*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
6aba47ca
DJ
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
47a35522 5 Free Software Foundation, Inc.
bf64bfd6 6
c906108c
SS
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b
JM
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
197e01b6
EZ
24 Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 Boston, MA 02110-1301, USA. */
c906108c
SS
26
27#include "defs.h"
28#include "gdb_string.h"
5e2e9765 29#include "gdb_assert.h"
c906108c
SS
30#include "frame.h"
31#include "inferior.h"
32#include "symtab.h"
33#include "value.h"
34#include "gdbcmd.h"
35#include "language.h"
36#include "gdbcore.h"
37#include "symfile.h"
38#include "objfiles.h"
39#include "gdbtypes.h"
40#include "target.h"
28d069e6 41#include "arch-utils.h"
4e052eda 42#include "regcache.h"
70f80edf 43#include "osabi.h"
d1973055 44#include "mips-tdep.h"
fe898f56 45#include "block.h"
a4b8ebc8 46#include "reggroups.h"
c906108c 47#include "opcode/mips.h"
c2d11a7d
JM
48#include "elf/mips.h"
49#include "elf-bfd.h"
2475bac3 50#include "symcat.h"
a4b8ebc8 51#include "sim-regno.h"
a89aa300 52#include "dis-asm.h"
edfae063
AC
53#include "frame-unwind.h"
54#include "frame-base.h"
55#include "trad-frame.h"
7d9b040b 56#include "infcall.h"
fed7ba43 57#include "floatformat.h"
29709017
DJ
58#include "remote.h"
59#include "target-descriptions.h"
c906108c 60
8d5f9dcb
DJ
61static const struct objfile_data *mips_pdr_data;
62
5bbcb741 63static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 64
24e05951 65/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
66/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67#define ST0_FR (1 << 26)
68
b0069a17
AC
69/* The sizes of floating point registers. */
70
71enum
72{
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
75};
76
0dadbba0 77
2e4ebe70
DJ
78static const char *mips_abi_string;
79
80static const char *mips_abi_strings[] = {
81 "auto",
82 "n32",
83 "o32",
28d169de 84 "n64",
2e4ebe70
DJ
85 "o64",
86 "eabi32",
87 "eabi64",
88 NULL
89};
90
d929b26f
AC
91/* Various MIPS ISA options (related to stack analysis) can be
92 overridden dynamically. Establish an enum/array for managing
93 them. */
94
53904c9e
AC
95static const char size_auto[] = "auto";
96static const char size_32[] = "32";
97static const char size_64[] = "64";
d929b26f 98
53904c9e 99static const char *size_enums[] = {
d929b26f
AC
100 size_auto,
101 size_32,
102 size_64,
a5ea2558
AC
103 0
104};
105
7a292a7a 106/* Some MIPS boards don't support floating point while others only
ceae6e75 107 support single-precision floating-point operations. */
c906108c
SS
108
109enum mips_fpu_type
6d82d43b
AC
110{
111 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
112 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
113 MIPS_FPU_NONE /* No floating point. */
114};
c906108c
SS
115
116#ifndef MIPS_DEFAULT_FPU_TYPE
117#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
118#endif
119static int mips_fpu_type_auto = 1;
120static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 121
9ace0497 122static int mips_debug = 0;
7a292a7a 123
29709017
DJ
124/* Properties (for struct target_desc) describing the g/G packet
125 layout. */
126#define PROPERTY_GP32 "internal: transfers-32bit-registers"
127#define PROPERTY_GP64 "internal: transfers-64bit-registers"
128
c2d11a7d
JM
129/* MIPS specific per-architecture information */
130struct gdbarch_tdep
6d82d43b
AC
131{
132 /* from the elf header */
133 int elf_flags;
134
135 /* mips options */
136 enum mips_abi mips_abi;
137 enum mips_abi found_abi;
138 enum mips_fpu_type mips_fpu_type;
139 int mips_last_arg_regnum;
140 int mips_last_fp_arg_regnum;
6d82d43b
AC
141 int default_mask_address_p;
142 /* Is the target using 64-bit raw integer registers but only
143 storing a left-aligned 32-bit value in each? */
144 int mips64_transfers_32bit_regs_p;
145 /* Indexes for various registers. IRIX and embedded have
146 different values. This contains the "public" fields. Don't
147 add any that do not need to be public. */
148 const struct mips_regnum *regnum;
149 /* Register names table for the current register set. */
150 const char **mips_processor_reg_names;
29709017
DJ
151
152 /* The size of register data available from the target, if known.
153 This doesn't quite obsolete the manual
154 mips64_transfers_32bit_regs_p, since that is documented to force
155 left alignment even for big endian (very strange). */
156 int register_size_valid_p;
157 int register_size;
6d82d43b 158};
c2d11a7d 159
fed7ba43
JB
160static int
161n32n64_floatformat_always_valid (const struct floatformat *fmt,
2244f671 162 const void *from)
fed7ba43
JB
163{
164 return 1;
165}
166
167/* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
168 They are implemented as a pair of 64bit doubles where the high
169 part holds the result of the operation rounded to double, and
170 the low double holds the difference between the exact result and
171 the rounded result. So "high" + "low" contains the result with
172 added precision. Unfortunately, the floatformat structure used
173 by GDB is not powerful enough to describe this format. As a temporary
174 measure, we define a 128bit floatformat that only uses the high part.
175 We lose a bit of precision but that's probably the best we can do
176 for now with the current infrastructure. */
177
178static const struct floatformat floatformat_n32n64_long_double_big =
179{
180 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
181 floatformat_intbit_no,
8da61cc4 182 "floatformat_n32n64_long_double_big",
fed7ba43
JB
183 n32n64_floatformat_always_valid
184};
185
8da61cc4
DJ
186static const struct floatformat *floatformats_n32n64_long[BFD_ENDIAN_UNKNOWN] =
187{
188 &floatformat_n32n64_long_double_big,
189 &floatformat_n32n64_long_double_big
190};
191
56cea623
AC
192const struct mips_regnum *
193mips_regnum (struct gdbarch *gdbarch)
194{
195 return gdbarch_tdep (gdbarch)->regnum;
196}
197
198static int
199mips_fpa0_regnum (struct gdbarch *gdbarch)
200{
201 return mips_regnum (gdbarch)->fp0 + 12;
202}
203
0dadbba0 204#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 205 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 206
c2d11a7d 207#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 208
c2d11a7d 209#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 210
c2d11a7d 211#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 212
95404a3e
AC
213/* MIPS16 function addresses are odd (bit 0 is set). Here are some
214 functions to test, set, or clear bit 0 of addresses. */
215
216static CORE_ADDR
217is_mips16_addr (CORE_ADDR addr)
218{
219 return ((addr) & 1);
220}
221
95404a3e
AC
222static CORE_ADDR
223unmake_mips16_addr (CORE_ADDR addr)
224{
5b652102 225 return ((addr) & ~(CORE_ADDR) 1);
95404a3e
AC
226}
227
22540ece
AC
228/* Return the contents of register REGNUM as a signed integer. */
229
230static LONGEST
231read_signed_register (int regnum)
232{
1d93fe1a
AC
233 LONGEST val;
234 regcache_cooked_read_signed (current_regcache, regnum, &val);
235 return val;
22540ece
AC
236}
237
238static LONGEST
239read_signed_register_pid (int regnum, ptid_t ptid)
240{
241 ptid_t save_ptid;
242 LONGEST retval;
243
244 if (ptid_equal (ptid, inferior_ptid))
245 return read_signed_register (regnum);
246
247 save_ptid = inferior_ptid;
248
249 inferior_ptid = ptid;
250
251 retval = read_signed_register (regnum);
252
253 inferior_ptid = save_ptid;
254
255 return retval;
256}
257
d1973055
KB
258/* Return the MIPS ABI associated with GDBARCH. */
259enum mips_abi
260mips_abi (struct gdbarch *gdbarch)
261{
262 return gdbarch_tdep (gdbarch)->mips_abi;
263}
264
4246e332 265int
1b13c4f6 266mips_isa_regsize (struct gdbarch *gdbarch)
4246e332 267{
29709017
DJ
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269
270 /* If we know how big the registers are, use that size. */
271 if (tdep->register_size_valid_p)
272 return tdep->register_size;
273
274 /* Fall back to the previous behavior. */
4246e332
AC
275 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
276 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
277}
278
480d3dd2
AC
279/* Return the currently configured (or set) saved register size. */
280
1b13c4f6 281static const char *mips_abi_regsize_string = size_auto;
480d3dd2 282
e6bc2e8a 283unsigned int
13326b4e 284mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 285{
1b13c4f6 286 if (mips_abi_regsize_string == size_auto)
13326b4e
AC
287 switch (mips_abi (gdbarch))
288 {
289 case MIPS_ABI_EABI32:
290 case MIPS_ABI_O32:
291 return 4;
292 case MIPS_ABI_N32:
293 case MIPS_ABI_N64:
294 case MIPS_ABI_O64:
295 case MIPS_ABI_EABI64:
296 return 8;
297 case MIPS_ABI_UNKNOWN:
298 case MIPS_ABI_LAST:
299 default:
e2e0b3e5 300 internal_error (__FILE__, __LINE__, _("bad switch"));
13326b4e 301 }
1b13c4f6 302 else if (mips_abi_regsize_string == size_64)
d929b26f 303 return 8;
1b13c4f6 304 else /* if (mips_abi_regsize_string == size_32) */
d929b26f
AC
305 return 4;
306}
307
71b8ef93 308/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa 309 marks it as 16-bit function. The MSB of the minimal symbol's
f594e5e9 310 "info" field is used for this purpose.
5a89d8aa
MS
311
312 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
313 i.e. refers to a 16-bit function, and sets a "special" bit in a
314 minimal symbol to mark it as a 16-bit function
315
f594e5e9 316 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
5a89d8aa 317
5a89d8aa 318static void
6d82d43b
AC
319mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
320{
321 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
322 {
323 MSYMBOL_INFO (msym) = (char *)
324 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
325 SYMBOL_VALUE_ADDRESS (msym) |= 1;
326 }
5a89d8aa
MS
327}
328
71b8ef93
MS
329static int
330msymbol_is_special (struct minimal_symbol *msym)
331{
332 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
333}
334
88658117
AC
335/* XFER a value from the big/little/left end of the register.
336 Depending on the size of the value it might occupy the entire
337 register or just part of it. Make an allowance for this, aligning
338 things accordingly. */
339
340static void
341mips_xfer_register (struct regcache *regcache, int reg_num, int length,
870cd05e
MK
342 enum bfd_endian endian, gdb_byte *in,
343 const gdb_byte *out, int buf_offset)
88658117 344{
88658117 345 int reg_offset = 0;
a4b8ebc8 346 gdb_assert (reg_num >= NUM_REGS);
cb1d2653
AC
347 /* Need to transfer the left or right part of the register, based on
348 the targets byte order. */
88658117
AC
349 switch (endian)
350 {
351 case BFD_ENDIAN_BIG:
719ec221 352 reg_offset = register_size (current_gdbarch, reg_num) - length;
88658117
AC
353 break;
354 case BFD_ENDIAN_LITTLE:
355 reg_offset = 0;
356 break;
6d82d43b 357 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
358 reg_offset = 0;
359 break;
360 default:
e2e0b3e5 361 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
362 }
363 if (mips_debug)
cb1d2653
AC
364 fprintf_unfiltered (gdb_stderr,
365 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
366 reg_num, reg_offset, buf_offset, length);
88658117
AC
367 if (mips_debug && out != NULL)
368 {
369 int i;
cb1d2653 370 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 371 for (i = 0; i < length; i++)
cb1d2653 372 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
373 }
374 if (in != NULL)
6d82d43b
AC
375 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
376 in + buf_offset);
88658117 377 if (out != NULL)
6d82d43b
AC
378 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
379 out + buf_offset);
88658117
AC
380 if (mips_debug && in != NULL)
381 {
382 int i;
cb1d2653 383 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 384 for (i = 0; i < length; i++)
cb1d2653 385 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
386 }
387 if (mips_debug)
388 fprintf_unfiltered (gdb_stdlog, "\n");
389}
390
dd824b04
DJ
391/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
392 compatiblity mode. A return value of 1 means that we have
393 physical 64-bit registers, but should treat them as 32-bit registers. */
394
395static int
396mips2_fp_compat (void)
397{
398 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
399 meaningful. */
6d82d43b
AC
400 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
401 4)
dd824b04
DJ
402 return 0;
403
404#if 0
405 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
406 in all the places we deal with FP registers. PR gdb/413. */
407 /* Otherwise check the FR bit in the status register - it controls
408 the FP compatiblity mode. If it is clear we are in compatibility
409 mode. */
24e05951 410 if ((read_register (MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
411 return 1;
412#endif
361d1df0 413
dd824b04
DJ
414 return 0;
415}
416
d929b26f 417/* The amount of space reserved on the stack for registers. This is
1b13c4f6 418 different to MIPS_ABI_REGSIZE as it determines the alignment of
d929b26f
AC
419 data allocated after the registers have run out. */
420
53904c9e 421static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
422
423static unsigned int
13326b4e 424mips_stack_argsize (struct gdbarch *gdbarch)
d929b26f
AC
425{
426 if (mips_stack_argsize_string == size_auto)
13326b4e 427 return mips_abi_regsize (gdbarch);
d929b26f
AC
428 else if (mips_stack_argsize_string == size_64)
429 return 8;
6d82d43b 430 else /* if (mips_stack_argsize_string == size_32) */
d929b26f
AC
431 return 4;
432}
433
7a292a7a 434#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 435
a14ed312 436static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 437
a14ed312 438static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 439
a14ed312 440static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 441
67b2c998
DJ
442static struct type *mips_float_register_type (void);
443static struct type *mips_double_register_type (void);
444
acdb74a0
AC
445/* The list of available "set mips " and "show mips " commands */
446
447static struct cmd_list_element *setmipscmdlist = NULL;
448static struct cmd_list_element *showmipscmdlist = NULL;
449
5e2e9765
KB
450/* Integer registers 0 thru 31 are handled explicitly by
451 mips_register_name(). Processor specific registers 32 and above
8a9fc081 452 are listed in the following tables. */
691c0433 453
6d82d43b
AC
454enum
455{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
456
457/* Generic MIPS. */
458
459static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
460 "sr", "lo", "hi", "bad", "cause", "pc",
461 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
462 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
463 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
464 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
465 "fsr", "fir", "" /*"fp" */ , "",
466 "", "", "", "", "", "", "", "",
467 "", "", "", "", "", "", "", "",
691c0433
AC
468};
469
470/* Names of IDT R3041 registers. */
471
472static const char *mips_r3041_reg_names[] = {
6d82d43b
AC
473 "sr", "lo", "hi", "bad", "cause", "pc",
474 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
475 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
476 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
477 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
478 "fsr", "fir", "", /*"fp" */ "",
479 "", "", "bus", "ccfg", "", "", "", "",
480 "", "", "port", "cmp", "", "", "epc", "prid",
691c0433
AC
481};
482
483/* Names of tx39 registers. */
484
485static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
486 "sr", "lo", "hi", "bad", "cause", "pc",
487 "", "", "", "", "", "", "", "",
488 "", "", "", "", "", "", "", "",
489 "", "", "", "", "", "", "", "",
490 "", "", "", "", "", "", "", "",
491 "", "", "", "",
492 "", "", "", "", "", "", "", "",
493 "", "", "config", "cache", "debug", "depc", "epc", ""
691c0433
AC
494};
495
496/* Names of IRIX registers. */
497static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
498 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
499 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
500 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
501 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
502 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
691c0433
AC
503};
504
cce74817 505
5e2e9765 506/* Return the name of the register corresponding to REGNO. */
5a89d8aa 507static const char *
5e2e9765 508mips_register_name (int regno)
cce74817 509{
691c0433 510 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5e2e9765
KB
511 /* GPR names for all ABIs other than n32/n64. */
512 static char *mips_gpr_names[] = {
6d82d43b
AC
513 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
514 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
515 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
516 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
517 };
518
519 /* GPR names for n32 and n64 ABIs. */
520 static char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
521 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
522 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
523 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
524 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
525 };
526
527 enum mips_abi abi = mips_abi (current_gdbarch);
528
a4b8ebc8
AC
529 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
530 don't make the raw register names visible. */
531 int rawnum = regno % NUM_REGS;
532 if (regno < NUM_REGS)
533 return "";
534
5e2e9765
KB
535 /* The MIPS integer registers are always mapped from 0 to 31. The
536 names of the registers (which reflects the conventions regarding
537 register use) vary depending on the ABI. */
a4b8ebc8 538 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
539 {
540 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 541 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 542 else
a4b8ebc8 543 return mips_gpr_names[rawnum];
5e2e9765 544 }
a4b8ebc8 545 else if (32 <= rawnum && rawnum < NUM_REGS)
691c0433
AC
546 {
547 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
548 return tdep->mips_processor_reg_names[rawnum - 32];
549 }
5e2e9765
KB
550 else
551 internal_error (__FILE__, __LINE__,
e2e0b3e5 552 _("mips_register_name: bad register number %d"), rawnum);
cce74817 553}
5e2e9765 554
a4b8ebc8 555/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 556
a4b8ebc8
AC
557static int
558mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
559 struct reggroup *reggroup)
560{
561 int vector_p;
562 int float_p;
563 int raw_p;
564 int rawnum = regnum % NUM_REGS;
565 int pseudo = regnum / NUM_REGS;
566 if (reggroup == all_reggroup)
567 return pseudo;
568 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
569 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
570 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
571 (gdbarch), as not all architectures are multi-arch. */
572 raw_p = rawnum < NUM_REGS;
6d82d43b 573 if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0')
a4b8ebc8
AC
574 return 0;
575 if (reggroup == float_reggroup)
576 return float_p && pseudo;
577 if (reggroup == vector_reggroup)
578 return vector_p && pseudo;
579 if (reggroup == general_reggroup)
580 return (!vector_p && !float_p) && pseudo;
581 /* Save the pseudo registers. Need to make certain that any code
582 extracting register values from a saved register cache also uses
583 pseudo registers. */
584 if (reggroup == save_reggroup)
585 return raw_p && pseudo;
586 /* Restore the same pseudo register. */
587 if (reggroup == restore_reggroup)
588 return raw_p && pseudo;
6d82d43b 589 return 0;
a4b8ebc8
AC
590}
591
592/* Map the symbol table registers which live in the range [1 *
593 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
47ebcfbe 594 registers. Take care of alignment and size problems. */
c5aa993b 595
a4b8ebc8
AC
596static void
597mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
47a35522 598 int cookednum, gdb_byte *buf)
a4b8ebc8 599{
47ebcfbe 600 int rawnum = cookednum % NUM_REGS;
a4b8ebc8 601 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
47ebcfbe 602 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 603 regcache_raw_read (regcache, rawnum, buf);
6d82d43b
AC
604 else if (register_size (gdbarch, rawnum) >
605 register_size (gdbarch, cookednum))
47ebcfbe
AC
606 {
607 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
608 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
609 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
610 else
611 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
612 }
613 else
e2e0b3e5 614 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
615}
616
617static void
6d82d43b
AC
618mips_pseudo_register_write (struct gdbarch *gdbarch,
619 struct regcache *regcache, int cookednum,
47a35522 620 const gdb_byte *buf)
a4b8ebc8 621{
47ebcfbe 622 int rawnum = cookednum % NUM_REGS;
a4b8ebc8 623 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
47ebcfbe 624 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 625 regcache_raw_write (regcache, rawnum, buf);
6d82d43b
AC
626 else if (register_size (gdbarch, rawnum) >
627 register_size (gdbarch, cookednum))
47ebcfbe
AC
628 {
629 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
630 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
631 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
632 else
633 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
634 }
635 else
e2e0b3e5 636 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 637}
c5aa993b 638
c906108c 639/* Table to translate MIPS16 register field to actual register number. */
6d82d43b 640static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
641
642/* Heuristic_proc_start may hunt through the text section for a long
643 time across a 2400 baud serial line. Allows the user to limit this
644 search. */
645
646static unsigned int heuristic_fence_post = 0;
647
46cd78fb 648/* Number of bytes of storage in the actual machine representation for
719ec221
AC
649 register N. NOTE: This defines the pseudo register type so need to
650 rebuild the architecture vector. */
43e526b9
JM
651
652static int mips64_transfers_32bit_regs_p = 0;
653
719ec221
AC
654static void
655set_mips64_transfers_32bit_regs (char *args, int from_tty,
656 struct cmd_list_element *c)
43e526b9 657{
719ec221
AC
658 struct gdbarch_info info;
659 gdbarch_info_init (&info);
660 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
661 instead of relying on globals. Doing that would let generic code
662 handle the search for this specific architecture. */
663 if (!gdbarch_update_p (info))
a4b8ebc8 664 {
719ec221 665 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 666 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 667 }
a4b8ebc8
AC
668}
669
47ebcfbe 670/* Convert to/from a register and the corresponding memory value. */
43e526b9 671
ff2e87ac
AC
672static int
673mips_convert_register_p (int regnum, struct type *type)
674{
675 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
719ec221 676 && register_size (current_gdbarch, regnum) == 4
87783b8b
AC
677 && (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
678 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32
6d82d43b 679 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
680}
681
42c466d7 682static void
ff2e87ac 683mips_register_to_value (struct frame_info *frame, int regnum,
47a35522 684 struct type *type, gdb_byte *to)
102182a9 685{
47a35522
MK
686 get_frame_register (frame, regnum + 0, to + 4);
687 get_frame_register (frame, regnum + 1, to + 0);
102182a9
MS
688}
689
42c466d7 690static void
ff2e87ac 691mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 692 struct type *type, const gdb_byte *from)
102182a9 693{
47a35522
MK
694 put_frame_register (frame, regnum + 0, from + 4);
695 put_frame_register (frame, regnum + 1, from + 0);
102182a9
MS
696}
697
a4b8ebc8
AC
698/* Return the GDB type object for the "standard" data type of data in
699 register REG. */
78fde5f8
KB
700
701static struct type *
a4b8ebc8
AC
702mips_register_type (struct gdbarch *gdbarch, int regnum)
703{
5ef80fb0 704 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
56cea623
AC
705 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
706 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
a6425924 707 {
5ef80fb0 708 /* The floating-point registers raw, or cooked, always match
1b13c4f6 709 mips_isa_regsize(), and also map 1:1, byte for byte. */
8da61cc4
DJ
710 if (mips_isa_regsize (gdbarch) == 4)
711 return builtin_type_ieee_single;
712 else
713 return builtin_type_ieee_double;
a6425924 714 }
d5ac5a39
AC
715 else if (regnum < NUM_REGS)
716 {
717 /* The raw or ISA registers. These are all sized according to
718 the ISA regsize. */
719 if (mips_isa_regsize (gdbarch) == 4)
720 return builtin_type_int32;
721 else
722 return builtin_type_int64;
723 }
78fde5f8 724 else
d5ac5a39
AC
725 {
726 /* The cooked or ABI registers. These are sized according to
727 the ABI (with a few complications). */
728 if (regnum >= (NUM_REGS
729 + mips_regnum (current_gdbarch)->fp_control_status)
607fc93c 730 && regnum <= NUM_REGS + MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
731 /* The pseudo/cooked view of the embedded registers is always
732 32-bit. The raw view is handled below. */
733 return builtin_type_int32;
734 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
735 /* The target, while possibly using a 64-bit register buffer,
736 is only transfering 32-bits of each integer register.
