2004-11-08 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a 3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
16e109ca
AC
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
bf64bfd6 6
c906108c
SS
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b
JM
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
c906108c
SS
26
27#include "defs.h"
28#include "gdb_string.h"
5e2e9765 29#include "gdb_assert.h"
c906108c
SS
30#include "frame.h"
31#include "inferior.h"
32#include "symtab.h"
33#include "value.h"
34#include "gdbcmd.h"
35#include "language.h"
36#include "gdbcore.h"
37#include "symfile.h"
38#include "objfiles.h"
39#include "gdbtypes.h"
40#include "target.h"
28d069e6 41#include "arch-utils.h"
4e052eda 42#include "regcache.h"
70f80edf 43#include "osabi.h"
d1973055 44#include "mips-tdep.h"
fe898f56 45#include "block.h"
a4b8ebc8 46#include "reggroups.h"
c906108c 47#include "opcode/mips.h"
c2d11a7d
JM
48#include "elf/mips.h"
49#include "elf-bfd.h"
2475bac3 50#include "symcat.h"
a4b8ebc8 51#include "sim-regno.h"
a89aa300 52#include "dis-asm.h"
edfae063
AC
53#include "frame-unwind.h"
54#include "frame-base.h"
55#include "trad-frame.h"
7d9b040b 56#include "infcall.h"
fed7ba43 57#include "floatformat.h"
c906108c 58
8d5f9dcb
DJ
59static const struct objfile_data *mips_pdr_data;
60
5bbcb741 61static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 62
24e05951 63/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
64/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
65#define ST0_FR (1 << 26)
66
b0069a17
AC
67/* The sizes of floating point registers. */
68
69enum
70{
71 MIPS_FPU_SINGLE_REGSIZE = 4,
72 MIPS_FPU_DOUBLE_REGSIZE = 8
73};
74
0dadbba0 75
2e4ebe70
DJ
76static const char *mips_abi_string;
77
78static const char *mips_abi_strings[] = {
79 "auto",
80 "n32",
81 "o32",
28d169de 82 "n64",
2e4ebe70
DJ
83 "o64",
84 "eabi32",
85 "eabi64",
86 NULL
87};
88
d929b26f
AC
89/* Various MIPS ISA options (related to stack analysis) can be
90 overridden dynamically. Establish an enum/array for managing
91 them. */
92
53904c9e
AC
93static const char size_auto[] = "auto";
94static const char size_32[] = "32";
95static const char size_64[] = "64";
d929b26f 96
53904c9e 97static const char *size_enums[] = {
d929b26f
AC
98 size_auto,
99 size_32,
100 size_64,
a5ea2558
AC
101 0
102};
103
7a292a7a 104/* Some MIPS boards don't support floating point while others only
ceae6e75 105 support single-precision floating-point operations. */
c906108c
SS
106
107enum mips_fpu_type
6d82d43b
AC
108{
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
112};
c906108c
SS
113
114#ifndef MIPS_DEFAULT_FPU_TYPE
115#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
116#endif
117static int mips_fpu_type_auto = 1;
118static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 119
9ace0497 120static int mips_debug = 0;
7a292a7a 121
c2d11a7d
JM
122/* MIPS specific per-architecture information */
123struct gdbarch_tdep
6d82d43b
AC
124{
125 /* from the elf header */
126 int elf_flags;
127
128 /* mips options */
129 enum mips_abi mips_abi;
130 enum mips_abi found_abi;
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
6d82d43b
AC
134 int default_mask_address_p;
135 /* Is the target using 64-bit raw integer registers but only
136 storing a left-aligned 32-bit value in each? */
137 int mips64_transfers_32bit_regs_p;
138 /* Indexes for various registers. IRIX and embedded have
139 different values. This contains the "public" fields. Don't
140 add any that do not need to be public. */
141 const struct mips_regnum *regnum;
142 /* Register names table for the current register set. */
143 const char **mips_processor_reg_names;
144};
c2d11a7d 145
fed7ba43
JB
146static int
147n32n64_floatformat_always_valid (const struct floatformat *fmt,
148 const char *from)
149{
150 return 1;
151}
152
153/* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
154 They are implemented as a pair of 64bit doubles where the high
155 part holds the result of the operation rounded to double, and
156 the low double holds the difference between the exact result and
157 the rounded result. So "high" + "low" contains the result with
158 added precision. Unfortunately, the floatformat structure used
159 by GDB is not powerful enough to describe this format. As a temporary
160 measure, we define a 128bit floatformat that only uses the high part.
161 We lose a bit of precision but that's probably the best we can do
162 for now with the current infrastructure. */
163
164static const struct floatformat floatformat_n32n64_long_double_big =
165{
166 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
167 floatformat_intbit_no,
168 "floatformat_ieee_double_big",
169 n32n64_floatformat_always_valid
170};
171
56cea623
AC
172const struct mips_regnum *
173mips_regnum (struct gdbarch *gdbarch)
174{
175 return gdbarch_tdep (gdbarch)->regnum;
176}
177
178static int
179mips_fpa0_regnum (struct gdbarch *gdbarch)
180{
181 return mips_regnum (gdbarch)->fp0 + 12;
182}
183
0dadbba0 184#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 185 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 186
c2d11a7d 187#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 188
c2d11a7d 189#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 190
c2d11a7d 191#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 192
95404a3e
AC
193/* MIPS16 function addresses are odd (bit 0 is set). Here are some
194 functions to test, set, or clear bit 0 of addresses. */
195
196static CORE_ADDR
197is_mips16_addr (CORE_ADDR addr)
198{
199 return ((addr) & 1);
200}
201
95404a3e
AC
202static CORE_ADDR
203unmake_mips16_addr (CORE_ADDR addr)
204{
205 return ((addr) & ~1);
206}
207
22540ece
AC
208/* Return the contents of register REGNUM as a signed integer. */
209
210static LONGEST
211read_signed_register (int regnum)
212{
1d93fe1a
AC
213 LONGEST val;
214 regcache_cooked_read_signed (current_regcache, regnum, &val);
215 return val;
22540ece
AC
216}
217
218static LONGEST
219read_signed_register_pid (int regnum, ptid_t ptid)
220{
221 ptid_t save_ptid;
222 LONGEST retval;
223
224 if (ptid_equal (ptid, inferior_ptid))
225 return read_signed_register (regnum);
226
227 save_ptid = inferior_ptid;
228
229 inferior_ptid = ptid;
230
231 retval = read_signed_register (regnum);
232
233 inferior_ptid = save_ptid;
234
235 return retval;
236}
237
d1973055
KB
238/* Return the MIPS ABI associated with GDBARCH. */
239enum mips_abi
240mips_abi (struct gdbarch *gdbarch)
241{
242 return gdbarch_tdep (gdbarch)->mips_abi;
243}
244
4246e332 245int
1b13c4f6 246mips_isa_regsize (struct gdbarch *gdbarch)
4246e332
AC
247{
248 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
249 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
250}
251
480d3dd2
AC
252/* Return the currently configured (or set) saved register size. */
253
1b13c4f6 254static const char *mips_abi_regsize_string = size_auto;
480d3dd2 255
e6bc2e8a 256unsigned int
13326b4e 257mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 258{
1b13c4f6 259 if (mips_abi_regsize_string == size_auto)
13326b4e
AC
260 switch (mips_abi (gdbarch))
261 {
262 case MIPS_ABI_EABI32:
263 case MIPS_ABI_O32:
264 return 4;
265 case MIPS_ABI_N32:
266 case MIPS_ABI_N64:
267 case MIPS_ABI_O64:
268 case MIPS_ABI_EABI64:
269 return 8;
270 case MIPS_ABI_UNKNOWN:
271 case MIPS_ABI_LAST:
272 default:
273 internal_error (__FILE__, __LINE__, "bad switch");
274 }
1b13c4f6 275 else if (mips_abi_regsize_string == size_64)
d929b26f 276 return 8;
1b13c4f6 277 else /* if (mips_abi_regsize_string == size_32) */
d929b26f
AC
278 return 4;
279}
280
71b8ef93 281/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa 282 marks it as 16-bit function. The MSB of the minimal symbol's
f594e5e9 283 "info" field is used for this purpose.
5a89d8aa
MS
284
285 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
286 i.e. refers to a 16-bit function, and sets a "special" bit in a
287 minimal symbol to mark it as a 16-bit function
288
f594e5e9 289 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
5a89d8aa 290
5a89d8aa 291static void
6d82d43b
AC
292mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
293{
294 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
295 {
296 MSYMBOL_INFO (msym) = (char *)
297 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
298 SYMBOL_VALUE_ADDRESS (msym) |= 1;
299 }
5a89d8aa
MS
300}
301
71b8ef93
MS
302static int
303msymbol_is_special (struct minimal_symbol *msym)
304{
305 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
306}
307
88658117
AC
308/* XFER a value from the big/little/left end of the register.
309 Depending on the size of the value it might occupy the entire
310 register or just part of it. Make an allowance for this, aligning
311 things accordingly. */
312
313static void
314mips_xfer_register (struct regcache *regcache, int reg_num, int length,
6d82d43b
AC
315 enum bfd_endian endian, bfd_byte * in,
316 const bfd_byte * out, int buf_offset)
88658117 317{
88658117 318 int reg_offset = 0;
a4b8ebc8 319 gdb_assert (reg_num >= NUM_REGS);
cb1d2653
AC
320 /* Need to transfer the left or right part of the register, based on
321 the targets byte order. */
88658117
AC
322 switch (endian)
323 {
324 case BFD_ENDIAN_BIG:
719ec221 325 reg_offset = register_size (current_gdbarch, reg_num) - length;
88658117
AC
326 break;
327 case BFD_ENDIAN_LITTLE:
328 reg_offset = 0;
329 break;
6d82d43b 330 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
331 reg_offset = 0;
332 break;
333 default:
334 internal_error (__FILE__, __LINE__, "bad switch");
335 }
336 if (mips_debug)
cb1d2653
AC
337 fprintf_unfiltered (gdb_stderr,
338 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
339 reg_num, reg_offset, buf_offset, length);
88658117
AC
340 if (mips_debug && out != NULL)
341 {
342 int i;
cb1d2653 343 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 344 for (i = 0; i < length; i++)
cb1d2653 345 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
346 }
347 if (in != NULL)
6d82d43b
AC
348 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
349 in + buf_offset);
88658117 350 if (out != NULL)
6d82d43b
AC
351 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
352 out + buf_offset);
88658117
AC
353 if (mips_debug && in != NULL)
354 {
355 int i;
cb1d2653 356 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 357 for (i = 0; i < length; i++)
cb1d2653 358 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
359 }
360 if (mips_debug)
361 fprintf_unfiltered (gdb_stdlog, "\n");
362}
363
dd824b04
DJ
364/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
365 compatiblity mode. A return value of 1 means that we have
366 physical 64-bit registers, but should treat them as 32-bit registers. */
367
368static int
369mips2_fp_compat (void)
370{
371 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
372 meaningful. */
6d82d43b
AC
373 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
374 4)
dd824b04
DJ
375 return 0;
376
377#if 0
378 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
379 in all the places we deal with FP registers. PR gdb/413. */
380 /* Otherwise check the FR bit in the status register - it controls
381 the FP compatiblity mode. If it is clear we are in compatibility
382 mode. */
24e05951 383 if ((read_register (MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
384 return 1;
385#endif
361d1df0 386
dd824b04
DJ
387 return 0;
388}
389
d929b26f 390/* The amount of space reserved on the stack for registers. This is
1b13c4f6 391 different to MIPS_ABI_REGSIZE as it determines the alignment of
d929b26f
AC
392 data allocated after the registers have run out. */
393
53904c9e 394static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
395
396static unsigned int
13326b4e 397mips_stack_argsize (struct gdbarch *gdbarch)
d929b26f
AC
398{
399 if (mips_stack_argsize_string == size_auto)
13326b4e 400 return mips_abi_regsize (gdbarch);
d929b26f
AC
401 else if (mips_stack_argsize_string == size_64)
402 return 8;
6d82d43b 403 else /* if (mips_stack_argsize_string == size_32) */
d929b26f
AC
404 return 4;
405}
406
7a292a7a 407#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 408
a14ed312 409static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 410
a14ed312 411static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 412
a14ed312 413static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 414
67b2c998
DJ
415static struct type *mips_float_register_type (void);
416static struct type *mips_double_register_type (void);
417
acdb74a0
AC
418/* The list of available "set mips " and "show mips " commands */
419
420static struct cmd_list_element *setmipscmdlist = NULL;
421static struct cmd_list_element *showmipscmdlist = NULL;
422
5e2e9765
KB
423/* Integer registers 0 thru 31 are handled explicitly by
424 mips_register_name(). Processor specific registers 32 and above
691c0433
AC
425 are listed in the followign tables. */
426
6d82d43b
AC
427enum
428{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
429
430/* Generic MIPS. */
431
432static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
433 "sr", "lo", "hi", "bad", "cause", "pc",
434 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
435 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
436 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
437 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
438 "fsr", "fir", "" /*"fp" */ , "",
439 "", "", "", "", "", "", "", "",
440 "", "", "", "", "", "", "", "",
691c0433
AC
441};
442
443/* Names of IDT R3041 registers. */
444
445static const char *mips_r3041_reg_names[] = {
6d82d43b
AC
446 "sr", "lo", "hi", "bad", "cause", "pc",
447 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
448 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
449 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
450 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
451 "fsr", "fir", "", /*"fp" */ "",
452 "", "", "bus", "ccfg", "", "", "", "",
453 "", "", "port", "cmp", "", "", "epc", "prid",
691c0433
AC
454};
455
456/* Names of tx39 registers. */
457
458static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
459 "sr", "lo", "hi", "bad", "cause", "pc",
460 "", "", "", "", "", "", "", "",
461 "", "", "", "", "", "", "", "",
462 "", "", "", "", "", "", "", "",
463 "", "", "", "", "", "", "", "",
464 "", "", "", "",
465 "", "", "", "", "", "", "", "",
466 "", "", "config", "cache", "debug", "depc", "epc", ""
691c0433
AC
467};
468
469/* Names of IRIX registers. */
470static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
471 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
472 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
473 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
474 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
475 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
691c0433
AC
476};
477
cce74817 478
5e2e9765 479/* Return the name of the register corresponding to REGNO. */
5a89d8aa 480static const char *
5e2e9765 481mips_register_name (int regno)
cce74817 482{
691c0433 483 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5e2e9765
KB
484 /* GPR names for all ABIs other than n32/n64. */
485 static char *mips_gpr_names[] = {
6d82d43b
AC
486 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
487 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
488 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
489 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
490 };
491
492 /* GPR names for n32 and n64 ABIs. */
493 static char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
494 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
495 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
496 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
497 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
498 };
499
500 enum mips_abi abi = mips_abi (current_gdbarch);
501
a4b8ebc8
AC
502 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
503 don't make the raw register names visible. */
504 int rawnum = regno % NUM_REGS;
505 if (regno < NUM_REGS)
506 return "";
507
5e2e9765
KB
508 /* The MIPS integer registers are always mapped from 0 to 31. The
509 names of the registers (which reflects the conventions regarding
510 register use) vary depending on the ABI. */
a4b8ebc8 511 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
512 {
513 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 514 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 515 else
a4b8ebc8 516 return mips_gpr_names[rawnum];
5e2e9765 517 }
a4b8ebc8 518 else if (32 <= rawnum && rawnum < NUM_REGS)
691c0433
AC
519 {
520 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
521 return tdep->mips_processor_reg_names[rawnum - 32];
522 }
5e2e9765
KB
523 else
524 internal_error (__FILE__, __LINE__,
a4b8ebc8 525 "mips_register_name: bad register number %d", rawnum);
cce74817 526}
5e2e9765 527
a4b8ebc8 528/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 529
a4b8ebc8
AC
530static int
531mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
532 struct reggroup *reggroup)
533{
534 int vector_p;
535 int float_p;
536 int raw_p;
537 int rawnum = regnum % NUM_REGS;
538 int pseudo = regnum / NUM_REGS;
539 if (reggroup == all_reggroup)
540 return pseudo;
541 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
542 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
543 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
544 (gdbarch), as not all architectures are multi-arch. */
545 raw_p = rawnum < NUM_REGS;
6d82d43b 546 if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0')
a4b8ebc8
AC
547 return 0;
548 if (reggroup == float_reggroup)
549 return float_p && pseudo;
550 if (reggroup == vector_reggroup)
551 return vector_p && pseudo;
552 if (reggroup == general_reggroup)
553 return (!vector_p && !float_p) && pseudo;
554 /* Save the pseudo registers. Need to make certain that any code
555 extracting register values from a saved register cache also uses
556 pseudo registers. */
557 if (reggroup == save_reggroup)
558 return raw_p && pseudo;
559 /* Restore the same pseudo register. */
560 if (reggroup == restore_reggroup)
561 return raw_p && pseudo;
6d82d43b 562 return 0;
a4b8ebc8
AC
563}
564
565/* Map the symbol table registers which live in the range [1 *
566 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
47ebcfbe 567 registers. Take care of alignment and size problems. */
c5aa993b 568
a4b8ebc8
AC
569static void
570mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
571 int cookednum, void *buf)
572{
47ebcfbe 573 int rawnum = cookednum % NUM_REGS;
a4b8ebc8 574 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
47ebcfbe 575 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 576 regcache_raw_read (regcache, rawnum, buf);
6d82d43b
AC
577 else if (register_size (gdbarch, rawnum) >
578 register_size (gdbarch, cookednum))
47ebcfbe
AC
579 {
580 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
581 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
582 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
583 else
584 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
585 }
586 else
587 internal_error (__FILE__, __LINE__, "bad register size");
a4b8ebc8
AC
588}
589
590static void
6d82d43b
AC
591mips_pseudo_register_write (struct gdbarch *gdbarch,
592 struct regcache *regcache, int cookednum,
593 const void *buf)
a4b8ebc8 594{
47ebcfbe 595 int rawnum = cookednum % NUM_REGS;
a4b8ebc8 596 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
47ebcfbe 597 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 598 regcache_raw_write (regcache, rawnum, buf);
6d82d43b
AC
599 else if (register_size (gdbarch, rawnum) >
600 register_size (gdbarch, cookednum))
47ebcfbe
AC
601 {
602 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
603 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
604 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
605 else
606 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
607 }
608 else
609 internal_error (__FILE__, __LINE__, "bad register size");
a4b8ebc8 610}
c5aa993b 611
c906108c 612/* Table to translate MIPS16 register field to actual register number. */
6d82d43b 613static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
614
615/* Heuristic_proc_start may hunt through the text section for a long
616 time across a 2400 baud serial line. Allows the user to limit this
617 search. */
618
619static unsigned int heuristic_fence_post = 0;
620
46cd78fb 621/* Number of bytes of storage in the actual machine representation for
719ec221
AC
622 register N. NOTE: This defines the pseudo register type so need to
623 rebuild the architecture vector. */
43e526b9
JM
624
625static int mips64_transfers_32bit_regs_p = 0;
626
719ec221
AC
627static void
628set_mips64_transfers_32bit_regs (char *args, int from_tty,
629 struct cmd_list_element *c)
43e526b9 630{
719ec221
AC
631 struct gdbarch_info info;
632 gdbarch_info_init (&info);
633 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
634 instead of relying on globals. Doing that would let generic code
635 handle the search for this specific architecture. */
636 if (!gdbarch_update_p (info))
a4b8ebc8 637 {
719ec221
AC
638 mips64_transfers_32bit_regs_p = 0;
639 error ("32-bit compatibility mode not supported");
a4b8ebc8 640 }
a4b8ebc8
AC
641}
642
47ebcfbe 643/* Convert to/from a register and the corresponding memory value. */
43e526b9 644
ff2e87ac
AC
645static int
646mips_convert_register_p (int regnum, struct type *type)
647{
648 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
719ec221 649 && register_size (current_gdbarch, regnum) == 4
87783b8b
AC
650 && (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
651 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32
6d82d43b 652 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
653}
654
42c466d7 655static void
ff2e87ac
AC
656mips_register_to_value (struct frame_info *frame, int regnum,
657 struct type *type, void *to)
102182a9 658{
7f5f525d
AC
659 get_frame_register (frame, regnum + 0, (char *) to + 4);
660 get_frame_register (frame, regnum + 1, (char *) to + 0);
102182a9
MS
661}
662
42c466d7 663static void
ff2e87ac
AC
664mips_value_to_register (struct frame_info *frame, int regnum,
665 struct type *type, const void *from)
102182a9 666{
ff2e87ac
AC
667 put_frame_register (frame, regnum + 0, (const char *) from + 4);
668 put_frame_register (frame, regnum + 1, (const char *) from + 0);
102182a9
MS
669}
670
a4b8ebc8
AC
671/* Return the GDB type object for the "standard" data type of data in
672 register REG. */
78fde5f8
KB
673
674static struct type *
a4b8ebc8
AC
675mips_register_type (struct gdbarch *gdbarch, int regnum)
676{
5ef80fb0 677 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
56cea623
AC
678 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
679 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
a6425924 680 {
5ef80fb0 681 /* The floating-point registers raw, or cooked, always match
1b13c4f6 682 mips_isa_regsize(), and also map 1:1, byte for byte. */
5ef80fb0
AC
683 switch (gdbarch_byte_order (gdbarch))
684 {
685 case BFD_ENDIAN_BIG:
1b13c4f6 686 if (mips_isa_regsize (gdbarch) == 4)
5ef80fb0
AC
687 return builtin_type_ieee_single_big;
688 else
689 return builtin_type_ieee_double_big;
690 case BFD_ENDIAN_LITTLE:
1b13c4f6 691 if (mips_isa_regsize (gdbarch) == 4)
5ef80fb0
AC
692 return builtin_type_ieee_single_little;
693 else
694 return builtin_type_ieee_double_little;
695 case BFD_ENDIAN_UNKNOWN:
696 default:
697 internal_error (__FILE__, __LINE__, "bad switch");
698 }
a6425924 699 }
d5ac5a39
AC
700 else if (regnum < NUM_REGS)
701 {
702 /* The raw or ISA registers. These are all sized according to
703 the ISA regsize. */
704 if (mips_isa_regsize (gdbarch) == 4)
705 return builtin_type_int32;
706 else
707 return builtin_type_int64;
708 }
78fde5f8 709 else
d5ac5a39
AC
710 {
711 /* The cooked or ABI registers. These are sized according to
712 the ABI (with a few complications). */
713 if (regnum >= (NUM_REGS
714 + mips_regnum (current_gdbarch)->fp_control_status)
607fc93c 715 && regnum <= NUM_REGS + MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
716 /* The pseudo/cooked view of the embedded registers is always
717 32-bit. The raw view is handled below. */
718 return builtin_type_int32;
719 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
720 /* The target, while possibly using a 64-bit register buffer,
721 is only transfering 32-bits of each integer register.
