* config/s390/s390.mh (NATDEPFILES): Add linux-fork.o.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
197e01b6 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
d05f6826 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
47a35522 5 Free Software Foundation, Inc.
bf64bfd6 6
c906108c
SS
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b
JM
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
197e01b6
EZ
24 Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 Boston, MA 02110-1301, USA. */
c906108c
SS
26
27#include "defs.h"
28#include "gdb_string.h"
5e2e9765 29#include "gdb_assert.h"
c906108c
SS
30#include "frame.h"
31#include "inferior.h"
32#include "symtab.h"
33#include "value.h"
34#include "gdbcmd.h"
35#include "language.h"
36#include "gdbcore.h"
37#include "symfile.h"
38#include "objfiles.h"
39#include "gdbtypes.h"
40#include "target.h"
28d069e6 41#include "arch-utils.h"
4e052eda 42#include "regcache.h"
70f80edf 43#include "osabi.h"
d1973055 44#include "mips-tdep.h"
fe898f56 45#include "block.h"
a4b8ebc8 46#include "reggroups.h"
c906108c 47#include "opcode/mips.h"
c2d11a7d
JM
48#include "elf/mips.h"
49#include "elf-bfd.h"
2475bac3 50#include "symcat.h"
a4b8ebc8 51#include "sim-regno.h"
a89aa300 52#include "dis-asm.h"
edfae063
AC
53#include "frame-unwind.h"
54#include "frame-base.h"
55#include "trad-frame.h"
7d9b040b 56#include "infcall.h"
fed7ba43 57#include "floatformat.h"
c906108c 58
8d5f9dcb
DJ
59static const struct objfile_data *mips_pdr_data;
60
5bbcb741 61static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 62
24e05951 63/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
64/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
65#define ST0_FR (1 << 26)
66
b0069a17
AC
67/* The sizes of floating point registers. */
68
69enum
70{
71 MIPS_FPU_SINGLE_REGSIZE = 4,
72 MIPS_FPU_DOUBLE_REGSIZE = 8
73};
74
0dadbba0 75
2e4ebe70
DJ
76static const char *mips_abi_string;
77
78static const char *mips_abi_strings[] = {
79 "auto",
80 "n32",
81 "o32",
28d169de 82 "n64",
2e4ebe70
DJ
83 "o64",
84 "eabi32",
85 "eabi64",
86 NULL
87};
88
d929b26f
AC
89/* Various MIPS ISA options (related to stack analysis) can be
90 overridden dynamically. Establish an enum/array for managing
91 them. */
92
53904c9e
AC
93static const char size_auto[] = "auto";
94static const char size_32[] = "32";
95static const char size_64[] = "64";
d929b26f 96
53904c9e 97static const char *size_enums[] = {
d929b26f
AC
98 size_auto,
99 size_32,
100 size_64,
a5ea2558
AC
101 0
102};
103
7a292a7a 104/* Some MIPS boards don't support floating point while others only
ceae6e75 105 support single-precision floating-point operations. */
c906108c
SS
106
107enum mips_fpu_type
6d82d43b
AC
108{
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
112};
c906108c
SS
113
114#ifndef MIPS_DEFAULT_FPU_TYPE
115#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
116#endif
117static int mips_fpu_type_auto = 1;
118static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 119
9ace0497 120static int mips_debug = 0;
7a292a7a 121
c2d11a7d
JM
122/* MIPS specific per-architecture information */
123struct gdbarch_tdep
6d82d43b
AC
124{
125 /* from the elf header */
126 int elf_flags;
127
128 /* mips options */
129 enum mips_abi mips_abi;
130 enum mips_abi found_abi;
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
6d82d43b
AC
134 int default_mask_address_p;
135 /* Is the target using 64-bit raw integer registers but only
136 storing a left-aligned 32-bit value in each? */
137 int mips64_transfers_32bit_regs_p;
138 /* Indexes for various registers. IRIX and embedded have
139 different values. This contains the "public" fields. Don't
140 add any that do not need to be public. */
141 const struct mips_regnum *regnum;
142 /* Register names table for the current register set. */
143 const char **mips_processor_reg_names;
144};
c2d11a7d 145
fed7ba43
JB
146static int
147n32n64_floatformat_always_valid (const struct floatformat *fmt,
2244f671 148 const void *from)
fed7ba43
JB
149{
150 return 1;
151}
152
153/* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
154 They are implemented as a pair of 64bit doubles where the high
155 part holds the result of the operation rounded to double, and
156 the low double holds the difference between the exact result and
157 the rounded result. So "high" + "low" contains the result with
158 added precision. Unfortunately, the floatformat structure used
159 by GDB is not powerful enough to describe this format. As a temporary
160 measure, we define a 128bit floatformat that only uses the high part.
161 We lose a bit of precision but that's probably the best we can do
162 for now with the current infrastructure. */
163
164static const struct floatformat floatformat_n32n64_long_double_big =
165{
166 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
167 floatformat_intbit_no,
168 "floatformat_ieee_double_big",
169 n32n64_floatformat_always_valid
170};
171
56cea623
AC
172const struct mips_regnum *
173mips_regnum (struct gdbarch *gdbarch)
174{
175 return gdbarch_tdep (gdbarch)->regnum;
176}
177
178static int
179mips_fpa0_regnum (struct gdbarch *gdbarch)
180{
181 return mips_regnum (gdbarch)->fp0 + 12;
182}
183
0dadbba0 184#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 185 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 186
c2d11a7d 187#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 188
c2d11a7d 189#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 190
c2d11a7d 191#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 192
95404a3e
AC
193/* MIPS16 function addresses are odd (bit 0 is set). Here are some
194 functions to test, set, or clear bit 0 of addresses. */
195
196static CORE_ADDR
197is_mips16_addr (CORE_ADDR addr)
198{
199 return ((addr) & 1);
200}
201
95404a3e
AC
202static CORE_ADDR
203unmake_mips16_addr (CORE_ADDR addr)
204{
5b652102 205 return ((addr) & ~(CORE_ADDR) 1);
95404a3e
AC
206}
207
22540ece
AC
208/* Return the contents of register REGNUM as a signed integer. */
209
210static LONGEST
211read_signed_register (int regnum)
212{
1d93fe1a
AC
213 LONGEST val;
214 regcache_cooked_read_signed (current_regcache, regnum, &val);
215 return val;
22540ece
AC
216}
217
218static LONGEST
219read_signed_register_pid (int regnum, ptid_t ptid)
220{
221 ptid_t save_ptid;
222 LONGEST retval;
223
224 if (ptid_equal (ptid, inferior_ptid))
225 return read_signed_register (regnum);
226
227 save_ptid = inferior_ptid;
228
229 inferior_ptid = ptid;
230
231 retval = read_signed_register (regnum);
232
233 inferior_ptid = save_ptid;
234
235 return retval;
236}
237
d1973055
KB
238/* Return the MIPS ABI associated with GDBARCH. */
239enum mips_abi
240mips_abi (struct gdbarch *gdbarch)
241{
242 return gdbarch_tdep (gdbarch)->mips_abi;
243}
244
4246e332 245int
1b13c4f6 246mips_isa_regsize (struct gdbarch *gdbarch)
4246e332
AC
247{
248 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
249 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
250}
251
480d3dd2
AC
252/* Return the currently configured (or set) saved register size. */
253
1b13c4f6 254static const char *mips_abi_regsize_string = size_auto;
480d3dd2 255
e6bc2e8a 256unsigned int
13326b4e 257mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 258{
1b13c4f6 259 if (mips_abi_regsize_string == size_auto)
13326b4e
AC
260 switch (mips_abi (gdbarch))
261 {
262 case MIPS_ABI_EABI32:
263 case MIPS_ABI_O32:
264 return 4;
265 case MIPS_ABI_N32:
266 case MIPS_ABI_N64:
267 case MIPS_ABI_O64:
268 case MIPS_ABI_EABI64:
269 return 8;
270 case MIPS_ABI_UNKNOWN:
271 case MIPS_ABI_LAST:
272 default:
e2e0b3e5 273 internal_error (__FILE__, __LINE__, _("bad switch"));
13326b4e 274 }
1b13c4f6 275 else if (mips_abi_regsize_string == size_64)
d929b26f 276 return 8;
1b13c4f6 277 else /* if (mips_abi_regsize_string == size_32) */
d929b26f
AC
278 return 4;
279}
280
71b8ef93 281/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa 282 marks it as 16-bit function. The MSB of the minimal symbol's
f594e5e9 283 "info" field is used for this purpose.
5a89d8aa
MS
284
285 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
286 i.e. refers to a 16-bit function, and sets a "special" bit in a
287 minimal symbol to mark it as a 16-bit function
288
f594e5e9 289 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
5a89d8aa 290
5a89d8aa 291static void
6d82d43b
AC
292mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
293{
294 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
295 {
296 MSYMBOL_INFO (msym) = (char *)
297 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
298 SYMBOL_VALUE_ADDRESS (msym) |= 1;
299 }
5a89d8aa
MS
300}
301
71b8ef93
MS
302static int
303msymbol_is_special (struct minimal_symbol *msym)
304{
305 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
306}
307
88658117
AC
308/* XFER a value from the big/little/left end of the register.
309 Depending on the size of the value it might occupy the entire
310 register or just part of it. Make an allowance for this, aligning
311 things accordingly. */
312
313static void
314mips_xfer_register (struct regcache *regcache, int reg_num, int length,
870cd05e
MK
315 enum bfd_endian endian, gdb_byte *in,
316 const gdb_byte *out, int buf_offset)
88658117 317{
88658117 318 int reg_offset = 0;
a4b8ebc8 319 gdb_assert (reg_num >= NUM_REGS);
cb1d2653
AC
320 /* Need to transfer the left or right part of the register, based on
321 the targets byte order. */
88658117
AC
322 switch (endian)
323 {
324 case BFD_ENDIAN_BIG:
719ec221 325 reg_offset = register_size (current_gdbarch, reg_num) - length;
88658117
AC
326 break;
327 case BFD_ENDIAN_LITTLE:
328 reg_offset = 0;
329 break;
6d82d43b 330 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
331 reg_offset = 0;
332 break;
333 default:
e2e0b3e5 334 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
335 }
336 if (mips_debug)
cb1d2653
AC
337 fprintf_unfiltered (gdb_stderr,
338 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
339 reg_num, reg_offset, buf_offset, length);
88658117
AC
340 if (mips_debug && out != NULL)
341 {
342 int i;
cb1d2653 343 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 344 for (i = 0; i < length; i++)
cb1d2653 345 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
346 }
347 if (in != NULL)
6d82d43b
AC
348 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
349 in + buf_offset);
88658117 350 if (out != NULL)
6d82d43b
AC
351 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
352 out + buf_offset);
88658117
AC
353 if (mips_debug && in != NULL)
354 {
355 int i;
cb1d2653 356 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 357 for (i = 0; i < length; i++)
cb1d2653 358 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
359 }
360 if (mips_debug)
361 fprintf_unfiltered (gdb_stdlog, "\n");
362}
363
dd824b04
DJ
364/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
365 compatiblity mode. A return value of 1 means that we have
366 physical 64-bit registers, but should treat them as 32-bit registers. */
367
368static int
369mips2_fp_compat (void)
370{
371 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
372 meaningful. */
6d82d43b
AC
373 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
374 4)
dd824b04
DJ
375 return 0;
376
377#if 0
378 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
379 in all the places we deal with FP registers. PR gdb/413. */
380 /* Otherwise check the FR bit in the status register - it controls
381 the FP compatiblity mode. If it is clear we are in compatibility
382 mode. */
24e05951 383 if ((read_register (MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
384 return 1;
385#endif
361d1df0 386
dd824b04
DJ
387 return 0;
388}
389
d929b26f 390/* The amount of space reserved on the stack for registers. This is
1b13c4f6 391 different to MIPS_ABI_REGSIZE as it determines the alignment of
d929b26f
AC
392 data allocated after the registers have run out. */
393
53904c9e 394static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
395
396static unsigned int
13326b4e 397mips_stack_argsize (struct gdbarch *gdbarch)
d929b26f
AC
398{
399 if (mips_stack_argsize_string == size_auto)
13326b4e 400 return mips_abi_regsize (gdbarch);
d929b26f
AC
401 else if (mips_stack_argsize_string == size_64)
402 return 8;
6d82d43b 403 else /* if (mips_stack_argsize_string == size_32) */
d929b26f
AC
404 return 4;
405}
406
7a292a7a 407#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 408
a14ed312 409static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 410
a14ed312 411static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 412
a14ed312 413static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 414
67b2c998
DJ
415static struct type *mips_float_register_type (void);
416static struct type *mips_double_register_type (void);
417
acdb74a0
AC
418/* The list of available "set mips " and "show mips " commands */
419
420static struct cmd_list_element *setmipscmdlist = NULL;
421static struct cmd_list_element *showmipscmdlist = NULL;
422
5e2e9765
KB
423/* Integer registers 0 thru 31 are handled explicitly by
424 mips_register_name(). Processor specific registers 32 and above
691c0433
AC
425 are listed in the followign tables. */
426
6d82d43b
AC
427enum
428{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
429
430/* Generic MIPS. */
431
432static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
433 "sr", "lo", "hi", "bad", "cause", "pc",
434 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
435 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
436 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
437 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
438 "fsr", "fir", "" /*"fp" */ , "",
439 "", "", "", "", "", "", "", "",
440 "", "", "", "", "", "", "", "",
691c0433
AC
441};
442
443/* Names of IDT R3041 registers. */
444
445static const char *mips_r3041_reg_names[] = {
6d82d43b
AC
446 "sr", "lo", "hi", "bad", "cause", "pc",
447 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
448 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
449 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
450 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
451 "fsr", "fir", "", /*"fp" */ "",
452 "", "", "bus", "ccfg", "", "", "", "",
453 "", "", "port", "cmp", "", "", "epc", "prid",
691c0433
AC
454};
455
456/* Names of tx39 registers. */
457
458static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
459 "sr", "lo", "hi", "bad", "cause", "pc",
460 "", "", "", "", "", "", "", "",
461 "", "", "", "", "", "", "", "",
462 "", "", "", "", "", "", "", "",
463 "", "", "", "", "", "", "", "",
464 "", "", "", "",
465 "", "", "", "", "", "", "", "",
466 "", "", "config", "cache", "debug", "depc", "epc", ""
691c0433
AC
467};
468
469/* Names of IRIX registers. */
470static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
471 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
472 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
473 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
474 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
475 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
691c0433
AC
476};
477
cce74817 478
5e2e9765 479/* Return the name of the register corresponding to REGNO. */
5a89d8aa 480static const char *
5e2e9765 481mips_register_name (int regno)
cce74817 482{
691c0433 483 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5e2e9765
KB
484 /* GPR names for all ABIs other than n32/n64. */
485 static char *mips_gpr_names[] = {
6d82d43b
AC
486 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
487 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
488 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
489 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
490 };
491
492 /* GPR names for n32 and n64 ABIs. */
493 static char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
494 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
495 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
496 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
497 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
498 };
499
500 enum mips_abi abi = mips_abi (current_gdbarch);
501
a4b8ebc8
AC
502 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
503 don't make the raw register names visible. */
504 int rawnum = regno % NUM_REGS;
505 if (regno < NUM_REGS)
506 return "";
507
5e2e9765
KB
508 /* The MIPS integer registers are always mapped from 0 to 31. The
509 names of the registers (which reflects the conventions regarding
510 register use) vary depending on the ABI. */
a4b8ebc8 511 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
512 {
513 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 514 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 515 else
a4b8ebc8 516 return mips_gpr_names[rawnum];
5e2e9765 517 }
a4b8ebc8 518 else if (32 <= rawnum && rawnum < NUM_REGS)
691c0433
AC
519 {
520 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
521 return tdep->mips_processor_reg_names[rawnum - 32];
522 }
5e2e9765
KB
523 else
524 internal_error (__FILE__, __LINE__,
e2e0b3e5 525 _("mips_register_name: bad register number %d"), rawnum);
cce74817 526}
5e2e9765 527
a4b8ebc8 528/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 529
a4b8ebc8
AC
530static int
531mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
532 struct reggroup *reggroup)
533{
534 int vector_p;
535 int float_p;
536 int raw_p;
537 int rawnum = regnum % NUM_REGS;
538 int pseudo = regnum / NUM_REGS;
539 if (reggroup == all_reggroup)
540 return pseudo;
541 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
542 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
543 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
544 (gdbarch), as not all architectures are multi-arch. */
545 raw_p = rawnum < NUM_REGS;
6d82d43b 546 if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0')
a4b8ebc8
AC
547 return 0;
548 if (reggroup == float_reggroup)
549 return float_p && pseudo;
550 if (reggroup == vector_reggroup)
551 return vector_p && pseudo;
552 if (reggroup == general_reggroup)
553 return (!vector_p && !float_p) && pseudo;
554 /* Save the pseudo registers. Need to make certain that any code
555 extracting register values from a saved register cache also uses
556 pseudo registers. */
557 if (reggroup == save_reggroup)
558 return raw_p && pseudo;
559 /* Restore the same pseudo register. */
560 if (reggroup == restore_reggroup)
561 return raw_p && pseudo;
6d82d43b 562 return 0;
a4b8ebc8
AC
563}
564
565/* Map the symbol table registers which live in the range [1 *
566 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
47ebcfbe 567 registers. Take care of alignment and size problems. */
c5aa993b 568
a4b8ebc8
AC
569static void
570mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
47a35522 571 int cookednum, gdb_byte *buf)
a4b8ebc8 572{
47ebcfbe 573 int rawnum = cookednum % NUM_REGS;
a4b8ebc8 574 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
47ebcfbe 575 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 576 regcache_raw_read (regcache, rawnum, buf);
6d82d43b
AC
577 else if (register_size (gdbarch, rawnum) >
578 register_size (gdbarch, cookednum))
47ebcfbe
AC
579 {
580 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
581 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
582 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
583 else
584 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
585 }
586 else
e2e0b3e5 587 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
588}
589
590static void
6d82d43b
AC
591mips_pseudo_register_write (struct gdbarch *gdbarch,
592 struct regcache *regcache, int cookednum,
47a35522 593 const gdb_byte *buf)
a4b8ebc8 594{
47ebcfbe 595 int rawnum = cookednum % NUM_REGS;
a4b8ebc8 596 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
47ebcfbe 597 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 598 regcache_raw_write (regcache, rawnum, buf);
6d82d43b
AC
599 else if (register_size (gdbarch, rawnum) >
600 register_size (gdbarch, cookednum))
47ebcfbe
AC
601 {
602 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
603 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
604 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
605 else
606 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
607 }
608 else
e2e0b3e5 609 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 610}
c5aa993b 611
c906108c 612/* Table to translate MIPS16 register field to actual register number. */
6d82d43b 613static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
614
615/* Heuristic_proc_start may hunt through the text section for a long
616 time across a 2400 baud serial line. Allows the user to limit this
617 search. */
618
619static unsigned int heuristic_fence_post = 0;
620
46cd78fb 621/* Number of bytes of storage in the actual machine representation for
719ec221
AC
622 register N. NOTE: This defines the pseudo register type so need to
623 rebuild the architecture vector. */
43e526b9
JM
624
625static int mips64_transfers_32bit_regs_p = 0;
626
719ec221
AC
627static void
628set_mips64_transfers_32bit_regs (char *args, int from_tty,
629 struct cmd_list_element *c)
43e526b9 630{
719ec221
AC
631 struct gdbarch_info info;
632 gdbarch_info_init (&info);
633 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
634 instead of relying on globals. Doing that would let generic code
635 handle the search for this specific architecture. */
636 if (!gdbarch_update_p (info))
a4b8ebc8 637 {
719ec221 638 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 639 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 640 }
a4b8ebc8
AC
641}
642
47ebcfbe 643/* Convert to/from a register and the corresponding memory value. */
43e526b9 644
ff2e87ac
AC
645static int
646mips_convert_register_p (int regnum, struct type *type)
647{
648 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
719ec221 649 && register_size (current_gdbarch, regnum) == 4
87783b8b
AC
650 && (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
651 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32
6d82d43b 652 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
653}
654
42c466d7 655static void
ff2e87ac 656mips_register_to_value (struct frame_info *frame, int regnum,
47a35522 657 struct type *type, gdb_byte *to)
102182a9 658{
47a35522
MK
659 get_frame_register (frame, regnum + 0, to + 4);
660 get_frame_register (frame, regnum + 1, to + 0);
102182a9
MS
661}
662
42c466d7 663static void
ff2e87ac 664mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 665 struct type *type, const gdb_byte *from)
102182a9 666{
47a35522
MK
667 put_frame_register (frame, regnum + 0, from + 4);
668 put_frame_register (frame, regnum + 1, from + 0);
102182a9
MS
669}
670
a4b8ebc8
AC
671/* Return the GDB type object for the "standard" data type of data in
672 register REG. */
78fde5f8
KB
673
674static struct type *
a4b8ebc8
AC
675mips_register_type (struct gdbarch *gdbarch, int regnum)
676{
5ef80fb0 677 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
56cea623
AC
678 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
679 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
a6425924 680 {
5ef80fb0 681 /* The floating-point registers raw, or cooked, always match
1b13c4f6 682 mips_isa_regsize(), and also map 1:1, byte for byte. */
5ef80fb0
AC
683 switch (gdbarch_byte_order (gdbarch))
684 {
685 case BFD_ENDIAN_BIG:
1b13c4f6 686 if (mips_isa_regsize (gdbarch) == 4)
5ef80fb0
AC
687 return builtin_type_ieee_single_big;
688 else
689 return builtin_type_ieee_double_big;
690 case BFD_ENDIAN_LITTLE:
1b13c4f6 691 if (mips_isa_regsize (gdbarch) == 4)
5ef80fb0
AC
692 return builtin_type_ieee_single_little;
693 else
694 return builtin_type_ieee_double_little;
695 case BFD_ENDIAN_UNKNOWN:
696 default:
e2e0b3e5 697 internal_error (__FILE__, __LINE__, _("bad switch"));
5ef80fb0 698 }
a6425924 699 }
d5ac5a39
AC
700 else if (regnum < NUM_REGS)
701 {
702 /* The raw or ISA registers. These are all sized according to
703 the ISA regsize. */
704 if (mips_isa_regsize (gdbarch) == 4)
705 return builtin_type_int32;
706 else
707 return builtin_type_int64;
708 }
78fde5f8 709 else
d5ac5a39
AC
710 {
711 /* The cooked or ABI registers. These are sized according to
712 the ABI (with a few complications). */
713 if (regnum >= (NUM_REGS
714 + mips_regnum (current_gdbarch)->fp_control_status)
607fc93c 715 && regnum <= NUM_REGS + MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
716 /* The pseudo/cooked view of the embedded registers is always
717 32-bit. The raw view is handled below. */
718 return builtin_type_int32;
719 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
720 /* The target, while possibly using a 64-bit register buffer,
721 is only transfering 32-bits of each integer register.