737 Reflect this in the cooked/pseudo (ABI) register value. */
738 return builtin_type_int32;
739 else if (mips_abi_regsize (gdbarch) == 4)
740 /* The ABI is restricted to 32-bit registers (the ISA could be
741 32- or 64-bit). */
742 return builtin_type_int32;
743 else
744 /* 64-bit ABI. */
745 return builtin_type_int64;
746 }
78fde5f8
KB
747}
748
bcb0cc15
MS
749/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
750
751static CORE_ADDR
752mips_read_sp (void)
753{
f10683bb 754 return read_signed_register (MIPS_SP_REGNUM);
bcb0cc15
MS
755}
756
c906108c 757/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 758enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
759
760static int
480d3dd2 761mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
762{
763 switch (mask_address_var)
764 {
7f19b9a2 765 case AUTO_BOOLEAN_TRUE:
4014092b 766 return 1;
7f19b9a2 767 case AUTO_BOOLEAN_FALSE:
4014092b
AC
768 return 0;
769 break;
7f19b9a2 770 case AUTO_BOOLEAN_AUTO:
480d3dd2 771 return tdep->default_mask_address_p;
4014092b 772 default:
e2e0b3e5 773 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
4014092b 774 return -1;
361d1df0 775 }
4014092b
AC
776}
777
778static void
08546159
AC
779show_mask_address (struct ui_file *file, int from_tty,
780 struct cmd_list_element *c, const char *value)
4014092b 781{
480d3dd2 782 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
08546159
AC
783
784 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
785 switch (mask_address_var)
786 {
7f19b9a2 787 case AUTO_BOOLEAN_TRUE:
4014092b
AC
788 printf_filtered ("The 32 bit mips address mask is enabled\n");
789 break;
7f19b9a2 790 case AUTO_BOOLEAN_FALSE:
4014092b
AC
791 printf_filtered ("The 32 bit mips address mask is disabled\n");
792 break;
7f19b9a2 793 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
794 printf_filtered
795 ("The 32 bit address mask is set automatically. Currently %s\n",
796 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
797 break;
798 default:
e2e0b3e5 799 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 800 break;
361d1df0 801 }
4014092b 802}
c906108c 803
c906108c
SS
804/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
805
0fe7e7c8
AC
806int
807mips_pc_is_mips16 (CORE_ADDR memaddr)
c906108c
SS
808{
809 struct minimal_symbol *sym;
810
811 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 812 if (is_mips16_addr (memaddr))
c906108c
SS
813 return 1;
814
815 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
816 the high bit of the info field. Use this to decide if the function is
817 MIPS16 or normal MIPS. */
818 sym = lookup_minimal_symbol_by_pc (memaddr);
819 if (sym)
71b8ef93 820 return msymbol_is_special (sym);
c906108c
SS
821 else
822 return 0;
823}
824
b2fa5097 825/* MIPS believes that the PC has a sign extended value. Perhaps the
6c997a34
AC
826 all registers should be sign extended for simplicity? */
827
828static CORE_ADDR
39f77062 829mips_read_pc (ptid_t ptid)
6c997a34 830{
b6cb9035
AC
831 return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid);
832}
833
58dfe9ff
AC
834static CORE_ADDR
835mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
836{
edfae063
AC
837 return frame_unwind_register_signed (next_frame,
838 NUM_REGS + mips_regnum (gdbarch)->pc);
839}
840
841/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
842 dummy frame. The frame ID's base needs to match the TOS value
843 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
844 breakpoint. */
845
846static struct frame_id
847mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
848{
f10683bb 849 return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + MIPS_SP_REGNUM),
edfae063 850 frame_pc_unwind (next_frame));
58dfe9ff
AC
851}
852
b6cb9035
AC
853static void
854mips_write_pc (CORE_ADDR pc, ptid_t ptid)
855{
856 write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid);
6c997a34 857}
c906108c 858
c906108c
SS
859/* Fetch and return instruction from the specified location. If the PC
860 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
861
d37cca3d 862static ULONGEST
acdb74a0 863mips_fetch_instruction (CORE_ADDR addr)
c906108c 864{
47a35522 865 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
866 int instlen;
867 int status;
868
0fe7e7c8 869 if (mips_pc_is_mips16 (addr))
c906108c 870 {
95ac2dcf 871 instlen = MIPS_INSN16_SIZE;
95404a3e 872 addr = unmake_mips16_addr (addr);
c906108c
SS
873 }
874 else
95ac2dcf 875 instlen = MIPS_INSN32_SIZE;
359a9262 876 status = read_memory_nobpt (addr, buf, instlen);
c906108c
SS
877 if (status)
878 memory_error (status, addr);
879 return extract_unsigned_integer (buf, instlen);
880}
881
c906108c 882/* These the fields of 32 bit mips instructions */
e135b889
DJ
883#define mips32_op(x) (x >> 26)
884#define itype_op(x) (x >> 26)
885#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 886#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 887#define itype_immediate(x) (x & 0xffff)
c906108c 888
e135b889
DJ
889#define jtype_op(x) (x >> 26)
890#define jtype_target(x) (x & 0x03ffffff)
c906108c 891
e135b889
DJ
892#define rtype_op(x) (x >> 26)
893#define rtype_rs(x) ((x >> 21) & 0x1f)
894#define rtype_rt(x) ((x >> 16) & 0x1f)
895#define rtype_rd(x) ((x >> 11) & 0x1f)
896#define rtype_shamt(x) ((x >> 6) & 0x1f)
897#define rtype_funct(x) (x & 0x3f)
c906108c 898
06987e64
MK
899static LONGEST
900mips32_relative_offset (ULONGEST inst)
c5aa993b 901{
06987e64 902 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
903}
904
f49e4e6d
MS
905/* Determine where to set a single step breakpoint while considering
906 branch prediction. */
5a89d8aa 907static CORE_ADDR
c5aa993b
JM
908mips32_next_pc (CORE_ADDR pc)
909{
910 unsigned long inst;
911 int op;
912 inst = mips_fetch_instruction (pc);
e135b889 913 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 914 {
e135b889 915 if (itype_op (inst) >> 2 == 5)
6d82d43b 916 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 917 {
e135b889 918 op = (itype_op (inst) & 0x03);
c906108c
SS
919 switch (op)
920 {
e135b889
DJ
921 case 0: /* BEQL */
922 goto equal_branch;
923 case 1: /* BNEL */
924 goto neq_branch;
925 case 2: /* BLEZL */
926 goto less_branch;
927 case 3: /* BGTZ */
928 goto greater_branch;
c5aa993b
JM
929 default:
930 pc += 4;
c906108c
SS
931 }
932 }
e135b889 933 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
6d82d43b 934 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
e135b889
DJ
935 {
936 int tf = itype_rt (inst) & 0x01;
937 int cnum = itype_rt (inst) >> 2;
6d82d43b
AC
938 int fcrcs =
939 read_signed_register (mips_regnum (current_gdbarch)->
940 fp_control_status);
e135b889
DJ
941 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
942
943 if (((cond >> cnum) & 0x01) == tf)
944 pc += mips32_relative_offset (inst) + 4;
945 else
946 pc += 8;
947 }
c5aa993b
JM
948 else
949 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
950 }
951 else
c5aa993b
JM
952 { /* This gets way messy */
953
c906108c 954 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 955 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 956 {
c5aa993b
JM
957 case 0: /* SPECIAL */
958 op = rtype_funct (inst);
959 switch (op)
960 {
961 case 8: /* JR */
962 case 9: /* JALR */
6c997a34
AC
963 /* Set PC to that address */
964 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
965 break;
966 default:
967 pc += 4;
968 }
969
6d82d43b 970 break; /* end SPECIAL */
c5aa993b 971 case 1: /* REGIMM */
c906108c 972 {
e135b889
DJ
973 op = itype_rt (inst); /* branch condition */
974 switch (op)
c906108c 975 {
c5aa993b 976 case 0: /* BLTZ */
e135b889
DJ
977 case 2: /* BLTZL */
978 case 16: /* BLTZAL */
c5aa993b 979 case 18: /* BLTZALL */
c906108c 980 less_branch:
6c997a34 981 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
982 pc += mips32_relative_offset (inst) + 4;
983 else
984 pc += 8; /* after the delay slot */
985 break;
e135b889 986 case 1: /* BGEZ */
c5aa993b
JM
987 case 3: /* BGEZL */
988 case 17: /* BGEZAL */
989 case 19: /* BGEZALL */
6c997a34 990 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
991 pc += mips32_relative_offset (inst) + 4;
992 else
993 pc += 8; /* after the delay slot */
994 break;
e135b889 995 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
996 default:
997 pc += 4;
c906108c
SS
998 }
999 }
6d82d43b 1000 break; /* end REGIMM */
c5aa993b
JM
1001 case 2: /* J */
1002 case 3: /* JAL */
1003 {
1004 unsigned long reg;
1005 reg = jtype_target (inst) << 2;
e135b889 1006 /* Upper four bits get never changed... */
5b652102 1007 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 1008 }
c5aa993b
JM
1009 break;
1010 /* FIXME case JALX : */
1011 {
1012 unsigned long reg;
1013 reg = jtype_target (inst) << 2;
5b652102 1014 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
c906108c
SS
1015 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1016 }
c5aa993b 1017 break; /* The new PC will be alternate mode */
e135b889 1018 case 4: /* BEQ, BEQL */
c5aa993b 1019 equal_branch:
6c997a34
AC
1020 if (read_signed_register (itype_rs (inst)) ==
1021 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1022 pc += mips32_relative_offset (inst) + 4;
1023 else
1024 pc += 8;
1025 break;
e135b889 1026 case 5: /* BNE, BNEL */
c5aa993b 1027 neq_branch:
6c997a34 1028 if (read_signed_register (itype_rs (inst)) !=
e135b889 1029 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1030 pc += mips32_relative_offset (inst) + 4;
1031 else
1032 pc += 8;
1033 break;
e135b889 1034 case 6: /* BLEZ, BLEZL */
1fd8cd20 1035 if (read_signed_register (itype_rs (inst)) <= 0)
c5aa993b
JM
1036 pc += mips32_relative_offset (inst) + 4;
1037 else
1038 pc += 8;
1039 break;
1040 case 7:
e135b889
DJ
1041 default:
1042 greater_branch: /* BGTZ, BGTZL */
1fd8cd20 1043 if (read_signed_register (itype_rs (inst)) > 0)
c5aa993b
JM
1044 pc += mips32_relative_offset (inst) + 4;
1045 else
1046 pc += 8;
1047 break;
c5aa993b
JM
1048 } /* switch */
1049 } /* else */
1050 return pc;
1051} /* mips32_next_pc */
c906108c
SS
1052
1053/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1054 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1055 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1056 We dont want to set a single step instruction on the extend instruction
1057 either.
c5aa993b 1058 */
c906108c
SS
1059
1060/* Lots of mips16 instruction formats */
1061/* Predicting jumps requires itype,ritype,i8type
1062 and their extensions extItype,extritype,extI8type
c5aa993b 1063 */
c906108c
SS
1064enum mips16_inst_fmts
1065{
c5aa993b
JM
1066 itype, /* 0 immediate 5,10 */
1067 ritype, /* 1 5,3,8 */
1068 rrtype, /* 2 5,3,3,5 */
1069 rritype, /* 3 5,3,3,5 */
1070 rrrtype, /* 4 5,3,3,3,2 */
1071 rriatype, /* 5 5,3,3,1,4 */
1072 shifttype, /* 6 5,3,3,3,2 */
1073 i8type, /* 7 5,3,8 */
1074 i8movtype, /* 8 5,3,3,5 */
1075 i8mov32rtype, /* 9 5,3,5,3 */
1076 i64type, /* 10 5,3,8 */
1077 ri64type, /* 11 5,3,3,5 */
1078 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1079 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1080 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1081 extRRItype, /* 15 5,5,5,5,3,3,5 */
1082 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1083 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1084 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1085 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1086 extRi64type, /* 20 5,6,5,5,3,3,5 */
1087 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1088};
12f02c2a
AC
1089/* I am heaping all the fields of the formats into one structure and
1090 then, only the fields which are involved in instruction extension */
c906108c 1091struct upk_mips16
6d82d43b
AC
1092{
1093 CORE_ADDR offset;
1094 unsigned int regx; /* Function in i8 type */
1095 unsigned int regy;
1096};
c906108c
SS
1097
1098
12f02c2a
AC
1099/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1100 for the bits which make up the immediatate extension. */
c906108c 1101
12f02c2a
AC
1102static CORE_ADDR
1103extended_offset (unsigned int extension)
c906108c 1104{
12f02c2a 1105 CORE_ADDR value;
c5aa993b
JM
1106 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1107 value = value << 6;
1108 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1109 value = value << 5;
1110 value |= extension & 0x01f; /* extract 4:0 */
1111 return value;
c906108c
SS
1112}
1113
1114/* Only call this function if you know that this is an extendable
1115 instruction, It wont malfunction, but why make excess remote memory references?
1116 If the immediate operands get sign extended or somthing, do it after
1117 the extension is performed.
c5aa993b 1118 */
c906108c
SS
1119/* FIXME: Every one of these cases needs to worry about sign extension
1120 when the offset is to be used in relative addressing */
1121
1122
12f02c2a 1123static unsigned int
c5aa993b 1124fetch_mips_16 (CORE_ADDR pc)
c906108c 1125{
47a35522 1126 gdb_byte buf[8];
c5aa993b
JM
1127 pc &= 0xfffffffe; /* clear the low order bit */
1128 target_read_memory (pc, buf, 2);
1129 return extract_unsigned_integer (buf, 2);
c906108c
SS
1130}
1131
1132static void
c5aa993b 1133unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1134 unsigned int extension,
1135 unsigned int inst,
6d82d43b 1136 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 1137{
12f02c2a
AC
1138 CORE_ADDR offset;
1139 int regx;
1140 int regy;
1141 switch (insn_format)
c906108c 1142 {
c5aa993b 1143 case itype:
c906108c 1144 {
12f02c2a
AC
1145 CORE_ADDR value;
1146 if (extension)
c5aa993b
JM
1147 {
1148 value = extended_offset (extension);
1149 value = value << 11; /* rom for the original value */
6d82d43b 1150 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1151 }
1152 else
c5aa993b 1153 {
12f02c2a 1154 value = inst & 0x7ff;
c5aa993b 1155 /* FIXME : Consider sign extension */
c906108c 1156 }
12f02c2a
AC
1157 offset = value;
1158 regx = -1;
1159 regy = -1;
c906108c 1160 }
c5aa993b
JM
1161 break;
1162 case ritype:
1163 case i8type:
1164 { /* A register identifier and an offset */
c906108c
SS
1165 /* Most of the fields are the same as I type but the
1166 immediate value is of a different length */
12f02c2a
AC
1167 CORE_ADDR value;
1168 if (extension)
c906108c 1169 {
c5aa993b
JM
1170 value = extended_offset (extension);
1171 value = value << 8; /* from the original instruction */
12f02c2a
AC
1172 value |= inst & 0xff; /* eleven bits from instruction */
1173 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1174 if (value & 0x4000) /* test the sign bit , bit 26 */
1175 {
1176 value &= ~0x3fff; /* remove the sign bit */
1177 value = -value;
c906108c
SS
1178 }
1179 }
c5aa993b
JM
1180 else
1181 {
12f02c2a
AC
1182 value = inst & 0xff; /* 8 bits */
1183 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1184 /* FIXME: Do sign extension , this format needs it */
1185 if (value & 0x80) /* THIS CONFUSES ME */
1186 {
1187 value &= 0xef; /* remove the sign bit */
1188 value = -value;
1189 }
c5aa993b 1190 }
12f02c2a
AC
1191 offset = value;
1192 regy = -1;
c5aa993b 1193 break;
c906108c 1194 }
c5aa993b 1195 case jalxtype:
c906108c 1196 {
c5aa993b 1197 unsigned long value;
12f02c2a
AC
1198 unsigned int nexthalf;
1199 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1200 value = value << 16;
1201 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1202 value |= nexthalf;
12f02c2a
AC
1203 offset = value;
1204 regx = -1;
1205 regy = -1;
c5aa993b 1206 break;
c906108c
SS
1207 }
1208 default:
e2e0b3e5 1209 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 1210 }
12f02c2a
AC
1211 upk->offset = offset;
1212 upk->regx = regx;
1213 upk->regy = regy;
c906108c
SS
1214}
1215
1216
c5aa993b
JM
1217static CORE_ADDR
1218add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1219{
5b652102 1220 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
c906108c
SS
1221}
1222
12f02c2a
AC
1223static CORE_ADDR
1224extended_mips16_next_pc (CORE_ADDR pc,
6d82d43b 1225 unsigned int extension, unsigned int insn)
c906108c 1226{
12f02c2a
AC
1227 int op = (insn >> 11);
1228 switch (op)
c906108c 1229 {
6d82d43b 1230 case 2: /* Branch */
12f02c2a
AC
1231 {
1232 CORE_ADDR offset;
1233 struct upk_mips16 upk;
1234 unpack_mips16 (pc, extension, insn, itype, &upk);
1235 offset = upk.offset;
1236 if (offset & 0x800)
1237 {
1238 offset &= 0xeff;
1239 offset = -offset;
1240 }
1241 pc += (offset << 1) + 2;
1242 break;
1243 }
6d82d43b 1244 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
12f02c2a
AC
1245 {
1246 struct upk_mips16 upk;
1247 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1248 pc = add_offset_16 (pc, upk.offset);
1249 if ((insn >> 10) & 0x01) /* Exchange mode */
1250 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1251 else
1252 pc |= 0x01;
1253 break;
1254 }
6d82d43b 1255 case 4: /* beqz */
12f02c2a
AC
1256 {
1257 struct upk_mips16 upk;
1258 int reg;
1259 unpack_mips16 (pc, extension, insn, ritype, &upk);
1260 reg = read_signed_register (upk.regx);
1261 if (reg == 0)
1262 pc += (upk.offset << 1) + 2;
1263 else
1264 pc += 2;
1265 break;
1266 }
6d82d43b 1267 case 5: /* bnez */
12f02c2a
AC
1268 {
1269 struct upk_mips16 upk;
1270 int reg;
1271 unpack_mips16 (pc, extension, insn, ritype, &upk);
1272 reg = read_signed_register (upk.regx);
1273 if (reg != 0)
1274 pc += (upk.offset << 1) + 2;
1275 else
1276 pc += 2;
1277 break;
1278 }
6d82d43b 1279 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
1280 {
1281 struct upk_mips16 upk;
1282 int reg;
1283 unpack_mips16 (pc, extension, insn, i8type, &upk);
1284 /* upk.regx contains the opcode */
1285 reg = read_signed_register (24); /* Test register is 24 */
1286 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1287 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1288 /* pc = add_offset_16(pc,upk.offset) ; */
1289 pc += (upk.offset << 1) + 2;
1290 else
1291 pc += 2;
1292 break;
1293 }
6d82d43b 1294 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
1295 {
1296 struct upk_mips16 upk;
1297 /* upk.fmt = rrtype; */
1298 op = insn & 0x1f;
1299 if (op == 0)
c5aa993b 1300 {
12f02c2a
AC
1301 int reg;
1302 upk.regx = (insn >> 8) & 0x07;
1303 upk.regy = (insn >> 5) & 0x07;
1304 switch (upk.regy)
c5aa993b 1305 {
12f02c2a
AC
1306 case 0:
1307 reg = upk.regx;
1308 break;
1309 case 1:
1310 reg = 31;
6d82d43b 1311 break; /* Function return instruction */
12f02c2a
AC
1312 case 2:
1313 reg = upk.regx;
1314 break;
1315 default:
1316 reg = 31;
6d82d43b 1317 break; /* BOGUS Guess */
c906108c 1318 }
12f02c2a 1319 pc = read_signed_register (reg);
c906108c 1320 }
12f02c2a 1321 else
c5aa993b 1322 pc += 2;
12f02c2a
AC
1323 break;
1324 }
1325 case 30:
1326 /* This is an instruction extension. Fetch the real instruction
1327 (which follows the extension) and decode things based on
1328 that. */
1329 {
1330 pc += 2;
1331 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1332 break;
1333 }
1334 default:
1335 {
1336 pc += 2;
1337 break;
1338 }
c906108c 1339 }
c5aa993b 1340 return pc;
12f02c2a 1341}
c906108c 1342
5a89d8aa 1343static CORE_ADDR
12f02c2a
AC
1344mips16_next_pc (CORE_ADDR pc)
1345{
1346 unsigned int insn = fetch_mips_16 (pc);
1347 return extended_mips16_next_pc (pc, 0, insn);
1348}
1349
1350/* The mips_next_pc function supports single_step when the remote
7e73cedf 1351 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1352 It works by decoding the current instruction and predicting where a
1353 branch will go. This isnt hard because all the data is available.
1354 The MIPS32 and MIPS16 variants are quite different */
ad527d2e 1355static CORE_ADDR
c5aa993b 1356mips_next_pc (CORE_ADDR pc)
c906108c 1357{
c5aa993b
JM
1358 if (pc & 0x01)
1359 return mips16_next_pc (pc);
1360 else
1361 return mips32_next_pc (pc);
12f02c2a 1362}
c906108c 1363
edfae063
AC
1364struct mips_frame_cache
1365{
1366 CORE_ADDR base;
1367 struct trad_frame_saved_reg *saved_regs;
1368};
1369
29639122
JB
1370/* Set a register's saved stack address in temp_saved_regs. If an
1371 address has already been set for this register, do nothing; this
1372 way we will only recognize the first save of a given register in a
1373 function prologue.
eec63939 1374
29639122
JB
1375 For simplicity, save the address in both [0 .. NUM_REGS) and
1376 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1377 is used as it is only second range (the ABI instead of ISA
1378 registers) that comes into play when finding saved registers in a
1379 frame. */
eec63939
AC
1380
1381static void
29639122
JB
1382set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1383 CORE_ADDR offset)
eec63939 1384{
29639122
JB
1385 if (this_cache != NULL
1386 && this_cache->saved_regs[regnum].addr == -1)
1387 {
1388 this_cache->saved_regs[regnum + 0 * NUM_REGS].addr = offset;
1389 this_cache->saved_regs[regnum + 1 * NUM_REGS].addr = offset;
1390 }
eec63939
AC
1391}
1392
eec63939 1393
29639122
JB
1394/* Fetch the immediate value from a MIPS16 instruction.
1395 If the previous instruction was an EXTEND, use it to extend
1396 the upper bits of the immediate value. This is a helper function
1397 for mips16_scan_prologue. */
eec63939 1398
29639122
JB
1399static int
1400mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1401 unsigned short inst, /* current instruction */
1402 int nbits, /* number of bits in imm field */
1403 int scale, /* scale factor to be applied to imm */
1404 int is_signed) /* is the imm field signed? */
eec63939 1405{
29639122 1406 int offset;
eec63939 1407
29639122
JB
1408 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1409 {
1410 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1411 if (offset & 0x8000) /* check for negative extend */
1412 offset = 0 - (0x10000 - (offset & 0xffff));
1413 return offset | (inst & 0x1f);
1414 }
eec63939 1415 else
29639122
JB
1416 {
1417 int max_imm = 1 << nbits;
1418 int mask = max_imm - 1;
1419 int sign_bit = max_imm >> 1;
45c9dd44 1420
29639122
JB
1421 offset = inst & mask;
1422 if (is_signed && (offset & sign_bit))
1423 offset = 0 - (max_imm - offset);
1424 return offset * scale;
1425 }
1426}
eec63939 1427
65596487 1428
29639122
JB
1429/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1430 the associated FRAME_CACHE if not null.