722 Reflect this in the cooked/pseudo (ABI) register value. */
723 return builtin_type_int32;
724 else if (mips_abi_regsize (gdbarch) == 4)
725 /* The ABI is restricted to 32-bit registers (the ISA could be
726 32- or 64-bit). */
727 return builtin_type_int32;
728 else
729 /* 64-bit ABI. */
730 return builtin_type_int64;
731 }
78fde5f8
KB
732}
733
bcb0cc15
MS
734/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
735
736static CORE_ADDR
737mips_read_sp (void)
738{
f10683bb 739 return read_signed_register (MIPS_SP_REGNUM);
bcb0cc15
MS
740}
741
c906108c 742/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 743enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
744
745static int
480d3dd2 746mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
747{
748 switch (mask_address_var)
749 {
7f19b9a2 750 case AUTO_BOOLEAN_TRUE:
4014092b 751 return 1;
7f19b9a2 752 case AUTO_BOOLEAN_FALSE:
4014092b
AC
753 return 0;
754 break;
7f19b9a2 755 case AUTO_BOOLEAN_AUTO:
480d3dd2 756 return tdep->default_mask_address_p;
4014092b 757 default:
6d82d43b 758 internal_error (__FILE__, __LINE__, "mips_mask_address_p: bad switch");
4014092b 759 return -1;
361d1df0 760 }
4014092b
AC
761}
762
763static void
e9e68a56 764show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
4014092b 765{
480d3dd2 766 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4014092b
AC
767 switch (mask_address_var)
768 {
7f19b9a2 769 case AUTO_BOOLEAN_TRUE:
4014092b
AC
770 printf_filtered ("The 32 bit mips address mask is enabled\n");
771 break;
7f19b9a2 772 case AUTO_BOOLEAN_FALSE:
4014092b
AC
773 printf_filtered ("The 32 bit mips address mask is disabled\n");
774 break;
7f19b9a2 775 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
776 printf_filtered
777 ("The 32 bit address mask is set automatically. Currently %s\n",
778 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
779 break;
780 default:
6d82d43b 781 internal_error (__FILE__, __LINE__, "show_mask_address: bad switch");
4014092b 782 break;
361d1df0 783 }
4014092b 784}
c906108c 785
c906108c
SS
786/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
787
0fe7e7c8
AC
788int
789mips_pc_is_mips16 (CORE_ADDR memaddr)
c906108c
SS
790{
791 struct minimal_symbol *sym;
792
793 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 794 if (is_mips16_addr (memaddr))
c906108c
SS
795 return 1;
796
797 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
798 the high bit of the info field. Use this to decide if the function is
799 MIPS16 or normal MIPS. */
800 sym = lookup_minimal_symbol_by_pc (memaddr);
801 if (sym)
71b8ef93 802 return msymbol_is_special (sym);
c906108c
SS
803 else
804 return 0;
805}
806
b2fa5097 807/* MIPS believes that the PC has a sign extended value. Perhaps the
6c997a34
AC
808 all registers should be sign extended for simplicity? */
809
810static CORE_ADDR
39f77062 811mips_read_pc (ptid_t ptid)
6c997a34 812{
b6cb9035
AC
813 return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid);
814}
815
58dfe9ff
AC
816static CORE_ADDR
817mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
818{
edfae063
AC
819 return frame_unwind_register_signed (next_frame,
820 NUM_REGS + mips_regnum (gdbarch)->pc);
821}
822
823/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
824 dummy frame. The frame ID's base needs to match the TOS value
825 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
826 breakpoint. */
827
828static struct frame_id
829mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
830{
f10683bb 831 return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + MIPS_SP_REGNUM),
edfae063 832 frame_pc_unwind (next_frame));
58dfe9ff
AC
833}
834
b6cb9035
AC
835static void
836mips_write_pc (CORE_ADDR pc, ptid_t ptid)
837{
838 write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid);
6c997a34 839}
c906108c 840
c906108c
SS
841/* Fetch and return instruction from the specified location. If the PC
842 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
843
d37cca3d 844static ULONGEST
acdb74a0 845mips_fetch_instruction (CORE_ADDR addr)
c906108c 846{
95ac2dcf 847 char buf[MIPS_INSN32_SIZE];
c906108c
SS
848 int instlen;
849 int status;
850
0fe7e7c8 851 if (mips_pc_is_mips16 (addr))
c906108c 852 {
95ac2dcf 853 instlen = MIPS_INSN16_SIZE;
95404a3e 854 addr = unmake_mips16_addr (addr);
c906108c
SS
855 }
856 else
95ac2dcf 857 instlen = MIPS_INSN32_SIZE;
1f602b35 858 status = deprecated_read_memory_nobpt (addr, buf, instlen);
c906108c
SS
859 if (status)
860 memory_error (status, addr);
861 return extract_unsigned_integer (buf, instlen);
862}
863
c906108c 864/* These the fields of 32 bit mips instructions */
e135b889
DJ
865#define mips32_op(x) (x >> 26)
866#define itype_op(x) (x >> 26)
867#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 868#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 869#define itype_immediate(x) (x & 0xffff)
c906108c 870
e135b889
DJ
871#define jtype_op(x) (x >> 26)
872#define jtype_target(x) (x & 0x03ffffff)
c906108c 873
e135b889
DJ
874#define rtype_op(x) (x >> 26)
875#define rtype_rs(x) ((x >> 21) & 0x1f)
876#define rtype_rt(x) ((x >> 16) & 0x1f)
877#define rtype_rd(x) ((x >> 11) & 0x1f)
878#define rtype_shamt(x) ((x >> 6) & 0x1f)
879#define rtype_funct(x) (x & 0x3f)
c906108c
SS
880
881static CORE_ADDR
c5aa993b
JM
882mips32_relative_offset (unsigned long inst)
883{
884 long x;
885 x = itype_immediate (inst);
886 if (x & 0x8000) /* sign bit set */
c906108c 887 {
c5aa993b 888 x |= 0xffff0000; /* sign extension */
c906108c 889 }
c5aa993b
JM
890 x = x << 2;
891 return x;
c906108c
SS
892}
893
894/* Determine whate to set a single step breakpoint while considering
895 branch prediction */
5a89d8aa 896static CORE_ADDR
c5aa993b
JM
897mips32_next_pc (CORE_ADDR pc)
898{
899 unsigned long inst;
900 int op;
901 inst = mips_fetch_instruction (pc);
e135b889 902 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 903 {
e135b889 904 if (itype_op (inst) >> 2 == 5)
6d82d43b 905 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 906 {
e135b889 907 op = (itype_op (inst) & 0x03);
c906108c
SS
908 switch (op)
909 {
e135b889
DJ
910 case 0: /* BEQL */
911 goto equal_branch;
912 case 1: /* BNEL */
913 goto neq_branch;
914 case 2: /* BLEZL */
915 goto less_branch;
916 case 3: /* BGTZ */
917 goto greater_branch;
c5aa993b
JM
918 default:
919 pc += 4;
c906108c
SS
920 }
921 }
e135b889 922 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
6d82d43b 923 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
e135b889
DJ
924 {
925 int tf = itype_rt (inst) & 0x01;
926 int cnum = itype_rt (inst) >> 2;
6d82d43b
AC
927 int fcrcs =
928 read_signed_register (mips_regnum (current_gdbarch)->
929 fp_control_status);
e135b889
DJ
930 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
931
932 if (((cond >> cnum) & 0x01) == tf)
933 pc += mips32_relative_offset (inst) + 4;
934 else
935 pc += 8;
936 }
c5aa993b
JM
937 else
938 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
939 }
940 else
c5aa993b
JM
941 { /* This gets way messy */
942
c906108c 943 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 944 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 945 {
c5aa993b
JM
946 case 0: /* SPECIAL */
947 op = rtype_funct (inst);
948 switch (op)
949 {
950 case 8: /* JR */
951 case 9: /* JALR */
6c997a34
AC
952 /* Set PC to that address */
953 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
954 break;
955 default:
956 pc += 4;
957 }
958
6d82d43b 959 break; /* end SPECIAL */
c5aa993b 960 case 1: /* REGIMM */
c906108c 961 {
e135b889
DJ
962 op = itype_rt (inst); /* branch condition */
963 switch (op)
c906108c 964 {
c5aa993b 965 case 0: /* BLTZ */
e135b889
DJ
966 case 2: /* BLTZL */
967 case 16: /* BLTZAL */
c5aa993b 968 case 18: /* BLTZALL */
c906108c 969 less_branch:
6c997a34 970 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
971 pc += mips32_relative_offset (inst) + 4;
972 else
973 pc += 8; /* after the delay slot */
974 break;
e135b889 975 case 1: /* BGEZ */
c5aa993b
JM
976 case 3: /* BGEZL */
977 case 17: /* BGEZAL */
978 case 19: /* BGEZALL */
6c997a34 979 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
980 pc += mips32_relative_offset (inst) + 4;
981 else
982 pc += 8; /* after the delay slot */
983 break;
e135b889 984 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
985 default:
986 pc += 4;
c906108c
SS
987 }
988 }
6d82d43b 989 break; /* end REGIMM */
c5aa993b
JM
990 case 2: /* J */
991 case 3: /* JAL */
992 {
993 unsigned long reg;
994 reg = jtype_target (inst) << 2;
e135b889 995 /* Upper four bits get never changed... */
c5aa993b 996 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 997 }
c5aa993b
JM
998 break;
999 /* FIXME case JALX : */
1000 {
1001 unsigned long reg;
1002 reg = jtype_target (inst) << 2;
1003 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
1004 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1005 }
c5aa993b 1006 break; /* The new PC will be alternate mode */
e135b889 1007 case 4: /* BEQ, BEQL */
c5aa993b 1008 equal_branch:
6c997a34
AC
1009 if (read_signed_register (itype_rs (inst)) ==
1010 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1011 pc += mips32_relative_offset (inst) + 4;
1012 else
1013 pc += 8;
1014 break;
e135b889 1015 case 5: /* BNE, BNEL */
c5aa993b 1016 neq_branch:
6c997a34 1017 if (read_signed_register (itype_rs (inst)) !=
e135b889 1018 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1019 pc += mips32_relative_offset (inst) + 4;
1020 else
1021 pc += 8;
1022 break;
e135b889 1023 case 6: /* BLEZ, BLEZL */
1fd8cd20 1024 if (read_signed_register (itype_rs (inst)) <= 0)
c5aa993b
JM
1025 pc += mips32_relative_offset (inst) + 4;
1026 else
1027 pc += 8;
1028 break;
1029 case 7:
e135b889
DJ
1030 default:
1031 greater_branch: /* BGTZ, BGTZL */
1fd8cd20 1032 if (read_signed_register (itype_rs (inst)) > 0)
c5aa993b
JM
1033 pc += mips32_relative_offset (inst) + 4;
1034 else
1035 pc += 8;
1036 break;
c5aa993b
JM
1037 } /* switch */
1038 } /* else */
1039 return pc;
1040} /* mips32_next_pc */
c906108c
SS
1041
1042/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1043 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1044 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1045 We dont want to set a single step instruction on the extend instruction
1046 either.
c5aa993b 1047 */
c906108c
SS
1048
1049/* Lots of mips16 instruction formats */
1050/* Predicting jumps requires itype,ritype,i8type
1051 and their extensions extItype,extritype,extI8type
c5aa993b 1052 */
c906108c
SS
1053enum mips16_inst_fmts
1054{
c5aa993b
JM
1055 itype, /* 0 immediate 5,10 */
1056 ritype, /* 1 5,3,8 */
1057 rrtype, /* 2 5,3,3,5 */
1058 rritype, /* 3 5,3,3,5 */
1059 rrrtype, /* 4 5,3,3,3,2 */
1060 rriatype, /* 5 5,3,3,1,4 */
1061 shifttype, /* 6 5,3,3,3,2 */
1062 i8type, /* 7 5,3,8 */
1063 i8movtype, /* 8 5,3,3,5 */
1064 i8mov32rtype, /* 9 5,3,5,3 */
1065 i64type, /* 10 5,3,8 */
1066 ri64type, /* 11 5,3,3,5 */
1067 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1068 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1069 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1070 extRRItype, /* 15 5,5,5,5,3,3,5 */
1071 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1072 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1073 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1074 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1075 extRi64type, /* 20 5,6,5,5,3,3,5 */
1076 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1077};
12f02c2a
AC
1078/* I am heaping all the fields of the formats into one structure and
1079 then, only the fields which are involved in instruction extension */
c906108c 1080struct upk_mips16
6d82d43b
AC
1081{
1082 CORE_ADDR offset;
1083 unsigned int regx; /* Function in i8 type */
1084 unsigned int regy;
1085};
c906108c
SS
1086
1087
12f02c2a
AC
1088/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1089 for the bits which make up the immediatate extension. */
c906108c 1090
12f02c2a
AC
1091static CORE_ADDR
1092extended_offset (unsigned int extension)
c906108c 1093{
12f02c2a 1094 CORE_ADDR value;
c5aa993b
JM
1095 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1096 value = value << 6;
1097 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1098 value = value << 5;
1099 value |= extension & 0x01f; /* extract 4:0 */
1100 return value;
c906108c
SS
1101}
1102
1103/* Only call this function if you know that this is an extendable
1104 instruction, It wont malfunction, but why make excess remote memory references?
1105 If the immediate operands get sign extended or somthing, do it after
1106 the extension is performed.
c5aa993b 1107 */
c906108c
SS
1108/* FIXME: Every one of these cases needs to worry about sign extension
1109 when the offset is to be used in relative addressing */
1110
1111
12f02c2a 1112static unsigned int
c5aa993b 1113fetch_mips_16 (CORE_ADDR pc)
c906108c 1114{
c5aa993b
JM
1115 char buf[8];
1116 pc &= 0xfffffffe; /* clear the low order bit */
1117 target_read_memory (pc, buf, 2);
1118 return extract_unsigned_integer (buf, 2);
c906108c
SS
1119}
1120
1121static void
c5aa993b 1122unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1123 unsigned int extension,
1124 unsigned int inst,
6d82d43b 1125 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 1126{
12f02c2a
AC
1127 CORE_ADDR offset;
1128 int regx;
1129 int regy;
1130 switch (insn_format)
c906108c 1131 {
c5aa993b 1132 case itype:
c906108c 1133 {
12f02c2a
AC
1134 CORE_ADDR value;
1135 if (extension)
c5aa993b
JM
1136 {
1137 value = extended_offset (extension);
1138 value = value << 11; /* rom for the original value */
6d82d43b 1139 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1140 }
1141 else
c5aa993b 1142 {
12f02c2a 1143 value = inst & 0x7ff;
c5aa993b 1144 /* FIXME : Consider sign extension */
c906108c 1145 }
12f02c2a
AC
1146 offset = value;
1147 regx = -1;
1148 regy = -1;
c906108c 1149 }
c5aa993b
JM
1150 break;
1151 case ritype:
1152 case i8type:
1153 { /* A register identifier and an offset */
c906108c
SS
1154 /* Most of the fields are the same as I type but the
1155 immediate value is of a different length */
12f02c2a
AC
1156 CORE_ADDR value;
1157 if (extension)
c906108c 1158 {
c5aa993b
JM
1159 value = extended_offset (extension);
1160 value = value << 8; /* from the original instruction */
12f02c2a
AC
1161 value |= inst & 0xff; /* eleven bits from instruction */
1162 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1163 if (value & 0x4000) /* test the sign bit , bit 26 */
1164 {
1165 value &= ~0x3fff; /* remove the sign bit */
1166 value = -value;
c906108c
SS
1167 }
1168 }
c5aa993b
JM
1169 else
1170 {
12f02c2a
AC
1171 value = inst & 0xff; /* 8 bits */
1172 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1173 /* FIXME: Do sign extension , this format needs it */
1174 if (value & 0x80) /* THIS CONFUSES ME */
1175 {
1176 value &= 0xef; /* remove the sign bit */
1177 value = -value;
1178 }
c5aa993b 1179 }
12f02c2a
AC
1180 offset = value;
1181 regy = -1;
c5aa993b 1182 break;
c906108c 1183 }
c5aa993b 1184 case jalxtype:
c906108c 1185 {
c5aa993b 1186 unsigned long value;
12f02c2a
AC
1187 unsigned int nexthalf;
1188 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1189 value = value << 16;
1190 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1191 value |= nexthalf;
12f02c2a
AC
1192 offset = value;
1193 regx = -1;
1194 regy = -1;
c5aa993b 1195 break;
c906108c
SS
1196 }
1197 default:
6d82d43b 1198 internal_error (__FILE__, __LINE__, "bad switch");
c906108c 1199 }
12f02c2a
AC
1200 upk->offset = offset;
1201 upk->regx = regx;
1202 upk->regy = regy;
c906108c
SS
1203}
1204
1205
c5aa993b
JM
1206static CORE_ADDR
1207add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1208{
c5aa993b 1209 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
c906108c
SS
1210}
1211
12f02c2a
AC
1212static CORE_ADDR
1213extended_mips16_next_pc (CORE_ADDR pc,
6d82d43b 1214 unsigned int extension, unsigned int insn)
c906108c 1215{
12f02c2a
AC
1216 int op = (insn >> 11);
1217 switch (op)
c906108c 1218 {
6d82d43b 1219 case 2: /* Branch */
12f02c2a
AC
1220 {
1221 CORE_ADDR offset;
1222 struct upk_mips16 upk;
1223 unpack_mips16 (pc, extension, insn, itype, &upk);
1224 offset = upk.offset;
1225 if (offset & 0x800)
1226 {
1227 offset &= 0xeff;
1228 offset = -offset;
1229 }
1230 pc += (offset << 1) + 2;
1231 break;
1232 }
6d82d43b 1233 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
12f02c2a
AC
1234 {
1235 struct upk_mips16 upk;
1236 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1237 pc = add_offset_16 (pc, upk.offset);
1238 if ((insn >> 10) & 0x01) /* Exchange mode */
1239 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1240 else
1241 pc |= 0x01;
1242 break;
1243 }
6d82d43b 1244 case 4: /* beqz */
12f02c2a
AC
1245 {
1246 struct upk_mips16 upk;
1247 int reg;
1248 unpack_mips16 (pc, extension, insn, ritype, &upk);
1249 reg = read_signed_register (upk.regx);
1250 if (reg == 0)
1251 pc += (upk.offset << 1) + 2;
1252 else
1253 pc += 2;
1254 break;
1255 }
6d82d43b 1256 case 5: /* bnez */
12f02c2a
AC
1257 {
1258 struct upk_mips16 upk;
1259 int reg;
1260 unpack_mips16 (pc, extension, insn, ritype, &upk);
1261 reg = read_signed_register (upk.regx);
1262 if (reg != 0)
1263 pc += (upk.offset << 1) + 2;
1264 else
1265 pc += 2;
1266 break;
1267 }
6d82d43b 1268 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
1269 {
1270 struct upk_mips16 upk;
1271 int reg;
1272 unpack_mips16 (pc, extension, insn, i8type, &upk);
1273 /* upk.regx contains the opcode */
1274 reg = read_signed_register (24); /* Test register is 24 */
1275 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1276 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1277 /* pc = add_offset_16(pc,upk.offset) ; */
1278 pc += (upk.offset << 1) + 2;
1279 else
1280 pc += 2;
1281 break;
1282 }
6d82d43b 1283 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
1284 {
1285 struct upk_mips16 upk;
1286 /* upk.fmt = rrtype; */
1287 op = insn & 0x1f;
1288 if (op == 0)
c5aa993b 1289 {
12f02c2a
AC
1290 int reg;
1291 upk.regx = (insn >> 8) & 0x07;
1292 upk.regy = (insn >> 5) & 0x07;
1293 switch (upk.regy)
c5aa993b 1294 {
12f02c2a
AC
1295 case 0:
1296 reg = upk.regx;
1297 break;
1298 case 1:
1299 reg = 31;
6d82d43b 1300 break; /* Function return instruction */
12f02c2a
AC
1301 case 2:
1302 reg = upk.regx;
1303 break;
1304 default:
1305 reg = 31;
6d82d43b 1306 break; /* BOGUS Guess */
c906108c 1307 }
12f02c2a 1308 pc = read_signed_register (reg);
c906108c 1309 }
12f02c2a 1310 else
c5aa993b 1311 pc += 2;
12f02c2a
AC
1312 break;
1313 }
1314 case 30:
1315 /* This is an instruction extension. Fetch the real instruction
1316 (which follows the extension) and decode things based on
1317 that. */
1318 {
1319 pc += 2;
1320 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1321 break;
1322 }
1323 default:
1324 {
1325 pc += 2;
1326 break;
1327 }
c906108c 1328 }
c5aa993b 1329 return pc;
12f02c2a 1330}
c906108c 1331
5a89d8aa 1332static CORE_ADDR
12f02c2a
AC
1333mips16_next_pc (CORE_ADDR pc)
1334{
1335 unsigned int insn = fetch_mips_16 (pc);
1336 return extended_mips16_next_pc (pc, 0, insn);
1337}
1338
1339/* The mips_next_pc function supports single_step when the remote
7e73cedf 1340 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1341 It works by decoding the current instruction and predicting where a
1342 branch will go. This isnt hard because all the data is available.
1343 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1344CORE_ADDR
1345mips_next_pc (CORE_ADDR pc)
c906108c 1346{
c5aa993b
JM
1347 if (pc & 0x01)
1348 return mips16_next_pc (pc);
1349 else
1350 return mips32_next_pc (pc);
12f02c2a 1351}
c906108c 1352
edfae063
AC
1353struct mips_frame_cache
1354{
1355 CORE_ADDR base;
1356 struct trad_frame_saved_reg *saved_regs;
1357};
1358
29639122
JB
1359/* Set a register's saved stack address in temp_saved_regs. If an
1360 address has already been set for this register, do nothing; this
1361 way we will only recognize the first save of a given register in a
1362 function prologue.
eec63939 1363
29639122
JB
1364 For simplicity, save the address in both [0 .. NUM_REGS) and
1365 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1366 is used as it is only second range (the ABI instead of ISA
1367 registers) that comes into play when finding saved registers in a
1368 frame. */
eec63939
AC
1369
1370static void
29639122
JB
1371set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1372 CORE_ADDR offset)
eec63939 1373{
29639122
JB
1374 if (this_cache != NULL
1375 && this_cache->saved_regs[regnum].addr == -1)
1376 {
1377 this_cache->saved_regs[regnum + 0 * NUM_REGS].addr = offset;
1378 this_cache->saved_regs[regnum + 1 * NUM_REGS].addr = offset;
1379 }
eec63939
AC
1380}
1381
eec63939 1382
29639122
JB
1383/* Fetch the immediate value from a MIPS16 instruction.
1384 If the previous instruction was an EXTEND, use it to extend
1385 the upper bits of the immediate value. This is a helper function
1386 for mips16_scan_prologue. */
eec63939 1387
29639122
JB
1388static int
1389mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1390 unsigned short inst, /* current instruction */
1391 int nbits, /* number of bits in imm field */
1392 int scale, /* scale factor to be applied to imm */
1393 int is_signed) /* is the imm field signed? */
eec63939 1394{
29639122 1395 int offset;
eec63939 1396
29639122
JB
1397 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1398 {
1399 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1400 if (offset & 0x8000) /* check for negative extend */
1401 offset = 0 - (0x10000 - (offset & 0xffff));
1402 return offset | (inst & 0x1f);
1403 }
eec63939 1404 else
29639122
JB
1405 {
1406 int max_imm = 1 << nbits;
1407 int mask = max_imm - 1;
1408 int sign_bit = max_imm >> 1;
45c9dd44 1409
29639122
JB
1410 offset = inst & mask;
1411 if (is_signed && (offset & sign_bit))
1412 offset = 0 - (max_imm - offset);
1413 return offset * scale;
1414 }
1415}
eec63939 1416
65596487 1417
29639122
JB
1418/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1419 the associated FRAME_CACHE if not null.