722 Reflect this in the cooked/pseudo (ABI) register value. */
723 return builtin_type_int32;
724 else if (mips_abi_regsize (gdbarch) == 4)
725 /* The ABI is restricted to 32-bit registers (the ISA could be
726 32- or 64-bit). */
727 return builtin_type_int32;
728 else
729 /* 64-bit ABI. */
730 return builtin_type_int64;
731 }
78fde5f8
KB
732}
733
bcb0cc15
MS
734/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
735
736static CORE_ADDR
737mips_read_sp (void)
738{
f10683bb 739 return read_signed_register (MIPS_SP_REGNUM);
bcb0cc15
MS
740}
741
c906108c 742/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 743enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
744
745static int
480d3dd2 746mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
747{
748 switch (mask_address_var)
749 {
7f19b9a2 750 case AUTO_BOOLEAN_TRUE:
4014092b 751 return 1;
7f19b9a2 752 case AUTO_BOOLEAN_FALSE:
4014092b
AC
753 return 0;
754 break;
7f19b9a2 755 case AUTO_BOOLEAN_AUTO:
480d3dd2 756 return tdep->default_mask_address_p;
4014092b 757 default:
e2e0b3e5 758 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
4014092b 759 return -1;
361d1df0 760 }
4014092b
AC
761}
762
763static void
08546159
AC
764show_mask_address (struct ui_file *file, int from_tty,
765 struct cmd_list_element *c, const char *value)
4014092b 766{
480d3dd2 767 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
08546159
AC
768
769 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
770 switch (mask_address_var)
771 {
7f19b9a2 772 case AUTO_BOOLEAN_TRUE:
4014092b
AC
773 printf_filtered ("The 32 bit mips address mask is enabled\n");
774 break;
7f19b9a2 775 case AUTO_BOOLEAN_FALSE:
4014092b
AC
776 printf_filtered ("The 32 bit mips address mask is disabled\n");
777 break;
7f19b9a2 778 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
779 printf_filtered
780 ("The 32 bit address mask is set automatically. Currently %s\n",
781 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
782 break;
783 default:
e2e0b3e5 784 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 785 break;
361d1df0 786 }
4014092b 787}
c906108c 788
c906108c
SS
789/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
790
0fe7e7c8
AC
791int
792mips_pc_is_mips16 (CORE_ADDR memaddr)
c906108c
SS
793{
794 struct minimal_symbol *sym;
795
796 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 797 if (is_mips16_addr (memaddr))
c906108c
SS
798 return 1;
799
800 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
801 the high bit of the info field. Use this to decide if the function is
802 MIPS16 or normal MIPS. */
803 sym = lookup_minimal_symbol_by_pc (memaddr);
804 if (sym)
71b8ef93 805 return msymbol_is_special (sym);
c906108c
SS
806 else
807 return 0;
808}
809
b2fa5097 810/* MIPS believes that the PC has a sign extended value. Perhaps the
6c997a34
AC
811 all registers should be sign extended for simplicity? */
812
813static CORE_ADDR
39f77062 814mips_read_pc (ptid_t ptid)
6c997a34 815{
b6cb9035
AC
816 return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid);
817}
818
58dfe9ff
AC
819static CORE_ADDR
820mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
821{
edfae063
AC
822 return frame_unwind_register_signed (next_frame,
823 NUM_REGS + mips_regnum (gdbarch)->pc);
824}
825
826/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
827 dummy frame. The frame ID's base needs to match the TOS value
828 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
829 breakpoint. */
830
831static struct frame_id
832mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
833{
f10683bb 834 return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + MIPS_SP_REGNUM),
edfae063 835 frame_pc_unwind (next_frame));
58dfe9ff
AC
836}
837
b6cb9035
AC
838static void
839mips_write_pc (CORE_ADDR pc, ptid_t ptid)
840{
841 write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid);
6c997a34 842}
c906108c 843
c906108c
SS
844/* Fetch and return instruction from the specified location. If the PC
845 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
846
d37cca3d 847static ULONGEST
acdb74a0 848mips_fetch_instruction (CORE_ADDR addr)
c906108c 849{
47a35522 850 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
851 int instlen;
852 int status;
853
0fe7e7c8 854 if (mips_pc_is_mips16 (addr))
c906108c 855 {
95ac2dcf 856 instlen = MIPS_INSN16_SIZE;
95404a3e 857 addr = unmake_mips16_addr (addr);
c906108c
SS
858 }
859 else
95ac2dcf 860 instlen = MIPS_INSN32_SIZE;
1f602b35 861 status = deprecated_read_memory_nobpt (addr, buf, instlen);
c906108c
SS
862 if (status)
863 memory_error (status, addr);
864 return extract_unsigned_integer (buf, instlen);
865}
866
c906108c 867/* These the fields of 32 bit mips instructions */
e135b889
DJ
868#define mips32_op(x) (x >> 26)
869#define itype_op(x) (x >> 26)
870#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 871#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 872#define itype_immediate(x) (x & 0xffff)
c906108c 873
e135b889
DJ
874#define jtype_op(x) (x >> 26)
875#define jtype_target(x) (x & 0x03ffffff)
c906108c 876
e135b889
DJ
877#define rtype_op(x) (x >> 26)
878#define rtype_rs(x) ((x >> 21) & 0x1f)
879#define rtype_rt(x) ((x >> 16) & 0x1f)
880#define rtype_rd(x) ((x >> 11) & 0x1f)
881#define rtype_shamt(x) ((x >> 6) & 0x1f)
882#define rtype_funct(x) (x & 0x3f)
c906108c 883
06987e64
MK
884static LONGEST
885mips32_relative_offset (ULONGEST inst)
c5aa993b 886{
06987e64 887 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
888}
889
890/* Determine whate to set a single step breakpoint while considering
891 branch prediction */
5a89d8aa 892static CORE_ADDR
c5aa993b
JM
893mips32_next_pc (CORE_ADDR pc)
894{
895 unsigned long inst;
896 int op;
897 inst = mips_fetch_instruction (pc);
e135b889 898 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 899 {
e135b889 900 if (itype_op (inst) >> 2 == 5)
6d82d43b 901 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 902 {
e135b889 903 op = (itype_op (inst) & 0x03);
c906108c
SS
904 switch (op)
905 {
e135b889
DJ
906 case 0: /* BEQL */
907 goto equal_branch;
908 case 1: /* BNEL */
909 goto neq_branch;
910 case 2: /* BLEZL */
911 goto less_branch;
912 case 3: /* BGTZ */
913 goto greater_branch;
c5aa993b
JM
914 default:
915 pc += 4;
c906108c
SS
916 }
917 }
e135b889 918 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
6d82d43b 919 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
e135b889
DJ
920 {
921 int tf = itype_rt (inst) & 0x01;
922 int cnum = itype_rt (inst) >> 2;
6d82d43b
AC
923 int fcrcs =
924 read_signed_register (mips_regnum (current_gdbarch)->
925 fp_control_status);
e135b889
DJ
926 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
927
928 if (((cond >> cnum) & 0x01) == tf)
929 pc += mips32_relative_offset (inst) + 4;
930 else
931 pc += 8;
932 }
c5aa993b
JM
933 else
934 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
935 }
936 else
c5aa993b
JM
937 { /* This gets way messy */
938
c906108c 939 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 940 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 941 {
c5aa993b
JM
942 case 0: /* SPECIAL */
943 op = rtype_funct (inst);
944 switch (op)
945 {
946 case 8: /* JR */
947 case 9: /* JALR */
6c997a34
AC
948 /* Set PC to that address */
949 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
950 break;
951 default:
952 pc += 4;
953 }
954
6d82d43b 955 break; /* end SPECIAL */
c5aa993b 956 case 1: /* REGIMM */
c906108c 957 {
e135b889
DJ
958 op = itype_rt (inst); /* branch condition */
959 switch (op)
c906108c 960 {
c5aa993b 961 case 0: /* BLTZ */
e135b889
DJ
962 case 2: /* BLTZL */
963 case 16: /* BLTZAL */
c5aa993b 964 case 18: /* BLTZALL */
c906108c 965 less_branch:
6c997a34 966 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
967 pc += mips32_relative_offset (inst) + 4;
968 else
969 pc += 8; /* after the delay slot */
970 break;
e135b889 971 case 1: /* BGEZ */
c5aa993b
JM
972 case 3: /* BGEZL */
973 case 17: /* BGEZAL */
974 case 19: /* BGEZALL */
6c997a34 975 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
976 pc += mips32_relative_offset (inst) + 4;
977 else
978 pc += 8; /* after the delay slot */
979 break;
e135b889 980 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
981 default:
982 pc += 4;
c906108c
SS
983 }
984 }
6d82d43b 985 break; /* end REGIMM */
c5aa993b
JM
986 case 2: /* J */
987 case 3: /* JAL */
988 {
989 unsigned long reg;
990 reg = jtype_target (inst) << 2;
e135b889 991 /* Upper four bits get never changed... */
5b652102 992 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 993 }
c5aa993b
JM
994 break;
995 /* FIXME case JALX : */
996 {
997 unsigned long reg;
998 reg = jtype_target (inst) << 2;
5b652102 999 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
c906108c
SS
1000 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1001 }
c5aa993b 1002 break; /* The new PC will be alternate mode */
e135b889 1003 case 4: /* BEQ, BEQL */
c5aa993b 1004 equal_branch:
6c997a34
AC
1005 if (read_signed_register (itype_rs (inst)) ==
1006 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1007 pc += mips32_relative_offset (inst) + 4;
1008 else
1009 pc += 8;
1010 break;
e135b889 1011 case 5: /* BNE, BNEL */
c5aa993b 1012 neq_branch:
6c997a34 1013 if (read_signed_register (itype_rs (inst)) !=
e135b889 1014 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1015 pc += mips32_relative_offset (inst) + 4;
1016 else
1017 pc += 8;
1018 break;
e135b889 1019 case 6: /* BLEZ, BLEZL */
1fd8cd20 1020 if (read_signed_register (itype_rs (inst)) <= 0)
c5aa993b
JM
1021 pc += mips32_relative_offset (inst) + 4;
1022 else
1023 pc += 8;
1024 break;
1025 case 7:
e135b889
DJ
1026 default:
1027 greater_branch: /* BGTZ, BGTZL */
1fd8cd20 1028 if (read_signed_register (itype_rs (inst)) > 0)
c5aa993b
JM
1029 pc += mips32_relative_offset (inst) + 4;
1030 else
1031 pc += 8;
1032 break;
c5aa993b
JM
1033 } /* switch */
1034 } /* else */
1035 return pc;
1036} /* mips32_next_pc */
c906108c
SS
1037
1038/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1039 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1040 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1041 We dont want to set a single step instruction on the extend instruction
1042 either.
c5aa993b 1043 */
c906108c
SS
1044
1045/* Lots of mips16 instruction formats */
1046/* Predicting jumps requires itype,ritype,i8type
1047 and their extensions extItype,extritype,extI8type
c5aa993b 1048 */
c906108c
SS
1049enum mips16_inst_fmts
1050{
c5aa993b
JM
1051 itype, /* 0 immediate 5,10 */
1052 ritype, /* 1 5,3,8 */
1053 rrtype, /* 2 5,3,3,5 */
1054 rritype, /* 3 5,3,3,5 */
1055 rrrtype, /* 4 5,3,3,3,2 */
1056 rriatype, /* 5 5,3,3,1,4 */
1057 shifttype, /* 6 5,3,3,3,2 */
1058 i8type, /* 7 5,3,8 */
1059 i8movtype, /* 8 5,3,3,5 */
1060 i8mov32rtype, /* 9 5,3,5,3 */
1061 i64type, /* 10 5,3,8 */
1062 ri64type, /* 11 5,3,3,5 */
1063 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1064 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1065 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1066 extRRItype, /* 15 5,5,5,5,3,3,5 */
1067 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1068 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1069 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1070 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1071 extRi64type, /* 20 5,6,5,5,3,3,5 */
1072 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1073};
12f02c2a
AC
1074/* I am heaping all the fields of the formats into one structure and
1075 then, only the fields which are involved in instruction extension */
c906108c 1076struct upk_mips16
6d82d43b
AC
1077{
1078 CORE_ADDR offset;
1079 unsigned int regx; /* Function in i8 type */
1080 unsigned int regy;
1081};
c906108c
SS
1082
1083
12f02c2a
AC
1084/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1085 for the bits which make up the immediatate extension. */
c906108c 1086
12f02c2a
AC
1087static CORE_ADDR
1088extended_offset (unsigned int extension)
c906108c 1089{
12f02c2a 1090 CORE_ADDR value;
c5aa993b
JM
1091 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1092 value = value << 6;
1093 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1094 value = value << 5;
1095 value |= extension & 0x01f; /* extract 4:0 */
1096 return value;
c906108c
SS
1097}
1098
1099/* Only call this function if you know that this is an extendable
1100 instruction, It wont malfunction, but why make excess remote memory references?
1101 If the immediate operands get sign extended or somthing, do it after
1102 the extension is performed.
c5aa993b 1103 */
c906108c
SS
1104/* FIXME: Every one of these cases needs to worry about sign extension
1105 when the offset is to be used in relative addressing */
1106
1107
12f02c2a 1108static unsigned int
c5aa993b 1109fetch_mips_16 (CORE_ADDR pc)
c906108c 1110{
47a35522 1111 gdb_byte buf[8];
c5aa993b
JM
1112 pc &= 0xfffffffe; /* clear the low order bit */
1113 target_read_memory (pc, buf, 2);
1114 return extract_unsigned_integer (buf, 2);
c906108c
SS
1115}
1116
1117static void
c5aa993b 1118unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1119 unsigned int extension,
1120 unsigned int inst,
6d82d43b 1121 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 1122{
12f02c2a
AC
1123 CORE_ADDR offset;
1124 int regx;
1125 int regy;
1126 switch (insn_format)
c906108c 1127 {
c5aa993b 1128 case itype:
c906108c 1129 {
12f02c2a
AC
1130 CORE_ADDR value;
1131 if (extension)
c5aa993b
JM
1132 {
1133 value = extended_offset (extension);
1134 value = value << 11; /* rom for the original value */
6d82d43b 1135 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1136 }
1137 else
c5aa993b 1138 {
12f02c2a 1139 value = inst & 0x7ff;
c5aa993b 1140 /* FIXME : Consider sign extension */
c906108c 1141 }
12f02c2a
AC
1142 offset = value;
1143 regx = -1;
1144 regy = -1;
c906108c 1145 }
c5aa993b
JM
1146 break;
1147 case ritype:
1148 case i8type:
1149 { /* A register identifier and an offset */
c906108c
SS
1150 /* Most of the fields are the same as I type but the
1151 immediate value is of a different length */
12f02c2a
AC
1152 CORE_ADDR value;
1153 if (extension)
c906108c 1154 {
c5aa993b
JM
1155 value = extended_offset (extension);
1156 value = value << 8; /* from the original instruction */
12f02c2a
AC
1157 value |= inst & 0xff; /* eleven bits from instruction */
1158 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1159 if (value & 0x4000) /* test the sign bit , bit 26 */
1160 {
1161 value &= ~0x3fff; /* remove the sign bit */
1162 value = -value;
c906108c
SS
1163 }
1164 }
c5aa993b
JM
1165 else
1166 {
12f02c2a
AC
1167 value = inst & 0xff; /* 8 bits */
1168 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1169 /* FIXME: Do sign extension , this format needs it */
1170 if (value & 0x80) /* THIS CONFUSES ME */
1171 {
1172 value &= 0xef; /* remove the sign bit */
1173 value = -value;
1174 }
c5aa993b 1175 }
12f02c2a
AC
1176 offset = value;
1177 regy = -1;
c5aa993b 1178 break;
c906108c 1179 }
c5aa993b 1180 case jalxtype:
c906108c 1181 {
c5aa993b 1182 unsigned long value;
12f02c2a
AC
1183 unsigned int nexthalf;
1184 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1185 value = value << 16;
1186 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1187 value |= nexthalf;
12f02c2a
AC
1188 offset = value;
1189 regx = -1;
1190 regy = -1;
c5aa993b 1191 break;
c906108c
SS
1192 }
1193 default:
e2e0b3e5 1194 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 1195 }
12f02c2a
AC
1196 upk->offset = offset;
1197 upk->regx = regx;
1198 upk->regy = regy;
c906108c
SS
1199}
1200
1201
c5aa993b
JM
1202static CORE_ADDR
1203add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1204{
5b652102 1205 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
c906108c
SS
1206}
1207
12f02c2a
AC
1208static CORE_ADDR
1209extended_mips16_next_pc (CORE_ADDR pc,
6d82d43b 1210 unsigned int extension, unsigned int insn)
c906108c 1211{
12f02c2a
AC
1212 int op = (insn >> 11);
1213 switch (op)
c906108c 1214 {
6d82d43b 1215 case 2: /* Branch */
12f02c2a
AC
1216 {
1217 CORE_ADDR offset;
1218 struct upk_mips16 upk;
1219 unpack_mips16 (pc, extension, insn, itype, &upk);
1220 offset = upk.offset;
1221 if (offset & 0x800)
1222 {
1223 offset &= 0xeff;
1224 offset = -offset;
1225 }
1226 pc += (offset << 1) + 2;
1227 break;
1228 }
6d82d43b 1229 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
12f02c2a
AC
1230 {
1231 struct upk_mips16 upk;
1232 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1233 pc = add_offset_16 (pc, upk.offset);
1234 if ((insn >> 10) & 0x01) /* Exchange mode */
1235 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1236 else
1237 pc |= 0x01;
1238 break;
1239 }
6d82d43b 1240 case 4: /* beqz */
12f02c2a
AC
1241 {
1242 struct upk_mips16 upk;
1243 int reg;
1244 unpack_mips16 (pc, extension, insn, ritype, &upk);
1245 reg = read_signed_register (upk.regx);
1246 if (reg == 0)
1247 pc += (upk.offset << 1) + 2;
1248 else
1249 pc += 2;
1250 break;
1251 }
6d82d43b 1252 case 5: /* bnez */
12f02c2a
AC
1253 {
1254 struct upk_mips16 upk;
1255 int reg;
1256 unpack_mips16 (pc, extension, insn, ritype, &upk);
1257 reg = read_signed_register (upk.regx);
1258 if (reg != 0)
1259 pc += (upk.offset << 1) + 2;
1260 else
1261 pc += 2;
1262 break;
1263 }
6d82d43b 1264 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
1265 {
1266 struct upk_mips16 upk;
1267 int reg;
1268 unpack_mips16 (pc, extension, insn, i8type, &upk);
1269 /* upk.regx contains the opcode */
1270 reg = read_signed_register (24); /* Test register is 24 */
1271 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1272 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1273 /* pc = add_offset_16(pc,upk.offset) ; */
1274 pc += (upk.offset << 1) + 2;
1275 else
1276 pc += 2;
1277 break;
1278 }
6d82d43b 1279 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
1280 {
1281 struct upk_mips16 upk;
1282 /* upk.fmt = rrtype; */
1283 op = insn & 0x1f;
1284 if (op == 0)
c5aa993b 1285 {
12f02c2a
AC
1286 int reg;
1287 upk.regx = (insn >> 8) & 0x07;
1288 upk.regy = (insn >> 5) & 0x07;
1289 switch (upk.regy)
c5aa993b 1290 {
12f02c2a
AC
1291 case 0:
1292 reg = upk.regx;
1293 break;
1294 case 1:
1295 reg = 31;
6d82d43b 1296 break; /* Function return instruction */
12f02c2a
AC
1297 case 2:
1298 reg = upk.regx;
1299 break;
1300 default:
1301 reg = 31;
6d82d43b 1302 break; /* BOGUS Guess */
c906108c 1303 }
12f02c2a 1304 pc = read_signed_register (reg);
c906108c 1305 }
12f02c2a 1306 else
c5aa993b 1307 pc += 2;
12f02c2a
AC
1308 break;
1309 }
1310 case 30:
1311 /* This is an instruction extension. Fetch the real instruction
1312 (which follows the extension) and decode things based on
1313 that. */
1314 {
1315 pc += 2;
1316 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1317 break;
1318 }
1319 default:
1320 {
1321 pc += 2;
1322 break;
1323 }
c906108c 1324 }
c5aa993b 1325 return pc;
12f02c2a 1326}
c906108c 1327
5a89d8aa 1328static CORE_ADDR
12f02c2a
AC
1329mips16_next_pc (CORE_ADDR pc)
1330{
1331 unsigned int insn = fetch_mips_16 (pc);
1332 return extended_mips16_next_pc (pc, 0, insn);
1333}
1334
1335/* The mips_next_pc function supports single_step when the remote
7e73cedf 1336 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1337 It works by decoding the current instruction and predicting where a
1338 branch will go. This isnt hard because all the data is available.
1339 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1340CORE_ADDR
1341mips_next_pc (CORE_ADDR pc)
c906108c 1342{
c5aa993b
JM
1343 if (pc & 0x01)
1344 return mips16_next_pc (pc);
1345 else
1346 return mips32_next_pc (pc);
12f02c2a 1347}
c906108c 1348
edfae063
AC
1349struct mips_frame_cache
1350{
1351 CORE_ADDR base;
1352 struct trad_frame_saved_reg *saved_regs;
1353};
1354
29639122
JB
1355/* Set a register's saved stack address in temp_saved_regs. If an
1356 address has already been set for this register, do nothing; this
1357 way we will only recognize the first save of a given register in a
1358 function prologue.
eec63939 1359
29639122
JB
1360 For simplicity, save the address in both [0 .. NUM_REGS) and
1361 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1362 is used as it is only second range (the ABI instead of ISA
1363 registers) that comes into play when finding saved registers in a
1364 frame. */
eec63939
AC
1365
1366static void
29639122
JB
1367set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1368 CORE_ADDR offset)
eec63939 1369{
29639122
JB
1370 if (this_cache != NULL
1371 && this_cache->saved_regs[regnum].addr == -1)
1372 {
1373 this_cache->saved_regs[regnum + 0 * NUM_REGS].addr = offset;
1374 this_cache->saved_regs[regnum + 1 * NUM_REGS].addr = offset;
1375 }
eec63939
AC
1376}
1377
eec63939 1378
29639122
JB
1379/* Fetch the immediate value from a MIPS16 instruction.
1380 If the previous instruction was an EXTEND, use it to extend
1381 the upper bits of the immediate value. This is a helper function
1382 for mips16_scan_prologue. */
eec63939 1383
29639122
JB
1384static int
1385mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1386 unsigned short inst, /* current instruction */
1387 int nbits, /* number of bits in imm field */
1388 int scale, /* scale factor to be applied to imm */
1389 int is_signed) /* is the imm field signed? */
eec63939 1390{
29639122 1391 int offset;
eec63939 1392
29639122
JB
1393 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1394 {
1395 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1396 if (offset & 0x8000) /* check for negative extend */
1397 offset = 0 - (0x10000 - (offset & 0xffff));
1398 return offset | (inst & 0x1f);
1399 }
eec63939 1400 else
29639122
JB
1401 {
1402 int max_imm = 1 << nbits;
1403 int mask = max_imm - 1;
1404 int sign_bit = max_imm >> 1;
45c9dd44 1405
29639122
JB
1406 offset = inst & mask;
1407 if (is_signed && (offset & sign_bit))
1408 offset = 0 - (max_imm - offset);
1409 return offset * scale;
1410 }
1411}
eec63939 1412
65596487 1413
29639122
JB
1414/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1415 the associated FRAME_CACHE if not null.