1431 Return the address of the first instruction past the prologue. */
eec63939 1432
29639122
JB
1433static CORE_ADDR
1434mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1435 struct frame_info *next_frame,
1436 struct mips_frame_cache *this_cache)
1437{
1438 CORE_ADDR cur_pc;
1439 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1440 CORE_ADDR sp;
1441 long frame_offset = 0; /* Size of stack frame. */
1442 long frame_adjust = 0; /* Offset of FP from SP. */
1443 int frame_reg = MIPS_SP_REGNUM;
1444 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1445 unsigned inst = 0; /* current instruction */
1446 unsigned entry_inst = 0; /* the entry instruction */
1447 int reg, offset;
a343eb3c 1448
29639122
JB
1449 int extend_bytes = 0;
1450 int prev_extend_bytes;
1451 CORE_ADDR end_prologue_addr = 0;
a343eb3c 1452
29639122
JB
1453 /* Can be called when there's no process, and hence when there's no
1454 NEXT_FRAME. */
1455 if (next_frame != NULL)
1456 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1457 else
1458 sp = 0;
eec63939 1459
29639122
JB
1460 if (limit_pc > start_pc + 200)
1461 limit_pc = start_pc + 200;
eec63939 1462
95ac2dcf 1463 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122
JB
1464 {
1465 /* Save the previous instruction. If it's an EXTEND, we'll extract
1466 the immediate offset extension from it in mips16_get_imm. */
1467 prev_inst = inst;
eec63939 1468
29639122
JB
1469 /* Fetch and decode the instruction. */
1470 inst = (unsigned short) mips_fetch_instruction (cur_pc);
eec63939 1471
29639122
JB
1472 /* Normally we ignore extend instructions. However, if it is
1473 not followed by a valid prologue instruction, then this
1474 instruction is not part of the prologue either. We must
1475 remember in this case to adjust the end_prologue_addr back
1476 over the extend. */
1477 if ((inst & 0xf800) == 0xf000) /* extend */
1478 {
95ac2dcf 1479 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
1480 continue;
1481 }
eec63939 1482
29639122
JB
1483 prev_extend_bytes = extend_bytes;
1484 extend_bytes = 0;
eec63939 1485
29639122
JB
1486 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1487 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1488 {
1489 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1490 if (offset < 0) /* negative stack adjustment? */
1491 frame_offset -= offset;
1492 else
1493 /* Exit loop if a positive stack adjustment is found, which
1494 usually means that the stack cleanup code in the function
1495 epilogue is reached. */
1496 break;
1497 }
1498 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1499 {
1500 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1501 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1502 set_reg_offset (this_cache, reg, sp + offset);
1503 }
1504 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1505 {
1506 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1507 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1508 set_reg_offset (this_cache, reg, sp + offset);
1509 }
1510 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1511 {
1512 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4c7d22cb 1513 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1514 }
1515 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1516 {
1517 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
4c7d22cb 1518 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1519 }
1520 else if (inst == 0x673d) /* move $s1, $sp */
1521 {
1522 frame_addr = sp;
1523 frame_reg = 17;
1524 }
1525 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1526 {
1527 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1528 frame_addr = sp + offset;
1529 frame_reg = 17;
1530 frame_adjust = offset;
1531 }
1532 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1533 {
1534 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1535 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1536 set_reg_offset (this_cache, reg, frame_addr + offset);
1537 }
1538 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1539 {
1540 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1541 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1542 set_reg_offset (this_cache, reg, frame_addr + offset);
1543 }
1544 else if ((inst & 0xf81f) == 0xe809
1545 && (inst & 0x700) != 0x700) /* entry */
1546 entry_inst = inst; /* save for later processing */
1547 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
95ac2dcf 1548 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
29639122
JB
1549 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1550 {
1551 /* This instruction is part of the prologue, but we don't
1552 need to do anything special to handle it. */
1553 }
1554 else
1555 {
1556 /* This instruction is not an instruction typically found
1557 in a prologue, so we must have reached the end of the
1558 prologue. */
1559 if (end_prologue_addr == 0)
1560 end_prologue_addr = cur_pc - prev_extend_bytes;
1561 }
1562 }
eec63939 1563
29639122
JB
1564 /* The entry instruction is typically the first instruction in a function,
1565 and it stores registers at offsets relative to the value of the old SP
1566 (before the prologue). But the value of the sp parameter to this
1567 function is the new SP (after the prologue has been executed). So we
1568 can't calculate those offsets until we've seen the entire prologue,
1569 and can calculate what the old SP must have been. */
1570 if (entry_inst != 0)
1571 {
1572 int areg_count = (entry_inst >> 8) & 7;
1573 int sreg_count = (entry_inst >> 6) & 3;
eec63939 1574
29639122
JB
1575 /* The entry instruction always subtracts 32 from the SP. */
1576 frame_offset += 32;
1577
1578 /* Now we can calculate what the SP must have been at the
1579 start of the function prologue. */
1580 sp += frame_offset;
1581
1582 /* Check if a0-a3 were saved in the caller's argument save area. */
1583 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1584 {
1585 set_reg_offset (this_cache, reg, sp + offset);
1586 offset += mips_abi_regsize (current_gdbarch);
1587 }
1588
1589 /* Check if the ra register was pushed on the stack. */
1590 offset = -4;
1591 if (entry_inst & 0x20)
1592 {
4c7d22cb 1593 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1594 offset -= mips_abi_regsize (current_gdbarch);
1595 }
1596
1597 /* Check if the s0 and s1 registers were pushed on the stack. */
1598 for (reg = 16; reg < sreg_count + 16; reg++)
1599 {
1600 set_reg_offset (this_cache, reg, sp + offset);
1601 offset -= mips_abi_regsize (current_gdbarch);
1602 }
1603 }
1604
1605 if (this_cache != NULL)
1606 {
1607 this_cache->base =
1608 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1609 + frame_offset - frame_adjust);
1610 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1611 be able to get rid of the assignment below, evetually. But it's
1612 still needed for now. */
1613 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
4c7d22cb 1614 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
29639122
JB
1615 }
1616
1617 /* If we didn't reach the end of the prologue when scanning the function
1618 instructions, then set end_prologue_addr to the address of the
1619 instruction immediately after the last one we scanned. */
1620 if (end_prologue_addr == 0)
1621 end_prologue_addr = cur_pc;
1622
1623 return end_prologue_addr;
eec63939
AC
1624}
1625
29639122
JB
1626/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1627 Procedures that use the 32-bit instruction set are handled by the
1628 mips_insn32 unwinder. */
1629
1630static struct mips_frame_cache *
1631mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
eec63939 1632{
29639122 1633 struct mips_frame_cache *cache;
eec63939
AC
1634
1635 if ((*this_cache) != NULL)
1636 return (*this_cache);
29639122
JB
1637 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1638 (*this_cache) = cache;
1639 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
eec63939 1640
29639122
JB
1641 /* Analyze the function prologue. */
1642 {
6de5b849
JB
1643 const CORE_ADDR pc =
1644 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
29639122 1645 CORE_ADDR start_addr;
eec63939 1646
29639122
JB
1647 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1648 if (start_addr == 0)
1649 start_addr = heuristic_proc_start (pc);
1650 /* We can't analyze the prologue if we couldn't find the begining
1651 of the function. */
1652 if (start_addr == 0)
1653 return cache;
eec63939 1654
29639122
JB
1655 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1656 }
1657
1658 /* SP_REGNUM, contains the value and not the address. */
1659 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
eec63939 1660
29639122 1661 return (*this_cache);
eec63939
AC
1662}
1663
1664static void
29639122
JB
1665mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1666 struct frame_id *this_id)
eec63939 1667{
29639122
JB
1668 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1669 this_cache);
93d42b30
DJ
1670 (*this_id) = frame_id_build (info->base,
1671 frame_func_unwind (next_frame, NORMAL_FRAME));
eec63939
AC
1672}
1673
1674static void
29639122 1675mips_insn16_frame_prev_register (struct frame_info *next_frame,
eec63939
AC
1676 void **this_cache,
1677 int regnum, int *optimizedp,
1678 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 1679 int *realnump, gdb_byte *valuep)
eec63939 1680{
29639122
JB
1681 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1682 this_cache);
1683 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1684 optimizedp, lvalp, addrp, realnump, valuep);
eec63939
AC
1685}
1686
29639122 1687static const struct frame_unwind mips_insn16_frame_unwind =
eec63939
AC
1688{
1689 NORMAL_FRAME,
29639122
JB
1690 mips_insn16_frame_this_id,
1691 mips_insn16_frame_prev_register
eec63939
AC
1692};
1693
1694static const struct frame_unwind *
29639122 1695mips_insn16_frame_sniffer (struct frame_info *next_frame)
eec63939 1696{
6de5b849 1697 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 1698 if (mips_pc_is_mips16 (pc))
29639122
JB
1699 return &mips_insn16_frame_unwind;
1700 return NULL;
eec63939
AC
1701}
1702
1703static CORE_ADDR
29639122
JB
1704mips_insn16_frame_base_address (struct frame_info *next_frame,
1705 void **this_cache)
eec63939 1706{
29639122
JB
1707 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1708 this_cache);
1709 return info->base;
eec63939
AC
1710}
1711
29639122 1712static const struct frame_base mips_insn16_frame_base =
eec63939 1713{
29639122
JB
1714 &mips_insn16_frame_unwind,
1715 mips_insn16_frame_base_address,
1716 mips_insn16_frame_base_address,
1717 mips_insn16_frame_base_address
eec63939
AC
1718};
1719
1720static const struct frame_base *
29639122 1721mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
eec63939 1722{
29639122
JB
1723 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1724 return &mips_insn16_frame_base;
eec63939
AC
1725 else
1726 return NULL;
edfae063
AC
1727}
1728
29639122
JB
1729/* Mark all the registers as unset in the saved_regs array
1730 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1731
1732void
1733reset_saved_regs (struct mips_frame_cache *this_cache)
c906108c 1734{
29639122
JB
1735 if (this_cache == NULL || this_cache->saved_regs == NULL)
1736 return;
1737
1738 {
1739 const int num_regs = NUM_REGS;
1740 int i;
64159455 1741
29639122
JB
1742 for (i = 0; i < num_regs; i++)
1743 {
1744 this_cache->saved_regs[i].addr = -1;
1745 }
1746 }
c906108c
SS
1747}
1748
29639122
JB
1749/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1750 the associated FRAME_CACHE if not null.
1751 Return the address of the first instruction past the prologue. */
c906108c 1752
875e1767 1753static CORE_ADDR
29639122
JB
1754mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1755 struct frame_info *next_frame,
1756 struct mips_frame_cache *this_cache)
c906108c 1757{
29639122
JB
1758 CORE_ADDR cur_pc;
1759 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1760 CORE_ADDR sp;
1761 long frame_offset;
1762 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 1763
29639122
JB
1764 CORE_ADDR end_prologue_addr = 0;
1765 int seen_sp_adjust = 0;
1766 int load_immediate_bytes = 0;
8fa9cfa1 1767
29639122
JB
1768 /* Can be called when there's no process, and hence when there's no
1769 NEXT_FRAME. */
1770 if (next_frame != NULL)
1771 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
8fa9cfa1 1772 else
29639122 1773 sp = 0;
9022177c 1774
29639122
JB
1775 if (limit_pc > start_pc + 200)
1776 limit_pc = start_pc + 200;
9022177c 1777
29639122 1778restart:
9022177c 1779
29639122 1780 frame_offset = 0;
95ac2dcf 1781 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 1782 {
29639122
JB
1783 unsigned long inst, high_word, low_word;
1784 int reg;
9022177c 1785
29639122
JB
1786 /* Fetch the instruction. */
1787 inst = (unsigned long) mips_fetch_instruction (cur_pc);
9022177c 1788
29639122
JB
1789 /* Save some code by pre-extracting some useful fields. */
1790 high_word = (inst >> 16) & 0xffff;
1791 low_word = inst & 0xffff;
1792 reg = high_word & 0x1f;
fe29b929 1793
29639122
JB
1794 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1795 || high_word == 0x23bd /* addi $sp,$sp,-i */
1796 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1797 {
1798 if (low_word & 0x8000) /* negative stack adjustment? */
1799 frame_offset += 0x10000 - low_word;
1800 else
1801 /* Exit loop if a positive stack adjustment is found, which
1802 usually means that the stack cleanup code in the function
1803 epilogue is reached. */
1804 break;
1805 seen_sp_adjust = 1;
1806 }
1807 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1808 {
1809 set_reg_offset (this_cache, reg, sp + low_word);
1810 }
1811 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1812 {
1813 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1814 set_reg_offset (this_cache, reg, sp + low_word);
1815 }
1816 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1817 {
1818 /* Old gcc frame, r30 is virtual frame pointer. */
1819 if ((long) low_word != frame_offset)
1820 frame_addr = sp + low_word;
1821 else if (frame_reg == MIPS_SP_REGNUM)
1822 {
1823 unsigned alloca_adjust;
a4b8ebc8 1824
29639122
JB
1825 frame_reg = 30;
1826 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1827 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1828 if (alloca_adjust > 0)
1829 {
1830 /* FP > SP + frame_size. This may be because of
1831 an alloca or somethings similar. Fix sp to
1832 "pre-alloca" value, and try again. */
1833 sp += alloca_adjust;
1834 /* Need to reset the status of all registers. Otherwise,
1835 we will hit a guard that prevents the new address
1836 for each register to be recomputed during the second
1837 pass. */
1838 reset_saved_regs (this_cache);
1839 goto restart;
1840 }
1841 }
1842 }
1843 /* move $30,$sp. With different versions of gas this will be either
1844 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1845 Accept any one of these. */
1846 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1847 {
1848 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1849 if (frame_reg == MIPS_SP_REGNUM)
1850 {
1851 unsigned alloca_adjust;
c906108c 1852
29639122
JB
1853 frame_reg = 30;
1854 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1855 alloca_adjust = (unsigned) (frame_addr - sp);
1856 if (alloca_adjust > 0)
1857 {
1858 /* FP > SP + frame_size. This may be because of
1859 an alloca or somethings similar. Fix sp to
1860 "pre-alloca" value, and try again. */
1861 sp = frame_addr;
1862 /* Need to reset the status of all registers. Otherwise,
1863 we will hit a guard that prevents the new address
1864 for each register to be recomputed during the second
1865 pass. */
1866 reset_saved_regs (this_cache);
1867 goto restart;
1868 }
1869 }
1870 }
1871 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1872 {
1873 set_reg_offset (this_cache, reg, frame_addr + low_word);
1874 }
1875 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1876 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1877 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1878 || high_word == 0x3c1c /* lui $gp,n */
1879 || high_word == 0x279c /* addiu $gp,$gp,n */
1880 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1881 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1882 )
1883 {
1884 /* These instructions are part of the prologue, but we don't
1885 need to do anything special to handle them. */
1886 }
1887 /* The instructions below load $at or $t0 with an immediate
1888 value in preparation for a stack adjustment via
1889 subu $sp,$sp,[$at,$t0]. These instructions could also
1890 initialize a local variable, so we accept them only before
1891 a stack adjustment instruction was seen. */
1892 else if (!seen_sp_adjust
1893 && (high_word == 0x3c01 /* lui $at,n */
1894 || high_word == 0x3c08 /* lui $t0,n */
1895 || high_word == 0x3421 /* ori $at,$at,n */
1896 || high_word == 0x3508 /* ori $t0,$t0,n */
1897 || high_word == 0x3401 /* ori $at,$zero,n */
1898 || high_word == 0x3408 /* ori $t0,$zero,n */
1899 ))
1900 {
95ac2dcf 1901 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
29639122
JB
1902 }
1903 else
1904 {
1905 /* This instruction is not an instruction typically found
1906 in a prologue, so we must have reached the end of the
1907 prologue. */
1908 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
1909 loop now? Why would we need to continue scanning the function
1910 instructions? */
1911 if (end_prologue_addr == 0)
1912 end_prologue_addr = cur_pc;
1913 }
a4b8ebc8 1914 }
c906108c 1915
29639122
JB
1916 if (this_cache != NULL)
1917 {
1918 this_cache->base =
1919 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1920 + frame_offset);
1921 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
1922 this assignment below, eventually. But it's still needed
1923 for now. */
1924 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
4c7d22cb 1925 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
29639122 1926 }
c906108c 1927
29639122
JB
1928 /* If we didn't reach the end of the prologue when scanning the function
1929 instructions, then set end_prologue_addr to the address of the
1930 instruction immediately after the last one we scanned. */
1931 /* brobecker/2004-10-10: I don't think this would ever happen, but
1932 we may as well be careful and do our best if we have a null
1933 end_prologue_addr. */
1934 if (end_prologue_addr == 0)
1935 end_prologue_addr = cur_pc;
1936
1937 /* In a frameless function, we might have incorrectly
1938 skipped some load immediate instructions. Undo the skipping
1939 if the load immediate was not followed by a stack adjustment. */
1940 if (load_immediate_bytes && !seen_sp_adjust)
1941 end_prologue_addr -= load_immediate_bytes;
c906108c 1942
29639122 1943 return end_prologue_addr;
c906108c
SS
1944}
1945
29639122
JB
1946/* Heuristic unwinder for procedures using 32-bit instructions (covers
1947 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
1948 instructions (a.k.a. MIPS16) are handled by the mips_insn16
1949 unwinder. */
c906108c 1950
29639122
JB
1951static struct mips_frame_cache *
1952mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
c906108c 1953{
29639122 1954 struct mips_frame_cache *cache;
c906108c 1955
29639122
JB
1956 if ((*this_cache) != NULL)
1957 return (*this_cache);
c5aa993b 1958
29639122
JB
1959 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1960 (*this_cache) = cache;
1961 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c5aa993b 1962
29639122
JB
1963 /* Analyze the function prologue. */
1964 {
6de5b849
JB
1965 const CORE_ADDR pc =
1966 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
29639122 1967 CORE_ADDR start_addr;
c906108c 1968
29639122
JB
1969 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1970 if (start_addr == 0)
1971 start_addr = heuristic_proc_start (pc);
1972 /* We can't analyze the prologue if we couldn't find the begining
1973 of the function. */
1974 if (start_addr == 0)
1975 return cache;
c5aa993b 1976
29639122
JB
1977 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
1978 }
1979
1980 /* SP_REGNUM, contains the value and not the address. */
1981 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
c5aa993b 1982
29639122 1983 return (*this_cache);
c906108c
SS
1984}
1985
29639122
JB
1986static void
1987mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
1988 struct frame_id *this_id)
c906108c 1989{
29639122
JB
1990 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1991 this_cache);
93d42b30
DJ
1992 (*this_id) = frame_id_build (info->base,
1993 frame_func_unwind (next_frame, NORMAL_FRAME));
29639122 1994}
c906108c 1995
29639122
JB
1996static void
1997mips_insn32_frame_prev_register (struct frame_info *next_frame,
1998 void **this_cache,
1999 int regnum, int *optimizedp,
2000 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 2001 int *realnump, gdb_byte *valuep)
29639122
JB
2002{
2003 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2004 this_cache);
2005 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2006 optimizedp, lvalp, addrp, realnump, valuep);
c906108c
SS
2007}
2008
29639122
JB
2009static const struct frame_unwind mips_insn32_frame_unwind =
2010{
2011 NORMAL_FRAME,
2012 mips_insn32_frame_this_id,
2013 mips_insn32_frame_prev_register
2014};
c906108c 2015
29639122
JB
2016static const struct frame_unwind *
2017mips_insn32_frame_sniffer (struct frame_info *next_frame)
2018{
6de5b849 2019 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 2020 if (! mips_pc_is_mips16 (pc))
29639122
JB
2021 return &mips_insn32_frame_unwind;
2022 return NULL;
2023}
c906108c 2024
1c645fec 2025static CORE_ADDR
29639122
JB
2026mips_insn32_frame_base_address (struct frame_info *next_frame,
2027 void **this_cache)
c906108c 2028{
29639122
JB
2029 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2030 this_cache);
2031 return info->base;
2032}
c906108c 2033
29639122
JB
2034static const struct frame_base mips_insn32_frame_base =
2035{
2036 &mips_insn32_frame_unwind,
2037 mips_insn32_frame_base_address,
2038 mips_insn32_frame_base_address,
2039 mips_insn32_frame_base_address
2040};
1c645fec 2041
29639122
JB
2042static const struct frame_base *
2043mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2044{
2045 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2046 return &mips_insn32_frame_base;
a65bbe44 2047 else
29639122
JB
2048 return NULL;
2049}
a65bbe44 2050
29639122
JB
2051static struct trad_frame_cache *
2052mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2053{
2054 CORE_ADDR pc;
2055 CORE_ADDR start_addr;
2056 CORE_ADDR stack_addr;
2057 struct trad_frame_cache *this_trad_cache;
c906108c 2058
29639122
JB
2059 if ((*this_cache) != NULL)
2060 return (*this_cache);
2061 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2062 (*this_cache) = this_trad_cache;
1c645fec 2063
29639122 2064 /* The return address is in the link register. */
4c7d22cb 2065 trad_frame_set_reg_realreg (this_trad_cache, PC_REGNUM, MIPS_RA_REGNUM);
1c645fec 2066
29639122
JB
2067 /* Frame ID, since it's a frameless / stackless function, no stack
2068 space is allocated and SP on entry is the current SP. */
2069 pc = frame_pc_unwind (next_frame);
2070 find_pc_partial_function (pc, NULL, &start_addr, NULL);
4c7d22cb 2071 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
29639122 2072 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
1c645fec 2073
29639122
JB
2074 /* Assume that the frame's base is the same as the
2075 stack-pointer. */
2076 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 2077
29639122
JB
2078 return this_trad_cache;
2079}
c906108c 2080
29639122
JB
2081static void
2082mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2083 struct frame_id *this_id)
2084{
2085 struct trad_frame_cache *this_trad_cache
2086 = mips_stub_frame_cache (next_frame, this_cache);
2087 trad_frame_get_id (this_trad_cache, this_id);
2088}
c906108c 2089
29639122
JB
2090static void
2091mips_stub_frame_prev_register (struct frame_info *next_frame,
2092 void **this_cache,
2093 int regnum, int *optimizedp,
2094 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 2095 int *realnump, gdb_byte *valuep)
29639122
JB
2096{
2097 struct trad_frame_cache *this_trad_cache
2098 = mips_stub_frame_cache (next_frame, this_cache);
2099 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2100 lvalp, addrp, realnump, valuep);
2101}
c906108c 2102
29639122
JB
2103static const struct frame_unwind mips_stub_frame_unwind =
2104{
2105 NORMAL_FRAME,
2106 mips_stub_frame_this_id,
2107 mips_stub_frame_prev_register
2108};
c906108c 2109
29639122
JB
2110static const struct frame_unwind *
2111mips_stub_frame_sniffer (struct frame_info *next_frame)
2112{
979b38e0 2113 struct obj_section *s;
93d42b30 2114 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
979b38e0 2115
29639122
JB
2116 if (in_plt_section (pc, NULL))
2117 return &mips_stub_frame_unwind;
979b38e0
DJ
2118
2119 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2120 s = find_pc_section (pc);
2121
2122 if (s != NULL
2123 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2124 ".MIPS.stubs") == 0)
2125 return &mips_stub_frame_unwind;
2126
2127 return NULL;
29639122 2128}
c906108c 2129
29639122
JB
2130static CORE_ADDR
2131mips_stub_frame_base_address (struct frame_info *next_frame,
2132 void **this_cache)
2133{
2134 struct trad_frame_cache *this_trad_cache
2135 = mips_stub_frame_cache (next_frame, this_cache);
2136 return trad_frame_get_this_base (this_trad_cache);
2137}
0fce0821 2138
29639122
JB
2139static const struct frame_base mips_stub_frame_base =
2140{
2141 &mips_stub_frame_unwind,
2142 mips_stub_frame_base_address,
2143 mips_stub_frame_base_address,
2144 mips_stub_frame_base_address
2145};
2146
2147static const struct frame_base *
2148mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2149{
2150 if (mips_stub_frame_sniffer (next_frame) != NULL)
2151 return &mips_stub_frame_base;
2152 else
2153 return NULL;
2154}
2155
2156static CORE_ADDR
2157read_next_frame_reg (struct frame_info *fi, int regno)
2158{
2159 /* Always a pseudo. */
2160 gdb_assert (regno >= NUM_REGS);
2161 if (fi == NULL)
0fce0821 2162 {
29639122
JB
2163 LONGEST val;
2164 regcache_cooked_read_signed (current_regcache, regno, &val);
2165 return val;
0fce0821 2166 }
29639122
JB
2167 else
2168 return frame_unwind_register_signed (fi, regno);
1c645fec 2169
c906108c
SS
2170}
2171
29639122 2172/* mips_addr_bits_remove - remove useless address bits */
65596487 2173
29639122
JB
