2004-01-08 Michael Chastain <mec.gnu@mindspring.com>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a 3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
16e109ca
AC
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
bf64bfd6 6
c906108c
SS
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b
JM
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
c906108c
SS
26
27#include "defs.h"
28#include "gdb_string.h"
5e2e9765 29#include "gdb_assert.h"
c906108c
SS
30#include "frame.h"
31#include "inferior.h"
32#include "symtab.h"
33#include "value.h"
34#include "gdbcmd.h"
35#include "language.h"
36#include "gdbcore.h"
37#include "symfile.h"
38#include "objfiles.h"
39#include "gdbtypes.h"
40#include "target.h"
28d069e6 41#include "arch-utils.h"
4e052eda 42#include "regcache.h"
70f80edf 43#include "osabi.h"
d1973055 44#include "mips-tdep.h"
fe898f56 45#include "block.h"
a4b8ebc8 46#include "reggroups.h"
c906108c 47#include "opcode/mips.h"
c2d11a7d
JM
48#include "elf/mips.h"
49#include "elf-bfd.h"
2475bac3 50#include "symcat.h"
a4b8ebc8 51#include "sim-regno.h"
a89aa300 52#include "dis-asm.h"
c906108c 53
e0f7ec59 54static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
5bbcb741 55static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 56
dd824b04
DJ
57/* A useful bit in the CP0 status register (PS_REGNUM). */
58/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
59#define ST0_FR (1 << 26)
60
b0069a17
AC
61/* The sizes of floating point registers. */
62
63enum
64{
65 MIPS_FPU_SINGLE_REGSIZE = 4,
66 MIPS_FPU_DOUBLE_REGSIZE = 8
67};
68
0dadbba0 69
2e4ebe70
DJ
70static const char *mips_abi_string;
71
72static const char *mips_abi_strings[] = {
73 "auto",
74 "n32",
75 "o32",
28d169de 76 "n64",
2e4ebe70
DJ
77 "o64",
78 "eabi32",
79 "eabi64",
80 NULL
81};
82
cce74817 83struct frame_extra_info
c5aa993b
JM
84 {
85 mips_extra_func_info_t proc_desc;
86 int num_args;
87 };
cce74817 88
d929b26f
AC
89/* Various MIPS ISA options (related to stack analysis) can be
90 overridden dynamically. Establish an enum/array for managing
91 them. */
92
53904c9e
AC
93static const char size_auto[] = "auto";
94static const char size_32[] = "32";
95static const char size_64[] = "64";
d929b26f 96
53904c9e 97static const char *size_enums[] = {
d929b26f
AC
98 size_auto,
99 size_32,
100 size_64,
a5ea2558
AC
101 0
102};
103
7a292a7a
SS
104/* Some MIPS boards don't support floating point while others only
105 support single-precision floating-point operations. See also
106 FP_REGISTER_DOUBLE. */
c906108c
SS
107
108enum mips_fpu_type
c5aa993b
JM
109 {
110 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
111 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
112 MIPS_FPU_NONE /* No floating point. */
113 };
c906108c
SS
114
115#ifndef MIPS_DEFAULT_FPU_TYPE
116#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
117#endif
118static int mips_fpu_type_auto = 1;
119static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 120
9ace0497 121static int mips_debug = 0;
7a292a7a 122
c2d11a7d
JM
123/* MIPS specific per-architecture information */
124struct gdbarch_tdep
125 {
126 /* from the elf header */
127 int elf_flags;
70f80edf 128
c2d11a7d 129 /* mips options */
0dadbba0 130 enum mips_abi mips_abi;
2e4ebe70 131 enum mips_abi found_abi;
c2d11a7d
JM
132 enum mips_fpu_type mips_fpu_type;
133 int mips_last_arg_regnum;
134 int mips_last_fp_arg_regnum;
a5ea2558 135 int mips_default_saved_regsize;
c2d11a7d 136 int mips_fp_register_double;
d929b26f 137 int mips_default_stack_argsize;
4014092b 138 int default_mask_address_p;
719ec221
AC
139 /* Is the target using 64-bit raw integer registers but only
140 storing a left-aligned 32-bit value in each? */
141 int mips64_transfers_32bit_regs_p;
56cea623
AC
142 /* Indexes for various registers. IRIX and embedded have
143 different values. This contains the "public" fields. Don't
144 add any that do not need to be public. */
145 const struct mips_regnum *regnum;
691c0433
AC
146 /* Register names table for the current register set. */
147 const char **mips_processor_reg_names;
c2d11a7d
JM
148 };
149
56cea623
AC
150const struct mips_regnum *
151mips_regnum (struct gdbarch *gdbarch)
152{
153 return gdbarch_tdep (gdbarch)->regnum;
154}
155
156static int
157mips_fpa0_regnum (struct gdbarch *gdbarch)
158{
159 return mips_regnum (gdbarch)->fp0 + 12;
160}
161
0dadbba0 162#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 163 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 164
c2d11a7d 165#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 166
c2d11a7d 167#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 168
c2d11a7d 169#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 170
95404a3e
AC
171/* MIPS16 function addresses are odd (bit 0 is set). Here are some
172 functions to test, set, or clear bit 0 of addresses. */
173
174static CORE_ADDR
175is_mips16_addr (CORE_ADDR addr)
176{
177 return ((addr) & 1);
178}
179
180static CORE_ADDR
181make_mips16_addr (CORE_ADDR addr)
182{
183 return ((addr) | 1);
184}
185
186static CORE_ADDR
187unmake_mips16_addr (CORE_ADDR addr)
188{
189 return ((addr) & ~1);
190}
191
22540ece
AC
192/* Return the contents of register REGNUM as a signed integer. */
193
194static LONGEST
195read_signed_register (int regnum)
196{
719ec221 197 void *buf = alloca (register_size (current_gdbarch, regnum));
22540ece 198 deprecated_read_register_gen (regnum, buf);
719ec221 199 return (extract_signed_integer (buf, register_size (current_gdbarch, regnum)));
22540ece
AC
200}
201
202static LONGEST
203read_signed_register_pid (int regnum, ptid_t ptid)
204{
205 ptid_t save_ptid;
206 LONGEST retval;
207
208 if (ptid_equal (ptid, inferior_ptid))
209 return read_signed_register (regnum);
210
211 save_ptid = inferior_ptid;
212
213 inferior_ptid = ptid;
214
215 retval = read_signed_register (regnum);
216
217 inferior_ptid = save_ptid;
218
219 return retval;
220}
221
d1973055
KB
222/* Return the MIPS ABI associated with GDBARCH. */
223enum mips_abi
224mips_abi (struct gdbarch *gdbarch)
225{
226 return gdbarch_tdep (gdbarch)->mips_abi;
227}
228
4246e332
AC
229int
230mips_regsize (struct gdbarch *gdbarch)
231{
232 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
233 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
234}
235
480d3dd2
AC
236/* Return the currently configured (or set) saved register size. */
237
238static const char *mips_saved_regsize_string = size_auto;
239
d929b26f 240static unsigned int
480d3dd2 241mips_saved_regsize (struct gdbarch_tdep *tdep)
d929b26f
AC
242{
243 if (mips_saved_regsize_string == size_auto)
480d3dd2 244 return tdep->mips_default_saved_regsize;
d929b26f
AC
245 else if (mips_saved_regsize_string == size_64)
246 return 8;
247 else /* if (mips_saved_regsize_string == size_32) */
248 return 4;
249}
250
71b8ef93 251/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa 252 marks it as 16-bit function. The MSB of the minimal symbol's
f594e5e9 253 "info" field is used for this purpose.
5a89d8aa
MS
254
255 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
256 i.e. refers to a 16-bit function, and sets a "special" bit in a
257 minimal symbol to mark it as a 16-bit function
258
f594e5e9 259 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
5a89d8aa 260
5a89d8aa
MS
261static void
262mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
263{
264 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
265 {
266 MSYMBOL_INFO (msym) = (char *)
267 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
268 SYMBOL_VALUE_ADDRESS (msym) |= 1;
269 }
270}
271
71b8ef93
MS
272static int
273msymbol_is_special (struct minimal_symbol *msym)
274{
275 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
276}
277
88658117
AC
278/* XFER a value from the big/little/left end of the register.
279 Depending on the size of the value it might occupy the entire
280 register or just part of it. Make an allowance for this, aligning
281 things accordingly. */
282
283static void
284mips_xfer_register (struct regcache *regcache, int reg_num, int length,
285 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
286 int buf_offset)
287{
d9d9c31f 288 bfd_byte reg[MAX_REGISTER_SIZE];
88658117 289 int reg_offset = 0;
a4b8ebc8 290 gdb_assert (reg_num >= NUM_REGS);
cb1d2653
AC
291 /* Need to transfer the left or right part of the register, based on
292 the targets byte order. */
88658117
AC
293 switch (endian)
294 {
295 case BFD_ENDIAN_BIG:
719ec221 296 reg_offset = register_size (current_gdbarch, reg_num) - length;
88658117
AC
297 break;
298 case BFD_ENDIAN_LITTLE:
299 reg_offset = 0;
300 break;
301 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
302 reg_offset = 0;
303 break;
304 default:
305 internal_error (__FILE__, __LINE__, "bad switch");
306 }
307 if (mips_debug)
cb1d2653
AC
308 fprintf_unfiltered (gdb_stderr,
309 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
310 reg_num, reg_offset, buf_offset, length);
88658117
AC
311 if (mips_debug && out != NULL)
312 {
313 int i;
cb1d2653 314 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 315 for (i = 0; i < length; i++)
cb1d2653 316 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
317 }
318 if (in != NULL)
a4b8ebc8 319 regcache_cooked_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
88658117 320 if (out != NULL)
a4b8ebc8 321 regcache_cooked_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
88658117
AC
322 if (mips_debug && in != NULL)
323 {
324 int i;
cb1d2653 325 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 326 for (i = 0; i < length; i++)
cb1d2653 327 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
328 }
329 if (mips_debug)
330 fprintf_unfiltered (gdb_stdlog, "\n");
331}
332
dd824b04
DJ
333/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
334 compatiblity mode. A return value of 1 means that we have
335 physical 64-bit registers, but should treat them as 32-bit registers. */
336
337static int
338mips2_fp_compat (void)
339{
340 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
341 meaningful. */
56cea623 342 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 4)
dd824b04
DJ
343 return 0;
344
345#if 0
346 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
347 in all the places we deal with FP registers. PR gdb/413. */
348 /* Otherwise check the FR bit in the status register - it controls
349 the FP compatiblity mode. If it is clear we are in compatibility
350 mode. */
351 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
352 return 1;
353#endif
361d1df0 354
dd824b04
DJ
355 return 0;
356}
357
c2d11a7d
JM
358/* Indicate that the ABI makes use of double-precision registers
359 provided by the FPU (rather than combining pairs of registers to
8fa9cfa1 360 form double-precision values). See also MIPS_FPU_TYPE. */
c2d11a7d 361#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
c2d11a7d 362
d929b26f
AC
363/* The amount of space reserved on the stack for registers. This is
364 different to MIPS_SAVED_REGSIZE as it determines the alignment of
365 data allocated after the registers have run out. */
366
53904c9e 367static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
368
369static unsigned int
480d3dd2 370mips_stack_argsize (struct gdbarch_tdep *tdep)
d929b26f
AC
371{
372 if (mips_stack_argsize_string == size_auto)
480d3dd2 373 return tdep->mips_default_stack_argsize;
d929b26f
AC
374 else if (mips_stack_argsize_string == size_64)
375 return 8;
376 else /* if (mips_stack_argsize_string == size_32) */
377 return 4;
378}
379
7a292a7a 380#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 381
570b8f7c
AC
382static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
383 struct frame_info *, int);
c906108c 384
a14ed312 385static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 386
a14ed312 387static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 388
a14ed312 389static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 390
570b8f7c
AC
391static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
392 struct frame_info *next_frame,
393 int cur_frame);
c906108c 394
a14ed312
KB
395static CORE_ADDR after_prologue (CORE_ADDR pc,
396 mips_extra_func_info_t proc_desc);
c906108c 397
67b2c998
DJ
398static struct type *mips_float_register_type (void);
399static struct type *mips_double_register_type (void);
400
acdb74a0
AC
401/* The list of available "set mips " and "show mips " commands */
402
403static struct cmd_list_element *setmipscmdlist = NULL;
404static struct cmd_list_element *showmipscmdlist = NULL;
405
5e2e9765
KB
406/* Integer registers 0 thru 31 are handled explicitly by
407 mips_register_name(). Processor specific registers 32 and above
691c0433
AC
408 are listed in the followign tables. */
409
410enum { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
411
412/* Generic MIPS. */
413
414static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
415 "sr", "lo", "hi", "bad", "cause","pc",
416 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
417 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
418 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
419 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
420 "fsr", "fir", ""/*"fp"*/, "",
421 "", "", "", "", "", "", "", "",
422 "", "", "", "", "", "", "", "",
423};
424
425/* Names of IDT R3041 registers. */
426
427static const char *mips_r3041_reg_names[] = {
428 "sr", "lo", "hi", "bad", "cause","pc",
429 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
430 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
431 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
432 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
433 "fsr", "fir", "",/*"fp"*/ "",
434 "", "", "bus", "ccfg", "", "", "", "",
435 "", "", "port", "cmp", "", "", "epc", "prid",
436};
437
438/* Names of tx39 registers. */
439
440static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
441 "sr", "lo", "hi", "bad", "cause","pc",
442 "", "", "", "", "", "", "", "",
443 "", "", "", "", "", "", "", "",
444 "", "", "", "", "", "", "", "",
445 "", "", "", "", "", "", "", "",
446 "", "", "", "",
447 "", "", "", "", "", "", "", "",
448 "", "", "config", "cache", "debug", "depc", "epc", ""
449};
450
451/* Names of IRIX registers. */
452static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
453 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
454 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
455 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
456 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
457 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
458};
459
cce74817 460
5e2e9765 461/* Return the name of the register corresponding to REGNO. */
5a89d8aa 462static const char *
5e2e9765 463mips_register_name (int regno)
cce74817 464{
691c0433 465 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5e2e9765
KB
466 /* GPR names for all ABIs other than n32/n64. */
467 static char *mips_gpr_names[] = {
468 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
469 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
470 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
471 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
472 };
473
474 /* GPR names for n32 and n64 ABIs. */
475 static char *mips_n32_n64_gpr_names[] = {
476 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
477 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
478 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
479 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
480 };
481
482 enum mips_abi abi = mips_abi (current_gdbarch);
483
a4b8ebc8
AC
484 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
485 don't make the raw register names visible. */
486 int rawnum = regno % NUM_REGS;
487 if (regno < NUM_REGS)
488 return "";
489
5e2e9765
KB
490 /* The MIPS integer registers are always mapped from 0 to 31. The
491 names of the registers (which reflects the conventions regarding
492 register use) vary depending on the ABI. */
a4b8ebc8 493 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
494 {
495 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 496 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 497 else
a4b8ebc8 498 return mips_gpr_names[rawnum];
5e2e9765 499 }
a4b8ebc8 500 else if (32 <= rawnum && rawnum < NUM_REGS)
691c0433
AC
501 {
502 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
503 return tdep->mips_processor_reg_names[rawnum - 32];
504 }
5e2e9765
KB
505 else
506 internal_error (__FILE__, __LINE__,
a4b8ebc8 507 "mips_register_name: bad register number %d", rawnum);
cce74817 508}
5e2e9765 509
a4b8ebc8 510/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 511
a4b8ebc8
AC
512static int
513mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
514 struct reggroup *reggroup)
515{
516 int vector_p;
517 int float_p;
518 int raw_p;
519 int rawnum = regnum % NUM_REGS;
520 int pseudo = regnum / NUM_REGS;
521 if (reggroup == all_reggroup)
522 return pseudo;
523 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
524 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
525 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
526 (gdbarch), as not all architectures are multi-arch. */
527 raw_p = rawnum < NUM_REGS;
528 if (REGISTER_NAME (regnum) == NULL
529 || REGISTER_NAME (regnum)[0] == '\0')
530 return 0;
531 if (reggroup == float_reggroup)
532 return float_p && pseudo;
533 if (reggroup == vector_reggroup)
534 return vector_p && pseudo;
535 if (reggroup == general_reggroup)
536 return (!vector_p && !float_p) && pseudo;
537 /* Save the pseudo registers. Need to make certain that any code
538 extracting register values from a saved register cache also uses
539 pseudo registers. */
540 if (reggroup == save_reggroup)
541 return raw_p && pseudo;
542 /* Restore the same pseudo register. */
543 if (reggroup == restore_reggroup)
544 return raw_p && pseudo;
545 return 0;
546}
547
548/* Map the symbol table registers which live in the range [1 *
549 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
47ebcfbe 550 registers. Take care of alignment and size problems. */
c5aa993b 551
a4b8ebc8
AC
552static void
553mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
554 int cookednum, void *buf)
555{
47ebcfbe 556 int rawnum = cookednum % NUM_REGS;
a4b8ebc8 557 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
47ebcfbe
AC
558 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
559 return regcache_raw_read (regcache, rawnum, buf);
560 else if (register_size (gdbarch, rawnum) > register_size (gdbarch, cookednum))
561 {
562 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
563 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
564 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
565 else
566 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
567 }
568 else
569 internal_error (__FILE__, __LINE__, "bad register size");
a4b8ebc8
AC
570}
571
572static void
573mips_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
574 int cookednum, const void *buf)
575{
47ebcfbe 576 int rawnum = cookednum % NUM_REGS;
a4b8ebc8 577 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
47ebcfbe
AC
578 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
579 return regcache_raw_write (regcache, rawnum, buf);
580 else if (register_size (gdbarch, rawnum) > register_size (gdbarch, cookednum))
581 {
582 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
583 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
584 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
585 else
586 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
587 }
588 else
589 internal_error (__FILE__, __LINE__, "bad register size");
a4b8ebc8 590}
c5aa993b 591
c906108c 592/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
593static int mips16_to_32_reg[8] =
594{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
595
596/* Heuristic_proc_start may hunt through the text section for a long
597 time across a 2400 baud serial line. Allows the user to limit this
598 search. */
599
600static unsigned int heuristic_fence_post = 0;
601
c5aa993b
JM
602#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
603#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
604#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
605#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
606#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
607#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
608#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
609#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
610#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
611#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
6c0d6680
DJ
612/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
613 this will corrupt pdr.iline. Fortunately we don't use it. */
c906108c
SS
614#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
615#define _PROC_MAGIC_ 0x0F0F0F0F
616#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
617#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
618
619struct linked_proc_info
c5aa993b
JM
620 {
621 struct mips_extra_func_info info;
622 struct linked_proc_info *next;
623 }
624 *linked_proc_desc_table = NULL;
c906108c 625
46cd78fb 626/* Number of bytes of storage in the actual machine representation for
719ec221
AC
627 register N. NOTE: This defines the pseudo register type so need to
628 rebuild the architecture vector. */
43e526b9
JM
629
630static int mips64_transfers_32bit_regs_p = 0;
631
719ec221
AC
632static void
633set_mips64_transfers_32bit_regs (char *args, int from_tty,
634 struct cmd_list_element *c)
43e526b9 635{
719ec221
AC
636 struct gdbarch_info info;
637 gdbarch_info_init (&info);
638 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
639 instead of relying on globals. Doing that would let generic code
640 handle the search for this specific architecture. */
641 if (!gdbarch_update_p (info))
a4b8ebc8 642 {
719ec221
AC
643 mips64_transfers_32bit_regs_p = 0;
644 error ("32-bit compatibility mode not supported");
a4b8ebc8 645 }
a4b8ebc8
AC
646}
647
47ebcfbe 648/* Convert to/from a register and the corresponding memory value. */
43e526b9 649
ff2e87ac
AC
650static int
651mips_convert_register_p (int regnum, struct type *type)
652{
653 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
719ec221 654 && register_size (current_gdbarch, regnum) == 4
56cea623 655 && (regnum) >= mips_regnum (current_gdbarch)->fp0 && (regnum) < mips_regnum (current_gdbarch)->fp0 + 32
ff2e87ac
AC
656 && TYPE_CODE(type) == TYPE_CODE_FLT
657 && TYPE_LENGTH(type) == 8);
658}
659
42c466d7 660static void
ff2e87ac
AC
661mips_register_to_value (struct frame_info *frame, int regnum,
662 struct type *type, void *to)
102182a9 663{
7f5f525d
AC
664 get_frame_register (frame, regnum + 0, (char *) to + 4);
665 get_frame_register (frame, regnum + 1, (char *) to + 0);
102182a9
MS
666}
667
42c466d7 668static void
ff2e87ac
AC
669mips_value_to_register (struct frame_info *frame, int regnum,
670 struct type *type, const void *from)
102182a9 671{
ff2e87ac
AC
672 put_frame_register (frame, regnum + 0, (const char *) from + 4);
673 put_frame_register (frame, regnum + 1, (const char *) from + 0);
102182a9
MS
674}
675
a4b8ebc8
AC
676/* Return the GDB type object for the "standard" data type of data in
677 register REG. */
78fde5f8
KB
678
679static struct type *
a4b8ebc8
AC
680mips_register_type (struct gdbarch *gdbarch, int regnum)
681{
5ef80fb0 682 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
56cea623
AC
683 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
684 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
a6425924 685 {
5ef80fb0
AC
686 /* The floating-point registers raw, or cooked, always match
687 mips_regsize(), and also map 1:1, byte for byte. */
688 switch (gdbarch_byte_order (gdbarch))
689 {
690 case BFD_ENDIAN_BIG:
691 if (mips_regsize (gdbarch) == 4)
692 return builtin_type_ieee_single_big;
693 else
694 return builtin_type_ieee_double_big;
695 case BFD_ENDIAN_LITTLE:
696 if (mips_regsize (gdbarch) == 4)
697 return builtin_type_ieee_single_little;
698 else
699 return builtin_type_ieee_double_little;
700 case BFD_ENDIAN_UNKNOWN:
701 default:
702 internal_error (__FILE__, __LINE__, "bad switch");
703 }
a6425924 704 }
56cea623 705 else if (regnum >= (NUM_REGS + mips_regnum (current_gdbarch)->fp_control_status)
5ef80fb0
AC
706 && regnum <= NUM_REGS + LAST_EMBED_REGNUM)
707 /* The pseudo/cooked view of the embedded registers is always
708 32-bit. The raw view is handled below. */
709 return builtin_type_int32;
719ec221
AC
710 else if (regnum >= NUM_REGS && mips_regsize (gdbarch)
711 && gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
712 /* The target, while using a 64-bit register buffer, is only
713 transfering 32-bits of each integer register. Reflect this in
714 the cooked/pseudo register value. */
715 return builtin_type_int32;
5ef80fb0
AC
716 else if (mips_regsize (gdbarch) == 8)
717 /* 64-bit ISA. */
718 return builtin_type_int64;
78fde5f8 719 else
5ef80fb0
AC
720 /* 32-bit ISA. */
721 return builtin_type_int32;
78fde5f8
KB
722}
723
bcb0cc15
MS
724/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
725
726static CORE_ADDR
727mips_read_sp (void)
728{
e227b13c 729 return read_signed_register (SP_REGNUM);
bcb0cc15
MS
730}
731
c906108c 732/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 733enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
734
735static int
480d3dd2 736mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
737{
738 switch (mask_address_var)
739 {
7f19b9a2 740 case AUTO_BOOLEAN_TRUE:
4014092b 741 return 1;
7f19b9a2 742 case AUTO_BOOLEAN_FALSE:
4014092b
AC
743 return 0;
744 break;
7f19b9a2 745 case AUTO_BOOLEAN_AUTO:
480d3dd2 746 return tdep->default_mask_address_p;
4014092b 747 default:
8e65ff28
AC
748 internal_error (__FILE__, __LINE__,
749 "mips_mask_address_p: bad switch");
4014092b 750 return -1;
361d1df0 751 }
4014092b
AC
752}
753
754static void
e9e68a56 755show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
4014092b 756{
480d3dd2 757 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4014092b
AC
758 switch (mask_address_var)
759 {
7f19b9a2 760 case AUTO_BOOLEAN_TRUE:
4014092b
AC
761 printf_filtered ("The 32 bit mips address mask is enabled\n");
762 break;
7f19b9a2 763 case AUTO_BOOLEAN_FALSE:
4014092b
AC
764 printf_filtered ("The 32 bit mips address mask is disabled\n");
765 break;
7f19b9a2 766 case AUTO_BOOLEAN_AUTO:
4014092b 767 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
480d3dd2 768 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
769 break;
770 default:
8e65ff28
AC
771 internal_error (__FILE__, __LINE__,
772 "show_mask_address: bad switch");
4014092b 773 break;
361d1df0 774 }
4014092b 775}
c906108c
SS
776
777/* Should call_function allocate stack space for a struct return? */
cb811fe7 778
f7ab6ec6 779static int
cb811fe7 780mips_eabi_use_struct_convention (int gcc_p, struct type *type)
c906108c 781{
480d3dd2
AC
782 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
783 return (TYPE_LENGTH (type) > 2 * mips_saved_regsize (tdep));
cb811fe7
MS
784}
785
8b389c40
MS
786/* Should call_function pass struct by reference?
