2000-05-29 Philip Blundell <philb@gnu.org>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
53a5351d 2 Copyright 1988-1999, Free Software Foundation, Inc.
c906108c
SS
3 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
4 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "value.h"
29#include "gdbcmd.h"
30#include "language.h"
31#include "gdbcore.h"
32#include "symfile.h"
33#include "objfiles.h"
34#include "gdbtypes.h"
35#include "target.h"
28d069e6 36#include "arch-utils.h"
c906108c
SS
37
38#include "opcode/mips.h"
c2d11a7d
JM
39#include "elf/mips.h"
40#include "elf-bfd.h"
41
c906108c 42
0dadbba0
AC
43/* All the possible MIPS ABIs. */
44
45enum mips_abi
46 {
47 MIPS_ABI_UNKNOWN,
48 MIPS_ABI_N32,
49 MIPS_ABI_O32,
50 MIPS_ABI_O64,
51 MIPS_ABI_EABI32,
52 MIPS_ABI_EABI64
53 };
54
cce74817 55struct frame_extra_info
c5aa993b
JM
56 {
57 mips_extra_func_info_t proc_desc;
58 int num_args;
59 };
cce74817 60
d929b26f
AC
61/* Various MIPS ISA options (related to stack analysis) can be
62 overridden dynamically. Establish an enum/array for managing
63 them. */
64
65static char size_auto[] = "auto";
66static char size_32[] = "32";
67static char size_64[] = "64";
68
69static char *size_enums[] = {
70 size_auto,
71 size_32,
72 size_64,
a5ea2558
AC
73 0
74};
75
7a292a7a
SS
76/* Some MIPS boards don't support floating point while others only
77 support single-precision floating-point operations. See also
78 FP_REGISTER_DOUBLE. */
c906108c
SS
79
80enum mips_fpu_type
c5aa993b
JM
81 {
82 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
83 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
84 MIPS_FPU_NONE /* No floating point. */
85 };
c906108c
SS
86
87#ifndef MIPS_DEFAULT_FPU_TYPE
88#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
89#endif
90static int mips_fpu_type_auto = 1;
91static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
92#define MIPS_FPU_TYPE mips_fpu_type
93
c906108c 94/* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */
7a292a7a 95#ifndef FP_REGISTER_DOUBLE
c906108c 96#define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8)
7a292a7a
SS
97#endif
98
99
c2d11a7d
JM
100/* MIPS specific per-architecture information */
101struct gdbarch_tdep
102 {
103 /* from the elf header */
104 int elf_flags;
105 /* mips options */
0dadbba0 106 enum mips_abi mips_abi;
c2d11a7d
JM
107 enum mips_fpu_type mips_fpu_type;
108 int mips_last_arg_regnum;
109 int mips_last_fp_arg_regnum;
a5ea2558 110 int mips_default_saved_regsize;
c2d11a7d 111 int mips_fp_register_double;
d929b26f
AC
112 int mips_regs_have_home_p;
113 int mips_default_stack_argsize;
c2d11a7d
JM
114 };
115
116#if GDB_MULTI_ARCH
117#undef MIPS_EABI
0dadbba0 118#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 119 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d
JM
120#endif
121
122#if GDB_MULTI_ARCH
123#undef MIPS_LAST_FP_ARG_REGNUM
124#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
125#endif
126
127#if GDB_MULTI_ARCH
128#undef MIPS_LAST_ARG_REGNUM
129#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
130#endif
131
132#if GDB_MULTI_ARCH
133#undef MIPS_FPU_TYPE
134#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
135#endif
136
d929b26f
AC
137/* Return the currently configured (or set) saved register size. */
138
c2d11a7d 139#if GDB_MULTI_ARCH
a5ea2558
AC
140#undef MIPS_DEFAULT_SAVED_REGSIZE
141#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
d929b26f
AC
142#elif !defined (MIPS_DEFAULT_SAVED_REGSIZE)
143#define MIPS_DEFAULT_SAVED_REGSIZE MIPS_REGSIZE
c2d11a7d
JM
144#endif
145
d929b26f
AC
146static char *mips_saved_regsize_string = size_auto;
147
148#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
149
150static unsigned int
151mips_saved_regsize ()
152{
153 if (mips_saved_regsize_string == size_auto)
154 return MIPS_DEFAULT_SAVED_REGSIZE;
155 else if (mips_saved_regsize_string == size_64)
156 return 8;
157 else /* if (mips_saved_regsize_string == size_32) */
158 return 4;
159}
160
c2d11a7d
JM
161/* Indicate that the ABI makes use of double-precision registers
162 provided by the FPU (rather than combining pairs of registers to
163 form double-precision values). Do not use "TARGET_IS_MIPS64" to
164 determine if the ABI is using double-precision registers. See also
165 MIPS_FPU_TYPE. */
166#if GDB_MULTI_ARCH
167#undef FP_REGISTER_DOUBLE
168#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
169#endif
170
d929b26f
AC
171/* Does the caller allocate a ``home'' for each register used in the
172 function call? The N32 ABI and MIPS_EABI do not, the others do. */
173
174#if GDB_MULTI_ARCH
175#undef MIPS_REGS_HAVE_HOME_P
176#define MIPS_REGS_HAVE_HOME_P (gdbarch_tdep (current_gdbarch)->mips_regs_have_home_p)
177#elif !defined (MIPS_REGS_HAVE_HOME_P)
178#define MIPS_REGS_HAVE_HOME_P (!MIPS_EABI)
179#endif
180
181/* The amount of space reserved on the stack for registers. This is
182 different to MIPS_SAVED_REGSIZE as it determines the alignment of
183 data allocated after the registers have run out. */
184
185#if GDB_MULTI_ARCH
186#undef MIPS_DEFAULT_STACK_ARGSIZE
0dadbba0 187#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
188#elif !defined (MIPS_DEFAULT_STACK_ARGSIZE)
189#define MIPS_DEFAULT_STACK_ARGSIZE (MIPS_DEFAULT_SAVED_REGSIZE)
190#endif
191
192#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
193
194static char *mips_stack_argsize_string = size_auto;
195
196static unsigned int
197mips_stack_argsize (void)
198{
199 if (mips_stack_argsize_string == size_auto)
200 return MIPS_DEFAULT_STACK_ARGSIZE;
201 else if (mips_stack_argsize_string == size_64)
202 return 8;
203 else /* if (mips_stack_argsize_string == size_32) */
204 return 4;
205}
206
207
c2d11a7d 208
7a292a7a 209#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c
SS
210
211#if 0
a14ed312 212static int mips_in_lenient_prologue (CORE_ADDR, CORE_ADDR);
c906108c
SS
213#endif
214
a14ed312 215int gdb_print_insn_mips (bfd_vma, disassemble_info *);
c906108c 216
a14ed312 217static void mips_print_register (int, int);
c906108c
SS
218
219static mips_extra_func_info_t
a14ed312 220heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *);
c906108c 221
a14ed312 222static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 223
a14ed312 224static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 225
a14ed312 226int mips_set_processor_type (char *);
c906108c 227
a14ed312 228static void mips_show_processor_type_command (char *, int);
c906108c 229
a14ed312 230static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c
SS
231
232static mips_extra_func_info_t
a14ed312 233find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame);
c906108c 234
a14ed312
KB
235static CORE_ADDR after_prologue (CORE_ADDR pc,
236 mips_extra_func_info_t proc_desc);
c906108c
SS
237
238/* This value is the model of MIPS in use. It is derived from the value
239 of the PrID register. */
240
241char *mips_processor_type;
242
243char *tmp_mips_processor_type;
244
245/* A set of original names, to be used when restoring back to generic
246 registers from a specific set. */
247
cce74817
JM
248char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
249char **mips_processor_reg_names = mips_generic_reg_names;
250
a5ea2558
AC
251/* The list of available "set mips " and "show mips " commands */
252static struct cmd_list_element *setmipscmdlist = NULL;
253static struct cmd_list_element *showmipscmdlist = NULL;
254
cce74817
JM
255char *
256mips_register_name (i)
257 int i;
258{
259 return mips_processor_reg_names[i];
260}
9846de1b 261/* *INDENT-OFF* */
c906108c
SS
262/* Names of IDT R3041 registers. */
263
264char *mips_r3041_reg_names[] = {
265 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
266 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
267 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
268 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
269 "sr", "lo", "hi", "bad", "cause","pc",
270 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
271 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
272 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
273 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
274 "fsr", "fir", "fp", "",
275 "", "", "bus", "ccfg", "", "", "", "",
276 "", "", "port", "cmp", "", "", "epc", "prid",
277};
278
279/* Names of IDT R3051 registers. */
280
281char *mips_r3051_reg_names[] = {
282 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
283 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
284 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
285 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
286 "sr", "lo", "hi", "bad", "cause","pc",
287 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
288 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
289 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
290 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
291 "fsr", "fir", "fp", "",
292 "inx", "rand", "elo", "", "ctxt", "", "", "",
293 "", "", "ehi", "", "", "", "epc", "prid",
294};
295
296/* Names of IDT R3081 registers. */
297
298char *mips_r3081_reg_names[] = {
299 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
300 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
301 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
302 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
303 "sr", "lo", "hi", "bad", "cause","pc",
304 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
305 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
306 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
307 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
308 "fsr", "fir", "fp", "",
309 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
310 "", "", "ehi", "", "", "", "epc", "prid",
311};
312
313/* Names of LSI 33k registers. */
314
315char *mips_lsi33k_reg_names[] = {
316 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
317 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
318 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
319 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
320 "epc", "hi", "lo", "sr", "cause","badvaddr",
321 "dcic", "bpc", "bda", "", "", "", "", "",
322 "", "", "", "", "", "", "", "",
323 "", "", "", "", "", "", "", "",
324 "", "", "", "", "", "", "", "",
325 "", "", "", "",
326 "", "", "", "", "", "", "", "",
327 "", "", "", "", "", "", "", "",
328};
329
330struct {
331 char *name;
332 char **regnames;
333} mips_processor_type_table[] = {
334 { "generic", mips_generic_reg_names },
335 { "r3041", mips_r3041_reg_names },
336 { "r3051", mips_r3051_reg_names },
337 { "r3071", mips_r3081_reg_names },
338 { "r3081", mips_r3081_reg_names },
339 { "lsi33k", mips_lsi33k_reg_names },
340 { NULL, NULL }
341};
9846de1b 342/* *INDENT-ON* */
c906108c 343
c5aa993b
JM
344
345
346
c906108c 347/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
348static int mips16_to_32_reg[8] =
349{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
350
351/* Heuristic_proc_start may hunt through the text section for a long
352 time across a 2400 baud serial line. Allows the user to limit this
353 search. */
354
355static unsigned int heuristic_fence_post = 0;
356
c5aa993b
JM
357#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
358#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
359#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
360#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
361#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
362#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
363#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
364#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
365#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
366#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
367#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
368#define _PROC_MAGIC_ 0x0F0F0F0F
369#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
370#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
371
372struct linked_proc_info
c5aa993b
JM
373 {
374 struct mips_extra_func_info info;
375 struct linked_proc_info *next;
376 }
377 *linked_proc_desc_table = NULL;
c906108c 378
cce74817
JM
379void
380mips_print_extra_frame_info (fi)
381 struct frame_info *fi;
382{
383 if (fi
384 && fi->extra_info
385 && fi->extra_info->proc_desc
386 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
d4f3574e 387 printf_filtered (" frame pointer is at %s+%s\n",
cce74817 388 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
d4f3574e 389 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
cce74817 390}
c906108c 391
43e526b9
JM
392/* Convert between RAW and VIRTUAL registers. The RAW register size
393 defines the remote-gdb packet. */
394
395static int mips64_transfers_32bit_regs_p = 0;
396
397int
398mips_register_raw_size (reg_nr)
399 int reg_nr;
400{
401 if (mips64_transfers_32bit_regs_p)
402 return REGISTER_VIRTUAL_SIZE (reg_nr);
403 else
404 return MIPS_REGSIZE;
405}
406
407int
408mips_register_convertible (reg_nr)
409 int reg_nr;
410{
411 if (mips64_transfers_32bit_regs_p)
412 return 0;
413 else
414 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
415}
416
417void
418mips_register_convert_to_virtual (n, virtual_type, raw_buf, virt_buf)
419 int n;
420 struct type *virtual_type;
421 char *raw_buf;
422 char *virt_buf;
423{
424 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
425 memcpy (virt_buf,
426 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
427 TYPE_LENGTH (virtual_type));
428 else
429 memcpy (virt_buf,
430 raw_buf,
431 TYPE_LENGTH (virtual_type));
432}
433
434void
435mips_register_convert_to_raw (virtual_type, n, virt_buf, raw_buf)
436 struct type *virtual_type;
437 int n;
438 char *virt_buf;
439 char *raw_buf;
440{
441 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
442 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
443 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
444 virt_buf,
445 TYPE_LENGTH (virtual_type));
446 else
447 memcpy (raw_buf,
448 virt_buf,
449 TYPE_LENGTH (virtual_type));
450}
451
c906108c
SS
452/* Should the upper word of 64-bit addresses be zeroed? */
453static int mask_address_p = 1;
454
455/* Should call_function allocate stack space for a struct return? */
456int
457mips_use_struct_convention (gcc_p, type)
458 int gcc_p;
459 struct type *type;
460{
461 if (MIPS_EABI)
7a292a7a 462 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
c906108c 463 else
c5aa993b 464 return 1; /* Structures are returned by ref in extra arg0 */
c906108c
SS
465}
466
467/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
468
469static int
470pc_is_mips16 (bfd_vma memaddr)
471{
472 struct minimal_symbol *sym;
473
474 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
475 if (IS_MIPS16_ADDR (memaddr))
476 return 1;
477
478 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
479 the high bit of the info field. Use this to decide if the function is
480 MIPS16 or normal MIPS. */
481 sym = lookup_minimal_symbol_by_pc (memaddr);
482 if (sym)
483 return MSYMBOL_IS_SPECIAL (sym);
484 else
485 return 0;
486}
487
488
489/* This returns the PC of the first inst after the prologue. If we can't
490 find the prologue, then return 0. */
491
492static CORE_ADDR
493after_prologue (pc, proc_desc)
494 CORE_ADDR pc;
495 mips_extra_func_info_t proc_desc;
496{
497 struct symtab_and_line sal;
498 CORE_ADDR func_addr, func_end;
499
500 if (!proc_desc)
501 proc_desc = find_proc_desc (pc, NULL);
502
503 if (proc_desc)
504 {
505 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 506 strongly suspect that frameless always means prologueless... */
c906108c
SS
507 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
508 && PROC_FRAME_OFFSET (proc_desc) == 0)
509 return 0;
510 }
511
512 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
513 return 0; /* Unknown */
514
515 sal = find_pc_line (func_addr, 0);
516
517 if (sal.end < func_end)
518 return sal.end;
519
520 /* The line after the prologue is after the end of the function. In this
521 case, tell the caller to find the prologue the hard way. */
522
523 return 0;
524}
525
526/* Decode a MIPS32 instruction that saves a register in the stack, and
527 set the appropriate bit in the general register mask or float register mask
528 to indicate which register is saved. This is a helper function
529 for mips_find_saved_regs. */
530
531static void
532mips32_decode_reg_save (inst, gen_mask, float_mask)
533 t_inst inst;
534 unsigned long *gen_mask;
535 unsigned long *float_mask;
536{
537 int reg;
538
539 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
540 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
541 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
542 {
543 /* It might be possible to use the instruction to
c5aa993b
JM
544 find the offset, rather than the code below which
545 is based on things being in a certain order in the
546 frame, but figuring out what the instruction's offset
547 is relative to might be a little tricky. */
c906108c
SS
548 reg = (inst & 0x001f0000) >> 16;
549 *gen_mask |= (1 << reg);
550 }
551 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
552 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
553 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
554
555 {
556 reg = ((inst & 0x001f0000) >> 16);
557 *float_mask |= (1 << reg);
558 }
559}
560
561/* Decode a MIPS16 instruction that saves a register in the stack, and
562 set the appropriate bit in the general register or float register mask
563 to indicate which register is saved. This is a helper function
564 for mips_find_saved_regs. */
565
566static void
567mips16_decode_reg_save (inst, gen_mask)
568 t_inst inst;
569 unsigned long *gen_mask;
570{
c5aa993b 571 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
572 {
573 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
574 *gen_mask |= (1 << reg);
575 }
c5aa993b 576 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
577 {
578 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
579 *gen_mask |= (1 << reg);
580 }
c5aa993b 581 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
582 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
583 *gen_mask |= (1 << RA_REGNUM);
584}
585
586
587/* Fetch and return instruction from the specified location. If the PC
588 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
589
590static t_inst
591mips_fetch_instruction (addr)
c5aa993b 592 CORE_ADDR addr;
c906108c
SS
593{
594 char buf[MIPS_INSTLEN];
595 int instlen;
596 int status;
597
598 if (pc_is_mips16 (addr))
599 {
600 instlen = MIPS16_INSTLEN;
601 addr = UNMAKE_MIPS16_ADDR (addr);
602 }
603 else
c5aa993b 604 instlen = MIPS_INSTLEN;
c906108c
SS
605 status = read_memory_nobpt (addr, buf, instlen);
606 if (status)
607 memory_error (status, addr);
608 return extract_unsigned_integer (buf, instlen);
609}
610
611
612/* These the fields of 32 bit mips instructions */
613#define mips32_op(x) (x >> 25)
614#define itype_op(x) (x >> 25)
615#define itype_rs(x) ((x >> 21)& 0x1f)
616#define itype_rt(x) ((x >> 16) & 0x1f)
617#define itype_immediate(x) ( x & 0xffff)
618
619#define jtype_op(x) (x >> 25)
620#define jtype_target(x) ( x & 0x03fffff)
621
622#define rtype_op(x) (x >>25)
623#define rtype_rs(x) ((x>>21) & 0x1f)
624#define rtype_rt(x) ((x>>16) & 0x1f)
c5aa993b 625#define rtype_rd(x) ((x>>11) & 0x1f)
c906108c
SS
626#define rtype_shamt(x) ((x>>6) & 0x1f)
627#define rtype_funct(x) (x & 0x3f )
628
629static CORE_ADDR
c5aa993b
JM
630mips32_relative_offset (unsigned long inst)
631{
632 long x;
633 x = itype_immediate (inst);
634 if (x & 0x8000) /* sign bit set */
c906108c 635 {
c5aa993b 636 x |= 0xffff0000; /* sign extension */
c906108c 637 }
c5aa993b
JM
638 x = x << 2;
639 return x;
c906108c
SS
640}
641
642/* Determine whate to set a single step breakpoint while considering
643 branch prediction */
644CORE_ADDR
c5aa993b
JM
645mips32_next_pc (CORE_ADDR pc)
646{
647 unsigned long inst;
648 int op;
649 inst = mips_fetch_instruction (pc);
650 if ((inst & 0xe0000000) != 0) /* Not a special, junp or branch instruction */
651 {
652 if ((inst >> 27) == 5) /* BEQL BNEZ BLEZL BGTZE , bits 0101xx */
653 {
654 op = ((inst >> 25) & 0x03);
c906108c
SS
655 switch (op)
656 {
c5aa993b
JM
657 case 0:
658 goto equal_branch; /* BEQL */
659 case 1:
660 goto neq_branch; /* BNEZ */
661 case 2:
662 goto less_branch; /* BLEZ */
663 case 3:
664 goto greater_branch; /* BGTZ */
665 default:
666 pc += 4;
c906108c
SS
667 }
668 }
c5aa993b
JM
669 else
670 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
671 }
672 else
c5aa993b
JM
673 { /* This gets way messy */
674
c906108c 675 /* Further subdivide into SPECIAL, REGIMM and other */
c5aa993b 676 switch (op = ((inst >> 26) & 0x07)) /* extract bits 28,27,26 */
c906108c 677 {
c5aa993b
JM
678 case 0: /* SPECIAL */
679 op = rtype_funct (inst);
680 switch (op)
681 {
682 case 8: /* JR */
683 case 9: /* JALR */
684 pc = read_register (rtype_rs (inst)); /* Set PC to that address */
685 break;
686 default:
687 pc += 4;
688 }
689
690 break; /* end special */
691 case 1: /* REGIMM */
c906108c 692 {
c5aa993b
JM
693 op = jtype_op (inst); /* branch condition */
694 switch (jtype_op (inst))
c906108c 695 {
c5aa993b
JM
696 case 0: /* BLTZ */
697 case 2: /* BLTXL */
698 case 16: /* BLTZALL */
699 case 18: /* BLTZALL */
c906108c 700 less_branch:
c5aa993b
JM
701 if (read_register (itype_rs (inst)) < 0)
702 pc += mips32_relative_offset (inst) + 4;
703 else
704 pc += 8; /* after the delay slot */
705 break;
706 case 1: /* GEZ */
707 case 3: /* BGEZL */
708 case 17: /* BGEZAL */
709 case 19: /* BGEZALL */
c906108c 710 greater_equal_branch:
c5aa993b
JM
711 if (read_register (itype_rs (inst)) >= 0)
712 pc += mips32_relative_offset (inst) + 4;
713 else
714 pc += 8; /* after the delay slot */
715 break;
716 /* All of the other intructions in the REGIMM catagory */
717 default:
718 pc += 4;
c906108c
SS
719 }
720 }
c5aa993b
JM
721 break; /* end REGIMM */
722 case 2: /* J */
723 case 3: /* JAL */
724 {
725 unsigned long reg;
726 reg = jtype_target (inst) << 2;
727 pc = reg + ((pc + 4) & 0xf0000000);
c906108c
SS
728 /* Whats this mysterious 0xf000000 adjustment ??? */
729 }
c5aa993b
JM
730 break;
731 /* FIXME case JALX : */
732 {
733 unsigned long reg;
734 reg = jtype_target (inst) << 2;
735 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
736 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
737 }
c5aa993b
JM
738 break; /* The new PC will be alternate mode */
739 case 4: /* BEQ , BEQL */
740 equal_branch:
741 if (read_register (itype_rs (inst)) ==
742 read_register (itype_rt (inst)))
743 pc += mips32_relative_offset (inst) + 4;
744 else
745 pc += 8;
746 break;
747 case 5: /* BNE , BNEL */
748 neq_branch:
749 if (read_register (itype_rs (inst)) !=
750 read_register (itype_rs (inst)))
751 pc += mips32_relative_offset (inst) + 4;
752 else
753 pc += 8;
754 break;
755 case 6: /* BLEZ , BLEZL */
c906108c 756 less_zero_branch:
c5aa993b
JM
757 if (read_register (itype_rs (inst) <= 0))
758 pc += mips32_relative_offset (inst) + 4;
759 else
760 pc += 8;
761 break;
762 case 7:
763 greater_branch: /* BGTZ BGTZL */
764 if (read_register (itype_rs (inst) > 0))
765 pc += mips32_relative_offset (inst) + 4;
766 else
767 pc += 8;
768 break;
769 default:
770 pc += 8;
771 } /* switch */
772 } /* else */
773 return pc;
774} /* mips32_next_pc */
c906108c
SS
775
776/* Decoding the next place to set a breakpoint is irregular for the
777 mips 16 variant, but fortunatly, there fewer instructions. We have to cope
778 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
779 We dont want to set a single step instruction on the extend instruction
780 either.
