* gdb.base/gdb1476.exp: Fix typo.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a 3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
16e109ca
AC
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
bf64bfd6 6
c906108c
SS
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b
JM
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
c906108c
SS
26
27#include "defs.h"
28#include "gdb_string.h"
5e2e9765 29#include "gdb_assert.h"
c906108c
SS
30#include "frame.h"
31#include "inferior.h"
32#include "symtab.h"
33#include "value.h"
34#include "gdbcmd.h"
35#include "language.h"
36#include "gdbcore.h"
37#include "symfile.h"
38#include "objfiles.h"
39#include "gdbtypes.h"
40#include "target.h"
28d069e6 41#include "arch-utils.h"
4e052eda 42#include "regcache.h"
70f80edf 43#include "osabi.h"
d1973055 44#include "mips-tdep.h"
fe898f56 45#include "block.h"
a4b8ebc8 46#include "reggroups.h"
c906108c 47#include "opcode/mips.h"
c2d11a7d
JM
48#include "elf/mips.h"
49#include "elf-bfd.h"
2475bac3 50#include "symcat.h"
a4b8ebc8 51#include "sim-regno.h"
a89aa300 52#include "dis-asm.h"
c906108c 53
e0f7ec59 54static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
5bbcb741 55static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 56
dd824b04
DJ
57/* A useful bit in the CP0 status register (PS_REGNUM). */
58/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
59#define ST0_FR (1 << 26)
60
b0069a17
AC
61/* The sizes of floating point registers. */
62
63enum
64{
65 MIPS_FPU_SINGLE_REGSIZE = 4,
66 MIPS_FPU_DOUBLE_REGSIZE = 8
67};
68
0dadbba0 69
2e4ebe70
DJ
70static const char *mips_abi_string;
71
72static const char *mips_abi_strings[] = {
73 "auto",
74 "n32",
75 "o32",
28d169de 76 "n64",
2e4ebe70
DJ
77 "o64",
78 "eabi32",
79 "eabi64",
80 NULL
81};
82
cce74817 83struct frame_extra_info
c5aa993b
JM
84 {
85 mips_extra_func_info_t proc_desc;
86 int num_args;
87 };
cce74817 88
d929b26f
AC
89/* Various MIPS ISA options (related to stack analysis) can be
90 overridden dynamically. Establish an enum/array for managing
91 them. */
92
53904c9e
AC
93static const char size_auto[] = "auto";
94static const char size_32[] = "32";
95static const char size_64[] = "64";
d929b26f 96
53904c9e 97static const char *size_enums[] = {
d929b26f
AC
98 size_auto,
99 size_32,
100 size_64,
a5ea2558
AC
101 0
102};
103
7a292a7a
SS
104/* Some MIPS boards don't support floating point while others only
105 support single-precision floating-point operations. See also
106 FP_REGISTER_DOUBLE. */
c906108c
SS
107
108enum mips_fpu_type
c5aa993b
JM
109 {
110 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
111 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
112 MIPS_FPU_NONE /* No floating point. */
113 };
c906108c
SS
114
115#ifndef MIPS_DEFAULT_FPU_TYPE
116#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
117#endif
118static int mips_fpu_type_auto = 1;
119static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 120
9ace0497 121static int mips_debug = 0;
7a292a7a 122
c2d11a7d
JM
123/* MIPS specific per-architecture information */
124struct gdbarch_tdep
125 {
126 /* from the elf header */
127 int elf_flags;
70f80edf 128
c2d11a7d 129 /* mips options */
0dadbba0 130 enum mips_abi mips_abi;
2e4ebe70 131 enum mips_abi found_abi;
c2d11a7d
JM
132 enum mips_fpu_type mips_fpu_type;
133 int mips_last_arg_regnum;
134 int mips_last_fp_arg_regnum;
a5ea2558 135 int mips_default_saved_regsize;
c2d11a7d 136 int mips_fp_register_double;
d929b26f 137 int mips_default_stack_argsize;
4014092b 138 int default_mask_address_p;
719ec221
AC
139 /* Is the target using 64-bit raw integer registers but only
140 storing a left-aligned 32-bit value in each? */
141 int mips64_transfers_32bit_regs_p;
56cea623
AC
142 /* Indexes for various registers. IRIX and embedded have
143 different values. This contains the "public" fields. Don't
144 add any that do not need to be public. */
145 const struct mips_regnum *regnum;
691c0433
AC
146 /* Register names table for the current register set. */
147 const char **mips_processor_reg_names;
c2d11a7d
JM
148 };
149
56cea623
AC
150const struct mips_regnum *
151mips_regnum (struct gdbarch *gdbarch)
152{
153 return gdbarch_tdep (gdbarch)->regnum;
154}
155
156static int
157mips_fpa0_regnum (struct gdbarch *gdbarch)
158{
159 return mips_regnum (gdbarch)->fp0 + 12;
160}
161
0dadbba0 162#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 163 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 164
c2d11a7d 165#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 166
c2d11a7d 167#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 168
c2d11a7d 169#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 170
95404a3e
AC
171/* MIPS16 function addresses are odd (bit 0 is set). Here are some
172 functions to test, set, or clear bit 0 of addresses. */
173
174static CORE_ADDR
175is_mips16_addr (CORE_ADDR addr)
176{
177 return ((addr) & 1);
178}
179
180static CORE_ADDR
181make_mips16_addr (CORE_ADDR addr)
182{
183 return ((addr) | 1);
184}
185
186static CORE_ADDR
187unmake_mips16_addr (CORE_ADDR addr)
188{
189 return ((addr) & ~1);
190}
191
22540ece
AC
192/* Return the contents of register REGNUM as a signed integer. */
193
194static LONGEST
195read_signed_register (int regnum)
196{
719ec221 197 void *buf = alloca (register_size (current_gdbarch, regnum));
22540ece 198 deprecated_read_register_gen (regnum, buf);
719ec221 199 return (extract_signed_integer (buf, register_size (current_gdbarch, regnum)));
22540ece
AC
200}
201
202static LONGEST
203read_signed_register_pid (int regnum, ptid_t ptid)
204{
205 ptid_t save_ptid;
206 LONGEST retval;
207
208 if (ptid_equal (ptid, inferior_ptid))
209 return read_signed_register (regnum);
210
211 save_ptid = inferior_ptid;
212
213 inferior_ptid = ptid;
214
215 retval = read_signed_register (regnum);
216
217 inferior_ptid = save_ptid;
218
219 return retval;
220}
221
d1973055
KB
222/* Return the MIPS ABI associated with GDBARCH. */
223enum mips_abi
224mips_abi (struct gdbarch *gdbarch)
225{
226 return gdbarch_tdep (gdbarch)->mips_abi;
227}
228
4246e332
AC
229int
230mips_regsize (struct gdbarch *gdbarch)
231{
232 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
233 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
234}
235
480d3dd2
AC
236/* Return the currently configured (or set) saved register size. */
237
238static const char *mips_saved_regsize_string = size_auto;
239
d929b26f 240static unsigned int
480d3dd2 241mips_saved_regsize (struct gdbarch_tdep *tdep)
d929b26f
AC
242{
243 if (mips_saved_regsize_string == size_auto)
480d3dd2 244 return tdep->mips_default_saved_regsize;
d929b26f
AC
245 else if (mips_saved_regsize_string == size_64)
246 return 8;
247 else /* if (mips_saved_regsize_string == size_32) */
248 return 4;
249}
250
71b8ef93 251/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa 252 marks it as 16-bit function. The MSB of the minimal symbol's
f594e5e9 253 "info" field is used for this purpose.
5a89d8aa
MS
254
255 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
256 i.e. refers to a 16-bit function, and sets a "special" bit in a
257 minimal symbol to mark it as a 16-bit function
258
f594e5e9 259 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
5a89d8aa 260
5a89d8aa
MS
261static void
262mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
263{
264 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
265 {
266 MSYMBOL_INFO (msym) = (char *)
267 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
268 SYMBOL_VALUE_ADDRESS (msym) |= 1;
269 }
270}
271
71b8ef93
MS
272static int
273msymbol_is_special (struct minimal_symbol *msym)
274{
275 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
276}
277
88658117
AC
278/* XFER a value from the big/little/left end of the register.
279 Depending on the size of the value it might occupy the entire
280 register or just part of it. Make an allowance for this, aligning
281 things accordingly. */
282
283static void
284mips_xfer_register (struct regcache *regcache, int reg_num, int length,
285 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
286 int buf_offset)
287{
d9d9c31f 288 bfd_byte reg[MAX_REGISTER_SIZE];
88658117 289 int reg_offset = 0;
a4b8ebc8 290 gdb_assert (reg_num >= NUM_REGS);
cb1d2653
AC
291 /* Need to transfer the left or right part of the register, based on
292 the targets byte order. */
88658117
AC
293 switch (endian)
294 {
295 case BFD_ENDIAN_BIG:
719ec221 296 reg_offset = register_size (current_gdbarch, reg_num) - length;
88658117
AC
297 break;
298 case BFD_ENDIAN_LITTLE:
299 reg_offset = 0;
300 break;
301 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
302 reg_offset = 0;
303 break;
304 default:
305 internal_error (__FILE__, __LINE__, "bad switch");
306 }
307 if (mips_debug)
cb1d2653
AC
308 fprintf_unfiltered (gdb_stderr,
309 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
310 reg_num, reg_offset, buf_offset, length);
88658117
AC
311 if (mips_debug && out != NULL)
312 {
313 int i;
cb1d2653 314 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 315 for (i = 0; i < length; i++)
cb1d2653 316 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
317 }
318 if (in != NULL)
a4b8ebc8 319 regcache_cooked_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
88658117 320 if (out != NULL)
a4b8ebc8 321 regcache_cooked_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
88658117
AC
322 if (mips_debug && in != NULL)
323 {
324 int i;
cb1d2653 325 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 326 for (i = 0; i < length; i++)
cb1d2653 327 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
328 }
329 if (mips_debug)
330 fprintf_unfiltered (gdb_stdlog, "\n");
331}
332
dd824b04
DJ
333/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
334 compatiblity mode. A return value of 1 means that we have
335 physical 64-bit registers, but should treat them as 32-bit registers. */
336
337static int
338mips2_fp_compat (void)
339{
340 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
341 meaningful. */
56cea623 342 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 4)
dd824b04
DJ
343 return 0;
344
345#if 0
346 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
347 in all the places we deal with FP registers. PR gdb/413. */
348 /* Otherwise check the FR bit in the status register - it controls
349 the FP compatiblity mode. If it is clear we are in compatibility
350 mode. */
351 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
352 return 1;
353#endif
361d1df0 354
dd824b04
DJ
355 return 0;
356}
357
c2d11a7d
JM
358/* Indicate that the ABI makes use of double-precision registers
359 provided by the FPU (rather than combining pairs of registers to
8fa9cfa1 360 form double-precision values). See also MIPS_FPU_TYPE. */
c2d11a7d 361#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
c2d11a7d 362
d929b26f
AC
363/* The amount of space reserved on the stack for registers. This is
364 different to MIPS_SAVED_REGSIZE as it determines the alignment of
365 data allocated after the registers have run out. */
366
53904c9e 367static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
368
369static unsigned int
480d3dd2 370mips_stack_argsize (struct gdbarch_tdep *tdep)
d929b26f
AC
371{
372 if (mips_stack_argsize_string == size_auto)
480d3dd2 373 return tdep->mips_default_stack_argsize;
d929b26f
AC
374 else if (mips_stack_argsize_string == size_64)
375 return 8;
376 else /* if (mips_stack_argsize_string == size_32) */
377 return 4;
378}
379
7a292a7a 380#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 381
570b8f7c
AC
382static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
383 struct frame_info *, int);
c906108c 384
a14ed312 385static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 386
a14ed312 387static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 388
a14ed312 389static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 390
570b8f7c
AC
391static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
392 struct frame_info *next_frame,
393 int cur_frame);
c906108c 394
a14ed312
KB
395static CORE_ADDR after_prologue (CORE_ADDR pc,
396 mips_extra_func_info_t proc_desc);
c906108c 397
67b2c998
DJ
398static struct type *mips_float_register_type (void);
399static struct type *mips_double_register_type (void);
400
acdb74a0
AC
401/* The list of available "set mips " and "show mips " commands */
402
403static struct cmd_list_element *setmipscmdlist = NULL;
404static struct cmd_list_element *showmipscmdlist = NULL;
405
5e2e9765
KB
406/* Integer registers 0 thru 31 are handled explicitly by
407 mips_register_name(). Processor specific registers 32 and above
691c0433
AC
408 are listed in the followign tables. */
409
410enum { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
411
412/* Generic MIPS. */
413
414static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
415 "sr", "lo", "hi", "bad", "cause","pc",
416 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
417 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
418 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
419 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
420 "fsr", "fir", ""/*"fp"*/, "",
421 "", "", "", "", "", "", "", "",
422 "", "", "", "", "", "", "", "",
423};
424
425/* Names of IDT R3041 registers. */
426
427static const char *mips_r3041_reg_names[] = {
428 "sr", "lo", "hi", "bad", "cause","pc",
429 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
430 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
431 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
432 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
433 "fsr", "fir", "",/*"fp"*/ "",
434 "", "", "bus", "ccfg", "", "", "", "",
435 "", "", "port", "cmp", "", "", "epc", "prid",
436};
437
438/* Names of tx39 registers. */
439
440static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
441 "sr", "lo", "hi", "bad", "cause","pc",
442 "", "", "", "", "", "", "", "",
443 "", "", "", "", "", "", "", "",
444 "", "", "", "", "", "", "", "",
445 "", "", "", "", "", "", "", "",
446 "", "", "", "",
447 "", "", "", "", "", "", "", "",
448 "", "", "config", "cache", "debug", "depc", "epc", ""
449};
450
451/* Names of IRIX registers. */
452static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
453 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
454 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
455 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
456 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
457 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
458};
459
cce74817 460
5e2e9765 461/* Return the name of the register corresponding to REGNO. */
5a89d8aa 462static const char *
5e2e9765 463mips_register_name (int regno)
cce74817 464{
691c0433 465 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5e2e9765
KB
466 /* GPR names for all ABIs other than n32/n64. */
467 static char *mips_gpr_names[] = {
468 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
469 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
470 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
471 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
472 };
473
474 /* GPR names for n32 and n64 ABIs. */
475 static char *mips_n32_n64_gpr_names[] = {
476 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
477 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
478 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
479 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
480 };
481
482 enum mips_abi abi = mips_abi (current_gdbarch);
483
a4b8ebc8
AC
484 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
485 don't make the raw register names visible. */
486 int rawnum = regno % NUM_REGS;
487 if (regno < NUM_REGS)
488 return "";
489
5e2e9765
KB
490 /* The MIPS integer registers are always mapped from 0 to 31. The
491 names of the registers (which reflects the conventions regarding
492 register use) vary depending on the ABI. */
a4b8ebc8 493 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
494 {
495 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 496 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 497 else
a4b8ebc8 498 return mips_gpr_names[rawnum];
5e2e9765 499 }
a4b8ebc8 500 else if (32 <= rawnum && rawnum < NUM_REGS)
691c0433
AC
501 {
502 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
503 return tdep->mips_processor_reg_names[rawnum - 32];
504 }
5e2e9765
KB
505 else
506 internal_error (__FILE__, __LINE__,
a4b8ebc8 507 "mips_register_name: bad register number %d", rawnum);
cce74817 508}
5e2e9765 509
a4b8ebc8 510/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 511
a4b8ebc8
AC
512static int
513mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
514 struct reggroup *reggroup)
515{
516 int vector_p;
517 int float_p;
518 int raw_p;
519 int rawnum = regnum % NUM_REGS;
520 int pseudo = regnum / NUM_REGS;
521 if (reggroup == all_reggroup)
522 return pseudo;
523 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
524 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
525 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
526 (gdbarch), as not all architectures are multi-arch. */
527 raw_p = rawnum < NUM_REGS;
528 if (REGISTER_NAME (regnum) == NULL
529 || REGISTER_NAME (regnum)[0] == '\0')
530 return 0;
531 if (reggroup == float_reggroup)
532 return float_p && pseudo;
533 if (reggroup == vector_reggroup)
534 return vector_p && pseudo;
535 if (reggroup == general_reggroup)
536 return (!vector_p && !float_p) && pseudo;
537 /* Save the pseudo registers. Need to make certain that any code
538 extracting register values from a saved register cache also uses
539 pseudo registers. */
540 if (reggroup == save_reggroup)
541 return raw_p && pseudo;
542 /* Restore the same pseudo register. */
543 if (reggroup == restore_reggroup)
544 return raw_p && pseudo;
545 return 0;
546}
547
548/* Map the symbol table registers which live in the range [1 *
549 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
47ebcfbe 550 registers. Take care of alignment and size problems. */
c5aa993b 551
a4b8ebc8
AC
552static void
553mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
554 int cookednum, void *buf)
555{
47ebcfbe 556 int rawnum = cookednum % NUM_REGS;
a4b8ebc8 557 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
47ebcfbe
AC
558 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
559 return regcache_raw_read (regcache, rawnum, buf);
560 else if (register_size (gdbarch, rawnum) > register_size (gdbarch, cookednum))
561 {
562 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
563 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
564 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
565 else
566 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
567 }
568 else
569 internal_error (__FILE__, __LINE__, "bad register size");
a4b8ebc8
AC
570}
571
572static void
573mips_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
574 int cookednum, const void *buf)
575{
47ebcfbe 576 int rawnum = cookednum % NUM_REGS;
a4b8ebc8 577 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
47ebcfbe
AC
578 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
579 return regcache_raw_write (regcache, rawnum, buf);
580 else if (register_size (gdbarch, rawnum) > register_size (gdbarch, cookednum))
581 {
582 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
583 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
584 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
585 else
586 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
587 }
588 else
589 internal_error (__FILE__, __LINE__, "bad register size");
a4b8ebc8 590}
c5aa993b 591
c906108c 592/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
593static int mips16_to_32_reg[8] =
594{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
595
596/* Heuristic_proc_start may hunt through the text section for a long
597 time across a 2400 baud serial line. Allows the user to limit this
598 search. */
599
600static unsigned int heuristic_fence_post = 0;
601
c5aa993b
JM
602#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
603#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
604#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
605#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
606#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
607#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
608#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
609#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
610#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
611#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
6c0d6680
DJ
612/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
613 this will corrupt pdr.iline. Fortunately we don't use it. */
c906108c
SS
614#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
615#define _PROC_MAGIC_ 0x0F0F0F0F
616#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
617#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
618
619struct linked_proc_info
c5aa993b
JM
620 {
621 struct mips_extra_func_info info;
622 struct linked_proc_info *next;
623 }
624 *linked_proc_desc_table = NULL;
c906108c 625
46cd78fb 626/* Number of bytes of storage in the actual machine representation for
719ec221
AC
627 register N. NOTE: This defines the pseudo register type so need to
628 rebuild the architecture vector. */
43e526b9
JM
629
630static int mips64_transfers_32bit_regs_p = 0;
631
719ec221
AC
632static void
633set_mips64_transfers_32bit_regs (char *args, int from_tty,
634 struct cmd_list_element *c)
43e526b9 635{
719ec221
AC
636 struct gdbarch_info info;
637 gdbarch_info_init (&info);
638 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
639 instead of relying on globals. Doing that would let generic code
640 handle the search for this specific architecture. */
641 if (!gdbarch_update_p (info))
a4b8ebc8 642 {
719ec221
AC
643 mips64_transfers_32bit_regs_p = 0;
644 error ("32-bit compatibility mode not supported");
a4b8ebc8 645 }
a4b8ebc8
AC
646}
647
47ebcfbe 648/* Convert to/from a register and the corresponding memory value. */
43e526b9 649
ff2e87ac
AC
650static int
651mips_convert_register_p (int regnum, struct type *type)
652{
653 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
719ec221 654 && register_size (current_gdbarch, regnum) == 4
56cea623 655 && (regnum) >= mips_regnum (current_gdbarch)->fp0 && (regnum) < mips_regnum (current_gdbarch)->fp0 + 32
ff2e87ac
AC
656 && TYPE_CODE(type) == TYPE_CODE_FLT
657 && TYPE_LENGTH(type) == 8);
658}
659
42c466d7 660static void
ff2e87ac
AC
661mips_register_to_value (struct frame_info *frame, int regnum,
662 struct type *type, void *to)
102182a9 663{
7f5f525d
AC
664 get_frame_register (frame, regnum + 0, (char *) to + 4);
665 get_frame_register (frame, regnum + 1, (char *) to + 0);
102182a9
MS
666}
667
42c466d7 668static void
ff2e87ac
AC
669mips_value_to_register (struct frame_info *frame, int regnum,
670 struct type *type, const void *from)
102182a9 671{
ff2e87ac
AC
672 put_frame_register (frame, regnum + 0, (const char *) from + 4);
673 put_frame_register (frame, regnum + 1, (const char *) from + 0);
102182a9
MS
674}
675
a4b8ebc8
AC
676/* Return the GDB type object for the "standard" data type of data in
677 register REG. */
78fde5f8
KB
678
679static struct type *
a4b8ebc8
AC
680mips_register_type (struct gdbarch *gdbarch, int regnum)
681{
5ef80fb0 682 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
56cea623
AC
683 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
684 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
a6425924 685 {
5ef80fb0
AC
686 /* The floating-point registers raw, or cooked, always match
687 mips_regsize(), and also map 1:1, byte for byte. */
688 switch (gdbarch_byte_order (gdbarch))
689 {
690 case BFD_ENDIAN_BIG:
691 if (mips_regsize (gdbarch) == 4)
692 return builtin_type_ieee_single_big;
693 else
694 return builtin_type_ieee_double_big;
695 case BFD_ENDIAN_LITTLE:
696 if (mips_regsize (gdbarch) == 4)
697 return builtin_type_ieee_single_little;
698 else
699 return builtin_type_ieee_double_little;
700 case BFD_ENDIAN_UNKNOWN:
701 default:
702 internal_error (__FILE__, __LINE__, "bad switch");
703 }
a6425924 704 }
56cea623 705 else if (regnum >= (NUM_REGS + mips_regnum (current_gdbarch)->fp_control_status)
5ef80fb0
AC
706 && regnum <= NUM_REGS + LAST_EMBED_REGNUM)
707 /* The pseudo/cooked view of the embedded registers is always
708 32-bit. The raw view is handled below. */
709 return builtin_type_int32;
719ec221
AC
710 else if (regnum >= NUM_REGS && mips_regsize (gdbarch)
711 && gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
712 /* The target, while using a 64-bit register buffer, is only
713 transfering 32-bits of each integer register. Reflect this in
714 the cooked/pseudo register value. */
715 return builtin_type_int32;
5ef80fb0
AC
716 else if (mips_regsize (gdbarch) == 8)
717 /* 64-bit ISA. */
718 return builtin_type_int64;
78fde5f8 719 else
5ef80fb0
AC
720 /* 32-bit ISA. */
721 return builtin_type_int32;
78fde5f8
KB
722}
723
bcb0cc15
MS
724/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
725
726static CORE_ADDR
727mips_read_sp (void)
728{
e227b13c 729 return read_signed_register (SP_REGNUM);
bcb0cc15
MS
730}
731
c906108c 732/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 733enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
734
735static int
480d3dd2 736mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
737{
738 switch (mask_address_var)
739 {
7f19b9a2 740 case AUTO_BOOLEAN_TRUE:
4014092b 741 return 1;
7f19b9a2 742 case AUTO_BOOLEAN_FALSE:
4014092b
AC
743 return 0;
744 break;
7f19b9a2 745 case AUTO_BOOLEAN_AUTO:
480d3dd2 746 return tdep->default_mask_address_p;
4014092b 747 default:
8e65ff28
AC
748 internal_error (__FILE__, __LINE__,
749 "mips_mask_address_p: bad switch");
4014092b 750 return -1;
361d1df0 751 }
4014092b
AC
752}
753
754static void
e9e68a56 755show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
4014092b 756{
480d3dd2 757 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4014092b
AC
758 switch (mask_address_var)
759 {
7f19b9a2 760 case AUTO_BOOLEAN_TRUE:
4014092b
AC
761 printf_filtered ("The 32 bit mips address mask is enabled\n");
762 break;
7f19b9a2 763 case AUTO_BOOLEAN_FALSE:
4014092b
AC
764 printf_filtered ("The 32 bit mips address mask is disabled\n");
765 break;
7f19b9a2 766 case AUTO_BOOLEAN_AUTO:
4014092b 767 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
480d3dd2 768 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
769 break;
770 default:
8e65ff28
AC
771 internal_error (__FILE__, __LINE__,
772 "show_mask_address: bad switch");
4014092b 773 break;
361d1df0 774 }
4014092b 775}
c906108c
SS
776
777/* Should call_function allocate stack space for a struct return? */
cb811fe7 778
f7ab6ec6 779static int
cb811fe7 780mips_eabi_use_struct_convention (int gcc_p, struct type *type)
c906108c 781{
480d3dd2
AC
782 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
783 return (TYPE_LENGTH (type) > 2 * mips_saved_regsize (tdep));
cb811fe7
MS
784}
785
8b389c40
MS
786/* Should call_function pass struct by reference?