787 For each architecture, structs are passed either by
788 value or by reference, depending on their size. */
789
790static int
791mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
792{
793 enum type_code typecode = TYPE_CODE (check_typedef (type));
794 int len = TYPE_LENGTH (check_typedef (type));
480d3dd2 795 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
8b389c40
MS
796
797 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
480d3dd2 798 return (len > mips_saved_regsize (tdep));
8b389c40
MS
799
800 return 0;
801}
802
803static int
804mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
805{
806 return 0; /* Assumption: N32/N64 never passes struct by ref. */
807}
808
f7ab6ec6 809static int
8b389c40
MS
810mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
811{
812 return 0; /* Assumption: O32/O64 never passes struct by ref. */
813}
814
c906108c
SS
815/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
816
817static int
818pc_is_mips16 (bfd_vma memaddr)
819{
820 struct minimal_symbol *sym;
821
822 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 823 if (is_mips16_addr (memaddr))
c906108c
SS
824 return 1;
825
826 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
827 the high bit of the info field. Use this to decide if the function is
828 MIPS16 or normal MIPS. */
829 sym = lookup_minimal_symbol_by_pc (memaddr);
830 if (sym)
71b8ef93 831 return msymbol_is_special (sym);
c906108c
SS
832 else
833 return 0;
834}
835
6c997a34
AC
836/* MIPS believes that the PC has a sign extended value. Perhaphs the
837 all registers should be sign extended for simplicity? */
838
839static CORE_ADDR
39f77062 840mips_read_pc (ptid_t ptid)
6c997a34 841{
39f77062 842 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 843}
c906108c
SS
844
845/* This returns the PC of the first inst after the prologue. If we can't
846 find the prologue, then return 0. */
847
848static CORE_ADDR
acdb74a0
AC
849after_prologue (CORE_ADDR pc,
850 mips_extra_func_info_t proc_desc)
c906108c
SS
851{
852 struct symtab_and_line sal;
853 CORE_ADDR func_addr, func_end;
854
479412cd
DJ
855 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
856 to read the stack pointer from the current machine state, because
857 the current machine state has nothing to do with the information
858 we need from the proc_desc; and the process may or may not exist
859 right now. */
c906108c 860 if (!proc_desc)
479412cd 861 proc_desc = find_proc_desc (pc, NULL, 0);
c906108c
SS
862
863 if (proc_desc)
864 {
865 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 866 strongly suspect that frameless always means prologueless... */
c906108c
SS
867 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
868 && PROC_FRAME_OFFSET (proc_desc) == 0)
869 return 0;
870 }
871
872 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
873 return 0; /* Unknown */
874
875 sal = find_pc_line (func_addr, 0);
876
877 if (sal.end < func_end)
878 return sal.end;
879
880 /* The line after the prologue is after the end of the function. In this
881 case, tell the caller to find the prologue the hard way. */
882
883 return 0;
884}
885
886/* Decode a MIPS32 instruction that saves a register in the stack, and
887 set the appropriate bit in the general register mask or float register mask
888 to indicate which register is saved. This is a helper function
889 for mips_find_saved_regs. */
890
891static void
acdb74a0
AC
892mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
893 unsigned long *float_mask)
c906108c
SS
894{
895 int reg;
896
897 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
898 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
899 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
900 {
901 /* It might be possible to use the instruction to
c5aa993b
JM
902 find the offset, rather than the code below which
903 is based on things being in a certain order in the
904 frame, but figuring out what the instruction's offset
905 is relative to might be a little tricky. */
c906108c
SS
906 reg = (inst & 0x001f0000) >> 16;
907 *gen_mask |= (1 << reg);
908 }
909 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
910 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
911 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
912
913 {
914 reg = ((inst & 0x001f0000) >> 16);
915 *float_mask |= (1 << reg);
916 }
917}
918
919/* Decode a MIPS16 instruction that saves a register in the stack, and
920 set the appropriate bit in the general register or float register mask
921 to indicate which register is saved. This is a helper function
922 for mips_find_saved_regs. */
923
924static void
acdb74a0 925mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 926{
c5aa993b 927 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
928 {
929 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
930 *gen_mask |= (1 << reg);
931 }
c5aa993b 932 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
933 {
934 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
935 *gen_mask |= (1 << reg);
936 }
c5aa993b 937 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
938 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
939 *gen_mask |= (1 << RA_REGNUM);
940}
941
942
943/* Fetch and return instruction from the specified location. If the PC
944 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
945
946static t_inst
acdb74a0 947mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
948{
949 char buf[MIPS_INSTLEN];
950 int instlen;
951 int status;
952
953 if (pc_is_mips16 (addr))
954 {
955 instlen = MIPS16_INSTLEN;
95404a3e 956 addr = unmake_mips16_addr (addr);
c906108c
SS
957 }
958 else
c5aa993b 959 instlen = MIPS_INSTLEN;
c906108c
SS
960 status = read_memory_nobpt (addr, buf, instlen);
961 if (status)
962 memory_error (status, addr);
963 return extract_unsigned_integer (buf, instlen);
964}
965
966
967/* These the fields of 32 bit mips instructions */
e135b889
DJ
968#define mips32_op(x) (x >> 26)
969#define itype_op(x) (x >> 26)
970#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 971#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 972#define itype_immediate(x) (x & 0xffff)
c906108c 973
e135b889
DJ
974#define jtype_op(x) (x >> 26)
975#define jtype_target(x) (x & 0x03ffffff)
c906108c 976
e135b889
DJ
977#define rtype_op(x) (x >> 26)
978#define rtype_rs(x) ((x >> 21) & 0x1f)
979#define rtype_rt(x) ((x >> 16) & 0x1f)
980#define rtype_rd(x) ((x >> 11) & 0x1f)
981#define rtype_shamt(x) ((x >> 6) & 0x1f)
982#define rtype_funct(x) (x & 0x3f)
c906108c
SS
983
984static CORE_ADDR
c5aa993b
JM
985mips32_relative_offset (unsigned long inst)
986{
987 long x;
988 x = itype_immediate (inst);
989 if (x & 0x8000) /* sign bit set */
c906108c 990 {
c5aa993b 991 x |= 0xffff0000; /* sign extension */
c906108c 992 }
c5aa993b
JM
993 x = x << 2;
994 return x;
c906108c
SS
995}
996
997/* Determine whate to set a single step breakpoint while considering
998 branch prediction */
5a89d8aa 999static CORE_ADDR
c5aa993b
JM
1000mips32_next_pc (CORE_ADDR pc)
1001{
1002 unsigned long inst;
1003 int op;
1004 inst = mips_fetch_instruction (pc);
e135b889 1005 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 1006 {
e135b889
DJ
1007 if (itype_op (inst) >> 2 == 5)
1008 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1009 {
e135b889 1010 op = (itype_op (inst) & 0x03);
c906108c
SS
1011 switch (op)
1012 {
e135b889
DJ
1013 case 0: /* BEQL */
1014 goto equal_branch;
1015 case 1: /* BNEL */
1016 goto neq_branch;
1017 case 2: /* BLEZL */
1018 goto less_branch;
1019 case 3: /* BGTZ */
1020 goto greater_branch;
c5aa993b
JM
1021 default:
1022 pc += 4;
c906108c
SS
1023 }
1024 }
e135b889
DJ
1025 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1026 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1027 {
1028 int tf = itype_rt (inst) & 0x01;
1029 int cnum = itype_rt (inst) >> 2;
56cea623 1030 int fcrcs = read_signed_register (mips_regnum (current_gdbarch)->fp_control_status);
e135b889
DJ
1031 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1032
1033 if (((cond >> cnum) & 0x01) == tf)
1034 pc += mips32_relative_offset (inst) + 4;
1035 else
1036 pc += 8;
1037 }
c5aa993b
JM
1038 else
1039 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
1040 }
1041 else
c5aa993b
JM
1042 { /* This gets way messy */
1043
c906108c 1044 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 1045 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 1046 {
c5aa993b
JM
1047 case 0: /* SPECIAL */
1048 op = rtype_funct (inst);
1049 switch (op)
1050 {
1051 case 8: /* JR */
1052 case 9: /* JALR */
6c997a34
AC
1053 /* Set PC to that address */
1054 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
1055 break;
1056 default:
1057 pc += 4;
1058 }
1059
e135b889 1060 break; /* end SPECIAL */
c5aa993b 1061 case 1: /* REGIMM */
c906108c 1062 {
e135b889
DJ
1063 op = itype_rt (inst); /* branch condition */
1064 switch (op)
c906108c 1065 {
c5aa993b 1066 case 0: /* BLTZ */
e135b889
DJ
1067 case 2: /* BLTZL */
1068 case 16: /* BLTZAL */
c5aa993b 1069 case 18: /* BLTZALL */
c906108c 1070 less_branch:
6c997a34 1071 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
1072 pc += mips32_relative_offset (inst) + 4;
1073 else
1074 pc += 8; /* after the delay slot */
1075 break;
e135b889 1076 case 1: /* BGEZ */
c5aa993b
JM
1077 case 3: /* BGEZL */
1078 case 17: /* BGEZAL */
1079 case 19: /* BGEZALL */
6c997a34 1080 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
1081 pc += mips32_relative_offset (inst) + 4;
1082 else
1083 pc += 8; /* after the delay slot */
1084 break;
e135b889 1085 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1086 default:
1087 pc += 4;
c906108c
SS
1088 }
1089 }
e135b889 1090 break; /* end REGIMM */
c5aa993b
JM
1091 case 2: /* J */
1092 case 3: /* JAL */
1093 {
1094 unsigned long reg;
1095 reg = jtype_target (inst) << 2;
e135b889 1096 /* Upper four bits get never changed... */
c5aa993b 1097 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 1098 }
c5aa993b
JM
1099 break;
1100 /* FIXME case JALX : */
1101 {
1102 unsigned long reg;
1103 reg = jtype_target (inst) << 2;
1104 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
1105 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1106 }
c5aa993b 1107 break; /* The new PC will be alternate mode */
e135b889 1108 case 4: /* BEQ, BEQL */
c5aa993b 1109 equal_branch:
6c997a34
AC
1110 if (read_signed_register (itype_rs (inst)) ==
1111 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1112 pc += mips32_relative_offset (inst) + 4;
1113 else
1114 pc += 8;
1115 break;
e135b889 1116 case 5: /* BNE, BNEL */
c5aa993b 1117 neq_branch:
6c997a34 1118 if (read_signed_register (itype_rs (inst)) !=
e135b889 1119 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1120 pc += mips32_relative_offset (inst) + 4;
1121 else
1122 pc += 8;
1123 break;
e135b889 1124 case 6: /* BLEZ, BLEZL */
6c997a34 1125 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
1126 pc += mips32_relative_offset (inst) + 4;
1127 else
1128 pc += 8;
1129 break;
1130 case 7:
e135b889
DJ
1131 default:
1132 greater_branch: /* BGTZ, BGTZL */
6c997a34 1133 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
1134 pc += mips32_relative_offset (inst) + 4;
1135 else
1136 pc += 8;
1137 break;
c5aa993b
JM
1138 } /* switch */
1139 } /* else */
1140 return pc;
1141} /* mips32_next_pc */
c906108c
SS
1142
1143/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1144 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1145 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1146 We dont want to set a single step instruction on the extend instruction
1147 either.
c5aa993b 1148 */
c906108c
SS
1149
1150/* Lots of mips16 instruction formats */
1151/* Predicting jumps requires itype,ritype,i8type
1152 and their extensions extItype,extritype,extI8type
c5aa993b 1153 */
c906108c
SS
1154enum mips16_inst_fmts
1155{
c5aa993b
JM
1156 itype, /* 0 immediate 5,10 */
1157 ritype, /* 1 5,3,8 */
1158 rrtype, /* 2 5,3,3,5 */
1159 rritype, /* 3 5,3,3,5 */
1160 rrrtype, /* 4 5,3,3,3,2 */
1161 rriatype, /* 5 5,3,3,1,4 */
1162 shifttype, /* 6 5,3,3,3,2 */
1163 i8type, /* 7 5,3,8 */
1164 i8movtype, /* 8 5,3,3,5 */
1165 i8mov32rtype, /* 9 5,3,5,3 */
1166 i64type, /* 10 5,3,8 */
1167 ri64type, /* 11 5,3,3,5 */
1168 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1169 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1170 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1171 extRRItype, /* 15 5,5,5,5,3,3,5 */
1172 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1173 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1174 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1175 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1176 extRi64type, /* 20 5,6,5,5,3,3,5 */
1177 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1178};
12f02c2a
AC
1179/* I am heaping all the fields of the formats into one structure and
1180 then, only the fields which are involved in instruction extension */
c906108c 1181struct upk_mips16
c5aa993b 1182 {
12f02c2a 1183 CORE_ADDR offset;
c5aa993b
JM
1184 unsigned int regx; /* Function in i8 type */
1185 unsigned int regy;
1186 };
c906108c
SS
1187
1188
12f02c2a
AC
1189/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1190 for the bits which make up the immediatate extension. */
c906108c 1191
12f02c2a
AC
1192static CORE_ADDR
1193extended_offset (unsigned int extension)
c906108c 1194{
12f02c2a 1195 CORE_ADDR value;
c5aa993b
JM
1196 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1197 value = value << 6;
1198 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1199 value = value << 5;
1200 value |= extension & 0x01f; /* extract 4:0 */
1201 return value;
c906108c
SS
1202}
1203
1204/* Only call this function if you know that this is an extendable
1205 instruction, It wont malfunction, but why make excess remote memory references?
1206 If the immediate operands get sign extended or somthing, do it after
1207 the extension is performed.
c5aa993b 1208 */
c906108c
SS
1209/* FIXME: Every one of these cases needs to worry about sign extension
1210 when the offset is to be used in relative addressing */
1211
1212
12f02c2a 1213static unsigned int
c5aa993b 1214fetch_mips_16 (CORE_ADDR pc)
c906108c 1215{
c5aa993b
JM
1216 char buf[8];
1217 pc &= 0xfffffffe; /* clear the low order bit */
1218 target_read_memory (pc, buf, 2);
1219 return extract_unsigned_integer (buf, 2);
c906108c
SS
1220}
1221
1222static void
c5aa993b 1223unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1224 unsigned int extension,
1225 unsigned int inst,
1226 enum mips16_inst_fmts insn_format,
c5aa993b 1227 struct upk_mips16 *upk)
c906108c 1228{
12f02c2a
AC
1229 CORE_ADDR offset;
1230 int regx;
1231 int regy;
1232 switch (insn_format)
c906108c 1233 {
c5aa993b 1234 case itype:
c906108c 1235 {
12f02c2a
AC
1236 CORE_ADDR value;
1237 if (extension)
c5aa993b
JM
1238 {
1239 value = extended_offset (extension);
1240 value = value << 11; /* rom for the original value */
12f02c2a 1241 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1242 }
1243 else
c5aa993b 1244 {
12f02c2a 1245 value = inst & 0x7ff;
c5aa993b 1246 /* FIXME : Consider sign extension */
c906108c 1247 }
12f02c2a
AC
1248 offset = value;
1249 regx = -1;
1250 regy = -1;
c906108c 1251 }
c5aa993b
JM
1252 break;
1253 case ritype:
1254 case i8type:
1255 { /* A register identifier and an offset */
c906108c
SS
1256 /* Most of the fields are the same as I type but the
1257 immediate value is of a different length */
12f02c2a
AC
1258 CORE_ADDR value;
1259 if (extension)
c906108c 1260 {
c5aa993b
JM
1261 value = extended_offset (extension);
1262 value = value << 8; /* from the original instruction */
12f02c2a
AC
1263 value |= inst & 0xff; /* eleven bits from instruction */
1264 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1265 if (value & 0x4000) /* test the sign bit , bit 26 */
1266 {
1267 value &= ~0x3fff; /* remove the sign bit */
1268 value = -value;
c906108c
SS
1269 }
1270 }
c5aa993b
JM
1271 else
1272 {
12f02c2a
AC
1273 value = inst & 0xff; /* 8 bits */
1274 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1275 /* FIXME: Do sign extension , this format needs it */
1276 if (value & 0x80) /* THIS CONFUSES ME */
1277 {
1278 value &= 0xef; /* remove the sign bit */
1279 value = -value;
1280 }
c5aa993b 1281 }
12f02c2a
AC
1282 offset = value;
1283 regy = -1;
c5aa993b 1284 break;
c906108c 1285 }
c5aa993b 1286 case jalxtype:
c906108c 1287 {
c5aa993b 1288 unsigned long value;
12f02c2a
AC
1289 unsigned int nexthalf;
1290 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1291 value = value << 16;
1292 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1293 value |= nexthalf;
12f02c2a
AC
1294 offset = value;
1295 regx = -1;
1296 regy = -1;
c5aa993b 1297 break;
c906108c
SS
1298 }
1299 default:
8e65ff28
AC
1300 internal_error (__FILE__, __LINE__,
1301 "bad switch");
c906108c 1302 }
12f02c2a
AC
1303 upk->offset = offset;
1304 upk->regx = regx;
1305 upk->regy = regy;
c906108c
SS
1306}
1307
1308
c5aa993b
JM
1309static CORE_ADDR
1310add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1311{
c5aa993b 1312 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
c906108c
SS
1313}
1314
12f02c2a
AC
1315static CORE_ADDR
1316extended_mips16_next_pc (CORE_ADDR pc,
1317 unsigned int extension,
1318 unsigned int insn)
c906108c 1319{
12f02c2a
AC
1320 int op = (insn >> 11);
1321 switch (op)
c906108c 1322 {
12f02c2a
AC
1323 case 2: /* Branch */
1324 {
1325 CORE_ADDR offset;
1326 struct upk_mips16 upk;
1327 unpack_mips16 (pc, extension, insn, itype, &upk);
1328 offset = upk.offset;
1329 if (offset & 0x800)
1330 {
1331 offset &= 0xeff;
1332 offset = -offset;
1333 }
1334 pc += (offset << 1) + 2;
1335 break;
1336 }
1337 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1338 {
1339 struct upk_mips16 upk;
1340 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1341 pc = add_offset_16 (pc, upk.offset);
1342 if ((insn >> 10) & 0x01) /* Exchange mode */
1343 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1344 else
1345 pc |= 0x01;
1346 break;
1347 }
1348 case 4: /* beqz */
1349 {
1350 struct upk_mips16 upk;
1351 int reg;
1352 unpack_mips16 (pc, extension, insn, ritype, &upk);
1353 reg = read_signed_register (upk.regx);
1354 if (reg == 0)
1355 pc += (upk.offset << 1) + 2;
1356 else
1357 pc += 2;
1358 break;
1359 }
1360 case 5: /* bnez */
1361 {
1362 struct upk_mips16 upk;
1363 int reg;
1364 unpack_mips16 (pc, extension, insn, ritype, &upk);
1365 reg = read_signed_register (upk.regx);
1366 if (reg != 0)
1367 pc += (upk.offset << 1) + 2;
1368 else
1369 pc += 2;
1370 break;
1371 }
1372 case 12: /* I8 Formats btez btnez */
1373 {
1374 struct upk_mips16 upk;
1375 int reg;
1376 unpack_mips16 (pc, extension, insn, i8type, &upk);
1377 /* upk.regx contains the opcode */
1378 reg = read_signed_register (24); /* Test register is 24 */
1379 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1380 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1381 /* pc = add_offset_16(pc,upk.offset) ; */
1382 pc += (upk.offset << 1) + 2;
1383 else
1384 pc += 2;
1385 break;
1386 }
1387 case 29: /* RR Formats JR, JALR, JALR-RA */
1388 {
1389 struct upk_mips16 upk;
1390 /* upk.fmt = rrtype; */
1391 op = insn & 0x1f;
1392 if (op == 0)
c5aa993b 1393 {
12f02c2a
AC
1394 int reg;
1395 upk.regx = (insn >> 8) & 0x07;
1396 upk.regy = (insn >> 5) & 0x07;
1397 switch (upk.regy)
c5aa993b 1398 {
12f02c2a
AC
1399 case 0:
1400 reg = upk.regx;
1401 break;
1402 case 1:
1403 reg = 31;
1404 break; /* Function return instruction */
1405 case 2:
1406 reg = upk.regx;
1407 break;
1408 default:
1409 reg = 31;
1410 break; /* BOGUS Guess */
c906108c 1411 }
12f02c2a 1412 pc = read_signed_register (reg);
c906108c 1413 }
12f02c2a 1414 else
c5aa993b 1415 pc += 2;
12f02c2a
AC
1416 break;
1417 }
1418 case 30:
1419 /* This is an instruction extension. Fetch the real instruction
1420 (which follows the extension) and decode things based on
1421 that. */
1422 {
1423 pc += 2;
1424 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1425 break;
1426 }
1427 default:
1428 {
1429 pc += 2;
1430 break;
1431 }
c906108c 1432 }
c5aa993b 1433 return pc;
12f02c2a 1434}
c906108c 1435
5a89d8aa 1436static CORE_ADDR
12f02c2a
AC
1437mips16_next_pc (CORE_ADDR pc)
1438{
1439 unsigned int insn = fetch_mips_16 (pc);
1440 return extended_mips16_next_pc (pc, 0, insn);
1441}
1442
1443/* The mips_next_pc function supports single_step when the remote
7e73cedf 1444 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1445 It works by decoding the current instruction and predicting where a
1446 branch will go. This isnt hard because all the data is available.
1447 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1448CORE_ADDR
1449mips_next_pc (CORE_ADDR pc)
c906108c 1450{
c5aa993b
JM
1451 if (pc & 0x01)
1452 return mips16_next_pc (pc);
1453 else
1454 return mips32_next_pc (pc);
12f02c2a 1455}
c906108c 1456
e0f7ec59
AC
1457/* Set up the 'saved_regs' array. This is a data structure containing
1458 the addresses on the stack where each register has been saved, for
1459 each stack frame. Registers that have not been saved will have
1460 zero here. The stack pointer register is special: rather than the
1461 address where the stack register has been saved,
1462 saved_regs[SP_REGNUM] will have the actual value of the previous
1463 frame's stack register. */
c906108c 1464
d28e01f4 1465static void
acdb74a0 1466mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1467{
1468 int ireg;
c906108c
SS
1469 /* r0 bit means kernel trap */
1470 int kernel_trap;
1471 /* What registers have been saved? Bitmasks. */
1472 unsigned long gen_mask, float_mask;
1473 mips_extra_func_info_t proc_desc;
1474 t_inst inst;
e0f7ec59 1475 CORE_ADDR *saved_regs;
480d3dd2 1476 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1477
1b1d3794 1478 if (deprecated_get_frame_saved_regs (fci) != NULL)
e0f7ec59
AC
1479 return;
1480 saved_regs = frame_saved_regs_zalloc (fci);
c906108c
SS
1481
1482 /* If it is the frame for sigtramp, the saved registers are located
e0f7ec59
AC
1483 in a sigcontext structure somewhere on the stack. If the stack
1484 layout for sigtramp changes we might have to change these
1485 constants and the companion fixup_sigtramp in mdebugread.c */
c906108c 1486#ifndef SIGFRAME_BASE
e0f7ec59
AC
1487 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1488 above the sigtramp frame. */
4246e332 1489#define SIGFRAME_BASE mips_regsize (current_gdbarch)
c906108c 1490/* FIXME! Are these correct?? */
4246e332
AC
1491#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * mips_regsize (current_gdbarch))
1492#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * mips_regsize (current_gdbarch))
c906108c 1493#define SIGFRAME_FPREGSAVE_OFF \
4246e332 1494 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * mips_regsize (current_gdbarch) + 3 * mips_regsize (current_gdbarch))
c906108c 1495#endif
5a203e44 1496 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
c906108c
SS
1497 {
1498 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1499 {
e0f7ec59 1500 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
10a08821 1501 + ireg * mips_regsize (current_gdbarch));
e0f7ec59 1502 set_reg_offset (saved_regs, ireg, reg_position);
c906108c
SS
1503 }
1504 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1505 {
e0f7ec59
AC
1506 CORE_ADDR reg_position = (get_frame_base (fci)
1507 + SIGFRAME_FPREGSAVE_OFF
10a08821 1508 + ireg * mips_regsize (current_gdbarch));
56cea623 1509 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg, reg_position);
c906108c 1510 }
e0f7ec59
AC
1511
1512 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1513 /* SP_REGNUM, contains the value and not the address. */
1514 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
c906108c
SS
1515 return;
1516 }
1517
da50a4b7 1518 proc_desc = get_frame_extra_info (fci)->proc_desc;
c906108c 1519 if (proc_desc == NULL)
e0f7ec59
AC
1520 /* I'm not sure how/whether this can happen. Normally when we
1521 can't find a proc_desc, we "synthesize" one using
1522 heuristic_proc_desc and set the saved_regs right away. */
c906108c
SS
1523 return;
1524
c5aa993b
JM
1525 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1526 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1527 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1528
e0f7ec59
AC
1529 if (/* In any frame other than the innermost or a frame interrupted
1530 by a signal, we assume that all registers have been saved.
1531 This assumes that all register saves in a function happen
1532 before the first function call. */
11c02a10
AC
1533 (get_next_frame (fci) == NULL
1534 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
c906108c 1535
e0f7ec59 1536 /* In a dummy frame we know exactly where things are saved. */
c5aa993b 1537 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1538
e0f7ec59
AC
1539 /* Don't bother unless we are inside a function prologue.
1540 Outside the prologue, we know where everything is. */
c906108c 1541
50abf9e5 1542 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
c906108c 1543
e0f7ec59
AC
1544 /* Not sure exactly what kernel_trap means, but if it means the
1545 kernel saves the registers without a prologue doing it, we
1546 better not examine the prologue to see whether registers
1547 have been saved yet. */
c5aa993b 1548 && !kernel_trap)
c906108c 1549 {
e0f7ec59
AC
1550 /* We need to figure out whether the registers that the
1551 proc_desc claims are saved have been saved yet. */
c906108c
SS
1552
1553 CORE_ADDR addr;
1554
1555 /* Bitmasks; set if we have found a save for the register. */
1556 unsigned long gen_save_found = 0;
1557 unsigned long float_save_found = 0;
1558 int instlen;
1559
1560 /* If the address is odd, assume this is MIPS16 code. */
1561 addr = PROC_LOW_ADDR (proc_desc);
1562 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1563
e0f7ec59
AC
1564 /* Scan through this function's instructions preceding the
1565 current PC, and look for those that save registers. */
50abf9e5 1566 while (addr < get_frame_pc (fci))
c906108c
SS
1567 {
1568 inst = mips_fetch_instruction (addr);
1569 if (pc_is_mips16 (addr))
1570 mips16_decode_reg_save (inst, &gen_save_found);
1571 else
1572 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1573 addr += instlen;
1574 }
1575 gen_mask = gen_save_found;
1576 float_mask = float_save_found;
1577 }
1578
e0f7ec59
AC
1579 /* Fill in the offsets for the registers which gen_mask says were
1580 saved. */
1581 {
1582 CORE_ADDR reg_position = (get_frame_base (fci)
1583 + PROC_REG_OFFSET (proc_desc));
1584 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1585 if (gen_mask & 0x80000000)
1586 {
1587 set_reg_offset (saved_regs, ireg, reg_position);
480d3dd2 1588 reg_position -= mips_saved_regsize (tdep);
e0f7ec59
AC
1589 }
1590 }
c906108c 1591
e0f7ec59
AC
1592 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1593 order of that normally used by gcc. Therefore, we have to fetch
1594 the first instruction of the function, and if it's an entry
1595 instruction that saves $s0 or $s1, correct their saved addresses. */
c906108c
SS
1596 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1597 {
1598 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
e0f7ec59
AC
1599 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1600 /* entry */
c906108c
SS
1601 {
1602 int reg;
1603 int sreg_count = (inst >> 6) & 3;
c5aa993b 1604
c906108c 1605 /* Check if the ra register was pushed on the stack. */
e0f7ec59
AC
1606 CORE_ADDR reg_position = (get_frame_base (fci)
1607 + PROC_REG_OFFSET (proc_desc));
c906108c 1608 if (inst & 0x20)
480d3dd2 1609 reg_position -= mips_saved_regsize (tdep);
c906108c 1610
e0f7ec59
AC
1611 /* Check if the s0 and s1 registers were pushed on the
1612 stack. */
c5aa993b 1613 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c 1614 {
e0f7ec59 1615 set_reg_offset (saved_regs, reg, reg_position);
480d3dd2 1616 reg_position -= mips_saved_regsize (tdep);
c906108c
SS
1617 }
1618 }
1619 }
1620
e0f7ec59
AC
1621 /* Fill in the offsets for the registers which float_mask says were
1622 saved. */
1623 {
1624 CORE_ADDR reg_position = (get_frame_base (fci)
1625 + PROC_FREG_OFFSET (proc_desc));
6acdf5c7 1626
e0f7ec59
AC
1627 /* Fill in the offsets for the float registers which float_mask
1628 says were saved. */
1629 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1630 if (float_mask & 0x80000000)
1631 {
480d3dd2
AC
1632 if (mips_saved_regsize (tdep) == 4
1633 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c57bb9fa
AC
1634 {
1635 /* On a big endian 32 bit ABI, floating point registers
1636 are paired to form doubles such that the most
1637 significant part is in $f[N+1] and the least
1638 significant in $f[N] vis: $f[N+1] ||| $f[N]. The
1639 registers are also spilled as a pair and stored as a
1640 double.
1641
1642 When little-endian the least significant part is
1643 stored first leading to the memory order $f[N] and
1644 then $f[N+1].
1645
ce2826aa 1646 Unfortunately, when big-endian the most significant
c57bb9fa
AC
1647 part of the double is stored first, and the least
1648 significant is stored second. This leads to the
1649 registers being ordered in memory as firt $f[N+1] and
1650 then $f[N].
1651
1652 For the big-endian case make certain that the
1653 addresses point at the correct (swapped) locations
1654 $f[N] and $f[N+1] pair (keep in mind that
1655 reg_position is decremented each time through the
1656 loop). */
1657 if ((ireg & 1))
56cea623 1658 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg,
480d3dd2 1659 reg_position - mips_saved_regsize (tdep));
c57bb9fa 1660 else
56cea623 1661 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg,
480d3dd2 1662 reg_position + mips_saved_regsize (tdep));
c57bb9fa
AC
1663 }
1664 else
56cea623 1665 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg, reg_position);
480d3dd2 1666 reg_position -= mips_saved_regsize (tdep);
e0f7ec59 1667 }
c906108c 1668
e0f7ec59
AC
1669 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1670 }
d28e01f4 1671
e0f7ec59
AC
1672 /* SP_REGNUM, contains the value and not the address. */
1673 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
d28e01f4
KB
1674}
1675
c906108c 1676static CORE_ADDR
acdb74a0 1677read_next_frame_reg (struct frame_info *fi, int regno)
c906108c 1678{
a4b8ebc8
AC
1679 /* Always a pseudo. */
1680 gdb_assert (regno >= NUM_REGS);
f796e4be 1681 if (fi == NULL)
c906108c 1682 {
a4b8ebc8
AC
1683 LONGEST val;
1684 regcache_cooked_read_signed (current_regcache, regno, &val);
1685 return val;
f796e4be 1686 }
a4b8ebc8
AC
1687 else if ((regno % NUM_REGS) == SP_REGNUM)
1688 /* The SP_REGNUM is special, its value is stored in saved_regs.
1689 In fact, it is so special that it can even only be fetched
1690 using a raw register number! Once this code as been converted
1691 to frame-unwind the problem goes away. */
1692 return frame_unwind_register_signed (fi, regno % NUM_REGS);
f796e4be 1693 else
a4b8ebc8 1694 return frame_unwind_register_signed (fi, regno);
64159455 1695
c906108c
SS
1696}
1697
1698/* mips_addr_bits_remove - remove useless address bits */
1699
875e1767 1700static CORE_ADDR
acdb74a0 1701mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1702{
480d3dd2
AC
1703 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1704 if (mips_mask_address_p (tdep)
8fa9cfa1
AC
1705 && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
1706 /* This hack is a work-around for existing boards using PMON, the
1707 simulator, and any other 64-bit targets that doesn't have true
1708 64-bit addressing. On these targets, the upper 32 bits of
1709 addresses are ignored by the hardware. Thus, the PC or SP are
1710 likely to have been sign extended to all 1s by instruction
1711 sequences that load 32-bit addresses. For example, a typical
1712 piece of code that loads an address is this:
1713
1714 lui $r2, <upper 16 bits>
1715 ori $r2, <lower 16 bits>
1716
1717 But the lui sign-extends the value such that the upper 32 bits
1718 may be all 1s. The workaround is simply to mask off these
1719 bits. In the future, gcc may be changed to support true 64-bit
1720 addressing, and this masking will have to be disabled. */
1721 return addr &= 0xffffffffUL;
1722 else
1723 return addr;
c906108c
SS
1724}
1725
9022177c
DJ
1726/* mips_software_single_step() is called just before we want to resume
1727 the inferior, if we want to single-step it but there is no hardware
75c9abc6 1728 or kernel single-step support (MIPS on GNU/Linux for example). We find
9022177c
DJ
1729 the target of the coming instruction and breakpoint it.