c5aa993b 781 */
c906108c
SS
782
783/* Lots of mips16 instruction formats */
784/* Predicting jumps requires itype,ritype,i8type
785 and their extensions extItype,extritype,extI8type
c5aa993b 786 */
c906108c
SS
787enum mips16_inst_fmts
788{
c5aa993b
JM
789 itype, /* 0 immediate 5,10 */
790 ritype, /* 1 5,3,8 */
791 rrtype, /* 2 5,3,3,5 */
792 rritype, /* 3 5,3,3,5 */
793 rrrtype, /* 4 5,3,3,3,2 */
794 rriatype, /* 5 5,3,3,1,4 */
795 shifttype, /* 6 5,3,3,3,2 */
796 i8type, /* 7 5,3,8 */
797 i8movtype, /* 8 5,3,3,5 */
798 i8mov32rtype, /* 9 5,3,5,3 */
799 i64type, /* 10 5,3,8 */
800 ri64type, /* 11 5,3,3,5 */
801 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
802 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
803 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
804 extRRItype, /* 15 5,5,5,5,3,3,5 */
805 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
806 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
807 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
808 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
809 extRi64type, /* 20 5,6,5,5,3,3,5 */
810 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
811};
c906108c
SS
812/* I am heaping all the fields of the formats into one structure and then,
813 only the fields which are involved in instruction extension */
814struct upk_mips16
c5aa993b
JM
815 {
816 unsigned short inst;
817 enum mips16_inst_fmts fmt;
818 unsigned long offset;
819 unsigned int regx; /* Function in i8 type */
820 unsigned int regy;
821 };
c906108c
SS
822
823
824
c5aa993b
JM
825static void
826print_unpack (char *comment,
827 struct upk_mips16 *u)
c906108c 828{
d4f3574e
SS
829 printf ("%s %04x ,f(%d) off(%s) (x(%x) y(%x)\n",
830 comment, u->inst, u->fmt, paddr (u->offset), u->regx, u->regy);
c906108c
SS
831}
832
833/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same
834 format for the bits which make up the immediatate extension.
c5aa993b 835 */
c906108c 836static unsigned long
c5aa993b 837extended_offset (unsigned long extension)
c906108c 838{
c5aa993b
JM
839 unsigned long value;
840 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
841 value = value << 6;
842 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
843 value = value << 5;
844 value |= extension & 0x01f; /* extract 4:0 */
845 return value;
c906108c
SS
846}
847
848/* Only call this function if you know that this is an extendable
849 instruction, It wont malfunction, but why make excess remote memory references?
850 If the immediate operands get sign extended or somthing, do it after
851 the extension is performed.
c5aa993b 852 */
c906108c
SS
853/* FIXME: Every one of these cases needs to worry about sign extension
854 when the offset is to be used in relative addressing */
855
856
c5aa993b
JM
857static unsigned short
858fetch_mips_16 (CORE_ADDR pc)
c906108c 859{
c5aa993b
JM
860 char buf[8];
861 pc &= 0xfffffffe; /* clear the low order bit */
862 target_read_memory (pc, buf, 2);
863 return extract_unsigned_integer (buf, 2);
c906108c
SS
864}
865
866static void
c5aa993b
JM
867unpack_mips16 (CORE_ADDR pc,
868 struct upk_mips16 *upk)
c906108c 869{
c5aa993b
JM
870 CORE_ADDR extpc;
871 unsigned long extension;
872 int extended;
873 extpc = (pc - 4) & ~0x01; /* Extensions are 32 bit instructions */
c906108c
SS
874 /* Decrement to previous address and loose the 16bit mode flag */
875 /* return if the instruction was extendable, but not actually extended */
c5aa993b
JM
876 extended = ((mips32_op (extension) == 30) ? 1 : 0);
877 if (extended)
878 {
879 extension = mips_fetch_instruction (extpc);
880 }
c906108c
SS
881 switch (upk->fmt)
882 {
c5aa993b 883 case itype:
c906108c 884 {
c5aa993b 885 unsigned long value;
c906108c 886 if (extended)
c5aa993b
JM
887 {
888 value = extended_offset (extension);
889 value = value << 11; /* rom for the original value */
890 value |= upk->inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
891 }
892 else
c5aa993b
JM
893 {
894 value = upk->inst & 0x7ff;
895 /* FIXME : Consider sign extension */
c906108c 896 }
c5aa993b 897 upk->offset = value;
c906108c 898 }
c5aa993b
JM
899 break;
900 case ritype:
901 case i8type:
902 { /* A register identifier and an offset */
c906108c
SS
903 /* Most of the fields are the same as I type but the
904 immediate value is of a different length */
c5aa993b 905 unsigned long value;
c906108c
SS
906 if (extended)
907 {
c5aa993b
JM
908 value = extended_offset (extension);
909 value = value << 8; /* from the original instruction */
910 value |= upk->inst & 0xff; /* eleven bits from instruction */
911 upk->regx = (extension >> 8) & 0x07; /* or i8 funct */
912 if (value & 0x4000) /* test the sign bit , bit 26 */
913 {
914 value &= ~0x3fff; /* remove the sign bit */
915 value = -value;
c906108c
SS
916 }
917 }
c5aa993b
JM
918 else
919 {
920 value = upk->inst & 0xff; /* 8 bits */
921 upk->regx = (upk->inst >> 8) & 0x07; /* or i8 funct */
922 /* FIXME: Do sign extension , this format needs it */
923 if (value & 0x80) /* THIS CONFUSES ME */
924 {
925 value &= 0xef; /* remove the sign bit */
926 value = -value;
927 }
928
929 }
930 upk->offset = value;
931 break;
c906108c 932 }
c5aa993b 933 case jalxtype:
c906108c 934 {
c5aa993b
JM
935 unsigned long value;
936 unsigned short nexthalf;
937 value = ((upk->inst & 0x1f) << 5) | ((upk->inst >> 5) & 0x1f);
938 value = value << 16;
939 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
940 value |= nexthalf;
941 upk->offset = value;
942 break;
c906108c
SS
943 }
944 default:
c5aa993b
JM
945 printf_filtered ("Decoding unimplemented instruction format type\n");
946 break;
c906108c
SS
947 }
948 /* print_unpack("UPK",upk) ; */
949}
950
951
952#define mips16_op(x) (x >> 11)
953
954/* This is a map of the opcodes which ae known to perform branches */
955static unsigned char map16[32] =
c5aa993b
JM
956{0, 0, 1, 1, 1, 1, 0, 0,
957 0, 0, 0, 0, 1, 0, 0, 0,
958 0, 0, 0, 0, 0, 0, 0, 0,
959 0, 0, 0, 0, 0, 1, 1, 0
960};
c906108c 961
c5aa993b
JM
962static CORE_ADDR
963add_offset_16 (CORE_ADDR pc, int offset)
c906108c 964{
c5aa993b
JM
965 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
966
c906108c
SS
967}
968
969
970
c5aa993b 971static struct upk_mips16 upk;
c906108c 972
c5aa993b
JM
973CORE_ADDR
974mips16_next_pc (CORE_ADDR pc)
c906108c 975{
c5aa993b
JM
976 int op;
977 t_inst inst;
c906108c 978 /* inst = mips_fetch_instruction(pc) ; - This doesnt always work */
c5aa993b
JM
979 inst = fetch_mips_16 (pc);
980 upk.inst = inst;
981 op = mips16_op (upk.inst);
c906108c
SS
982 if (map16[op])
983 {
c5aa993b 984 int reg;
c906108c
SS
985 switch (op)
986 {
c5aa993b
JM
987 case 2: /* Branch */
988 upk.fmt = itype;
989 unpack_mips16 (pc, &upk);
990 {
991 long offset;
992 offset = upk.offset;
c906108c 993 if (offset & 0x800)
c5aa993b
JM
994 {
995 offset &= 0xeff;
996 offset = -offset;
c906108c 997 }
c5aa993b 998 pc += (offset << 1) + 2;
c906108c 999 }
c5aa993b
JM
1000 break;
1001 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1002 upk.fmt = jalxtype;
1003 unpack_mips16 (pc, &upk);
1004 pc = add_offset_16 (pc, upk.offset);
1005 if ((upk.inst >> 10) & 0x01) /* Exchange mode */
1006 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1007 else
1008 pc |= 0x01;
1009 break;
1010 case 4: /* beqz */
1011 upk.fmt = ritype;
1012 unpack_mips16 (pc, &upk);
1013 reg = read_register (upk.regx);
1014 if (reg == 0)
1015 pc += (upk.offset << 1) + 2;
1016 else
1017 pc += 2;
1018 break;
1019 case 5: /* bnez */
1020 upk.fmt = ritype;
1021 unpack_mips16 (pc, &upk);
1022 reg = read_register (upk.regx);
1023 if (reg != 0)
1024 pc += (upk.offset << 1) + 2;
1025 else
1026 pc += 2;
1027 break;
1028 case 12: /* I8 Formats btez btnez */
1029 upk.fmt = i8type;
1030 unpack_mips16 (pc, &upk);
1031 /* upk.regx contains the opcode */
1032 reg = read_register (24); /* Test register is 24 */
1033 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1034 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1035 /* pc = add_offset_16(pc,upk.offset) ; */
1036 pc += (upk.offset << 1) + 2;
1037 else
1038 pc += 2;
1039 break;
1040 case 29: /* RR Formats JR, JALR, JALR-RA */
1041 upk.fmt = rrtype;
1042 op = upk.inst & 0x1f;
c906108c 1043 if (op == 0)
c5aa993b
JM
1044 {
1045 upk.regx = (upk.inst >> 8) & 0x07;
1046 upk.regy = (upk.inst >> 5) & 0x07;
c906108c
SS
1047 switch (upk.regy)
1048 {
c5aa993b
JM
1049 case 0:
1050 reg = upk.regx;
1051 break;
1052 case 1:
1053 reg = 31;
1054 break; /* Function return instruction */
1055 case 2:
1056 reg = upk.regx;
1057 break;
1058 default:
1059 reg = 31;
1060 break; /* BOGUS Guess */
c906108c 1061 }
c5aa993b 1062 pc = read_register (reg);
c906108c 1063 }
c5aa993b
JM
1064 else
1065 pc += 2;
1066 break;
1067 case 30: /* This is an extend instruction */
1068 pc += 4; /* Dont be setting breakpints on the second half */
1069 break;
1070 default:
1071 printf ("Filtered - next PC probably incorrrect due to jump inst\n");
1072 pc += 2;
1073 break;
c906108c
SS
1074 }
1075 }
c5aa993b
JM
1076 else
1077 pc += 2; /* just a good old instruction */
c906108c
SS
1078 /* See if we CAN actually break on the next instruction */
1079 /* printf("NXTm16PC %08x\n",(unsigned long)pc) ; */
c5aa993b
JM
1080 return pc;
1081} /* mips16_next_pc */
c906108c
SS
1082
1083/* The mips_next_pc function supports single_tep when the remote target monitor or
1084 stub is not developed enough to so a single_step.
1085 It works by decoding the current instruction and predicting where a branch
1086 will go. This isnt hard because all the data is available.
1087 The MIPS32 and MIPS16 variants are quite different
c5aa993b
JM
1088 */
1089CORE_ADDR
1090mips_next_pc (CORE_ADDR pc)
c906108c 1091{
c5aa993b 1092 t_inst inst;
c906108c
SS
1093 /* inst = mips_fetch_instruction(pc) ; */
1094 /* if (pc_is_mips16) <----- This is failing */
c5aa993b
JM
1095 if (pc & 0x01)
1096 return mips16_next_pc (pc);
1097 else
1098 return mips32_next_pc (pc);
1099} /* mips_next_pc */
c906108c
SS
1100
1101/* Guaranteed to set fci->saved_regs to some values (it never leaves it
1102 NULL). */
1103
1104void
1105mips_find_saved_regs (fci)
1106 struct frame_info *fci;
1107{
1108 int ireg;
1109 CORE_ADDR reg_position;
1110 /* r0 bit means kernel trap */
1111 int kernel_trap;
1112 /* What registers have been saved? Bitmasks. */
1113 unsigned long gen_mask, float_mask;
1114 mips_extra_func_info_t proc_desc;
1115 t_inst inst;
1116
1117 frame_saved_regs_zalloc (fci);
1118
1119 /* If it is the frame for sigtramp, the saved registers are located
1120 in a sigcontext structure somewhere on the stack.