2174static CORE_ADDR
2175mips_addr_bits_remove (CORE_ADDR addr)
65596487 2176{
29639122
JB
2177 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2178 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2179 /* This hack is a work-around for existing boards using PMON, the
2180 simulator, and any other 64-bit targets that doesn't have true
2181 64-bit addressing. On these targets, the upper 32 bits of
2182 addresses are ignored by the hardware. Thus, the PC or SP are
2183 likely to have been sign extended to all 1s by instruction
2184 sequences that load 32-bit addresses. For example, a typical
2185 piece of code that loads an address is this:
65596487 2186
29639122
JB
2187 lui $r2, <upper 16 bits>
2188 ori $r2, <lower 16 bits>
65596487 2189
29639122
JB
2190 But the lui sign-extends the value such that the upper 32 bits
2191 may be all 1s. The workaround is simply to mask off these
2192 bits. In the future, gcc may be changed to support true 64-bit
2193 addressing, and this masking will have to be disabled. */
2194 return addr &= 0xffffffffUL;
2195 else
2196 return addr;
65596487
JB
2197}
2198
29639122
JB
2199/* mips_software_single_step() is called just before we want to resume
2200 the inferior, if we want to single-step it but there is no hardware
2201 or kernel single-step support (MIPS on GNU/Linux for example). We find
e0cd558a 2202 the target of the coming instruction and breakpoint it. */
29639122 2203
e6590a1b 2204int
e0cd558a 2205mips_software_single_step (struct regcache *regcache)
c906108c 2206{
8181d85f 2207 CORE_ADDR pc, next_pc;
65596487 2208
e0cd558a
UW
2209 pc = read_register (mips_regnum (current_gdbarch)->pc);
2210 next_pc = mips_next_pc (pc);
e6590a1b 2211
e0cd558a 2212 insert_single_step_breakpoint (next_pc);
e6590a1b 2213 return 1;
29639122 2214}
a65bbe44 2215
29639122
JB
2216/* Test whether the PC points to the return instruction at the
2217 end of a function. */
65596487 2218
29639122
JB
2219static int
2220mips_about_to_return (CORE_ADDR pc)
2221{
0fe7e7c8 2222 if (mips_pc_is_mips16 (pc))
29639122
JB
2223 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2224 generates a "jr $ra"; other times it generates code to load
2225 the return address from the stack to an accessible register (such
2226 as $a3), then a "jr" using that register. This second case
2227 is almost impossible to distinguish from an indirect jump
2228 used for switch statements, so we don't even try. */
2229 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2230 else
2231 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2232}
c906108c 2233
c906108c 2234
29639122
JB
2235/* This fencepost looks highly suspicious to me. Removing it also
2236 seems suspicious as it could affect remote debugging across serial
2237 lines. */
c906108c 2238
29639122
JB
2239static CORE_ADDR
2240heuristic_proc_start (CORE_ADDR pc)
2241{
2242 CORE_ADDR start_pc;
2243 CORE_ADDR fence;
2244 int instlen;
2245 int seen_adjsp = 0;
65596487 2246
29639122
JB
2247 pc = ADDR_BITS_REMOVE (pc);
2248 start_pc = pc;
2249 fence = start_pc - heuristic_fence_post;
2250 if (start_pc == 0)
2251 return 0;
65596487 2252
29639122
JB
2253 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2254 fence = VM_MIN_ADDRESS;
65596487 2255
95ac2dcf 2256 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
98b4dd94 2257
29639122
JB
2258 /* search back for previous return */
2259 for (start_pc -= instlen;; start_pc -= instlen)
2260 if (start_pc < fence)
2261 {
2262 /* It's not clear to me why we reach this point when
2263 stop_soon, but with this test, at least we
2264 don't print out warnings for every child forked (eg, on
2265 decstation). 22apr93 rich@cygnus.com. */
2266 if (stop_soon == NO_STOP_QUIETLY)
2267 {
2268 static int blurb_printed = 0;
98b4dd94 2269
8a3fe4f8 2270 warning (_("GDB can't find the start of the function at 0x%s."),
29639122
JB
2271 paddr_nz (pc));
2272
2273 if (!blurb_printed)
2274 {
2275 /* This actually happens frequently in embedded
2276 development, when you first connect to a board
2277 and your stack pointer and pc are nowhere in
2278 particular. This message needs to give people
2279 in that situation enough information to
2280 determine that it's no big deal. */
2281 printf_filtered ("\n\
2282 GDB is unable to find the start of the function at 0x%s\n\
2283and thus can't determine the size of that function's stack frame.\n\
2284This means that GDB may be unable to access that stack frame, or\n\
2285the frames below it.\n\
2286 This problem is most likely caused by an invalid program counter or\n\
2287stack pointer.\n\
2288 However, if you think GDB should simply search farther back\n\
2289from 0x%s for code which looks like the beginning of a\n\
2290function, you can increase the range of the search using the `set\n\
2291heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2292 blurb_printed = 1;
2293 }
2294 }
2295
2296 return 0;
2297 }
0fe7e7c8 2298 else if (mips_pc_is_mips16 (start_pc))
29639122
JB
2299 {
2300 unsigned short inst;
2301
2302 /* On MIPS16, any one of the following is likely to be the
2303 start of a function:
2304 entry
2305 addiu sp,-n
2306 daddiu sp,-n
2307 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2308 inst = mips_fetch_instruction (start_pc);
2309 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2310 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2311 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2312 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2313 break;
2314 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2315 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2316 seen_adjsp = 1;
2317 else
2318 seen_adjsp = 0;
2319 }
2320 else if (mips_about_to_return (start_pc))
2321 {
4c7d22cb 2322 /* Skip return and its delay slot. */
95ac2dcf 2323 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
2324 break;
2325 }
2326
2327 return start_pc;
c906108c
SS
2328}
2329
6c0d6680
DJ
2330struct mips_objfile_private
2331{
2332 bfd_size_type size;
2333 char *contents;
2334};
2335
f09ded24
AC
2336/* According to the current ABI, should the type be passed in a
2337 floating-point register (assuming that there is space)? When there
a1f5b845 2338 is no FPU, FP are not even considered as possible candidates for
f09ded24
AC
2339 FP registers and, consequently this returns false - forces FP
2340 arguments into integer registers. */
2341
2342static int
2343fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2344{
2345 return ((typecode == TYPE_CODE_FLT
2346 || (MIPS_EABI
6d82d43b
AC
2347 && (typecode == TYPE_CODE_STRUCT
2348 || typecode == TYPE_CODE_UNION)
f09ded24 2349 && TYPE_NFIELDS (arg_type) == 1
b2d6f210
MS
2350 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2351 == TYPE_CODE_FLT))
c86b5b38 2352 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2353}
2354
49e790b0
DJ
2355/* On o32, argument passing in GPRs depends on the alignment of the type being
2356 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2357
2358static int
2359mips_type_needs_double_align (struct type *type)
2360{
2361 enum type_code typecode = TYPE_CODE (type);
361d1df0 2362
49e790b0
DJ
2363 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2364 return 1;
2365 else if (typecode == TYPE_CODE_STRUCT)
2366 {
2367 if (TYPE_NFIELDS (type) < 1)
2368 return 0;
2369 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2370 }
2371 else if (typecode == TYPE_CODE_UNION)
2372 {
361d1df0 2373 int i, n;
49e790b0
DJ
2374
2375 n = TYPE_NFIELDS (type);
2376 for (i = 0; i < n; i++)
2377 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2378 return 1;
2379 return 0;
2380 }
2381 return 0;
2382}
2383
dc604539
AC
2384/* Adjust the address downward (direction of stack growth) so that it
2385 is correctly aligned for a new stack frame. */
2386static CORE_ADDR
2387mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2388{
5b03f266 2389 return align_down (addr, 16);
dc604539
AC
2390}
2391
f7ab6ec6 2392static CORE_ADDR
7d9b040b 2393mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2394 struct regcache *regcache, CORE_ADDR bp_addr,
2395 int nargs, struct value **args, CORE_ADDR sp,
2396 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
2397{
2398 int argreg;
2399 int float_argreg;
2400 int argnum;
2401 int len = 0;
2402 int stack_offset = 0;
480d3dd2 2403 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2404 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 2405
25ab4790
AC
2406 /* For shared libraries, "t9" needs to point at the function
2407 address. */
4c7d22cb 2408 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2409
2410 /* Set the return address register to point to the entry point of
2411 the program, where a breakpoint lies in wait. */
4c7d22cb 2412 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2413
c906108c 2414 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2415 are properly aligned. The stack has to be at least 64-bit
2416 aligned even on 32-bit machines, because doubles must be 64-bit
2417 aligned. For n32 and n64, stack frames need to be 128-bit
2418 aligned, so we round to this widest known alignment. */
2419
5b03f266
AC
2420 sp = align_down (sp, 16);
2421 struct_addr = align_down (struct_addr, 16);
c5aa993b 2422
46e0f506 2423 /* Now make space on the stack for the args. We allocate more
c906108c 2424 than necessary for EABI, because the first few arguments are
46e0f506 2425 passed in registers, but that's OK. */
c906108c 2426 for (argnum = 0; argnum < nargs; argnum++)
4991999e 2427 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
13326b4e 2428 mips_stack_argsize (gdbarch));
5b03f266 2429 sp -= align_up (len, 16);
c906108c 2430
9ace0497 2431 if (mips_debug)
6d82d43b 2432 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2433 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2434 paddr_nz (sp), (long) align_up (len, 16));
9ace0497 2435
c906108c 2436 /* Initialize the integer and float register pointers. */
4c7d22cb 2437 argreg = MIPS_A0_REGNUM;
56cea623 2438 float_argreg = mips_fpa0_regnum (current_gdbarch);
c906108c 2439
46e0f506 2440 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2441 if (struct_return)
9ace0497
AC
2442 {
2443 if (mips_debug)
2444 fprintf_unfiltered (gdb_stdlog,
25ab4790 2445 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2446 argreg, paddr_nz (struct_addr));
9ace0497
AC
2447 write_register (argreg++, struct_addr);
2448 }
c906108c
SS
2449
2450 /* Now load as many as possible of the first arguments into
2451 registers, and push the rest onto the stack. Loop thru args
2452 from first to last. */
2453 for (argnum = 0; argnum < nargs; argnum++)
2454 {
47a35522
MK
2455 const gdb_byte *val;
2456 gdb_byte valbuf[MAX_REGISTER_SIZE];
ea7c478f 2457 struct value *arg = args[argnum];
4991999e 2458 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
2459 int len = TYPE_LENGTH (arg_type);
2460 enum type_code typecode = TYPE_CODE (arg_type);
2461
9ace0497
AC
2462 if (mips_debug)
2463 fprintf_unfiltered (gdb_stdlog,
25ab4790 2464 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2465 argnum + 1, len, (int) typecode);
9ace0497 2466
c906108c 2467 /* The EABI passes structures that do not fit in a register by
46e0f506 2468 reference. */
13326b4e 2469 if (len > mips_abi_regsize (gdbarch)
9ace0497 2470 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2471 {
13326b4e 2472 store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch),
480d3dd2 2473 VALUE_ADDRESS (arg));
c906108c 2474 typecode = TYPE_CODE_PTR;
13326b4e 2475 len = mips_abi_regsize (gdbarch);
c906108c 2476 val = valbuf;
9ace0497
AC
2477 if (mips_debug)
2478 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2479 }
2480 else
47a35522 2481 val = value_contents (arg);
c906108c
SS
2482
2483 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2484 even-numbered floating point register. Round the FP register
2485 up before the check to see if there are any FP registers
46e0f506
MS
2486 left. Non MIPS_EABI targets also pass the FP in the integer
2487 registers so also round up normal registers. */
ceae6e75
AC
2488 if (mips_abi_regsize (gdbarch) < 8
2489 && fp_register_arg_p (typecode, arg_type))
acdb74a0
AC
2490 {
2491 if ((float_argreg & 1))
2492 float_argreg++;
2493 }
c906108c
SS
2494
2495 /* Floating point arguments passed in registers have to be
2496 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2497 are passed in register pairs; the even register gets
2498 the low word, and the odd register gets the high word.
2499 On non-EABI processors, the first two floating point arguments are
2500 also copied to general registers, because MIPS16 functions
2501 don't use float registers for arguments. This duplication of
2502 arguments in general registers can't hurt non-MIPS16 functions
2503 because those registers are normally skipped. */
1012bd0e
EZ
2504 /* MIPS_EABI squeezes a struct that contains a single floating
2505 point value into an FP register instead of pushing it onto the
46e0f506 2506 stack. */
f09ded24
AC
2507 if (fp_register_arg_p (typecode, arg_type)
2508 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c 2509 {
6da397e0
KB
2510 /* EABI32 will pass doubles in consecutive registers, even on
2511 64-bit cores. At one time, we used to check the size of
2512 `float_argreg' to determine whether or not to pass doubles
2513 in consecutive registers, but this is not sufficient for
2514 making the ABI determination. */
2515 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
c906108c 2516 {
d7449b42 2517 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2518 unsigned long regval;
2519
2520 /* Write the low word of the double to the even register(s). */
c5aa993b 2521 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2522 if (mips_debug)
acdb74a0 2523 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2524 float_argreg, phex (regval, 4));
c906108c 2525 write_register (float_argreg++, regval);
c906108c
SS
2526
2527 /* Write the high word of the double to the odd register(s). */
c5aa993b 2528 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2529 if (mips_debug)
acdb74a0 2530 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2531 float_argreg, phex (regval, 4));
c906108c 2532 write_register (float_argreg++, regval);
c906108c
SS
2533 }
2534 else
2535 {
2536 /* This is a floating point value that fits entirely
2537 in a single register. */
53a5351d 2538 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 2539 above to ensure that it is even register aligned. */
9ace0497
AC
2540 LONGEST regval = extract_unsigned_integer (val, len);
2541 if (mips_debug)
acdb74a0 2542 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2543 float_argreg, phex (regval, len));
c906108c 2544 write_register (float_argreg++, regval);
c906108c
SS
2545 }
2546 }
2547 else
2548 {
2549 /* Copy the argument to general registers or the stack in
2550 register-sized pieces. Large arguments are split between
2551 registers and stack. */
4246e332 2552 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
2553 mips_abi_regsize() are treated specially: Irix cc passes
2554 them in registers where gcc sometimes puts them on the
2555 stack. For maximum compatibility, we will put them in
2556 both places. */
13326b4e
AC
2557 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2558 && (len % mips_abi_regsize (gdbarch) != 0));
46e0f506 2559
f09ded24 2560 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2561 register are only written to memory. */
c906108c
SS
2562 while (len > 0)
2563 {
ebafbe83 2564 /* Remember if the argument was written to the stack. */
566f0f7a 2565 int stack_used_p = 0;
9ecf7166
MR
2566 int partial_len = (len < mips_abi_regsize (gdbarch)
2567 ? len : mips_abi_regsize (gdbarch));
c906108c 2568
acdb74a0
AC
2569 if (mips_debug)
2570 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2571 partial_len);
2572
566f0f7a 2573 /* Write this portion of the argument to the stack. */
f09ded24
AC
2574 if (argreg > MIPS_LAST_ARG_REGNUM
2575 || odd_sized_struct
2576 || fp_register_arg_p (typecode, arg_type))
c906108c 2577 {
c906108c
SS
2578 /* Should shorter than int integer values be
2579 promoted to int before being stored? */
c906108c 2580 int longword_offset = 0;
9ace0497 2581 CORE_ADDR addr;
566f0f7a 2582 stack_used_p = 1;
d7449b42 2583 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2584 {
13326b4e 2585 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
2586 && (typecode == TYPE_CODE_INT
2587 || typecode == TYPE_CODE_PTR
6d82d43b 2588 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 2589 longword_offset = mips_stack_argsize (gdbarch) - len;
480d3dd2
AC
2590 else if ((typecode == TYPE_CODE_STRUCT
2591 || typecode == TYPE_CODE_UNION)
2592 && (TYPE_LENGTH (arg_type)
13326b4e
AC
2593 < mips_stack_argsize (gdbarch)))
2594 longword_offset = mips_stack_argsize (gdbarch) - len;
7a292a7a 2595 }
c5aa993b 2596
9ace0497
AC
2597 if (mips_debug)
2598 {
cb3d25d1
MS
2599 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2600 paddr_nz (stack_offset));
2601 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2602 paddr_nz (longword_offset));
9ace0497 2603 }
361d1df0 2604
9ace0497
AC
2605 addr = sp + stack_offset + longword_offset;
2606
2607 if (mips_debug)
2608 {
2609 int i;
6d82d43b 2610 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1 2611 paddr_nz (addr));
9ace0497
AC
2612 for (i = 0; i < partial_len; i++)
2613 {
6d82d43b 2614 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 2615 val[i] & 0xff);
9ace0497
AC
2616 }
2617 }
2618 write_memory (addr, val, partial_len);
c906108c
SS
2619 }
2620
f09ded24
AC
2621 /* Note!!! This is NOT an else clause. Odd sized
2622 structs may go thru BOTH paths. Floating point
46e0f506 2623 arguments will not. */
566f0f7a 2624 /* Write this portion of the argument to a general
6d82d43b 2625 purpose register. */
f09ded24
AC
2626 if (argreg <= MIPS_LAST_ARG_REGNUM
2627 && !fp_register_arg_p (typecode, arg_type))
c906108c 2628 {
6d82d43b
AC
2629 LONGEST regval =
2630 extract_unsigned_integer (val, partial_len);
c906108c 2631
9ace0497 2632 if (mips_debug)
acdb74a0 2633 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 2634 argreg,
6d82d43b 2635 phex (regval,
13326b4e 2636 mips_abi_regsize (gdbarch)));
c906108c
SS
2637 write_register (argreg, regval);
2638 argreg++;
c906108c 2639 }
c5aa993b 2640
c906108c
SS
2641 len -= partial_len;
2642 val += partial_len;
2643
566f0f7a 2644 /* Compute the the offset into the stack at which we
6d82d43b 2645 will copy the next parameter.
566f0f7a 2646
566f0f7a 2647 In the new EABI (and the NABI32), the stack_offset
46e0f506 2648 only needs to be adjusted when it has been used. */
c906108c 2649
46e0f506 2650 if (stack_used_p)
480d3dd2 2651 stack_offset += align_up (partial_len,
13326b4e 2652 mips_stack_argsize (gdbarch));
c906108c
SS
2653 }
2654 }
9ace0497
AC
2655 if (mips_debug)
2656 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2657 }
2658
f10683bb 2659 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 2660
0f71a2f6
JM
2661 /* Return adjusted stack pointer. */
2662 return sp;
2663}
2664
a1f5b845 2665/* Determine the return value convention being used. */
6d82d43b 2666
9c8fdbfa
AC
2667static enum return_value_convention
2668mips_eabi_return_value (struct gdbarch *gdbarch,
2669 struct type *type, struct regcache *regcache,
47a35522 2670 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 2671{
9c8fdbfa
AC
2672 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2673 return RETURN_VALUE_STRUCT_CONVENTION;
2674 if (readbuf)
2675 memset (readbuf, 0, TYPE_LENGTH (type));
2676 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
2677}
2678
6d82d43b
AC
2679
2680/* N32/N64 ABI stuff. */
ebafbe83 2681
f7ab6ec6 2682static CORE_ADDR
7d9b040b 2683mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2684 struct regcache *regcache, CORE_ADDR bp_addr,
2685 int nargs, struct value **args, CORE_ADDR sp,
2686 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
2687{
2688 int argreg;
2689 int float_argreg;
2690 int argnum;
2691 int len = 0;
2692 int stack_offset = 0;
480d3dd2 2693 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2694 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 2695
25ab4790
AC
2696 /* For shared libraries, "t9" needs to point at the function
2697 address. */
4c7d22cb 2698 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2699
2700 /* Set the return address register to point to the entry point of
2701 the program, where a breakpoint lies in wait. */
4c7d22cb 2702 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2703
cb3d25d1
MS
2704 /* First ensure that the stack and structure return address (if any)
2705 are properly aligned. The stack has to be at least 64-bit
2706 aligned even on 32-bit machines, because doubles must be 64-bit
2707 aligned. For n32 and n64, stack frames need to be 128-bit
2708 aligned, so we round to this widest known alignment. */
2709
5b03f266
AC
2710 sp = align_down (sp, 16);
2711 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
2712
2713 /* Now make space on the stack for the args. */
2714 for (argnum = 0; argnum < nargs; argnum++)
4991999e 2715 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
13326b4e 2716 mips_stack_argsize (gdbarch));
5b03f266 2717 sp -= align_up (len, 16);
cb3d25d1
MS
2718
2719 if (mips_debug)
6d82d43b 2720 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2721 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2722 paddr_nz (sp), (long) align_up (len, 16));
cb3d25d1
MS
2723
2724 /* Initialize the integer and float register pointers. */
4c7d22cb 2725 argreg = MIPS_A0_REGNUM;
56cea623 2726 float_argreg = mips_fpa0_regnum (current_gdbarch);
cb3d25d1 2727
46e0f506 2728 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
2729 if (struct_return)
2730 {
2731 if (mips_debug)
2732 fprintf_unfiltered (gdb_stdlog,
25ab4790 2733 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1
MS
2734 argreg, paddr_nz (struct_addr));
2735 write_register (argreg++, struct_addr);
2736 }
2737
2738 /* Now load as many as possible of the first arguments into
2739 registers, and push the rest onto the stack. Loop thru args
2740 from first to last. */
2741 for (argnum = 0; argnum < nargs; argnum++)
2742 {
47a35522 2743 const gdb_byte *val;
cb3d25d1 2744 struct value *arg = args[argnum];
4991999e 2745 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
2746 int len = TYPE_LENGTH (arg_type);
2747 enum type_code typecode = TYPE_CODE (arg_type);
2748
2749 if (mips_debug)
2750 fprintf_unfiltered (gdb_stdlog,
25ab4790 2751 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
2752 argnum + 1, len, (int) typecode);
2753
47a35522 2754 val = value_contents (arg);
cb3d25d1
MS
2755
2756 if (fp_register_arg_p (typecode, arg_type)
2757 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2758 {
2759 /* This is a floating point value that fits entirely
2760 in a single register. */
2761 /* On 32 bit ABI's the float_argreg is further adjusted
2762 above to ensure that it is even register aligned. */
2763 LONGEST regval = extract_unsigned_integer (val, len);
2764 if (mips_debug)
2765 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2766 float_argreg, phex (regval, len));
2767 write_register (float_argreg++, regval);
2768
2769 if (mips_debug)
2770 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2771 argreg, phex (regval, len));
2772 write_register (argreg, regval);
2773 argreg += 1;
2774 }
2775 else
2776 {
2777 /* Copy the argument to general registers or the stack in
2778 register-sized pieces. Large arguments are split between
2779 registers and stack. */
4246e332 2780 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
2781 mips_abi_regsize() are treated specially: Irix cc passes
2782 them in registers where gcc sometimes puts them on the
2783 stack. For maximum compatibility, we will put them in
2784 both places. */
13326b4e
AC
2785 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2786 && (len % mips_abi_regsize (gdbarch) != 0));
cb3d25d1 2787 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2788 register are only written to memory. */
cb3d25d1
MS
2789 while (len > 0)
2790 {
ad018eee 2791 /* Remember if the argument was written to the stack. */
cb3d25d1 2792 int stack_used_p = 0;
9ecf7166
MR
2793 int partial_len = (len < mips_abi_regsize (gdbarch)
2794 ? len : mips_abi_regsize (gdbarch));
cb3d25d1
MS
2795
2796 if (mips_debug)
2797 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2798 partial_len);
2799
2800 /* Write this portion of the argument to the stack. */
2801 if (argreg > MIPS_LAST_ARG_REGNUM
2802 || odd_sized_struct
2803 || fp_register_arg_p (typecode, arg_type))
2804 {
2805 /* Should shorter than int integer values be
2806 promoted to int before being stored? */
2807 int longword_offset = 0;
2808 CORE_ADDR addr;
2809 stack_used_p = 1;
2810 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2811 {
13326b4e 2812 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
2813 && (typecode == TYPE_CODE_INT
2814 || typecode == TYPE_CODE_PTR
6d82d43b 2815 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 2816 longword_offset = mips_stack_argsize (gdbarch) - len;
cb3d25d1
MS
2817 }
2818
2819 if (mips_debug)
2820 {
2821 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2822 paddr_nz (stack_offset));
2823 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2824 paddr_nz (longword_offset));
2825 }
2826
2827 addr = sp + stack_offset + longword_offset;
2828
2829 if (mips_debug)
2830 {
2831 int i;
6d82d43b 2832 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1
MS
2833 paddr_nz (addr));
2834 for (i = 0; i < partial_len; i++)
2835 {
6d82d43b 2836 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
2837 val[i] & 0xff);
2838 }
2839 }
2840 write_memory (addr, val, partial_len);
2841 }
2842
2843 /* Note!!! This is NOT an else clause. Odd sized
2844 structs may go thru BOTH paths. Floating point
2845 arguments will not. */
2846 /* Write this portion of the argument to a general
6d82d43b 2847 purpose register. */
cb3d25d1
MS
2848 if (argreg <= MIPS_LAST_ARG_REGNUM
2849 && !fp_register_arg_p (typecode, arg_type))
2850 {
6d82d43b
AC
2851 LONGEST regval =
2852 extract_unsigned_integer (val, partial_len);
cb3d25d1
MS
2853
2854 /* A non-floating-point argument being passed in a
2855 general register. If a struct or union, and if
2856 the remaining length is smaller than the register
2857 size, we have to adjust the register value on
2858 big endian targets.