1420 Return the address of the first instruction past the prologue. */
eec63939 1421
29639122
JB
1422static CORE_ADDR
1423mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1424 struct frame_info *next_frame,
1425 struct mips_frame_cache *this_cache)
1426{
1427 CORE_ADDR cur_pc;
1428 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1429 CORE_ADDR sp;
1430 long frame_offset = 0; /* Size of stack frame. */
1431 long frame_adjust = 0; /* Offset of FP from SP. */
1432 int frame_reg = MIPS_SP_REGNUM;
1433 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1434 unsigned inst = 0; /* current instruction */
1435 unsigned entry_inst = 0; /* the entry instruction */
1436 int reg, offset;
a343eb3c 1437
29639122
JB
1438 int extend_bytes = 0;
1439 int prev_extend_bytes;
1440 CORE_ADDR end_prologue_addr = 0;
a343eb3c 1441
29639122
JB
1442 /* Can be called when there's no process, and hence when there's no
1443 NEXT_FRAME. */
1444 if (next_frame != NULL)
1445 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1446 else
1447 sp = 0;
eec63939 1448
29639122
JB
1449 if (limit_pc > start_pc + 200)
1450 limit_pc = start_pc + 200;
eec63939 1451
95ac2dcf 1452 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122
JB
1453 {
1454 /* Save the previous instruction. If it's an EXTEND, we'll extract
1455 the immediate offset extension from it in mips16_get_imm. */
1456 prev_inst = inst;
eec63939 1457
29639122
JB
1458 /* Fetch and decode the instruction. */
1459 inst = (unsigned short) mips_fetch_instruction (cur_pc);
eec63939 1460
29639122
JB
1461 /* Normally we ignore extend instructions. However, if it is
1462 not followed by a valid prologue instruction, then this
1463 instruction is not part of the prologue either. We must
1464 remember in this case to adjust the end_prologue_addr back
1465 over the extend. */
1466 if ((inst & 0xf800) == 0xf000) /* extend */
1467 {
95ac2dcf 1468 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
1469 continue;
1470 }
eec63939 1471
29639122
JB
1472 prev_extend_bytes = extend_bytes;
1473 extend_bytes = 0;
eec63939 1474
29639122
JB
1475 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1476 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1477 {
1478 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1479 if (offset < 0) /* negative stack adjustment? */
1480 frame_offset -= offset;
1481 else
1482 /* Exit loop if a positive stack adjustment is found, which
1483 usually means that the stack cleanup code in the function
1484 epilogue is reached. */
1485 break;
1486 }
1487 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1488 {
1489 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1490 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1491 set_reg_offset (this_cache, reg, sp + offset);
1492 }
1493 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1494 {
1495 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1496 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1497 set_reg_offset (this_cache, reg, sp + offset);
1498 }
1499 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1500 {
1501 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4c7d22cb 1502 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1503 }
1504 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1505 {
1506 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
4c7d22cb 1507 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1508 }
1509 else if (inst == 0x673d) /* move $s1, $sp */
1510 {
1511 frame_addr = sp;
1512 frame_reg = 17;
1513 }
1514 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1515 {
1516 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1517 frame_addr = sp + offset;
1518 frame_reg = 17;
1519 frame_adjust = offset;
1520 }
1521 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1522 {
1523 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1524 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1525 set_reg_offset (this_cache, reg, frame_addr + offset);
1526 }
1527 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1528 {
1529 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1530 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1531 set_reg_offset (this_cache, reg, frame_addr + offset);
1532 }
1533 else if ((inst & 0xf81f) == 0xe809
1534 && (inst & 0x700) != 0x700) /* entry */
1535 entry_inst = inst; /* save for later processing */
1536 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
95ac2dcf 1537 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
29639122
JB
1538 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1539 {
1540 /* This instruction is part of the prologue, but we don't
1541 need to do anything special to handle it. */
1542 }
1543 else
1544 {
1545 /* This instruction is not an instruction typically found
1546 in a prologue, so we must have reached the end of the
1547 prologue. */
1548 if (end_prologue_addr == 0)
1549 end_prologue_addr = cur_pc - prev_extend_bytes;
1550 }
1551 }
eec63939 1552
29639122
JB
1553 /* The entry instruction is typically the first instruction in a function,
1554 and it stores registers at offsets relative to the value of the old SP
1555 (before the prologue). But the value of the sp parameter to this
1556 function is the new SP (after the prologue has been executed). So we
1557 can't calculate those offsets until we've seen the entire prologue,
1558 and can calculate what the old SP must have been. */
1559 if (entry_inst != 0)
1560 {
1561 int areg_count = (entry_inst >> 8) & 7;
1562 int sreg_count = (entry_inst >> 6) & 3;
eec63939 1563
29639122
JB
1564 /* The entry instruction always subtracts 32 from the SP. */
1565 frame_offset += 32;
1566
1567 /* Now we can calculate what the SP must have been at the
1568 start of the function prologue. */
1569 sp += frame_offset;
1570
1571 /* Check if a0-a3 were saved in the caller's argument save area. */
1572 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1573 {
1574 set_reg_offset (this_cache, reg, sp + offset);
1575 offset += mips_abi_regsize (current_gdbarch);
1576 }
1577
1578 /* Check if the ra register was pushed on the stack. */
1579 offset = -4;
1580 if (entry_inst & 0x20)
1581 {
4c7d22cb 1582 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1583 offset -= mips_abi_regsize (current_gdbarch);
1584 }
1585
1586 /* Check if the s0 and s1 registers were pushed on the stack. */
1587 for (reg = 16; reg < sreg_count + 16; reg++)
1588 {
1589 set_reg_offset (this_cache, reg, sp + offset);
1590 offset -= mips_abi_regsize (current_gdbarch);
1591 }
1592 }
1593
1594 if (this_cache != NULL)
1595 {
1596 this_cache->base =
1597 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1598 + frame_offset - frame_adjust);
1599 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1600 be able to get rid of the assignment below, evetually. But it's
1601 still needed for now. */
1602 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
4c7d22cb 1603 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
29639122
JB
1604 }
1605
1606 /* If we didn't reach the end of the prologue when scanning the function
1607 instructions, then set end_prologue_addr to the address of the
1608 instruction immediately after the last one we scanned. */
1609 if (end_prologue_addr == 0)
1610 end_prologue_addr = cur_pc;
1611
1612 return end_prologue_addr;
eec63939
AC
1613}
1614
29639122
JB
1615/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1616 Procedures that use the 32-bit instruction set are handled by the
1617 mips_insn32 unwinder. */
1618
1619static struct mips_frame_cache *
1620mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
eec63939 1621{
29639122 1622 struct mips_frame_cache *cache;
eec63939
AC
1623
1624 if ((*this_cache) != NULL)
1625 return (*this_cache);
29639122
JB
1626 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1627 (*this_cache) = cache;
1628 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
eec63939 1629
29639122
JB
1630 /* Analyze the function prologue. */
1631 {
1632 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1633 CORE_ADDR start_addr;
eec63939 1634
29639122
JB
1635 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1636 if (start_addr == 0)
1637 start_addr = heuristic_proc_start (pc);
1638 /* We can't analyze the prologue if we couldn't find the begining
1639 of the function. */
1640 if (start_addr == 0)
1641 return cache;
eec63939 1642
29639122
JB
1643 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1644 }
1645
1646 /* SP_REGNUM, contains the value and not the address. */
1647 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
eec63939 1648
29639122 1649 return (*this_cache);
eec63939
AC
1650}
1651
1652static void
29639122
JB
1653mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1654 struct frame_id *this_id)
eec63939 1655{
29639122
JB
1656 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1657 this_cache);
1658 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
eec63939
AC
1659}
1660
1661static void
29639122 1662mips_insn16_frame_prev_register (struct frame_info *next_frame,
eec63939
AC
1663 void **this_cache,
1664 int regnum, int *optimizedp,
1665 enum lval_type *lvalp, CORE_ADDR *addrp,
1666 int *realnump, void *valuep)
1667{
29639122
JB
1668 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1669 this_cache);
1670 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1671 optimizedp, lvalp, addrp, realnump, valuep);
eec63939
AC
1672}
1673
29639122 1674static const struct frame_unwind mips_insn16_frame_unwind =
eec63939
AC
1675{
1676 NORMAL_FRAME,
29639122
JB
1677 mips_insn16_frame_this_id,
1678 mips_insn16_frame_prev_register
eec63939
AC
1679};
1680
1681static const struct frame_unwind *
29639122 1682mips_insn16_frame_sniffer (struct frame_info *next_frame)
eec63939
AC
1683{
1684 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 1685 if (mips_pc_is_mips16 (pc))
29639122
JB
1686 return &mips_insn16_frame_unwind;
1687 return NULL;
eec63939
AC
1688}
1689
1690static CORE_ADDR
29639122
JB
1691mips_insn16_frame_base_address (struct frame_info *next_frame,
1692 void **this_cache)
eec63939 1693{
29639122
JB
1694 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1695 this_cache);
1696 return info->base;
eec63939
AC
1697}
1698
29639122 1699static const struct frame_base mips_insn16_frame_base =
eec63939 1700{
29639122
JB
1701 &mips_insn16_frame_unwind,
1702 mips_insn16_frame_base_address,
1703 mips_insn16_frame_base_address,
1704 mips_insn16_frame_base_address
eec63939
AC
1705};
1706
1707static const struct frame_base *
29639122 1708mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
eec63939 1709{
29639122
JB
1710 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1711 return &mips_insn16_frame_base;
eec63939
AC
1712 else
1713 return NULL;
edfae063
AC
1714}
1715
29639122
JB
1716/* Mark all the registers as unset in the saved_regs array
1717 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1718
1719void
1720reset_saved_regs (struct mips_frame_cache *this_cache)
c906108c 1721{
29639122
JB
1722 if (this_cache == NULL || this_cache->saved_regs == NULL)
1723 return;
1724
1725 {
1726 const int num_regs = NUM_REGS;
1727 int i;
64159455 1728
29639122
JB
1729 for (i = 0; i < num_regs; i++)
1730 {
1731 this_cache->saved_regs[i].addr = -1;
1732 }
1733 }
c906108c
SS
1734}
1735
29639122
JB
1736/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1737 the associated FRAME_CACHE if not null.
1738 Return the address of the first instruction past the prologue. */
c906108c 1739
875e1767 1740static CORE_ADDR
29639122
JB
1741mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1742 struct frame_info *next_frame,
1743 struct mips_frame_cache *this_cache)
c906108c 1744{
29639122
JB
1745 CORE_ADDR cur_pc;
1746 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1747 CORE_ADDR sp;
1748 long frame_offset;
1749 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 1750
29639122
JB
1751 CORE_ADDR end_prologue_addr = 0;
1752 int seen_sp_adjust = 0;
1753 int load_immediate_bytes = 0;
8fa9cfa1 1754
29639122
JB
1755 /* Can be called when there's no process, and hence when there's no
1756 NEXT_FRAME. */
1757 if (next_frame != NULL)
1758 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
8fa9cfa1 1759 else
29639122 1760 sp = 0;
9022177c 1761
29639122
JB
1762 if (limit_pc > start_pc + 200)
1763 limit_pc = start_pc + 200;
9022177c 1764
29639122 1765restart:
9022177c 1766
29639122 1767 frame_offset = 0;
95ac2dcf 1768 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 1769 {
29639122
JB
1770 unsigned long inst, high_word, low_word;
1771 int reg;
9022177c 1772
29639122
JB
1773 /* Fetch the instruction. */
1774 inst = (unsigned long) mips_fetch_instruction (cur_pc);
9022177c 1775
29639122
JB
1776 /* Save some code by pre-extracting some useful fields. */
1777 high_word = (inst >> 16) & 0xffff;
1778 low_word = inst & 0xffff;
1779 reg = high_word & 0x1f;
fe29b929 1780
29639122
JB
1781 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1782 || high_word == 0x23bd /* addi $sp,$sp,-i */
1783 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1784 {
1785 if (low_word & 0x8000) /* negative stack adjustment? */
1786 frame_offset += 0x10000 - low_word;
1787 else
1788 /* Exit loop if a positive stack adjustment is found, which
1789 usually means that the stack cleanup code in the function
1790 epilogue is reached. */
1791 break;
1792 seen_sp_adjust = 1;
1793 }
1794 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1795 {
1796 set_reg_offset (this_cache, reg, sp + low_word);
1797 }
1798 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1799 {
1800 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1801 set_reg_offset (this_cache, reg, sp + low_word);
1802 }
1803 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1804 {
1805 /* Old gcc frame, r30 is virtual frame pointer. */
1806 if ((long) low_word != frame_offset)
1807 frame_addr = sp + low_word;
1808 else if (frame_reg == MIPS_SP_REGNUM)
1809 {
1810 unsigned alloca_adjust;
a4b8ebc8 1811
29639122
JB
1812 frame_reg = 30;
1813 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1814 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1815 if (alloca_adjust > 0)
1816 {
1817 /* FP > SP + frame_size. This may be because of
1818 an alloca or somethings similar. Fix sp to
1819 "pre-alloca" value, and try again. */
1820 sp += alloca_adjust;
1821 /* Need to reset the status of all registers. Otherwise,
1822 we will hit a guard that prevents the new address
1823 for each register to be recomputed during the second
1824 pass. */
1825 reset_saved_regs (this_cache);
1826 goto restart;
1827 }
1828 }
1829 }
1830 /* move $30,$sp. With different versions of gas this will be either
1831 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1832 Accept any one of these. */
1833 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1834 {
1835 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1836 if (frame_reg == MIPS_SP_REGNUM)
1837 {
1838 unsigned alloca_adjust;
c906108c 1839
29639122
JB
1840 frame_reg = 30;
1841 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1842 alloca_adjust = (unsigned) (frame_addr - sp);
1843 if (alloca_adjust > 0)
1844 {
1845 /* FP > SP + frame_size. This may be because of
1846 an alloca or somethings similar. Fix sp to
1847 "pre-alloca" value, and try again. */
1848 sp = frame_addr;
1849 /* Need to reset the status of all registers. Otherwise,
1850 we will hit a guard that prevents the new address
1851 for each register to be recomputed during the second
1852 pass. */
1853 reset_saved_regs (this_cache);
1854 goto restart;
1855 }
1856 }
1857 }
1858 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1859 {
1860 set_reg_offset (this_cache, reg, frame_addr + low_word);
1861 }
1862 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1863 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1864 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1865 || high_word == 0x3c1c /* lui $gp,n */
1866 || high_word == 0x279c /* addiu $gp,$gp,n */
1867 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1868 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1869 )
1870 {
1871 /* These instructions are part of the prologue, but we don't
1872 need to do anything special to handle them. */
1873 }
1874 /* The instructions below load $at or $t0 with an immediate
1875 value in preparation for a stack adjustment via
1876 subu $sp,$sp,[$at,$t0]. These instructions could also
1877 initialize a local variable, so we accept them only before
1878 a stack adjustment instruction was seen. */
1879 else if (!seen_sp_adjust
1880 && (high_word == 0x3c01 /* lui $at,n */
1881 || high_word == 0x3c08 /* lui $t0,n */
1882 || high_word == 0x3421 /* ori $at,$at,n */
1883 || high_word == 0x3508 /* ori $t0,$t0,n */
1884 || high_word == 0x3401 /* ori $at,$zero,n */
1885 || high_word == 0x3408 /* ori $t0,$zero,n */
1886 ))
1887 {
95ac2dcf 1888 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
29639122
JB
1889 }
1890 else
1891 {
1892 /* This instruction is not an instruction typically found
1893 in a prologue, so we must have reached the end of the
1894 prologue. */
1895 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
1896 loop now? Why would we need to continue scanning the function
1897 instructions? */
1898 if (end_prologue_addr == 0)
1899 end_prologue_addr = cur_pc;
1900 }
a4b8ebc8 1901 }
c906108c 1902
29639122
JB
1903 if (this_cache != NULL)
1904 {
1905 this_cache->base =
1906 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1907 + frame_offset);
1908 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
1909 this assignment below, eventually. But it's still needed
1910 for now. */
1911 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
4c7d22cb 1912 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
29639122 1913 }
c906108c 1914
29639122
JB
1915 /* If we didn't reach the end of the prologue when scanning the function
1916 instructions, then set end_prologue_addr to the address of the
1917 instruction immediately after the last one we scanned. */
1918 /* brobecker/2004-10-10: I don't think this would ever happen, but
1919 we may as well be careful and do our best if we have a null
1920 end_prologue_addr. */
1921 if (end_prologue_addr == 0)
1922 end_prologue_addr = cur_pc;
1923
1924 /* In a frameless function, we might have incorrectly
1925 skipped some load immediate instructions. Undo the skipping
1926 if the load immediate was not followed by a stack adjustment. */
1927 if (load_immediate_bytes && !seen_sp_adjust)
1928 end_prologue_addr -= load_immediate_bytes;
c906108c 1929
29639122 1930 return end_prologue_addr;
c906108c
SS
1931}
1932
29639122
JB
1933/* Heuristic unwinder for procedures using 32-bit instructions (covers
1934 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
1935 instructions (a.k.a. MIPS16) are handled by the mips_insn16
1936 unwinder. */
c906108c 1937
29639122
JB
1938static struct mips_frame_cache *
1939mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
c906108c 1940{
29639122 1941 struct mips_frame_cache *cache;
c906108c 1942
29639122
JB
1943 if ((*this_cache) != NULL)
1944 return (*this_cache);
c5aa993b 1945
29639122
JB
1946 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1947 (*this_cache) = cache;
1948 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c5aa993b 1949
29639122
JB
1950 /* Analyze the function prologue. */
1951 {
1952 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1953 CORE_ADDR start_addr;
c906108c 1954
29639122
JB
1955 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1956 if (start_addr == 0)
1957 start_addr = heuristic_proc_start (pc);
1958 /* We can't analyze the prologue if we couldn't find the begining
1959 of the function. */
1960 if (start_addr == 0)
1961 return cache;
c5aa993b 1962
29639122
JB
1963 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
1964 }
1965
1966 /* SP_REGNUM, contains the value and not the address. */
1967 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
c5aa993b 1968
29639122 1969 return (*this_cache);
c906108c
SS
1970}
1971
29639122
JB
1972static void
1973mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
1974 struct frame_id *this_id)
c906108c 1975{
29639122
JB
1976 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1977 this_cache);
1978 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1979}
c906108c 1980
29639122
JB
1981static void
1982mips_insn32_frame_prev_register (struct frame_info *next_frame,
1983 void **this_cache,
1984 int regnum, int *optimizedp,
1985 enum lval_type *lvalp, CORE_ADDR *addrp,
1986 int *realnump, void *valuep)
1987{
1988 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1989 this_cache);
1990 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1991 optimizedp, lvalp, addrp, realnump, valuep);
c906108c
SS
1992}
1993
29639122
JB
1994static const struct frame_unwind mips_insn32_frame_unwind =
1995{
1996 NORMAL_FRAME,
1997 mips_insn32_frame_this_id,
1998 mips_insn32_frame_prev_register
1999};
c906108c 2000
29639122
JB
2001static const struct frame_unwind *
2002mips_insn32_frame_sniffer (struct frame_info *next_frame)
2003{
2004 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 2005 if (! mips_pc_is_mips16 (pc))
29639122
JB
2006 return &mips_insn32_frame_unwind;
2007 return NULL;
2008}
c906108c 2009
1c645fec 2010static CORE_ADDR
29639122
JB
2011mips_insn32_frame_base_address (struct frame_info *next_frame,
2012 void **this_cache)
c906108c 2013{
29639122
JB
2014 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2015 this_cache);
2016 return info->base;
2017}
c906108c 2018
29639122
JB
2019static const struct frame_base mips_insn32_frame_base =
2020{
2021 &mips_insn32_frame_unwind,
2022 mips_insn32_frame_base_address,
2023 mips_insn32_frame_base_address,
2024 mips_insn32_frame_base_address
2025};
1c645fec 2026
29639122
JB
2027static const struct frame_base *
2028mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2029{
2030 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2031 return &mips_insn32_frame_base;
a65bbe44 2032 else
29639122
JB
2033 return NULL;
2034}
a65bbe44 2035
29639122
JB
2036static struct trad_frame_cache *
2037mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2038{
2039 CORE_ADDR pc;
2040 CORE_ADDR start_addr;
2041 CORE_ADDR stack_addr;
2042 struct trad_frame_cache *this_trad_cache;
c906108c 2043
29639122
JB
2044 if ((*this_cache) != NULL)
2045 return (*this_cache);
2046 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2047 (*this_cache) = this_trad_cache;
1c645fec 2048
29639122 2049 /* The return address is in the link register. */
4c7d22cb 2050 trad_frame_set_reg_realreg (this_trad_cache, PC_REGNUM, MIPS_RA_REGNUM);
1c645fec 2051
29639122
JB
2052 /* Frame ID, since it's a frameless / stackless function, no stack
2053 space is allocated and SP on entry is the current SP. */
2054 pc = frame_pc_unwind (next_frame);
2055 find_pc_partial_function (pc, NULL, &start_addr, NULL);
4c7d22cb 2056 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
29639122 2057 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
1c645fec 2058
29639122
JB
2059 /* Assume that the frame's base is the same as the
2060 stack-pointer. */
2061 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 2062
29639122
JB
2063 return this_trad_cache;
2064}
c906108c 2065
29639122
JB
2066static void
2067mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2068 struct frame_id *this_id)
2069{
2070 struct trad_frame_cache *this_trad_cache
2071 = mips_stub_frame_cache (next_frame, this_cache);
2072 trad_frame_get_id (this_trad_cache, this_id);
2073}
c906108c 2074
29639122
JB
2075static void
2076mips_stub_frame_prev_register (struct frame_info *next_frame,
2077 void **this_cache,
2078 int regnum, int *optimizedp,
2079 enum lval_type *lvalp, CORE_ADDR *addrp,
2080 int *realnump, void *valuep)
2081{
2082 struct trad_frame_cache *this_trad_cache
2083 = mips_stub_frame_cache (next_frame, this_cache);
2084 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2085 lvalp, addrp, realnump, valuep);
2086}
c906108c 2087
29639122
JB
2088static const struct frame_unwind mips_stub_frame_unwind =
2089{
2090 NORMAL_FRAME,
2091 mips_stub_frame_this_id,
2092 mips_stub_frame_prev_register
2093};
c906108c 2094
29639122
JB
2095static const struct frame_unwind *
2096mips_stub_frame_sniffer (struct frame_info *next_frame)
2097{
2098 CORE_ADDR pc = frame_pc_unwind (next_frame);
2099 if (in_plt_section (pc, NULL))
2100 return &mips_stub_frame_unwind;
2101 else
2102 return NULL;
2103}
c906108c 2104
29639122
JB
2105static CORE_ADDR
2106mips_stub_frame_base_address (struct frame_info *next_frame,
2107 void **this_cache)
2108{
2109 struct trad_frame_cache *this_trad_cache
2110 = mips_stub_frame_cache (next_frame, this_cache);
2111 return trad_frame_get_this_base (this_trad_cache);
2112}
0fce0821 2113
29639122
JB
2114static const struct frame_base mips_stub_frame_base =
2115{
2116 &mips_stub_frame_unwind,
2117 mips_stub_frame_base_address,
2118 mips_stub_frame_base_address,
2119 mips_stub_frame_base_address
2120};
2121
2122static const struct frame_base *
2123mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2124{
2125 if (mips_stub_frame_sniffer (next_frame) != NULL)
2126 return &mips_stub_frame_base;
2127 else
2128 return NULL;
2129}
2130
2131static CORE_ADDR
2132read_next_frame_reg (struct frame_info *fi, int regno)
2133{
2134 /* Always a pseudo. */
2135 gdb_assert (regno >= NUM_REGS);
2136 if (fi == NULL)
0fce0821 2137 {
29639122
JB
2138 LONGEST val;
2139 regcache_cooked_read_signed (current_regcache, regno, &val);
2140 return val;
0fce0821 2141 }
29639122
JB
2142 else
2143 return frame_unwind_register_signed (fi, regno);
1c645fec 2144
c906108c
SS
2145}
2146
29639122 2147/* mips_addr_bits_remove - remove useless address bits */
65596487 2148
29639122
JB
2149static CORE_ADDR
2150mips_addr_bits_remove (CORE_ADDR addr)
65596487 2151{
29639122
JB
2152 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2153 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2154 /* This hack is a work-around for existing boards using PMON, the
2155 simulator, and any other 64-bit targets that doesn't have true
2156 64-bit addressing. On these targets, the upper 32 bits of
2157 addresses are ignored by the hardware. Thus, the PC or SP are
2158 likely to have been sign extended to all 1s by instruction
2159 sequences that load 32-bit addresses. For example, a typical
2160 piece of code that loads an address is this:
65596487 2161
29639122
JB
2162 lui $r2, <upper 16 bits>
2163 ori $r2, <lower 16 bits>
65596487 2164
29639122
JB
2165 But the lui sign-extends the value such that the upper 32 bits
2166 may be all 1s. The workaround is simply to mask off these
2167 bits. In the future, gcc may be changed to support true 64-bit
2168 addressing, and this masking will have to be disabled. */
2169 return addr &= 0xffffffffUL;
2170 else
2171 return addr;
65596487
JB
2172}
2173
29639122
JB
2174/* mips_software_single_step() is called just before we want to resume
2175 the inferior, if we want to single-step it but there is no hardware
2176 or kernel single-step support (MIPS on GNU/Linux for example). We find
2177 the target of the coming instruction and breakpoint it.