1121 If the stack layout for sigtramp changes we might have to change these
1122 constants and the companion fixup_sigtramp in mdebugread.c */
1123#ifndef SIGFRAME_BASE
1124/* To satisfy alignment restrictions, sigcontext is located 4 bytes
1125 above the sigtramp frame. */
1126#define SIGFRAME_BASE MIPS_REGSIZE
1127/* FIXME! Are these correct?? */
1128#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1129#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1130#define SIGFRAME_FPREGSAVE_OFF \
1131 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1132#endif
1133#ifndef SIGFRAME_REG_SIZE
1134/* FIXME! Is this correct?? */
1135#define SIGFRAME_REG_SIZE MIPS_REGSIZE
1136#endif
1137 if (fci->signal_handler_caller)
1138 {
1139 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1140 {
c5aa993b
JM
1141 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1142 + ireg * SIGFRAME_REG_SIZE;
1143 fci->saved_regs[ireg] = reg_position;
c906108c
SS
1144 }
1145 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1146 {
c5aa993b
JM
1147 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1148 + ireg * SIGFRAME_REG_SIZE;
1149 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
c906108c
SS
1150 }
1151 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1152 return;
1153 }
1154
cce74817 1155 proc_desc = fci->extra_info->proc_desc;
c906108c
SS
1156 if (proc_desc == NULL)
1157 /* I'm not sure how/whether this can happen. Normally when we can't
1158 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1159 and set the saved_regs right away. */
1160 return;
1161
c5aa993b
JM
1162 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1163 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1164 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1165
c5aa993b
JM
1166 if ( /* In any frame other than the innermost or a frame interrupted by
1167 a signal, we assume that all registers have been saved.
1168 This assumes that all register saves in a function happen before
1169 the first function call. */
1170 (fci->next == NULL || fci->next->signal_handler_caller)
c906108c 1171
c5aa993b
JM
1172 /* In a dummy frame we know exactly where things are saved. */
1173 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1174
c5aa993b
JM
1175 /* Don't bother unless we are inside a function prologue. Outside the
1176 prologue, we know where everything is. */
c906108c 1177
c5aa993b 1178 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
c906108c 1179
c5aa993b
JM
1180 /* Not sure exactly what kernel_trap means, but if it means
1181 the kernel saves the registers without a prologue doing it,
1182 we better not examine the prologue to see whether registers
1183 have been saved yet. */
1184 && !kernel_trap)
c906108c
SS
1185 {
1186 /* We need to figure out whether the registers that the proc_desc
c5aa993b 1187 claims are saved have been saved yet. */
c906108c
SS
1188
1189 CORE_ADDR addr;
1190
1191 /* Bitmasks; set if we have found a save for the register. */
1192 unsigned long gen_save_found = 0;
1193 unsigned long float_save_found = 0;
1194 int instlen;
1195
1196 /* If the address is odd, assume this is MIPS16 code. */
1197 addr = PROC_LOW_ADDR (proc_desc);
1198 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1199
1200 /* Scan through this function's instructions preceding the current
1201 PC, and look for those that save registers. */
1202 while (addr < fci->pc)
1203 {
1204 inst = mips_fetch_instruction (addr);
1205 if (pc_is_mips16 (addr))
1206 mips16_decode_reg_save (inst, &gen_save_found);
1207 else
1208 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1209 addr += instlen;
1210 }
1211 gen_mask = gen_save_found;
1212 float_mask = float_save_found;
1213 }
1214
1215 /* Fill in the offsets for the registers which gen_mask says
1216 were saved. */
1217 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
c5aa993b 1218 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
c906108c
SS
1219 if (gen_mask & 0x80000000)
1220 {
1221 fci->saved_regs[ireg] = reg_position;
7a292a7a 1222 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1223 }
1224
1225 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1226 of that normally used by gcc. Therefore, we have to fetch the first
1227 instruction of the function, and if it's an entry instruction that
1228 saves $s0 or $s1, correct their saved addresses. */
1229 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1230 {
1231 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
c5aa993b 1232 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
c906108c
SS
1233 {
1234 int reg;
1235 int sreg_count = (inst >> 6) & 3;
c5aa993b 1236
c906108c
SS
1237 /* Check if the ra register was pushed on the stack. */
1238 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1239 if (inst & 0x20)
7a292a7a 1240 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1241
1242 /* Check if the s0 and s1 registers were pushed on the stack. */
c5aa993b 1243 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c
SS
1244 {
1245 fci->saved_regs[reg] = reg_position;
7a292a7a 1246 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1247 }
1248 }
1249 }
1250
1251 /* Fill in the offsets for the registers which float_mask says
1252 were saved. */
1253 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1254
1255 /* The freg_offset points to where the first *double* register
1256 is saved. So skip to the high-order word. */
c5aa993b 1257 if (!GDB_TARGET_IS_MIPS64)
7a292a7a 1258 reg_position += MIPS_SAVED_REGSIZE;
c906108c
SS
1259
1260 /* Fill in the offsets for the float registers which float_mask says
1261 were saved. */
c5aa993b 1262 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
c906108c
SS
1263 if (float_mask & 0x80000000)
1264 {
c5aa993b 1265 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
7a292a7a 1266 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1267 }
1268
1269 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1270}
1271
1272static CORE_ADDR
c5aa993b 1273read_next_frame_reg (fi, regno)
c906108c
SS
1274 struct frame_info *fi;
1275 int regno;
1276{
1277 for (; fi; fi = fi->next)
1278 {
1279 /* We have to get the saved sp from the sigcontext
c5aa993b 1280 if it is a signal handler frame. */
c906108c
SS
1281 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1282 return fi->frame;
1283 else
1284 {
1285 if (fi->saved_regs == NULL)
1286 mips_find_saved_regs (fi);
1287 if (fi->saved_regs[regno])
2acceee2 1288 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
c906108c
SS
1289 }
1290 }
1291 return read_register (regno);
1292}
1293
1294/* mips_addr_bits_remove - remove useless address bits */
1295
1296CORE_ADDR
1297mips_addr_bits_remove (addr)
c5aa993b 1298 CORE_ADDR addr;
c906108c
SS
1299{
1300#if GDB_TARGET_IS_MIPS64
c5aa993b 1301 if (mask_address_p && (addr >> 32 == (CORE_ADDR) 0xffffffff))
c906108c
SS
1302 {
1303 /* This hack is a work-around for existing boards using PMON,
c5aa993b
JM
1304 the simulator, and any other 64-bit targets that doesn't have
1305 true 64-bit addressing. On these targets, the upper 32 bits
1306 of addresses are ignored by the hardware. Thus, the PC or SP
1307 are likely to have been sign extended to all 1s by instruction
1308 sequences that load 32-bit addresses. For example, a typical
1309 piece of code that loads an address is this:
1310 lui $r2, <upper 16 bits>
1311 ori $r2, <lower 16 bits>
1312 But the lui sign-extends the value such that the upper 32 bits
1313 may be all 1s. The workaround is simply to mask off these bits.
1314 In the future, gcc may be changed to support true 64-bit
1315 addressing, and this masking will have to be disabled. */
1316 addr &= (CORE_ADDR) 0xffffffff;
c906108c
SS
1317 }
1318#else
1319 /* Even when GDB is configured for some 32-bit targets (e.g. mips-elf),
1320 BFD is configured to handle 64-bit targets, so CORE_ADDR is 64 bits.
1321 So we still have to mask off useless bits from addresses. */
c5aa993b 1322 addr &= (CORE_ADDR) 0xffffffff;
c906108c
SS
1323#endif
1324
1325 return addr;
1326}
1327
1328void
1329mips_init_frame_pc_first (fromleaf, prev)
1330 int fromleaf;
1331 struct frame_info *prev;
1332{
1333 CORE_ADDR pc, tmp;
1334
1335 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
c5aa993b 1336 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
c906108c 1337 tmp = mips_skip_stub (pc);
c5aa993b 1338 prev->pc = tmp ? tmp : pc;
c906108c
SS
1339}
1340
1341
1342CORE_ADDR
c5aa993b 1343mips_frame_saved_pc (frame)
c906108c
SS
1344 struct frame_info *frame;
1345{
1346 CORE_ADDR saved_pc;
cce74817 1347 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c
SS
1348 /* We have to get the saved pc from the sigcontext
1349 if it is a signal handler frame. */
1350 int pcreg = frame->signal_handler_caller ? PC_REGNUM
c5aa993b 1351 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
c906108c 1352
c5aa993b 1353 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
7a292a7a 1354 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
c906108c 1355 else
7a292a7a 1356 saved_pc = read_next_frame_reg (frame, pcreg);
c906108c
SS
1357
1358 return ADDR_BITS_REMOVE (saved_pc);
1359}
1360
1361static struct mips_extra_func_info temp_proc_desc;
cce74817 1362static CORE_ADDR temp_saved_regs[NUM_REGS];
c906108c
SS
1363
1364/* Set a register's saved stack address in temp_saved_regs. If an address
1365 has already been set for this register, do nothing; this way we will
1366 only recognize the first save of a given register in a function prologue.
1367 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1368
1369static void
1370set_reg_offset (regno, offset)
1371 int regno;
1372 CORE_ADDR offset;
1373{
cce74817
JM
1374 if (temp_saved_regs[regno] == 0)
1375 temp_saved_regs[regno] = offset;
c906108c
SS
1376}
1377
1378
1379/* Test whether the PC points to the return instruction at the
1380 end of a function. */
1381
c5aa993b 1382static int
c906108c
SS
1383mips_about_to_return (pc)
1384 CORE_ADDR pc;
1385{
1386 if (pc_is_mips16 (pc))
1387 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1388 generates a "jr $ra"; other times it generates code to load
1389 the return address from the stack to an accessible register (such
1390 as $a3), then a "jr" using that register. This second case
1391 is almost impossible to distinguish from an indirect jump
1392 used for switch statements, so we don't even try. */
1393 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1394 else
1395 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1396}
1397
1398
1399/* This fencepost looks highly suspicious to me. Removing it also
1400 seems suspicious as it could affect remote debugging across serial
1401 lines. */
1402
1403static CORE_ADDR
1404heuristic_proc_start (pc)
c5aa993b 1405 CORE_ADDR pc;
c906108c 1406{
c5aa993b
JM
1407 CORE_ADDR start_pc;
1408 CORE_ADDR fence;
1409 int instlen;
1410 int seen_adjsp = 0;
c906108c 1411
c5aa993b
JM
1412 pc = ADDR_BITS_REMOVE (pc);
1413 start_pc = pc;
1414 fence = start_pc - heuristic_fence_post;
1415 if (start_pc == 0)
1416 return 0;
c906108c 1417
c5aa993b
JM
1418 if (heuristic_fence_post == UINT_MAX
1419 || fence < VM_MIN_ADDRESS)
1420 fence = VM_MIN_ADDRESS;
c906108c 1421
c5aa993b 1422 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1423
c5aa993b
JM
1424 /* search back for previous return */
1425 for (start_pc -= instlen;; start_pc -= instlen)
1426 if (start_pc < fence)
1427 {
1428 /* It's not clear to me why we reach this point when
1429 stop_soon_quietly, but with this test, at least we
1430 don't print out warnings for every child forked (eg, on
1431 decstation). 22apr93 rich@cygnus.com. */
1432 if (!stop_soon_quietly)
c906108c 1433 {
c5aa993b
JM
1434 static int blurb_printed = 0;
1435
1436 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1437 paddr_nz (pc));
1438
1439 if (!blurb_printed)
c906108c 1440 {
c5aa993b
JM
1441 /* This actually happens frequently in embedded
1442 development, when you first connect to a board
1443 and your stack pointer and pc are nowhere in
1444 particular. This message needs to give people
1445 in that situation enough information to
1446 determine that it's no big deal. */
1447 printf_filtered ("\n\
cd0fc7c3
SS
1448 GDB is unable to find the start of the function at 0x%s\n\
1449and thus can't determine the size of that function's stack frame.\n\
1450This means that GDB may be unable to access that stack frame, or\n\
1451the frames below it.\n\
1452 This problem is most likely caused by an invalid program counter or\n\
1453stack pointer.\n\
1454 However, if you think GDB should simply search farther back\n\
1455from 0x%s for code which looks like the beginning of a\n\
1456function, you can increase the range of the search using the `set\n\
1457heuristic-fence-post' command.\n",
c5aa993b
JM
1458 paddr_nz (pc), paddr_nz (pc));
1459 blurb_printed = 1;
c906108c 1460 }
c906108c
SS
1461 }
1462
c5aa993b
JM
1463 return 0;
1464 }
1465 else if (pc_is_mips16 (start_pc))
1466 {
1467 unsigned short inst;
1468
1469 /* On MIPS16, any one of the following is likely to be the
1470 start of a function:
1471 entry
1472 addiu sp,-n
1473 daddiu sp,-n
1474 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1475 inst = mips_fetch_instruction (start_pc);
1476 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1477 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1478 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1479 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1480 break;
1481 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1482 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1483 seen_adjsp = 1;
1484 else
1485 seen_adjsp = 0;
1486 }
1487 else if (mips_about_to_return (start_pc))
1488 {
1489 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1490 break;
1491 }
1492
c906108c 1493#if 0
c5aa993b
JM
1494 /* skip nops (usually 1) 0 - is this */
1495 while (start_pc < pc && read_memory_integer (start_pc, MIPS_INSTLEN) == 0)
1496 start_pc += MIPS_INSTLEN;
c906108c 1497#endif
c5aa993b 1498 return start_pc;
c906108c
SS
1499}
1500
1501/* Fetch the immediate value from a MIPS16 instruction.
1502 If the previous instruction was an EXTEND, use it to extend
1503 the upper bits of the immediate value. This is a helper function
1504 for mips16_heuristic_proc_desc. */
1505
1506static int
1507mips16_get_imm (prev_inst, inst, nbits, scale, is_signed)
c5aa993b
JM
1508 unsigned short prev_inst; /* previous instruction */
1509 unsigned short inst; /* current instruction */
1510 int nbits; /* number of bits in imm field */
1511 int scale; /* scale factor to be applied to imm */
1512 int is_signed; /* is the imm field signed? */
c906108c
SS
1513{
1514 int offset;
1515
1516 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1517 {
1518 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1519 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1520 offset = 0 - (0x10000 - (offset & 0xffff));
1521 return offset | (inst & 0x1f);
1522 }
1523 else
1524 {
1525 int max_imm = 1 << nbits;
1526 int mask = max_imm - 1;
1527 int sign_bit = max_imm >> 1;
1528
1529 offset = inst & mask;
1530 if (is_signed && (offset & sign_bit))
1531 offset = 0 - (max_imm - offset);
1532 return offset * scale;
1533 }
1534}
1535
1536
1537/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1538 stream from start_pc to limit_pc. */
1539
1540static void
c5aa993b
JM
1541mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp)
1542 CORE_ADDR start_pc, limit_pc;
1543 struct frame_info *next_frame;
1544 CORE_ADDR sp;
c906108c
SS
1545{
1546 CORE_ADDR cur_pc;
1547 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1548 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1549 unsigned inst = 0; /* current instruction */
1550 unsigned entry_inst = 0; /* the entry instruction */
1551 int reg, offset;
1552
c5aa993b
JM
1553 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1554 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1555
1556 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1557 {
1558 /* Save the previous instruction. If it's an EXTEND, we'll extract
1559 the immediate offset extension from it in mips16_get_imm. */
1560 prev_inst = inst;
1561
1562 /* Fetch and decode the instruction. */
1563 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 1564 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
1565 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1566 {
1567 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
1568 if (offset < 0) /* negative stack adjustment? */
1569 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
1570 else
1571 /* Exit loop if a positive stack adjustment is found, which
1572 usually means that the stack cleanup code in the function
1573 epilogue is reached. */
1574 break;
1575 }
1576 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1577 {
1578 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1579 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 1580 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1581 set_reg_offset (reg, sp + offset);
1582 }
1583 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1584 {
1585 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1586 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1587 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1588 set_reg_offset (reg, sp + offset);
1589 }
1590 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1591 {
1592 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 1593 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1594 set_reg_offset (RA_REGNUM, sp + offset);
1595 }
1596 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1597 {
1598 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 1599 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1600 set_reg_offset (RA_REGNUM, sp + offset);
1601 }
c5aa993b 1602 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
1603 {
1604 frame_addr = sp;
1605 PROC_FRAME_REG (&temp_proc_desc) = 17;
1606 }
1607 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1608 {
1609 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1610 frame_addr = sp + offset;
1611 PROC_FRAME_REG (&temp_proc_desc) = 17;
1612 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1613 }
1614 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1615 {
1616 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1617 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1618 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1619 set_reg_offset (reg, frame_addr + offset);
1620 }
1621 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1622 {
1623 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1624 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1625 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1626 set_reg_offset (reg, frame_addr + offset);
1627 }
c5aa993b
JM
1628 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1629 entry_inst = inst; /* save for later processing */
c906108c 1630 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 1631 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
1632 }
1633
c5aa993b
JM
1634 /* The entry instruction is typically the first instruction in a function,
1635 and it stores registers at offsets relative to the value of the old SP
1636 (before the prologue). But the value of the sp parameter to this
1637 function is the new SP (after the prologue has been executed). So we
1638 can't calculate those offsets until we've seen the entire prologue,
1639 and can calculate what the old SP must have been. */
1640 if (entry_inst != 0)
1641 {
1642 int areg_count = (entry_inst >> 8) & 7;
1643 int sreg_count = (entry_inst >> 6) & 3;
c906108c 1644
c5aa993b
JM
1645 /* The entry instruction always subtracts 32 from the SP. */
1646 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 1647
c5aa993b
JM
1648 /* Now we can calculate what the SP must have been at the
1649 start of the function prologue. */
1650 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 1651
c5aa993b
JM
1652 /* Check if a0-a3 were saved in the caller's argument save area. */
1653 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1654 {
1655 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1656 set_reg_offset (reg, sp + offset);
1657 offset += MIPS_SAVED_REGSIZE;
1658 }
c906108c 1659
c5aa993b
JM
1660 /* Check if the ra register was pushed on the stack. */
1661 offset = -4;
1662 if (entry_inst & 0x20)
1663 {
1664 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1665 set_reg_offset (RA_REGNUM, sp + offset);
1666 offset -= MIPS_SAVED_REGSIZE;
1667 }
c906108c 1668
c5aa993b
JM
1669 /* Check if the s0 and s1 registers were pushed on the stack. */
1670 for (reg = 16; reg < sreg_count + 16; reg++)
1671 {
1672 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1673 set_reg_offset (reg, sp + offset);
1674 offset -= MIPS_SAVED_REGSIZE;
1675 }
1676 }
c906108c
SS
1677}
1678
1679static void
c5aa993b
JM
1680mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp)
1681 CORE_ADDR start_pc, limit_pc;
1682 struct frame_info *next_frame;
1683 CORE_ADDR sp;
c906108c
SS
1684{
1685 CORE_ADDR cur_pc;
c5aa993b 1686 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 1687restart:
cce74817 1688 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 1689 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
1690 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1691 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
1692 {
1693 unsigned long inst, high_word, low_word;
1694 int reg;
1695
1696 /* Fetch the instruction. */
1697 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1698
1699 /* Save some code by pre-extracting some useful fields. */
1700 high_word = (inst >> 16) & 0xffff;
1701 low_word = inst & 0xffff;
1702 reg = high_word & 0x1f;
1703
c5aa993b 1704 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
1705 || high_word == 0x23bd /* addi $sp,$sp,-i */
1706 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1707 {
1708 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 1709 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
1710 else
1711 /* Exit loop if a positive stack adjustment is found, which
1712 usually means that the stack cleanup code in the function
1713 epilogue is reached. */
1714 break;
1715 }
1716 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1717 {
c5aa993b 1718 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1719 set_reg_offset (reg, sp + low_word);
1720 }
1721 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1722 {
1723 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
1724 but the register size used is only 32 bits. Make the address
1725 for the saved register point to the lower 32 bits. */
c5aa993b 1726 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1727 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
1728 }
c5aa993b 1729 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
1730 {
1731 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
1732 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
1733 frame_addr = sp + low_word;
c906108c
SS
1734 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1735 {
1736 unsigned alloca_adjust;
1737 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
1738 frame_addr = read_next_frame_reg (next_frame, 30);
1739 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
1740 if (alloca_adjust > 0)
1741 {
1742 /* FP > SP + frame_size. This may be because
1743 * of an alloca or somethings similar.