787 For each architecture, structs are passed either by
788 value or by reference, depending on their size. */
789
790static int
791mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
792{
793 enum type_code typecode = TYPE_CODE (check_typedef (type));
794 int len = TYPE_LENGTH (check_typedef (type));
480d3dd2 795 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
8b389c40
MS
796
797 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
480d3dd2 798 return (len > mips_saved_regsize (tdep));
8b389c40
MS
799
800 return 0;
801}
802
c906108c
SS
803/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
804
805static int
806pc_is_mips16 (bfd_vma memaddr)
807{
808 struct minimal_symbol *sym;
809
810 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 811 if (is_mips16_addr (memaddr))
c906108c
SS
812 return 1;
813
814 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
815 the high bit of the info field. Use this to decide if the function is
816 MIPS16 or normal MIPS. */
817 sym = lookup_minimal_symbol_by_pc (memaddr);
818 if (sym)
71b8ef93 819 return msymbol_is_special (sym);
c906108c
SS
820 else
821 return 0;
822}
823
6c997a34
AC
824/* MIPS believes that the PC has a sign extended value. Perhaphs the
825 all registers should be sign extended for simplicity? */
826
827static CORE_ADDR
39f77062 828mips_read_pc (ptid_t ptid)
6c997a34 829{
39f77062 830 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 831}
c906108c
SS
832
833/* This returns the PC of the first inst after the prologue. If we can't
834 find the prologue, then return 0. */
835
836static CORE_ADDR
acdb74a0
AC
837after_prologue (CORE_ADDR pc,
838 mips_extra_func_info_t proc_desc)
c906108c
SS
839{
840 struct symtab_and_line sal;
841 CORE_ADDR func_addr, func_end;
842
479412cd
DJ
843 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
844 to read the stack pointer from the current machine state, because
845 the current machine state has nothing to do with the information
846 we need from the proc_desc; and the process may or may not exist
847 right now. */
c906108c 848 if (!proc_desc)
479412cd 849 proc_desc = find_proc_desc (pc, NULL, 0);
c906108c
SS
850
851 if (proc_desc)
852 {
853 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 854 strongly suspect that frameless always means prologueless... */
c906108c
SS
855 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
856 && PROC_FRAME_OFFSET (proc_desc) == 0)
857 return 0;
858 }
859
860 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
861 return 0; /* Unknown */
862
863 sal = find_pc_line (func_addr, 0);
864
865 if (sal.end < func_end)
866 return sal.end;
867
868 /* The line after the prologue is after the end of the function. In this
869 case, tell the caller to find the prologue the hard way. */
870
871 return 0;
872}
873
874/* Decode a MIPS32 instruction that saves a register in the stack, and
875 set the appropriate bit in the general register mask or float register mask
876 to indicate which register is saved. This is a helper function
877 for mips_find_saved_regs. */
878
879static void
acdb74a0
AC
880mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
881 unsigned long *float_mask)
c906108c
SS
882{
883 int reg;
884
885 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
886 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
887 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
888 {
889 /* It might be possible to use the instruction to
c5aa993b
JM
890 find the offset, rather than the code below which
891 is based on things being in a certain order in the
892 frame, but figuring out what the instruction's offset
893 is relative to might be a little tricky. */
c906108c
SS
894 reg = (inst & 0x001f0000) >> 16;
895 *gen_mask |= (1 << reg);
896 }
897 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
898 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
899 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
900
901 {
902 reg = ((inst & 0x001f0000) >> 16);
903 *float_mask |= (1 << reg);
904 }
905}
906
907/* Decode a MIPS16 instruction that saves a register in the stack, and
908 set the appropriate bit in the general register or float register mask
909 to indicate which register is saved. This is a helper function
910 for mips_find_saved_regs. */
911
912static void
acdb74a0 913mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 914{
c5aa993b 915 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
916 {
917 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
918 *gen_mask |= (1 << reg);
919 }
c5aa993b 920 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
921 {
922 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
923 *gen_mask |= (1 << reg);
924 }
c5aa993b 925 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
926 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
927 *gen_mask |= (1 << RA_REGNUM);
928}
929
930
931/* Fetch and return instruction from the specified location. If the PC
932 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
933
934static t_inst
acdb74a0 935mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
936{
937 char buf[MIPS_INSTLEN];
938 int instlen;
939 int status;
940
941 if (pc_is_mips16 (addr))
942 {
943 instlen = MIPS16_INSTLEN;
95404a3e 944 addr = unmake_mips16_addr (addr);
c906108c
SS
945 }
946 else
c5aa993b 947 instlen = MIPS_INSTLEN;
c906108c
SS
948 status = read_memory_nobpt (addr, buf, instlen);
949 if (status)
950 memory_error (status, addr);
951 return extract_unsigned_integer (buf, instlen);
952}
953
954
955/* These the fields of 32 bit mips instructions */
e135b889
DJ
956#define mips32_op(x) (x >> 26)
957#define itype_op(x) (x >> 26)
958#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 959#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 960#define itype_immediate(x) (x & 0xffff)
c906108c 961
e135b889
DJ
962#define jtype_op(x) (x >> 26)
963#define jtype_target(x) (x & 0x03ffffff)
c906108c 964
e135b889
DJ
965#define rtype_op(x) (x >> 26)
966#define rtype_rs(x) ((x >> 21) & 0x1f)
967#define rtype_rt(x) ((x >> 16) & 0x1f)
968#define rtype_rd(x) ((x >> 11) & 0x1f)
969#define rtype_shamt(x) ((x >> 6) & 0x1f)
970#define rtype_funct(x) (x & 0x3f)
c906108c
SS
971
972static CORE_ADDR
c5aa993b
JM
973mips32_relative_offset (unsigned long inst)
974{
975 long x;
976 x = itype_immediate (inst);
977 if (x & 0x8000) /* sign bit set */
c906108c 978 {
c5aa993b 979 x |= 0xffff0000; /* sign extension */
c906108c 980 }
c5aa993b
JM
981 x = x << 2;
982 return x;
c906108c
SS
983}
984
985/* Determine whate to set a single step breakpoint while considering
986 branch prediction */
5a89d8aa 987static CORE_ADDR
c5aa993b
JM
988mips32_next_pc (CORE_ADDR pc)
989{
990 unsigned long inst;
991 int op;
992 inst = mips_fetch_instruction (pc);
e135b889 993 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 994 {
e135b889
DJ
995 if (itype_op (inst) >> 2 == 5)
996 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 997 {
e135b889 998 op = (itype_op (inst) & 0x03);
c906108c
SS
999 switch (op)
1000 {
e135b889
DJ
1001 case 0: /* BEQL */
1002 goto equal_branch;
1003 case 1: /* BNEL */
1004 goto neq_branch;
1005 case 2: /* BLEZL */
1006 goto less_branch;
1007 case 3: /* BGTZ */
1008 goto greater_branch;
c5aa993b
JM
1009 default:
1010 pc += 4;
c906108c
SS
1011 }
1012 }
e135b889
DJ
1013 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1014 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1015 {
1016 int tf = itype_rt (inst) & 0x01;
1017 int cnum = itype_rt (inst) >> 2;
56cea623 1018 int fcrcs = read_signed_register (mips_regnum (current_gdbarch)->fp_control_status);
e135b889
DJ
1019 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1020
1021 if (((cond >> cnum) & 0x01) == tf)
1022 pc += mips32_relative_offset (inst) + 4;
1023 else
1024 pc += 8;
1025 }
c5aa993b
JM
1026 else
1027 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
1028 }
1029 else
c5aa993b
JM
1030 { /* This gets way messy */
1031
c906108c 1032 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 1033 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 1034 {
c5aa993b
JM
1035 case 0: /* SPECIAL */
1036 op = rtype_funct (inst);
1037 switch (op)
1038 {
1039 case 8: /* JR */
1040 case 9: /* JALR */
6c997a34
AC
1041 /* Set PC to that address */
1042 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
1043 break;
1044 default:
1045 pc += 4;
1046 }
1047
e135b889 1048 break; /* end SPECIAL */
c5aa993b 1049 case 1: /* REGIMM */
c906108c 1050 {
e135b889
DJ
1051 op = itype_rt (inst); /* branch condition */
1052 switch (op)
c906108c 1053 {
c5aa993b 1054 case 0: /* BLTZ */
e135b889
DJ
1055 case 2: /* BLTZL */
1056 case 16: /* BLTZAL */
c5aa993b 1057 case 18: /* BLTZALL */
c906108c 1058 less_branch:
6c997a34 1059 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
1060 pc += mips32_relative_offset (inst) + 4;
1061 else
1062 pc += 8; /* after the delay slot */
1063 break;
e135b889 1064 case 1: /* BGEZ */
c5aa993b
JM
1065 case 3: /* BGEZL */
1066 case 17: /* BGEZAL */
1067 case 19: /* BGEZALL */
6c997a34 1068 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
1069 pc += mips32_relative_offset (inst) + 4;
1070 else
1071 pc += 8; /* after the delay slot */
1072 break;
e135b889 1073 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1074 default:
1075 pc += 4;
c906108c
SS
1076 }
1077 }
e135b889 1078 break; /* end REGIMM */
c5aa993b
JM
1079 case 2: /* J */
1080 case 3: /* JAL */
1081 {
1082 unsigned long reg;
1083 reg = jtype_target (inst) << 2;
e135b889 1084 /* Upper four bits get never changed... */
c5aa993b 1085 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 1086 }
c5aa993b
JM
1087 break;
1088 /* FIXME case JALX : */
1089 {
1090 unsigned long reg;
1091 reg = jtype_target (inst) << 2;
1092 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
1093 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1094 }
c5aa993b 1095 break; /* The new PC will be alternate mode */
e135b889 1096 case 4: /* BEQ, BEQL */
c5aa993b 1097 equal_branch:
6c997a34
AC
1098 if (read_signed_register (itype_rs (inst)) ==
1099 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1100 pc += mips32_relative_offset (inst) + 4;
1101 else
1102 pc += 8;
1103 break;
e135b889 1104 case 5: /* BNE, BNEL */
c5aa993b 1105 neq_branch:
6c997a34 1106 if (read_signed_register (itype_rs (inst)) !=
e135b889 1107 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1108 pc += mips32_relative_offset (inst) + 4;
1109 else
1110 pc += 8;
1111 break;
e135b889 1112 case 6: /* BLEZ, BLEZL */
6c997a34 1113 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
1114 pc += mips32_relative_offset (inst) + 4;
1115 else
1116 pc += 8;
1117 break;
1118 case 7:
e135b889
DJ
1119 default:
1120 greater_branch: /* BGTZ, BGTZL */
6c997a34 1121 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
1122 pc += mips32_relative_offset (inst) + 4;
1123 else
1124 pc += 8;
1125 break;
c5aa993b
JM
1126 } /* switch */
1127 } /* else */
1128 return pc;
1129} /* mips32_next_pc */
c906108c
SS
1130
1131/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1132 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1133 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1134 We dont want to set a single step instruction on the extend instruction
1135 either.
c5aa993b 1136 */
c906108c
SS
1137
1138/* Lots of mips16 instruction formats */
1139/* Predicting jumps requires itype,ritype,i8type
1140 and their extensions extItype,extritype,extI8type
c5aa993b 1141 */
c906108c
SS
1142enum mips16_inst_fmts
1143{
c5aa993b
JM
1144 itype, /* 0 immediate 5,10 */
1145 ritype, /* 1 5,3,8 */
1146 rrtype, /* 2 5,3,3,5 */
1147 rritype, /* 3 5,3,3,5 */
1148 rrrtype, /* 4 5,3,3,3,2 */
1149 rriatype, /* 5 5,3,3,1,4 */
1150 shifttype, /* 6 5,3,3,3,2 */
1151 i8type, /* 7 5,3,8 */
1152 i8movtype, /* 8 5,3,3,5 */
1153 i8mov32rtype, /* 9 5,3,5,3 */
1154 i64type, /* 10 5,3,8 */
1155 ri64type, /* 11 5,3,3,5 */
1156 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1157 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1158 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1159 extRRItype, /* 15 5,5,5,5,3,3,5 */
1160 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1161 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1162 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1163 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1164 extRi64type, /* 20 5,6,5,5,3,3,5 */
1165 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1166};
12f02c2a
AC
1167/* I am heaping all the fields of the formats into one structure and
1168 then, only the fields which are involved in instruction extension */
c906108c 1169struct upk_mips16
c5aa993b 1170 {
12f02c2a 1171 CORE_ADDR offset;
c5aa993b
JM
1172 unsigned int regx; /* Function in i8 type */
1173 unsigned int regy;
1174 };
c906108c
SS
1175
1176
12f02c2a
AC
1177/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1178 for the bits which make up the immediatate extension. */
c906108c 1179
12f02c2a
AC
1180static CORE_ADDR
1181extended_offset (unsigned int extension)
c906108c 1182{
12f02c2a 1183 CORE_ADDR value;
c5aa993b
JM
1184 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1185 value = value << 6;
1186 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1187 value = value << 5;
1188 value |= extension & 0x01f; /* extract 4:0 */
1189 return value;
c906108c
SS
1190}
1191
1192/* Only call this function if you know that this is an extendable
1193 instruction, It wont malfunction, but why make excess remote memory references?
1194 If the immediate operands get sign extended or somthing, do it after
1195 the extension is performed.
c5aa993b 1196 */
c906108c
SS
1197/* FIXME: Every one of these cases needs to worry about sign extension
1198 when the offset is to be used in relative addressing */
1199
1200
12f02c2a 1201static unsigned int
c5aa993b 1202fetch_mips_16 (CORE_ADDR pc)
c906108c 1203{
c5aa993b
JM
1204 char buf[8];
1205 pc &= 0xfffffffe; /* clear the low order bit */
1206 target_read_memory (pc, buf, 2);
1207 return extract_unsigned_integer (buf, 2);
c906108c
SS
1208}
1209
1210static void
c5aa993b 1211unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1212 unsigned int extension,
1213 unsigned int inst,
1214 enum mips16_inst_fmts insn_format,
c5aa993b 1215 struct upk_mips16 *upk)
c906108c 1216{
12f02c2a
AC
1217 CORE_ADDR offset;
1218 int regx;
1219 int regy;
1220 switch (insn_format)
c906108c 1221 {
c5aa993b 1222 case itype:
c906108c 1223 {
12f02c2a
AC
1224 CORE_ADDR value;
1225 if (extension)
c5aa993b
JM
1226 {
1227 value = extended_offset (extension);
1228 value = value << 11; /* rom for the original value */
12f02c2a 1229 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1230 }
1231 else
c5aa993b 1232 {
12f02c2a 1233 value = inst & 0x7ff;
c5aa993b 1234 /* FIXME : Consider sign extension */
c906108c 1235 }
12f02c2a
AC
1236 offset = value;
1237 regx = -1;
1238 regy = -1;
c906108c 1239 }
c5aa993b
JM
1240 break;
1241 case ritype:
1242 case i8type:
1243 { /* A register identifier and an offset */
c906108c
SS
1244 /* Most of the fields are the same as I type but the
1245 immediate value is of a different length */
12f02c2a
AC
1246 CORE_ADDR value;
1247 if (extension)
c906108c 1248 {
c5aa993b
JM
1249 value = extended_offset (extension);
1250 value = value << 8; /* from the original instruction */
12f02c2a
AC
1251 value |= inst & 0xff; /* eleven bits from instruction */
1252 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1253 if (value & 0x4000) /* test the sign bit , bit 26 */
1254 {
1255 value &= ~0x3fff; /* remove the sign bit */
1256 value = -value;
c906108c
SS
1257 }
1258 }
c5aa993b
JM
1259 else
1260 {
12f02c2a
AC
1261 value = inst & 0xff; /* 8 bits */
1262 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1263 /* FIXME: Do sign extension , this format needs it */
1264 if (value & 0x80) /* THIS CONFUSES ME */
1265 {
1266 value &= 0xef; /* remove the sign bit */
1267 value = -value;
1268 }
c5aa993b 1269 }
12f02c2a
AC
1270 offset = value;
1271 regy = -1;
c5aa993b 1272 break;
c906108c 1273 }
c5aa993b 1274 case jalxtype:
c906108c 1275 {
c5aa993b 1276 unsigned long value;
12f02c2a
AC
1277 unsigned int nexthalf;
1278 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1279 value = value << 16;
1280 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1281 value |= nexthalf;
12f02c2a
AC
1282 offset = value;
1283 regx = -1;
1284 regy = -1;
c5aa993b 1285 break;
c906108c
SS
1286 }
1287 default:
8e65ff28
AC
1288 internal_error (__FILE__, __LINE__,
1289 "bad switch");
c906108c 1290 }
12f02c2a
AC
1291 upk->offset = offset;
1292 upk->regx = regx;
1293 upk->regy = regy;
c906108c
SS
1294}
1295
1296
c5aa993b
JM
1297static CORE_ADDR
1298add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1299{
c5aa993b 1300 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
c906108c
SS
1301}
1302
12f02c2a
AC
1303static CORE_ADDR
1304extended_mips16_next_pc (CORE_ADDR pc,
1305 unsigned int extension,
1306 unsigned int insn)
c906108c 1307{
12f02c2a
AC
1308 int op = (insn >> 11);
1309 switch (op)
c906108c 1310 {
12f02c2a
AC
1311 case 2: /* Branch */
1312 {
1313 CORE_ADDR offset;
1314 struct upk_mips16 upk;
1315 unpack_mips16 (pc, extension, insn, itype, &upk);
1316 offset = upk.offset;
1317 if (offset & 0x800)
1318 {
1319 offset &= 0xeff;
1320 offset = -offset;
1321 }
1322 pc += (offset << 1) + 2;
1323 break;
1324 }
1325 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1326 {
1327 struct upk_mips16 upk;
1328 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1329 pc = add_offset_16 (pc, upk.offset);
1330 if ((insn >> 10) & 0x01) /* Exchange mode */
1331 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1332 else
1333 pc |= 0x01;
1334 break;
1335 }
1336 case 4: /* beqz */
1337 {
1338 struct upk_mips16 upk;
1339 int reg;
1340 unpack_mips16 (pc, extension, insn, ritype, &upk);
1341 reg = read_signed_register (upk.regx);
1342 if (reg == 0)
1343 pc += (upk.offset << 1) + 2;
1344 else
1345 pc += 2;
1346 break;
1347 }
1348 case 5: /* bnez */
1349 {
1350 struct upk_mips16 upk;
1351 int reg;
1352 unpack_mips16 (pc, extension, insn, ritype, &upk);
1353 reg = read_signed_register (upk.regx);
1354 if (reg != 0)
1355 pc += (upk.offset << 1) + 2;
1356 else
1357 pc += 2;
1358 break;
1359 }
1360 case 12: /* I8 Formats btez btnez */
1361 {
1362 struct upk_mips16 upk;
1363 int reg;
1364 unpack_mips16 (pc, extension, insn, i8type, &upk);
1365 /* upk.regx contains the opcode */
1366 reg = read_signed_register (24); /* Test register is 24 */
1367 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1368 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1369 /* pc = add_offset_16(pc,upk.offset) ; */
1370 pc += (upk.offset << 1) + 2;
1371 else
1372 pc += 2;
1373 break;
1374 }
1375 case 29: /* RR Formats JR, JALR, JALR-RA */
1376 {
1377 struct upk_mips16 upk;
1378 /* upk.fmt = rrtype; */
1379 op = insn & 0x1f;
1380 if (op == 0)
c5aa993b 1381 {
12f02c2a
AC
1382 int reg;
1383 upk.regx = (insn >> 8) & 0x07;
1384 upk.regy = (insn >> 5) & 0x07;
1385 switch (upk.regy)
c5aa993b 1386 {
12f02c2a
AC
1387 case 0:
1388 reg = upk.regx;
1389 break;
1390 case 1:
1391 reg = 31;
1392 break; /* Function return instruction */
1393 case 2:
1394 reg = upk.regx;
1395 break;
1396 default:
1397 reg = 31;
1398 break; /* BOGUS Guess */
c906108c 1399 }
12f02c2a 1400 pc = read_signed_register (reg);
c906108c 1401 }
12f02c2a 1402 else
c5aa993b 1403 pc += 2;
12f02c2a
AC
1404 break;
1405 }
1406 case 30:
1407 /* This is an instruction extension. Fetch the real instruction
1408 (which follows the extension) and decode things based on
1409 that. */
1410 {
1411 pc += 2;
1412 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1413 break;
1414 }
1415 default:
1416 {
1417 pc += 2;
1418 break;
1419 }
c906108c 1420 }
c5aa993b 1421 return pc;
12f02c2a 1422}
c906108c 1423
5a89d8aa 1424static CORE_ADDR
12f02c2a
AC
1425mips16_next_pc (CORE_ADDR pc)
1426{
1427 unsigned int insn = fetch_mips_16 (pc);
1428 return extended_mips16_next_pc (pc, 0, insn);
1429}
1430
1431/* The mips_next_pc function supports single_step when the remote
7e73cedf 1432 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1433 It works by decoding the current instruction and predicting where a
1434 branch will go. This isnt hard because all the data is available.
1435 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1436CORE_ADDR
1437mips_next_pc (CORE_ADDR pc)
c906108c 1438{
c5aa993b
JM
1439 if (pc & 0x01)
1440 return mips16_next_pc (pc);
1441 else
1442 return mips32_next_pc (pc);
12f02c2a 1443}
c906108c 1444
e0f7ec59
AC
1445/* Set up the 'saved_regs' array. This is a data structure containing
1446 the addresses on the stack where each register has been saved, for
1447 each stack frame. Registers that have not been saved will have
1448 zero here. The stack pointer register is special: rather than the
1449 address where the stack register has been saved,
1450 saved_regs[SP_REGNUM] will have the actual value of the previous
1451 frame's stack register. */
c906108c 1452
d28e01f4 1453static void
acdb74a0 1454mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1455{
1456 int ireg;
c906108c
SS
1457 /* r0 bit means kernel trap */
1458 int kernel_trap;
1459 /* What registers have been saved? Bitmasks. */
1460 unsigned long gen_mask, float_mask;
1461 mips_extra_func_info_t proc_desc;
1462 t_inst inst;
e0f7ec59 1463 CORE_ADDR *saved_regs;
480d3dd2 1464 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1465
1b1d3794 1466 if (deprecated_get_frame_saved_regs (fci) != NULL)
e0f7ec59
AC
1467 return;
1468 saved_regs = frame_saved_regs_zalloc (fci);
c906108c
SS
1469
1470 /* If it is the frame for sigtramp, the saved registers are located
e0f7ec59
AC
1471 in a sigcontext structure somewhere on the stack. If the stack
1472 layout for sigtramp changes we might have to change these
1473 constants and the companion fixup_sigtramp in mdebugread.c */
c906108c 1474#ifndef SIGFRAME_BASE
e0f7ec59
AC
1475 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1476 above the sigtramp frame. */
4246e332 1477#define SIGFRAME_BASE mips_regsize (current_gdbarch)
c906108c 1478/* FIXME! Are these correct?? */
4246e332
AC
1479#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * mips_regsize (current_gdbarch))
1480#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * mips_regsize (current_gdbarch))
c906108c 1481#define SIGFRAME_FPREGSAVE_OFF \
4246e332 1482 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * mips_regsize (current_gdbarch) + 3 * mips_regsize (current_gdbarch))
c906108c 1483#endif
5a203e44 1484 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
c906108c
SS
1485 {
1486 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1487 {
e0f7ec59 1488 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
10a08821 1489 + ireg * mips_regsize (current_gdbarch));
e0f7ec59 1490 set_reg_offset (saved_regs, ireg, reg_position);
c906108c
SS
1491 }
1492 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1493 {
e0f7ec59
AC
1494 CORE_ADDR reg_position = (get_frame_base (fci)
1495 + SIGFRAME_FPREGSAVE_OFF
10a08821 1496 + ireg * mips_regsize (current_gdbarch));
56cea623 1497 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg, reg_position);
c906108c 1498 }
e0f7ec59
AC
1499
1500 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1501 /* SP_REGNUM, contains the value and not the address. */
1502 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
c906108c
SS
1503 return;
1504 }
1505
da50a4b7 1506 proc_desc = get_frame_extra_info (fci)->proc_desc;
c906108c 1507 if (proc_desc == NULL)
e0f7ec59
AC
1508 /* I'm not sure how/whether this can happen. Normally when we
1509 can't find a proc_desc, we "synthesize" one using
1510 heuristic_proc_desc and set the saved_regs right away. */
c906108c
SS
1511 return;
1512
c5aa993b
JM
1513 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1514 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1515 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1516
e0f7ec59
AC
1517 if (/* In any frame other than the innermost or a frame interrupted
1518 by a signal, we assume that all registers have been saved.
1519 This assumes that all register saves in a function happen
1520 before the first function call. */
11c02a10
AC
1521 (get_next_frame (fci) == NULL
1522 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
c906108c 1523
e0f7ec59 1524 /* In a dummy frame we know exactly where things are saved. */
c5aa993b 1525 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1526
e0f7ec59
AC
1527 /* Don't bother unless we are inside a function prologue.
1528 Outside the prologue, we know where everything is. */
c906108c 1529
50abf9e5 1530 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
c906108c 1531
e0f7ec59
AC
1532 /* Not sure exactly what kernel_trap means, but if it means the
1533 kernel saves the registers without a prologue doing it, we
1534 better not examine the prologue to see whether registers
1535 have been saved yet. */
c5aa993b 1536 && !kernel_trap)
c906108c 1537 {
e0f7ec59
AC
1538 /* We need to figure out whether the registers that the
1539 proc_desc claims are saved have been saved yet. */
c906108c
SS
1540
1541 CORE_ADDR addr;
1542
1543 /* Bitmasks; set if we have found a save for the register. */
1544 unsigned long gen_save_found = 0;
1545 unsigned long float_save_found = 0;
1546 int instlen;
1547
1548 /* If the address is odd, assume this is MIPS16 code. */
1549 addr = PROC_LOW_ADDR (proc_desc);
1550 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1551
e0f7ec59
AC
1552 /* Scan through this function's instructions preceding the
1553 current PC, and look for those that save registers. */
50abf9e5 1554 while (addr < get_frame_pc (fci))
c906108c
SS
1555 {
1556 inst = mips_fetch_instruction (addr);
1557 if (pc_is_mips16 (addr))
1558 mips16_decode_reg_save (inst, &gen_save_found);
1559 else
1560 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1561 addr += instlen;
1562 }
1563 gen_mask = gen_save_found;
1564 float_mask = float_save_found;
1565 }
1566
e0f7ec59
AC
1567 /* Fill in the offsets for the registers which gen_mask says were
1568 saved. */
1569 {
1570 CORE_ADDR reg_position = (get_frame_base (fci)
1571 + PROC_REG_OFFSET (proc_desc));
1572 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1573 if (gen_mask & 0x80000000)
1574 {
1575 set_reg_offset (saved_regs, ireg, reg_position);
480d3dd2 1576 reg_position -= mips_saved_regsize (tdep);
e0f7ec59
AC
1577 }
1578 }
c906108c 1579
e0f7ec59
AC
1580 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1581 order of that normally used by gcc. Therefore, we have to fetch
1582 the first instruction of the function, and if it's an entry
1583 instruction that saves $s0 or $s1, correct their saved addresses. */
c906108c
SS
1584 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1585 {
1586 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
e0f7ec59
AC
1587 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1588 /* entry */
c906108c
SS
1589 {
1590 int reg;
1591 int sreg_count = (inst >> 6) & 3;
c5aa993b 1592
c906108c 1593 /* Check if the ra register was pushed on the stack. */
e0f7ec59
AC
1594 CORE_ADDR reg_position = (get_frame_base (fci)
1595 + PROC_REG_OFFSET (proc_desc));
c906108c 1596 if (inst & 0x20)
480d3dd2 1597 reg_position -= mips_saved_regsize (tdep);
c906108c 1598
e0f7ec59
AC
1599 /* Check if the s0 and s1 registers were pushed on the
1600 stack. */
c5aa993b 1601 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c 1602 {
e0f7ec59 1603 set_reg_offset (saved_regs, reg, reg_position);
480d3dd2 1604 reg_position -= mips_saved_regsize (tdep);
c906108c
SS
1605 }
1606 }
1607 }
1608
e0f7ec59
AC
1609 /* Fill in the offsets for the registers which float_mask says were
1610 saved. */
1611 {
1612 CORE_ADDR reg_position = (get_frame_base (fci)
1613 + PROC_FREG_OFFSET (proc_desc));
6acdf5c7 1614
e0f7ec59
AC
1615 /* Fill in the offsets for the float registers which float_mask
1616 says were saved. */
1617 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1618 if (float_mask & 0x80000000)
1619 {
480d3dd2
AC
1620 if (mips_saved_regsize (tdep) == 4
1621 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c57bb9fa
AC
1622 {
1623 /* On a big endian 32 bit ABI, floating point registers
1624 are paired to form doubles such that the most
1625 significant part is in $f[N+1] and the least
1626 significant in $f[N] vis: $f[N+1] ||| $f[N]. The
1627 registers are also spilled as a pair and stored as a
1628 double.
1629
1630 When little-endian the least significant part is
1631 stored first leading to the memory order $f[N] and
1632 then $f[N+1].
1633
ce2826aa 1634 Unfortunately, when big-endian the most significant
c57bb9fa
AC
1635 part of the double is stored first, and the least
1636 significant is stored second. This leads to the
1637 registers being ordered in memory as firt $f[N+1] and
1638 then $f[N].
1639
1640 For the big-endian case make certain that the
1641 addresses point at the correct (swapped) locations
1642 $f[N] and $f[N+1] pair (keep in mind that
1643 reg_position is decremented each time through the
1644 loop). */
1645 if ((ireg & 1))
56cea623 1646 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg,
480d3dd2 1647 reg_position - mips_saved_regsize (tdep));
c57bb9fa 1648 else
56cea623 1649 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg,
480d3dd2 1650 reg_position + mips_saved_regsize (tdep));
c57bb9fa
AC
1651 }
1652 else
56cea623 1653 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg, reg_position);
480d3dd2 1654 reg_position -= mips_saved_regsize (tdep);
e0f7ec59 1655 }
c906108c 1656
e0f7ec59
AC
1657 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1658 }
d28e01f4 1659
e0f7ec59
AC
1660 /* SP_REGNUM, contains the value and not the address. */
1661 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
d28e01f4
KB
1662}
1663
c906108c 1664static CORE_ADDR
acdb74a0 1665read_next_frame_reg (struct frame_info *fi, int regno)
c906108c 1666{
a4b8ebc8
AC
1667 /* Always a pseudo. */
1668 gdb_assert (regno >= NUM_REGS);
f796e4be 1669 if (fi == NULL)
c906108c 1670 {
a4b8ebc8
AC
1671 LONGEST val;
1672 regcache_cooked_read_signed (current_regcache, regno, &val);
1673 return val;
f796e4be 1674 }
a4b8ebc8
AC
1675 else if ((regno % NUM_REGS) == SP_REGNUM)
1676 /* The SP_REGNUM is special, its value is stored in saved_regs.
1677 In fact, it is so special that it can even only be fetched
1678 using a raw register number! Once this code as been converted
1679 to frame-unwind the problem goes away. */
1680 return frame_unwind_register_signed (fi, regno % NUM_REGS);
f796e4be 1681 else
a4b8ebc8 1682 return frame_unwind_register_signed (fi, regno);
64159455 1683
c906108c
SS
1684}
1685
1686/* mips_addr_bits_remove - remove useless address bits */
1687
875e1767 1688static CORE_ADDR
acdb74a0 1689mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1690{
480d3dd2
AC
1691 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1692 if (mips_mask_address_p (tdep)
8fa9cfa1
AC
1693 && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
1694 /* This hack is a work-around for existing boards using PMON, the
1695 simulator, and any other 64-bit targets that doesn't have true
1696 64-bit addressing. On these targets, the upper 32 bits of
1697 addresses are ignored by the hardware. Thus, the PC or SP are
1698 likely to have been sign extended to all 1s by instruction
1699 sequences that load 32-bit addresses. For example, a typical
1700 piece of code that loads an address is this:
1701
1702 lui $r2, <upper 16 bits>
1703 ori $r2, <lower 16 bits>
1704
1705 But the lui sign-extends the value such that the upper 32 bits
1706 may be all 1s. The workaround is simply to mask off these
1707 bits. In the future, gcc may be changed to support true 64-bit
1708 addressing, and this masking will have to be disabled. */
1709 return addr &= 0xffffffffUL;
1710 else
1711 return addr;
c906108c
SS
1712}
1713
9022177c
DJ
1714/* mips_software_single_step() is called just before we want to resume
1715 the inferior, if we want to single-step it but there is no hardware
75c9abc6 1716 or kernel single-step support (MIPS on GNU/Linux for example). We find
9022177c
DJ
1717 the target of the coming instruction and breakpoint it.