1730
1731 single_step is also called just after the inferior stops. If we had
1732 set up a simulated single-step, we undo our damage. */
1733
1734void
1735mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1736{
1737 static CORE_ADDR next_pc;
1738 typedef char binsn_quantum[BREAKPOINT_MAX];
1739 static binsn_quantum break_mem;
1740 CORE_ADDR pc;
1741
1742 if (insert_breakpoints_p)
1743 {
1744 pc = read_register (PC_REGNUM);
1745 next_pc = mips_next_pc (pc);
1746
1747 target_insert_breakpoint (next_pc, break_mem);
1748 }
1749 else
1750 target_remove_breakpoint (next_pc, break_mem);
1751}
1752
97f46953 1753static CORE_ADDR
acdb74a0 1754mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1755{
1756 CORE_ADDR pc, tmp;
1757
11c02a10 1758 pc = ((fromleaf)
6913c89a 1759 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
11c02a10 1760 : get_next_frame (prev)
8bedc050 1761 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
11c02a10 1762 : read_pc ());
5a89d8aa 1763 tmp = SKIP_TRAMPOLINE_CODE (pc);
97f46953 1764 return tmp ? tmp : pc;
c906108c
SS
1765}
1766
1767
f7ab6ec6 1768static CORE_ADDR
acdb74a0 1769mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1770{
1771 CORE_ADDR saved_pc;
480d3dd2 1772 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1773
50abf9e5 1774 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778 1775 {
a4b8ebc8 1776 /* Always unwind the cooked PC register value. */
dd3ecc14 1777 saved_pc = frame_unwind_register_signed (frame, NUM_REGS + PC_REGNUM);
cedea778 1778 }
c906108c 1779 else
a4b8ebc8
AC
1780 {
1781 mips_extra_func_info_t proc_desc
1782 = get_frame_extra_info (frame)->proc_desc;
1783 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
480d3dd2
AC
1784 saved_pc = read_memory_integer ((get_frame_base (frame)
1785 - mips_saved_regsize (tdep))
1786 , mips_saved_regsize (tdep));
a4b8ebc8
AC
1787 else
1788 {
1789 /* We have to get the saved pc from the sigcontext if it is
1790 a signal handler frame. */
1791 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME ? PC_REGNUM
1792 : proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1793 saved_pc = read_next_frame_reg (frame, NUM_REGS + pcreg);
1794 }
1795 }
c906108c
SS
1796 return ADDR_BITS_REMOVE (saved_pc);
1797}
1798
1799static struct mips_extra_func_info temp_proc_desc;
fe29b929
KB
1800
1801/* This hack will go away once the get_prev_frame() code has been
1802 modified to set the frame's type first. That is BEFORE init extra
1803 frame info et.al. is called. This is because it will become
1804 possible to skip the init extra info call for sigtramp and dummy
1805 frames. */
1806static CORE_ADDR *temp_saved_regs;
c906108c 1807
e0f7ec59
AC
1808/* Set a register's saved stack address in temp_saved_regs. If an
1809 address has already been set for this register, do nothing; this
1810 way we will only recognize the first save of a given register in a
a4b8ebc8
AC
1811 function prologue.
1812
1813 For simplicity, save the address in both [0 .. NUM_REGS) and
1814 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1815 is used as it is only second range (the ABI instead of ISA
1816 registers) that comes into play when finding saved registers in a
1817 frame. */
c906108c
SS
1818
1819static void
e0f7ec59 1820set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
c906108c 1821{
e0f7ec59 1822 if (saved_regs[regno] == 0)
a4b8ebc8
AC
1823 {
1824 saved_regs[regno + 0 * NUM_REGS] = offset;
1825 saved_regs[regno + 1 * NUM_REGS] = offset;
1826 }
c906108c
SS
1827}
1828
1829
1830/* Test whether the PC points to the return instruction at the
1831 end of a function. */
1832
c5aa993b 1833static int
acdb74a0 1834mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1835{
1836 if (pc_is_mips16 (pc))
1837 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1838 generates a "jr $ra"; other times it generates code to load
1839 the return address from the stack to an accessible register (such
1840 as $a3), then a "jr" using that register. This second case
1841 is almost impossible to distinguish from an indirect jump
1842 used for switch statements, so we don't even try. */
1843 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1844 else
1845 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1846}
1847
1848
1849/* This fencepost looks highly suspicious to me. Removing it also
1850 seems suspicious as it could affect remote debugging across serial
1851 lines. */
1852
1853static CORE_ADDR
acdb74a0 1854heuristic_proc_start (CORE_ADDR pc)
c906108c 1855{
c5aa993b
JM
1856 CORE_ADDR start_pc;
1857 CORE_ADDR fence;
1858 int instlen;
1859 int seen_adjsp = 0;
c906108c 1860
c5aa993b
JM
1861 pc = ADDR_BITS_REMOVE (pc);
1862 start_pc = pc;
1863 fence = start_pc - heuristic_fence_post;
1864 if (start_pc == 0)
1865 return 0;
c906108c 1866
c5aa993b
JM
1867 if (heuristic_fence_post == UINT_MAX
1868 || fence < VM_MIN_ADDRESS)
1869 fence = VM_MIN_ADDRESS;
c906108c 1870
c5aa993b 1871 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1872
c5aa993b
JM
1873 /* search back for previous return */
1874 for (start_pc -= instlen;; start_pc -= instlen)
1875 if (start_pc < fence)
1876 {
1877 /* It's not clear to me why we reach this point when
c0236d92 1878 stop_soon, but with this test, at least we
c5aa993b
JM
1879 don't print out warnings for every child forked (eg, on
1880 decstation). 22apr93 rich@cygnus.com. */
c0236d92 1881 if (stop_soon == NO_STOP_QUIETLY)
c906108c 1882 {
c5aa993b
JM
1883 static int blurb_printed = 0;
1884
1885 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1886 paddr_nz (pc));
1887
1888 if (!blurb_printed)
c906108c 1889 {
c5aa993b
JM
1890 /* This actually happens frequently in embedded
1891 development, when you first connect to a board
1892 and your stack pointer and pc are nowhere in
1893 particular. This message needs to give people
1894 in that situation enough information to
1895 determine that it's no big deal. */
1896 printf_filtered ("\n\
cd0fc7c3
SS
1897 GDB is unable to find the start of the function at 0x%s\n\
1898and thus can't determine the size of that function's stack frame.\n\
1899This means that GDB may be unable to access that stack frame, or\n\
1900the frames below it.\n\
1901 This problem is most likely caused by an invalid program counter or\n\
1902stack pointer.\n\
1903 However, if you think GDB should simply search farther back\n\
1904from 0x%s for code which looks like the beginning of a\n\
1905function, you can increase the range of the search using the `set\n\
1906heuristic-fence-post' command.\n",
c5aa993b
JM
1907 paddr_nz (pc), paddr_nz (pc));
1908 blurb_printed = 1;
c906108c 1909 }
c906108c
SS
1910 }
1911
c5aa993b
JM
1912 return 0;
1913 }
1914 else if (pc_is_mips16 (start_pc))
1915 {
1916 unsigned short inst;
1917
1918 /* On MIPS16, any one of the following is likely to be the
1919 start of a function:
1920 entry
1921 addiu sp,-n
1922 daddiu sp,-n
1923 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1924 inst = mips_fetch_instruction (start_pc);
1925 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1926 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1927 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1928 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1929 break;
1930 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1931 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1932 seen_adjsp = 1;
1933 else
1934 seen_adjsp = 0;
1935 }
1936 else if (mips_about_to_return (start_pc))
1937 {
1938 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1939 break;
1940 }
1941
c5aa993b 1942 return start_pc;
c906108c
SS
1943}
1944
1945/* Fetch the immediate value from a MIPS16 instruction.
1946 If the previous instruction was an EXTEND, use it to extend
1947 the upper bits of the immediate value. This is a helper function
1948 for mips16_heuristic_proc_desc. */
1949
1950static int
acdb74a0
AC
1951mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1952 unsigned short inst, /* current instruction */
1953 int nbits, /* number of bits in imm field */
1954 int scale, /* scale factor to be applied to imm */
1955 int is_signed) /* is the imm field signed? */
c906108c
SS
1956{
1957 int offset;
1958
1959 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1960 {
1961 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1962 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1963 offset = 0 - (0x10000 - (offset & 0xffff));
1964 return offset | (inst & 0x1f);
1965 }
1966 else
1967 {
1968 int max_imm = 1 << nbits;
1969 int mask = max_imm - 1;
1970 int sign_bit = max_imm >> 1;
1971
1972 offset = inst & mask;
1973 if (is_signed && (offset & sign_bit))
1974 offset = 0 - (max_imm - offset);
1975 return offset * scale;
1976 }
1977}
1978
1979
1980/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1981 stream from start_pc to limit_pc. */
1982
1983static void
acdb74a0
AC
1984mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1985 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1986{
1987 CORE_ADDR cur_pc;
1988 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1989 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1990 unsigned inst = 0; /* current instruction */
1991 unsigned entry_inst = 0; /* the entry instruction */
1992 int reg, offset;
480d3dd2 1993 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1994
c5aa993b
JM
1995 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1996 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1997
1998 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1999 {
2000 /* Save the previous instruction. If it's an EXTEND, we'll extract
2001 the immediate offset extension from it in mips16_get_imm. */
2002 prev_inst = inst;
2003
2004 /* Fetch and decode the instruction. */
2005 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 2006 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
2007 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2008 {
2009 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
2010 if (offset < 0) /* negative stack adjustment? */
2011 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
2012 else
2013 /* Exit loop if a positive stack adjustment is found, which
2014 usually means that the stack cleanup code in the function
2015 epilogue is reached. */
2016 break;
2017 }
2018 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2019 {
2020 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2021 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 2022 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
e0f7ec59 2023 set_reg_offset (temp_saved_regs, reg, sp + offset);
c906108c
SS
2024 }
2025 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2026 {
2027 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2028 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2029 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
e0f7ec59 2030 set_reg_offset (temp_saved_regs, reg, sp + offset);
c906108c
SS
2031 }
2032 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2033 {
2034 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 2035 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
e0f7ec59 2036 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c906108c
SS
2037 }
2038 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2039 {
2040 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 2041 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
e0f7ec59 2042 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c906108c 2043 }
c5aa993b 2044 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
2045 {
2046 frame_addr = sp;
2047 PROC_FRAME_REG (&temp_proc_desc) = 17;
2048 }
2049 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2050 {
2051 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2052 frame_addr = sp + offset;
2053 PROC_FRAME_REG (&temp_proc_desc) = 17;
2054 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2055 }
2056 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2057 {
2058 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2059 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2060 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2061 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
c906108c
SS
2062 }
2063 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2064 {
2065 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2066 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2067 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2068 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
c906108c 2069 }
c5aa993b
JM
2070 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2071 entry_inst = inst; /* save for later processing */
c906108c 2072 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 2073 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
2074 }
2075
c5aa993b
JM
2076 /* The entry instruction is typically the first instruction in a function,
2077 and it stores registers at offsets relative to the value of the old SP
2078 (before the prologue). But the value of the sp parameter to this
2079 function is the new SP (after the prologue has been executed). So we
2080 can't calculate those offsets until we've seen the entire prologue,
2081 and can calculate what the old SP must have been. */
2082 if (entry_inst != 0)
2083 {
2084 int areg_count = (entry_inst >> 8) & 7;
2085 int sreg_count = (entry_inst >> 6) & 3;
c906108c 2086
c5aa993b
JM
2087 /* The entry instruction always subtracts 32 from the SP. */
2088 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 2089
c5aa993b
JM
2090 /* Now we can calculate what the SP must have been at the
2091 start of the function prologue. */
2092 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 2093
c5aa993b
JM
2094 /* Check if a0-a3 were saved in the caller's argument save area. */
2095 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2096 {
2097 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2098 set_reg_offset (temp_saved_regs, reg, sp + offset);
480d3dd2 2099 offset += mips_saved_regsize (tdep);
c5aa993b 2100 }
c906108c 2101
c5aa993b
JM
2102 /* Check if the ra register was pushed on the stack. */
2103 offset = -4;
2104 if (entry_inst & 0x20)
2105 {
2106 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
e0f7ec59 2107 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
480d3dd2 2108 offset -= mips_saved_regsize (tdep);
c5aa993b 2109 }
c906108c 2110
c5aa993b
JM
2111 /* Check if the s0 and s1 registers were pushed on the stack. */
2112 for (reg = 16; reg < sreg_count + 16; reg++)
2113 {
2114 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2115 set_reg_offset (temp_saved_regs, reg, sp + offset);
480d3dd2 2116 offset -= mips_saved_regsize (tdep);
c5aa993b
JM
2117 }
2118 }
c906108c
SS
2119}
2120
2121static void
fba45db2
KB
2122mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2123 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
2124{
2125 CORE_ADDR cur_pc;
c5aa993b 2126 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 2127restart:
fe29b929 2128 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
cce74817 2129 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 2130 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
2131 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2132 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2133 {
2134 unsigned long inst, high_word, low_word;
2135 int reg;
2136
2137 /* Fetch the instruction. */
2138 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2139
2140 /* Save some code by pre-extracting some useful fields. */
2141 high_word = (inst >> 16) & 0xffff;
2142 low_word = inst & 0xffff;
2143 reg = high_word & 0x1f;
2144
c5aa993b 2145 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
2146 || high_word == 0x23bd /* addi $sp,$sp,-i */
2147 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2148 {
2149 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 2150 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
2151 else
2152 /* Exit loop if a positive stack adjustment is found, which
2153 usually means that the stack cleanup code in the function
2154 epilogue is reached. */
2155 break;
2156 }
2157 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2158 {
c5aa993b 2159 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2160 set_reg_offset (temp_saved_regs, reg, sp + low_word);
c906108c
SS
2161 }
2162 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2163 {
2164 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2165 but the register size used is only 32 bits. Make the address
2166 for the saved register point to the lower 32 bits. */
c5aa993b 2167 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
4246e332 2168 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - mips_regsize (current_gdbarch));
c906108c 2169 }
c5aa993b 2170 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
2171 {
2172 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
2173 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2174 frame_addr = sp + low_word;
c906108c
SS
2175 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2176 {
2177 unsigned alloca_adjust;
2178 PROC_FRAME_REG (&temp_proc_desc) = 30;
a4b8ebc8 2179 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
c5aa993b 2180 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
2181 if (alloca_adjust > 0)
2182 {
2183 /* FP > SP + frame_size. This may be because
2184 * of an alloca or somethings similar.
2185 * Fix sp to "pre-alloca" value, and try again.
2186 */
2187 sp += alloca_adjust;
2188 goto restart;
2189 }
2190 }
2191 }
c5aa993b
JM
2192 /* move $30,$sp. With different versions of gas this will be either
2193 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2194 Accept any one of these. */
c906108c
SS
2195 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2196 {
2197 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2198 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2199 {
2200 unsigned alloca_adjust;
2201 PROC_FRAME_REG (&temp_proc_desc) = 30;
a4b8ebc8 2202 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
c5aa993b 2203 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
2204 if (alloca_adjust > 0)
2205 {
2206 /* FP > SP + frame_size. This may be because
2207 * of an alloca or somethings similar.
2208 * Fix sp to "pre-alloca" value, and try again.
2209 */
2210 sp += alloca_adjust;
2211 goto restart;
2212 }
2213 }
2214 }
c5aa993b 2215 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 2216 {
c5aa993b 2217 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2218 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
c906108c
SS
2219 }
2220 }
2221}
2222
2223static mips_extra_func_info_t
acdb74a0 2224heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
479412cd 2225 struct frame_info *next_frame, int cur_frame)
c906108c 2226{
479412cd
DJ
2227 CORE_ADDR sp;
2228
2229 if (cur_frame)
a4b8ebc8 2230 sp = read_next_frame_reg (next_frame, NUM_REGS + SP_REGNUM);
479412cd
DJ
2231 else
2232 sp = 0;
c906108c 2233
c5aa993b
JM
2234 if (start_pc == 0)
2235 return NULL;
2236 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
fe29b929 2237 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
3758ac48 2238 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2239 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2240 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2241 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2242
2243 if (start_pc + 200 < limit_pc)
2244 limit_pc = start_pc + 200;
2245 if (pc_is_mips16 (start_pc))
2246 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2247 else
2248 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2249 return &temp_proc_desc;
2250}
2251
6c0d6680
DJ
2252struct mips_objfile_private
2253{
2254 bfd_size_type size;
2255 char *contents;
2256};
2257
2258/* Global used to communicate between non_heuristic_proc_desc and
2259 compare_pdr_entries within qsort (). */
2260static bfd *the_bfd;
2261
2262static int
2263compare_pdr_entries (const void *a, const void *b)
2264{
2265 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2266 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2267
2268 if (lhs < rhs)
2269 return -1;
2270 else if (lhs == rhs)
2271 return 0;
2272 else
2273 return 1;
2274}
2275
c906108c 2276static mips_extra_func_info_t
acdb74a0 2277non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
2278{
2279 CORE_ADDR startaddr;
2280 mips_extra_func_info_t proc_desc;
c5aa993b 2281 struct block *b = block_for_pc (pc);
c906108c 2282 struct symbol *sym;
6c0d6680
DJ
2283 struct obj_section *sec;
2284 struct mips_objfile_private *priv;
2285
ae45cd16 2286 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
6c0d6680 2287 return NULL;
c906108c
SS
2288
2289 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2290 if (addrptr)
2291 *addrptr = startaddr;
6c0d6680
DJ
2292
2293 priv = NULL;
2294
2295 sec = find_pc_section (pc);
2296 if (sec != NULL)
c906108c 2297 {
6c0d6680
DJ
2298 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2299
2300 /* Search the ".pdr" section generated by GAS. This includes most of
2301 the information normally found in ECOFF PDRs. */
2302
2303 the_bfd = sec->objfile->obfd;
2304 if (priv == NULL
2305 && (the_bfd->format == bfd_object
2306 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2307 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2308 {
2309 /* Right now GAS only outputs the address as a four-byte sequence.
2310 This means that we should not bother with this method on 64-bit
2311 targets (until that is fixed). */
2312
2313 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2314 sizeof (struct mips_objfile_private));
2315 priv->size = 0;
2316 sec->objfile->obj_private = priv;
2317 }
2318 else if (priv == NULL)
2319 {
2320 asection *bfdsec;
2321
2322 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2323 sizeof (struct mips_objfile_private));
2324
2325 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2326 if (bfdsec != NULL)
2327 {
2328 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2329 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2330 priv->size);
2331 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2332 priv->contents, 0, priv->size);
2333
2334 /* In general, the .pdr section is sorted. However, in the
2335 presence of multiple code sections (and other corner cases)
2336 it can become unsorted. Sort it so that we can use a faster
2337 binary search. */
2338 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2339 }
2340 else
2341 priv->size = 0;
2342
2343 sec->objfile->obj_private = priv;
2344 }
2345 the_bfd = NULL;
2346
2347 if (priv->size != 0)
2348 {
2349 int low, mid, high;
2350 char *ptr;
2351
2352 low = 0;
2353 high = priv->size / 32;
2354
2355 do
2356 {
2357 CORE_ADDR pdr_pc;
2358
2359 mid = (low + high) / 2;
2360
2361 ptr = priv->contents + mid * 32;
2362 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2363 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2364 SECT_OFF_TEXT (sec->objfile));
2365 if (pdr_pc == startaddr)
2366 break;
2367 if (pdr_pc > startaddr)
2368 high = mid;
2369 else
2370 low = mid + 1;
2371 }
2372 while (low != high);
2373
2374 if (low != high)
2375 {
2376 struct symbol *sym = find_pc_function (pc);
2377
2378 /* Fill in what we need of the proc_desc. */
2379 proc_desc = (mips_extra_func_info_t)
2380 obstack_alloc (&sec->objfile->psymbol_obstack,
2381 sizeof (struct mips_extra_func_info));
2382 PROC_LOW_ADDR (proc_desc) = startaddr;
2383
2384 /* Only used for dummy frames. */
2385 PROC_HIGH_ADDR (proc_desc) = 0;
2386
2387 PROC_FRAME_OFFSET (proc_desc)
2388 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2389 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2390 ptr + 24);
2391 PROC_FRAME_ADJUST (proc_desc) = 0;
2392 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2393 ptr + 4);
2394 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2395 ptr + 12);
2396 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2397 ptr + 8);
2398 PROC_FREG_OFFSET (proc_desc)
2399 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2400 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2401 ptr + 28);
2402 proc_desc->pdr.isym = (long) sym;
2403
2404 return proc_desc;
2405 }
2406 }
c906108c
SS
2407 }
2408
6c0d6680
DJ
2409 if (b == NULL)
2410 return NULL;
2411
2412 if (startaddr > BLOCK_START (b))
2413 {
2414 /* This is the "pathological" case referred to in a comment in
2415 print_frame_info. It might be better to move this check into
2416 symbol reading. */
2417 return NULL;
2418 }
2419
176620f1 2420 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
6c0d6680 2421
c906108c
SS
2422 /* If we never found a PDR for this function in symbol reading, then
2423 examine prologues to find the information. */
2424 if (sym)
2425 {
2426 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2427 if (PROC_FRAME_REG (proc_desc) == -1)
2428 return NULL;
2429 else
2430 return proc_desc;
2431 }
2432 else
2433 return NULL;
2434}
2435
2436
2437static mips_extra_func_info_t
479412cd 2438find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
c906108c
SS
2439{
2440 mips_extra_func_info_t proc_desc;
4e0df2df 2441 CORE_ADDR startaddr = 0;
c906108c
SS
2442
2443 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2444
2445 if (proc_desc)
2446 {
2447 /* IF this is the topmost frame AND
2448 * (this proc does not have debugging information OR
2449 * the PC is in the procedure prologue)
2450 * THEN create a "heuristic" proc_desc (by analyzing
2451 * the actual code) to replace the "official" proc_desc.
2452 */
2453 if (next_frame == NULL)
2454 {
2455 struct symtab_and_line val;
2456 struct symbol *proc_symbol =
c86b5b38 2457 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
2458
2459 if (proc_symbol)
2460 {
2461 val = find_pc_line (BLOCK_START
c5aa993b 2462 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
2463 0);
2464 val.pc = val.end ? val.end : pc;
2465 }
2466 if (!proc_symbol || pc < val.pc)
2467 {
2468 mips_extra_func_info_t found_heuristic =
c86b5b38
MS
2469 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2470 pc, next_frame, cur_frame);
c906108c
SS
2471 if (found_heuristic)
2472 proc_desc = found_heuristic;
2473 }
2474 }
2475 }
2476 else
2477 {
2478 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
2479 by procedure call dummys. However, the procedures being called ought
2480 to have their own proc_descs, and even if they don't,
2481 heuristic_proc_desc knows how to create them! */
c906108c 2482
aa1ee363 2483 struct linked_proc_info *link;
c906108c
SS
2484
2485 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
2486 if (PROC_LOW_ADDR (&link->info) <= pc
2487 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
2488 return &link->info;
2489
2490 if (startaddr == 0)
2491 startaddr = heuristic_proc_start (pc);
2492
2493 proc_desc =
479412cd 2494 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
c906108c
SS
2495 }
2496 return proc_desc;
2497}
2498
2499static CORE_ADDR
acdb74a0
AC
2500get_frame_pointer (struct frame_info *frame,
2501 mips_extra_func_info_t proc_desc)
c906108c 2502{
a4b8ebc8 2503 return (read_next_frame_reg (frame, NUM_REGS + PROC_FRAME_REG (proc_desc))
e227b13c
AC
2504 + PROC_FRAME_OFFSET (proc_desc)
2505 - PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
2506}
2507
5a89d8aa 2508static mips_extra_func_info_t cached_proc_desc;
c906108c 2509
f7ab6ec6 2510static CORE_ADDR
acdb74a0 2511mips_frame_chain (struct frame_info *frame)
c906108c
SS
2512{
2513 mips_extra_func_info_t proc_desc;
2514 CORE_ADDR tmp;
8bedc050 2515 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
c906108c 2516
c906108c
SS
2517 /* Check if the PC is inside a call stub. If it is, fetch the
2518 PC of the caller of that stub. */
5a89d8aa 2519 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
c906108c
SS
2520 saved_pc = tmp;
2521
ae45cd16 2522 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
cedea778
AC
2523 {
2524 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2525 is well, frame->frame the bottom of the current frame will
2526 contain that value. */
1e2330ba 2527 return get_frame_base (frame);
cedea778
AC
2528 }
2529
c906108c 2530 /* Look up the procedure descriptor for this PC. */
479412cd 2531 proc_desc = find_proc_desc (saved_pc, frame, 1);
c906108c
SS
2532 if (!proc_desc)
2533 return 0;
2534
2535 cached_proc_desc = proc_desc;
2536
2537 /* If no frame pointer and frame size is zero, we must be at end
2538 of stack (or otherwise hosed). If we don't check frame size,
2539 we loop forever if we see a zero size frame. */
2540 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2541 && PROC_FRAME_OFFSET (proc_desc) == 0
7807aa61
MS
2542 /* The previous frame from a sigtramp frame might be frameless
2543 and have frame size zero. */
5a203e44 2544 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
cedea778
AC
2545 /* For a generic dummy frame, let get_frame_pointer() unwind a
2546 register value saved as part of the dummy frame call. */
50abf9e5 2547 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
c906108c
SS
2548 return 0;
2549 else
2550 return get_frame_pointer (frame, proc_desc);
2551}
2552
f7ab6ec6 2553static void
acdb74a0 2554mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2555{
2556 int regnum;
f2c16bd6
KB
2557 mips_extra_func_info_t proc_desc;
2558
2559 if (get_frame_type (fci) == DUMMY_FRAME)
2560 return;
c906108c 2561
f796e4be
KB
2562 /* Use proc_desc calculated in frame_chain. When there is no
2563 next frame, i.e, get_next_frame (fci) == NULL, we call
2564 find_proc_desc () to calculate it, passing an explicit
2565 NULL as the frame parameter. */
f2c16bd6 2566 proc_desc =
11c02a10
AC
2567 get_next_frame (fci)
2568 ? cached_proc_desc
f796e4be
KB
2569 : find_proc_desc (get_frame_pc (fci),
2570 NULL /* i.e, get_next_frame (fci) */,
2571 1);
c906108c 2572
a00a19e9 2573 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
cce74817 2574
da50a4b7 2575 get_frame_extra_info (fci)->proc_desc =
c906108c
SS
2576 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2577 if (proc_desc)
2578 {
2579 /* Fixup frame-pointer - only needed for top frame */
2580 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2581 Get the value of the frame relative sp, procedure might have been
2582 interrupted by a signal at it's very start. */
50abf9e5 2583 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
c906108c 2584 && !PROC_DESC_IS_DUMMY (proc_desc))
a4b8ebc8 2585 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), NUM_REGS + SP_REGNUM));
50abf9e5 2586 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
cedea778
AC
2587 /* Do not ``fix'' fci->frame. It will have the value of the
2588 generic dummy frame's top-of-stack (since the draft
2589 fci->frame is obtained by returning the unwound stack
2590 pointer) and that is what we want. That way the fci->frame
2591 value will match the top-of-stack value that was saved as
2592 part of the dummy frames data. */
2593 /* Do nothing. */;
c906108c 2594 else
11c02a10 2595 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
c906108c
SS
2596
2597 if (proc_desc == &temp_proc_desc)
2598 {
2599 char *name;
2600
2601 /* Do not set the saved registers for a sigtramp frame,
5a203e44
AC
2602 mips_find_saved_registers will do that for us. We can't
2603 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2604 yet set. */
2605 /* FIXME: cagney/2002-11-18: This problem will go away once
2606 frame.c:get_prev_frame() is modified to set the frame's
2607 type before calling functions like this. */
50abf9e5 2608 find_pc_partial_function (get_frame_pc (fci), &name,
c5aa993b 2609 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
50abf9e5 2610 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
c906108c 2611 {
c5aa993b 2612 frame_saved_regs_zalloc (fci);
e0f7ec59
AC
2613 /* Set value of previous frame's stack pointer.