1744 * Fix sp to "pre-alloca" value, and try again.
1745 */
1746 sp += alloca_adjust;
1747 goto restart;
1748 }
1749 }
1750 }
c5aa993b
JM
1751 /* move $30,$sp. With different versions of gas this will be either
1752 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1753 Accept any one of these. */
c906108c
SS
1754 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1755 {
1756 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1757 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1758 {
1759 unsigned alloca_adjust;
1760 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
1761 frame_addr = read_next_frame_reg (next_frame, 30);
1762 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
1763 if (alloca_adjust > 0)
1764 {
1765 /* FP > SP + frame_size. This may be because
1766 * of an alloca or somethings similar.
1767 * Fix sp to "pre-alloca" value, and try again.
1768 */
1769 sp += alloca_adjust;
1770 goto restart;
1771 }
1772 }
1773 }
c5aa993b 1774 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 1775 {
c5aa993b 1776 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1777 set_reg_offset (reg, frame_addr + low_word);
1778 }
1779 }
1780}
1781
1782static mips_extra_func_info_t
c5aa993b
JM
1783heuristic_proc_desc (start_pc, limit_pc, next_frame)
1784 CORE_ADDR start_pc, limit_pc;
1785 struct frame_info *next_frame;
c906108c
SS
1786{
1787 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
1788
c5aa993b
JM
1789 if (start_pc == 0)
1790 return NULL;
1791 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
cce74817 1792 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
1793 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
1794 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
1795 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
1796
1797 if (start_pc + 200 < limit_pc)
1798 limit_pc = start_pc + 200;
1799 if (pc_is_mips16 (start_pc))
1800 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1801 else
1802 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1803 return &temp_proc_desc;
1804}
1805
1806static mips_extra_func_info_t
1807non_heuristic_proc_desc (pc, addrptr)
1808 CORE_ADDR pc;
1809 CORE_ADDR *addrptr;
1810{
1811 CORE_ADDR startaddr;
1812 mips_extra_func_info_t proc_desc;
c5aa993b 1813 struct block *b = block_for_pc (pc);
c906108c
SS
1814 struct symbol *sym;
1815
1816 find_pc_partial_function (pc, NULL, &startaddr, NULL);
1817 if (addrptr)
1818 *addrptr = startaddr;
1819 if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
1820 sym = NULL;
1821 else
1822 {
1823 if (startaddr > BLOCK_START (b))
1824 /* This is the "pathological" case referred to in a comment in
1825 print_frame_info. It might be better to move this check into
1826 symbol reading. */
1827 sym = NULL;
1828 else
1829 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
1830 }
1831
1832 /* If we never found a PDR for this function in symbol reading, then
1833 examine prologues to find the information. */
1834 if (sym)
1835 {
1836 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
1837 if (PROC_FRAME_REG (proc_desc) == -1)
1838 return NULL;
1839 else
1840 return proc_desc;
1841 }
1842 else
1843 return NULL;
1844}
1845
1846
1847static mips_extra_func_info_t
1848find_proc_desc (pc, next_frame)
1849 CORE_ADDR pc;
1850 struct frame_info *next_frame;
1851{
1852 mips_extra_func_info_t proc_desc;
1853 CORE_ADDR startaddr;
1854
1855 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
1856
1857 if (proc_desc)
1858 {
1859 /* IF this is the topmost frame AND
1860 * (this proc does not have debugging information OR
1861 * the PC is in the procedure prologue)
1862 * THEN create a "heuristic" proc_desc (by analyzing
1863 * the actual code) to replace the "official" proc_desc.
1864 */
1865 if (next_frame == NULL)
1866 {
1867 struct symtab_and_line val;
1868 struct symbol *proc_symbol =
c5aa993b 1869 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
1870
1871 if (proc_symbol)
1872 {
1873 val = find_pc_line (BLOCK_START
c5aa993b 1874 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
1875 0);
1876 val.pc = val.end ? val.end : pc;
1877 }
1878 if (!proc_symbol || pc < val.pc)
1879 {
1880 mips_extra_func_info_t found_heuristic =
c5aa993b
JM
1881 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
1882 pc, next_frame);
c906108c
SS
1883 if (found_heuristic)
1884 proc_desc = found_heuristic;
1885 }
1886 }
1887 }
1888 else
1889 {
1890 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
1891 by procedure call dummys. However, the procedures being called ought
1892 to have their own proc_descs, and even if they don't,
1893 heuristic_proc_desc knows how to create them! */
c906108c
SS
1894
1895 register struct linked_proc_info *link;
1896
1897 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
1898 if (PROC_LOW_ADDR (&link->info) <= pc
1899 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
1900 return &link->info;
1901
1902 if (startaddr == 0)
1903 startaddr = heuristic_proc_start (pc);
1904
1905 proc_desc =
1906 heuristic_proc_desc (startaddr, pc, next_frame);
1907 }
1908 return proc_desc;
1909}
1910
1911static CORE_ADDR
c5aa993b
JM
1912get_frame_pointer (frame, proc_desc)
1913 struct frame_info *frame;
1914 mips_extra_func_info_t proc_desc;
c906108c
SS
1915{
1916 return ADDR_BITS_REMOVE (
c5aa993b
JM
1917 read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) +
1918 PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
1919}
1920
1921mips_extra_func_info_t cached_proc_desc;
1922
1923CORE_ADDR
c5aa993b
JM
1924mips_frame_chain (frame)
1925 struct frame_info *frame;
c906108c
SS
1926{
1927 mips_extra_func_info_t proc_desc;
1928 CORE_ADDR tmp;
c5aa993b 1929 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
c906108c
SS
1930
1931 if (saved_pc == 0 || inside_entry_file (saved_pc))
1932 return 0;
1933
1934 /* Check if the PC is inside a call stub. If it is, fetch the
1935 PC of the caller of that stub. */
1936 if ((tmp = mips_skip_stub (saved_pc)) != 0)
1937 saved_pc = tmp;
1938
1939 /* Look up the procedure descriptor for this PC. */
c5aa993b 1940 proc_desc = find_proc_desc (saved_pc, frame);
c906108c
SS
1941 if (!proc_desc)
1942 return 0;
1943
1944 cached_proc_desc = proc_desc;
1945
1946 /* If no frame pointer and frame size is zero, we must be at end
1947 of stack (or otherwise hosed). If we don't check frame size,
1948 we loop forever if we see a zero size frame. */
1949 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
1950 && PROC_FRAME_OFFSET (proc_desc) == 0
c5aa993b
JM
1951 /* The previous frame from a sigtramp frame might be frameless
1952 and have frame size zero. */
c906108c
SS
1953 && !frame->signal_handler_caller)
1954 return 0;
1955 else
1956 return get_frame_pointer (frame, proc_desc);
1957}
1958
1959void
c5aa993b 1960mips_init_extra_frame_info (fromleaf, fci)
cce74817 1961 int fromleaf;
c906108c
SS
1962 struct frame_info *fci;
1963{
1964 int regnum;
1965
1966 /* Use proc_desc calculated in frame_chain */
1967 mips_extra_func_info_t proc_desc =
c5aa993b 1968 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next);
c906108c 1969
cce74817
JM
1970 fci->extra_info = (struct frame_extra_info *)
1971 frame_obstack_alloc (sizeof (struct frame_extra_info));
1972
c906108c 1973 fci->saved_regs = NULL;
cce74817 1974 fci->extra_info->proc_desc =
c906108c
SS
1975 proc_desc == &temp_proc_desc ? 0 : proc_desc;
1976 if (proc_desc)
1977 {
1978 /* Fixup frame-pointer - only needed for top frame */
1979 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
1980 Get the value of the frame relative sp, procedure might have been
1981 interrupted by a signal at it's very start. */
c906108c
SS
1982 if (fci->pc == PROC_LOW_ADDR (proc_desc)
1983 && !PROC_DESC_IS_DUMMY (proc_desc))
1984 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
1985 else
1986 fci->frame = get_frame_pointer (fci->next, proc_desc);
1987
1988 if (proc_desc == &temp_proc_desc)
1989 {
1990 char *name;
1991
1992 /* Do not set the saved registers for a sigtramp frame,
1993 mips_find_saved_registers will do that for us.
1994 We can't use fci->signal_handler_caller, it is not yet set. */
1995 find_pc_partial_function (fci->pc, &name,
c5aa993b 1996 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
c906108c
SS
1997 if (!IN_SIGTRAMP (fci->pc, name))
1998 {
c5aa993b 1999 frame_saved_regs_zalloc (fci);
cce74817 2000 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2001 fci->saved_regs[PC_REGNUM]
2002 = fci->saved_regs[RA_REGNUM];
2003 }
2004 }
2005
2006 /* hack: if argument regs are saved, guess these contain args */
cce74817
JM
2007 /* assume we can't tell how many args for now */
2008 fci->extra_info->num_args = -1;
c906108c
SS
2009 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2010 {
c5aa993b 2011 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2012 {
cce74817 2013 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2014 break;
2015 }
c5aa993b 2016 }
c906108c
SS
2017 }
2018}
2019
2020/* MIPS stack frames are almost impenetrable. When execution stops,
2021 we basically have to look at symbol information for the function
2022 that we stopped in, which tells us *which* register (if any) is
2023 the base of the frame pointer, and what offset from that register
2024 the frame itself is at.
2025
2026 This presents a problem when trying to examine a stack in memory
2027 (that isn't executing at the moment), using the "frame" command. We
2028 don't have a PC, nor do we have any registers except SP.
2029
2030 This routine takes two arguments, SP and PC, and tries to make the
2031 cached frames look as if these two arguments defined a frame on the
2032 cache. This allows the rest of info frame to extract the important
2033 arguments without difficulty. */
2034
2035struct frame_info *
2036setup_arbitrary_frame (argc, argv)
2037 int argc;
2038 CORE_ADDR *argv;
2039{
2040 if (argc != 2)
2041 error ("MIPS frame specifications require two arguments: sp and pc");
2042
2043 return create_new_frame (argv[0], argv[1]);
2044}
2045
c906108c 2046CORE_ADDR
c5aa993b 2047mips_push_arguments (nargs, args, sp, struct_return, struct_addr)
c906108c
SS
2048 int nargs;
2049 value_ptr *args;
2050 CORE_ADDR sp;
2051 int struct_return;
2052 CORE_ADDR struct_addr;
2053{
2054 int argreg;
2055 int float_argreg;
2056 int argnum;
2057 int len = 0;
2058 int stack_offset = 0;
2059
2060 /* Macros to round N up or down to the next A boundary; A must be
2061 a power of two. */
2062#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2063#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
c5aa993b 2064
c906108c
SS
2065 /* First ensure that the stack and structure return address (if any)
2066 are properly aligned. The stack has to be at least 64-bit aligned
2067 even on 32-bit machines, because doubles must be 64-bit aligned.
2068 On at least one MIPS variant, stack frames need to be 128-bit
2069 aligned, so we round to this widest known alignment. */
2070 sp = ROUND_DOWN (sp, 16);
7a292a7a 2071 struct_addr = ROUND_DOWN (struct_addr, MIPS_SAVED_REGSIZE);
c5aa993b 2072
c906108c
SS
2073 /* Now make space on the stack for the args. We allocate more
2074 than necessary for EABI, because the first few arguments are
2075 passed in registers, but that's OK. */
2076 for (argnum = 0; argnum < nargs; argnum++)
c5aa993b 2077 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), MIPS_SAVED_REGSIZE);
c906108c
SS
2078 sp -= ROUND_UP (len, 16);
2079
2080 /* Initialize the integer and float register pointers. */
2081 argreg = A0_REGNUM;
2082 float_argreg = FPA0_REGNUM;
2083
2084 /* the struct_return pointer occupies the first parameter-passing reg */
2085 if (struct_return)
c5aa993b 2086 write_register (argreg++, struct_addr);
c906108c
SS
2087
2088 /* Now load as many as possible of the first arguments into
2089 registers, and push the rest onto the stack. Loop thru args
2090 from first to last. */
2091 for (argnum = 0; argnum < nargs; argnum++)
2092 {
2093 char *val;
2094 char valbuf[MAX_REGISTER_RAW_SIZE];
2095 value_ptr arg = args[argnum];
2096 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2097 int len = TYPE_LENGTH (arg_type);
2098 enum type_code typecode = TYPE_CODE (arg_type);
2099
2100 /* The EABI passes structures that do not fit in a register by
c5aa993b 2101 reference. In all other cases, pass the structure by value. */
7a292a7a 2102 if (MIPS_EABI && len > MIPS_SAVED_REGSIZE &&
c906108c
SS
2103 (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2104 {
7a292a7a 2105 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2106 typecode = TYPE_CODE_PTR;
7a292a7a 2107 len = MIPS_SAVED_REGSIZE;
c906108c
SS
2108 val = valbuf;
2109 }
2110 else
c5aa993b 2111 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2112
2113 /* 32-bit ABIs always start floating point arguments in an
2114 even-numbered floating point register. */
2115 if (!FP_REGISTER_DOUBLE && typecode == TYPE_CODE_FLT
c5aa993b 2116 && (float_argreg & 1))
c906108c
SS
2117 float_argreg++;
2118
2119 /* Floating point arguments passed in registers have to be
2120 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2121 are passed in register pairs; the even register gets
2122 the low word, and the odd register gets the high word.
2123 On non-EABI processors, the first two floating point arguments are
2124 also copied to general registers, because MIPS16 functions
2125 don't use float registers for arguments. This duplication of
2126 arguments in general registers can't hurt non-MIPS16 functions
2127 because those registers are normally skipped. */
c906108c
SS
2128 if (typecode == TYPE_CODE_FLT
2129 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM
2130 && MIPS_FPU_TYPE != MIPS_FPU_NONE)
2131 {
2132 if (!FP_REGISTER_DOUBLE && len == 8)
2133 {
2134 int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
2135 unsigned long regval;
2136
2137 /* Write the low word of the double to the even register(s). */
c5aa993b 2138 regval = extract_unsigned_integer (val + low_offset, 4);
c906108c
SS
2139 write_register (float_argreg++, regval);
2140 if (!MIPS_EABI)
c5aa993b 2141 write_register (argreg + 1, regval);
c906108c
SS
2142
2143 /* Write the high word of the double to the odd register(s). */
c5aa993b 2144 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
c906108c
SS
2145 write_register (float_argreg++, regval);
2146 if (!MIPS_EABI)
c5aa993b 2147 {
c906108c
SS
2148 write_register (argreg, regval);
2149 argreg += 2;
2150 }
2151
2152 }
2153 else
2154 {
2155 /* This is a floating point value that fits entirely
2156 in a single register. */
53a5351d
JM
2157 /* On 32 bit ABI's the float_argreg is further adjusted
2158 above to ensure that it is even register aligned. */
c906108c
SS
2159 CORE_ADDR regval = extract_address (val, len);
2160 write_register (float_argreg++, regval);
2161 if (!MIPS_EABI)
c5aa993b 2162 {
53a5351d
JM
2163 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
2164 registers for each argument. The below is (my
2165 guess) to ensure that the corresponding integer
2166 register has reserved the same space. */
c906108c
SS
2167 write_register (argreg, regval);
2168 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
2169 }
2170 }
2171 }
2172 else
2173 {
2174 /* Copy the argument to general registers or the stack in
2175 register-sized pieces. Large arguments are split between
2176 registers and stack. */
2177 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2178 are treated specially: Irix cc passes them in registers
2179 where gcc sometimes puts them on the stack. For maximum
2180 compatibility, we will put them in both places. */
2181
c5aa993b 2182 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2183 (len % MIPS_SAVED_REGSIZE != 0));
c906108c
SS
2184 while (len > 0)
2185 {
7a292a7a 2186 int partial_len = len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c
SS
2187
2188 if (argreg > MIPS_LAST_ARG_REGNUM || odd_sized_struct)
2189 {
2190 /* Write this portion of the argument to the stack. */
2191 /* Should shorter than int integer values be
2192 promoted to int before being stored? */
2193
2194 int longword_offset = 0;
2195 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
7a292a7a 2196 {
d929b26f 2197 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2198 (typecode == TYPE_CODE_INT ||
2199 typecode == TYPE_CODE_PTR ||
2200 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2201 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2202 else if ((typecode == TYPE_CODE_STRUCT ||
2203 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2204 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2205 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2206 }
c5aa993b
JM
2207
2208 write_memory (sp + stack_offset + longword_offset,
c906108c
SS
2209 val, partial_len);
2210 }
2211
2212 /* Note!!! This is NOT an else clause.
c5aa993b 2213 Odd sized structs may go thru BOTH paths. */
c906108c
SS
2214 if (argreg <= MIPS_LAST_ARG_REGNUM)
2215 {
2216 CORE_ADDR regval = extract_address (val, partial_len);
2217
2218 /* A non-floating-point argument being passed in a
2219 general register. If a struct or union, and if
2220 the remaining length is smaller than the register
2221 size, we have to adjust the register value on
2222 big endian targets.