1718
1719 single_step is also called just after the inferior stops. If we had
1720 set up a simulated single-step, we undo our damage. */
1721
1722void
1723mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1724{
1725 static CORE_ADDR next_pc;
1726 typedef char binsn_quantum[BREAKPOINT_MAX];
1727 static binsn_quantum break_mem;
1728 CORE_ADDR pc;
1729
1730 if (insert_breakpoints_p)
1731 {
1732 pc = read_register (PC_REGNUM);
1733 next_pc = mips_next_pc (pc);
1734
1735 target_insert_breakpoint (next_pc, break_mem);
1736 }
1737 else
1738 target_remove_breakpoint (next_pc, break_mem);
1739}
1740
97f46953 1741static CORE_ADDR
acdb74a0 1742mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1743{
1744 CORE_ADDR pc, tmp;
1745
11c02a10 1746 pc = ((fromleaf)
6913c89a 1747 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
11c02a10 1748 : get_next_frame (prev)
8bedc050 1749 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
11c02a10 1750 : read_pc ());
5a89d8aa 1751 tmp = SKIP_TRAMPOLINE_CODE (pc);
97f46953 1752 return tmp ? tmp : pc;
c906108c
SS
1753}
1754
1755
f7ab6ec6 1756static CORE_ADDR
acdb74a0 1757mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1758{
1759 CORE_ADDR saved_pc;
480d3dd2 1760 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1761
50abf9e5 1762 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778 1763 {
a4b8ebc8 1764 /* Always unwind the cooked PC register value. */
dd3ecc14 1765 saved_pc = frame_unwind_register_signed (frame, NUM_REGS + PC_REGNUM);
cedea778 1766 }
c906108c 1767 else
a4b8ebc8
AC
1768 {
1769 mips_extra_func_info_t proc_desc
1770 = get_frame_extra_info (frame)->proc_desc;
1771 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
480d3dd2
AC
1772 saved_pc = read_memory_integer ((get_frame_base (frame)
1773 - mips_saved_regsize (tdep))
1774 , mips_saved_regsize (tdep));
a4b8ebc8
AC
1775 else
1776 {
1777 /* We have to get the saved pc from the sigcontext if it is
1778 a signal handler frame. */
1779 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME ? PC_REGNUM
1780 : proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1781 saved_pc = read_next_frame_reg (frame, NUM_REGS + pcreg);
1782 }
1783 }
c906108c
SS
1784 return ADDR_BITS_REMOVE (saved_pc);
1785}
1786
1787static struct mips_extra_func_info temp_proc_desc;
fe29b929
KB
1788
1789/* This hack will go away once the get_prev_frame() code has been
1790 modified to set the frame's type first. That is BEFORE init extra
1791 frame info et.al. is called. This is because it will become
1792 possible to skip the init extra info call for sigtramp and dummy
1793 frames. */
1794static CORE_ADDR *temp_saved_regs;
c906108c 1795
e0f7ec59
AC
1796/* Set a register's saved stack address in temp_saved_regs. If an
1797 address has already been set for this register, do nothing; this
1798 way we will only recognize the first save of a given register in a
a4b8ebc8
AC
1799 function prologue.
1800
1801 For simplicity, save the address in both [0 .. NUM_REGS) and
1802 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1803 is used as it is only second range (the ABI instead of ISA
1804 registers) that comes into play when finding saved registers in a
1805 frame. */
c906108c
SS
1806
1807static void
e0f7ec59 1808set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
c906108c 1809{
e0f7ec59 1810 if (saved_regs[regno] == 0)
a4b8ebc8
AC
1811 {
1812 saved_regs[regno + 0 * NUM_REGS] = offset;
1813 saved_regs[regno + 1 * NUM_REGS] = offset;
1814 }
c906108c
SS
1815}
1816
1817
1818/* Test whether the PC points to the return instruction at the
1819 end of a function. */
1820
c5aa993b 1821static int
acdb74a0 1822mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1823{
1824 if (pc_is_mips16 (pc))
1825 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1826 generates a "jr $ra"; other times it generates code to load
1827 the return address from the stack to an accessible register (such
1828 as $a3), then a "jr" using that register. This second case
1829 is almost impossible to distinguish from an indirect jump
1830 used for switch statements, so we don't even try. */
1831 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1832 else
1833 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1834}
1835
1836
1837/* This fencepost looks highly suspicious to me. Removing it also
1838 seems suspicious as it could affect remote debugging across serial
1839 lines. */
1840
1841static CORE_ADDR
acdb74a0 1842heuristic_proc_start (CORE_ADDR pc)
c906108c 1843{
c5aa993b
JM
1844 CORE_ADDR start_pc;
1845 CORE_ADDR fence;
1846 int instlen;
1847 int seen_adjsp = 0;
c906108c 1848
c5aa993b
JM
1849 pc = ADDR_BITS_REMOVE (pc);
1850 start_pc = pc;
1851 fence = start_pc - heuristic_fence_post;
1852 if (start_pc == 0)
1853 return 0;
c906108c 1854
c5aa993b
JM
1855 if (heuristic_fence_post == UINT_MAX
1856 || fence < VM_MIN_ADDRESS)
1857 fence = VM_MIN_ADDRESS;
c906108c 1858
c5aa993b 1859 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1860
c5aa993b
JM
1861 /* search back for previous return */
1862 for (start_pc -= instlen;; start_pc -= instlen)
1863 if (start_pc < fence)
1864 {
1865 /* It's not clear to me why we reach this point when
c0236d92 1866 stop_soon, but with this test, at least we
c5aa993b
JM
1867 don't print out warnings for every child forked (eg, on
1868 decstation). 22apr93 rich@cygnus.com. */
c0236d92 1869 if (stop_soon == NO_STOP_QUIETLY)
c906108c 1870 {
c5aa993b
JM
1871 static int blurb_printed = 0;
1872
1873 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1874 paddr_nz (pc));
1875
1876 if (!blurb_printed)
c906108c 1877 {
c5aa993b
JM
1878 /* This actually happens frequently in embedded
1879 development, when you first connect to a board
1880 and your stack pointer and pc are nowhere in
1881 particular. This message needs to give people
1882 in that situation enough information to
1883 determine that it's no big deal. */
1884 printf_filtered ("\n\
cd0fc7c3
SS
1885 GDB is unable to find the start of the function at 0x%s\n\
1886and thus can't determine the size of that function's stack frame.\n\
1887This means that GDB may be unable to access that stack frame, or\n\
1888the frames below it.\n\
1889 This problem is most likely caused by an invalid program counter or\n\
1890stack pointer.\n\
1891 However, if you think GDB should simply search farther back\n\
1892from 0x%s for code which looks like the beginning of a\n\
1893function, you can increase the range of the search using the `set\n\
1894heuristic-fence-post' command.\n",
c5aa993b
JM
1895 paddr_nz (pc), paddr_nz (pc));
1896 blurb_printed = 1;
c906108c 1897 }
c906108c
SS
1898 }
1899
c5aa993b
JM
1900 return 0;
1901 }
1902 else if (pc_is_mips16 (start_pc))
1903 {
1904 unsigned short inst;
1905
1906 /* On MIPS16, any one of the following is likely to be the
1907 start of a function:
1908 entry
1909 addiu sp,-n
1910 daddiu sp,-n
1911 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1912 inst = mips_fetch_instruction (start_pc);
1913 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1914 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1915 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1916 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1917 break;
1918 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1919 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1920 seen_adjsp = 1;
1921 else
1922 seen_adjsp = 0;
1923 }
1924 else if (mips_about_to_return (start_pc))
1925 {
1926 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1927 break;
1928 }
1929
c5aa993b 1930 return start_pc;
c906108c
SS
1931}
1932
1933/* Fetch the immediate value from a MIPS16 instruction.
1934 If the previous instruction was an EXTEND, use it to extend
1935 the upper bits of the immediate value. This is a helper function
1936 for mips16_heuristic_proc_desc. */
1937
1938static int
acdb74a0
AC
1939mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1940 unsigned short inst, /* current instruction */
1941 int nbits, /* number of bits in imm field */
1942 int scale, /* scale factor to be applied to imm */
1943 int is_signed) /* is the imm field signed? */
c906108c
SS
1944{
1945 int offset;
1946
1947 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1948 {
1949 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1950 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1951 offset = 0 - (0x10000 - (offset & 0xffff));
1952 return offset | (inst & 0x1f);
1953 }
1954 else
1955 {
1956 int max_imm = 1 << nbits;
1957 int mask = max_imm - 1;
1958 int sign_bit = max_imm >> 1;
1959
1960 offset = inst & mask;
1961 if (is_signed && (offset & sign_bit))
1962 offset = 0 - (max_imm - offset);
1963 return offset * scale;
1964 }
1965}
1966
1967
1968/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1969 stream from start_pc to limit_pc. */
1970
1971static void
acdb74a0
AC
1972mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1973 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1974{
1975 CORE_ADDR cur_pc;
1976 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1977 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1978 unsigned inst = 0; /* current instruction */
1979 unsigned entry_inst = 0; /* the entry instruction */
1980 int reg, offset;
480d3dd2 1981 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1982
c5aa993b
JM
1983 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1984 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1985
1986 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1987 {
1988 /* Save the previous instruction. If it's an EXTEND, we'll extract
1989 the immediate offset extension from it in mips16_get_imm. */
1990 prev_inst = inst;
1991
1992 /* Fetch and decode the instruction. */
1993 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 1994 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
1995 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1996 {
1997 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
1998 if (offset < 0) /* negative stack adjustment? */
1999 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
2000 else
2001 /* Exit loop if a positive stack adjustment is found, which
2002 usually means that the stack cleanup code in the function
2003 epilogue is reached. */
2004 break;
2005 }
2006 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2007 {
2008 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2009 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 2010 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
e0f7ec59 2011 set_reg_offset (temp_saved_regs, reg, sp + offset);
c906108c
SS
2012 }
2013 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2014 {
2015 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2016 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2017 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
e0f7ec59 2018 set_reg_offset (temp_saved_regs, reg, sp + offset);
c906108c
SS
2019 }
2020 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2021 {
2022 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 2023 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
e0f7ec59 2024 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c906108c
SS
2025 }
2026 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2027 {
2028 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 2029 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
e0f7ec59 2030 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c906108c 2031 }
c5aa993b 2032 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
2033 {
2034 frame_addr = sp;
2035 PROC_FRAME_REG (&temp_proc_desc) = 17;
2036 }
2037 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2038 {
2039 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2040 frame_addr = sp + offset;
2041 PROC_FRAME_REG (&temp_proc_desc) = 17;
2042 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2043 }
2044 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2045 {
2046 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2047 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2048 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2049 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
c906108c
SS
2050 }
2051 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2052 {
2053 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2054 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2055 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2056 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
c906108c 2057 }
c5aa993b
JM
2058 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2059 entry_inst = inst; /* save for later processing */
c906108c 2060 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 2061 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
2062 }
2063
c5aa993b
JM
2064 /* The entry instruction is typically the first instruction in a function,
2065 and it stores registers at offsets relative to the value of the old SP
2066 (before the prologue). But the value of the sp parameter to this
2067 function is the new SP (after the prologue has been executed). So we
2068 can't calculate those offsets until we've seen the entire prologue,
2069 and can calculate what the old SP must have been. */
2070 if (entry_inst != 0)
2071 {
2072 int areg_count = (entry_inst >> 8) & 7;
2073 int sreg_count = (entry_inst >> 6) & 3;
c906108c 2074
c5aa993b
JM
2075 /* The entry instruction always subtracts 32 from the SP. */
2076 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 2077
c5aa993b
JM
2078 /* Now we can calculate what the SP must have been at the
2079 start of the function prologue. */
2080 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 2081
c5aa993b
JM
2082 /* Check if a0-a3 were saved in the caller's argument save area. */
2083 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2084 {
2085 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2086 set_reg_offset (temp_saved_regs, reg, sp + offset);
480d3dd2 2087 offset += mips_saved_regsize (tdep);
c5aa993b 2088 }
c906108c 2089
c5aa993b
JM
2090 /* Check if the ra register was pushed on the stack. */
2091 offset = -4;
2092 if (entry_inst & 0x20)
2093 {
2094 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
e0f7ec59 2095 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
480d3dd2 2096 offset -= mips_saved_regsize (tdep);
c5aa993b 2097 }
c906108c 2098
c5aa993b
JM
2099 /* Check if the s0 and s1 registers were pushed on the stack. */
2100 for (reg = 16; reg < sreg_count + 16; reg++)
2101 {
2102 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2103 set_reg_offset (temp_saved_regs, reg, sp + offset);
480d3dd2 2104 offset -= mips_saved_regsize (tdep);
c5aa993b
JM
2105 }
2106 }
c906108c
SS
2107}
2108
2109static void
fba45db2
KB
2110mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2111 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
2112{
2113 CORE_ADDR cur_pc;
c5aa993b 2114 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 2115restart:
fe29b929 2116 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
cce74817 2117 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 2118 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
2119 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2120 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2121 {
2122 unsigned long inst, high_word, low_word;
2123 int reg;
2124
2125 /* Fetch the instruction. */
2126 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2127
2128 /* Save some code by pre-extracting some useful fields. */
2129 high_word = (inst >> 16) & 0xffff;
2130 low_word = inst & 0xffff;
2131 reg = high_word & 0x1f;
2132
c5aa993b 2133 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
2134 || high_word == 0x23bd /* addi $sp,$sp,-i */
2135 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2136 {
2137 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 2138 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
2139 else
2140 /* Exit loop if a positive stack adjustment is found, which
2141 usually means that the stack cleanup code in the function
2142 epilogue is reached. */
2143 break;
2144 }
2145 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2146 {
c5aa993b 2147 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2148 set_reg_offset (temp_saved_regs, reg, sp + low_word);
c906108c
SS
2149 }
2150 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2151 {
2152 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2153 but the register size used is only 32 bits. Make the address
2154 for the saved register point to the lower 32 bits. */
c5aa993b 2155 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
4246e332 2156 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - mips_regsize (current_gdbarch));
c906108c 2157 }
c5aa993b 2158 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
2159 {
2160 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
2161 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2162 frame_addr = sp + low_word;
c906108c
SS
2163 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2164 {
2165 unsigned alloca_adjust;
2166 PROC_FRAME_REG (&temp_proc_desc) = 30;
a4b8ebc8 2167 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
c5aa993b 2168 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
2169 if (alloca_adjust > 0)
2170 {
2171 /* FP > SP + frame_size. This may be because
2172 * of an alloca or somethings similar.
2173 * Fix sp to "pre-alloca" value, and try again.
2174 */
2175 sp += alloca_adjust;
2176 goto restart;
2177 }
2178 }
2179 }
c5aa993b
JM
2180 /* move $30,$sp. With different versions of gas this will be either
2181 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2182 Accept any one of these. */
c906108c
SS
2183 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2184 {
2185 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2186 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2187 {
2188 unsigned alloca_adjust;
2189 PROC_FRAME_REG (&temp_proc_desc) = 30;
a4b8ebc8 2190 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
c5aa993b 2191 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
2192 if (alloca_adjust > 0)
2193 {
2194 /* FP > SP + frame_size. This may be because
2195 * of an alloca or somethings similar.
2196 * Fix sp to "pre-alloca" value, and try again.
2197 */
2198 sp += alloca_adjust;
2199 goto restart;
2200 }
2201 }
2202 }
c5aa993b 2203 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 2204 {
c5aa993b 2205 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2206 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
c906108c
SS
2207 }
2208 }
2209}
2210
2211static mips_extra_func_info_t
acdb74a0 2212heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
479412cd 2213 struct frame_info *next_frame, int cur_frame)
c906108c 2214{
479412cd
DJ
2215 CORE_ADDR sp;
2216
2217 if (cur_frame)
a4b8ebc8 2218 sp = read_next_frame_reg (next_frame, NUM_REGS + SP_REGNUM);
479412cd
DJ
2219 else
2220 sp = 0;
c906108c 2221
c5aa993b
JM
2222 if (start_pc == 0)
2223 return NULL;
2224 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
fe29b929 2225 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
3758ac48 2226 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2227 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2228 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2229 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2230
2231 if (start_pc + 200 < limit_pc)
2232 limit_pc = start_pc + 200;
2233 if (pc_is_mips16 (start_pc))
2234 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2235 else
2236 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2237 return &temp_proc_desc;
2238}
2239
6c0d6680
DJ
2240struct mips_objfile_private
2241{
2242 bfd_size_type size;
2243 char *contents;
2244};
2245
2246/* Global used to communicate between non_heuristic_proc_desc and
2247 compare_pdr_entries within qsort (). */
2248static bfd *the_bfd;
2249
2250static int
2251compare_pdr_entries (const void *a, const void *b)
2252{
2253 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2254 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2255
2256 if (lhs < rhs)
2257 return -1;
2258 else if (lhs == rhs)
2259 return 0;
2260 else
2261 return 1;
2262}
2263
c906108c 2264static mips_extra_func_info_t
acdb74a0 2265non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
2266{
2267 CORE_ADDR startaddr;
2268 mips_extra_func_info_t proc_desc;
c5aa993b 2269 struct block *b = block_for_pc (pc);
c906108c 2270 struct symbol *sym;
6c0d6680
DJ
2271 struct obj_section *sec;
2272 struct mips_objfile_private *priv;
2273
ae45cd16 2274 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
6c0d6680 2275 return NULL;
c906108c
SS
2276
2277 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2278 if (addrptr)
2279 *addrptr = startaddr;
6c0d6680
DJ
2280
2281 priv = NULL;
2282
2283 sec = find_pc_section (pc);
2284 if (sec != NULL)
c906108c 2285 {
6c0d6680
DJ
2286 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2287
2288 /* Search the ".pdr" section generated by GAS. This includes most of
2289 the information normally found in ECOFF PDRs. */
2290
2291 the_bfd = sec->objfile->obfd;
2292 if (priv == NULL
2293 && (the_bfd->format == bfd_object
2294 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2295 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2296 {
2297 /* Right now GAS only outputs the address as a four-byte sequence.
2298 This means that we should not bother with this method on 64-bit
2299 targets (until that is fixed). */
2300
2301 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2302 sizeof (struct mips_objfile_private));
2303 priv->size = 0;
2304 sec->objfile->obj_private = priv;
2305 }
2306 else if (priv == NULL)
2307 {
2308 asection *bfdsec;
2309
2310 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2311 sizeof (struct mips_objfile_private));
2312
2313 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2314 if (bfdsec != NULL)
2315 {
2316 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2317 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2318 priv->size);
2319 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2320 priv->contents, 0, priv->size);
2321
2322 /* In general, the .pdr section is sorted. However, in the
2323 presence of multiple code sections (and other corner cases)
2324 it can become unsorted. Sort it so that we can use a faster
2325 binary search. */
2326 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2327 }
2328 else
2329 priv->size = 0;
2330
2331 sec->objfile->obj_private = priv;
2332 }
2333 the_bfd = NULL;
2334
2335 if (priv->size != 0)
2336 {
2337 int low, mid, high;
2338 char *ptr;
2339
2340 low = 0;
2341 high = priv->size / 32;
2342
2343 do
2344 {
2345 CORE_ADDR pdr_pc;
2346
2347 mid = (low + high) / 2;
2348
2349 ptr = priv->contents + mid * 32;
2350 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2351 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2352 SECT_OFF_TEXT (sec->objfile));
2353 if (pdr_pc == startaddr)
2354 break;
2355 if (pdr_pc > startaddr)
2356 high = mid;
2357 else
2358 low = mid + 1;
2359 }
2360 while (low != high);
2361
2362 if (low != high)
2363 {
2364 struct symbol *sym = find_pc_function (pc);
2365
2366 /* Fill in what we need of the proc_desc. */
2367 proc_desc = (mips_extra_func_info_t)
2368 obstack_alloc (&sec->objfile->psymbol_obstack,
2369 sizeof (struct mips_extra_func_info));
2370 PROC_LOW_ADDR (proc_desc) = startaddr;
2371
2372 /* Only used for dummy frames. */
2373 PROC_HIGH_ADDR (proc_desc) = 0;
2374
2375 PROC_FRAME_OFFSET (proc_desc)
2376 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2377 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2378 ptr + 24);
2379 PROC_FRAME_ADJUST (proc_desc) = 0;
2380 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2381 ptr + 4);
2382 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2383 ptr + 12);
2384 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2385 ptr + 8);
2386 PROC_FREG_OFFSET (proc_desc)
2387 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2388 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2389 ptr + 28);
2390 proc_desc->pdr.isym = (long) sym;
2391
2392 return proc_desc;
2393 }
2394 }
c906108c
SS
2395 }
2396
6c0d6680
DJ
2397 if (b == NULL)
2398 return NULL;
2399
2400 if (startaddr > BLOCK_START (b))
2401 {
2402 /* This is the "pathological" case referred to in a comment in
2403 print_frame_info. It might be better to move this check into
2404 symbol reading. */
2405 return NULL;
2406 }
2407
176620f1 2408 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
6c0d6680 2409
c906108c
SS
2410 /* If we never found a PDR for this function in symbol reading, then
2411 examine prologues to find the information. */
2412 if (sym)
2413 {
2414 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2415 if (PROC_FRAME_REG (proc_desc) == -1)
2416 return NULL;
2417 else
2418 return proc_desc;
2419 }
2420 else
2421 return NULL;
2422}
2423
2424
2425static mips_extra_func_info_t
479412cd 2426find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
c906108c
SS
2427{
2428 mips_extra_func_info_t proc_desc;
4e0df2df 2429 CORE_ADDR startaddr = 0;
c906108c
SS
2430
2431 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2432
2433 if (proc_desc)
2434 {
2435 /* IF this is the topmost frame AND
2436 * (this proc does not have debugging information OR
2437 * the PC is in the procedure prologue)
2438 * THEN create a "heuristic" proc_desc (by analyzing
2439 * the actual code) to replace the "official" proc_desc.
2440 */
2441 if (next_frame == NULL)
2442 {
2443 struct symtab_and_line val;
2444 struct symbol *proc_symbol =
c86b5b38 2445 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
2446
2447 if (proc_symbol)
2448 {
2449 val = find_pc_line (BLOCK_START
c5aa993b 2450 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
2451 0);
2452 val.pc = val.end ? val.end : pc;
2453 }
2454 if (!proc_symbol || pc < val.pc)
2455 {
2456 mips_extra_func_info_t found_heuristic =
c86b5b38
MS
2457 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2458 pc, next_frame, cur_frame);
c906108c
SS
2459 if (found_heuristic)
2460 proc_desc = found_heuristic;
2461 }
2462 }
2463 }
2464 else
2465 {
2466 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
2467 by procedure call dummys. However, the procedures being called ought
2468 to have their own proc_descs, and even if they don't,
2469 heuristic_proc_desc knows how to create them! */
c906108c 2470
aa1ee363 2471 struct linked_proc_info *link;
c906108c
SS
2472
2473 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
2474 if (PROC_LOW_ADDR (&link->info) <= pc
2475 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
2476 return &link->info;
2477
2478 if (startaddr == 0)
2479 startaddr = heuristic_proc_start (pc);
2480
2481 proc_desc =
479412cd 2482 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
c906108c
SS
2483 }
2484 return proc_desc;
2485}
2486
2487static CORE_ADDR
acdb74a0
AC
2488get_frame_pointer (struct frame_info *frame,
2489 mips_extra_func_info_t proc_desc)
c906108c 2490{
a4b8ebc8 2491 return (read_next_frame_reg (frame, NUM_REGS + PROC_FRAME_REG (proc_desc))
e227b13c
AC
2492 + PROC_FRAME_OFFSET (proc_desc)
2493 - PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
2494}
2495
5a89d8aa 2496static mips_extra_func_info_t cached_proc_desc;
c906108c 2497
f7ab6ec6 2498static CORE_ADDR
acdb74a0 2499mips_frame_chain (struct frame_info *frame)
c906108c
SS
2500{
2501 mips_extra_func_info_t proc_desc;
2502 CORE_ADDR tmp;
8bedc050 2503 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
c906108c 2504
c906108c
SS
2505 /* Check if the PC is inside a call stub. If it is, fetch the
2506 PC of the caller of that stub. */
5a89d8aa 2507 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
c906108c
SS
2508 saved_pc = tmp;
2509
ae45cd16 2510 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
cedea778
AC
2511 {
2512 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2513 is well, frame->frame the bottom of the current frame will
2514 contain that value. */
1e2330ba 2515 return get_frame_base (frame);
cedea778
AC
2516 }
2517
c906108c 2518 /* Look up the procedure descriptor for this PC. */
479412cd 2519 proc_desc = find_proc_desc (saved_pc, frame, 1);
c906108c
SS
2520 if (!proc_desc)
2521 return 0;
2522
2523 cached_proc_desc = proc_desc;
2524
2525 /* If no frame pointer and frame size is zero, we must be at end
2526 of stack (or otherwise hosed). If we don't check frame size,
2527 we loop forever if we see a zero size frame. */
2528 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2529 && PROC_FRAME_OFFSET (proc_desc) == 0
7807aa61
MS
2530 /* The previous frame from a sigtramp frame might be frameless
2531 and have frame size zero. */
5a203e44 2532 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
cedea778
AC
2533 /* For a generic dummy frame, let get_frame_pointer() unwind a
2534 register value saved as part of the dummy frame call. */
50abf9e5 2535 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
c906108c
SS
2536 return 0;
2537 else
2538 return get_frame_pointer (frame, proc_desc);
2539}
2540
f7ab6ec6 2541static void
acdb74a0 2542mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2543{
2544 int regnum;
f2c16bd6
KB
2545 mips_extra_func_info_t proc_desc;
2546
2547 if (get_frame_type (fci) == DUMMY_FRAME)
2548 return;
c906108c 2549
f796e4be
KB
2550 /* Use proc_desc calculated in frame_chain. When there is no
2551 next frame, i.e, get_next_frame (fci) == NULL, we call
2552 find_proc_desc () to calculate it, passing an explicit
2553 NULL as the frame parameter. */
f2c16bd6 2554 proc_desc =
11c02a10
AC
2555 get_next_frame (fci)
2556 ? cached_proc_desc
f796e4be
KB
2557 : find_proc_desc (get_frame_pc (fci),
2558 NULL /* i.e, get_next_frame (fci) */,
2559 1);
c906108c 2560
a00a19e9 2561 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
cce74817 2562
da50a4b7 2563 get_frame_extra_info (fci)->proc_desc =
c906108c
SS
2564 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2565 if (proc_desc)
2566 {
2567 /* Fixup frame-pointer - only needed for top frame */
2568 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2569 Get the value of the frame relative sp, procedure might have been
2570 interrupted by a signal at it's very start. */
50abf9e5 2571 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
c906108c 2572 && !PROC_DESC_IS_DUMMY (proc_desc))
a4b8ebc8 2573 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), NUM_REGS + SP_REGNUM));
50abf9e5 2574 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
cedea778
AC
2575 /* Do not ``fix'' fci->frame. It will have the value of the
2576 generic dummy frame's top-of-stack (since the draft
2577 fci->frame is obtained by returning the unwound stack
2578 pointer) and that is what we want. That way the fci->frame
2579 value will match the top-of-stack value that was saved as
2580 part of the dummy frames data. */
2581 /* Do nothing. */;
c906108c 2582 else
11c02a10 2583 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
c906108c
SS
2584
2585 if (proc_desc == &temp_proc_desc)
2586 {
2587 char *name;
2588
2589 /* Do not set the saved registers for a sigtramp frame,
5a203e44
AC
2590 mips_find_saved_registers will do that for us. We can't
2591 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2592 yet set. */
2593 /* FIXME: cagney/2002-11-18: This problem will go away once
2594 frame.c:get_prev_frame() is modified to set the frame's
2595 type before calling functions like this. */
50abf9e5 2596 find_pc_partial_function (get_frame_pc (fci), &name,
c5aa993b 2597 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
50abf9e5 2598 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
c906108c 2599 {
c5aa993b 2600 frame_saved_regs_zalloc (fci);
e0f7ec59
AC
2601 /* Set value of previous frame's stack pointer.
