Commit | Line | Data |
---|---|---|
7d9884b9 | 1 | /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger. |
a00dfa36 | 2 | Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998 |
0434c1a0 | 3 | Free Software Foundation, Inc. |
bd5635a1 RP |
4 | Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU |
5 | and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin. | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
361bf6ee | 9 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 10 | it under the terms of the GNU General Public License as published by |
361bf6ee JG |
11 | the Free Software Foundation; either version 2 of the License, or |
12 | (at your option) any later version. | |
bd5635a1 | 13 | |
361bf6ee | 14 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
361bf6ee | 20 | along with this program; if not, write to the Free Software |
09af5868 | 21 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
bd5635a1 | 22 | |
bd5635a1 | 23 | #include "defs.h" |
09af5868 | 24 | #include "gdb_string.h" |
bd5635a1 RP |
25 | #include "frame.h" |
26 | #include "inferior.h" | |
27 | #include "symtab.h" | |
28 | #include "value.h" | |
29 | #include "gdbcmd.h" | |
ef08856f | 30 | #include "language.h" |
bd5635a1 | 31 | #include "gdbcore.h" |
62a469e1 SG |
32 | #include "symfile.h" |
33 | #include "objfiles.h" | |
3fed1c4a | 34 | #include "gdbtypes.h" |
28444bf3 | 35 | #include "target.h" |
bd5635a1 | 36 | |
ee5fb959 JK |
37 | #include "opcode/mips.h" |
38 | ||
28444bf3 | 39 | #define VM_MIN_ADDRESS (CORE_ADDR)0x400000 |
70126bf9 | 40 | |
a00dfa36 MS |
41 | /* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */ |
42 | #define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8) | |
43 | ||
70126bf9 KH |
44 | /* FIXME: Put this declaration in frame.h. */ |
45 | extern struct obstack frame_cache_obstack; | |
28444bf3 | 46 | |
002a422b | 47 | #if 0 |
ee5fb959 | 48 | static int mips_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR)); |
002a422b | 49 | #endif |
ee5fb959 | 50 | |
912e805f | 51 | int gdb_print_insn_mips PARAMS ((bfd_vma, disassemble_info *)); |
28444bf3 | 52 | |
f2bf454e FF |
53 | static void mips_print_register PARAMS ((int, int)); |
54 | ||
55 | static mips_extra_func_info_t | |
56 | heuristic_proc_desc PARAMS ((CORE_ADDR, CORE_ADDR, struct frame_info *)); | |
57 | ||
58 | static CORE_ADDR heuristic_proc_start PARAMS ((CORE_ADDR)); | |
59 | ||
28444bf3 | 60 | static CORE_ADDR read_next_frame_reg PARAMS ((struct frame_info *, int)); |
f2bf454e | 61 | |
e4dbd248 PS |
62 | static void mips_set_fpu_command PARAMS ((char *, int, |
63 | struct cmd_list_element *)); | |
64 | ||
65 | static void mips_show_fpu_command PARAMS ((char *, int, | |
66 | struct cmd_list_element *)); | |
67 | ||
9f9f94aa SS |
68 | void mips_set_processor_type_command PARAMS ((char *, int)); |
69 | ||
1d9489c1 JK |
70 | int mips_set_processor_type PARAMS ((char *)); |
71 | ||
72 | static void mips_show_processor_type_command PARAMS ((char *, int)); | |
73 | ||
9f9f94aa SS |
74 | static void reinit_frame_cache_sfunc PARAMS ((char *, int, |
75 | struct cmd_list_element *)); | |
76 | ||
f2bf454e FF |
77 | static mips_extra_func_info_t |
78 | find_proc_desc PARAMS ((CORE_ADDR pc, struct frame_info *next_frame)); | |
79 | ||
80 | static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc, | |
81 | mips_extra_func_info_t proc_desc)); | |
82 | ||
9f9f94aa SS |
83 | /* This value is the model of MIPS in use. It is derived from the value |
84 | of the PrID register. */ | |
85 | ||
86 | char *mips_processor_type; | |
87 | ||
88 | char *tmp_mips_processor_type; | |
89 | ||
c2a0f1cb ILT |
90 | /* Some MIPS boards don't support floating point, so we permit the |
91 | user to turn it off. */ | |
9f9f94aa | 92 | |
e4dbd248 PS |
93 | enum mips_fpu_type mips_fpu; |
94 | ||
95 | static char *mips_fpu_string; | |
c2a0f1cb | 96 | |
9f9f94aa SS |
97 | /* A set of original names, to be used when restoring back to generic |
98 | registers from a specific set. */ | |
99 | ||
100 | char *mips_generic_reg_names[] = REGISTER_NAMES; | |
101 | ||
102 | /* Names of IDT R3041 registers. */ | |
103 | ||
104 | char *mips_r3041_reg_names[] = { | |
105 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
106 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
107 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
108 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
109 | "sr", "lo", "hi", "bad", "cause","pc", | |
110 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
111 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
112 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
113 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
114 | "fsr", "fir", "fp", "", | |
115 | "", "", "bus", "ccfg", "", "", "", "", | |
116 | "", "", "port", "cmp", "", "", "epc", "prid", | |
117 | }; | |
118 | ||
119 | /* Names of IDT R3051 registers. */ | |
120 | ||
121 | char *mips_r3051_reg_names[] = { | |
122 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
123 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
124 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
125 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
126 | "sr", "lo", "hi", "bad", "cause","pc", | |
127 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
128 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
129 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
130 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
131 | "fsr", "fir", "fp", "", | |
132 | "inx", "rand", "elo", "", "ctxt", "", "", "", | |
133 | "", "", "ehi", "", "", "", "epc", "prid", | |
134 | }; | |
135 | ||
136 | /* Names of IDT R3081 registers. */ | |
137 | ||
138 | char *mips_r3081_reg_names[] = { | |
139 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
140 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
141 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
142 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
143 | "sr", "lo", "hi", "bad", "cause","pc", | |
144 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
145 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
146 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
147 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
148 | "fsr", "fir", "fp", "", | |
149 | "inx", "rand", "elo", "cfg", "ctxt", "", "", "", | |
150 | "", "", "ehi", "", "", "", "epc", "prid", | |
151 | }; | |
152 | ||
e4dbd248 PS |
153 | /* Names of LSI 33k registers. */ |
154 | ||
155 | char *mips_lsi33k_reg_names[] = { | |
156 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
157 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
158 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
159 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
160 | "epc", "hi", "lo", "sr", "cause","badvaddr", | |
161 | "dcic", "bpc", "bda", "", "", "", "", "", | |
162 | "", "", "", "", "", "", "", "", | |
163 | "", "", "", "", "", "", "", "", | |
164 | "", "", "", "", "", "", "", "", | |
165 | "", "", "", "", | |
166 | "", "", "", "", "", "", "", "", | |
167 | "", "", "", "", "", "", "", "", | |
168 | }; | |
169 | ||
9f9f94aa SS |
170 | struct { |
171 | char *name; | |
172 | char **regnames; | |
173 | } mips_processor_type_table[] = { | |
174 | { "generic", mips_generic_reg_names }, | |
175 | { "r3041", mips_r3041_reg_names }, | |
176 | { "r3051", mips_r3051_reg_names }, | |
177 | { "r3071", mips_r3081_reg_names }, | |
178 | { "r3081", mips_r3081_reg_names }, | |
e4dbd248 | 179 | { "lsi33k", mips_lsi33k_reg_names }, |
9f9f94aa SS |
180 | { NULL, NULL } |
181 | }; | |
182 | ||
f9f8c14b MA |
183 | /* Table to translate MIPS16 register field to actual register number. */ |
184 | static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 }; | |
185 | ||
3127785a RP |
186 | /* Heuristic_proc_start may hunt through the text section for a long |
187 | time across a 2400 baud serial line. Allows the user to limit this | |
188 | search. */ | |
9f9f94aa | 189 | |
3127785a RP |
190 | static unsigned int heuristic_fence_post = 0; |
191 | ||
0f552c5f | 192 | #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */ |
28444bf3 | 193 | #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */ |
0f552c5f JG |
194 | #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset) |
195 | #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg) | |
af774411 | 196 | #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust) |
0f552c5f JG |
197 | #define PROC_REG_MASK(proc) ((proc)->pdr.regmask) |
198 | #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask) | |
199 | #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset) | |
200 | #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset) | |
201 | #define PROC_PC_REG(proc) ((proc)->pdr.pcreg) | |
202 | #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym) | |
bd5635a1 | 203 | #define _PROC_MAGIC_ 0x0F0F0F0F |
0f552c5f JG |
204 | #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_) |
205 | #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_) | |
bd5635a1 RP |
206 | |
207 | struct linked_proc_info | |
208 | { | |
209 | struct mips_extra_func_info info; | |
210 | struct linked_proc_info *next; | |
dac4929a | 211 | } *linked_proc_desc_table = NULL; |
bd5635a1 | 212 | |
f2bf454e | 213 | |
899c4021 MA |
214 | /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */ |
215 | ||
216 | static int | |
217 | pc_is_mips16 (bfd_vma memaddr) | |
218 | { | |
219 | struct minimal_symbol *sym; | |
220 | ||
221 | /* If bit 0 of the address is set, assume this is a MIPS16 address. */ | |
222 | if (IS_MIPS16_ADDR (memaddr)) | |
223 | return 1; | |
224 | ||
225 | /* A flag indicating that this is a MIPS16 function is stored by elfread.c in | |
226 | the high bit of the info field. Use this to decide if the function is | |
227 | MIPS16 or normal MIPS. */ | |
228 | sym = lookup_minimal_symbol_by_pc (memaddr); | |
229 | if (sym) | |
230 | return MSYMBOL_IS_SPECIAL (sym); | |
231 | else | |
232 | return 0; | |
233 | } | |
234 | ||
235 | ||
f2bf454e FF |
236 | /* This returns the PC of the first inst after the prologue. If we can't |
237 | find the prologue, then return 0. */ | |
238 | ||
239 | static CORE_ADDR | |
240 | after_prologue (pc, proc_desc) | |
241 | CORE_ADDR pc; | |
242 | mips_extra_func_info_t proc_desc; | |
243 | { | |
244 | struct symtab_and_line sal; | |
245 | CORE_ADDR func_addr, func_end; | |
246 | ||
247 | if (!proc_desc) | |
248 | proc_desc = find_proc_desc (pc, NULL); | |
249 | ||
250 | if (proc_desc) | |
251 | { | |
252 | /* If function is frameless, then we need to do it the hard way. I | |
253 | strongly suspect that frameless always means prologueless... */ | |
254 | if (PROC_FRAME_REG (proc_desc) == SP_REGNUM | |
255 | && PROC_FRAME_OFFSET (proc_desc) == 0) | |
256 | return 0; | |
257 | } | |
258 | ||
259 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
260 | return 0; /* Unknown */ | |
261 | ||
262 | sal = find_pc_line (func_addr, 0); | |
263 | ||
264 | if (sal.end < func_end) | |
265 | return sal.end; | |
266 | ||
267 | /* The line after the prologue is after the end of the function. In this | |
268 | case, tell the caller to find the prologue the hard way. */ | |
269 | ||
270 | return 0; | |
271 | } | |
272 | ||
f9f8c14b MA |
273 | /* Decode a MIPS32 instruction that saves a register in the stack, and |
274 | set the appropriate bit in the general register mask or float register mask | |
275 | to indicate which register is saved. This is a helper function | |
276 | for mips_find_saved_regs. */ | |
277 | ||
278 | static void | |
279 | mips32_decode_reg_save (inst, gen_mask, float_mask) | |
280 | t_inst inst; | |
281 | unsigned long *gen_mask; | |
282 | unsigned long *float_mask; | |
283 | { | |
284 | int reg; | |
285 | ||
286 | if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */ | |
287 | || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */ | |
a00dfa36 MS |
288 | /* start-sanitize-r5900 */ |
289 | || (inst & 0xffe00000) == 0x7fa00000 /* sq reg,n($sp) */ | |
290 | /* end-sanitize-r5900 */ | |
f9f8c14b MA |
291 | || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */ |
292 | { | |
293 | /* It might be possible to use the instruction to | |
294 | find the offset, rather than the code below which | |
295 | is based on things being in a certain order in the | |
296 | frame, but figuring out what the instruction's offset | |
297 | is relative to might be a little tricky. */ | |
298 | reg = (inst & 0x001f0000) >> 16; | |
299 | *gen_mask |= (1 << reg); | |
300 | } | |
301 | else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */ | |
302 | || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */ | |
303 | || (inst & 0xffe00000) == 0xf7a00000)/* sdc1 freg,n($sp) */ | |
304 | ||
305 | { | |
306 | reg = ((inst & 0x001f0000) >> 16); | |
307 | *float_mask |= (1 << reg); | |
308 | } | |
309 | } | |
310 | ||
311 | /* Decode a MIPS16 instruction that saves a register in the stack, and | |
312 | set the appropriate bit in the general register or float register mask | |
313 | to indicate which register is saved. This is a helper function | |
314 | for mips_find_saved_regs. */ | |
315 | ||
316 | static void | |
317 | mips16_decode_reg_save (inst, gen_mask) | |
318 | t_inst inst; | |
319 | unsigned long *gen_mask; | |
320 | { | |
b348b9fd | 321 | if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ |
f9f8c14b | 322 | { |
b348b9fd MA |
323 | int reg = mips16_to_32_reg[(inst & 0x700) >> 8]; |
324 | *gen_mask |= (1 << reg); | |
325 | } | |
326 | else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ | |
327 | { | |
328 | int reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
f9f8c14b MA |
329 | *gen_mask |= (1 << reg); |
330 | } | |
331 | else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */ | |
332 | || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ | |
af774411 | 333 | *gen_mask |= (1 << RA_REGNUM); |
f9f8c14b MA |
334 | } |
335 | ||
c81a76b3 MA |
336 | |
337 | /* Fetch and return instruction from the specified location. If the PC | |
338 | is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */ | |
339 | ||
340 | static t_inst | |
341 | mips_fetch_instruction (addr) | |
342 | CORE_ADDR addr; | |
343 | { | |
344 | char buf[MIPS_INSTLEN]; | |
345 | int instlen; | |
346 | int status; | |
347 | ||
899c4021 | 348 | if (pc_is_mips16 (addr)) |
c81a76b3 MA |
349 | { |
350 | instlen = MIPS16_INSTLEN; | |
351 | addr = UNMAKE_MIPS16_ADDR (addr); | |
352 | } | |
353 | else | |
354 | instlen = MIPS_INSTLEN; | |
355 | status = read_memory_nobpt (addr, buf, instlen); | |
356 | if (status) | |
357 | memory_error (status, addr); | |
358 | return extract_unsigned_integer (buf, instlen); | |
359 | } | |
360 | ||
361 | ||
88ff9e06 FCE |
362 | /* These the fields of 32 bit mips instructions */ |
363 | #define mips32_op(x) (x >> 25) | |
364 | #define itype_op(x) (x >> 25) | |
365 | #define itype_rs(x) ((x >> 21)& 0x1f) | |
366 | #define itype_rt(x) ((x >> 16) & 0x1f) | |
367 | #define itype_immediate(x) ( x & 0xffff) | |
368 | ||
369 | #define jtype_op(x) (x >> 25) | |
370 | #define jtype_target(x) ( x & 0x03fffff) | |
371 | ||
372 | #define rtype_op(x) (x >>25) | |
373 | #define rtype_rs(x) ((x>>21) & 0x1f) | |
374 | #define rtype_rt(x) ((x>>16) & 0x1f) | |
375 | #define rtype_rd(x) ((x>>11) & 0x1f) | |
376 | #define rtype_shamt(x) ((x>>6) & 0x1f) | |
377 | #define rtype_funct(x) (x & 0x3f ) | |
378 | ||
379 | static CORE_ADDR | |
380 | mips32_relative_offset(unsigned long inst) | |
381 | { long x ; | |
382 | x = itype_immediate(inst) ; | |
383 | if (x & 0x8000) /* sign bit set */ | |
384 | { | |
385 | x |= 0xffff0000 ; /* sign extension */ | |
386 | } | |
387 | x = x << 2 ; | |
388 | return x ; | |
389 | } | |
390 | ||
391 | /* Determine whate to set a single step breakpoint while considering | |
392 | branch prediction */ | |
393 | CORE_ADDR | |
394 | mips32_next_pc(CORE_ADDR pc) | |
395 | { | |
396 | unsigned long inst ; | |
397 | int op ; | |
398 | inst = mips_fetch_instruction(pc) ; | |
399 | if ((inst & 0xe0000000) != 0) /* Not a special, junp or branch instruction */ | |
400 | { if ((inst >> 27) == 5) /* BEQL BNEZ BLEZL BGTZE , bits 0101xx */ | |
401 | { op = ((inst >> 25) & 0x03) ; | |
402 | switch (op) | |
403 | { | |
404 | case 0 : goto equal_branch ; /* BEQL */ | |
405 | case 1 : goto neq_branch ; /* BNEZ */ | |
406 | case 2 : goto less_branch ; /* BLEZ */ | |
407 | case 3 : goto greater_branch ; /* BGTZ */ | |
408 | default : pc += 4 ; | |
409 | } | |
410 | } | |
411 | else pc += 4 ; /* Not a branch, next instruction is easy */ | |
412 | } | |
413 | else | |
414 | { /* This gets way messy */ | |
415 | ||
416 | /* Further subdivide into SPECIAL, REGIMM and other */ | |
417 | switch (op = ((inst >> 26) & 0x07)) /* extract bits 28,27,26 */ | |