1416 Return the address of the first instruction past the prologue. */
eec63939 1417
29639122
JB
1418static CORE_ADDR
1419mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1420 struct frame_info *next_frame,
1421 struct mips_frame_cache *this_cache)
1422{
1423 CORE_ADDR cur_pc;
1424 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1425 CORE_ADDR sp;
1426 long frame_offset = 0; /* Size of stack frame. */
1427 long frame_adjust = 0; /* Offset of FP from SP. */
1428 int frame_reg = MIPS_SP_REGNUM;
1429 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1430 unsigned inst = 0; /* current instruction */
1431 unsigned entry_inst = 0; /* the entry instruction */
1432 int reg, offset;
a343eb3c 1433
29639122
JB
1434 int extend_bytes = 0;
1435 int prev_extend_bytes;
1436 CORE_ADDR end_prologue_addr = 0;
a343eb3c 1437
29639122
JB
1438 /* Can be called when there's no process, and hence when there's no
1439 NEXT_FRAME. */
1440 if (next_frame != NULL)
1441 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1442 else
1443 sp = 0;
eec63939 1444
29639122
JB
1445 if (limit_pc > start_pc + 200)
1446 limit_pc = start_pc + 200;
eec63939 1447
95ac2dcf 1448 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122
JB
1449 {
1450 /* Save the previous instruction. If it's an EXTEND, we'll extract
1451 the immediate offset extension from it in mips16_get_imm. */
1452 prev_inst = inst;
eec63939 1453
29639122
JB
1454 /* Fetch and decode the instruction. */
1455 inst = (unsigned short) mips_fetch_instruction (cur_pc);
eec63939 1456
29639122
JB
1457 /* Normally we ignore extend instructions. However, if it is
1458 not followed by a valid prologue instruction, then this
1459 instruction is not part of the prologue either. We must
1460 remember in this case to adjust the end_prologue_addr back
1461 over the extend. */
1462 if ((inst & 0xf800) == 0xf000) /* extend */
1463 {
95ac2dcf 1464 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
1465 continue;
1466 }
eec63939 1467
29639122
JB
1468 prev_extend_bytes = extend_bytes;
1469 extend_bytes = 0;
eec63939 1470
29639122
JB
1471 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1472 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1473 {
1474 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1475 if (offset < 0) /* negative stack adjustment? */
1476 frame_offset -= offset;
1477 else
1478 /* Exit loop if a positive stack adjustment is found, which
1479 usually means that the stack cleanup code in the function
1480 epilogue is reached. */
1481 break;
1482 }
1483 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1484 {
1485 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1486 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1487 set_reg_offset (this_cache, reg, sp + offset);
1488 }
1489 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1490 {
1491 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1492 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1493 set_reg_offset (this_cache, reg, sp + offset);
1494 }
1495 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1496 {
1497 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4c7d22cb 1498 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1499 }
1500 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1501 {
1502 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
4c7d22cb 1503 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1504 }
1505 else if (inst == 0x673d) /* move $s1, $sp */
1506 {
1507 frame_addr = sp;
1508 frame_reg = 17;
1509 }
1510 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1511 {
1512 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1513 frame_addr = sp + offset;
1514 frame_reg = 17;
1515 frame_adjust = offset;
1516 }
1517 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1518 {
1519 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1520 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1521 set_reg_offset (this_cache, reg, frame_addr + offset);
1522 }
1523 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1524 {
1525 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1526 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1527 set_reg_offset (this_cache, reg, frame_addr + offset);
1528 }
1529 else if ((inst & 0xf81f) == 0xe809
1530 && (inst & 0x700) != 0x700) /* entry */
1531 entry_inst = inst; /* save for later processing */
1532 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
95ac2dcf 1533 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
29639122
JB
1534 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1535 {
1536 /* This instruction is part of the prologue, but we don't
1537 need to do anything special to handle it. */
1538 }
1539 else
1540 {
1541 /* This instruction is not an instruction typically found
1542 in a prologue, so we must have reached the end of the
1543 prologue. */
1544 if (end_prologue_addr == 0)
1545 end_prologue_addr = cur_pc - prev_extend_bytes;
1546 }
1547 }
eec63939 1548
29639122
JB
1549 /* The entry instruction is typically the first instruction in a function,
1550 and it stores registers at offsets relative to the value of the old SP
1551 (before the prologue). But the value of the sp parameter to this
1552 function is the new SP (after the prologue has been executed). So we
1553 can't calculate those offsets until we've seen the entire prologue,
1554 and can calculate what the old SP must have been. */
1555 if (entry_inst != 0)
1556 {
1557 int areg_count = (entry_inst >> 8) & 7;
1558 int sreg_count = (entry_inst >> 6) & 3;
eec63939 1559
29639122
JB
1560 /* The entry instruction always subtracts 32 from the SP. */
1561 frame_offset += 32;
1562
1563 /* Now we can calculate what the SP must have been at the
1564 start of the function prologue. */
1565 sp += frame_offset;
1566
1567 /* Check if a0-a3 were saved in the caller's argument save area. */
1568 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1569 {
1570 set_reg_offset (this_cache, reg, sp + offset);
1571 offset += mips_abi_regsize (current_gdbarch);
1572 }
1573
1574 /* Check if the ra register was pushed on the stack. */
1575 offset = -4;
1576 if (entry_inst & 0x20)
1577 {
4c7d22cb 1578 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1579 offset -= mips_abi_regsize (current_gdbarch);
1580 }
1581
1582 /* Check if the s0 and s1 registers were pushed on the stack. */
1583 for (reg = 16; reg < sreg_count + 16; reg++)
1584 {
1585 set_reg_offset (this_cache, reg, sp + offset);
1586 offset -= mips_abi_regsize (current_gdbarch);
1587 }
1588 }
1589
1590 if (this_cache != NULL)
1591 {
1592 this_cache->base =
1593 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1594 + frame_offset - frame_adjust);
1595 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1596 be able to get rid of the assignment below, evetually. But it's
1597 still needed for now. */
1598 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
4c7d22cb 1599 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
29639122
JB
1600 }
1601
1602 /* If we didn't reach the end of the prologue when scanning the function
1603 instructions, then set end_prologue_addr to the address of the
1604 instruction immediately after the last one we scanned. */
1605 if (end_prologue_addr == 0)
1606 end_prologue_addr = cur_pc;
1607
1608 return end_prologue_addr;
eec63939
AC
1609}
1610
29639122
JB
1611/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1612 Procedures that use the 32-bit instruction set are handled by the
1613 mips_insn32 unwinder. */
1614
1615static struct mips_frame_cache *
1616mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
eec63939 1617{
29639122 1618 struct mips_frame_cache *cache;
eec63939
AC
1619
1620 if ((*this_cache) != NULL)
1621 return (*this_cache);
29639122
JB
1622 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1623 (*this_cache) = cache;
1624 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
eec63939 1625
29639122
JB
1626 /* Analyze the function prologue. */
1627 {
1628 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1629 CORE_ADDR start_addr;
eec63939 1630
29639122
JB
1631 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1632 if (start_addr == 0)
1633 start_addr = heuristic_proc_start (pc);
1634 /* We can't analyze the prologue if we couldn't find the begining
1635 of the function. */
1636 if (start_addr == 0)
1637 return cache;
eec63939 1638
29639122
JB
1639 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1640 }
1641
1642 /* SP_REGNUM, contains the value and not the address. */
1643 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
eec63939 1644
29639122 1645 return (*this_cache);
eec63939
AC
1646}
1647
1648static void
29639122
JB
1649mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1650 struct frame_id *this_id)
eec63939 1651{
29639122
JB
1652 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1653 this_cache);
1654 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
eec63939
AC
1655}
1656
1657static void
29639122 1658mips_insn16_frame_prev_register (struct frame_info *next_frame,
eec63939
AC
1659 void **this_cache,
1660 int regnum, int *optimizedp,
1661 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 1662 int *realnump, gdb_byte *valuep)
eec63939 1663{
29639122
JB
1664 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1665 this_cache);
1666 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1667 optimizedp, lvalp, addrp, realnump, valuep);
eec63939
AC
1668}
1669
29639122 1670static const struct frame_unwind mips_insn16_frame_unwind =
eec63939
AC
1671{
1672 NORMAL_FRAME,
29639122
JB
1673 mips_insn16_frame_this_id,
1674 mips_insn16_frame_prev_register
eec63939
AC
1675};
1676
1677static const struct frame_unwind *
29639122 1678mips_insn16_frame_sniffer (struct frame_info *next_frame)
eec63939
AC
1679{
1680 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 1681 if (mips_pc_is_mips16 (pc))
29639122
JB
1682 return &mips_insn16_frame_unwind;
1683 return NULL;
eec63939
AC
1684}
1685
1686static CORE_ADDR
29639122
JB
1687mips_insn16_frame_base_address (struct frame_info *next_frame,
1688 void **this_cache)
eec63939 1689{
29639122
JB
1690 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1691 this_cache);
1692 return info->base;
eec63939
AC
1693}
1694
29639122 1695static const struct frame_base mips_insn16_frame_base =
eec63939 1696{
29639122
JB
1697 &mips_insn16_frame_unwind,
1698 mips_insn16_frame_base_address,
1699 mips_insn16_frame_base_address,
1700 mips_insn16_frame_base_address
eec63939
AC
1701};
1702
1703static const struct frame_base *
29639122 1704mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
eec63939 1705{
29639122
JB
1706 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1707 return &mips_insn16_frame_base;
eec63939
AC
1708 else
1709 return NULL;
edfae063
AC
1710}
1711
29639122
JB
1712/* Mark all the registers as unset in the saved_regs array
1713 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1714
1715void
1716reset_saved_regs (struct mips_frame_cache *this_cache)
c906108c 1717{
29639122
JB
1718 if (this_cache == NULL || this_cache->saved_regs == NULL)
1719 return;
1720
1721 {
1722 const int num_regs = NUM_REGS;
1723 int i;
64159455 1724
29639122
JB
1725 for (i = 0; i < num_regs; i++)
1726 {
1727 this_cache->saved_regs[i].addr = -1;
1728 }
1729 }
c906108c
SS
1730}
1731
29639122
JB
1732/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1733 the associated FRAME_CACHE if not null.
1734 Return the address of the first instruction past the prologue. */
c906108c 1735
875e1767 1736static CORE_ADDR
29639122
JB
1737mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1738 struct frame_info *next_frame,
1739 struct mips_frame_cache *this_cache)
c906108c 1740{
29639122
JB
1741 CORE_ADDR cur_pc;
1742 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1743 CORE_ADDR sp;
1744 long frame_offset;
1745 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 1746
29639122
JB
1747 CORE_ADDR end_prologue_addr = 0;
1748 int seen_sp_adjust = 0;
1749 int load_immediate_bytes = 0;
8fa9cfa1 1750
29639122
JB
1751 /* Can be called when there's no process, and hence when there's no
1752 NEXT_FRAME. */
1753 if (next_frame != NULL)
1754 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
8fa9cfa1 1755 else
29639122 1756 sp = 0;
9022177c 1757
29639122
JB
1758 if (limit_pc > start_pc + 200)
1759 limit_pc = start_pc + 200;
9022177c 1760
29639122 1761restart:
9022177c 1762
29639122 1763 frame_offset = 0;
95ac2dcf 1764 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 1765 {
29639122
JB
1766 unsigned long inst, high_word, low_word;
1767 int reg;
9022177c 1768
29639122
JB
1769 /* Fetch the instruction. */
1770 inst = (unsigned long) mips_fetch_instruction (cur_pc);
9022177c 1771
29639122
JB
1772 /* Save some code by pre-extracting some useful fields. */
1773 high_word = (inst >> 16) & 0xffff;
1774 low_word = inst & 0xffff;
1775 reg = high_word & 0x1f;
fe29b929 1776
29639122
JB
1777 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1778 || high_word == 0x23bd /* addi $sp,$sp,-i */
1779 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1780 {
1781 if (low_word & 0x8000) /* negative stack adjustment? */
1782 frame_offset += 0x10000 - low_word;
1783 else
1784 /* Exit loop if a positive stack adjustment is found, which
1785 usually means that the stack cleanup code in the function
1786 epilogue is reached. */
1787 break;
1788 seen_sp_adjust = 1;
1789 }
1790 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1791 {
1792 set_reg_offset (this_cache, reg, sp + low_word);
1793 }
1794 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1795 {
1796 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1797 set_reg_offset (this_cache, reg, sp + low_word);
1798 }
1799 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1800 {
1801 /* Old gcc frame, r30 is virtual frame pointer. */
1802 if ((long) low_word != frame_offset)
1803 frame_addr = sp + low_word;
1804 else if (frame_reg == MIPS_SP_REGNUM)
1805 {
1806 unsigned alloca_adjust;
a4b8ebc8 1807
29639122
JB
1808 frame_reg = 30;
1809 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1810 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1811 if (alloca_adjust > 0)
1812 {
1813 /* FP > SP + frame_size. This may be because of
1814 an alloca or somethings similar. Fix sp to
1815 "pre-alloca" value, and try again. */
1816 sp += alloca_adjust;
1817 /* Need to reset the status of all registers. Otherwise,
1818 we will hit a guard that prevents the new address
1819 for each register to be recomputed during the second
1820 pass. */
1821 reset_saved_regs (this_cache);
1822 goto restart;
1823 }
1824 }
1825 }
1826 /* move $30,$sp. With different versions of gas this will be either
1827 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1828 Accept any one of these. */
1829 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1830 {
1831 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1832 if (frame_reg == MIPS_SP_REGNUM)
1833 {
1834 unsigned alloca_adjust;
c906108c 1835
29639122
JB
1836 frame_reg = 30;
1837 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1838 alloca_adjust = (unsigned) (frame_addr - sp);
1839 if (alloca_adjust > 0)
1840 {
1841 /* FP > SP + frame_size. This may be because of
1842 an alloca or somethings similar. Fix sp to
1843 "pre-alloca" value, and try again. */
1844 sp = frame_addr;
1845 /* Need to reset the status of all registers. Otherwise,
1846 we will hit a guard that prevents the new address
1847 for each register to be recomputed during the second
1848 pass. */
1849 reset_saved_regs (this_cache);
1850 goto restart;
1851 }
1852 }
1853 }
1854 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1855 {
1856 set_reg_offset (this_cache, reg, frame_addr + low_word);
1857 }
1858 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1859 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1860 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1861 || high_word == 0x3c1c /* lui $gp,n */
1862 || high_word == 0x279c /* addiu $gp,$gp,n */
1863 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1864 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1865 )
1866 {
1867 /* These instructions are part of the prologue, but we don't
1868 need to do anything special to handle them. */
1869 }
1870 /* The instructions below load $at or $t0 with an immediate
1871 value in preparation for a stack adjustment via
1872 subu $sp,$sp,[$at,$t0]. These instructions could also
1873 initialize a local variable, so we accept them only before
1874 a stack adjustment instruction was seen. */
1875 else if (!seen_sp_adjust
1876 && (high_word == 0x3c01 /* lui $at,n */
1877 || high_word == 0x3c08 /* lui $t0,n */
1878 || high_word == 0x3421 /* ori $at,$at,n */
1879 || high_word == 0x3508 /* ori $t0,$t0,n */
1880 || high_word == 0x3401 /* ori $at,$zero,n */
1881 || high_word == 0x3408 /* ori $t0,$zero,n */
1882 ))
1883 {
95ac2dcf 1884 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
29639122
JB
1885 }
1886 else
1887 {
1888 /* This instruction is not an instruction typically found
1889 in a prologue, so we must have reached the end of the
1890 prologue. */
1891 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
1892 loop now? Why would we need to continue scanning the function
1893 instructions? */
1894 if (end_prologue_addr == 0)
1895 end_prologue_addr = cur_pc;
1896 }
a4b8ebc8 1897 }
c906108c 1898
29639122
JB
1899 if (this_cache != NULL)
1900 {
1901 this_cache->base =
1902 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1903 + frame_offset);
1904 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
1905 this assignment below, eventually. But it's still needed
1906 for now. */
1907 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
4c7d22cb 1908 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
29639122 1909 }
c906108c 1910
29639122
JB
1911 /* If we didn't reach the end of the prologue when scanning the function
1912 instructions, then set end_prologue_addr to the address of the
1913 instruction immediately after the last one we scanned. */
1914 /* brobecker/2004-10-10: I don't think this would ever happen, but
1915 we may as well be careful and do our best if we have a null
1916 end_prologue_addr. */
1917 if (end_prologue_addr == 0)
1918 end_prologue_addr = cur_pc;
1919
1920 /* In a frameless function, we might have incorrectly
1921 skipped some load immediate instructions. Undo the skipping
1922 if the load immediate was not followed by a stack adjustment. */
1923 if (load_immediate_bytes && !seen_sp_adjust)
1924 end_prologue_addr -= load_immediate_bytes;
c906108c 1925
29639122 1926 return end_prologue_addr;
c906108c
SS
1927}
1928
29639122
JB
1929/* Heuristic unwinder for procedures using 32-bit instructions (covers
1930 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
1931 instructions (a.k.a. MIPS16) are handled by the mips_insn16
1932 unwinder. */
c906108c 1933
29639122
JB
1934static struct mips_frame_cache *
1935mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
c906108c 1936{
29639122 1937 struct mips_frame_cache *cache;
c906108c 1938
29639122
JB
1939 if ((*this_cache) != NULL)
1940 return (*this_cache);
c5aa993b 1941
29639122
JB
1942 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1943 (*this_cache) = cache;
1944 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c5aa993b 1945
29639122
JB
1946 /* Analyze the function prologue. */
1947 {
1948 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1949 CORE_ADDR start_addr;
c906108c 1950
29639122
JB
1951 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1952 if (start_addr == 0)
1953 start_addr = heuristic_proc_start (pc);
1954 /* We can't analyze the prologue if we couldn't find the begining
1955 of the function. */
1956 if (start_addr == 0)
1957 return cache;
c5aa993b 1958
29639122
JB
1959 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
1960 }
1961
1962 /* SP_REGNUM, contains the value and not the address. */
1963 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
c5aa993b 1964
29639122 1965 return (*this_cache);
c906108c
SS
1966}
1967
29639122
JB
1968static void
1969mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
1970 struct frame_id *this_id)
c906108c 1971{
29639122
JB
1972 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1973 this_cache);
1974 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1975}
c906108c 1976
29639122
JB
1977static void
1978mips_insn32_frame_prev_register (struct frame_info *next_frame,
1979 void **this_cache,
1980 int regnum, int *optimizedp,
1981 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 1982 int *realnump, gdb_byte *valuep)
29639122
JB
1983{
1984 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1985 this_cache);
1986 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1987 optimizedp, lvalp, addrp, realnump, valuep);
c906108c
SS
1988}
1989
29639122
JB
1990static const struct frame_unwind mips_insn32_frame_unwind =
1991{
1992 NORMAL_FRAME,
1993 mips_insn32_frame_this_id,
1994 mips_insn32_frame_prev_register
1995};
c906108c 1996
29639122
JB
1997static const struct frame_unwind *
1998mips_insn32_frame_sniffer (struct frame_info *next_frame)
1999{
2000 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 2001 if (! mips_pc_is_mips16 (pc))
29639122
JB
2002 return &mips_insn32_frame_unwind;
2003 return NULL;
2004}
c906108c 2005
1c645fec 2006static CORE_ADDR
29639122
JB
2007mips_insn32_frame_base_address (struct frame_info *next_frame,
2008 void **this_cache)
c906108c 2009{
29639122
JB
2010 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2011 this_cache);
2012 return info->base;
2013}
c906108c 2014
29639122
JB
2015static const struct frame_base mips_insn32_frame_base =
2016{
2017 &mips_insn32_frame_unwind,
2018 mips_insn32_frame_base_address,
2019 mips_insn32_frame_base_address,
2020 mips_insn32_frame_base_address
2021};
1c645fec 2022
29639122
JB
2023static const struct frame_base *
2024mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2025{
2026 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2027 return &mips_insn32_frame_base;
a65bbe44 2028 else
29639122
JB
2029 return NULL;
2030}
a65bbe44 2031
29639122
JB
2032static struct trad_frame_cache *
2033mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2034{
2035 CORE_ADDR pc;
2036 CORE_ADDR start_addr;
2037 CORE_ADDR stack_addr;
2038 struct trad_frame_cache *this_trad_cache;
c906108c 2039
29639122
JB
2040 if ((*this_cache) != NULL)
2041 return (*this_cache);
2042 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2043 (*this_cache) = this_trad_cache;
1c645fec 2044
29639122 2045 /* The return address is in the link register. */
4c7d22cb 2046 trad_frame_set_reg_realreg (this_trad_cache, PC_REGNUM, MIPS_RA_REGNUM);
1c645fec 2047
29639122
JB
2048 /* Frame ID, since it's a frameless / stackless function, no stack
2049 space is allocated and SP on entry is the current SP. */
2050 pc = frame_pc_unwind (next_frame);
2051 find_pc_partial_function (pc, NULL, &start_addr, NULL);
4c7d22cb 2052 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
29639122 2053 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
1c645fec 2054
29639122
JB
2055 /* Assume that the frame's base is the same as the
2056 stack-pointer. */
2057 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 2058
29639122
JB
2059 return this_trad_cache;
2060}
c906108c 2061
29639122
JB
2062static void
2063mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2064 struct frame_id *this_id)
2065{
2066 struct trad_frame_cache *this_trad_cache
2067 = mips_stub_frame_cache (next_frame, this_cache);
2068 trad_frame_get_id (this_trad_cache, this_id);
2069}
c906108c 2070
29639122
JB
2071static void
2072mips_stub_frame_prev_register (struct frame_info *next_frame,
2073 void **this_cache,
2074 int regnum, int *optimizedp,
2075 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 2076 int *realnump, gdb_byte *valuep)
29639122
JB
2077{
2078 struct trad_frame_cache *this_trad_cache
2079 = mips_stub_frame_cache (next_frame, this_cache);
2080 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2081 lvalp, addrp, realnump, valuep);
2082}
c906108c 2083
29639122
JB
2084static const struct frame_unwind mips_stub_frame_unwind =
2085{
2086 NORMAL_FRAME,
2087 mips_stub_frame_this_id,
2088 mips_stub_frame_prev_register
2089};
c906108c 2090
29639122
JB
2091static const struct frame_unwind *
2092mips_stub_frame_sniffer (struct frame_info *next_frame)
2093{
979b38e0 2094 struct obj_section *s;
29639122 2095 CORE_ADDR pc = frame_pc_unwind (next_frame);
979b38e0 2096
29639122
JB
2097 if (in_plt_section (pc, NULL))
2098 return &mips_stub_frame_unwind;
979b38e0
DJ
2099
2100 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2101 s = find_pc_section (pc);
2102
2103 if (s != NULL
2104 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2105 ".MIPS.stubs") == 0)
2106 return &mips_stub_frame_unwind;
2107
2108 return NULL;
29639122 2109}
c906108c 2110
29639122
JB
2111static CORE_ADDR
2112mips_stub_frame_base_address (struct frame_info *next_frame,
2113 void **this_cache)
2114{
2115 struct trad_frame_cache *this_trad_cache
2116 = mips_stub_frame_cache (next_frame, this_cache);
2117 return trad_frame_get_this_base (this_trad_cache);
2118}
0fce0821 2119
29639122
JB
2120static const struct frame_base mips_stub_frame_base =
2121{
2122 &mips_stub_frame_unwind,
2123 mips_stub_frame_base_address,
2124 mips_stub_frame_base_address,
2125 mips_stub_frame_base_address
2126};
2127
2128static const struct frame_base *
2129mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2130{
2131 if (mips_stub_frame_sniffer (next_frame) != NULL)
2132 return &mips_stub_frame_base;
2133 else
2134 return NULL;
2135}
2136
2137static CORE_ADDR
2138read_next_frame_reg (struct frame_info *fi, int regno)
2139{
2140 /* Always a pseudo. */
2141 gdb_assert (regno >= NUM_REGS);
2142 if (fi == NULL)
0fce0821 2143 {
29639122
JB
2144 LONGEST val;
2145 regcache_cooked_read_signed (current_regcache, regno, &val);
2146 return val;
0fce0821 2147 }
29639122
JB
2148 else
2149 return frame_unwind_register_signed (fi, regno);
1c645fec 2150
c906108c
SS
2151}
2152
29639122 2153/* mips_addr_bits_remove - remove useless address bits */
65596487 2154
29639122
JB
2155static CORE_ADDR
2156mips_addr_bits_remove (CORE_ADDR addr)
65596487 2157{
29639122
JB
2158 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2159 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2160 /* This hack is a work-around for existing boards using PMON, the
2161 simulator, and any other 64-bit targets that doesn't have true
2162 64-bit addressing. On these targets, the upper 32 bits of
2163 addresses are ignored by the hardware. Thus, the PC or SP are
2164 likely to have been sign extended to all 1s by instruction
2165 sequences that load 32-bit addresses. For example, a typical
2166 piece of code that loads an address is this:
65596487 2167
29639122
JB
2168 lui $r2, <upper 16 bits>
2169 ori $r2, <lower 16 bits>
65596487 2170
29639122
JB
2171 But the lui sign-extends the value such that the upper 32 bits
2172 may be all 1s. The workaround is simply to mask off these
2173 bits. In the future, gcc may be changed to support true 64-bit
2174 addressing, and this masking will have to be disabled. */
2175 return addr &= 0xffffffffUL;
2176 else
2177 return addr;
65596487
JB
2178}
2179
29639122
JB
2180/* mips_software_single_step() is called just before we want to resume
2181 the inferior, if we want to single-step it but there is no hardware
2182 or kernel single-step support (MIPS on GNU/Linux for example). We find
2183 the target of the coming instruction and breakpoint it.