1e05a7bf 2178
29639122
JB
2179 single_step is also called just after the inferior stops. If we had
2180 set up a simulated single-step, we undo our damage. */
2181
2182void
2183mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
c906108c 2184{
29639122
JB
2185 static CORE_ADDR next_pc;
2186 typedef char binsn_quantum[BREAKPOINT_MAX];
2187 static binsn_quantum break_mem;
2188 CORE_ADDR pc;
65596487 2189
29639122
JB
2190 if (insert_breakpoints_p)
2191 {
2192 pc = read_register (mips_regnum (current_gdbarch)->pc);
2193 next_pc = mips_next_pc (pc);
98b4dd94 2194
29639122
JB
2195 target_insert_breakpoint (next_pc, break_mem);
2196 }
a65bbe44 2197 else
29639122
JB
2198 target_remove_breakpoint (next_pc, break_mem);
2199}
a65bbe44 2200
29639122
JB
2201/* Test whether the PC points to the return instruction at the
2202 end of a function. */
65596487 2203
29639122
JB
2204static int
2205mips_about_to_return (CORE_ADDR pc)
2206{
0fe7e7c8 2207 if (mips_pc_is_mips16 (pc))
29639122
JB
2208 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2209 generates a "jr $ra"; other times it generates code to load
2210 the return address from the stack to an accessible register (such
2211 as $a3), then a "jr" using that register. This second case
2212 is almost impossible to distinguish from an indirect jump
2213 used for switch statements, so we don't even try. */
2214 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2215 else
2216 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2217}
c906108c 2218
c906108c 2219
29639122
JB
2220/* This fencepost looks highly suspicious to me. Removing it also
2221 seems suspicious as it could affect remote debugging across serial
2222 lines. */
c906108c 2223
29639122
JB
2224static CORE_ADDR
2225heuristic_proc_start (CORE_ADDR pc)
2226{
2227 CORE_ADDR start_pc;
2228 CORE_ADDR fence;
2229 int instlen;
2230 int seen_adjsp = 0;
65596487 2231
29639122
JB
2232 pc = ADDR_BITS_REMOVE (pc);
2233 start_pc = pc;
2234 fence = start_pc - heuristic_fence_post;
2235 if (start_pc == 0)
2236 return 0;
65596487 2237
29639122
JB
2238 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2239 fence = VM_MIN_ADDRESS;
65596487 2240
95ac2dcf 2241 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
98b4dd94 2242
29639122
JB
2243 /* search back for previous return */
2244 for (start_pc -= instlen;; start_pc -= instlen)
2245 if (start_pc < fence)
2246 {
2247 /* It's not clear to me why we reach this point when
2248 stop_soon, but with this test, at least we
2249 don't print out warnings for every child forked (eg, on
2250 decstation). 22apr93 rich@cygnus.com. */
2251 if (stop_soon == NO_STOP_QUIETLY)
2252 {
2253 static int blurb_printed = 0;
98b4dd94 2254
29639122
JB
2255 warning ("GDB can't find the start of the function at 0x%s.",
2256 paddr_nz (pc));
2257
2258 if (!blurb_printed)
2259 {
2260 /* This actually happens frequently in embedded
2261 development, when you first connect to a board
2262 and your stack pointer and pc are nowhere in
2263 particular. This message needs to give people
2264 in that situation enough information to
2265 determine that it's no big deal. */
2266 printf_filtered ("\n\
2267 GDB is unable to find the start of the function at 0x%s\n\
2268and thus can't determine the size of that function's stack frame.\n\
2269This means that GDB may be unable to access that stack frame, or\n\
2270the frames below it.\n\
2271 This problem is most likely caused by an invalid program counter or\n\
2272stack pointer.\n\
2273 However, if you think GDB should simply search farther back\n\
2274from 0x%s for code which looks like the beginning of a\n\
2275function, you can increase the range of the search using the `set\n\
2276heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2277 blurb_printed = 1;
2278 }
2279 }
2280
2281 return 0;
2282 }
0fe7e7c8 2283 else if (mips_pc_is_mips16 (start_pc))
29639122
JB
2284 {
2285 unsigned short inst;
2286
2287 /* On MIPS16, any one of the following is likely to be the
2288 start of a function:
2289 entry
2290 addiu sp,-n
2291 daddiu sp,-n
2292 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2293 inst = mips_fetch_instruction (start_pc);
2294 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2295 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2296 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2297 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2298 break;
2299 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2300 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2301 seen_adjsp = 1;
2302 else
2303 seen_adjsp = 0;
2304 }
2305 else if (mips_about_to_return (start_pc))
2306 {
4c7d22cb 2307 /* Skip return and its delay slot. */
95ac2dcf 2308 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
2309 break;
2310 }
2311
2312 return start_pc;
c906108c
SS
2313}
2314
6c0d6680
DJ
2315struct mips_objfile_private
2316{
2317 bfd_size_type size;
2318 char *contents;
2319};
2320
f09ded24
AC
2321/* According to the current ABI, should the type be passed in a
2322 floating-point register (assuming that there is space)? When there
2323 is no FPU, FP are not even considered as possibile candidates for
2324 FP registers and, consequently this returns false - forces FP
2325 arguments into integer registers. */
2326
2327static int
2328fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2329{
2330 return ((typecode == TYPE_CODE_FLT
2331 || (MIPS_EABI
6d82d43b
AC
2332 && (typecode == TYPE_CODE_STRUCT
2333 || typecode == TYPE_CODE_UNION)
f09ded24
AC
2334 && TYPE_NFIELDS (arg_type) == 1
2335 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2336 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2337}
2338
49e790b0
DJ
2339/* On o32, argument passing in GPRs depends on the alignment of the type being
2340 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2341
2342static int
2343mips_type_needs_double_align (struct type *type)
2344{
2345 enum type_code typecode = TYPE_CODE (type);
361d1df0 2346
49e790b0
DJ
2347 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2348 return 1;
2349 else if (typecode == TYPE_CODE_STRUCT)
2350 {
2351 if (TYPE_NFIELDS (type) < 1)
2352 return 0;
2353 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2354 }
2355 else if (typecode == TYPE_CODE_UNION)
2356 {
361d1df0 2357 int i, n;
49e790b0
DJ
2358
2359 n = TYPE_NFIELDS (type);
2360 for (i = 0; i < n; i++)
2361 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2362 return 1;
2363 return 0;
2364 }
2365 return 0;
2366}
2367
dc604539
AC
2368/* Adjust the address downward (direction of stack growth) so that it
2369 is correctly aligned for a new stack frame. */
2370static CORE_ADDR
2371mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2372{
5b03f266 2373 return align_down (addr, 16);
dc604539
AC
2374}
2375
f7ab6ec6 2376static CORE_ADDR
7d9b040b 2377mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2378 struct regcache *regcache, CORE_ADDR bp_addr,
2379 int nargs, struct value **args, CORE_ADDR sp,
2380 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
2381{
2382 int argreg;
2383 int float_argreg;
2384 int argnum;
2385 int len = 0;
2386 int stack_offset = 0;
480d3dd2 2387 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2388 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 2389
25ab4790
AC
2390 /* For shared libraries, "t9" needs to point at the function
2391 address. */
4c7d22cb 2392 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2393
2394 /* Set the return address register to point to the entry point of
2395 the program, where a breakpoint lies in wait. */
4c7d22cb 2396 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2397
c906108c 2398 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2399 are properly aligned. The stack has to be at least 64-bit
2400 aligned even on 32-bit machines, because doubles must be 64-bit
2401 aligned. For n32 and n64, stack frames need to be 128-bit
2402 aligned, so we round to this widest known alignment. */
2403
5b03f266
AC
2404 sp = align_down (sp, 16);
2405 struct_addr = align_down (struct_addr, 16);
c5aa993b 2406
46e0f506 2407 /* Now make space on the stack for the args. We allocate more
c906108c 2408 than necessary for EABI, because the first few arguments are
46e0f506 2409 passed in registers, but that's OK. */
c906108c 2410 for (argnum = 0; argnum < nargs; argnum++)
6d82d43b 2411 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
13326b4e 2412 mips_stack_argsize (gdbarch));
5b03f266 2413 sp -= align_up (len, 16);
c906108c 2414
9ace0497 2415 if (mips_debug)
6d82d43b 2416 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2417 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2418 paddr_nz (sp), (long) align_up (len, 16));
9ace0497 2419
c906108c 2420 /* Initialize the integer and float register pointers. */
4c7d22cb 2421 argreg = MIPS_A0_REGNUM;
56cea623 2422 float_argreg = mips_fpa0_regnum (current_gdbarch);
c906108c 2423
46e0f506 2424 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2425 if (struct_return)
9ace0497
AC
2426 {
2427 if (mips_debug)
2428 fprintf_unfiltered (gdb_stdlog,
25ab4790 2429 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2430 argreg, paddr_nz (struct_addr));
9ace0497
AC
2431 write_register (argreg++, struct_addr);
2432 }
c906108c
SS
2433
2434 /* Now load as many as possible of the first arguments into
2435 registers, and push the rest onto the stack. Loop thru args
2436 from first to last. */
2437 for (argnum = 0; argnum < nargs; argnum++)
2438 {
2439 char *val;
d9d9c31f 2440 char valbuf[MAX_REGISTER_SIZE];
ea7c478f 2441 struct value *arg = args[argnum];
c906108c
SS
2442 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2443 int len = TYPE_LENGTH (arg_type);
2444 enum type_code typecode = TYPE_CODE (arg_type);
2445
9ace0497
AC
2446 if (mips_debug)
2447 fprintf_unfiltered (gdb_stdlog,
25ab4790 2448 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2449 argnum + 1, len, (int) typecode);
9ace0497 2450
c906108c 2451 /* The EABI passes structures that do not fit in a register by
46e0f506 2452 reference. */
13326b4e 2453 if (len > mips_abi_regsize (gdbarch)
9ace0497 2454 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2455 {
13326b4e 2456 store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch),
480d3dd2 2457 VALUE_ADDRESS (arg));
c906108c 2458 typecode = TYPE_CODE_PTR;
13326b4e 2459 len = mips_abi_regsize (gdbarch);
c906108c 2460 val = valbuf;
9ace0497
AC
2461 if (mips_debug)
2462 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2463 }
2464 else
c5aa993b 2465 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2466
2467 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2468 even-numbered floating point register. Round the FP register
2469 up before the check to see if there are any FP registers
46e0f506
MS
2470 left. Non MIPS_EABI targets also pass the FP in the integer
2471 registers so also round up normal registers. */
ceae6e75
AC
2472 if (mips_abi_regsize (gdbarch) < 8
2473 && fp_register_arg_p (typecode, arg_type))
acdb74a0
AC
2474 {
2475 if ((float_argreg & 1))
2476 float_argreg++;
2477 }
c906108c
SS
2478
2479 /* Floating point arguments passed in registers have to be
2480 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2481 are passed in register pairs; the even register gets
2482 the low word, and the odd register gets the high word.
2483 On non-EABI processors, the first two floating point arguments are
2484 also copied to general registers, because MIPS16 functions
2485 don't use float registers for arguments. This duplication of
2486 arguments in general registers can't hurt non-MIPS16 functions
2487 because those registers are normally skipped. */
1012bd0e
EZ
2488 /* MIPS_EABI squeezes a struct that contains a single floating
2489 point value into an FP register instead of pushing it onto the
46e0f506 2490 stack. */
f09ded24
AC
2491 if (fp_register_arg_p (typecode, arg_type)
2492 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c 2493 {
ceae6e75 2494 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
c906108c 2495 {
d7449b42 2496 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2497 unsigned long regval;
2498
2499 /* Write the low word of the double to the even register(s). */
c5aa993b 2500 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2501 if (mips_debug)
acdb74a0 2502 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2503 float_argreg, phex (regval, 4));
c906108c 2504 write_register (float_argreg++, regval);
c906108c
SS
2505
2506 /* Write the high word of the double to the odd register(s). */
c5aa993b 2507 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2508 if (mips_debug)
acdb74a0 2509 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2510 float_argreg, phex (regval, 4));
c906108c 2511 write_register (float_argreg++, regval);
c906108c
SS
2512 }
2513 else
2514 {
2515 /* This is a floating point value that fits entirely
2516 in a single register. */
53a5351d 2517 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 2518 above to ensure that it is even register aligned. */
9ace0497
AC
2519 LONGEST regval = extract_unsigned_integer (val, len);
2520 if (mips_debug)
acdb74a0 2521 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2522 float_argreg, phex (regval, len));
c906108c 2523 write_register (float_argreg++, regval);
c906108c
SS
2524 }
2525 }
2526 else
2527 {
2528 /* Copy the argument to general registers or the stack in
2529 register-sized pieces. Large arguments are split between
2530 registers and stack. */
4246e332 2531 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
2532 mips_abi_regsize() are treated specially: Irix cc passes
2533 them in registers where gcc sometimes puts them on the
2534 stack. For maximum compatibility, we will put them in
2535 both places. */
13326b4e
AC
2536 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2537 && (len % mips_abi_regsize (gdbarch) != 0));
46e0f506 2538
f09ded24 2539 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2540 register are only written to memory. */
c906108c
SS
2541 while (len > 0)
2542 {
ebafbe83 2543 /* Remember if the argument was written to the stack. */
566f0f7a 2544 int stack_used_p = 0;
13326b4e
AC
2545 int partial_len = (len < mips_abi_regsize (gdbarch)
2546 ? len : mips_abi_regsize (gdbarch));
c906108c 2547
acdb74a0
AC
2548 if (mips_debug)
2549 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2550 partial_len);
2551
566f0f7a 2552 /* Write this portion of the argument to the stack. */
f09ded24
AC
2553 if (argreg > MIPS_LAST_ARG_REGNUM
2554 || odd_sized_struct
2555 || fp_register_arg_p (typecode, arg_type))
c906108c 2556 {
c906108c
SS
2557 /* Should shorter than int integer values be
2558 promoted to int before being stored? */
c906108c 2559 int longword_offset = 0;
9ace0497 2560 CORE_ADDR addr;
566f0f7a 2561 stack_used_p = 1;
d7449b42 2562 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2563 {
13326b4e 2564 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
2565 && (typecode == TYPE_CODE_INT
2566 || typecode == TYPE_CODE_PTR
6d82d43b 2567 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 2568 longword_offset = mips_stack_argsize (gdbarch) - len;
480d3dd2
AC
2569 else if ((typecode == TYPE_CODE_STRUCT
2570 || typecode == TYPE_CODE_UNION)
2571 && (TYPE_LENGTH (arg_type)
13326b4e
AC
2572 < mips_stack_argsize (gdbarch)))
2573 longword_offset = mips_stack_argsize (gdbarch) - len;
7a292a7a 2574 }
c5aa993b 2575
9ace0497
AC
2576 if (mips_debug)
2577 {
cb3d25d1
MS
2578 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2579 paddr_nz (stack_offset));
2580 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2581 paddr_nz (longword_offset));
9ace0497 2582 }
361d1df0 2583
9ace0497
AC
2584 addr = sp + stack_offset + longword_offset;
2585
2586 if (mips_debug)
2587 {
2588 int i;
6d82d43b 2589 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1 2590 paddr_nz (addr));
9ace0497
AC
2591 for (i = 0; i < partial_len; i++)
2592 {
6d82d43b 2593 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 2594 val[i] & 0xff);
9ace0497
AC
2595 }
2596 }
2597 write_memory (addr, val, partial_len);
c906108c
SS
2598 }
2599
f09ded24
AC
2600 /* Note!!! This is NOT an else clause. Odd sized
2601 structs may go thru BOTH paths. Floating point
46e0f506 2602 arguments will not. */
566f0f7a 2603 /* Write this portion of the argument to a general
6d82d43b 2604 purpose register. */
f09ded24
AC
2605 if (argreg <= MIPS_LAST_ARG_REGNUM
2606 && !fp_register_arg_p (typecode, arg_type))
c906108c 2607 {
6d82d43b
AC
2608 LONGEST regval =
2609 extract_unsigned_integer (val, partial_len);
c906108c 2610
9ace0497 2611 if (mips_debug)
acdb74a0 2612 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 2613 argreg,
6d82d43b 2614 phex (regval,
13326b4e 2615 mips_abi_regsize (gdbarch)));
c906108c
SS
2616 write_register (argreg, regval);
2617 argreg++;
c906108c 2618 }
c5aa993b 2619
c906108c
SS
2620 len -= partial_len;
2621 val += partial_len;
2622
566f0f7a 2623 /* Compute the the offset into the stack at which we
6d82d43b 2624 will copy the next parameter.
566f0f7a 2625
566f0f7a 2626 In the new EABI (and the NABI32), the stack_offset
46e0f506 2627 only needs to be adjusted when it has been used. */
c906108c 2628
46e0f506 2629 if (stack_used_p)
480d3dd2 2630 stack_offset += align_up (partial_len,
13326b4e 2631 mips_stack_argsize (gdbarch));
c906108c
SS
2632 }
2633 }
9ace0497
AC
2634 if (mips_debug)
2635 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2636 }
2637
f10683bb 2638 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 2639
0f71a2f6
JM
2640 /* Return adjusted stack pointer. */
2641 return sp;
2642}
2643
9c8fdbfa 2644/* Determin the return value convention being used. */
6d82d43b 2645
9c8fdbfa
AC
2646static enum return_value_convention
2647mips_eabi_return_value (struct gdbarch *gdbarch,
2648 struct type *type, struct regcache *regcache,
2649 void *readbuf, const void *writebuf)
6d82d43b 2650{
9c8fdbfa
AC
2651 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2652 return RETURN_VALUE_STRUCT_CONVENTION;
2653 if (readbuf)
2654 memset (readbuf, 0, TYPE_LENGTH (type));
2655 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
2656}
2657
6d82d43b
AC
2658
2659/* N32/N64 ABI stuff. */
ebafbe83 2660
f7ab6ec6 2661static CORE_ADDR
7d9b040b 2662mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2663 struct regcache *regcache, CORE_ADDR bp_addr,
2664 int nargs, struct value **args, CORE_ADDR sp,
2665 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
2666{
2667 int argreg;
2668 int float_argreg;
2669 int argnum;
2670 int len = 0;
2671 int stack_offset = 0;
480d3dd2 2672 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2673 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 2674
25ab4790
AC
2675 /* For shared libraries, "t9" needs to point at the function
2676 address. */
4c7d22cb 2677 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2678
2679 /* Set the return address register to point to the entry point of
2680 the program, where a breakpoint lies in wait. */
4c7d22cb 2681 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2682
cb3d25d1
MS
2683 /* First ensure that the stack and structure return address (if any)
2684 are properly aligned. The stack has to be at least 64-bit
2685 aligned even on 32-bit machines, because doubles must be 64-bit
2686 aligned. For n32 and n64, stack frames need to be 128-bit
2687 aligned, so we round to this widest known alignment. */
2688
5b03f266
AC
2689 sp = align_down (sp, 16);
2690 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
2691
2692 /* Now make space on the stack for the args. */
2693 for (argnum = 0; argnum < nargs; argnum++)
6d82d43b 2694 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
13326b4e 2695 mips_stack_argsize (gdbarch));
5b03f266 2696 sp -= align_up (len, 16);
cb3d25d1
MS
2697
2698 if (mips_debug)
6d82d43b 2699 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2700 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2701 paddr_nz (sp), (long) align_up (len, 16));
cb3d25d1
MS
2702
2703 /* Initialize the integer and float register pointers. */
4c7d22cb 2704 argreg = MIPS_A0_REGNUM;
56cea623 2705 float_argreg = mips_fpa0_regnum (current_gdbarch);
cb3d25d1 2706
46e0f506 2707 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
2708 if (struct_return)
2709 {
2710 if (mips_debug)
2711 fprintf_unfiltered (gdb_stdlog,
25ab4790 2712 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1
MS
2713 argreg, paddr_nz (struct_addr));
2714 write_register (argreg++, struct_addr);
2715 }
2716
2717 /* Now load as many as possible of the first arguments into
2718 registers, and push the rest onto the stack. Loop thru args
2719 from first to last. */
2720 for (argnum = 0; argnum < nargs; argnum++)
2721 {
2722 char *val;
cb3d25d1
MS
2723 struct value *arg = args[argnum];
2724 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2725 int len = TYPE_LENGTH (arg_type);
2726 enum type_code typecode = TYPE_CODE (arg_type);
2727
2728 if (mips_debug)
2729 fprintf_unfiltered (gdb_stdlog,
25ab4790 2730 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
2731 argnum + 1, len, (int) typecode);
2732
2733 val = (char *) VALUE_CONTENTS (arg);
2734
2735 if (fp_register_arg_p (typecode, arg_type)
2736 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2737 {
2738 /* This is a floating point value that fits entirely
2739 in a single register. */
2740 /* On 32 bit ABI's the float_argreg is further adjusted
2741 above to ensure that it is even register aligned. */
2742 LONGEST regval = extract_unsigned_integer (val, len);
2743 if (mips_debug)
2744 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2745 float_argreg, phex (regval, len));
2746 write_register (float_argreg++, regval);
2747
2748 if (mips_debug)
2749 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2750 argreg, phex (regval, len));
2751 write_register (argreg, regval);
2752 argreg += 1;
2753 }
2754 else
2755 {
2756 /* Copy the argument to general registers or the stack in
2757 register-sized pieces. Large arguments are split between
2758 registers and stack. */
4246e332 2759 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
2760 mips_abi_regsize() are treated specially: Irix cc passes
2761 them in registers where gcc sometimes puts them on the
2762 stack. For maximum compatibility, we will put them in
2763 both places. */
13326b4e
AC
2764 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2765 && (len % mips_abi_regsize (gdbarch) != 0));
cb3d25d1 2766 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2767 register are only written to memory. */
cb3d25d1
MS
2768 while (len > 0)
2769 {
2770 /* Rememer if the argument was written to the stack. */
2771 int stack_used_p = 0;
13326b4e
AC
2772 int partial_len = (len < mips_abi_regsize (gdbarch)
2773 ? len : mips_abi_regsize (gdbarch));
cb3d25d1
MS
2774
2775 if (mips_debug)
2776 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2777 partial_len);
2778
2779 /* Write this portion of the argument to the stack. */
2780 if (argreg > MIPS_LAST_ARG_REGNUM
2781 || odd_sized_struct
2782 || fp_register_arg_p (typecode, arg_type))
2783 {
2784 /* Should shorter than int integer values be
2785 promoted to int before being stored? */
2786 int longword_offset = 0;
2787 CORE_ADDR addr;
2788 stack_used_p = 1;
2789 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2790 {
13326b4e 2791 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
2792 && (typecode == TYPE_CODE_INT
2793 || typecode == TYPE_CODE_PTR
6d82d43b 2794 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 2795 longword_offset = mips_stack_argsize (gdbarch) - len;
cb3d25d1
MS
2796 }
2797
2798 if (mips_debug)
2799 {
2800 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2801 paddr_nz (stack_offset));
2802 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2803 paddr_nz (longword_offset));
2804 }
2805
2806 addr = sp + stack_offset + longword_offset;
2807
2808 if (mips_debug)
2809 {
2810 int i;
6d82d43b 2811 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1
MS
2812 paddr_nz (addr));
2813 for (i = 0; i < partial_len; i++)
2814 {
6d82d43b 2815 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
2816 val[i] & 0xff);
2817 }
2818 }
2819 write_memory (addr, val, partial_len);
2820 }
2821
2822 /* Note!!! This is NOT an else clause. Odd sized
2823 structs may go thru BOTH paths. Floating point
2824 arguments will not. */
2825 /* Write this portion of the argument to a general
6d82d43b 2826 purpose register. */
cb3d25d1
MS
2827 if (argreg <= MIPS_LAST_ARG_REGNUM
2828 && !fp_register_arg_p (typecode, arg_type))
2829 {
6d82d43b
AC
2830 LONGEST regval =
2831 extract_unsigned_integer (val, partial_len);
cb3d25d1
MS
2832
2833 /* A non-floating-point argument being passed in a
2834 general register. If a struct or union, and if
2835 the remaining length is smaller than the register
2836 size, we have to adjust the register value on
2837 big endian targets.