418 | { | |
419 | case 0 : /* SPECIAL */ | |
420 | op = rtype_funct(inst) ; | |
421 | switch (op) | |
422 | { | |
423 | case 8 : /* JR */ | |
424 | case 9 : /* JALR */ | |
425 | pc = read_register(rtype_rs(inst)) ; /* Set PC to that address */ | |
426 | break ; | |
427 | default: pc += 4 ; | |
428 | } | |
429 | ||
430 | break ; /* end special */ | |
431 | case 1 : /* REGIMM */ | |
432 | { | |
433 | op = jtype_op(inst) ; /* branch condition */ | |
434 | switch (jtype_op(inst)) | |
435 | { | |
436 | case 0 : /* BLTZ */ | |
437 | case 2 : /* BLTXL */ | |
438 | case 16 : /* BLTZALL */ | |
439 | case 18 : /* BLTZALL */ | |
440 | less_branch: | |
441 | if (read_register(itype_rs(inst)) < 0) | |
442 | pc += mips32_relative_offset(inst) + 4 ; | |
443 | else pc += 8 ; /* after the delay slot */ | |
444 | break ; | |
445 | case 1 : /* GEZ */ | |
446 | case 3 : /* BGEZL */ | |
447 | case 17 : /* BGEZAL */ | |
448 | case 19 : /* BGEZALL */ | |
449 | greater_equal_branch: | |
450 | if (read_register(itype_rs(inst)) >= 0) | |
451 | pc += mips32_relative_offset(inst) + 4 ; | |
452 | else pc += 8 ; /* after the delay slot */ | |
453 | break ; | |
454 | /* All of the other intructions in the REGIMM catagory */ | |
455 | default: pc += 4 ; | |
456 | } | |
457 | } | |
458 | break ; /* end REGIMM */ | |
459 | case 2 : /* J */ | |
460 | case 3 : /* JAL */ | |
461 | { unsigned long reg ; | |
462 | reg = jtype_target(inst) << 2 ; | |
463 | pc = reg + ((pc+4) & 0xf0000000) ; | |
464 | /* Whats this mysterious 0xf000000 adjustment ??? */ | |
465 | } | |
466 | break ; | |
467 | /* FIXME case JALX :*/ | |
468 | { unsigned long reg ; | |
469 | reg = jtype_target(inst) << 2 ; | |
470 | pc = reg + ((pc+4) & 0xf0000000) + 1 ; /* yes, +1 */ | |
471 | /* Add 1 to indicate 16 bit mode - Invert ISA mode */ | |
472 | } | |
473 | break ; /* The new PC will be alternate mode */ | |
474 | case 4 : /* BEQ , BEQL */ | |
475 | equal_branch : | |
476 | if (read_register(itype_rs(inst)) == | |
477 | read_register(itype_rt(inst))) | |
478 | pc += mips32_relative_offset(inst) + 4 ; | |
479 | else pc += 8 ; | |
480 | break ; | |
481 | case 5 : /* BNE , BNEL */ | |
482 | neq_branch : | |
483 | if (read_register(itype_rs(inst)) != | |
484 | read_register(itype_rs(inst))) | |
485 | pc += mips32_relative_offset(inst) + 4 ; | |
486 | else pc += 8 ; | |
487 | break ; | |
488 | case 6 : /* BLEZ , BLEZL */ | |
489 | less_zero_branch: | |
490 | if (read_register(itype_rs(inst) <= 0)) | |
491 | pc += mips32_relative_offset(inst) + 4 ; | |
492 | else pc += 8 ; | |
493 | break ; | |
494 | case 7 : | |
495 | greater_branch : /* BGTZ BGTZL */ | |
496 | if (read_register(itype_rs(inst) > 0)) | |
497 | pc += mips32_relative_offset(inst) + 4 ; | |
498 | else pc += 8 ; | |
499 | break ; | |
500 | default : pc += 8 ; | |
501 | } /* switch */ | |
502 | } /* else */ | |
503 | return pc ; | |
504 | } /* mips32_next_pc */ | |
505 | ||
506 | /* Decoding the next place to set a breakpoint is irregular for the | |
507 | mips 16 variant, but fortunatly, there fewer instructions. We have to cope | |
508 | ith extensions for 16 bit instructions and a pair of actual 32 bit instructions. | |
509 | We dont want to set a single step instruction on the extend instruction | |
510 | either. | |
511 | */ | |
512 | ||
513 | /* Lots of mips16 instruction formats */ | |
514 | /* Predicting jumps requires itype,ritype,i8type | |
515 | and their extensions extItype,extritype,extI8type | |
516 | */ | |
517 | enum mips16_inst_fmts | |
518 | { | |
519 | itype, /* 0 immediate 5,10 */ | |
520 | ritype, /* 1 5,3,8 */ | |
521 | rrtype, /* 2 5,3,3,5 */ | |
522 | rritype, /* 3 5,3,3,5 */ | |
523 | rrrtype, /* 4 5,3,3,3,2 */ | |
524 | rriatype, /* 5 5,3,3,1,4 */ | |
525 | shifttype, /* 6 5,3,3,3,2 */ | |
526 | i8type, /* 7 5,3,8 */ | |
527 | i8movtype, /* 8 5,3,3,5 */ | |
528 | i8mov32rtype, /* 9 5,3,5,3 */ | |
529 | i64type, /* 10 5,3,8 */ | |
530 | ri64type, /* 11 5,3,3,5 */ | |
531 | jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */ | |
532 | exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */ | |
533 | extRitype, /* 14 5,6,5,5,3,1,1,1,5 */ | |
534 | extRRItype, /* 15 5,5,5,5,3,3,5 */ | |
535 | extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */ | |
536 | EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */ | |
537 | extI8type, /* 18 5,6,5,5,3,1,1,1,5 */ | |
538 | extI64type, /* 19 5,6,5,5,3,1,1,1,5 */ | |
539 | extRi64type, /* 20 5,6,5,5,3,3,5 */ | |
540 | extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */ | |
541 | } ; | |
542 | /* I am heaping all the fields of the formats into one structure and then, | |
543 | only the fields which are involved in instruction extension */ | |
544 | struct upk_mips16 | |
545 | { | |
546 | unsigned short inst ; | |
547 | enum mips16_inst_fmts fmt ; | |
548 | unsigned long offset ; | |
549 | unsigned int regx ; /* Function in i8 type */ | |
550 | unsigned int regy ; | |
551 | } ; | |
552 | ||
553 | ||
554 | ||
555 | static void print_unpack(char * comment, | |
556 | struct upk_mips16 * u) | |
557 | { | |
558 | printf("%s %04x ,f(%d) off(%08x) (x(%x) y(%x)\n", | |
559 | comment,u->inst,u->fmt,u->offset,u->regx,u->regy) ; | |
560 | } | |
561 | ||
562 | /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same | |
563 | format for the bits which make up the immediatate extension. | |
564 | */ | |
565 | static unsigned long | |
566 | extended_offset(unsigned long extension) | |
567 | { | |
568 | unsigned long value ; | |
569 | value = (extension >> 21) & 0x3f ; /* * extract 15:11 */ | |
570 | value = value << 6 ; | |
571 | value |= (extension >> 16) & 0x1f ; /* extrace 10:5 */ | |
572 | value = value << 5 ; | |
573 | value |= extension & 0x01f ; /* extract 4:0 */ | |
574 | return value ; | |
575 | } | |
576 | ||
577 | /* Only call this function if you know that this is an extendable | |
578 | instruction, It wont malfunction, but why make excess remote memory references? | |
579 | If the immediate operands get sign extended or somthing, do it after | |
580 | the extension is performed. | |
581 | */ | |
582 | /* FIXME: Every one of these cases needs to worry about sign extension | |
583 | when the offset is to be used in relative addressing */ | |
584 | ||
585 | ||
586 | static unsigned short fetch_mips_16(CORE_ADDR pc) | |
587 | { | |
588 | char buf[8] ; | |
589 | pc &= 0xfffffffe ; /* clear the low order bit */ | |
590 | target_read_memory(pc,buf,2) ; | |
591 | return extract_unsigned_integer(buf,2) ; | |
592 | } | |
593 | ||
594 | static void | |
595 | unpack_mips16(CORE_ADDR pc, | |
596 | struct upk_mips16 * upk) | |
597 | { | |
598 | CORE_ADDR extpc ; | |
599 | unsigned long extension ; | |
600 | int extended ; | |
601 | extpc = (pc - 4) & ~0x01 ; /* Extensions are 32 bit instructions */ | |
602 | /* Decrement to previous address and loose the 16bit mode flag */ | |
603 | /* return if the instruction was extendable, but not actually extended */ | |
604 | extended = ((mips32_op(extension) == 30) ? 1 : 0) ; | |
605 | if (extended) { extension = mips_fetch_instruction(extpc) ;} | |
606 | switch (upk->fmt) | |
607 | { | |
608 | case itype : | |
609 | { | |
610 | unsigned long value ; | |
611 | if (extended) | |
612 | { value = extended_offset(extension) ; | |
613 | value = value << 11 ; /* rom for the original value */ | |
614 | value |= upk->inst & 0x7ff ; /* eleven bits from instruction */ | |
615 | } | |
616 | else | |
617 | { value = upk->inst & 0x7ff ; | |
618 | /* FIXME : Consider sign extension */ | |
619 | } | |
620 | upk->offset = value ; | |
621 | } | |
622 | break ; | |
623 | case ritype : | |
624 | case i8type : | |
625 | { /* A register identifier and an offset */ | |
626 | /* Most of the fields are the same as I type but the | |
627 | immediate value is of a different length */ | |
628 | unsigned long value ; | |
629 | if (extended) | |
630 | { | |
631 | value = extended_offset(extension) ; | |
632 | value = value << 8 ; /* from the original instruction */ | |
633 | value |= upk->inst & 0xff ; /* eleven bits from instruction */ | |
634 | upk->regx = (extension >> 8) & 0x07 ; /* or i8 funct */ | |
635 | if (value & 0x4000) /* test the sign bit , bit 26 */ | |
636 | { value &= ~ 0x3fff ; /* remove the sign bit */ | |
637 | value = -value ; | |
638 | } | |
639 | } | |
640 | else { | |
641 | value = upk->inst & 0xff ; /* 8 bits */ | |
642 | upk->regx = (upk->inst >> 8) & 0x07 ; /* or i8 funct */ | |
643 | /* FIXME: Do sign extension , this format needs it */ | |
644 | if (value & 0x80) /* THIS CONFUSES ME */ | |
645 | { value &= 0xef ; /* remove the sign bit */ | |
646 | value = -value ; | |
647 | } | |
648 | ||
649 | } | |
650 | upk->offset = value ; | |
651 | break ; | |
652 | } | |
653 | case jalxtype : | |
654 | { | |
655 | unsigned long value ; | |
656 | unsigned short nexthalf ; | |
657 | value = ((upk->inst & 0x1f) << 5) | ((upk->inst >> 5) & 0x1f) ; | |
658 | value = value << 16 ; | |
659 | nexthalf = mips_fetch_instruction(pc+2) ; /* low bit still set */ | |
660 | value |= nexthalf ; | |
661 | upk->offset = value ; | |
662 | break ; | |
663 | } | |
664 | default: | |
665 | printf_filtered("Decoding unimplemented instruction format type\n") ; | |
666 | break ; | |
667 | } | |
668 | /* print_unpack("UPK",upk) ; */ | |
669 | } | |
670 | ||
671 | ||
672 | #define mips16_op(x) (x >> 11) | |
673 | ||
674 | /* This is a map of the opcodes which ae known to perform branches */ | |
675 | static unsigned char map16[32] = | |
676 | { 0,0,1,1,1,1,0,0, | |
677 | 0,0,0,0,1,0,0,0, | |
678 | 0,0,0,0,0,0,0,0, | |
679 | 0,0,0,0,0,1,1,0 | |
680 | } ; | |
681 | ||
682 | static CORE_ADDR add_offset_16(CORE_ADDR pc, int offset) | |
683 | { | |
684 | return ((offset << 2) | ((pc + 2) & (0xf0000000))) ; | |
685 | ||
686 | } | |
687 | ||
688 | ||
689 | ||
690 | static struct upk_mips16 upk ; | |
691 | ||
692 | CORE_ADDR mips16_next_pc(CORE_ADDR pc) | |
693 | { | |
694 | int op ; | |
695 | t_inst inst ; | |
696 | /* inst = mips_fetch_instruction(pc) ; - This doesnt always work */ | |
697 | inst = fetch_mips_16(pc) ; | |
698 | upk.inst = inst ; | |
699 | op = mips16_op(upk.inst) ; | |
700 | if (map16[op]) | |
701 | { | |
702 | int reg ; | |
703 | switch (op) | |
704 | { | |
705 | case 2 : /* Branch */ | |
706 | upk.fmt = itype ; | |
707 | unpack_mips16(pc,&upk) ; | |
708 | { long offset ; | |
709 | offset = upk.offset ; | |
710 | if (offset & 0x800) | |
711 | { offset &= 0xeff ; | |
712 | offset = - offset ; | |
713 | } | |
714 | pc += (offset << 1) + 2 ; | |
715 | } | |
716 | break ; | |
717 | case 3 : /* JAL , JALX - Watch out, these are 32 bit instruction*/ | |
718 | upk.fmt = jalxtype ; | |
719 | unpack_mips16(pc,&upk) ; | |
720 | pc = add_offset_16(pc,upk.offset) ; | |
721 | if ((upk.inst >> 10) & 0x01) /* Exchange mode */ | |
722 | pc = pc & ~ 0x01 ; /* Clear low bit, indicate 32 bit mode */ | |
723 | else pc |= 0x01 ; | |
724 | break ; | |
725 | case 4 : /* beqz */ | |
726 | upk.fmt = ritype ; | |
727 | unpack_mips16(pc,&upk) ; | |
728 | reg = read_register(upk.regx) ; | |
729 | if (reg == 0) | |
730 | pc += (upk.offset << 1) + 2 ; | |
731 | else pc += 2 ; | |
732 | break ; | |
733 | case 5 : /* bnez */ | |
734 | upk.fmt = ritype ; | |
735 | unpack_mips16(pc,&upk) ; | |
736 | reg = read_register(upk.regx) ; | |
737 | if (reg != 0) | |
738 | pc += (upk.offset << 1) + 2 ; | |
739 | else pc += 2 ; | |
740 | break ; | |
741 | case 12 : /* I8 Formats btez btnez */ | |
742 | upk.fmt = i8type ; | |
743 | unpack_mips16(pc,&upk) ; | |
744 | /* upk.regx contains the opcode */ | |
745 | reg = read_register(24) ; /* Test register is 24 */ | |
746 | if (((upk.regx == 0) && (reg == 0)) /* BTEZ */ | |
747 | || ((upk.regx == 1 ) && (reg != 0))) /* BTNEZ */ | |
748 | /* pc = add_offset_16(pc,upk.offset) ; */ | |
749 | pc += (upk.offset << 1) + 2 ; | |
750 | else pc += 2 ; | |
751 | break ; | |
752 | case 29 : /* RR Formats JR, JALR, JALR-RA */ | |
753 | upk.fmt = rrtype ; | |
754 | op = upk.inst & 0x1f ; | |
755 | if (op == 0) | |
756 | { | |
757 | upk.regx = (upk.inst >> 8) & 0x07 ; | |
758 | upk.regy = (upk.inst >> 5) & 0x07 ; | |
759 | switch (upk.regy) | |
760 | { | |
761 | case 0 : reg = upk.regx ; break ; | |
762 | case 1 : reg = 31 ; break ; /* Function return instruction*/ | |
763 | case 2 : reg = upk.regx ; break ; | |
764 | default: reg = 31 ; break ; /* BOGUS Guess */ | |
765 | } | |
766 | pc = read_register(reg) ; | |
767 | } | |
768 | else pc += 2 ; | |
769 | break ; | |
770 | case 30 : /* This is an extend instruction */ | |
771 | pc += 4 ; /* Dont be setting breakpints on the second half */ | |
772 | break ; | |
773 | default : | |
774 | printf("Filtered - next PC probably incorrrect due to jump inst\n"); | |
775 | pc += 2 ; | |
776 | break ; | |
777 | } | |
778 | } | |
779 | else pc+= 2 ; /* just a good old instruction */ | |
780 | /* See if we CAN actually break on the next instruction */ | |
781 | /* printf("NXTm16PC %08x\n",(unsigned long)pc) ; */ | |
782 | return pc ; | |
783 | } /* mips16_next_pc */ | |
784 | ||
785 | /* The mips_next_pc function supports single_tep when the remote target monitor or | |
786 | stub is not developed enough to so a single_step. | |
787 | It works by decoding the current instruction and predicting where a branch | |
788 | will go. This isnt hard because all the data is available. | |
789 | The MIPS32 and MIPS16 variants are quite different | |
790 | */ | |
791 | CORE_ADDR mips_next_pc(CORE_ADDR pc) | |
792 | { | |
793 | t_inst inst ; | |
794 | /* inst = mips_fetch_instruction(pc) ; */ | |
795 | /* if (pc_is_mips16) <----- This is failing */ | |
796 | if (pc & 0x01) | |
797 | return mips16_next_pc(pc) ; | |
798 | else return mips32_next_pc(pc) ; | |
799 | } /* mips_next_pc */ | |
800 | ||
70126bf9 KH |
801 | /* Guaranteed to set fci->saved_regs to some values (it never leaves it |
802 | NULL). */ | |
803 | ||
804 | void | |
805 | mips_find_saved_regs (fci) | |
9f9f94aa | 806 | struct frame_info *fci; |
70126bf9 KH |
807 | { |
808 | int ireg; | |
809 | CORE_ADDR reg_position; | |
810 | /* r0 bit means kernel trap */ | |
811 | int kernel_trap; | |
812 | /* What registers have been saved? Bitmasks. */ | |
813 | unsigned long gen_mask, float_mask; | |
814 | mips_extra_func_info_t proc_desc; | |
c81a76b3 | 815 | t_inst inst; |
70126bf9 KH |
816 | |
817 | fci->saved_regs = (struct frame_saved_regs *) | |
818 | obstack_alloc (&frame_cache_obstack, sizeof(struct frame_saved_regs)); | |
819 | memset (fci->saved_regs, 0, sizeof (struct frame_saved_regs)); | |
820 | ||
e4dbd248 PS |
821 | /* If it is the frame for sigtramp, the saved registers are located |
822 | in a sigcontext structure somewhere on the stack. | |
823 | If the stack layout for sigtramp changes we might have to change these | |
824 | constants and the companion fixup_sigtramp in mdebugread.c */ | |
825 | #ifndef SIGFRAME_BASE | |
826 | /* To satisfy alignment restrictions, sigcontext is located 4 bytes | |
827 | above the sigtramp frame. */ | |
28444bf3 DP |
828 | #define SIGFRAME_BASE MIPS_REGSIZE |
829 | /* FIXME! Are these correct?? */ | |
830 | #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE) | |
831 | #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE) | |
832 | #define SIGFRAME_FPREGSAVE_OFF \ | |
833 | (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE) | |
e4dbd248 PS |
834 | #endif |
835 | #ifndef SIGFRAME_REG_SIZE | |
28444bf3 DP |
836 | /* FIXME! Is this correct?? */ |
837 | #define SIGFRAME_REG_SIZE MIPS_REGSIZE | |
e4dbd248 PS |
838 | #endif |
839 | if (fci->signal_handler_caller) | |
840 | { | |
28444bf3 | 841 | for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) |
e4dbd248 PS |
842 | { |
843 | reg_position = fci->frame + SIGFRAME_REGSAVE_OFF | |
844 | + ireg * SIGFRAME_REG_SIZE; | |
845 | fci->saved_regs->regs[ireg] = reg_position; | |
846 | } | |
28444bf3 | 847 | for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) |
e4dbd248 PS |
848 | { |
849 | reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF | |
850 | + ireg * SIGFRAME_REG_SIZE; | |
851 | fci->saved_regs->regs[FP0_REGNUM + ireg] = reg_position; | |
852 | } | |
853 | fci->saved_regs->regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF; | |
854 | return; | |
855 | } | |
856 | ||
70126bf9 KH |
857 | proc_desc = fci->proc_desc; |
858 | if (proc_desc == NULL) | |
859 | /* I'm not sure how/whether this can happen. Normally when we can't | |
860 | find a proc_desc, we "synthesize" one using heuristic_proc_desc | |
861 | and set the saved_regs right away. */ | |
862 | return; | |
863 | ||
864 | kernel_trap = PROC_REG_MASK(proc_desc) & 1; | |
865 | gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK(proc_desc); | |
866 | float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK(proc_desc); | |