2859
2860 It does not seem to be necessary to do the
2861 same for integral types.
2862
2863 cagney/2001-07-23: gdb/179: Also, GCC, when
2864 outputting LE O32 with sizeof (struct) <
e914cb17
MR
2865 mips_abi_regsize(), generates a left shift
2866 as part of storing the argument in a register
2867 (the left shift isn't generated when
1b13c4f6 2868 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
2869 it is quite possible that this is GCC
2870 contradicting the LE/O32 ABI, GDB has not been
2871 adjusted to accommodate this. Either someone
2872 needs to demonstrate that the LE/O32 ABI
2873 specifies such a left shift OR this new ABI gets
2874 identified as such and GDB gets tweaked
2875 accordingly. */
cb3d25d1
MS
2876
2877 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
13326b4e 2878 && partial_len < mips_abi_regsize (gdbarch)
06f9a1af
MR
2879 && (typecode == TYPE_CODE_STRUCT
2880 || typecode == TYPE_CODE_UNION))
9ecf7166
MR
2881 regval <<= ((mips_abi_regsize (gdbarch) - partial_len)
2882 * TARGET_CHAR_BIT);
cb3d25d1
MS
2883
2884 if (mips_debug)
2885 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2886 argreg,
6d82d43b 2887 phex (regval,
13326b4e 2888 mips_abi_regsize (gdbarch)));
cb3d25d1
MS
2889 write_register (argreg, regval);
2890 argreg++;
2891 }
2892
2893 len -= partial_len;
2894 val += partial_len;
2895
2896 /* Compute the the offset into the stack at which we
6d82d43b 2897 will copy the next parameter.
cb3d25d1
MS
2898
2899 In N32 (N64?), the stack_offset only needs to be
2900 adjusted when it has been used. */
2901
2902 if (stack_used_p)
480d3dd2 2903 stack_offset += align_up (partial_len,
13326b4e 2904 mips_stack_argsize (gdbarch));
cb3d25d1
MS
2905 }
2906 }
2907 if (mips_debug)
2908 fprintf_unfiltered (gdb_stdlog, "\n");
2909 }
2910
f10683bb 2911 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 2912
cb3d25d1
MS
2913 /* Return adjusted stack pointer. */
2914 return sp;
2915}
2916
6d82d43b
AC
2917static enum return_value_convention
2918mips_n32n64_return_value (struct gdbarch *gdbarch,
2919 struct type *type, struct regcache *regcache,
47a35522 2920 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 2921{
6d82d43b
AC
2922 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2923 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2924 || TYPE_CODE (type) == TYPE_CODE_UNION
2925 || TYPE_CODE (type) == TYPE_CODE_ARRAY
13326b4e 2926 || TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
6d82d43b 2927 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
2928 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2929 && TYPE_LENGTH (type) == 16
2930 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2931 {
2932 /* A 128-bit floating-point value fills both $f0 and $f2. The
2933 two registers are used in the same as memory order, so the
2934 eight bytes with the lower memory address are in $f0. */
2935 if (mips_debug)
2936 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
2937 mips_xfer_register (regcache,
2938 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2939 8, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2940 mips_xfer_register (regcache,
2941 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 2,
2942 8, TARGET_BYTE_ORDER, readbuf ? readbuf + 8 : readbuf,
2943 writebuf ? writebuf + 8 : writebuf, 0);
2944 return RETURN_VALUE_REGISTER_CONVENTION;
2945 }
6d82d43b
AC
2946 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2947 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2948 {
2949 /* A floating-point value belongs in the least significant part
2950 of FP0. */
2951 if (mips_debug)
2952 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
2953 mips_xfer_register (regcache,
2954 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2955 TYPE_LENGTH (type),
2956 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2957 return RETURN_VALUE_REGISTER_CONVENTION;
2958 }
2959 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2960 && TYPE_NFIELDS (type) <= 2
2961 && TYPE_NFIELDS (type) >= 1
2962 && ((TYPE_NFIELDS (type) == 1
2963 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2964 == TYPE_CODE_FLT))
2965 || (TYPE_NFIELDS (type) == 2
2966 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2967 == TYPE_CODE_FLT)
2968 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
2969 == TYPE_CODE_FLT)))
2970 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2971 {
2972 /* A struct that contains one or two floats. Each value is part
2973 in the least significant part of their floating point
2974 register.. */
6d82d43b
AC
2975 int regnum;
2976 int field;
2977 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
2978 field < TYPE_NFIELDS (type); field++, regnum += 2)
2979 {
2980 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
2981 / TARGET_CHAR_BIT);
2982 if (mips_debug)
2983 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
2984 offset);
2985 mips_xfer_register (regcache, NUM_REGS + regnum,
2986 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
2987 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2988 }
2989 return RETURN_VALUE_REGISTER_CONVENTION;
2990 }
2991 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2992 || TYPE_CODE (type) == TYPE_CODE_UNION)
2993 {
2994 /* A structure or union. Extract the left justified value,
2995 regardless of the byte order. I.e. DO NOT USE
2996 mips_xfer_lower. */
2997 int offset;
2998 int regnum;
4c7d22cb 2999 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3000 offset < TYPE_LENGTH (type);
3001 offset += register_size (current_gdbarch, regnum), regnum++)
3002 {
3003 int xfer = register_size (current_gdbarch, regnum);
3004 if (offset + xfer > TYPE_LENGTH (type))
3005 xfer = TYPE_LENGTH (type) - offset;
3006 if (mips_debug)
3007 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3008 offset, xfer, regnum);
3009 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3010 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3011 }
3012 return RETURN_VALUE_REGISTER_CONVENTION;
3013 }
3014 else
3015 {
3016 /* A scalar extract each part but least-significant-byte
3017 justified. */
3018 int offset;
3019 int regnum;
4c7d22cb 3020 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3021 offset < TYPE_LENGTH (type);
3022 offset += register_size (current_gdbarch, regnum), regnum++)
3023 {
3024 int xfer = register_size (current_gdbarch, regnum);
6d82d43b
AC
3025 if (offset + xfer > TYPE_LENGTH (type))
3026 xfer = TYPE_LENGTH (type) - offset;
3027 if (mips_debug)
3028 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3029 offset, xfer, regnum);
3030 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3031 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3032 }
3033 return RETURN_VALUE_REGISTER_CONVENTION;
3034 }
3035}
3036
3037/* O32 ABI stuff. */
3038
3039static CORE_ADDR
7d9b040b 3040mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3041 struct regcache *regcache, CORE_ADDR bp_addr,
3042 int nargs, struct value **args, CORE_ADDR sp,
3043 int struct_return, CORE_ADDR struct_addr)
3044{
3045 int argreg;
3046 int float_argreg;
3047 int argnum;
3048 int len = 0;
3049 int stack_offset = 0;
3050 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3051 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
3052
3053 /* For shared libraries, "t9" needs to point at the function
3054 address. */
4c7d22cb 3055 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
3056
3057 /* Set the return address register to point to the entry point of
3058 the program, where a breakpoint lies in wait. */
4c7d22cb 3059 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
3060
3061 /* First ensure that the stack and structure return address (if any)
3062 are properly aligned. The stack has to be at least 64-bit
3063 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
3064 aligned. For n32 and n64, stack frames need to be 128-bit
3065 aligned, so we round to this widest known alignment. */
3066
5b03f266
AC
3067 sp = align_down (sp, 16);
3068 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
3069
3070 /* Now make space on the stack for the args. */
3071 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
3072 {
3073 struct type *arg_type = check_typedef (value_type (args[argnum]));
3074 int arglen = TYPE_LENGTH (arg_type);
3075
3076 /* Align to double-word if necessary. */
2afd3f0a 3077 if (mips_type_needs_double_align (arg_type))
968b5391
MR
3078 len = align_up (len, mips_stack_argsize (gdbarch) * 2);
3079 /* Allocate space on the stack. */
3080 len += align_up (arglen, mips_stack_argsize (gdbarch));
3081 }
5b03f266 3082 sp -= align_up (len, 16);
ebafbe83
MS
3083
3084 if (mips_debug)
6d82d43b 3085 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3086 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3087 paddr_nz (sp), (long) align_up (len, 16));
ebafbe83
MS
3088
3089 /* Initialize the integer and float register pointers. */
4c7d22cb 3090 argreg = MIPS_A0_REGNUM;
56cea623 3091 float_argreg = mips_fpa0_regnum (current_gdbarch);
ebafbe83 3092
bcb0cc15 3093 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3094 if (struct_return)
3095 {
3096 if (mips_debug)
3097 fprintf_unfiltered (gdb_stdlog,
25ab4790 3098 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3099 argreg, paddr_nz (struct_addr));
3100 write_register (argreg++, struct_addr);
13326b4e 3101 stack_offset += mips_stack_argsize (gdbarch);
ebafbe83
MS
3102 }
3103
3104 /* Now load as many as possible of the first arguments into
3105 registers, and push the rest onto the stack. Loop thru args
3106 from first to last. */
3107 for (argnum = 0; argnum < nargs; argnum++)
3108 {
47a35522 3109 const gdb_byte *val;
ebafbe83 3110 struct value *arg = args[argnum];
4991999e 3111 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
3112 int len = TYPE_LENGTH (arg_type);
3113 enum type_code typecode = TYPE_CODE (arg_type);
3114
3115 if (mips_debug)
3116 fprintf_unfiltered (gdb_stdlog,
25ab4790 3117 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3118 argnum + 1, len, (int) typecode);
3119
47a35522 3120 val = value_contents (arg);
46cac009
AC
3121
3122 /* 32-bit ABIs always start floating point arguments in an
3123 even-numbered floating point register. Round the FP register
3124 up before the check to see if there are any FP registers
3125 left. O32/O64 targets also pass the FP in the integer
3126 registers so also round up normal registers. */
2afd3f0a 3127 if (fp_register_arg_p (typecode, arg_type))
46cac009
AC
3128 {
3129 if ((float_argreg & 1))
3130 float_argreg++;
3131 }
3132
3133 /* Floating point arguments passed in registers have to be
3134 treated specially. On 32-bit architectures, doubles
3135 are passed in register pairs; the even register gets
3136 the low word, and the odd register gets the high word.
3137 On O32/O64, the first two floating point arguments are
3138 also copied to general registers, because MIPS16 functions
3139 don't use float registers for arguments. This duplication of
3140 arguments in general registers can't hurt non-MIPS16 functions
3141 because those registers are normally skipped. */
3142
3143 if (fp_register_arg_p (typecode, arg_type)
3144 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3145 {
8b07f6d8 3146 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
46cac009
AC
3147 {
3148 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3149 unsigned long regval;
3150
3151 /* Write the low word of the double to the even register(s). */
3152 regval = extract_unsigned_integer (val + low_offset, 4);
3153 if (mips_debug)
3154 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3155 float_argreg, phex (regval, 4));
3156 write_register (float_argreg++, regval);
3157 if (mips_debug)
3158 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3159 argreg, phex (regval, 4));
3160 write_register (argreg++, regval);
3161
3162 /* Write the high word of the double to the odd register(s). */
3163 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3164 if (mips_debug)
3165 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3166 float_argreg, phex (regval, 4));
3167 write_register (float_argreg++, regval);
3168
3169 if (mips_debug)
3170 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3171 argreg, phex (regval, 4));
3172 write_register (argreg++, regval);
3173 }
3174 else
3175 {
3176 /* This is a floating point value that fits entirely
3177 in a single register. */
3178 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 3179 above to ensure that it is even register aligned. */
46cac009
AC
3180 LONGEST regval = extract_unsigned_integer (val, len);
3181 if (mips_debug)
3182 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3183 float_argreg, phex (regval, len));
3184 write_register (float_argreg++, regval);
3185 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
6d82d43b
AC
3186 registers for each argument. The below is (my
3187 guess) to ensure that the corresponding integer
3188 register has reserved the same space. */
46cac009
AC
3189 if (mips_debug)
3190 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3191 argreg, phex (regval, len));
3192 write_register (argreg, regval);
2afd3f0a 3193 argreg += 2;
46cac009
AC
3194 }
3195 /* Reserve space for the FP register. */
13326b4e 3196 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
46cac009
AC
3197 }
3198 else
3199 {
3200 /* Copy the argument to general registers or the stack in
3201 register-sized pieces. Large arguments are split between
3202 registers and stack. */
4246e332 3203 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
3204 mips_abi_regsize() are treated specially: Irix cc passes
3205 them in registers where gcc sometimes puts them on the
3206 stack. For maximum compatibility, we will put them in
3207 both places. */
13326b4e
AC
3208 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3209 && (len % mips_abi_regsize (gdbarch) != 0));
46cac009
AC
3210 /* Structures should be aligned to eight bytes (even arg registers)
3211 on MIPS_ABI_O32, if their first member has double precision. */
2afd3f0a 3212 if (mips_type_needs_double_align (arg_type))
46cac009
AC
3213 {
3214 if ((argreg & 1))
968b5391
MR
3215 {
3216 argreg++;
3217 stack_offset += mips_abi_regsize (gdbarch);
3218 }
46cac009 3219 }
46cac009
AC
3220 while (len > 0)
3221 {
3222 /* Remember if the argument was written to the stack. */
3223 int stack_used_p = 0;
9ecf7166
MR
3224 int partial_len = (len < mips_abi_regsize (gdbarch)
3225 ? len : mips_abi_regsize (gdbarch));
46cac009
AC
3226
3227 if (mips_debug)
3228 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3229 partial_len);
3230
3231 /* Write this portion of the argument to the stack. */
3232 if (argreg > MIPS_LAST_ARG_REGNUM
968b5391 3233 || odd_sized_struct)
46cac009
AC
3234 {
3235 /* Should shorter than int integer values be
3236 promoted to int before being stored? */
3237 int longword_offset = 0;
3238 CORE_ADDR addr;
3239 stack_used_p = 1;
3240 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3241 {
13326b4e 3242 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
3243 && (typecode == TYPE_CODE_INT
3244 || typecode == TYPE_CODE_PTR
6d82d43b 3245 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 3246 longword_offset = mips_stack_argsize (gdbarch) - len;
46cac009
AC
3247 }
3248
3249 if (mips_debug)
3250 {
3251 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3252 paddr_nz (stack_offset));
3253 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3254 paddr_nz (longword_offset));
3255 }
3256
3257 addr = sp + stack_offset + longword_offset;
3258
3259 if (mips_debug)
3260 {
3261 int i;
6d82d43b 3262 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
46cac009
AC
3263 paddr_nz (addr));
3264 for (i = 0; i < partial_len; i++)
3265 {
6d82d43b 3266 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
3267 val[i] & 0xff);
3268 }
3269 }
3270 write_memory (addr, val, partial_len);
3271 }
3272
3273 /* Note!!! This is NOT an else clause. Odd sized
968b5391 3274 structs may go thru BOTH paths. */
46cac009 3275 /* Write this portion of the argument to a general
6d82d43b 3276 purpose register. */
968b5391 3277 if (argreg <= MIPS_LAST_ARG_REGNUM)
46cac009
AC
3278 {
3279 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3280 /* Value may need to be sign extended, because
1b13c4f6 3281 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
3282
3283 /* A non-floating-point argument being passed in a
3284 general register. If a struct or union, and if
3285 the remaining length is smaller than the register
3286 size, we have to adjust the register value on
3287 big endian targets.
3288
3289 It does not seem to be necessary to do the
3290 same for integral types.
3291
3292 Also don't do this adjustment on O64 binaries.
3293
3294 cagney/2001-07-23: gdb/179: Also, GCC, when
3295 outputting LE O32 with sizeof (struct) <
e914cb17
MR
3296 mips_abi_regsize(), generates a left shift
3297 as part of storing the argument in a register
3298 (the left shift isn't generated when
1b13c4f6 3299 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
3300 it is quite possible that this is GCC
3301 contradicting the LE/O32 ABI, GDB has not been
3302 adjusted to accommodate this. Either someone
3303 needs to demonstrate that the LE/O32 ABI
3304 specifies such a left shift OR this new ABI gets
3305 identified as such and GDB gets tweaked
3306 accordingly. */
3307
2afd3f0a 3308 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
13326b4e 3309 && partial_len < mips_abi_regsize (gdbarch)
06f9a1af
MR
3310 && (typecode == TYPE_CODE_STRUCT
3311 || typecode == TYPE_CODE_UNION))
9ecf7166
MR
3312 regval <<= ((mips_abi_regsize (gdbarch) - partial_len)
3313 * TARGET_CHAR_BIT);
46cac009
AC
3314
3315 if (mips_debug)
3316 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3317 argreg,
6d82d43b 3318 phex (regval,
13326b4e 3319 mips_abi_regsize (gdbarch)));
46cac009
AC
3320 write_register (argreg, regval);
3321 argreg++;
3322
3323 /* Prevent subsequent floating point arguments from
3324 being passed in floating point registers. */
3325 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3326 }
3327
3328 len -= partial_len;
3329 val += partial_len;
3330
3331 /* Compute the the offset into the stack at which we
6d82d43b 3332 will copy the next parameter.