2838
2839 It does not seem to be necessary to do the
2840 same for integral types.
2841
2842 cagney/2001-07-23: gdb/179: Also, GCC, when
2843 outputting LE O32 with sizeof (struct) <
1b13c4f6 2844 mips_abi_regsize(), generates a left shift as
cb3d25d1
MS
2845 part of storing the argument in a register a
2846 register (the left shift isn't generated when
1b13c4f6 2847 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
2848 it is quite possible that this is GCC
2849 contradicting the LE/O32 ABI, GDB has not been
2850 adjusted to accommodate this. Either someone
2851 needs to demonstrate that the LE/O32 ABI
2852 specifies such a left shift OR this new ABI gets
2853 identified as such and GDB gets tweaked
2854 accordingly. */
cb3d25d1
MS
2855
2856 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
13326b4e 2857 && partial_len < mips_abi_regsize (gdbarch)
cb3d25d1
MS
2858 && (typecode == TYPE_CODE_STRUCT ||
2859 typecode == TYPE_CODE_UNION))
13326b4e 2860 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
cb3d25d1
MS
2861 TARGET_CHAR_BIT);
2862
2863 if (mips_debug)
2864 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2865 argreg,
6d82d43b 2866 phex (regval,
13326b4e 2867 mips_abi_regsize (gdbarch)));
cb3d25d1
MS
2868 write_register (argreg, regval);
2869 argreg++;
2870 }
2871
2872 len -= partial_len;
2873 val += partial_len;
2874
2875 /* Compute the the offset into the stack at which we
6d82d43b 2876 will copy the next parameter.
cb3d25d1
MS
2877
2878 In N32 (N64?), the stack_offset only needs to be
2879 adjusted when it has been used. */
2880
2881 if (stack_used_p)
480d3dd2 2882 stack_offset += align_up (partial_len,
13326b4e 2883 mips_stack_argsize (gdbarch));
cb3d25d1
MS
2884 }
2885 }
2886 if (mips_debug)
2887 fprintf_unfiltered (gdb_stdlog, "\n");
2888 }
2889
f10683bb 2890 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 2891
cb3d25d1
MS
2892 /* Return adjusted stack pointer. */
2893 return sp;
2894}
2895
6d82d43b
AC
2896static enum return_value_convention
2897mips_n32n64_return_value (struct gdbarch *gdbarch,
2898 struct type *type, struct regcache *regcache,
2899 void *readbuf, const void *writebuf)
ebafbe83 2900{
6d82d43b
AC
2901 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2902 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2903 || TYPE_CODE (type) == TYPE_CODE_UNION
2904 || TYPE_CODE (type) == TYPE_CODE_ARRAY
13326b4e 2905 || TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
6d82d43b
AC
2906 return RETURN_VALUE_STRUCT_CONVENTION;
2907 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2908 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2909 {
2910 /* A floating-point value belongs in the least significant part
2911 of FP0. */
2912 if (mips_debug)
2913 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
2914 mips_xfer_register (regcache,
2915 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2916 TYPE_LENGTH (type),
2917 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2918 return RETURN_VALUE_REGISTER_CONVENTION;
2919 }
2920 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2921 && TYPE_NFIELDS (type) <= 2
2922 && TYPE_NFIELDS (type) >= 1
2923 && ((TYPE_NFIELDS (type) == 1
2924 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2925 == TYPE_CODE_FLT))
2926 || (TYPE_NFIELDS (type) == 2
2927 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2928 == TYPE_CODE_FLT)
2929 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
2930 == TYPE_CODE_FLT)))
2931 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2932 {
2933 /* A struct that contains one or two floats. Each value is part
2934 in the least significant part of their floating point
2935 register.. */
6d82d43b
AC
2936 int regnum;
2937 int field;
2938 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
2939 field < TYPE_NFIELDS (type); field++, regnum += 2)
2940 {
2941 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
2942 / TARGET_CHAR_BIT);
2943 if (mips_debug)
2944 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
2945 offset);
2946 mips_xfer_register (regcache, NUM_REGS + regnum,
2947 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
2948 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2949 }
2950 return RETURN_VALUE_REGISTER_CONVENTION;
2951 }
2952 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2953 || TYPE_CODE (type) == TYPE_CODE_UNION)
2954 {
2955 /* A structure or union. Extract the left justified value,
2956 regardless of the byte order. I.e. DO NOT USE
2957 mips_xfer_lower. */
2958 int offset;
2959 int regnum;
4c7d22cb 2960 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
2961 offset < TYPE_LENGTH (type);
2962 offset += register_size (current_gdbarch, regnum), regnum++)
2963 {
2964 int xfer = register_size (current_gdbarch, regnum);
2965 if (offset + xfer > TYPE_LENGTH (type))
2966 xfer = TYPE_LENGTH (type) - offset;
2967 if (mips_debug)
2968 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
2969 offset, xfer, regnum);
2970 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
2971 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
2972 }
2973 return RETURN_VALUE_REGISTER_CONVENTION;
2974 }
2975 else
2976 {
2977 /* A scalar extract each part but least-significant-byte
2978 justified. */
2979 int offset;
2980 int regnum;
4c7d22cb 2981 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
2982 offset < TYPE_LENGTH (type);
2983 offset += register_size (current_gdbarch, regnum), regnum++)
2984 {
2985 int xfer = register_size (current_gdbarch, regnum);
6d82d43b
AC
2986 if (offset + xfer > TYPE_LENGTH (type))
2987 xfer = TYPE_LENGTH (type) - offset;
2988 if (mips_debug)
2989 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
2990 offset, xfer, regnum);
2991 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
2992 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2993 }
2994 return RETURN_VALUE_REGISTER_CONVENTION;
2995 }
2996}
2997
2998/* O32 ABI stuff. */
2999
3000static CORE_ADDR
7d9b040b 3001mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3002 struct regcache *regcache, CORE_ADDR bp_addr,
3003 int nargs, struct value **args, CORE_ADDR sp,
3004 int struct_return, CORE_ADDR struct_addr)
3005{
3006 int argreg;
3007 int float_argreg;
3008 int argnum;
3009 int len = 0;
3010 int stack_offset = 0;
3011 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3012 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
3013
3014 /* For shared libraries, "t9" needs to point at the function
3015 address. */
4c7d22cb 3016 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
3017
3018 /* Set the return address register to point to the entry point of
3019 the program, where a breakpoint lies in wait. */
4c7d22cb 3020 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
3021
3022 /* First ensure that the stack and structure return address (if any)
3023 are properly aligned. The stack has to be at least 64-bit
3024 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
3025 aligned. For n32 and n64, stack frames need to be 128-bit
3026 aligned, so we round to this widest known alignment. */
3027
5b03f266
AC
3028 sp = align_down (sp, 16);
3029 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
3030
3031 /* Now make space on the stack for the args. */
3032 for (argnum = 0; argnum < nargs; argnum++)
6d82d43b 3033 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
13326b4e 3034 mips_stack_argsize (gdbarch));
5b03f266 3035 sp -= align_up (len, 16);
ebafbe83
MS
3036
3037 if (mips_debug)
6d82d43b 3038 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3039 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3040 paddr_nz (sp), (long) align_up (len, 16));
ebafbe83
MS
3041
3042 /* Initialize the integer and float register pointers. */
4c7d22cb 3043 argreg = MIPS_A0_REGNUM;
56cea623 3044 float_argreg = mips_fpa0_regnum (current_gdbarch);
ebafbe83 3045
bcb0cc15 3046 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3047 if (struct_return)
3048 {
3049 if (mips_debug)
3050 fprintf_unfiltered (gdb_stdlog,
25ab4790 3051 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3052 argreg, paddr_nz (struct_addr));
3053 write_register (argreg++, struct_addr);
13326b4e 3054 stack_offset += mips_stack_argsize (gdbarch);
ebafbe83
MS
3055 }
3056
3057 /* Now load as many as possible of the first arguments into
3058 registers, and push the rest onto the stack. Loop thru args
3059 from first to last. */
3060 for (argnum = 0; argnum < nargs; argnum++)
3061 {
3062 char *val;
ebafbe83
MS
3063 struct value *arg = args[argnum];
3064 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3065 int len = TYPE_LENGTH (arg_type);
3066 enum type_code typecode = TYPE_CODE (arg_type);
3067
3068 if (mips_debug)
3069 fprintf_unfiltered (gdb_stdlog,
25ab4790 3070 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3071 argnum + 1, len, (int) typecode);
3072
3073 val = (char *) VALUE_CONTENTS (arg);
3074
3075 /* 32-bit ABIs always start floating point arguments in an
3076 even-numbered floating point register. Round the FP register
3077 up before the check to see if there are any FP registers
3078 left. O32/O64 targets also pass the FP in the integer
3079 registers so also round up normal registers. */
ceae6e75
AC
3080 if (mips_abi_regsize (gdbarch) < 8
3081 && fp_register_arg_p (typecode, arg_type))
46cac009
AC
3082 {
3083 if ((float_argreg & 1))
3084 float_argreg++;
3085 }
3086
3087 /* Floating point arguments passed in registers have to be
3088 treated specially. On 32-bit architectures, doubles
3089 are passed in register pairs; the even register gets
3090 the low word, and the odd register gets the high word.
3091 On O32/O64, the first two floating point arguments are
3092 also copied to general registers, because MIPS16 functions
3093 don't use float registers for arguments. This duplication of
3094 arguments in general registers can't hurt non-MIPS16 functions
3095 because those registers are normally skipped. */
3096
3097 if (fp_register_arg_p (typecode, arg_type)
3098 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3099 {
ceae6e75 3100 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
46cac009
AC
3101 {
3102 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3103 unsigned long regval;
3104
3105 /* Write the low word of the double to the even register(s). */
3106 regval = extract_unsigned_integer (val + low_offset, 4);
3107 if (mips_debug)
3108 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3109 float_argreg, phex (regval, 4));
3110 write_register (float_argreg++, regval);
3111 if (mips_debug)
3112 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3113 argreg, phex (regval, 4));
3114 write_register (argreg++, regval);
3115
3116 /* Write the high word of the double to the odd register(s). */
3117 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3118 if (mips_debug)
3119 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3120 float_argreg, phex (regval, 4));
3121 write_register (float_argreg++, regval);
3122
3123 if (mips_debug)
3124 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3125 argreg, phex (regval, 4));
3126 write_register (argreg++, regval);
3127 }
3128 else
3129 {
3130 /* This is a floating point value that fits entirely
3131 in a single register. */
3132 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 3133 above to ensure that it is even register aligned. */
46cac009
AC
3134 LONGEST regval = extract_unsigned_integer (val, len);
3135 if (mips_debug)
3136 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3137 float_argreg, phex (regval, len));
3138 write_register (float_argreg++, regval);
3139 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
6d82d43b
AC
3140 registers for each argument. The below is (my
3141 guess) to ensure that the corresponding integer
3142 register has reserved the same space. */
46cac009
AC
3143 if (mips_debug)
3144 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3145 argreg, phex (regval, len));
3146 write_register (argreg, regval);
ceae6e75 3147 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
46cac009
AC
3148 }
3149 /* Reserve space for the FP register. */
13326b4e 3150 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
46cac009
AC
3151 }
3152 else
3153 {
3154 /* Copy the argument to general registers or the stack in
3155 register-sized pieces. Large arguments are split between
3156 registers and stack. */
4246e332 3157 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
3158 mips_abi_regsize() are treated specially: Irix cc passes
3159 them in registers where gcc sometimes puts them on the
3160 stack. For maximum compatibility, we will put them in
3161 both places. */
13326b4e
AC
3162 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3163 && (len % mips_abi_regsize (gdbarch) != 0));
46cac009
AC
3164 /* Structures should be aligned to eight bytes (even arg registers)
3165 on MIPS_ABI_O32, if their first member has double precision. */
13326b4e 3166 if (mips_abi_regsize (gdbarch) < 8
46cac009
AC
3167 && mips_type_needs_double_align (arg_type))
3168 {
3169 if ((argreg & 1))
6d82d43b 3170 argreg++;
46cac009
AC
3171 }
3172 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 3173 register are only written to memory. */
46cac009
AC
3174 while (len > 0)
3175 {
3176 /* Remember if the argument was written to the stack. */
3177 int stack_used_p = 0;
13326b4e
AC
3178 int partial_len = (len < mips_abi_regsize (gdbarch)
3179 ? len : mips_abi_regsize (gdbarch));
46cac009
AC
3180
3181 if (mips_debug)
3182 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3183 partial_len);
3184
3185 /* Write this portion of the argument to the stack. */
3186 if (argreg > MIPS_LAST_ARG_REGNUM
3187 || odd_sized_struct
3188 || fp_register_arg_p (typecode, arg_type))
3189 {
3190 /* Should shorter than int integer values be
3191 promoted to int before being stored? */
3192 int longword_offset = 0;
3193 CORE_ADDR addr;
3194 stack_used_p = 1;
3195 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3196 {
13326b4e 3197 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
3198 && (typecode == TYPE_CODE_INT
3199 || typecode == TYPE_CODE_PTR
6d82d43b 3200 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 3201 longword_offset = mips_stack_argsize (gdbarch) - len;
46cac009
AC
3202 }
3203
3204 if (mips_debug)
3205 {
3206 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3207 paddr_nz (stack_offset));
3208 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3209 paddr_nz (longword_offset));
3210 }
3211
3212 addr = sp + stack_offset + longword_offset;
3213
3214 if (mips_debug)
3215 {
3216 int i;
6d82d43b 3217 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
46cac009
AC
3218 paddr_nz (addr));
3219 for (i = 0; i < partial_len; i++)
3220 {
6d82d43b 3221 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
3222 val[i] & 0xff);
3223 }
3224 }
3225 write_memory (addr, val, partial_len);
3226 }
3227
3228 /* Note!!! This is NOT an else clause. Odd sized
3229 structs may go thru BOTH paths. Floating point
3230 arguments will not. */
3231 /* Write this portion of the argument to a general
6d82d43b 3232 purpose register. */
46cac009
AC
3233 if (argreg <= MIPS_LAST_ARG_REGNUM
3234 && !fp_register_arg_p (typecode, arg_type))
3235 {
3236 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3237 /* Value may need to be sign extended, because
1b13c4f6 3238 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
3239
3240 /* A non-floating-point argument being passed in a
3241 general register. If a struct or union, and if
3242 the remaining length is smaller than the register
3243 size, we have to adjust the register value on
3244 big endian targets.
3245
3246 It does not seem to be necessary to do the
3247 same for integral types.
3248
3249 Also don't do this adjustment on O64 binaries.
3250
3251 cagney/2001-07-23: gdb/179: Also, GCC, when
3252 outputting LE O32 with sizeof (struct) <
1b13c4f6 3253 mips_abi_regsize(), generates a left shift as
46cac009
AC
3254 part of storing the argument in a register a
3255 register (the left shift isn't generated when
1b13c4f6 3256 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
3257 it is quite possible that this is GCC
3258 contradicting the LE/O32 ABI, GDB has not been
3259 adjusted to accommodate this. Either someone
3260 needs to demonstrate that the LE/O32 ABI
3261 specifies such a left shift OR this new ABI gets
3262 identified as such and GDB gets tweaked
3263 accordingly. */
3264
13326b4e 3265 if (mips_abi_regsize (gdbarch) < 8
46cac009 3266 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
13326b4e 3267 && partial_len < mips_abi_regsize (gdbarch)
46cac009
AC
3268 && (typecode == TYPE_CODE_STRUCT ||
3269 typecode == TYPE_CODE_UNION))
13326b4e 3270 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
46cac009
AC
3271 TARGET_CHAR_BIT);
3272
3273 if (mips_debug)
3274 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3275 argreg,
6d82d43b 3276 phex (regval,
13326b4e 3277 mips_abi_regsize (gdbarch)));
46cac009
AC
3278 write_register (argreg, regval);
3279 argreg++;
3280
3281 /* Prevent subsequent floating point arguments from
3282 being passed in floating point registers. */
3283 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3284 }
3285
3286 len -= partial_len;
3287 val += partial_len;
3288
3289 /* Compute the the offset into the stack at which we
6d82d43b 3290 will copy the next parameter.