867 | ||
f9f8c14b MA |
868 | if (/* In any frame other than the innermost or a frame interrupted by |
869 | a signal, we assume that all registers have been saved. | |
870 | This assumes that all register saves in a function happen before | |
871 | the first function call. */ | |
872 | (fci->next == NULL || fci->next->signal_handler_caller) | |
70126bf9 KH |
873 | |
874 | /* In a dummy frame we know exactly where things are saved. */ | |
875 | && !PROC_DESC_IS_DUMMY (proc_desc) | |
876 | ||
f2bf454e FF |
877 | /* Don't bother unless we are inside a function prologue. Outside the |
878 | prologue, we know where everything is. */ | |
879 | ||
880 | && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc)) | |
881 | ||
70126bf9 KH |
882 | /* Not sure exactly what kernel_trap means, but if it means |
883 | the kernel saves the registers without a prologue doing it, | |
884 | we better not examine the prologue to see whether registers | |
885 | have been saved yet. */ | |
886 | && !kernel_trap) | |
887 | { | |
888 | /* We need to figure out whether the registers that the proc_desc | |
889 | claims are saved have been saved yet. */ | |
890 | ||
891 | CORE_ADDR addr; | |
70126bf9 KH |
892 | |
893 | /* Bitmasks; set if we have found a save for the register. */ | |
894 | unsigned long gen_save_found = 0; | |
895 | unsigned long float_save_found = 0; | |
c81a76b3 | 896 | int instlen; |
70126bf9 | 897 | |
c1fc0935 MA |
898 | /* If the address is odd, assume this is MIPS16 code. */ |
899 | addr = PROC_LOW_ADDR (proc_desc); | |
899c4021 | 900 | instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN; |
f9f8c14b | 901 | |
20fa0902 MA |
902 | /* Scan through this function's instructions preceding the current |
903 | PC, and look for those that save registers. */ | |
f9f8c14b MA |
904 | while (addr < fci->pc) |
905 | { | |
c81a76b3 | 906 | inst = mips_fetch_instruction (addr); |
899c4021 | 907 | if (pc_is_mips16 (addr)) |
f9f8c14b MA |
908 | mips16_decode_reg_save (inst, &gen_save_found); |
909 | else | |
910 | mips32_decode_reg_save (inst, &gen_save_found, &float_save_found); | |
911 | addr += instlen; | |
70126bf9 KH |
912 | } |
913 | gen_mask = gen_save_found; | |
914 | float_mask = float_save_found; | |
915 | } | |
916 | ||
917 | /* Fill in the offsets for the registers which gen_mask says | |
918 | were saved. */ | |
919 | reg_position = fci->frame + PROC_REG_OFFSET (proc_desc); | |
28444bf3 | 920 | for (ireg= MIPS_NUMREGS-1; gen_mask; --ireg, gen_mask <<= 1) |
70126bf9 KH |
921 | if (gen_mask & 0x80000000) |
922 | { | |
923 | fci->saved_regs->regs[ireg] = reg_position; | |
924 | reg_position -= MIPS_REGSIZE; | |
a00dfa36 MS |
925 | /* start-sanitize-r5900 */ |
926 | #ifdef R5900_128BIT_GPR_HACK | |
927 | /* Gross. The r5900 has 128bit wide registers, but MIPS_REGSIZE is | |
928 | still 64bits. See the comments in tm.h for a discussion of the | |
929 | various problems this causes. */ | |
930 | if (ireg <= RA_REGNUM) | |
931 | reg_position -= MIPS_REGSIZE; | |
932 | #endif | |
933 | /* end-sanitize-r5900 */ | |
70126bf9 | 934 | } |
c81a76b3 MA |
935 | |
936 | /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order | |
937 | of that normally used by gcc. Therefore, we have to fetch the first | |
938 | instruction of the function, and if it's an entry instruction that | |
939 | saves $s0 or $s1, correct their saved addresses. */ | |
899c4021 | 940 | if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc))) |
c81a76b3 MA |
941 | { |
942 | inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc)); | |
943 | if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ | |
944 | { | |
945 | int reg; | |
946 | int sreg_count = (inst >> 6) & 3; | |
947 | ||
948 | /* Check if the ra register was pushed on the stack. */ | |
949 | reg_position = fci->frame + PROC_REG_OFFSET (proc_desc); | |
950 | if (inst & 0x20) | |
951 | reg_position -= MIPS_REGSIZE; | |
952 | ||
953 | /* Check if the s0 and s1 registers were pushed on the stack. */ | |
954 | for (reg = 16; reg < sreg_count+16; reg++) | |
955 | { | |
956 | fci->saved_regs->regs[reg] = reg_position; | |
957 | reg_position -= MIPS_REGSIZE; | |
958 | } | |
959 | } | |
960 | } | |
961 | ||
70126bf9 KH |
962 | /* Fill in the offsets for the registers which float_mask says |
963 | were saved. */ | |
964 | reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc); | |
965 | ||
966 | /* The freg_offset points to where the first *double* register | |
967 | is saved. So skip to the high-order word. */ | |
28444bf3 | 968 | if (! GDB_TARGET_IS_MIPS64) |
c81a76b3 | 969 | reg_position += MIPS_REGSIZE; |
28444bf3 | 970 | |
20fa0902 MA |
971 | /* Fill in the offsets for the float registers which float_mask says |
972 | were saved. */ | |
28444bf3 | 973 | for (ireg = MIPS_NUMREGS-1; float_mask; --ireg, float_mask <<= 1) |
70126bf9 KH |
974 | if (float_mask & 0x80000000) |
975 | { | |
976 | fci->saved_regs->regs[FP0_REGNUM+ireg] = reg_position; | |
977 | reg_position -= MIPS_REGSIZE; | |
978 | } | |
979 | ||
980 | fci->saved_regs->regs[PC_REGNUM] = fci->saved_regs->regs[RA_REGNUM]; | |
981 | } | |
bd5635a1 | 982 | |
28444bf3 | 983 | static CORE_ADDR |
bd5635a1 | 984 | read_next_frame_reg(fi, regno) |
9f9f94aa | 985 | struct frame_info *fi; |
bd5635a1 RP |
986 | int regno; |
987 | { | |
bd5635a1 | 988 | for (; fi; fi = fi->next) |
70126bf9 | 989 | { |
e4dbd248 PS |
990 | /* We have to get the saved sp from the sigcontext |
991 | if it is a signal handler frame. */ | |
992 | if (regno == SP_REGNUM && !fi->signal_handler_caller) | |
993 | return fi->frame; | |
70126bf9 KH |
994 | else |
995 | { | |
996 | if (fi->saved_regs == NULL) | |
997 | mips_find_saved_regs (fi); | |
998 | if (fi->saved_regs->regs[regno]) | |
999 | return read_memory_integer(fi->saved_regs->regs[regno], MIPS_REGSIZE); | |
1000 | } | |
1001 | } | |
1002 | return read_register (regno); | |
bd5635a1 RP |
1003 | } |
1004 | ||
96431497 MA |
1005 | /* mips_addr_bits_remove - remove useless address bits */ |
1006 | ||
1007 | CORE_ADDR | |
1008 | mips_addr_bits_remove (addr) | |
1009 | CORE_ADDR addr; | |
1010 | { | |
97e091b2 MA |
1011 | #if GDB_TARGET_IS_MIPS64 |
1012 | if ((addr >> 32 == (CORE_ADDR)0xffffffff) | |
f781fe93 MA |
1013 | && (strcmp (target_shortname,"pmon")==0 |
1014 | || strcmp (target_shortname,"ddb")==0 | |
1015 | || strcmp (target_shortname,"sim")==0)) | |
96431497 MA |
1016 | { |
1017 | /* This hack is a work-around for existing boards using PMON, | |
1018 | the simulator, and any other 64-bit targets that doesn't have | |
1019 | true 64-bit addressing. On these targets, the upper 32 bits | |
1020 | of addresses are ignored by the hardware. Thus, the PC or SP | |
1021 | are likely to have been sign extended to all 1s by instruction | |
1022 | sequences that load 32-bit addresses. For example, a typical | |
1023 | piece of code that loads an address is this: | |
1024 | lui $r2, <upper 16 bits> | |
1025 | ori $r2, <lower 16 bits> | |
1026 | But the lui sign-extends the value such that the upper 32 bits | |
1027 | may be all 1s. The workaround is simply to mask off these bits. | |
1028 | In the future, gcc may be changed to support true 64-bit | |
1029 | addressing, and this masking will have to be disabled. */ | |
1030 | addr &= (CORE_ADDR)0xffffffff; | |
1031 | } | |
f9f8c14b MA |
1032 | #else |
1033 | /* Even when GDB is configured for some 32-bit targets (e.g. mips-elf), | |
1034 | BFD is configured to handle 64-bit targets, so CORE_ADDR is 64 bits. | |
1035 | So we still have to mask off useless bits from addresses. */ | |
1036 | addr &= (CORE_ADDR)0xffffffff; | |
97e091b2 | 1037 | #endif |
96431497 MA |
1038 | |
1039 | return addr; | |
1040 | } | |
1041 | ||
f781fe93 MA |
1042 | void |
1043 | mips_init_frame_pc_first (fromleaf, prev) | |
1044 | int fromleaf; | |
1045 | struct frame_info *prev; | |
1046 | { | |
1047 | CORE_ADDR pc, tmp; | |
1048 | ||
1049 | pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) : | |
1050 | prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ()); | |
1051 | tmp = mips_skip_stub (pc); | |
1052 | prev->pc = tmp ? tmp : pc; | |
1053 | } | |
1054 | ||
1055 | ||
28444bf3 | 1056 | CORE_ADDR |
bd5635a1 | 1057 | mips_frame_saved_pc(frame) |
9f9f94aa | 1058 | struct frame_info *frame; |
bd5635a1 | 1059 | { |
28444bf3 | 1060 | CORE_ADDR saved_pc; |
0f552c5f | 1061 | mips_extra_func_info_t proc_desc = frame->proc_desc; |
0434c1a0 PS |
1062 | /* We have to get the saved pc from the sigcontext |
1063 | if it is a signal handler frame. */ | |
1064 | int pcreg = frame->signal_handler_caller ? PC_REGNUM | |
1065 | : (proc_desc ? PROC_PC_REG(proc_desc) : RA_REGNUM); | |
0f552c5f | 1066 | |
bd5635a1 | 1067 | if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc)) |
28444bf3 DP |
1068 | saved_pc = read_memory_integer(frame->frame - MIPS_REGSIZE, MIPS_REGSIZE); |
1069 | else | |
1070 | saved_pc = read_next_frame_reg(frame, pcreg); | |
0f552c5f | 1071 | |
96431497 | 1072 | return ADDR_BITS_REMOVE (saved_pc); |
bd5635a1 RP |
1073 | } |
1074 | ||
1075 | static struct mips_extra_func_info temp_proc_desc; | |
1076 | static struct frame_saved_regs temp_saved_regs; | |
1077 | ||
639c8612 MA |
1078 | /* Set a register's saved stack address in temp_saved_regs. If an address |
1079 | has already been set for this register, do nothing; this way we will | |
1080 | only recognize the first save of a given register in a function prologue. | |
1081 | This is a helper function for mips{16,32}_heuristic_proc_desc. */ | |
1082 | ||
1083 | static void | |
1084 | set_reg_offset (regno, offset) | |
1085 | int regno; | |
1086 | CORE_ADDR offset; | |
1087 | { | |
1088 | if (temp_saved_regs.regs[regno] == 0) | |
1089 | temp_saved_regs.regs[regno] = offset; | |
1090 | } | |
1091 | ||
1092 | ||
a8172eea RP |
1093 | /* This fencepost looks highly suspicious to me. Removing it also |
1094 | seems suspicious as it could affect remote debugging across serial | |
3127785a | 1095 | lines. */ |
a8172eea | 1096 | |
0f552c5f JG |
1097 | static CORE_ADDR |
1098 | heuristic_proc_start(pc) | |
bd5635a1 RP |
1099 | CORE_ADDR pc; |
1100 | { | |
32dab603 MA |
1101 | CORE_ADDR start_pc; |
1102 | CORE_ADDR fence; | |
20fa0902 | 1103 | int instlen; |
b348b9fd | 1104 | int seen_adjsp = 0; |
0f552c5f | 1105 | |
32dab603 MA |
1106 | pc = ADDR_BITS_REMOVE (pc); |
1107 | start_pc = pc; | |
1108 | fence = start_pc - heuristic_fence_post; | |
0f552c5f | 1109 | if (start_pc == 0) return 0; |
3127785a RP |
1110 | |
1111 | if (heuristic_fence_post == UINT_MAX | |
1112 | || fence < VM_MIN_ADDRESS) | |
1113 | fence = VM_MIN_ADDRESS; | |
0f552c5f | 1114 | |
899c4021 | 1115 | instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN; |
20fa0902 | 1116 | |
bd5635a1 | 1117 | /* search back for previous return */ |
20fa0902 | 1118 | for (start_pc -= instlen; ; start_pc -= instlen) |
a8172eea RP |
1119 | if (start_pc < fence) |
1120 | { | |
3127785a RP |
1121 | /* It's not clear to me why we reach this point when |
1122 | stop_soon_quietly, but with this test, at least we | |
1123 | don't print out warnings for every child forked (eg, on | |
1124 | decstation). 22apr93 rich@cygnus.com. */ | |
1125 | if (!stop_soon_quietly) | |
1126 | { | |
23d35572 JK |
1127 | static int blurb_printed = 0; |
1128 | ||
3127785a RP |
1129 | if (fence == VM_MIN_ADDRESS) |
1130 | warning("Hit beginning of text section without finding"); | |
1131 | else | |
1132 | warning("Hit heuristic-fence-post without finding"); | |
1133 | ||
f781fe93 | 1134 | warning("enclosing function for address 0x%s", paddr_nz (pc)); |
23d35572 JK |
1135 | if (!blurb_printed) |
1136 | { | |
1137 | printf_filtered ("\ | |
1138 | This warning occurs if you are debugging a function without any symbols\n\ | |
1139 | (for example, in a stripped executable). In that case, you may wish to\n\ | |
1140 | increase the size of the search with the `set heuristic-fence-post' command.\n\ | |
1141 | \n\ | |
1142 | Otherwise, you told GDB there was a function where there isn't one, or\n\ | |
1143 | (more likely) you have encountered a bug in GDB.\n"); | |
1144 | blurb_printed = 1; | |
1145 | } | |
3127785a RP |
1146 | } |
1147 | ||
a8172eea RP |
1148 | return 0; |
1149 | } | |
899c4021 | 1150 | else if (pc_is_mips16 (start_pc)) |
20fa0902 | 1151 | { |
c1fc0935 MA |
1152 | unsigned short inst; |
1153 | ||
b348b9fd MA |
1154 | /* On MIPS16, any one of the following is likely to be the |
1155 | start of a function: | |
1156 | entry | |
1157 | addiu sp,-n | |
1158 | daddiu sp,-n | |
1159 | extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */ | |
c81a76b3 | 1160 | inst = mips_fetch_instruction (start_pc); |
b348b9fd MA |
1161 | if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ |
1162 | || (inst & 0xff80) == 0x6380 /* addiu sp,-n */ | |
1163 | || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */ | |
1164 | || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */ | |
1165 | break; | |
1166 | else if ((inst & 0xff00) == 0x6300 /* addiu sp */ | |
1167 | || (inst & 0xff00) == 0xfb00) /* daddiu sp */ | |
1168 | seen_adjsp = 1; | |
1169 | else | |
1170 | seen_adjsp = 0; | |
20fa0902 | 1171 | } |
bd5635a1 | 1172 | else if (ABOUT_TO_RETURN(start_pc)) |
20fa0902 MA |
1173 | { |
1174 | start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */ | |
bd5635a1 | 1175 | break; |
20fa0902 | 1176 | } |
bd5635a1 | 1177 | |
bd5635a1 RP |
1178 | #if 0 |
1179 | /* skip nops (usually 1) 0 - is this */ | |
28444bf3 DP |
1180 | while (start_pc < pc && read_memory_integer (start_pc, MIPS_INSTLEN) == 0) |
1181 | start_pc += MIPS_INSTLEN; | |
bd5635a1 RP |
1182 | #endif |
1183 | return start_pc; | |
1184 | } | |
1185 | ||
c81a76b3 | 1186 | /* Fetch the immediate value from a MIPS16 instruction. |
b348b9fd MA |
1187 | If the previous instruction was an EXTEND, use it to extend |
1188 | the upper bits of the immediate value. This is a helper function | |
1189 | for mips16_heuristic_proc_desc. */ | |
1190 | ||
1191 | static int | |
1192 | mips16_get_imm (prev_inst, inst, nbits, scale, is_signed) | |
1193 | unsigned short prev_inst; /* previous instruction */ | |
af774411 | 1194 | unsigned short inst; /* current instruction */ |
b348b9fd MA |
1195 | int nbits; /* number of bits in imm field */ |
1196 | int scale; /* scale factor to be applied to imm */ | |
1197 | int is_signed; /* is the imm field signed? */ | |
1198 | { | |
1199 | int offset; | |
1200 | ||
1201 | if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */ | |
1202 | { | |
7d9e8fac | 1203 | offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0); |
b348b9fd MA |
1204 | if (offset & 0x8000) /* check for negative extend */ |
1205 | offset = 0 - (0x10000 - (offset & 0xffff)); | |
1206 | return offset | (inst & 0x1f); | |
1207 | } | |
1208 | else | |
1209 | { | |
1210 | int max_imm = 1 << nbits; | |
1211 | int mask = max_imm - 1; | |
1212 | int sign_bit = max_imm >> 1; | |
1213 | ||
1214 | offset = inst & mask; | |
1215 | if (is_signed && (offset & sign_bit)) | |
1216 | offset = 0 - (max_imm - offset); | |
1217 | return offset * scale; | |
1218 | } | |
1219 | } | |
1220 | ||
1221 | ||
1222 | /* Fill in values in temp_proc_desc based on the MIPS16 instruction | |
1223 | stream from start_pc to limit_pc. */ | |
1224 | ||
1225 | static void | |
1226 | mips16_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp) | |
bd5635a1 | 1227 | CORE_ADDR start_pc, limit_pc; |
9f9f94aa | 1228 | struct frame_info *next_frame; |
b348b9fd | 1229 | CORE_ADDR sp; |
bd5635a1 | 1230 | { |
b348b9fd MA |
1231 | CORE_ADDR cur_pc; |
1232 | CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */ | |
1233 | unsigned short prev_inst = 0; /* saved copy of previous instruction */ | |
1234 | unsigned inst = 0; /* current instruction */ | |
639c8612 MA |
1235 | unsigned entry_inst = 0; /* the entry instruction */ |
1236 | int reg, offset; | |
bd5635a1 | 1237 | |
af774411 MA |
1238 | PROC_FRAME_OFFSET(&temp_proc_desc) = 0; /* size of stack frame */ |
1239 | PROC_FRAME_ADJUST(&temp_proc_desc) = 0; /* offset of FP from SP */ | |
34df79fc | 1240 | |
b348b9fd MA |
1241 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN) |
1242 | { | |
b348b9fd MA |
1243 | /* Save the previous instruction. If it's an EXTEND, we'll extract |
1244 | the immediate offset extension from it in mips16_get_imm. */ | |
1245 | prev_inst = inst; | |
1246 | ||
c81a76b3 MA |
1247 | /* Fetch and decode the instruction. */ |
1248 | inst = (unsigned short) mips_fetch_instruction (cur_pc); | |
b348b9fd MA |
1249 | if ((inst & 0xff00) == 0x6300 /* addiu sp */ |
1250 | || (inst & 0xff00) == 0xfb00) /* daddiu sp */ | |
1251 | { | |
1252 | offset = mips16_get_imm (prev_inst, inst, 8, 8, 1); | |
1253 | if (offset < 0) /* negative stack adjustment? */ | |
1254 | PROC_FRAME_OFFSET(&temp_proc_desc) -= offset; | |