2223
2224 It does not seem to be necessary to do the
2225 same for integral types.
2226
2227 Also don't do this adjustment on EABI and O64
2228 binaries. */
2229
2230 if (!MIPS_EABI
7a292a7a 2231 && MIPS_SAVED_REGSIZE < 8
c906108c 2232 && TARGET_BYTE_ORDER == BIG_ENDIAN
7a292a7a 2233 && partial_len < MIPS_SAVED_REGSIZE
c906108c
SS
2234 && (typecode == TYPE_CODE_STRUCT ||
2235 typecode == TYPE_CODE_UNION))
c5aa993b 2236 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
c906108c
SS
2237 TARGET_CHAR_BIT);
2238
2239 write_register (argreg, regval);
2240 argreg++;
c5aa993b 2241
c906108c
SS
2242 /* If this is the old ABI, prevent subsequent floating
2243 point arguments from being passed in floating point
2244 registers. */
2245 if (!MIPS_EABI)
2246 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
2247 }
c5aa993b 2248
c906108c
SS
2249 len -= partial_len;
2250 val += partial_len;
2251
2252 /* The offset onto the stack at which we will start
c5aa993b
JM
2253 copying parameters (after the registers are used up)
2254 begins at (4 * MIPS_REGSIZE) in the old ABI. This
2255 leaves room for the "home" area for register parameters.
c906108c 2256
c5aa993b
JM
2257 In the new EABI (and the NABI32), the 8 register parameters
2258 do not have "home" stack space reserved for them, so the
2259 stack offset does not get incremented until after
2260 we have used up the 8 parameter registers. */
c906108c 2261
d929b26f
AC
2262 if (MIPS_REGS_HAVE_HOME_P || argnum >= 8)
2263 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
2264 }
2265 }
2266 }
2267
0f71a2f6
JM
2268 /* Return adjusted stack pointer. */
2269 return sp;
2270}
2271
2272CORE_ADDR
2273mips_push_return_address (pc, sp)
2274 CORE_ADDR pc;
2275 CORE_ADDR sp;
2276{
c906108c
SS
2277 /* Set the return address register to point to the entry
2278 point of the program, where a breakpoint lies in wait. */
c5aa993b 2279 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
c906108c
SS
2280 return sp;
2281}
2282
2283static void
c5aa993b 2284mips_push_register (CORE_ADDR * sp, int regno)
c906108c
SS
2285{
2286 char buffer[MAX_REGISTER_RAW_SIZE];
7a292a7a
SS
2287 int regsize;
2288 int offset;
2289 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
2290 {
2291 regsize = MIPS_SAVED_REGSIZE;
2292 offset = (TARGET_BYTE_ORDER == BIG_ENDIAN
2293 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
2294 : 0);
2295 }
2296 else
2297 {
2298 regsize = REGISTER_RAW_SIZE (regno);
2299 offset = 0;
2300 }
c906108c
SS
2301 *sp -= regsize;
2302 read_register_gen (regno, buffer);
7a292a7a 2303 write_memory (*sp, buffer + offset, regsize);
c906108c
SS
2304}
2305
2306/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
2307#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
2308
2309void
7a292a7a 2310mips_push_dummy_frame ()
c906108c
SS
2311{
2312 int ireg;
c5aa993b
JM
2313 struct linked_proc_info *link = (struct linked_proc_info *)
2314 xmalloc (sizeof (struct linked_proc_info));
c906108c
SS
2315 mips_extra_func_info_t proc_desc = &link->info;
2316 CORE_ADDR sp = ADDR_BITS_REMOVE (read_register (SP_REGNUM));
2317 CORE_ADDR old_sp = sp;
2318 link->next = linked_proc_desc_table;
2319 linked_proc_desc_table = link;
2320
2321/* FIXME! are these correct ? */
c5aa993b 2322#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
c906108c
SS
2323#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
2324#define FLOAT_REG_SAVE_MASK MASK(0,19)
2325#define FLOAT_SINGLE_REG_SAVE_MASK \
2326 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
2327 /*
2328 * The registers we must save are all those not preserved across
2329 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
2330 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
2331 * and FP Control/Status registers.
2332 *
2333 *
2334 * Dummy frame layout:
2335 * (high memory)
c5aa993b
JM
2336 * Saved PC
2337 * Saved MMHI, MMLO, FPC_CSR
2338 * Saved R31
2339 * Saved R28
2340 * ...
2341 * Saved R1
c906108c
SS
2342 * Saved D18 (i.e. F19, F18)
2343 * ...
2344 * Saved D0 (i.e. F1, F0)
c5aa993b 2345 * Argument build area and stack arguments written via mips_push_arguments
c906108c
SS
2346 * (low memory)
2347 */
2348
2349 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
c5aa993b
JM
2350 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
2351 PROC_FRAME_OFFSET (proc_desc) = 0;
2352 PROC_FRAME_ADJUST (proc_desc) = 0;
c906108c
SS
2353 mips_push_register (&sp, PC_REGNUM);
2354 mips_push_register (&sp, HI_REGNUM);
2355 mips_push_register (&sp, LO_REGNUM);
2356 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
2357
2358 /* Save general CPU registers */
c5aa993b 2359 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
c906108c 2360 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
c5aa993b
JM
2361 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
2362 for (ireg = 32; --ireg >= 0;)
2363 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
2364 mips_push_register (&sp, ireg);
2365
2366 /* Save floating point registers starting with high order word */
c5aa993b 2367 PROC_FREG_MASK (proc_desc) =
c906108c
SS
2368 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
2369 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
2370 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
2371 from FP. */
c5aa993b
JM
2372 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
2373 for (ireg = 32; --ireg >= 0;)
2374 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
2375 mips_push_register (&sp, ireg + FP0_REGNUM);
2376
2377 /* Update the frame pointer for the call dummy and the stack pointer.
2378 Set the procedure's starting and ending addresses to point to the
2379 call dummy address at the entry point. */
2380 write_register (PUSH_FP_REGNUM, old_sp);
2381 write_register (SP_REGNUM, sp);
c5aa993b
JM
2382 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
2383 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
2384 SET_PROC_DESC_IS_DUMMY (proc_desc);
2385 PROC_PC_REG (proc_desc) = RA_REGNUM;
c906108c
SS
2386}
2387
2388void
c5aa993b 2389mips_pop_frame ()
c906108c
SS
2390{
2391 register int regnum;
2392 struct frame_info *frame = get_current_frame ();
2393 CORE_ADDR new_sp = FRAME_FP (frame);
2394
cce74817 2395 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c 2396
c5aa993b 2397 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
c906108c
SS
2398 if (frame->saved_regs == NULL)
2399 mips_find_saved_regs (frame);
2400 for (regnum = 0; regnum < NUM_REGS; regnum++)
2401 {
2402 if (regnum != SP_REGNUM && regnum != PC_REGNUM
2403 && frame->saved_regs[regnum])
2404 write_register (regnum,
2405 read_memory_integer (frame->saved_regs[regnum],
c5aa993b 2406 MIPS_SAVED_REGSIZE));
c906108c
SS
2407 }
2408 write_register (SP_REGNUM, new_sp);
2409 flush_cached_frames ();
2410
c5aa993b 2411 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
2412 {
2413 struct linked_proc_info *pi_ptr, *prev_ptr;
2414
2415 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
2416 pi_ptr != NULL;
2417 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
2418 {
2419 if (&pi_ptr->info == proc_desc)
2420 break;
2421 }
2422
2423 if (pi_ptr == NULL)
2424 error ("Can't locate dummy extra frame info\n");
2425
2426 if (prev_ptr != NULL)
2427 prev_ptr->next = pi_ptr->next;
2428 else
2429 linked_proc_desc_table = pi_ptr->next;
2430
2431 free (pi_ptr);
2432
2433 write_register (HI_REGNUM,
c5aa993b 2434 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 2435 MIPS_SAVED_REGSIZE));
c906108c 2436 write_register (LO_REGNUM,
c5aa993b 2437 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 2438 MIPS_SAVED_REGSIZE));
c906108c
SS
2439 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
2440 write_register (FCRCS_REGNUM,
c5aa993b 2441 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 2442 MIPS_SAVED_REGSIZE));
c906108c
SS
2443 }
2444}
2445
2446static void
2447mips_print_register (regnum, all)
2448 int regnum, all;
2449{
2450 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2451
2452 /* Get the data in raw format. */
2453 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2454 {
2455 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
2456 return;
2457 }
2458
2459 /* If an even floating point register, also print as double. */
2460 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
c5aa993b
JM
2461 && !((regnum - FP0_REGNUM) & 1))
2462 if (REGISTER_RAW_SIZE (regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */
c906108c 2463 {
c5aa993b 2464 char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
c906108c
SS
2465
2466 read_relative_register_raw_bytes (regnum, dbuffer);
c5aa993b 2467 read_relative_register_raw_bytes (regnum + 1, dbuffer + MIPS_REGSIZE);
c906108c
SS
2468 REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
2469
c5aa993b 2470 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
c906108c
SS
2471 val_print (builtin_type_double, dbuffer, 0, 0,
2472 gdb_stdout, 0, 1, 0, Val_pretty_default);
2473 printf_filtered ("); ");
2474 }
2475 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
2476
2477 /* The problem with printing numeric register names (r26, etc.) is that
2478 the user can't use them on input. Probably the best solution is to
2479 fix it so that either the numeric or the funky (a2, etc.) names
2480 are accepted on input. */
2481 if (regnum < MIPS_NUMREGS)
2482 printf_filtered ("(r%d): ", regnum);
2483 else
2484 printf_filtered (": ");
2485
2486 /* If virtual format is floating, print it that way. */
2487 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2488 if (FP_REGISTER_DOUBLE)
c5aa993b 2489 { /* show 8-byte floats as float AND double: */
c906108c
SS
2490 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2491
2492 printf_filtered (" (float) ");
2493 val_print (builtin_type_float, raw_buffer + offset, 0, 0,
2494 gdb_stdout, 0, 1, 0, Val_pretty_default);
2495 printf_filtered (", (double) ");
2496 val_print (builtin_type_double, raw_buffer, 0, 0,
2497 gdb_stdout, 0, 1, 0, Val_pretty_default);
2498 }
2499 else
2500 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
2501 gdb_stdout, 0, 1, 0, Val_pretty_default);
2502 /* Else print as integer in hex. */
2503 else
ed9a39eb
JM
2504 {
2505 int offset;
2506
2507 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2508 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2509 else
2510 offset = 0;
2511
2512 print_scalar_formatted (raw_buffer + offset,
2513 REGISTER_VIRTUAL_TYPE (regnum),
2514 'x', 0, gdb_stdout);
2515 }
c906108c
SS
2516}
2517
2518/* Replacement for generic do_registers_info.
2519 Print regs in pretty columns. */
2520
2521static int
2522do_fp_register_row (regnum)
2523 int regnum;
c5aa993b 2524{ /* do values for FP (float) regs */
c906108c
SS
2525 char *raw_buffer[2];
2526 char *dbl_buffer;
2527 /* use HI and LO to control the order of combining two flt regs */
2528 int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN);
2529 int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN);
2530 double doub, flt1, flt2; /* doubles extracted from raw hex data */
2531 int inv1, inv2, inv3;
c5aa993b 2532
c906108c
SS
2533 raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2534 raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2535 dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2536
2537 /* Get the data in raw format. */
2538 if (read_relative_register_raw_bytes (regnum, raw_buffer[HI]))
2539 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
c5aa993b 2540 if (REGISTER_RAW_SIZE (regnum) == 4)
c906108c
SS
2541 {
2542 /* 4-byte registers: we can fit two registers per row. */
2543 /* Also print every pair of 4-byte regs as an 8-byte double. */
2544 if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO]))
c5aa993b 2545 error ("can't read register %d (%s)",
c906108c
SS
2546 regnum + 1, REGISTER_NAME (regnum + 1));
2547
2548 /* copy the two floats into one double, and unpack both */
65edb64b 2549 memcpy (dbl_buffer, raw_buffer, 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c5aa993b
JM
2550 flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1);
2551 flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2);
2552 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
2553
2554 printf_filtered (inv1 ? " %-5s: <invalid float>" :
2555 " %-5s%-17.9g", REGISTER_NAME (regnum), flt1);
2556 printf_filtered (inv2 ? " %-5s: <invalid float>" :
c906108c 2557 " %-5s%-17.9g", REGISTER_NAME (regnum + 1), flt2);
c5aa993b 2558 printf_filtered (inv3 ? " dbl: <invalid double>\n" :
c906108c
SS
2559 " dbl: %-24.17g\n", doub);
2560 /* may want to do hex display here (future enhancement) */
c5aa993b 2561 regnum += 2;
c906108c
SS
2562 }
2563 else
c5aa993b 2564 { /* eight byte registers: print each one as float AND as double. */
c906108c
SS
2565 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2566
65edb64b 2567 memcpy (dbl_buffer, raw_buffer[HI], 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c5aa993b 2568 flt1 = unpack_double (builtin_type_float,
c906108c 2569 &raw_buffer[HI][offset], &inv1);
c5aa993b 2570 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
c906108c 2571
c5aa993b 2572 printf_filtered (inv1 ? " %-5s: <invalid float>" :
c906108c 2573 " %-5s flt: %-17.9g", REGISTER_NAME (regnum), flt1);
c5aa993b 2574 printf_filtered (inv3 ? " dbl: <invalid double>\n" :
c906108c
SS
2575 " dbl: %-24.17g\n", doub);
2576 /* may want to do hex display here (future enhancement) */
2577 regnum++;
2578 }
2579 return regnum;
2580}
2581
2582/* Print a row's worth of GP (int) registers, with name labels above */
2583
2584static int
2585do_gp_register_row (regnum)
2586 int regnum;
2587{
2588 /* do values for GP (int) regs */
2589 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2590 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
2591 int col, byte;
2592 int start_regnum = regnum;
2593 int numregs = NUM_REGS;
2594
2595
2596 /* For GP registers, we print a separate row of names above the vals */
2597 printf_filtered (" ");
2598 for (col = 0; col < ncols && regnum < numregs; regnum++)
2599 {
2600 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 2601 continue; /* unused register */
c906108c 2602 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b
JM
2603 break; /* end the row: reached FP register */
2604 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
c906108c
SS
2605 REGISTER_NAME (regnum));
2606 col++;
2607 }
c5aa993b 2608 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
c906108c
SS
2609 start_regnum); /* print the R0 to R31 names */
2610
2611 regnum = start_regnum; /* go back to start of row */
2612 /* now print the values in hex, 4 or 8 to the row */
2613 for (col = 0; col < ncols && regnum < numregs; regnum++)
2614 {
2615 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 2616 continue; /* unused register */
c906108c 2617 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 2618 break; /* end row: reached FP register */
c906108c
SS
2619 /* OK: get the data in raw format. */
2620 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2621 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2622 /* pad small registers */
43e526b9 2623 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
c906108c
SS
2624 printf_filtered (" ");
2625 /* Now print the register value in hex, endian order. */
2626 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
43e526b9
JM
2627 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2628 byte < REGISTER_RAW_SIZE (regnum);
2629 byte++)
c906108c
SS
2630 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2631 else
43e526b9
JM
2632 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
2633 byte >= 0;
2634 byte--)
c906108c
SS
2635 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2636 printf_filtered (" ");
2637 col++;
2638 }
c5aa993b 2639 if (col > 0) /* ie. if we actually printed anything... */
c906108c
SS
2640 printf_filtered ("\n");
2641
2642 return regnum;
2643}
2644
2645/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
2646
2647void
2648mips_do_registers_info (regnum, fpregs)
2649 int regnum;
2650 int fpregs;
2651{
c5aa993b 2652 if (regnum != -1) /* do one specified register */
c906108c
SS
2653 {
2654 if (*(REGISTER_NAME (regnum)) == '\0')
2655 error ("Not a valid register for the current processor type");
2656
2657 mips_print_register (regnum, 0);
2658 printf_filtered ("\n");
2659 }
c5aa993b
JM
2660 else
2661 /* do all (or most) registers */
c906108c
SS
2662 {
2663 regnum = 0;
2664 while (regnum < NUM_REGS)
2665 {
c5aa993b
JM
2666 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2667 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
c906108c
SS
2668 regnum = do_fp_register_row (regnum); /* FP regs */
2669 else
2670 regnum += MIPS_NUMREGS; /* skip floating point regs */
2671 else
2672 regnum = do_gp_register_row (regnum); /* GP (int) regs */
2673 }
2674 }
2675}
2676
2677/* Return number of args passed to a frame. described by FIP.
2678 Can return -1, meaning no way to tell. */
2679
2680int
2681mips_frame_num_args (frame)
c5aa993b 2682 struct frame_info *frame;
c906108c 2683{
c5aa993b 2684#if 0 /* FIXME Use or lose this! */
c906108c
SS
2685 struct chain_info_t *p;
2686
2687 p = mips_find_cached_frame (FRAME_FP (frame));
2688 if (p->valid)
2689 return p->the_info.numargs;
2690#endif
2691 return -1;
2692}
2693
2694/* Is this a branch with a delay slot? */
2695
a14ed312 2696static int is_delayed (unsigned long);
c906108c
SS
2697
2698static int
2699is_delayed (insn)
2700 unsigned long insn;
2701{
2702 int i;
2703 for (i = 0; i < NUMOPCODES; ++i)
2704 if (mips_opcodes[i].pinfo != INSN_MACRO
2705 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
2706 break;
2707 return (i < NUMOPCODES
2708 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
2709 | INSN_COND_BRANCH_DELAY
2710 | INSN_COND_BRANCH_LIKELY)));
2711}
2712
2713int
2714mips_step_skips_delay (pc)
2715 CORE_ADDR pc;
2716{
2717 char buf[MIPS_INSTLEN];
2718
2719 /* There is no branch delay slot on MIPS16. */
2720 if (pc_is_mips16 (pc))
2721 return 0;
2722
2723 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
2724 /* If error reading memory, guess that it is not a delayed branch. */
2725 return 0;
c5aa993b 2726 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
2727}
2728
2729
2730/* Skip the PC past function prologue instructions (32-bit version).