46cac009 3291
6d82d43b
AC
3292 In older ABIs, the caller reserved space for
3293 registers that contained arguments. This was loosely
3294 refered to as their "home". Consequently, space is
3295 always allocated. */
46cac009 3296
480d3dd2 3297 stack_offset += align_up (partial_len,
13326b4e 3298 mips_stack_argsize (gdbarch));
46cac009
AC
3299 }
3300 }
3301 if (mips_debug)
3302 fprintf_unfiltered (gdb_stdlog, "\n");
3303 }
3304
f10683bb 3305 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3306
46cac009
AC
3307 /* Return adjusted stack pointer. */
3308 return sp;
3309}
3310
6d82d43b
AC
3311static enum return_value_convention
3312mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3313 struct regcache *regcache,
3314 void *readbuf, const void *writebuf)
3315{
3316 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3317
3318 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3319 || TYPE_CODE (type) == TYPE_CODE_UNION
3320 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3321 return RETURN_VALUE_STRUCT_CONVENTION;
3322 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3323 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3324 {
3325 /* A single-precision floating-point value. It fits in the
3326 least significant part of FP0. */
3327 if (mips_debug)
3328 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3329 mips_xfer_register (regcache,
3330 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3331 TYPE_LENGTH (type),
3332 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3333 return RETURN_VALUE_REGISTER_CONVENTION;
3334 }
3335 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3336 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3337 {
3338 /* A double-precision floating-point value. The most
3339 significant part goes in FP1, and the least significant in
3340 FP0. */
3341 if (mips_debug)
3342 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3343 switch (TARGET_BYTE_ORDER)
3344 {
3345 case BFD_ENDIAN_LITTLE:
3346 mips_xfer_register (regcache,
3347 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3348 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3349 mips_xfer_register (regcache,
3350 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3351 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3352 break;
3353 case BFD_ENDIAN_BIG:
3354 mips_xfer_register (regcache,
3355 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3356 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3357 mips_xfer_register (regcache,
3358 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3359 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3360 break;
3361 default:
3362 internal_error (__FILE__, __LINE__, "bad switch");
3363 }
3364 return RETURN_VALUE_REGISTER_CONVENTION;
3365 }
3366#if 0
3367 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3368 && TYPE_NFIELDS (type) <= 2
3369 && TYPE_NFIELDS (type) >= 1
3370 && ((TYPE_NFIELDS (type) == 1
3371 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3372 == TYPE_CODE_FLT))
3373 || (TYPE_NFIELDS (type) == 2
3374 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3375 == TYPE_CODE_FLT)
3376 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3377 == TYPE_CODE_FLT)))
3378 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3379 {
3380 /* A struct that contains one or two floats. Each value is part
3381 in the least significant part of their floating point
3382 register.. */
3383 bfd_byte reg[MAX_REGISTER_SIZE];
3384 int regnum;
3385 int field;
3386 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3387 field < TYPE_NFIELDS (type); field++, regnum += 2)
3388 {
3389 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3390 / TARGET_CHAR_BIT);
3391 if (mips_debug)
3392 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3393 offset);
3394 mips_xfer_register (regcache, NUM_REGS + regnum,
3395 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3396 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3397 }
3398 return RETURN_VALUE_REGISTER_CONVENTION;
3399 }
3400#endif
3401#if 0
3402 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3403 || TYPE_CODE (type) == TYPE_CODE_UNION)
3404 {
3405 /* A structure or union. Extract the left justified value,
3406 regardless of the byte order. I.e. DO NOT USE
3407 mips_xfer_lower. */
3408 int offset;
3409 int regnum;
4c7d22cb 3410 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3411 offset < TYPE_LENGTH (type);
3412 offset += register_size (current_gdbarch, regnum), regnum++)
3413 {
3414 int xfer = register_size (current_gdbarch, regnum);
3415 if (offset + xfer > TYPE_LENGTH (type))
3416 xfer = TYPE_LENGTH (type) - offset;
3417 if (mips_debug)
3418 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3419 offset, xfer, regnum);
3420 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3421 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3422 }
3423 return RETURN_VALUE_REGISTER_CONVENTION;
3424 }
3425#endif
3426 else
3427 {
3428 /* A scalar extract each part but least-significant-byte
3429 justified. o32 thinks registers are 4 byte, regardless of
3430 the ISA. mips_stack_argsize controls this. */
3431 int offset;
3432 int regnum;
4c7d22cb 3433 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3434 offset < TYPE_LENGTH (type);
13326b4e 3435 offset += mips_stack_argsize (gdbarch), regnum++)
6d82d43b 3436 {
13326b4e 3437 int xfer = mips_stack_argsize (gdbarch);
6d82d43b
AC
3438 if (offset + xfer > TYPE_LENGTH (type))
3439 xfer = TYPE_LENGTH (type) - offset;
3440 if (mips_debug)
3441 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3442 offset, xfer, regnum);
3443 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3444 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3445 }
3446 return RETURN_VALUE_REGISTER_CONVENTION;
3447 }
3448}
3449
3450/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3451 ABI. */
46cac009
AC
3452
3453static CORE_ADDR
7d9b040b 3454mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3455 struct regcache *regcache, CORE_ADDR bp_addr,
3456 int nargs,
3457 struct value **args, CORE_ADDR sp,
3458 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
3459{
3460 int argreg;
3461 int float_argreg;
3462 int argnum;
3463 int len = 0;
3464 int stack_offset = 0;
480d3dd2 3465 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3466 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 3467
25ab4790
AC
3468 /* For shared libraries, "t9" needs to point at the function
3469 address. */
4c7d22cb 3470 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
3471
3472 /* Set the return address register to point to the entry point of
3473 the program, where a breakpoint lies in wait. */
4c7d22cb 3474 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 3475
46cac009
AC
3476 /* First ensure that the stack and structure return address (if any)
3477 are properly aligned. The stack has to be at least 64-bit
3478 aligned even on 32-bit machines, because doubles must be 64-bit
3479 aligned. For n32 and n64, stack frames need to be 128-bit
3480 aligned, so we round to this widest known alignment. */
3481
5b03f266
AC
3482 sp = align_down (sp, 16);
3483 struct_addr = align_down (struct_addr, 16);
46cac009
AC
3484
3485 /* Now make space on the stack for the args. */
3486 for (argnum = 0; argnum < nargs; argnum++)
6d82d43b 3487 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
13326b4e 3488 mips_stack_argsize (gdbarch));
5b03f266 3489 sp -= align_up (len, 16);
46cac009
AC
3490
3491 if (mips_debug)
6d82d43b 3492 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3493 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3494 paddr_nz (sp), (long) align_up (len, 16));
46cac009
AC
3495
3496 /* Initialize the integer and float register pointers. */
4c7d22cb 3497 argreg = MIPS_A0_REGNUM;
56cea623 3498 float_argreg = mips_fpa0_regnum (current_gdbarch);
46cac009
AC
3499
3500 /* The struct_return pointer occupies the first parameter-passing reg. */
3501 if (struct_return)
3502 {
3503 if (mips_debug)
3504 fprintf_unfiltered (gdb_stdlog,
25ab4790 3505 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009
AC
3506 argreg, paddr_nz (struct_addr));
3507 write_register (argreg++, struct_addr);
13326b4e 3508 stack_offset += mips_stack_argsize (gdbarch);
46cac009
AC
3509 }
3510
3511 /* Now load as many as possible of the first arguments into
3512 registers, and push the rest onto the stack. Loop thru args
3513 from first to last. */
3514 for (argnum = 0; argnum < nargs; argnum++)
3515 {
3516 char *val;
46cac009
AC
3517 struct value *arg = args[argnum];
3518 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3519 int len = TYPE_LENGTH (arg_type);
3520 enum type_code typecode = TYPE_CODE (arg_type);
3521
3522 if (mips_debug)
3523 fprintf_unfiltered (gdb_stdlog,
25ab4790 3524 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3525 argnum + 1, len, (int) typecode);
3526
3527 val = (char *) VALUE_CONTENTS (arg);
3528
3529 /* 32-bit ABIs always start floating point arguments in an
3530 even-numbered floating point register. Round the FP register
3531 up before the check to see if there are any FP registers
3532 left. O32/O64 targets also pass the FP in the integer
3533 registers so also round up normal registers. */
ceae6e75
AC
3534 if (mips_abi_regsize (gdbarch) < 8
3535 && fp_register_arg_p (typecode, arg_type))
ebafbe83
MS
3536 {
3537 if ((float_argreg & 1))
3538 float_argreg++;
3539 }
3540
3541 /* Floating point arguments passed in registers have to be
3542 treated specially. On 32-bit architectures, doubles
3543 are passed in register pairs; the even register gets
3544 the low word, and the odd register gets the high word.
3545 On O32/O64, the first two floating point arguments are
3546 also copied to general registers, because MIPS16 functions
3547 don't use float registers for arguments. This duplication of
3548 arguments in general registers can't hurt non-MIPS16 functions
3549 because those registers are normally skipped. */
3550
3551 if (fp_register_arg_p (typecode, arg_type)
3552 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3553 {
ceae6e75 3554 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
ebafbe83
MS
3555 {
3556 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3557 unsigned long regval;
3558
3559 /* Write the low word of the double to the even register(s). */
3560 regval = extract_unsigned_integer (val + low_offset, 4);
3561 if (mips_debug)
3562 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3563 float_argreg, phex (regval, 4));
3564 write_register (float_argreg++, regval);
3565 if (mips_debug)
3566 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3567 argreg, phex (regval, 4));
3568 write_register (argreg++, regval);
3569
3570 /* Write the high word of the double to the odd register(s). */
3571 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3572 if (mips_debug)
3573 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3574 float_argreg, phex (regval, 4));
3575 write_register (float_argreg++, regval);
3576
3577 if (mips_debug)
3578 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3579 argreg, phex (regval, 4));
3580 write_register (argreg++, regval);
3581 }
3582 else
3583 {
3584 /* This is a floating point value that fits entirely
3585 in a single register. */
3586 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 3587 above to ensure that it is even register aligned. */
ebafbe83
MS
3588 LONGEST regval = extract_unsigned_integer (val, len);
3589 if (mips_debug)
3590 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3591 float_argreg, phex (regval, len));
3592 write_register (float_argreg++, regval);
3593 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
6d82d43b
AC
3594 registers for each argument. The below is (my
3595 guess) to ensure that the corresponding integer
3596 register has reserved the same space. */
ebafbe83
MS
3597 if (mips_debug)
3598 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3599 argreg, phex (regval, len));
3600 write_register (argreg, regval);
ceae6e75 3601 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
ebafbe83
MS
3602 }
3603 /* Reserve space for the FP register. */
13326b4e 3604 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
ebafbe83
MS
3605 }
3606 else
3607 {
3608 /* Copy the argument to general registers or the stack in
3609 register-sized pieces. Large arguments are split between
3610 registers and stack. */
4246e332 3611 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
3612 mips_abi_regsize() are treated specially: Irix cc passes
3613 them in registers where gcc sometimes puts them on the
3614 stack. For maximum compatibility, we will put them in
3615 both places. */
13326b4e
AC
3616 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3617 && (len % mips_abi_regsize (gdbarch) != 0));
ebafbe83
MS
3618 /* Structures should be aligned to eight bytes (even arg registers)
3619 on MIPS_ABI_O32, if their first member has double precision. */
13326b4e 3620 if (mips_abi_regsize (gdbarch) < 8
ebafbe83
MS
3621 && mips_type_needs_double_align (arg_type))
3622 {
3623 if ((argreg & 1))
6d82d43b 3624 argreg++;
ebafbe83
MS
3625 }
3626 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 3627 register are only written to memory. */
ebafbe83
MS
3628 while (len > 0)
3629 {
3630 /* Remember if the argument was written to the stack. */
3631 int stack_used_p = 0;
13326b4e
AC
3632 int partial_len = (len < mips_abi_regsize (gdbarch)
3633 ? len : mips_abi_regsize (gdbarch));
ebafbe83
MS
3634
3635 if (mips_debug)
3636 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3637 partial_len);
3638
3639 /* Write this portion of the argument to the stack. */
3640 if (argreg > MIPS_LAST_ARG_REGNUM
3641 || odd_sized_struct
3642 || fp_register_arg_p (typecode, arg_type))
3643 {
3644 /* Should shorter than int integer values be
3645 promoted to int before being stored? */
3646 int longword_offset = 0;
3647 CORE_ADDR addr;
3648 stack_used_p = 1;
3649 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3650 {
13326b4e 3651 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
3652 && (typecode == TYPE_CODE_INT
3653 || typecode == TYPE_CODE_PTR
6d82d43b 3654 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 3655 longword_offset = mips_stack_argsize (gdbarch) - len;
ebafbe83
MS
3656 }
3657
3658 if (mips_debug)
3659 {
3660 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3661 paddr_nz (stack_offset));
3662 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3663 paddr_nz (longword_offset));
3664 }
3665
3666 addr = sp + stack_offset + longword_offset;
3667
3668 if (mips_debug)
3669 {
3670 int i;
6d82d43b 3671 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
ebafbe83
MS
3672 paddr_nz (addr));
3673 for (i = 0; i < partial_len; i++)
3674 {
6d82d43b 3675 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
3676 val[i] & 0xff);
3677 }
3678 }
3679 write_memory (addr, val, partial_len);
3680 }
3681
3682 /* Note!!! This is NOT an else clause. Odd sized
3683 structs may go thru BOTH paths. Floating point
3684 arguments will not. */
3685 /* Write this portion of the argument to a general
6d82d43b 3686 purpose register. */
ebafbe83
MS
3687 if (argreg <= MIPS_LAST_ARG_REGNUM
3688 && !fp_register_arg_p (typecode, arg_type))
3689 {
3690 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3691 /* Value may need to be sign extended, because
1b13c4f6 3692 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
3693
3694 /* A non-floating-point argument being passed in a
3695 general register. If a struct or union, and if
3696 the remaining length is smaller than the register
3697 size, we have to adjust the register value on
3698 big endian targets.
3699
3700 It does not seem to be necessary to do the
3701 same for integral types.
3702
3703 Also don't do this adjustment on O64 binaries.
3704
3705 cagney/2001-07-23: gdb/179: Also, GCC, when
3706 outputting LE O32 with sizeof (struct) <
1b13c4f6 3707 mips_abi_regsize(), generates a left shift as
ebafbe83
MS
3708 part of storing the argument in a register a
3709 register (the left shift isn't generated when
1b13c4f6 3710 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
3711 it is quite possible that this is GCC
3712 contradicting the LE/O32 ABI, GDB has not been
3713 adjusted to accommodate this. Either someone
3714 needs to demonstrate that the LE/O32 ABI
3715 specifies such a left shift OR this new ABI gets
3716 identified as such and GDB gets tweaked
3717 accordingly. */
3718
13326b4e 3719 if (mips_abi_regsize (gdbarch) < 8
ebafbe83 3720 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
13326b4e 3721 && partial_len < mips_abi_regsize (gdbarch)
ebafbe83
MS
3722 && (typecode == TYPE_CODE_STRUCT ||
3723 typecode == TYPE_CODE_UNION))
13326b4e 3724 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
ebafbe83
MS
3725 TARGET_CHAR_BIT);
3726
3727 if (mips_debug)
3728 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3729 argreg,
6d82d43b 3730 phex (regval,
13326b4e 3731 mips_abi_regsize (gdbarch)));
ebafbe83
MS
3732 write_register (argreg, regval);
3733 argreg++;
3734
3735 /* Prevent subsequent floating point arguments from
3736 being passed in floating point registers. */
3737 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3738 }
3739
3740 len -= partial_len;
3741 val += partial_len;
3742
3743 /* Compute the the offset into the stack at which we
6d82d43b 3744 will copy the next parameter.
ebafbe83 3745
6d82d43b
AC
3746 In older ABIs, the caller reserved space for
3747 registers that contained arguments. This was loosely
3748 refered to as their "home". Consequently, space is
3749 always allocated. */
ebafbe83 3750
480d3dd2 3751 stack_offset += align_up (partial_len,
13326b4e 3752 mips_stack_argsize (gdbarch));
ebafbe83
MS
3753 }
3754 }
3755 if (mips_debug)
3756 fprintf_unfiltered (gdb_stdlog, "\n");
3757 }
3758
f10683bb 3759 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3760
ebafbe83
MS
3761 /* Return adjusted stack pointer. */
3762 return sp;
3763}
3764
9c8fdbfa
AC
3765static enum return_value_convention
3766mips_o64_return_value (struct gdbarch *gdbarch,
3767 struct type *type, struct regcache *regcache,
3768 void *readbuf, const void *writebuf)
6d82d43b 3769{
9c8fdbfa 3770 return RETURN_VALUE_STRUCT_CONVENTION;
6d82d43b
AC
3771}
3772
dd824b04
DJ
3773/* Floating point register management.
3774
3775 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3776 64bit operations, these early MIPS cpus treat fp register pairs
3777 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3778 registers and offer a compatibility mode that emulates the MIPS2 fp
3779 model. When operating in MIPS2 fp compat mode, later cpu's split
3780 double precision floats into two 32-bit chunks and store them in
3781 consecutive fp regs. To display 64-bit floats stored in this
3782 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3783 Throw in user-configurable endianness and you have a real mess.
3784
3785 The way this works is:
3786 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3787 double-precision value will be split across two logical registers.
3788 The lower-numbered logical register will hold the low-order bits,
3789 regardless of the processor's endianness.
3790 - If we are on a 64-bit processor, and we are looking for a
3791 single-precision value, it will be in the low ordered bits
3792 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3793 save slot in memory.
3794 - If we are in 64-bit mode, everything is straightforward.
3795
3796 Note that this code only deals with "live" registers at the top of the
3797 stack. We will attempt to deal with saved registers later, when
3798 the raw/cooked register interface is in place. (We need a general
3799 interface that can deal with dynamic saved register sizes -- fp
3800 regs could be 32 bits wide in one frame and 64 on the frame above
3801 and below). */
3802
67b2c998
DJ
3803static struct type *
3804mips_float_register_type (void)
3805{
361d1df0 3806 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3807 return builtin_type_ieee_single_big;
3808 else
3809 return builtin_type_ieee_single_little;
3810}
3811
3812static struct type *
3813mips_double_register_type (void)
3814{
361d1df0 3815 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3816 return builtin_type_ieee_double_big;
3817 else
3818 return builtin_type_ieee_double_little;
3819}
3820
dd824b04
DJ
3821/* Copy a 32-bit single-precision value from the current frame
3822 into rare_buffer. */
3823
3824static void
e11c53d2
AC
3825mips_read_fp_register_single (struct frame_info *frame, int regno,
3826 char *rare_buffer)
dd824b04 3827{
719ec221 3828 int raw_size = register_size (current_gdbarch, regno);
dd824b04
DJ
3829 char *raw_buffer = alloca (raw_size);
3830
e11c53d2 3831 if (!frame_register_read (frame, regno, raw_buffer))
dd824b04
DJ
3832 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3833 if (raw_size == 8)
3834 {
3835 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 3836 32 bits. */
dd824b04
DJ
3837 int offset;
3838
3839 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3840 offset = 4;
3841 else
3842 offset = 0;
3843
3844 memcpy (rare_buffer, raw_buffer + offset, 4);
3845 }
3846 else
3847 {
3848 memcpy (rare_buffer, raw_buffer, 4);
3849 }
3850}
3851
3852/* Copy a 64-bit double-precision value from the current frame into
3853 rare_buffer. This may include getting half of it from the next
3854 register. */
3855
3856static void
e11c53d2
AC
3857mips_read_fp_register_double (struct frame_info *frame, int regno,
3858 char *rare_buffer)
dd824b04 3859{
719ec221 3860 int raw_size = register_size (current_gdbarch, regno);
dd824b04
DJ
3861
3862 if (raw_size == 8 && !mips2_fp_compat ())
3863 {
3864 /* We have a 64-bit value for this register, and we should use
6d82d43b 3865 all 64 bits. */
e11c53d2 3866 if (!frame_register_read (frame, regno, rare_buffer))
dd824b04
DJ
3867 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3868 }
3869 else
3870 {
56cea623 3871 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
dd824b04
DJ
3872 internal_error (__FILE__, __LINE__,
3873 "mips_read_fp_register_double: bad access to "
3874 "odd-numbered FP register");
3875
3876 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 3877 each register. */
dd824b04
DJ
3878 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3879 {
e11c53d2
AC
3880 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3881 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 3882 }
361d1df0 3883 else
dd824b04 3884 {
e11c53d2
AC
3885 mips_read_fp_register_single (frame, regno, rare_buffer);
3886 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
3887 }
3888 }
3889}
3890
c906108c 3891static void
e11c53d2
AC
3892mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
3893 int regnum)
c5aa993b 3894{ /* do values for FP (float) regs */
dd824b04 3895 char *raw_buffer;
3903d437
AC
3896 double doub, flt1; /* doubles extracted from raw hex data */
3897 int inv1, inv2;
c5aa993b 3898
6d82d43b
AC
3899 raw_buffer =
3900 (char *) alloca (2 *
3901 register_size (current_gdbarch,
3902 mips_regnum (current_gdbarch)->fp0));
c906108c 3903
e11c53d2
AC
3904 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
3905 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
3906 "");
f0ef6b29 3907
719ec221 3908 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
c906108c 3909 {
f0ef6b29
KB
3910 /* 4-byte registers: Print hex and floating. Also print even
3911 numbered registers as doubles. */
e11c53d2 3912 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 3913 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 3914
6d82d43b
AC
3915 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
3916 file);
dd824b04 3917
e11c53d2 3918 fprintf_filtered (file, " flt: ");
1adad886 3919 if (inv1)
e11c53d2 3920 fprintf_filtered (file, " <invalid float> ");
1adad886 3921 else
e11c53d2 3922 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 3923
f0ef6b29
KB
3924 if (regnum % 2 == 0)
3925 {
e11c53d2 3926 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29 3927 doub = unpack_double (mips_double_register_type (), raw_buffer,
6d82d43b 3928 &inv2);
1adad886 3929
e11c53d2 3930 fprintf_filtered (file, " dbl: ");
f0ef6b29 3931 if (inv2)
e11c53d2 3932 fprintf_filtered (file, "<invalid double>");
f0ef6b29 3933 else
e11c53d2 3934 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 3935 }
c906108c
SS
3936 }
3937 else
dd824b04 3938 {
f0ef6b29 3939 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 3940 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 3941 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 3942
e11c53d2 3943 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
3944 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
3945
361d1df0 3946
6d82d43b
AC
3947 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
3948 file);
f0ef6b29 3949
e11c53d2 3950 fprintf_filtered (file, " flt: ");
1adad886 3951 if (inv1)
e11c53d2 3952 fprintf_filtered (file, "<invalid float>");
1adad886 3953 else
e11c53d2 3954 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 3955
e11c53d2 3956 fprintf_filtered (file, " dbl: ");
f0ef6b29 3957 if (inv2)
e11c53d2 3958 fprintf_filtered (file, "<invalid double>");
1adad886 3959 else
e11c53d2 3960 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
3961 }
3962}
3963
3964static void
e11c53d2
AC
3965mips_print_register (struct ui_file *file, struct frame_info *frame,
3966 int regnum, int all)
f0ef6b29 3967{
a4b8ebc8 3968 struct gdbarch *gdbarch = get_frame_arch (frame);
d9d9c31f 3969 char raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 3970 int offset;
1adad886 3971
a4b8ebc8 3972 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
f0ef6b29 3973 {
e11c53d2 3974 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
3975 return;
3976 }
3977
3978 /* Get the data in raw format. */
e11c53d2 3979 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 3980 {
e11c53d2 3981 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
f0ef6b29 3982 return;
c906108c 3983 }
f0ef6b29 3984
e11c53d2 3985 fputs_filtered (REGISTER_NAME (regnum), file);
f0ef6b29
KB
3986
3987 /* The problem with printing numeric register names (r26, etc.) is that
3988 the user can't use them on input. Probably the best solution is to
3989 fix it so that either the numeric or the funky (a2, etc.) names
3990 are accepted on input. */
3991 if (regnum < MIPS_NUMREGS)
e11c53d2 3992 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 3993 else
e11c53d2 3994 fprintf_filtered (file, ": ");
f0ef6b29
KB
3995
3996 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
6d82d43b
AC
3997 offset =
3998 register_size (current_gdbarch,
3999 regnum) - register_size (current_gdbarch, regnum);
f0ef6b29
KB
4000 else
4001 offset = 0;
4002
6d82d43b
AC
4003 print_scalar_formatted (raw_buffer + offset,
4004 gdbarch_register_type (gdbarch, regnum), 'x', 0,
4005 file);
c906108c
SS
4006}
4007
f0ef6b29
KB
4008/* Replacement for generic do_registers_info.