46cac009 3333
6d82d43b
AC
3334 In older ABIs, the caller reserved space for
3335 registers that contained arguments. This was loosely
3336 refered to as their "home". Consequently, space is
3337 always allocated. */
46cac009 3338
480d3dd2 3339 stack_offset += align_up (partial_len,
13326b4e 3340 mips_stack_argsize (gdbarch));
46cac009
AC
3341 }
3342 }
3343 if (mips_debug)
3344 fprintf_unfiltered (gdb_stdlog, "\n");
3345 }
3346
f10683bb 3347 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3348
46cac009
AC
3349 /* Return adjusted stack pointer. */
3350 return sp;
3351}
3352
6d82d43b
AC
3353static enum return_value_convention
3354mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3355 struct regcache *regcache,
47a35522 3356 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b
AC
3357{
3358 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3359
3360 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3361 || TYPE_CODE (type) == TYPE_CODE_UNION
3362 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3363 return RETURN_VALUE_STRUCT_CONVENTION;
3364 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3365 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3366 {
3367 /* A single-precision floating-point value. It fits in the
3368 least significant part of FP0. */
3369 if (mips_debug)
3370 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3371 mips_xfer_register (regcache,
3372 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3373 TYPE_LENGTH (type),
3374 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3375 return RETURN_VALUE_REGISTER_CONVENTION;
3376 }
3377 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3378 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3379 {
3380 /* A double-precision floating-point value. The most
3381 significant part goes in FP1, and the least significant in
3382 FP0. */
3383 if (mips_debug)
3384 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3385 switch (TARGET_BYTE_ORDER)
3386 {
3387 case BFD_ENDIAN_LITTLE:
3388 mips_xfer_register (regcache,
3389 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3390 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3391 mips_xfer_register (regcache,
3392 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3393 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3394 break;
3395 case BFD_ENDIAN_BIG:
3396 mips_xfer_register (regcache,
3397 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3398 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3399 mips_xfer_register (regcache,
3400 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3401 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3402 break;
3403 default:
e2e0b3e5 3404 internal_error (__FILE__, __LINE__, _("bad switch"));
6d82d43b
AC
3405 }
3406 return RETURN_VALUE_REGISTER_CONVENTION;
3407 }
3408#if 0
3409 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3410 && TYPE_NFIELDS (type) <= 2
3411 && TYPE_NFIELDS (type) >= 1
3412 && ((TYPE_NFIELDS (type) == 1
3413 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3414 == TYPE_CODE_FLT))
3415 || (TYPE_NFIELDS (type) == 2
3416 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3417 == TYPE_CODE_FLT)
3418 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3419 == TYPE_CODE_FLT)))
3420 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3421 {
3422 /* A struct that contains one or two floats. Each value is part
3423 in the least significant part of their floating point
3424 register.. */
870cd05e 3425 gdb_byte reg[MAX_REGISTER_SIZE];
6d82d43b
AC
3426 int regnum;
3427 int field;
3428 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3429 field < TYPE_NFIELDS (type); field++, regnum += 2)
3430 {
3431 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3432 / TARGET_CHAR_BIT);
3433 if (mips_debug)
3434 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3435 offset);
3436 mips_xfer_register (regcache, NUM_REGS + regnum,
3437 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3438 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3439 }
3440 return RETURN_VALUE_REGISTER_CONVENTION;
3441 }
3442#endif
3443#if 0
3444 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3445 || TYPE_CODE (type) == TYPE_CODE_UNION)
3446 {
3447 /* A structure or union. Extract the left justified value,
3448 regardless of the byte order. I.e. DO NOT USE
3449 mips_xfer_lower. */
3450 int offset;
3451 int regnum;
4c7d22cb 3452 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3453 offset < TYPE_LENGTH (type);
3454 offset += register_size (current_gdbarch, regnum), regnum++)
3455 {
3456 int xfer = register_size (current_gdbarch, regnum);
3457 if (offset + xfer > TYPE_LENGTH (type))
3458 xfer = TYPE_LENGTH (type) - offset;
3459 if (mips_debug)
3460 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3461 offset, xfer, regnum);
3462 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3463 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3464 }
3465 return RETURN_VALUE_REGISTER_CONVENTION;
3466 }
3467#endif
3468 else
3469 {
3470 /* A scalar extract each part but least-significant-byte
3471 justified. o32 thinks registers are 4 byte, regardless of
3472 the ISA. mips_stack_argsize controls this. */
3473 int offset;
3474 int regnum;
4c7d22cb 3475 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3476 offset < TYPE_LENGTH (type);
13326b4e 3477 offset += mips_stack_argsize (gdbarch), regnum++)
6d82d43b 3478 {
13326b4e 3479 int xfer = mips_stack_argsize (gdbarch);
6d82d43b
AC
3480 if (offset + xfer > TYPE_LENGTH (type))
3481 xfer = TYPE_LENGTH (type) - offset;
3482 if (mips_debug)
3483 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3484 offset, xfer, regnum);
3485 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3486 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3487 }
3488 return RETURN_VALUE_REGISTER_CONVENTION;
3489 }
3490}
3491
3492/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3493 ABI. */
46cac009
AC
3494
3495static CORE_ADDR
7d9b040b 3496mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3497 struct regcache *regcache, CORE_ADDR bp_addr,
3498 int nargs,
3499 struct value **args, CORE_ADDR sp,
3500 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
3501{
3502 int argreg;
3503 int float_argreg;
3504 int argnum;
3505 int len = 0;
3506 int stack_offset = 0;
480d3dd2 3507 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3508 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 3509
25ab4790
AC
3510 /* For shared libraries, "t9" needs to point at the function
3511 address. */
4c7d22cb 3512 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
3513
3514 /* Set the return address register to point to the entry point of
3515 the program, where a breakpoint lies in wait. */
4c7d22cb 3516 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 3517
46cac009
AC
3518 /* First ensure that the stack and structure return address (if any)
3519 are properly aligned. The stack has to be at least 64-bit
3520 aligned even on 32-bit machines, because doubles must be 64-bit
3521 aligned. For n32 and n64, stack frames need to be 128-bit
3522 aligned, so we round to this widest known alignment. */
3523
5b03f266
AC
3524 sp = align_down (sp, 16);
3525 struct_addr = align_down (struct_addr, 16);
46cac009
AC
3526
3527 /* Now make space on the stack for the args. */
3528 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
3529 {
3530 struct type *arg_type = check_typedef (value_type (args[argnum]));
3531 int arglen = TYPE_LENGTH (arg_type);
3532
968b5391
MR
3533 /* Allocate space on the stack. */
3534 len += align_up (arglen, mips_stack_argsize (gdbarch));
3535 }
5b03f266 3536 sp -= align_up (len, 16);
46cac009
AC
3537
3538 if (mips_debug)
6d82d43b 3539 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3540 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3541 paddr_nz (sp), (long) align_up (len, 16));
46cac009
AC
3542
3543 /* Initialize the integer and float register pointers. */
4c7d22cb 3544 argreg = MIPS_A0_REGNUM;
56cea623 3545 float_argreg = mips_fpa0_regnum (current_gdbarch);
46cac009
AC
3546
3547 /* The struct_return pointer occupies the first parameter-passing reg. */
3548 if (struct_return)
3549 {
3550 if (mips_debug)
3551 fprintf_unfiltered (gdb_stdlog,
25ab4790 3552 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009
AC
3553 argreg, paddr_nz (struct_addr));
3554 write_register (argreg++, struct_addr);
13326b4e 3555 stack_offset += mips_stack_argsize (gdbarch);
46cac009
AC
3556 }
3557
3558 /* Now load as many as possible of the first arguments into
3559 registers, and push the rest onto the stack. Loop thru args
3560 from first to last. */
3561 for (argnum = 0; argnum < nargs; argnum++)
3562 {
47a35522 3563 const gdb_byte *val;
46cac009 3564 struct value *arg = args[argnum];
4991999e 3565 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
3566 int len = TYPE_LENGTH (arg_type);
3567 enum type_code typecode = TYPE_CODE (arg_type);
3568
3569 if (mips_debug)
3570 fprintf_unfiltered (gdb_stdlog,
25ab4790 3571 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3572 argnum + 1, len, (int) typecode);
3573
47a35522 3574 val = value_contents (arg);
ebafbe83 3575
ebafbe83
MS
3576 /* Floating point arguments passed in registers have to be
3577 treated specially. On 32-bit architectures, doubles
3578 are passed in register pairs; the even register gets
3579 the low word, and the odd register gets the high word.
3580 On O32/O64, the first two floating point arguments are
3581 also copied to general registers, because MIPS16 functions
3582 don't use float registers for arguments. This duplication of
3583 arguments in general registers can't hurt non-MIPS16 functions
3584 because those registers are normally skipped. */
3585
3586 if (fp_register_arg_p (typecode, arg_type)
3587 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3588 {
2afd3f0a
MR
3589 LONGEST regval = extract_unsigned_integer (val, len);
3590 if (mips_debug)
3591 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3592 float_argreg, phex (regval, len));
3593 write_register (float_argreg++, regval);
3594 if (mips_debug)
3595 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3596 argreg, phex (regval, len));
3597 write_register (argreg, regval);
3598 argreg++;
ebafbe83 3599 /* Reserve space for the FP register. */
13326b4e 3600 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
ebafbe83
MS
3601 }
3602 else
3603 {
3604 /* Copy the argument to general registers or the stack in
3605 register-sized pieces. Large arguments are split between
3606 registers and stack. */
4246e332 3607 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
3608 mips_abi_regsize() are treated specially: Irix cc passes
3609 them in registers where gcc sometimes puts them on the
3610 stack. For maximum compatibility, we will put them in
3611 both places. */
13326b4e
AC
3612 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3613 && (len % mips_abi_regsize (gdbarch) != 0));
ebafbe83
MS
3614 while (len > 0)
3615 {
3616 /* Remember if the argument was written to the stack. */
3617 int stack_used_p = 0;
9ecf7166
MR
3618 int partial_len = (len < mips_abi_regsize (gdbarch)
3619 ? len : mips_abi_regsize (gdbarch));
ebafbe83
MS
3620
3621 if (mips_debug)
3622 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3623 partial_len);
3624
3625 /* Write this portion of the argument to the stack. */
3626 if (argreg > MIPS_LAST_ARG_REGNUM
968b5391 3627 || odd_sized_struct)
ebafbe83
MS
3628 {
3629 /* Should shorter than int integer values be
3630 promoted to int before being stored? */
3631 int longword_offset = 0;
3632 CORE_ADDR addr;
3633 stack_used_p = 1;
3634 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3635 {
13326b4e 3636 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
3637 && (typecode == TYPE_CODE_INT
3638 || typecode == TYPE_CODE_PTR
6d82d43b 3639 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 3640 longword_offset = mips_stack_argsize (gdbarch) - len;
ebafbe83
MS
3641 }
3642
3643 if (mips_debug)
3644 {
3645 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3646 paddr_nz (stack_offset));
3647 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3648 paddr_nz (longword_offset));
3649 }
3650
3651 addr = sp + stack_offset + longword_offset;
3652
3653 if (mips_debug)
3654 {
3655 int i;
6d82d43b 3656 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
ebafbe83
MS
3657 paddr_nz (addr));
3658 for (i = 0; i < partial_len; i++)
3659 {
6d82d43b 3660 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
3661 val[i] & 0xff);
3662 }
3663 }
3664 write_memory (addr, val, partial_len);
3665 }
3666
3667 /* Note!!! This is NOT an else clause. Odd sized
968b5391 3668 structs may go thru BOTH paths. */
ebafbe83 3669 /* Write this portion of the argument to a general
6d82d43b 3670 purpose register. */
968b5391 3671 if (argreg <= MIPS_LAST_ARG_REGNUM)
ebafbe83
MS
3672 {
3673 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3674 /* Value may need to be sign extended, because
1b13c4f6 3675 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
3676
3677 /* A non-floating-point argument being passed in a
3678 general register. If a struct or union, and if
3679 the remaining length is smaller than the register
3680 size, we have to adjust the register value on
3681 big endian targets.
3682
3683 It does not seem to be necessary to do the
401835eb 3684 same for integral types. */
480d3dd2 3685
401835eb 3686 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
13326b4e 3687 && partial_len < mips_abi_regsize (gdbarch)
06f9a1af
MR
3688 && (typecode == TYPE_CODE_STRUCT
3689 || typecode == TYPE_CODE_UNION))
9ecf7166
MR
3690 regval <<= ((mips_abi_regsize (gdbarch) - partial_len)
3691 * TARGET_CHAR_BIT);
ebafbe83
MS
3692
3693 if (mips_debug)
3694 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3695 argreg,
6d82d43b 3696 phex (regval,
13326b4e 3697 mips_abi_regsize (gdbarch)));
ebafbe83
MS
3698 write_register (argreg, regval);
3699 argreg++;
3700
3701 /* Prevent subsequent floating point arguments from
3702 being passed in floating point registers. */
3703 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3704 }
3705
3706 len -= partial_len;
3707 val += partial_len;
3708
3709 /* Compute the the offset into the stack at which we
6d82d43b 3710 will copy the next parameter.
ebafbe83 3711
6d82d43b
AC
3712 In older ABIs, the caller reserved space for
3713 registers that contained arguments. This was loosely
3714 refered to as their "home". Consequently, space is
3715 always allocated. */
ebafbe83 3716
480d3dd2 3717 stack_offset += align_up (partial_len,
13326b4e 3718 mips_stack_argsize (gdbarch));
ebafbe83
MS
3719 }
3720 }
3721 if (mips_debug)
3722 fprintf_unfiltered (gdb_stdlog, "\n");
3723 }
3724
f10683bb 3725 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3726
ebafbe83
MS
3727 /* Return adjusted stack pointer. */
3728 return sp;
3729}
3730
9c8fdbfa
AC
3731static enum return_value_convention
3732mips_o64_return_value (struct gdbarch *gdbarch,
3733 struct type *type, struct regcache *regcache,
47a35522 3734 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 3735{
7a076fd2
FF
3736 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3737
3738 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3739 || TYPE_CODE (type) == TYPE_CODE_UNION
3740 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3741 return RETURN_VALUE_STRUCT_CONVENTION;
3742 else if (fp_register_arg_p (TYPE_CODE (type), type))
3743 {
3744 /* A floating-point value. It fits in the least significant
3745 part of FP0. */
3746 if (mips_debug)
3747 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3748 mips_xfer_register (regcache,
3749 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3750 TYPE_LENGTH (type),
3751 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3752 return RETURN_VALUE_REGISTER_CONVENTION;
3753 }
3754 else
3755 {
3756 /* A scalar extract each part but least-significant-byte
3757 justified. */
3758 int offset;
3759 int regnum;
3760 for (offset = 0, regnum = MIPS_V0_REGNUM;
3761 offset < TYPE_LENGTH (type);
3762 offset += mips_stack_argsize (gdbarch), regnum++)
3763 {
3764 int xfer = mips_stack_argsize (gdbarch);
3765 if (offset + xfer > TYPE_LENGTH (type))
3766 xfer = TYPE_LENGTH (type) - offset;
3767 if (mips_debug)
3768 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3769 offset, xfer, regnum);
3770 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3771 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3772 }
3773 return RETURN_VALUE_REGISTER_CONVENTION;
3774 }
6d82d43b
AC
3775}
3776
dd824b04
DJ
3777/* Floating point register management.
3778
3779 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3780 64bit operations, these early MIPS cpus treat fp register pairs
3781 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3782 registers and offer a compatibility mode that emulates the MIPS2 fp
3783 model. When operating in MIPS2 fp compat mode, later cpu's split
3784 double precision floats into two 32-bit chunks and store them in
3785 consecutive fp regs. To display 64-bit floats stored in this
3786 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3787 Throw in user-configurable endianness and you have a real mess.
3788
3789 The way this works is:
3790 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3791 double-precision value will be split across two logical registers.
3792 The lower-numbered logical register will hold the low-order bits,
3793 regardless of the processor's endianness.
3794 - If we are on a 64-bit processor, and we are looking for a
3795 single-precision value, it will be in the low ordered bits
3796 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3797 save slot in memory.
3798 - If we are in 64-bit mode, everything is straightforward.
3799
3800 Note that this code only deals with "live" registers at the top of the
3801 stack. We will attempt to deal with saved registers later, when
3802 the raw/cooked register interface is in place. (We need a general
3803 interface that can deal with dynamic saved register sizes -- fp
3804 regs could be 32 bits wide in one frame and 64 on the frame above
3805 and below). */
3806
67b2c998
DJ
3807static struct type *
3808mips_float_register_type (void)
3809{
8da61cc4 3810 return builtin_type_ieee_single;
67b2c998
DJ
3811}
3812
3813static struct type *
3814mips_double_register_type (void)
3815{
8da61cc4 3816 return builtin_type_ieee_double;
67b2c998
DJ
3817}
3818
dd824b04
DJ
3819/* Copy a 32-bit single-precision value from the current frame
3820 into rare_buffer. */
3821
3822static void
e11c53d2 3823mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 3824 gdb_byte *rare_buffer)
dd824b04 3825{
719ec221 3826 int raw_size = register_size (current_gdbarch, regno);
47a35522 3827 gdb_byte *raw_buffer = alloca (raw_size);
dd824b04 3828
e11c53d2 3829 if (!frame_register_read (frame, regno, raw_buffer))
8a3fe4f8 3830 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
dd824b04
DJ
3831 if (raw_size == 8)
3832 {
3833 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 3834 32 bits. */
dd824b04
DJ
3835 int offset;
3836
3837 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3838 offset = 4;
3839 else
3840 offset = 0;
3841
3842 memcpy (rare_buffer, raw_buffer + offset, 4);
3843 }
3844 else
3845 {
3846 memcpy (rare_buffer, raw_buffer, 4);
3847 }
3848}
3849
3850/* Copy a 64-bit double-precision value from the current frame into
3851 rare_buffer. This may include getting half of it from the next
3852 register. */
3853
3854static void
e11c53d2 3855mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 3856 gdb_byte *rare_buffer)
dd824b04 3857{
719ec221 3858 int raw_size = register_size (current_gdbarch, regno);
dd824b04
DJ
3859
3860 if (raw_size == 8 && !mips2_fp_compat ())
3861 {
3862 /* We have a 64-bit value for this register, and we should use
6d82d43b 3863 all 64 bits. */
e11c53d2 3864 if (!frame_register_read (frame, regno, rare_buffer))
8a3fe4f8 3865 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
dd824b04
DJ
3866 }
3867 else
3868 {
56cea623 3869 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
dd824b04 3870 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
3871 _("mips_read_fp_register_double: bad access to "
3872 "odd-numbered FP register"));
dd824b04
DJ
3873
3874 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 3875 each register. */
dd824b04
DJ
3876 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3877 {
e11c53d2
AC
3878 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3879 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 3880 }
361d1df0 3881 else
dd824b04 3882 {
e11c53d2
AC
3883 mips_read_fp_register_single (frame, regno, rare_buffer);
3884 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
3885 }
3886 }
3887}
3888
c906108c 3889static void
e11c53d2
AC
3890mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
3891 int regnum)
c5aa993b 3892{ /* do values for FP (float) regs */
47a35522 3893 gdb_byte *raw_buffer;
3903d437
AC
3894 double doub, flt1; /* doubles extracted from raw hex data */
3895 int inv1, inv2;
c5aa993b 3896
47a35522
MK
3897 raw_buffer = alloca (2 * register_size (current_gdbarch,
3898 mips_regnum (current_gdbarch)->fp0));
c906108c 3899
e11c53d2
AC
3900 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
3901 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
3902 "");
f0ef6b29 3903
719ec221 3904 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
c906108c 3905 {
f0ef6b29
KB
3906 /* 4-byte registers: Print hex and floating. Also print even
3907 numbered registers as doubles. */
e11c53d2 3908 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 3909 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 3910
6d82d43b
AC
3911 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
3912 file);
dd824b04 3913
e11c53d2 3914 fprintf_filtered (file, " flt: ");
1adad886 3915 if (inv1)
e11c53d2 3916 fprintf_filtered (file, " <invalid float> ");
1adad886 3917 else
e11c53d2 3918 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 3919
f0ef6b29
KB
3920 if (regnum % 2 == 0)
3921 {
e11c53d2 3922 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29 3923 doub = unpack_double (mips_double_register_type (), raw_buffer,
6d82d43b 3924 &inv2);
1adad886 3925
e11c53d2 3926 fprintf_filtered (file, " dbl: ");
f0ef6b29 3927 if (inv2)
e11c53d2 3928 fprintf_filtered (file, "<invalid double>");
f0ef6b29 3929 else
e11c53d2 3930 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 3931 }
c906108c
SS
3932 }
3933 else
dd824b04 3934 {
f0ef6b29 3935 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 3936 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 3937 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 3938
e11c53d2 3939 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
3940 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
3941
361d1df0 3942
6d82d43b
AC
3943 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
3944 file);
f0ef6b29 3945
e11c53d2 3946 fprintf_filtered (file, " flt: ");
1adad886 3947 if (inv1)
e11c53d2 3948 fprintf_filtered (file, "<invalid float>");
1adad886 3949 else
e11c53d2 3950 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 3951
e11c53d2 3952 fprintf_filtered (file, " dbl: ");
f0ef6b29 3953 if (inv2)
e11c53d2 3954 fprintf_filtered (file, "<invalid double>");
1adad886 3955 else
e11c53d2 3956 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
3957 }
3958}
3959
3960static void
e11c53d2
AC
3961mips_print_register (struct ui_file *file, struct frame_info *frame,
3962 int regnum, int all)
f0ef6b29 3963{
a4b8ebc8 3964 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 3965 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 3966 int offset;
1adad886 3967
7b9ee6a8 3968 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
f0ef6b29 3969 {
e11c53d2 3970 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
3971 return;
3972 }
3973
3974 /* Get the data in raw format. */
e11c53d2 3975 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 3976 {
e11c53d2 3977 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
f0ef6b29 3978 return;
c906108c 3979 }
f0ef6b29 3980
e11c53d2 3981 fputs_filtered (REGISTER_NAME (regnum), file);
f0ef6b29
KB
3982
3983 /* The problem with printing numeric register names (r26, etc.) is that
3984 the user can't use them on input. Probably the best solution is to
3985 fix it so that either the numeric or the funky (a2, etc.) names
3986 are accepted on input. */
3987 if (regnum < MIPS_NUMREGS)
e11c53d2 3988 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 3989 else
e11c53d2 3990 fprintf_filtered (file, ": ");
f0ef6b29
KB
3991
3992 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
6d82d43b
AC
3993 offset =
3994 register_size (current_gdbarch,
3995 regnum) - register_size (current_gdbarch, regnum);
f0ef6b29
KB
3996 else
3997 offset = 0;
3998
6d82d43b 3999 print_scalar_formatted (raw_buffer + offset,
7b9ee6a8 4000 register_type (gdbarch, regnum), 'x', 0,
6d82d43b 4001 file);
c906108c
SS
4002}
4003
f0ef6b29
KB
4004/* Replacement for generic do_registers_info.
4005 Print regs in pretty columns. */
4006
4007static int
e11c53d2
AC
4008print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4009 int regnum)
f0ef6b29 4010{
e11c53d2
AC
4011 fprintf_filtered (file, " ");
4012 mips_print_fp_register (file, frame, regnum);
4013 fprintf_filtered (file, "\n");
f0ef6b29
KB
4014 return regnum + 1;
4015}
4016
4017
c906108c
SS
4018/* Print a row's worth of GP (int) registers, with name labels above */
4019
4020static int
e11c53d2 4021print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 4022 int start_regnum)
c906108c 4023{
a4b8ebc8 4024 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 4025 /* do values for GP (int) regs */
47a35522 4026 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
d5ac5a39 4027 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
c906108c 4028 int col, byte;
a4b8ebc8 4029 int regnum;
c906108c
SS
4030
4031 /* For GP registers, we print a separate row of names above the vals */
a4b8ebc8 4032 for (col = 0, regnum = start_regnum;
6d82d43b 4033 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
c906108c
SS
4034 {
4035 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4036 continue; /* unused register */
7b9ee6a8 4037 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4038 TYPE_CODE_FLT)
c5aa993b 4039 break; /* end the row: reached FP register */
d05f6826
DJ
4040 if (col == 0)
4041 fprintf_filtered (file, " ");
6d82d43b 4042 fprintf_filtered (file,
d5ac5a39 4043 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
e11c53d2 4044 REGISTER_NAME (regnum));
c906108c
SS
4045 col++;
4046 }
d05f6826
DJ
4047
4048 if (col == 0)
4049 return regnum;
4050
a4b8ebc8 4051 /* print the R0 to R31 names */
20e6603c
AC
4052 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4053 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4054 else
4055 fprintf_filtered (file, "\n ");
c906108c 4056
c906108c 4057 /* now print the values in hex, 4 or 8 to the row */
a4b8ebc8 4058 for (col = 0, regnum = start_regnum;
6d82d43b 4059 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
c906108c
SS
4060 {
4061 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4062 continue; /* unused register */
7b9ee6a8 4063 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4064 TYPE_CODE_FLT)
c5aa993b 4065 break; /* end row: reached FP register */
c906108c 4066 /* OK: get the data in raw format. */
e11c53d2 4067 if (!frame_register_read (frame, regnum, raw_buffer))
8a3fe4f8 4068 error (_("can't read register %d (%s)"), regnum, REGISTER_NAME (regnum));
c906108c 4069 /* pad small registers */
4246e332 4070 for (byte = 0;
d5ac5a39 4071 byte < (mips_abi_regsize (current_gdbarch)
6d82d43b 4072 - register_size (current_gdbarch, regnum)); byte++)
c906108c
SS
4073 printf_filtered (" ");
4074 /* Now print the register value in hex, endian order. */
d7449b42 4075 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
6d82d43b
AC
4076 for (byte =
4077 register_size (current_gdbarch,
4078 regnum) - register_size (current_gdbarch, regnum);
4079 byte < register_size (current_gdbarch, regnum); byte++)
47a35522 4080 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 4081 else
c73e8f27 4082 for (byte = register_size (current_gdbarch, regnum) - 1;
6d82d43b 4083 byte >= 0; byte--)
47a35522 4084 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 4085 fprintf_filtered (file, " ");
c906108c
SS
4086 col++;
4087 }
c5aa993b 4088 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4089 fprintf_filtered (file, "\n");
c906108c
SS
4090
4091 return regnum;
4092}
4093
4094/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4095
bf1f5b4c 4096static void
e11c53d2
AC
4097mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4098 struct frame_info *frame, int regnum, int all)
c906108c 4099{
c5aa993b 4100 if (regnum != -1) /* do one specified register */
c906108c 4101 {
a4b8ebc8 4102 gdb_assert (regnum >= NUM_REGS);
c906108c 4103 if (*(REGISTER_NAME (regnum)) == '\0')
8a3fe4f8 4104 error (_("Not a valid register for the current processor type"));
c906108c 4105
e11c53d2
AC
4106 mips_print_register (file, frame, regnum, 0);
4107 fprintf_filtered (file, "\n");
c906108c 4108 }
c5aa993b
JM
4109 else
4110 /* do all (or most) registers */
c906108c 4111 {
a4b8ebc8
AC
4112 regnum = NUM_REGS;
4113 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
c906108c 4114 {
7b9ee6a8 4115 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4116 TYPE_CODE_FLT)
e11c53d2
AC
4117 {
4118 if (all) /* true for "INFO ALL-REGISTERS" command */
4119 regnum = print_fp_register_row (file, frame, regnum);
4120 else
4121 regnum += MIPS_NUMREGS; /* skip floating point regs */
4122 }
c906108c 4123 else
e11c53d2 4124 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4125 }
4126 }
4127}
4128
c906108c
SS
4129/* Is this a branch with a delay slot? */
4130
c906108c 4131static int
acdb74a0 4132is_delayed (unsigned long insn)
c906108c
SS
4133{
4134 int i;
4135 for (i = 0; i < NUMOPCODES; ++i)
4136 if (mips_opcodes[i].pinfo != INSN_MACRO
4137 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4138 break;
4139 return (i < NUMOPCODES
4140 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4141 | INSN_COND_BRANCH_DELAY
4142 | INSN_COND_BRANCH_LIKELY)));
4143}
4144
4145int
3352ef37
AC
4146mips_single_step_through_delay (struct gdbarch *gdbarch,
4147 struct frame_info *frame)
c906108c 4148{
3352ef37 4149 CORE_ADDR pc = get_frame_pc (frame);
47a35522 4150 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
4151
4152 /* There is no branch delay slot on MIPS16. */
0fe7e7c8 4153 if (mips_pc_is_mips16 (pc))
c906108c
SS
4154 return 0;
4155
06648491
MK
4156 if (!breakpoint_here_p (pc + 4))
4157 return 0;
4158
3352ef37
AC
4159 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4160 /* If error reading memory, guess that it is not a delayed
4161 branch. */
c906108c 4162 return 0;
4c7d22cb 4163 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
c906108c
SS
4164}
4165
6d82d43b
AC
4166/* To skip prologues, I use this predicate. Returns either PC itself
4167 if the code at PC does not look like a function prologue; otherwise
4168 returns an address that (if we're lucky) follows the prologue. If
4169 LENIENT, then we must skip everything which is involved in setting
4170 up the frame (it's OK to skip more, just so long as we don't skip
4171 anything which might clobber the registers which are being saved.
