1959 len < REGISTER_RAW_SIZE (regnum) * 2 &&
1960 (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
1961 TYPE_CODE (valtype) == TYPE_CODE_UNION))
1962 offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
1963 }
c81a76b3 1964 memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, len);
f781fe93 1965 REGISTER_CONVERT_TO_TYPE (regnum, valtype, valbuf);
ac8cf67d
PS
1966}
1967
1968/* Given a return value in `regbuf' with a type `valtype',
1969 write it's value into the appropriate register. */
1970void
1971mips_store_return_value (valtype, valbuf)
1972 struct type *valtype;
1973 char *valbuf;
1974{
1975 int regnum;
0af60e03
MS
1976 int offset = 0;
1977 int len = TYPE_LENGTH (valtype);
ac8cf67d
PS
1978 char raw_buffer[MAX_REGISTER_RAW_SIZE];
1979
e4dbd248
PS
1980 regnum = 2;
1981 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
0af60e03
MS
1982 && (mips_fpu == MIPS_FPU_DOUBLE
1983 || (mips_fpu == MIPS_FPU_SINGLE && len <= MIPS_REGSIZE)))
e4dbd248
PS
1984 regnum = FP0_REGNUM;
1985
0af60e03
MS
1986 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1987 { /* "left-justify" the value in the register */
1988 if (len < REGISTER_RAW_SIZE (regnum))
1989 offset = REGISTER_RAW_SIZE (regnum) - len;
1990 if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
1991 len < REGISTER_RAW_SIZE (regnum) * 2 &&
1992 (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
1993 TYPE_CODE (valtype) == TYPE_CODE_UNION))
1994 offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
1995 }
1996 memcpy(raw_buffer + offset, valbuf, len);
ac8cf67d 1997 REGISTER_CONVERT_FROM_TYPE(regnum, valtype, raw_buffer);
0af60e03
MS
1998 write_register_bytes(REGISTER_BYTE (regnum), raw_buffer,
1999 len > REGISTER_RAW_SIZE (regnum) ?
2000 len : REGISTER_RAW_SIZE (regnum));
ac8cf67d
PS
2001}
2002
e03c0cc6
ILT
2003/* Exported procedure: Is PC in the signal trampoline code */
2004
2005int
2006in_sigtramp (pc, ignore)
2007 CORE_ADDR pc;
2008 char *ignore; /* function name */
2009{
2010 if (sigtramp_address == 0)
2011 fixup_sigtramp ();
2012 return (pc >= sigtramp_address && pc < sigtramp_end);
2013}
2014
e4dbd248
PS
2015/* Command to set FPU type. mips_fpu_string will have been set to the
2016 user's argument. Set mips_fpu based on mips_fpu_string, and then
2017 canonicalize mips_fpu_string. */
2018
2019/*ARGSUSED*/
2020static void
2021mips_set_fpu_command (args, from_tty, c)
2022 char *args;
2023 int from_tty;
2024 struct cmd_list_element *c;
2025{
2026 char *err = NULL;
2027
2028 if (mips_fpu_string == NULL || *mips_fpu_string == '\0')
2029 mips_fpu = MIPS_FPU_DOUBLE;
2030 else if (strcasecmp (mips_fpu_string, "double") == 0
2031 || strcasecmp (mips_fpu_string, "on") == 0
2032 || strcasecmp (mips_fpu_string, "1") == 0
2033 || strcasecmp (mips_fpu_string, "yes") == 0)
2034 mips_fpu = MIPS_FPU_DOUBLE;
2035 else if (strcasecmp (mips_fpu_string, "none") == 0
2036 || strcasecmp (mips_fpu_string, "off") == 0
2037 || strcasecmp (mips_fpu_string, "0") == 0
2038 || strcasecmp (mips_fpu_string, "no") == 0)
2039 mips_fpu = MIPS_FPU_NONE;
2040 else if (strcasecmp (mips_fpu_string, "single") == 0)
2041 mips_fpu = MIPS_FPU_SINGLE;
2042 else
2043 err = strsave (mips_fpu_string);
2044
2045 if (mips_fpu_string != NULL)
2046 free (mips_fpu_string);
2047
2048 switch (mips_fpu)
2049 {
2050 case MIPS_FPU_DOUBLE:
2051 mips_fpu_string = strsave ("double");
2052 break;
2053 case MIPS_FPU_SINGLE:
2054 mips_fpu_string = strsave ("single");
2055 break;
2056 case MIPS_FPU_NONE:
2057 mips_fpu_string = strsave ("none");
2058 break;
2059 }
2060
2061 if (err != NULL)
2062 {
2063 struct cleanup *cleanups = make_cleanup (free, err);
2064 error ("Unknown FPU type `%s'. Use `double', `none', or `single'.",
2065 err);
2066 do_cleanups (cleanups);