1255 | else | |
1256 | /* Exit loop if a positive stack adjustment is found, which | |
1257 | usually means that the stack cleanup code in the function | |
1258 | epilogue is reached. */ | |
1259 | break; | |
1260 | } | |
1261 | else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ | |
1262 | { | |
1263 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
1264 | reg = mips16_to_32_reg[(inst & 0x700) >> 8]; | |
1265 | PROC_REG_MASK(&temp_proc_desc) |= (1 << reg); | |
639c8612 | 1266 | set_reg_offset (reg, sp + offset); |
b348b9fd MA |
1267 | } |
1268 | else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ | |
1269 | { | |
1270 | offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); | |
1271 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
1272 | PROC_REG_MASK(&temp_proc_desc) |= (1 << reg); | |
639c8612 | 1273 | set_reg_offset (reg, sp + offset); |
b348b9fd MA |
1274 | } |
1275 | else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */ | |
1276 | { | |
1277 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
af774411 | 1278 | PROC_REG_MASK(&temp_proc_desc) |= (1 << RA_REGNUM); |
639c8612 | 1279 | set_reg_offset (RA_REGNUM, sp + offset); |
97e091b2 | 1280 | } |
b348b9fd MA |
1281 | else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ |
1282 | { | |
1283 | offset = mips16_get_imm (prev_inst, inst, 8, 8, 0); | |
af774411 | 1284 | PROC_REG_MASK(&temp_proc_desc) |= (1 << RA_REGNUM); |
639c8612 | 1285 | set_reg_offset (RA_REGNUM, sp + offset); |
bd5635a1 | 1286 | } |
b348b9fd MA |
1287 | else if (inst == 0x673d) /* move $s1, $sp */ |
1288 | { | |
639c8612 | 1289 | frame_addr = sp; |
b348b9fd | 1290 | PROC_FRAME_REG (&temp_proc_desc) = 17; |
97e091b2 | 1291 | } |
32dab603 MA |
1292 | else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */ |
1293 | { | |
1294 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
1295 | frame_addr = sp + offset; | |
1296 | PROC_FRAME_REG (&temp_proc_desc) = 17; | |
af774411 | 1297 | PROC_FRAME_ADJUST (&temp_proc_desc) = offset; |
32dab603 | 1298 | } |
b348b9fd MA |
1299 | else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */ |
1300 | { | |
1301 | offset = mips16_get_imm (prev_inst, inst, 5, 4, 0); | |
1302 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
1303 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
639c8612 | 1304 | set_reg_offset (reg, frame_addr + offset); |
b348b9fd MA |
1305 | } |
1306 | else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */ | |
1307 | { | |
1308 | offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); | |
1309 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
1310 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
639c8612 | 1311 | set_reg_offset (reg, frame_addr + offset); |
b348b9fd MA |
1312 | } |
1313 | else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ | |
639c8612 MA |
1314 | entry_inst = inst; /* save for later processing */ |
1315 | else if ((inst & 0xf800) == 0x1800) /* jal(x) */ | |
1316 | cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */ | |
1317 | } | |
b348b9fd | 1318 | |
639c8612 MA |
1319 | /* The entry instruction is typically the first instruction in a function, |
1320 | and it stores registers at offsets relative to the value of the old SP | |
1321 | (before the prologue). But the value of the sp parameter to this | |
1322 | function is the new SP (after the prologue has been executed). So we | |
1323 | can't calculate those offsets until we've seen the entire prologue, | |
1324 | and can calculate what the old SP must have been. */ | |
1325 | if (entry_inst != 0) | |
1326 | { | |
1327 | int areg_count = (entry_inst >> 8) & 7; | |
1328 | int sreg_count = (entry_inst >> 6) & 3; | |
b348b9fd | 1329 | |
639c8612 MA |
1330 | /* The entry instruction always subtracts 32 from the SP. */ |
1331 | PROC_FRAME_OFFSET(&temp_proc_desc) += 32; | |
b348b9fd | 1332 | |
639c8612 MA |
1333 | /* Now we can calculate what the SP must have been at the |
1334 | start of the function prologue. */ | |
1335 | sp += PROC_FRAME_OFFSET(&temp_proc_desc); | |
b348b9fd | 1336 | |
639c8612 MA |
1337 | /* Check if a0-a3 were saved in the caller's argument save area. */ |
1338 | for (reg = 4, offset = 0; reg < areg_count+4; reg++) | |
1339 | { | |
1340 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
1341 | set_reg_offset (reg, sp + offset); | |
1342 | offset += MIPS_REGSIZE; | |
1343 | } | |
1344 | ||
1345 | /* Check if the ra register was pushed on the stack. */ | |
1346 | offset = -4; | |
1347 | if (entry_inst & 0x20) | |
1348 | { | |
1349 | PROC_REG_MASK(&temp_proc_desc) |= 1 << RA_REGNUM; | |
1350 | set_reg_offset (RA_REGNUM, sp + offset); | |
1351 | offset -= MIPS_REGSIZE; | |
1352 | } | |
1353 | ||
1354 | /* Check if the s0 and s1 registers were pushed on the stack. */ | |
1355 | for (reg = 16; reg < sreg_count+16; reg++) | |
1356 | { | |
1357 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
1358 | set_reg_offset (reg, sp + offset); | |
1359 | offset -= MIPS_REGSIZE; | |
1360 | } | |
1361 | } | |
b348b9fd MA |
1362 | } |
1363 | ||
1364 | static void | |
1365 | mips32_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp) | |
1366 | CORE_ADDR start_pc, limit_pc; | |
1367 | struct frame_info *next_frame; | |
1368 | CORE_ADDR sp; | |
1369 | { | |
1370 | CORE_ADDR cur_pc; | |
1371 | CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */ | |
1372 | restart: | |
1373 | PROC_FRAME_OFFSET(&temp_proc_desc) = 0; | |
639c8612 | 1374 | PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */ |
b348b9fd MA |
1375 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN) |
1376 | { | |
b348b9fd | 1377 | unsigned long inst, high_word, low_word; |
c81a76b3 | 1378 | int reg; |
b348b9fd MA |
1379 | |
1380 | /* Fetch the instruction. */ | |
c81a76b3 | 1381 | inst = (unsigned long) mips_fetch_instruction (cur_pc); |
b348b9fd MA |
1382 | |
1383 | /* Save some code by pre-extracting some useful fields. */ | |
1384 | high_word = (inst >> 16) & 0xffff; | |
1385 | low_word = inst & 0xffff; | |
1386 | reg = high_word & 0x1f; | |
1387 | ||
1388 | if (high_word == 0x27bd /* addiu $sp,$sp,-i */ | |
1389 | || high_word == 0x23bd /* addi $sp,$sp,-i */ | |
1390 | || high_word == 0x67bd) /* daddiu $sp,$sp,-i */ | |
1391 | { | |
1392 | if (low_word & 0x8000) /* negative stack adjustment? */ | |
1393 | PROC_FRAME_OFFSET(&temp_proc_desc) += 0x10000 - low_word; | |
1394 | else | |
1395 | /* Exit loop if a positive stack adjustment is found, which | |
1396 | usually means that the stack cleanup code in the function | |
1397 | epilogue is reached. */ | |
1398 | break; | |
1399 | } | |
1400 | else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */ | |
1401 | { | |
1402 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
639c8612 | 1403 | set_reg_offset (reg, sp + low_word); |
b348b9fd MA |
1404 | } |
1405 | else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */ | |
1406 | { | |
1407 | /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra, | |
1408 | but the register size used is only 32 bits. Make the address | |
1409 | for the saved register point to the lower 32 bits. */ | |
1410 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
639c8612 | 1411 | set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE); |
b348b9fd | 1412 | } |
a00dfa36 MS |
1413 | /* start-sanitize-r5900 */ |
1414 | else if ((high_word & 0xFFE0) == 0x7fa0) /* sq reg,offset($sp) */ | |
1415 | { | |
1416 | /* I don't think we have to worry about the Irix 6.2 N32 ABI | |
1417 | issue noted int he sd reg, offset($sp) case above. */ | |
1418 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
1419 | set_reg_offset (reg, sp + low_word); | |
1420 | } | |
1421 | /* end-sanitize-r5900 */ | |
b348b9fd MA |
1422 | else if (high_word == 0x27be) /* addiu $30,$sp,size */ |
1423 | { | |
1424 | /* Old gcc frame, r30 is virtual frame pointer. */ | |
32dab603 | 1425 | if ((long)low_word != PROC_FRAME_OFFSET(&temp_proc_desc)) |
b348b9fd MA |
1426 | frame_addr = sp + low_word; |
1427 | else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM) | |
1428 | { | |
1429 | unsigned alloca_adjust; | |
1430 | PROC_FRAME_REG (&temp_proc_desc) = 30; | |
1431 | frame_addr = read_next_frame_reg(next_frame, 30); | |
1432 | alloca_adjust = (unsigned)(frame_addr - (sp + low_word)); | |
1433 | if (alloca_adjust > 0) | |
1434 | { | |
1435 | /* FP > SP + frame_size. This may be because | |
1436 | * of an alloca or somethings similar. | |
1437 | * Fix sp to "pre-alloca" value, and try again. | |
1438 | */ | |
1439 | sp += alloca_adjust; | |
1440 | goto restart; | |
bd5635a1 RP |
1441 | } |
1442 | } | |
1443 | } | |
b348b9fd MA |
1444 | /* move $30,$sp. With different versions of gas this will be either |
1445 | `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'. | |
1446 | Accept any one of these. */ | |
1447 | else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) | |
1448 | { | |
1449 | /* New gcc frame, virtual frame pointer is at r30 + frame_size. */ | |
1450 | if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM) | |
1451 | { | |
1452 | unsigned alloca_adjust; | |
1453 | PROC_FRAME_REG (&temp_proc_desc) = 30; | |
1454 | frame_addr = read_next_frame_reg(next_frame, 30); | |
1455 | alloca_adjust = (unsigned)(frame_addr - sp); | |
1456 | if (alloca_adjust > 0) | |
1457 | { | |
1458 | /* FP > SP + frame_size. This may be because | |
1459 | * of an alloca or somethings similar. | |
1460 | * Fix sp to "pre-alloca" value, and try again. | |
1461 | */ | |
1462 | sp += alloca_adjust; | |
1463 | goto restart; | |
97e091b2 MA |
1464 | } |
1465 | } | |
1466 | } | |
b348b9fd MA |
1467 | else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */ |
1468 | { | |
1469 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
639c8612 | 1470 | set_reg_offset (reg, frame_addr + low_word); |
bd5635a1 RP |
1471 | } |
1472 | } | |
b348b9fd MA |
1473 | } |
1474 | ||
1475 | static mips_extra_func_info_t | |
1476 | heuristic_proc_desc(start_pc, limit_pc, next_frame) | |
1477 | CORE_ADDR start_pc, limit_pc; | |
1478 | struct frame_info *next_frame; | |
1479 | { | |
1480 | CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM); | |
1481 | ||
1482 | if (start_pc == 0) return NULL; | |
1483 | memset (&temp_proc_desc, '\0', sizeof(temp_proc_desc)); | |
1484 | memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs)); | |
1485 | PROC_LOW_ADDR (&temp_proc_desc) = start_pc; | |
1486 | PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM; | |
1487 | PROC_PC_REG (&temp_proc_desc) = RA_REGNUM; | |
1488 | ||
1489 | if (start_pc + 200 < limit_pc) | |
1490 | limit_pc = start_pc + 200; | |
899c4021 | 1491 | if (pc_is_mips16 (start_pc)) |
b348b9fd MA |
1492 | mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); |
1493 | else | |
1494 | mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); | |
1495 | return &temp_proc_desc; | |
bd5635a1 RP |
1496 | } |
1497 | ||
0f552c5f | 1498 | static mips_extra_func_info_t |
c1fc0935 | 1499 | non_heuristic_proc_desc (pc, addrptr) |
9f9f94aa | 1500 | CORE_ADDR pc; |
c1fc0935 | 1501 | CORE_ADDR *addrptr; |
bd5635a1 | 1502 | { |
c1fc0935 | 1503 | CORE_ADDR startaddr; |
bd5635a1 | 1504 | mips_extra_func_info_t proc_desc; |
0f552c5f | 1505 | struct block *b = block_for_pc(pc); |
48be4c35 | 1506 | struct symbol *sym; |
48be4c35 JK |
1507 | |
1508 | find_pc_partial_function (pc, NULL, &startaddr, NULL); | |
c1fc0935 MA |
1509 | if (addrptr) |
1510 | *addrptr = startaddr; | |
97e091b2 | 1511 | if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0)) |
48be4c35 JK |
1512 | sym = NULL; |
1513 | else | |
1514 | { | |
1515 | if (startaddr > BLOCK_START (b)) | |
1516 | /* This is the "pathological" case referred to in a comment in | |
1517 | print_frame_info. It might be better to move this check into | |
1518 | symbol reading. */ | |
1519 | sym = NULL; | |
1520 | else | |
c1fc0935 | 1521 | sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL); |
48be4c35 | 1522 | } |
0f552c5f | 1523 | |
e4dbd248 PS |
1524 | /* If we never found a PDR for this function in symbol reading, then |
1525 | examine prologues to find the information. */ | |
0f552c5f | 1526 | if (sym) |
bd5635a1 | 1527 | { |
c1fc0935 MA |
1528 | proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym); |
1529 | if (PROC_FRAME_REG (proc_desc) == -1) | |
1530 | return NULL; | |
1531 | else | |
1532 | return proc_desc; | |
1533 | } | |
1534 | else | |
1535 | return NULL; | |
1536 | } | |
1537 | ||
1538 | ||
1539 | static mips_extra_func_info_t | |
1540 | find_proc_desc (pc, next_frame) | |
1541 | CORE_ADDR pc; | |
1542 | struct frame_info *next_frame; | |
1543 | { | |
1544 | mips_extra_func_info_t proc_desc; | |
1545 | CORE_ADDR startaddr; | |
1546 | ||
1547 | proc_desc = non_heuristic_proc_desc (pc, &startaddr); | |
1548 | ||
1549 | if (proc_desc) | |
1550 | { | |
1551 | /* IF this is the topmost frame AND | |
1552 | * (this proc does not have debugging information OR | |
1553 | * the PC is in the procedure prologue) | |
1554 | * THEN create a "heuristic" proc_desc (by analyzing | |
1555 | * the actual code) to replace the "official" proc_desc. | |
1556 | */ | |
1557 | if (next_frame == NULL) | |
1558 | { | |
1559 | struct symtab_and_line val; | |
1560 | struct symbol *proc_symbol = | |
1561 | PROC_DESC_IS_DUMMY(proc_desc) ? 0 : PROC_SYMBOL(proc_desc); | |
1562 | ||
1563 | if (proc_symbol) | |
1564 | { | |
1565 | val = find_pc_line (BLOCK_START | |
1566 | (SYMBOL_BLOCK_VALUE(proc_symbol)), | |
1567 | 0); | |
1568 | val.pc = val.end ? val.end : pc; | |
bd5635a1 | 1569 | } |
c1fc0935 MA |
1570 | if (!proc_symbol || pc < val.pc) |
1571 | { | |
1572 | mips_extra_func_info_t found_heuristic = | |
1573 | heuristic_proc_desc (PROC_LOW_ADDR (proc_desc), | |
1574 | pc, next_frame); | |
1575 | if (found_heuristic) | |
1576 | proc_desc = found_heuristic; | |
bd5635a1 RP |
1577 | } |
1578 | } | |
1579 | } | |
1580 | else | |
1581 | { | |
0f552c5f JG |
1582 | /* Is linked_proc_desc_table really necessary? It only seems to be used |
1583 | by procedure call dummys. However, the procedures being called ought | |
1584 | to have their own proc_descs, and even if they don't, | |
1585 | heuristic_proc_desc knows how to create them! */ | |
1586 | ||
bd5635a1 | 1587 | register struct linked_proc_info *link; |
9f9f94aa | 1588 | |
bd5635a1 | 1589 | for (link = linked_proc_desc_table; link; link = link->next) |
9f9f94aa SS |
1590 | if (PROC_LOW_ADDR(&link->info) <= pc |
1591 | && PROC_HIGH_ADDR(&link->info) > pc) | |
1592 | return &link->info; | |
23d35572 | 1593 | |
48be4c35 JK |
1594 | if (startaddr == 0) |
1595 | startaddr = heuristic_proc_start (pc); | |
1596 | ||
bd5635a1 | 1597 | proc_desc = |
48be4c35 | 1598 | heuristic_proc_desc (startaddr, pc, next_frame); |
bd5635a1 RP |
1599 | } |
1600 | return proc_desc; | |
1601 | } | |
1602 | ||
96431497 MA |
1603 | static CORE_ADDR |
1604 | get_frame_pointer(frame, proc_desc) | |
1605 | struct frame_info *frame; | |
1606 | mips_extra_func_info_t proc_desc; | |
1607 | { | |
af774411 MA |
1608 | return ADDR_BITS_REMOVE ( |
1609 | read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) + | |
1610 | PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc)); | |
96431497 MA |
1611 | } |
1612 | ||
bd5635a1 RP |
1613 | mips_extra_func_info_t cached_proc_desc; |
1614 | ||
9f9f94aa | 1615 | CORE_ADDR |
0f552c5f | 1616 | mips_frame_chain(frame) |
9f9f94aa | 1617 | struct frame_info *frame; |
bd5635a1 | 1618 | { |
f781fe93 MA |
1619 | mips_extra_func_info_t proc_desc; |
1620 | CORE_ADDR tmp; | |
1621 | CORE_ADDR saved_pc = FRAME_SAVED_PC(frame); | |
1622 | ||
1623 | if (saved_pc == 0 || inside_entry_file (saved_pc)) | |
1624 | return 0; | |
1625 | ||
1626 | /* Check if the PC is inside a call stub. If it is, fetch the | |
1627 | PC of the caller of that stub. */ | |
1628 | if ((tmp = mips_skip_stub (saved_pc)) != 0) | |
1629 | saved_pc = tmp; | |
1630 | ||
1631 | /* Look up the procedure descriptor for this PC. */ | |
1632 | proc_desc = find_proc_desc(saved_pc, frame); | |
1633 | if (!proc_desc) | |
1634 | return 0; | |
1635 | ||
1636 | cached_proc_desc = proc_desc; | |
1637 | ||
1638 | /* If no frame pointer and frame size is zero, we must be at end | |
1639 | of stack (or otherwise hosed). If we don't check frame size, | |
1640 | we loop forever if we see a zero size frame. */ | |
1641 | if (PROC_FRAME_REG (proc_desc) == SP_REGNUM | |
1642 | && PROC_FRAME_OFFSET (proc_desc) == 0 | |
1643 | /* The previous frame from a sigtramp frame might be frameless | |
1644 | and have frame size zero. */ | |
1645 | && !frame->signal_handler_caller) | |
1646 | return 0; | |
1647 | else | |
1648 | return get_frame_pointer (frame, proc_desc); | |
bd5635a1 RP |
1649 | } |
1650 | ||
1651 | void | |
1652 | init_extra_frame_info(fci) | |
