* go32-nat.c (info_dos_cmdlist): New variable.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
b6ba6518
KB
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
bf64bfd6 5
c906108c
SS
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "value.h"
32#include "gdbcmd.h"
33#include "language.h"
34#include "gdbcore.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "gdbtypes.h"
38#include "target.h"
28d069e6 39#include "arch-utils.h"
4e052eda 40#include "regcache.h"
c906108c
SS
41
42#include "opcode/mips.h"
c2d11a7d
JM
43#include "elf/mips.h"
44#include "elf-bfd.h"
2475bac3 45#include "symcat.h"
c906108c 46
b0069a17
AC
47/* The sizes of floating point registers. */
48
49enum
50{
51 MIPS_FPU_SINGLE_REGSIZE = 4,
52 MIPS_FPU_DOUBLE_REGSIZE = 8
53};
54
0dadbba0
AC
55/* All the possible MIPS ABIs. */
56
57enum mips_abi
58 {
59 MIPS_ABI_UNKNOWN,
60 MIPS_ABI_N32,
61 MIPS_ABI_O32,
62 MIPS_ABI_O64,
63 MIPS_ABI_EABI32,
64 MIPS_ABI_EABI64
65 };
66
cce74817 67struct frame_extra_info
c5aa993b
JM
68 {
69 mips_extra_func_info_t proc_desc;
70 int num_args;
71 };
cce74817 72
d929b26f
AC
73/* Various MIPS ISA options (related to stack analysis) can be
74 overridden dynamically. Establish an enum/array for managing
75 them. */
76
53904c9e
AC
77static const char size_auto[] = "auto";
78static const char size_32[] = "32";
79static const char size_64[] = "64";
d929b26f 80
53904c9e 81static const char *size_enums[] = {
d929b26f
AC
82 size_auto,
83 size_32,
84 size_64,
a5ea2558
AC
85 0
86};
87
7a292a7a
SS
88/* Some MIPS boards don't support floating point while others only
89 support single-precision floating-point operations. See also
90 FP_REGISTER_DOUBLE. */
c906108c
SS
91
92enum mips_fpu_type
c5aa993b
JM
93 {
94 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
95 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
96 MIPS_FPU_NONE /* No floating point. */
97 };
c906108c
SS
98
99#ifndef MIPS_DEFAULT_FPU_TYPE
100#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
101#endif
102static int mips_fpu_type_auto = 1;
103static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
104#define MIPS_FPU_TYPE mips_fpu_type
105
c906108c 106/* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */
7a292a7a 107#ifndef FP_REGISTER_DOUBLE
c906108c 108#define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8)
7a292a7a
SS
109#endif
110
9ace0497 111static int mips_debug = 0;
7a292a7a 112
c2d11a7d
JM
113/* MIPS specific per-architecture information */
114struct gdbarch_tdep
115 {
116 /* from the elf header */
117 int elf_flags;
118 /* mips options */
0dadbba0 119 enum mips_abi mips_abi;
acdb74a0 120 const char *mips_abi_string;
c2d11a7d
JM
121 enum mips_fpu_type mips_fpu_type;
122 int mips_last_arg_regnum;
123 int mips_last_fp_arg_regnum;
a5ea2558 124 int mips_default_saved_regsize;
c2d11a7d 125 int mips_fp_register_double;
d929b26f
AC
126 int mips_regs_have_home_p;
127 int mips_default_stack_argsize;
5213ab06 128 int gdb_target_is_mips64;
4014092b 129 int default_mask_address_p;
c2d11a7d
JM
130 };
131
132#if GDB_MULTI_ARCH
133#undef MIPS_EABI
0dadbba0 134#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 135 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d
JM
136#endif
137
138#if GDB_MULTI_ARCH
139#undef MIPS_LAST_FP_ARG_REGNUM
140#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
141#endif
142
143#if GDB_MULTI_ARCH
144#undef MIPS_LAST_ARG_REGNUM
145#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
146#endif
147
148#if GDB_MULTI_ARCH
149#undef MIPS_FPU_TYPE
150#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
151#endif
152
d929b26f
AC
153/* Return the currently configured (or set) saved register size. */
154
c2d11a7d 155#if GDB_MULTI_ARCH
a5ea2558
AC
156#undef MIPS_DEFAULT_SAVED_REGSIZE
157#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
d929b26f
AC
158#elif !defined (MIPS_DEFAULT_SAVED_REGSIZE)
159#define MIPS_DEFAULT_SAVED_REGSIZE MIPS_REGSIZE
c2d11a7d
JM
160#endif
161
53904c9e 162static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
163
164#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
165
166static unsigned int
acdb74a0 167mips_saved_regsize (void)
d929b26f
AC
168{
169 if (mips_saved_regsize_string == size_auto)
170 return MIPS_DEFAULT_SAVED_REGSIZE;
171 else if (mips_saved_regsize_string == size_64)
172 return 8;
173 else /* if (mips_saved_regsize_string == size_32) */
174 return 4;
175}
176
c2d11a7d
JM
177/* Indicate that the ABI makes use of double-precision registers
178 provided by the FPU (rather than combining pairs of registers to
179 form double-precision values). Do not use "TARGET_IS_MIPS64" to
180 determine if the ABI is using double-precision registers. See also
181 MIPS_FPU_TYPE. */
182#if GDB_MULTI_ARCH
183#undef FP_REGISTER_DOUBLE
184#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
185#endif
186
d929b26f
AC
187/* Does the caller allocate a ``home'' for each register used in the
188 function call? The N32 ABI and MIPS_EABI do not, the others do. */
189
190#if GDB_MULTI_ARCH
191#undef MIPS_REGS_HAVE_HOME_P
192#define MIPS_REGS_HAVE_HOME_P (gdbarch_tdep (current_gdbarch)->mips_regs_have_home_p)
193#elif !defined (MIPS_REGS_HAVE_HOME_P)
194#define MIPS_REGS_HAVE_HOME_P (!MIPS_EABI)
195#endif
196
197/* The amount of space reserved on the stack for registers. This is
198 different to MIPS_SAVED_REGSIZE as it determines the alignment of
199 data allocated after the registers have run out. */
200
201#if GDB_MULTI_ARCH
202#undef MIPS_DEFAULT_STACK_ARGSIZE
0dadbba0 203#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
204#elif !defined (MIPS_DEFAULT_STACK_ARGSIZE)
205#define MIPS_DEFAULT_STACK_ARGSIZE (MIPS_DEFAULT_SAVED_REGSIZE)
206#endif
207
208#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
209
53904c9e 210static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
211
212static unsigned int
213mips_stack_argsize (void)
214{
215 if (mips_stack_argsize_string == size_auto)
216 return MIPS_DEFAULT_STACK_ARGSIZE;
217 else if (mips_stack_argsize_string == size_64)
218 return 8;
219 else /* if (mips_stack_argsize_string == size_32) */
220 return 4;
221}
222
5213ab06
AC
223#if GDB_MULTI_ARCH
224#undef GDB_TARGET_IS_MIPS64
225#define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
226#endif
c2d11a7d 227
92e1c15c
FF
228#if GDB_MULTI_ARCH
229#undef MIPS_DEFAULT_MASK_ADDRESS_P
230#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
231#elif !defined (MIPS_DEFAULT_MASK_ADDRESS_P)
232#define MIPS_DEFAULT_MASK_ADDRESS_P (0)
233#endif
234
7a292a7a 235#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 236
a14ed312 237int gdb_print_insn_mips (bfd_vma, disassemble_info *);
c906108c 238
a14ed312 239static void mips_print_register (int, int);
c906108c
SS
240
241static mips_extra_func_info_t
a14ed312 242heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *);
c906108c 243
a14ed312 244static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 245
a14ed312 246static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 247
a14ed312 248int mips_set_processor_type (char *);
c906108c 249
a14ed312 250static void mips_show_processor_type_command (char *, int);
c906108c 251
a14ed312 252static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c
SS
253
254static mips_extra_func_info_t
a14ed312 255find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame);
c906108c 256
a14ed312
KB
257static CORE_ADDR after_prologue (CORE_ADDR pc,
258 mips_extra_func_info_t proc_desc);
c906108c
SS
259
260/* This value is the model of MIPS in use. It is derived from the value
261 of the PrID register. */
262
263char *mips_processor_type;
264
265char *tmp_mips_processor_type;
266
acdb74a0
AC
267/* The list of available "set mips " and "show mips " commands */
268
269static struct cmd_list_element *setmipscmdlist = NULL;
270static struct cmd_list_element *showmipscmdlist = NULL;
271
c906108c
SS
272/* A set of original names, to be used when restoring back to generic
273 registers from a specific set. */
274
cce74817
JM
275char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
276char **mips_processor_reg_names = mips_generic_reg_names;
277
278char *
fba45db2 279mips_register_name (int i)
cce74817
JM
280{
281 return mips_processor_reg_names[i];
282}
9846de1b 283/* *INDENT-OFF* */
c906108c
SS
284/* Names of IDT R3041 registers. */
285
286char *mips_r3041_reg_names[] = {
287 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
288 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
289 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
290 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
291 "sr", "lo", "hi", "bad", "cause","pc",
292 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
293 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
294 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
295 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
296 "fsr", "fir", "fp", "",
297 "", "", "bus", "ccfg", "", "", "", "",
298 "", "", "port", "cmp", "", "", "epc", "prid",
299};
300
301/* Names of IDT R3051 registers. */
302
303char *mips_r3051_reg_names[] = {
304 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
305 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
306 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
307 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
308 "sr", "lo", "hi", "bad", "cause","pc",
309 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
310 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
311 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
312 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
313 "fsr", "fir", "fp", "",