4009 Print regs in pretty columns. */
4010
4011static int
e11c53d2
AC
4012print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4013 int regnum)
f0ef6b29 4014{
e11c53d2
AC
4015 fprintf_filtered (file, " ");
4016 mips_print_fp_register (file, frame, regnum);
4017 fprintf_filtered (file, "\n");
f0ef6b29
KB
4018 return regnum + 1;
4019}
4020
4021
c906108c
SS
4022/* Print a row's worth of GP (int) registers, with name labels above */
4023
4024static int
e11c53d2 4025print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 4026 int start_regnum)
c906108c 4027{
a4b8ebc8 4028 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 4029 /* do values for GP (int) regs */
d9d9c31f 4030 char raw_buffer[MAX_REGISTER_SIZE];
d5ac5a39 4031 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
c906108c 4032 int col, byte;
a4b8ebc8 4033 int regnum;
c906108c
SS
4034
4035 /* For GP registers, we print a separate row of names above the vals */
e11c53d2 4036 fprintf_filtered (file, " ");
a4b8ebc8 4037 for (col = 0, regnum = start_regnum;
6d82d43b 4038 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
c906108c
SS
4039 {
4040 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4041 continue; /* unused register */
6d82d43b
AC
4042 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4043 TYPE_CODE_FLT)
c5aa993b 4044 break; /* end the row: reached FP register */
6d82d43b 4045 fprintf_filtered (file,
d5ac5a39 4046 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
e11c53d2 4047 REGISTER_NAME (regnum));
c906108c
SS
4048 col++;
4049 }
a4b8ebc8 4050 /* print the R0 to R31 names */
20e6603c
AC
4051 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4052 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4053 else
4054 fprintf_filtered (file, "\n ");
c906108c 4055
c906108c 4056 /* now print the values in hex, 4 or 8 to the row */
a4b8ebc8 4057 for (col = 0, regnum = start_regnum;
6d82d43b 4058 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
c906108c
SS
4059 {
4060 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4061 continue; /* unused register */
6d82d43b
AC
4062 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4063 TYPE_CODE_FLT)
c5aa993b 4064 break; /* end row: reached FP register */
c906108c 4065 /* OK: get the data in raw format. */
e11c53d2 4066 if (!frame_register_read (frame, regnum, raw_buffer))
c906108c
SS
4067 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4068 /* pad small registers */
4246e332 4069 for (byte = 0;
d5ac5a39 4070 byte < (mips_abi_regsize (current_gdbarch)
6d82d43b 4071 - register_size (current_gdbarch, regnum)); byte++)
c906108c
SS
4072 printf_filtered (" ");
4073 /* Now print the register value in hex, endian order. */
d7449b42 4074 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
6d82d43b
AC
4075 for (byte =
4076 register_size (current_gdbarch,
4077 regnum) - register_size (current_gdbarch, regnum);
4078 byte < register_size (current_gdbarch, regnum); byte++)
e11c53d2 4079 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
c906108c 4080 else
c73e8f27 4081 for (byte = register_size (current_gdbarch, regnum) - 1;
6d82d43b 4082 byte >= 0; byte--)
e11c53d2
AC
4083 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4084 fprintf_filtered (file, " ");
c906108c
SS
4085 col++;
4086 }
c5aa993b 4087 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4088 fprintf_filtered (file, "\n");
c906108c
SS
4089
4090 return regnum;
4091}
4092
4093/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4094
bf1f5b4c 4095static void
e11c53d2
AC
4096mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4097 struct frame_info *frame, int regnum, int all)
c906108c 4098{
c5aa993b 4099 if (regnum != -1) /* do one specified register */
c906108c 4100 {
a4b8ebc8 4101 gdb_assert (regnum >= NUM_REGS);
c906108c
SS
4102 if (*(REGISTER_NAME (regnum)) == '\0')
4103 error ("Not a valid register for the current processor type");
4104
e11c53d2
AC
4105 mips_print_register (file, frame, regnum, 0);
4106 fprintf_filtered (file, "\n");
c906108c 4107 }
c5aa993b
JM
4108 else
4109 /* do all (or most) registers */
c906108c 4110 {
a4b8ebc8
AC
4111 regnum = NUM_REGS;
4112 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
c906108c 4113 {
6d82d43b
AC
4114 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4115 TYPE_CODE_FLT)
e11c53d2
AC
4116 {
4117 if (all) /* true for "INFO ALL-REGISTERS" command */
4118 regnum = print_fp_register_row (file, frame, regnum);
4119 else
4120 regnum += MIPS_NUMREGS; /* skip floating point regs */
4121 }
c906108c 4122 else
e11c53d2 4123 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4124 }
4125 }
4126}
4127
c906108c
SS
4128/* Is this a branch with a delay slot? */
4129
c906108c 4130static int
acdb74a0 4131is_delayed (unsigned long insn)
c906108c
SS
4132{
4133 int i;
4134 for (i = 0; i < NUMOPCODES; ++i)
4135 if (mips_opcodes[i].pinfo != INSN_MACRO
4136 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4137 break;
4138 return (i < NUMOPCODES
4139 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4140 | INSN_COND_BRANCH_DELAY
4141 | INSN_COND_BRANCH_LIKELY)));
4142}
4143
4144int
3352ef37
AC
4145mips_single_step_through_delay (struct gdbarch *gdbarch,
4146 struct frame_info *frame)
c906108c 4147{
3352ef37 4148 CORE_ADDR pc = get_frame_pc (frame);
95ac2dcf 4149 char buf[MIPS_INSN32_SIZE];
c906108c
SS
4150
4151 /* There is no branch delay slot on MIPS16. */
0fe7e7c8 4152 if (mips_pc_is_mips16 (pc))
c906108c
SS
4153 return 0;
4154
3352ef37
AC
4155 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4156 /* If error reading memory, guess that it is not a delayed
4157 branch. */
c906108c 4158 return 0;
4c7d22cb 4159 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
c906108c
SS
4160}
4161
6d82d43b
AC
4162/* To skip prologues, I use this predicate. Returns either PC itself
4163 if the code at PC does not look like a function prologue; otherwise
4164 returns an address that (if we're lucky) follows the prologue. If
4165 LENIENT, then we must skip everything which is involved in setting
4166 up the frame (it's OK to skip more, just so long as we don't skip
4167 anything which might clobber the registers which are being saved.
4168 We must skip more in the case where part of the prologue is in the
4169 delay slot of a non-prologue instruction). */
4170
4171static CORE_ADDR
4172mips_skip_prologue (CORE_ADDR pc)
4173{
8b622e6a
AC
4174 CORE_ADDR limit_pc;
4175 CORE_ADDR func_addr;
4176
6d82d43b
AC
4177 /* See if we can determine the end of the prologue via the symbol table.
4178 If so, then return either PC, or the PC after the prologue, whichever
4179 is greater. */
8b622e6a
AC
4180 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4181 {
4182 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4183 if (post_prologue_pc != 0)
4184 return max (pc, post_prologue_pc);
4185 }
6d82d43b
AC
4186
4187 /* Can't determine prologue from the symbol table, need to examine
4188 instructions. */
4189
98b4dd94
JB
4190 /* Find an upper limit on the function prologue using the debug
4191 information. If the debug information could not be used to provide
4192 that bound, then use an arbitrary large number as the upper bound. */
4193 limit_pc = skip_prologue_using_sal (pc);
4194 if (limit_pc == 0)
4195 limit_pc = pc + 100; /* Magic. */
4196
0fe7e7c8 4197 if (mips_pc_is_mips16 (pc))
a65bbe44 4198 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
6d82d43b 4199 else
a65bbe44 4200 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
88658117
AC
4201}
4202
a5ea2558
AC
4203/* Root of all "set mips "/"show mips " commands. This will eventually be
4204 used for all MIPS-specific commands. */
4205
a5ea2558 4206static void
acdb74a0 4207show_mips_command (char *args, int from_tty)
a5ea2558
AC
4208{
4209 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4210}
4211
a5ea2558 4212static void
acdb74a0 4213set_mips_command (char *args, int from_tty)
a5ea2558 4214{
6d82d43b
AC
4215 printf_unfiltered
4216 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
4217 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4218}
4219
c906108c
SS
4220/* Commands to show/set the MIPS FPU type. */
4221
c906108c 4222static void
acdb74a0 4223show_mipsfpu_command (char *args, int from_tty)
c906108c 4224{
c906108c
SS
4225 char *fpu;
4226 switch (MIPS_FPU_TYPE)
4227 {
4228 case MIPS_FPU_SINGLE:
4229 fpu = "single-precision";
4230 break;
4231 case MIPS_FPU_DOUBLE:
4232 fpu = "double-precision";
4233 break;
4234 case MIPS_FPU_NONE:
4235 fpu = "absent (none)";
4236 break;
93d56215
AC
4237 default:
4238 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
4239 }
4240 if (mips_fpu_type_auto)
6d82d43b
AC
4241 printf_unfiltered
4242 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4243 fpu);
c906108c 4244 else
6d82d43b
AC
4245 printf_unfiltered
4246 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
4247}
4248
4249
c906108c 4250static void
acdb74a0 4251set_mipsfpu_command (char *args, int from_tty)
c906108c 4252{
6d82d43b
AC
4253 printf_unfiltered
4254 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
c906108c
SS
4255 show_mipsfpu_command (args, from_tty);
4256}
4257
c906108c 4258static void
acdb74a0 4259set_mipsfpu_single_command (char *args, int from_tty)
c906108c 4260{
8d5838b5
AC
4261 struct gdbarch_info info;
4262 gdbarch_info_init (&info);
c906108c
SS
4263 mips_fpu_type = MIPS_FPU_SINGLE;
4264 mips_fpu_type_auto = 0;
8d5838b5
AC
4265 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4266 instead of relying on globals. Doing that would let generic code
4267 handle the search for this specific architecture. */
4268 if (!gdbarch_update_p (info))
4269 internal_error (__FILE__, __LINE__, "set mipsfpu failed");
c906108c
SS
4270}
4271
c906108c 4272static void
acdb74a0 4273set_mipsfpu_double_command (char *args, int from_tty)
c906108c 4274{
8d5838b5
AC
4275 struct gdbarch_info info;
4276 gdbarch_info_init (&info);
c906108c
SS
4277 mips_fpu_type = MIPS_FPU_DOUBLE;
4278 mips_fpu_type_auto = 0;
8d5838b5
AC
4279 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4280 instead of relying on globals. Doing that would let generic code
4281 handle the search for this specific architecture. */
4282 if (!gdbarch_update_p (info))
4283 internal_error (__FILE__, __LINE__, "set mipsfpu failed");
c906108c
SS
4284}
4285
c906108c 4286static void
acdb74a0 4287set_mipsfpu_none_command (char *args, int from_tty)
c906108c 4288{
8d5838b5
AC
4289 struct gdbarch_info info;
4290 gdbarch_info_init (&info);
c906108c
SS
4291 mips_fpu_type = MIPS_FPU_NONE;
4292 mips_fpu_type_auto = 0;
8d5838b5
AC
4293 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4294 instead of relying on globals. Doing that would let generic code
4295 handle the search for this specific architecture. */
4296 if (!gdbarch_update_p (info))
4297 internal_error (__FILE__, __LINE__, "set mipsfpu failed");
c906108c
SS
4298}
4299
c906108c 4300static void
acdb74a0 4301set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
4302{
4303 mips_fpu_type_auto = 1;
4304}
4305
c906108c 4306/* Attempt to identify the particular processor model by reading the
691c0433
AC
4307 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4308 the relevant processor still exists (it dates back to '94) and
4309 secondly this is not the way to do this. The processor type should
4310 be set by forcing an architecture change. */
c906108c 4311
691c0433
AC
4312void
4313deprecated_mips_set_processor_regs_hack (void)
c906108c 4314{
691c0433 4315 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
4316 CORE_ADDR prid;
4317
a5c9623c 4318 prid = read_register (MIPS_PRID_REGNUM);
c906108c
SS
4319
4320 if ((prid & ~0xf) == 0x700)
691c0433 4321 tdep->mips_processor_reg_names = mips_r3041_reg_names;
c906108c
SS
4322}
4323
4324/* Just like reinit_frame_cache, but with the right arguments to be
4325 callable as an sfunc. */
4326
4327static void
acdb74a0
AC
4328reinit_frame_cache_sfunc (char *args, int from_tty,
4329 struct cmd_list_element *c)
c906108c
SS
4330{
4331 reinit_frame_cache ();
4332}
4333
a89aa300
AC
4334static int
4335gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 4336{
e5ab0dce 4337 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 4338
d31431ed
AC
4339 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4340 disassembler needs to be able to locally determine the ISA, and
4341 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4342 work. */
ec4045ea
AC
4343 if (mips_pc_is_mips16 (memaddr))
4344 info->mach = bfd_mach_mips16;
c906108c
SS
4345
4346 /* Round down the instruction address to the appropriate boundary. */
65c11066 4347 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 4348
e5ab0dce 4349 /* Set the disassembler options. */
6d82d43b 4350 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
e5ab0dce
AC
4351 {
4352 /* Set up the disassembler info, so that we get the right
6d82d43b 4353 register names from libopcodes. */
e5ab0dce
AC
4354 if (tdep->mips_abi == MIPS_ABI_N32)
4355 info->disassembler_options = "gpr-names=n32";
4356 else
4357 info->disassembler_options = "gpr-names=64";
4358 info->flavour = bfd_target_elf_flavour;
4359 }
4360 else
4361 /* This string is not recognized explicitly by the disassembler,
4362 but it tells the disassembler to not try to guess the ABI from
4363 the bfd elf headers, such that, if the user overrides the ABI
4364 of a program linked as NewABI, the disassembly will follow the
4365 register naming conventions specified by the user. */
4366 info->disassembler_options = "gpr-names=32";
4367
c906108c 4368 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 4369 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
4370 return print_insn_big_mips (memaddr, info);
4371 else
4372 return print_insn_little_mips (memaddr, info);
4373}
4374
c906108c
SS
4375/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
4376 counter value to determine whether a 16- or 32-bit breakpoint should be
4377 used. It returns a pointer to a string of bytes that encode a breakpoint
4378 instruction, stores the length of the string to *lenptr, and adjusts pc
4379 (if necessary) to point to the actual memory location where the
4380 breakpoint should be inserted. */
4381
f7ab6ec6 4382static const unsigned char *
6d82d43b 4383mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 4384{
d7449b42 4385 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c 4386 {
0fe7e7c8 4387 if (mips_pc_is_mips16 (*pcptr))
c906108c 4388 {
6d82d43b 4389 static unsigned char mips16_big_breakpoint[] = { 0xe8, 0xa5 };
95404a3e 4390 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4391 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
4392 return mips16_big_breakpoint;
4393 }
4394 else
4395 {
aaab4dba
AC
4396 /* The IDT board uses an unusual breakpoint value, and
4397 sometimes gets confused when it sees the usual MIPS
4398 breakpoint instruction. */
6d82d43b
AC
4399 static unsigned char big_breakpoint[] = { 0, 0x5, 0, 0xd };
4400 static unsigned char pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4401 static unsigned char idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
c906108c 4402
c5aa993b 4403 *lenptr = sizeof (big_breakpoint);
c906108c
SS
4404
4405 if (strcmp (target_shortname, "mips") == 0)
4406 return idt_big_breakpoint;
4407 else if (strcmp (target_shortname, "ddb") == 0
4408 || strcmp (target_shortname, "pmon") == 0
4409 || strcmp (target_shortname, "lsi") == 0)
4410 return pmon_big_breakpoint;
4411 else
4412 return big_breakpoint;
4413 }
4414 }
4415 else
4416 {
0fe7e7c8 4417 if (mips_pc_is_mips16 (*pcptr))
c906108c 4418 {
6d82d43b 4419 static unsigned char mips16_little_breakpoint[] = { 0xa5, 0xe8 };
95404a3e 4420 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4421 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
4422 return mips16_little_breakpoint;
4423 }
4424 else
4425 {
6d82d43b
AC
4426 static unsigned char little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4427 static unsigned char pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4428 static unsigned char idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
c906108c 4429
c5aa993b 4430 *lenptr = sizeof (little_breakpoint);
c906108c
SS
4431
4432 if (strcmp (target_shortname, "mips") == 0)
4433 return idt_little_breakpoint;
4434 else if (strcmp (target_shortname, "ddb") == 0
4435 || strcmp (target_shortname, "pmon") == 0
4436 || strcmp (target_shortname, "lsi") == 0)
4437 return pmon_little_breakpoint;
4438 else
4439 return little_breakpoint;
4440 }
4441 }
4442}
4443
4444/* If PC is in a mips16 call or return stub, return the address of the target
4445 PC, which is either the callee or the caller. There are several
4446 cases which must be handled:
4447
4448 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 4449 target PC is in $31 ($ra).
c906108c 4450 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 4451 and the target PC is in $2.
c906108c 4452 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4453 before the jal instruction, this is effectively a call stub
4454 and the the target PC is in $2. Otherwise this is effectively
4455 a return stub and the target PC is in $18.
c906108c
SS
4456
4457 See the source code for the stubs in gcc/config/mips/mips16.S for
e7d6a6d2 4458 gory details. */
c906108c 4459
757a7cc6 4460static CORE_ADDR
e7d6a6d2 4461mips_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
4462{
4463 char *name;
4464 CORE_ADDR start_addr;
4465
4466 /* Find the starting address and name of the function containing the PC. */
4467 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4468 return 0;
4469
4470 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4471 target PC is in $31 ($ra). */
4472 if (strcmp (name, "__mips16_ret_sf") == 0
4473 || strcmp (name, "__mips16_ret_df") == 0)
4c7d22cb 4474 return read_signed_register (MIPS_RA_REGNUM);
c906108c
SS
4475
4476 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4477 {
4478 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4479 and the target PC is in $2. */
4480 if (name[19] >= '0' && name[19] <= '9')
6c997a34 4481 return read_signed_register (2);
c906108c
SS
4482
4483 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4484 before the jal instruction, this is effectively a call stub
4485 and the the target PC is in $2. Otherwise this is effectively
4486 a return stub and the target PC is in $18. */
c906108c
SS
4487 else if (name[19] == 's' || name[19] == 'd')
4488 {
4489 if (pc == start_addr)
4490 {
4491 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
4492 stub. Such a stub for a function bar might have a name
4493 like __fn_stub_bar, and might look like this:
4494 mfc1 $4,$f13
4495 mfc1 $5,$f12
4496 mfc1 $6,$f15
4497 mfc1 $7,$f14
4498 la $1,bar (becomes a lui/addiu pair)
4499 jr $1
4500 So scan down to the lui/addi and extract the target
4501 address from those two instructions. */
c906108c 4502
6c997a34 4503 CORE_ADDR target_pc = read_signed_register (2);
d37cca3d 4504 ULONGEST inst;
c906108c
SS
4505 int i;
4506
4507 /* See if the name of the target function is __fn_stub_*. */
6d82d43b
AC
4508 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4509 0)
c906108c
SS
4510 return target_pc;
4511 if (strncmp (name, "__fn_stub_", 10) != 0
4512 && strcmp (name, "etext") != 0
4513 && strcmp (name, "_etext") != 0)
4514 return target_pc;
4515
4516 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
4517 The limit on the search is arbitrarily set to 20
4518 instructions. FIXME. */
95ac2dcf 4519 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
c906108c 4520 {
c5aa993b
JM
4521 inst = mips_fetch_instruction (target_pc);
4522 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4523 pc = (inst << 16) & 0xffff0000; /* high word */
4524 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4525 return pc | (inst & 0xffff); /* low word */
c906108c
SS
4526 }
4527
4528 /* Couldn't find the lui/addui pair, so return stub address. */
4529 return target_pc;
4530 }
4531 else
4532 /* This is the 'return' part of a call stub. The return
4533 address is in $r18. */
6c997a34 4534 return read_signed_register (18);
c906108c
SS
4535 }
4536 }
c5aa993b 4537 return 0; /* not a stub */
c906108c
SS
4538}
4539
a4b8ebc8
AC
4540/* Convert a dbx stab register number (from `r' declaration) to a GDB
4541 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
4542
4543static int
4544mips_stab_reg_to_regnum (int num)
4545{
a4b8ebc8 4546 int regnum;
2f38ef89 4547 if (num >= 0 && num < 32)
a4b8ebc8 4548 regnum = num;
2f38ef89 4549 else if (num >= 38 && num < 70)
56cea623 4550 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
040b99fd 4551 else if (num == 70)
56cea623 4552 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4553 else if (num == 71)
56cea623 4554 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4555 else
a4b8ebc8
AC
4556 /* This will hopefully (eventually) provoke a warning. Should
4557 we be calling complaint() here? */
4558 return NUM_REGS + NUM_PSEUDO_REGS;
4559 return NUM_REGS + regnum;
88c72b7d
AC
4560}
4561
2f38ef89 4562
a4b8ebc8
AC
4563/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4564 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
4565
4566static int
2f38ef89 4567mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 4568{
a4b8ebc8 4569 int regnum;
2f38ef89 4570 if (num >= 0 && num < 32)
a4b8ebc8 4571 regnum = num;
2f38ef89 4572 else if (num >= 32 && num < 64)
56cea623 4573 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
040b99fd 4574 else if (num == 64)
56cea623 4575 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4576 else if (num == 65)
56cea623 4577 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4578 else
a4b8ebc8
AC
4579 /* This will hopefully (eventually) provoke a warning. Should we
4580 be calling complaint() here? */
4581 return NUM_REGS + NUM_PSEUDO_REGS;
4582 return NUM_REGS + regnum;
4583}
4584
4585static int
4586mips_register_sim_regno (int regnum)
4587{
4588 /* Only makes sense to supply raw registers. */
4589 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
4590 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4591 decide if it is valid. Should instead define a standard sim/gdb
4592 register numbering scheme. */
4593 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
4594 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
4595 return regnum;
4596 else
6d82d43b 4597 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
4598}
4599
2f38ef89 4600
fc0c74b1
AC
4601/* Convert an integer into an address. By first converting the value
4602 into a pointer and then extracting it signed, the address is
4603 guarenteed to be correctly sign extended. */
4604
4605static CORE_ADDR
4606mips_integer_to_address (struct type *type, void *buf)
4607{
4608 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
4609 LONGEST val = unpack_long (type, buf);
4610 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
4611 return extract_signed_integer (tmp,
4612 TYPE_LENGTH (builtin_type_void_data_ptr));
4613}
4614
caaa3122
DJ
4615static void
4616mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4617{
4618 enum mips_abi *abip = (enum mips_abi *) obj;
4619 const char *name = bfd_get_section_name (abfd, sect);
4620
4621 if (*abip != MIPS_ABI_UNKNOWN)
4622 return;
4623
4624 if (strncmp (name, ".mdebug.", 8) != 0)
4625 return;
4626
4627 if (strcmp (name, ".mdebug.abi32") == 0)
4628 *abip = MIPS_ABI_O32;
4629 else if (strcmp (name, ".mdebug.abiN32") == 0)
4630 *abip = MIPS_ABI_N32;
62a49b2c 4631 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 4632 *abip = MIPS_ABI_N64;
caaa3122
DJ
4633 else if (strcmp (name, ".mdebug.abiO64") == 0)
4634 *abip = MIPS_ABI_O64;
4635 else if (strcmp (name, ".mdebug.eabi32") == 0)
4636 *abip = MIPS_ABI_EABI32;
4637 else if (strcmp (name, ".mdebug.eabi64") == 0)
4638 *abip = MIPS_ABI_EABI64;
4639 else
4640 warning ("unsupported ABI %s.", name + 8);
4641}
4642
2e4ebe70
DJ
4643static enum mips_abi
4644global_mips_abi (void)
4645{
4646 int i;
4647
4648 for (i = 0; mips_abi_strings[i] != NULL; i++)
4649 if (mips_abi_strings[i] == mips_abi_string)
4650 return (enum mips_abi) i;
4651
6d82d43b 4652 internal_error (__FILE__, __LINE__, "unknown ABI string");
2e4ebe70
DJ
4653}
4654
c2d11a7d 4655static struct gdbarch *
6d82d43b 4656mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 4657{
c2d11a7d
JM
4658 struct gdbarch *gdbarch;
4659 struct gdbarch_tdep *tdep;
4660 int elf_flags;
2e4ebe70 4661 enum mips_abi mips_abi, found_abi, wanted_abi;
a4b8ebc8 4662 int num_regs;
8d5838b5 4663 enum mips_fpu_type fpu_type;
c2d11a7d 4664
ec03c1ac
AC
4665 /* First of all, extract the elf_flags, if available. */
4666 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4667 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
4668 else if (arches != NULL)
4669 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
4670 else
4671 elf_flags = 0;
4672 if (gdbarch_debug)
4673 fprintf_unfiltered (gdb_stdlog,
6d82d43b 4674 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 4675
102182a9 4676 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
4677 switch ((elf_flags & EF_MIPS_ABI))
4678 {
4679 case E_MIPS_ABI_O32:
ec03c1ac 4680 found_abi = MIPS_ABI_O32;
0dadbba0
AC
4681 break;
4682 case E_MIPS_ABI_O64:
ec03c1ac 4683 found_abi = MIPS_ABI_O64;
0dadbba0
AC
4684 break;
4685 case E_MIPS_ABI_EABI32:
ec03c1ac 4686 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
4687 break;
4688 case E_MIPS_ABI_EABI64:
ec03c1ac 4689 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
4690 break;
4691 default:
acdb74a0 4692 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 4693 found_abi = MIPS_ABI_N32;
acdb74a0 4694 else
ec03c1ac 4695 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
4696 break;
4697 }
acdb74a0 4698