2614 Remember that saved_regs[SP_REGNUM] is special in
2615 that it contains the value of the stack pointer
2616 register. The other saved_regs values are addresses
2617 (in the inferior) at which a given register's value
2618 may be found. */
2619 set_reg_offset (temp_saved_regs, SP_REGNUM,
2620 get_frame_base (fci));
2621 set_reg_offset (temp_saved_regs, PC_REGNUM,
2622 temp_saved_regs[RA_REGNUM]);
1b1d3794 2623 memcpy (deprecated_get_frame_saved_regs (fci), temp_saved_regs,
e0f7ec59 2624 SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2625 }
2626 }
2627
2628 /* hack: if argument regs are saved, guess these contain args */
cce74817 2629 /* assume we can't tell how many args for now */
da50a4b7 2630 get_frame_extra_info (fci)->num_args = -1;
c906108c
SS
2631 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2632 {
c5aa993b 2633 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2634 {
da50a4b7 2635 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2636 break;
2637 }
c5aa993b 2638 }
c906108c
SS
2639 }
2640}
2641
2642/* MIPS stack frames are almost impenetrable. When execution stops,
2643 we basically have to look at symbol information for the function
2644 that we stopped in, which tells us *which* register (if any) is
2645 the base of the frame pointer, and what offset from that register
361d1df0 2646 the frame itself is at.
c906108c
SS
2647
2648 This presents a problem when trying to examine a stack in memory
2649 (that isn't executing at the moment), using the "frame" command. We
2650 don't have a PC, nor do we have any registers except SP.
2651
2652 This routine takes two arguments, SP and PC, and tries to make the
2653 cached frames look as if these two arguments defined a frame on the
2654 cache. This allows the rest of info frame to extract the important
2655 arguments without difficulty. */
2656
2657struct frame_info *
acdb74a0 2658setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2659{
2660 if (argc != 2)
2661 error ("MIPS frame specifications require two arguments: sp and pc");
2662
2663 return create_new_frame (argv[0], argv[1]);
2664}
2665
f09ded24
AC
2666/* According to the current ABI, should the type be passed in a
2667 floating-point register (assuming that there is space)? When there
2668 is no FPU, FP are not even considered as possibile candidates for
2669 FP registers and, consequently this returns false - forces FP
2670 arguments into integer registers. */
2671
2672static int
2673fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2674{
2675 return ((typecode == TYPE_CODE_FLT
2676 || (MIPS_EABI
2677 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2678 && TYPE_NFIELDS (arg_type) == 1
2679 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2680 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2681}
2682
49e790b0
DJ
2683/* On o32, argument passing in GPRs depends on the alignment of the type being
2684 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2685
2686static int
2687mips_type_needs_double_align (struct type *type)
2688{
2689 enum type_code typecode = TYPE_CODE (type);
361d1df0 2690
49e790b0
DJ
2691 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2692 return 1;
2693 else if (typecode == TYPE_CODE_STRUCT)
2694 {
2695 if (TYPE_NFIELDS (type) < 1)
2696 return 0;
2697 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2698 }
2699 else if (typecode == TYPE_CODE_UNION)
2700 {
361d1df0 2701 int i, n;
49e790b0
DJ
2702
2703 n = TYPE_NFIELDS (type);
2704 for (i = 0; i < n; i++)
2705 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2706 return 1;
2707 return 0;
2708 }
2709 return 0;
2710}
2711
dc604539
AC
2712/* Adjust the address downward (direction of stack growth) so that it
2713 is correctly aligned for a new stack frame. */
2714static CORE_ADDR
2715mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2716{
5b03f266 2717 return align_down (addr, 16);
dc604539
AC
2718}
2719
f7ab6ec6 2720static CORE_ADDR
25ab4790
AC
2721mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2722 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2723 struct value **args, CORE_ADDR sp, int struct_return,
2724 CORE_ADDR struct_addr)
c906108c
SS
2725{
2726 int argreg;
2727 int float_argreg;
2728 int argnum;
2729 int len = 0;
2730 int stack_offset = 0;
480d3dd2 2731 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c906108c 2732
25ab4790
AC
2733 /* For shared libraries, "t9" needs to point at the function
2734 address. */
2735 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2736
2737 /* Set the return address register to point to the entry point of
2738 the program, where a breakpoint lies in wait. */
2739 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2740
c906108c 2741 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2742 are properly aligned. The stack has to be at least 64-bit
2743 aligned even on 32-bit machines, because doubles must be 64-bit
2744 aligned. For n32 and n64, stack frames need to be 128-bit
2745 aligned, so we round to this widest known alignment. */
2746
5b03f266
AC
2747 sp = align_down (sp, 16);
2748 struct_addr = align_down (struct_addr, 16);
c5aa993b 2749
46e0f506 2750 /* Now make space on the stack for the args. We allocate more
c906108c 2751 than necessary for EABI, because the first few arguments are
46e0f506 2752 passed in registers, but that's OK. */
c906108c 2753 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 2754 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
480d3dd2 2755 mips_stack_argsize (tdep));
5b03f266 2756 sp -= align_up (len, 16);
c906108c 2757
9ace0497 2758 if (mips_debug)
46e0f506 2759 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2760 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2761 paddr_nz (sp), (long) align_up (len, 16));
9ace0497 2762
c906108c
SS
2763 /* Initialize the integer and float register pointers. */
2764 argreg = A0_REGNUM;
56cea623 2765 float_argreg = mips_fpa0_regnum (current_gdbarch);
c906108c 2766
46e0f506 2767 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2768 if (struct_return)
9ace0497
AC
2769 {
2770 if (mips_debug)
2771 fprintf_unfiltered (gdb_stdlog,
25ab4790 2772 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2773 argreg, paddr_nz (struct_addr));
9ace0497
AC
2774 write_register (argreg++, struct_addr);
2775 }
c906108c
SS
2776
2777 /* Now load as many as possible of the first arguments into
2778 registers, and push the rest onto the stack. Loop thru args
2779 from first to last. */
2780 for (argnum = 0; argnum < nargs; argnum++)
2781 {
2782 char *val;
d9d9c31f 2783 char valbuf[MAX_REGISTER_SIZE];
ea7c478f 2784 struct value *arg = args[argnum];
c906108c
SS
2785 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2786 int len = TYPE_LENGTH (arg_type);
2787 enum type_code typecode = TYPE_CODE (arg_type);
2788
9ace0497
AC
2789 if (mips_debug)
2790 fprintf_unfiltered (gdb_stdlog,
25ab4790 2791 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2792 argnum + 1, len, (int) typecode);
9ace0497 2793
c906108c 2794 /* The EABI passes structures that do not fit in a register by
46e0f506 2795 reference. */
480d3dd2 2796 if (len > mips_saved_regsize (tdep)
9ace0497 2797 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2798 {
480d3dd2
AC
2799 store_unsigned_integer (valbuf, mips_saved_regsize (tdep),
2800 VALUE_ADDRESS (arg));
c906108c 2801 typecode = TYPE_CODE_PTR;
480d3dd2 2802 len = mips_saved_regsize (tdep);
c906108c 2803 val = valbuf;
9ace0497
AC
2804 if (mips_debug)
2805 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2806 }
2807 else
c5aa993b 2808 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2809
2810 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2811 even-numbered floating point register. Round the FP register
2812 up before the check to see if there are any FP registers
46e0f506
MS
2813 left. Non MIPS_EABI targets also pass the FP in the integer
2814 registers so also round up normal registers. */
acdb74a0
AC
2815 if (!FP_REGISTER_DOUBLE
2816 && fp_register_arg_p (typecode, arg_type))
2817 {
2818 if ((float_argreg & 1))
2819 float_argreg++;
2820 }
c906108c
SS
2821
2822 /* Floating point arguments passed in registers have to be
2823 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2824 are passed in register pairs; the even register gets
2825 the low word, and the odd register gets the high word.
2826 On non-EABI processors, the first two floating point arguments are
2827 also copied to general registers, because MIPS16 functions
2828 don't use float registers for arguments. This duplication of
2829 arguments in general registers can't hurt non-MIPS16 functions
2830 because those registers are normally skipped. */
1012bd0e
EZ
2831 /* MIPS_EABI squeezes a struct that contains a single floating
2832 point value into an FP register instead of pushing it onto the
46e0f506 2833 stack. */
f09ded24
AC
2834 if (fp_register_arg_p (typecode, arg_type)
2835 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2836 {
2837 if (!FP_REGISTER_DOUBLE && len == 8)
2838 {
d7449b42 2839 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2840 unsigned long regval;
2841
2842 /* Write the low word of the double to the even register(s). */
c5aa993b 2843 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2844 if (mips_debug)
acdb74a0 2845 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2846 float_argreg, phex (regval, 4));
c906108c 2847 write_register (float_argreg++, regval);
c906108c
SS
2848
2849 /* Write the high word of the double to the odd register(s). */
c5aa993b 2850 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2851 if (mips_debug)
acdb74a0 2852 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2853 float_argreg, phex (regval, 4));
c906108c 2854 write_register (float_argreg++, regval);
c906108c
SS
2855 }
2856 else
2857 {
2858 /* This is a floating point value that fits entirely
2859 in a single register. */
53a5351d 2860 /* On 32 bit ABI's the float_argreg is further adjusted
46e0f506 2861 above to ensure that it is even register aligned. */
9ace0497
AC
2862 LONGEST regval = extract_unsigned_integer (val, len);
2863 if (mips_debug)
acdb74a0 2864 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2865 float_argreg, phex (regval, len));
c906108c 2866 write_register (float_argreg++, regval);
c906108c
SS
2867 }
2868 }
2869 else
2870 {
2871 /* Copy the argument to general registers or the stack in
2872 register-sized pieces. Large arguments are split between
2873 registers and stack. */
4246e332
AC
2874 /* Note: structs whose size is not a multiple of
2875 mips_regsize() are treated specially: Irix cc passes them
2876 in registers where gcc sometimes puts them on the stack.
2877 For maximum compatibility, we will put them in both
2878 places. */
480d3dd2
AC
2879 int odd_sized_struct = ((len > mips_saved_regsize (tdep))
2880 && (len % mips_saved_regsize (tdep) != 0));
46e0f506 2881
f09ded24 2882 /* Note: Floating-point values that didn't fit into an FP
46e0f506 2883 register are only written to memory. */
c906108c
SS
2884 while (len > 0)
2885 {
ebafbe83 2886 /* Remember if the argument was written to the stack. */
566f0f7a 2887 int stack_used_p = 0;
480d3dd2
AC
2888 int partial_len = (len < mips_saved_regsize (tdep)
2889 ? len : mips_saved_regsize (tdep));
c906108c 2890
acdb74a0
AC
2891 if (mips_debug)
2892 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2893 partial_len);
2894
566f0f7a 2895 /* Write this portion of the argument to the stack. */
f09ded24
AC
2896 if (argreg > MIPS_LAST_ARG_REGNUM
2897 || odd_sized_struct
2898 || fp_register_arg_p (typecode, arg_type))
c906108c 2899 {
c906108c
SS
2900 /* Should shorter than int integer values be
2901 promoted to int before being stored? */
c906108c 2902 int longword_offset = 0;
9ace0497 2903 CORE_ADDR addr;
566f0f7a 2904 stack_used_p = 1;
d7449b42 2905 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2906 {
480d3dd2
AC
2907 if (mips_stack_argsize (tdep) == 8
2908 && (typecode == TYPE_CODE_INT
2909 || typecode == TYPE_CODE_PTR
2910 || typecode == TYPE_CODE_FLT)
2911 && len <= 4)
2912 longword_offset = mips_stack_argsize (tdep) - len;
2913 else if ((typecode == TYPE_CODE_STRUCT
2914 || typecode == TYPE_CODE_UNION)
2915 && (TYPE_LENGTH (arg_type)
2916 < mips_stack_argsize (tdep)))
2917 longword_offset = mips_stack_argsize (tdep) - len;
7a292a7a 2918 }
c5aa993b 2919
9ace0497
AC
2920 if (mips_debug)
2921 {
cb3d25d1
MS
2922 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2923 paddr_nz (stack_offset));
2924 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2925 paddr_nz (longword_offset));
9ace0497 2926 }
361d1df0 2927
9ace0497
AC
2928 addr = sp + stack_offset + longword_offset;
2929
2930 if (mips_debug)
2931 {
2932 int i;
cb3d25d1
MS
2933 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2934 paddr_nz (addr));
9ace0497
AC
2935 for (i = 0; i < partial_len; i++)
2936 {
cb3d25d1
MS
2937 fprintf_unfiltered (gdb_stdlog, "%02x",
2938 val[i] & 0xff);
9ace0497
AC
2939 }
2940 }
2941 write_memory (addr, val, partial_len);
c906108c
SS
2942 }
2943
f09ded24
AC
2944 /* Note!!! This is NOT an else clause. Odd sized
2945 structs may go thru BOTH paths. Floating point
46e0f506 2946 arguments will not. */
566f0f7a 2947 /* Write this portion of the argument to a general
46e0f506 2948 purpose register. */
f09ded24
AC
2949 if (argreg <= MIPS_LAST_ARG_REGNUM
2950 && !fp_register_arg_p (typecode, arg_type))
c906108c 2951 {
9ace0497 2952 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c 2953
9ace0497 2954 if (mips_debug)
acdb74a0 2955 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 2956 argreg,
480d3dd2 2957 phex (regval, mips_saved_regsize (tdep)));
c906108c
SS
2958 write_register (argreg, regval);
2959 argreg++;
c906108c 2960 }
c5aa993b 2961
c906108c
SS
2962 len -= partial_len;
2963 val += partial_len;
2964
566f0f7a
AC
2965 /* Compute the the offset into the stack at which we
2966 will copy the next parameter.
2967
566f0f7a 2968 In the new EABI (and the NABI32), the stack_offset
46e0f506 2969 only needs to be adjusted when it has been used. */
c906108c 2970
46e0f506 2971 if (stack_used_p)
480d3dd2
AC
2972 stack_offset += align_up (partial_len,
2973 mips_stack_argsize (tdep));
c906108c
SS
2974 }
2975 }
9ace0497
AC
2976 if (mips_debug)
2977 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2978 }
2979
310e9b6a
AC
2980 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
2981
0f71a2f6
JM
2982 /* Return adjusted stack pointer. */
2983 return sp;
2984}
2985
25ab4790 2986/* N32/N64 version of push_dummy_call. */
ebafbe83 2987
f7ab6ec6 2988static CORE_ADDR
25ab4790
AC
2989mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2990 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2991 struct value **args, CORE_ADDR sp, int struct_return,
2992 CORE_ADDR struct_addr)
cb3d25d1
MS
2993{
2994 int argreg;
2995 int float_argreg;
2996 int argnum;
2997 int len = 0;
2998 int stack_offset = 0;
480d3dd2 2999 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cb3d25d1 3000
25ab4790
AC
3001 /* For shared libraries, "t9" needs to point at the function
3002 address. */
3003 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3004
3005 /* Set the return address register to point to the entry point of
3006 the program, where a breakpoint lies in wait. */
3007 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3008
cb3d25d1
MS
3009 /* First ensure that the stack and structure return address (if any)
3010 are properly aligned. The stack has to be at least 64-bit
3011 aligned even on 32-bit machines, because doubles must be 64-bit
3012 aligned. For n32 and n64, stack frames need to be 128-bit
3013 aligned, so we round to this widest known alignment. */
3014
5b03f266
AC
3015 sp = align_down (sp, 16);
3016 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
3017
3018 /* Now make space on the stack for the args. */
3019 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 3020 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
480d3dd2 3021 mips_stack_argsize (tdep));
5b03f266 3022 sp -= align_up (len, 16);
cb3d25d1
MS
3023
3024 if (mips_debug)
3025 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3026 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
3027 paddr_nz (sp), (long) align_up (len, 16));
cb3d25d1
MS
3028
3029 /* Initialize the integer and float register pointers. */
3030 argreg = A0_REGNUM;
56cea623 3031 float_argreg = mips_fpa0_regnum (current_gdbarch);
cb3d25d1 3032
46e0f506 3033 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
3034 if (struct_return)
3035 {
3036 if (mips_debug)
3037 fprintf_unfiltered (gdb_stdlog,
25ab4790 3038 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1
MS
3039 argreg, paddr_nz (struct_addr));
3040 write_register (argreg++, struct_addr);
3041 }
3042
3043 /* Now load as many as possible of the first arguments into
3044 registers, and push the rest onto the stack. Loop thru args
3045 from first to last. */
3046 for (argnum = 0; argnum < nargs; argnum++)
3047 {
3048 char *val;
d9d9c31f 3049 char valbuf[MAX_REGISTER_SIZE];
cb3d25d1
MS
3050 struct value *arg = args[argnum];
3051 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3052 int len = TYPE_LENGTH (arg_type);
3053 enum type_code typecode = TYPE_CODE (arg_type);
3054
3055 if (mips_debug)
3056 fprintf_unfiltered (gdb_stdlog,
25ab4790 3057 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
3058 argnum + 1, len, (int) typecode);
3059
3060 val = (char *) VALUE_CONTENTS (arg);
3061
3062 if (fp_register_arg_p (typecode, arg_type)
3063 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3064 {
3065 /* This is a floating point value that fits entirely
3066 in a single register. */
3067 /* On 32 bit ABI's the float_argreg is further adjusted
3068 above to ensure that it is even register aligned. */
3069 LONGEST regval = extract_unsigned_integer (val, len);
3070 if (mips_debug)
3071 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3072 float_argreg, phex (regval, len));
3073 write_register (float_argreg++, regval);
3074
3075 if (mips_debug)
3076 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3077 argreg, phex (regval, len));
3078 write_register (argreg, regval);
3079 argreg += 1;
3080 }
3081 else
3082 {
3083 /* Copy the argument to general registers or the stack in
3084 register-sized pieces. Large arguments are split between
3085 registers and stack. */
4246e332
AC
3086 /* Note: structs whose size is not a multiple of
3087 mips_regsize() are treated specially: Irix cc passes them
3088 in registers where gcc sometimes puts them on the stack.
3089 For maximum compatibility, we will put them in both
3090 places. */
480d3dd2
AC
3091 int odd_sized_struct = ((len > mips_saved_regsize (tdep))
3092 && (len % mips_saved_regsize (tdep) != 0));
cb3d25d1
MS
3093 /* Note: Floating-point values that didn't fit into an FP
3094 register are only written to memory. */
3095 while (len > 0)
3096 {
3097 /* Rememer if the argument was written to the stack. */
3098 int stack_used_p = 0;
480d3dd2
AC
3099 int partial_len = (len < mips_saved_regsize (tdep)
3100 ? len : mips_saved_regsize (tdep));
cb3d25d1
MS
3101
3102 if (mips_debug)
3103 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3104 partial_len);
3105
3106 /* Write this portion of the argument to the stack. */
3107 if (argreg > MIPS_LAST_ARG_REGNUM
3108 || odd_sized_struct
3109 || fp_register_arg_p (typecode, arg_type))
3110 {
3111 /* Should shorter than int integer values be
3112 promoted to int before being stored? */
3113 int longword_offset = 0;
3114 CORE_ADDR addr;
3115 stack_used_p = 1;
3116 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3117 {
480d3dd2
AC
3118 if (mips_stack_argsize (tdep) == 8
3119 && (typecode == TYPE_CODE_INT
3120 || typecode == TYPE_CODE_PTR
3121 || typecode == TYPE_CODE_FLT)
3122 && len <= 4)
3123 longword_offset = mips_stack_argsize (tdep) - len;
cb3d25d1
MS
3124 }
3125
3126 if (mips_debug)
3127 {
3128 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3129 paddr_nz (stack_offset));
3130 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3131 paddr_nz (longword_offset));
3132 }
3133
3134 addr = sp + stack_offset + longword_offset;
3135
3136 if (mips_debug)
3137 {
3138 int i;
3139 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3140 paddr_nz (addr));
3141 for (i = 0; i < partial_len; i++)
3142 {
3143 fprintf_unfiltered (gdb_stdlog, "%02x",
3144 val[i] & 0xff);
3145 }
3146 }
3147 write_memory (addr, val, partial_len);
3148 }
3149
3150 /* Note!!! This is NOT an else clause. Odd sized
3151 structs may go thru BOTH paths. Floating point
3152 arguments will not. */
3153 /* Write this portion of the argument to a general
3154 purpose register. */
3155 if (argreg <= MIPS_LAST_ARG_REGNUM
3156 && !fp_register_arg_p (typecode, arg_type))
3157 {
3158 LONGEST regval = extract_unsigned_integer (val, partial_len);
3159
3160 /* A non-floating-point argument being passed in a
3161 general register. If a struct or union, and if
3162 the remaining length is smaller than the register
3163 size, we have to adjust the register value on
3164 big endian targets.
3165
3166 It does not seem to be necessary to do the
3167 same for integral types.
3168
3169 cagney/2001-07-23: gdb/179: Also, GCC, when
3170 outputting LE O32 with sizeof (struct) <
480d3dd2 3171 mips_saved_regsize(), generates a left shift as
cb3d25d1
MS
3172 part of storing the argument in a register a
3173 register (the left shift isn't generated when
480d3dd2
AC
3174 sizeof (struct) >= mips_saved_regsize()). Since
3175 it is quite possible that this is GCC
3176 contradicting the LE/O32 ABI, GDB has not been
3177 adjusted to accommodate this. Either someone
3178 needs to demonstrate that the LE/O32 ABI
3179 specifies such a left shift OR this new ABI gets
3180 identified as such and GDB gets tweaked
3181 accordingly. */
cb3d25d1
MS
3182
3183 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
480d3dd2 3184 && partial_len < mips_saved_regsize (tdep)
cb3d25d1
MS
3185 && (typecode == TYPE_CODE_STRUCT ||
3186 typecode == TYPE_CODE_UNION))
480d3dd2 3187 regval <<= ((mips_saved_regsize (tdep) - partial_len) *
cb3d25d1
MS
3188 TARGET_CHAR_BIT);
3189
3190 if (mips_debug)
3191 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3192 argreg,
480d3dd2 3193 phex (regval, mips_saved_regsize (tdep)));
cb3d25d1
MS
3194 write_register (argreg, regval);
3195 argreg++;
3196 }
3197
3198 len -= partial_len;
3199 val += partial_len;
3200
3201 /* Compute the the offset into the stack at which we
3202 will copy the next parameter.
3203
3204 In N32 (N64?), the stack_offset only needs to be
3205 adjusted when it has been used. */
3206
3207 if (stack_used_p)
480d3dd2
AC
3208 stack_offset += align_up (partial_len,
3209 mips_stack_argsize (tdep));
cb3d25d1
MS
3210 }
3211 }
3212 if (mips_debug)
3213 fprintf_unfiltered (gdb_stdlog, "\n");
3214 }
3215
310e9b6a
AC
3216 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3217
cb3d25d1
MS
3218 /* Return adjusted stack pointer. */
3219 return sp;
3220}
3221
25ab4790 3222/* O32 version of push_dummy_call. */
ebafbe83 3223
46cac009 3224static CORE_ADDR
25ab4790
AC
3225mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3226 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3227 struct value **args, CORE_ADDR sp, int struct_return,
3228 CORE_ADDR struct_addr)
ebafbe83
MS
3229{
3230 int argreg;
3231 int float_argreg;
3232 int argnum;
3233 int len = 0;
3234 int stack_offset = 0;
480d3dd2 3235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ebafbe83 3236
25ab4790
AC
3237 /* For shared libraries, "t9" needs to point at the function
3238 address. */
3239 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3240
3241 /* Set the return address register to point to the entry point of
3242 the program, where a breakpoint lies in wait. */
3243 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3244
ebafbe83
MS
3245 /* First ensure that the stack and structure return address (if any)
3246 are properly aligned. The stack has to be at least 64-bit
3247 aligned even on 32-bit machines, because doubles must be 64-bit
3248 aligned. For n32 and n64, stack frames need to be 128-bit
3249 aligned, so we round to this widest known alignment. */
3250
5b03f266
AC
3251 sp = align_down (sp, 16);
3252 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
3253
3254 /* Now make space on the stack for the args. */
3255 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 3256 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
480d3dd2 3257 mips_stack_argsize (tdep));
5b03f266 3258 sp -= align_up (len, 16);
ebafbe83
MS
3259
3260 if (mips_debug)
3261 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3262 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3263 paddr_nz (sp), (long) align_up (len, 16));
ebafbe83
MS
3264
3265 /* Initialize the integer and float register pointers. */
3266 argreg = A0_REGNUM;
56cea623 3267 float_argreg = mips_fpa0_regnum (current_gdbarch);
ebafbe83 3268
bcb0cc15 3269 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3270 if (struct_return)
3271 {
3272 if (mips_debug)
3273 fprintf_unfiltered (gdb_stdlog,
25ab4790 3274 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3275 argreg, paddr_nz (struct_addr));
3276 write_register (argreg++, struct_addr);
480d3dd2 3277 stack_offset += mips_stack_argsize (tdep);
ebafbe83
MS
3278 }
3279
3280 /* Now load as many as possible of the first arguments into
3281 registers, and push the rest onto the stack. Loop thru args
3282 from first to last. */
3283 for (argnum = 0; argnum < nargs; argnum++)
3284 {
3285 char *val;
d9d9c31f 3286 char valbuf[MAX_REGISTER_SIZE];
ebafbe83
MS
3287 struct value *arg = args[argnum];
3288 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3289 int len = TYPE_LENGTH (arg_type);
3290 enum type_code typecode = TYPE_CODE (arg_type);
3291
3292 if (mips_debug)
3293 fprintf_unfiltered (gdb_stdlog,
25ab4790 3294 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3295 argnum + 1, len, (int) typecode);
3296
3297 val = (char *) VALUE_CONTENTS (arg);
3298
3299 /* 32-bit ABIs always start floating point arguments in an
3300 even-numbered floating point register. Round the FP register
3301 up before the check to see if there are any FP registers
3302 left. O32/O64 targets also pass the FP in the integer
3303 registers so also round up normal registers. */
3304 if (!FP_REGISTER_DOUBLE
3305 && fp_register_arg_p (typecode, arg_type))
3306 {
3307 if ((float_argreg & 1))
3308 float_argreg++;
3309 }
3310
3311 /* Floating point arguments passed in registers have to be
3312 treated specially. On 32-bit architectures, doubles
3313 are passed in register pairs; the even register gets
3314 the low word, and the odd register gets the high word.
3315 On O32/O64, the first two floating point arguments are
3316 also copied to general registers, because MIPS16 functions
3317 don't use float registers for arguments. This duplication of
3318 arguments in general registers can't hurt non-MIPS16 functions
3319 because those registers are normally skipped. */
3320
3321 if (fp_register_arg_p (typecode, arg_type)
3322 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3323 {
3324 if (!FP_REGISTER_DOUBLE && len == 8)
3325 {
3326 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3327 unsigned long regval;
3328
3329 /* Write the low word of the double to the even register(s). */
3330 regval = extract_unsigned_integer (val + low_offset, 4);
3331 if (mips_debug)
3332 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3333 float_argreg, phex (regval, 4));
3334 write_register (float_argreg++, regval);
3335 if (mips_debug)
3336 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3337 argreg, phex (regval, 4));
3338 write_register (argreg++, regval);
3339
3340 /* Write the high word of the double to the odd register(s). */
3341 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3342 if (mips_debug)
3343 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3344 float_argreg, phex (regval, 4));
3345 write_register (float_argreg++, regval);
3346
3347 if (mips_debug)
3348 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3349 argreg, phex (regval, 4));
3350 write_register (argreg++, regval);
3351 }
3352 else
3353 {
3354 /* This is a floating point value that fits entirely
3355 in a single register. */
3356 /* On 32 bit ABI's the float_argreg is further adjusted
3357 above to ensure that it is even register aligned. */
3358 LONGEST regval = extract_unsigned_integer (val, len);
3359 if (mips_debug)
3360 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3361 float_argreg, phex (regval, len));
3362 write_register (float_argreg++, regval);
3363 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3364 registers for each argument. The below is (my
3365 guess) to ensure that the corresponding integer
3366 register has reserved the same space. */
3367 if (mips_debug)
3368 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3369 argreg, phex (regval, len));
3370 write_register (argreg, regval);
3371 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3372 }
3373 /* Reserve space for the FP register. */
480d3dd2 3374 stack_offset += align_up (len, mips_stack_argsize (tdep));
46cac009
AC
3375 }
3376 else
3377 {
3378 /* Copy the argument to general registers or the stack in
3379 register-sized pieces. Large arguments are split between
3380 registers and stack. */
4246e332
AC
3381 /* Note: structs whose size is not a multiple of
3382 mips_regsize() are treated specially: Irix cc passes them
3383 in registers where gcc sometimes puts them on the stack.