1653 | struct frame_info *fci; | |
1654 | { | |
96431497 MA |
1655 | int regnum; |
1656 | ||
bd5635a1 | 1657 | /* Use proc_desc calculated in frame_chain */ |
ee5fb959 JK |
1658 | mips_extra_func_info_t proc_desc = |
1659 | fci->next ? cached_proc_desc : find_proc_desc(fci->pc, fci->next); | |
0f552c5f | 1660 | |
70126bf9 | 1661 | fci->saved_regs = NULL; |
bd5635a1 | 1662 | fci->proc_desc = |
ee5fb959 | 1663 | proc_desc == &temp_proc_desc ? 0 : proc_desc; |
bd5635a1 RP |
1664 | if (proc_desc) |
1665 | { | |
c2a0f1cb | 1666 | /* Fixup frame-pointer - only needed for top frame */ |
5efd597b PS |
1667 | /* This may not be quite right, if proc has a real frame register. |
1668 | Get the value of the frame relative sp, procedure might have been | |
1669 | interrupted by a signal at it's very start. */ | |
70126bf9 KH |
1670 | if (fci->pc == PROC_LOW_ADDR (proc_desc) |
1671 | && !PROC_DESC_IS_DUMMY (proc_desc)) | |
1672 | fci->frame = read_next_frame_reg (fci->next, SP_REGNUM); | |
c2a0f1cb | 1673 | else |
96431497 | 1674 | fci->frame = get_frame_pointer (fci->next, proc_desc); |
bd5635a1 | 1675 | |
48be4c35 | 1676 | if (proc_desc == &temp_proc_desc) |
ee5fb959 | 1677 | { |
09af5868 PS |
1678 | char *name; |
1679 | ||
1680 | /* Do not set the saved registers for a sigtramp frame, | |
1681 | mips_find_saved_registers will do that for us. | |
1682 | We can't use fci->signal_handler_caller, it is not yet set. */ | |
1683 | find_pc_partial_function (fci->pc, &name, | |
1684 | (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); | |
1685 | if (!IN_SIGTRAMP (fci->pc, name)) | |
1686 | { | |
1687 | fci->saved_regs = (struct frame_saved_regs*) | |
1688 | obstack_alloc (&frame_cache_obstack, | |
1689 | sizeof (struct frame_saved_regs)); | |
1690 | *fci->saved_regs = temp_saved_regs; | |
1691 | fci->saved_regs->regs[PC_REGNUM] | |
1692 | = fci->saved_regs->regs[RA_REGNUM]; | |
1693 | } | |
ee5fb959 | 1694 | } |
bd5635a1 RP |
1695 | |
1696 | /* hack: if argument regs are saved, guess these contain args */ | |
96431497 MA |
1697 | fci->num_args = -1; /* assume we can't tell how many args for now */ |
1698 | for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--) | |
1699 | { | |
1700 | if (PROC_REG_MASK(proc_desc) & (1 << regnum)) | |
1701 | { | |
1702 | fci->num_args = regnum - A0_REGNUM + 1; | |
1703 | break; | |
1704 | } | |
1705 | } | |
bd5635a1 | 1706 | } |
bd5635a1 RP |
1707 | } |
1708 | ||
a70dc898 RP |
1709 | /* MIPS stack frames are almost impenetrable. When execution stops, |
1710 | we basically have to look at symbol information for the function | |
1711 | that we stopped in, which tells us *which* register (if any) is | |
1712 | the base of the frame pointer, and what offset from that register | |
1713 | the frame itself is at. | |
1714 | ||
1715 | This presents a problem when trying to examine a stack in memory | |
1716 | (that isn't executing at the moment), using the "frame" command. We | |
1717 | don't have a PC, nor do we have any registers except SP. | |
1718 | ||
1719 | This routine takes two arguments, SP and PC, and tries to make the | |
1720 | cached frames look as if these two arguments defined a frame on the | |
1721 | cache. This allows the rest of info frame to extract the important | |
1722 | arguments without difficulty. */ | |
1723 | ||
9f9f94aa | 1724 | struct frame_info * |
c2a0f1cb ILT |
1725 | setup_arbitrary_frame (argc, argv) |
1726 | int argc; | |
9f9f94aa | 1727 | CORE_ADDR *argv; |
a70dc898 | 1728 | { |
c2a0f1cb ILT |
1729 | if (argc != 2) |
1730 | error ("MIPS frame specifications require two arguments: sp and pc"); | |
1731 | ||
1732 | return create_new_frame (argv[0], argv[1]); | |
a70dc898 RP |
1733 | } |
1734 | ||
a00dfa36 MS |
1735 | /* |
1736 | * STACK_ARGSIZE -- how many bytes does a pushed function arg take up on the stack? | |
1737 | * | |
1738 | * For n32 ABI, eight. | |
1739 | * For all others, he same as the size of a general register. | |
1740 | */ | |
1741 | #if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32 | |
1742 | #define MIPS_NABI32 1 | |
1743 | #define STACK_ARGSIZE 8 | |
1744 | #else | |
1745 | #define MIPS_NABI32 0 | |
1746 | #define STACK_ARGSIZE MIPS_REGSIZE | |
1747 | #endif | |
1748 | ||
0f552c5f JG |
1749 | CORE_ADDR |
1750 | mips_push_arguments(nargs, args, sp, struct_return, struct_addr) | |
97e091b2 MA |
1751 | int nargs; |
1752 | value_ptr *args; | |
1753 | CORE_ADDR sp; | |
1754 | int struct_return; | |
1755 | CORE_ADDR struct_addr; | |
bd5635a1 | 1756 | { |
97e091b2 MA |
1757 | int argreg; |
1758 | int float_argreg; | |
1759 | int argnum; | |
1760 | int len = 0; | |
781a59b2 | 1761 | int stack_offset = 0; |
97e091b2 MA |
1762 | |
1763 | /* Macros to round N up or down to the next A boundary; A must be | |
1764 | a power of two. */ | |
1765 | #define ROUND_DOWN(n,a) ((n) & ~((a)-1)) | |
1766 | #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1)) | |
28444bf3 DP |
1767 | |
1768 | /* First ensure that the stack and structure return address (if any) | |
97e091b2 MA |
1769 | are properly aligned. The stack has to be 64-bit aligned even |
1770 | on 32-bit machines, because doubles must be 64-bit aligned. */ | |
1771 | sp = ROUND_DOWN (sp, 8); | |
1772 | struct_addr = ROUND_DOWN (struct_addr, MIPS_REGSIZE); | |
28444bf3 | 1773 | |
97e091b2 MA |
1774 | /* Now make space on the stack for the args. We allocate more |
1775 | than necessary for EABI, because the first few arguments are | |
1776 | passed in registers, but that's OK. */ | |
1777 | for (argnum = 0; argnum < nargs; argnum++) | |
1778 | len += ROUND_UP (TYPE_LENGTH(VALUE_TYPE(args[argnum])), MIPS_REGSIZE); | |
61d2d19a | 1779 | sp -= ROUND_UP (len, 8); |
97e091b2 MA |
1780 | |
1781 | /* Initialize the integer and float register pointers. */ | |
1782 | argreg = A0_REGNUM; | |
1783 | float_argreg = FPA0_REGNUM; | |
1784 | ||
1785 | /* the struct_return pointer occupies the first parameter-passing reg */ | |
5efd597b | 1786 | if (struct_return) |
97e091b2 MA |
1787 | write_register (argreg++, struct_addr); |
1788 | ||
97e091b2 MA |
1789 | /* Now load as many as possible of the first arguments into |
1790 | registers, and push the rest onto the stack. Loop thru args | |
1791 | from first to last. */ | |
1792 | for (argnum = 0; argnum < nargs; argnum++) | |
5efd597b | 1793 | { |
97e091b2 | 1794 | char *val; |
912e805f | 1795 | char valbuf[MAX_REGISTER_RAW_SIZE]; |
97e091b2 MA |
1796 | value_ptr arg = args[argnum]; |
1797 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
1798 | int len = TYPE_LENGTH (arg_type); | |
1799 | enum type_code typecode = TYPE_CODE (arg_type); | |
1800 | ||
61d2d19a PS |
1801 | /* The EABI passes structures that do not fit in a register by |
1802 | reference. In all other cases, pass the structure by value. */ | |
781a59b2 MS |
1803 | if (MIPS_EABI && len > MIPS_REGSIZE && |
1804 | (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) | |
97e091b2 MA |
1805 | { |
1806 | store_address (valbuf, MIPS_REGSIZE, VALUE_ADDRESS (arg)); | |
08d8f995 | 1807 | typecode = TYPE_CODE_PTR; |
97e091b2 MA |
1808 | len = MIPS_REGSIZE; |
1809 | val = valbuf; | |
1810 | } | |
1811 | else | |
1812 | val = (char *)VALUE_CONTENTS (arg); | |
1813 | ||
1814 | /* 32-bit ABIs always start floating point arguments in an | |
1815 | even-numbered floating point register. */ | |
a00dfa36 | 1816 | if (!FP_REGISTER_DOUBLE && typecode == TYPE_CODE_FLT |
97e091b2 MA |
1817 | && (float_argreg & 1)) |
1818 | float_argreg++; | |
1819 | ||
1820 | /* Floating point arguments passed in registers have to be | |
1821 | treated specially. On 32-bit architectures, doubles | |
1822 | are passed in register pairs; the even register gets | |
c81a76b3 MA |
1823 | the low word, and the odd register gets the high word. |
1824 | On non-EABI processors, the first two floating point arguments are | |
1825 | also copied to general registers, because MIPS16 functions | |
1826 | don't use float registers for arguments. This duplication of | |
1827 | arguments in general registers can't hurt non-MIPS16 functions | |
1828 | because those registers are normally skipped. */ | |
97e091b2 MA |
1829 | if (typecode == TYPE_CODE_FLT |
1830 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM | |
1831 | && mips_fpu != MIPS_FPU_NONE) | |
1832 | { | |
a00dfa36 | 1833 | if (!FP_REGISTER_DOUBLE && len == 8) |
97e091b2 MA |
1834 | { |
1835 | int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0; | |
1836 | unsigned long regval; | |
1837 | ||
c81a76b3 | 1838 | /* Write the low word of the double to the even register(s). */ |
97e091b2 | 1839 | regval = extract_unsigned_integer (val+low_offset, 4); |
c81a76b3 MA |
1840 | write_register (float_argreg++, regval); |
1841 | if (!MIPS_EABI) | |
1842 | write_register (argreg+1, regval); | |
1843 | ||
1844 | /* Write the high word of the double to the odd register(s). */ | |
97e091b2 | 1845 | regval = extract_unsigned_integer (val+4-low_offset, 4); |
c81a76b3 MA |
1846 | write_register (float_argreg++, regval); |
1847 | if (!MIPS_EABI) | |
1848 | { | |
1849 | write_register (argreg, regval); | |
1850 | argreg += 2; | |
1851 | } | |
97e091b2 MA |
1852 | |
1853 | } | |
1854 | else | |
1855 | { | |
c81a76b3 MA |
1856 | /* This is a floating point value that fits entirely |
1857 | in a single register. */ | |
97e091b2 MA |
1858 | CORE_ADDR regval = extract_address (val, len); |
1859 | write_register (float_argreg++, regval); | |
c81a76b3 MA |
1860 | if (!MIPS_EABI) |
1861 | { | |
1862 | write_register (argreg, regval); | |
a00dfa36 | 1863 | argreg += FP_REGISTER_DOUBLE ? 1 : 2; |
c81a76b3 | 1864 | } |
97e091b2 | 1865 | } |
97e091b2 MA |
1866 | } |
1867 | else | |
1868 | { | |
1869 | /* Copy the argument to general registers or the stack in | |
1870 | register-sized pieces. Large arguments are split between | |
1871 | registers and stack. */ | |
781a59b2 MS |
1872 | /* Note: structs whose size is not a multiple of MIPS_REGSIZE |
1873 | are treated specially: Irix cc passes them in registers | |
1874 | where gcc sometimes puts them on the stack. For maximum | |
1875 | compatibility, we will put them in both places. */ | |
1876 | ||
1877 | int odd_sized_struct = ((len > MIPS_REGSIZE) && | |
1878 | (len % MIPS_REGSIZE != 0)); | |
97e091b2 MA |
1879 | while (len > 0) |
1880 | { | |
1881 | int partial_len = len < MIPS_REGSIZE ? len : MIPS_REGSIZE; | |
61d2d19a | 1882 | |
781a59b2 MS |
1883 | if (argreg > MIPS_LAST_ARG_REGNUM || odd_sized_struct) |
1884 | { | |
1885 | /* Write this portion of the argument to the stack. */ | |
912e805f AC |
1886 | /* Should shorter than int integer values be |
1887 | promoted to int before being stored? */ | |
781a59b2 | 1888 | |
912e805f | 1889 | int longword_offset = 0; |
781a59b2 | 1890 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) |
a00dfa36 | 1891 | if (STACK_ARGSIZE == 8 && |
781a59b2 MS |
1892 | (typecode == TYPE_CODE_INT || |
1893 | typecode == TYPE_CODE_PTR || | |
1894 | typecode == TYPE_CODE_FLT) && len <= 4) | |
a00dfa36 | 1895 | longword_offset = STACK_ARGSIZE - len; |
781a59b2 MS |
1896 | else if ((typecode == TYPE_CODE_STRUCT || |
1897 | typecode == TYPE_CODE_UNION) && | |
a00dfa36 MS |
1898 | TYPE_LENGTH (arg_type) < STACK_ARGSIZE) |
1899 | longword_offset = STACK_ARGSIZE - len; | |
781a59b2 MS |
1900 | |
1901 | write_memory (sp + stack_offset + longword_offset, | |
1902 | val, partial_len); | |
1903 | } | |
1904 | ||
1905 | /* Note!!! This is NOT an else clause. | |
1906 | Odd sized structs may go thru BOTH paths. */ | |
97e091b2 MA |
1907 | if (argreg <= MIPS_LAST_ARG_REGNUM) |
1908 | { | |
61d2d19a PS |
1909 | CORE_ADDR regval = extract_address (val, partial_len); |
1910 | ||
c430260c MS |
1911 | /* A non-floating-point argument being passed in a |
1912 | general register. If a struct or union, and if | |
91ee2779 JL |
1913 | the remaining length is smaller than the register |
1914 | size, we have to adjust the register value on | |
1915 | big endian targets. | |
158bda58 | 1916 | |
c430260c MS |
1917 | It does not seem to be necessary to do the |
1918 | same for integral types. | |
158bda58 | 1919 | |
c430260c | 1920 | Also don't do this adjustment on EABI targets. */ |
158bda58 MS |
1921 | |
1922 | if (!MIPS_EABI && | |
91ee2779 JL |
1923 | TARGET_BYTE_ORDER == BIG_ENDIAN && |
1924 | partial_len < MIPS_REGSIZE && | |
c430260c | 1925 | (typecode == TYPE_CODE_STRUCT || |
158bda58 MS |
1926 | typecode == TYPE_CODE_UNION)) |
1927 | regval <<= ((MIPS_REGSIZE - partial_len) * | |
1928 | TARGET_CHAR_BIT); | |
1929 | ||
97e091b2 MA |
1930 | write_register (argreg, regval); |
1931 | argreg++; | |
1932 | ||
1933 | /* If this is the old ABI, prevent subsequent floating | |
1934 | point arguments from being passed in floating point | |
1935 | registers. */ | |
1936 | if (!MIPS_EABI) | |
1937 | float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1; | |
1938 | } | |
97e091b2 MA |
1939 | |
1940 | len -= partial_len; | |
1941 | val += partial_len; | |
781a59b2 MS |
1942 | |
1943 | /* The offset onto the stack at which we will start | |
1944 | copying parameters (after the registers are used up) | |
1945 | begins at (4 * MIPS_REGSIZE) in the old ABI. This | |
1946 | leaves room for the "home" area for register parameters. | |
1947 | ||
a00dfa36 MS |
1948 | In the new EABI (and the NABI32), the 8 register parameters |
1949 | do not have "home" stack space reserved for them, so the | |
781a59b2 MS |
1950 | stack offset does not get incremented until after |
1951 | we have used up the 8 parameter registers. */ | |
a00dfa36 MS |
1952 | |
1953 | if (!(MIPS_EABI || MIPS_NABI32) || | |
1954 | argnum >= 8) | |
1955 | stack_offset += ROUND_UP (partial_len, STACK_ARGSIZE); | |
97e091b2 MA |
1956 | } |
1957 | } | |
5efd597b | 1958 | } |
97e091b2 MA |
1959 | |
1960 | /* Set the return address register to point to the entry | |
1961 | point of the program, where a breakpoint lies in wait. */ | |
1962 | write_register (RA_REGNUM, CALL_DUMMY_ADDRESS()); | |
1963 | ||
1964 | /* Return adjusted stack pointer. */ | |
bd5635a1 RP |
1965 | return sp; |
1966 | } | |
1967 | ||
c81a76b3 | 1968 | static void |
28444bf3 DP |
1969 | mips_push_register(CORE_ADDR *sp, int regno) |
1970 | { | |
1971 | char buffer[MAX_REGISTER_RAW_SIZE]; | |
1972 | int regsize = REGISTER_RAW_SIZE (regno); | |
1973 | ||
1974 | *sp -= regsize; | |
1975 | read_register_gen (regno, buffer); | |
1976 | write_memory (*sp, buffer, regsize); | |
1977 | } | |
1978 | ||
1979 | /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */ | |
e03c0cc6 | 1980 | #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1)) |
bd5635a1 RP |
1981 | |
1982 | void | |
1983 | mips_push_dummy_frame() | |
1984 | { | |
1985 | int ireg; | |
1986 | struct linked_proc_info *link = (struct linked_proc_info*) | |
1987 | xmalloc(sizeof(struct linked_proc_info)); | |
1988 | mips_extra_func_info_t proc_desc = &link->info; | |
96431497 | 1989 | CORE_ADDR sp = ADDR_BITS_REMOVE (read_register (SP_REGNUM)); |
28444bf3 | 1990 | CORE_ADDR old_sp = sp; |
bd5635a1 RP |
1991 | link->next = linked_proc_desc_table; |
1992 | linked_proc_desc_table = link; | |
28444bf3 DP |
1993 | |
1994 | /* FIXME! are these correct ? */ | |
bd5635a1 | 1995 | #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */ |
28444bf3 | 1996 | #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1)) |
bd5635a1 | 1997 | #define FLOAT_REG_SAVE_MASK MASK(0,19) |
e4dbd248 PS |
1998 | #define FLOAT_SINGLE_REG_SAVE_MASK \ |
1999 | ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0)) | |
bd5635a1 RP |
2000 | /* |
2001 | * The registers we must save are all those not preserved across | |
2002 | * procedure calls. Dest_Reg (see tm-mips.h) must also be saved. | |
28444bf3 DP |
2003 | * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI |
2004 | * and FP Control/Status registers. | |
2005 | * | |
bd5635a1 RP |
2006 | * |
2007 | * Dummy frame layout: | |
2008 | * (high memory) | |
2009 | * Saved PC | |
2010 | * Saved MMHI, MMLO, FPC_CSR | |
2011 | * Saved R31 | |
2012 | * Saved R28 | |
2013 | * ... | |
2014 | * Saved R1 | |
2015 | * Saved D18 (i.e. F19, F18) | |
2016 | * ... | |
2017 | * Saved D0 (i.e. F1, F0) | |
f9f8c14b | 2018 | * Argument build area and stack arguments written via mips_push_arguments |
bd5635a1 RP |
2019 | * (low memory) |
2020 | */ | |
28444bf3 DP |
2021 | |
2022 | /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */ | |
28444bf3 DP |
2023 | PROC_FRAME_REG(proc_desc) = PUSH_FP_REGNUM; |
2024 | PROC_FRAME_OFFSET(proc_desc) = 0; | |
639c8612 | 2025 | PROC_FRAME_ADJUST(proc_desc) = 0; |
28444bf3 DP |
2026 | mips_push_register (&sp, PC_REGNUM); |
2027 | mips_push_register (&sp, HI_REGNUM); | |
2028 | mips_push_register (&sp, LO_REGNUM); | |
2029 | mips_push_register (&sp, mips_fpu == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM); | |