4172 We must skip more in the case where part of the prologue is in the
4173 delay slot of a non-prologue instruction). */
4174
4175static CORE_ADDR
4176mips_skip_prologue (CORE_ADDR pc)
4177{
8b622e6a
AC
4178 CORE_ADDR limit_pc;
4179 CORE_ADDR func_addr;
4180
6d82d43b
AC
4181 /* See if we can determine the end of the prologue via the symbol table.
4182 If so, then return either PC, or the PC after the prologue, whichever
4183 is greater. */
8b622e6a
AC
4184 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4185 {
4186 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4187 if (post_prologue_pc != 0)
4188 return max (pc, post_prologue_pc);
4189 }
6d82d43b
AC
4190
4191 /* Can't determine prologue from the symbol table, need to examine
4192 instructions. */
4193
98b4dd94
JB
4194 /* Find an upper limit on the function prologue using the debug
4195 information. If the debug information could not be used to provide
4196 that bound, then use an arbitrary large number as the upper bound. */
4197 limit_pc = skip_prologue_using_sal (pc);
4198 if (limit_pc == 0)
4199 limit_pc = pc + 100; /* Magic. */
4200
0fe7e7c8 4201 if (mips_pc_is_mips16 (pc))
a65bbe44 4202 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
6d82d43b 4203 else
a65bbe44 4204 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
88658117
AC
4205}
4206
a5ea2558
AC
4207/* Root of all "set mips "/"show mips " commands. This will eventually be
4208 used for all MIPS-specific commands. */
4209
a5ea2558 4210static void
acdb74a0 4211show_mips_command (char *args, int from_tty)
a5ea2558
AC
4212{
4213 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4214}
4215
a5ea2558 4216static void
acdb74a0 4217set_mips_command (char *args, int from_tty)
a5ea2558 4218{
6d82d43b
AC
4219 printf_unfiltered
4220 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
4221 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4222}
4223
c906108c
SS
4224/* Commands to show/set the MIPS FPU type. */
4225
c906108c 4226static void
acdb74a0 4227show_mipsfpu_command (char *args, int from_tty)
c906108c 4228{
c906108c
SS
4229 char *fpu;
4230 switch (MIPS_FPU_TYPE)
4231 {
4232 case MIPS_FPU_SINGLE:
4233 fpu = "single-precision";
4234 break;
4235 case MIPS_FPU_DOUBLE:
4236 fpu = "double-precision";
4237 break;
4238 case MIPS_FPU_NONE:
4239 fpu = "absent (none)";
4240 break;
93d56215 4241 default:
e2e0b3e5 4242 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
4243 }
4244 if (mips_fpu_type_auto)
6d82d43b
AC
4245 printf_unfiltered
4246 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4247 fpu);
c906108c 4248 else
6d82d43b
AC
4249 printf_unfiltered
4250 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
4251}
4252
4253
c906108c 4254static void
acdb74a0 4255set_mipsfpu_command (char *args, int from_tty)
c906108c 4256{
6d82d43b
AC
4257 printf_unfiltered
4258 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
c906108c
SS
4259 show_mipsfpu_command (args, from_tty);
4260}
4261
c906108c 4262static void
acdb74a0 4263set_mipsfpu_single_command (char *args, int from_tty)
c906108c 4264{
8d5838b5
AC
4265 struct gdbarch_info info;
4266 gdbarch_info_init (&info);
c906108c
SS
4267 mips_fpu_type = MIPS_FPU_SINGLE;
4268 mips_fpu_type_auto = 0;
8d5838b5
AC
4269 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4270 instead of relying on globals. Doing that would let generic code
4271 handle the search for this specific architecture. */
4272 if (!gdbarch_update_p (info))
e2e0b3e5 4273 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4274}
4275
c906108c 4276static void
acdb74a0 4277set_mipsfpu_double_command (char *args, int from_tty)
c906108c 4278{
8d5838b5
AC
4279 struct gdbarch_info info;
4280 gdbarch_info_init (&info);
c906108c
SS
4281 mips_fpu_type = MIPS_FPU_DOUBLE;
4282 mips_fpu_type_auto = 0;
8d5838b5
AC
4283 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4284 instead of relying on globals. Doing that would let generic code
4285 handle the search for this specific architecture. */
4286 if (!gdbarch_update_p (info))
e2e0b3e5 4287 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4288}
4289
c906108c 4290static void
acdb74a0 4291set_mipsfpu_none_command (char *args, int from_tty)
c906108c 4292{
8d5838b5
AC
4293 struct gdbarch_info info;
4294 gdbarch_info_init (&info);
c906108c
SS
4295 mips_fpu_type = MIPS_FPU_NONE;
4296 mips_fpu_type_auto = 0;
8d5838b5
AC
4297 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4298 instead of relying on globals. Doing that would let generic code
4299 handle the search for this specific architecture. */
4300 if (!gdbarch_update_p (info))
e2e0b3e5 4301 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4302}
4303
c906108c 4304static void
acdb74a0 4305set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
4306{
4307 mips_fpu_type_auto = 1;
4308}
4309
c906108c 4310/* Attempt to identify the particular processor model by reading the
691c0433
AC
4311 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4312 the relevant processor still exists (it dates back to '94) and
4313 secondly this is not the way to do this. The processor type should
4314 be set by forcing an architecture change. */
c906108c 4315
691c0433
AC
4316void
4317deprecated_mips_set_processor_regs_hack (void)
c906108c 4318{
691c0433 4319 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
4320 CORE_ADDR prid;
4321
a5c9623c 4322 prid = read_register (MIPS_PRID_REGNUM);
c906108c
SS
4323
4324 if ((prid & ~0xf) == 0x700)
691c0433 4325 tdep->mips_processor_reg_names = mips_r3041_reg_names;
c906108c
SS
4326}
4327
4328/* Just like reinit_frame_cache, but with the right arguments to be
4329 callable as an sfunc. */
4330
4331static void
acdb74a0
AC
4332reinit_frame_cache_sfunc (char *args, int from_tty,
4333 struct cmd_list_element *c)
c906108c
SS
4334{
4335 reinit_frame_cache ();
4336}
4337
a89aa300
AC
4338static int
4339gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 4340{
e5ab0dce 4341 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 4342
d31431ed
AC
4343 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4344 disassembler needs to be able to locally determine the ISA, and
4345 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4346 work. */
ec4045ea
AC
4347 if (mips_pc_is_mips16 (memaddr))
4348 info->mach = bfd_mach_mips16;
c906108c
SS
4349
4350 /* Round down the instruction address to the appropriate boundary. */
65c11066 4351 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 4352
e5ab0dce 4353 /* Set the disassembler options. */
6d82d43b 4354 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
e5ab0dce
AC
4355 {
4356 /* Set up the disassembler info, so that we get the right
6d82d43b 4357 register names from libopcodes. */
e5ab0dce
AC
4358 if (tdep->mips_abi == MIPS_ABI_N32)
4359 info->disassembler_options = "gpr-names=n32";
4360 else
4361 info->disassembler_options = "gpr-names=64";
4362 info->flavour = bfd_target_elf_flavour;
4363 }
4364 else
4365 /* This string is not recognized explicitly by the disassembler,
4366 but it tells the disassembler to not try to guess the ABI from
4367 the bfd elf headers, such that, if the user overrides the ABI
4368 of a program linked as NewABI, the disassembly will follow the
4369 register naming conventions specified by the user. */
4370 info->disassembler_options = "gpr-names=32";
4371
c906108c 4372 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 4373 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
4374 return print_insn_big_mips (memaddr, info);
4375 else
4376 return print_insn_little_mips (memaddr, info);
4377}
4378
c906108c
SS
4379/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
4380 counter value to determine whether a 16- or 32-bit breakpoint should be
4381 used. It returns a pointer to a string of bytes that encode a breakpoint
4382 instruction, stores the length of the string to *lenptr, and adjusts pc
4383 (if necessary) to point to the actual memory location where the
4384 breakpoint should be inserted. */
4385
47a35522 4386static const gdb_byte *
6d82d43b 4387mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 4388{
d7449b42 4389 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c 4390 {
0fe7e7c8 4391 if (mips_pc_is_mips16 (*pcptr))
c906108c 4392 {
47a35522 4393 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
95404a3e 4394 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4395 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
4396 return mips16_big_breakpoint;
4397 }
4398 else
4399 {
aaab4dba
AC
4400 /* The IDT board uses an unusual breakpoint value, and
4401 sometimes gets confused when it sees the usual MIPS
4402 breakpoint instruction. */
47a35522
MK
4403 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4404 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4405 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
c906108c 4406
c5aa993b 4407 *lenptr = sizeof (big_breakpoint);
c906108c
SS
4408
4409 if (strcmp (target_shortname, "mips") == 0)
4410 return idt_big_breakpoint;
4411 else if (strcmp (target_shortname, "ddb") == 0
4412 || strcmp (target_shortname, "pmon") == 0
4413 || strcmp (target_shortname, "lsi") == 0)
4414 return pmon_big_breakpoint;
4415 else
4416 return big_breakpoint;
4417 }
4418 }
4419 else
4420 {
0fe7e7c8 4421 if (mips_pc_is_mips16 (*pcptr))
c906108c 4422 {
47a35522 4423 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
95404a3e 4424 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4425 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
4426 return mips16_little_breakpoint;
4427 }
4428 else
4429 {
47a35522
MK
4430 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4431 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4432 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
c906108c 4433
c5aa993b 4434 *lenptr = sizeof (little_breakpoint);
c906108c
SS
4435
4436 if (strcmp (target_shortname, "mips") == 0)
4437 return idt_little_breakpoint;
4438 else if (strcmp (target_shortname, "ddb") == 0
4439 || strcmp (target_shortname, "pmon") == 0
4440 || strcmp (target_shortname, "lsi") == 0)
4441 return pmon_little_breakpoint;
4442 else
4443 return little_breakpoint;
4444 }
4445 }
4446}
4447
4448/* If PC is in a mips16 call or return stub, return the address of the target
4449 PC, which is either the callee or the caller. There are several
4450 cases which must be handled:
4451
4452 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 4453 target PC is in $31 ($ra).
c906108c 4454 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 4455 and the target PC is in $2.
c906108c 4456 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4457 before the jal instruction, this is effectively a call stub
4458 and the the target PC is in $2. Otherwise this is effectively
4459 a return stub and the target PC is in $18.
c906108c
SS
4460
4461 See the source code for the stubs in gcc/config/mips/mips16.S for
e7d6a6d2 4462 gory details. */
c906108c 4463
757a7cc6 4464static CORE_ADDR
e7d6a6d2 4465mips_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
4466{
4467 char *name;
4468 CORE_ADDR start_addr;
4469
4470 /* Find the starting address and name of the function containing the PC. */
4471 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4472 return 0;
4473
4474 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4475 target PC is in $31 ($ra). */
4476 if (strcmp (name, "__mips16_ret_sf") == 0
4477 || strcmp (name, "__mips16_ret_df") == 0)
4c7d22cb 4478 return read_signed_register (MIPS_RA_REGNUM);
c906108c
SS
4479
4480 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4481 {
4482 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4483 and the target PC is in $2. */
4484 if (name[19] >= '0' && name[19] <= '9')
6c997a34 4485 return read_signed_register (2);
c906108c
SS
4486
4487 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4488 before the jal instruction, this is effectively a call stub
4489 and the the target PC is in $2. Otherwise this is effectively
4490 a return stub and the target PC is in $18. */
c906108c
SS
4491 else if (name[19] == 's' || name[19] == 'd')
4492 {
4493 if (pc == start_addr)
4494 {
4495 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
4496 stub. Such a stub for a function bar might have a name
4497 like __fn_stub_bar, and might look like this:
4498 mfc1 $4,$f13
4499 mfc1 $5,$f12
4500 mfc1 $6,$f15
4501 mfc1 $7,$f14
4502 la $1,bar (becomes a lui/addiu pair)
4503 jr $1
4504 So scan down to the lui/addi and extract the target
4505 address from those two instructions. */
c906108c 4506
6c997a34 4507 CORE_ADDR target_pc = read_signed_register (2);
d37cca3d 4508 ULONGEST inst;
c906108c
SS
4509 int i;
4510
4511 /* See if the name of the target function is __fn_stub_*. */
6d82d43b
AC
4512 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4513 0)
c906108c
SS
4514 return target_pc;
4515 if (strncmp (name, "__fn_stub_", 10) != 0
4516 && strcmp (name, "etext") != 0
4517 && strcmp (name, "_etext") != 0)
4518 return target_pc;
4519
4520 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
4521 The limit on the search is arbitrarily set to 20
4522 instructions. FIXME. */
95ac2dcf 4523 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
c906108c 4524 {
c5aa993b
JM
4525 inst = mips_fetch_instruction (target_pc);
4526 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4527 pc = (inst << 16) & 0xffff0000; /* high word */
4528 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4529 return pc | (inst & 0xffff); /* low word */
c906108c
SS
4530 }
4531
4532 /* Couldn't find the lui/addui pair, so return stub address. */
4533 return target_pc;
4534 }
4535 else
4536 /* This is the 'return' part of a call stub. The return
4537 address is in $r18. */
6c997a34 4538 return read_signed_register (18);
c906108c
SS
4539 }
4540 }
c5aa993b 4541 return 0; /* not a stub */
c906108c
SS
4542}
4543
a4b8ebc8
AC
4544/* Convert a dbx stab register number (from `r' declaration) to a GDB
4545 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
4546
4547static int
4548mips_stab_reg_to_regnum (int num)
4549{
a4b8ebc8 4550 int regnum;
2f38ef89 4551 if (num >= 0 && num < 32)
a4b8ebc8 4552 regnum = num;
2f38ef89 4553 else if (num >= 38 && num < 70)
56cea623 4554 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
040b99fd 4555 else if (num == 70)
56cea623 4556 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4557 else if (num == 71)
56cea623 4558 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4559 else
a4b8ebc8
AC
4560 /* This will hopefully (eventually) provoke a warning. Should
4561 we be calling complaint() here? */
4562 return NUM_REGS + NUM_PSEUDO_REGS;
4563 return NUM_REGS + regnum;
88c72b7d
AC
4564}
4565
2f38ef89 4566
a4b8ebc8
AC
4567/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4568 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
4569
4570static int
2f38ef89 4571mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 4572{
a4b8ebc8 4573 int regnum;
2f38ef89 4574 if (num >= 0 && num < 32)
a4b8ebc8 4575 regnum = num;
2f38ef89 4576 else if (num >= 32 && num < 64)
56cea623 4577 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
040b99fd 4578 else if (num == 64)
56cea623 4579 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4580 else if (num == 65)
56cea623 4581 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4582 else
a4b8ebc8
AC
4583 /* This will hopefully (eventually) provoke a warning. Should we
4584 be calling complaint() here? */
4585 return NUM_REGS + NUM_PSEUDO_REGS;
4586 return NUM_REGS + regnum;
4587}
4588
4589static int
4590mips_register_sim_regno (int regnum)
4591{
4592 /* Only makes sense to supply raw registers. */
4593 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
4594 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4595 decide if it is valid. Should instead define a standard sim/gdb
4596 register numbering scheme. */
4597 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
4598 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
4599 return regnum;
4600 else
6d82d43b 4601 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
4602}
4603
2f38ef89 4604
4844f454
CV
4605/* Convert an integer into an address. Extracting the value signed
4606 guarantees a correctly sign extended address. */
fc0c74b1
AC
4607
4608static CORE_ADDR
79dd2d24 4609mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 4610 struct type *type, const gdb_byte *buf)
fc0c74b1 4611{
4844f454 4612 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
fc0c74b1
AC
4613}
4614
caaa3122
DJ
4615static void
4616mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4617{
4618 enum mips_abi *abip = (enum mips_abi *) obj;
4619 const char *name = bfd_get_section_name (abfd, sect);
4620
4621 if (*abip != MIPS_ABI_UNKNOWN)
4622 return;
4623
4624 if (strncmp (name, ".mdebug.", 8) != 0)
4625 return;
4626
4627 if (strcmp (name, ".mdebug.abi32") == 0)
4628 *abip = MIPS_ABI_O32;
4629 else if (strcmp (name, ".mdebug.abiN32") == 0)
4630 *abip = MIPS_ABI_N32;
62a49b2c 4631 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 4632 *abip = MIPS_ABI_N64;
caaa3122
DJ
4633 else if (strcmp (name, ".mdebug.abiO64") == 0)
4634 *abip = MIPS_ABI_O64;
4635 else if (strcmp (name, ".mdebug.eabi32") == 0)
4636 *abip = MIPS_ABI_EABI32;
4637 else if (strcmp (name, ".mdebug.eabi64") == 0)
4638 *abip = MIPS_ABI_EABI64;
4639 else
8a3fe4f8 4640 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
4641}
4642
22e47e37
FF
4643static void
4644mips_find_long_section (bfd *abfd, asection *sect, void *obj)
4645{
4646 int *lbp = (int *) obj;
4647 const char *name = bfd_get_section_name (abfd, sect);
4648
4649 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
4650 *lbp = 32;
4651 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
4652 *lbp = 64;
4653 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
4654 warning (_("unrecognized .gcc_compiled_longXX"));
4655}
4656
2e4ebe70
DJ
4657static enum mips_abi
4658global_mips_abi (void)
4659{
4660 int i;
4661
4662 for (i = 0; mips_abi_strings[i] != NULL; i++)
4663 if (mips_abi_strings[i] == mips_abi_string)
4664 return (enum mips_abi) i;
4665
e2e0b3e5 4666 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
4667}
4668
29709017
DJ
4669static void
4670mips_register_g_packet_guesses (struct gdbarch *gdbarch)
4671{
4672 static struct target_desc *tdesc_gp32, *tdesc_gp64;
4673
4674 if (tdesc_gp32 == NULL)
4675 {
4676 /* Create feature sets with the appropriate properties. The values
4677 are not important. */
4678
4679 tdesc_gp32 = allocate_target_description ();
4680 set_tdesc_property (tdesc_gp32, PROPERTY_GP32, "");
4681
4682 tdesc_gp64 = allocate_target_description ();
4683 set_tdesc_property (tdesc_gp64, PROPERTY_GP64, "");
4684 }
4685
4686 /* If the size matches the set of 32-bit or 64-bit integer registers,
4687 assume that's what we've got. */
4688 register_remote_g_packet_guess (gdbarch, 38 * 4, tdesc_gp32);
4689 register_remote_g_packet_guess (gdbarch, 38 * 8, tdesc_gp64);
4690
4691 /* If the size matches the full set of registers GDB traditionally
4692 knows about, including floating point, for either 32-bit or
4693 64-bit, assume that's what we've got. */
4694 register_remote_g_packet_guess (gdbarch, 90 * 4, tdesc_gp32);
4695 register_remote_g_packet_guess (gdbarch, 90 * 8, tdesc_gp64);
4696
4697 /* Otherwise we don't have a useful guess. */
4698}
4699
c2d11a7d 4700static struct gdbarch *
6d82d43b 4701mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 4702{
c2d11a7d
JM
4703 struct gdbarch *gdbarch;
4704 struct gdbarch_tdep *tdep;
4705 int elf_flags;
2e4ebe70 4706 enum mips_abi mips_abi, found_abi, wanted_abi;
a4b8ebc8 4707 int num_regs;
8d5838b5 4708 enum mips_fpu_type fpu_type;
c2d11a7d 4709
ec03c1ac
AC
4710 /* First of all, extract the elf_flags, if available. */
4711 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4712 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
4713 else if (arches != NULL)
4714 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
4715 else
4716 elf_flags = 0;
4717 if (gdbarch_debug)
4718 fprintf_unfiltered (gdb_stdlog,
6d82d43b 4719 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 4720
102182a9 4721 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
4722 switch ((elf_flags & EF_MIPS_ABI))
4723 {
4724 case E_MIPS_ABI_O32:
ec03c1ac 4725 found_abi = MIPS_ABI_O32;
0dadbba0
AC
4726 break;
4727 case E_MIPS_ABI_O64:
ec03c1ac 4728 found_abi = MIPS_ABI_O64;
0dadbba0
AC
4729 break;
4730 case E_MIPS_ABI_EABI32:
ec03c1ac 4731 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
4732 break;
4733 case E_MIPS_ABI_EABI64:
ec03c1ac 4734 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
4735 break;
4736 default:
acdb74a0 4737 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 4738 found_abi = MIPS_ABI_N32;
acdb74a0 4739 else
ec03c1ac 4740 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
4741 break;
4742 }
acdb74a0 4743
caaa3122 4744 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
4745 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4746 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 4747
dc305454 4748 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
4749 MIPS architecture (if there is one). */
4750 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
4751 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 4752
32a6503c 4753 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 4754 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
4755 && info.bfd_arch_info != NULL
4756 && info.bfd_arch_info->arch == bfd_arch_mips)
4757 {
4758 switch (info.bfd_arch_info->mach)
4759 {
4760 case bfd_mach_mips3900:
ec03c1ac 4761 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
4762 break;
4763 case bfd_mach_mips4100:
4764 case bfd_mach_mips5000:
ec03c1ac 4765 found_abi = MIPS_ABI_EABI64;
bf64bfd6 4766 break;
1d06468c
EZ
4767 case bfd_mach_mips8000:
4768 case bfd_mach_mips10000:
32a6503c
KB
4769 /* On Irix, ELF64 executables use the N64 ABI. The
4770 pseudo-sections which describe the ABI aren't present
4771 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
4772 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4773 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 4774 found_abi = MIPS_ABI_N64;
28d169de 4775 else
ec03c1ac 4776 found_abi = MIPS_ABI_N32;
1d06468c 4777 break;
bf64bfd6
AC
4778 }
4779 }
2e4ebe70 4780
26c53e50
DJ
4781 /* Default 64-bit objects to N64 instead of O32. */
4782 if (found_abi == MIPS_ABI_UNKNOWN
4783 && info.abfd != NULL
4784 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4785 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4786 found_abi = MIPS_ABI_N64;
4787
ec03c1ac
AC
4788 if (gdbarch_debug)
4789 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
4790 found_abi);
4791
4792 /* What has the user specified from the command line? */
4793 wanted_abi = global_mips_abi ();
4794 if (gdbarch_debug)
4795 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
4796 wanted_abi);
2e4ebe70
DJ
4797
4798 /* Now that we have found what the ABI for this binary would be,
4799 check whether the user is overriding it. */
2e4ebe70
DJ
4800 if (wanted_abi != MIPS_ABI_UNKNOWN)
4801 mips_abi = wanted_abi;
ec03c1ac
AC
4802 else if (found_abi != MIPS_ABI_UNKNOWN)
4803 mips_abi = found_abi;
4804 else
4805 mips_abi = MIPS_ABI_O32;
4806 if (gdbarch_debug)
4807 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
4808 mips_abi);
2e4ebe70 4809
ec03c1ac 4810 /* Also used when doing an architecture lookup. */
4b9b3959 4811 if (gdbarch_debug)
ec03c1ac
AC
4812 fprintf_unfiltered (gdb_stdlog,
4813 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
4814 mips64_transfers_32bit_regs_p);
0dadbba0 4815
8d5838b5
AC
4816 /* Determine the MIPS FPU type. */
4817 if (!mips_fpu_type_auto)
4818 fpu_type = mips_fpu_type;
4819 else if (info.bfd_arch_info != NULL
4820 && info.bfd_arch_info->arch == bfd_arch_mips)
4821 switch (info.bfd_arch_info->mach)
4822 {
4823 case bfd_mach_mips3900:
4824 case bfd_mach_mips4100:
4825 case bfd_mach_mips4111:
a9d61c86 4826 case bfd_mach_mips4120:
8d5838b5
AC
4827 fpu_type = MIPS_FPU_NONE;
4828 break;
4829 case bfd_mach_mips4650:
4830 fpu_type = MIPS_FPU_SINGLE;
4831 break;
4832 default:
4833 fpu_type = MIPS_FPU_DOUBLE;
4834 break;
4835 }
4836 else if (arches != NULL)
4837 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
4838 else
4839 fpu_type = MIPS_FPU_DOUBLE;
4840 if (gdbarch_debug)
4841 fprintf_unfiltered (gdb_stdlog,
6d82d43b 4842 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 4843
29709017
DJ
4844 /* Check for blatant incompatibilities. */
4845
4846 /* If we have only 32-bit registers, then we can't debug a 64-bit
4847 ABI. */
4848 if (info.target_desc
4849 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