2731 This is a helper function for mips_skip_prologue. */
2732
2733static CORE_ADDR
2734mips32_skip_prologue (pc, lenient)
c5aa993b 2735 CORE_ADDR pc; /* starting PC to search from */
c906108c
SS
2736 int lenient;
2737{
c5aa993b
JM
2738 t_inst inst;
2739 CORE_ADDR end_pc;
2740 int seen_sp_adjust = 0;
2741 int load_immediate_bytes = 0;
2742
2743 /* Skip the typical prologue instructions. These are the stack adjustment
2744 instruction and the instructions that save registers on the stack
2745 or in the gcc frame. */
2746 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
2747 {
2748 unsigned long high_word;
c906108c 2749
c5aa993b
JM
2750 inst = mips_fetch_instruction (pc);
2751 high_word = (inst >> 16) & 0xffff;
c906108c
SS
2752
2753#if 0
c5aa993b
JM
2754 if (lenient && is_delayed (inst))
2755 continue;
c906108c
SS
2756#endif
2757
c5aa993b
JM
2758 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
2759 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
2760 seen_sp_adjust = 1;
2761 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
2762 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
2763 seen_sp_adjust = 1;
2764 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
2765 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
2766 && (inst & 0x001F0000)) /* reg != $zero */
2767 continue;
2768
2769 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
2770 continue;
2771 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
2772 /* sx reg,n($s8) */
2773 continue; /* reg != $zero */
2774
2775 /* move $s8,$sp. With different versions of gas this will be either
2776 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
2777 Accept any one of these. */
2778 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2779 continue;
2780
2781 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
2782 continue;
2783 else if (high_word == 0x3c1c) /* lui $gp,n */
2784 continue;
2785 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
2786 continue;
2787 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
2788 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
2789 continue;
2790 /* The following instructions load $at or $t0 with an immediate
2791 value in preparation for a stack adjustment via
2792 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
2793 a local variable, so we accept them only before a stack adjustment
2794 instruction was seen. */
2795 else if (!seen_sp_adjust)
2796 {
2797 if (high_word == 0x3c01 || /* lui $at,n */
2798 high_word == 0x3c08) /* lui $t0,n */
2799 {
2800 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
2801 continue;
2802 }
2803 else if (high_word == 0x3421 || /* ori $at,$at,n */
2804 high_word == 0x3508 || /* ori $t0,$t0,n */
2805 high_word == 0x3401 || /* ori $at,$zero,n */
2806 high_word == 0x3408) /* ori $t0,$zero,n */
2807 {
2808 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
2809 continue;
2810 }
2811 else
2812 break;
2813 }
2814 else
2815 break;
c906108c
SS
2816 }
2817
c5aa993b
JM
2818 /* In a frameless function, we might have incorrectly
2819 skipped some load immediate instructions. Undo the skipping
2820 if the load immediate was not followed by a stack adjustment. */
2821 if (load_immediate_bytes && !seen_sp_adjust)
2822 pc -= load_immediate_bytes;
2823 return pc;
c906108c
SS
2824}
2825
2826/* Skip the PC past function prologue instructions (16-bit version).
2827 This is a helper function for mips_skip_prologue. */
2828
2829static CORE_ADDR
2830mips16_skip_prologue (pc, lenient)
c5aa993b 2831 CORE_ADDR pc; /* starting PC to search from */
c906108c
SS
2832 int lenient;
2833{
c5aa993b
JM
2834 CORE_ADDR end_pc;
2835 int extend_bytes = 0;
2836 int prev_extend_bytes;
c906108c 2837
c5aa993b
JM
2838 /* Table of instructions likely to be found in a function prologue. */
2839 static struct
c906108c
SS
2840 {
2841 unsigned short inst;
2842 unsigned short mask;
c5aa993b
JM
2843 }
2844 table[] =
2845 {
c906108c 2846 {
c5aa993b
JM
2847 0x6300, 0xff00
2848 }
2849 , /* addiu $sp,offset */
2850 {
2851 0xfb00, 0xff00
2852 }
2853 , /* daddiu $sp,offset */
2854 {
2855 0xd000, 0xf800
2856 }
2857 , /* sw reg,n($sp) */
2858 {
2859 0xf900, 0xff00
2860 }
2861 , /* sd reg,n($sp) */
2862 {
2863 0x6200, 0xff00
2864 }
2865 , /* sw $ra,n($sp) */
2866 {
2867 0xfa00, 0xff00
2868 }
2869 , /* sd $ra,n($sp) */
2870 {
2871 0x673d, 0xffff
2872 }
2873 , /* move $s1,sp */
2874 {
2875 0xd980, 0xff80
2876 }
2877 , /* sw $a0-$a3,n($s1) */
2878 {
2879 0x6704, 0xff1c
2880 }
2881 , /* move reg,$a0-$a3 */
2882 {
2883 0xe809, 0xf81f
2884 }
2885 , /* entry pseudo-op */
2886 {
2887 0x0100, 0xff00
2888 }
2889 , /* addiu $s1,$sp,n */
2890 {
2891 0, 0
2892 } /* end of table marker */
2893 };
2894
2895 /* Skip the typical prologue instructions. These are the stack adjustment
2896 instruction and the instructions that save registers on the stack
2897 or in the gcc frame. */
2898 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
2899 {
2900 unsigned short inst;
2901 int i;
c906108c 2902
c5aa993b 2903 inst = mips_fetch_instruction (pc);
c906108c 2904
c5aa993b
JM
2905 /* Normally we ignore an extend instruction. However, if it is
2906 not followed by a valid prologue instruction, we must adjust
2907 the pc back over the extend so that it won't be considered
2908 part of the prologue. */
2909 if ((inst & 0xf800) == 0xf000) /* extend */
2910 {
2911 extend_bytes = MIPS16_INSTLEN;
2912 continue;
2913 }
2914 prev_extend_bytes = extend_bytes;
2915 extend_bytes = 0;
c906108c 2916
c5aa993b
JM
2917 /* Check for other valid prologue instructions besides extend. */
2918 for (i = 0; table[i].mask != 0; i++)
2919 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
2920 break;
2921 if (table[i].mask != 0) /* it was in table? */
2922 continue; /* ignore it */
2923 else
2924 /* non-prologue */
2925 {
2926 /* Return the current pc, adjusted backwards by 2 if
2927 the previous instruction was an extend. */
2928 return pc - prev_extend_bytes;
2929 }
c906108c
SS
2930 }
2931 return pc;
2932}
2933
2934/* To skip prologues, I use this predicate. Returns either PC itself
2935 if the code at PC does not look like a function prologue; otherwise
2936 returns an address that (if we're lucky) follows the prologue. If
2937 LENIENT, then we must skip everything which is involved in setting
2938 up the frame (it's OK to skip more, just so long as we don't skip
2939 anything which might clobber the registers which are being saved.
2940 We must skip more in the case where part of the prologue is in the
2941 delay slot of a non-prologue instruction). */
2942
2943CORE_ADDR
2944mips_skip_prologue (pc, lenient)
2945 CORE_ADDR pc;
2946 int lenient;
2947{
2948 /* See if we can determine the end of the prologue via the symbol table.
2949 If so, then return either PC, or the PC after the prologue, whichever
2950 is greater. */
2951
2952 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
2953
2954 if (post_prologue_pc != 0)
2955 return max (pc, post_prologue_pc);
2956
2957 /* Can't determine prologue from the symbol table, need to examine
2958 instructions. */
2959
2960 if (pc_is_mips16 (pc))
2961 return mips16_skip_prologue (pc, lenient);
2962 else
2963 return mips32_skip_prologue (pc, lenient);
2964}
2965
2966#if 0
2967/* The lenient prologue stuff should be superseded by the code in
2968 init_extra_frame_info which looks to see whether the stores mentioned
2969 in the proc_desc have actually taken place. */
2970
2971/* Is address PC in the prologue (loosely defined) for function at
2972 STARTADDR? */
2973
2974static int
2975mips_in_lenient_prologue (startaddr, pc)
2976 CORE_ADDR startaddr;
2977 CORE_ADDR pc;
2978{
2979 CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1);
2980 return pc >= startaddr && pc < end_prologue;
2981}
2982#endif
2983
7a292a7a
SS
2984/* Determine how a return value is stored within the MIPS register
2985 file, given the return type `valtype'. */
2986
2987struct return_value_word
2988{
2989 int len;
2990 int reg;
2991 int reg_offset;
2992 int buf_offset;
2993};
2994
a14ed312
KB
2995static void return_value_location (struct type *, struct return_value_word *,
2996 struct return_value_word *);
7a292a7a
SS
2997
2998static void
2999return_value_location (valtype, hi, lo)
3000 struct type *valtype;
3001 struct return_value_word *hi;
3002 struct return_value_word *lo;
3003{
3004 int len = TYPE_LENGTH (valtype);
c5aa993b 3005
7a292a7a
SS
3006 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3007 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
3008 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
3009 {
3010 if (!FP_REGISTER_DOUBLE && len == 8)
3011 {
3012 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 3013 spread them across a floating-point register pair. */
7a292a7a
SS
3014 lo->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
3015 hi->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 0 : 4;
3016 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3017 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
3018 ? 4 : 0);
3019 hi->reg_offset = lo->reg_offset;
3020 lo->reg = FP0_REGNUM + 0;
3021 hi->reg = FP0_REGNUM + 1;
3022 lo->len = 4;
3023 hi->len = 4;
3024 }
3025 else
3026 {
3027 /* The floating point value fits in a single floating-point
c5aa993b 3028 register. */
7a292a7a
SS
3029 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3030 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
3031 && len == 4)
3032 ? 4 : 0);
3033 lo->reg = FP0_REGNUM;
3034 lo->len = len;
3035 lo->buf_offset = 0;
3036 hi->len = 0;
3037 hi->reg_offset = 0;
3038 hi->buf_offset = 0;
3039 hi->reg = 0;
3040 }
3041 }
3042 else
3043 {
3044 /* Locate a result possibly spread across two registers. */
3045 int regnum = 2;
3046 lo->reg = regnum + 0;
3047 hi->reg = regnum + 1;
3048 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3049 && len < MIPS_SAVED_REGSIZE)
3050 {
3051 /* "un-left-justify" the value in the low register */
3052 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
3053 lo->len = len;
3054 hi->reg_offset = 0;
3055 hi->len = 0;
3056 }
3057 else if (TARGET_BYTE_ORDER == BIG_ENDIAN
3058 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
3059 && len < MIPS_SAVED_REGSIZE * 2
3060 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3061 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3062 {
3063 /* "un-left-justify" the value spread across two registers. */
3064 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
3065 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
3066 hi->reg_offset = 0;
3067 hi->len = len - lo->len;
3068 }
3069 else
3070 {
3071 /* Only perform a partial copy of the second register. */
3072 lo->reg_offset = 0;
3073 hi->reg_offset = 0;
3074 if (len > MIPS_SAVED_REGSIZE)
3075 {
3076 lo->len = MIPS_SAVED_REGSIZE;
3077 hi->len = len - MIPS_SAVED_REGSIZE;
3078 }
3079 else
3080 {
3081 lo->len = len;
3082 hi->len = 0;
3083 }
3084 }
3085 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3086 && REGISTER_RAW_SIZE (regnum) == 8
3087 && MIPS_SAVED_REGSIZE == 4)
3088 {
3089 /* Account for the fact that only the least-signficant part
c5aa993b 3090 of the register is being used */
7a292a7a
SS
3091 lo->reg_offset += 4;
3092 hi->reg_offset += 4;
3093 }
3094 lo->buf_offset = 0;
3095 hi->buf_offset = lo->len;
3096 }
3097}
3098
3099/* Given a return value in `regbuf' with a type `valtype', extract and
3100 copy its value into `valbuf'. */
3101
c906108c
SS
3102void
3103mips_extract_return_value (valtype, regbuf, valbuf)
c5aa993b
JM
3104 struct type *valtype;
3105 char regbuf[REGISTER_BYTES];
3106 char *valbuf;
c906108c 3107{
7a292a7a
SS
3108 struct return_value_word lo;
3109 struct return_value_word hi;
3110 return_value_location (valtype, &lo, &hi);
3111
3112 memcpy (valbuf + lo.buf_offset,
3113 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
3114 lo.len);
3115
3116 if (hi.len > 0)
3117 memcpy (valbuf + hi.buf_offset,
3118 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
3119 hi.len);
3120
3121#if 0
c906108c
SS
3122 int regnum;
3123 int offset = 0;
3124 int len = TYPE_LENGTH (valtype);
c5aa993b 3125
c906108c
SS
3126 regnum = 2;
3127 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3128 && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE
3129 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE
3130 && len <= MIPS_FPU_SINGLE_REGSIZE)))
3131 regnum = FP0_REGNUM;
3132
3133 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
c5aa993b 3134 { /* "un-left-justify" the value from the register */
c906108c
SS
3135 if (len < REGISTER_RAW_SIZE (regnum))
3136 offset = REGISTER_RAW_SIZE (regnum) - len;
c5aa993b 3137 if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
c906108c
SS
3138 len < REGISTER_RAW_SIZE (regnum) * 2 &&
3139 (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3140 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3141 offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
3142 }
3143 memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, len);
3144 REGISTER_CONVERT_TO_TYPE (regnum, valtype, valbuf);
7a292a7a 3145#endif
c906108c
SS
3146}
3147
7a292a7a
SS
3148/* Given a return value in `valbuf' with a type `valtype', write it's
3149 value into the appropriate register. */
3150
c906108c
SS
3151void
3152mips_store_return_value (valtype, valbuf)
c5aa993b
JM
3153 struct type *valtype;
3154 char *valbuf;
c906108c 3155{
7a292a7a
SS
3156 char raw_buffer[MAX_REGISTER_RAW_SIZE];
3157 struct return_value_word lo;
3158 struct return_value_word hi;
3159 return_value_location (valtype, &lo, &hi);
3160
3161 memset (raw_buffer, 0, sizeof (raw_buffer));
3162 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
3163 write_register_bytes (REGISTER_BYTE (lo.reg),
3164 raw_buffer,
3165 REGISTER_RAW_SIZE (lo.reg));
c5aa993b 3166
7a292a7a
SS
3167 if (hi.len > 0)
3168 {
3169 memset (raw_buffer, 0, sizeof (raw_buffer));
3170 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
3171 write_register_bytes (REGISTER_BYTE (hi.reg),
3172 raw_buffer,
3173 REGISTER_RAW_SIZE (hi.reg));
3174 }
3175
3176#if 0
c906108c
SS
3177 int regnum;
3178 int offset = 0;
3179 int len = TYPE_LENGTH (valtype);
3180 char raw_buffer[MAX_REGISTER_RAW_SIZE];
c5aa993b 3181
c906108c
SS
3182 regnum = 2;
3183 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3184 && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE
3185 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE
3186 && len <= MIPS_REGSIZE)))
3187 regnum = FP0_REGNUM;
3188
3189 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
c5aa993b 3190 { /* "left-justify" the value in the register */
c906108c
SS
3191 if (len < REGISTER_RAW_SIZE (regnum))
3192 offset = REGISTER_RAW_SIZE (regnum) - len;
c5aa993b 3193 if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
c906108c
SS
3194 len < REGISTER_RAW_SIZE (regnum) * 2 &&
3195 (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3196 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3197 offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
3198 }
c5aa993b
JM
3199 memcpy (raw_buffer + offset, valbuf, len);
3200 REGISTER_CONVERT_FROM_TYPE (regnum, valtype, raw_buffer);
3201 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer,
3202 len > REGISTER_RAW_SIZE (regnum) ?