2602 Remember that saved_regs[SP_REGNUM] is special in
2603 that it contains the value of the stack pointer
2604 register. The other saved_regs values are addresses
2605 (in the inferior) at which a given register's value
2606 may be found. */
2607 set_reg_offset (temp_saved_regs, SP_REGNUM,
2608 get_frame_base (fci));
2609 set_reg_offset (temp_saved_regs, PC_REGNUM,
2610 temp_saved_regs[RA_REGNUM]);
1b1d3794 2611 memcpy (deprecated_get_frame_saved_regs (fci), temp_saved_regs,
e0f7ec59 2612 SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2613 }
2614 }
2615
2616 /* hack: if argument regs are saved, guess these contain args */
cce74817 2617 /* assume we can't tell how many args for now */
da50a4b7 2618 get_frame_extra_info (fci)->num_args = -1;
c906108c
SS
2619 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2620 {
c5aa993b 2621 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2622 {
da50a4b7 2623 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2624 break;
2625 }
c5aa993b 2626 }
c906108c
SS
2627 }
2628}
2629
2630/* MIPS stack frames are almost impenetrable. When execution stops,
2631 we basically have to look at symbol information for the function
2632 that we stopped in, which tells us *which* register (if any) is
2633 the base of the frame pointer, and what offset from that register
361d1df0 2634 the frame itself is at.
c906108c
SS
2635
2636 This presents a problem when trying to examine a stack in memory
2637 (that isn't executing at the moment), using the "frame" command. We
2638 don't have a PC, nor do we have any registers except SP.
2639
2640 This routine takes two arguments, SP and PC, and tries to make the
2641 cached frames look as if these two arguments defined a frame on the
2642 cache. This allows the rest of info frame to extract the important
2643 arguments without difficulty. */
2644
2645struct frame_info *
acdb74a0 2646setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2647{
2648 if (argc != 2)
2649 error ("MIPS frame specifications require two arguments: sp and pc");
2650
2651 return create_new_frame (argv[0], argv[1]);
2652}
2653
f09ded24
AC
2654/* According to the current ABI, should the type be passed in a
2655 floating-point register (assuming that there is space)? When there
2656 is no FPU, FP are not even considered as possibile candidates for
2657 FP registers and, consequently this returns false - forces FP
2658 arguments into integer registers. */
2659
2660static int
2661fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2662{
2663 return ((typecode == TYPE_CODE_FLT
2664 || (MIPS_EABI
2665 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2666 && TYPE_NFIELDS (arg_type) == 1
2667 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2668 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2669}
2670
49e790b0
DJ
2671/* On o32, argument passing in GPRs depends on the alignment of the type being
2672 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2673
2674static int
2675mips_type_needs_double_align (struct type *type)
2676{
2677 enum type_code typecode = TYPE_CODE (type);
361d1df0 2678
49e790b0
DJ
2679 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2680 return 1;
2681 else if (typecode == TYPE_CODE_STRUCT)
2682 {
2683 if (TYPE_NFIELDS (type) < 1)
2684 return 0;
2685 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2686 }
2687 else if (typecode == TYPE_CODE_UNION)
2688 {
361d1df0 2689 int i, n;
49e790b0
DJ
2690
2691 n = TYPE_NFIELDS (type);
2692 for (i = 0; i < n; i++)
2693 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2694 return 1;
2695 return 0;
2696 }
2697 return 0;
2698}
2699
dc604539
AC
2700/* Adjust the address downward (direction of stack growth) so that it
2701 is correctly aligned for a new stack frame. */
2702static CORE_ADDR
2703mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2704{
5b03f266 2705 return align_down (addr, 16);
dc604539
AC
2706}
2707
f7ab6ec6 2708static CORE_ADDR
25ab4790
AC
2709mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2710 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2711 struct value **args, CORE_ADDR sp, int struct_return,
2712 CORE_ADDR struct_addr)
c906108c
SS
2713{
2714 int argreg;
2715 int float_argreg;
2716 int argnum;
2717 int len = 0;
2718 int stack_offset = 0;
480d3dd2 2719 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c906108c 2720
25ab4790
AC
2721 /* For shared libraries, "t9" needs to point at the function
2722 address. */
2723 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2724
2725 /* Set the return address register to point to the entry point of
2726 the program, where a breakpoint lies in wait. */
2727 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2728
c906108c 2729 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2730 are properly aligned. The stack has to be at least 64-bit
2731 aligned even on 32-bit machines, because doubles must be 64-bit
2732 aligned. For n32 and n64, stack frames need to be 128-bit
2733 aligned, so we round to this widest known alignment. */
2734
5b03f266
AC
2735 sp = align_down (sp, 16);
2736 struct_addr = align_down (struct_addr, 16);
c5aa993b 2737
46e0f506 2738 /* Now make space on the stack for the args. We allocate more
c906108c 2739 than necessary for EABI, because the first few arguments are
46e0f506 2740 passed in registers, but that's OK. */
c906108c 2741 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 2742 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
480d3dd2 2743 mips_stack_argsize (tdep));
5b03f266 2744 sp -= align_up (len, 16);
c906108c 2745
9ace0497 2746 if (mips_debug)
46e0f506 2747 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2748 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2749 paddr_nz (sp), (long) align_up (len, 16));
9ace0497 2750
c906108c
SS
2751 /* Initialize the integer and float register pointers. */
2752 argreg = A0_REGNUM;
56cea623 2753 float_argreg = mips_fpa0_regnum (current_gdbarch);
c906108c 2754
46e0f506 2755 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2756 if (struct_return)
9ace0497
AC
2757 {
2758 if (mips_debug)
2759 fprintf_unfiltered (gdb_stdlog,
25ab4790 2760 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2761 argreg, paddr_nz (struct_addr));
9ace0497
AC
2762 write_register (argreg++, struct_addr);
2763 }
c906108c
SS
2764
2765 /* Now load as many as possible of the first arguments into
2766 registers, and push the rest onto the stack. Loop thru args
2767 from first to last. */
2768 for (argnum = 0; argnum < nargs; argnum++)
2769 {
2770 char *val;
d9d9c31f 2771 char valbuf[MAX_REGISTER_SIZE];
ea7c478f 2772 struct value *arg = args[argnum];
c906108c
SS
2773 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2774 int len = TYPE_LENGTH (arg_type);
2775 enum type_code typecode = TYPE_CODE (arg_type);
2776
9ace0497
AC
2777 if (mips_debug)
2778 fprintf_unfiltered (gdb_stdlog,
25ab4790 2779 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2780 argnum + 1, len, (int) typecode);
9ace0497 2781
c906108c 2782 /* The EABI passes structures that do not fit in a register by
46e0f506 2783 reference. */
480d3dd2 2784 if (len > mips_saved_regsize (tdep)
9ace0497 2785 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2786 {
480d3dd2
AC
2787 store_unsigned_integer (valbuf, mips_saved_regsize (tdep),
2788 VALUE_ADDRESS (arg));
c906108c 2789 typecode = TYPE_CODE_PTR;
480d3dd2 2790 len = mips_saved_regsize (tdep);
c906108c 2791 val = valbuf;
9ace0497
AC
2792 if (mips_debug)
2793 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2794 }
2795 else
c5aa993b 2796 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2797
2798 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2799 even-numbered floating point register. Round the FP register
2800 up before the check to see if there are any FP registers
46e0f506
MS
2801 left. Non MIPS_EABI targets also pass the FP in the integer
2802 registers so also round up normal registers. */
acdb74a0
AC
2803 if (!FP_REGISTER_DOUBLE
2804 && fp_register_arg_p (typecode, arg_type))
2805 {
2806 if ((float_argreg & 1))
2807 float_argreg++;
2808 }
c906108c
SS
2809
2810 /* Floating point arguments passed in registers have to be
2811 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2812 are passed in register pairs; the even register gets
2813 the low word, and the odd register gets the high word.
2814 On non-EABI processors, the first two floating point arguments are
2815 also copied to general registers, because MIPS16 functions
2816 don't use float registers for arguments. This duplication of
2817 arguments in general registers can't hurt non-MIPS16 functions
2818 because those registers are normally skipped. */
1012bd0e
EZ
2819 /* MIPS_EABI squeezes a struct that contains a single floating
2820 point value into an FP register instead of pushing it onto the
46e0f506 2821 stack. */
f09ded24
AC
2822 if (fp_register_arg_p (typecode, arg_type)
2823 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2824 {
2825 if (!FP_REGISTER_DOUBLE && len == 8)
2826 {
d7449b42 2827 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2828 unsigned long regval;
2829
2830 /* Write the low word of the double to the even register(s). */
c5aa993b 2831 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2832 if (mips_debug)
acdb74a0 2833 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2834 float_argreg, phex (regval, 4));
c906108c 2835 write_register (float_argreg++, regval);
c906108c
SS
2836
2837 /* Write the high word of the double to the odd register(s). */
c5aa993b 2838 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2839 if (mips_debug)
acdb74a0 2840 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2841 float_argreg, phex (regval, 4));
c906108c 2842 write_register (float_argreg++, regval);
c906108c
SS
2843 }
2844 else
2845 {
2846 /* This is a floating point value that fits entirely
2847 in a single register. */
53a5351d 2848 /* On 32 bit ABI's the float_argreg is further adjusted
46e0f506 2849 above to ensure that it is even register aligned. */
9ace0497
AC
2850 LONGEST regval = extract_unsigned_integer (val, len);
2851 if (mips_debug)
acdb74a0 2852 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2853 float_argreg, phex (regval, len));
c906108c 2854 write_register (float_argreg++, regval);
c906108c
SS
2855 }
2856 }
2857 else
2858 {
2859 /* Copy the argument to general registers or the stack in
2860 register-sized pieces. Large arguments are split between
2861 registers and stack. */
4246e332
AC
2862 /* Note: structs whose size is not a multiple of
2863 mips_regsize() are treated specially: Irix cc passes them
2864 in registers where gcc sometimes puts them on the stack.
2865 For maximum compatibility, we will put them in both
2866 places. */
480d3dd2
AC
2867 int odd_sized_struct = ((len > mips_saved_regsize (tdep))
2868 && (len % mips_saved_regsize (tdep) != 0));
46e0f506 2869
f09ded24 2870 /* Note: Floating-point values that didn't fit into an FP
46e0f506 2871 register are only written to memory. */
c906108c
SS
2872 while (len > 0)
2873 {
ebafbe83 2874 /* Remember if the argument was written to the stack. */
566f0f7a 2875 int stack_used_p = 0;
480d3dd2
AC
2876 int partial_len = (len < mips_saved_regsize (tdep)
2877 ? len : mips_saved_regsize (tdep));
c906108c 2878
acdb74a0
AC
2879 if (mips_debug)
2880 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2881 partial_len);
2882
566f0f7a 2883 /* Write this portion of the argument to the stack. */
f09ded24
AC
2884 if (argreg > MIPS_LAST_ARG_REGNUM
2885 || odd_sized_struct
2886 || fp_register_arg_p (typecode, arg_type))
c906108c 2887 {
c906108c
SS
2888 /* Should shorter than int integer values be
2889 promoted to int before being stored? */
c906108c 2890 int longword_offset = 0;
9ace0497 2891 CORE_ADDR addr;
566f0f7a 2892 stack_used_p = 1;
d7449b42 2893 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2894 {
480d3dd2
AC
2895 if (mips_stack_argsize (tdep) == 8
2896 && (typecode == TYPE_CODE_INT
2897 || typecode == TYPE_CODE_PTR
2898 || typecode == TYPE_CODE_FLT)
2899 && len <= 4)
2900 longword_offset = mips_stack_argsize (tdep) - len;
2901 else if ((typecode == TYPE_CODE_STRUCT
2902 || typecode == TYPE_CODE_UNION)
2903 && (TYPE_LENGTH (arg_type)
2904 < mips_stack_argsize (tdep)))
2905 longword_offset = mips_stack_argsize (tdep) - len;
7a292a7a 2906 }
c5aa993b 2907
9ace0497
AC
2908 if (mips_debug)
2909 {
cb3d25d1
MS
2910 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2911 paddr_nz (stack_offset));
2912 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2913 paddr_nz (longword_offset));
9ace0497 2914 }
361d1df0 2915
9ace0497
AC
2916 addr = sp + stack_offset + longword_offset;
2917
2918 if (mips_debug)
2919 {
2920 int i;
cb3d25d1
MS
2921 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2922 paddr_nz (addr));
9ace0497
AC
2923 for (i = 0; i < partial_len; i++)
2924 {
cb3d25d1
MS
2925 fprintf_unfiltered (gdb_stdlog, "%02x",
2926 val[i] & 0xff);
9ace0497
AC
2927 }
2928 }
2929 write_memory (addr, val, partial_len);
c906108c
SS
2930 }
2931
f09ded24
AC
2932 /* Note!!! This is NOT an else clause. Odd sized
2933 structs may go thru BOTH paths. Floating point
46e0f506 2934 arguments will not. */
566f0f7a 2935 /* Write this portion of the argument to a general
46e0f506 2936 purpose register. */
f09ded24
AC
2937 if (argreg <= MIPS_LAST_ARG_REGNUM
2938 && !fp_register_arg_p (typecode, arg_type))
c906108c 2939 {
9ace0497 2940 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c 2941
9ace0497 2942 if (mips_debug)
acdb74a0 2943 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 2944 argreg,
480d3dd2 2945 phex (regval, mips_saved_regsize (tdep)));
c906108c
SS
2946 write_register (argreg, regval);
2947 argreg++;
c906108c 2948 }
c5aa993b 2949
c906108c
SS
2950 len -= partial_len;
2951 val += partial_len;
2952
566f0f7a
AC
2953 /* Compute the the offset into the stack at which we
2954 will copy the next parameter.
2955
566f0f7a 2956 In the new EABI (and the NABI32), the stack_offset
46e0f506 2957 only needs to be adjusted when it has been used. */
c906108c 2958
46e0f506 2959 if (stack_used_p)
480d3dd2
AC
2960 stack_offset += align_up (partial_len,
2961 mips_stack_argsize (tdep));
c906108c
SS
2962 }
2963 }
9ace0497
AC
2964 if (mips_debug)
2965 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2966 }
2967
310e9b6a
AC
2968 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
2969
0f71a2f6
JM
2970 /* Return adjusted stack pointer. */
2971 return sp;
2972}
2973
25ab4790 2974/* N32/N64 version of push_dummy_call. */
ebafbe83 2975
f7ab6ec6 2976static CORE_ADDR
25ab4790
AC
2977mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2978 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2979 struct value **args, CORE_ADDR sp, int struct_return,
2980 CORE_ADDR struct_addr)
cb3d25d1
MS
2981{
2982 int argreg;
2983 int float_argreg;
2984 int argnum;
2985 int len = 0;
2986 int stack_offset = 0;
480d3dd2 2987 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cb3d25d1 2988
25ab4790
AC
2989 /* For shared libraries, "t9" needs to point at the function
2990 address. */
2991 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2992
2993 /* Set the return address register to point to the entry point of
2994 the program, where a breakpoint lies in wait. */
2995 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2996
cb3d25d1
MS
2997 /* First ensure that the stack and structure return address (if any)
2998 are properly aligned. The stack has to be at least 64-bit
2999 aligned even on 32-bit machines, because doubles must be 64-bit
3000 aligned. For n32 and n64, stack frames need to be 128-bit
3001 aligned, so we round to this widest known alignment. */
3002
5b03f266
AC
3003 sp = align_down (sp, 16);
3004 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
3005
3006 /* Now make space on the stack for the args. */
3007 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 3008 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
480d3dd2 3009 mips_stack_argsize (tdep));
5b03f266 3010 sp -= align_up (len, 16);
cb3d25d1
MS
3011
3012 if (mips_debug)
3013 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3014 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
3015 paddr_nz (sp), (long) align_up (len, 16));
cb3d25d1
MS
3016
3017 /* Initialize the integer and float register pointers. */
3018 argreg = A0_REGNUM;
56cea623 3019 float_argreg = mips_fpa0_regnum (current_gdbarch);
cb3d25d1 3020
46e0f506 3021 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
3022 if (struct_return)
3023 {
3024 if (mips_debug)
3025 fprintf_unfiltered (gdb_stdlog,
25ab4790 3026 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1
MS
3027 argreg, paddr_nz (struct_addr));
3028 write_register (argreg++, struct_addr);
3029 }
3030
3031 /* Now load as many as possible of the first arguments into
3032 registers, and push the rest onto the stack. Loop thru args
3033 from first to last. */
3034 for (argnum = 0; argnum < nargs; argnum++)
3035 {
3036 char *val;
d9d9c31f 3037 char valbuf[MAX_REGISTER_SIZE];
cb3d25d1
MS
3038 struct value *arg = args[argnum];
3039 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3040 int len = TYPE_LENGTH (arg_type);
3041 enum type_code typecode = TYPE_CODE (arg_type);
3042
3043 if (mips_debug)
3044 fprintf_unfiltered (gdb_stdlog,
25ab4790 3045 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
3046 argnum + 1, len, (int) typecode);
3047
3048 val = (char *) VALUE_CONTENTS (arg);
3049
3050 if (fp_register_arg_p (typecode, arg_type)
3051 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3052 {
3053 /* This is a floating point value that fits entirely
3054 in a single register. */
3055 /* On 32 bit ABI's the float_argreg is further adjusted
3056 above to ensure that it is even register aligned. */
3057 LONGEST regval = extract_unsigned_integer (val, len);
3058 if (mips_debug)
3059 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3060 float_argreg, phex (regval, len));
3061 write_register (float_argreg++, regval);
3062
3063 if (mips_debug)
3064 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3065 argreg, phex (regval, len));
3066 write_register (argreg, regval);
3067 argreg += 1;
3068 }
3069 else
3070 {
3071 /* Copy the argument to general registers or the stack in
3072 register-sized pieces. Large arguments are split between
3073 registers and stack. */
4246e332
AC
3074 /* Note: structs whose size is not a multiple of
3075 mips_regsize() are treated specially: Irix cc passes them
3076 in registers where gcc sometimes puts them on the stack.
3077 For maximum compatibility, we will put them in both
3078 places. */
480d3dd2
AC
3079 int odd_sized_struct = ((len > mips_saved_regsize (tdep))
3080 && (len % mips_saved_regsize (tdep) != 0));
cb3d25d1
MS
3081 /* Note: Floating-point values that didn't fit into an FP
3082 register are only written to memory. */
3083 while (len > 0)
3084 {
3085 /* Rememer if the argument was written to the stack. */
3086 int stack_used_p = 0;
480d3dd2
AC
3087 int partial_len = (len < mips_saved_regsize (tdep)
3088 ? len : mips_saved_regsize (tdep));
cb3d25d1
MS
3089
3090 if (mips_debug)
3091 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3092 partial_len);
3093
3094 /* Write this portion of the argument to the stack. */
3095 if (argreg > MIPS_LAST_ARG_REGNUM
3096 || odd_sized_struct
3097 || fp_register_arg_p (typecode, arg_type))
3098 {
3099 /* Should shorter than int integer values be
3100 promoted to int before being stored? */
3101 int longword_offset = 0;
3102 CORE_ADDR addr;
3103 stack_used_p = 1;
3104 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3105 {
480d3dd2
AC
3106 if (mips_stack_argsize (tdep) == 8
3107 && (typecode == TYPE_CODE_INT
3108 || typecode == TYPE_CODE_PTR
3109 || typecode == TYPE_CODE_FLT)
3110 && len <= 4)
3111 longword_offset = mips_stack_argsize (tdep) - len;
cb3d25d1
MS
3112 }
3113
3114 if (mips_debug)
3115 {
3116 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3117 paddr_nz (stack_offset));
3118 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3119 paddr_nz (longword_offset));
3120 }
3121
3122 addr = sp + stack_offset + longword_offset;
3123
3124 if (mips_debug)
3125 {
3126 int i;
3127 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3128 paddr_nz (addr));
3129 for (i = 0; i < partial_len; i++)
3130 {
3131 fprintf_unfiltered (gdb_stdlog, "%02x",
3132 val[i] & 0xff);
3133 }
3134 }
3135 write_memory (addr, val, partial_len);
3136 }
3137
3138 /* Note!!! This is NOT an else clause. Odd sized
3139 structs may go thru BOTH paths. Floating point
3140 arguments will not. */
3141 /* Write this portion of the argument to a general
3142 purpose register. */
3143 if (argreg <= MIPS_LAST_ARG_REGNUM
3144 && !fp_register_arg_p (typecode, arg_type))
3145 {
3146 LONGEST regval = extract_unsigned_integer (val, partial_len);
3147
3148 /* A non-floating-point argument being passed in a
3149 general register. If a struct or union, and if
3150 the remaining length is smaller than the register
3151 size, we have to adjust the register value on
3152 big endian targets.
3153
3154 It does not seem to be necessary to do the
3155 same for integral types.
3156
3157 cagney/2001-07-23: gdb/179: Also, GCC, when
3158 outputting LE O32 with sizeof (struct) <
480d3dd2 3159 mips_saved_regsize(), generates a left shift as
cb3d25d1
MS
3160 part of storing the argument in a register a
3161 register (the left shift isn't generated when
480d3dd2
AC
3162 sizeof (struct) >= mips_saved_regsize()). Since
3163 it is quite possible that this is GCC
3164 contradicting the LE/O32 ABI, GDB has not been
3165 adjusted to accommodate this. Either someone
3166 needs to demonstrate that the LE/O32 ABI
3167 specifies such a left shift OR this new ABI gets
3168 identified as such and GDB gets tweaked
3169 accordingly. */
cb3d25d1
MS
3170
3171 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
480d3dd2 3172 && partial_len < mips_saved_regsize (tdep)
cb3d25d1
MS
3173 && (typecode == TYPE_CODE_STRUCT ||
3174 typecode == TYPE_CODE_UNION))
480d3dd2 3175 regval <<= ((mips_saved_regsize (tdep) - partial_len) *
cb3d25d1
MS
3176 TARGET_CHAR_BIT);
3177
3178 if (mips_debug)
3179 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3180 argreg,
480d3dd2 3181 phex (regval, mips_saved_regsize (tdep)));
cb3d25d1
MS
3182 write_register (argreg, regval);
3183 argreg++;
3184 }
3185
3186 len -= partial_len;
3187 val += partial_len;
3188
3189 /* Compute the the offset into the stack at which we
3190 will copy the next parameter.
3191
3192 In N32 (N64?), the stack_offset only needs to be
3193 adjusted when it has been used. */
3194
3195 if (stack_used_p)
480d3dd2
AC
3196 stack_offset += align_up (partial_len,
3197 mips_stack_argsize (tdep));
cb3d25d1
MS
3198 }
3199 }
3200 if (mips_debug)
3201 fprintf_unfiltered (gdb_stdlog, "\n");
3202 }
3203
310e9b6a
AC
3204 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3205
cb3d25d1
MS
3206 /* Return adjusted stack pointer. */
3207 return sp;
3208}
3209
25ab4790 3210/* O32 version of push_dummy_call. */
ebafbe83 3211
46cac009 3212static CORE_ADDR
25ab4790
AC
3213mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3214 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3215 struct value **args, CORE_ADDR sp, int struct_return,
3216 CORE_ADDR struct_addr)
ebafbe83
MS
3217{
3218 int argreg;
3219 int float_argreg;
3220 int argnum;
3221 int len = 0;
3222 int stack_offset = 0;
480d3dd2 3223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ebafbe83 3224
25ab4790
AC
3225 /* For shared libraries, "t9" needs to point at the function
3226 address. */
3227 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3228
3229 /* Set the return address register to point to the entry point of
3230 the program, where a breakpoint lies in wait. */
3231 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3232
ebafbe83
MS
3233 /* First ensure that the stack and structure return address (if any)
3234 are properly aligned. The stack has to be at least 64-bit
3235 aligned even on 32-bit machines, because doubles must be 64-bit
3236 aligned. For n32 and n64, stack frames need to be 128-bit
3237 aligned, so we round to this widest known alignment. */
3238
5b03f266
AC
3239 sp = align_down (sp, 16);
3240 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
3241
3242 /* Now make space on the stack for the args. */
3243 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 3244 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
480d3dd2 3245 mips_stack_argsize (tdep));
5b03f266 3246 sp -= align_up (len, 16);
ebafbe83
MS
3247
3248 if (mips_debug)
3249 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3250 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3251 paddr_nz (sp), (long) align_up (len, 16));
ebafbe83
MS
3252
3253 /* Initialize the integer and float register pointers. */
3254 argreg = A0_REGNUM;
56cea623 3255 float_argreg = mips_fpa0_regnum (current_gdbarch);
ebafbe83 3256
bcb0cc15 3257 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3258 if (struct_return)
3259 {
3260 if (mips_debug)
3261 fprintf_unfiltered (gdb_stdlog,
25ab4790 3262 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3263 argreg, paddr_nz (struct_addr));
3264 write_register (argreg++, struct_addr);
480d3dd2 3265 stack_offset += mips_stack_argsize (tdep);
ebafbe83
MS
3266 }
3267
3268 /* Now load as many as possible of the first arguments into
3269 registers, and push the rest onto the stack. Loop thru args
3270 from first to last. */
3271 for (argnum = 0; argnum < nargs; argnum++)
3272 {
3273 char *val;
d9d9c31f 3274 char valbuf[MAX_REGISTER_SIZE];
ebafbe83
MS
3275 struct value *arg = args[argnum];
3276 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3277 int len = TYPE_LENGTH (arg_type);
3278 enum type_code typecode = TYPE_CODE (arg_type);
3279
3280 if (mips_debug)
3281 fprintf_unfiltered (gdb_stdlog,
25ab4790 3282 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3283 argnum + 1, len, (int) typecode);
3284
3285 val = (char *) VALUE_CONTENTS (arg);
3286
3287 /* 32-bit ABIs always start floating point arguments in an
3288 even-numbered floating point register. Round the FP register
3289 up before the check to see if there are any FP registers
3290 left. O32/O64 targets also pass the FP in the integer
3291 registers so also round up normal registers. */
3292 if (!FP_REGISTER_DOUBLE
3293 && fp_register_arg_p (typecode, arg_type))
3294 {
3295 if ((float_argreg & 1))
3296 float_argreg++;
3297 }
3298
3299 /* Floating point arguments passed in registers have to be
3300 treated specially. On 32-bit architectures, doubles
3301 are passed in register pairs; the even register gets
3302 the low word, and the odd register gets the high word.
3303 On O32/O64, the first two floating point arguments are
3304 also copied to general registers, because MIPS16 functions
3305 don't use float registers for arguments. This duplication of
3306 arguments in general registers can't hurt non-MIPS16 functions
3307 because those registers are normally skipped. */
3308
3309 if (fp_register_arg_p (typecode, arg_type)
3310 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3311 {
3312 if (!FP_REGISTER_DOUBLE && len == 8)
3313 {
3314 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3315 unsigned long regval;
3316
3317 /* Write the low word of the double to the even register(s). */
3318 regval = extract_unsigned_integer (val + low_offset, 4);
3319 if (mips_debug)
3320 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3321 float_argreg, phex (regval, 4));
3322 write_register (float_argreg++, regval);
3323 if (mips_debug)
3324 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3325 argreg, phex (regval, 4));
3326 write_register (argreg++, regval);
3327
3328 /* Write the high word of the double to the odd register(s). */
3329 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3330 if (mips_debug)
3331 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3332 float_argreg, phex (regval, 4));
3333 write_register (float_argreg++, regval);
3334
3335 if (mips_debug)
3336 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3337 argreg, phex (regval, 4));
3338 write_register (argreg++, regval);
3339 }
3340 else
3341 {
3342 /* This is a floating point value that fits entirely
3343 in a single register. */
3344 /* On 32 bit ABI's the float_argreg is further adjusted
3345 above to ensure that it is even register aligned. */
3346 LONGEST regval = extract_unsigned_integer (val, len);
3347 if (mips_debug)
3348 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3349 float_argreg, phex (regval, len));
3350 write_register (float_argreg++, regval);
3351 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3352 registers for each argument. The below is (my
3353 guess) to ensure that the corresponding integer
3354 register has reserved the same space. */
3355 if (mips_debug)
3356 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3357 argreg, phex (regval, len));
3358 write_register (argreg, regval);
3359 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3360 }
3361 /* Reserve space for the FP register. */
480d3dd2 3362 stack_offset += align_up (len, mips_stack_argsize (tdep));
46cac009
AC
3363 }
3364 else
3365 {
3366 /* Copy the argument to general registers or the stack in
3367 register-sized pieces. Large arguments are split between
3368 registers and stack. */
4246e332
AC
3369 /* Note: structs whose size is not a multiple of
3370 mips_regsize() are treated specially: Irix cc passes them
3371 in registers where gcc sometimes puts them on the stack.