4850 && mips_abi != MIPS_ABI_EABI32
4851 && mips_abi != MIPS_ABI_O32)
4852 return NULL;
4853
c2d11a7d
JM
4854 /* try to find a pre-existing architecture */
4855 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4856 arches != NULL;
4857 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4858 {
4859 /* MIPS needs to be pedantic about which ABI the object is
102182a9 4860 using. */
9103eae0 4861 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 4862 continue;
9103eae0 4863 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 4864 continue;
719ec221
AC
4865 /* Need to be pedantic about which register virtual size is
4866 used. */
4867 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
4868 != mips64_transfers_32bit_regs_p)
4869 continue;
8d5838b5
AC
4870 /* Be pedantic about which FPU is selected. */
4871 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
4872 continue;
4be87837 4873 return arches->gdbarch;
c2d11a7d
JM
4874 }
4875
102182a9 4876 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
4877 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4878 gdbarch = gdbarch_alloc (&info, tdep);
4879 tdep->elf_flags = elf_flags;
719ec221 4880 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
4881 tdep->found_abi = found_abi;
4882 tdep->mips_abi = mips_abi;
8d5838b5 4883 tdep->mips_fpu_type = fpu_type;
29709017
DJ
4884 tdep->register_size_valid_p = 0;
4885 tdep->register_size = 0;
4886
4887 if (info.target_desc)
4888 {
4889 /* Some useful properties can be inferred from the target. */
4890 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
4891 {
4892 tdep->register_size_valid_p = 1;
4893 tdep->register_size = 4;
4894 }
4895 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
4896 {
4897 tdep->register_size_valid_p = 1;
4898 tdep->register_size = 8;
4899 }
4900 }
c2d11a7d 4901
102182a9 4902 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
4903 set_gdbarch_short_bit (gdbarch, 16);
4904 set_gdbarch_int_bit (gdbarch, 32);
4905 set_gdbarch_float_bit (gdbarch, 32);
4906 set_gdbarch_double_bit (gdbarch, 64);
4907 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
4908 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
4909 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
4910 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 4911
6d82d43b 4912 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6
MS
4913 mips_elf_make_msymbol_special);
4914
16e109ca 4915 /* Fill in the OS dependant register numbers and names. */
56cea623 4916 {
16e109ca 4917 const char **reg_names;
56cea623
AC
4918 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
4919 struct mips_regnum);
56cea623
AC
4920 if (info.osabi == GDB_OSABI_IRIX)
4921 {
4922 regnum->fp0 = 32;
4923 regnum->pc = 64;
4924 regnum->cause = 65;
4925 regnum->badvaddr = 66;
4926 regnum->hi = 67;
4927 regnum->lo = 68;
4928 regnum->fp_control_status = 69;
4929 regnum->fp_implementation_revision = 70;
4930 num_regs = 71;
16e109ca 4931 reg_names = mips_irix_reg_names;
56cea623
AC
4932 }
4933 else
4934 {
4935 regnum->lo = MIPS_EMBED_LO_REGNUM;
4936 regnum->hi = MIPS_EMBED_HI_REGNUM;
4937 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
4938 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
4939 regnum->pc = MIPS_EMBED_PC_REGNUM;
4940 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
4941 regnum->fp_control_status = 70;
4942 regnum->fp_implementation_revision = 71;
4943 num_regs = 90;
16e109ca
AC
4944 if (info.bfd_arch_info != NULL
4945 && info.bfd_arch_info->mach == bfd_mach_mips3900)
4946 reg_names = mips_tx39_reg_names;
4947 else
4948 reg_names = mips_generic_reg_names;
56cea623
AC
4949 }
4950 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
4951 replaced by read_pc? */
f10683bb
MH
4952 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
4953 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
56cea623
AC
4954 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
4955 set_gdbarch_num_regs (gdbarch, num_regs);
4956 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
16e109ca
AC
4957 set_gdbarch_register_name (gdbarch, mips_register_name);
4958 tdep->mips_processor_reg_names = reg_names;
4959 tdep->regnum = regnum;
56cea623 4960 }
fe29b929 4961
0dadbba0 4962 switch (mips_abi)
c2d11a7d 4963 {
0dadbba0 4964 case MIPS_ABI_O32:
25ab4790 4965 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 4966 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 4967 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 4968 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 4969 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4970 set_gdbarch_long_bit (gdbarch, 32);
4971 set_gdbarch_ptr_bit (gdbarch, 32);
4972 set_gdbarch_long_long_bit (gdbarch, 64);
4973 break;
0dadbba0 4974 case MIPS_ABI_O64:
25ab4790 4975 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 4976 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 4977 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 4978 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 4979 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4980 set_gdbarch_long_bit (gdbarch, 32);
4981 set_gdbarch_ptr_bit (gdbarch, 32);
4982 set_gdbarch_long_long_bit (gdbarch, 64);
4983 break;
0dadbba0 4984 case MIPS_ABI_EABI32:
25ab4790 4985 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 4986 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 4987 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 4988 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 4989 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4990 set_gdbarch_long_bit (gdbarch, 32);
4991 set_gdbarch_ptr_bit (gdbarch, 32);
4992 set_gdbarch_long_long_bit (gdbarch, 64);
4993 break;
0dadbba0 4994 case MIPS_ABI_EABI64:
25ab4790 4995 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 4996 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 4997 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 4998 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 4999 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5000 set_gdbarch_long_bit (gdbarch, 64);
5001 set_gdbarch_ptr_bit (gdbarch, 64);
5002 set_gdbarch_long_long_bit (gdbarch, 64);
5003 break;
0dadbba0 5004 case MIPS_ABI_N32:
25ab4790 5005 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5006 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5007 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5008 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5009 tdep->default_mask_address_p = 0;
0dadbba0
AC
5010 set_gdbarch_long_bit (gdbarch, 32);
5011 set_gdbarch_ptr_bit (gdbarch, 32);
5012 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 5013 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 5014 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
28d169de
KB
5015 break;
5016 case MIPS_ABI_N64:
25ab4790 5017 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5018 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5019 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5020 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
5021 tdep->default_mask_address_p = 0;
5022 set_gdbarch_long_bit (gdbarch, 64);
5023 set_gdbarch_ptr_bit (gdbarch, 64);
5024 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 5025 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 5026 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
0dadbba0 5027 break;
c2d11a7d 5028 default:
e2e0b3e5 5029 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
5030 }
5031
22e47e37
FF
5032 /* GCC creates a pseudo-section whose name specifies the size of
5033 longs, since -mlong32 or -mlong64 may be used independent of
5034 other options. How those options affect pointer sizes is ABI and
5035 architecture dependent, so use them to override the default sizes
5036 set by the ABI. This table shows the relationship between ABI,
5037 -mlongXX, and size of pointers:
5038
5039 ABI -mlongXX ptr bits
5040 --- -------- --------
5041 o32 32 32
5042 o32 64 32
5043 n32 32 32
5044 n32 64 64
5045 o64 32 32
5046 o64 64 64
5047 n64 32 32
5048 n64 64 64
5049 eabi32 32 32
5050 eabi32 64 32
5051 eabi64 32 32
5052 eabi64 64 64
5053
5054 Note that for o32 and eabi32, pointers are always 32 bits
5055 regardless of any -mlongXX option. For all others, pointers and
5056 longs are the same, as set by -mlongXX or set by defaults.
5057 */
5058
5059 if (info.abfd != NULL)
5060 {
5061 int long_bit = 0;
5062
5063 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5064 if (long_bit)
5065 {
5066 set_gdbarch_long_bit (gdbarch, long_bit);
5067 switch (mips_abi)
5068 {
5069 case MIPS_ABI_O32:
5070 case MIPS_ABI_EABI32:
5071 break;
5072 case MIPS_ABI_N32:
5073 case MIPS_ABI_O64:
5074 case MIPS_ABI_N64:
5075 case MIPS_ABI_EABI64:
5076 set_gdbarch_ptr_bit (gdbarch, long_bit);
5077 break;
5078 default:
5079 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5080 }
5081 }
5082 }
5083
a5ea2558
AC
5084 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5085 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5086 comment:
5087
5088 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5089 flag in object files because to do so would make it impossible to
102182a9 5090 link with libraries compiled without "-gp32". This is
a5ea2558 5091 unnecessarily restrictive.
361d1df0 5092
a5ea2558
AC
5093 We could solve this problem by adding "-gp32" multilibs to gcc,
5094 but to set this flag before gcc is built with such multilibs will
5095 break too many systems.''
5096
5097 But even more unhelpfully, the default linker output target for
5098 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5099 for 64-bit programs - you need to change the ABI to change this,
102182a9 5100 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5101 this flag to detect 32-bit mode would do the wrong thing given
5102 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5103 as 32-bit programs by default. */
a5ea2558 5104
6c997a34 5105 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 5106 set_gdbarch_write_pc (gdbarch, mips_write_pc);
bcb0cc15 5107 set_gdbarch_read_sp (gdbarch, mips_read_sp);
c2d11a7d 5108
102182a9
MS
5109 /* Add/remove bits from an address. The MIPS needs be careful to
5110 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5111 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5112
58dfe9ff
AC
5113 /* Unwind the frame. */
5114 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
edfae063 5115 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
10312cc4 5116
102182a9 5117 /* Map debug register numbers onto internal register numbers. */
88c72b7d 5118 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
5119 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5120 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5121 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5122 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5123 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5124 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 5125 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 5126
c2d11a7d
JM
5127 /* MIPS version of CALL_DUMMY */
5128
9710e734
AC
5129 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5130 replaced by a command, and all targets will default to on stack
5131 (regardless of the stack's execute status). */
5132 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
dc604539 5133 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 5134
87783b8b
AC
5135 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5136 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5137 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5138
f7b9e9fc
AC
5139 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5140 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
f7b9e9fc
AC
5141
5142 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 5143
fc0c74b1
AC
5144 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5145 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5146 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 5147
a4b8ebc8 5148 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 5149
e11c53d2 5150 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 5151
e5ab0dce
AC
5152 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5153
3a3bc038
AC
5154 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5155 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5156 need to all be folded into the target vector. Since they are
5157 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5158 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5159 is sitting on? */
5160 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5161
e7d6a6d2 5162 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 5163
3352ef37
AC
5164 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5165
0d5de010
DJ
5166 /* Virtual tables. */
5167 set_gdbarch_vbit_in_delta (gdbarch, 1);
5168
29709017
DJ
5169 mips_register_g_packet_guesses (gdbarch);
5170
6de918a6
DJ
5171 /* Hook in OS ABI-specific overrides, if they have been registered. */
5172 gdbarch_init_osabi (info, gdbarch);
757a7cc6 5173
5792a79b 5174 /* Unwind the frame. */
eec63939 5175 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
45c9dd44
AC
5176 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5177 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
eec63939 5178 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44
AC
5179 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5180 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 5181
4b9b3959
AC
5182 return gdbarch;
5183}
5184
2e4ebe70 5185static void
6d82d43b 5186mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
5187{
5188 struct gdbarch_info info;
5189
5190 /* Force the architecture to update, and (if it's a MIPS architecture)
5191 mips_gdbarch_init will take care of the rest. */
5192 gdbarch_info_init (&info);
5193 gdbarch_update_p (info);
5194}
5195
ad188201
KB
5196/* Print out which MIPS ABI is in use. */
5197
5198static void
1f8ca57c
JB
5199show_mips_abi (struct ui_file *file,
5200 int from_tty,
5201 struct cmd_list_element *ignored_cmd,
5202 const char *ignored_value)
ad188201
KB
5203{
5204 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
1f8ca57c
JB
5205 fprintf_filtered
5206 (file,
5207 "The MIPS ABI is unknown because the current architecture "
5208 "is not MIPS.\n");
ad188201
KB
5209 else
5210 {
5211 enum mips_abi global_abi = global_mips_abi ();
5212 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5213 const char *actual_abi_str = mips_abi_strings[actual_abi];
5214
5215 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
5216 fprintf_filtered
5217 (file,
5218 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 5219 actual_abi_str);
ad188201 5220 else if (global_abi == actual_abi)
1f8ca57c
JB
5221 fprintf_filtered
5222 (file,
5223 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 5224 actual_abi_str);
ad188201
KB
5225 else
5226 {
5227 /* Probably shouldn't happen... */
1f8ca57c
JB
5228 fprintf_filtered
5229 (file,
5230 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6d82d43b 5231 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
5232 }
5233 }
5234}
5235
4b9b3959
AC
5236static void
5237mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5238{
5239 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5240 if (tdep != NULL)
c2d11a7d 5241 {
acdb74a0
AC
5242 int ef_mips_arch;
5243 int ef_mips_32bitmode;
f49e4e6d 5244 /* Determine the ISA. */
acdb74a0
AC
5245 switch (tdep->elf_flags & EF_MIPS_ARCH)
5246 {
5247 case E_MIPS_ARCH_1:
5248 ef_mips_arch = 1;
5249 break;
5250 case E_MIPS_ARCH_2:
5251 ef_mips_arch = 2;
5252 break;
5253 case E_MIPS_ARCH_3:
5254 ef_mips_arch = 3;
5255 break;
5256 case E_MIPS_ARCH_4:
93d56215 5257 ef_mips_arch = 4;
acdb74a0
AC
5258 break;
5259 default:
93d56215 5260 ef_mips_arch = 0;
acdb74a0
AC
5261 break;
5262 }
f49e4e6d 5263 /* Determine the size of a pointer. */
acdb74a0 5264 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
5265 fprintf_unfiltered (file,
5266 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 5267 tdep->elf_flags);
4b9b3959 5268 fprintf_unfiltered (file,
acdb74a0
AC
5269 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5270 ef_mips_32bitmode);
5271 fprintf_unfiltered (file,
5272 "mips_dump_tdep: ef_mips_arch = %d\n",
5273 ef_mips_arch);
5274 fprintf_unfiltered (file,
5275 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 5276 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b
AC
5277 fprintf_unfiltered (file,
5278 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
480d3dd2 5279 mips_mask_address_p (tdep),
4014092b 5280 tdep->default_mask_address_p);
c2d11a7d 5281 }
4b9b3959
AC
5282 fprintf_unfiltered (file,
5283 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5284 MIPS_DEFAULT_FPU_TYPE,
5285 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5286 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5287 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5288 : "???"));
6d82d43b 5289 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
4b9b3959
AC
5290 fprintf_unfiltered (file,
5291 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5292 MIPS_FPU_TYPE,
5293 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5294 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5295 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5296 : "???"));
4b9b3959 5297 fprintf_unfiltered (file,
480d3dd2 5298 "mips_dump_tdep: mips_stack_argsize() = %d\n",
13326b4e 5299 mips_stack_argsize (current_gdbarch));
c2d11a7d
JM
5300}
5301
6d82d43b 5302extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
a78f21af 5303
c906108c 5304void
acdb74a0 5305_initialize_mips_tdep (void)
c906108c
SS
5306{
5307 static struct cmd_list_element *mipsfpulist = NULL;
5308 struct cmd_list_element *c;
5309
6d82d43b 5310 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
5311 if (MIPS_ABI_LAST + 1
5312 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 5313 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 5314
4b9b3959 5315 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 5316
8d5f9dcb
DJ
5317 mips_pdr_data = register_objfile_data ();
5318
a5ea2558
AC
5319 /* Add root prefix command for all "set mips"/"show mips" commands */
5320 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 5321 _("Various MIPS specific commands."),
a5ea2558
AC
5322 &setmipscmdlist, "set mips ", 0, &setlist);
5323
5324 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 5325 _("Various MIPS specific commands."),
a5ea2558
AC
5326 &showmipscmdlist, "show mips ", 0, &showlist);
5327
5328 /* Allow the user to override the saved register size. */
1b295c3d 5329 add_setshow_enum_cmd ("saved-gpreg-size", class_obscure,
7915a72c
AC
5330 size_enums, &mips_abi_regsize_string, _("\
5331Set size of general purpose registers saved on the stack."), _("\
5332Show size of general purpose registers saved on the stack."), _("\
a5ea2558
AC
5333This option can be set to one of:\n\
5334 32 - Force GDB to treat saved GP registers as 32-bit\n\
5335 64 - Force GDB to treat saved GP registers as 64-bit\n\
5336 auto - Allow GDB to use the target's default setting or autodetect the\n\
7915a72c
AC
5337 saved GP register size from information contained in the\n\
5338 executable (default)."),
2c5b56ce 5339 NULL,
7915a72c 5340 NULL, /* FIXME: i18n: Size of general purpose registers saved on the stack is %s. */
2c5b56ce 5341 &setmipscmdlist, &showmipscmdlist);
a5ea2558 5342
d929b26f 5343 /* Allow the user to override the argument stack size. */
1b295c3d 5344 add_setshow_enum_cmd ("stack-arg-size", class_obscure,
7915a72c
AC
5345 size_enums, &mips_stack_argsize_string, _("\
5346Set the amount of stack space reserved for each argument."), _("\
5347Show the amount of stack space reserved for each argument."), _("\
d929b26f
AC
5348This option can be set to one of:\n\
5349 32 - Force GDB to allocate 32-bit chunks per argument\n\
5350 64 - Force GDB to allocate 64-bit chunks per argument\n\
5351 auto - Allow GDB to determine the correct setting from the current\n\
7915a72c 5352 target and executable (default)"),
2c5b56ce 5353 NULL,
7915a72c 5354 NULL, /* FIXME: i18n: The amount of stack space reserved for each argument is %s. */
2c5b56ce 5355 &setmipscmdlist, &showmipscmdlist);
d929b26f 5356
2e4ebe70 5357 /* Allow the user to override the ABI. */
7ab04401
AC
5358 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5359 &mips_abi_string, _("\
5360Set the MIPS ABI used by this program."), _("\
5361Show the MIPS ABI used by this program."), _("\
5362This option can be set to one of:\n\
5363 auto - the default ABI associated with the current binary\n\
5364 o32\n\
5365 o64\n\
5366 n32\n\
5367 n64\n\
5368 eabi32\n\
5369 eabi64"),
5370 mips_abi_update,
5371 show_mips_abi,
5372 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 5373
c906108c
SS
5374 /* Let the user turn off floating point and set the fence post for
5375 heuristic_proc_start. */
5376
5377 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 5378 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
5379 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5380 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 5381 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
5382 &mipsfpulist);
5383 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 5384 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
5385 &mipsfpulist);
5386 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5387 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5388 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5389 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 5390 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
5391 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5392 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5393 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5394 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 5395 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
5396 &mipsfpulist);
5397 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 5398 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
5399 &showlist);
5400
c906108c
SS
5401 /* We really would like to have both "0" and "unlimited" work, but
5402 command.c doesn't deal with that. So make it a var_zinteger
5403 because the user can always use "999999" or some such for unlimited. */
6bcadd06 5404 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
5405 &heuristic_fence_post, _("\
5406Set the distance searched for the start of a function."), _("\
5407Show the distance searched for the start of a function."), _("\
c906108c
SS
5408If you are debugging a stripped executable, GDB needs to search through the\n\
5409program for the start of a function. This command sets the distance of the\n\
7915a72c 5410search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 5411 reinit_frame_cache_sfunc,
7915a72c 5412 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
6bcadd06 5413 &setlist, &showlist);
c906108c
SS
5414
5415 /* Allow the user to control whether the upper bits of 64-bit
5416 addresses should be zeroed. */
7915a72c
AC
5417 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5418 &mask_address_var, _("\
5419Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5420Show zeroing of upper 32 bits of 64-bit addresses."), _("\
e9e68a56 5421Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
7915a72c 5422allow GDB to determine the correct value."),
08546159
AC
5423 NULL, show_mask_address,
5424 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
5425
5426 /* Allow the user to control the size of 32 bit registers within the
5427 raw remote packet. */
b3f42336 5428 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
5429 &mips64_transfers_32bit_regs_p, _("\
5430Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5431 _("\
5432Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5433 _("\
719ec221
AC
5434Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5435that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 543664 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 5437 set_mips64_transfers_32bit_regs,
7915a72c 5438 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
7915a72c 5439 &setlist, &showlist);
9ace0497
AC
5440
5441 /* Debug this files internals. */
6bcadd06 5442 add_setshow_zinteger_cmd ("mips", class_maintenance,
7915a72c
AC
5443 &mips_debug, _("\
5444Set mips debugging."), _("\
5445Show mips debugging."), _("\
5446When non-zero, mips specific debugging is enabled."),
2c5b56ce 5447 NULL,
7915a72c 5448 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
6bcadd06 5449 &setdebuglist, &showdebuglist);
c906108c 5450}
This page took 1.131157 seconds and 4 git commands to generate.