3203 len : REGISTER_RAW_SIZE (regnum));
7a292a7a 3204#endif
c906108c
SS
3205}
3206
3207/* Exported procedure: Is PC in the signal trampoline code */
3208
3209int
3210in_sigtramp (pc, ignore)
3211 CORE_ADDR pc;
3212 char *ignore; /* function name */
3213{
3214 if (sigtramp_address == 0)
3215 fixup_sigtramp ();
3216 return (pc >= sigtramp_address && pc < sigtramp_end);
3217}
3218
a5ea2558
AC
3219/* Root of all "set mips "/"show mips " commands. This will eventually be
3220 used for all MIPS-specific commands. */
3221
a14ed312 3222static void show_mips_command (char *, int);
a5ea2558
AC
3223static void
3224show_mips_command (args, from_tty)
3225 char *args;
3226 int from_tty;
3227{
3228 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
3229}
3230
a14ed312 3231static void set_mips_command (char *, int);
a5ea2558
AC
3232static void
3233set_mips_command (args, from_tty)
3234 char *args;
3235 int from_tty;
3236{
3237 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
3238 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
3239}
3240
c906108c
SS
3241/* Commands to show/set the MIPS FPU type. */
3242
a14ed312 3243static void show_mipsfpu_command (char *, int);
c906108c
SS
3244static void
3245show_mipsfpu_command (args, from_tty)
3246 char *args;
3247 int from_tty;
3248{
3249 char *msg;
3250 char *fpu;
3251 switch (MIPS_FPU_TYPE)
3252 {
3253 case MIPS_FPU_SINGLE:
3254 fpu = "single-precision";
3255 break;
3256 case MIPS_FPU_DOUBLE:
3257 fpu = "double-precision";
3258 break;
3259 case MIPS_FPU_NONE:
3260 fpu = "absent (none)";
3261 break;
3262 }
3263 if (mips_fpu_type_auto)
3264 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
3265 fpu);
3266 else
3267 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
3268 fpu);
3269}
3270
3271
a14ed312 3272static void set_mipsfpu_command (char *, int);
c906108c
SS
3273static void
3274set_mipsfpu_command (args, from_tty)
3275 char *args;
3276 int from_tty;
3277{
3278 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
3279 show_mipsfpu_command (args, from_tty);
3280}
3281
a14ed312 3282static void set_mipsfpu_single_command (char *, int);
c906108c
SS
3283static void
3284set_mipsfpu_single_command (args, from_tty)
3285 char *args;
3286 int from_tty;
3287{
3288 mips_fpu_type = MIPS_FPU_SINGLE;
3289 mips_fpu_type_auto = 0;
c2d11a7d
JM
3290 if (GDB_MULTI_ARCH)
3291 {
3292 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
3293 }
c906108c
SS
3294}
3295
a14ed312 3296static void set_mipsfpu_double_command (char *, int);
c906108c
SS
3297static void
3298set_mipsfpu_double_command (args, from_tty)
3299 char *args;
3300 int from_tty;
3301{
3302 mips_fpu_type = MIPS_FPU_DOUBLE;
3303 mips_fpu_type_auto = 0;
c2d11a7d
JM
3304 if (GDB_MULTI_ARCH)
3305 {
3306 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
3307 }
c906108c
SS
3308}
3309
a14ed312 3310static void set_mipsfpu_none_command (char *, int);
c906108c
SS
3311static void
3312set_mipsfpu_none_command (args, from_tty)
3313 char *args;
3314 int from_tty;
3315{
3316 mips_fpu_type = MIPS_FPU_NONE;
3317 mips_fpu_type_auto = 0;
c2d11a7d
JM
3318 if (GDB_MULTI_ARCH)
3319 {
3320 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
3321 }
c906108c
SS
3322}
3323
a14ed312 3324static void set_mipsfpu_auto_command (char *, int);
c906108c
SS
3325static void
3326set_mipsfpu_auto_command (args, from_tty)
3327 char *args;
3328 int from_tty;
3329{
3330 mips_fpu_type_auto = 1;
3331}
3332
3333/* Command to set the processor type. */
3334
3335void
3336mips_set_processor_type_command (args, from_tty)
3337 char *args;
3338 int from_tty;
3339{
3340 int i;
3341
3342 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
3343 {
3344 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
3345 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3346 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
3347
3348 /* Restore the value. */
3349 tmp_mips_processor_type = strsave (mips_processor_type);
3350
3351 return;
3352 }
c5aa993b 3353
c906108c
SS
3354 if (!mips_set_processor_type (tmp_mips_processor_type))
3355 {
3356 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
3357 /* Restore its value. */
3358 tmp_mips_processor_type = strsave (mips_processor_type);
3359 }
3360}
3361
3362static void
3363mips_show_processor_type_command (args, from_tty)
3364 char *args;
3365 int from_tty;
3366{
3367}
3368
3369/* Modify the actual processor type. */
3370
3371int
3372mips_set_processor_type (str)
3373 char *str;
3374{
3375 int i, j;
3376
3377 if (str == NULL)
3378 return 0;
3379
3380 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3381 {
3382 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
3383 {
3384 mips_processor_type = str;
cce74817 3385 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 3386 return 1;
c906108c
SS
3387 /* FIXME tweak fpu flag too */
3388 }
3389 }
3390
3391 return 0;
3392}
3393
3394/* Attempt to identify the particular processor model by reading the
3395 processor id. */
3396
3397char *
3398mips_read_processor_type ()
3399{
3400 CORE_ADDR prid;
3401
3402 prid = read_register (PRID_REGNUM);
3403
3404 if ((prid & ~0xf) == 0x700)
c5aa993b 3405 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
3406
3407 return NULL;
3408}
3409
3410/* Just like reinit_frame_cache, but with the right arguments to be
3411 callable as an sfunc. */
3412
3413static void
3414reinit_frame_cache_sfunc (args, from_tty, c)
3415 char *args;
3416 int from_tty;
3417 struct cmd_list_element *c;
3418{
3419 reinit_frame_cache ();
3420}
3421
3422int
3423gdb_print_insn_mips (memaddr, info)
3424 bfd_vma memaddr;
3425 disassemble_info *info;
3426{
3427 mips_extra_func_info_t proc_desc;
3428
3429 /* Search for the function containing this address. Set the low bit
3430 of the address when searching, in case we were given an even address
3431 that is the start of a 16-bit function. If we didn't do this,
3432 the search would fail because the symbol table says the function
3433 starts at an odd address, i.e. 1 byte past the given address. */
3434 memaddr = ADDR_BITS_REMOVE (memaddr);
3435 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
3436
3437 /* Make an attempt to determine if this is a 16-bit function. If
3438 the procedure descriptor exists and the address therein is odd,
3439 it's definitely a 16-bit function. Otherwise, we have to just
3440 guess that if the address passed in is odd, it's 16-bits. */
3441 if (proc_desc)
3442 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ? 16 : TM_PRINT_INSN_MACH;
3443 else
3444 info->mach = pc_is_mips16 (memaddr) ? 16 : TM_PRINT_INSN_MACH;
3445
3446 /* Round down the instruction address to the appropriate boundary. */
3447 memaddr &= (info->mach == 16 ? ~1 : ~3);
c5aa993b 3448
c906108c
SS
3449 /* Call the appropriate disassembler based on the target endian-ness. */
3450 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3451 return print_insn_big_mips (memaddr, info);
3452 else
3453 return print_insn_little_mips (memaddr, info);
3454}
3455
3456/* Old-style breakpoint macros.
3457 The IDT board uses an unusual breakpoint value, and sometimes gets
3458 confused when it sees the usual MIPS breakpoint instruction. */
3459
3460#define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
3461#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
3462#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
3463#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
3464#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
3465#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
3466#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
3467#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
3468
3469/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
3470 counter value to determine whether a 16- or 32-bit breakpoint should be
3471 used. It returns a pointer to a string of bytes that encode a breakpoint
3472 instruction, stores the length of the string to *lenptr, and adjusts pc
3473 (if necessary) to point to the actual memory location where the
3474 breakpoint should be inserted. */
3475
c5aa993b
JM
3476unsigned char *
3477mips_breakpoint_from_pc (pcptr, lenptr)
c906108c
SS
3478 CORE_ADDR *pcptr;
3479 int *lenptr;
3480{
3481 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3482 {
3483 if (pc_is_mips16 (*pcptr))
3484 {
3485 static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT;
3486 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 3487 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
3488 return mips16_big_breakpoint;
3489 }
3490 else
3491 {
3492 static char big_breakpoint[] = BIG_BREAKPOINT;
3493 static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
3494 static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
3495
c5aa993b 3496 *lenptr = sizeof (big_breakpoint);
c906108c
SS
3497
3498 if (strcmp (target_shortname, "mips") == 0)
3499 return idt_big_breakpoint;
3500 else if (strcmp (target_shortname, "ddb") == 0
3501 || strcmp (target_shortname, "pmon") == 0
3502 || strcmp (target_shortname, "lsi") == 0)
3503 return pmon_big_breakpoint;
3504 else
3505 return big_breakpoint;
3506 }
3507 }
3508 else
3509 {
3510 if (pc_is_mips16 (*pcptr))
3511 {
3512 static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT;
3513 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 3514 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
3515 return mips16_little_breakpoint;
3516 }
3517 else
3518 {
3519 static char little_breakpoint[] = LITTLE_BREAKPOINT;
3520 static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT;
3521 static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT;
3522
c5aa993b 3523 *lenptr = sizeof (little_breakpoint);
c906108c
SS
3524
3525 if (strcmp (target_shortname, "mips") == 0)
3526 return idt_little_breakpoint;
3527 else if (strcmp (target_shortname, "ddb") == 0
3528 || strcmp (target_shortname, "pmon") == 0
3529 || strcmp (target_shortname, "lsi") == 0)
3530 return pmon_little_breakpoint;
3531 else
3532 return little_breakpoint;
3533 }
3534 }
3535}
3536
3537/* If PC is in a mips16 call or return stub, return the address of the target
3538 PC, which is either the callee or the caller. There are several
3539 cases which must be handled:
3540
3541 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 3542 target PC is in $31 ($ra).
c906108c 3543 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 3544 and the target PC is in $2.
c906108c 3545 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
3546 before the jal instruction, this is effectively a call stub
3547 and the the target PC is in $2. Otherwise this is effectively
3548 a return stub and the target PC is in $18.
c906108c
SS
3549
3550 See the source code for the stubs in gcc/config/mips/mips16.S for
3551 gory details.
3552
3553 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 3554 */
c906108c
SS
3555
3556CORE_ADDR
3557mips_skip_stub (pc)
3558 CORE_ADDR pc;
3559{
3560 char *name;
3561 CORE_ADDR start_addr;
3562
3563 /* Find the starting address and name of the function containing the PC. */
3564 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
3565 return 0;
3566
3567 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3568 target PC is in $31 ($ra). */
3569 if (strcmp (name, "__mips16_ret_sf") == 0
3570 || strcmp (name, "__mips16_ret_df") == 0)
3571 return read_register (RA_REGNUM);
3572
3573 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3574 {
3575 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3576 and the target PC is in $2. */
3577 if (name[19] >= '0' && name[19] <= '9')
3578 return read_register (2);
3579
3580 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
3581 before the jal instruction, this is effectively a call stub
3582 and the the target PC is in $2. Otherwise this is effectively
3583 a return stub and the target PC is in $18. */
c906108c
SS
3584 else if (name[19] == 's' || name[19] == 'd')
3585 {
3586 if (pc == start_addr)
3587 {
3588 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
3589 stub. Such a stub for a function bar might have a name
3590 like __fn_stub_bar, and might look like this:
3591 mfc1 $4,$f13
3592 mfc1 $5,$f12
3593 mfc1 $6,$f15
3594 mfc1 $7,$f14
3595 la $1,bar (becomes a lui/addiu pair)
3596 jr $1
3597 So scan down to the lui/addi and extract the target
3598 address from those two instructions. */
c906108c
SS
3599
3600 CORE_ADDR target_pc = read_register (2);
3601 t_inst inst;
3602 int i;
3603
3604 /* See if the name of the target function is __fn_stub_*. */
3605 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
3606 return target_pc;
3607 if (strncmp (name, "__fn_stub_", 10) != 0
3608 && strcmp (name, "etext") != 0
3609 && strcmp (name, "_etext") != 0)
3610 return target_pc;
3611
3612 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
3613 The limit on the search is arbitrarily set to 20
3614 instructions. FIXME. */
c906108c
SS
3615 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
3616 {
c5aa993b
JM
3617 inst = mips_fetch_instruction (target_pc);
3618 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
3619 pc = (inst << 16) & 0xffff0000; /* high word */
3620 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
3621 return pc | (inst & 0xffff); /* low word */
c906108c
SS
3622 }
3623
3624 /* Couldn't find the lui/addui pair, so return stub address. */
3625 return target_pc;
3626 }
3627 else
3628 /* This is the 'return' part of a call stub. The return
3629 address is in $r18. */
3630 return read_register (18);
3631 }
3632 }
c5aa993b 3633 return 0; /* not a stub */
c906108c
SS
3634}
3635
3636
3637/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
3638 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
3639
3640int
3641mips_in_call_stub (pc, name)
3642 CORE_ADDR pc;
3643 char *name;
3644{
3645 CORE_ADDR start_addr;
3646
3647 /* Find the starting address of the function containing the PC. If the
3648 caller didn't give us a name, look it up at the same time. */
3649 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
3650 return 0;
3651
3652 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3653 {
3654 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
3655 if (name[19] >= '0' && name[19] <= '9')
3656 return 1;
3657 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 3658 before the jal instruction, this is effectively a call stub. */
c906108c
SS
3659 else if (name[19] == 's' || name[19] == 'd')
3660 return pc == start_addr;
3661 }
3662
c5aa993b 3663 return 0; /* not a stub */
c906108c
SS
3664}
3665
3666
3667/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
3668 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
3669
3670int
3671mips_in_return_stub (pc, name)
3672 CORE_ADDR pc;
3673 char *name;
3674{
3675 CORE_ADDR start_addr;
3676
3677 /* Find the starting address of the function containing the PC. */
3678 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
3679 return 0;
3680
3681 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
3682 if (strcmp (name, "__mips16_ret_sf") == 0
3683 || strcmp (name, "__mips16_ret_df") == 0)
3684 return 1;
3685
3686 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 3687 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
3688 if (strncmp (name, "__mips16_call_stub_", 19) == 0
3689 && (name[19] == 's' || name[19] == 'd')
3690 && pc != start_addr)
3691 return 1;
3692
c5aa993b 3693 return 0; /* not a stub */
c906108c
SS
3694}
3695
3696
3697/* Return non-zero if the PC is in a library helper function that should
3698 be ignored. This implements the IGNORE_HELPER_CALL macro. */
3699
3700int
3701mips_ignore_helper (pc)
3702 CORE_ADDR pc;
3703{
3704 char *name;
3705
3706 /* Find the starting address and name of the function containing the PC. */
3707 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
3708 return 0;
3709
3710 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
3711 that we want to ignore. */
3712 return (strcmp (name, "__mips16_ret_sf") == 0
3713 || strcmp (name, "__mips16_ret_df") == 0);
3714}
3715
3716
3717/* Return a location where we can set a breakpoint that will be hit
3718 when an inferior function call returns. This is normally the
3719 program's entry point. Executables that don't have an entry
3720 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
3721 whose address is the location where the breakpoint should be placed. */
3722
3723CORE_ADDR
3724mips_call_dummy_address ()
3725{
3726 struct minimal_symbol *sym;
3727
3728 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
3729 if (sym)
3730 return SYMBOL_VALUE_ADDRESS (sym);
3731 else
3732 return entry_point_address ();
3733}
3734
3735
b9a8e3bf
JB
3736/* If the current gcc for for this target does not produce correct debugging
3737 information for float parameters, both prototyped and unprototyped, then
3738 define this macro. This forces gdb to always assume that floats are
3739 passed as doubles and then converted in the callee.
3740
3741 For the mips chip, it appears that the debug info marks the parameters as
3742 floats regardless of whether the function is prototyped, but the actual
3743 values are passed as doubles for the non-prototyped case and floats for
3744 the prototyped case. Thus we choose to make the non-prototyped case work
3745 for C and break the prototyped case, since the non-prototyped case is
3746 probably much more common. (FIXME). */
3747
3748static int
3749mips_coerce_float_to_double (struct type *formal, struct type *actual)
3750{
3751 return current_language->la_language == language_c;
3752}
3753
47a8d4ba
AC
3754/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
3755 the register stored on the stack (32) is different to its real raw
3756 size (64). The below ensures that registers are fetched from the
3757 stack using their ABI size and then stored into the RAW_BUFFER
3758 using their raw size.