314 "inx", "rand", "elo", "", "ctxt", "", "", "",
315 "", "", "ehi", "", "", "", "epc", "prid",
316};
317
318/* Names of IDT R3081 registers. */
319
320char *mips_r3081_reg_names[] = {
321 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
322 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
323 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
324 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
325 "sr", "lo", "hi", "bad", "cause","pc",
326 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
327 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
328 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
329 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
330 "fsr", "fir", "fp", "",
331 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
332 "", "", "ehi", "", "", "", "epc", "prid",
333};
334
335/* Names of LSI 33k registers. */
336
337char *mips_lsi33k_reg_names[] = {
338 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
339 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
340 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
341 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
342 "epc", "hi", "lo", "sr", "cause","badvaddr",
343 "dcic", "bpc", "bda", "", "", "", "", "",
344 "", "", "", "", "", "", "", "",
345 "", "", "", "", "", "", "", "",
346 "", "", "", "", "", "", "", "",
347 "", "", "", "",
348 "", "", "", "", "", "", "", "",
349 "", "", "", "", "", "", "", "",
350};
351
352struct {
353 char *name;
354 char **regnames;
355} mips_processor_type_table[] = {
356 { "generic", mips_generic_reg_names },
357 { "r3041", mips_r3041_reg_names },
358 { "r3051", mips_r3051_reg_names },
359 { "r3071", mips_r3081_reg_names },
360 { "r3081", mips_r3081_reg_names },
361 { "lsi33k", mips_lsi33k_reg_names },
362 { NULL, NULL }
363};
9846de1b 364/* *INDENT-ON* */
c906108c 365
c5aa993b
JM
366
367
368
c906108c 369/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
370static int mips16_to_32_reg[8] =
371{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
372
373/* Heuristic_proc_start may hunt through the text section for a long
374 time across a 2400 baud serial line. Allows the user to limit this
375 search. */
376
377static unsigned int heuristic_fence_post = 0;
378
c5aa993b
JM
379#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
380#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
381#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
382#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
383#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
384#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
385#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
386#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
387#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
388#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
389#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
390#define _PROC_MAGIC_ 0x0F0F0F0F
391#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
392#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
393
394struct linked_proc_info
c5aa993b
JM
395 {
396 struct mips_extra_func_info info;
397 struct linked_proc_info *next;
398 }
399 *linked_proc_desc_table = NULL;
c906108c 400
cce74817 401void
acdb74a0 402mips_print_extra_frame_info (struct frame_info *fi)
cce74817
JM
403{
404 if (fi
405 && fi->extra_info
406 && fi->extra_info->proc_desc
407 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
d4f3574e 408 printf_filtered (" frame pointer is at %s+%s\n",
cce74817 409 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
d4f3574e 410 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
cce74817 411}
c906108c 412
43e526b9
JM
413/* Convert between RAW and VIRTUAL registers. The RAW register size
414 defines the remote-gdb packet. */
415
416static int mips64_transfers_32bit_regs_p = 0;
417
418int
acdb74a0 419mips_register_raw_size (int reg_nr)
43e526b9
JM
420{
421 if (mips64_transfers_32bit_regs_p)
422 return REGISTER_VIRTUAL_SIZE (reg_nr);
d02ee681
AC
423 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
424 && FP_REGISTER_DOUBLE)
425 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
426 registers. */
427 return 8;
43e526b9
JM
428 else
429 return MIPS_REGSIZE;
430}
431
432int
acdb74a0 433mips_register_convertible (int reg_nr)
43e526b9
JM
434{
435 if (mips64_transfers_32bit_regs_p)
436 return 0;
437 else
438 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
439}
440
441void
acdb74a0
AC
442mips_register_convert_to_virtual (int n, struct type *virtual_type,
443 char *raw_buf, char *virt_buf)
43e526b9
JM
444{
445 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
446 memcpy (virt_buf,
447 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
448 TYPE_LENGTH (virtual_type));
449 else
450 memcpy (virt_buf,
451 raw_buf,
452 TYPE_LENGTH (virtual_type));
453}
454
455void
acdb74a0
AC
456mips_register_convert_to_raw (struct type *virtual_type, int n,
457 char *virt_buf, char *raw_buf)
43e526b9
JM
458{
459 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
460 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
461 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
462 virt_buf,
463 TYPE_LENGTH (virtual_type));
464 else
465 memcpy (raw_buf,
466 virt_buf,
467 TYPE_LENGTH (virtual_type));
468}
469
c906108c 470/* Should the upper word of 64-bit addresses be zeroed? */
4014092b
AC
471enum cmd_auto_boolean mask_address_var = CMD_AUTO_BOOLEAN_AUTO;
472
473static int
474mips_mask_address_p (void)
475{
476 switch (mask_address_var)
477 {
478 case CMD_AUTO_BOOLEAN_TRUE:
479 return 1;
480 case CMD_AUTO_BOOLEAN_FALSE:
481 return 0;
482 break;
483 case CMD_AUTO_BOOLEAN_AUTO:
92e1c15c 484 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b 485 default:
8e65ff28
AC
486 internal_error (__FILE__, __LINE__,
487 "mips_mask_address_p: bad switch");
4014092b
AC
488 return -1;
489 }
490}
491
492static void
493show_mask_address (char *cmd, int from_tty)
494{
495 switch (mask_address_var)
496 {
497 case CMD_AUTO_BOOLEAN_TRUE:
498 printf_filtered ("The 32 bit mips address mask is enabled\n");
499 break;
500 case CMD_AUTO_BOOLEAN_FALSE:
501 printf_filtered ("The 32 bit mips address mask is disabled\n");
502 break;
503 case CMD_AUTO_BOOLEAN_AUTO:
504 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
505 mips_mask_address_p () ? "enabled" : "disabled");
506 break;
507 default:
8e65ff28
AC
508 internal_error (__FILE__, __LINE__,
509 "show_mask_address: bad switch");
4014092b
AC
510 break;
511 }
512}
c906108c
SS
513
514/* Should call_function allocate stack space for a struct return? */
515int
fba45db2 516mips_use_struct_convention (int gcc_p, struct type *type)
c906108c
SS
517{
518 if (MIPS_EABI)
7a292a7a 519 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
c906108c 520 else
c5aa993b 521 return 1; /* Structures are returned by ref in extra arg0 */
c906108c
SS
522}
523
524/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
525
526static int
527pc_is_mips16 (bfd_vma memaddr)
528{
529 struct minimal_symbol *sym;
530
531 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
532 if (IS_MIPS16_ADDR (memaddr))
533 return 1;
534
535 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
536 the high bit of the info field. Use this to decide if the function is
537 MIPS16 or normal MIPS. */
538 sym = lookup_minimal_symbol_by_pc (memaddr);
539 if (sym)
540 return MSYMBOL_IS_SPECIAL (sym);
541 else
542 return 0;
543}
544
6c997a34
AC
545/* MIPS believes that the PC has a sign extended value. Perhaphs the
546 all registers should be sign extended for simplicity? */
547
548static CORE_ADDR
39f77062 549mips_read_pc (ptid_t ptid)
6c997a34 550{
39f77062 551 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 552}
c906108c
SS
553
554/* This returns the PC of the first inst after the prologue. If we can't
555 find the prologue, then return 0. */
556
557static CORE_ADDR
acdb74a0
AC
558after_prologue (CORE_ADDR pc,
559 mips_extra_func_info_t proc_desc)
c906108c
SS
560{
561 struct symtab_and_line sal;
562 CORE_ADDR func_addr, func_end;
563
564 if (!proc_desc)
565 proc_desc = find_proc_desc (pc, NULL);
566
567 if (proc_desc)
568 {
569 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 570 strongly suspect that frameless always means prologueless... */
c906108c
SS
571 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
572 && PROC_FRAME_OFFSET (proc_desc) == 0)
573 return 0;
574 }
575
576 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
577 return 0; /* Unknown */
578
579 sal = find_pc_line (func_addr, 0);
580
581 if (sal.end < func_end)
582 return sal.end;
583
584 /* The line after the prologue is after the end of the function. In this
585 case, tell the caller to find the prologue the hard way. */
586
587 return 0;
588}
589
590/* Decode a MIPS32 instruction that saves a register in the stack, and
591 set the appropriate bit in the general register mask or float register mask
592 to indicate which register is saved. This is a helper function
593 for mips_find_saved_regs. */
594
595static void
acdb74a0
AC
596mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
597 unsigned long *float_mask)
c906108c
SS
598{
599 int reg;
600
601 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
602 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
603 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
604 {
605 /* It might be possible to use the instruction to
c5aa993b
JM
606 find the offset, rather than the code below which
607 is based on things being in a certain order in the
608 frame, but figuring out what the instruction's offset
609 is relative to might be a little tricky. */