3384 For maximum compatibility, we will put them in both
3385 places. */
480d3dd2
AC
3386 int odd_sized_struct = ((len > mips_saved_regsize (tdep))
3387 && (len % mips_saved_regsize (tdep) != 0));
46cac009
AC
3388 /* Structures should be aligned to eight bytes (even arg registers)
3389 on MIPS_ABI_O32, if their first member has double precision. */
480d3dd2 3390 if (mips_saved_regsize (tdep) < 8
46cac009
AC
3391 && mips_type_needs_double_align (arg_type))
3392 {
3393 if ((argreg & 1))
3394 argreg++;
3395 }
3396 /* Note: Floating-point values that didn't fit into an FP
3397 register are only written to memory. */
3398 while (len > 0)
3399 {
3400 /* Remember if the argument was written to the stack. */
3401 int stack_used_p = 0;
480d3dd2
AC
3402 int partial_len = (len < mips_saved_regsize (tdep)
3403 ? len : mips_saved_regsize (tdep));
46cac009
AC
3404
3405 if (mips_debug)
3406 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3407 partial_len);
3408
3409 /* Write this portion of the argument to the stack. */
3410 if (argreg > MIPS_LAST_ARG_REGNUM
3411 || odd_sized_struct
3412 || fp_register_arg_p (typecode, arg_type))
3413 {
3414 /* Should shorter than int integer values be
3415 promoted to int before being stored? */
3416 int longword_offset = 0;
3417 CORE_ADDR addr;
3418 stack_used_p = 1;
3419 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3420 {
480d3dd2
AC
3421 if (mips_stack_argsize (tdep) == 8
3422 && (typecode == TYPE_CODE_INT
3423 || typecode == TYPE_CODE_PTR
3424 || typecode == TYPE_CODE_FLT)
3425 && len <= 4)
3426 longword_offset = mips_stack_argsize (tdep) - len;
46cac009
AC
3427 }
3428
3429 if (mips_debug)
3430 {
3431 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3432 paddr_nz (stack_offset));
3433 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3434 paddr_nz (longword_offset));
3435 }
3436
3437 addr = sp + stack_offset + longword_offset;
3438
3439 if (mips_debug)
3440 {
3441 int i;
3442 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3443 paddr_nz (addr));
3444 for (i = 0; i < partial_len; i++)
3445 {
3446 fprintf_unfiltered (gdb_stdlog, "%02x",
3447 val[i] & 0xff);
3448 }
3449 }
3450 write_memory (addr, val, partial_len);
3451 }
3452
3453 /* Note!!! This is NOT an else clause. Odd sized
3454 structs may go thru BOTH paths. Floating point
3455 arguments will not. */
3456 /* Write this portion of the argument to a general
3457 purpose register. */
3458 if (argreg <= MIPS_LAST_ARG_REGNUM
3459 && !fp_register_arg_p (typecode, arg_type))
3460 {
3461 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3462 /* Value may need to be sign extended, because
480d3dd2 3463 mips_regsize() != mips_saved_regsize(). */
46cac009
AC
3464
3465 /* A non-floating-point argument being passed in a
3466 general register. If a struct or union, and if
3467 the remaining length is smaller than the register
3468 size, we have to adjust the register value on
3469 big endian targets.
3470
3471 It does not seem to be necessary to do the
3472 same for integral types.
3473
3474 Also don't do this adjustment on O64 binaries.
3475
3476 cagney/2001-07-23: gdb/179: Also, GCC, when
3477 outputting LE O32 with sizeof (struct) <
480d3dd2 3478 mips_saved_regsize(), generates a left shift as
46cac009
AC
3479 part of storing the argument in a register a
3480 register (the left shift isn't generated when
480d3dd2
AC
3481 sizeof (struct) >= mips_saved_regsize()). Since
3482 it is quite possible that this is GCC
3483 contradicting the LE/O32 ABI, GDB has not been
3484 adjusted to accommodate this. Either someone
3485 needs to demonstrate that the LE/O32 ABI
3486 specifies such a left shift OR this new ABI gets
3487 identified as such and GDB gets tweaked
3488 accordingly. */
3489
3490 if (mips_saved_regsize (tdep) < 8
46cac009 3491 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
480d3dd2 3492 && partial_len < mips_saved_regsize (tdep)
46cac009
AC
3493 && (typecode == TYPE_CODE_STRUCT ||
3494 typecode == TYPE_CODE_UNION))
480d3dd2 3495 regval <<= ((mips_saved_regsize (tdep) - partial_len) *
46cac009
AC
3496 TARGET_CHAR_BIT);
3497
3498 if (mips_debug)
3499 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3500 argreg,
480d3dd2 3501 phex (regval, mips_saved_regsize (tdep)));
46cac009
AC
3502 write_register (argreg, regval);
3503 argreg++;
3504
3505 /* Prevent subsequent floating point arguments from
3506 being passed in floating point registers. */
3507 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3508 }
3509
3510 len -= partial_len;
3511 val += partial_len;
3512
3513 /* Compute the the offset into the stack at which we
3514 will copy the next parameter.
3515
3516 In older ABIs, the caller reserved space for
3517 registers that contained arguments. This was loosely
3518 refered to as their "home". Consequently, space is
3519 always allocated. */
3520
480d3dd2
AC
3521 stack_offset += align_up (partial_len,
3522 mips_stack_argsize (tdep));
46cac009
AC
3523 }
3524 }
3525 if (mips_debug)
3526 fprintf_unfiltered (gdb_stdlog, "\n");
3527 }
3528
310e9b6a
AC
3529 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3530
46cac009
AC
3531 /* Return adjusted stack pointer. */
3532 return sp;
3533}
3534
25ab4790 3535/* O64 version of push_dummy_call. */
46cac009
AC
3536
3537static CORE_ADDR
25ab4790
AC
3538mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3539 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3540 struct value **args, CORE_ADDR sp, int struct_return,
3541 CORE_ADDR struct_addr)
46cac009
AC
3542{
3543 int argreg;
3544 int float_argreg;
3545 int argnum;
3546 int len = 0;
3547 int stack_offset = 0;
480d3dd2 3548 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
46cac009 3549
25ab4790
AC
3550 /* For shared libraries, "t9" needs to point at the function
3551 address. */
3552 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3553
3554 /* Set the return address register to point to the entry point of
3555 the program, where a breakpoint lies in wait. */
3556 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3557
46cac009
AC
3558 /* First ensure that the stack and structure return address (if any)
3559 are properly aligned. The stack has to be at least 64-bit
3560 aligned even on 32-bit machines, because doubles must be 64-bit
3561 aligned. For n32 and n64, stack frames need to be 128-bit
3562 aligned, so we round to this widest known alignment. */
3563
5b03f266
AC
3564 sp = align_down (sp, 16);
3565 struct_addr = align_down (struct_addr, 16);
46cac009
AC
3566
3567 /* Now make space on the stack for the args. */
3568 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 3569 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
480d3dd2 3570 mips_stack_argsize (tdep));
5b03f266 3571 sp -= align_up (len, 16);
46cac009
AC
3572
3573 if (mips_debug)
3574 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3575 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3576 paddr_nz (sp), (long) align_up (len, 16));
46cac009
AC
3577
3578 /* Initialize the integer and float register pointers. */
3579 argreg = A0_REGNUM;
56cea623 3580 float_argreg = mips_fpa0_regnum (current_gdbarch);
46cac009
AC
3581
3582 /* The struct_return pointer occupies the first parameter-passing reg. */
3583 if (struct_return)
3584 {
3585 if (mips_debug)
3586 fprintf_unfiltered (gdb_stdlog,
25ab4790 3587 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009
AC
3588 argreg, paddr_nz (struct_addr));
3589 write_register (argreg++, struct_addr);
480d3dd2 3590 stack_offset += mips_stack_argsize (tdep);
46cac009
AC
3591 }
3592
3593 /* Now load as many as possible of the first arguments into
3594 registers, and push the rest onto the stack. Loop thru args
3595 from first to last. */
3596 for (argnum = 0; argnum < nargs; argnum++)
3597 {
3598 char *val;
d9d9c31f 3599 char valbuf[MAX_REGISTER_SIZE];
46cac009
AC
3600 struct value *arg = args[argnum];
3601 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3602 int len = TYPE_LENGTH (arg_type);
3603 enum type_code typecode = TYPE_CODE (arg_type);
3604
3605 if (mips_debug)
3606 fprintf_unfiltered (gdb_stdlog,
25ab4790 3607 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3608 argnum + 1, len, (int) typecode);
3609
3610 val = (char *) VALUE_CONTENTS (arg);
3611
3612 /* 32-bit ABIs always start floating point arguments in an
3613 even-numbered floating point register. Round the FP register
3614 up before the check to see if there are any FP registers
3615 left. O32/O64 targets also pass the FP in the integer
3616 registers so also round up normal registers. */
3617 if (!FP_REGISTER_DOUBLE
3618 && fp_register_arg_p (typecode, arg_type))
3619 {
3620 if ((float_argreg & 1))
3621 float_argreg++;
3622 }
3623
3624 /* Floating point arguments passed in registers have to be
3625 treated specially. On 32-bit architectures, doubles
3626 are passed in register pairs; the even register gets
3627 the low word, and the odd register gets the high word.
3628 On O32/O64, the first two floating point arguments are
3629 also copied to general registers, because MIPS16 functions
3630 don't use float registers for arguments. This duplication of
3631 arguments in general registers can't hurt non-MIPS16 functions
3632 because those registers are normally skipped. */
3633
3634 if (fp_register_arg_p (typecode, arg_type)
3635 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3636 {
3637 if (!FP_REGISTER_DOUBLE && len == 8)
3638 {
3639 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3640 unsigned long regval;
3641
3642 /* Write the low word of the double to the even register(s). */
3643 regval = extract_unsigned_integer (val + low_offset, 4);
3644 if (mips_debug)
3645 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3646 float_argreg, phex (regval, 4));
3647 write_register (float_argreg++, regval);
3648 if (mips_debug)
3649 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3650 argreg, phex (regval, 4));
3651 write_register (argreg++, regval);
3652
3653 /* Write the high word of the double to the odd register(s). */
3654 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3655 if (mips_debug)
3656 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3657 float_argreg, phex (regval, 4));
3658 write_register (float_argreg++, regval);
3659
3660 if (mips_debug)
3661 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3662 argreg, phex (regval, 4));
3663 write_register (argreg++, regval);
3664 }
3665 else
3666 {
3667 /* This is a floating point value that fits entirely
3668 in a single register. */
3669 /* On 32 bit ABI's the float_argreg is further adjusted
3670 above to ensure that it is even register aligned. */
3671 LONGEST regval = extract_unsigned_integer (val, len);
3672 if (mips_debug)
3673 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3674 float_argreg, phex (regval, len));
3675 write_register (float_argreg++, regval);
3676 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3677 registers for each argument. The below is (my
3678 guess) to ensure that the corresponding integer
3679 register has reserved the same space. */
3680 if (mips_debug)
3681 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3682 argreg, phex (regval, len));
3683 write_register (argreg, regval);
3684 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3685 }
3686 /* Reserve space for the FP register. */
480d3dd2 3687 stack_offset += align_up (len, mips_stack_argsize (tdep));
ebafbe83
MS
3688 }
3689 else
3690 {
3691 /* Copy the argument to general registers or the stack in
3692 register-sized pieces. Large arguments are split between
3693 registers and stack. */
4246e332
AC
3694 /* Note: structs whose size is not a multiple of
3695 mips_regsize() are treated specially: Irix cc passes them
3696 in registers where gcc sometimes puts them on the stack.
3697 For maximum compatibility, we will put them in both
3698 places. */
480d3dd2
AC
3699 int odd_sized_struct = ((len > mips_saved_regsize (tdep))
3700 && (len % mips_saved_regsize (tdep) != 0));
ebafbe83
MS
3701 /* Structures should be aligned to eight bytes (even arg registers)
3702 on MIPS_ABI_O32, if their first member has double precision. */
480d3dd2 3703 if (mips_saved_regsize (tdep) < 8
ebafbe83
MS
3704 && mips_type_needs_double_align (arg_type))
3705 {
3706 if ((argreg & 1))
3707 argreg++;
3708 }
3709 /* Note: Floating-point values that didn't fit into an FP
3710 register are only written to memory. */
3711 while (len > 0)
3712 {
3713 /* Remember if the argument was written to the stack. */
3714 int stack_used_p = 0;
480d3dd2
AC
3715 int partial_len = (len < mips_saved_regsize (tdep)
3716 ? len : mips_saved_regsize (tdep));
ebafbe83
MS
3717
3718 if (mips_debug)
3719 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3720 partial_len);
3721
3722 /* Write this portion of the argument to the stack. */
3723 if (argreg > MIPS_LAST_ARG_REGNUM
3724 || odd_sized_struct
3725 || fp_register_arg_p (typecode, arg_type))
3726 {
3727 /* Should shorter than int integer values be
3728 promoted to int before being stored? */
3729 int longword_offset = 0;
3730 CORE_ADDR addr;
3731 stack_used_p = 1;
3732 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3733 {
480d3dd2
AC
3734 if (mips_stack_argsize (tdep) == 8
3735 && (typecode == TYPE_CODE_INT
3736 || typecode == TYPE_CODE_PTR
3737 || typecode == TYPE_CODE_FLT)
3738 && len <= 4)
3739 longword_offset = mips_stack_argsize (tdep) - len;
ebafbe83
MS
3740 }
3741
3742 if (mips_debug)
3743 {
3744 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3745 paddr_nz (stack_offset));
3746 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3747 paddr_nz (longword_offset));
3748 }
3749
3750 addr = sp + stack_offset + longword_offset;
3751
3752 if (mips_debug)
3753 {
3754 int i;
3755 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3756 paddr_nz (addr));
3757 for (i = 0; i < partial_len; i++)
3758 {
3759 fprintf_unfiltered (gdb_stdlog, "%02x",
3760 val[i] & 0xff);
3761 }
3762 }
3763 write_memory (addr, val, partial_len);
3764 }
3765
3766 /* Note!!! This is NOT an else clause. Odd sized
3767 structs may go thru BOTH paths. Floating point
3768 arguments will not. */
3769 /* Write this portion of the argument to a general
3770 purpose register. */
3771 if (argreg <= MIPS_LAST_ARG_REGNUM
3772 && !fp_register_arg_p (typecode, arg_type))
3773 {
3774 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3775 /* Value may need to be sign extended, because
480d3dd2 3776 mips_regsize() != mips_saved_regsize(). */
ebafbe83
MS
3777
3778 /* A non-floating-point argument being passed in a
3779 general register. If a struct or union, and if
3780 the remaining length is smaller than the register
3781 size, we have to adjust the register value on
3782 big endian targets.
3783
3784 It does not seem to be necessary to do the
3785 same for integral types.
3786
3787 Also don't do this adjustment on O64 binaries.
3788
3789 cagney/2001-07-23: gdb/179: Also, GCC, when
3790 outputting LE O32 with sizeof (struct) <
480d3dd2 3791 mips_saved_regsize(), generates a left shift as
ebafbe83
MS
3792 part of storing the argument in a register a
3793 register (the left shift isn't generated when
480d3dd2
AC
3794 sizeof (struct) >= mips_saved_regsize()). Since
3795 it is quite possible that this is GCC
3796 contradicting the LE/O32 ABI, GDB has not been
3797 adjusted to accommodate this. Either someone
3798 needs to demonstrate that the LE/O32 ABI
3799 specifies such a left shift OR this new ABI gets
3800 identified as such and GDB gets tweaked
3801 accordingly. */
3802
3803 if (mips_saved_regsize (tdep) < 8
ebafbe83 3804 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
480d3dd2 3805 && partial_len < mips_saved_regsize (tdep)
ebafbe83
MS
3806 && (typecode == TYPE_CODE_STRUCT ||
3807 typecode == TYPE_CODE_UNION))
480d3dd2 3808 regval <<= ((mips_saved_regsize (tdep) - partial_len) *
ebafbe83
MS
3809 TARGET_CHAR_BIT);
3810
3811 if (mips_debug)
3812 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3813 argreg,
480d3dd2 3814 phex (regval, mips_saved_regsize (tdep)));
ebafbe83
MS
3815 write_register (argreg, regval);
3816 argreg++;
3817
3818 /* Prevent subsequent floating point arguments from
3819 being passed in floating point registers. */
3820 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3821 }
3822
3823 len -= partial_len;
3824 val += partial_len;
3825
3826 /* Compute the the offset into the stack at which we
3827 will copy the next parameter.
3828
3829 In older ABIs, the caller reserved space for
3830 registers that contained arguments. This was loosely
3831 refered to as their "home". Consequently, space is
3832 always allocated. */
3833
480d3dd2
AC
3834 stack_offset += align_up (partial_len,
3835 mips_stack_argsize (tdep));
ebafbe83
MS
3836 }
3837 }
3838 if (mips_debug)
3839 fprintf_unfiltered (gdb_stdlog, "\n");
3840 }
3841
310e9b6a
AC
3842 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3843
ebafbe83
MS
3844 /* Return adjusted stack pointer. */
3845 return sp;
3846}
3847
f7ab6ec6 3848static void
acdb74a0 3849mips_pop_frame (void)
c906108c 3850{
52f0bd74 3851 int regnum;
c906108c 3852 struct frame_info *frame = get_current_frame ();
c193f6ac 3853 CORE_ADDR new_sp = get_frame_base (frame);
e227b13c 3854 mips_extra_func_info_t proc_desc;
480d3dd2 3855 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 3856
50abf9e5 3857 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
3858 {
3859 generic_pop_dummy_frame ();
3860 flush_cached_frames ();
3861 return;
3862 }
3863
e227b13c 3864 proc_desc = get_frame_extra_info (frame)->proc_desc;
8bedc050 3865 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
e0f7ec59 3866 mips_find_saved_regs (frame);
c906108c 3867 for (regnum = 0; regnum < NUM_REGS; regnum++)
21f87145 3868 if (regnum != SP_REGNUM && regnum != PC_REGNUM
1b1d3794 3869 && deprecated_get_frame_saved_regs (frame)[regnum])
21f87145 3870 {
480d3dd2
AC
3871 /* Floating point registers must not be sign extended, in case
3872 mips_saved_regsize() = 4 but sizeof (FP0_REGNUM) == 8. */
21f87145 3873
56cea623 3874 if (mips_regnum (current_gdbarch)->fp0 <= regnum && regnum < mips_regnum (current_gdbarch)->fp0 + 32)
21f87145 3875 write_register (regnum,
1b1d3794 3876 read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum],
480d3dd2 3877 mips_saved_regsize (tdep)));
21f87145
MS
3878 else
3879 write_register (regnum,
1b1d3794 3880 read_memory_integer (deprecated_get_frame_saved_regs (frame)[regnum],
480d3dd2 3881 mips_saved_regsize (tdep)));
21f87145 3882 }
757a7cc6 3883
c906108c
SS
3884 write_register (SP_REGNUM, new_sp);
3885 flush_cached_frames ();
3886
c5aa993b 3887 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
3888 {
3889 struct linked_proc_info *pi_ptr, *prev_ptr;
3890
3891 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3892 pi_ptr != NULL;
3893 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3894 {
3895 if (&pi_ptr->info == proc_desc)
3896 break;
3897 }
3898
3899 if (pi_ptr == NULL)
3900 error ("Can't locate dummy extra frame info\n");
3901
3902 if (prev_ptr != NULL)
3903 prev_ptr->next = pi_ptr->next;
3904 else
3905 linked_proc_desc_table = pi_ptr->next;
3906
b8c9b27d 3907 xfree (pi_ptr);
c906108c 3908
56cea623 3909 write_register (mips_regnum (current_gdbarch)->hi,
480d3dd2
AC
3910 read_memory_integer ((new_sp
3911 - 2 * mips_saved_regsize (tdep)),
3912 mips_saved_regsize (tdep)));
56cea623 3913 write_register (mips_regnum (current_gdbarch)->lo,
480d3dd2
AC
3914 read_memory_integer ((new_sp
3915 - 3 * mips_saved_regsize (tdep)),
3916 mips_saved_regsize (tdep)));
c906108c 3917 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
56cea623 3918 write_register (mips_regnum (current_gdbarch)->fp_control_status,
480d3dd2
AC
3919 read_memory_integer ((new_sp
3920 - 4 * mips_saved_regsize (tdep)),
3921 mips_saved_regsize (tdep)));
c906108c
SS
3922 }
3923}
3924
dd824b04
DJ
3925/* Floating point register management.
3926
3927 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3928 64bit operations, these early MIPS cpus treat fp register pairs
3929 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3930 registers and offer a compatibility mode that emulates the MIPS2 fp
3931 model. When operating in MIPS2 fp compat mode, later cpu's split
3932 double precision floats into two 32-bit chunks and store them in
3933 consecutive fp regs. To display 64-bit floats stored in this
3934 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3935 Throw in user-configurable endianness and you have a real mess.
3936
3937 The way this works is:
3938 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3939 double-precision value will be split across two logical registers.
3940 The lower-numbered logical register will hold the low-order bits,
3941 regardless of the processor's endianness.
3942 - If we are on a 64-bit processor, and we are looking for a
3943 single-precision value, it will be in the low ordered bits
3944 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3945 save slot in memory.
3946 - If we are in 64-bit mode, everything is straightforward.
3947
3948 Note that this code only deals with "live" registers at the top of the
3949 stack. We will attempt to deal with saved registers later, when
3950 the raw/cooked register interface is in place. (We need a general
3951 interface that can deal with dynamic saved register sizes -- fp
3952 regs could be 32 bits wide in one frame and 64 on the frame above
3953 and below). */
3954
67b2c998
DJ
3955static struct type *
3956mips_float_register_type (void)
3957{
361d1df0 3958 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3959 return builtin_type_ieee_single_big;
3960 else
3961 return builtin_type_ieee_single_little;
3962}
3963
3964static struct type *
3965mips_double_register_type (void)
3966{
361d1df0 3967 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3968 return builtin_type_ieee_double_big;
3969 else
3970 return builtin_type_ieee_double_little;
3971}
3972
dd824b04
DJ
3973/* Copy a 32-bit single-precision value from the current frame
3974 into rare_buffer. */
3975
3976static void
e11c53d2
AC
3977mips_read_fp_register_single (struct frame_info *frame, int regno,
3978 char *rare_buffer)
dd824b04 3979{
719ec221 3980 int raw_size = register_size (current_gdbarch, regno);
dd824b04
DJ
3981 char *raw_buffer = alloca (raw_size);
3982
e11c53d2 3983 if (!frame_register_read (frame, regno, raw_buffer))
dd824b04
DJ
3984 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3985 if (raw_size == 8)
3986 {
3987 /* We have a 64-bit value for this register. Find the low-order
3988 32 bits. */
3989 int offset;
3990
3991 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3992 offset = 4;
3993 else
3994 offset = 0;
3995
3996 memcpy (rare_buffer, raw_buffer + offset, 4);
3997 }
3998 else
3999 {
4000 memcpy (rare_buffer, raw_buffer, 4);
4001 }
4002}
4003
4004/* Copy a 64-bit double-precision value from the current frame into
4005 rare_buffer. This may include getting half of it from the next
4006 register. */
4007
4008static void
e11c53d2
AC
4009mips_read_fp_register_double (struct frame_info *frame, int regno,
4010 char *rare_buffer)
dd824b04 4011{
719ec221 4012 int raw_size = register_size (current_gdbarch, regno);
dd824b04
DJ
4013
4014 if (raw_size == 8 && !mips2_fp_compat ())
4015 {
4016 /* We have a 64-bit value for this register, and we should use
4017 all 64 bits. */
e11c53d2 4018 if (!frame_register_read (frame, regno, rare_buffer))
dd824b04
DJ
4019 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4020 }
4021 else
4022 {
56cea623 4023 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
dd824b04
DJ
4024 internal_error (__FILE__, __LINE__,
4025 "mips_read_fp_register_double: bad access to "
4026 "odd-numbered FP register");
4027
4028 /* mips_read_fp_register_single will find the correct 32 bits from
4029 each register. */
4030 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4031 {
e11c53d2
AC
4032 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4033 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 4034 }
361d1df0 4035 else
dd824b04 4036 {
e11c53d2
AC
4037 mips_read_fp_register_single (frame, regno, rare_buffer);
4038 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
4039 }
4040 }
4041}
4042
c906108c 4043static void
e11c53d2
AC
4044mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4045 int regnum)
c5aa993b 4046{ /* do values for FP (float) regs */
dd824b04 4047 char *raw_buffer;
c906108c 4048 double doub, flt1, flt2; /* doubles extracted from raw hex data */
f0ef6b29 4049 int inv1, inv2, namelen;
c5aa993b 4050
56cea623 4051 raw_buffer = (char *) alloca (2 * register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0));
c906108c 4052
e11c53d2
AC
4053 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4054 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4055 "");
f0ef6b29 4056
719ec221 4057 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
c906108c 4058 {
f0ef6b29
KB
4059 /* 4-byte registers: Print hex and floating. Also print even
4060 numbered registers as doubles. */
e11c53d2 4061 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 4062 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4063
e11c53d2 4064 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
dd824b04 4065
e11c53d2 4066 fprintf_filtered (file, " flt: ");
1adad886 4067 if (inv1)
e11c53d2 4068 fprintf_filtered (file, " <invalid float> ");
1adad886 4069 else
e11c53d2 4070 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4071
f0ef6b29
KB
4072 if (regnum % 2 == 0)
4073 {
e11c53d2 4074 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4075 doub = unpack_double (mips_double_register_type (), raw_buffer,
4076 &inv2);
1adad886 4077
e11c53d2 4078 fprintf_filtered (file, " dbl: ");
f0ef6b29 4079 if (inv2)
e11c53d2 4080 fprintf_filtered (file, "<invalid double>");
f0ef6b29 4081 else
e11c53d2 4082 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 4083 }
c906108c
SS
4084 }
4085 else
dd824b04 4086 {
f0ef6b29 4087 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 4088 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 4089 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 4090
e11c53d2 4091 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4092 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4093
361d1df0 4094
e11c53d2 4095 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
f0ef6b29 4096
e11c53d2 4097 fprintf_filtered (file, " flt: ");
1adad886 4098 if (inv1)
e11c53d2 4099 fprintf_filtered (file, "<invalid float>");
1adad886 4100 else
e11c53d2 4101 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4102
e11c53d2 4103 fprintf_filtered (file, " dbl: ");
f0ef6b29 4104 if (inv2)
e11c53d2 4105 fprintf_filtered (file, "<invalid double>");
1adad886 4106 else
e11c53d2 4107 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
4108 }
4109}
4110
4111static void
e11c53d2
AC
4112mips_print_register (struct ui_file *file, struct frame_info *frame,
4113 int regnum, int all)
f0ef6b29 4114{
a4b8ebc8 4115 struct gdbarch *gdbarch = get_frame_arch (frame);
d9d9c31f 4116 char raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 4117 int offset;
1adad886 4118
a4b8ebc8 4119 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
f0ef6b29 4120 {
e11c53d2 4121 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
4122 return;
4123 }
4124
4125 /* Get the data in raw format. */
e11c53d2 4126 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 4127 {
e11c53d2 4128 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
f0ef6b29 4129 return;
c906108c 4130 }
f0ef6b29 4131
e11c53d2 4132 fputs_filtered (REGISTER_NAME (regnum), file);
f0ef6b29
KB
4133
4134 /* The problem with printing numeric register names (r26, etc.) is that
4135 the user can't use them on input. Probably the best solution is to
4136 fix it so that either the numeric or the funky (a2, etc.) names
4137 are accepted on input. */
4138 if (regnum < MIPS_NUMREGS)
e11c53d2 4139 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 4140 else
e11c53d2 4141 fprintf_filtered (file, ": ");
f0ef6b29
KB
4142
4143 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
719ec221 4144 offset = register_size (current_gdbarch, regnum) - register_size (current_gdbarch, regnum);
f0ef6b29
KB
4145 else
4146 offset = 0;
4147
a4b8ebc8 4148 print_scalar_formatted (raw_buffer + offset, gdbarch_register_type (gdbarch, regnum),
e11c53d2 4149 'x', 0, file);
c906108c
SS
4150}
4151
f0ef6b29
KB
4152/* Replacement for generic do_registers_info.