2030 | ||
2031 | /* Save general CPU registers */ | |
bd5635a1 | 2032 | PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK; |
a00dfa36 MS |
2033 | /* PROC_REG_OFFSET is the offset of the first saved register from FP. */ |
2034 | PROC_REG_OFFSET(proc_desc) = sp - old_sp - MIPS_REGSIZE; | |
bd5635a1 RP |
2035 | for (ireg = 32; --ireg >= 0; ) |
2036 | if (PROC_REG_MASK(proc_desc) & (1 << ireg)) | |
28444bf3 | 2037 | mips_push_register (&sp, ireg); |
3fed1c4a | 2038 | |
28444bf3 DP |
2039 | /* Save floating point registers starting with high order word */ |
2040 | PROC_FREG_MASK(proc_desc) = | |
2041 | mips_fpu == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK | |
2042 | : mips_fpu == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0; | |
a00dfa36 MS |
2043 | /* PROC_FREG_OFFSET is the offset of the first saved *double* register |
2044 | from FP. */ | |
2045 | PROC_FREG_OFFSET(proc_desc) = sp - old_sp - 8; | |
bd5635a1 RP |
2046 | for (ireg = 32; --ireg >= 0; ) |
2047 | if (PROC_FREG_MASK(proc_desc) & (1 << ireg)) | |
28444bf3 | 2048 | mips_push_register (&sp, ireg + FP0_REGNUM); |
3fed1c4a | 2049 | |
f9f8c14b MA |
2050 | /* Update the frame pointer for the call dummy and the stack pointer. |
2051 | Set the procedure's starting and ending addresses to point to the | |
2052 | call dummy address at the entry point. */ | |
2053 | write_register (PUSH_FP_REGNUM, old_sp); | |
bd5635a1 | 2054 | write_register (SP_REGNUM, sp); |
97e091b2 MA |
2055 | PROC_LOW_ADDR(proc_desc) = CALL_DUMMY_ADDRESS(); |
2056 | PROC_HIGH_ADDR(proc_desc) = CALL_DUMMY_ADDRESS() + 4; | |
bd5635a1 RP |
2057 | SET_PROC_DESC_IS_DUMMY(proc_desc); |
2058 | PROC_PC_REG(proc_desc) = RA_REGNUM; | |
2059 | } | |
2060 | ||
2061 | void | |
2062 | mips_pop_frame() | |
dac4929a SG |
2063 | { |
2064 | register int regnum; | |
9f9f94aa SS |
2065 | struct frame_info *frame = get_current_frame (); |
2066 | CORE_ADDR new_sp = FRAME_FP (frame); | |
dac4929a | 2067 | |
a70dc898 | 2068 | mips_extra_func_info_t proc_desc = frame->proc_desc; |
dac4929a SG |
2069 | |
2070 | write_register (PC_REGNUM, FRAME_SAVED_PC(frame)); | |
70126bf9 KH |
2071 | if (frame->saved_regs == NULL) |
2072 | mips_find_saved_regs (frame); | |
61d2d19a | 2073 | for (regnum = 0; regnum < NUM_REGS; regnum++) |
dac4929a | 2074 | { |
61d2d19a PS |
2075 | if (regnum != SP_REGNUM && regnum != PC_REGNUM |
2076 | && frame->saved_regs->regs[regnum]) | |
2077 | write_register (regnum, | |
2078 | read_memory_integer (frame->saved_regs->regs[regnum], | |
2079 | MIPS_REGSIZE)); | |
dac4929a SG |
2080 | } |
2081 | write_register (SP_REGNUM, new_sp); | |
2082 | flush_cached_frames (); | |
dac4929a | 2083 | |
199b2450 | 2084 | if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc)) |
bd5635a1 | 2085 | { |
dac4929a SG |
2086 | struct linked_proc_info *pi_ptr, *prev_ptr; |
2087 | ||
2088 | for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL; | |
2089 | pi_ptr != NULL; | |
2090 | prev_ptr = pi_ptr, pi_ptr = pi_ptr->next) | |
2091 | { | |
2092 | if (&pi_ptr->info == proc_desc) | |
2093 | break; | |
2094 | } | |
2095 | ||
2096 | if (pi_ptr == NULL) | |
2097 | error ("Can't locate dummy extra frame info\n"); | |
2098 | ||
2099 | if (prev_ptr != NULL) | |
2100 | prev_ptr->next = pi_ptr->next; | |
2101 | else | |
2102 | linked_proc_desc_table = pi_ptr->next; | |
2103 | ||
2104 | free (pi_ptr); | |
2105 | ||
28444bf3 DP |
2106 | write_register (HI_REGNUM, |
2107 | read_memory_integer (new_sp - 2*MIPS_REGSIZE, MIPS_REGSIZE)); | |
2108 | write_register (LO_REGNUM, | |
2109 | read_memory_integer (new_sp - 3*MIPS_REGSIZE, MIPS_REGSIZE)); | |
e4dbd248 | 2110 | if (mips_fpu != MIPS_FPU_NONE) |
28444bf3 DP |
2111 | write_register (FCRCS_REGNUM, |
2112 | read_memory_integer (new_sp - 4*MIPS_REGSIZE, MIPS_REGSIZE)); | |
bd5635a1 | 2113 | } |
bd5635a1 RP |
2114 | } |
2115 | ||
0f552c5f | 2116 | static void |
a70dc898 | 2117 | mips_print_register (regnum, all) |
bd5635a1 RP |
2118 | int regnum, all; |
2119 | { | |
e4dbd248 | 2120 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; |
bd5635a1 | 2121 | |
48be4c35 JK |
2122 | /* Get the data in raw format. */ |
2123 | if (read_relative_register_raw_bytes (regnum, raw_buffer)) | |
2124 | { | |
2125 | printf_filtered ("%s: [Invalid]", reg_names[regnum]); | |
2126 | return; | |
2127 | } | |
2128 | ||
781a59b2 | 2129 | /* If an even floating point register, also print as double. */ |
899c4021 | 2130 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT |
e4dbd248 | 2131 | && !((regnum-FP0_REGNUM) & 1)) |
a00dfa36 | 2132 | if (REGISTER_RAW_SIZE(regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */ |
899c4021 MA |
2133 | { |
2134 | char dbuffer[2 * MAX_REGISTER_RAW_SIZE]; | |
48be4c35 | 2135 | |
899c4021 MA |
2136 | read_relative_register_raw_bytes (regnum, dbuffer); |
2137 | read_relative_register_raw_bytes (regnum+1, dbuffer+MIPS_REGSIZE); | |
2138 | REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer); | |
c81a76b3 | 2139 | |
899c4021 MA |
2140 | printf_filtered ("(d%d: ", regnum-FP0_REGNUM); |
2141 | val_print (builtin_type_double, dbuffer, 0, | |
2142 | gdb_stdout, 0, 1, 0, Val_pretty_default); | |
2143 | printf_filtered ("); "); | |
2144 | } | |
199b2450 | 2145 | fputs_filtered (reg_names[regnum], gdb_stdout); |
48be4c35 JK |
2146 | |
2147 | /* The problem with printing numeric register names (r26, etc.) is that | |
2148 | the user can't use them on input. Probably the best solution is to | |
2149 | fix it so that either the numeric or the funky (a2, etc.) names | |
2150 | are accepted on input. */ | |
28444bf3 | 2151 | if (regnum < MIPS_NUMREGS) |
48be4c35 JK |
2152 | printf_filtered ("(r%d): ", regnum); |
2153 | else | |
2154 | printf_filtered (": "); | |
bd5635a1 | 2155 | |
48be4c35 | 2156 | /* If virtual format is floating, print it that way. */ |
ac57e5ad | 2157 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) |
a00dfa36 | 2158 | if (FP_REGISTER_DOUBLE) |
899c4021 MA |
2159 | { /* show 8-byte floats as float AND double: */ |
2160 | int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN); | |
2161 | ||
2162 | printf_filtered (" (float) "); | |
2163 | val_print (builtin_type_float, raw_buffer + offset, 0, | |
2164 | gdb_stdout, 0, 1, 0, Val_pretty_default); | |
2165 | printf_filtered (", (double) "); | |
2166 | val_print (builtin_type_double, raw_buffer, 0, | |
2167 | gdb_stdout, 0, 1, 0, Val_pretty_default); | |
2168 | } | |
2169 | else | |
2170 | val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, | |
2171 | gdb_stdout, 0, 1, 0, Val_pretty_default); | |
48be4c35 JK |
2172 | /* Else print as integer in hex. */ |
2173 | else | |
ac57e5ad SS |
2174 | print_scalar_formatted (raw_buffer, REGISTER_VIRTUAL_TYPE (regnum), |
2175 | 'x', 0, gdb_stdout); | |
bd5635a1 RP |
2176 | } |
2177 | ||
899c4021 MA |
2178 | /* Replacement for generic do_registers_info. |
2179 | Print regs in pretty columns. */ | |
2180 | ||
2181 | static int | |
2182 | do_fp_register_row (regnum) | |
2183 | int regnum; | |
2184 | { /* do values for FP (float) regs */ | |
cf93a3aa ILT |
2185 | char *raw_buffer[2]; |
2186 | char *dbl_buffer; | |
899c4021 MA |
2187 | /* use HI and LO to control the order of combining two flt regs */ |
2188 | int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN); | |
2189 | int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN); | |
2190 | double doub, flt1, flt2; /* doubles extracted from raw hex data */ | |
2191 | int inv1, inv2, inv3; | |
2192 | ||
cf93a3aa ILT |
2193 | raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM)); |
2194 | raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM)); | |
2195 | dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM)); | |
2196 | ||
899c4021 MA |
2197 | /* Get the data in raw format. */ |
2198 | if (read_relative_register_raw_bytes (regnum, raw_buffer[HI])) | |
2199 | error ("can't read register %d (%s)", regnum, reg_names[regnum]); | |
2200 | if (REGISTER_RAW_SIZE(regnum) == 4) | |
2201 | { | |
2202 | /* 4-byte registers: we can fit two registers per row. */ | |
2203 | /* Also print every pair of 4-byte regs as an 8-byte double. */ | |
2204 | if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO])) | |
2205 | error ("can't read register %d (%s)", | |
2206 | regnum + 1, reg_names[regnum + 1]); | |
2207 | ||
2208 | /* copy the two floats into one double, and unpack both */ | |
2209 | memcpy (dbl_buffer, raw_buffer, sizeof(dbl_buffer)); | |
2210 | flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1); | |
2211 | flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2); | |
2212 | doub = unpack_double (builtin_type_double, dbl_buffer, &inv3); | |
2213 | ||
2214 | printf_filtered (inv1 ? " %-5s: <invalid float>" : | |
2215 | " %-5s%-17.9g", reg_names[regnum], flt1); | |
2216 | printf_filtered (inv2 ? " %-5s: <invalid float>" : | |
2217 | " %-5s%-17.9g", reg_names[regnum + 1], flt2); | |
2218 | printf_filtered (inv3 ? " dbl: <invalid double>\n" : | |
2219 | " dbl: %-24.17g\n", doub); | |
2220 | /* may want to do hex display here (future enhancement) */ | |
2221 | regnum +=2; | |
2222 | } | |
2223 | else | |
2224 | { /* eight byte registers: print each one as float AND as double. */ | |
2225 | int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN); | |
2226 | ||
2227 | memcpy (dbl_buffer, raw_buffer[HI], sizeof(dbl_buffer)); | |
2228 | flt1 = unpack_double (builtin_type_float, | |
2229 | &raw_buffer[HI][offset], &inv1); | |
2230 | doub = unpack_double (builtin_type_double, dbl_buffer, &inv3); | |
2231 | ||
2232 | printf_filtered (inv1 ? " %-5s: <invalid float>" : | |
2233 | " %-5s flt: %-17.9g", reg_names[regnum], flt1); | |
2234 | printf_filtered (inv3 ? " dbl: <invalid double>\n" : | |
2235 | " dbl: %-24.17g\n", doub); | |
2236 | /* may want to do hex display here (future enhancement) */ | |
2237 | regnum++; | |
2238 | } | |
2239 | return regnum; | |
2240 | } | |
2241 | ||
2242 | /* Print a row's worth of GP (int) registers, with name labels above */ | |
2243 | ||
2244 | static int | |
2245 | do_gp_register_row (regnum) | |
2246 | int regnum; | |
912e805f AC |
2247 | { |
2248 | /* do values for GP (int) regs */ | |
2249 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
2250 | int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */ | |
2251 | int col, byte; | |
2252 | int start_regnum = regnum; | |
2253 | int numregs = NUM_REGS; | |
2254 | ||
2255 | /* start-sanitize-sky */ | |
2256 | #ifdef NUM_R5900_REGS | |
2257 | numregs = NUM_R5900_REGS; | |
2258 | #endif | |
2259 | /* end-sanitize-sky */ | |
899c4021 MA |
2260 | |
2261 | /* For GP registers, we print a separate row of names above the vals */ | |
2262 | printf_filtered (" "); | |
912e805f | 2263 | for (col = 0; col < ncols && regnum < numregs; regnum++) |
899c4021 MA |
2264 | { |
2265 | if (*reg_names[regnum] == '\0') | |
2266 | continue; /* unused register */ | |
2267 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) | |
2268 | break; /* end the row: reached FP register */ | |
2269 | printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s", | |
2270 | reg_names[regnum]); | |
2271 | col++; | |
2272 | } | |
2273 | printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ", | |
2274 | start_regnum); /* print the R0 to R31 names */ | |
2275 | ||
2276 | regnum = start_regnum; /* go back to start of row */ | |
2277 | /* now print the values in hex, 4 or 8 to the row */ | |
912e805f | 2278 | for (col = 0; col < ncols && regnum < numregs; regnum++) |
899c4021 MA |
2279 | { |
2280 | if (*reg_names[regnum] == '\0') | |
2281 | continue; /* unused register */ | |
2282 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) | |
2283 | break; /* end row: reached FP register */ | |
2284 | /* OK: get the data in raw format. */ | |
2285 | if (read_relative_register_raw_bytes (regnum, raw_buffer)) | |
2286 | error ("can't read register %d (%s)", regnum, reg_names[regnum]); | |
912e805f AC |
2287 | /* pad small registers */ |
2288 | for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_RAW_SIZE (regnum)); byte++) | |
2289 | printf_filtered (" "); | |
899c4021 MA |
2290 | /* Now print the register value in hex, endian order. */ |
2291 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
2292 | for (byte = 0; byte < REGISTER_RAW_SIZE (regnum); byte++) | |
2293 | printf_filtered ("%02x", (unsigned char) raw_buffer[byte]); | |
2294 | else | |
2295 | for (byte = REGISTER_RAW_SIZE (regnum) - 1; byte >= 0; byte--) | |
2296 | printf_filtered ("%02x", (unsigned char) raw_buffer[byte]); | |
2297 | printf_filtered (" "); | |
2298 | col++; | |
2299 | } | |
2300 | if (col > 0) /* ie. if we actually printed anything... */ | |
2301 | printf_filtered ("\n"); | |
2302 | ||
2303 | return regnum; | |
2304 | } | |
2305 | ||
2306 | /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */ | |
9f9f94aa | 2307 | |
0f552c5f | 2308 | void |
361bf6ee | 2309 | mips_do_registers_info (regnum, fpregs) |
bd5635a1 | 2310 | int regnum; |
361bf6ee | 2311 | int fpregs; |
bd5635a1 | 2312 | { |
899c4021 | 2313 | if (regnum != -1) /* do one specified register */ |
9f9f94aa SS |
2314 | { |
2315 | if (*(reg_names[regnum]) == '\0') | |
2316 | error ("Not a valid register for the current processor type"); | |
2317 | ||
bd5635a1 RP |
2318 | mips_print_register (regnum, 0); |
2319 | printf_filtered ("\n"); | |
9f9f94aa | 2320 | } |
899c4021 | 2321 | else /* do all (or most) registers */ |
9f9f94aa | 2322 | { |
899c4021 MA |
2323 | regnum = 0; |
2324 | while (regnum < NUM_REGS) | |
912e805f AC |
2325 | { |
2326 | if (TYPE_CODE(REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) | |
2327 | if (fpregs) /* true for "INFO ALL-REGISTERS" command */ | |
2328 | regnum = do_fp_register_row (regnum); /* FP regs */ | |
2329 | else | |
2330 | regnum += MIPS_NUMREGS; /* skip floating point regs */ | |
899c4021 | 2331 | else |
912e805f AC |
2332 | regnum = do_gp_register_row (regnum); /* GP (int) regs */ |
2333 | /* start-sanitize-sky */ | |
2334 | #ifdef NUM_R5900_REGS | |
2335 | /* For the sky project, NUM_REGS includes the vector slaves, | |
2336 | which are handled elsewhere */ | |
2337 | if (regnum >= NUM_R5900_REGS) | |
2338 | break; | |
2339 | #endif | |
2340 | /* end-sanitize-sky */ | |
2341 | } | |
9f9f94aa | 2342 | } |
bd5635a1 | 2343 | } |
9f9f94aa | 2344 | |
bd5635a1 RP |
2345 | /* Return number of args passed to a frame. described by FIP. |
2346 | Can return -1, meaning no way to tell. */ | |
2347 | ||
0f552c5f | 2348 | int |
9f9f94aa SS |
2349 | mips_frame_num_args (frame) |
2350 | struct frame_info *frame; | |
bd5635a1 | 2351 | { |
9f9f94aa SS |
2352 | #if 0 /* FIXME Use or lose this! */ |
2353 | struct chain_info_t *p; | |
bd5635a1 | 2354 | |
9f9f94aa SS |
2355 | p = mips_find_cached_frame (FRAME_FP (frame)); |
2356 | if (p->valid) | |
2357 | return p->the_info.numargs; | |
bd5635a1 | 2358 | #endif |
9f9f94aa | 2359 | return -1; |
bd5635a1 | 2360 | } |
96431497 | 2361 | |
427fec5d | 2362 | /* Is this a branch with a delay slot? */ |
9f9f94aa | 2363 | |
b5aff268 JK |
2364 | static int is_delayed PARAMS ((unsigned long)); |
2365 | ||
ee5fb959 JK |
2366 | static int |
2367 | is_delayed (insn) | |
2368 | unsigned long insn; | |
2369 | { | |
2370 | int i; | |
2371 | for (i = 0; i < NUMOPCODES; ++i) | |
2372 | if (mips_opcodes[i].pinfo != INSN_MACRO | |
2373 | && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match) | |
2374 | break; | |
427fec5d JK |
2375 | return (i < NUMOPCODES |
2376 | && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY | |
2377 | | INSN_COND_BRANCH_DELAY | |
2378 | | INSN_COND_BRANCH_LIKELY))); | |
ee5fb959 | 2379 | } |
b5aff268 JK |
2380 | |
2381 | int | |
2382 | mips_step_skips_delay (pc) | |
2383 | CORE_ADDR pc; | |
2384 | { | |
96431497 | 2385 | char buf[MIPS_INSTLEN]; |
b5aff268 | 2386 | |
f9f8c14b | 2387 | /* There is no branch delay slot on MIPS16. */ |
899c4021 | 2388 | if (pc_is_mips16 (pc)) |
f9f8c14b MA |
2389 | return 0; |
2390 | ||
96431497 | 2391 | if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0) |
b5aff268 JK |
2392 | /* If error reading memory, guess that it is not a delayed branch. */ |
2393 | return 0; | |
96431497 | 2394 | return is_delayed ((unsigned long)extract_unsigned_integer (buf, MIPS_INSTLEN)); |
b5aff268 | 2395 | } |
ee5fb959 | 2396 | |
bd5635a1 | 2397 | |
20fa0902 MA |
2398 | /* Skip the PC past function prologue instructions (32-bit version). |
2399 | This is a helper function for mips_skip_prologue. */ | |
2400 | ||
2401 | static CORE_ADDR | |
2402 | mips32_skip_prologue (pc, lenient) | |
2403 | CORE_ADDR pc; /* starting PC to search from */ | |
ee5fb959 | 2404 | int lenient; |
bd5635a1 | 2405 | { |
28444bf3 | 2406 | t_inst inst; |
20fa0902 | 2407 | CORE_ADDR end_pc; |