2067 }
2068}
2069
2070static void
2071mips_show_fpu_command (args, from_tty, c)
2072 char *args;
2073 int from_tty;
2074 struct cmd_list_element *c;
2075{
2076}
2077
9f9f94aa
SS
2078/* Command to set the processor type. */
2079
2080void
2081mips_set_processor_type_command (args, from_tty)
2082 char *args;
2083 int from_tty;
2084{
2085 int i;
2086
2087 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
2088 {
2089 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
2090 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
2091 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
2092
2093 /* Restore the value. */
2094 tmp_mips_processor_type = strsave (mips_processor_type);
2095
2096 return;
2097 }
2098
2099 if (!mips_set_processor_type (tmp_mips_processor_type))
2100 {
2101 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
2102 /* Restore its value. */
2103 tmp_mips_processor_type = strsave (mips_processor_type);
2104 }
2105}
2106
2107static void
2108mips_show_processor_type_command (args, from_tty)
2109 char *args;
2110 int from_tty;
2111{
2112}
2113
2114/* Modify the actual processor type. */
2115
2116int
2117mips_set_processor_type (str)
2118 char *str;
2119{
2120 int i, j;
2121
2122 if (str == NULL)
1d9489c1 2123 return 0;
9f9f94aa
SS
2124
2125 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
2126 {
2127 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
2128 {
2129 mips_processor_type = str;
2130
2131 for (j = 0; j < NUM_REGS; ++j)
2132 reg_names[j] = mips_processor_type_table[i].regnames[j];
2133
2134 return 1;
2135
2136 /* FIXME tweak fpu flag too */
2137 }
2138 }
2139
2140 return 0;
2141}
2142
2143/* Attempt to identify the particular processor model by reading the
2144 processor id. */
2145
2146char *
2147mips_read_processor_type ()
2148{
28444bf3 2149 CORE_ADDR prid;
9f9f94aa
SS
2150
2151 prid = read_register (PRID_REGNUM);
2152
80e0e92a 2153 if ((prid & ~0xf) == 0x700)
9f9f94aa
SS
2154 return savestring ("r3041", strlen("r3041"));
2155
2156 return NULL;
2157}
427fec5d
JK
2158
2159/* Just like reinit_frame_cache, but with the right arguments to be
2160 callable as an sfunc. */
9f9f94aa 2161
427fec5d
JK
2162static void
2163reinit_frame_cache_sfunc (args, from_tty, c)
2164 char *args;
2165 int from_tty;
2166 struct cmd_list_element *c;
2167{
2168 reinit_frame_cache ();
2169}
c2a0f1cb 2170
28444bf3 2171static int
18b46e7c
SS
2172gdb_print_insn_mips (memaddr, info)
2173 bfd_vma memaddr;
2174 disassemble_info *info;
2175{
f9f8c14b
MA
2176 mips_extra_func_info_t proc_desc;
2177
2178 /* Search for the function containing this address. Set the low bit
2179 of the address when searching, in case we were given an even address
2180 that is the start of a 16-bit function. If we didn't do this,
2181 the search would fail because the symbol table says the function
2182 starts at an odd address, i.e. 1 byte past the given address. */
c1fc0935
MA
2183 memaddr = ADDR_BITS_REMOVE (memaddr);
2184 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
f9f8c14b
MA
2185
2186 /* Make an attempt to determine if this is a 16-bit function. If
2187 the procedure descriptor exists and the address therein is odd,
2188 it's definitely a 16-bit function. Otherwise, we have to just
2189 guess that if the address passed in is odd, it's 16-bits. */
2190 if (proc_desc)
c1fc0935 2191 info->mach = IS_MIPS16_ADDR (PROC_LOW_ADDR (proc_desc)) ? 16 : 0;
f9f8c14b 2192 else
c1fc0935 2193 info->mach = IS_MIPS16_ADDR (memaddr) ? 16 : 0;
f9f8c14b 2194
c1fc0935 2195 /* Round down the instruction address to the appropriate boundary. */
f9f8c14b
MA
2196 memaddr &= (info->mach == 16 ? ~1 : ~3);
2197
2198 /* Call the appropriate disassembler based on the target endian-ness. */
18b46e7c