1e05a7bf 2184
29639122
JB
2185 single_step is also called just after the inferior stops. If we had
2186 set up a simulated single-step, we undo our damage. */
2187
2188void
2189mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
c906108c 2190{
29639122
JB
2191 static CORE_ADDR next_pc;
2192 typedef char binsn_quantum[BREAKPOINT_MAX];
2193 static binsn_quantum break_mem;
2194 CORE_ADDR pc;
65596487 2195
29639122
JB
2196 if (insert_breakpoints_p)
2197 {
2198 pc = read_register (mips_regnum (current_gdbarch)->pc);
2199 next_pc = mips_next_pc (pc);
98b4dd94 2200
29639122
JB
2201 target_insert_breakpoint (next_pc, break_mem);
2202 }
a65bbe44 2203 else
29639122
JB
2204 target_remove_breakpoint (next_pc, break_mem);
2205}
a65bbe44 2206
29639122
JB
2207/* Test whether the PC points to the return instruction at the
2208 end of a function. */
65596487 2209
29639122
JB
2210static int
2211mips_about_to_return (CORE_ADDR pc)
2212{
0fe7e7c8 2213 if (mips_pc_is_mips16 (pc))
29639122
JB
2214 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2215 generates a "jr $ra"; other times it generates code to load
2216 the return address from the stack to an accessible register (such
2217 as $a3), then a "jr" using that register. This second case
2218 is almost impossible to distinguish from an indirect jump
2219 used for switch statements, so we don't even try. */
2220 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2221 else
2222 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2223}
c906108c 2224
c906108c 2225
29639122
JB
2226/* This fencepost looks highly suspicious to me. Removing it also
2227 seems suspicious as it could affect remote debugging across serial
2228 lines. */
c906108c 2229
29639122
JB
2230static CORE_ADDR
2231heuristic_proc_start (CORE_ADDR pc)
2232{
2233 CORE_ADDR start_pc;
2234 CORE_ADDR fence;
2235 int instlen;
2236 int seen_adjsp = 0;
65596487 2237
29639122
JB
2238 pc = ADDR_BITS_REMOVE (pc);
2239 start_pc = pc;
2240 fence = start_pc - heuristic_fence_post;
2241 if (start_pc == 0)
2242 return 0;
65596487 2243
29639122
JB
2244 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2245 fence = VM_MIN_ADDRESS;
65596487 2246
95ac2dcf 2247 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
98b4dd94 2248
29639122
JB
2249 /* search back for previous return */
2250 for (start_pc -= instlen;; start_pc -= instlen)
2251 if (start_pc < fence)
2252 {
2253 /* It's not clear to me why we reach this point when
2254 stop_soon, but with this test, at least we
2255 don't print out warnings for every child forked (eg, on
2256 decstation). 22apr93 rich@cygnus.com. */
2257 if (stop_soon == NO_STOP_QUIETLY)
2258 {
2259 static int blurb_printed = 0;
98b4dd94 2260
8a3fe4f8 2261 warning (_("GDB can't find the start of the function at 0x%s."),
29639122
JB
2262 paddr_nz (pc));
2263
2264 if (!blurb_printed)
2265 {
2266 /* This actually happens frequently in embedded
2267 development, when you first connect to a board
2268 and your stack pointer and pc are nowhere in
2269 particular. This message needs to give people
2270 in that situation enough information to
2271 determine that it's no big deal. */
2272 printf_filtered ("\n\
2273 GDB is unable to find the start of the function at 0x%s\n\
2274and thus can't determine the size of that function's stack frame.\n\
2275This means that GDB may be unable to access that stack frame, or\n\
2276the frames below it.\n\
2277 This problem is most likely caused by an invalid program counter or\n\
2278stack pointer.\n\
2279 However, if you think GDB should simply search farther back\n\
2280from 0x%s for code which looks like the beginning of a\n\
2281function, you can increase the range of the search using the `set\n\
2282heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2283 blurb_printed = 1;
2284 }
2285 }
2286
2287 return 0;
2288 }
0fe7e7c8 2289 else if (mips_pc_is_mips16 (start_pc))
29639122
JB
2290 {
2291 unsigned short inst;
2292
2293 /* On MIPS16, any one of the following is likely to be the
2294 start of a function:
2295 entry
2296 addiu sp,-n
2297 daddiu sp,-n
2298 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2299 inst = mips_fetch_instruction (start_pc);
2300 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2301 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2302 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2303 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2304 break;
2305 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2306 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2307 seen_adjsp = 1;
2308 else
2309 seen_adjsp = 0;
2310 }
2311 else if (mips_about_to_return (start_pc))
2312 {
4c7d22cb 2313 /* Skip return and its delay slot. */
95ac2dcf 2314 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
2315 break;
2316 }
2317
2318 return start_pc;
c906108c
SS
2319}
2320
6c0d6680
DJ
2321struct mips_objfile_private
2322{
2323 bfd_size_type size;
2324 char *contents;
2325};
2326
f09ded24
AC
2327/* According to the current ABI, should the type be passed in a
2328 floating-point register (assuming that there is space)? When there
2329 is no FPU, FP are not even considered as possibile candidates for
2330 FP registers and, consequently this returns false - forces FP
2331 arguments into integer registers. */
2332
2333static int
2334fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2335{
2336 return ((typecode == TYPE_CODE_FLT
2337 || (MIPS_EABI
6d82d43b
AC
2338 && (typecode == TYPE_CODE_STRUCT
2339 || typecode == TYPE_CODE_UNION)
f09ded24
AC
2340 && TYPE_NFIELDS (arg_type) == 1
2341 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2342 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2343}
2344
49e790b0
DJ
2345/* On o32, argument passing in GPRs depends on the alignment of the type being
2346 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2347
2348static int
2349mips_type_needs_double_align (struct type *type)
2350{
2351 enum type_code typecode = TYPE_CODE (type);
361d1df0 2352
49e790b0
DJ
2353 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2354 return 1;
2355 else if (typecode == TYPE_CODE_STRUCT)
2356 {
2357 if (TYPE_NFIELDS (type) < 1)
2358 return 0;
2359 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2360 }
2361 else if (typecode == TYPE_CODE_UNION)
2362 {
361d1df0 2363 int i, n;
49e790b0
DJ
2364
2365 n = TYPE_NFIELDS (type);
2366 for (i = 0; i < n; i++)
2367 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2368 return 1;
2369 return 0;
2370 }
2371 return 0;
2372}
2373
dc604539
AC
2374/* Adjust the address downward (direction of stack growth) so that it
2375 is correctly aligned for a new stack frame. */
2376static CORE_ADDR
2377mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2378{
5b03f266 2379 return align_down (addr, 16);
dc604539
AC
2380}
2381
f7ab6ec6 2382static CORE_ADDR
7d9b040b 2383mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2384 struct regcache *regcache, CORE_ADDR bp_addr,
2385 int nargs, struct value **args, CORE_ADDR sp,
2386 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
2387{
2388 int argreg;
2389 int float_argreg;
2390 int argnum;
2391 int len = 0;
2392 int stack_offset = 0;
480d3dd2 2393 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2394 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 2395
25ab4790
AC
2396 /* For shared libraries, "t9" needs to point at the function
2397 address. */
4c7d22cb 2398 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2399
2400 /* Set the return address register to point to the entry point of
2401 the program, where a breakpoint lies in wait. */
4c7d22cb 2402 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2403
c906108c 2404 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2405 are properly aligned. The stack has to be at least 64-bit
2406 aligned even on 32-bit machines, because doubles must be 64-bit
2407 aligned. For n32 and n64, stack frames need to be 128-bit
2408 aligned, so we round to this widest known alignment. */
2409
5b03f266
AC
2410 sp = align_down (sp, 16);
2411 struct_addr = align_down (struct_addr, 16);
c5aa993b 2412
46e0f506 2413 /* Now make space on the stack for the args. We allocate more
c906108c 2414 than necessary for EABI, because the first few arguments are
46e0f506 2415 passed in registers, but that's OK. */
c906108c 2416 for (argnum = 0; argnum < nargs; argnum++)
4991999e 2417 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
13326b4e 2418 mips_stack_argsize (gdbarch));
5b03f266 2419 sp -= align_up (len, 16);
c906108c 2420
9ace0497 2421 if (mips_debug)
6d82d43b 2422 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2423 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2424 paddr_nz (sp), (long) align_up (len, 16));
9ace0497 2425
c906108c 2426 /* Initialize the integer and float register pointers. */
4c7d22cb 2427 argreg = MIPS_A0_REGNUM;
56cea623 2428 float_argreg = mips_fpa0_regnum (current_gdbarch);
c906108c 2429
46e0f506 2430 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2431 if (struct_return)
9ace0497
AC
2432 {
2433 if (mips_debug)
2434 fprintf_unfiltered (gdb_stdlog,
25ab4790 2435 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2436 argreg, paddr_nz (struct_addr));
9ace0497
AC
2437 write_register (argreg++, struct_addr);
2438 }
c906108c
SS
2439
2440 /* Now load as many as possible of the first arguments into
2441 registers, and push the rest onto the stack. Loop thru args
2442 from first to last. */
2443 for (argnum = 0; argnum < nargs; argnum++)
2444 {
47a35522
MK
2445 const gdb_byte *val;
2446 gdb_byte valbuf[MAX_REGISTER_SIZE];
ea7c478f 2447 struct value *arg = args[argnum];
4991999e 2448 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
2449 int len = TYPE_LENGTH (arg_type);
2450 enum type_code typecode = TYPE_CODE (arg_type);
2451
9ace0497
AC
2452 if (mips_debug)
2453 fprintf_unfiltered (gdb_stdlog,
25ab4790 2454 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2455 argnum + 1, len, (int) typecode);
9ace0497 2456
c906108c 2457 /* The EABI passes structures that do not fit in a register by
46e0f506 2458 reference. */
13326b4e 2459 if (len > mips_abi_regsize (gdbarch)
9ace0497 2460 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2461 {
13326b4e 2462 store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch),
480d3dd2 2463 VALUE_ADDRESS (arg));
c906108c 2464 typecode = TYPE_CODE_PTR;
13326b4e 2465 len = mips_abi_regsize (gdbarch);
c906108c 2466 val = valbuf;
9ace0497
AC
2467 if (mips_debug)
2468 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2469 }
2470 else
47a35522 2471 val = value_contents (arg);
c906108c
SS
2472
2473 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2474 even-numbered floating point register. Round the FP register
2475 up before the check to see if there are any FP registers
46e0f506
MS
2476 left. Non MIPS_EABI targets also pass the FP in the integer
2477 registers so also round up normal registers. */
ceae6e75
AC
2478 if (mips_abi_regsize (gdbarch) < 8
2479 && fp_register_arg_p (typecode, arg_type))
acdb74a0
AC
2480 {
2481 if ((float_argreg & 1))
2482 float_argreg++;
2483 }
c906108c
SS
2484
2485 /* Floating point arguments passed in registers have to be
2486 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2487 are passed in register pairs; the even register gets
2488 the low word, and the odd register gets the high word.
2489 On non-EABI processors, the first two floating point arguments are
2490 also copied to general registers, because MIPS16 functions
2491 don't use float registers for arguments. This duplication of
2492 arguments in general registers can't hurt non-MIPS16 functions
2493 because those registers are normally skipped. */
1012bd0e
EZ
2494 /* MIPS_EABI squeezes a struct that contains a single floating
2495 point value into an FP register instead of pushing it onto the
46e0f506 2496 stack. */
f09ded24
AC
2497 if (fp_register_arg_p (typecode, arg_type)
2498 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c 2499 {
ceae6e75 2500 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
c906108c 2501 {
d7449b42 2502 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2503 unsigned long regval;
2504
2505 /* Write the low word of the double to the even register(s). */
c5aa993b 2506 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2507 if (mips_debug)
acdb74a0 2508 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2509 float_argreg, phex (regval, 4));
c906108c 2510 write_register (float_argreg++, regval);
c906108c
SS
2511
2512 /* Write the high word of the double to the odd register(s). */
c5aa993b 2513 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2514 if (mips_debug)
acdb74a0 2515 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2516 float_argreg, phex (regval, 4));
c906108c 2517 write_register (float_argreg++, regval);
c906108c
SS
2518 }
2519 else
2520 {
2521 /* This is a floating point value that fits entirely
2522 in a single register. */
53a5351d 2523 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 2524 above to ensure that it is even register aligned. */
9ace0497
AC
2525 LONGEST regval = extract_unsigned_integer (val, len);
2526 if (mips_debug)
acdb74a0 2527 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2528 float_argreg, phex (regval, len));
c906108c 2529 write_register (float_argreg++, regval);
c906108c
SS
2530 }
2531 }
2532 else
2533 {
2534 /* Copy the argument to general registers or the stack in
2535 register-sized pieces. Large arguments are split between
2536 registers and stack. */
4246e332 2537 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
2538 mips_abi_regsize() are treated specially: Irix cc passes
2539 them in registers where gcc sometimes puts them on the
2540 stack. For maximum compatibility, we will put them in
2541 both places. */
13326b4e
AC
2542 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2543 && (len % mips_abi_regsize (gdbarch) != 0));
46e0f506 2544
f09ded24 2545 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2546 register are only written to memory. */
c906108c
SS
2547 while (len > 0)
2548 {
ebafbe83 2549 /* Remember if the argument was written to the stack. */
566f0f7a 2550 int stack_used_p = 0;
13326b4e
AC
2551 int partial_len = (len < mips_abi_regsize (gdbarch)
2552 ? len : mips_abi_regsize (gdbarch));
c906108c 2553
acdb74a0
AC
2554 if (mips_debug)
2555 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2556 partial_len);
2557
566f0f7a 2558 /* Write this portion of the argument to the stack. */
f09ded24
AC
2559 if (argreg > MIPS_LAST_ARG_REGNUM
2560 || odd_sized_struct
2561 || fp_register_arg_p (typecode, arg_type))
c906108c 2562 {
c906108c
SS
2563 /* Should shorter than int integer values be
2564 promoted to int before being stored? */
c906108c 2565 int longword_offset = 0;
9ace0497 2566 CORE_ADDR addr;
566f0f7a 2567 stack_used_p = 1;
d7449b42 2568 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2569 {
13326b4e 2570 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
2571 && (typecode == TYPE_CODE_INT
2572 || typecode == TYPE_CODE_PTR
6d82d43b 2573 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 2574 longword_offset = mips_stack_argsize (gdbarch) - len;
480d3dd2
AC
2575 else if ((typecode == TYPE_CODE_STRUCT
2576 || typecode == TYPE_CODE_UNION)
2577 && (TYPE_LENGTH (arg_type)
13326b4e
AC
2578 < mips_stack_argsize (gdbarch)))
2579 longword_offset = mips_stack_argsize (gdbarch) - len;
7a292a7a 2580 }
c5aa993b 2581
9ace0497
AC
2582 if (mips_debug)
2583 {
cb3d25d1
MS
2584 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2585 paddr_nz (stack_offset));
2586 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2587 paddr_nz (longword_offset));
9ace0497 2588 }
361d1df0 2589
9ace0497
AC
2590 addr = sp + stack_offset + longword_offset;
2591
2592 if (mips_debug)
2593 {
2594 int i;
6d82d43b 2595 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1 2596 paddr_nz (addr));
9ace0497
AC
2597 for (i = 0; i < partial_len; i++)
2598 {
6d82d43b 2599 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 2600 val[i] & 0xff);
9ace0497
AC
2601 }
2602 }
2603 write_memory (addr, val, partial_len);
c906108c
SS
2604 }
2605
f09ded24
AC
2606 /* Note!!! This is NOT an else clause. Odd sized
2607 structs may go thru BOTH paths. Floating point
46e0f506 2608 arguments will not. */
566f0f7a 2609 /* Write this portion of the argument to a general
6d82d43b 2610 purpose register. */
f09ded24
AC
2611 if (argreg <= MIPS_LAST_ARG_REGNUM
2612 && !fp_register_arg_p (typecode, arg_type))
c906108c 2613 {
6d82d43b
AC
2614 LONGEST regval =
2615 extract_unsigned_integer (val, partial_len);
c906108c 2616
9ace0497 2617 if (mips_debug)
acdb74a0 2618 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 2619 argreg,
6d82d43b 2620 phex (regval,
13326b4e 2621 mips_abi_regsize (gdbarch)));
c906108c
SS
2622 write_register (argreg, regval);
2623 argreg++;
c906108c 2624 }
c5aa993b 2625
c906108c
SS
2626 len -= partial_len;
2627 val += partial_len;
2628
566f0f7a 2629 /* Compute the the offset into the stack at which we
6d82d43b 2630 will copy the next parameter.