c906108c
SS
610 reg = (inst & 0x001f0000) >> 16;
611 *gen_mask |= (1 << reg);
612 }
613 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
614 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
615 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
616
617 {
618 reg = ((inst & 0x001f0000) >> 16);
619 *float_mask |= (1 << reg);
620 }
621}
622
623/* Decode a MIPS16 instruction that saves a register in the stack, and
624 set the appropriate bit in the general register or float register mask
625 to indicate which register is saved. This is a helper function
626 for mips_find_saved_regs. */
627
628static void
acdb74a0 629mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 630{
c5aa993b 631 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
632 {
633 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
634 *gen_mask |= (1 << reg);
635 }
c5aa993b 636 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
637 {
638 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
639 *gen_mask |= (1 << reg);
640 }
c5aa993b 641 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
642 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
643 *gen_mask |= (1 << RA_REGNUM);
644}
645
646
647/* Fetch and return instruction from the specified location. If the PC
648 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
649
650static t_inst
acdb74a0 651mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
652{
653 char buf[MIPS_INSTLEN];
654 int instlen;
655 int status;
656
657 if (pc_is_mips16 (addr))
658 {
659 instlen = MIPS16_INSTLEN;
660 addr = UNMAKE_MIPS16_ADDR (addr);
661 }
662 else
c5aa993b 663 instlen = MIPS_INSTLEN;
c906108c
SS
664 status = read_memory_nobpt (addr, buf, instlen);
665 if (status)
666 memory_error (status, addr);
667 return extract_unsigned_integer (buf, instlen);
668}
669
670
671/* These the fields of 32 bit mips instructions */
e135b889
DJ
672#define mips32_op(x) (x >> 26)
673#define itype_op(x) (x >> 26)
674#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 675#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 676#define itype_immediate(x) (x & 0xffff)
c906108c 677
e135b889
DJ
678#define jtype_op(x) (x >> 26)
679#define jtype_target(x) (x & 0x03ffffff)
c906108c 680
e135b889
DJ
681#define rtype_op(x) (x >> 26)
682#define rtype_rs(x) ((x >> 21) & 0x1f)
683#define rtype_rt(x) ((x >> 16) & 0x1f)
684#define rtype_rd(x) ((x >> 11) & 0x1f)
685#define rtype_shamt(x) ((x >> 6) & 0x1f)
686#define rtype_funct(x) (x & 0x3f)
c906108c
SS
687
688static CORE_ADDR
c5aa993b
JM
689mips32_relative_offset (unsigned long inst)
690{
691 long x;
692 x = itype_immediate (inst);
693 if (x & 0x8000) /* sign bit set */
c906108c 694 {
c5aa993b 695 x |= 0xffff0000; /* sign extension */
c906108c 696 }
c5aa993b
JM
697 x = x << 2;
698 return x;
c906108c
SS
699}
700
701/* Determine whate to set a single step breakpoint while considering
702 branch prediction */
703CORE_ADDR
c5aa993b
JM
704mips32_next_pc (CORE_ADDR pc)
705{
706 unsigned long inst;
707 int op;
708 inst = mips_fetch_instruction (pc);
e135b889 709 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 710 {
e135b889
DJ
711 if (itype_op (inst) >> 2 == 5)
712 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 713 {
e135b889 714 op = (itype_op (inst) & 0x03);
c906108c
SS
715 switch (op)
716 {
e135b889
DJ
717 case 0: /* BEQL */
718 goto equal_branch;
719 case 1: /* BNEL */
720 goto neq_branch;
721 case 2: /* BLEZL */
722 goto less_branch;
723 case 3: /* BGTZ */
724 goto greater_branch;
c5aa993b
JM
725 default:
726 pc += 4;
c906108c
SS
727 }
728 }
e135b889
DJ
729 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
730 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
731 {
732 int tf = itype_rt (inst) & 0x01;
733 int cnum = itype_rt (inst) >> 2;
734 int fcrcs = read_signed_register (FCRCS_REGNUM);
735 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
736
737 if (((cond >> cnum) & 0x01) == tf)
738 pc += mips32_relative_offset (inst) + 4;
739 else
740 pc += 8;
741 }
c5aa993b
JM
742 else
743 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
744 }
745 else
c5aa993b
JM
746 { /* This gets way messy */
747
c906108c 748 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 749 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 750 {
c5aa993b
JM
751 case 0: /* SPECIAL */
752 op = rtype_funct (inst);
753 switch (op)
754 {
755 case 8: /* JR */
756 case 9: /* JALR */
6c997a34
AC
757 /* Set PC to that address */
758 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
759 break;
760 default:
761 pc += 4;
762 }
763
e135b889 764 break; /* end SPECIAL */
c5aa993b 765 case 1: /* REGIMM */
c906108c 766 {
e135b889
DJ
767 op = itype_rt (inst); /* branch condition */
768 switch (op)
c906108c 769 {
c5aa993b 770 case 0: /* BLTZ */
e135b889
DJ
771 case 2: /* BLTZL */
772 case 16: /* BLTZAL */
c5aa993b 773 case 18: /* BLTZALL */
c906108c 774 less_branch:
6c997a34 775 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
776 pc += mips32_relative_offset (inst) + 4;
777 else
778 pc += 8; /* after the delay slot */
779 break;
e135b889 780 case 1: /* BGEZ */
c5aa993b
JM
781 case 3: /* BGEZL */
782 case 17: /* BGEZAL */
783 case 19: /* BGEZALL */
c906108c 784 greater_equal_branch:
6c997a34 785 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
786 pc += mips32_relative_offset (inst) + 4;
787 else
788 pc += 8; /* after the delay slot */
789 break;
e135b889 790 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
791 default:
792 pc += 4;
c906108c
SS
793 }
794 }
e135b889 795 break; /* end REGIMM */
c5aa993b
JM
796 case 2: /* J */
797 case 3: /* JAL */
798 {
799 unsigned long reg;
800 reg = jtype_target (inst) << 2;
e135b889 801 /* Upper four bits get never changed... */
c5aa993b 802 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 803 }
c5aa993b
JM
804 break;
805 /* FIXME case JALX : */
806 {
807 unsigned long reg;
808 reg = jtype_target (inst) << 2;
809 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
810 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
811 }
c5aa993b 812 break; /* The new PC will be alternate mode */
e135b889 813 case 4: /* BEQ, BEQL */
c5aa993b 814 equal_branch:
6c997a34
AC
815 if (read_signed_register (itype_rs (inst)) ==
816 read_signed_register (itype_rt (inst)))
c5aa993b
JM
817 pc += mips32_relative_offset (inst) + 4;
818 else
819 pc += 8;
820 break;
e135b889 821 case 5: /* BNE, BNEL */
c5aa993b 822 neq_branch:
6c997a34 823 if (read_signed_register (itype_rs (inst)) !=
e135b889 824 read_signed_register (itype_rt (inst)))
c5aa993b
JM
825 pc += mips32_relative_offset (inst) + 4;
826 else
827 pc += 8;
828 break;
e135b889 829 case 6: /* BLEZ, BLEZL */
c906108c 830 less_zero_branch:
6c997a34 831 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
832 pc += mips32_relative_offset (inst) + 4;
833 else
834 pc += 8;
835 break;
836 case 7:
e135b889
DJ
837 default:
838 greater_branch: /* BGTZ, BGTZL */
6c997a34 839 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
840 pc += mips32_relative_offset (inst) + 4;
841 else
842 pc += 8;
843 break;
c5aa993b
JM
844 } /* switch */
845 } /* else */
846 return pc;
847} /* mips32_next_pc */
c906108c
SS
848
849/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 850 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
851 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
852 We dont want to set a single step instruction on the extend instruction
853 either.
c5aa993b 854 */
c906108c
SS
855
856/* Lots of mips16 instruction formats */
857/* Predicting jumps requires itype,ritype,i8type
858 and their extensions extItype,extritype,extI8type
c5aa993b 859 */
c906108c
SS
860enum mips16_inst_fmts
861{
c5aa993b
JM
862 itype, /* 0 immediate 5,10 */
863 ritype, /* 1 5,3,8 */
864 rrtype, /* 2 5,3,3,5 */
865 rritype, /* 3 5,3,3,5 */
866 rrrtype, /* 4 5,3,3,3,2 */
867 rriatype, /* 5 5,3,3,1,4 */
868 shifttype, /* 6 5,3,3,3,2 */
869 i8type, /* 7 5,3,8 */
870 i8movtype, /* 8 5,3,3,5 */
871 i8mov32rtype, /* 9 5,3,5,3 */
872 i64type, /* 10 5,3,8 */
873 ri64type, /* 11 5,3,3,5 */
874 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
875 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
876 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
877 extRRItype, /* 15 5,5,5,5,3,3,5 */
878 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
879 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
880 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
881 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
882 extRi64type, /* 20 5,6,5,5,3,3,5 */
883 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
884};
12f02c2a
AC
885/* I am heaping all the fields of the formats into one structure and
886 then, only the fields which are involved in instruction extension */
c906108c 887struct upk_mips16
c5aa993b 888 {
12f02c2a 889 CORE_ADDR offset;
c5aa993b
JM
890 unsigned int regx; /* Function in i8 type */
891 unsigned int regy;
892 };
c906108c
SS
893
894
12f02c2a
AC
895/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
896 for the bits which make up the immediatate extension. */
c906108c 897
12f02c2a
AC
898static CORE_ADDR
899extended_offset (unsigned int extension)
c906108c 900{
12f02c2a 901 CORE_ADDR value;
c5aa993b
JM
902 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
903 value = value << 6;
904 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
905 value = value << 5;
906 value |= extension & 0x01f; /* extract 4:0 */
907 return value;
c906108c
SS
908}
909
910/* Only call this function if you know that this is an extendable
911 instruction, It wont malfunction, but why make excess remote memory references?