3372 For maximum compatibility, we will put them in both
3373 places. */
480d3dd2
AC
3374 int odd_sized_struct = ((len > mips_saved_regsize (tdep))
3375 && (len % mips_saved_regsize (tdep) != 0));
46cac009
AC
3376 /* Structures should be aligned to eight bytes (even arg registers)
3377 on MIPS_ABI_O32, if their first member has double precision. */
480d3dd2 3378 if (mips_saved_regsize (tdep) < 8
46cac009
AC
3379 && mips_type_needs_double_align (arg_type))
3380 {
3381 if ((argreg & 1))
3382 argreg++;
3383 }
3384 /* Note: Floating-point values that didn't fit into an FP
3385 register are only written to memory. */
3386 while (len > 0)
3387 {
3388 /* Remember if the argument was written to the stack. */
3389 int stack_used_p = 0;
480d3dd2
AC
3390 int partial_len = (len < mips_saved_regsize (tdep)
3391 ? len : mips_saved_regsize (tdep));
46cac009
AC
3392
3393 if (mips_debug)
3394 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3395 partial_len);
3396
3397 /* Write this portion of the argument to the stack. */
3398 if (argreg > MIPS_LAST_ARG_REGNUM
3399 || odd_sized_struct
3400 || fp_register_arg_p (typecode, arg_type))
3401 {
3402 /* Should shorter than int integer values be
3403 promoted to int before being stored? */
3404 int longword_offset = 0;
3405 CORE_ADDR addr;
3406 stack_used_p = 1;
3407 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3408 {
480d3dd2
AC
3409 if (mips_stack_argsize (tdep) == 8
3410 && (typecode == TYPE_CODE_INT
3411 || typecode == TYPE_CODE_PTR
3412 || typecode == TYPE_CODE_FLT)
3413 && len <= 4)
3414 longword_offset = mips_stack_argsize (tdep) - len;
46cac009
AC
3415 }
3416
3417 if (mips_debug)
3418 {
3419 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3420 paddr_nz (stack_offset));
3421 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3422 paddr_nz (longword_offset));
3423 }
3424
3425 addr = sp + stack_offset + longword_offset;
3426
3427 if (mips_debug)
3428 {
3429 int i;
3430 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3431 paddr_nz (addr));
3432 for (i = 0; i < partial_len; i++)
3433 {
3434 fprintf_unfiltered (gdb_stdlog, "%02x",
3435 val[i] & 0xff);
3436 }
3437 }
3438 write_memory (addr, val, partial_len);
3439 }
3440
3441 /* Note!!! This is NOT an else clause. Odd sized
3442 structs may go thru BOTH paths. Floating point
3443 arguments will not. */
3444 /* Write this portion of the argument to a general
3445 purpose register. */
3446 if (argreg <= MIPS_LAST_ARG_REGNUM
3447 && !fp_register_arg_p (typecode, arg_type))
3448 {
3449 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3450 /* Value may need to be sign extended, because
480d3dd2 3451 mips_regsize() != mips_saved_regsize(). */
46cac009
AC
3452
3453 /* A non-floating-point argument being passed in a
3454 general register. If a struct or union, and if
3455 the remaining length is smaller than the register
3456 size, we have to adjust the register value on
3457 big endian targets.
3458
3459 It does not seem to be necessary to do the
3460 same for integral types.
3461
3462 Also don't do this adjustment on O64 binaries.
3463
3464 cagney/2001-07-23: gdb/179: Also, GCC, when
3465 outputting LE O32 with sizeof (struct) <
480d3dd2 3466 mips_saved_regsize(), generates a left shift as
46cac009
AC
3467 part of storing the argument in a register a
3468 register (the left shift isn't generated when
480d3dd2
AC
3469 sizeof (struct) >= mips_saved_regsize()). Since
3470 it is quite possible that this is GCC
3471 contradicting the LE/O32 ABI, GDB has not been
3472 adjusted to accommodate this. Either someone
3473 needs to demonstrate that the LE/O32 ABI
3474 specifies such a left shift OR this new ABI gets
3475 identified as such and GDB gets tweaked
3476 accordingly. */
3477
3478 if (mips_saved_regsize (tdep) < 8
46cac009 3479 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
480d3dd2 3480 && partial_len < mips_saved_regsize (tdep)
46cac009
AC
3481 && (typecode == TYPE_CODE_STRUCT ||
3482 typecode == TYPE_CODE_UNION))
480d3dd2 3483 regval <<= ((mips_saved_regsize (tdep) - partial_len) *
46cac009
AC
3484 TARGET_CHAR_BIT);
3485
3486 if (mips_debug)
3487 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3488 argreg,
480d3dd2 3489 phex (regval, mips_saved_regsize (tdep)));
46cac009
AC
3490 write_register (argreg, regval);
3491 argreg++;
3492
3493 /* Prevent subsequent floating point arguments from
3494 being passed in floating point registers. */
3495 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3496 }
3497
3498 len -= partial_len;
3499 val += partial_len;
3500
3501 /* Compute the the offset into the stack at which we
3502 will copy the next parameter.
3503
3504 In older ABIs, the caller reserved space for
3505 registers that contained arguments. This was loosely
3506 refered to as their "home". Consequently, space is
3507 always allocated. */
3508
480d3dd2
AC
3509 stack_offset += align_up (partial_len,
3510 mips_stack_argsize (tdep));
46cac009
AC
3511 }
3512 }
3513 if (mips_debug)
3514 fprintf_unfiltered (gdb_stdlog, "\n");
3515 }
3516
310e9b6a
AC
3517 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3518
46cac009
AC
3519 /* Return adjusted stack pointer. */
3520 return sp;
3521}
3522
25ab4790 3523/* O64 version of push_dummy_call. */
46cac009
AC
3524
3525static CORE_ADDR
25ab4790
AC
3526mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3527 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3528 struct value **args, CORE_ADDR sp, int struct_return,
3529 CORE_ADDR struct_addr)
46cac009
AC
3530{
3531 int argreg;
3532 int float_argreg;
3533 int argnum;
3534 int len = 0;
3535 int stack_offset = 0;
480d3dd2 3536 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
46cac009 3537
25ab4790
AC
3538 /* For shared libraries, "t9" needs to point at the function
3539 address. */
3540 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3541
3542 /* Set the return address register to point to the entry point of
3543 the program, where a breakpoint lies in wait. */
3544 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3545
46cac009
AC
3546 /* First ensure that the stack and structure return address (if any)
3547 are properly aligned. The stack has to be at least 64-bit
3548 aligned even on 32-bit machines, because doubles must be 64-bit
3549 aligned. For n32 and n64, stack frames need to be 128-bit
3550 aligned, so we round to this widest known alignment. */
3551
5b03f266
AC
3552 sp = align_down (sp, 16);
3553 struct_addr = align_down (struct_addr, 16);
46cac009
AC
3554
3555 /* Now make space on the stack for the args. */
3556 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 3557 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
480d3dd2 3558 mips_stack_argsize (tdep));
5b03f266 3559 sp -= align_up (len, 16);
46cac009
AC
3560
3561 if (mips_debug)
3562 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3563 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3564 paddr_nz (sp), (long) align_up (len, 16));
46cac009
AC
3565
3566 /* Initialize the integer and float register pointers. */
3567 argreg = A0_REGNUM;
56cea623 3568 float_argreg = mips_fpa0_regnum (current_gdbarch);
46cac009
AC
3569
3570 /* The struct_return pointer occupies the first parameter-passing reg. */
3571 if (struct_return)
3572 {
3573 if (mips_debug)
3574 fprintf_unfiltered (gdb_stdlog,
25ab4790 3575 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009
AC
3576 argreg, paddr_nz (struct_addr));
3577 write_register (argreg++, struct_addr);
480d3dd2 3578 stack_offset += mips_stack_argsize (tdep);
46cac009
AC
3579 }
3580
3581 /* Now load as many as possible of the first arguments into
3582 registers, and push the rest onto the stack. Loop thru args
3583 from first to last. */
3584 for (argnum = 0; argnum < nargs; argnum++)
3585 {
3586 char *val;
d9d9c31f 3587 char valbuf[MAX_REGISTER_SIZE];
46cac009
AC
3588 struct value *arg = args[argnum];
3589 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3590 int len = TYPE_LENGTH (arg_type);
3591 enum type_code typecode = TYPE_CODE (arg_type);
3592
3593 if (mips_debug)
3594 fprintf_unfiltered (gdb_stdlog,
25ab4790 3595 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3596 argnum + 1, len, (int) typecode);
3597
3598 val = (char *) VALUE_CONTENTS (arg);
3599
3600 /* 32-bit ABIs always start floating point arguments in an
3601 even-numbered floating point register. Round the FP register
3602 up before the check to see if there are any FP registers
3603 left. O32/O64 targets also pass the FP in the integer
3604 registers so also round up normal registers. */
3605 if (!FP_REGISTER_DOUBLE
3606 && fp_register_arg_p (typecode, arg_type))
3607 {
3608 if ((float_argreg & 1))
3609 float_argreg++;
3610 }
3611
3612 /* Floating point arguments passed in registers have to be
3613 treated specially. On 32-bit architectures, doubles
3614 are passed in register pairs; the even register gets
3615 the low word, and the odd register gets the high word.
3616 On O32/O64, the first two floating point arguments are
3617 also copied to general registers, because MIPS16 functions
3618 don't use float registers for arguments. This duplication of
3619 arguments in general registers can't hurt non-MIPS16 functions
3620 because those registers are normally skipped. */
3621
3622 if (fp_register_arg_p (typecode, arg_type)
3623 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3624 {
3625 if (!FP_REGISTER_DOUBLE && len == 8)
3626 {
3627 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3628 unsigned long regval;
3629
3630 /* Write the low word of the double to the even register(s). */
3631 regval = extract_unsigned_integer (val + low_offset, 4);
3632 if (mips_debug)
3633 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3634 float_argreg, phex (regval, 4));
3635 write_register (float_argreg++, regval);
3636 if (mips_debug)
3637 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3638 argreg, phex (regval, 4));
3639 write_register (argreg++, regval);
3640
3641 /* Write the high word of the double to the odd register(s). */
3642 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3643 if (mips_debug)
3644 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3645 float_argreg, phex (regval, 4));
3646 write_register (float_argreg++, regval);
3647
3648 if (mips_debug)
3649 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3650 argreg, phex (regval, 4));
3651 write_register (argreg++, regval);
3652 }
3653 else
3654 {
3655 /* This is a floating point value that fits entirely
3656 in a single register. */
3657 /* On 32 bit ABI's the float_argreg is further adjusted
3658 above to ensure that it is even register aligned. */
3659 LONGEST regval = extract_unsigned_integer (val, len);
3660 if (mips_debug)
3661 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3662 float_argreg, phex (regval, len));
3663 write_register (float_argreg++, regval);
3664 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3665 registers for each argument. The below is (my
3666 guess) to ensure that the corresponding integer
3667 register has reserved the same space. */
3668 if (mips_debug)
3669 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3670 argreg, phex (regval, len));
3671 write_register (argreg, regval);
3672 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3673 }
3674 /* Reserve space for the FP register. */
480d3dd2 3675 stack_offset += align_up (len, mips_stack_argsize (tdep));
ebafbe83
MS
3676 }
3677 else
3678 {
3679 /* Copy the argument to general registers or the stack in
3680 register-sized pieces. Large arguments are split between
3681 registers and stack. */
4246e332
AC
3682 /* Note: structs whose size is not a multiple of
3683 mips_regsize() are treated specially: Irix cc passes them
3684 in registers where gcc sometimes puts them on the stack.
3685 For maximum compatibility, we will put them in both
3686 places. */
480d3dd2
AC
3687 int odd_sized_struct = ((len > mips_saved_regsize (tdep))
3688 && (len % mips_saved_regsize (tdep) != 0));
ebafbe83
MS
3689 /* Structures should be aligned to eight bytes (even arg registers)
3690 on MIPS_ABI_O32, if their first member has double precision. */
480d3dd2 3691 if (mips_saved_regsize (tdep) < 8
ebafbe83
MS
3692 && mips_type_needs_double_align (arg_type))
3693 {
3694 if ((argreg & 1))
3695 argreg++;
3696 }
3697 /* Note: Floating-point values that didn't fit into an FP
3698 register are only written to memory. */
3699 while (len > 0)
3700 {
3701 /* Remember if the argument was written to the stack. */
3702 int stack_used_p = 0;
480d3dd2
AC
3703 int partial_len = (len < mips_saved_regsize (tdep)
3704 ? len : mips_saved_regsize (tdep));
ebafbe83
MS
3705
3706 if (mips_debug)
3707 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3708 partial_len);
3709
3710 /* Write this portion of the argument to the stack. */
3711 if (argreg > MIPS_LAST_ARG_REGNUM
3712 || odd_sized_struct
3713 || fp_register_arg_p (typecode, arg_type))
3714 {
3715 /* Should shorter than int integer values be
3716 promoted to int before being stored? */
3717 int longword_offset = 0;
3718 CORE_ADDR addr;
3719 stack_used_p = 1;
3720 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3721 {
480d3dd2
AC
3722 if (mips_stack_argsize (tdep) == 8
3723 && (typecode == TYPE_CODE_INT
3724 || typecode == TYPE_CODE_PTR
3725 || typecode == TYPE_CODE_FLT)
3726 && len <= 4)
3727 longword_offset = mips_stack_argsize (tdep) - len;
ebafbe83
MS
3728 }
3729
3730 if (mips_debug)
3731 {
3732 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3733 paddr_nz (stack_offset));
3734 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3735 paddr_nz (longword_offset));
3736 }
3737
3738 addr = sp + stack_offset + longword_offset;
3739
3740 if (mips_debug)
3741 {
3742 int i;
3743 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3744 paddr_nz (addr));
3745 for (i = 0; i < partial_len; i++)
3746 {
3747 fprintf_unfiltered (gdb_stdlog, "%02x",
3748 val[i] & 0xff);
3749 }
3750 }
3751 write_memory (addr, val, partial_len);
3752 }
3753
3754 /* Note!!! This is NOT an else clause. Odd sized
3755 structs may go thru BOTH paths. Floating point
3756 arguments will not. */
3757 /* Write this portion of the argument to a general
3758 purpose register. */
3759 if (argreg <= MIPS_LAST_ARG_REGNUM
3760 && !fp_register_arg_p (typecode, arg_type))
3761 {
3762 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3763 /* Value may need to be sign extended, because
480d3dd2 3764 mips_regsize() != mips_saved_regsize(). */
ebafbe83
MS
3765
3766 /* A non-floating-point argument being passed in a
3767 general register. If a struct or union, and if
3768 the remaining length is smaller than the register
3769 size, we have to adjust the register value on
3770 big endian targets.
3771
3772 It does not seem to be necessary to do the
3773 same for integral types.
3774
3775 Also don't do this adjustment on O64 binaries.
3776
3777 cagney/2001-07-23: gdb/179: Also, GCC, when
3778 outputting LE O32 with sizeof (struct) <
480d3dd2 3779 mips_saved_regsize(), generates a left shift as
ebafbe83
MS
3780 part of storing the argument in a register a
3781 register (the left shift isn't generated when
480d3dd2
AC
3782 sizeof (struct) >= mips_saved_regsize()). Since
3783 it is quite possible that this is GCC
3784 contradicting the LE/O32 ABI, GDB has not been
3785 adjusted to accommodate this. Either someone
3786 needs to demonstrate that the LE/O32 ABI
3787 specifies such a left shift OR this new ABI gets
3788 identified as such and GDB gets tweaked
3789 accordingly. */
3790
3791 if (mips_saved_regsize (tdep) < 8
ebafbe83 3792 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
480d3dd2 3793 && partial_len < mips_saved_regsize (tdep)
ebafbe83
MS
3794 && (typecode == TYPE_CODE_STRUCT ||
3795 typecode == TYPE_CODE_UNION))
480d3dd2 3796 regval <<= ((mips_saved_regsize (tdep) - partial_len) *
ebafbe83
MS
3797 TARGET_CHAR_BIT);
3798
3799 if (mips_debug)
3800 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3801 argreg,
480d3dd2 3802 phex (regval, mips_saved_regsize (tdep)));
ebafbe83
MS
3803 write_register (argreg, regval);
3804 argreg++;
3805
3806 /* Prevent subsequent floating point arguments from
3807 being passed in floating point registers. */
3808 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3809 }
3810
3811 len -= partial_len;
3812 val += partial_len;
3813
3814 /* Compute the the offset into the stack at which we
3815 will copy the next parameter.
3816
3817 In older ABIs, the caller reserved space for
3818 registers that contained arguments. This was loosely
3819 refered to as their "home". Consequently, space is
3820 always allocated. */
3821
480d3dd2
AC
3822 stack_offset += align_up (partial_len,
3823 mips_stack_argsize (tdep));
ebafbe83
MS
3824 }
3825 }
3826 if (mips_debug)
3827 fprintf_unfiltered (gdb_stdlog, "\n");
3828 }
3829
310e9b6a
AC
3830 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3831
ebafbe83
MS
3832 /* Return adjusted stack pointer. */
3833 return sp;
3834}
3835
f7ab6ec6 3836static void
acdb74a0 3837mips_pop_frame (void)
c906108c 3838{
52f0bd74 3839 int regnum;
c906108c 3840 struct frame_info *frame = get_current_frame ();
c193f6ac 3841 CORE_ADDR new_sp = get_frame_base (frame);
e227b13c 3842 mips_extra_func_info_t proc_desc;
480d3dd2 3843 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 3844
50abf9e5 3845 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
3846 {
3847 generic_pop_dummy_frame ();
3848 flush_cached_frames ();
3849 return;
3850 }
3851
e227b13c 3852 proc_desc = get_frame_extra_info (frame)->proc_desc;
8bedc050 3853 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
e0f7ec59 3854 mips_find_saved_regs (frame);
c906108c 3855 for (regnum = 0; regnum < NUM_REGS; regnum++)
21f87145 3856 if (regnum != SP_REGNUM && regnum != PC_REGNUM
1b1d3794 3857 && deprecated_get_frame_saved_regs (frame)[regnum])
21f87145 3858 {
480d3dd2
AC
3859 /* Floating point registers must not be sign extended, in case
3860 mips_saved_regsize() = 4 but sizeof (FP0_REGNUM) == 8. */
21f87145 3861
56cea623 3862 if (mips_regnum (current_gdbarch)->fp0 <= regnum && regnum < mips_regnum (current_gdbarch)->fp0 + 32)
21f87145 3863 write_register (regnum,
1b1d3794 3864 read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum],
480d3dd2 3865 mips_saved_regsize (tdep)));
21f87145
MS
3866 else
3867 write_register (regnum,
1b1d3794 3868 read_memory_integer (deprecated_get_frame_saved_regs (frame)[regnum],
480d3dd2 3869 mips_saved_regsize (tdep)));
21f87145 3870 }
757a7cc6 3871
c906108c
SS
3872 write_register (SP_REGNUM, new_sp);
3873 flush_cached_frames ();
3874
c5aa993b 3875 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
3876 {
3877 struct linked_proc_info *pi_ptr, *prev_ptr;
3878
3879 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3880 pi_ptr != NULL;
3881 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3882 {
3883 if (&pi_ptr->info == proc_desc)
3884 break;
3885 }
3886
3887 if (pi_ptr == NULL)
3888 error ("Can't locate dummy extra frame info\n");
3889
3890 if (prev_ptr != NULL)
3891 prev_ptr->next = pi_ptr->next;
3892 else
3893 linked_proc_desc_table = pi_ptr->next;
3894
b8c9b27d 3895 xfree (pi_ptr);
c906108c 3896
56cea623 3897 write_register (mips_regnum (current_gdbarch)->hi,
480d3dd2
AC
3898 read_memory_integer ((new_sp
3899 - 2 * mips_saved_regsize (tdep)),
3900 mips_saved_regsize (tdep)));
56cea623 3901 write_register (mips_regnum (current_gdbarch)->lo,
480d3dd2
AC
3902 read_memory_integer ((new_sp
3903 - 3 * mips_saved_regsize (tdep)),
3904 mips_saved_regsize (tdep)));
c906108c 3905 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
56cea623 3906 write_register (mips_regnum (current_gdbarch)->fp_control_status,
480d3dd2
AC
3907 read_memory_integer ((new_sp
3908 - 4 * mips_saved_regsize (tdep)),
3909 mips_saved_regsize (tdep)));
c906108c
SS
3910 }
3911}
3912
dd824b04
DJ
3913/* Floating point register management.
3914
3915 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3916 64bit operations, these early MIPS cpus treat fp register pairs
3917 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3918 registers and offer a compatibility mode that emulates the MIPS2 fp
3919 model. When operating in MIPS2 fp compat mode, later cpu's split
3920 double precision floats into two 32-bit chunks and store them in
3921 consecutive fp regs. To display 64-bit floats stored in this
3922 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3923 Throw in user-configurable endianness and you have a real mess.
3924
3925 The way this works is:
3926 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3927 double-precision value will be split across two logical registers.
3928 The lower-numbered logical register will hold the low-order bits,
3929 regardless of the processor's endianness.
3930 - If we are on a 64-bit processor, and we are looking for a
3931 single-precision value, it will be in the low ordered bits
3932 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3933 save slot in memory.
3934 - If we are in 64-bit mode, everything is straightforward.
3935
3936 Note that this code only deals with "live" registers at the top of the
3937 stack. We will attempt to deal with saved registers later, when
3938 the raw/cooked register interface is in place. (We need a general
3939 interface that can deal with dynamic saved register sizes -- fp
3940 regs could be 32 bits wide in one frame and 64 on the frame above
3941 and below). */
3942
67b2c998
DJ
3943static struct type *
3944mips_float_register_type (void)
3945{
361d1df0 3946 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3947 return builtin_type_ieee_single_big;
3948 else
3949 return builtin_type_ieee_single_little;
3950}
3951
3952static struct type *
3953mips_double_register_type (void)
3954{
361d1df0 3955 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3956 return builtin_type_ieee_double_big;
3957 else
3958 return builtin_type_ieee_double_little;
3959}
3960
dd824b04
DJ
3961/* Copy a 32-bit single-precision value from the current frame
3962 into rare_buffer. */
3963
3964static void
e11c53d2
AC
3965mips_read_fp_register_single (struct frame_info *frame, int regno,
3966 char *rare_buffer)
dd824b04 3967{
719ec221 3968 int raw_size = register_size (current_gdbarch, regno);
dd824b04
DJ
3969 char *raw_buffer = alloca (raw_size);
3970
e11c53d2 3971 if (!frame_register_read (frame, regno, raw_buffer))
dd824b04
DJ
3972 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3973 if (raw_size == 8)
3974 {
3975 /* We have a 64-bit value for this register. Find the low-order
3976 32 bits. */
3977 int offset;
3978
3979 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3980 offset = 4;
3981 else
3982 offset = 0;
3983
3984 memcpy (rare_buffer, raw_buffer + offset, 4);
3985 }
3986 else
3987 {
3988 memcpy (rare_buffer, raw_buffer, 4);
3989 }
3990}
3991
3992/* Copy a 64-bit double-precision value from the current frame into
3993 rare_buffer. This may include getting half of it from the next
3994 register. */
3995
3996static void
e11c53d2
AC
3997mips_read_fp_register_double (struct frame_info *frame, int regno,
3998 char *rare_buffer)
dd824b04 3999{
719ec221 4000 int raw_size = register_size (current_gdbarch, regno);
dd824b04
DJ
4001
4002 if (raw_size == 8 && !mips2_fp_compat ())
4003 {
4004 /* We have a 64-bit value for this register, and we should use
4005 all 64 bits. */
e11c53d2 4006 if (!frame_register_read (frame, regno, rare_buffer))
dd824b04
DJ
4007 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4008 }
4009 else
4010 {
56cea623 4011 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
dd824b04
DJ
4012 internal_error (__FILE__, __LINE__,
4013 "mips_read_fp_register_double: bad access to "
4014 "odd-numbered FP register");
4015
4016 /* mips_read_fp_register_single will find the correct 32 bits from
4017 each register. */
4018 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4019 {
e11c53d2
AC
4020 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4021 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 4022 }
361d1df0 4023 else
dd824b04 4024 {
e11c53d2
AC
4025 mips_read_fp_register_single (frame, regno, rare_buffer);
4026 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
4027 }
4028 }
4029}
4030
c906108c 4031static void
e11c53d2
AC
4032mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4033 int regnum)
c5aa993b 4034{ /* do values for FP (float) regs */
dd824b04 4035 char *raw_buffer;
c906108c 4036 double doub, flt1, flt2; /* doubles extracted from raw hex data */
f0ef6b29 4037 int inv1, inv2, namelen;
c5aa993b 4038
56cea623 4039 raw_buffer = (char *) alloca (2 * register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0));
c906108c 4040
e11c53d2
AC
4041 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4042 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4043 "");
f0ef6b29 4044
719ec221 4045 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
c906108c 4046 {
f0ef6b29
KB
4047 /* 4-byte registers: Print hex and floating. Also print even
4048 numbered registers as doubles. */
e11c53d2 4049 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 4050 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4051
e11c53d2 4052 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
dd824b04 4053
e11c53d2 4054 fprintf_filtered (file, " flt: ");
1adad886 4055 if (inv1)
e11c53d2 4056 fprintf_filtered (file, " <invalid float> ");
1adad886 4057 else
e11c53d2 4058 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4059
f0ef6b29
KB
4060 if (regnum % 2 == 0)
4061 {
e11c53d2 4062 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4063 doub = unpack_double (mips_double_register_type (), raw_buffer,
4064 &inv2);
1adad886 4065
e11c53d2 4066 fprintf_filtered (file, " dbl: ");
f0ef6b29 4067 if (inv2)
e11c53d2 4068 fprintf_filtered (file, "<invalid double>");
f0ef6b29 4069 else
e11c53d2 4070 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 4071 }
c906108c
SS
4072 }
4073 else
dd824b04 4074 {
f0ef6b29 4075 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 4076 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 4077 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 4078
e11c53d2 4079 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4080 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4081
361d1df0 4082
e11c53d2 4083 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
f0ef6b29 4084
e11c53d2 4085 fprintf_filtered (file, " flt: ");
1adad886 4086 if (inv1)
e11c53d2 4087 fprintf_filtered (file, "<invalid float>");
1adad886 4088 else
e11c53d2 4089 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4090
e11c53d2 4091 fprintf_filtered (file, " dbl: ");
f0ef6b29 4092 if (inv2)
e11c53d2 4093 fprintf_filtered (file, "<invalid double>");
1adad886 4094 else
e11c53d2 4095 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
4096 }
4097}
4098
4099static void
e11c53d2
AC
4100mips_print_register (struct ui_file *file, struct frame_info *frame,
4101 int regnum, int all)
f0ef6b29 4102{
a4b8ebc8 4103 struct gdbarch *gdbarch = get_frame_arch (frame);
d9d9c31f 4104 char raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 4105 int offset;
1adad886 4106
a4b8ebc8 4107 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
f0ef6b29 4108 {
e11c53d2 4109 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
4110 return;
4111 }
4112
4113 /* Get the data in raw format. */
e11c53d2 4114 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 4115 {
e11c53d2 4116 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
f0ef6b29 4117 return;
c906108c 4118 }
f0ef6b29 4119
e11c53d2 4120 fputs_filtered (REGISTER_NAME (regnum), file);
f0ef6b29
KB
4121
4122 /* The problem with printing numeric register names (r26, etc.) is that
4123 the user can't use them on input. Probably the best solution is to
4124 fix it so that either the numeric or the funky (a2, etc.) names
4125 are accepted on input. */
4126 if (regnum < MIPS_NUMREGS)
e11c53d2 4127 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 4128 else
e11c53d2 4129 fprintf_filtered (file, ": ");
f0ef6b29
KB
4130
4131 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
719ec221 4132 offset = register_size (current_gdbarch, regnum) - register_size (current_gdbarch, regnum);
f0ef6b29
KB
4133 else
4134 offset = 0;
4135
a4b8ebc8 4136 print_scalar_formatted (raw_buffer + offset, gdbarch_register_type (gdbarch, regnum),
e11c53d2 4137 'x', 0, file);
c906108c
SS
4138}
4139
f0ef6b29
KB
4140/* Replacement for generic do_registers_info.