566f0f7a 2631
566f0f7a 2632 In the new EABI (and the NABI32), the stack_offset
46e0f506 2633 only needs to be adjusted when it has been used. */
c906108c 2634
46e0f506 2635 if (stack_used_p)
480d3dd2 2636 stack_offset += align_up (partial_len,
13326b4e 2637 mips_stack_argsize (gdbarch));
c906108c
SS
2638 }
2639 }
9ace0497
AC
2640 if (mips_debug)
2641 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2642 }
2643
f10683bb 2644 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 2645
0f71a2f6
JM
2646 /* Return adjusted stack pointer. */
2647 return sp;
2648}
2649
9c8fdbfa 2650/* Determin the return value convention being used. */
6d82d43b 2651
9c8fdbfa
AC
2652static enum return_value_convention
2653mips_eabi_return_value (struct gdbarch *gdbarch,
2654 struct type *type, struct regcache *regcache,
47a35522 2655 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 2656{
9c8fdbfa
AC
2657 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2658 return RETURN_VALUE_STRUCT_CONVENTION;
2659 if (readbuf)
2660 memset (readbuf, 0, TYPE_LENGTH (type));
2661 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
2662}
2663
6d82d43b
AC
2664
2665/* N32/N64 ABI stuff. */
ebafbe83 2666
f7ab6ec6 2667static CORE_ADDR
7d9b040b 2668mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2669 struct regcache *regcache, CORE_ADDR bp_addr,
2670 int nargs, struct value **args, CORE_ADDR sp,
2671 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
2672{
2673 int argreg;
2674 int float_argreg;
2675 int argnum;
2676 int len = 0;
2677 int stack_offset = 0;
480d3dd2 2678 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2679 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 2680
25ab4790
AC
2681 /* For shared libraries, "t9" needs to point at the function
2682 address. */
4c7d22cb 2683 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2684
2685 /* Set the return address register to point to the entry point of
2686 the program, where a breakpoint lies in wait. */
4c7d22cb 2687 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2688
cb3d25d1
MS
2689 /* First ensure that the stack and structure return address (if any)
2690 are properly aligned. The stack has to be at least 64-bit
2691 aligned even on 32-bit machines, because doubles must be 64-bit
2692 aligned. For n32 and n64, stack frames need to be 128-bit
2693 aligned, so we round to this widest known alignment. */
2694
5b03f266
AC
2695 sp = align_down (sp, 16);
2696 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
2697
2698 /* Now make space on the stack for the args. */
2699 for (argnum = 0; argnum < nargs; argnum++)
4991999e 2700 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
13326b4e 2701 mips_stack_argsize (gdbarch));
5b03f266 2702 sp -= align_up (len, 16);
cb3d25d1
MS
2703
2704 if (mips_debug)
6d82d43b 2705 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2706 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2707 paddr_nz (sp), (long) align_up (len, 16));
cb3d25d1
MS
2708
2709 /* Initialize the integer and float register pointers. */
4c7d22cb 2710 argreg = MIPS_A0_REGNUM;
56cea623 2711 float_argreg = mips_fpa0_regnum (current_gdbarch);
cb3d25d1 2712
46e0f506 2713 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
2714 if (struct_return)
2715 {
2716 if (mips_debug)
2717 fprintf_unfiltered (gdb_stdlog,
25ab4790 2718 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1
MS
2719 argreg, paddr_nz (struct_addr));
2720 write_register (argreg++, struct_addr);
2721 }
2722
2723 /* Now load as many as possible of the first arguments into
2724 registers, and push the rest onto the stack. Loop thru args
2725 from first to last. */
2726 for (argnum = 0; argnum < nargs; argnum++)
2727 {
47a35522 2728 const gdb_byte *val;
cb3d25d1 2729 struct value *arg = args[argnum];
4991999e 2730 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
2731 int len = TYPE_LENGTH (arg_type);
2732 enum type_code typecode = TYPE_CODE (arg_type);
2733
2734 if (mips_debug)
2735 fprintf_unfiltered (gdb_stdlog,
25ab4790 2736 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
2737 argnum + 1, len, (int) typecode);
2738
47a35522 2739 val = value_contents (arg);
cb3d25d1
MS
2740
2741 if (fp_register_arg_p (typecode, arg_type)
2742 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2743 {
2744 /* This is a floating point value that fits entirely
2745 in a single register. */
2746 /* On 32 bit ABI's the float_argreg is further adjusted
2747 above to ensure that it is even register aligned. */
2748 LONGEST regval = extract_unsigned_integer (val, len);
2749 if (mips_debug)
2750 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2751 float_argreg, phex (regval, len));
2752 write_register (float_argreg++, regval);
2753
2754 if (mips_debug)
2755 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2756 argreg, phex (regval, len));
2757 write_register (argreg, regval);
2758 argreg += 1;
2759 }
2760 else
2761 {
2762 /* Copy the argument to general registers or the stack in
2763 register-sized pieces. Large arguments are split between
2764 registers and stack. */
4246e332 2765 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
2766 mips_abi_regsize() are treated specially: Irix cc passes
2767 them in registers where gcc sometimes puts them on the
2768 stack. For maximum compatibility, we will put them in
2769 both places. */
13326b4e
AC
2770 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2771 && (len % mips_abi_regsize (gdbarch) != 0));
cb3d25d1 2772 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2773 register are only written to memory. */
cb3d25d1
MS
2774 while (len > 0)
2775 {
2776 /* Rememer if the argument was written to the stack. */
2777 int stack_used_p = 0;
13326b4e
AC
2778 int partial_len = (len < mips_abi_regsize (gdbarch)
2779 ? len : mips_abi_regsize (gdbarch));
cb3d25d1
MS
2780
2781 if (mips_debug)
2782 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2783 partial_len);
2784
2785 /* Write this portion of the argument to the stack. */
2786 if (argreg > MIPS_LAST_ARG_REGNUM
2787 || odd_sized_struct
2788 || fp_register_arg_p (typecode, arg_type))
2789 {
2790 /* Should shorter than int integer values be
2791 promoted to int before being stored? */
2792 int longword_offset = 0;
2793 CORE_ADDR addr;
2794 stack_used_p = 1;
2795 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2796 {
13326b4e 2797 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
2798 && (typecode == TYPE_CODE_INT
2799 || typecode == TYPE_CODE_PTR
6d82d43b 2800 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 2801 longword_offset = mips_stack_argsize (gdbarch) - len;
cb3d25d1
MS
2802 }
2803
2804 if (mips_debug)
2805 {
2806 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2807 paddr_nz (stack_offset));
2808 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2809 paddr_nz (longword_offset));
2810 }
2811
2812 addr = sp + stack_offset + longword_offset;
2813
2814 if (mips_debug)
2815 {
2816 int i;
6d82d43b 2817 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1
MS
2818 paddr_nz (addr));
2819 for (i = 0; i < partial_len; i++)
2820 {
6d82d43b 2821 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
2822 val[i] & 0xff);
2823 }
2824 }
2825 write_memory (addr, val, partial_len);
2826 }
2827
2828 /* Note!!! This is NOT an else clause. Odd sized
2829 structs may go thru BOTH paths. Floating point
2830 arguments will not. */
2831 /* Write this portion of the argument to a general
6d82d43b 2832 purpose register. */
cb3d25d1
MS
2833 if (argreg <= MIPS_LAST_ARG_REGNUM
2834 && !fp_register_arg_p (typecode, arg_type))
2835 {
6d82d43b
AC
2836 LONGEST regval =
2837 extract_unsigned_integer (val, partial_len);
cb3d25d1
MS
2838
2839 /* A non-floating-point argument being passed in a
2840 general register. If a struct or union, and if
2841 the remaining length is smaller than the register
2842 size, we have to adjust the register value on
2843 big endian targets.
2844
2845 It does not seem to be necessary to do the
2846 same for integral types.
2847
2848 cagney/2001-07-23: gdb/179: Also, GCC, when
2849 outputting LE O32 with sizeof (struct) <
1b13c4f6 2850 mips_abi_regsize(), generates a left shift as
cb3d25d1
MS
2851 part of storing the argument in a register a
2852 register (the left shift isn't generated when
1b13c4f6 2853 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
2854 it is quite possible that this is GCC
2855 contradicting the LE/O32 ABI, GDB has not been
2856 adjusted to accommodate this. Either someone
2857 needs to demonstrate that the LE/O32 ABI
2858 specifies such a left shift OR this new ABI gets
2859 identified as such and GDB gets tweaked
2860 accordingly. */
cb3d25d1
MS
2861
2862 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
13326b4e 2863 && partial_len < mips_abi_regsize (gdbarch)
cb3d25d1
MS
2864 && (typecode == TYPE_CODE_STRUCT ||
2865 typecode == TYPE_CODE_UNION))
13326b4e 2866 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
cb3d25d1
MS
2867 TARGET_CHAR_BIT);
2868
2869 if (mips_debug)
2870 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2871 argreg,
6d82d43b 2872 phex (regval,
13326b4e 2873 mips_abi_regsize (gdbarch)));
cb3d25d1
MS
2874 write_register (argreg, regval);
2875 argreg++;
2876 }
2877
2878 len -= partial_len;
2879 val += partial_len;
2880
2881 /* Compute the the offset into the stack at which we
6d82d43b 2882 will copy the next parameter.
cb3d25d1
MS
2883
2884 In N32 (N64?), the stack_offset only needs to be
2885 adjusted when it has been used. */
2886
2887 if (stack_used_p)
480d3dd2 2888 stack_offset += align_up (partial_len,
13326b4e 2889 mips_stack_argsize (gdbarch));
cb3d25d1
MS
2890 }
2891 }
2892 if (mips_debug)
2893 fprintf_unfiltered (gdb_stdlog, "\n");
2894 }
2895
f10683bb 2896 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 2897
cb3d25d1
MS
2898 /* Return adjusted stack pointer. */
2899 return sp;
2900}
2901
6d82d43b
AC
2902static enum return_value_convention
2903mips_n32n64_return_value (struct gdbarch *gdbarch,
2904 struct type *type, struct regcache *regcache,
47a35522 2905 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 2906{
6d82d43b
AC
2907 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2908 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2909 || TYPE_CODE (type) == TYPE_CODE_UNION
2910 || TYPE_CODE (type) == TYPE_CODE_ARRAY
13326b4e 2911 || TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
6d82d43b 2912 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
2913 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2914 && TYPE_LENGTH (type) == 16
2915 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2916 {
2917 /* A 128-bit floating-point value fills both $f0 and $f2. The
2918 two registers are used in the same as memory order, so the
2919 eight bytes with the lower memory address are in $f0. */
2920 if (mips_debug)
2921 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
2922 mips_xfer_register (regcache,
2923 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2924 8, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2925 mips_xfer_register (regcache,
2926 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 2,
2927 8, TARGET_BYTE_ORDER, readbuf ? readbuf + 8 : readbuf,
2928 writebuf ? writebuf + 8 : writebuf, 0);
2929 return RETURN_VALUE_REGISTER_CONVENTION;
2930 }
6d82d43b
AC
2931 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2932 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2933 {
2934 /* A floating-point value belongs in the least significant part
2935 of FP0. */
2936 if (mips_debug)
2937 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
2938 mips_xfer_register (regcache,
2939 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2940 TYPE_LENGTH (type),
2941 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2942 return RETURN_VALUE_REGISTER_CONVENTION;
2943 }
2944 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2945 && TYPE_NFIELDS (type) <= 2
2946 && TYPE_NFIELDS (type) >= 1
2947 && ((TYPE_NFIELDS (type) == 1
2948 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2949 == TYPE_CODE_FLT))
2950 || (TYPE_NFIELDS (type) == 2
2951 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2952 == TYPE_CODE_FLT)
2953 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
2954 == TYPE_CODE_FLT)))
2955 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2956 {
2957 /* A struct that contains one or two floats. Each value is part
2958 in the least significant part of their floating point
2959 register.. */
6d82d43b
AC
2960 int regnum;
2961 int field;
2962 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
2963 field < TYPE_NFIELDS (type); field++, regnum += 2)
2964 {
2965 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
2966 / TARGET_CHAR_BIT);
2967 if (mips_debug)
2968 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
2969 offset);
2970 mips_xfer_register (regcache, NUM_REGS + regnum,
2971 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
2972 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2973 }
2974 return RETURN_VALUE_REGISTER_CONVENTION;
2975 }
2976 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2977 || TYPE_CODE (type) == TYPE_CODE_UNION)
2978 {
2979 /* A structure or union. Extract the left justified value,
2980 regardless of the byte order. I.e. DO NOT USE
2981 mips_xfer_lower. */
2982 int offset;
2983 int regnum;
4c7d22cb 2984 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
2985 offset < TYPE_LENGTH (type);
2986 offset += register_size (current_gdbarch, regnum), regnum++)
2987 {
2988 int xfer = register_size (current_gdbarch, regnum);
2989 if (offset + xfer > TYPE_LENGTH (type))
2990 xfer = TYPE_LENGTH (type) - offset;
2991 if (mips_debug)
2992 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
2993 offset, xfer, regnum);
2994 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
2995 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
2996 }
2997 return RETURN_VALUE_REGISTER_CONVENTION;
2998 }
2999 else
3000 {
3001 /* A scalar extract each part but least-significant-byte
3002 justified. */
3003 int offset;
3004 int regnum;
4c7d22cb 3005 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3006 offset < TYPE_LENGTH (type);
3007 offset += register_size (current_gdbarch, regnum), regnum++)
3008 {
3009 int xfer = register_size (current_gdbarch, regnum);
6d82d43b
AC
3010 if (offset + xfer > TYPE_LENGTH (type))
3011 xfer = TYPE_LENGTH (type) - offset;
3012 if (mips_debug)
3013 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3014 offset, xfer, regnum);
3015 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3016 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3017 }
3018 return RETURN_VALUE_REGISTER_CONVENTION;
3019 }
3020}
3021
3022/* O32 ABI stuff. */
3023
3024static CORE_ADDR
7d9b040b 3025mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3026 struct regcache *regcache, CORE_ADDR bp_addr,
3027 int nargs, struct value **args, CORE_ADDR sp,
3028 int struct_return, CORE_ADDR struct_addr)
3029{
3030 int argreg;
3031 int float_argreg;
3032 int argnum;
3033 int len = 0;
3034 int stack_offset = 0;
3035 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3036 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
3037
3038 /* For shared libraries, "t9" needs to point at the function
3039 address. */
4c7d22cb 3040 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
3041
3042 /* Set the return address register to point to the entry point of
3043 the program, where a breakpoint lies in wait. */
4c7d22cb 3044 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
3045
3046 /* First ensure that the stack and structure return address (if any)
3047 are properly aligned. The stack has to be at least 64-bit
3048 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
3049 aligned. For n32 and n64, stack frames need to be 128-bit
3050 aligned, so we round to this widest known alignment. */
3051
5b03f266
AC
3052 sp = align_down (sp, 16);
3053 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
3054
3055 /* Now make space on the stack for the args. */
3056 for (argnum = 0; argnum < nargs; argnum++)
4991999e 3057 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
13326b4e 3058 mips_stack_argsize (gdbarch));
5b03f266 3059 sp -= align_up (len, 16);
ebafbe83
MS
3060
3061 if (mips_debug)
6d82d43b 3062 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3063 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3064 paddr_nz (sp), (long) align_up (len, 16));
ebafbe83
MS
3065
3066 /* Initialize the integer and float register pointers. */
4c7d22cb 3067 argreg = MIPS_A0_REGNUM;
56cea623 3068 float_argreg = mips_fpa0_regnum (current_gdbarch);
ebafbe83 3069
bcb0cc15 3070 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3071 if (struct_return)
3072 {
3073 if (mips_debug)
3074 fprintf_unfiltered (gdb_stdlog,
25ab4790 3075 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3076 argreg, paddr_nz (struct_addr));
3077 write_register (argreg++, struct_addr);
13326b4e 3078 stack_offset += mips_stack_argsize (gdbarch);
ebafbe83
MS
3079 }
3080
3081 /* Now load as many as possible of the first arguments into
3082 registers, and push the rest onto the stack. Loop thru args
3083 from first to last. */
3084 for (argnum = 0; argnum < nargs; argnum++)
3085 {
47a35522 3086 const gdb_byte *val;
ebafbe83 3087 struct value *arg = args[argnum];
4991999e 3088 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
3089 int len = TYPE_LENGTH (arg_type);
3090 enum type_code typecode = TYPE_CODE (arg_type);
3091
3092 if (mips_debug)
3093 fprintf_unfiltered (gdb_stdlog,
25ab4790 3094 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3095 argnum + 1, len, (int) typecode);
3096
47a35522 3097 val = value_contents (arg);
46cac009
AC
3098
3099 /* 32-bit ABIs always start floating point arguments in an
3100 even-numbered floating point register. Round the FP register
3101 up before the check to see if there are any FP registers
3102 left. O32/O64 targets also pass the FP in the integer
3103 registers so also round up normal registers. */
ceae6e75
AC
3104 if (mips_abi_regsize (gdbarch) < 8
3105 && fp_register_arg_p (typecode, arg_type))
46cac009
AC
3106 {
3107 if ((float_argreg & 1))
3108 float_argreg++;
3109 }
3110
3111 /* Floating point arguments passed in registers have to be
3112 treated specially. On 32-bit architectures, doubles
3113 are passed in register pairs; the even register gets
3114 the low word, and the odd register gets the high word.
3115 On O32/O64, the first two floating point arguments are
3116 also copied to general registers, because MIPS16 functions
3117 don't use float registers for arguments. This duplication of
3118 arguments in general registers can't hurt non-MIPS16 functions
3119 because those registers are normally skipped. */
3120
3121 if (fp_register_arg_p (typecode, arg_type)
3122 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3123 {
ceae6e75 3124 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
46cac009
AC
3125 {
3126 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3127 unsigned long regval;
3128
3129 /* Write the low word of the double to the even register(s). */
3130 regval = extract_unsigned_integer (val + low_offset, 4);
3131 if (mips_debug)
3132 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3133 float_argreg, phex (regval, 4));
3134 write_register (float_argreg++, regval);
3135 if (mips_debug)
3136 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3137 argreg, phex (regval, 4));
3138 write_register (argreg++, regval);
3139
3140 /* Write the high word of the double to the odd register(s). */
3141 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3142 if (mips_debug)
3143 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3144 float_argreg, phex (regval, 4));
3145 write_register (float_argreg++, regval);
3146
3147 if (mips_debug)
3148 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3149 argreg, phex (regval, 4));
3150 write_register (argreg++, regval);
3151 }
3152 else
3153 {
3154 /* This is a floating point value that fits entirely
3155 in a single register. */
3156 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 3157 above to ensure that it is even register aligned. */
46cac009
AC
3158 LONGEST regval = extract_unsigned_integer (val, len);
3159 if (mips_debug)
3160 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3161 float_argreg, phex (regval, len));
3162 write_register (float_argreg++, regval);
3163 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
6d82d43b
AC
3164 registers for each argument. The below is (my
3165 guess) to ensure that the corresponding integer
3166 register has reserved the same space. */
46cac009
AC
3167 if (mips_debug)
3168 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3169 argreg, phex (regval, len));
3170 write_register (argreg, regval);
ceae6e75 3171 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
46cac009
AC
3172 }
3173 /* Reserve space for the FP register. */
13326b4e 3174 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
46cac009
AC
3175 }
3176 else
3177 {
3178 /* Copy the argument to general registers or the stack in
3179 register-sized pieces. Large arguments are split between
3180 registers and stack. */
4246e332 3181 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
3182 mips_abi_regsize() are treated specially: Irix cc passes
3183 them in registers where gcc sometimes puts them on the
3184 stack. For maximum compatibility, we will put them in
3185 both places. */
13326b4e
AC
3186 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3187 && (len % mips_abi_regsize (gdbarch) != 0));
46cac009
AC
3188 /* Structures should be aligned to eight bytes (even arg registers)
3189 on MIPS_ABI_O32, if their first member has double precision. */
13326b4e 3190 if (mips_abi_regsize (gdbarch) < 8
46cac009
AC
3191 && mips_type_needs_double_align (arg_type))
3192 {
3193 if ((argreg & 1))
6d82d43b 3194 argreg++;
46cac009
AC
3195 }
3196 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 3197 register are only written to memory. */
46cac009
AC
3198 while (len > 0)
3199 {
3200 /* Remember if the argument was written to the stack. */
3201 int stack_used_p = 0;
13326b4e
AC
3202 int partial_len = (len < mips_abi_regsize (gdbarch)
3203 ? len : mips_abi_regsize (gdbarch));
46cac009
AC
3204
3205 if (mips_debug)
3206 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3207 partial_len);
3208
3209 /* Write this portion of the argument to the stack. */
3210 if (argreg > MIPS_LAST_ARG_REGNUM
3211 || odd_sized_struct
3212 || fp_register_arg_p (typecode, arg_type))
3213 {
3214 /* Should shorter than int integer values be
3215 promoted to int before being stored? */
3216 int longword_offset = 0;
3217 CORE_ADDR addr;
3218 stack_used_p = 1;
3219 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3220 {
13326b4e 3221 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
3222 && (typecode == TYPE_CODE_INT
3223 || typecode == TYPE_CODE_PTR
6d82d43b 3224 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 3225 longword_offset = mips_stack_argsize (gdbarch) - len;
46cac009
AC
3226 }
3227
3228 if (mips_debug)
3229 {
3230 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3231 paddr_nz (stack_offset));
3232 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3233 paddr_nz (longword_offset));
3234 }
3235
3236 addr = sp + stack_offset + longword_offset;
3237
3238 if (mips_debug)
3239 {
3240 int i;
6d82d43b 3241 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
46cac009
AC
3242 paddr_nz (addr));
3243 for (i = 0; i < partial_len; i++)
3244 {
6d82d43b 3245 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
3246 val[i] & 0xff);
3247 }
3248 }
3249 write_memory (addr, val, partial_len);
3250 }
3251
3252 /* Note!!! This is NOT an else clause. Odd sized
3253 structs may go thru BOTH paths. Floating point
3254 arguments will not. */
3255 /* Write this portion of the argument to a general
6d82d43b 3256 purpose register. */
46cac009
AC
3257 if (argreg <= MIPS_LAST_ARG_REGNUM
3258 && !fp_register_arg_p (typecode, arg_type))
3259 {
3260 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3261 /* Value may need to be sign extended, because
1b13c4f6 3262 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
3263
3264 /* A non-floating-point argument being passed in a
3265 general register. If a struct or union, and if
3266 the remaining length is smaller than the register
3267 size, we have to adjust the register value on
3268 big endian targets.
3269
3270 It does not seem to be necessary to do the
3271 same for integral types.
3272
3273 Also don't do this adjustment on O64 binaries.
3274
3275 cagney/2001-07-23: gdb/179: Also, GCC, when
3276 outputting LE O32 with sizeof (struct) <
1b13c4f6 3277 mips_abi_regsize(), generates a left shift as
46cac009
AC
3278 part of storing the argument in a register a
3279 register (the left shift isn't generated when
1b13c4f6 3280 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
3281 it is quite possible that this is GCC
3282 contradicting the LE/O32 ABI, GDB has not been
3283 adjusted to accommodate this. Either someone
3284 needs to demonstrate that the LE/O32 ABI
3285 specifies such a left shift OR this new ABI gets
3286 identified as such and GDB gets tweaked
3287 accordingly. */
3288
13326b4e 3289 if (mips_abi_regsize (gdbarch) < 8
46cac009 3290 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
13326b4e 3291 && partial_len < mips_abi_regsize (gdbarch)
46cac009
AC
3292 && (typecode == TYPE_CODE_STRUCT ||
3293 typecode == TYPE_CODE_UNION))
13326b4e 3294 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
46cac009
AC
3295 TARGET_CHAR_BIT);
3296
3297 if (mips_debug)
3298 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3299 argreg,
6d82d43b 3300 phex (regval,
13326b4e 3301 mips_abi_regsize (gdbarch)));
46cac009
AC
3302 write_register (argreg, regval);
3303 argreg++;
3304
3305 /* Prevent subsequent floating point arguments from
3306 being passed in floating point registers. */
3307 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3308 }
3309
3310 len -= partial_len;
3311 val += partial_len;
3312
3313 /* Compute the the offset into the stack at which we
6d82d43b 3314 will copy the next parameter.