912 If the immediate operands get sign extended or somthing, do it after
913 the extension is performed.
c5aa993b 914 */
c906108c
SS
915/* FIXME: Every one of these cases needs to worry about sign extension
916 when the offset is to be used in relative addressing */
917
918
12f02c2a 919static unsigned int
c5aa993b 920fetch_mips_16 (CORE_ADDR pc)
c906108c 921{
c5aa993b
JM
922 char buf[8];
923 pc &= 0xfffffffe; /* clear the low order bit */
924 target_read_memory (pc, buf, 2);
925 return extract_unsigned_integer (buf, 2);
c906108c
SS
926}
927
928static void
c5aa993b 929unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
930 unsigned int extension,
931 unsigned int inst,
932 enum mips16_inst_fmts insn_format,
c5aa993b 933 struct upk_mips16 *upk)
c906108c 934{
12f02c2a
AC
935 CORE_ADDR offset;
936 int regx;
937 int regy;
938 switch (insn_format)
c906108c 939 {
c5aa993b 940 case itype:
c906108c 941 {
12f02c2a
AC
942 CORE_ADDR value;
943 if (extension)
c5aa993b
JM
944 {
945 value = extended_offset (extension);
946 value = value << 11; /* rom for the original value */
12f02c2a 947 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
948 }
949 else
c5aa993b 950 {
12f02c2a 951 value = inst & 0x7ff;
c5aa993b 952 /* FIXME : Consider sign extension */
c906108c 953 }
12f02c2a
AC
954 offset = value;
955 regx = -1;
956 regy = -1;
c906108c 957 }
c5aa993b
JM
958 break;
959 case ritype:
960 case i8type:
961 { /* A register identifier and an offset */
c906108c
SS
962 /* Most of the fields are the same as I type but the
963 immediate value is of a different length */
12f02c2a
AC
964 CORE_ADDR value;
965 if (extension)
c906108c 966 {
c5aa993b
JM
967 value = extended_offset (extension);
968 value = value << 8; /* from the original instruction */
12f02c2a
AC
969 value |= inst & 0xff; /* eleven bits from instruction */
970 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
971 if (value & 0x4000) /* test the sign bit , bit 26 */
972 {
973 value &= ~0x3fff; /* remove the sign bit */
974 value = -value;
c906108c
SS
975 }
976 }
c5aa993b
JM
977 else
978 {
12f02c2a
AC
979 value = inst & 0xff; /* 8 bits */
980 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
981 /* FIXME: Do sign extension , this format needs it */
982 if (value & 0x80) /* THIS CONFUSES ME */
983 {
984 value &= 0xef; /* remove the sign bit */
985 value = -value;
986 }
c5aa993b 987 }
12f02c2a
AC
988 offset = value;
989 regy = -1;
c5aa993b 990 break;
c906108c 991 }
c5aa993b 992 case jalxtype:
c906108c 993 {
c5aa993b 994 unsigned long value;
12f02c2a
AC
995 unsigned int nexthalf;
996 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
997 value = value << 16;
998 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
999 value |= nexthalf;
12f02c2a
AC
1000 offset = value;
1001 regx = -1;
1002 regy = -1;
c5aa993b 1003 break;
c906108c
SS
1004 }
1005 default:
8e65ff28
AC
1006 internal_error (__FILE__, __LINE__,
1007 "bad switch");
c906108c 1008 }
12f02c2a
AC
1009 upk->offset = offset;
1010 upk->regx = regx;
1011 upk->regy = regy;
c906108c
SS
1012}
1013
1014
c5aa993b
JM
1015static CORE_ADDR
1016add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1017{
c5aa993b
JM
1018 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1019
c906108c
SS
1020}
1021
12f02c2a
AC
1022static CORE_ADDR
1023extended_mips16_next_pc (CORE_ADDR pc,
1024 unsigned int extension,
1025 unsigned int insn)
c906108c 1026{
12f02c2a
AC
1027 int op = (insn >> 11);
1028 switch (op)
c906108c 1029 {
12f02c2a
AC
1030 case 2: /* Branch */
1031 {
1032 CORE_ADDR offset;
1033 struct upk_mips16 upk;
1034 unpack_mips16 (pc, extension, insn, itype, &upk);
1035 offset = upk.offset;
1036 if (offset & 0x800)
1037 {
1038 offset &= 0xeff;
1039 offset = -offset;
1040 }
1041 pc += (offset << 1) + 2;
1042 break;
1043 }
1044 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1045 {
1046 struct upk_mips16 upk;
1047 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1048 pc = add_offset_16 (pc, upk.offset);
1049 if ((insn >> 10) & 0x01) /* Exchange mode */
1050 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1051 else
1052 pc |= 0x01;
1053 break;
1054 }
1055 case 4: /* beqz */
1056 {
1057 struct upk_mips16 upk;
1058 int reg;
1059 unpack_mips16 (pc, extension, insn, ritype, &upk);
1060 reg = read_signed_register (upk.regx);
1061 if (reg == 0)
1062 pc += (upk.offset << 1) + 2;
1063 else
1064 pc += 2;
1065 break;
1066 }
1067 case 5: /* bnez */
1068 {
1069 struct upk_mips16 upk;
1070 int reg;
1071 unpack_mips16 (pc, extension, insn, ritype, &upk);
1072 reg = read_signed_register (upk.regx);
1073 if (reg != 0)
1074 pc += (upk.offset << 1) + 2;
1075 else
1076 pc += 2;
1077 break;
1078 }
1079 case 12: /* I8 Formats btez btnez */
1080 {
1081 struct upk_mips16 upk;
1082 int reg;
1083 unpack_mips16 (pc, extension, insn, i8type, &upk);
1084 /* upk.regx contains the opcode */
1085 reg = read_signed_register (24); /* Test register is 24 */
1086 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1087 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1088 /* pc = add_offset_16(pc,upk.offset) ; */
1089 pc += (upk.offset << 1) + 2;
1090 else
1091 pc += 2;
1092 break;
1093 }
1094 case 29: /* RR Formats JR, JALR, JALR-RA */
1095 {
1096 struct upk_mips16 upk;
1097 /* upk.fmt = rrtype; */
1098 op = insn & 0x1f;
1099 if (op == 0)
c5aa993b 1100 {
12f02c2a
AC
1101 int reg;
1102 upk.regx = (insn >> 8) & 0x07;
1103 upk.regy = (insn >> 5) & 0x07;
1104 switch (upk.regy)
c5aa993b 1105 {
12f02c2a
AC
1106 case 0:
1107 reg = upk.regx;
1108 break;
1109 case 1:
1110 reg = 31;
1111 break; /* Function return instruction */
1112 case 2:
1113 reg = upk.regx;
1114 break;
1115 default:
1116 reg = 31;
1117 break; /* BOGUS Guess */
c906108c 1118 }
12f02c2a 1119 pc = read_signed_register (reg);
c906108c 1120 }
12f02c2a 1121 else
c5aa993b 1122 pc += 2;
12f02c2a
AC
1123 break;
1124 }
1125 case 30:
1126 /* This is an instruction extension. Fetch the real instruction
1127 (which follows the extension) and decode things based on
1128 that. */
1129 {
1130 pc += 2;
1131 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1132 break;
1133 }
1134 default:
1135 {
1136 pc += 2;
1137 break;
1138 }
c906108c 1139 }
c5aa993b 1140 return pc;
12f02c2a 1141}
c906108c 1142
12f02c2a
AC
1143CORE_ADDR
1144mips16_next_pc (CORE_ADDR pc)
1145{
1146 unsigned int insn = fetch_mips_16 (pc);
1147 return extended_mips16_next_pc (pc, 0, insn);
1148}
1149
1150/* The mips_next_pc function supports single_step when the remote
7e73cedf 1151 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1152 It works by decoding the current instruction and predicting where a
1153 branch will go. This isnt hard because all the data is available.
1154 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1155CORE_ADDR
1156mips_next_pc (CORE_ADDR pc)
c906108c 1157{
c5aa993b
JM
1158 if (pc & 0x01)
1159 return mips16_next_pc (pc);
1160 else
1161 return mips32_next_pc (pc);
12f02c2a 1162}
c906108c
SS
1163
1164/* Guaranteed to set fci->saved_regs to some values (it never leaves it
1165 NULL). */
1166
1167void
acdb74a0 1168mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1169{
1170 int ireg;
1171 CORE_ADDR reg_position;
1172 /* r0 bit means kernel trap */
1173 int kernel_trap;
1174 /* What registers have been saved? Bitmasks. */
1175 unsigned long gen_mask, float_mask;
1176 mips_extra_func_info_t proc_desc;
1177 t_inst inst;
1178
1179 frame_saved_regs_zalloc (fci);
1180
1181 /* If it is the frame for sigtramp, the saved registers are located
1182 in a sigcontext structure somewhere on the stack.
1183 If the stack layout for sigtramp changes we might have to change these
1184 constants and the companion fixup_sigtramp in mdebugread.c */
1185#ifndef SIGFRAME_BASE
1186/* To satisfy alignment restrictions, sigcontext is located 4 bytes
1187 above the sigtramp frame. */
1188#define SIGFRAME_BASE MIPS_REGSIZE
1189/* FIXME! Are these correct?? */
1190#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1191#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1192#define SIGFRAME_FPREGSAVE_OFF \
1193 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1194#endif
1195#ifndef SIGFRAME_REG_SIZE
1196/* FIXME! Is this correct?? */
1197#define SIGFRAME_REG_SIZE MIPS_REGSIZE
1198#endif
1199 if (fci->signal_handler_caller)
1200 {
1201 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1202 {
c5aa993b
JM
1203 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1204 + ireg * SIGFRAME_REG_SIZE;
1205 fci->saved_regs[ireg] = reg_position;
c906108c
SS
1206 }
1207 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1208 {
c5aa993b
JM
1209 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1210 + ireg * SIGFRAME_REG_SIZE;
1211 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
c906108c
SS
1212 }
1213 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1214 return;
1215 }
1216
cce74817 1217 proc_desc = fci->extra_info->proc_desc;
c906108c
SS
1218 if (proc_desc == NULL)
1219 /* I'm not sure how/whether this can happen. Normally when we can't
1220 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1221 and set the saved_regs right away. */
1222 return;
1223
c5aa993b
JM
1224 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1225 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1226 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1227
c5aa993b
JM
1228 if ( /* In any frame other than the innermost or a frame interrupted by
1229 a signal, we assume that all registers have been saved.