4141 Print regs in pretty columns. */
4142
4143static int
e11c53d2
AC
4144print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4145 int regnum)
f0ef6b29 4146{
e11c53d2
AC
4147 fprintf_filtered (file, " ");
4148 mips_print_fp_register (file, frame, regnum);
4149 fprintf_filtered (file, "\n");
f0ef6b29
KB
4150 return regnum + 1;
4151}
4152
4153
c906108c
SS
4154/* Print a row's worth of GP (int) registers, with name labels above */
4155
4156static int
e11c53d2 4157print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 4158 int start_regnum)
c906108c 4159{
a4b8ebc8 4160 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 4161 /* do values for GP (int) regs */
d9d9c31f 4162 char raw_buffer[MAX_REGISTER_SIZE];
4246e332 4163 int ncols = (mips_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
c906108c 4164 int col, byte;
a4b8ebc8 4165 int regnum;
c906108c
SS
4166
4167 /* For GP registers, we print a separate row of names above the vals */
e11c53d2 4168 fprintf_filtered (file, " ");
a4b8ebc8
AC
4169 for (col = 0, regnum = start_regnum;
4170 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4171 regnum++)
c906108c
SS
4172 {
4173 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4174 continue; /* unused register */
a4b8ebc8 4175 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c5aa993b 4176 break; /* end the row: reached FP register */
4246e332 4177 fprintf_filtered (file, mips_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
e11c53d2 4178 REGISTER_NAME (regnum));
c906108c
SS
4179 col++;
4180 }
a4b8ebc8 4181 /* print the R0 to R31 names */
20e6603c
AC
4182 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4183 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4184 else
4185 fprintf_filtered (file, "\n ");
c906108c 4186
c906108c 4187 /* now print the values in hex, 4 or 8 to the row */
a4b8ebc8
AC
4188 for (col = 0, regnum = start_regnum;
4189 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4190 regnum++)
c906108c
SS
4191 {
4192 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4193 continue; /* unused register */
a4b8ebc8 4194 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c5aa993b 4195 break; /* end row: reached FP register */
c906108c 4196 /* OK: get the data in raw format. */
e11c53d2 4197 if (!frame_register_read (frame, regnum, raw_buffer))
c906108c
SS
4198 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4199 /* pad small registers */
4246e332
AC
4200 for (byte = 0;
4201 byte < (mips_regsize (current_gdbarch)
c73e8f27 4202 - register_size (current_gdbarch, regnum));
4246e332 4203 byte++)
c906108c
SS
4204 printf_filtered (" ");
4205 /* Now print the register value in hex, endian order. */
d7449b42 4206 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
719ec221
AC
4207 for (byte = register_size (current_gdbarch, regnum) - register_size (current_gdbarch, regnum);
4208 byte < register_size (current_gdbarch, regnum);
43e526b9 4209 byte++)
e11c53d2 4210 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
c906108c 4211 else
c73e8f27 4212 for (byte = register_size (current_gdbarch, regnum) - 1;
43e526b9
JM
4213 byte >= 0;
4214 byte--)
e11c53d2
AC
4215 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4216 fprintf_filtered (file, " ");
c906108c
SS
4217 col++;
4218 }
c5aa993b 4219 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4220 fprintf_filtered (file, "\n");
c906108c
SS
4221
4222 return regnum;
4223}
4224
4225/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4226
bf1f5b4c 4227static void
e11c53d2
AC
4228mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4229 struct frame_info *frame, int regnum, int all)
c906108c 4230{
c5aa993b 4231 if (regnum != -1) /* do one specified register */
c906108c 4232 {
a4b8ebc8 4233 gdb_assert (regnum >= NUM_REGS);
c906108c
SS
4234 if (*(REGISTER_NAME (regnum)) == '\0')
4235 error ("Not a valid register for the current processor type");
4236
e11c53d2
AC
4237 mips_print_register (file, frame, regnum, 0);
4238 fprintf_filtered (file, "\n");
c906108c 4239 }
c5aa993b
JM
4240 else
4241 /* do all (or most) registers */
c906108c 4242 {
a4b8ebc8
AC
4243 regnum = NUM_REGS;
4244 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
c906108c 4245 {
a4b8ebc8 4246 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
e11c53d2
AC
4247 {
4248 if (all) /* true for "INFO ALL-REGISTERS" command */
4249 regnum = print_fp_register_row (file, frame, regnum);
4250 else
4251 regnum += MIPS_NUMREGS; /* skip floating point regs */
4252 }
c906108c 4253 else
e11c53d2 4254 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4255 }
4256 }
4257}
4258
c906108c
SS
4259/* Is this a branch with a delay slot? */
4260
a14ed312 4261static int is_delayed (unsigned long);
c906108c
SS
4262
4263static int
acdb74a0 4264is_delayed (unsigned long insn)
c906108c
SS
4265{
4266 int i;
4267 for (i = 0; i < NUMOPCODES; ++i)
4268 if (mips_opcodes[i].pinfo != INSN_MACRO
4269 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4270 break;
4271 return (i < NUMOPCODES
4272 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4273 | INSN_COND_BRANCH_DELAY
4274 | INSN_COND_BRANCH_LIKELY)));
4275}
4276
4277int
acdb74a0 4278mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
4279{
4280 char buf[MIPS_INSTLEN];
4281
4282 /* There is no branch delay slot on MIPS16. */
4283 if (pc_is_mips16 (pc))
4284 return 0;
4285
4286 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4287 /* If error reading memory, guess that it is not a delayed branch. */
4288 return 0;
c5aa993b 4289 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
4290}
4291
4292
74da7425
AC
4293/* Given PC at the function's start address, attempt to find the
4294 prologue end using SAL information. Return zero if the skip fails.
4295
4296 A non-optimized prologue traditionally has one SAL for the function
4297 and a second for the function body. A single line function has
4298 them both pointing at the same line.
4299
4300 An optimized prologue is similar but the prologue may contain
4301 instructions (SALs) from the instruction body. Need to skip those
4302 while not getting into the function body.
4303
4304 The functions end point and an increasing SAL line are used as
4305 indicators of the prologue's endpoint.
4306
4307 This code is based on the function refine_prologue_limit (versions
4308 found in both ia64 and ppc). */
4309
4310static CORE_ADDR
4311skip_prologue_using_sal (CORE_ADDR func_addr)
4312{
4313 struct symtab_and_line prologue_sal;
4314 CORE_ADDR start_pc;
4315 CORE_ADDR end_pc;
4316
4317 /* Get an initial range for the function. */
4318 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4319 start_pc += FUNCTION_START_OFFSET;
4320
4321 prologue_sal = find_pc_line (start_pc, 0);
4322 if (prologue_sal.line != 0)
4323 {
4324 while (prologue_sal.end < end_pc)
4325 {
4326 struct symtab_and_line sal;
4327
4328 sal = find_pc_line (prologue_sal.end, 0);
4329 if (sal.line == 0)
4330 break;
4331 /* Assume that a consecutive SAL for the same (or larger)
4332 line mark the prologue -> body transition. */
4333 if (sal.line >= prologue_sal.line)
4334 break;
4335 /* The case in which compiler's optimizer/scheduler has
4336 moved instructions into the prologue. We look ahead in
4337 the function looking for address ranges whose
4338 corresponding line number is less the first one that we
4339 found for the function. This is more conservative then
4340 refine_prologue_limit which scans a large number of SALs
4341 looking for any in the prologue */
4342 prologue_sal = sal;
4343 }
4344 }
4345 return prologue_sal.end;
4346}
4347
c906108c
SS
4348/* Skip the PC past function prologue instructions (32-bit version).
4349 This is a helper function for mips_skip_prologue. */
4350
4351static CORE_ADDR
f7b9e9fc 4352mips32_skip_prologue (CORE_ADDR pc)
c906108c 4353{
c5aa993b
JM
4354 t_inst inst;
4355 CORE_ADDR end_pc;
4356 int seen_sp_adjust = 0;
4357 int load_immediate_bytes = 0;
4358
74da7425
AC
4359 /* Find an upper bound on the prologue. */
4360 end_pc = skip_prologue_using_sal (pc);
4361 if (end_pc == 0)
4362 end_pc = pc + 100; /* Magic. */
4363
c5aa993b
JM
4364 /* Skip the typical prologue instructions. These are the stack adjustment
4365 instruction and the instructions that save registers on the stack
4366 or in the gcc frame. */
74da7425 4367 for (; pc < end_pc; pc += MIPS_INSTLEN)
c5aa993b
JM
4368 {
4369 unsigned long high_word;
c906108c 4370
c5aa993b
JM
4371 inst = mips_fetch_instruction (pc);
4372 high_word = (inst >> 16) & 0xffff;
c906108c 4373
c5aa993b
JM
4374 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4375 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4376 seen_sp_adjust = 1;
4377 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4378 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4379 seen_sp_adjust = 1;
4380 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4381 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4382 && (inst & 0x001F0000)) /* reg != $zero */
4383 continue;
4384
4385 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4386 continue;
4387 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4388 /* sx reg,n($s8) */
4389 continue; /* reg != $zero */
4390
4391 /* move $s8,$sp. With different versions of gas this will be either
4392 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4393 Accept any one of these. */
4394 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4395 continue;
4396
4397 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4398 continue;
4399 else if (high_word == 0x3c1c) /* lui $gp,n */
4400 continue;
4401 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4402 continue;
4403 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4404 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4405 continue;
4406 /* The following instructions load $at or $t0 with an immediate
4407 value in preparation for a stack adjustment via
4408 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4409 a local variable, so we accept them only before a stack adjustment
4410 instruction was seen. */
4411 else if (!seen_sp_adjust)
4412 {
4413 if (high_word == 0x3c01 || /* lui $at,n */
4414 high_word == 0x3c08) /* lui $t0,n */
4415 {
4416 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4417 continue;
4418 }
4419 else if (high_word == 0x3421 || /* ori $at,$at,n */
4420 high_word == 0x3508 || /* ori $t0,$t0,n */
4421 high_word == 0x3401 || /* ori $at,$zero,n */
4422 high_word == 0x3408) /* ori $t0,$zero,n */
4423 {
4424 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4425 continue;
4426 }
4427 else
4428 break;
4429 }
4430 else
4431 break;
c906108c
SS
4432 }
4433
c5aa993b
JM
4434 /* In a frameless function, we might have incorrectly
4435 skipped some load immediate instructions. Undo the skipping
4436 if the load immediate was not followed by a stack adjustment. */
4437 if (load_immediate_bytes && !seen_sp_adjust)
4438 pc -= load_immediate_bytes;
4439 return pc;
c906108c
SS
4440}
4441
4442/* Skip the PC past function prologue instructions (16-bit version).
4443 This is a helper function for mips_skip_prologue. */
4444
4445static CORE_ADDR
f7b9e9fc 4446mips16_skip_prologue (CORE_ADDR pc)
c906108c 4447{
c5aa993b
JM
4448 CORE_ADDR end_pc;
4449 int extend_bytes = 0;
4450 int prev_extend_bytes;
c906108c 4451
c5aa993b
JM
4452 /* Table of instructions likely to be found in a function prologue. */
4453 static struct
c906108c
SS
4454 {
4455 unsigned short inst;
4456 unsigned short mask;
c5aa993b
JM
4457 }
4458 table[] =
4459 {
c906108c 4460 {
c5aa993b
JM
4461 0x6300, 0xff00
4462 }
4463 , /* addiu $sp,offset */
4464 {
4465 0xfb00, 0xff00
4466 }
4467 , /* daddiu $sp,offset */
4468 {
4469 0xd000, 0xf800
4470 }
4471 , /* sw reg,n($sp) */
4472 {
4473 0xf900, 0xff00
4474 }
4475 , /* sd reg,n($sp) */
4476 {
4477 0x6200, 0xff00
4478 }
4479 , /* sw $ra,n($sp) */
4480 {
4481 0xfa00, 0xff00
4482 }
4483 , /* sd $ra,n($sp) */
4484 {
4485 0x673d, 0xffff
4486 }
4487 , /* move $s1,sp */
4488 {
4489 0xd980, 0xff80
4490 }
4491 , /* sw $a0-$a3,n($s1) */
4492 {
4493 0x6704, 0xff1c
4494 }
4495 , /* move reg,$a0-$a3 */
4496 {
4497 0xe809, 0xf81f
4498 }
4499 , /* entry pseudo-op */
4500 {
4501 0x0100, 0xff00
4502 }
4503 , /* addiu $s1,$sp,n */
4504 {
4505 0, 0
4506 } /* end of table marker */
4507 };
4508
74da7425
AC
4509 /* Find an upper bound on the prologue. */
4510 end_pc = skip_prologue_using_sal (pc);
4511 if (end_pc == 0)
4512 end_pc = pc + 100; /* Magic. */
4513
c5aa993b
JM
4514 /* Skip the typical prologue instructions. These are the stack adjustment
4515 instruction and the instructions that save registers on the stack
4516 or in the gcc frame. */
74da7425 4517 for (; pc < end_pc; pc += MIPS16_INSTLEN)
c5aa993b
JM
4518 {
4519 unsigned short inst;
4520 int i;
c906108c 4521
c5aa993b 4522 inst = mips_fetch_instruction (pc);
c906108c 4523
c5aa993b
JM
4524 /* Normally we ignore an extend instruction. However, if it is
4525 not followed by a valid prologue instruction, we must adjust
4526 the pc back over the extend so that it won't be considered
4527 part of the prologue. */
4528 if ((inst & 0xf800) == 0xf000) /* extend */
4529 {
4530 extend_bytes = MIPS16_INSTLEN;
4531 continue;
4532 }
4533 prev_extend_bytes = extend_bytes;
4534 extend_bytes = 0;
c906108c 4535
c5aa993b
JM
4536 /* Check for other valid prologue instructions besides extend. */
4537 for (i = 0; table[i].mask != 0; i++)
4538 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4539 break;
4540 if (table[i].mask != 0) /* it was in table? */
4541 continue; /* ignore it */
4542 else
4543 /* non-prologue */
4544 {
4545 /* Return the current pc, adjusted backwards by 2 if
4546 the previous instruction was an extend. */
4547 return pc - prev_extend_bytes;
4548 }
c906108c
SS
4549 }
4550 return pc;
4551}
4552
4553/* To skip prologues, I use this predicate. Returns either PC itself
4554 if the code at PC does not look like a function prologue; otherwise
4555 returns an address that (if we're lucky) follows the prologue. If
4556 LENIENT, then we must skip everything which is involved in setting
4557 up the frame (it's OK to skip more, just so long as we don't skip
4558 anything which might clobber the registers which are being saved.
4559 We must skip more in the case where part of the prologue is in the
4560 delay slot of a non-prologue instruction). */
4561
f7ab6ec6 4562static CORE_ADDR
f7b9e9fc 4563mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
4564{
4565 /* See if we can determine the end of the prologue via the symbol table.
4566 If so, then return either PC, or the PC after the prologue, whichever
4567 is greater. */
4568
4569 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4570
4571 if (post_prologue_pc != 0)
4572 return max (pc, post_prologue_pc);
4573
4574 /* Can't determine prologue from the symbol table, need to examine
4575 instructions. */
4576
4577 if (pc_is_mips16 (pc))
f7b9e9fc 4578 return mips16_skip_prologue (pc);
c906108c 4579 else
f7b9e9fc 4580 return mips32_skip_prologue (pc);
c906108c 4581}
c906108c 4582
7a292a7a
SS
4583/* Determine how a return value is stored within the MIPS register
4584 file, given the return type `valtype'. */
4585
4586struct return_value_word
4587{
4588 int len;
4589 int reg;
4590 int reg_offset;
4591 int buf_offset;
4592};
4593
7a292a7a 4594static void
acdb74a0
AC
4595return_value_location (struct type *valtype,
4596 struct return_value_word *hi,
4597 struct return_value_word *lo)
7a292a7a
SS
4598{
4599 int len = TYPE_LENGTH (valtype);
480d3dd2 4600 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c5aa993b 4601
7a292a7a
SS
4602 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4603 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4604 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4605 {
4606 if (!FP_REGISTER_DOUBLE && len == 8)
4607 {
4608 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 4609 spread them across a floating-point register pair. */
d7449b42
AC
4610 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4611 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4612 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
56cea623 4613 && register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 8)
7a292a7a
SS
4614 ? 4 : 0);
4615 hi->reg_offset = lo->reg_offset;
56cea623
AC
4616 lo->reg = mips_regnum (current_gdbarch)->fp0 + 0;
4617 hi->reg = mips_regnum (current_gdbarch)->fp0 + 1;
7a292a7a
SS
4618 lo->len = 4;
4619 hi->len = 4;
4620 }
4621 else
4622 {
4623 /* The floating point value fits in a single floating-point
c5aa993b 4624 register. */
d7449b42 4625 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
56cea623 4626 && register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 8
7a292a7a
SS
4627 && len == 4)
4628 ? 4 : 0);
56cea623 4629 lo->reg = mips_regnum (current_gdbarch)->fp0;
7a292a7a
SS
4630 lo->len = len;
4631 lo->buf_offset = 0;
4632 hi->len = 0;
4633 hi->reg_offset = 0;
4634 hi->buf_offset = 0;
4635 hi->reg = 0;
4636 }
4637 }
4638 else
4639 {
4640 /* Locate a result possibly spread across two registers. */
4641 int regnum = 2;
4642 lo->reg = regnum + 0;
4643 hi->reg = regnum + 1;
d7449b42 4644 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
480d3dd2 4645 && len < mips_saved_regsize (tdep))
7a292a7a 4646 {
bf1f5b4c 4647 /* "un-left-justify" the value in the low register */
480d3dd2 4648 lo->reg_offset = mips_saved_regsize (tdep) - len;
bcb0cc15 4649 lo->len = len;
bf1f5b4c 4650 hi->reg_offset = 0;
7a292a7a
SS
4651 hi->len = 0;
4652 }
d7449b42 4653 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
480d3dd2
AC
4654 && len > mips_saved_regsize (tdep) /* odd-size structs */
4655 && len < mips_saved_regsize (tdep) * 2
7a292a7a
SS
4656 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4657 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4658 {
4659 /* "un-left-justify" the value spread across two registers. */
480d3dd2
AC
4660 lo->reg_offset = 2 * mips_saved_regsize (tdep) - len;
4661 lo->len = mips_saved_regsize (tdep) - lo->reg_offset;
7a292a7a
SS
4662 hi->reg_offset = 0;
4663 hi->len = len - lo->len;
4664 }
4665 else
4666 {
4667 /* Only perform a partial copy of the second register. */
4668 lo->reg_offset = 0;
4669 hi->reg_offset = 0;
480d3dd2 4670 if (len > mips_saved_regsize (tdep))
7a292a7a 4671 {
480d3dd2
AC
4672 lo->len = mips_saved_regsize (tdep);
4673 hi->len = len - mips_saved_regsize (tdep);
7a292a7a
SS
4674 }
4675 else
4676 {
4677 lo->len = len;
4678 hi->len = 0;
4679 }
4680 }
d7449b42 4681 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
719ec221 4682 && register_size (current_gdbarch, regnum) == 8
480d3dd2 4683 && mips_saved_regsize (tdep) == 4)
7a292a7a
SS
4684 {
4685 /* Account for the fact that only the least-signficant part
c5aa993b 4686 of the register is being used */
7a292a7a
SS
4687 lo->reg_offset += 4;
4688 hi->reg_offset += 4;
4689 }
4690 lo->buf_offset = 0;
4691 hi->buf_offset = lo->len;
4692 }
4693}
4694
4695/* Given a return value in `regbuf' with a type `valtype', extract and
4696 copy its value into `valbuf'. */
4697
46cac009
AC
4698static void
4699mips_eabi_extract_return_value (struct type *valtype,
b8b527c5 4700 char regbuf[],
46cac009
AC
4701 char *valbuf)
4702{
4703 struct return_value_word lo;
4704 struct return_value_word hi;
4705 return_value_location (valtype, &hi, &lo);
4706
4707 memcpy (valbuf + lo.buf_offset,
78c63a3b 4708 regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + lo.reg) + lo.reg_offset,
46cac009
AC
4709 lo.len);
4710
4711 if (hi.len > 0)
4712 memcpy (valbuf + hi.buf_offset,
78c63a3b 4713 regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + hi.reg) + hi.reg_offset,
46cac009
AC
4714 hi.len);
4715}
4716
46cac009
AC
4717static void
4718mips_o64_extract_return_value (struct type *valtype,
b8b527c5 4719 char regbuf[],
46cac009
AC
4720 char *valbuf)
4721{
4722 struct return_value_word lo;
4723 struct return_value_word hi;
4724 return_value_location (valtype, &hi, &lo);
4725
4726 memcpy (valbuf + lo.buf_offset,
78c63a3b 4727 regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + lo.reg) + lo.reg_offset,
46cac009
AC
4728 lo.len);
4729
4730 if (hi.len > 0)
4731 memcpy (valbuf + hi.buf_offset,
78c63a3b 4732 regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + hi.reg) + hi.reg_offset,
46cac009
AC
4733 hi.len);
4734}
4735
7a292a7a
SS
4736/* Given a return value in `valbuf' with a type `valtype', write it's
4737 value into the appropriate register. */
4738
46cac009
AC
4739static void
4740mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4741{
d9d9c31f 4742 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4743 struct return_value_word lo;
4744 struct return_value_word hi;
4745 return_value_location (valtype, &hi, &lo);
4746
4747 memset (raw_buffer, 0, sizeof (raw_buffer));
4748 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
62700349 4749 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
719ec221 4750 register_size (current_gdbarch, lo.reg));
46cac009
AC
4751
4752 if (hi.len > 0)
4753 {
4754 memset (raw_buffer, 0, sizeof (raw_buffer));
4755 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
62700349 4756 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
719ec221 4757 register_size (current_gdbarch, hi.reg));
46cac009
AC
4758 }
4759}
4760
4761static void
cb1d2653 4762mips_o64_store_return_value (struct type *valtype, char *valbuf)
46cac009 4763{
d9d9c31f 4764 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4765 struct return_value_word lo;
4766 struct return_value_word hi;
4767 return_value_location (valtype, &hi, &lo);
4768
4769 memset (raw_buffer, 0, sizeof (raw_buffer));
4770 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
62700349 4771 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
719ec221 4772 register_size (current_gdbarch, lo.reg));
46cac009
AC
4773
4774 if (hi.len > 0)
4775 {
4776 memset (raw_buffer, 0, sizeof (raw_buffer));
4777 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
62700349 4778 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
719ec221 4779 register_size (current_gdbarch, hi.reg));
46cac009
AC
4780 }
4781}
4782
cb1d2653
AC
4783/* O32 ABI stuff. */
4784
29dfb2ac
AC
4785static enum return_value_convention
4786mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
4787 struct regcache *regcache,
4788 void *readbuf, const void *writebuf)
46cac009 4789{
cb1d2653 4790 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
29dfb2ac
AC
4791
4792 if (TYPE_CODE (type)== TYPE_CODE_STRUCT
4793 || TYPE_CODE (type)== TYPE_CODE_UNION
4794 || TYPE_CODE (type)== TYPE_CODE_ARRAY)
4795 return RETURN_VALUE_STRUCT_CONVENTION;
4796 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4797 && TYPE_LENGTH (type) == 4
4798 && tdep->mips_fpu_type != MIPS_FPU_NONE)
46cac009 4799 {
cb1d2653
AC
4800 /* A single-precision floating-point value. It fits in the
4801 least significant part of FP0. */
4802 if (mips_debug)
4803 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
29dfb2ac
AC
4804 mips_xfer_register (regcache,
4805 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
4806 TYPE_LENGTH (type),
4807 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4808 return RETURN_VALUE_REGISTER_CONVENTION;
cb1d2653
AC
4809 }
4810 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4811 && TYPE_LENGTH (type) == 8
4812 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4813 {
a4b8ebc8
AC
4814 /* A double-precision floating-point value. The most
4815 significant part goes in FP1, and the least significant in
4816 FP0. */
cb1d2653 4817 if (mips_debug)
a4b8ebc8 4818 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
cb1d2653
AC
4819 switch (TARGET_BYTE_ORDER)
4820 {
4821 case BFD_ENDIAN_LITTLE:
29dfb2ac
AC
4822 mips_xfer_register (regcache,
4823 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 0,
4824 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4825 mips_xfer_register (regcache,
4826 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 1,
4827 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
cb1d2653
AC
4828 break;
4829 case BFD_ENDIAN_BIG:
29dfb2ac
AC
4830 mips_xfer_register (regcache,
4831 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 1,
4832 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4833 mips_xfer_register (regcache,
4834 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 0,
4835 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
cb1d2653
AC
4836 break;
4837 default:
4838 internal_error (__FILE__, __LINE__, "bad switch");
4839 }
29dfb2ac 4840 return RETURN_VALUE_REGISTER_CONVENTION;
cb1d2653
AC
4841 }
4842#if 0
4843 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4844 && TYPE_NFIELDS (type) <= 2
4845 && TYPE_NFIELDS (type) >= 1
4846 && ((TYPE_NFIELDS (type) == 1
4847 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4848 == TYPE_CODE_FLT))
4849 || (TYPE_NFIELDS (type) == 2
4850 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4851 == TYPE_CODE_FLT)