4153 Print regs in pretty columns. */
4154
4155static int
e11c53d2
AC
4156print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4157 int regnum)
f0ef6b29 4158{
e11c53d2
AC
4159 fprintf_filtered (file, " ");
4160 mips_print_fp_register (file, frame, regnum);
4161 fprintf_filtered (file, "\n");
f0ef6b29
KB
4162 return regnum + 1;
4163}
4164
4165
c906108c
SS
4166/* Print a row's worth of GP (int) registers, with name labels above */
4167
4168static int
e11c53d2 4169print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 4170 int start_regnum)
c906108c 4171{
a4b8ebc8 4172 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 4173 /* do values for GP (int) regs */
d9d9c31f 4174 char raw_buffer[MAX_REGISTER_SIZE];
4246e332 4175 int ncols = (mips_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
c906108c 4176 int col, byte;
a4b8ebc8 4177 int regnum;
c906108c
SS
4178
4179 /* For GP registers, we print a separate row of names above the vals */
e11c53d2 4180 fprintf_filtered (file, " ");
a4b8ebc8
AC
4181 for (col = 0, regnum = start_regnum;
4182 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4183 regnum++)
c906108c
SS
4184 {
4185 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4186 continue; /* unused register */
a4b8ebc8 4187 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c5aa993b 4188 break; /* end the row: reached FP register */
4246e332 4189 fprintf_filtered (file, mips_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
e11c53d2 4190 REGISTER_NAME (regnum));
c906108c
SS
4191 col++;
4192 }
a4b8ebc8 4193 /* print the R0 to R31 names */
20e6603c
AC
4194 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4195 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4196 else
4197 fprintf_filtered (file, "\n ");
c906108c 4198
c906108c 4199 /* now print the values in hex, 4 or 8 to the row */
a4b8ebc8
AC
4200 for (col = 0, regnum = start_regnum;
4201 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4202 regnum++)
c906108c
SS
4203 {
4204 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4205 continue; /* unused register */
a4b8ebc8 4206 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c5aa993b 4207 break; /* end row: reached FP register */
c906108c 4208 /* OK: get the data in raw format. */
e11c53d2 4209 if (!frame_register_read (frame, regnum, raw_buffer))
c906108c
SS
4210 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4211 /* pad small registers */
4246e332
AC
4212 for (byte = 0;
4213 byte < (mips_regsize (current_gdbarch)
c73e8f27 4214 - register_size (current_gdbarch, regnum));
4246e332 4215 byte++)
c906108c
SS
4216 printf_filtered (" ");
4217 /* Now print the register value in hex, endian order. */
d7449b42 4218 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
719ec221
AC
4219 for (byte = register_size (current_gdbarch, regnum) - register_size (current_gdbarch, regnum);
4220 byte < register_size (current_gdbarch, regnum);
43e526b9 4221 byte++)
e11c53d2 4222 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
c906108c 4223 else
c73e8f27 4224 for (byte = register_size (current_gdbarch, regnum) - 1;
43e526b9
JM
4225 byte >= 0;
4226 byte--)
e11c53d2
AC
4227 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4228 fprintf_filtered (file, " ");
c906108c
SS
4229 col++;
4230 }
c5aa993b 4231 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4232 fprintf_filtered (file, "\n");
c906108c
SS
4233
4234 return regnum;
4235}
4236
4237/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4238
bf1f5b4c 4239static void
e11c53d2
AC
4240mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4241 struct frame_info *frame, int regnum, int all)
c906108c 4242{
c5aa993b 4243 if (regnum != -1) /* do one specified register */
c906108c 4244 {
a4b8ebc8 4245 gdb_assert (regnum >= NUM_REGS);
c906108c
SS
4246 if (*(REGISTER_NAME (regnum)) == '\0')
4247 error ("Not a valid register for the current processor type");
4248
e11c53d2
AC
4249 mips_print_register (file, frame, regnum, 0);
4250 fprintf_filtered (file, "\n");
c906108c 4251 }
c5aa993b
JM
4252 else
4253 /* do all (or most) registers */
c906108c 4254 {
a4b8ebc8
AC
4255 regnum = NUM_REGS;
4256 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
c906108c 4257 {
a4b8ebc8 4258 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
e11c53d2
AC
4259 {
4260 if (all) /* true for "INFO ALL-REGISTERS" command */
4261 regnum = print_fp_register_row (file, frame, regnum);
4262 else
4263 regnum += MIPS_NUMREGS; /* skip floating point regs */
4264 }
c906108c 4265 else
e11c53d2 4266 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4267 }
4268 }
4269}
4270
c906108c
SS
4271/* Is this a branch with a delay slot? */
4272
a14ed312 4273static int is_delayed (unsigned long);
c906108c
SS
4274
4275static int
acdb74a0 4276is_delayed (unsigned long insn)
c906108c
SS
4277{
4278 int i;
4279 for (i = 0; i < NUMOPCODES; ++i)
4280 if (mips_opcodes[i].pinfo != INSN_MACRO
4281 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4282 break;
4283 return (i < NUMOPCODES
4284 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4285 | INSN_COND_BRANCH_DELAY
4286 | INSN_COND_BRANCH_LIKELY)));
4287}
4288
4289int
acdb74a0 4290mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
4291{
4292 char buf[MIPS_INSTLEN];
4293
4294 /* There is no branch delay slot on MIPS16. */
4295 if (pc_is_mips16 (pc))
4296 return 0;
4297
4298 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4299 /* If error reading memory, guess that it is not a delayed branch. */
4300 return 0;
c5aa993b 4301 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
4302}
4303
4304
74da7425
AC
4305/* Given PC at the function's start address, attempt to find the
4306 prologue end using SAL information. Return zero if the skip fails.
4307
4308 A non-optimized prologue traditionally has one SAL for the function
4309 and a second for the function body. A single line function has
4310 them both pointing at the same line.
4311
4312 An optimized prologue is similar but the prologue may contain
4313 instructions (SALs) from the instruction body. Need to skip those
4314 while not getting into the function body.
4315
4316 The functions end point and an increasing SAL line are used as
4317 indicators of the prologue's endpoint.
4318
4319 This code is based on the function refine_prologue_limit (versions
4320 found in both ia64 and ppc). */
4321
4322static CORE_ADDR
4323skip_prologue_using_sal (CORE_ADDR func_addr)
4324{
4325 struct symtab_and_line prologue_sal;
4326 CORE_ADDR start_pc;
4327 CORE_ADDR end_pc;
4328
4329 /* Get an initial range for the function. */
4330 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4331 start_pc += FUNCTION_START_OFFSET;
4332
4333 prologue_sal = find_pc_line (start_pc, 0);
4334 if (prologue_sal.line != 0)
4335 {
4336 while (prologue_sal.end < end_pc)
4337 {
4338 struct symtab_and_line sal;
4339
4340 sal = find_pc_line (prologue_sal.end, 0);
4341 if (sal.line == 0)
4342 break;
4343 /* Assume that a consecutive SAL for the same (or larger)
4344 line mark the prologue -> body transition. */
4345 if (sal.line >= prologue_sal.line)
4346 break;
4347 /* The case in which compiler's optimizer/scheduler has
4348 moved instructions into the prologue. We look ahead in
4349 the function looking for address ranges whose
4350 corresponding line number is less the first one that we
4351 found for the function. This is more conservative then
4352 refine_prologue_limit which scans a large number of SALs
4353 looking for any in the prologue */
4354 prologue_sal = sal;
4355 }
4356 }
4357 return prologue_sal.end;
4358}
4359
c906108c
SS
4360/* Skip the PC past function prologue instructions (32-bit version).
4361 This is a helper function for mips_skip_prologue. */
4362
4363static CORE_ADDR
f7b9e9fc 4364mips32_skip_prologue (CORE_ADDR pc)
c906108c 4365{
c5aa993b
JM
4366 t_inst inst;
4367 CORE_ADDR end_pc;
4368 int seen_sp_adjust = 0;
4369 int load_immediate_bytes = 0;
4370
74da7425
AC
4371 /* Find an upper bound on the prologue. */
4372 end_pc = skip_prologue_using_sal (pc);
4373 if (end_pc == 0)
4374 end_pc = pc + 100; /* Magic. */
4375
c5aa993b
JM
4376 /* Skip the typical prologue instructions. These are the stack adjustment
4377 instruction and the instructions that save registers on the stack
4378 or in the gcc frame. */
74da7425 4379 for (; pc < end_pc; pc += MIPS_INSTLEN)
c5aa993b
JM
4380 {
4381 unsigned long high_word;
c906108c 4382
c5aa993b
JM
4383 inst = mips_fetch_instruction (pc);
4384 high_word = (inst >> 16) & 0xffff;
c906108c 4385
c5aa993b
JM
4386 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4387 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4388 seen_sp_adjust = 1;
4389 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4390 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4391 seen_sp_adjust = 1;
4392 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4393 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4394 && (inst & 0x001F0000)) /* reg != $zero */
4395 continue;
4396
4397 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4398 continue;
4399 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4400 /* sx reg,n($s8) */
4401 continue; /* reg != $zero */
4402
4403 /* move $s8,$sp. With different versions of gas this will be either
4404 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4405 Accept any one of these. */
4406 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4407 continue;
4408
4409 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4410 continue;
4411 else if (high_word == 0x3c1c) /* lui $gp,n */
4412 continue;
4413 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4414 continue;
4415 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4416 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4417 continue;
4418 /* The following instructions load $at or $t0 with an immediate
4419 value in preparation for a stack adjustment via
4420 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4421 a local variable, so we accept them only before a stack adjustment
4422 instruction was seen. */
4423 else if (!seen_sp_adjust)
4424 {
4425 if (high_word == 0x3c01 || /* lui $at,n */
4426 high_word == 0x3c08) /* lui $t0,n */
4427 {
4428 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4429 continue;
4430 }
4431 else if (high_word == 0x3421 || /* ori $at,$at,n */
4432 high_word == 0x3508 || /* ori $t0,$t0,n */
4433 high_word == 0x3401 || /* ori $at,$zero,n */
4434 high_word == 0x3408) /* ori $t0,$zero,n */
4435 {
4436 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4437 continue;
4438 }
4439 else
4440 break;
4441 }
4442 else
4443 break;
c906108c
SS
4444 }
4445
c5aa993b
JM
4446 /* In a frameless function, we might have incorrectly
4447 skipped some load immediate instructions. Undo the skipping
4448 if the load immediate was not followed by a stack adjustment. */
4449 if (load_immediate_bytes && !seen_sp_adjust)
4450 pc -= load_immediate_bytes;
4451 return pc;
c906108c
SS
4452}
4453
4454/* Skip the PC past function prologue instructions (16-bit version).
4455 This is a helper function for mips_skip_prologue. */
4456
4457static CORE_ADDR
f7b9e9fc 4458mips16_skip_prologue (CORE_ADDR pc)
c906108c 4459{
c5aa993b
JM
4460 CORE_ADDR end_pc;
4461 int extend_bytes = 0;
4462 int prev_extend_bytes;
c906108c 4463
c5aa993b
JM
4464 /* Table of instructions likely to be found in a function prologue. */
4465 static struct
c906108c
SS
4466 {
4467 unsigned short inst;
4468 unsigned short mask;
c5aa993b
JM
4469 }
4470 table[] =
4471 {
c906108c 4472 {
c5aa993b
JM
4473 0x6300, 0xff00
4474 }
4475 , /* addiu $sp,offset */
4476 {
4477 0xfb00, 0xff00
4478 }
4479 , /* daddiu $sp,offset */
4480 {
4481 0xd000, 0xf800
4482 }
4483 , /* sw reg,n($sp) */
4484 {
4485 0xf900, 0xff00
4486 }
4487 , /* sd reg,n($sp) */
4488 {
4489 0x6200, 0xff00
4490 }
4491 , /* sw $ra,n($sp) */
4492 {
4493 0xfa00, 0xff00
4494 }
4495 , /* sd $ra,n($sp) */
4496 {
4497 0x673d, 0xffff
4498 }
4499 , /* move $s1,sp */
4500 {
4501 0xd980, 0xff80
4502 }
4503 , /* sw $a0-$a3,n($s1) */
4504 {
4505 0x6704, 0xff1c
4506 }
4507 , /* move reg,$a0-$a3 */
4508 {
4509 0xe809, 0xf81f
4510 }
4511 , /* entry pseudo-op */
4512 {
4513 0x0100, 0xff00
4514 }
4515 , /* addiu $s1,$sp,n */
4516 {
4517 0, 0
4518 } /* end of table marker */
4519 };
4520
74da7425
AC
4521 /* Find an upper bound on the prologue. */
4522 end_pc = skip_prologue_using_sal (pc);
4523 if (end_pc == 0)
4524 end_pc = pc + 100; /* Magic. */
4525
c5aa993b
JM
4526 /* Skip the typical prologue instructions. These are the stack adjustment
4527 instruction and the instructions that save registers on the stack
4528 or in the gcc frame. */
74da7425 4529 for (; pc < end_pc; pc += MIPS16_INSTLEN)
c5aa993b
JM
4530 {
4531 unsigned short inst;
4532 int i;
c906108c 4533
c5aa993b 4534 inst = mips_fetch_instruction (pc);
c906108c 4535
c5aa993b
JM
4536 /* Normally we ignore an extend instruction. However, if it is
4537 not followed by a valid prologue instruction, we must adjust
4538 the pc back over the extend so that it won't be considered
4539 part of the prologue. */
4540 if ((inst & 0xf800) == 0xf000) /* extend */
4541 {
4542 extend_bytes = MIPS16_INSTLEN;
4543 continue;
4544 }
4545 prev_extend_bytes = extend_bytes;
4546 extend_bytes = 0;
c906108c 4547
c5aa993b
JM
4548 /* Check for other valid prologue instructions besides extend. */
4549 for (i = 0; table[i].mask != 0; i++)
4550 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4551 break;
4552 if (table[i].mask != 0) /* it was in table? */
4553 continue; /* ignore it */
4554 else
4555 /* non-prologue */
4556 {
4557 /* Return the current pc, adjusted backwards by 2 if
4558 the previous instruction was an extend. */
4559 return pc - prev_extend_bytes;
4560 }
c906108c
SS
4561 }
4562 return pc;
4563}
4564
4565/* To skip prologues, I use this predicate. Returns either PC itself
4566 if the code at PC does not look like a function prologue; otherwise
4567 returns an address that (if we're lucky) follows the prologue. If
4568 LENIENT, then we must skip everything which is involved in setting
4569 up the frame (it's OK to skip more, just so long as we don't skip
4570 anything which might clobber the registers which are being saved.
4571 We must skip more in the case where part of the prologue is in the
4572 delay slot of a non-prologue instruction). */
4573
f7ab6ec6 4574static CORE_ADDR
f7b9e9fc 4575mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
4576{
4577 /* See if we can determine the end of the prologue via the symbol table.
4578 If so, then return either PC, or the PC after the prologue, whichever
4579 is greater. */
4580
4581 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4582
4583 if (post_prologue_pc != 0)
4584 return max (pc, post_prologue_pc);
4585
4586 /* Can't determine prologue from the symbol table, need to examine
4587 instructions. */
4588
4589 if (pc_is_mips16 (pc))
f7b9e9fc 4590 return mips16_skip_prologue (pc);
c906108c 4591 else
f7b9e9fc 4592 return mips32_skip_prologue (pc);
c906108c 4593}
c906108c 4594
7a292a7a
SS
4595/* Determine how a return value is stored within the MIPS register
4596 file, given the return type `valtype'. */
4597
4598struct return_value_word
4599{
4600 int len;
4601 int reg;
4602 int reg_offset;
4603 int buf_offset;
4604};
4605
7a292a7a 4606static void
acdb74a0
AC
4607return_value_location (struct type *valtype,
4608 struct return_value_word *hi,
4609 struct return_value_word *lo)
7a292a7a
SS
4610{
4611 int len = TYPE_LENGTH (valtype);
480d3dd2 4612 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c5aa993b 4613
7a292a7a
SS
4614 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4615 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4616 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4617 {
4618 if (!FP_REGISTER_DOUBLE && len == 8)
4619 {
4620 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 4621 spread them across a floating-point register pair. */
d7449b42
AC
4622 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4623 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4624 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
56cea623 4625 && register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 8)
7a292a7a
SS
4626 ? 4 : 0);
4627 hi->reg_offset = lo->reg_offset;
56cea623
AC
4628 lo->reg = mips_regnum (current_gdbarch)->fp0 + 0;
4629 hi->reg = mips_regnum (current_gdbarch)->fp0 + 1;
7a292a7a
SS
4630 lo->len = 4;
4631 hi->len = 4;
4632 }
4633 else
4634 {
4635 /* The floating point value fits in a single floating-point
c5aa993b 4636 register. */
d7449b42 4637 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
56cea623 4638 && register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 8
7a292a7a
SS
4639 && len == 4)
4640 ? 4 : 0);
56cea623 4641 lo->reg = mips_regnum (current_gdbarch)->fp0;
7a292a7a
SS
4642 lo->len = len;
4643 lo->buf_offset = 0;
4644 hi->len = 0;
4645 hi->reg_offset = 0;
4646 hi->buf_offset = 0;
4647 hi->reg = 0;
4648 }
4649 }
4650 else
4651 {
4652 /* Locate a result possibly spread across two registers. */
4653 int regnum = 2;
4654 lo->reg = regnum + 0;
4655 hi->reg = regnum + 1;
d7449b42 4656 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
480d3dd2 4657 && len < mips_saved_regsize (tdep))
7a292a7a 4658 {
bf1f5b4c 4659 /* "un-left-justify" the value in the low register */
480d3dd2 4660 lo->reg_offset = mips_saved_regsize (tdep) - len;
bcb0cc15 4661 lo->len = len;
bf1f5b4c 4662 hi->reg_offset = 0;
7a292a7a
SS
4663 hi->len = 0;
4664 }
d7449b42 4665 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
480d3dd2
AC
4666 && len > mips_saved_regsize (tdep) /* odd-size structs */
4667 && len < mips_saved_regsize (tdep) * 2
7a292a7a
SS
4668 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4669 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4670 {
4671 /* "un-left-justify" the value spread across two registers. */
480d3dd2
AC
4672 lo->reg_offset = 2 * mips_saved_regsize (tdep) - len;
4673 lo->len = mips_saved_regsize (tdep) - lo->reg_offset;
7a292a7a
SS
4674 hi->reg_offset = 0;
4675 hi->len = len - lo->len;
4676 }
4677 else
4678 {
4679 /* Only perform a partial copy of the second register. */
4680 lo->reg_offset = 0;
4681 hi->reg_offset = 0;
480d3dd2 4682 if (len > mips_saved_regsize (tdep))
7a292a7a 4683 {
480d3dd2
AC
4684 lo->len = mips_saved_regsize (tdep);
4685 hi->len = len - mips_saved_regsize (tdep);
7a292a7a
SS
4686 }
4687 else
4688 {
4689 lo->len = len;
4690 hi->len = 0;
4691 }
4692 }
d7449b42 4693 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
719ec221 4694 && register_size (current_gdbarch, regnum) == 8
480d3dd2 4695 && mips_saved_regsize (tdep) == 4)
7a292a7a
SS
4696 {
4697 /* Account for the fact that only the least-signficant part
c5aa993b 4698 of the register is being used */
7a292a7a
SS
4699 lo->reg_offset += 4;
4700 hi->reg_offset += 4;
4701 }
4702 lo->buf_offset = 0;
4703 hi->buf_offset = lo->len;
4704 }
4705}
4706
4707/* Given a return value in `regbuf' with a type `valtype', extract and
4708 copy its value into `valbuf'. */
4709
46cac009
AC
4710static void
4711mips_eabi_extract_return_value (struct type *valtype,
b8b527c5 4712 char regbuf[],
46cac009
AC
4713 char *valbuf)
4714{
4715 struct return_value_word lo;
4716 struct return_value_word hi;
4717 return_value_location (valtype, &hi, &lo);
4718
4719 memcpy (valbuf + lo.buf_offset,
78c63a3b 4720 regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + lo.reg) + lo.reg_offset,
46cac009
AC
4721 lo.len);
4722
4723 if (hi.len > 0)
4724 memcpy (valbuf + hi.buf_offset,
78c63a3b 4725 regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + hi.reg) + hi.reg_offset,
46cac009
AC
4726 hi.len);
4727}
4728
46cac009
AC
4729static void
4730mips_o64_extract_return_value (struct type *valtype,
b8b527c5 4731 char regbuf[],
46cac009
AC
4732 char *valbuf)
4733{
4734 struct return_value_word lo;
4735 struct return_value_word hi;
4736 return_value_location (valtype, &hi, &lo);
4737
4738 memcpy (valbuf + lo.buf_offset,
78c63a3b 4739 regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + lo.reg) + lo.reg_offset,
46cac009
AC
4740 lo.len);
4741
4742 if (hi.len > 0)
4743 memcpy (valbuf + hi.buf_offset,
78c63a3b 4744 regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + hi.reg) + hi.reg_offset,
46cac009
AC
4745 hi.len);
4746}
4747
7a292a7a
SS
4748/* Given a return value in `valbuf' with a type `valtype', write it's
4749 value into the appropriate register. */
4750
46cac009
AC
4751static void
4752mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4753{
d9d9c31f 4754 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4755 struct return_value_word lo;
4756 struct return_value_word hi;
4757 return_value_location (valtype, &hi, &lo);
4758
4759 memset (raw_buffer, 0, sizeof (raw_buffer));
4760 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
62700349 4761 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
719ec221 4762 register_size (current_gdbarch, lo.reg));
46cac009
AC
4763
4764 if (hi.len > 0)
4765 {
4766 memset (raw_buffer, 0, sizeof (raw_buffer));
4767 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
62700349 4768 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
719ec221 4769 register_size (current_gdbarch, hi.reg));
46cac009
AC
4770 }
4771}
4772
4773static void
cb1d2653 4774mips_o64_store_return_value (struct type *valtype, char *valbuf)
46cac009 4775{
d9d9c31f 4776 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4777 struct return_value_word lo;
4778 struct return_value_word hi;
4779 return_value_location (valtype, &hi, &lo);
4780
4781 memset (raw_buffer, 0, sizeof (raw_buffer));
4782 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
62700349 4783 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
719ec221 4784 register_size (current_gdbarch, lo.reg));
46cac009
AC
4785
4786 if (hi.len > 0)
4787 {
4788 memset (raw_buffer, 0, sizeof (raw_buffer));
4789 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
62700349 4790 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
719ec221 4791 register_size (current_gdbarch, hi.reg));
46cac009
AC
4792 }
4793}
4794
cb1d2653
AC
4795/* O32 ABI stuff. */
4796
29dfb2ac
AC
4797static enum return_value_convention
4798mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
4799 struct regcache *regcache,
4800 void *readbuf, const void *writebuf)
46cac009 4801{
cb1d2653 4802 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
29dfb2ac
AC
4803
4804 if (TYPE_CODE (type)== TYPE_CODE_STRUCT
4805 || TYPE_CODE (type)== TYPE_CODE_UNION
4806 || TYPE_CODE (type)== TYPE_CODE_ARRAY)
4807 return RETURN_VALUE_STRUCT_CONVENTION;
4808 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4809 && TYPE_LENGTH (type) == 4
4810 && tdep->mips_fpu_type != MIPS_FPU_NONE)
46cac009 4811 {
cb1d2653
AC
4812 /* A single-precision floating-point value. It fits in the
4813 least significant part of FP0. */
4814 if (mips_debug)
4815 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
29dfb2ac
AC
4816 mips_xfer_register (regcache,
4817 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
4818 TYPE_LENGTH (type),
4819 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4820 return RETURN_VALUE_REGISTER_CONVENTION;
cb1d2653
AC
4821 }
4822 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4823 && TYPE_LENGTH (type) == 8
4824 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4825 {
a4b8ebc8
AC
4826 /* A double-precision floating-point value. The most
4827 significant part goes in FP1, and the least significant in
4828 FP0. */
cb1d2653 4829 if (mips_debug)
a4b8ebc8 4830 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
cb1d2653
AC
4831 switch (TARGET_BYTE_ORDER)
4832 {
4833 case BFD_ENDIAN_LITTLE:
29dfb2ac
AC
4834 mips_xfer_register (regcache,
4835 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 0,
4836 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4837 mips_xfer_register (regcache,
4838 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 1,
4839 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
cb1d2653
AC
4840 break;
4841 case BFD_ENDIAN_BIG:
29dfb2ac
AC
4842 mips_xfer_register (regcache,
4843 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 1,
4844 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4845 mips_xfer_register (regcache,
4846 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 0,
4847 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
cb1d2653
AC
4848 break;
4849 default:
4850 internal_error (__FILE__, __LINE__, "bad switch");
4851 }
29dfb2ac 4852 return RETURN_VALUE_REGISTER_CONVENTION;
cb1d2653
AC
4853 }
4854#if 0
4855 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4856 && TYPE_NFIELDS (type) <= 2
4857 && TYPE_NFIELDS (type) >= 1
4858 && ((TYPE_NFIELDS (type) == 1
4859 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4860 == TYPE_CODE_FLT))
4861 || (TYPE_NFIELDS (type) == 2
4862 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4863 == TYPE_CODE_FLT)
4864 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4865 == TYPE_CODE_FLT)))
4866 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4867 {
4868 /* A struct that contains one or two floats. Each value is part
4869 in the least significant part of their floating point