caaa3122 4699 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
4700 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4701 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 4702
dc305454 4703 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
4704 MIPS architecture (if there is one). */
4705 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
4706 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 4707
32a6503c 4708 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 4709 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
4710 && info.bfd_arch_info != NULL
4711 && info.bfd_arch_info->arch == bfd_arch_mips)
4712 {
4713 switch (info.bfd_arch_info->mach)
4714 {
4715 case bfd_mach_mips3900:
ec03c1ac 4716 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
4717 break;
4718 case bfd_mach_mips4100:
4719 case bfd_mach_mips5000:
ec03c1ac 4720 found_abi = MIPS_ABI_EABI64;
bf64bfd6 4721 break;
1d06468c
EZ
4722 case bfd_mach_mips8000:
4723 case bfd_mach_mips10000:
32a6503c
KB
4724 /* On Irix, ELF64 executables use the N64 ABI. The
4725 pseudo-sections which describe the ABI aren't present
4726 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
4727 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4728 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 4729 found_abi = MIPS_ABI_N64;
28d169de 4730 else
ec03c1ac 4731 found_abi = MIPS_ABI_N32;
1d06468c 4732 break;
bf64bfd6
AC
4733 }
4734 }
2e4ebe70 4735
ec03c1ac
AC
4736 if (gdbarch_debug)
4737 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
4738 found_abi);
4739
4740 /* What has the user specified from the command line? */
4741 wanted_abi = global_mips_abi ();
4742 if (gdbarch_debug)
4743 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
4744 wanted_abi);
2e4ebe70
DJ
4745
4746 /* Now that we have found what the ABI for this binary would be,
4747 check whether the user is overriding it. */
2e4ebe70
DJ
4748 if (wanted_abi != MIPS_ABI_UNKNOWN)
4749 mips_abi = wanted_abi;
ec03c1ac
AC
4750 else if (found_abi != MIPS_ABI_UNKNOWN)
4751 mips_abi = found_abi;
4752 else
4753 mips_abi = MIPS_ABI_O32;
4754 if (gdbarch_debug)
4755 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
4756 mips_abi);
2e4ebe70 4757
ec03c1ac 4758 /* Also used when doing an architecture lookup. */
4b9b3959 4759 if (gdbarch_debug)
ec03c1ac
AC
4760 fprintf_unfiltered (gdb_stdlog,
4761 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
4762 mips64_transfers_32bit_regs_p);
0dadbba0 4763
8d5838b5
AC
4764 /* Determine the MIPS FPU type. */
4765 if (!mips_fpu_type_auto)
4766 fpu_type = mips_fpu_type;
4767 else if (info.bfd_arch_info != NULL
4768 && info.bfd_arch_info->arch == bfd_arch_mips)
4769 switch (info.bfd_arch_info->mach)
4770 {
4771 case bfd_mach_mips3900:
4772 case bfd_mach_mips4100:
4773 case bfd_mach_mips4111:
a9d61c86 4774 case bfd_mach_mips4120:
8d5838b5
AC
4775 fpu_type = MIPS_FPU_NONE;
4776 break;
4777 case bfd_mach_mips4650:
4778 fpu_type = MIPS_FPU_SINGLE;
4779 break;
4780 default:
4781 fpu_type = MIPS_FPU_DOUBLE;
4782 break;
4783 }
4784 else if (arches != NULL)
4785 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
4786 else
4787 fpu_type = MIPS_FPU_DOUBLE;
4788 if (gdbarch_debug)
4789 fprintf_unfiltered (gdb_stdlog,
6d82d43b 4790 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 4791
c2d11a7d
JM
4792 /* try to find a pre-existing architecture */
4793 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4794 arches != NULL;
4795 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4796 {
4797 /* MIPS needs to be pedantic about which ABI the object is
102182a9 4798 using. */
9103eae0 4799 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 4800 continue;
9103eae0 4801 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 4802 continue;
719ec221
AC
4803 /* Need to be pedantic about which register virtual size is
4804 used. */
4805 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
4806 != mips64_transfers_32bit_regs_p)
4807 continue;
8d5838b5
AC
4808 /* Be pedantic about which FPU is selected. */
4809 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
4810 continue;
4be87837 4811 return arches->gdbarch;
c2d11a7d
JM
4812 }
4813
102182a9 4814 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
4815 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4816 gdbarch = gdbarch_alloc (&info, tdep);
4817 tdep->elf_flags = elf_flags;
719ec221 4818 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
4819 tdep->found_abi = found_abi;
4820 tdep->mips_abi = mips_abi;
8d5838b5 4821 tdep->mips_fpu_type = fpu_type;
c2d11a7d 4822
102182a9 4823 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
4824 set_gdbarch_short_bit (gdbarch, 16);
4825 set_gdbarch_int_bit (gdbarch, 32);
4826 set_gdbarch_float_bit (gdbarch, 32);
4827 set_gdbarch_double_bit (gdbarch, 64);
4828 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
4829 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
4830 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
4831 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 4832
6d82d43b 4833 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6
MS
4834 mips_elf_make_msymbol_special);
4835
16e109ca 4836 /* Fill in the OS dependant register numbers and names. */
56cea623 4837 {
16e109ca 4838 const char **reg_names;
56cea623
AC
4839 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
4840 struct mips_regnum);
56cea623
AC
4841 if (info.osabi == GDB_OSABI_IRIX)
4842 {
4843 regnum->fp0 = 32;
4844 regnum->pc = 64;
4845 regnum->cause = 65;
4846 regnum->badvaddr = 66;
4847 regnum->hi = 67;
4848 regnum->lo = 68;
4849 regnum->fp_control_status = 69;
4850 regnum->fp_implementation_revision = 70;
4851 num_regs = 71;
16e109ca 4852 reg_names = mips_irix_reg_names;
56cea623
AC
4853 }
4854 else
4855 {
4856 regnum->lo = MIPS_EMBED_LO_REGNUM;
4857 regnum->hi = MIPS_EMBED_HI_REGNUM;
4858 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
4859 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
4860 regnum->pc = MIPS_EMBED_PC_REGNUM;
4861 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
4862 regnum->fp_control_status = 70;
4863 regnum->fp_implementation_revision = 71;
4864 num_regs = 90;
16e109ca
AC
4865 if (info.bfd_arch_info != NULL
4866 && info.bfd_arch_info->mach == bfd_mach_mips3900)
4867 reg_names = mips_tx39_reg_names;
4868 else
4869 reg_names = mips_generic_reg_names;
56cea623
AC
4870 }
4871 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
4872 replaced by read_pc? */
f10683bb
MH
4873 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
4874 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
56cea623
AC
4875 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
4876 set_gdbarch_num_regs (gdbarch, num_regs);
4877 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
16e109ca
AC
4878 set_gdbarch_register_name (gdbarch, mips_register_name);
4879 tdep->mips_processor_reg_names = reg_names;
4880 tdep->regnum = regnum;
56cea623 4881 }
fe29b929 4882
0dadbba0 4883 switch (mips_abi)
c2d11a7d 4884 {
0dadbba0 4885 case MIPS_ABI_O32:
25ab4790 4886 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 4887 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 4888 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 4889 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 4890 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4891 set_gdbarch_long_bit (gdbarch, 32);
4892 set_gdbarch_ptr_bit (gdbarch, 32);
4893 set_gdbarch_long_long_bit (gdbarch, 64);
4894 break;
0dadbba0 4895 case MIPS_ABI_O64:
25ab4790 4896 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 4897 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 4898 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 4899 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 4900 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4901 set_gdbarch_long_bit (gdbarch, 32);
4902 set_gdbarch_ptr_bit (gdbarch, 32);
4903 set_gdbarch_long_long_bit (gdbarch, 64);
4904 break;
0dadbba0 4905 case MIPS_ABI_EABI32:
25ab4790 4906 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 4907 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 4908 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 4909 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 4910 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4911 set_gdbarch_long_bit (gdbarch, 32);
4912 set_gdbarch_ptr_bit (gdbarch, 32);
4913 set_gdbarch_long_long_bit (gdbarch, 64);
4914 break;
0dadbba0 4915 case MIPS_ABI_EABI64:
25ab4790 4916 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 4917 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 4918 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 4919 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 4920 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4921 set_gdbarch_long_bit (gdbarch, 64);
4922 set_gdbarch_ptr_bit (gdbarch, 64);
4923 set_gdbarch_long_long_bit (gdbarch, 64);
4924 break;
0dadbba0 4925 case MIPS_ABI_N32:
25ab4790 4926 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 4927 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 4928 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 4929 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 4930 tdep->default_mask_address_p = 0;
0dadbba0
AC
4931 set_gdbarch_long_bit (gdbarch, 32);
4932 set_gdbarch_ptr_bit (gdbarch, 32);
4933 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43
JB
4934 set_gdbarch_long_double_bit (gdbarch, 128);
4935 set_gdbarch_long_double_format (gdbarch,
4936 &floatformat_n32n64_long_double_big);
28d169de
KB
4937 break;
4938 case MIPS_ABI_N64:
25ab4790 4939 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 4940 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 4941 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 4942 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
4943 tdep->default_mask_address_p = 0;
4944 set_gdbarch_long_bit (gdbarch, 64);
4945 set_gdbarch_ptr_bit (gdbarch, 64);
4946 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43
JB
4947 set_gdbarch_long_double_bit (gdbarch, 128);
4948 set_gdbarch_long_double_format (gdbarch,
4949 &floatformat_n32n64_long_double_big);
0dadbba0 4950 break;
c2d11a7d 4951 default:
6d82d43b 4952 internal_error (__FILE__, __LINE__, "unknown ABI in switch");
c2d11a7d
JM
4953 }
4954
a5ea2558
AC
4955 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4956 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4957 comment:
4958
4959 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4960 flag in object files because to do so would make it impossible to
102182a9 4961 link with libraries compiled without "-gp32". This is
a5ea2558 4962 unnecessarily restrictive.
361d1df0 4963
a5ea2558
AC
4964 We could solve this problem by adding "-gp32" multilibs to gcc,
4965 but to set this flag before gcc is built with such multilibs will
4966 break too many systems.''
4967
4968 But even more unhelpfully, the default linker output target for
4969 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
4970 for 64-bit programs - you need to change the ABI to change this,
102182a9 4971 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
4972 this flag to detect 32-bit mode would do the wrong thing given
4973 the current gcc - it would make GDB treat these 64-bit programs
102182a9 4974 as 32-bit programs by default. */
a5ea2558 4975
6c997a34 4976 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 4977 set_gdbarch_write_pc (gdbarch, mips_write_pc);
bcb0cc15 4978 set_gdbarch_read_sp (gdbarch, mips_read_sp);
c2d11a7d 4979
102182a9
MS
4980 /* Add/remove bits from an address. The MIPS needs be careful to
4981 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
4982 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
4983
58dfe9ff
AC
4984 /* Unwind the frame. */
4985 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
edfae063 4986 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
10312cc4 4987
102182a9 4988 /* Map debug register numbers onto internal register numbers. */
88c72b7d 4989 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
4990 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
4991 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
4992 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
4993 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
4994 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
4995 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 4996 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 4997
c2d11a7d
JM
4998 /* MIPS version of CALL_DUMMY */
4999
9710e734
AC
5000 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5001 replaced by a command, and all targets will default to on stack
5002 (regardless of the stack's execute status). */
5003 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
dc604539 5004 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 5005
87783b8b
AC
5006 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5007 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5008 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5009
f7b9e9fc
AC
5010 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5011 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
f7b9e9fc
AC
5012
5013 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 5014
fc0c74b1
AC
5015 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5016 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5017 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 5018
a4b8ebc8 5019 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 5020
e11c53d2 5021 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 5022
e5ab0dce
AC
5023 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5024
3a3bc038
AC
5025 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5026 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5027 need to all be folded into the target vector. Since they are
5028 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5029 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5030 is sitting on? */
5031 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5032
e7d6a6d2 5033 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 5034
3352ef37
AC
5035 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5036
6de918a6
DJ
5037 /* Hook in OS ABI-specific overrides, if they have been registered. */
5038 gdbarch_init_osabi (info, gdbarch);
757a7cc6 5039
5792a79b 5040 /* Unwind the frame. */
eec63939 5041 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
45c9dd44
AC
5042 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5043 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
eec63939 5044 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44
AC
5045 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5046 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 5047
4b9b3959
AC
5048 return gdbarch;
5049}
5050
2e4ebe70 5051static void
6d82d43b 5052mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
5053{
5054 struct gdbarch_info info;
5055
5056 /* Force the architecture to update, and (if it's a MIPS architecture)
5057 mips_gdbarch_init will take care of the rest. */
5058 gdbarch_info_init (&info);
5059 gdbarch_update_p (info);
5060}
5061
ad188201
KB
5062/* Print out which MIPS ABI is in use. */
5063
5064static void
5065show_mips_abi (char *ignore_args, int from_tty)
5066{
5067 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6d82d43b
AC
5068 printf_filtered
5069 ("The MIPS ABI is unknown because the current architecture is not MIPS.\n");
ad188201
KB
5070 else
5071 {
5072 enum mips_abi global_abi = global_mips_abi ();
5073 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5074 const char *actual_abi_str = mips_abi_strings[actual_abi];
5075
5076 if (global_abi == MIPS_ABI_UNKNOWN)
6d82d43b
AC
5077 printf_filtered
5078 ("The MIPS ABI is set automatically (currently \"%s\").\n",
5079 actual_abi_str);
ad188201 5080 else if (global_abi == actual_abi)
6d82d43b
AC
5081 printf_filtered
5082 ("The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5083 actual_abi_str);
ad188201
KB
5084 else
5085 {
5086 /* Probably shouldn't happen... */
6d82d43b
AC
5087 printf_filtered
5088 ("The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5089 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
5090 }
5091 }
5092}
5093
4b9b3959
AC
5094static void
5095mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5096{
5097 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5098 if (tdep != NULL)
c2d11a7d 5099 {
acdb74a0
AC
5100 int ef_mips_arch;
5101 int ef_mips_32bitmode;
5102 /* determine the ISA */
5103 switch (tdep->elf_flags & EF_MIPS_ARCH)
5104 {
5105 case E_MIPS_ARCH_1:
5106 ef_mips_arch = 1;
5107 break;
5108 case E_MIPS_ARCH_2:
5109 ef_mips_arch = 2;
5110 break;
5111 case E_MIPS_ARCH_3:
5112 ef_mips_arch = 3;
5113 break;
5114 case E_MIPS_ARCH_4:
93d56215 5115 ef_mips_arch = 4;
acdb74a0
AC
5116 break;
5117 default:
93d56215 5118 ef_mips_arch = 0;
acdb74a0
AC
5119 break;
5120 }
5121 /* determine the size of a pointer */
5122 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
5123 fprintf_unfiltered (file,
5124 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 5125 tdep->elf_flags);
4b9b3959 5126 fprintf_unfiltered (file,
acdb74a0
AC
5127 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5128 ef_mips_32bitmode);
5129 fprintf_unfiltered (file,
5130 "mips_dump_tdep: ef_mips_arch = %d\n",
5131 ef_mips_arch);
5132 fprintf_unfiltered (file,
5133 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 5134 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b
AC
5135 fprintf_unfiltered (file,
5136 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
480d3dd2 5137 mips_mask_address_p (tdep),
4014092b 5138 tdep->default_mask_address_p);
c2d11a7d 5139 }
4b9b3959
AC
5140 fprintf_unfiltered (file,
5141 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5142 MIPS_DEFAULT_FPU_TYPE,
5143 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5144 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5145 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5146 : "???"));
6d82d43b 5147 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
4b9b3959
AC
5148 fprintf_unfiltered (file,
5149 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5150 MIPS_FPU_TYPE,
5151 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5152 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5153 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5154 : "???"));
4b9b3959 5155 fprintf_unfiltered (file,
480d3dd2 5156 "mips_dump_tdep: mips_stack_argsize() = %d\n",
13326b4e 5157 mips_stack_argsize (current_gdbarch));
c2d11a7d
JM
5158}
5159
6d82d43b 5160extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
a78f21af 5161
c906108c 5162void
acdb74a0 5163_initialize_mips_tdep (void)
c906108c
SS
5164{
5165 static struct cmd_list_element *mipsfpulist = NULL;
5166 struct cmd_list_element *c;
5167
6d82d43b 5168 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
5169 if (MIPS_ABI_LAST + 1
5170 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5171 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
5172
4b9b3959 5173 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 5174
8d5f9dcb
DJ
5175 mips_pdr_data = register_objfile_data ();
5176
a5ea2558
AC
5177 /* Add root prefix command for all "set mips"/"show mips" commands */
5178 add_prefix_cmd ("mips", no_class, set_mips_command,
5179 "Various MIPS specific commands.",
5180 &setmipscmdlist, "set mips ", 0, &setlist);
5181
5182 add_prefix_cmd ("mips", no_class, show_mips_command,
5183 "Various MIPS specific commands.",
5184 &showmipscmdlist, "show mips ", 0, &showlist);
5185
5186 /* Allow the user to override the saved register size. */
1b295c3d
AC
5187 add_setshow_enum_cmd ("saved-gpreg-size", class_obscure,
5188 size_enums, &mips_abi_regsize_string, "\
5189Set size of general purpose registers saved on the stack.\n", "\
5190Show size of general purpose registers saved on the stack.\n", "\
a5ea2558
AC
5191This option can be set to one of:\n\
5192 32 - Force GDB to treat saved GP registers as 32-bit\n\
5193 64 - Force GDB to treat saved GP registers as 64-bit\n\
5194 auto - Allow GDB to use the target's default setting or autodetect the\n\
5195 saved GP register size from information contained in the executable.\n\
1b295c3d
AC
5196 (default: auto)", "\
5197Size of general purpose registers saved on the stack is %s.\n",
5198 NULL, NULL, &setmipscmdlist, &showmipscmdlist);
a5ea2558 5199
d929b26f 5200 /* Allow the user to override the argument stack size. */
1b295c3d
AC
5201 add_setshow_enum_cmd ("stack-arg-size", class_obscure,
5202 size_enums, &mips_stack_argsize_string, "\
5203Set the amount of stack space reserved for each argument.\n", "\
5204Show the amount of stack space reserved for each argument.\n", "\
d929b26f
AC
5205This option can be set to one of:\n\
5206 32 - Force GDB to allocate 32-bit chunks per argument\n\
5207 64 - Force GDB to allocate 64-bit chunks per argument\n\
5208 auto - Allow GDB to determine the correct setting from the current\n\
1b295c3d
AC
5209 target and executable (default)", "\
5210The amount of stack space reserved for each argument is %s.\n",
5211 NULL, NULL, &setmipscmdlist, &showmipscmdlist);
d929b26f 5212
2e4ebe70
DJ
5213 /* Allow the user to override the ABI. */
5214 c = add_set_enum_cmd
5215 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
5216 "Set the ABI used by this program.\n"
5217 "This option can be set to one of:\n"
5218 " auto - the default ABI associated with the current binary\n"
5219 " o32\n"
6d82d43b 5220 " o64\n" " n32\n" " n64\n" " eabi32\n" " eabi64", &setmipscmdlist);
2e4ebe70 5221 set_cmd_sfunc (c, mips_abi_update);
ad188201 5222 add_cmd ("abi", class_obscure, show_mips_abi,
6d82d43b 5223 "Show ABI in use by MIPS target", &showmipscmdlist);
2e4ebe70 5224
c906108c
SS
5225 /* Let the user turn off floating point and set the fence post for
5226 heuristic_proc_start. */
5227
5228 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5229 "Set use of MIPS floating-point coprocessor.",
5230 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5231 add_cmd ("single", class_support, set_mipsfpu_single_command,
5232 "Select single-precision MIPS floating-point coprocessor.",
5233 &mipsfpulist);
5234 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 5235 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
5236 &mipsfpulist);
5237 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5238 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5239 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5240 add_cmd ("none", class_support, set_mipsfpu_none_command,
6d82d43b 5241 "Select no MIPS floating-point coprocessor.", &mipsfpulist);
c906108c
SS
5242 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5243 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5244 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5245 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5246 "Select MIPS floating-point coprocessor automatically.",
5247 &mipsfpulist);
5248 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5249 "Show current use of MIPS floating-point coprocessor target.",
5250 &showlist);
5251
c906108c
SS
5252 /* We really would like to have both "0" and "unlimited" work, but
5253 command.c doesn't deal with that. So make it a var_zinteger
5254 because the user can always use "999999" or some such for unlimited. */
6bcadd06
AC
5255 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5256 &heuristic_fence_post, "\
5257Set the distance searched for the start of a function.\n", "\
5258Show the distance searched for the start of a function.\n", "\
c906108c
SS
5259If you are debugging a stripped executable, GDB needs to search through the\n\
5260program for the start of a function. This command sets the distance of the\n\
6bcadd06
AC
5261search. The only need to set it is when debugging a stripped executable.", "\
5262The distance searched for the start of a function is %s.\n",
5263 reinit_frame_cache_sfunc, NULL,
5264 &setlist, &showlist);
c906108c
SS
5265
5266 /* Allow the user to control whether the upper bits of 64-bit
5267 addresses should be zeroed. */
e9e68a56 5268 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
3b64bf98
AC
5269Set zeroing of upper 32 bits of 64-bit addresses.", "\
5270Show zeroing of upper 32 bits of 64-bit addresses.", "\
e9e68a56
AC
5271Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5272allow GDB to determine the correct value.\n", "\
3b64bf98 5273Zerroing of upper 32 bits of 64-bit address is %s.",
6d82d43b 5274 NULL, show_mask_address, &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
5275
5276 /* Allow the user to control the size of 32 bit registers within the
5277 raw remote packet. */
b3f42336
AC
5278 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5279 &mips64_transfers_32bit_regs_p, "\
3b64bf98
AC
5280Set compatibility with 64-bit MIPS target that transfers 32-bit quantities.", "\
5281Show compatibility with 64-bit MIPS target that transfers 32-bit quantities.", "\
719ec221
AC
5282Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5283that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6d82d43b 528464 bits for others. Use \"off\" to disable compatibility mode", "\
3b64bf98
AC
5285Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s.",
5286 set_mips64_transfers_32bit_regs, NULL, &setlist, &showlist);
9ace0497
AC
5287
5288 /* Debug this files internals. */
6bcadd06
AC
5289 add_setshow_zinteger_cmd ("mips", class_maintenance,
5290 &mips_debug, "\
5291Set mips debugging.\n", "\
5292Show mips debugging.\n", "\
5293When non-zero, mips specific debugging is enabled.\n", "\
5294Mips debugging is currently %s.\n",
5295 NULL, NULL,
5296 &setdebuglist, &showdebuglist);
c906108c 5297}
This page took 0.931381 seconds and 4 git commands to generate.