0b0d6c3f | 2408 | int seen_sp_adjust = 0; |
ac57e5ad | 2409 | int load_immediate_bytes = 0; |
bd5635a1 | 2410 | |
e157305c PS |
2411 | /* Skip the typical prologue instructions. These are the stack adjustment |
2412 | instruction and the instructions that save registers on the stack | |
2413 | or in the gcc frame. */ | |
20fa0902 | 2414 | for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN) |
ee5fb959 | 2415 | { |
b348b9fd | 2416 | unsigned long high_word; |
ee5fb959 | 2417 | |
c81a76b3 | 2418 | inst = mips_fetch_instruction (pc); |
b348b9fd | 2419 | high_word = (inst >> 16) & 0xffff; |
ee5fb959 | 2420 | |
002a422b | 2421 | #if 0 |
ee5fb959 JK |
2422 | if (lenient && is_delayed (inst)) |
2423 | continue; | |
002a422b | 2424 | #endif |
ee5fb959 | 2425 | |
b348b9fd MA |
2426 | if (high_word == 0x27bd /* addiu $sp,$sp,offset */ |
2427 | || high_word == 0x67bd) /* daddiu $sp,$sp,offset */ | |
0b0d6c3f | 2428 | seen_sp_adjust = 1; |
ac57e5ad SS |
2429 | else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */ |
2430 | inst == 0x03a8e823) /* subu $sp,$sp,$t0 */ | |
2431 | seen_sp_adjust = 1; | |
97e091b2 | 2432 | else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */ |
a00dfa36 MS |
2433 | /* start-sanitize-r5900 */ |
2434 | || (inst & 0xFFE00000) == 0x7FA00000 /* sq reg,n($sp) */ | |
2435 | /* end-sanitize-r5900 */ | |
97e091b2 MA |
2436 | || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */ |
2437 | && (inst & 0x001F0000)) /* reg != $zero */ | |
2438 | continue; | |
2439 | ||
e157305c PS |
2440 | else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */ |
2441 | continue; | |
2442 | else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000)) | |
2443 | /* sx reg,n($s8) */ | |
2444 | continue; /* reg != $zero */ | |
1d9489c1 JK |
2445 | |
2446 | /* move $s8,$sp. With different versions of gas this will be either | |
20fa0902 MA |
2447 | `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'. |
2448 | Accept any one of these. */ | |
2449 | else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) | |
0b0d6c3f | 2450 | continue; |
1d9489c1 | 2451 | |
1b71de8e PS |
2452 | else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */ |
2453 | continue; | |
b348b9fd | 2454 | else if (high_word == 0x3c1c) /* lui $gp,n */ |
e03c0cc6 | 2455 | continue; |
b348b9fd | 2456 | else if (high_word == 0x279c) /* addiu $gp,$gp,n */ |
e03c0cc6 ILT |
2457 | continue; |
2458 | else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */ | |
2459 | || inst == 0x033ce021) /* addu $gp,$t9,$gp */ | |
2460 | continue; | |
ac57e5ad SS |
2461 | /* The following instructions load $at or $t0 with an immediate |
2462 | value in preparation for a stack adjustment via | |
2463 | subu $sp,$sp,[$at,$t0]. These instructions could also initialize | |
2464 | a local variable, so we accept them only before a stack adjustment | |
2465 | instruction was seen. */ | |
2466 | else if (!seen_sp_adjust) | |
2467 | { | |
b348b9fd MA |
2468 | if (high_word == 0x3c01 || /* lui $at,n */ |
2469 | high_word == 0x3c08) /* lui $t0,n */ | |
ac57e5ad | 2470 | { |
28444bf3 | 2471 | load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ |
ac57e5ad SS |
2472 | continue; |
2473 | } | |
b348b9fd MA |
2474 | else if (high_word == 0x3421 || /* ori $at,$at,n */ |
2475 | high_word == 0x3508 || /* ori $t0,$t0,n */ | |
2476 | high_word == 0x3401 || /* ori $at,$zero,n */ | |
2477 | high_word == 0x3408) /* ori $t0,$zero,n */ | |
ac57e5ad | 2478 | { |
28444bf3 | 2479 | load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ |
ac57e5ad SS |
2480 | continue; |
2481 | } | |
2482 | else | |
2483 | break; | |
2484 | } | |
0b0d6c3f | 2485 | else |
ac57e5ad | 2486 | break; |
d747e0af | 2487 | } |
e157305c | 2488 | |
ac57e5ad SS |
2489 | /* In a frameless function, we might have incorrectly |
2490 | skipped some load immediate instructions. Undo the skipping | |
2491 | if the load immediate was not followed by a stack adjustment. */ | |
2492 | if (load_immediate_bytes && !seen_sp_adjust) | |
20fa0902 MA |
2493 | pc -= load_immediate_bytes; |
2494 | return pc; | |
2495 | } | |
2496 | ||
2497 | /* Skip the PC past function prologue instructions (16-bit version). | |
2498 | This is a helper function for mips_skip_prologue. */ | |
2499 | ||
2500 | static CORE_ADDR | |
2501 | mips16_skip_prologue (pc, lenient) | |
2502 | CORE_ADDR pc; /* starting PC to search from */ | |
2503 | int lenient; | |
2504 | { | |
2505 | CORE_ADDR end_pc; | |
c81a76b3 MA |
2506 | int extend_bytes = 0; |
2507 | int prev_extend_bytes; | |
20fa0902 MA |
2508 | |
2509 | /* Table of instructions likely to be found in a function prologue. */ | |
2510 | static struct | |
2511 | { | |
2512 | unsigned short inst; | |
2513 | unsigned short mask; | |
2514 | } table[] = | |
2515 | { | |
2516 | { 0x6300, 0xff00 }, /* addiu $sp,offset */ | |
2517 | { 0xfb00, 0xff00 }, /* daddiu $sp,offset */ | |
2518 | { 0xd000, 0xf800 }, /* sw reg,n($sp) */ | |
2519 | { 0xf900, 0xff00 }, /* sd reg,n($sp) */ | |
2520 | { 0x6200, 0xff00 }, /* sw $ra,n($sp) */ | |
2521 | { 0xfa00, 0xff00 }, /* sd $ra,n($sp) */ | |
2522 | { 0x673d, 0xffff }, /* move $s1,sp */ | |
2523 | { 0xd980, 0xff80 }, /* sw $a0-$a3,n($s1) */ | |
2524 | { 0x6704, 0xff1c }, /* move reg,$a0-$a3 */ | |
2525 | { 0xe809, 0xf81f }, /* entry pseudo-op */ | |
32dab603 | 2526 | { 0x0100, 0xff00 }, /* addiu $s1,$sp,n */ |
20fa0902 MA |
2527 | { 0, 0 } /* end of table marker */ |
2528 | }; | |
2529 | ||
2530 | /* Skip the typical prologue instructions. These are the stack adjustment | |
2531 | instruction and the instructions that save registers on the stack | |
2532 | or in the gcc frame. */ | |
2533 | for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN) | |
2534 | { | |
20fa0902 | 2535 | unsigned short inst; |
20fa0902 MA |
2536 | int i; |
2537 | ||
c81a76b3 | 2538 | inst = mips_fetch_instruction (pc); |
20fa0902 MA |
2539 | |
2540 | /* Normally we ignore an extend instruction. However, if it is | |
2541 | not followed by a valid prologue instruction, we must adjust | |
2542 | the pc back over the extend so that it won't be considered | |
2543 | part of the prologue. */ | |
2544 | if ((inst & 0xf800) == 0xf000) /* extend */ | |
2545 | { | |
2546 | extend_bytes = MIPS16_INSTLEN; | |
2547 | continue; | |
2548 | } | |
2549 | prev_extend_bytes = extend_bytes; | |
2550 | extend_bytes = 0; | |
2551 | ||
2552 | /* Check for other valid prologue instructions besides extend. */ | |
2553 | for (i = 0; table[i].mask != 0; i++) | |
2554 | if ((inst & table[i].mask) == table[i].inst) /* found, get out */ | |
2555 | break; | |
2556 | if (table[i].mask != 0) /* it was in table? */ | |
32dab603 | 2557 | continue; /* ignore it */ |
20fa0902 MA |
2558 | else /* non-prologue */ |
2559 | { | |
2560 | /* Return the current pc, adjusted backwards by 2 if | |
2561 | the previous instruction was an extend. */ | |
2562 | return pc - prev_extend_bytes; | |
2563 | } | |
2564 | } | |
32dab603 | 2565 | return pc; |
20fa0902 MA |
2566 | } |
2567 | ||
2568 | /* To skip prologues, I use this predicate. Returns either PC itself | |
2569 | if the code at PC does not look like a function prologue; otherwise | |
2570 | returns an address that (if we're lucky) follows the prologue. If | |
2571 | LENIENT, then we must skip everything which is involved in setting | |
2572 | up the frame (it's OK to skip more, just so long as we don't skip | |
2573 | anything which might clobber the registers which are being saved. | |
2574 | We must skip more in the case where part of the prologue is in the | |
2575 | delay slot of a non-prologue instruction). */ | |
2576 | ||
2577 | CORE_ADDR | |
2578 | mips_skip_prologue (pc, lenient) | |
2579 | CORE_ADDR pc; | |
2580 | int lenient; | |
2581 | { | |
2582 | /* See if we can determine the end of the prologue via the symbol table. | |
2583 | If so, then return either PC, or the PC after the prologue, whichever | |
2584 | is greater. */ | |
2585 | ||
2586 | CORE_ADDR post_prologue_pc = after_prologue (pc, NULL); | |
2587 | ||
2588 | if (post_prologue_pc != 0) | |
2589 | return max (pc, post_prologue_pc); | |
2590 | ||
2591 | /* Can't determine prologue from the symbol table, need to examine | |
2592 | instructions. */ | |
2593 | ||
899c4021 | 2594 | if (pc_is_mips16 (pc)) |
20fa0902 MA |
2595 | return mips16_skip_prologue (pc, lenient); |
2596 | else | |
2597 | return mips32_skip_prologue (pc, lenient); | |
bd5635a1 | 2598 | } |
c2a0f1cb | 2599 | |
002a422b | 2600 | #if 0 |
20fa0902 | 2601 | /* The lenient prologue stuff should be superseded by the code in |
002a422b JK |
2602 | init_extra_frame_info which looks to see whether the stores mentioned |
2603 | in the proc_desc have actually taken place. */ | |
2604 | ||
ee5fb959 JK |
2605 | /* Is address PC in the prologue (loosely defined) for function at |
2606 | STARTADDR? */ | |
2607 | ||
2608 | static int | |
2609 | mips_in_lenient_prologue (startaddr, pc) | |
2610 | CORE_ADDR startaddr; | |
2611 | CORE_ADDR pc; | |
2612 | { | |
2613 | CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1); | |
2614 | return pc >= startaddr && pc < end_prologue; | |
2615 | } | |
002a422b | 2616 | #endif |
ee5fb959 | 2617 | |
ac8cf67d PS |
2618 | /* Given a return value in `regbuf' with a type `valtype', |
2619 | extract and copy its value into `valbuf'. */ | |
2620 | void | |
2621 | mips_extract_return_value (valtype, regbuf, valbuf) | |
2622 | struct type *valtype; | |
2623 | char regbuf[REGISTER_BYTES]; | |
2624 | char *valbuf; | |
2625 | { | |
2626 | int regnum; | |
92a6d600 | 2627 | int offset = 0; |
c81a76b3 | 2628 | int len = TYPE_LENGTH (valtype); |
ac8cf67d | 2629 | |
e4dbd248 PS |
2630 | regnum = 2; |
2631 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT | |
0af60e03 | 2632 | && (mips_fpu == MIPS_FPU_DOUBLE |
912e805f | 2633 | || (mips_fpu == MIPS_FPU_SINGLE && len <= MIPS_FPU_SINGLE_REGSIZE))) |
f781fe93 | 2634 | regnum = FP0_REGNUM; |
ac8cf67d | 2635 | |
0af60e03 MS |
2636 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) |
2637 | { /* "un-left-justify" the value from the register */ | |
87910097 | 2638 | if (len < REGISTER_RAW_SIZE (regnum)) |
0af60e03 MS |
2639 | offset = REGISTER_RAW_SIZE (regnum) - len; |
2640 | if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */ | |
2641 | len < REGISTER_RAW_SIZE (regnum) * 2 && | |
2642 | (TYPE_CODE (valtype) == TYPE_CODE_STRUCT || | |
2643 | TYPE_CODE (valtype) == TYPE_CODE_UNION)) | |
2644 | offset = 2 * REGISTER_RAW_SIZE (regnum) - len; | |
2645 | } | |
c81a76b3 | 2646 | memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, len); |
f781fe93 | 2647 | REGISTER_CONVERT_TO_TYPE (regnum, valtype, valbuf); |
ac8cf67d PS |
2648 | } |
2649 | ||
2650 | /* Given a return value in `regbuf' with a type `valtype', | |
2651 | write it's value into the appropriate register. */ | |
2652 | void | |
2653 | mips_store_return_value (valtype, valbuf) | |
2654 | struct type *valtype; | |
2655 | char *valbuf; | |
2656 | { | |
2657 | int regnum; | |
0af60e03 MS |
2658 | int offset = 0; |
2659 | int len = TYPE_LENGTH (valtype); | |
ac8cf67d PS |
2660 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; |
2661 | ||
e4dbd248 PS |
2662 | regnum = 2; |
2663 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT | |
0af60e03 MS |
2664 | && (mips_fpu == MIPS_FPU_DOUBLE |
2665 | || (mips_fpu == MIPS_FPU_SINGLE && len <= MIPS_REGSIZE))) | |
e4dbd248 PS |
2666 | regnum = FP0_REGNUM; |
2667 | ||
0af60e03 MS |
2668 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) |
2669 | { /* "left-justify" the value in the register */ | |
2670 | if (len < REGISTER_RAW_SIZE (regnum)) | |
2671 | offset = REGISTER_RAW_SIZE (regnum) - len; | |
2672 | if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */ | |
2673 | len < REGISTER_RAW_SIZE (regnum) * 2 && | |
2674 | (TYPE_CODE (valtype) == TYPE_CODE_STRUCT || | |
2675 | TYPE_CODE (valtype) == TYPE_CODE_UNION)) | |
2676 | offset = 2 * REGISTER_RAW_SIZE (regnum) - len; | |
2677 | } | |
2678 | memcpy(raw_buffer + offset, valbuf, len); | |
ac8cf67d | 2679 | REGISTER_CONVERT_FROM_TYPE(regnum, valtype, raw_buffer); |
0af60e03 MS |
2680 | write_register_bytes(REGISTER_BYTE (regnum), raw_buffer, |
2681 | len > REGISTER_RAW_SIZE (regnum) ? | |
2682 | len : REGISTER_RAW_SIZE (regnum)); | |
ac8cf67d PS |
2683 | } |
2684 | ||
e03c0cc6 ILT |
2685 | /* Exported procedure: Is PC in the signal trampoline code */ |
2686 | ||
2687 | int | |
2688 | in_sigtramp (pc, ignore) | |
2689 | CORE_ADDR pc; | |
2690 | char *ignore; /* function name */ | |
2691 | { | |
2692 | if (sigtramp_address == 0) | |
2693 | fixup_sigtramp (); | |
2694 | return (pc >= sigtramp_address && pc < sigtramp_end); | |
2695 | } | |
2696 | ||
e4dbd248 PS |
2697 | /* Command to set FPU type. mips_fpu_string will have been set to the |
2698 | user's argument. Set mips_fpu based on mips_fpu_string, and then | |
2699 | canonicalize mips_fpu_string. */ | |
2700 | ||
2701 | /*ARGSUSED*/ | |
2702 | static void | |
2703 | mips_set_fpu_command (args, from_tty, c) | |
2704 | char *args; | |
2705 | int from_tty; | |
2706 | struct cmd_list_element *c; | |
2707 | { | |
2708 | char *err = NULL; | |
2709 | ||
2710 | if (mips_fpu_string == NULL || *mips_fpu_string == '\0') | |
2711 | mips_fpu = MIPS_FPU_DOUBLE; | |
2712 | else if (strcasecmp (mips_fpu_string, "double") == 0 | |
2713 | || strcasecmp (mips_fpu_string, "on") == 0 | |
2714 | || strcasecmp (mips_fpu_string, "1") == 0 | |
2715 | || strcasecmp (mips_fpu_string, "yes") == 0) | |
2716 | mips_fpu = MIPS_FPU_DOUBLE; | |
2717 | else if (strcasecmp (mips_fpu_string, "none") == 0 | |
2718 | || strcasecmp (mips_fpu_string, "off") == 0 | |
2719 | || strcasecmp (mips_fpu_string, "0") == 0 | |
2720 | || strcasecmp (mips_fpu_string, "no") == 0) | |
2721 | mips_fpu = MIPS_FPU_NONE; | |
2722 | else if (strcasecmp (mips_fpu_string, "single") == 0) | |
2723 | mips_fpu = MIPS_FPU_SINGLE; | |
2724 | else | |
2725 | err = strsave (mips_fpu_string); | |
2726 | ||
2727 | if (mips_fpu_string != NULL) | |
2728 | free (mips_fpu_string); | |
2729 | ||
2730 | switch (mips_fpu) | |
2731 | { | |
2732 | case MIPS_FPU_DOUBLE: | |
2733 | mips_fpu_string = strsave ("double"); | |
2734 | break; | |
2735 | case MIPS_FPU_SINGLE: | |
2736 | mips_fpu_string = strsave ("single"); | |
2737 | break; | |
2738 | case MIPS_FPU_NONE: | |
2739 | mips_fpu_string = strsave ("none"); | |
2740 | break; | |
2741 | } | |
2742 | ||
2743 | if (err != NULL) | |
2744 | { | |
2745 | struct cleanup *cleanups = make_cleanup (free, err); | |
2746 | error ("Unknown FPU type `%s'. Use `double', `none', or `single'.", | |
2747 | err); | |
2748 | do_cleanups (cleanups); | |
2749 | } | |
2750 | } | |
2751 | ||
2752 | static void | |
2753 | mips_show_fpu_command (args, from_tty, c) | |
2754 | char *args; | |
2755 | int from_tty; | |
2756 | struct cmd_list_element *c; | |
2757 | { | |
2758 | } | |
2759 | ||
9f9f94aa SS |
2760 | /* Command to set the processor type. */ |
2761 | ||
2762 | void | |
2763 | mips_set_processor_type_command (args, from_tty) | |
2764 | char *args; | |
2765 | int from_tty; | |
2766 | { | |
2767 | int i; | |
2768 | ||
2769 | if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0') | |
2770 | { | |
2771 | printf_unfiltered ("The known MIPS processor types are as follows:\n\n"); | |
2772 | for (i = 0; mips_processor_type_table[i].name != NULL; ++i) | |
2773 | printf_unfiltered ("%s\n", mips_processor_type_table[i].name); | |
2774 | ||
2775 | /* Restore the value. */ | |
2776 | tmp_mips_processor_type = strsave (mips_processor_type); | |
2777 | ||
2778 | return; | |
2779 | } | |
2780 | ||
2781 | if (!mips_set_processor_type (tmp_mips_processor_type)) | |
2782 | { | |
2783 | error ("Unknown processor type `%s'.", tmp_mips_processor_type); | |
2784 | /* Restore its value. */ | |
2785 | tmp_mips_processor_type = strsave (mips_processor_type); | |
2786 | } | |
2787 | } | |
2788 | ||
2789 | static void | |
2790 | mips_show_processor_type_command (args, from_tty) | |
2791 | char *args; | |
2792 | int from_tty; | |
2793 | { | |
2794 | } | |
2795 | ||
2796 | /* Modify the actual processor type. */ | |
2797 | ||
2798 | int | |
2799 | mips_set_processor_type (str) | |
2800 | char *str; | |
2801 | { | |
2802 | int i, j; | |
2803 | ||
2804 | if (str == NULL) | |
1d9489c1 | 2805 | return 0; |
9f9f94aa SS |
2806 | |
2807 | for (i = 0; mips_processor_type_table[i].name != NULL; ++i) | |
2808 | { | |
2809 | if (strcasecmp (str, mips_processor_type_table[i].name) == 0) | |
2810 | { | |
2811 | mips_processor_type = str; | |
2812 | ||
2813 | for (j = 0; j < NUM_REGS; ++j) | |
2814 | reg_names[j] = mips_processor_type_table[i].regnames[j]; | |
2815 | ||
2816 | return 1; | |
2817 | ||
2818 | /* FIXME tweak fpu flag too */ | |
2819 | } | |
2820 | } | |
2821 | ||
2822 | return 0; | |
2823 | } | |