4870 register.. */
d9d9c31f 4871 bfd_byte reg[MAX_REGISTER_SIZE];
cb1d2653
AC
4872 int regnum;
4873 int field;
56cea623 4874 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
cb1d2653
AC
4875 field < TYPE_NFIELDS (type);
4876 field++, regnum += 2)
4877 {
4878 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4879 / TARGET_CHAR_BIT);
4880 if (mips_debug)
4881 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
a4b8ebc8
AC
4882 mips_xfer_register (regcache, NUM_REGS + regnum,
4883 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
29dfb2ac 4884 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
cb1d2653 4885 }
29dfb2ac 4886 return RETURN_VALUE_REGISTER_CONVENTION;
cb1d2653
AC
4887 }
4888#endif
4889#if 0
4890 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4891 || TYPE_CODE (type) == TYPE_CODE_UNION)
4892 {
4893 /* A structure or union. Extract the left justified value,
4894 regardless of the byte order. I.e. DO NOT USE
4895 mips_xfer_lower. */
4896 int offset;
4897 int regnum;
4898 for (offset = 0, regnum = V0_REGNUM;
4899 offset < TYPE_LENGTH (type);
719ec221 4900 offset += register_size (current_gdbarch, regnum), regnum++)
cb1d2653 4901 {
719ec221 4902 int xfer = register_size (current_gdbarch, regnum);
cb1d2653
AC
4903 if (offset + xfer > TYPE_LENGTH (type))
4904 xfer = TYPE_LENGTH (type) - offset;
4905 if (mips_debug)
4906 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4907 offset, xfer, regnum);
a4b8ebc8 4908 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
29dfb2ac 4909 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
cb1d2653 4910 }
29dfb2ac 4911 return RETURN_VALUE_REGISTER_CONVENTION;
cb1d2653
AC
4912 }
4913#endif
4914 else
4915 {
4916 /* A scalar extract each part but least-significant-byte
4917 justified. o32 thinks registers are 4 byte, regardless of
4918 the ISA. mips_stack_argsize controls this. */
4919 int offset;
4920 int regnum;
4921 for (offset = 0, regnum = V0_REGNUM;
4922 offset < TYPE_LENGTH (type);
480d3dd2 4923 offset += mips_stack_argsize (tdep), regnum++)
cb1d2653 4924 {
480d3dd2 4925 int xfer = mips_stack_argsize (tdep);
cb1d2653
AC
4926 int pos = 0;
4927 if (offset + xfer > TYPE_LENGTH (type))
4928 xfer = TYPE_LENGTH (type) - offset;
4929 if (mips_debug)
4930 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4931 offset, xfer, regnum);
a4b8ebc8 4932 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
29dfb2ac 4933 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
cb1d2653 4934 }
29dfb2ac 4935 return RETURN_VALUE_REGISTER_CONVENTION;
46cac009
AC
4936 }
4937}
4938
cb1d2653
AC
4939/* N32/N44 ABI stuff. */
4940
29dfb2ac
AC
4941static enum return_value_convention
4942mips_n32n64_return_value (struct gdbarch *gdbarch,
4943 struct type *type, struct regcache *regcache,
4944 void *readbuf, const void *writebuf)
c906108c 4945{
88658117 4946 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
29dfb2ac
AC
4947 if (TYPE_CODE (type)== TYPE_CODE_STRUCT
4948 || TYPE_CODE (type)== TYPE_CODE_UNION
4949 || TYPE_CODE (type)== TYPE_CODE_ARRAY
480d3dd2 4950 || TYPE_LENGTH (type) > 2 * mips_saved_regsize (tdep))
29dfb2ac
AC
4951 return RETURN_VALUE_STRUCT_CONVENTION;
4952 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4953 && tdep->mips_fpu_type != MIPS_FPU_NONE)
7a292a7a 4954 {
88658117
AC
4955 /* A floating-point value belongs in the least significant part
4956 of FP0. */
4957 if (mips_debug)
4958 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
29dfb2ac
AC
4959 mips_xfer_register (regcache,
4960 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
4961 TYPE_LENGTH (type),
4962 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4963 return RETURN_VALUE_REGISTER_CONVENTION;
88658117
AC
4964 }
4965 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4966 && TYPE_NFIELDS (type) <= 2
4967 && TYPE_NFIELDS (type) >= 1
4968 && ((TYPE_NFIELDS (type) == 1
4969 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4970 == TYPE_CODE_FLT))
4971 || (TYPE_NFIELDS (type) == 2
4972 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4973 == TYPE_CODE_FLT)
4974 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4975 == TYPE_CODE_FLT)))
4976 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4977 {
4978 /* A struct that contains one or two floats. Each value is part
4979 in the least significant part of their floating point
4980 register.. */
d9d9c31f 4981 bfd_byte reg[MAX_REGISTER_SIZE];
88658117
AC
4982 int regnum;
4983 int field;
56cea623 4984 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
88658117
AC
4985 field < TYPE_NFIELDS (type);
4986 field++, regnum += 2)
4987 {
4988 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4989 / TARGET_CHAR_BIT);
4990 if (mips_debug)
4991 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
a4b8ebc8
AC
4992 mips_xfer_register (regcache, NUM_REGS + regnum,
4993 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
29dfb2ac 4994 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
88658117 4995 }
29dfb2ac 4996 return RETURN_VALUE_REGISTER_CONVENTION;
7a292a7a 4997 }
88658117
AC
4998 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4999 || TYPE_CODE (type) == TYPE_CODE_UNION)
5000 {
5001 /* A structure or union. Extract the left justified value,
5002 regardless of the byte order. I.e. DO NOT USE
5003 mips_xfer_lower. */
5004 int offset;
5005 int regnum;
5006 for (offset = 0, regnum = V0_REGNUM;
5007 offset < TYPE_LENGTH (type);
719ec221 5008 offset += register_size (current_gdbarch, regnum), regnum++)
88658117 5009 {
719ec221 5010 int xfer = register_size (current_gdbarch, regnum);
88658117
AC
5011 if (offset + xfer > TYPE_LENGTH (type))
5012 xfer = TYPE_LENGTH (type) - offset;
5013 if (mips_debug)
5014 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5015 offset, xfer, regnum);
a4b8ebc8 5016 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
29dfb2ac 5017 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
88658117 5018 }
29dfb2ac 5019 return RETURN_VALUE_REGISTER_CONVENTION;
88658117
AC
5020 }
5021 else
5022 {
5023 /* A scalar extract each part but least-significant-byte
5024 justified. */
5025 int offset;
5026 int regnum;
5027 for (offset = 0, regnum = V0_REGNUM;
5028 offset < TYPE_LENGTH (type);
719ec221 5029 offset += register_size (current_gdbarch, regnum), regnum++)
88658117 5030 {
719ec221 5031 int xfer = register_size (current_gdbarch, regnum);
88658117
AC
5032 int pos = 0;
5033 if (offset + xfer > TYPE_LENGTH (type))
5034 xfer = TYPE_LENGTH (type) - offset;
5035 if (mips_debug)
5036 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5037 offset, xfer, regnum);
a4b8ebc8 5038 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
29dfb2ac 5039 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
88658117 5040 }
29dfb2ac 5041 return RETURN_VALUE_REGISTER_CONVENTION;
88658117
AC
5042 }
5043}
5044
2f1488ce 5045static CORE_ADDR
6672060b 5046mips_extract_struct_value_address (struct regcache *regcache)
2f1488ce
MS
5047{
5048 /* FIXME: This will only work at random. The caller passes the
5049 struct_return address in V0, but it is not preserved. It may
5050 still be there, or this may be a random value. */
77d8f2b4
MS
5051 LONGEST val;
5052
5053 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
6672060b 5054 return val;
2f1488ce
MS
5055}
5056
c906108c
SS
5057/* Exported procedure: Is PC in the signal trampoline code */
5058
102182a9
MS
5059static int
5060mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
5061{
5062 if (sigtramp_address == 0)
5063 fixup_sigtramp ();
5064 return (pc >= sigtramp_address && pc < sigtramp_end);
5065}
5066
a5ea2558
AC
5067/* Root of all "set mips "/"show mips " commands. This will eventually be
5068 used for all MIPS-specific commands. */
5069
a5ea2558 5070static void
acdb74a0 5071show_mips_command (char *args, int from_tty)
a5ea2558
AC
5072{
5073 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
5074}
5075
a5ea2558 5076static void
acdb74a0 5077set_mips_command (char *args, int from_tty)
a5ea2558
AC
5078{
5079 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
5080 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5081}
5082
c906108c
SS
5083/* Commands to show/set the MIPS FPU type. */
5084
c906108c 5085static void
acdb74a0 5086show_mipsfpu_command (char *args, int from_tty)
c906108c 5087{
c906108c
SS
5088 char *fpu;
5089 switch (MIPS_FPU_TYPE)
5090 {
5091 case MIPS_FPU_SINGLE:
5092 fpu = "single-precision";
5093 break;
5094 case MIPS_FPU_DOUBLE:
5095 fpu = "double-precision";
5096 break;
5097 case MIPS_FPU_NONE:
5098 fpu = "absent (none)";
5099 break;
93d56215
AC
5100 default:
5101 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
5102 }
5103 if (mips_fpu_type_auto)
5104 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5105 fpu);
5106 else
5107 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5108 fpu);
5109}
5110
5111
c906108c 5112static void
acdb74a0 5113set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
5114{
5115 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5116 show_mipsfpu_command (args, from_tty);
5117}
5118
c906108c 5119static void
acdb74a0 5120set_mipsfpu_single_command (char *args, int from_tty)
c906108c 5121{
8d5838b5
AC
5122 struct gdbarch_info info;
5123 gdbarch_info_init (&info);
c906108c
SS
5124 mips_fpu_type = MIPS_FPU_SINGLE;
5125 mips_fpu_type_auto = 0;
8d5838b5
AC
5126 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
5127 instead of relying on globals. Doing that would let generic code
5128 handle the search for this specific architecture. */
5129 if (!gdbarch_update_p (info))
5130 internal_error (__FILE__, __LINE__, "set mipsfpu failed");
c906108c
SS
5131}
5132
c906108c 5133static void
acdb74a0 5134set_mipsfpu_double_command (char *args, int from_tty)
c906108c 5135{
8d5838b5
AC
5136 struct gdbarch_info info;
5137 gdbarch_info_init (&info);
c906108c
SS
5138 mips_fpu_type = MIPS_FPU_DOUBLE;
5139 mips_fpu_type_auto = 0;
8d5838b5
AC
5140 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
5141 instead of relying on globals. Doing that would let generic code
5142 handle the search for this specific architecture. */
5143 if (!gdbarch_update_p (info))
5144 internal_error (__FILE__, __LINE__, "set mipsfpu failed");
c906108c
SS
5145}
5146
c906108c 5147static void
acdb74a0 5148set_mipsfpu_none_command (char *args, int from_tty)
c906108c 5149{
8d5838b5
AC
5150 struct gdbarch_info info;
5151 gdbarch_info_init (&info);
c906108c
SS
5152 mips_fpu_type = MIPS_FPU_NONE;
5153 mips_fpu_type_auto = 0;
8d5838b5
AC
5154 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
5155 instead of relying on globals. Doing that would let generic code
5156 handle the search for this specific architecture. */
5157 if (!gdbarch_update_p (info))
5158 internal_error (__FILE__, __LINE__, "set mipsfpu failed");
c906108c
SS
5159}
5160
c906108c 5161static void
acdb74a0 5162set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
5163{
5164 mips_fpu_type_auto = 1;
5165}
5166
c906108c 5167/* Attempt to identify the particular processor model by reading the
691c0433
AC
5168 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
5169 the relevant processor still exists (it dates back to '94) and
5170 secondly this is not the way to do this. The processor type should
5171 be set by forcing an architecture change. */
c906108c 5172
691c0433
AC
5173void
5174deprecated_mips_set_processor_regs_hack (void)
c906108c 5175{
691c0433 5176 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
5177 CORE_ADDR prid;
5178
5179 prid = read_register (PRID_REGNUM);
5180
5181 if ((prid & ~0xf) == 0x700)
691c0433 5182 tdep->mips_processor_reg_names = mips_r3041_reg_names;
c906108c
SS
5183}
5184
5185/* Just like reinit_frame_cache, but with the right arguments to be
5186 callable as an sfunc. */
5187
5188static void
acdb74a0
AC
5189reinit_frame_cache_sfunc (char *args, int from_tty,
5190 struct cmd_list_element *c)
c906108c
SS
5191{
5192 reinit_frame_cache ();
5193}
5194
a89aa300
AC
5195static int
5196gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 5197{
e5ab0dce 5198 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
5199 mips_extra_func_info_t proc_desc;
5200
5201 /* Search for the function containing this address. Set the low bit
5202 of the address when searching, in case we were given an even address
5203 that is the start of a 16-bit function. If we didn't do this,
5204 the search would fail because the symbol table says the function
5205 starts at an odd address, i.e. 1 byte past the given address. */
5206 memaddr = ADDR_BITS_REMOVE (memaddr);
95404a3e 5207 proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
c906108c
SS
5208
5209 /* Make an attempt to determine if this is a 16-bit function. If
5210 the procedure descriptor exists and the address therein is odd,
5211 it's definitely a 16-bit function. Otherwise, we have to just
5212 guess that if the address passed in is odd, it's 16-bits. */
d31431ed
AC
5213 /* FIXME: cagney/2003-06-26: Is this even necessary? The
5214 disassembler needs to be able to locally determine the ISA, and
5215 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
5216 work. */
c906108c 5217 if (proc_desc)
d31431ed
AC
5218 {
5219 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
5220 info->mach = bfd_mach_mips16;
5221 }
c906108c 5222 else
d31431ed
AC
5223 {
5224 if (pc_is_mips16 (memaddr))
5225 info->mach = bfd_mach_mips16;
5226 }
c906108c
SS
5227
5228 /* Round down the instruction address to the appropriate boundary. */
65c11066 5229 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 5230
e5ab0dce
AC
5231 /* Set the disassembler options. */
5232 if (tdep->mips_abi == MIPS_ABI_N32
5233 || tdep->mips_abi == MIPS_ABI_N64)
5234 {
5235 /* Set up the disassembler info, so that we get the right
5236 register names from libopcodes. */
5237 if (tdep->mips_abi == MIPS_ABI_N32)
5238 info->disassembler_options = "gpr-names=n32";
5239 else
5240 info->disassembler_options = "gpr-names=64";
5241 info->flavour = bfd_target_elf_flavour;
5242 }
5243 else
5244 /* This string is not recognized explicitly by the disassembler,
5245 but it tells the disassembler to not try to guess the ABI from
5246 the bfd elf headers, such that, if the user overrides the ABI
5247 of a program linked as NewABI, the disassembly will follow the
5248 register naming conventions specified by the user. */
5249 info->disassembler_options = "gpr-names=32";
5250
c906108c 5251 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 5252 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5253 return print_insn_big_mips (memaddr, info);
5254 else
5255 return print_insn_little_mips (memaddr, info);
5256}
5257
c906108c
SS
5258/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5259 counter value to determine whether a 16- or 32-bit breakpoint should be
5260 used. It returns a pointer to a string of bytes that encode a breakpoint
5261 instruction, stores the length of the string to *lenptr, and adjusts pc
5262 (if necessary) to point to the actual memory location where the
5263 breakpoint should be inserted. */
5264
f7ab6ec6 5265static const unsigned char *
acdb74a0 5266mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c 5267{
d7449b42 5268 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5269 {
5270 if (pc_is_mips16 (*pcptr))
5271 {
aaab4dba 5272 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
95404a3e 5273 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 5274 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
5275 return mips16_big_breakpoint;
5276 }
5277 else
5278 {
aaab4dba
AC
5279 /* The IDT board uses an unusual breakpoint value, and
5280 sometimes gets confused when it sees the usual MIPS
5281 breakpoint instruction. */
5282 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5283 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5284 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
c906108c 5285
c5aa993b 5286 *lenptr = sizeof (big_breakpoint);
c906108c
SS
5287
5288 if (strcmp (target_shortname, "mips") == 0)
5289 return idt_big_breakpoint;
5290 else if (strcmp (target_shortname, "ddb") == 0
5291 || strcmp (target_shortname, "pmon") == 0
5292 || strcmp (target_shortname, "lsi") == 0)
5293 return pmon_big_breakpoint;
5294 else
5295 return big_breakpoint;
5296 }
5297 }
5298 else
5299 {
5300 if (pc_is_mips16 (*pcptr))
5301 {
aaab4dba 5302 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
95404a3e 5303 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 5304 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
5305 return mips16_little_breakpoint;
5306 }
5307 else
5308 {
aaab4dba
AC
5309 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5310 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5311 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
c906108c 5312
c5aa993b 5313 *lenptr = sizeof (little_breakpoint);
c906108c
SS
5314
5315 if (strcmp (target_shortname, "mips") == 0)
5316 return idt_little_breakpoint;
5317 else if (strcmp (target_shortname, "ddb") == 0
5318 || strcmp (target_shortname, "pmon") == 0
5319 || strcmp (target_shortname, "lsi") == 0)
5320 return pmon_little_breakpoint;
5321 else
5322 return little_breakpoint;
5323 }
5324 }
5325}
5326
5327/* If PC is in a mips16 call or return stub, return the address of the target
5328 PC, which is either the callee or the caller. There are several
5329 cases which must be handled:
5330
5331 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 5332 target PC is in $31 ($ra).
c906108c 5333 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 5334 and the target PC is in $2.
c906108c 5335 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5336 before the jal instruction, this is effectively a call stub
5337 and the the target PC is in $2. Otherwise this is effectively
5338 a return stub and the target PC is in $18.
c906108c
SS
5339
5340 See the source code for the stubs in gcc/config/mips/mips16.S for
5341 gory details.
5342
5343 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 5344 */
c906108c 5345
757a7cc6 5346static CORE_ADDR
acdb74a0 5347mips_skip_stub (CORE_ADDR pc)
c906108c
SS
5348{
5349 char *name;
5350 CORE_ADDR start_addr;
5351
5352 /* Find the starting address and name of the function containing the PC. */
5353 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5354 return 0;
5355
5356 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5357 target PC is in $31 ($ra). */
5358 if (strcmp (name, "__mips16_ret_sf") == 0
5359 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 5360 return read_signed_register (RA_REGNUM);
c906108c
SS
5361
5362 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5363 {
5364 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5365 and the target PC is in $2. */
5366 if (name[19] >= '0' && name[19] <= '9')
6c997a34 5367 return read_signed_register (2);
c906108c
SS
5368
5369 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5370 before the jal instruction, this is effectively a call stub
5371 and the the target PC is in $2. Otherwise this is effectively
5372 a return stub and the target PC is in $18. */
c906108c
SS
5373 else if (name[19] == 's' || name[19] == 'd')
5374 {
5375 if (pc == start_addr)
5376 {
5377 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
5378 stub. Such a stub for a function bar might have a name
5379 like __fn_stub_bar, and might look like this:
5380 mfc1 $4,$f13
5381 mfc1 $5,$f12
5382 mfc1 $6,$f15
5383 mfc1 $7,$f14
5384 la $1,bar (becomes a lui/addiu pair)
5385 jr $1
5386 So scan down to the lui/addi and extract the target
5387 address from those two instructions. */
c906108c 5388
6c997a34 5389 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
5390 t_inst inst;
5391 int i;
5392
5393 /* See if the name of the target function is __fn_stub_*. */
5394 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5395 return target_pc;
5396 if (strncmp (name, "__fn_stub_", 10) != 0
5397 && strcmp (name, "etext") != 0
5398 && strcmp (name, "_etext") != 0)
5399 return target_pc;
5400
5401 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
5402 The limit on the search is arbitrarily set to 20
5403 instructions. FIXME. */
c906108c
SS
5404 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5405 {
c5aa993b
JM
5406 inst = mips_fetch_instruction (target_pc);
5407 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5408 pc = (inst << 16) & 0xffff0000; /* high word */
5409 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5410 return pc | (inst & 0xffff); /* low word */
c906108c
SS
5411 }
5412
5413 /* Couldn't find the lui/addui pair, so return stub address. */
5414 return target_pc;
5415 }
5416 else
5417 /* This is the 'return' part of a call stub. The return
5418 address is in $r18. */
6c997a34 5419 return read_signed_register (18);
c906108c
SS
5420 }
5421 }
c5aa993b 5422 return 0; /* not a stub */
c906108c
SS
5423}
5424
5425
5426/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5427 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5428
757a7cc6 5429static int
acdb74a0 5430mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
5431{
5432 CORE_ADDR start_addr;
5433
5434 /* Find the starting address of the function containing the PC. If the
5435 caller didn't give us a name, look it up at the same time. */
5436 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5437 return 0;
5438
5439 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5440 {
5441 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5442 if (name[19] >= '0' && name[19] <= '9')
5443 return 1;
5444 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 5445 before the jal instruction, this is effectively a call stub. */
c906108c
SS
5446 else if (name[19] == 's' || name[19] == 'd')
5447 return pc == start_addr;
5448 }
5449
c5aa993b 5450 return 0; /* not a stub */
c906108c
SS
5451}
5452
5453
5454/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5455 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5456
e41b17f0 5457static int
acdb74a0 5458mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
5459{
5460 CORE_ADDR start_addr;
5461
5462 /* Find the starting address of the function containing the PC. */
5463 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5464 return 0;
5465
5466 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5467 if (strcmp (name, "__mips16_ret_sf") == 0
5468 || strcmp (name, "__mips16_ret_df") == 0)
5469 return 1;
5470
5471 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 5472 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
5473 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5474 && (name[19] == 's' || name[19] == 'd')
5475 && pc != start_addr)
5476 return 1;
5477
c5aa993b 5478 return 0; /* not a stub */
c906108c
SS
5479}
5480
5481
5482/* Return non-zero if the PC is in a library helper function that should
5483 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5484
5485int
acdb74a0 5486mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
5487{
5488 char *name;
5489
5490 /* Find the starting address and name of the function containing the PC. */
5491 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5492 return 0;
5493
5494 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5495 that we want to ignore. */
5496 return (strcmp (name, "__mips16_ret_sf") == 0
5497 || strcmp (name, "__mips16_ret_df") == 0);
5498}
5499
5500
47a8d4ba
AC
5501/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5502 the register stored on the stack (32) is different to its real raw
5503 size (64). The below ensures that registers are fetched from the
5504 stack using their ABI size and then stored into the RAW_BUFFER
5505 using their raw size.
5506
5507 The alternative to adding this function would be to add an ABI
5508 macro - REGISTER_STACK_SIZE(). */
5509
5510static void
acdb74a0 5511mips_get_saved_register (char *raw_buffer,
795e1e11 5512 int *optimizedp,
acdb74a0
AC
5513 CORE_ADDR *addrp,
5514 struct frame_info *frame,
5515 int regnum,
795e1e11 5516 enum lval_type *lvalp)
47a8d4ba 5517{
795e1e11
AC
5518 CORE_ADDR addrx;
5519 enum lval_type lvalx;
5520 int optimizedx;
6e51443a 5521 int realnumx;
47a8d4ba 5522
a4b8ebc8
AC
5523 /* Always a pseudo. */
5524 gdb_assert (regnum >= NUM_REGS);
47a8d4ba 5525
795e1e11
AC
5526 /* Make certain that all needed parameters are present. */
5527 if (addrp == NULL)
5528 addrp = &addrx;
5529 if (lvalp == NULL)
5530 lvalp = &lvalx;
5531 if (optimizedp == NULL)
5532 optimizedp = &optimizedx;
a4b8ebc8
AC
5533
5534 if ((regnum % NUM_REGS) == SP_REGNUM)
5535 /* The SP_REGNUM is special, its value is stored in saved_regs.
5536 In fact, it is so special that it can even only be fetched
5537 using a raw register number! Once this code as been converted
5538 to frame-unwind the problem goes away. */
5539 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5540 regnum % NUM_REGS, optimizedp, lvalp, addrp,
5541 &realnumx, raw_buffer);
5542 else
5543 /* Get it from the next frame. */
5544 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5545 regnum, optimizedp, lvalp, addrp,
5546 &realnumx, raw_buffer);
47a8d4ba 5547}
2acceee2 5548
f7b9e9fc
AC
5549/* Immediately after a function call, return the saved pc.