1230 This assumes that all register saves in a function happen before
1231 the first function call. */
1232 (fci->next == NULL || fci->next->signal_handler_caller)
c906108c 1233
c5aa993b
JM
1234 /* In a dummy frame we know exactly where things are saved. */
1235 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1236
c5aa993b
JM
1237 /* Don't bother unless we are inside a function prologue. Outside the
1238 prologue, we know where everything is. */
c906108c 1239
c5aa993b 1240 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
c906108c 1241
c5aa993b
JM
1242 /* Not sure exactly what kernel_trap means, but if it means
1243 the kernel saves the registers without a prologue doing it,
1244 we better not examine the prologue to see whether registers
1245 have been saved yet. */
1246 && !kernel_trap)
c906108c
SS
1247 {
1248 /* We need to figure out whether the registers that the proc_desc
c5aa993b 1249 claims are saved have been saved yet. */
c906108c
SS
1250
1251 CORE_ADDR addr;
1252
1253 /* Bitmasks; set if we have found a save for the register. */
1254 unsigned long gen_save_found = 0;
1255 unsigned long float_save_found = 0;
1256 int instlen;
1257
1258 /* If the address is odd, assume this is MIPS16 code. */
1259 addr = PROC_LOW_ADDR (proc_desc);
1260 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1261
1262 /* Scan through this function's instructions preceding the current
1263 PC, and look for those that save registers. */
1264 while (addr < fci->pc)
1265 {
1266 inst = mips_fetch_instruction (addr);
1267 if (pc_is_mips16 (addr))
1268 mips16_decode_reg_save (inst, &gen_save_found);
1269 else
1270 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1271 addr += instlen;
1272 }
1273 gen_mask = gen_save_found;
1274 float_mask = float_save_found;
1275 }
1276
1277 /* Fill in the offsets for the registers which gen_mask says
1278 were saved. */
1279 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
c5aa993b 1280 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
c906108c
SS
1281 if (gen_mask & 0x80000000)
1282 {
1283 fci->saved_regs[ireg] = reg_position;
7a292a7a 1284 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1285 }
1286
1287 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1288 of that normally used by gcc. Therefore, we have to fetch the first
1289 instruction of the function, and if it's an entry instruction that
1290 saves $s0 or $s1, correct their saved addresses. */
1291 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1292 {
1293 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
c5aa993b 1294 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
c906108c
SS
1295 {
1296 int reg;
1297 int sreg_count = (inst >> 6) & 3;
c5aa993b 1298
c906108c
SS
1299 /* Check if the ra register was pushed on the stack. */
1300 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1301 if (inst & 0x20)
7a292a7a 1302 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1303
1304 /* Check if the s0 and s1 registers were pushed on the stack. */
c5aa993b 1305 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c
SS
1306 {
1307 fci->saved_regs[reg] = reg_position;
7a292a7a 1308 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1309 }
1310 }
1311 }
1312
1313 /* Fill in the offsets for the registers which float_mask says
1314 were saved. */
1315 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1316
1317 /* The freg_offset points to where the first *double* register
1318 is saved. So skip to the high-order word. */
c5aa993b 1319 if (!GDB_TARGET_IS_MIPS64)
7a292a7a 1320 reg_position += MIPS_SAVED_REGSIZE;
c906108c
SS
1321
1322 /* Fill in the offsets for the float registers which float_mask says
1323 were saved. */
c5aa993b 1324 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
c906108c
SS
1325 if (float_mask & 0x80000000)
1326 {
c5aa993b 1327 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
7a292a7a 1328 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1329 }
1330
1331 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1332}
1333
1334static CORE_ADDR
acdb74a0 1335read_next_frame_reg (struct frame_info *fi, int regno)
c906108c
SS
1336{
1337 for (; fi; fi = fi->next)
1338 {
1339 /* We have to get the saved sp from the sigcontext
c5aa993b 1340 if it is a signal handler frame. */
c906108c
SS
1341 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1342 return fi->frame;
1343 else
1344 {
1345 if (fi->saved_regs == NULL)
1346 mips_find_saved_regs (fi);
1347 if (fi->saved_regs[regno])
2acceee2 1348 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
c906108c
SS
1349 }
1350 }
6c997a34 1351 return read_signed_register (regno);
c906108c
SS
1352}
1353
1354/* mips_addr_bits_remove - remove useless address bits */
1355
875e1767 1356static CORE_ADDR
acdb74a0 1357mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1358{
5213ab06
AC
1359 if (GDB_TARGET_IS_MIPS64)
1360 {
4014092b 1361 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
5213ab06
AC
1362 {
1363 /* This hack is a work-around for existing boards using
1364 PMON, the simulator, and any other 64-bit targets that
1365 doesn't have true 64-bit addressing. On these targets,
1366 the upper 32 bits of addresses are ignored by the
1367 hardware. Thus, the PC or SP are likely to have been
1368 sign extended to all 1s by instruction sequences that
1369 load 32-bit addresses. For example, a typical piece of
4014092b
AC
1370 code that loads an address is this:
1371 lui $r2, <upper 16 bits>
1372 ori $r2, <lower 16 bits>
1373 But the lui sign-extends the value such that the upper 32
1374 bits may be all 1s. The workaround is simply to mask off
1375 these bits. In the future, gcc may be changed to support
1376 true 64-bit addressing, and this masking will have to be
1377 disabled. */
5213ab06
AC
1378 addr &= (CORE_ADDR) 0xffffffff;
1379 }
1380 }
4014092b 1381 else if (mips_mask_address_p ())
5213ab06 1382 {
4014092b
AC
1383 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1384 masking off bits, instead, the actual target should be asking
1385 for the address to be converted to a valid pointer. */
5213ab06
AC
1386 /* Even when GDB is configured for some 32-bit targets
1387 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1388 so CORE_ADDR is 64 bits. So we still have to mask off
1389 useless bits from addresses. */
c5aa993b 1390 addr &= (CORE_ADDR) 0xffffffff;
c906108c 1391 }
c906108c
SS
1392 return addr;
1393}
1394
9022177c
DJ
1395/* mips_software_single_step() is called just before we want to resume
1396 the inferior, if we want to single-step it but there is no hardware
1397 or kernel single-step support (MIPS on Linux for example). We find
1398 the target of the coming instruction and breakpoint it.
1399
1400 single_step is also called just after the inferior stops. If we had
1401 set up a simulated single-step, we undo our damage. */
1402
1403void
1404mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1405{
1406 static CORE_ADDR next_pc;
1407 typedef char binsn_quantum[BREAKPOINT_MAX];
1408 static binsn_quantum break_mem;
1409 CORE_ADDR pc;
1410
1411 if (insert_breakpoints_p)
1412 {
1413 pc = read_register (PC_REGNUM);
1414 next_pc = mips_next_pc (pc);
1415
1416 target_insert_breakpoint (next_pc, break_mem);
1417 }
1418 else
1419 target_remove_breakpoint (next_pc, break_mem);
1420}
1421
10312cc4 1422static void
acdb74a0 1423mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1424{
1425 CORE_ADDR pc, tmp;
1426
1427 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
c5aa993b 1428 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
c906108c 1429 tmp = mips_skip_stub (pc);
c5aa993b 1430 prev->pc = tmp ? tmp : pc;
c906108c
SS
1431}
1432
1433
1434CORE_ADDR
acdb74a0 1435mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1436{
1437 CORE_ADDR saved_pc;
cce74817 1438 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c
SS
1439 /* We have to get the saved pc from the sigcontext
1440 if it is a signal handler frame. */
1441 int pcreg = frame->signal_handler_caller ? PC_REGNUM
c5aa993b 1442 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
c906108c 1443
c5aa993b 1444 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
7a292a7a 1445 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
c906108c 1446 else
7a292a7a 1447 saved_pc = read_next_frame_reg (frame, pcreg);
c906108c
SS
1448
1449 return ADDR_BITS_REMOVE (saved_pc);
1450}
1451
1452static struct mips_extra_func_info temp_proc_desc;
cce74817 1453static CORE_ADDR temp_saved_regs[NUM_REGS];
c906108c
SS
1454
1455/* Set a register's saved stack address in temp_saved_regs. If an address
1456 has already been set for this register, do nothing; this way we will
1457 only recognize the first save of a given register in a function prologue.