2824 | ||
2825 | /* Attempt to identify the particular processor model by reading the | |
2826 | processor id. */ | |
2827 | ||
2828 | char * | |
2829 | mips_read_processor_type () | |
2830 | { | |
28444bf3 | 2831 | CORE_ADDR prid; |
9f9f94aa SS |
2832 | |
2833 | prid = read_register (PRID_REGNUM); | |
2834 | ||
80e0e92a | 2835 | if ((prid & ~0xf) == 0x700) |
9f9f94aa SS |
2836 | return savestring ("r3041", strlen("r3041")); |
2837 | ||
2838 | return NULL; | |
2839 | } | |
427fec5d JK |
2840 | |
2841 | /* Just like reinit_frame_cache, but with the right arguments to be | |
2842 | callable as an sfunc. */ | |
9f9f94aa | 2843 | |
427fec5d JK |
2844 | static void |
2845 | reinit_frame_cache_sfunc (args, from_tty, c) | |
2846 | char *args; | |
2847 | int from_tty; | |
2848 | struct cmd_list_element *c; | |
2849 | { | |
2850 | reinit_frame_cache (); | |
2851 | } | |
c2a0f1cb | 2852 | |
912e805f | 2853 | int |
18b46e7c SS |
2854 | gdb_print_insn_mips (memaddr, info) |
2855 | bfd_vma memaddr; | |
2856 | disassemble_info *info; | |
2857 | { | |
f9f8c14b MA |
2858 | mips_extra_func_info_t proc_desc; |
2859 | ||
2860 | /* Search for the function containing this address. Set the low bit | |
2861 | of the address when searching, in case we were given an even address | |
2862 | that is the start of a 16-bit function. If we didn't do this, | |
2863 | the search would fail because the symbol table says the function | |
2864 | starts at an odd address, i.e. 1 byte past the given address. */ | |
c1fc0935 MA |
2865 | memaddr = ADDR_BITS_REMOVE (memaddr); |
2866 | proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL); | |
f9f8c14b MA |
2867 | |
2868 | /* Make an attempt to determine if this is a 16-bit function. If | |
2869 | the procedure descriptor exists and the address therein is odd, | |
2870 | it's definitely a 16-bit function. Otherwise, we have to just | |
2871 | guess that if the address passed in is odd, it's 16-bits. */ | |
2872 | if (proc_desc) | |
88ff9e06 | 2873 | info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ? 16 : TM_PRINT_INSN_MACH; |
f9f8c14b | 2874 | else |
88ff9e06 | 2875 | info->mach = pc_is_mips16 (memaddr) ? 16 : TM_PRINT_INSN_MACH; |
f9f8c14b | 2876 | |
c1fc0935 | 2877 | /* Round down the instruction address to the appropriate boundary. */ |
f9f8c14b MA |
2878 | memaddr &= (info->mach == 16 ? ~1 : ~3); |
2879 | ||
2880 | /* Call the appropriate disassembler based on the target endian-ness. */ | |
18b46e7c SS |
2881 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) |
2882 | return print_insn_big_mips (memaddr, info); | |
2883 | else | |
2884 | return print_insn_little_mips (memaddr, info); | |
2885 | } | |
2886 | ||
f9f8c14b MA |
2887 | /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program |
2888 | counter value to determine whether a 16- or 32-bit breakpoint should be | |
2889 | used. It returns a pointer to a string of bytes that encode a breakpoint | |
2890 | instruction, stores the length of the string to *lenptr, and adjusts pc | |
2891 | (if necessary) to point to the actual memory location where the | |
2892 | breakpoint should be inserted. */ | |
2893 | ||
2894 | unsigned char *mips_breakpoint_from_pc (pcptr, lenptr) | |
2895 | CORE_ADDR *pcptr; | |
2896 | int *lenptr; | |
2897 | { | |
2898 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
2899 | { | |
899c4021 | 2900 | if (pc_is_mips16 (*pcptr)) |
f9f8c14b MA |
2901 | { |
2902 | static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT; | |
c1fc0935 | 2903 | *pcptr = UNMAKE_MIPS16_ADDR (*pcptr); |
f9f8c14b MA |
2904 | *lenptr = sizeof(mips16_big_breakpoint); |
2905 | return mips16_big_breakpoint; | |
2906 | } | |
2907 | else | |
2908 | { | |
2909 | static char big_breakpoint[] = BIG_BREAKPOINT; | |
f781fe93 MA |
2910 | static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT; |
2911 | static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT; | |
2912 | ||
f9f8c14b | 2913 | *lenptr = sizeof(big_breakpoint); |
f781fe93 MA |
2914 | |
2915 | if (strcmp (target_shortname, "mips") == 0) | |
2916 | return idt_big_breakpoint; | |
2917 | else if (strcmp (target_shortname, "ddb") == 0 | |
2918 | || strcmp (target_shortname, "pmon") == 0 | |
2919 | || strcmp (target_shortname, "lsi") == 0) | |
2920 | return pmon_big_breakpoint; | |
2921 | else | |
2922 | return big_breakpoint; | |
f9f8c14b MA |
2923 | } |
2924 | } | |
2925 | else | |
2926 | { | |
899c4021 | 2927 | if (pc_is_mips16 (*pcptr)) |
f9f8c14b MA |
2928 | { |
2929 | static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT; | |
c1fc0935 | 2930 | *pcptr = UNMAKE_MIPS16_ADDR (*pcptr); |
f9f8c14b MA |
2931 | *lenptr = sizeof(mips16_little_breakpoint); |
2932 | return mips16_little_breakpoint; | |
2933 | } | |
2934 | else | |
2935 | { | |
2936 | static char little_breakpoint[] = LITTLE_BREAKPOINT; | |
f781fe93 MA |
2937 | static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT; |
2938 | static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT; | |
2939 | ||
f9f8c14b | 2940 | *lenptr = sizeof(little_breakpoint); |
f781fe93 MA |
2941 | |
2942 | if (strcmp (target_shortname, "mips") == 0) | |
2943 | return idt_little_breakpoint; | |
2944 | else if (strcmp (target_shortname, "ddb") == 0 | |
2945 | || strcmp (target_shortname, "pmon") == 0 | |
2946 | || strcmp (target_shortname, "lsi") == 0) | |
2947 | return pmon_little_breakpoint; | |
2948 | else | |
2949 | return little_breakpoint; | |
f9f8c14b MA |
2950 | } |
2951 | } | |
2952 | } | |
2953 | ||
2954 | /* Test whether the PC points to the return instruction at the | |
2955 | end of a function. This implements the ABOUT_TO_RETURN macro. */ | |
2956 | ||
2957 | int | |
2958 | mips_about_to_return (pc) | |
2959 | CORE_ADDR pc; | |
2960 | { | |
899c4021 | 2961 | if (pc_is_mips16 (pc)) |
f9f8c14b MA |
2962 | /* This mips16 case isn't necessarily reliable. Sometimes the compiler |
2963 | generates a "jr $ra"; other times it generates code to load | |
2964 | the return address from the stack to an accessible register (such | |
2965 | as $a3), then a "jr" using that register. This second case | |
2966 | is almost impossible to distinguish from an indirect jump | |
2967 | used for switch statements, so we don't even try. */ | |
c81a76b3 | 2968 | return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */ |
f9f8c14b | 2969 | else |
c81a76b3 | 2970 | return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */ |
f9f8c14b MA |
2971 | } |
2972 | ||
2973 | ||
f781fe93 MA |
2974 | /* If PC is in a mips16 call or return stub, return the address of the target |
2975 | PC, which is either the callee or the caller. There are several | |
2976 | cases which must be handled: | |
2977 | ||
2978 | * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the | |
2979 | target PC is in $31 ($ra). | |
2980 | * If the PC is in __mips16_call_stub_{1..10}, this is a call stub | |
2981 | and the target PC is in $2. | |
2982 | * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. | |
2983 | before the jal instruction, this is effectively a call stub | |
2984 | and the the target PC is in $2. Otherwise this is effectively | |
2985 | a return stub and the target PC is in $18. | |
2986 | ||
2987 | See the source code for the stubs in gcc/config/mips/mips16.S for | |
2988 | gory details. | |
2989 | ||
2990 | This function implements the SKIP_TRAMPOLINE_CODE macro. | |
2991 | */ | |
2992 | ||
2993 | CORE_ADDR | |
2994 | mips_skip_stub (pc) | |
2995 | CORE_ADDR pc; | |
2996 | { | |
2997 | char *name; | |
2998 | CORE_ADDR start_addr; | |
2999 | ||
3000 | /* Find the starting address and name of the function containing the PC. */ | |
3001 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
3002 | return 0; | |
3003 | ||
3004 | /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the | |
3005 | target PC is in $31 ($ra). */ | |
3006 | if (strcmp (name, "__mips16_ret_sf") == 0 | |
3007 | || strcmp (name, "__mips16_ret_df") == 0) | |
3008 | return read_register (RA_REGNUM); | |
3009 | ||
3010 | if (strncmp (name, "__mips16_call_stub_", 19) == 0) | |
3011 | { | |
3012 | /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub | |
3013 | and the target PC is in $2. */ | |
3014 | if (name[19] >= '0' && name[19] <= '9') | |
3015 | return read_register (2); | |
3016 | ||
3017 | /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. | |
3018 | before the jal instruction, this is effectively a call stub | |
3019 | and the the target PC is in $2. Otherwise this is effectively | |
3020 | a return stub and the target PC is in $18. */ | |
3021 | else if (name[19] == 's' || name[19] == 'd') | |
3022 | { | |
3023 | if (pc == start_addr) | |
3024 | { | |
3025 | /* Check if the target of the stub is a compiler-generated | |
3026 | stub. Such a stub for a function bar might have a name | |
3027 | like __fn_stub_bar, and might look like this: | |
3028 | mfc1 $4,$f13 | |
3029 | mfc1 $5,$f12 | |
3030 | mfc1 $6,$f15 | |
3031 | mfc1 $7,$f14 | |
3032 | la $1,bar (becomes a lui/addiu pair) | |
3033 | jr $1 | |
3034 | So scan down to the lui/addi and extract the target | |
3035 | address from those two instructions. */ | |
3036 | ||
3037 | CORE_ADDR target_pc = read_register (2); | |
3038 | t_inst inst; | |
3039 | int i; | |
3040 | ||
3041 | /* See if the name of the target function is __fn_stub_*. */ | |
3042 | if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0) | |
3043 | return target_pc; | |
3044 | if (strncmp (name, "__fn_stub_", 10) != 0 | |
3045 | && strcmp (name, "etext") != 0 | |
3046 | && strcmp (name, "_etext") != 0) | |
3047 | return target_pc; | |
3048 | ||
3049 | /* Scan through this _fn_stub_ code for the lui/addiu pair. | |
3050 | The limit on the search is arbitrarily set to 20 | |
3051 | instructions. FIXME. */ | |
3052 | for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN) | |
3053 | { | |
3054 | inst = mips_fetch_instruction (target_pc); | |
3055 | if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */ | |
3056 | pc = (inst << 16) & 0xffff0000; /* high word */ | |
3057 | else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */ | |
3058 | return pc | (inst & 0xffff); /* low word */ | |
3059 | } | |
3060 | ||
3061 | /* Couldn't find the lui/addui pair, so return stub address. */ | |
3062 | return target_pc; | |
3063 | } | |
3064 | else | |
3065 | /* This is the 'return' part of a call stub. The return | |
3066 | address is in $r18. */ | |
3067 | return read_register (18); | |
3068 | } | |
3069 | } | |
3070 | return 0; /* not a stub */ | |
3071 | } | |
3072 | ||
3073 | ||
3074 | /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline). | |
3075 | This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */ | |
3076 | ||
3077 | int | |
3078 | mips_in_call_stub (pc, name) | |
3079 | CORE_ADDR pc; | |
3080 | char *name; | |
3081 | { | |
3082 | CORE_ADDR start_addr; | |
3083 | ||
3084 | /* Find the starting address of the function containing the PC. If the | |
3085 | caller didn't give us a name, look it up at the same time. */ | |
3086 | if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0) | |
3087 | return 0; | |
3088 | ||
3089 | if (strncmp (name, "__mips16_call_stub_", 19) == 0) | |
3090 | { | |
3091 | /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */ | |
3092 | if (name[19] >= '0' && name[19] <= '9') | |
3093 | return 1; | |
3094 | /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. | |
3095 | before the jal instruction, this is effectively a call stub. */ | |
3096 | else if (name[19] == 's' || name[19] == 'd') | |
3097 | return pc == start_addr; | |
3098 | } | |
3099 | ||
3100 | return 0; /* not a stub */ | |
3101 | } | |
3102 | ||
3103 | ||
3104 | /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline). | |
3105 | This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */ | |
3106 | ||
3107 | int | |
3108 | mips_in_return_stub (pc, name) | |
3109 | CORE_ADDR pc; | |
3110 | char *name; | |
3111 | { | |
3112 | CORE_ADDR start_addr; | |
3113 | ||
3114 | /* Find the starting address of the function containing the PC. */ | |
3115 | if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0) | |
3116 | return 0; | |
3117 | ||
3118 | /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */ | |
3119 | if (strcmp (name, "__mips16_ret_sf") == 0 | |
3120 | || strcmp (name, "__mips16_ret_df") == 0) | |
3121 | return 1; | |
3122 | ||
3123 | /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start, | |
3124 | i.e. after the jal instruction, this is effectively a return stub. */ | |
3125 | if (strncmp (name, "__mips16_call_stub_", 19) == 0 | |
3126 | && (name[19] == 's' || name[19] == 'd') | |
3127 | && pc != start_addr) | |
3128 | return 1; | |
3129 | ||
3130 | return 0; /* not a stub */ | |
3131 | } | |
3132 | ||
3133 | ||
3134 | /* Return non-zero if the PC is in a library helper function that should | |
3135 | be ignored. This implements the IGNORE_HELPER_CALL macro. */ | |
3136 | ||
3137 | int | |
3138 | mips_ignore_helper (pc) | |
3139 | CORE_ADDR pc; | |
3140 | { | |
3141 | char *name; | |
3142 | ||
3143 | /* Find the starting address and name of the function containing the PC. */ | |
3144 | if (find_pc_partial_function (pc, &name, NULL, NULL) == 0) | |
3145 | return 0; | |
3146 | ||
3147 | /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function | |
3148 | that we want to ignore. */ | |
3149 | return (strcmp (name, "__mips16_ret_sf") == 0 | |
3150 | || strcmp (name, "__mips16_ret_df") == 0); | |
3151 | } | |
3152 | ||
3153 | ||
c2a0f1cb ILT |
3154 | void |
3155 | _initialize_mips_tdep () | |
3156 | { | |
427fec5d JK |
3157 | struct cmd_list_element *c; |
3158 | ||
912e805f AC |
3159 | if (!tm_print_insn) /* Someone may have already set it */ |
3160 | tm_print_insn = gdb_print_insn_mips; | |
18b46e7c | 3161 | |
427fec5d JK |
3162 | /* Let the user turn off floating point and set the fence post for |
3163 | heuristic_proc_start. */ | |
3164 | ||
e4dbd248 PS |
3165 | c = add_set_cmd ("mipsfpu", class_support, var_string_noescape, |
3166 | (char *) &mips_fpu_string, | |
3167 | "Set use of floating point coprocessor.\n\ | |
3168 | Set to `none' to avoid using floating point instructions when calling\n\ | |
3169 | functions or dealing with return values. Set to `single' to use only\n\ | |
3170 | single precision floating point as on the R4650. Set to `double' for\n\ | |
3171 | normal floating point support.", | |
3172 | &setlist); | |
3173 | c->function.sfunc = mips_set_fpu_command; | |
3174 | c = add_show_from_set (c, &showlist); | |
3175 | c->function.sfunc = mips_show_fpu_command; | |
3176 | ||
91ee2779 | 3177 | #ifndef MIPS_DEFAULT_FPU_TYPE |
e4dbd248 PS |
3178 | mips_fpu = MIPS_FPU_DOUBLE; |
3179 | mips_fpu_string = strsave ("double"); | |
91ee2779 JL |
3180 | #else |
3181 | mips_fpu = MIPS_DEFAULT_FPU_TYPE; | |
3182 | switch (mips_fpu) | |
3183 | { | |
3184 | case MIPS_FPU_DOUBLE: mips_fpu_string = strsave ("double"); break; | |
3185 | case MIPS_FPU_SINGLE: mips_fpu_string = strsave ("single"); break; | |
3186 | case MIPS_FPU_NONE: mips_fpu_string = strsave ("none"); break; | |
3187 | } | |
3188 | #endif | |
3127785a | 3189 | |
9f9f94aa SS |
3190 | c = add_set_cmd ("processor", class_support, var_string_noescape, |
3191 | (char *) &tmp_mips_processor_type, | |
3192 | "Set the type of MIPS processor in use.\n\ | |
3193 | Set this to be able to access processor-type-specific registers.\n\ | |
3194 | ", | |
3195 | &setlist); | |
3196 | c->function.cfunc = mips_set_processor_type_command; | |
3197 | c = add_show_from_set (c, &showlist); | |
3198 | c->function.cfunc = mips_show_processor_type_command; | |
3199 | ||
3200 | tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE); | |
3201 | mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0); | |
3202 | ||
bdef72d2 JK |
3203 | /* We really would like to have both "0" and "unlimited" work, but |
3204 | command.c doesn't deal with that. So make it a var_zinteger | |
3205 | because the user can always use "999999" or some such for unlimited. */ | |
3206 | c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger, | |
427fec5d JK |
3207 | (char *) &heuristic_fence_post, |
3208 | "\ | |
23d35572 JK |
3209 | Set the distance searched for the start of a function.\n\ |
3210 | If you are debugging a stripped executable, GDB needs to search through the\n\ | |
3211 | program for the start of a function. This command sets the distance of the\n\ | |
3212 | search. The only need to set it is when debugging a stripped executable.", | |
427fec5d JK |
3213 | &setlist); |
3214 | /* We need to throw away the frame cache when we set this, since it | |
3215 | might change our ability to get backtraces. */ | |
3216 | c->function.sfunc = reinit_frame_cache_sfunc; | |
3217 | add_show_from_set (c, &showlist); | |
c2a0f1cb | 3218 | } |