5550 Can't always go through the frames for this because on some machines
5551 the new frame is not set up until the new function executes
5552 some instructions. */
5553
5554static CORE_ADDR
5555mips_saved_pc_after_call (struct frame_info *frame)
5556{
6c997a34 5557 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
5558}
5559
5560
a4b8ebc8
AC
5561/* Convert a dbx stab register number (from `r' declaration) to a GDB
5562 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
5563
5564static int
5565mips_stab_reg_to_regnum (int num)
5566{
a4b8ebc8 5567 int regnum;
2f38ef89 5568 if (num >= 0 && num < 32)
a4b8ebc8 5569 regnum = num;
2f38ef89 5570 else if (num >= 38 && num < 70)
56cea623 5571 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
040b99fd 5572 else if (num == 70)
56cea623 5573 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 5574 else if (num == 71)
56cea623 5575 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 5576 else
a4b8ebc8
AC
5577 /* This will hopefully (eventually) provoke a warning. Should
5578 we be calling complaint() here? */
5579 return NUM_REGS + NUM_PSEUDO_REGS;
5580 return NUM_REGS + regnum;
88c72b7d
AC
5581}
5582
2f38ef89 5583
a4b8ebc8
AC
5584/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5585 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
5586
5587static int
2f38ef89 5588mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 5589{
a4b8ebc8 5590 int regnum;
2f38ef89 5591 if (num >= 0 && num < 32)
a4b8ebc8 5592 regnum = num;
2f38ef89 5593 else if (num >= 32 && num < 64)
56cea623 5594 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
040b99fd 5595 else if (num == 64)
56cea623 5596 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 5597 else if (num == 65)
56cea623 5598 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 5599 else
a4b8ebc8
AC
5600 /* This will hopefully (eventually) provoke a warning. Should we
5601 be calling complaint() here? */
5602 return NUM_REGS + NUM_PSEUDO_REGS;
5603 return NUM_REGS + regnum;
5604}
5605
5606static int
5607mips_register_sim_regno (int regnum)
5608{
5609 /* Only makes sense to supply raw registers. */
5610 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
5611 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5612 decide if it is valid. Should instead define a standard sim/gdb
5613 register numbering scheme. */
5614 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
5615 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
5616 return regnum;
5617 else
5618 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
5619}
5620
2f38ef89 5621
fc0c74b1
AC
5622/* Convert an integer into an address. By first converting the value
5623 into a pointer and then extracting it signed, the address is
5624 guarenteed to be correctly sign extended. */
5625
5626static CORE_ADDR
5627mips_integer_to_address (struct type *type, void *buf)
5628{
5629 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5630 LONGEST val = unpack_long (type, buf);
5631 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5632 return extract_signed_integer (tmp,
5633 TYPE_LENGTH (builtin_type_void_data_ptr));
5634}
5635
caaa3122
DJ
5636static void
5637mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5638{
5639 enum mips_abi *abip = (enum mips_abi *) obj;
5640 const char *name = bfd_get_section_name (abfd, sect);
5641
5642 if (*abip != MIPS_ABI_UNKNOWN)
5643 return;
5644
5645 if (strncmp (name, ".mdebug.", 8) != 0)
5646 return;
5647
5648 if (strcmp (name, ".mdebug.abi32") == 0)
5649 *abip = MIPS_ABI_O32;
5650 else if (strcmp (name, ".mdebug.abiN32") == 0)
5651 *abip = MIPS_ABI_N32;
62a49b2c 5652 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 5653 *abip = MIPS_ABI_N64;
caaa3122
DJ
5654 else if (strcmp (name, ".mdebug.abiO64") == 0)
5655 *abip = MIPS_ABI_O64;
5656 else if (strcmp (name, ".mdebug.eabi32") == 0)
5657 *abip = MIPS_ABI_EABI32;
5658 else if (strcmp (name, ".mdebug.eabi64") == 0)
5659 *abip = MIPS_ABI_EABI64;
5660 else
5661 warning ("unsupported ABI %s.", name + 8);
5662}
5663
2e4ebe70
DJ
5664static enum mips_abi
5665global_mips_abi (void)
5666{
5667 int i;
5668
5669 for (i = 0; mips_abi_strings[i] != NULL; i++)
5670 if (mips_abi_strings[i] == mips_abi_string)
5671 return (enum mips_abi) i;
5672
5673 internal_error (__FILE__, __LINE__,
5674 "unknown ABI string");
5675}
5676
c2d11a7d 5677static struct gdbarch *
acdb74a0
AC
5678mips_gdbarch_init (struct gdbarch_info info,
5679 struct gdbarch_list *arches)
c2d11a7d 5680{
c2d11a7d
JM
5681 struct gdbarch *gdbarch;
5682 struct gdbarch_tdep *tdep;
5683 int elf_flags;
2e4ebe70 5684 enum mips_abi mips_abi, found_abi, wanted_abi;
a4b8ebc8 5685 int num_regs;
8d5838b5 5686 enum mips_fpu_type fpu_type;
c2d11a7d 5687
ec03c1ac
AC
5688 /* First of all, extract the elf_flags, if available. */
5689 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5690 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
5691 else if (arches != NULL)
5692 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
5693 else
5694 elf_flags = 0;
5695 if (gdbarch_debug)
5696 fprintf_unfiltered (gdb_stdlog,
5697 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5698 elf_flags);
c2d11a7d 5699
102182a9 5700 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5701 switch ((elf_flags & EF_MIPS_ABI))
5702 {
5703 case E_MIPS_ABI_O32:
ec03c1ac 5704 found_abi = MIPS_ABI_O32;
0dadbba0
AC
5705 break;
5706 case E_MIPS_ABI_O64:
ec03c1ac 5707 found_abi = MIPS_ABI_O64;
0dadbba0
AC
5708 break;
5709 case E_MIPS_ABI_EABI32:
ec03c1ac 5710 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
5711 break;
5712 case E_MIPS_ABI_EABI64:
ec03c1ac 5713 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5714 break;
5715 default:
acdb74a0 5716 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 5717 found_abi = MIPS_ABI_N32;
acdb74a0 5718 else
ec03c1ac 5719 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5720 break;
5721 }
acdb74a0 5722
caaa3122 5723 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
5724 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5725 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 5726
ec03c1ac
AC
5727 /* If we have no usefu BFD information, use the ABI from the last
5728 MIPS architecture (if there is one). */
5729 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5730 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 5731
32a6503c 5732 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 5733 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
5734 && info.bfd_arch_info != NULL
5735 && info.bfd_arch_info->arch == bfd_arch_mips)
5736 {
5737 switch (info.bfd_arch_info->mach)
5738 {
5739 case bfd_mach_mips3900:
ec03c1ac 5740 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
5741 break;
5742 case bfd_mach_mips4100:
5743 case bfd_mach_mips5000:
ec03c1ac 5744 found_abi = MIPS_ABI_EABI64;
bf64bfd6 5745 break;
1d06468c
EZ
5746 case bfd_mach_mips8000:
5747 case bfd_mach_mips10000:
32a6503c
KB
5748 /* On Irix, ELF64 executables use the N64 ABI. The
5749 pseudo-sections which describe the ABI aren't present
5750 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5751 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5752 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 5753 found_abi = MIPS_ABI_N64;
28d169de 5754 else
ec03c1ac 5755 found_abi = MIPS_ABI_N32;
1d06468c 5756 break;
bf64bfd6
AC
5757 }
5758 }
2e4ebe70 5759
ec03c1ac
AC
5760 if (gdbarch_debug)
5761 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5762 found_abi);
5763
5764 /* What has the user specified from the command line? */
5765 wanted_abi = global_mips_abi ();
5766 if (gdbarch_debug)
5767 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5768 wanted_abi);
2e4ebe70
DJ
5769
5770 /* Now that we have found what the ABI for this binary would be,
5771 check whether the user is overriding it. */
2e4ebe70
DJ
5772 if (wanted_abi != MIPS_ABI_UNKNOWN)
5773 mips_abi = wanted_abi;
ec03c1ac
AC
5774 else if (found_abi != MIPS_ABI_UNKNOWN)
5775 mips_abi = found_abi;
5776 else
5777 mips_abi = MIPS_ABI_O32;
5778 if (gdbarch_debug)
5779 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5780 mips_abi);
2e4ebe70 5781
ec03c1ac 5782 /* Also used when doing an architecture lookup. */
4b9b3959 5783 if (gdbarch_debug)
ec03c1ac
AC
5784 fprintf_unfiltered (gdb_stdlog,
5785 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5786 mips64_transfers_32bit_regs_p);
0dadbba0 5787
8d5838b5
AC
5788 /* Determine the MIPS FPU type. */
5789 if (!mips_fpu_type_auto)
5790 fpu_type = mips_fpu_type;
5791 else if (info.bfd_arch_info != NULL
5792 && info.bfd_arch_info->arch == bfd_arch_mips)
5793 switch (info.bfd_arch_info->mach)
5794 {
5795 case bfd_mach_mips3900:
5796 case bfd_mach_mips4100:
5797 case bfd_mach_mips4111:
5798 fpu_type = MIPS_FPU_NONE;
5799 break;
5800 case bfd_mach_mips4650:
5801 fpu_type = MIPS_FPU_SINGLE;
5802 break;
5803 default:
5804 fpu_type = MIPS_FPU_DOUBLE;
5805 break;
5806 }
5807 else if (arches != NULL)
5808 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5809 else
5810 fpu_type = MIPS_FPU_DOUBLE;
5811 if (gdbarch_debug)
5812 fprintf_unfiltered (gdb_stdlog,
5813 "mips_gdbarch_init: fpu_type = %d\n",
5814 fpu_type);
5815
c2d11a7d
JM
5816 /* try to find a pre-existing architecture */
5817 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5818 arches != NULL;
5819 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5820 {
5821 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5822 using. */
9103eae0 5823 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5824 continue;
9103eae0 5825 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5826 continue;
719ec221
AC
5827 /* Need to be pedantic about which register virtual size is
5828 used. */
5829 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5830 != mips64_transfers_32bit_regs_p)
5831 continue;
8d5838b5
AC
5832 /* Be pedantic about which FPU is selected. */
5833 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5834 continue;
4be87837 5835 return arches->gdbarch;
c2d11a7d
JM
5836 }
5837
102182a9 5838 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5839 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5840 gdbarch = gdbarch_alloc (&info, tdep);
5841 tdep->elf_flags = elf_flags;
719ec221 5842 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
5843 tdep->found_abi = found_abi;
5844 tdep->mips_abi = mips_abi;
8d5838b5 5845 tdep->mips_fpu_type = fpu_type;
c2d11a7d 5846
102182a9 5847 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5848 set_gdbarch_short_bit (gdbarch, 16);
5849 set_gdbarch_int_bit (gdbarch, 32);
5850 set_gdbarch_float_bit (gdbarch, 32);
5851 set_gdbarch_double_bit (gdbarch, 64);
5852 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
5853 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5854 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5855 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 5856
f7ab6ec6
MS
5857 set_gdbarch_elf_make_msymbol_special (gdbarch,
5858 mips_elf_make_msymbol_special);
5859
16e109ca 5860 /* Fill in the OS dependant register numbers and names. */
56cea623 5861 {
16e109ca 5862 const char **reg_names;
56cea623
AC
5863 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5864 struct mips_regnum);
56cea623
AC
5865 if (info.osabi == GDB_OSABI_IRIX)
5866 {
5867 regnum->fp0 = 32;
5868 regnum->pc = 64;
5869 regnum->cause = 65;
5870 regnum->badvaddr = 66;
5871 regnum->hi = 67;
5872 regnum->lo = 68;
5873 regnum->fp_control_status = 69;
5874 regnum->fp_implementation_revision = 70;
5875 num_regs = 71;
16e109ca 5876 reg_names = mips_irix_reg_names;
56cea623
AC
5877 }
5878 else
5879 {
5880 regnum->lo = MIPS_EMBED_LO_REGNUM;
5881 regnum->hi = MIPS_EMBED_HI_REGNUM;
5882 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5883 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5884 regnum->pc = MIPS_EMBED_PC_REGNUM;
5885 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5886 regnum->fp_control_status = 70;
5887 regnum->fp_implementation_revision = 71;
5888 num_regs = 90;
16e109ca
AC
5889 if (info.bfd_arch_info != NULL
5890 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5891 reg_names = mips_tx39_reg_names;
5892 else
5893 reg_names = mips_generic_reg_names;
56cea623
AC
5894 }
5895 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
5896 replaced by read_pc? */
5897 set_gdbarch_pc_regnum (gdbarch, regnum->pc);
5898 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5899 set_gdbarch_num_regs (gdbarch, num_regs);
5900 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
16e109ca
AC
5901 set_gdbarch_register_name (gdbarch, mips_register_name);
5902 tdep->mips_processor_reg_names = reg_names;
5903 tdep->regnum = regnum;
56cea623 5904 }
fe29b929 5905
0dadbba0 5906 switch (mips_abi)
c2d11a7d 5907 {
0dadbba0 5908 case MIPS_ABI_O32:
25ab4790 5909 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 5910 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
a5ea2558 5911 tdep->mips_default_saved_regsize = 4;
0dadbba0 5912 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5913 tdep->mips_fp_register_double = 0;
acdb74a0 5914 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
56cea623 5915 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 5916 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5917 set_gdbarch_long_bit (gdbarch, 32);
5918 set_gdbarch_ptr_bit (gdbarch, 32);
5919 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5920 set_gdbarch_deprecated_reg_struct_has_addr
5921 (gdbarch, mips_o32_reg_struct_has_addr);
c2d11a7d 5922 break;
0dadbba0 5923 case MIPS_ABI_O64:
25ab4790 5924 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
ebba8386 5925 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
46cac009 5926 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
a5ea2558 5927 tdep->mips_default_saved_regsize = 8;
0dadbba0 5928 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5929 tdep->mips_fp_register_double = 1;
acdb74a0 5930 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
56cea623 5931 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 5932 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5933 set_gdbarch_long_bit (gdbarch, 32);
5934 set_gdbarch_ptr_bit (gdbarch, 32);
5935 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5936 set_gdbarch_deprecated_reg_struct_has_addr
5937 (gdbarch, mips_o32_reg_struct_has_addr);
b060cbea 5938 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
c2d11a7d 5939 break;
0dadbba0 5940 case MIPS_ABI_EABI32:
25ab4790 5941 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
ebba8386 5942 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5943 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5944 tdep->mips_default_saved_regsize = 4;
0dadbba0 5945 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5946 tdep->mips_fp_register_double = 0;
acdb74a0 5947 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
56cea623 5948 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5949 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5950 set_gdbarch_long_bit (gdbarch, 32);
5951 set_gdbarch_ptr_bit (gdbarch, 32);
5952 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5953 set_gdbarch_deprecated_reg_struct_has_addr
5954 (gdbarch, mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5955 set_gdbarch_use_struct_convention (gdbarch,
5956 mips_eabi_use_struct_convention);
c2d11a7d 5957 break;
0dadbba0 5958 case MIPS_ABI_EABI64:
25ab4790 5959 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
ebba8386 5960 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5961 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5962 tdep->mips_default_saved_regsize = 8;
0dadbba0 5963 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5964 tdep->mips_fp_register_double = 1;
acdb74a0 5965 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
56cea623 5966 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5967 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5968 set_gdbarch_long_bit (gdbarch, 64);
5969 set_gdbarch_ptr_bit (gdbarch, 64);
5970 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5971 set_gdbarch_deprecated_reg_struct_has_addr
5972 (gdbarch, mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5973 set_gdbarch_use_struct_convention (gdbarch,
5974 mips_eabi_use_struct_convention);
c2d11a7d 5975 break;
0dadbba0 5976 case MIPS_ABI_N32:
25ab4790 5977 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5978 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
63db5580 5979 tdep->mips_default_saved_regsize = 8;
0dadbba0
AC
5980 tdep->mips_default_stack_argsize = 8;
5981 tdep->mips_fp_register_double = 1;
acdb74a0 5982 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
56cea623 5983 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5984 tdep->default_mask_address_p = 0;
0dadbba0
AC
5985 set_gdbarch_long_bit (gdbarch, 32);
5986 set_gdbarch_ptr_bit (gdbarch, 32);
5987 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5988 set_gdbarch_deprecated_reg_struct_has_addr
5989 (gdbarch, mips_n32n64_reg_struct_has_addr);
28d169de
KB
5990 break;
5991 case MIPS_ABI_N64:
25ab4790 5992 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5993 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
28d169de
KB
5994 tdep->mips_default_saved_regsize = 8;
5995 tdep->mips_default_stack_argsize = 8;
5996 tdep->mips_fp_register_double = 1;
5997 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
56cea623 5998 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
5999 tdep->default_mask_address_p = 0;
6000 set_gdbarch_long_bit (gdbarch, 64);
6001 set_gdbarch_ptr_bit (gdbarch, 64);
6002 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
6003 set_gdbarch_deprecated_reg_struct_has_addr
6004 (gdbarch, mips_n32n64_reg_struct_has_addr);
0dadbba0 6005 break;
c2d11a7d 6006 default:
2e4ebe70
DJ
6007 internal_error (__FILE__, __LINE__,
6008 "unknown ABI in switch");
c2d11a7d
JM
6009 }
6010
a5ea2558
AC
6011 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
6012 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
6013 comment:
6014
6015 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
6016 flag in object files because to do so would make it impossible to
102182a9 6017 link with libraries compiled without "-gp32". This is
a5ea2558 6018 unnecessarily restrictive.
361d1df0 6019
a5ea2558
AC
6020 We could solve this problem by adding "-gp32" multilibs to gcc,
6021 but to set this flag before gcc is built with such multilibs will
6022 break too many systems.''
6023
6024 But even more unhelpfully, the default linker output target for
6025 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
6026 for 64-bit programs - you need to change the ABI to change this,
102182a9 6027 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
6028 this flag to detect 32-bit mode would do the wrong thing given
6029 the current gcc - it would make GDB treat these 64-bit programs
102182a9 6030 as 32-bit programs by default. */
a5ea2558 6031
6c997a34 6032 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d 6033 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
0ba6dca9 6034 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
bcb0cc15 6035 set_gdbarch_read_sp (gdbarch, mips_read_sp);
c2d11a7d 6036
102182a9
MS
6037 /* Add/remove bits from an address. The MIPS needs be careful to
6038 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
6039 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
6040
10312cc4 6041 /* There's a mess in stack frame creation. See comments in
2ca6c561
AC
6042 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
6043 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
10312cc4 6044
102182a9 6045 /* Map debug register numbers onto internal register numbers. */
88c72b7d 6046 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
2f38ef89
KB
6047 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6048 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6049 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 6050 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 6051
c2d11a7d 6052 /* Initialize a frame */
e0f7ec59 6053 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
e9582e71 6054 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
c2d11a7d
JM
6055
6056 /* MIPS version of CALL_DUMMY */
6057
9710e734
AC
6058 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
6059 replaced by a command, and all targets will default to on stack
6060 (regardless of the stack's execute status). */
6061 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
749b82f6 6062 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
dc604539 6063 set_gdbarch_frame_align (gdbarch, mips_frame_align);
a59fe496 6064 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
d05285fa 6065
618ce49f 6066 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
b5d1566e
MS
6067 set_gdbarch_frameless_function_invocation (gdbarch,
6068 generic_frameless_function_invocation_not);
8bedc050 6069 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
b5d1566e
MS
6070 set_gdbarch_frame_args_skip (gdbarch, 0);
6071
129c1cd6 6072 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 6073
f7b9e9fc
AC
6074 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6075 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6076 set_gdbarch_decr_pc_after_break (gdbarch, 0);
f7b9e9fc
AC
6077
6078 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6913c89a 6079 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
f7b9e9fc 6080
fc0c74b1
AC
6081 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6082 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6083 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 6084
102182a9
MS
6085 set_gdbarch_function_start_offset (gdbarch, 0);
6086
a4b8ebc8 6087 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 6088
e11c53d2 6089 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
102182a9 6090 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
bf1f5b4c 6091
e5ab0dce
AC
6092 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
6093
3a3bc038
AC
6094 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
6095 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
6096 need to all be folded into the target vector. Since they are
6097 being used as guards for STOPPED_BY_WATCHPOINT, why not have
6098 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
6099 is sitting on? */
6100 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6101
70f80edf 6102 /* Hook in OS ABI-specific overrides, if they have been registered. */
4be87837 6103 gdbarch_init_osabi (info, gdbarch);
70f80edf 6104
2f1488ce
MS
6105 set_gdbarch_extract_struct_value_address (gdbarch,
6106 mips_extract_struct_value_address);
757a7cc6
MS
6107
6108 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6109
6110 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
e41b17f0 6111 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
757a7cc6 6112
4b9b3959
AC
6113 return gdbarch;
6114}
6115
2e4ebe70
DJ
6116static void
6117mips_abi_update (char *ignore_args, int from_tty,
6118 struct cmd_list_element *c)
6119{
6120 struct gdbarch_info info;
6121
6122 /* Force the architecture to update, and (if it's a MIPS architecture)
6123 mips_gdbarch_init will take care of the rest. */
6124 gdbarch_info_init (&info);
6125 gdbarch_update_p (info);
6126}
6127
ad188201
KB
6128/* Print out which MIPS ABI is in use. */
6129
6130static void
6131show_mips_abi (char *ignore_args, int from_tty)
6132{
6133 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6134 printf_filtered (
6135 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6136 else
6137 {
6138 enum mips_abi global_abi = global_mips_abi ();
6139 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6140 const char *actual_abi_str = mips_abi_strings[actual_abi];
6141
6142 if (global_abi == MIPS_ABI_UNKNOWN)
6143 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6144 actual_abi_str);
6145 else if (global_abi == actual_abi)
6146 printf_filtered (
6147 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6148 actual_abi_str);
6149 else
6150 {
6151 /* Probably shouldn't happen... */
6152 printf_filtered (
6153 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6154 actual_abi_str,
6155 mips_abi_strings[global_abi]);
6156 }
6157 }
6158}
6159
4b9b3959
AC
6160static void
6161mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6162{
6163 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6164 if (tdep != NULL)
c2d11a7d 6165 {
acdb74a0
AC
6166 int ef_mips_arch;
6167 int ef_mips_32bitmode;
6168 /* determine the ISA */
6169 switch (tdep->elf_flags & EF_MIPS_ARCH)
6170 {
6171 case E_MIPS_ARCH_1:
6172 ef_mips_arch = 1;
6173 break;
6174 case E_MIPS_ARCH_2:
6175 ef_mips_arch = 2;
6176 break;
6177 case E_MIPS_ARCH_3:
6178 ef_mips_arch = 3;
6179 break;
6180 case E_MIPS_ARCH_4:
93d56215 6181 ef_mips_arch = 4;
acdb74a0
AC
6182 break;
6183 default:
93d56215 6184 ef_mips_arch = 0;
acdb74a0
AC
6185 break;
6186 }
6187 /* determine the size of a pointer */
6188 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
6189 fprintf_unfiltered (file,
6190 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 6191 tdep->elf_flags);
4b9b3959 6192 fprintf_unfiltered (file,
acdb74a0
AC
6193 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6194 ef_mips_32bitmode);
6195 fprintf_unfiltered (file,
6196 "mips_dump_tdep: ef_mips_arch = %d\n",
6197 ef_mips_arch);
6198 fprintf_unfiltered (file,
6199 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6200 tdep->mips_abi,
2e4ebe70 6201 mips_abi_strings[tdep->mips_abi]);
4014092b
AC
6202 fprintf_unfiltered (file,
6203 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
480d3dd2 6204 mips_mask_address_p (tdep),
4014092b 6205 tdep->default_mask_address_p);
c2d11a7d 6206 }
4b9b3959
AC
6207 fprintf_unfiltered (file,
6208 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6209 FP_REGISTER_DOUBLE);
6210 fprintf_unfiltered (file,
6211 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6212 MIPS_DEFAULT_FPU_TYPE,
6213 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6214 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6215 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6216 : "???"));
6217 fprintf_unfiltered (file,
6218 "mips_dump_tdep: MIPS_EABI = %d\n",
6219 MIPS_EABI);
4b9b3959
AC
6220 fprintf_unfiltered (file,
6221 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6222 MIPS_FPU_TYPE,
6223 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6224 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6225 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6226 : "???"));
4b9b3959
AC
6227 fprintf_unfiltered (file,
6228 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6229 FP_REGISTER_DOUBLE);
4b9b3959 6230 fprintf_unfiltered (file,
480d3dd2
AC
6231 "mips_dump_tdep: mips_stack_argsize() = %d\n",
6232 mips_stack_argsize (tdep));
2475bac3
AC
6233 fprintf_unfiltered (file,
6234 "mips_dump_tdep: A0_REGNUM = %d\n",
6235 A0_REGNUM);
6236 fprintf_unfiltered (file,
6237 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6238 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6239 fprintf_unfiltered (file,
6240 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6241 XSTRING (ATTACH_DETACH));
2475bac3
AC
6242 fprintf_unfiltered (file,
6243 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6244 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6245 fprintf_unfiltered (file,
6246 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6247 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
2475bac3
AC
6248 fprintf_unfiltered (file,
6249 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6250 FIRST_EMBED_REGNUM);
2475bac3
AC
6251 fprintf_unfiltered (file,
6252 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6253 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
6254 fprintf_unfiltered (file,
6255 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6256 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6257 fprintf_unfiltered (file,
6258 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6259 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
2475bac3
AC
6260 fprintf_unfiltered (file,
6261 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6262 LAST_EMBED_REGNUM);
2475bac3
AC
6263#ifdef MACHINE_CPROC_FP_OFFSET
6264 fprintf_unfiltered (file,
6265 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6266 MACHINE_CPROC_FP_OFFSET);
6267#endif
6268#ifdef MACHINE_CPROC_PC_OFFSET
6269 fprintf_unfiltered (file,
6270 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6271 MACHINE_CPROC_PC_OFFSET);
6272#endif
6273#ifdef MACHINE_CPROC_SP_OFFSET
6274 fprintf_unfiltered (file,
6275 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6276 MACHINE_CPROC_SP_OFFSET);
6277#endif
2475bac3
AC
6278 fprintf_unfiltered (file,
6279 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6280 MIPS16_INSTLEN);
2475bac3
AC
6281 fprintf_unfiltered (file,
6282 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6283 fprintf_unfiltered (file,
6284 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6285 fprintf_unfiltered (file,
6286 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6287 MIPS_INSTLEN);
6288 fprintf_unfiltered (file,
acdb74a0
AC
6289 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6290 MIPS_LAST_ARG_REGNUM,
6291 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
6292 fprintf_unfiltered (file,
6293 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6294 MIPS_NUMREGS);
2475bac3 6295 fprintf_unfiltered (file,
480d3dd2
AC
6296 "mips_dump_tdep: mips_saved_regsize() = %d\n",
6297 mips_saved_regsize (tdep));
2475bac3
AC
6298 fprintf_unfiltered (file,
6299 "mips_dump_tdep: PRID_REGNUM = %d\n",
6300 PRID_REGNUM);
2475bac3
AC
6301 fprintf_unfiltered (file,
6302 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6303 fprintf_unfiltered (file,
6304 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6305 fprintf_unfiltered (file,
6306 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6307 fprintf_unfiltered (file,
6308 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6309 fprintf_unfiltered (file,
6310 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6311 fprintf_unfiltered (file,
6312 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6313 fprintf_unfiltered (file,
6314 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6315 fprintf_unfiltered (file,
6316 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6317 fprintf_unfiltered (file,
6318 "mips_dump_tdep: PROC_PC_REG = function?\n");
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6321 fprintf_unfiltered (file,
6322 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6323 fprintf_unfiltered (file,
6324 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6325 fprintf_unfiltered (file,
6326 "mips_dump_tdep: PS_REGNUM = %d\n",
6327 PS_REGNUM);
2475bac3
AC
6328 fprintf_unfiltered (file,
6329 "mips_dump_tdep: RA_REGNUM = %d\n",
6330 RA_REGNUM);
2475bac3
AC
6331#ifdef SAVED_BYTES
6332 fprintf_unfiltered (file,
6333 "mips_dump_tdep: SAVED_BYTES = %d\n",
6334 SAVED_BYTES);
6335#endif
6336#ifdef SAVED_FP
6337 fprintf_unfiltered (file,
6338 "mips_dump_tdep: SAVED_FP = %d\n",
6339 SAVED_FP);
6340#endif
6341#ifdef SAVED_PC
6342 fprintf_unfiltered (file,
6343 "mips_dump_tdep: SAVED_PC = %d\n",
6344 SAVED_PC);
6345#endif
6346 fprintf_unfiltered (file,
6347 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6348 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6349 fprintf_unfiltered (file,
6350 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6351 fprintf_unfiltered (file,
6352 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6353 SIGFRAME_BASE);
6354 fprintf_unfiltered (file,
6355 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6356 SIGFRAME_FPREGSAVE_OFF);
6357 fprintf_unfiltered (file,
6358 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6359 SIGFRAME_PC_OFF);
6360 fprintf_unfiltered (file,
6361 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6362 SIGFRAME_REGSAVE_OFF);
2475bac3
AC
6363 fprintf_unfiltered (file,
6364 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6365 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6366 fprintf_unfiltered (file,
6367 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6368 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6369 fprintf_unfiltered (file,
b0ed3589
AC
6370 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6371 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
6372 fprintf_unfiltered (file,
6373 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6374 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6375#ifdef STACK_END_ADDR
6376 fprintf_unfiltered (file,
6377 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6378 STACK_END_ADDR);
6379#endif
6380 fprintf_unfiltered (file,
6381 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6382 XSTRING (STEP_SKIPS_DELAY (PC)));
6383 fprintf_unfiltered (file,
6384 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6385 STEP_SKIPS_DELAY_P);
6386 fprintf_unfiltered (file,
6387 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6388 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6389 fprintf_unfiltered (file,
6390 "mips_dump_tdep: T9_REGNUM = %d\n",
6391 T9_REGNUM);
6392 fprintf_unfiltered (file,
6393 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6394 fprintf_unfiltered (file,
6395 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6396 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6397 fprintf_unfiltered (file,
6398 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6399 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
2475bac3
AC
6400#ifdef TRACE_CLEAR
6401 fprintf_unfiltered (file,
6402 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6403 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6404#endif
6405#ifdef TRACE_FLAVOR
6406 fprintf_unfiltered (file,
6407 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6408 TRACE_FLAVOR);
6409#endif
6410#ifdef TRACE_FLAVOR_SIZE
6411 fprintf_unfiltered (file,
6412 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6413 TRACE_FLAVOR_SIZE);
6414#endif
6415#ifdef TRACE_SET
6416 fprintf_unfiltered (file,
6417 "mips_dump_tdep: TRACE_SET # %s\n",
6418 XSTRING (TRACE_SET (X,STATE)));
6419#endif
2475bac3
AC
6420#ifdef UNUSED_REGNUM
6421 fprintf_unfiltered (file,
6422 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6423 UNUSED_REGNUM);
6424#endif
6425 fprintf_unfiltered (file,
6426 "mips_dump_tdep: V0_REGNUM = %d\n",
6427 V0_REGNUM);
6428 fprintf_unfiltered (file,
6429 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6430 (long) VM_MIN_ADDRESS);
2475bac3
AC
6431 fprintf_unfiltered (file,
6432 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6433 ZERO_REGNUM);
6434 fprintf_unfiltered (file,
6435 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6436 _PROC_MAGIC_);
c2d11a7d
JM
6437}
6438
a78f21af
AC
6439extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6440
c906108c 6441void
acdb74a0 6442_initialize_mips_tdep (void)
c906108c
SS
6443{
6444 static struct cmd_list_element *mipsfpulist = NULL;
6445 struct cmd_list_element *c;
6446
2e4ebe70
DJ
6447 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6448 if (MIPS_ABI_LAST + 1
6449 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6450 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6451
4b9b3959 6452 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 6453
a5ea2558
AC
6454 /* Add root prefix command for all "set mips"/"show mips" commands */
6455 add_prefix_cmd ("mips", no_class, set_mips_command,
6456 "Various MIPS specific commands.",
6457 &setmipscmdlist, "set mips ", 0, &setlist);
6458
6459 add_prefix_cmd ("mips", no_class, show_mips_command,
6460 "Various MIPS specific commands.",
6461 &showmipscmdlist, "show mips ", 0, &showlist);
6462
6463 /* Allow the user to override the saved register size. */
6464 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
6465 class_obscure,
6466 size_enums,
6467 &mips_saved_regsize_string, "\
a5ea2558
AC
6468Set size of general purpose registers saved on the stack.\n\
6469This option can be set to one of:\n\
6470 32 - Force GDB to treat saved GP registers as 32-bit\n\
6471 64 - Force GDB to treat saved GP registers as 64-bit\n\
6472 auto - Allow GDB to use the target's default setting or autodetect the\n\
6473 saved GP register size from information contained in the executable.\n\
6474 (default: auto)",
1ed2a135 6475 &setmipscmdlist),
a5ea2558
AC
6476 &showmipscmdlist);
6477
d929b26f
AC
6478 /* Allow the user to override the argument stack size. */
6479 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6480 class_obscure,
6481 size_enums,
1ed2a135 6482 &mips_stack_argsize_string, "\
d929b26f
AC
6483Set the amount of stack space reserved for each argument.\n\
6484This option can be set to one of:\n\
6485 32 - Force GDB to allocate 32-bit chunks per argument\n\
6486 64 - Force GDB to allocate 64-bit chunks per argument\n\
6487 auto - Allow GDB to determine the correct setting from the current\n\
6488 target and executable (default)",
6489 &setmipscmdlist),
6490 &showmipscmdlist);
6491
2e4ebe70
DJ
6492 /* Allow the user to override the ABI. */
6493 c = add_set_enum_cmd
6494 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6495 "Set the ABI used by this program.\n"
6496 "This option can be set to one of:\n"
6497 " auto - the default ABI associated with the current binary\n"
6498 " o32\n"
6499 " o64\n"
6500 " n32\n"
f3a7b3a5 6501 " n64\n"
2e4ebe70
DJ
6502 " eabi32\n"
6503 " eabi64",
6504 &setmipscmdlist);
2e4ebe70 6505 set_cmd_sfunc (c, mips_abi_update);
ad188201
KB
6506 add_cmd ("abi", class_obscure, show_mips_abi,
6507 "Show ABI in use by MIPS target", &showmipscmdlist);
2e4ebe70 6508
c906108c
SS
6509 /* Let the user turn off floating point and set the fence post for
6510 heuristic_proc_start. */
6511
6512 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6513 "Set use of MIPS floating-point coprocessor.",
6514 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6515 add_cmd ("single", class_support, set_mipsfpu_single_command,
6516 "Select single-precision MIPS floating-point coprocessor.",
6517 &mipsfpulist);
6518 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 6519 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
6520 &mipsfpulist);
6521 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6522 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6523 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6524 add_cmd ("none", class_support, set_mipsfpu_none_command,
6525 "Select no MIPS floating-point coprocessor.",
6526 &mipsfpulist);
6527 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6528 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6529 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6530 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6531 "Select MIPS floating-point coprocessor automatically.",
6532 &mipsfpulist);
6533 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6534 "Show current use of MIPS floating-point coprocessor target.",
6535 &showlist);
6536
c906108c
SS
6537 /* We really would like to have both "0" and "unlimited" work, but
6538 command.c doesn't deal with that. So make it a var_zinteger
6539 because the user can always use "999999" or some such for unlimited. */
6540 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6541 (char *) &heuristic_fence_post,
6542 "\
6543Set the distance searched for the start of a function.\n\
6544If you are debugging a stripped executable, GDB needs to search through the\n\
6545program for the start of a function. This command sets the distance of the\n\
6546search. The only need to set it is when debugging a stripped executable.",
6547 &setlist);
6548 /* We need to throw away the frame cache when we set this, since it
6549 might change our ability to get backtraces. */
9f60d481 6550 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
6551 add_show_from_set (c, &showlist);
6552
6553 /* Allow the user to control whether the upper bits of 64-bit
6554 addresses should be zeroed. */
e9e68a56
AC
6555 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6556Set zeroing of upper 32 bits of 64-bit addresses.\n\
6557Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6558allow GDB to determine the correct value.\n", "\
6559Show zeroing of upper 32 bits of 64-bit addresses.",
6560 NULL, show_mask_address,
6561 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
6562
6563 /* Allow the user to control the size of 32 bit registers within the
6564 raw remote packet. */
719ec221
AC
6565 add_setshow_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
6566 var_boolean, &mips64_transfers_32bit_regs_p, "\
6567Set compatibility with 64-bit MIPS targets that transfer 32-bit quantities.\n\
6568Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6569that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
657064 bits for others. Use \"off\" to disable compatibility mode", "\
6571Show compatibility with 64-bit MIPS targets that transfer 32-bit quantities.\n\
43e526b9
JM
6572Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6573that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
657464 bits for others. Use \"off\" to disable compatibility mode",
719ec221
AC
6575 set_mips64_transfers_32bit_regs, NULL,
6576 &setlist, &showlist);
9ace0497
AC
6577
6578 /* Debug this files internals. */
6579 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6580 &mips_debug, "Set mips debugging.\n\
6581When non-zero, mips specific debugging is enabled.", &setdebuglist),
6582 &showdebuglist);
c906108c 6583}
This page took 0.842099 seconds and 4 git commands to generate.