1458 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1459
1460static void
acdb74a0 1461set_reg_offset (int regno, CORE_ADDR offset)
c906108c 1462{
cce74817
JM
1463 if (temp_saved_regs[regno] == 0)
1464 temp_saved_regs[regno] = offset;
c906108c
SS
1465}
1466
1467
1468/* Test whether the PC points to the return instruction at the
1469 end of a function. */
1470
c5aa993b 1471static int
acdb74a0 1472mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1473{
1474 if (pc_is_mips16 (pc))
1475 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1476 generates a "jr $ra"; other times it generates code to load
1477 the return address from the stack to an accessible register (such
1478 as $a3), then a "jr" using that register. This second case
1479 is almost impossible to distinguish from an indirect jump
1480 used for switch statements, so we don't even try. */
1481 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1482 else
1483 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1484}
1485
1486
1487/* This fencepost looks highly suspicious to me. Removing it also
1488 seems suspicious as it could affect remote debugging across serial
1489 lines. */
1490
1491static CORE_ADDR
acdb74a0 1492heuristic_proc_start (CORE_ADDR pc)
c906108c 1493{
c5aa993b
JM
1494 CORE_ADDR start_pc;
1495 CORE_ADDR fence;
1496 int instlen;
1497 int seen_adjsp = 0;
c906108c 1498
c5aa993b
JM
1499 pc = ADDR_BITS_REMOVE (pc);
1500 start_pc = pc;
1501 fence = start_pc - heuristic_fence_post;
1502 if (start_pc == 0)
1503 return 0;
c906108c 1504
c5aa993b
JM
1505 if (heuristic_fence_post == UINT_MAX
1506 || fence < VM_MIN_ADDRESS)
1507 fence = VM_MIN_ADDRESS;
c906108c 1508
c5aa993b 1509 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1510
c5aa993b
JM
1511 /* search back for previous return */
1512 for (start_pc -= instlen;; start_pc -= instlen)
1513 if (start_pc < fence)
1514 {
1515 /* It's not clear to me why we reach this point when
1516 stop_soon_quietly, but with this test, at least we
1517 don't print out warnings for every child forked (eg, on
1518 decstation). 22apr93 rich@cygnus.com. */
1519 if (!stop_soon_quietly)
c906108c 1520 {
c5aa993b
JM
1521 static int blurb_printed = 0;
1522
1523 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1524 paddr_nz (pc));
1525
1526 if (!blurb_printed)
c906108c 1527 {
c5aa993b
JM
1528 /* This actually happens frequently in embedded
1529 development, when you first connect to a board
1530 and your stack pointer and pc are nowhere in
1531 particular. This message needs to give people
1532 in that situation enough information to
1533 determine that it's no big deal. */
1534 printf_filtered ("\n\
cd0fc7c3
SS
1535 GDB is unable to find the start of the function at 0x%s\n\
1536and thus can't determine the size of that function's stack frame.\n\
1537This means that GDB may be unable to access that stack frame, or\n\
1538the frames below it.\n\
1539 This problem is most likely caused by an invalid program counter or\n\
1540stack pointer.\n\
1541 However, if you think GDB should simply search farther back\n\
1542from 0x%s for code which looks like the beginning of a\n\
1543function, you can increase the range of the search using the `set\n\
1544heuristic-fence-post' command.\n",
c5aa993b
JM
1545 paddr_nz (pc), paddr_nz (pc));
1546 blurb_printed = 1;
c906108c 1547 }
c906108c
SS
1548 }
1549
c5aa993b
JM
1550 return 0;
1551 }
1552 else if (pc_is_mips16 (start_pc))
1553 {
1554 unsigned short inst;
1555
1556 /* On MIPS16, any one of the following is likely to be the
1557 start of a function:
1558 entry
1559 addiu sp,-n
1560 daddiu sp,-n
1561 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1562 inst = mips_fetch_instruction (start_pc);
1563 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1564 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1565 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1566 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1567 break;
1568 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1569 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1570 seen_adjsp = 1;
1571 else
1572 seen_adjsp = 0;
1573 }
1574 else if (mips_about_to_return (start_pc))
1575 {
1576 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1577 break;
1578 }
1579
c5aa993b 1580 return start_pc;
c906108c
SS
1581}
1582
1583/* Fetch the immediate value from a MIPS16 instruction.
1584 If the previous instruction was an EXTEND, use it to extend
1585 the upper bits of the immediate value. This is a helper function
1586 for mips16_heuristic_proc_desc. */
1587
1588static int
acdb74a0
AC
1589mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1590 unsigned short inst, /* current instruction */
1591 int nbits, /* number of bits in imm field */
1592 int scale, /* scale factor to be applied to imm */
1593 int is_signed) /* is the imm field signed? */
c906108c
SS
1594{
1595 int offset;
1596
1597 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1598 {
1599 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1600 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1601 offset = 0 - (0x10000 - (offset & 0xffff));
1602 return offset | (inst & 0x1f);
1603 }
1604 else
1605 {
1606 int max_imm = 1 << nbits;
1607 int mask = max_imm - 1;
1608 int sign_bit = max_imm >> 1;
1609
1610 offset = inst & mask;
1611 if (is_signed && (offset & sign_bit))
1612 offset = 0 - (max_imm - offset);
1613 return offset * scale;
1614 }
1615}
1616
1617
1618/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1619 stream from start_pc to limit_pc. */
1620
1621static void
acdb74a0
AC
1622mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1623 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1624{
1625 CORE_ADDR cur_pc;
1626 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1627 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1628 unsigned inst = 0; /* current instruction */
1629 unsigned entry_inst = 0; /* the entry instruction */
1630 int reg, offset;
1631
c5aa993b
JM
1632 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1633 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1634
1635 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1636 {
1637 /* Save the previous instruction. If it's an EXTEND, we'll extract
1638 the immediate offset extension from it in mips16_get_imm. */
1639 prev_inst = inst;
1640
1641 /* Fetch and decode the instruction. */
1642 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 1643 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
1644 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1645 {
1646 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
1647 if (offset < 0) /* negative stack adjustment? */
1648 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
1649 else
1650 /* Exit loop if a positive stack adjustment is found, which
1651 usually means that the stack cleanup code in the function
1652 epilogue is reached. */
1653 break;
1654 }
1655 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1656 {
1657 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1658 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 1659 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1660 set_reg_offset (reg, sp + offset);
1661 }
1662 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1663 {
1664 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1665 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1666 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1667 set_reg_offset (reg, sp + offset);
1668 }
1669 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1670 {
1671 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 1672 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1673 set_reg_offset (RA_REGNUM, sp + offset);
1674 }
1675 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1676 {
1677 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 1678 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1679 set_reg_offset (RA_REGNUM, sp + offset);
1680 }
c5aa993b 1681 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
1682 {
1683 frame_addr = sp;
1684 PROC_FRAME_REG (&temp_proc_desc) = 17;
1685 }
1686 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1687 {
1688 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1689 frame_addr = sp + offset;
1690 PROC_FRAME_REG (&temp_proc_desc) = 17;
1691 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1692 }
1693 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1694 {
1695 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1696 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1697 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1698 set_reg_offset (reg, frame_addr + offset);
1699 }
1700 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1701 {
1702 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1703 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1704 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1705 set_reg_offset (reg, frame_addr + offset);
1706 }
c5aa993b
JM
1707 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1708 entry_inst = inst; /* save for later processing */
c906108c 1709 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 1710 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
1711 }
1712
c5aa993b
JM
1713 /* The entry instruction is typically the first instruction in a function,
1714 and it stores registers at offsets relative to the value of the old SP
1715 (before the prologue). But the value of the sp parameter to this
1716 function is the new SP (after the prologue has been executed). So we
1717 can't calculate those offsets until we've seen the entire prologue,
1718 and can calculate what the old SP must have been. */
1719 if (entry_inst != 0)
1720 {
1721 int areg_count = (entry_inst >> 8) & 7;
1722 int sreg_count = (entry_inst >> 6) & 3;
c906108c 1723
c5aa993b
JM
1724 /* The entry instruction always subtracts 32 from the SP. */
1725 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 1726
c5aa993b
JM
1727 /* Now we can calculate what the SP must have been at the
1728 start of the function prologue. */
1729 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 1730
c5aa993b
JM
1731 /* Check if a0-a3 were saved in the caller's argument save area. */
1732 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1733 {
1734 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1735 set_reg_offset (reg, sp + offset);
1736 offset += MIPS_SAVED_REGSIZE;
1737 }
c906108c 1738
c5aa993b
JM
1739 /* Check if the ra register was pushed on the stack. */
1740 offset = -4;
1741 if (entry_inst & 0x20)
1742 {
1743 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1744 set_reg_offset (RA_REGNUM, sp + offset);
1745 offset -= MIPS_SAVED_REGSIZE;
1746 }
c906108c 1747
c5aa993b
JM
1748 /* Check if the s0 and s1 registers were pushed on the stack. */
1749 for (reg = 16; reg < sreg_count + 16; reg++)
1750 {
1751 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1752 set_reg_offset (reg, sp + offset);
1753 offset -= MIPS_SAVED_REGSIZE;
1754 }
1755 }
c906108c
SS
1756}
1757
1758static void
fba45db2
KB
1759mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1760 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1761{
1762 CORE_ADDR cur_pc;
c5aa993b 1763 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 1764restart:
cce74817 1765 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 1766 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
1767 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1768 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
1769 {
1770 unsigned long inst, high_word, low_word;
1771 int reg;
1772
1773 /* Fetch the instruction. */
1774 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1775
1776 /* Save some code by pre-extracting some useful fields. */
1777 high_word = (inst >> 16) & 0xffff;
1778 low_word = inst & 0xffff;
1779 reg = high_word & 0x1f;
1780
c5aa993b 1781 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
1782 || high_word == 0x23bd /* addi $sp,$sp,-i */
1783 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1784 {
1785 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 1786 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
1787 else
1788 /* Exit loop if a positive stack adjustment is found, which
1789 usually means that the stack cleanup code in the function
1790 epilogue is reached. */
1791 break;
1792 }
1793 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1794 {
c5aa993b 1795 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1796 set_reg_offset (reg, sp + low_word);
1797 }
1798 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1799 {
1800 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
1801 but the register size used is only 32 bits. Make the address
1802 for the saved register point to the lower 32 bits. */
c5aa993b 1803 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1804 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
1805 }
c5aa993b 1806 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
1807 {
1808 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
1809 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
1810 frame_addr = sp + low_word;
c906108c
SS
1811 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1812 {
1813 unsigned alloca_adjust;
1814 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
1815 frame_addr = read_next_frame_reg (next_frame, 30);
1816 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
1817 if (alloca_adjust > 0)
1818 {
1819 /* FP > SP + frame_size. This may be because
1820 * of an alloca or somethings similar.
1821 * Fix sp to "pre-alloca" value, and try again.
1822 */
1823 sp += alloca_adjust;
1824 goto restart;
1825 }
1826 }
1827 }
c5aa993b
JM
1828 /* move $30,$sp. With different versions of gas this will be either
1829 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1830 Accept any one of these. */
c906108c
SS
1831 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1832 {
1833 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1834 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1835 {
1836 unsigned alloca_adjust;
1837 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
1838 frame_addr = read_next_frame_reg (next_frame, 30);
1839 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
1840 if (alloca_adjust > 0)
1841 {
1842 /* FP > SP + frame_size. This may be because
1843 * of an alloca or somethings similar.
1844 * Fix sp to "pre-alloca" value, and try again.