SS
2199 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2200 return print_insn_big_mips (memaddr, info);
2201 else
2202 return print_insn_little_mips (memaddr, info);
2203}
2204
f9f8c14b
MA
2205/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
2206 counter value to determine whether a 16- or 32-bit breakpoint should be
2207 used. It returns a pointer to a string of bytes that encode a breakpoint
2208 instruction, stores the length of the string to *lenptr, and adjusts pc
2209 (if necessary) to point to the actual memory location where the
2210 breakpoint should be inserted. */
2211
2212unsigned char *mips_breakpoint_from_pc (pcptr, lenptr)
2213 CORE_ADDR *pcptr;
2214 int *lenptr;
2215{
2216 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2217 {
c1fc0935 2218 if (IS_MIPS16_ADDR (*pcptr))
f9f8c14b
MA
2219 {
2220 static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT;
c1fc0935 2221 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
f9f8c14b
MA
2222 *lenptr = sizeof(mips16_big_breakpoint);
2223 return mips16_big_breakpoint;
2224 }
2225 else
2226 {
2227 static char big_breakpoint[] = BIG_BREAKPOINT;
f781fe93
MA
2228 static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
2229 static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
2230
f9f8c14b 2231 *lenptr = sizeof(big_breakpoint);
f781fe93
MA
2232
2233 if (strcmp (target_shortname, "mips") == 0)
2234 return idt_big_breakpoint;
2235 else if (strcmp (target_shortname, "ddb") == 0
2236 || strcmp (target_shortname, "pmon") == 0
2237 || strcmp (target_shortname, "lsi") == 0)
2238 return pmon_big_breakpoint;
2239 else
2240 return big_breakpoint;
f9f8c14b
MA
2241 }
2242 }
2243 else
2244 {
c1fc0935 2245 if (IS_MIPS16_ADDR (*pcptr))
f9f8c14b
MA
2246 {
2247 static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT;
c1fc0935 2248 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
f9f8c14b
MA
2249 *lenptr = sizeof(mips16_little_breakpoint);
2250 return mips16_little_breakpoint;
2251 }
2252 else
2253 {
2254 static char little_breakpoint[] = LITTLE_BREAKPOINT;
f781fe93
MA
2255 static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT;
2256 static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT;
2257
f9f8c14b 2258 *lenptr = sizeof(little_breakpoint);
f781fe93
MA
2259
2260 if (strcmp (target_shortname, "mips") == 0)
2261 return idt_little_breakpoint;
2262 else if (strcmp (target_shortname, "ddb") == 0
2263 || strcmp (target_shortname, "pmon") == 0
2264 || strcmp (target_shortname, "lsi") == 0)
2265 return pmon_little_breakpoint;
2266 else
2267 return little_breakpoint;
f9f8c14b
MA
2268 }
2269 }
2270}
2271
2272/* Test whether the PC points to the return instruction at the
2273 end of a function. This implements the ABOUT_TO_RETURN macro. */
2274
2275int
2276mips_about_to_return (pc)
2277 CORE_ADDR pc;
2278{
c1fc0935 2279 if (IS_MIPS16_ADDR (pc))
f9f8c14b
MA
2280 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2281 generates a "jr $ra"; other times it generates code to load
2282 the return address from the stack to an accessible register (such
2283 as $a3), then a "jr" using that register. This second case
2284 is almost impossible to distinguish from an indirect jump
2285 used for switch statements, so we don't even try. */
c81a76b3 2286 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
f9f8c14b 2287 else
c81a76b3 2288 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
f9f8c14b
MA
2289}
2290
2291
f781fe93
MA
2292/* If PC is in a mips16 call or return stub, return the address of the target
2293 PC, which is either the callee or the caller. There are several
2294 cases which must be handled:
2295
2296 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
2297 target PC is in $31 ($ra).