46cac009 3315
6d82d43b
AC
3316 In older ABIs, the caller reserved space for
3317 registers that contained arguments. This was loosely
3318 refered to as their "home". Consequently, space is
3319 always allocated. */
46cac009 3320
480d3dd2 3321 stack_offset += align_up (partial_len,
13326b4e 3322 mips_stack_argsize (gdbarch));
46cac009
AC
3323 }
3324 }
3325 if (mips_debug)
3326 fprintf_unfiltered (gdb_stdlog, "\n");
3327 }
3328
f10683bb 3329 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3330
46cac009
AC
3331 /* Return adjusted stack pointer. */
3332 return sp;
3333}
3334
6d82d43b
AC
3335static enum return_value_convention
3336mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3337 struct regcache *regcache,
47a35522 3338 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b
AC
3339{
3340 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3341
3342 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3343 || TYPE_CODE (type) == TYPE_CODE_UNION
3344 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3345 return RETURN_VALUE_STRUCT_CONVENTION;
3346 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3347 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3348 {
3349 /* A single-precision floating-point value. It fits in the
3350 least significant part of FP0. */
3351 if (mips_debug)
3352 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3353 mips_xfer_register (regcache,
3354 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3355 TYPE_LENGTH (type),
3356 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3357 return RETURN_VALUE_REGISTER_CONVENTION;
3358 }
3359 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3360 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3361 {
3362 /* A double-precision floating-point value. The most
3363 significant part goes in FP1, and the least significant in
3364 FP0. */
3365 if (mips_debug)
3366 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3367 switch (TARGET_BYTE_ORDER)
3368 {
3369 case BFD_ENDIAN_LITTLE:
3370 mips_xfer_register (regcache,
3371 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3372 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3373 mips_xfer_register (regcache,
3374 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3375 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3376 break;
3377 case BFD_ENDIAN_BIG:
3378 mips_xfer_register (regcache,
3379 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3380 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3381 mips_xfer_register (regcache,
3382 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3383 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3384 break;
3385 default:
e2e0b3e5 3386 internal_error (__FILE__, __LINE__, _("bad switch"));
6d82d43b
AC
3387 }
3388 return RETURN_VALUE_REGISTER_CONVENTION;
3389 }
3390#if 0
3391 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3392 && TYPE_NFIELDS (type) <= 2
3393 && TYPE_NFIELDS (type) >= 1
3394 && ((TYPE_NFIELDS (type) == 1
3395 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3396 == TYPE_CODE_FLT))
3397 || (TYPE_NFIELDS (type) == 2
3398 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3399 == TYPE_CODE_FLT)
3400 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3401 == TYPE_CODE_FLT)))
3402 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3403 {
3404 /* A struct that contains one or two floats. Each value is part
3405 in the least significant part of their floating point
3406 register.. */
870cd05e 3407 gdb_byte reg[MAX_REGISTER_SIZE];
6d82d43b
AC
3408 int regnum;
3409 int field;
3410 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3411 field < TYPE_NFIELDS (type); field++, regnum += 2)
3412 {
3413 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3414 / TARGET_CHAR_BIT);
3415 if (mips_debug)
3416 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3417 offset);
3418 mips_xfer_register (regcache, NUM_REGS + regnum,
3419 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3420 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3421 }
3422 return RETURN_VALUE_REGISTER_CONVENTION;
3423 }
3424#endif
3425#if 0
3426 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3427 || TYPE_CODE (type) == TYPE_CODE_UNION)
3428 {
3429 /* A structure or union. Extract the left justified value,
3430 regardless of the byte order. I.e. DO NOT USE
3431 mips_xfer_lower. */
3432 int offset;
3433 int regnum;
4c7d22cb 3434 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3435 offset < TYPE_LENGTH (type);
3436 offset += register_size (current_gdbarch, regnum), regnum++)
3437 {
3438 int xfer = register_size (current_gdbarch, regnum);
3439 if (offset + xfer > TYPE_LENGTH (type))
3440 xfer = TYPE_LENGTH (type) - offset;
3441 if (mips_debug)
3442 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3443 offset, xfer, regnum);
3444 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3445 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3446 }
3447 return RETURN_VALUE_REGISTER_CONVENTION;
3448 }
3449#endif
3450 else
3451 {
3452 /* A scalar extract each part but least-significant-byte
3453 justified. o32 thinks registers are 4 byte, regardless of
3454 the ISA. mips_stack_argsize controls this. */
3455 int offset;
3456 int regnum;
4c7d22cb 3457 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3458 offset < TYPE_LENGTH (type);
13326b4e 3459 offset += mips_stack_argsize (gdbarch), regnum++)
6d82d43b 3460 {
13326b4e 3461 int xfer = mips_stack_argsize (gdbarch);
6d82d43b
AC
3462 if (offset + xfer > TYPE_LENGTH (type))
3463 xfer = TYPE_LENGTH (type) - offset;
3464 if (mips_debug)
3465 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3466 offset, xfer, regnum);
3467 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3468 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3469 }
3470 return RETURN_VALUE_REGISTER_CONVENTION;
3471 }
3472}
3473
3474/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3475 ABI. */
46cac009
AC
3476
3477static CORE_ADDR
7d9b040b 3478mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3479 struct regcache *regcache, CORE_ADDR bp_addr,
3480 int nargs,
3481 struct value **args, CORE_ADDR sp,
3482 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
3483{
3484 int argreg;
3485 int float_argreg;
3486 int argnum;
3487 int len = 0;
3488 int stack_offset = 0;
480d3dd2 3489 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3490 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 3491
25ab4790
AC
3492 /* For shared libraries, "t9" needs to point at the function
3493 address. */
4c7d22cb 3494 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
3495
3496 /* Set the return address register to point to the entry point of
3497 the program, where a breakpoint lies in wait. */
4c7d22cb 3498 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 3499
46cac009
AC
3500 /* First ensure that the stack and structure return address (if any)
3501 are properly aligned. The stack has to be at least 64-bit
3502 aligned even on 32-bit machines, because doubles must be 64-bit
3503 aligned. For n32 and n64, stack frames need to be 128-bit
3504 aligned, so we round to this widest known alignment. */
3505
5b03f266
AC
3506 sp = align_down (sp, 16);
3507 struct_addr = align_down (struct_addr, 16);
46cac009
AC
3508
3509 /* Now make space on the stack for the args. */
3510 for (argnum = 0; argnum < nargs; argnum++)
4991999e 3511 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
13326b4e 3512 mips_stack_argsize (gdbarch));
5b03f266 3513 sp -= align_up (len, 16);
46cac009
AC
3514
3515 if (mips_debug)
6d82d43b 3516 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3517 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3518 paddr_nz (sp), (long) align_up (len, 16));
46cac009
AC
3519
3520 /* Initialize the integer and float register pointers. */
4c7d22cb 3521 argreg = MIPS_A0_REGNUM;
56cea623 3522 float_argreg = mips_fpa0_regnum (current_gdbarch);
46cac009
AC
3523
3524 /* The struct_return pointer occupies the first parameter-passing reg. */
3525 if (struct_return)
3526 {
3527 if (mips_debug)
3528 fprintf_unfiltered (gdb_stdlog,
25ab4790 3529 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009
AC
3530 argreg, paddr_nz (struct_addr));
3531 write_register (argreg++, struct_addr);
13326b4e 3532 stack_offset += mips_stack_argsize (gdbarch);
46cac009
AC
3533 }
3534
3535 /* Now load as many as possible of the first arguments into
3536 registers, and push the rest onto the stack. Loop thru args
3537 from first to last. */
3538 for (argnum = 0; argnum < nargs; argnum++)
3539 {
47a35522 3540 const gdb_byte *val;
46cac009 3541 struct value *arg = args[argnum];
4991999e 3542 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
3543 int len = TYPE_LENGTH (arg_type);
3544 enum type_code typecode = TYPE_CODE (arg_type);
3545
3546 if (mips_debug)
3547 fprintf_unfiltered (gdb_stdlog,
25ab4790 3548 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3549 argnum + 1, len, (int) typecode);
3550
47a35522 3551 val = value_contents (arg);
ebafbe83
MS
3552
3553 /* 32-bit ABIs always start floating point arguments in an
3554 even-numbered floating point register. Round the FP register
3555 up before the check to see if there are any FP registers
3556 left. O32/O64 targets also pass the FP in the integer
3557 registers so also round up normal registers. */
ceae6e75
AC
3558 if (mips_abi_regsize (gdbarch) < 8
3559 && fp_register_arg_p (typecode, arg_type))
ebafbe83
MS
3560 {
3561 if ((float_argreg & 1))
3562 float_argreg++;
3563 }
3564
3565 /* Floating point arguments passed in registers have to be
3566 treated specially. On 32-bit architectures, doubles
3567 are passed in register pairs; the even register gets
3568 the low word, and the odd register gets the high word.
3569 On O32/O64, the first two floating point arguments are
3570 also copied to general registers, because MIPS16 functions
3571 don't use float registers for arguments. This duplication of
3572 arguments in general registers can't hurt non-MIPS16 functions
3573 because those registers are normally skipped. */
3574
3575 if (fp_register_arg_p (typecode, arg_type)
3576 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3577 {
ceae6e75 3578 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
ebafbe83
MS
3579 {
3580 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3581 unsigned long regval;
3582
3583 /* Write the low word of the double to the even register(s). */
3584 regval = extract_unsigned_integer (val + low_offset, 4);
3585 if (mips_debug)
3586 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3587 float_argreg, phex (regval, 4));
3588 write_register (float_argreg++, regval);
3589 if (mips_debug)
3590 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3591 argreg, phex (regval, 4));
3592 write_register (argreg++, regval);
3593
3594 /* Write the high word of the double to the odd register(s). */
3595 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3596 if (mips_debug)
3597 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3598 float_argreg, phex (regval, 4));
3599 write_register (float_argreg++, regval);
3600
3601 if (mips_debug)
3602 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3603 argreg, phex (regval, 4));
3604 write_register (argreg++, regval);
3605 }
3606 else
3607 {
3608 /* This is a floating point value that fits entirely
3609 in a single register. */
3610 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 3611 above to ensure that it is even register aligned. */
ebafbe83
MS
3612 LONGEST regval = extract_unsigned_integer (val, len);
3613 if (mips_debug)
3614 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3615 float_argreg, phex (regval, len));
3616 write_register (float_argreg++, regval);
3617 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
6d82d43b
AC
3618 registers for each argument. The below is (my
3619 guess) to ensure that the corresponding integer
3620 register has reserved the same space. */
ebafbe83
MS
3621 if (mips_debug)
3622 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3623 argreg, phex (regval, len));
3624 write_register (argreg, regval);
ceae6e75 3625 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
ebafbe83
MS
3626 }
3627 /* Reserve space for the FP register. */
13326b4e 3628 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
ebafbe83
MS
3629 }
3630 else
3631 {
3632 /* Copy the argument to general registers or the stack in
3633 register-sized pieces. Large arguments are split between
3634 registers and stack. */
4246e332 3635 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
3636 mips_abi_regsize() are treated specially: Irix cc passes
3637 them in registers where gcc sometimes puts them on the
3638 stack. For maximum compatibility, we will put them in
3639 both places. */
13326b4e
AC
3640 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3641 && (len % mips_abi_regsize (gdbarch) != 0));
ebafbe83
MS
3642 /* Structures should be aligned to eight bytes (even arg registers)
3643 on MIPS_ABI_O32, if their first member has double precision. */
13326b4e 3644 if (mips_abi_regsize (gdbarch) < 8
ebafbe83
MS
3645 && mips_type_needs_double_align (arg_type))
3646 {
3647 if ((argreg & 1))
6d82d43b 3648 argreg++;
ebafbe83
MS
3649 }
3650 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 3651 register are only written to memory. */
ebafbe83
MS
3652 while (len > 0)
3653 {
3654 /* Remember if the argument was written to the stack. */
3655 int stack_used_p = 0;
13326b4e
AC
3656 int partial_len = (len < mips_abi_regsize (gdbarch)
3657 ? len : mips_abi_regsize (gdbarch));
ebafbe83
MS
3658
3659 if (mips_debug)
3660 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3661 partial_len);
3662
3663 /* Write this portion of the argument to the stack. */
3664 if (argreg > MIPS_LAST_ARG_REGNUM
3665 || odd_sized_struct
3666 || fp_register_arg_p (typecode, arg_type))
3667 {
3668 /* Should shorter than int integer values be
3669 promoted to int before being stored? */
3670 int longword_offset = 0;
3671 CORE_ADDR addr;
3672 stack_used_p = 1;
3673 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3674 {
13326b4e 3675 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
3676 && (typecode == TYPE_CODE_INT
3677 || typecode == TYPE_CODE_PTR
6d82d43b 3678 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 3679 longword_offset = mips_stack_argsize (gdbarch) - len;
ebafbe83
MS
3680 }
3681
3682 if (mips_debug)
3683 {
3684 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3685 paddr_nz (stack_offset));
3686 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3687 paddr_nz (longword_offset));
3688 }
3689
3690 addr = sp + stack_offset + longword_offset;
3691
3692 if (mips_debug)
3693 {
3694 int i;
6d82d43b 3695 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
ebafbe83
MS
3696 paddr_nz (addr));
3697 for (i = 0; i < partial_len; i++)
3698 {
6d82d43b 3699 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
3700 val[i] & 0xff);
3701 }
3702 }
3703 write_memory (addr, val, partial_len);
3704 }
3705
3706 /* Note!!! This is NOT an else clause. Odd sized
3707 structs may go thru BOTH paths. Floating point
3708 arguments will not. */
3709 /* Write this portion of the argument to a general
6d82d43b 3710 purpose register. */
ebafbe83
MS
3711 if (argreg <= MIPS_LAST_ARG_REGNUM
3712 && !fp_register_arg_p (typecode, arg_type))
3713 {
3714 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3715 /* Value may need to be sign extended, because
1b13c4f6 3716 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
3717
3718 /* A non-floating-point argument being passed in a
3719 general register. If a struct or union, and if
3720 the remaining length is smaller than the register
3721 size, we have to adjust the register value on
3722 big endian targets.
3723
3724 It does not seem to be necessary to do the
3725 same for integral types.
3726
3727 Also don't do this adjustment on O64 binaries.
3728
3729 cagney/2001-07-23: gdb/179: Also, GCC, when
3730 outputting LE O32 with sizeof (struct) <
1b13c4f6 3731 mips_abi_regsize(), generates a left shift as
ebafbe83
MS
3732 part of storing the argument in a register a
3733 register (the left shift isn't generated when
1b13c4f6 3734 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
3735 it is quite possible that this is GCC
3736 contradicting the LE/O32 ABI, GDB has not been
3737 adjusted to accommodate this. Either someone
3738 needs to demonstrate that the LE/O32 ABI
3739 specifies such a left shift OR this new ABI gets
3740 identified as such and GDB gets tweaked
3741 accordingly. */
3742
13326b4e 3743 if (mips_abi_regsize (gdbarch) < 8
ebafbe83 3744 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
13326b4e 3745 && partial_len < mips_abi_regsize (gdbarch)
ebafbe83
MS
3746 && (typecode == TYPE_CODE_STRUCT ||
3747 typecode == TYPE_CODE_UNION))
13326b4e 3748 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
ebafbe83
MS
3749 TARGET_CHAR_BIT);
3750
3751 if (mips_debug)
3752 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3753 argreg,
6d82d43b 3754 phex (regval,
13326b4e 3755 mips_abi_regsize (gdbarch)));
ebafbe83
MS
3756 write_register (argreg, regval);
3757 argreg++;
3758
3759 /* Prevent subsequent floating point arguments from
3760 being passed in floating point registers. */
3761 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3762 }
3763
3764 len -= partial_len;
3765 val += partial_len;
3766
3767 /* Compute the the offset into the stack at which we
6d82d43b 3768 will copy the next parameter.
ebafbe83 3769
6d82d43b
AC
3770 In older ABIs, the caller reserved space for
3771 registers that contained arguments. This was loosely
3772 refered to as their "home". Consequently, space is
3773 always allocated. */
ebafbe83 3774
480d3dd2 3775 stack_offset += align_up (partial_len,
13326b4e 3776 mips_stack_argsize (gdbarch));
ebafbe83
MS
3777 }
3778 }
3779 if (mips_debug)
3780 fprintf_unfiltered (gdb_stdlog, "\n");
3781 }
3782
f10683bb 3783 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3784
ebafbe83
MS
3785 /* Return adjusted stack pointer. */
3786 return sp;
3787}
3788
9c8fdbfa
AC
3789static enum return_value_convention
3790mips_o64_return_value (struct gdbarch *gdbarch,
3791 struct type *type, struct regcache *regcache,
47a35522 3792 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 3793{
9c8fdbfa 3794 return RETURN_VALUE_STRUCT_CONVENTION;
6d82d43b
AC
3795}
3796
dd824b04
DJ
3797/* Floating point register management.
3798
3799 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3800 64bit operations, these early MIPS cpus treat fp register pairs
3801 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3802 registers and offer a compatibility mode that emulates the MIPS2 fp
3803 model. When operating in MIPS2 fp compat mode, later cpu's split
3804 double precision floats into two 32-bit chunks and store them in
3805 consecutive fp regs. To display 64-bit floats stored in this
3806 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3807 Throw in user-configurable endianness and you have a real mess.
3808
3809 The way this works is:
3810 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3811 double-precision value will be split across two logical registers.
3812 The lower-numbered logical register will hold the low-order bits,
3813 regardless of the processor's endianness.
3814 - If we are on a 64-bit processor, and we are looking for a
3815 single-precision value, it will be in the low ordered bits
3816 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3817 save slot in memory.
3818 - If we are in 64-bit mode, everything is straightforward.
3819
3820 Note that this code only deals with "live" registers at the top of the
3821 stack. We will attempt to deal with saved registers later, when
3822 the raw/cooked register interface is in place. (We need a general
3823 interface that can deal with dynamic saved register sizes -- fp
3824 regs could be 32 bits wide in one frame and 64 on the frame above
3825 and below). */
3826
67b2c998
DJ
3827static struct type *
3828mips_float_register_type (void)
3829{
361d1df0 3830 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3831 return builtin_type_ieee_single_big;
3832 else
3833 return builtin_type_ieee_single_little;
3834}
3835
3836static struct type *
3837mips_double_register_type (void)
3838{
361d1df0 3839 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3840 return builtin_type_ieee_double_big;
3841 else
3842 return builtin_type_ieee_double_little;
3843}
3844
dd824b04
DJ
3845/* Copy a 32-bit single-precision value from the current frame
3846 into rare_buffer. */
3847
3848static void
e11c53d2 3849mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 3850 gdb_byte *rare_buffer)
dd824b04 3851{
719ec221 3852 int raw_size = register_size (current_gdbarch, regno);
47a35522 3853 gdb_byte *raw_buffer = alloca (raw_size);
dd824b04 3854
e11c53d2 3855 if (!frame_register_read (frame, regno, raw_buffer))
8a3fe4f8 3856 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
dd824b04
DJ
3857 if (raw_size == 8)
3858 {
3859 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 3860 32 bits. */
dd824b04
DJ
3861 int offset;
3862
3863 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3864 offset = 4;
3865 else
3866 offset = 0;
3867
3868 memcpy (rare_buffer, raw_buffer + offset, 4);
3869 }
3870 else
3871 {
3872 memcpy (rare_buffer, raw_buffer, 4);
3873 }
3874}
3875
3876/* Copy a 64-bit double-precision value from the current frame into
3877 rare_buffer. This may include getting half of it from the next
3878 register. */
3879
3880static void
e11c53d2 3881mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 3882 gdb_byte *rare_buffer)
dd824b04 3883{
719ec221 3884 int raw_size = register_size (current_gdbarch, regno);
dd824b04
DJ
3885
3886 if (raw_size == 8 && !mips2_fp_compat ())
3887 {
3888 /* We have a 64-bit value for this register, and we should use
6d82d43b 3889 all 64 bits. */
e11c53d2 3890 if (!frame_register_read (frame, regno, rare_buffer))
8a3fe4f8 3891 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
dd824b04
DJ
3892 }
3893 else
3894 {
56cea623 3895 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
dd824b04 3896 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
3897 _("mips_read_fp_register_double: bad access to "
3898 "odd-numbered FP register"));
dd824b04
DJ
3899
3900 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 3901 each register. */
dd824b04
DJ
3902 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3903 {
e11c53d2
AC
3904 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3905 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 3906 }
361d1df0 3907 else
dd824b04 3908 {
e11c53d2
AC
3909 mips_read_fp_register_single (frame, regno, rare_buffer);
3910 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
3911 }
3912 }
3913}
3914
c906108c 3915static void
e11c53d2
AC
3916mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
3917 int regnum)
c5aa993b 3918{ /* do values for FP (float) regs */
47a35522 3919 gdb_byte *raw_buffer;
3903d437
AC
3920 double doub, flt1; /* doubles extracted from raw hex data */
3921 int inv1, inv2;
c5aa993b 3922
47a35522
MK
3923 raw_buffer = alloca (2 * register_size (current_gdbarch,
3924 mips_regnum (current_gdbarch)->fp0));
c906108c 3925
e11c53d2
AC
3926 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
3927 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
3928 "");
f0ef6b29 3929
719ec221 3930 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
c906108c 3931 {
f0ef6b29
KB
3932 /* 4-byte registers: Print hex and floating. Also print even
3933 numbered registers as doubles. */
e11c53d2 3934 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 3935 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 3936
6d82d43b
AC
3937 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
3938 file);
dd824b04 3939
e11c53d2 3940 fprintf_filtered (file, " flt: ");
1adad886 3941 if (inv1)
e11c53d2 3942 fprintf_filtered (file, " <invalid float> ");
1adad886 3943 else
e11c53d2 3944 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 3945
f0ef6b29
KB
3946 if (regnum % 2 == 0)
3947 {
e11c53d2 3948 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29 3949 doub = unpack_double (mips_double_register_type (), raw_buffer,
6d82d43b 3950 &inv2);
1adad886 3951
e11c53d2 3952 fprintf_filtered (file, " dbl: ");
f0ef6b29 3953 if (inv2)
e11c53d2 3954 fprintf_filtered (file, "<invalid double>");
f0ef6b29 3955 else
e11c53d2 3956 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 3957 }
c906108c
SS
3958 }
3959 else
dd824b04 3960 {
f0ef6b29 3961 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 3962 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 3963 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 3964
e11c53d2 3965 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
3966 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
3967
361d1df0 3968
6d82d43b
AC
3969 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
3970 file);
f0ef6b29 3971
e11c53d2 3972 fprintf_filtered (file, " flt: ");
1adad886 3973 if (inv1)
e11c53d2 3974 fprintf_filtered (file, "<invalid float>");
1adad886 3975 else
e11c53d2 3976 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 3977
e11c53d2 3978 fprintf_filtered (file, " dbl: ");
f0ef6b29 3979 if (inv2)
e11c53d2 3980 fprintf_filtered (file, "<invalid double>");
1adad886 3981 else
e11c53d2 3982 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
3983 }
3984}
3985
3986static void
e11c53d2
AC
3987mips_print_register (struct ui_file *file, struct frame_info *frame,
3988 int regnum, int all)
f0ef6b29 3989{
a4b8ebc8 3990 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 3991 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 3992 int offset;
1adad886 3993
a4b8ebc8 3994 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
f0ef6b29 3995 {
e11c53d2 3996 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
3997 return;
3998 }
3999
4000 /* Get the data in raw format. */
e11c53d2 4001 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 4002 {
e11c53d2 4003 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
f0ef6b29 4004 return;
c906108c 4005 }
f0ef6b29 4006
e11c53d2 4007 fputs_filtered (REGISTER_NAME (regnum), file);
f0ef6b29
KB
4008
4009 /* The problem with printing numeric register names (r26, etc.) is that
4010 the user can't use them on input. Probably the best solution is to
4011 fix it so that either the numeric or the funky (a2, etc.) names
4012 are accepted on input. */
4013 if (regnum < MIPS_NUMREGS)
e11c53d2 4014 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 4015 else
e11c53d2 4016 fprintf_filtered (file, ": ");
f0ef6b29
KB
4017
4018 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
6d82d43b
AC
4019 offset =
4020 register_size (current_gdbarch,
4021 regnum) - register_size (current_gdbarch, regnum);
f0ef6b29
KB
4022 else
4023 offset = 0;
4024
6d82d43b
AC
4025 print_scalar_formatted (raw_buffer + offset,
4026 gdbarch_register_type (gdbarch, regnum), 'x', 0,
4027 file);
c906108c
SS
4028}
4029
f0ef6b29
KB
4030/* Replacement for generic do_registers_info.