1845 */
1846 sp += alloca_adjust;
1847 goto restart;
1848 }
1849 }
1850 }
c5aa993b 1851 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 1852 {
c5aa993b 1853 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1854 set_reg_offset (reg, frame_addr + low_word);
1855 }
1856 }
1857}
1858
1859static mips_extra_func_info_t
acdb74a0
AC
1860heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1861 struct frame_info *next_frame)
c906108c
SS
1862{
1863 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
1864
c5aa993b
JM
1865 if (start_pc == 0)
1866 return NULL;
1867 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
cce74817 1868 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
1869 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
1870 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
1871 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
1872
1873 if (start_pc + 200 < limit_pc)
1874 limit_pc = start_pc + 200;
1875 if (pc_is_mips16 (start_pc))
1876 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1877 else
1878 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1879 return &temp_proc_desc;
1880}
1881
1882static mips_extra_func_info_t
acdb74a0 1883non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
1884{
1885 CORE_ADDR startaddr;
1886 mips_extra_func_info_t proc_desc;
c5aa993b 1887 struct block *b = block_for_pc (pc);
c906108c
SS
1888 struct symbol *sym;
1889
1890 find_pc_partial_function (pc, NULL, &startaddr, NULL);
1891 if (addrptr)
1892 *addrptr = startaddr;
1893 if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
1894 sym = NULL;
1895 else
1896 {
1897 if (startaddr > BLOCK_START (b))
1898 /* This is the "pathological" case referred to in a comment in
1899 print_frame_info. It might be better to move this check into
1900 symbol reading. */
1901 sym = NULL;
1902 else
1903 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
1904 }
1905
1906 /* If we never found a PDR for this function in symbol reading, then
1907 examine prologues to find the information. */
1908 if (sym)
1909 {
1910 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
1911 if (PROC_FRAME_REG (proc_desc) == -1)
1912 return NULL;
1913 else
1914 return proc_desc;
1915 }
1916 else
1917 return NULL;
1918}
1919
1920
1921static mips_extra_func_info_t
acdb74a0 1922find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame)
c906108c
SS
1923{
1924 mips_extra_func_info_t proc_desc;
1925 CORE_ADDR startaddr;
1926
1927 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
1928
1929 if (proc_desc)
1930 {
1931 /* IF this is the topmost frame AND
1932 * (this proc does not have debugging information OR
1933 * the PC is in the procedure prologue)
1934 * THEN create a "heuristic" proc_desc (by analyzing
1935 * the actual code) to replace the "official" proc_desc.
1936 */
1937 if (next_frame == NULL)
1938 {
1939 struct symtab_and_line val;
1940 struct symbol *proc_symbol =
c5aa993b 1941 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
1942
1943 if (proc_symbol)
1944 {
1945 val = find_pc_line (BLOCK_START
c5aa993b 1946 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
1947 0);
1948 val.pc = val.end ? val.end : pc;
1949 }
1950 if (!proc_symbol || pc < val.pc)
1951 {
1952 mips_extra_func_info_t found_heuristic =
c5aa993b
JM
1953 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
1954 pc, next_frame);
c906108c
SS
1955 if (found_heuristic)
1956 proc_desc = found_heuristic;
1957 }
1958 }
1959 }
1960 else
1961 {
1962 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
1963 by procedure call dummys. However, the procedures being called ought
1964 to have their own proc_descs, and even if they don't,
1965 heuristic_proc_desc knows how to create them! */
c906108c
SS
1966
1967 register struct linked_proc_info *link;
1968
1969 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
1970 if (PROC_LOW_ADDR (&link->info) <= pc
1971 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
1972 return &link->info;
1973
1974 if (startaddr == 0)
1975 startaddr = heuristic_proc_start (pc);
1976
1977 proc_desc =
1978 heuristic_proc_desc (startaddr, pc, next_frame);
1979 }
1980 return proc_desc;
1981}
1982
1983static CORE_ADDR
acdb74a0
AC
1984get_frame_pointer (struct frame_info *frame,
1985 mips_extra_func_info_t proc_desc)
c906108c
SS
1986{
1987 return ADDR_BITS_REMOVE (
c5aa993b
JM
1988 read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) +
1989 PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
1990}
1991
1992mips_extra_func_info_t cached_proc_desc;
1993
1994CORE_ADDR
acdb74a0 1995mips_frame_chain (struct frame_info *frame)
c906108c
SS
1996{
1997 mips_extra_func_info_t proc_desc;
1998 CORE_ADDR tmp;
c5aa993b 1999 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
c906108c
SS
2000
2001 if (saved_pc == 0 || inside_entry_file (saved_pc))
2002 return 0;
2003
2004 /* Check if the PC is inside a call stub. If it is, fetch the
2005 PC of the caller of that stub. */
2006 if ((tmp = mips_skip_stub (saved_pc)) != 0)
2007 saved_pc = tmp;
2008
2009 /* Look up the procedure descriptor for this PC. */
c5aa993b 2010 proc_desc = find_proc_desc (saved_pc, frame);
c906108c
SS
2011 if (!proc_desc)
2012 return 0;
2013
2014 cached_proc_desc = proc_desc;
2015
2016 /* If no frame pointer and frame size is zero, we must be at end
2017 of stack (or otherwise hosed). If we don't check frame size,
2018 we loop forever if we see a zero size frame. */
2019 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2020 && PROC_FRAME_OFFSET (proc_desc) == 0
c5aa993b
JM
2021 /* The previous frame from a sigtramp frame might be frameless
2022 and have frame size zero. */
c906108c
SS
2023 && !frame->signal_handler_caller)
2024 return 0;
2025 else
2026 return get_frame_pointer (frame, proc_desc);
2027}
2028
2029void
acdb74a0 2030mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2031{
2032 int regnum;
2033
2034 /* Use proc_desc calculated in frame_chain */
2035 mips_extra_func_info_t proc_desc =
c5aa993b 2036 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next);
c906108c 2037
cce74817
JM
2038 fci->extra_info = (struct frame_extra_info *)
2039 frame_obstack_alloc (sizeof (struct frame_extra_info));
2040
c906108c 2041 fci->saved_regs = NULL;
cce74817 2042 fci->extra_info->proc_desc =
c906108c
SS
2043 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2044 if (proc_desc)
2045 {
2046 /* Fixup frame-pointer - only needed for top frame */
2047 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2048 Get the value of the frame relative sp, procedure might have been
2049 interrupted by a signal at it's very start. */
c906108c
SS
2050 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2051 && !PROC_DESC_IS_DUMMY (proc_desc))
2052 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2053 else
2054 fci->frame = get_frame_pointer (fci->next, proc_desc);
2055
2056 if (proc_desc == &temp_proc_desc)
2057 {
2058 char *name;
2059
2060 /* Do not set the saved registers for a sigtramp frame,
2061 mips_find_saved_registers will do that for us.
2062 We can't use fci->signal_handler_caller, it is not yet set. */
2063 find_pc_partial_function (fci->pc, &name,
c5aa993b 2064 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
c906108c
SS
2065 if (!IN_SIGTRAMP (fci->pc, name))
2066 {
c5aa993b 2067 frame_saved_regs_zalloc (fci);
cce74817 2068 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2069 fci->saved_regs[PC_REGNUM]
2070 = fci->saved_regs[RA_REGNUM];
2071 }
2072 }
2073
2074 /* hack: if argument regs are saved, guess these contain args */
cce74817
JM
2075 /* assume we can't tell how many args for now */
2076 fci->extra_info->num_args = -1;
c906108c
SS
2077 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2078 {
c5aa993b 2079 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2080 {
cce74817 2081 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2082 break;
2083 }
c5aa993b 2084 }
c906108c
SS
2085 }
2086}
2087
2088/* MIPS stack frames are almost impenetrable. When execution stops,
2089 we basically have to look at symbol information for the function
2090 that we stopped in, which tells us *which* register (if any) is
2091 the base of the frame pointer, and what offset from that register
2092 the frame itself is at.
2093
2094 This presents a problem when trying to examine a stack in memory
2095 (that isn't executing at the moment), using the "frame" command. We
2096 don't have a PC, nor do we have any registers except SP.
2097
2098 This routine takes two arguments, SP and PC, and tries to make the
2099 cached frames look as if these two arguments defined a frame on the
2100 cache. This allows the rest of info frame to extract the important
2101 arguments without difficulty. */
2102
2103struct frame_info *
acdb74a0 2104setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2105{
2106 if (argc != 2)
2107 error ("MIPS frame specifications require two arguments: sp and pc");
2108
2109 return create_new_frame (argv[0], argv[1]);
2110}
2111
f09ded24
AC
2112/* According to the current ABI, should the type be passed in a
2113 floating-point register (assuming that there is space)? When there
2114 is no FPU, FP are not even considered as possibile candidates for
2115 FP registers and, consequently this returns false - forces FP
2116 arguments into integer registers. */
2117
2118static int
2119fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2120{
2121 return ((typecode == TYPE_CODE_FLT
2122 || (MIPS_EABI
2123 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2124 && TYPE_NFIELDS (arg_type) == 1
2125 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2126 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2127}
2128
c906108c 2129CORE_ADDR
acdb74a0
AC
2130mips_push_arguments (int nargs,
2131 value_ptr *args,
2132 CORE_ADDR sp,
2133 int struct_return,
2134 CORE_ADDR struct_addr)
c906108c
SS
2135{
2136 int argreg;
2137 int float_argreg;
2138 int argnum;
2139 int len = 0;
2140 int stack_offset = 0;
2141
2142 /* Macros to round N up or down to the next A boundary; A must be
2143 a power of two. */
2144#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2145#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
c5aa993b 2146
c906108c
SS
2147 /* First ensure that the stack and structure return address (if any)
2148 are properly aligned. The stack has to be at least 64-bit aligned
2149 even on 32-bit machines, because doubles must be 64-bit aligned.