2298 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
2299 and the target PC is in $2.
2300 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
2301 before the jal instruction, this is effectively a call stub
2302 and the the target PC is in $2. Otherwise this is effectively
2303 a return stub and the target PC is in $18.
2304
2305 See the source code for the stubs in gcc/config/mips/mips16.S for
2306 gory details.
2307
2308 This function implements the SKIP_TRAMPOLINE_CODE macro.
2309*/
2310
2311CORE_ADDR
2312mips_skip_stub (pc)
2313 CORE_ADDR pc;
2314{
2315 char *name;
2316 CORE_ADDR start_addr;
2317
2318 /* Find the starting address and name of the function containing the PC. */
2319 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2320 return 0;
2321
2322 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
2323 target PC is in $31 ($ra). */
2324 if (strcmp (name, "__mips16_ret_sf") == 0
2325 || strcmp (name, "__mips16_ret_df") == 0)
2326 return read_register (RA_REGNUM);
2327
2328 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
2329 {
2330 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
2331 and the target PC is in $2. */
2332 if (name[19] >= '0' && name[19] <= '9')
2333 return read_register (2);
2334
2335 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
2336 before the jal instruction, this is effectively a call stub
2337 and the the target PC is in $2. Otherwise this is effectively
2338 a return stub and the target PC is in $18. */
2339 else if (name[19] == 's' || name[19] == 'd')
2340 {
2341 if (pc == start_addr)
2342 {
2343 /* Check if the target of the stub is a compiler-generated
2344 stub. Such a stub for a function bar might have a name
2345 like __fn_stub_bar, and might look like this:
2346 mfc1 $4,$f13
2347 mfc1 $5,$f12
2348 mfc1 $6,$f15
2349 mfc1 $7,$f14
2350 la $1,bar (becomes a lui/addiu pair)
2351 jr $1
2352 So scan down to the lui/addi and extract the target
2353 address from those two instructions. */
2354
2355 CORE_ADDR target_pc = read_register (2);
2356 t_inst inst;
2357 int i;
2358
2359 /* See if the name of the target function is __fn_stub_*. */
2360 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
2361 return target_pc;
2362 if (strncmp (name, "__fn_stub_", 10) != 0
2363 && strcmp (name, "etext") != 0
2364 && strcmp (name, "_etext") != 0)
2365 return target_pc;
2366
2367 /* Scan through this _fn_stub_ code for the lui/addiu pair.
2368 The limit on the search is arbitrarily set to 20
2369 instructions. FIXME. */
2370 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
2371 {
2372 inst = mips_fetch_instruction (target_pc);
2373 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
2374 pc = (inst << 16) & 0xffff0000; /* high word */
2375 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
2376 return pc | (inst & 0xffff); /* low word */
2377 }
2378
2379 /* Couldn't find the lui/addui pair, so return stub address. */
2380 return target_pc;
2381 }
2382 else
2383 /* This is the 'return' part of a call stub. The return
2384 address is in $r18. */
2385 return read_register (18);
2386 }
2387 }
2388 return 0; /* not a stub */
2389}
2390
2391
2392/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
2393 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
2394
2395int
2396mips_in_call_stub (pc, name)
2397 CORE_ADDR pc;
2398 char *name;
2399{
2400 CORE_ADDR start_addr;
2401
2402 /* Find the starting address of the function containing the PC. If the
2403 caller didn't give us a name, look it up at the same time. */
2404 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
2405 return 0;
2406
2407 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
2408 {
2409 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
2410 if (name[19] >= '0' && name[19] <= '9')
2411 return 1;
2412 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
2413 before the jal instruction, this is effectively a call stub. */
2414 else if (name[19] == 's' || name[19] == 'd')
2415 return pc == start_addr;
2416 }
2417