4031 Print regs in pretty columns. */
4032
4033static int
e11c53d2
AC
4034print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4035 int regnum)
f0ef6b29 4036{
e11c53d2
AC
4037 fprintf_filtered (file, " ");
4038 mips_print_fp_register (file, frame, regnum);
4039 fprintf_filtered (file, "\n");
f0ef6b29
KB
4040 return regnum + 1;
4041}
4042
4043
c906108c
SS
4044/* Print a row's worth of GP (int) registers, with name labels above */
4045
4046static int
e11c53d2 4047print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 4048 int start_regnum)
c906108c 4049{
a4b8ebc8 4050 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 4051 /* do values for GP (int) regs */
47a35522 4052 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
d5ac5a39 4053 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
c906108c 4054 int col, byte;
a4b8ebc8 4055 int regnum;
c906108c
SS
4056
4057 /* For GP registers, we print a separate row of names above the vals */
a4b8ebc8 4058 for (col = 0, regnum = start_regnum;
6d82d43b 4059 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
c906108c
SS
4060 {
4061 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4062 continue; /* unused register */
6d82d43b
AC
4063 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4064 TYPE_CODE_FLT)
c5aa993b 4065 break; /* end the row: reached FP register */
d05f6826
DJ
4066 if (col == 0)
4067 fprintf_filtered (file, " ");
6d82d43b 4068 fprintf_filtered (file,
d5ac5a39 4069 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
e11c53d2 4070 REGISTER_NAME (regnum));
c906108c
SS
4071 col++;
4072 }
d05f6826
DJ
4073
4074 if (col == 0)
4075 return regnum;
4076
a4b8ebc8 4077 /* print the R0 to R31 names */
20e6603c
AC
4078 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4079 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4080 else
4081 fprintf_filtered (file, "\n ");
c906108c 4082
c906108c 4083 /* now print the values in hex, 4 or 8 to the row */
a4b8ebc8 4084 for (col = 0, regnum = start_regnum;
6d82d43b 4085 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
c906108c
SS
4086 {
4087 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4088 continue; /* unused register */
6d82d43b
AC
4089 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4090 TYPE_CODE_FLT)
c5aa993b 4091 break; /* end row: reached FP register */
c906108c 4092 /* OK: get the data in raw format. */
e11c53d2 4093 if (!frame_register_read (frame, regnum, raw_buffer))
8a3fe4f8 4094 error (_("can't read register %d (%s)"), regnum, REGISTER_NAME (regnum));
c906108c 4095 /* pad small registers */
4246e332 4096 for (byte = 0;
d5ac5a39 4097 byte < (mips_abi_regsize (current_gdbarch)
6d82d43b 4098 - register_size (current_gdbarch, regnum)); byte++)
c906108c
SS
4099 printf_filtered (" ");
4100 /* Now print the register value in hex, endian order. */
d7449b42 4101 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
6d82d43b
AC
4102 for (byte =
4103 register_size (current_gdbarch,
4104 regnum) - register_size (current_gdbarch, regnum);
4105 byte < register_size (current_gdbarch, regnum); byte++)
47a35522 4106 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 4107 else
c73e8f27 4108 for (byte = register_size (current_gdbarch, regnum) - 1;
6d82d43b 4109 byte >= 0; byte--)
47a35522 4110 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 4111 fprintf_filtered (file, " ");
c906108c
SS
4112 col++;
4113 }
c5aa993b 4114 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4115 fprintf_filtered (file, "\n");
c906108c
SS
4116
4117 return regnum;
4118}
4119
4120/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4121
bf1f5b4c 4122static void
e11c53d2
AC
4123mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4124 struct frame_info *frame, int regnum, int all)
c906108c 4125{
c5aa993b 4126 if (regnum != -1) /* do one specified register */
c906108c 4127 {
a4b8ebc8 4128 gdb_assert (regnum >= NUM_REGS);
c906108c 4129 if (*(REGISTER_NAME (regnum)) == '\0')
8a3fe4f8 4130 error (_("Not a valid register for the current processor type"));
c906108c 4131
e11c53d2
AC
4132 mips_print_register (file, frame, regnum, 0);
4133 fprintf_filtered (file, "\n");
c906108c 4134 }
c5aa993b
JM
4135 else
4136 /* do all (or most) registers */
c906108c 4137 {
a4b8ebc8
AC
4138 regnum = NUM_REGS;
4139 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
c906108c 4140 {
6d82d43b
AC
4141 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4142 TYPE_CODE_FLT)
e11c53d2
AC
4143 {
4144 if (all) /* true for "INFO ALL-REGISTERS" command */
4145 regnum = print_fp_register_row (file, frame, regnum);
4146 else
4147 regnum += MIPS_NUMREGS; /* skip floating point regs */
4148 }
c906108c 4149 else
e11c53d2 4150 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4151 }
4152 }
4153}
4154
c906108c
SS
4155/* Is this a branch with a delay slot? */
4156
c906108c 4157static int
acdb74a0 4158is_delayed (unsigned long insn)
c906108c
SS
4159{
4160 int i;
4161 for (i = 0; i < NUMOPCODES; ++i)
4162 if (mips_opcodes[i].pinfo != INSN_MACRO
4163 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4164 break;
4165 return (i < NUMOPCODES
4166 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4167 | INSN_COND_BRANCH_DELAY
4168 | INSN_COND_BRANCH_LIKELY)));
4169}
4170
4171int
3352ef37
AC
4172mips_single_step_through_delay (struct gdbarch *gdbarch,
4173 struct frame_info *frame)
c906108c 4174{
3352ef37 4175 CORE_ADDR pc = get_frame_pc (frame);
47a35522 4176 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
4177
4178 /* There is no branch delay slot on MIPS16. */
0fe7e7c8 4179 if (mips_pc_is_mips16 (pc))
c906108c
SS
4180 return 0;
4181
06648491
MK
4182 if (!breakpoint_here_p (pc + 4))
4183 return 0;
4184
3352ef37
AC
4185 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4186 /* If error reading memory, guess that it is not a delayed
4187 branch. */
c906108c 4188 return 0;
4c7d22cb 4189 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
c906108c
SS
4190}
4191
6d82d43b
AC
4192/* To skip prologues, I use this predicate. Returns either PC itself
4193 if the code at PC does not look like a function prologue; otherwise
4194 returns an address that (if we're lucky) follows the prologue. If
4195 LENIENT, then we must skip everything which is involved in setting
4196 up the frame (it's OK to skip more, just so long as we don't skip
4197 anything which might clobber the registers which are being saved.
4198 We must skip more in the case where part of the prologue is in the
4199 delay slot of a non-prologue instruction). */
4200
4201static CORE_ADDR
4202mips_skip_prologue (CORE_ADDR pc)
4203{
8b622e6a
AC
4204 CORE_ADDR limit_pc;
4205 CORE_ADDR func_addr;
4206
6d82d43b
AC
4207 /* See if we can determine the end of the prologue via the symbol table.
4208 If so, then return either PC, or the PC after the prologue, whichever
4209 is greater. */
8b622e6a
AC
4210 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4211 {
4212 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4213 if (post_prologue_pc != 0)
4214 return max (pc, post_prologue_pc);
4215 }
6d82d43b
AC
4216
4217 /* Can't determine prologue from the symbol table, need to examine
4218 instructions. */
4219
98b4dd94
JB
4220 /* Find an upper limit on the function prologue using the debug
4221 information. If the debug information could not be used to provide
4222 that bound, then use an arbitrary large number as the upper bound. */
4223 limit_pc = skip_prologue_using_sal (pc);
4224 if (limit_pc == 0)
4225 limit_pc = pc + 100; /* Magic. */
4226
0fe7e7c8 4227 if (mips_pc_is_mips16 (pc))
a65bbe44 4228 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
6d82d43b 4229 else
a65bbe44 4230 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
88658117
AC
4231}
4232
a5ea2558
AC
4233/* Root of all "set mips "/"show mips " commands. This will eventually be
4234 used for all MIPS-specific commands. */
4235
a5ea2558 4236static void
acdb74a0 4237show_mips_command (char *args, int from_tty)
a5ea2558
AC
4238{
4239 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4240}
4241
a5ea2558 4242static void
acdb74a0 4243set_mips_command (char *args, int from_tty)
a5ea2558 4244{
6d82d43b
AC
4245 printf_unfiltered
4246 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
4247 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4248}
4249
c906108c
SS
4250/* Commands to show/set the MIPS FPU type. */
4251
c906108c 4252static void
acdb74a0 4253show_mipsfpu_command (char *args, int from_tty)
c906108c 4254{
c906108c
SS
4255 char *fpu;
4256 switch (MIPS_FPU_TYPE)
4257 {
4258 case MIPS_FPU_SINGLE:
4259 fpu = "single-precision";
4260 break;
4261 case MIPS_FPU_DOUBLE:
4262 fpu = "double-precision";
4263 break;
4264 case MIPS_FPU_NONE:
4265 fpu = "absent (none)";
4266 break;
93d56215 4267 default:
e2e0b3e5 4268 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
4269 }
4270 if (mips_fpu_type_auto)
6d82d43b
AC
4271 printf_unfiltered
4272 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4273 fpu);
c906108c 4274 else
6d82d43b
AC
4275 printf_unfiltered
4276 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
4277}
4278
4279
c906108c 4280static void
acdb74a0 4281set_mipsfpu_command (char *args, int from_tty)
c906108c 4282{
6d82d43b
AC
4283 printf_unfiltered
4284 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
c906108c
SS
4285 show_mipsfpu_command (args, from_tty);
4286}
4287
c906108c 4288static void
acdb74a0 4289set_mipsfpu_single_command (char *args, int from_tty)
c906108c 4290{
8d5838b5
AC
4291 struct gdbarch_info info;
4292 gdbarch_info_init (&info);
c906108c
SS
4293 mips_fpu_type = MIPS_FPU_SINGLE;
4294 mips_fpu_type_auto = 0;
8d5838b5
AC
4295 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4296 instead of relying on globals. Doing that would let generic code
4297 handle the search for this specific architecture. */
4298 if (!gdbarch_update_p (info))
e2e0b3e5 4299 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4300}
4301
c906108c 4302static void
acdb74a0 4303set_mipsfpu_double_command (char *args, int from_tty)
c906108c 4304{
8d5838b5
AC
4305 struct gdbarch_info info;
4306 gdbarch_info_init (&info);
c906108c
SS
4307 mips_fpu_type = MIPS_FPU_DOUBLE;
4308 mips_fpu_type_auto = 0;
8d5838b5
AC
4309 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4310 instead of relying on globals. Doing that would let generic code
4311 handle the search for this specific architecture. */
4312 if (!gdbarch_update_p (info))
e2e0b3e5 4313 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4314}
4315
c906108c 4316static void
acdb74a0 4317set_mipsfpu_none_command (char *args, int from_tty)
c906108c 4318{
8d5838b5
AC
4319 struct gdbarch_info info;
4320 gdbarch_info_init (&info);
c906108c
SS
4321 mips_fpu_type = MIPS_FPU_NONE;
4322 mips_fpu_type_auto = 0;
8d5838b5
AC
4323 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4324 instead of relying on globals. Doing that would let generic code
4325 handle the search for this specific architecture. */
4326 if (!gdbarch_update_p (info))
e2e0b3e5 4327 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4328}
4329
c906108c 4330static void
acdb74a0 4331set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
4332{
4333 mips_fpu_type_auto = 1;
4334}
4335
c906108c 4336/* Attempt to identify the particular processor model by reading the
691c0433
AC
4337 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4338 the relevant processor still exists (it dates back to '94) and
4339 secondly this is not the way to do this. The processor type should
4340 be set by forcing an architecture change. */
c906108c 4341
691c0433
AC
4342void
4343deprecated_mips_set_processor_regs_hack (void)
c906108c 4344{
691c0433 4345 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
4346 CORE_ADDR prid;
4347
a5c9623c 4348 prid = read_register (MIPS_PRID_REGNUM);
c906108c
SS
4349
4350 if ((prid & ~0xf) == 0x700)
691c0433 4351 tdep->mips_processor_reg_names = mips_r3041_reg_names;
c906108c
SS
4352}
4353
4354/* Just like reinit_frame_cache, but with the right arguments to be
4355 callable as an sfunc. */
4356
4357static void
acdb74a0
AC
4358reinit_frame_cache_sfunc (char *args, int from_tty,
4359 struct cmd_list_element *c)
c906108c
SS
4360{
4361 reinit_frame_cache ();
4362}
4363
a89aa300
AC
4364static int
4365gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 4366{
e5ab0dce 4367 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 4368
d31431ed
AC
4369 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4370 disassembler needs to be able to locally determine the ISA, and
4371 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4372 work. */
ec4045ea
AC
4373 if (mips_pc_is_mips16 (memaddr))
4374 info->mach = bfd_mach_mips16;
c906108c
SS
4375
4376 /* Round down the instruction address to the appropriate boundary. */
65c11066 4377 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 4378
e5ab0dce 4379 /* Set the disassembler options. */
6d82d43b 4380 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
e5ab0dce
AC
4381 {
4382 /* Set up the disassembler info, so that we get the right
6d82d43b 4383 register names from libopcodes. */
e5ab0dce
AC
4384 if (tdep->mips_abi == MIPS_ABI_N32)
4385 info->disassembler_options = "gpr-names=n32";
4386 else
4387 info->disassembler_options = "gpr-names=64";
4388 info->flavour = bfd_target_elf_flavour;
4389 }
4390 else
4391 /* This string is not recognized explicitly by the disassembler,
4392 but it tells the disassembler to not try to guess the ABI from
4393 the bfd elf headers, such that, if the user overrides the ABI
4394 of a program linked as NewABI, the disassembly will follow the
4395 register naming conventions specified by the user. */
4396 info->disassembler_options = "gpr-names=32";
4397
c906108c 4398 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 4399 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
4400 return print_insn_big_mips (memaddr, info);
4401 else
4402 return print_insn_little_mips (memaddr, info);
4403}
4404
c906108c
SS
4405/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
4406 counter value to determine whether a 16- or 32-bit breakpoint should be
4407 used. It returns a pointer to a string of bytes that encode a breakpoint
4408 instruction, stores the length of the string to *lenptr, and adjusts pc
4409 (if necessary) to point to the actual memory location where the
4410 breakpoint should be inserted. */
4411
47a35522 4412static const gdb_byte *
6d82d43b 4413mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 4414{
d7449b42 4415 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c 4416 {
0fe7e7c8 4417 if (mips_pc_is_mips16 (*pcptr))
c906108c 4418 {
47a35522 4419 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
95404a3e 4420 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4421 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
4422 return mips16_big_breakpoint;
4423 }
4424 else
4425 {
aaab4dba
AC
4426 /* The IDT board uses an unusual breakpoint value, and
4427 sometimes gets confused when it sees the usual MIPS
4428 breakpoint instruction. */
47a35522
MK
4429 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4430 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4431 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
c906108c 4432
c5aa993b 4433 *lenptr = sizeof (big_breakpoint);
c906108c
SS
4434
4435 if (strcmp (target_shortname, "mips") == 0)
4436 return idt_big_breakpoint;
4437 else if (strcmp (target_shortname, "ddb") == 0
4438 || strcmp (target_shortname, "pmon") == 0
4439 || strcmp (target_shortname, "lsi") == 0)
4440 return pmon_big_breakpoint;
4441 else
4442 return big_breakpoint;
4443 }
4444 }
4445 else
4446 {
0fe7e7c8 4447 if (mips_pc_is_mips16 (*pcptr))
c906108c 4448 {
47a35522 4449 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
95404a3e 4450 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4451 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
4452 return mips16_little_breakpoint;
4453 }
4454 else
4455 {
47a35522
MK
4456 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4457 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4458 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
c906108c 4459
c5aa993b 4460 *lenptr = sizeof (little_breakpoint);
c906108c
SS
4461
4462 if (strcmp (target_shortname, "mips") == 0)
4463 return idt_little_breakpoint;
4464 else if (strcmp (target_shortname, "ddb") == 0
4465 || strcmp (target_shortname, "pmon") == 0
4466 || strcmp (target_shortname, "lsi") == 0)
4467 return pmon_little_breakpoint;
4468 else
4469 return little_breakpoint;
4470 }
4471 }
4472}
4473
4474/* If PC is in a mips16 call or return stub, return the address of the target
4475 PC, which is either the callee or the caller. There are several
4476 cases which must be handled:
4477
4478 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 4479 target PC is in $31 ($ra).
c906108c 4480 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 4481 and the target PC is in $2.
c906108c 4482 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4483 before the jal instruction, this is effectively a call stub
4484 and the the target PC is in $2. Otherwise this is effectively
4485 a return stub and the target PC is in $18.
c906108c
SS
4486
4487 See the source code for the stubs in gcc/config/mips/mips16.S for
e7d6a6d2 4488 gory details. */
c906108c 4489
757a7cc6 4490static CORE_ADDR
e7d6a6d2 4491mips_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
4492{
4493 char *name;
4494 CORE_ADDR start_addr;
4495
4496 /* Find the starting address and name of the function containing the PC. */
4497 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4498 return 0;
4499
4500 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4501 target PC is in $31 ($ra). */
4502 if (strcmp (name, "__mips16_ret_sf") == 0
4503 || strcmp (name, "__mips16_ret_df") == 0)
4c7d22cb 4504 return read_signed_register (MIPS_RA_REGNUM);
c906108c
SS
4505
4506 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4507 {
4508 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4509 and the target PC is in $2. */
4510 if (name[19] >= '0' && name[19] <= '9')
6c997a34 4511 return read_signed_register (2);
c906108c
SS
4512
4513 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4514 before the jal instruction, this is effectively a call stub
4515 and the the target PC is in $2. Otherwise this is effectively
4516 a return stub and the target PC is in $18. */
c906108c
SS
4517 else if (name[19] == 's' || name[19] == 'd')
4518 {
4519 if (pc == start_addr)
4520 {
4521 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
4522 stub. Such a stub for a function bar might have a name
4523 like __fn_stub_bar, and might look like this:
4524 mfc1 $4,$f13
4525 mfc1 $5,$f12
4526 mfc1 $6,$f15
4527 mfc1 $7,$f14
4528 la $1,bar (becomes a lui/addiu pair)
4529 jr $1
4530 So scan down to the lui/addi and extract the target
4531 address from those two instructions. */
c906108c 4532
6c997a34 4533 CORE_ADDR target_pc = read_signed_register (2);
d37cca3d 4534 ULONGEST inst;
c906108c
SS
4535 int i;
4536
4537 /* See if the name of the target function is __fn_stub_*. */
6d82d43b
AC
4538 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4539 0)
c906108c
SS
4540 return target_pc;
4541 if (strncmp (name, "__fn_stub_", 10) != 0
4542 && strcmp (name, "etext") != 0
4543 && strcmp (name, "_etext") != 0)
4544 return target_pc;
4545
4546 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
4547 The limit on the search is arbitrarily set to 20
4548 instructions. FIXME. */
95ac2dcf 4549 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
c906108c 4550 {
c5aa993b
JM
4551 inst = mips_fetch_instruction (target_pc);
4552 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4553 pc = (inst << 16) & 0xffff0000; /* high word */
4554 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4555 return pc | (inst & 0xffff); /* low word */
c906108c
SS
4556 }
4557
4558 /* Couldn't find the lui/addui pair, so return stub address. */
4559 return target_pc;
4560 }
4561 else
4562 /* This is the 'return' part of a call stub. The return
4563 address is in $r18. */
6c997a34 4564 return read_signed_register (18);
c906108c
SS
4565 }
4566 }
c5aa993b 4567 return 0; /* not a stub */
c906108c
SS
4568}
4569
a4b8ebc8
AC
4570/* Convert a dbx stab register number (from `r' declaration) to a GDB
4571 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
4572
4573static int
4574mips_stab_reg_to_regnum (int num)
4575{
a4b8ebc8 4576 int regnum;
2f38ef89 4577 if (num >= 0 && num < 32)
a4b8ebc8 4578 regnum = num;
2f38ef89 4579 else if (num >= 38 && num < 70)
56cea623 4580 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
040b99fd 4581 else if (num == 70)
56cea623 4582 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4583 else if (num == 71)
56cea623 4584 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4585 else
a4b8ebc8
AC
4586 /* This will hopefully (eventually) provoke a warning. Should
4587 we be calling complaint() here? */
4588 return NUM_REGS + NUM_PSEUDO_REGS;
4589 return NUM_REGS + regnum;
88c72b7d
AC
4590}
4591
2f38ef89 4592
a4b8ebc8
AC
4593/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4594 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
4595
4596static int
2f38ef89 4597mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 4598{
a4b8ebc8 4599 int regnum;
2f38ef89 4600 if (num >= 0 && num < 32)
a4b8ebc8 4601 regnum = num;
2f38ef89 4602 else if (num >= 32 && num < 64)
56cea623 4603 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
040b99fd 4604 else if (num == 64)
56cea623 4605 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4606 else if (num == 65)
56cea623 4607 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4608 else
a4b8ebc8
AC
4609 /* This will hopefully (eventually) provoke a warning. Should we
4610 be calling complaint() here? */
4611 return NUM_REGS + NUM_PSEUDO_REGS;
4612 return NUM_REGS + regnum;
4613}
4614
4615static int
4616mips_register_sim_regno (int regnum)
4617{
4618 /* Only makes sense to supply raw registers. */
4619 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
4620 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4621 decide if it is valid. Should instead define a standard sim/gdb
4622 register numbering scheme. */
4623 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
4624 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
4625 return regnum;
4626 else
6d82d43b 4627 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
4628}
4629
2f38ef89 4630
fc0c74b1
AC
4631/* Convert an integer into an address. By first converting the value
4632 into a pointer and then extracting it signed, the address is
4633 guarenteed to be correctly sign extended. */
4634
4635static CORE_ADDR
79dd2d24 4636mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 4637 struct type *type, const gdb_byte *buf)
fc0c74b1 4638{
47a35522 4639 gdb_byte *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
fc0c74b1
AC
4640 LONGEST val = unpack_long (type, buf);
4641 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
4642 return extract_signed_integer (tmp,
4643 TYPE_LENGTH (builtin_type_void_data_ptr));
4644}
4645
caaa3122
DJ
4646static void
4647mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4648{
4649 enum mips_abi *abip = (enum mips_abi *) obj;
4650 const char *name = bfd_get_section_name (abfd, sect);
4651
4652 if (*abip != MIPS_ABI_UNKNOWN)
4653 return;
4654
4655 if (strncmp (name, ".mdebug.", 8) != 0)
4656 return;
4657
4658 if (strcmp (name, ".mdebug.abi32") == 0)
4659 *abip = MIPS_ABI_O32;
4660 else if (strcmp (name, ".mdebug.abiN32") == 0)
4661 *abip = MIPS_ABI_N32;
62a49b2c 4662 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 4663 *abip = MIPS_ABI_N64;
caaa3122
DJ
4664 else if (strcmp (name, ".mdebug.abiO64") == 0)
4665 *abip = MIPS_ABI_O64;
4666 else if (strcmp (name, ".mdebug.eabi32") == 0)
4667 *abip = MIPS_ABI_EABI32;
4668 else if (strcmp (name, ".mdebug.eabi64") == 0)
4669 *abip = MIPS_ABI_EABI64;
4670 else
8a3fe4f8 4671 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
4672}
4673
2e4ebe70
DJ
4674static enum mips_abi
4675global_mips_abi (void)
4676{
4677 int i;
4678
4679 for (i = 0; mips_abi_strings[i] != NULL; i++)
4680 if (mips_abi_strings[i] == mips_abi_string)
4681 return (enum mips_abi) i;
4682
e2e0b3e5 4683 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
4684}
4685
c2d11a7d 4686static struct gdbarch *
6d82d43b 4687mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 4688{
c2d11a7d
JM
4689 struct gdbarch *gdbarch;
4690 struct gdbarch_tdep *tdep;
4691 int elf_flags;
2e4ebe70 4692 enum mips_abi mips_abi, found_abi, wanted_abi;
a4b8ebc8 4693 int num_regs;
8d5838b5 4694 enum mips_fpu_type fpu_type;
c2d11a7d 4695
ec03c1ac
AC
4696 /* First of all, extract the elf_flags, if available. */
4697 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4698 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
4699 else if (arches != NULL)
4700 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
4701 else
4702 elf_flags = 0;
4703 if (gdbarch_debug)
4704 fprintf_unfiltered (gdb_stdlog,
6d82d43b 4705 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 4706
102182a9 4707 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
4708 switch ((elf_flags & EF_MIPS_ABI))
4709 {
4710 case E_MIPS_ABI_O32:
ec03c1ac 4711 found_abi = MIPS_ABI_O32;
0dadbba0
AC
4712 break;
4713 case E_MIPS_ABI_O64:
ec03c1ac 4714 found_abi = MIPS_ABI_O64;
0dadbba0
AC
4715 break;
4716 case E_MIPS_ABI_EABI32:
ec03c1ac 4717 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
4718 break;
4719 case E_MIPS_ABI_EABI64:
ec03c1ac 4720 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
4721 break;
4722 default:
acdb74a0 4723 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 4724 found_abi = MIPS_ABI_N32;
acdb74a0 4725 else
ec03c1ac 4726 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
4727 break;
4728 }
acdb74a0 4729
caaa3122 4730 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
4731 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4732 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 4733