3759
3760 The alternative to adding this function would be to add an ABI
3761 macro - REGISTER_STACK_SIZE(). */
3762
3763static void
3764mips_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
3765 char *raw_buffer;
3766 int *optimized;
3767 CORE_ADDR *addrp;
3768 struct frame_info *frame;
3769 int regnum;
3770 enum lval_type *lval;
3771{
3772 CORE_ADDR addr;
3773
3774 if (!target_has_registers)
3775 error ("No registers.");
3776
3777 /* Normal systems don't optimize out things with register numbers. */
3778 if (optimized != NULL)
3779 *optimized = 0;
3780 addr = find_saved_register (frame, regnum);
3781 if (addr != 0)
3782 {
3783 if (lval != NULL)
3784 *lval = lval_memory;
3785 if (regnum == SP_REGNUM)
3786 {
3787 if (raw_buffer != NULL)
3788 {
3789 /* Put it back in target format. */
3790 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
3791 (LONGEST) addr);
3792 }
3793 if (addrp != NULL)
3794 *addrp = 0;
3795 return;
3796 }
3797 if (raw_buffer != NULL)
3798 {
3799 LONGEST val;
3800 if (regnum < 32)
3801 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
3802 saved. */
3803 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
3804 else
3805 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
3806 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
3807 }
3808 }
3809 else
3810 {
3811 if (lval != NULL)
3812 *lval = lval_register;
3813 addr = REGISTER_BYTE (regnum);
3814 if (raw_buffer != NULL)
3815 read_register_gen (regnum, raw_buffer);
3816 }
3817 if (addrp != NULL)
3818 *addrp = addr;
3819}
2acceee2 3820
c2d11a7d
JM
3821static gdbarch_init_ftype mips_gdbarch_init;
3822static struct gdbarch *
3823mips_gdbarch_init (info, arches)
3824 struct gdbarch_info info;
3825 struct gdbarch_list *arches;
3826{
3827 static LONGEST mips_call_dummy_words[] =
3828 {0};
3829 struct gdbarch *gdbarch;
3830 struct gdbarch_tdep *tdep;
3831 int elf_flags;
3832 char *ef_mips_abi;
3833 int ef_mips_bitptrs;
3834 int ef_mips_arch;
0dadbba0 3835 enum mips_abi mips_abi;
c2d11a7d
JM
3836
3837 /* Extract the elf_flags if available */
3838 if (info.abfd != NULL
3839 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
3840 elf_flags = elf_elfheader (info.abfd)->e_flags;
3841 else
3842 elf_flags = 0;
3843
0dadbba0
AC
3844 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
3845 switch ((elf_flags & EF_MIPS_ABI))
3846 {
3847 case E_MIPS_ABI_O32:
3848 mips_abi = MIPS_ABI_O32;
3849 break;
3850 case E_MIPS_ABI_O64:
3851 mips_abi = MIPS_ABI_O64;
3852 break;
3853 case E_MIPS_ABI_EABI32:
3854 mips_abi = MIPS_ABI_EABI32;
3855 break;
3856 case E_MIPS_ABI_EABI64:
3857 mips_abi = MIPS_ABI_EABI32;
3858 break;
3859 default:
3860 mips_abi = MIPS_ABI_UNKNOWN;
3861 break;
3862 }
3863#ifdef MIPS_DEFAULT_ABI
3864 if (mips_abi == MIPS_ABI_UNKNOWN)
3865 mips_abi = MIPS_DEFAULT_ABI;
3866#endif
3867
c2d11a7d
JM
3868 /* try to find a pre-existing architecture */
3869 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3870 arches != NULL;
3871 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3872 {
3873 /* MIPS needs to be pedantic about which ABI the object is
3874 using. */
3875 if (gdbarch_tdep (current_gdbarch)->elf_flags != elf_flags)
3876 continue;
0dadbba0
AC
3877 if (gdbarch_tdep (current_gdbarch)->mips_abi != mips_abi)
3878 continue;
c2d11a7d
JM
3879 return arches->gdbarch;
3880 }
3881
3882 /* Need a new architecture. Fill in a target specific vector. */
3883 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
3884 gdbarch = gdbarch_alloc (&info, tdep);
3885 tdep->elf_flags = elf_flags;
3886
3887 /* Initially set everything according to the ABI. */
3888 set_gdbarch_short_bit (gdbarch, 16);
3889 set_gdbarch_int_bit (gdbarch, 32);
3890 set_gdbarch_float_bit (gdbarch, 32);
3891 set_gdbarch_double_bit (gdbarch, 64);
3892 set_gdbarch_long_double_bit (gdbarch, 64);
0dadbba0
AC
3893 tdep->mips_abi = mips_abi;
3894 switch (mips_abi)
c2d11a7d 3895 {
0dadbba0 3896 case MIPS_ABI_O32:
c2d11a7d 3897 ef_mips_abi = "o32";
a5ea2558 3898 tdep->mips_default_saved_regsize = 4;
0dadbba0 3899 tdep->mips_default_stack_argsize = 4;
c2d11a7d 3900 tdep->mips_fp_register_double = 0;
0dadbba0
AC
3901 tdep->mips_last_arg_regnum = ZERO_REGNUM + 7;
3902 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 15;
3903 tdep->mips_regs_have_home_p = 1;
c2d11a7d
JM
3904 set_gdbarch_long_bit (gdbarch, 32);
3905 set_gdbarch_ptr_bit (gdbarch, 32);
3906 set_gdbarch_long_long_bit (gdbarch, 64);
3907 break;
0dadbba0 3908 case MIPS_ABI_O64:
c2d11a7d 3909 ef_mips_abi = "o64";
a5ea2558 3910 tdep->mips_default_saved_regsize = 8;
0dadbba0 3911 tdep->mips_default_stack_argsize = 8;
c2d11a7d 3912 tdep->mips_fp_register_double = 1;
0dadbba0
AC
3913 tdep->mips_last_arg_regnum = ZERO_REGNUM + 7;
3914 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 15;
3915 tdep->mips_regs_have_home_p = 1;
c2d11a7d
JM
3916 set_gdbarch_long_bit (gdbarch, 32);
3917 set_gdbarch_ptr_bit (gdbarch, 32);
3918 set_gdbarch_long_long_bit (gdbarch, 64);
3919 break;
0dadbba0 3920 case MIPS_ABI_EABI32:
c2d11a7d 3921 ef_mips_abi = "eabi32";
a5ea2558 3922 tdep->mips_default_saved_regsize = 4;
0dadbba0 3923 tdep->mips_default_stack_argsize = 4;
c2d11a7d 3924 tdep->mips_fp_register_double = 0;
0dadbba0
AC
3925 tdep->mips_last_arg_regnum = ZERO_REGNUM + 11;
3926 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 19;
3927 tdep->mips_regs_have_home_p = 0;
c2d11a7d
JM
3928 set_gdbarch_long_bit (gdbarch, 32);
3929 set_gdbarch_ptr_bit (gdbarch, 32);
3930 set_gdbarch_long_long_bit (gdbarch, 64);
3931 break;
0dadbba0 3932 case MIPS_ABI_EABI64:
c2d11a7d 3933 ef_mips_abi = "eabi64";
a5ea2558 3934 tdep->mips_default_saved_regsize = 8;
0dadbba0 3935 tdep->mips_default_stack_argsize = 8;
c2d11a7d 3936 tdep->mips_fp_register_double = 1;
0dadbba0
AC
3937 tdep->mips_last_arg_regnum = ZERO_REGNUM + 11;
3938 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 19;
3939 tdep->mips_regs_have_home_p = 0;
c2d11a7d
JM
3940 set_gdbarch_long_bit (gdbarch, 64);
3941 set_gdbarch_ptr_bit (gdbarch, 64);
3942 set_gdbarch_long_long_bit (gdbarch, 64);
3943 break;
0dadbba0
AC
3944 case MIPS_ABI_N32:
3945 ef_mips_abi = "n32";
3946 tdep->mips_default_saved_regsize = 4;
3947 tdep->mips_default_stack_argsize = 8;
3948 tdep->mips_fp_register_double = 1;
3949 tdep->mips_last_arg_regnum = ZERO_REGNUM + 11;
3950 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 19;
3951 tdep->mips_regs_have_home_p = 0;
3952 set_gdbarch_long_bit (gdbarch, 32);
3953 set_gdbarch_ptr_bit (gdbarch, 32);
3954 set_gdbarch_long_long_bit (gdbarch, 64);
3955 break;
c2d11a7d
JM
3956 default:
3957 ef_mips_abi = "default";
a5ea2558 3958 tdep->mips_default_saved_regsize = MIPS_REGSIZE;
0dadbba0 3959 tdep->mips_default_stack_argsize = MIPS_REGSIZE;
c2d11a7d 3960 tdep->mips_fp_register_double = (REGISTER_VIRTUAL_SIZE (FP0_REGNUM) == 8);
0dadbba0
AC
3961 tdep->mips_last_arg_regnum = ZERO_REGNUM + 11;
3962 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 19;
3963 tdep->mips_regs_have_home_p = 1;
c2d11a7d
JM
3964 set_gdbarch_long_bit (gdbarch, 32);
3965 set_gdbarch_ptr_bit (gdbarch, 32);
3966 set_gdbarch_long_long_bit (gdbarch, 64);
3967 break;
3968 }
3969
a5ea2558
AC
3970 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
3971 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
3972 comment:
3973
3974 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
3975 flag in object files because to do so would make it impossible to
3976 link with libraries compiled without "-gp32". This is
3977 unnecessarily restrictive.
3978
3979 We could solve this problem by adding "-gp32" multilibs to gcc,
3980 but to set this flag before gcc is built with such multilibs will
3981 break too many systems.''
3982
3983 But even more unhelpfully, the default linker output target for
3984 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
3985 for 64-bit programs - you need to change the ABI to change this,
3986 and not all gcc targets support that currently. Therefore using
3987 this flag to detect 32-bit mode would do the wrong thing given
3988 the current gcc - it would make GDB treat these 64-bit programs
3989 as 32-bit programs by default. */
3990
c2d11a7d
JM
3991 /* determine the ISA */
3992 switch (elf_flags & EF_MIPS_ARCH)
3993 {
3994 case E_MIPS_ARCH_1:
3995 ef_mips_arch = 1;
3996 break;
3997 case E_MIPS_ARCH_2:
3998 ef_mips_arch = 2;
3999 break;
4000 case E_MIPS_ARCH_3:
4001 ef_mips_arch = 3;
4002 break;
4003 case E_MIPS_ARCH_4:
4004 ef_mips_arch = 0;
4005 break;
4006 default:
4007 break;
4008 }
4009
4010#if 0
4011 /* determine the size of a pointer */
4012 if ((elf_flags & EF_MIPS_32BITPTRS))
4013 {
4014 ef_mips_bitptrs = 32;
4015 }
4016 else if ((elf_flags & EF_MIPS_64BITPTRS))
4017 {
4018 ef_mips_bitptrs = 64;
4019 }
4020 else
4021 {
4022 ef_mips_bitptrs = 0;
4023 }
4024#endif
4025
c2d11a7d
JM
4026 /* enable/disable the MIPS FPU */
4027 if (!mips_fpu_type_auto)
4028 tdep->mips_fpu_type = mips_fpu_type;
4029 else if (info.bfd_arch_info != NULL
4030 && info.bfd_arch_info->arch == bfd_arch_mips)
4031 switch (info.bfd_arch_info->mach)
4032 {
4033 case bfd_mach_mips4100:
ed9a39eb 4034 case bfd_mach_mips4111:
c2d11a7d
JM
4035 tdep->mips_fpu_type = MIPS_FPU_NONE;
4036 break;
4037 default:
4038 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4039 break;
4040 }
4041 else
4042 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4043
4044 /* MIPS version of register names. NOTE: At present the MIPS
4045 register name management is part way between the old -
4046 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
4047 Further work on it is required. */
4048 set_gdbarch_register_name (gdbarch, mips_register_name);
4049 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
4050 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
4051 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
4052 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
4053 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
4054 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
4055
4056 /* Initialize a frame */
4057 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
4058
4059 /* MIPS version of CALL_DUMMY */
4060
4061 set_gdbarch_call_dummy_p (gdbarch, 1);
4062 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
4063 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
4064 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
4065 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
4066 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
4067 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
4068 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
4069 set_gdbarch_call_dummy_length (gdbarch, 0);
4070 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
4071 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
4072 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
4073 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
4074 set_gdbarch_push_arguments (gdbarch, mips_push_arguments);
4075 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
b9a8e3bf 4076 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
c2d11a7d 4077
c4093a6a 4078 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
47a8d4ba 4079 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d
JM
4080
4081 if (gdbarch_debug)
4082 {
0dadbba0 4083 fprintf_unfiltered (gdb_stdlog,
c2d11a7d
JM
4084 "mips_gdbarch_init: (info)ef_mips_abi = %s\n",
4085 ef_mips_abi);
0dadbba0 4086 fprintf_unfiltered (gdb_stdlog,
c2d11a7d
JM
4087 "mips_gdbarch_init: (info)ef_mips_arch = %d\n",
4088 ef_mips_arch);
0dadbba0 4089 fprintf_unfiltered (gdb_stdlog,
c2d11a7d
JM
4090 "mips_gdbarch_init: (info)ef_mips_bitptrs = %d\n",
4091 ef_mips_bitptrs);
0dadbba0
AC
4092 fprintf_unfiltered (gdb_stdlog,
4093 "mips_gdbarch_init: MIPS_REGSIZE = %d\n",
4094 MIPS_REGSIZE);
4095 fprintf_unfiltered (gdb_stdlog,
4096 "mips_gdbarch_init: tdep->elf_flags = 0x%x\n",
4097 tdep->elf_flags);
4098 fprintf_unfiltered (gdb_stdlog,
4099 "mips_gdbarch_init: tdep->mips_abi = %d\n",
4100 tdep->mips_abi);
4101 fprintf_unfiltered (gdb_stdlog,
4102 "mips_gdbarch_init: tdep->mips_fpu_type = %d (%s)\n",
c2d11a7d
JM
4103 tdep->mips_fpu_type,
4104 (tdep->mips_fpu_type == MIPS_FPU_NONE ? "none"
0dadbba0
AC
4105 : tdep->mips_fpu_type == MIPS_FPU_SINGLE ? "single"
4106 : tdep->mips_fpu_type == MIPS_FPU_DOUBLE ? "double"
c2d11a7d 4107 : "???"));
0dadbba0
AC
4108 fprintf_unfiltered (gdb_stdlog,
4109 "mips_gdbarch_init: tdep->mips_last_arg_regnum = %d\n",
4110 tdep->mips_last_arg_regnum);
4111 fprintf_unfiltered (gdb_stdlog,
4112 "mips_gdbarch_init: tdep->mips_last_fp_arg_regnum = %d (%d)\n",
4113 tdep->mips_last_fp_arg_regnum,
4114 tdep->mips_last_fp_arg_regnum - FP0_REGNUM);
4115 fprintf_unfiltered (gdb_stdlog,
4116 "mips_gdbarch_init: tdep->mips_default_saved_regsize = %d\n",
a5ea2558 4117 tdep->mips_default_saved_regsize);
0dadbba0
AC
4118 fprintf_unfiltered (gdb_stdlog,
4119 "mips_gdbarch_init: tdep->mips_fp_register_double = %d (%s)\n",
c2d11a7d 4120 tdep->mips_fp_register_double,
0dadbba0
AC
4121 (tdep->mips_fp_register_double ? "true" : "false"));
4122 fprintf_unfiltered (gdb_stdlog,
4123 "mips_gdbarch_init: tdep->mips_regs_have_home_p = %d\n",
4124 tdep->mips_regs_have_home_p);
4125 fprintf_unfiltered (gdb_stdlog,
4126 "mips_gdbarch_init: tdep->mips_default_stack_argsize = %d\n",
4127 tdep->mips_default_stack_argsize);
c2d11a7d
JM
4128 }
4129
4130 return gdbarch;
4131}
4132
4133
c906108c
SS
4134void
4135_initialize_mips_tdep ()
4136{
4137 static struct cmd_list_element *mipsfpulist = NULL;
4138 struct cmd_list_element *c;
4139
c2d11a7d
JM
4140 if (GDB_MULTI_ARCH)
4141 register_gdbarch_init (bfd_arch_mips, mips_gdbarch_init);
c5aa993b 4142 if (!tm_print_insn) /* Someone may have already set it */
c906108c
SS
4143 tm_print_insn = gdb_print_insn_mips;
4144
a5ea2558
AC
4145 /* Add root prefix command for all "set mips"/"show mips" commands */
4146 add_prefix_cmd ("mips", no_class, set_mips_command,
4147 "Various MIPS specific commands.",
4148 &setmipscmdlist, "set mips ", 0, &setlist);
4149
4150 add_prefix_cmd ("mips", no_class, show_mips_command,
4151 "Various MIPS specific commands.",
4152 &showmipscmdlist, "show mips ", 0, &showlist);
4153
4154 /* Allow the user to override the saved register size. */
4155 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
4156 class_obscure,
4157 size_enums,
4158 &mips_saved_regsize_string, "\
a5ea2558
AC
4159Set size of general purpose registers saved on the stack.\n\
4160This option can be set to one of:\n\
4161 32 - Force GDB to treat saved GP registers as 32-bit\n\
4162 64 - Force GDB to treat saved GP registers as 64-bit\n\
4163 auto - Allow GDB to use the target's default setting or autodetect the\n\
4164 saved GP register size from information contained in the executable.\n\
4165 (default: auto)",
1ed2a135 4166 &setmipscmdlist),
a5ea2558
AC
4167 &showmipscmdlist);
4168
d929b26f
AC
4169 /* Allow the user to override the argument stack size. */
4170 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
4171 class_obscure,
4172 size_enums,
1ed2a135 4173 &mips_stack_argsize_string, "\
d929b26f
AC
4174Set the amount of stack space reserved for each argument.\n\
4175This option can be set to one of:\n\
4176 32 - Force GDB to allocate 32-bit chunks per argument\n\
4177 64 - Force GDB to allocate 64-bit chunks per argument\n\
4178 auto - Allow GDB to determine the correct setting from the current\n\
4179 target and executable (default)",
4180 &setmipscmdlist),
4181 &showmipscmdlist);
4182
c906108c
SS
4183 /* Let the user turn off floating point and set the fence post for
4184 heuristic_proc_start. */
4185
4186 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
4187 "Set use of MIPS floating-point coprocessor.",
4188 &mipsfpulist, "set mipsfpu ", 0, &setlist);
4189 add_cmd ("single", class_support, set_mipsfpu_single_command,
4190 "Select single-precision MIPS floating-point coprocessor.",
4191 &mipsfpulist);
4192 add_cmd ("double", class_support, set_mipsfpu_double_command,
4193 "Select double-precision MIPS floating-point coprocessor .",
4194 &mipsfpulist);
4195 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
4196 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
4197 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
4198 add_cmd ("none", class_support, set_mipsfpu_none_command,
4199 "Select no MIPS floating-point coprocessor.",
4200 &mipsfpulist);
4201 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
4202 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
4203 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
4204 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
4205 "Select MIPS floating-point coprocessor automatically.",
4206 &mipsfpulist);
4207 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
4208 "Show current use of MIPS floating-point coprocessor target.",
4209 &showlist);
4210
c2d11a7d 4211#if !GDB_MULTI_ARCH
c906108c
SS
4212 c = add_set_cmd ("processor", class_support, var_string_noescape,
4213 (char *) &tmp_mips_processor_type,
4214 "Set the type of MIPS processor in use.\n\
4215Set this to be able to access processor-type-specific registers.\n\
4216",
4217 &setlist);
4218 c->function.cfunc = mips_set_processor_type_command;
4219 c = add_show_from_set (c, &showlist);
4220 c->function.cfunc = mips_show_processor_type_command;
4221
4222 tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE);
4223 mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0);
c2d11a7d 4224#endif
c906108c
SS
4225
4226 /* We really would like to have both "0" and "unlimited" work, but
4227 command.c doesn't deal with that. So make it a var_zinteger
4228 because the user can always use "999999" or some such for unlimited. */
4229 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
4230 (char *) &heuristic_fence_post,
4231 "\
4232Set the distance searched for the start of a function.\n\
4233If you are debugging a stripped executable, GDB needs to search through the\n\
4234program for the start of a function. This command sets the distance of the\n\
4235search. The only need to set it is when debugging a stripped executable.",
4236 &setlist);
4237 /* We need to throw away the frame cache when we set this, since it
4238 might change our ability to get backtraces. */
4239 c->function.sfunc = reinit_frame_cache_sfunc;
4240 add_show_from_set (c, &showlist);
4241
4242 /* Allow the user to control whether the upper bits of 64-bit
4243 addresses should be zeroed. */
4244 add_show_from_set
c5aa993b
JM
4245 (add_set_cmd ("mask-address", no_class, var_boolean, (char *) &mask_address_p,
4246 "Set zeroing of upper 32 bits of 64-bit addresses.\n\
c906108c
SS
4247Use \"on\" to enable the masking, and \"off\" to disable it.\n\
4248Without an argument, zeroing of upper address bits is enabled.", &setlist),
4249 &showlist);
43e526b9
JM
4250
4251 /* Allow the user to control the size of 32 bit registers within the
4252 raw remote packet. */
4253 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
4254 class_obscure,
4255 var_boolean,
4256 (char *)&mips64_transfers_32bit_regs_p, "\
4257Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
4258Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
4259that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
426064 bits for others. Use \"off\" to disable compatibility mode",
4261 &setlist),
4262 &showlist);
c906108c 4263}
This page took 0.242156 seconds and 4 git commands to generate.