2418 return 0; /* not a stub */
2419}
2420
2421
2422/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
2423 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
2424
2425int
2426mips_in_return_stub (pc, name)
2427 CORE_ADDR pc;
2428 char *name;
2429{
2430 CORE_ADDR start_addr;
2431
2432 /* Find the starting address of the function containing the PC. */
2433 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
2434 return 0;
2435
2436 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
2437 if (strcmp (name, "__mips16_ret_sf") == 0
2438 || strcmp (name, "__mips16_ret_df") == 0)
2439 return 1;
2440
2441 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
2442 i.e. after the jal instruction, this is effectively a return stub. */
2443 if (strncmp (name, "__mips16_call_stub_", 19) == 0
2444 && (name[19] == 's' || name[19] == 'd')
2445 && pc != start_addr)
2446 return 1;
2447
2448 return 0; /* not a stub */
2449}
2450
2451
2452/* Return non-zero if the PC is in a library helper function that should
2453 be ignored. This implements the IGNORE_HELPER_CALL macro. */
2454
2455int
2456mips_ignore_helper (pc)
2457 CORE_ADDR pc;
2458{
2459 char *name;
2460
2461 /* Find the starting address and name of the function containing the PC. */
2462 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
2463 return 0;
2464
2465 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
2466 that we want to ignore. */
2467 return (strcmp (name, "__mips16_ret_sf") == 0
2468 || strcmp (name, "__mips16_ret_df") == 0);
2469}
2470
2471
c2a0f1cb
ILT
2472void
2473_initialize_mips_tdep ()
2474{
427fec5d
JK
2475 struct cmd_list_element *c;
2476
18b46e7c
SS
2477 tm_print_insn = gdb_print_insn_mips;
2478
427fec5d
JK
2479 /* Let the user turn off floating point and set the fence post for
2480 heuristic_proc_start. */
2481
e4dbd248
PS
2482 c = add_set_cmd ("mipsfpu", class_support, var_string_noescape,
2483 (char *) &mips_fpu_string,
2484 "Set use of floating point coprocessor.\n\
2485Set to `none' to avoid using floating point instructions when calling\n\
2486functions or dealing with return values. Set to `single' to use only\n\
2487single precision floating point as on the R4650. Set to `double' for\n\
2488normal floating point support.",
2489 &setlist);
2490 c->function.sfunc = mips_set_fpu_command;
2491 c = add_show_from_set (c, &showlist);
2492 c->function.sfunc = mips_show_fpu_command;
2493
2494 mips_fpu = MIPS_FPU_DOUBLE;
2495 mips_fpu_string = strsave ("double");
3127785a 2496
9f9f94aa
SS
2497 c = add_set_cmd ("processor", class_support, var_string_noescape,
2498 (char *) &tmp_mips_processor_type,
2499 "Set the type of MIPS processor in use.\n\
2500Set this to be able to access processor-type-specific registers.\n\
2501",
2502 &setlist);
2503 c->function.cfunc = mips_set_processor_type_command;
2504 c = add_show_from_set (c, &showlist);
2505 c->function.cfunc = mips_show_processor_type_command;
2506
2507 tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE);
2508 mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0);
2509
bdef72d2
JK
2510 /* We really would like to have both "0" and "unlimited" work, but
2511 command.c doesn't deal with that. So make it a var_zinteger
2512 because the user can always use "999999" or some such for unlimited. */
2513 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
427fec5d
JK
2514 (char *) &heuristic_fence_post,
2515 "\
23d35572
JK
2516Set the distance searched for the start of a function.\n\
2517If you are debugging a stripped executable, GDB needs to search through the\n\
2518program for the start of a function. This command sets the distance of the\n\
2519search. The only need to set it is when debugging a stripped executable.",
427fec5d
JK
2520 &setlist);
2521 /* We need to throw away the frame cache when we set this, since it
2522 might change our ability to get backtraces. */
2523 c->function.sfunc = reinit_frame_cache_sfunc;
2524 add_show_from_set (c, &showlist);
c2a0f1cb 2525}
This page took 0.439541 seconds and 4 git commands to generate.