4852 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4853 == TYPE_CODE_FLT)))
4854 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4855 {
4856 /* A struct that contains one or two floats. Each value is part
4857 in the least significant part of their floating point
4858 register.. */
d9d9c31f 4859 bfd_byte reg[MAX_REGISTER_SIZE];
cb1d2653
AC
4860 int regnum;
4861 int field;
56cea623 4862 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
cb1d2653
AC
4863 field < TYPE_NFIELDS (type);
4864 field++, regnum += 2)
4865 {
4866 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4867 / TARGET_CHAR_BIT);
4868 if (mips_debug)
4869 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
a4b8ebc8
AC
4870 mips_xfer_register (regcache, NUM_REGS + regnum,
4871 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
29dfb2ac 4872 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
cb1d2653 4873 }
29dfb2ac 4874 return RETURN_VALUE_REGISTER_CONVENTION;
cb1d2653
AC
4875 }
4876#endif
4877#if 0
4878 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4879 || TYPE_CODE (type) == TYPE_CODE_UNION)
4880 {
4881 /* A structure or union. Extract the left justified value,
4882 regardless of the byte order. I.e. DO NOT USE
4883 mips_xfer_lower. */
4884 int offset;
4885 int regnum;
4886 for (offset = 0, regnum = V0_REGNUM;
4887 offset < TYPE_LENGTH (type);
719ec221 4888 offset += register_size (current_gdbarch, regnum), regnum++)
cb1d2653 4889 {
719ec221 4890 int xfer = register_size (current_gdbarch, regnum);
cb1d2653
AC
4891 if (offset + xfer > TYPE_LENGTH (type))
4892 xfer = TYPE_LENGTH (type) - offset;
4893 if (mips_debug)
4894 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4895 offset, xfer, regnum);
a4b8ebc8 4896 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
29dfb2ac 4897 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
cb1d2653 4898 }
29dfb2ac 4899 return RETURN_VALUE_REGISTER_CONVENTION;
cb1d2653
AC
4900 }
4901#endif
4902 else
4903 {
4904 /* A scalar extract each part but least-significant-byte
4905 justified. o32 thinks registers are 4 byte, regardless of
4906 the ISA. mips_stack_argsize controls this. */
4907 int offset;
4908 int regnum;
4909 for (offset = 0, regnum = V0_REGNUM;
4910 offset < TYPE_LENGTH (type);
480d3dd2 4911 offset += mips_stack_argsize (tdep), regnum++)
cb1d2653 4912 {
480d3dd2 4913 int xfer = mips_stack_argsize (tdep);
cb1d2653
AC
4914 int pos = 0;
4915 if (offset + xfer > TYPE_LENGTH (type))
4916 xfer = TYPE_LENGTH (type) - offset;
4917 if (mips_debug)
4918 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4919 offset, xfer, regnum);
a4b8ebc8 4920 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
29dfb2ac 4921 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
cb1d2653 4922 }
29dfb2ac 4923 return RETURN_VALUE_REGISTER_CONVENTION;
46cac009
AC
4924 }
4925}
4926
cb1d2653
AC
4927/* N32/N44 ABI stuff. */
4928
29dfb2ac
AC
4929static enum return_value_convention
4930mips_n32n64_return_value (struct gdbarch *gdbarch,
4931 struct type *type, struct regcache *regcache,
4932 void *readbuf, const void *writebuf)
c906108c 4933{
88658117 4934 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
29dfb2ac
AC
4935 if (TYPE_CODE (type)== TYPE_CODE_STRUCT
4936 || TYPE_CODE (type)== TYPE_CODE_UNION
4937 || TYPE_CODE (type)== TYPE_CODE_ARRAY
480d3dd2 4938 || TYPE_LENGTH (type) > 2 * mips_saved_regsize (tdep))
29dfb2ac
AC
4939 return RETURN_VALUE_STRUCT_CONVENTION;
4940 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4941 && tdep->mips_fpu_type != MIPS_FPU_NONE)
7a292a7a 4942 {
88658117
AC
4943 /* A floating-point value belongs in the least significant part
4944 of FP0. */
4945 if (mips_debug)
4946 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
29dfb2ac
AC
4947 mips_xfer_register (regcache,
4948 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
4949 TYPE_LENGTH (type),
4950 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4951 return RETURN_VALUE_REGISTER_CONVENTION;
88658117
AC
4952 }
4953 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4954 && TYPE_NFIELDS (type) <= 2
4955 && TYPE_NFIELDS (type) >= 1
4956 && ((TYPE_NFIELDS (type) == 1
4957 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4958 == TYPE_CODE_FLT))
4959 || (TYPE_NFIELDS (type) == 2
4960 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4961 == TYPE_CODE_FLT)
4962 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4963 == TYPE_CODE_FLT)))
4964 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4965 {
4966 /* A struct that contains one or two floats. Each value is part
4967 in the least significant part of their floating point
4968 register.. */
d9d9c31f 4969 bfd_byte reg[MAX_REGISTER_SIZE];
88658117
AC
4970 int regnum;
4971 int field;
56cea623 4972 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
88658117
AC
4973 field < TYPE_NFIELDS (type);
4974 field++, regnum += 2)
4975 {
4976 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4977 / TARGET_CHAR_BIT);
4978 if (mips_debug)
4979 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
a4b8ebc8
AC
4980 mips_xfer_register (regcache, NUM_REGS + regnum,
4981 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
29dfb2ac 4982 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
88658117 4983 }
29dfb2ac 4984 return RETURN_VALUE_REGISTER_CONVENTION;
7a292a7a 4985 }
88658117
AC
4986 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4987 || TYPE_CODE (type) == TYPE_CODE_UNION)
4988 {
4989 /* A structure or union. Extract the left justified value,
4990 regardless of the byte order. I.e. DO NOT USE
4991 mips_xfer_lower. */
4992 int offset;
4993 int regnum;
4994 for (offset = 0, regnum = V0_REGNUM;
4995 offset < TYPE_LENGTH (type);
719ec221 4996 offset += register_size (current_gdbarch, regnum), regnum++)
88658117 4997 {
719ec221 4998 int xfer = register_size (current_gdbarch, regnum);
88658117
AC
4999 if (offset + xfer > TYPE_LENGTH (type))
5000 xfer = TYPE_LENGTH (type) - offset;
5001 if (mips_debug)
5002 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5003 offset, xfer, regnum);
a4b8ebc8 5004 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
29dfb2ac 5005 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
88658117 5006 }
29dfb2ac 5007 return RETURN_VALUE_REGISTER_CONVENTION;
88658117
AC
5008 }
5009 else
5010 {
5011 /* A scalar extract each part but least-significant-byte
5012 justified. */
5013 int offset;
5014 int regnum;
5015 for (offset = 0, regnum = V0_REGNUM;
5016 offset < TYPE_LENGTH (type);
719ec221 5017 offset += register_size (current_gdbarch, regnum), regnum++)
88658117 5018 {
719ec221 5019 int xfer = register_size (current_gdbarch, regnum);
88658117
AC
5020 int pos = 0;
5021 if (offset + xfer > TYPE_LENGTH (type))
5022 xfer = TYPE_LENGTH (type) - offset;
5023 if (mips_debug)
5024 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5025 offset, xfer, regnum);
a4b8ebc8 5026 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
29dfb2ac 5027 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
88658117 5028 }
29dfb2ac 5029 return RETURN_VALUE_REGISTER_CONVENTION;
88658117
AC
5030 }
5031}
5032
c906108c
SS
5033/* Exported procedure: Is PC in the signal trampoline code */
5034
102182a9
MS
5035static int
5036mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
5037{
5038 if (sigtramp_address == 0)
5039 fixup_sigtramp ();
5040 return (pc >= sigtramp_address && pc < sigtramp_end);
5041}
5042
a5ea2558
AC
5043/* Root of all "set mips "/"show mips " commands. This will eventually be
5044 used for all MIPS-specific commands. */
5045
a5ea2558 5046static void
acdb74a0 5047show_mips_command (char *args, int from_tty)
a5ea2558
AC
5048{
5049 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
5050}
5051
a5ea2558 5052static void
acdb74a0 5053set_mips_command (char *args, int from_tty)
a5ea2558
AC
5054{
5055 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
5056 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5057}
5058
c906108c
SS
5059/* Commands to show/set the MIPS FPU type. */
5060
c906108c 5061static void
acdb74a0 5062show_mipsfpu_command (char *args, int from_tty)
c906108c 5063{
c906108c
SS
5064 char *fpu;
5065 switch (MIPS_FPU_TYPE)
5066 {
5067 case MIPS_FPU_SINGLE:
5068 fpu = "single-precision";
5069 break;
5070 case MIPS_FPU_DOUBLE:
5071 fpu = "double-precision";
5072 break;
5073 case MIPS_FPU_NONE:
5074 fpu = "absent (none)";
5075 break;
93d56215
AC
5076 default:
5077 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
5078 }
5079 if (mips_fpu_type_auto)
5080 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5081 fpu);
5082 else
5083 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5084 fpu);
5085}
5086
5087
c906108c 5088static void
acdb74a0 5089set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
5090{
5091 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5092 show_mipsfpu_command (args, from_tty);
5093}
5094
c906108c 5095static void
acdb74a0 5096set_mipsfpu_single_command (char *args, int from_tty)
c906108c 5097{
8d5838b5
AC
5098 struct gdbarch_info info;
5099 gdbarch_info_init (&info);
c906108c
SS
5100 mips_fpu_type = MIPS_FPU_SINGLE;
5101 mips_fpu_type_auto = 0;
8d5838b5
AC
5102 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
5103 instead of relying on globals. Doing that would let generic code
5104 handle the search for this specific architecture. */
5105 if (!gdbarch_update_p (info))
5106 internal_error (__FILE__, __LINE__, "set mipsfpu failed");
c906108c
SS
5107}
5108
c906108c 5109static void
acdb74a0 5110set_mipsfpu_double_command (char *args, int from_tty)
c906108c 5111{
8d5838b5
AC
5112 struct gdbarch_info info;
5113 gdbarch_info_init (&info);
c906108c
SS
5114 mips_fpu_type = MIPS_FPU_DOUBLE;
5115 mips_fpu_type_auto = 0;
8d5838b5
AC
5116 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
5117 instead of relying on globals. Doing that would let generic code
5118 handle the search for this specific architecture. */
5119 if (!gdbarch_update_p (info))
5120 internal_error (__FILE__, __LINE__, "set mipsfpu failed");
c906108c
SS
5121}
5122
c906108c 5123static void
acdb74a0 5124set_mipsfpu_none_command (char *args, int from_tty)
c906108c 5125{
8d5838b5
AC
5126 struct gdbarch_info info;
5127 gdbarch_info_init (&info);
c906108c
SS
5128 mips_fpu_type = MIPS_FPU_NONE;
5129 mips_fpu_type_auto = 0;
8d5838b5
AC
5130 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
5131 instead of relying on globals. Doing that would let generic code
5132 handle the search for this specific architecture. */
5133 if (!gdbarch_update_p (info))
5134 internal_error (__FILE__, __LINE__, "set mipsfpu failed");
c906108c
SS
5135}
5136
c906108c 5137static void
acdb74a0 5138set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
5139{
5140 mips_fpu_type_auto = 1;
5141}
5142
c906108c 5143/* Attempt to identify the particular processor model by reading the
691c0433
AC
5144 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
5145 the relevant processor still exists (it dates back to '94) and
5146 secondly this is not the way to do this. The processor type should
5147 be set by forcing an architecture change. */
c906108c 5148
691c0433
AC
5149void
5150deprecated_mips_set_processor_regs_hack (void)
c906108c 5151{
691c0433 5152 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
5153 CORE_ADDR prid;
5154
5155 prid = read_register (PRID_REGNUM);
5156
5157 if ((prid & ~0xf) == 0x700)
691c0433 5158 tdep->mips_processor_reg_names = mips_r3041_reg_names;
c906108c
SS
5159}
5160
5161/* Just like reinit_frame_cache, but with the right arguments to be
5162 callable as an sfunc. */
5163
5164static void
acdb74a0
AC
5165reinit_frame_cache_sfunc (char *args, int from_tty,
5166 struct cmd_list_element *c)
c906108c
SS
5167{
5168 reinit_frame_cache ();
5169}
5170
a89aa300
AC
5171static int
5172gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 5173{
e5ab0dce 5174 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
5175 mips_extra_func_info_t proc_desc;
5176
5177 /* Search for the function containing this address. Set the low bit
5178 of the address when searching, in case we were given an even address
5179 that is the start of a 16-bit function. If we didn't do this,
5180 the search would fail because the symbol table says the function
5181 starts at an odd address, i.e. 1 byte past the given address. */
5182 memaddr = ADDR_BITS_REMOVE (memaddr);
95404a3e 5183 proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
c906108c
SS
5184
5185 /* Make an attempt to determine if this is a 16-bit function. If
5186 the procedure descriptor exists and the address therein is odd,
5187 it's definitely a 16-bit function. Otherwise, we have to just
5188 guess that if the address passed in is odd, it's 16-bits. */
d31431ed
AC
5189 /* FIXME: cagney/2003-06-26: Is this even necessary? The
5190 disassembler needs to be able to locally determine the ISA, and
5191 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
5192 work. */
c906108c 5193 if (proc_desc)
d31431ed
AC
5194 {
5195 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
5196 info->mach = bfd_mach_mips16;
5197 }
c906108c 5198 else
d31431ed
AC
5199 {
5200 if (pc_is_mips16 (memaddr))
5201 info->mach = bfd_mach_mips16;
5202 }
c906108c
SS
5203
5204 /* Round down the instruction address to the appropriate boundary. */
65c11066 5205 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 5206
e5ab0dce
AC
5207 /* Set the disassembler options. */
5208 if (tdep->mips_abi == MIPS_ABI_N32
5209 || tdep->mips_abi == MIPS_ABI_N64)
5210 {
5211 /* Set up the disassembler info, so that we get the right
5212 register names from libopcodes. */
5213 if (tdep->mips_abi == MIPS_ABI_N32)
5214 info->disassembler_options = "gpr-names=n32";
5215 else
5216 info->disassembler_options = "gpr-names=64";
5217 info->flavour = bfd_target_elf_flavour;
5218 }
5219 else
5220 /* This string is not recognized explicitly by the disassembler,
5221 but it tells the disassembler to not try to guess the ABI from
5222 the bfd elf headers, such that, if the user overrides the ABI
5223 of a program linked as NewABI, the disassembly will follow the
5224 register naming conventions specified by the user. */
5225 info->disassembler_options = "gpr-names=32";
5226
c906108c 5227 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 5228 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5229 return print_insn_big_mips (memaddr, info);
5230 else
5231 return print_insn_little_mips (memaddr, info);
5232}
5233
c906108c
SS
5234/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5235 counter value to determine whether a 16- or 32-bit breakpoint should be
5236 used. It returns a pointer to a string of bytes that encode a breakpoint
5237 instruction, stores the length of the string to *lenptr, and adjusts pc
5238 (if necessary) to point to the actual memory location where the
5239 breakpoint should be inserted. */
5240
f7ab6ec6 5241static const unsigned char *
acdb74a0 5242mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c 5243{
d7449b42 5244 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5245 {
5246 if (pc_is_mips16 (*pcptr))
5247 {
aaab4dba 5248 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
95404a3e 5249 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 5250 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
5251 return mips16_big_breakpoint;
5252 }
5253 else
5254 {
aaab4dba
AC
5255 /* The IDT board uses an unusual breakpoint value, and
5256 sometimes gets confused when it sees the usual MIPS
5257 breakpoint instruction. */
5258 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5259 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5260 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
c906108c 5261
c5aa993b 5262 *lenptr = sizeof (big_breakpoint);
c906108c
SS
5263
5264 if (strcmp (target_shortname, "mips") == 0)
5265 return idt_big_breakpoint;
5266 else if (strcmp (target_shortname, "ddb") == 0
5267 || strcmp (target_shortname, "pmon") == 0
5268 || strcmp (target_shortname, "lsi") == 0)
5269 return pmon_big_breakpoint;
5270 else
5271 return big_breakpoint;
5272 }
5273 }
5274 else
5275 {
5276 if (pc_is_mips16 (*pcptr))
5277 {
aaab4dba 5278 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
95404a3e 5279 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 5280 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
5281 return mips16_little_breakpoint;
5282 }
5283 else
5284 {
aaab4dba
AC
5285 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5286 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5287 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
c906108c 5288
c5aa993b 5289 *lenptr = sizeof (little_breakpoint);
c906108c
SS
5290
5291 if (strcmp (target_shortname, "mips") == 0)
5292 return idt_little_breakpoint;
5293 else if (strcmp (target_shortname, "ddb") == 0
5294 || strcmp (target_shortname, "pmon") == 0
5295 || strcmp (target_shortname, "lsi") == 0)
5296 return pmon_little_breakpoint;
5297 else
5298 return little_breakpoint;
5299 }
5300 }
5301}
5302
5303/* If PC is in a mips16 call or return stub, return the address of the target
5304 PC, which is either the callee or the caller. There are several
5305 cases which must be handled:
5306
5307 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 5308 target PC is in $31 ($ra).
c906108c 5309 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 5310 and the target PC is in $2.
c906108c 5311 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5312 before the jal instruction, this is effectively a call stub
5313 and the the target PC is in $2. Otherwise this is effectively
5314 a return stub and the target PC is in $18.
c906108c
SS
5315
5316 See the source code for the stubs in gcc/config/mips/mips16.S for
5317 gory details.
5318
5319 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 5320 */
c906108c 5321
757a7cc6 5322static CORE_ADDR
acdb74a0 5323mips_skip_stub (CORE_ADDR pc)
c906108c
SS
5324{
5325 char *name;
5326 CORE_ADDR start_addr;
5327
5328 /* Find the starting address and name of the function containing the PC. */
5329 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5330 return 0;
5331
5332 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5333 target PC is in $31 ($ra). */
5334 if (strcmp (name, "__mips16_ret_sf") == 0
5335 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 5336 return read_signed_register (RA_REGNUM);
c906108c
SS
5337
5338 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5339 {
5340 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5341 and the target PC is in $2. */
5342 if (name[19] >= '0' && name[19] <= '9')
6c997a34 5343 return read_signed_register (2);
c906108c
SS
5344
5345 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5346 before the jal instruction, this is effectively a call stub
5347 and the the target PC is in $2. Otherwise this is effectively
5348 a return stub and the target PC is in $18. */
c906108c
SS
5349 else if (name[19] == 's' || name[19] == 'd')
5350 {
5351 if (pc == start_addr)
5352 {
5353 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
5354 stub. Such a stub for a function bar might have a name
5355 like __fn_stub_bar, and might look like this:
5356 mfc1 $4,$f13
5357 mfc1 $5,$f12
5358 mfc1 $6,$f15
5359 mfc1 $7,$f14
5360 la $1,bar (becomes a lui/addiu pair)
5361 jr $1
5362 So scan down to the lui/addi and extract the target
5363 address from those two instructions. */
c906108c 5364
6c997a34 5365 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
5366 t_inst inst;
5367 int i;
5368
5369 /* See if the name of the target function is __fn_stub_*. */
5370 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5371 return target_pc;
5372 if (strncmp (name, "__fn_stub_", 10) != 0
5373 && strcmp (name, "etext") != 0
5374 && strcmp (name, "_etext") != 0)
5375 return target_pc;
5376
5377 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
5378 The limit on the search is arbitrarily set to 20
5379 instructions. FIXME. */
c906108c
SS
5380 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5381 {
c5aa993b
JM
5382 inst = mips_fetch_instruction (target_pc);
5383 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5384 pc = (inst << 16) & 0xffff0000; /* high word */
5385 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5386 return pc | (inst & 0xffff); /* low word */
c906108c
SS
5387 }
5388
5389 /* Couldn't find the lui/addui pair, so return stub address. */
5390 return target_pc;
5391 }
5392 else
5393 /* This is the 'return' part of a call stub. The return
5394 address is in $r18. */
6c997a34 5395 return read_signed_register (18);
c906108c
SS
5396 }
5397 }
c5aa993b 5398 return 0; /* not a stub */
c906108c
SS
5399}
5400
5401
5402/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5403 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5404
757a7cc6 5405static int
acdb74a0 5406mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
5407{
5408 CORE_ADDR start_addr;
5409
5410 /* Find the starting address of the function containing the PC. If the
5411 caller didn't give us a name, look it up at the same time. */
5412 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5413 return 0;
5414
5415 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5416 {
5417 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5418 if (name[19] >= '0' && name[19] <= '9')
5419 return 1;
5420 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 5421 before the jal instruction, this is effectively a call stub. */
c906108c
SS
5422 else if (name[19] == 's' || name[19] == 'd')
5423 return pc == start_addr;
5424 }
5425
c5aa993b 5426 return 0; /* not a stub */
c906108c
SS
5427}
5428
5429
5430/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5431 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5432
e41b17f0 5433static int
acdb74a0 5434mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
5435{
5436 CORE_ADDR start_addr;
5437
5438 /* Find the starting address of the function containing the PC. */
5439 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5440 return 0;
5441
5442 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5443 if (strcmp (name, "__mips16_ret_sf") == 0
5444 || strcmp (name, "__mips16_ret_df") == 0)
5445 return 1;
5446
5447 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 5448 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
5449 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5450 && (name[19] == 's' || name[19] == 'd')
5451 && pc != start_addr)
5452 return 1;
5453
c5aa993b 5454 return 0; /* not a stub */
c906108c
SS
5455}
5456
5457
5458/* Return non-zero if the PC is in a library helper function that should
5459 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5460
5461int
acdb74a0 5462mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
5463{
5464 char *name;
5465
5466 /* Find the starting address and name of the function containing the PC. */
5467 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5468 return 0;
5469
5470 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5471 that we want to ignore. */
5472 return (strcmp (name, "__mips16_ret_sf") == 0
5473 || strcmp (name, "__mips16_ret_df") == 0);
5474}
5475
5476
47a8d4ba
AC
5477/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5478 the register stored on the stack (32) is different to its real raw
5479 size (64). The below ensures that registers are fetched from the
5480 stack using their ABI size and then stored into the RAW_BUFFER
5481 using their raw size.
5482
5483 The alternative to adding this function would be to add an ABI
5484 macro - REGISTER_STACK_SIZE(). */
5485
5486static void
acdb74a0 5487mips_get_saved_register (char *raw_buffer,
795e1e11 5488 int *optimizedp,
acdb74a0
AC
5489 CORE_ADDR *addrp,
5490 struct frame_info *frame,
5491 int regnum,
795e1e11 5492 enum lval_type *lvalp)
47a8d4ba 5493{
795e1e11
AC
5494 CORE_ADDR addrx;
5495 enum lval_type lvalx;
5496 int optimizedx;
6e51443a 5497 int realnumx;
47a8d4ba 5498
a4b8ebc8
AC
5499 /* Always a pseudo. */
5500 gdb_assert (regnum >= NUM_REGS);
47a8d4ba 5501
795e1e11
AC
5502 /* Make certain that all needed parameters are present. */
5503 if (addrp == NULL)
5504 addrp = &addrx;
5505 if (lvalp == NULL)
5506 lvalp = &lvalx;
5507 if (optimizedp == NULL)
5508 optimizedp = &optimizedx;
a4b8ebc8
AC
5509
5510 if ((regnum % NUM_REGS) == SP_REGNUM)
5511 /* The SP_REGNUM is special, its value is stored in saved_regs.
5512 In fact, it is so special that it can even only be fetched
5513 using a raw register number! Once this code as been converted
5514 to frame-unwind the problem goes away. */
5515 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5516 regnum % NUM_REGS, optimizedp, lvalp, addrp,
5517 &realnumx, raw_buffer);
5518 else
5519 /* Get it from the next frame. */
5520 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5521 regnum, optimizedp, lvalp, addrp,
5522 &realnumx, raw_buffer);
47a8d4ba 5523}
2acceee2 5524
f7b9e9fc
AC
5525/* Immediately after a function call, return the saved pc.