dc305454 4734 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
4735 MIPS architecture (if there is one). */
4736 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
4737 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 4738
32a6503c 4739 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 4740 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
4741 && info.bfd_arch_info != NULL
4742 && info.bfd_arch_info->arch == bfd_arch_mips)
4743 {
4744 switch (info.bfd_arch_info->mach)
4745 {
4746 case bfd_mach_mips3900:
ec03c1ac 4747 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
4748 break;
4749 case bfd_mach_mips4100:
4750 case bfd_mach_mips5000:
ec03c1ac 4751 found_abi = MIPS_ABI_EABI64;
bf64bfd6 4752 break;
1d06468c
EZ
4753 case bfd_mach_mips8000:
4754 case bfd_mach_mips10000:
32a6503c
KB
4755 /* On Irix, ELF64 executables use the N64 ABI. The
4756 pseudo-sections which describe the ABI aren't present
4757 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
4758 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4759 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 4760 found_abi = MIPS_ABI_N64;
28d169de 4761 else
ec03c1ac 4762 found_abi = MIPS_ABI_N32;
1d06468c 4763 break;
bf64bfd6
AC
4764 }
4765 }
2e4ebe70 4766
26c53e50
DJ
4767 /* Default 64-bit objects to N64 instead of O32. */
4768 if (found_abi == MIPS_ABI_UNKNOWN
4769 && info.abfd != NULL
4770 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4771 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4772 found_abi = MIPS_ABI_N64;
4773
ec03c1ac
AC
4774 if (gdbarch_debug)
4775 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
4776 found_abi);
4777
4778 /* What has the user specified from the command line? */
4779 wanted_abi = global_mips_abi ();
4780 if (gdbarch_debug)
4781 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
4782 wanted_abi);
2e4ebe70
DJ
4783
4784 /* Now that we have found what the ABI for this binary would be,
4785 check whether the user is overriding it. */
2e4ebe70
DJ
4786 if (wanted_abi != MIPS_ABI_UNKNOWN)
4787 mips_abi = wanted_abi;
ec03c1ac
AC
4788 else if (found_abi != MIPS_ABI_UNKNOWN)
4789 mips_abi = found_abi;
4790 else
4791 mips_abi = MIPS_ABI_O32;
4792 if (gdbarch_debug)
4793 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
4794 mips_abi);
2e4ebe70 4795
ec03c1ac 4796 /* Also used when doing an architecture lookup. */
4b9b3959 4797 if (gdbarch_debug)
ec03c1ac
AC
4798 fprintf_unfiltered (gdb_stdlog,
4799 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
4800 mips64_transfers_32bit_regs_p);
0dadbba0 4801
8d5838b5
AC
4802 /* Determine the MIPS FPU type. */
4803 if (!mips_fpu_type_auto)
4804 fpu_type = mips_fpu_type;
4805 else if (info.bfd_arch_info != NULL
4806 && info.bfd_arch_info->arch == bfd_arch_mips)
4807 switch (info.bfd_arch_info->mach)
4808 {
4809 case bfd_mach_mips3900:
4810 case bfd_mach_mips4100:
4811 case bfd_mach_mips4111:
a9d61c86 4812 case bfd_mach_mips4120:
8d5838b5
AC
4813 fpu_type = MIPS_FPU_NONE;
4814 break;
4815 case bfd_mach_mips4650:
4816 fpu_type = MIPS_FPU_SINGLE;
4817 break;
4818 default:
4819 fpu_type = MIPS_FPU_DOUBLE;
4820 break;
4821 }
4822 else if (arches != NULL)
4823 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
4824 else
4825 fpu_type = MIPS_FPU_DOUBLE;
4826 if (gdbarch_debug)
4827 fprintf_unfiltered (gdb_stdlog,
6d82d43b 4828 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 4829
c2d11a7d
JM
4830 /* try to find a pre-existing architecture */
4831 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4832 arches != NULL;
4833 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4834 {
4835 /* MIPS needs to be pedantic about which ABI the object is
102182a9 4836 using. */
9103eae0 4837 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 4838 continue;
9103eae0 4839 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 4840 continue;
719ec221
AC
4841 /* Need to be pedantic about which register virtual size is
4842 used. */
4843 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
4844 != mips64_transfers_32bit_regs_p)
4845 continue;
8d5838b5
AC
4846 /* Be pedantic about which FPU is selected. */
4847 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
4848 continue;
4be87837 4849 return arches->gdbarch;
c2d11a7d
JM
4850 }
4851
102182a9 4852 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
4853 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4854 gdbarch = gdbarch_alloc (&info, tdep);
4855 tdep->elf_flags = elf_flags;
719ec221 4856 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
4857 tdep->found_abi = found_abi;
4858 tdep->mips_abi = mips_abi;
8d5838b5 4859 tdep->mips_fpu_type = fpu_type;
c2d11a7d 4860
102182a9 4861 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
4862 set_gdbarch_short_bit (gdbarch, 16);
4863 set_gdbarch_int_bit (gdbarch, 32);
4864 set_gdbarch_float_bit (gdbarch, 32);
4865 set_gdbarch_double_bit (gdbarch, 64);
4866 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
4867 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
4868 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
4869 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 4870
6d82d43b 4871 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6
MS
4872 mips_elf_make_msymbol_special);
4873
16e109ca 4874 /* Fill in the OS dependant register numbers and names. */
56cea623 4875 {
16e109ca 4876 const char **reg_names;
56cea623
AC
4877 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
4878 struct mips_regnum);
56cea623
AC
4879 if (info.osabi == GDB_OSABI_IRIX)
4880 {
4881 regnum->fp0 = 32;
4882 regnum->pc = 64;
4883 regnum->cause = 65;
4884 regnum->badvaddr = 66;
4885 regnum->hi = 67;
4886 regnum->lo = 68;
4887 regnum->fp_control_status = 69;
4888 regnum->fp_implementation_revision = 70;
4889 num_regs = 71;
16e109ca 4890 reg_names = mips_irix_reg_names;
56cea623
AC
4891 }
4892 else
4893 {
4894 regnum->lo = MIPS_EMBED_LO_REGNUM;
4895 regnum->hi = MIPS_EMBED_HI_REGNUM;
4896 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
4897 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
4898 regnum->pc = MIPS_EMBED_PC_REGNUM;
4899 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
4900 regnum->fp_control_status = 70;
4901 regnum->fp_implementation_revision = 71;
4902 num_regs = 90;
16e109ca
AC
4903 if (info.bfd_arch_info != NULL
4904 && info.bfd_arch_info->mach == bfd_mach_mips3900)
4905 reg_names = mips_tx39_reg_names;
4906 else
4907 reg_names = mips_generic_reg_names;
56cea623
AC
4908 }
4909 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
4910 replaced by read_pc? */
f10683bb
MH
4911 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
4912 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
56cea623
AC
4913 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
4914 set_gdbarch_num_regs (gdbarch, num_regs);
4915 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
16e109ca
AC
4916 set_gdbarch_register_name (gdbarch, mips_register_name);
4917 tdep->mips_processor_reg_names = reg_names;
4918 tdep->regnum = regnum;
56cea623 4919 }
fe29b929 4920
0dadbba0 4921 switch (mips_abi)
c2d11a7d 4922 {
0dadbba0 4923 case MIPS_ABI_O32:
25ab4790 4924 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 4925 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 4926 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 4927 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 4928 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4929 set_gdbarch_long_bit (gdbarch, 32);
4930 set_gdbarch_ptr_bit (gdbarch, 32);
4931 set_gdbarch_long_long_bit (gdbarch, 64);
4932 break;
0dadbba0 4933 case MIPS_ABI_O64:
25ab4790 4934 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 4935 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 4936 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 4937 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 4938 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4939 set_gdbarch_long_bit (gdbarch, 32);
4940 set_gdbarch_ptr_bit (gdbarch, 32);
4941 set_gdbarch_long_long_bit (gdbarch, 64);
4942 break;
0dadbba0 4943 case MIPS_ABI_EABI32:
25ab4790 4944 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 4945 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 4946 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 4947 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 4948 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4949 set_gdbarch_long_bit (gdbarch, 32);
4950 set_gdbarch_ptr_bit (gdbarch, 32);
4951 set_gdbarch_long_long_bit (gdbarch, 64);
4952 break;
0dadbba0 4953 case MIPS_ABI_EABI64:
25ab4790 4954 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 4955 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 4956 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 4957 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 4958 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4959 set_gdbarch_long_bit (gdbarch, 64);
4960 set_gdbarch_ptr_bit (gdbarch, 64);
4961 set_gdbarch_long_long_bit (gdbarch, 64);
4962 break;
0dadbba0 4963 case MIPS_ABI_N32:
25ab4790 4964 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 4965 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 4966 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 4967 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 4968 tdep->default_mask_address_p = 0;
0dadbba0
AC
4969 set_gdbarch_long_bit (gdbarch, 32);
4970 set_gdbarch_ptr_bit (gdbarch, 32);
4971 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43
JB
4972 set_gdbarch_long_double_bit (gdbarch, 128);
4973 set_gdbarch_long_double_format (gdbarch,
4974 &floatformat_n32n64_long_double_big);
28d169de
KB
4975 break;
4976 case MIPS_ABI_N64:
25ab4790 4977 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 4978 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 4979 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 4980 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
4981 tdep->default_mask_address_p = 0;
4982 set_gdbarch_long_bit (gdbarch, 64);
4983 set_gdbarch_ptr_bit (gdbarch, 64);
4984 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43
JB
4985 set_gdbarch_long_double_bit (gdbarch, 128);
4986 set_gdbarch_long_double_format (gdbarch,
4987 &floatformat_n32n64_long_double_big);
0dadbba0 4988 break;
c2d11a7d 4989 default:
e2e0b3e5 4990 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
4991 }
4992
a5ea2558
AC
4993 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4994 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4995 comment:
4996
4997 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4998 flag in object files because to do so would make it impossible to
102182a9 4999 link with libraries compiled without "-gp32". This is
a5ea2558 5000 unnecessarily restrictive.
361d1df0 5001
a5ea2558
AC
5002 We could solve this problem by adding "-gp32" multilibs to gcc,
5003 but to set this flag before gcc is built with such multilibs will
5004 break too many systems.''
5005
5006 But even more unhelpfully, the default linker output target for
5007 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5008 for 64-bit programs - you need to change the ABI to change this,
102182a9 5009 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5010 this flag to detect 32-bit mode would do the wrong thing given
5011 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5012 as 32-bit programs by default. */
a5ea2558 5013
6c997a34 5014 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 5015 set_gdbarch_write_pc (gdbarch, mips_write_pc);
bcb0cc15 5016 set_gdbarch_read_sp (gdbarch, mips_read_sp);
c2d11a7d 5017
102182a9
MS
5018 /* Add/remove bits from an address. The MIPS needs be careful to
5019 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5020 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5021
58dfe9ff
AC
5022 /* Unwind the frame. */
5023 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
edfae063 5024 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
10312cc4 5025
102182a9 5026 /* Map debug register numbers onto internal register numbers. */
88c72b7d 5027 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
5028 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5029 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5030 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5031 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5032 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5033 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 5034 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 5035
c2d11a7d
JM
5036 /* MIPS version of CALL_DUMMY */
5037
9710e734
AC
5038 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5039 replaced by a command, and all targets will default to on stack
5040 (regardless of the stack's execute status). */
5041 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
dc604539 5042 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 5043
87783b8b
AC
5044 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5045 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5046 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5047
f7b9e9fc
AC
5048 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5049 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
f7b9e9fc
AC
5050
5051 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 5052
fc0c74b1
AC
5053 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5054 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5055 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 5056
a4b8ebc8 5057 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 5058
e11c53d2 5059 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 5060
e5ab0dce
AC
5061 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5062
3a3bc038
AC
5063 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5064 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5065 need to all be folded into the target vector. Since they are
5066 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5067 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5068 is sitting on? */
5069 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5070
e7d6a6d2 5071 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 5072
3352ef37
AC
5073 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5074
6de918a6
DJ
5075 /* Hook in OS ABI-specific overrides, if they have been registered. */
5076 gdbarch_init_osabi (info, gdbarch);
757a7cc6 5077
5792a79b 5078 /* Unwind the frame. */
eec63939 5079 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
45c9dd44
AC
5080 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5081 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
eec63939 5082 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44
AC
5083 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5084 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 5085
4b9b3959
AC
5086 return gdbarch;
5087}
5088
2e4ebe70 5089static void
6d82d43b 5090mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
5091{
5092 struct gdbarch_info info;
5093
5094 /* Force the architecture to update, and (if it's a MIPS architecture)
5095 mips_gdbarch_init will take care of the rest. */
5096 gdbarch_info_init (&info);
5097 gdbarch_update_p (info);
5098}
5099
ad188201
KB
5100/* Print out which MIPS ABI is in use. */
5101
5102static void
1f8ca57c
JB
5103show_mips_abi (struct ui_file *file,
5104 int from_tty,
5105 struct cmd_list_element *ignored_cmd,
5106 const char *ignored_value)
ad188201
KB
5107{
5108 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
1f8ca57c
JB
5109 fprintf_filtered
5110 (file,
5111 "The MIPS ABI is unknown because the current architecture "
5112 "is not MIPS.\n");
ad188201
KB
5113 else
5114 {
5115 enum mips_abi global_abi = global_mips_abi ();
5116 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5117 const char *actual_abi_str = mips_abi_strings[actual_abi];
5118
5119 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
5120 fprintf_filtered
5121 (file,
5122 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 5123 actual_abi_str);
ad188201 5124 else if (global_abi == actual_abi)
1f8ca57c
JB
5125 fprintf_filtered
5126 (file,
5127 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 5128 actual_abi_str);
ad188201
KB
5129 else
5130 {
5131 /* Probably shouldn't happen... */
1f8ca57c
JB
5132 fprintf_filtered
5133 (file,
5134 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6d82d43b 5135 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
5136 }
5137 }
5138}
5139
4b9b3959
AC
5140static void
5141mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5142{
5143 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5144 if (tdep != NULL)
c2d11a7d 5145 {
acdb74a0
AC
5146 int ef_mips_arch;
5147 int ef_mips_32bitmode;
5148 /* determine the ISA */
5149 switch (tdep->elf_flags & EF_MIPS_ARCH)
5150 {
5151 case E_MIPS_ARCH_1:
5152 ef_mips_arch = 1;
5153 break;
5154 case E_MIPS_ARCH_2:
5155 ef_mips_arch = 2;
5156 break;
5157 case E_MIPS_ARCH_3:
5158 ef_mips_arch = 3;
5159 break;
5160 case E_MIPS_ARCH_4:
93d56215 5161 ef_mips_arch = 4;
acdb74a0
AC
5162 break;
5163 default:
93d56215 5164 ef_mips_arch = 0;
acdb74a0
AC
5165 break;
5166 }
5167 /* determine the size of a pointer */
5168 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
5169 fprintf_unfiltered (file,
5170 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 5171 tdep->elf_flags);
4b9b3959 5172 fprintf_unfiltered (file,
acdb74a0
AC
5173 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5174 ef_mips_32bitmode);
5175 fprintf_unfiltered (file,
5176 "mips_dump_tdep: ef_mips_arch = %d\n",
5177 ef_mips_arch);
5178 fprintf_unfiltered (file,
5179 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 5180 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b
AC
5181 fprintf_unfiltered (file,
5182 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
480d3dd2 5183 mips_mask_address_p (tdep),
4014092b 5184 tdep->default_mask_address_p);
c2d11a7d 5185 }
4b9b3959
AC
5186 fprintf_unfiltered (file,
5187 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5188 MIPS_DEFAULT_FPU_TYPE,
5189 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5190 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5191 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5192 : "???"));
6d82d43b 5193 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
4b9b3959
AC
5194 fprintf_unfiltered (file,
5195 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5196 MIPS_FPU_TYPE,
5197 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5198 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5199 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5200 : "???"));
4b9b3959 5201 fprintf_unfiltered (file,
480d3dd2 5202 "mips_dump_tdep: mips_stack_argsize() = %d\n",
13326b4e 5203 mips_stack_argsize (current_gdbarch));
c2d11a7d
JM
5204}
5205
6d82d43b 5206extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
a78f21af 5207
c906108c 5208void
acdb74a0 5209_initialize_mips_tdep (void)
c906108c
SS
5210{
5211 static struct cmd_list_element *mipsfpulist = NULL;
5212 struct cmd_list_element *c;
5213
6d82d43b 5214 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
5215 if (MIPS_ABI_LAST + 1
5216 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 5217 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 5218
4b9b3959 5219 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 5220
8d5f9dcb
DJ
5221 mips_pdr_data = register_objfile_data ();
5222
a5ea2558
AC
5223 /* Add root prefix command for all "set mips"/"show mips" commands */
5224 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 5225 _("Various MIPS specific commands."),
a5ea2558
AC
5226 &setmipscmdlist, "set mips ", 0, &setlist);
5227
5228 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 5229 _("Various MIPS specific commands."),
a5ea2558
AC
5230 &showmipscmdlist, "show mips ", 0, &showlist);
5231
5232 /* Allow the user to override the saved register size. */
1b295c3d 5233 add_setshow_enum_cmd ("saved-gpreg-size", class_obscure,
7915a72c
AC
5234 size_enums, &mips_abi_regsize_string, _("\
5235Set size of general purpose registers saved on the stack."), _("\
5236Show size of general purpose registers saved on the stack."), _("\
a5ea2558
AC
5237This option can be set to one of:\n\
5238 32 - Force GDB to treat saved GP registers as 32-bit\n\
5239 64 - Force GDB to treat saved GP registers as 64-bit\n\
5240 auto - Allow GDB to use the target's default setting or autodetect the\n\
7915a72c
AC
5241 saved GP register size from information contained in the\n\
5242 executable (default)."),
2c5b56ce 5243 NULL,
7915a72c 5244 NULL, /* FIXME: i18n: Size of general purpose registers saved on the stack is %s. */
2c5b56ce 5245 &setmipscmdlist, &showmipscmdlist);
a5ea2558 5246
d929b26f 5247 /* Allow the user to override the argument stack size. */
1b295c3d 5248 add_setshow_enum_cmd ("stack-arg-size", class_obscure,
7915a72c
AC
5249 size_enums, &mips_stack_argsize_string, _("\
5250Set the amount of stack space reserved for each argument."), _("\
5251Show the amount of stack space reserved for each argument."), _("\
d929b26f
AC
5252This option can be set to one of:\n\
5253 32 - Force GDB to allocate 32-bit chunks per argument\n\
5254 64 - Force GDB to allocate 64-bit chunks per argument\n\
5255 auto - Allow GDB to determine the correct setting from the current\n\
7915a72c 5256 target and executable (default)"),
2c5b56ce 5257 NULL,
7915a72c 5258 NULL, /* FIXME: i18n: The amount of stack space reserved for each argument is %s. */
2c5b56ce 5259 &setmipscmdlist, &showmipscmdlist);
d929b26f 5260
2e4ebe70 5261 /* Allow the user to override the ABI. */
7ab04401
AC
5262 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5263 &mips_abi_string, _("\
5264Set the MIPS ABI used by this program."), _("\
5265Show the MIPS ABI used by this program."), _("\
5266This option can be set to one of:\n\
5267 auto - the default ABI associated with the current binary\n\
5268 o32\n\
5269 o64\n\
5270 n32\n\
5271 n64\n\
5272 eabi32\n\
5273 eabi64"),
5274 mips_abi_update,
5275 show_mips_abi,
5276 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 5277
c906108c
SS
5278 /* Let the user turn off floating point and set the fence post for
5279 heuristic_proc_start. */
5280
5281 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 5282 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
5283 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5284 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 5285 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
5286 &mipsfpulist);
5287 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 5288 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
5289 &mipsfpulist);
5290 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5291 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5292 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5293 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 5294 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
5295 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5296 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5297 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5298 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 5299 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
5300 &mipsfpulist);
5301 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 5302 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
5303 &showlist);
5304
c906108c
SS
5305 /* We really would like to have both "0" and "unlimited" work, but
5306 command.c doesn't deal with that. So make it a var_zinteger
5307 because the user can always use "999999" or some such for unlimited. */
6bcadd06 5308 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
5309 &heuristic_fence_post, _("\
5310Set the distance searched for the start of a function."), _("\
5311Show the distance searched for the start of a function."), _("\
c906108c
SS
5312If you are debugging a stripped executable, GDB needs to search through the\n\
5313program for the start of a function. This command sets the distance of the\n\
7915a72c 5314search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 5315 reinit_frame_cache_sfunc,
7915a72c 5316 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
6bcadd06 5317 &setlist, &showlist);
c906108c
SS
5318
5319 /* Allow the user to control whether the upper bits of 64-bit
5320 addresses should be zeroed. */
7915a72c
AC
5321 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5322 &mask_address_var, _("\
5323Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5324Show zeroing of upper 32 bits of 64-bit addresses."), _("\
e9e68a56 5325Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
7915a72c 5326allow GDB to determine the correct value."),
08546159
AC
5327 NULL, show_mask_address,
5328 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
5329
5330 /* Allow the user to control the size of 32 bit registers within the
5331 raw remote packet. */
b3f42336 5332 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
5333 &mips64_transfers_32bit_regs_p, _("\
5334Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5335 _("\
5336Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5337 _("\
719ec221
AC
5338Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5339that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 534064 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 5341 set_mips64_transfers_32bit_regs,
7915a72c 5342 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
7915a72c 5343 &setlist, &showlist);
9ace0497
AC
5344
5345 /* Debug this files internals. */
6bcadd06 5346 add_setshow_zinteger_cmd ("mips", class_maintenance,
7915a72c
AC
5347 &mips_debug, _("\
5348Set mips debugging."), _("\
5349Show mips debugging."), _("\
5350When non-zero, mips specific debugging is enabled."),
2c5b56ce 5351 NULL,
7915a72c 5352 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
6bcadd06 5353 &setdebuglist, &showdebuglist);
c906108c 5354}
This page took 1.856615 seconds and 4 git commands to generate.