5526 Can't always go through the frames for this because on some machines
5527 the new frame is not set up until the new function executes
5528 some instructions. */
5529
5530static CORE_ADDR
5531mips_saved_pc_after_call (struct frame_info *frame)
5532{
6c997a34 5533 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
5534}
5535
5536
a4b8ebc8
AC
5537/* Convert a dbx stab register number (from `r' declaration) to a GDB
5538 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
5539
5540static int
5541mips_stab_reg_to_regnum (int num)
5542{
a4b8ebc8 5543 int regnum;
2f38ef89 5544 if (num >= 0 && num < 32)
a4b8ebc8 5545 regnum = num;
2f38ef89 5546 else if (num >= 38 && num < 70)
56cea623 5547 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
040b99fd 5548 else if (num == 70)
56cea623 5549 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 5550 else if (num == 71)
56cea623 5551 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 5552 else
a4b8ebc8
AC
5553 /* This will hopefully (eventually) provoke a warning. Should
5554 we be calling complaint() here? */
5555 return NUM_REGS + NUM_PSEUDO_REGS;
5556 return NUM_REGS + regnum;
88c72b7d
AC
5557}
5558
2f38ef89 5559
a4b8ebc8
AC
5560/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5561 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
5562
5563static int
2f38ef89 5564mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 5565{
a4b8ebc8 5566 int regnum;
2f38ef89 5567 if (num >= 0 && num < 32)
a4b8ebc8 5568 regnum = num;
2f38ef89 5569 else if (num >= 32 && num < 64)
56cea623 5570 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
040b99fd 5571 else if (num == 64)
56cea623 5572 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 5573 else if (num == 65)
56cea623 5574 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 5575 else
a4b8ebc8
AC
5576 /* This will hopefully (eventually) provoke a warning. Should we
5577 be calling complaint() here? */
5578 return NUM_REGS + NUM_PSEUDO_REGS;
5579 return NUM_REGS + regnum;
5580}
5581
5582static int
5583mips_register_sim_regno (int regnum)
5584{
5585 /* Only makes sense to supply raw registers. */
5586 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
5587 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5588 decide if it is valid. Should instead define a standard sim/gdb
5589 register numbering scheme. */
5590 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
5591 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
5592 return regnum;
5593 else
5594 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
5595}
5596
2f38ef89 5597
fc0c74b1
AC
5598/* Convert an integer into an address. By first converting the value
5599 into a pointer and then extracting it signed, the address is
5600 guarenteed to be correctly sign extended. */
5601
5602static CORE_ADDR
5603mips_integer_to_address (struct type *type, void *buf)
5604{
5605 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5606 LONGEST val = unpack_long (type, buf);
5607 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5608 return extract_signed_integer (tmp,
5609 TYPE_LENGTH (builtin_type_void_data_ptr));
5610}
5611
caaa3122
DJ
5612static void
5613mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5614{
5615 enum mips_abi *abip = (enum mips_abi *) obj;
5616 const char *name = bfd_get_section_name (abfd, sect);
5617
5618 if (*abip != MIPS_ABI_UNKNOWN)
5619 return;
5620
5621 if (strncmp (name, ".mdebug.", 8) != 0)
5622 return;
5623
5624 if (strcmp (name, ".mdebug.abi32") == 0)
5625 *abip = MIPS_ABI_O32;
5626 else if (strcmp (name, ".mdebug.abiN32") == 0)
5627 *abip = MIPS_ABI_N32;
62a49b2c 5628 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 5629 *abip = MIPS_ABI_N64;
caaa3122
DJ
5630 else if (strcmp (name, ".mdebug.abiO64") == 0)
5631 *abip = MIPS_ABI_O64;
5632 else if (strcmp (name, ".mdebug.eabi32") == 0)
5633 *abip = MIPS_ABI_EABI32;
5634 else if (strcmp (name, ".mdebug.eabi64") == 0)
5635 *abip = MIPS_ABI_EABI64;
5636 else
5637 warning ("unsupported ABI %s.", name + 8);
5638}
5639
2e4ebe70
DJ
5640static enum mips_abi
5641global_mips_abi (void)
5642{
5643 int i;
5644
5645 for (i = 0; mips_abi_strings[i] != NULL; i++)
5646 if (mips_abi_strings[i] == mips_abi_string)
5647 return (enum mips_abi) i;
5648
5649 internal_error (__FILE__, __LINE__,
5650 "unknown ABI string");
5651}
5652
c2d11a7d 5653static struct gdbarch *
acdb74a0
AC
5654mips_gdbarch_init (struct gdbarch_info info,
5655 struct gdbarch_list *arches)
c2d11a7d 5656{
c2d11a7d
JM
5657 struct gdbarch *gdbarch;
5658 struct gdbarch_tdep *tdep;
5659 int elf_flags;
2e4ebe70 5660 enum mips_abi mips_abi, found_abi, wanted_abi;
a4b8ebc8 5661 int num_regs;
8d5838b5 5662 enum mips_fpu_type fpu_type;
c2d11a7d 5663
ec03c1ac
AC
5664 /* First of all, extract the elf_flags, if available. */
5665 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5666 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
5667 else if (arches != NULL)
5668 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
5669 else
5670 elf_flags = 0;
5671 if (gdbarch_debug)
5672 fprintf_unfiltered (gdb_stdlog,
5673 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5674 elf_flags);
c2d11a7d 5675
102182a9 5676 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5677 switch ((elf_flags & EF_MIPS_ABI))
5678 {
5679 case E_MIPS_ABI_O32:
ec03c1ac 5680 found_abi = MIPS_ABI_O32;
0dadbba0
AC
5681 break;
5682 case E_MIPS_ABI_O64:
ec03c1ac 5683 found_abi = MIPS_ABI_O64;
0dadbba0
AC
5684 break;
5685 case E_MIPS_ABI_EABI32:
ec03c1ac 5686 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
5687 break;
5688 case E_MIPS_ABI_EABI64:
ec03c1ac 5689 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5690 break;
5691 default:
acdb74a0 5692 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 5693 found_abi = MIPS_ABI_N32;
acdb74a0 5694 else
ec03c1ac 5695 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5696 break;
5697 }
acdb74a0 5698
caaa3122 5699 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
5700 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5701 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 5702
ec03c1ac
AC
5703 /* If we have no usefu BFD information, use the ABI from the last
5704 MIPS architecture (if there is one). */
5705 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5706 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 5707
32a6503c 5708 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 5709 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
5710 && info.bfd_arch_info != NULL
5711 && info.bfd_arch_info->arch == bfd_arch_mips)
5712 {
5713 switch (info.bfd_arch_info->mach)
5714 {
5715 case bfd_mach_mips3900:
ec03c1ac 5716 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
5717 break;
5718 case bfd_mach_mips4100:
5719 case bfd_mach_mips5000:
ec03c1ac 5720 found_abi = MIPS_ABI_EABI64;
bf64bfd6 5721 break;
1d06468c
EZ
5722 case bfd_mach_mips8000:
5723 case bfd_mach_mips10000:
32a6503c
KB
5724 /* On Irix, ELF64 executables use the N64 ABI. The
5725 pseudo-sections which describe the ABI aren't present
5726 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5727 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5728 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 5729 found_abi = MIPS_ABI_N64;
28d169de 5730 else
ec03c1ac 5731 found_abi = MIPS_ABI_N32;
1d06468c 5732 break;
bf64bfd6
AC
5733 }
5734 }
2e4ebe70 5735
ec03c1ac
AC
5736 if (gdbarch_debug)
5737 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5738 found_abi);
5739
5740 /* What has the user specified from the command line? */
5741 wanted_abi = global_mips_abi ();
5742 if (gdbarch_debug)
5743 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5744 wanted_abi);
2e4ebe70
DJ
5745
5746 /* Now that we have found what the ABI for this binary would be,
5747 check whether the user is overriding it. */
2e4ebe70
DJ
5748 if (wanted_abi != MIPS_ABI_UNKNOWN)
5749 mips_abi = wanted_abi;
ec03c1ac
AC
5750 else if (found_abi != MIPS_ABI_UNKNOWN)
5751 mips_abi = found_abi;
5752 else
5753 mips_abi = MIPS_ABI_O32;
5754 if (gdbarch_debug)
5755 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5756 mips_abi);
2e4ebe70 5757
ec03c1ac 5758 /* Also used when doing an architecture lookup. */
4b9b3959 5759 if (gdbarch_debug)
ec03c1ac
AC
5760 fprintf_unfiltered (gdb_stdlog,
5761 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5762 mips64_transfers_32bit_regs_p);
0dadbba0 5763
8d5838b5
AC
5764 /* Determine the MIPS FPU type. */
5765 if (!mips_fpu_type_auto)
5766 fpu_type = mips_fpu_type;
5767 else if (info.bfd_arch_info != NULL
5768 && info.bfd_arch_info->arch == bfd_arch_mips)
5769 switch (info.bfd_arch_info->mach)
5770 {
5771 case bfd_mach_mips3900:
5772 case bfd_mach_mips4100:
5773 case bfd_mach_mips4111:
5774 fpu_type = MIPS_FPU_NONE;
5775 break;
5776 case bfd_mach_mips4650:
5777 fpu_type = MIPS_FPU_SINGLE;
5778 break;
5779 default:
5780 fpu_type = MIPS_FPU_DOUBLE;
5781 break;
5782 }
5783 else if (arches != NULL)
5784 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5785 else
5786 fpu_type = MIPS_FPU_DOUBLE;
5787 if (gdbarch_debug)
5788 fprintf_unfiltered (gdb_stdlog,
5789 "mips_gdbarch_init: fpu_type = %d\n",
5790 fpu_type);
5791
c2d11a7d
JM
5792 /* try to find a pre-existing architecture */
5793 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5794 arches != NULL;
5795 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5796 {
5797 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5798 using. */
9103eae0 5799 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5800 continue;
9103eae0 5801 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5802 continue;
719ec221
AC
5803 /* Need to be pedantic about which register virtual size is
5804 used. */
5805 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5806 != mips64_transfers_32bit_regs_p)
5807 continue;
8d5838b5
AC
5808 /* Be pedantic about which FPU is selected. */
5809 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5810 continue;
4be87837 5811 return arches->gdbarch;
c2d11a7d
JM
5812 }
5813
102182a9 5814 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5815 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5816 gdbarch = gdbarch_alloc (&info, tdep);
5817 tdep->elf_flags = elf_flags;
719ec221 5818 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
5819 tdep->found_abi = found_abi;
5820 tdep->mips_abi = mips_abi;
8d5838b5 5821 tdep->mips_fpu_type = fpu_type;
c2d11a7d 5822
102182a9 5823 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5824 set_gdbarch_short_bit (gdbarch, 16);
5825 set_gdbarch_int_bit (gdbarch, 32);
5826 set_gdbarch_float_bit (gdbarch, 32);
5827 set_gdbarch_double_bit (gdbarch, 64);
5828 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
5829 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5830 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5831 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 5832
f7ab6ec6
MS
5833 set_gdbarch_elf_make_msymbol_special (gdbarch,
5834 mips_elf_make_msymbol_special);
5835
16e109ca 5836 /* Fill in the OS dependant register numbers and names. */
56cea623 5837 {
16e109ca 5838 const char **reg_names;
56cea623
AC
5839 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5840 struct mips_regnum);
56cea623
AC
5841 if (info.osabi == GDB_OSABI_IRIX)
5842 {
5843 regnum->fp0 = 32;
5844 regnum->pc = 64;
5845 regnum->cause = 65;
5846 regnum->badvaddr = 66;
5847 regnum->hi = 67;
5848 regnum->lo = 68;
5849 regnum->fp_control_status = 69;
5850 regnum->fp_implementation_revision = 70;
5851 num_regs = 71;
16e109ca 5852 reg_names = mips_irix_reg_names;
56cea623
AC
5853 }
5854 else
5855 {
5856 regnum->lo = MIPS_EMBED_LO_REGNUM;
5857 regnum->hi = MIPS_EMBED_HI_REGNUM;
5858 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5859 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5860 regnum->pc = MIPS_EMBED_PC_REGNUM;
5861 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5862 regnum->fp_control_status = 70;
5863 regnum->fp_implementation_revision = 71;
5864 num_regs = 90;
16e109ca
AC
5865 if (info.bfd_arch_info != NULL
5866 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5867 reg_names = mips_tx39_reg_names;
5868 else
5869 reg_names = mips_generic_reg_names;
56cea623
AC
5870 }
5871 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
5872 replaced by read_pc? */
5873 set_gdbarch_pc_regnum (gdbarch, regnum->pc);
5874 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5875 set_gdbarch_num_regs (gdbarch, num_regs);
5876 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
16e109ca
AC
5877 set_gdbarch_register_name (gdbarch, mips_register_name);
5878 tdep->mips_processor_reg_names = reg_names;
5879 tdep->regnum = regnum;
56cea623 5880 }
fe29b929 5881
0dadbba0 5882 switch (mips_abi)
c2d11a7d 5883 {
0dadbba0 5884 case MIPS_ABI_O32:
25ab4790 5885 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 5886 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
a5ea2558 5887 tdep->mips_default_saved_regsize = 4;
0dadbba0 5888 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5889 tdep->mips_fp_register_double = 0;
acdb74a0 5890 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
56cea623 5891 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 5892 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5893 set_gdbarch_long_bit (gdbarch, 32);
5894 set_gdbarch_ptr_bit (gdbarch, 32);
5895 set_gdbarch_long_long_bit (gdbarch, 64);
5896 break;
0dadbba0 5897 case MIPS_ABI_O64:
25ab4790 5898 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
ebba8386 5899 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
46cac009 5900 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
a5ea2558 5901 tdep->mips_default_saved_regsize = 8;
0dadbba0 5902 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5903 tdep->mips_fp_register_double = 1;
acdb74a0 5904 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
56cea623 5905 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 5906 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5907 set_gdbarch_long_bit (gdbarch, 32);
5908 set_gdbarch_ptr_bit (gdbarch, 32);
5909 set_gdbarch_long_long_bit (gdbarch, 64);
b060cbea 5910 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
c2d11a7d 5911 break;
0dadbba0 5912 case MIPS_ABI_EABI32:
25ab4790 5913 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
ebba8386 5914 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5915 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5916 tdep->mips_default_saved_regsize = 4;
0dadbba0 5917 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5918 tdep->mips_fp_register_double = 0;
acdb74a0 5919 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
56cea623 5920 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5921 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5922 set_gdbarch_long_bit (gdbarch, 32);
5923 set_gdbarch_ptr_bit (gdbarch, 32);
5924 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5925 set_gdbarch_deprecated_reg_struct_has_addr
5926 (gdbarch, mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5927 set_gdbarch_use_struct_convention (gdbarch,
5928 mips_eabi_use_struct_convention);
c2d11a7d 5929 break;
0dadbba0 5930 case MIPS_ABI_EABI64:
25ab4790 5931 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
ebba8386 5932 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5933 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5934 tdep->mips_default_saved_regsize = 8;
0dadbba0 5935 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5936 tdep->mips_fp_register_double = 1;
acdb74a0 5937 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
56cea623 5938 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5939 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5940 set_gdbarch_long_bit (gdbarch, 64);
5941 set_gdbarch_ptr_bit (gdbarch, 64);
5942 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5943 set_gdbarch_deprecated_reg_struct_has_addr
5944 (gdbarch, mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5945 set_gdbarch_use_struct_convention (gdbarch,
5946 mips_eabi_use_struct_convention);
c2d11a7d 5947 break;
0dadbba0 5948 case MIPS_ABI_N32:
25ab4790 5949 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5950 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
63db5580 5951 tdep->mips_default_saved_regsize = 8;
0dadbba0
AC
5952 tdep->mips_default_stack_argsize = 8;
5953 tdep->mips_fp_register_double = 1;
acdb74a0 5954 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
56cea623 5955 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5956 tdep->default_mask_address_p = 0;
0dadbba0
AC
5957 set_gdbarch_long_bit (gdbarch, 32);
5958 set_gdbarch_ptr_bit (gdbarch, 32);
5959 set_gdbarch_long_long_bit (gdbarch, 64);
28d169de
KB
5960 break;
5961 case MIPS_ABI_N64:
25ab4790 5962 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5963 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
28d169de
KB
5964 tdep->mips_default_saved_regsize = 8;
5965 tdep->mips_default_stack_argsize = 8;
5966 tdep->mips_fp_register_double = 1;
5967 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
56cea623 5968 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
5969 tdep->default_mask_address_p = 0;
5970 set_gdbarch_long_bit (gdbarch, 64);
5971 set_gdbarch_ptr_bit (gdbarch, 64);
5972 set_gdbarch_long_long_bit (gdbarch, 64);
0dadbba0 5973 break;
c2d11a7d 5974 default:
2e4ebe70
DJ
5975 internal_error (__FILE__, __LINE__,
5976 "unknown ABI in switch");
c2d11a7d
JM
5977 }
5978
a5ea2558
AC
5979 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5980 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5981 comment:
5982
5983 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5984 flag in object files because to do so would make it impossible to
102182a9 5985 link with libraries compiled without "-gp32". This is
a5ea2558 5986 unnecessarily restrictive.
361d1df0 5987
a5ea2558
AC
5988 We could solve this problem by adding "-gp32" multilibs to gcc,
5989 but to set this flag before gcc is built with such multilibs will
5990 break too many systems.''
5991
5992 But even more unhelpfully, the default linker output target for
5993 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5994 for 64-bit programs - you need to change the ABI to change this,
102182a9 5995 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5996 this flag to detect 32-bit mode would do the wrong thing given
5997 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5998 as 32-bit programs by default. */
a5ea2558 5999
6c997a34 6000 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d 6001 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
0ba6dca9 6002 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
bcb0cc15 6003 set_gdbarch_read_sp (gdbarch, mips_read_sp);
c2d11a7d 6004
102182a9
MS
6005 /* Add/remove bits from an address. The MIPS needs be careful to
6006 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
6007 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
6008
10312cc4 6009 /* There's a mess in stack frame creation. See comments in
2ca6c561
AC
6010 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
6011 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
10312cc4 6012
102182a9 6013 /* Map debug register numbers onto internal register numbers. */
88c72b7d 6014 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
2f38ef89
KB
6015 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6016 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6017 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 6018 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 6019
c2d11a7d 6020 /* Initialize a frame */
e0f7ec59 6021 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
e9582e71 6022 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
c2d11a7d
JM
6023
6024 /* MIPS version of CALL_DUMMY */
6025
9710e734
AC
6026 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
6027 replaced by a command, and all targets will default to on stack
6028 (regardless of the stack's execute status). */
6029 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
749b82f6 6030 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
dc604539 6031 set_gdbarch_frame_align (gdbarch, mips_frame_align);
a59fe496 6032 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
d05285fa 6033
618ce49f 6034 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
b5d1566e
MS
6035 set_gdbarch_frameless_function_invocation (gdbarch,
6036 generic_frameless_function_invocation_not);
8bedc050 6037 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
b5d1566e
MS
6038 set_gdbarch_frame_args_skip (gdbarch, 0);
6039
129c1cd6 6040 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 6041
f7b9e9fc
AC
6042 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6043 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6044 set_gdbarch_decr_pc_after_break (gdbarch, 0);
f7b9e9fc
AC
6045
6046 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6913c89a 6047 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
f7b9e9fc 6048
fc0c74b1
AC
6049 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6050 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6051 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 6052
102182a9
MS
6053 set_gdbarch_function_start_offset (gdbarch, 0);
6054
a4b8ebc8 6055 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 6056
e11c53d2 6057 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
102182a9 6058 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
bf1f5b4c 6059
e5ab0dce
AC
6060 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
6061
3a3bc038
AC
6062 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
6063 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
6064 need to all be folded into the target vector. Since they are
6065 being used as guards for STOPPED_BY_WATCHPOINT, why not have
6066 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
6067 is sitting on? */
6068 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6069
70f80edf 6070 /* Hook in OS ABI-specific overrides, if they have been registered. */
4be87837 6071 gdbarch_init_osabi (info, gdbarch);
70f80edf 6072
757a7cc6
MS
6073 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6074
6075 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
e41b17f0 6076 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
757a7cc6 6077
4b9b3959
AC
6078 return gdbarch;
6079}
6080
2e4ebe70
DJ
6081static void
6082mips_abi_update (char *ignore_args, int from_tty,
6083 struct cmd_list_element *c)
6084{
6085 struct gdbarch_info info;
6086
6087 /* Force the architecture to update, and (if it's a MIPS architecture)
6088 mips_gdbarch_init will take care of the rest. */
6089 gdbarch_info_init (&info);
6090 gdbarch_update_p (info);
6091}
6092
ad188201
KB
6093/* Print out which MIPS ABI is in use. */
6094
6095static void
6096show_mips_abi (char *ignore_args, int from_tty)
6097{
6098 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6099 printf_filtered (
6100 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6101 else
6102 {
6103 enum mips_abi global_abi = global_mips_abi ();
6104 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6105 const char *actual_abi_str = mips_abi_strings[actual_abi];
6106
6107 if (global_abi == MIPS_ABI_UNKNOWN)
6108 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6109 actual_abi_str);
6110 else if (global_abi == actual_abi)
6111 printf_filtered (
6112 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6113 actual_abi_str);
6114 else
6115 {
6116 /* Probably shouldn't happen... */
6117 printf_filtered (
6118 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6119 actual_abi_str,
6120 mips_abi_strings[global_abi]);
6121 }
6122 }
6123}
6124
4b9b3959
AC
6125static void
6126mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6127{
6128 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6129 if (tdep != NULL)
c2d11a7d 6130 {
acdb74a0
AC
6131 int ef_mips_arch;
6132 int ef_mips_32bitmode;
6133 /* determine the ISA */
6134 switch (tdep->elf_flags & EF_MIPS_ARCH)
6135 {
6136 case E_MIPS_ARCH_1:
6137 ef_mips_arch = 1;
6138 break;
6139 case E_MIPS_ARCH_2:
6140 ef_mips_arch = 2;
6141 break;
6142 case E_MIPS_ARCH_3:
6143 ef_mips_arch = 3;
6144 break;
6145 case E_MIPS_ARCH_4:
93d56215 6146 ef_mips_arch = 4;
acdb74a0
AC
6147 break;
6148 default:
93d56215 6149 ef_mips_arch = 0;
acdb74a0
AC
6150 break;
6151 }
6152 /* determine the size of a pointer */
6153 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
6154 fprintf_unfiltered (file,
6155 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 6156 tdep->elf_flags);
4b9b3959 6157 fprintf_unfiltered (file,
acdb74a0
AC
6158 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6159 ef_mips_32bitmode);
6160 fprintf_unfiltered (file,
6161 "mips_dump_tdep: ef_mips_arch = %d\n",
6162 ef_mips_arch);
6163 fprintf_unfiltered (file,
6164 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6165 tdep->mips_abi,
2e4ebe70 6166 mips_abi_strings[tdep->mips_abi]);
4014092b
AC
6167 fprintf_unfiltered (file,
6168 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
480d3dd2 6169 mips_mask_address_p (tdep),
4014092b 6170 tdep->default_mask_address_p);
c2d11a7d 6171 }
4b9b3959
AC
6172 fprintf_unfiltered (file,
6173 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6174 FP_REGISTER_DOUBLE);
6175 fprintf_unfiltered (file,
6176 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6177 MIPS_DEFAULT_FPU_TYPE,
6178 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6179 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6180 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6181 : "???"));
6182 fprintf_unfiltered (file,
6183 "mips_dump_tdep: MIPS_EABI = %d\n",
6184 MIPS_EABI);
4b9b3959
AC
6185 fprintf_unfiltered (file,
6186 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6187 MIPS_FPU_TYPE,
6188 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6189 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6190 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6191 : "???"));
4b9b3959
AC
6192 fprintf_unfiltered (file,
6193 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6194 FP_REGISTER_DOUBLE);
4b9b3959 6195 fprintf_unfiltered (file,
480d3dd2
AC
6196 "mips_dump_tdep: mips_stack_argsize() = %d\n",
6197 mips_stack_argsize (tdep));
2475bac3
AC
6198 fprintf_unfiltered (file,
6199 "mips_dump_tdep: A0_REGNUM = %d\n",
6200 A0_REGNUM);
6201 fprintf_unfiltered (file,
6202 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6203 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6204 fprintf_unfiltered (file,
6205 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6206 XSTRING (ATTACH_DETACH));
2475bac3
AC
6207 fprintf_unfiltered (file,
6208 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6209 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6210 fprintf_unfiltered (file,
6211 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6212 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
2475bac3
AC
6213 fprintf_unfiltered (file,
6214 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6215 FIRST_EMBED_REGNUM);
2475bac3
AC
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6218 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
6219 fprintf_unfiltered (file,
6220 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6221 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6222 fprintf_unfiltered (file,
6223 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6224 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
2475bac3
AC
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6227 LAST_EMBED_REGNUM);
2475bac3
AC
6228#ifdef MACHINE_CPROC_FP_OFFSET
6229 fprintf_unfiltered (file,
6230 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6231 MACHINE_CPROC_FP_OFFSET);
6232#endif
6233#ifdef MACHINE_CPROC_PC_OFFSET
6234 fprintf_unfiltered (file,
6235 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6236 MACHINE_CPROC_PC_OFFSET);
6237#endif
6238#ifdef MACHINE_CPROC_SP_OFFSET
6239 fprintf_unfiltered (file,
6240 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6241 MACHINE_CPROC_SP_OFFSET);
6242#endif
2475bac3
AC
6243 fprintf_unfiltered (file,
6244 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6245 MIPS16_INSTLEN);
2475bac3
AC
6246 fprintf_unfiltered (file,
6247 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6248 fprintf_unfiltered (file,
6249 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6250 fprintf_unfiltered (file,
6251 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6252 MIPS_INSTLEN);
6253 fprintf_unfiltered (file,
acdb74a0
AC
6254 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6255 MIPS_LAST_ARG_REGNUM,
6256 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
6257 fprintf_unfiltered (file,
6258 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6259 MIPS_NUMREGS);
2475bac3 6260 fprintf_unfiltered (file,
480d3dd2
AC
6261 "mips_dump_tdep: mips_saved_regsize() = %d\n",
6262 mips_saved_regsize (tdep));
2475bac3
AC
6263 fprintf_unfiltered (file,
6264 "mips_dump_tdep: PRID_REGNUM = %d\n",
6265 PRID_REGNUM);
2475bac3
AC
6266 fprintf_unfiltered (file,
6267 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6268 fprintf_unfiltered (file,
6269 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6270 fprintf_unfiltered (file,
6271 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6272 fprintf_unfiltered (file,
6273 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6274 fprintf_unfiltered (file,
6275 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6276 fprintf_unfiltered (file,
6277 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6278 fprintf_unfiltered (file,
6279 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6280 fprintf_unfiltered (file,
6281 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6282 fprintf_unfiltered (file,
6283 "mips_dump_tdep: PROC_PC_REG = function?\n");
6284 fprintf_unfiltered (file,
6285 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6286 fprintf_unfiltered (file,
6287 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6288 fprintf_unfiltered (file,
6289 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6290 fprintf_unfiltered (file,
6291 "mips_dump_tdep: PS_REGNUM = %d\n",
6292 PS_REGNUM);
2475bac3
AC
6293 fprintf_unfiltered (file,
6294 "mips_dump_tdep: RA_REGNUM = %d\n",
6295 RA_REGNUM);
2475bac3
AC
6296#ifdef SAVED_BYTES
6297 fprintf_unfiltered (file,
6298 "mips_dump_tdep: SAVED_BYTES = %d\n",
6299 SAVED_BYTES);
6300#endif
6301#ifdef SAVED_FP
6302 fprintf_unfiltered (file,
6303 "mips_dump_tdep: SAVED_FP = %d\n",
6304 SAVED_FP);
6305#endif
6306#ifdef SAVED_PC
6307 fprintf_unfiltered (file,
6308 "mips_dump_tdep: SAVED_PC = %d\n",
6309 SAVED_PC);
6310#endif
6311 fprintf_unfiltered (file,
6312 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6313 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6314 fprintf_unfiltered (file,
6315 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6316 fprintf_unfiltered (file,
6317 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6318 SIGFRAME_BASE);
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6321 SIGFRAME_FPREGSAVE_OFF);
6322 fprintf_unfiltered (file,
6323 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6324 SIGFRAME_PC_OFF);
6325 fprintf_unfiltered (file,
6326 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6327 SIGFRAME_REGSAVE_OFF);
2475bac3
AC
6328 fprintf_unfiltered (file,
6329 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6330 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6331 fprintf_unfiltered (file,
6332 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6333 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6334 fprintf_unfiltered (file,
b0ed3589
AC
6335 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6336 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
6337 fprintf_unfiltered (file,
6338 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6339 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6340#ifdef STACK_END_ADDR
6341 fprintf_unfiltered (file,
6342 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6343 STACK_END_ADDR);
6344#endif
6345 fprintf_unfiltered (file,
6346 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6347 XSTRING (STEP_SKIPS_DELAY (PC)));
6348 fprintf_unfiltered (file,
6349 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6350 STEP_SKIPS_DELAY_P);
6351 fprintf_unfiltered (file,
6352 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6353 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6354 fprintf_unfiltered (file,
6355 "mips_dump_tdep: T9_REGNUM = %d\n",
6356 T9_REGNUM);
6357 fprintf_unfiltered (file,
6358 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6359 fprintf_unfiltered (file,
6360 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6361 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6362 fprintf_unfiltered (file,
6363 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6364 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
2475bac3
AC
6365#ifdef TRACE_CLEAR
6366 fprintf_unfiltered (file,
6367 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6368 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6369#endif
6370#ifdef TRACE_FLAVOR
6371 fprintf_unfiltered (file,
6372 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6373 TRACE_FLAVOR);
6374#endif
6375#ifdef TRACE_FLAVOR_SIZE
6376 fprintf_unfiltered (file,
6377 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6378 TRACE_FLAVOR_SIZE);
6379#endif
6380#ifdef TRACE_SET
6381 fprintf_unfiltered (file,
6382 "mips_dump_tdep: TRACE_SET # %s\n",
6383 XSTRING (TRACE_SET (X,STATE)));
6384#endif
2475bac3
AC
6385#ifdef UNUSED_REGNUM
6386 fprintf_unfiltered (file,
6387 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6388 UNUSED_REGNUM);
6389#endif
6390 fprintf_unfiltered (file,
6391 "mips_dump_tdep: V0_REGNUM = %d\n",
6392 V0_REGNUM);
6393 fprintf_unfiltered (file,
6394 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6395 (long) VM_MIN_ADDRESS);
2475bac3
AC
6396 fprintf_unfiltered (file,
6397 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6398 ZERO_REGNUM);
6399 fprintf_unfiltered (file,
6400 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6401 _PROC_MAGIC_);
c2d11a7d
JM
6402}
6403
a78f21af
AC
6404extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6405
c906108c 6406void
acdb74a0 6407_initialize_mips_tdep (void)
c906108c
SS
6408{
6409 static struct cmd_list_element *mipsfpulist = NULL;
6410 struct cmd_list_element *c;
6411
2e4ebe70
DJ
6412 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6413 if (MIPS_ABI_LAST + 1
6414 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6415 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6416
4b9b3959 6417 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 6418
a5ea2558
AC
6419 /* Add root prefix command for all "set mips"/"show mips" commands */
6420 add_prefix_cmd ("mips", no_class, set_mips_command,
6421 "Various MIPS specific commands.",
6422 &setmipscmdlist, "set mips ", 0, &setlist);
6423
6424 add_prefix_cmd ("mips", no_class, show_mips_command,
6425 "Various MIPS specific commands.",
6426 &showmipscmdlist, "show mips ", 0, &showlist);
6427
6428 /* Allow the user to override the saved register size. */
6429 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
6430 class_obscure,
6431 size_enums,
6432 &mips_saved_regsize_string, "\
a5ea2558
AC
6433Set size of general purpose registers saved on the stack.\n\
6434This option can be set to one of:\n\
6435 32 - Force GDB to treat saved GP registers as 32-bit\n\
6436 64 - Force GDB to treat saved GP registers as 64-bit\n\
6437 auto - Allow GDB to use the target's default setting or autodetect the\n\
6438 saved GP register size from information contained in the executable.\n\
6439 (default: auto)",
1ed2a135 6440 &setmipscmdlist),
a5ea2558
AC
6441 &showmipscmdlist);
6442
d929b26f
AC
6443 /* Allow the user to override the argument stack size. */
6444 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6445 class_obscure,
6446 size_enums,
1ed2a135 6447 &mips_stack_argsize_string, "\
d929b26f
AC
6448Set the amount of stack space reserved for each argument.\n\
6449This option can be set to one of:\n\
6450 32 - Force GDB to allocate 32-bit chunks per argument\n\
6451 64 - Force GDB to allocate 64-bit chunks per argument\n\
6452 auto - Allow GDB to determine the correct setting from the current\n\
6453 target and executable (default)",
6454 &setmipscmdlist),
6455 &showmipscmdlist);
6456
2e4ebe70
DJ
6457 /* Allow the user to override the ABI. */
6458 c = add_set_enum_cmd
6459 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6460 "Set the ABI used by this program.\n"
6461 "This option can be set to one of:\n"
6462 " auto - the default ABI associated with the current binary\n"
6463 " o32\n"
6464 " o64\n"
6465 " n32\n"
f3a7b3a5 6466 " n64\n"
2e4ebe70
DJ
6467 " eabi32\n"
6468 " eabi64",
6469 &setmipscmdlist);
2e4ebe70 6470 set_cmd_sfunc (c, mips_abi_update);
ad188201
KB
6471 add_cmd ("abi", class_obscure, show_mips_abi,
6472 "Show ABI in use by MIPS target", &showmipscmdlist);
2e4ebe70 6473
c906108c
SS
6474 /* Let the user turn off floating point and set the fence post for
6475 heuristic_proc_start. */
6476
6477 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6478 "Set use of MIPS floating-point coprocessor.",
6479 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6480 add_cmd ("single", class_support, set_mipsfpu_single_command,
6481 "Select single-precision MIPS floating-point coprocessor.",
6482 &mipsfpulist);
6483 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 6484 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
6485 &mipsfpulist);
6486 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6487 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6488 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6489 add_cmd ("none", class_support, set_mipsfpu_none_command,
6490 "Select no MIPS floating-point coprocessor.",
6491 &mipsfpulist);
6492 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6493 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6494 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6495 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6496 "Select MIPS floating-point coprocessor automatically.",
6497 &mipsfpulist);
6498 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6499 "Show current use of MIPS floating-point coprocessor target.",
6500 &showlist);
6501
c906108c
SS
6502 /* We really would like to have both "0" and "unlimited" work, but
6503 command.c doesn't deal with that. So make it a var_zinteger
6504 because the user can always use "999999" or some such for unlimited. */
6505 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6506 (char *) &heuristic_fence_post,
6507 "\
6508Set the distance searched for the start of a function.\n\
6509If you are debugging a stripped executable, GDB needs to search through the\n\
6510program for the start of a function. This command sets the distance of the\n\
6511search. The only need to set it is when debugging a stripped executable.",
6512 &setlist);
6513 /* We need to throw away the frame cache when we set this, since it
6514 might change our ability to get backtraces. */
9f60d481 6515 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
6516 add_show_from_set (c, &showlist);
6517
6518 /* Allow the user to control whether the upper bits of 64-bit
6519 addresses should be zeroed. */
e9e68a56
AC
6520 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6521Set zeroing of upper 32 bits of 64-bit addresses.\n\
6522Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6523allow GDB to determine the correct value.\n", "\
6524Show zeroing of upper 32 bits of 64-bit addresses.",
6525 NULL, show_mask_address,
6526 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
6527
6528 /* Allow the user to control the size of 32 bit registers within the
6529 raw remote packet. */
719ec221
AC
6530 add_setshow_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
6531 var_boolean, &mips64_transfers_32bit_regs_p, "\
6532Set compatibility with 64-bit MIPS targets that transfer 32-bit quantities.\n\
6533Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6534that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
653564 bits for others. Use \"off\" to disable compatibility mode", "\
6536Show compatibility with 64-bit MIPS targets that transfer 32-bit quantities.\n\
43e526b9
JM
6537Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6538that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
653964 bits for others. Use \"off\" to disable compatibility mode",
719ec221
AC
6540 set_mips64_transfers_32bit_regs, NULL,
6541 &setlist, &showlist);
9ace0497
AC
6542
6543 /* Debug this files internals. */
6544 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6545 &mips_debug, "Set mips debugging.\n\
6546When non-zero, mips specific debugging is enabled.", &setdebuglist),
6547 &showdebuglist);
c906108c 6548}
This page took 0.832021 seconds and 4 git commands to generate.