2150 On at least one MIPS variant, stack frames need to be 128-bit
2151 aligned, so we round to this widest known alignment. */
2152 sp = ROUND_DOWN (sp, 16);
cce41527 2153 struct_addr = ROUND_DOWN (struct_addr, 16);
c5aa993b 2154
c906108c
SS
2155 /* Now make space on the stack for the args. We allocate more
2156 than necessary for EABI, because the first few arguments are
2157 passed in registers, but that's OK. */
2158 for (argnum = 0; argnum < nargs; argnum++)
cce41527 2159 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), MIPS_STACK_ARGSIZE);
c906108c
SS
2160 sp -= ROUND_UP (len, 16);
2161
9ace0497
AC
2162 if (mips_debug)
2163 fprintf_unfiltered (gdb_stdlog, "mips_push_arguments: sp=0x%lx allocated %d\n",
2164 (long) sp, ROUND_UP (len, 16));
2165
c906108c
SS
2166 /* Initialize the integer and float register pointers. */
2167 argreg = A0_REGNUM;
2168 float_argreg = FPA0_REGNUM;
2169
2170 /* the struct_return pointer occupies the first parameter-passing reg */
2171 if (struct_return)
9ace0497
AC
2172 {
2173 if (mips_debug)
2174 fprintf_unfiltered (gdb_stdlog,
cce41527 2175 "mips_push_arguments: struct_return reg=%d 0x%lx\n",
9ace0497
AC
2176 argreg, (long) struct_addr);
2177 write_register (argreg++, struct_addr);
cce41527
AC
2178 if (MIPS_REGS_HAVE_HOME_P)
2179 stack_offset += MIPS_STACK_ARGSIZE;
9ace0497 2180 }
c906108c
SS
2181
2182 /* Now load as many as possible of the first arguments into
2183 registers, and push the rest onto the stack. Loop thru args
2184 from first to last. */
2185 for (argnum = 0; argnum < nargs; argnum++)
2186 {
2187 char *val;
2188 char valbuf[MAX_REGISTER_RAW_SIZE];
2189 value_ptr arg = args[argnum];
2190 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2191 int len = TYPE_LENGTH (arg_type);
2192 enum type_code typecode = TYPE_CODE (arg_type);
2193
9ace0497
AC
2194 if (mips_debug)
2195 fprintf_unfiltered (gdb_stdlog,
2196 "mips_push_arguments: %d len=%d type=%d",
acdb74a0 2197 argnum + 1, len, (int) typecode);
9ace0497 2198
c906108c 2199 /* The EABI passes structures that do not fit in a register by
c5aa993b 2200 reference. In all other cases, pass the structure by value. */
9ace0497
AC
2201 if (MIPS_EABI
2202 && len > MIPS_SAVED_REGSIZE
2203 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2204 {
7a292a7a 2205 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2206 typecode = TYPE_CODE_PTR;
7a292a7a 2207 len = MIPS_SAVED_REGSIZE;
c906108c 2208 val = valbuf;
9ace0497
AC
2209 if (mips_debug)
2210 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2211 }
2212 else
c5aa993b 2213 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2214
2215 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2216 even-numbered floating point register. Round the FP register
2217 up before the check to see if there are any FP registers
2218 left. Non MIPS_EABI targets also pass the FP in the integer
2219 registers so also round up normal registers. */
2220 if (!FP_REGISTER_DOUBLE
2221 && fp_register_arg_p (typecode, arg_type))
2222 {
2223 if ((float_argreg & 1))
2224 float_argreg++;
2225 }
c906108c
SS
2226
2227 /* Floating point arguments passed in registers have to be
2228 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2229 are passed in register pairs; the even register gets
2230 the low word, and the odd register gets the high word.
2231 On non-EABI processors, the first two floating point arguments are
2232 also copied to general registers, because MIPS16 functions
2233 don't use float registers for arguments. This duplication of
2234 arguments in general registers can't hurt non-MIPS16 functions
2235 because those registers are normally skipped. */
1012bd0e
EZ
2236 /* MIPS_EABI squeezes a struct that contains a single floating
2237 point value into an FP register instead of pushing it onto the
9a0149c6 2238 stack. */
f09ded24
AC
2239 if (fp_register_arg_p (typecode, arg_type)
2240 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2241 {
2242 if (!FP_REGISTER_DOUBLE && len == 8)
2243 {
2244 int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
2245 unsigned long regval;
2246
2247 /* Write the low word of the double to the even register(s). */
c5aa993b 2248 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2249 if (mips_debug)
acdb74a0 2250 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2251 float_argreg, phex (regval, 4));
c906108c
SS
2252 write_register (float_argreg++, regval);
2253 if (!MIPS_EABI)
9ace0497
AC
2254 {
2255 if (mips_debug)
acdb74a0 2256 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2257 argreg, phex (regval, 4));
2258 write_register (argreg++, regval);
2259 }
c906108c
SS
2260
2261 /* Write the high word of the double to the odd register(s). */
c5aa993b 2262 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2263 if (mips_debug)
acdb74a0 2264 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2265 float_argreg, phex (regval, 4));
c906108c
SS
2266 write_register (float_argreg++, regval);
2267 if (!MIPS_EABI)
c5aa993b 2268 {
9ace0497 2269 if (mips_debug)
acdb74a0 2270 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2271 argreg, phex (regval, 4));
2272 write_register (argreg++, regval);
c906108c
SS
2273 }
2274
2275 }
2276 else
2277 {
2278 /* This is a floating point value that fits entirely
2279 in a single register. */
53a5351d
JM
2280 /* On 32 bit ABI's the float_argreg is further adjusted
2281 above to ensure that it is even register aligned. */
9ace0497
AC
2282 LONGEST regval = extract_unsigned_integer (val, len);
2283 if (mips_debug)
acdb74a0 2284 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2285 float_argreg, phex (regval, len));
c906108c
SS
2286 write_register (float_argreg++, regval);
2287 if (!MIPS_EABI)
c5aa993b 2288 {
53a5351d
JM
2289 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
2290 registers for each argument. The below is (my
2291 guess) to ensure that the corresponding integer
2292 register has reserved the same space. */
9ace0497 2293 if (mips_debug)
acdb74a0 2294 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 2295 argreg, phex (regval, len));
c906108c
SS
2296 write_register (argreg, regval);
2297 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
2298 }
2299 }
cce41527
AC
2300 /* Reserve space for the FP register. */
2301 if (MIPS_REGS_HAVE_HOME_P)
2302 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
c906108c
SS
2303 }
2304 else
2305 {
2306 /* Copy the argument to general registers or the stack in
2307 register-sized pieces. Large arguments are split between
2308 registers and stack. */
2309 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2310 are treated specially: Irix cc passes them in registers
2311 where gcc sometimes puts them on the stack. For maximum
2312 compatibility, we will put them in both places. */
c5aa993b 2313 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2314 (len % MIPS_SAVED_REGSIZE != 0));
f09ded24
AC
2315 /* Note: Floating-point values that didn't fit into an FP
2316 register are only written to memory. */
c906108c
SS
2317 while (len > 0)
2318 {
566f0f7a
AC
2319 /* Rememer if the argument was written to the stack. */
2320 int stack_used_p = 0;
7a292a7a 2321 int partial_len = len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 2322
acdb74a0
AC
2323 if (mips_debug)
2324 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2325 partial_len);
2326
566f0f7a 2327 /* Write this portion of the argument to the stack. */
f09ded24
AC
2328 if (argreg > MIPS_LAST_ARG_REGNUM
2329 || odd_sized_struct
2330 || fp_register_arg_p (typecode, arg_type))
c906108c 2331 {
c906108c
SS
2332 /* Should shorter than int integer values be
2333 promoted to int before being stored? */
c906108c 2334 int longword_offset = 0;
9ace0497 2335 CORE_ADDR addr;
566f0f7a 2336 stack_used_p = 1;
c906108c 2337 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
7a292a7a 2338 {
d929b26f 2339 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2340 (typecode == TYPE_CODE_INT ||
2341 typecode == TYPE_CODE_PTR ||
2342 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2343 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2344 else if ((typecode == TYPE_CODE_STRUCT ||
2345 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2346 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2347 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2348 }
c5aa993b 2349
9ace0497
AC
2350 if (mips_debug)
2351 {
acdb74a0 2352 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%lx",
9ace0497
AC
2353 (long) stack_offset);
2354 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%lx",
2355 (long) longword_offset);
2356 }
2357
2358 addr = sp + stack_offset + longword_offset;
2359
2360 if (mips_debug)
2361 {
2362 int i;
2363 fprintf_unfiltered (gdb_stdlog, " @0x%lx ", (long) addr);
2364 for (i = 0; i < partial_len; i++)
2365 {
2366 fprintf_unfiltered (gdb_stdlog, "%02x", val[i] & 0xff);
2367 }
2368 }
2369 write_memory (addr, val, partial_len);
c906108c
SS
2370 }
2371
f09ded24
AC
2372 /* Note!!! This is NOT an else clause. Odd sized
2373 structs may go thru BOTH paths. Floating point
2374 arguments will not. */
566f0f7a
AC
2375 /* Write this portion of the argument to a general
2376 purpose register. */
f09ded24
AC
2377 if (argreg <= MIPS_LAST_ARG_REGNUM
2378 && !fp_register_arg_p (typecode, arg_type))
c906108c 2379 {
9ace0497 2380 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c
SS
2381
2382 /* A non-floating-point argument being passed in a
2383 general register. If a struct or union, and if
2384 the remaining length is smaller than the register
2385 size, we have to adjust the register value on
2386 big endian targets.
2387
2388 It does not seem to be necessary to do the
2389 same for integral types.
2390
2391 Also don't do this adjustment on EABI and O64
2392 binaries. */
2393
2394 if (!MIPS_EABI
7a292a7a 2395 && MIPS_SAVED_REGSIZE < 8
c906108c 2396 && TARGET_BYTE_ORDER == BIG_ENDIAN
7a292a7a 2397 && partial_len < MIPS_SAVED_REGSIZE
c906108c
SS
2398 && (typecode == TYPE_CODE_STRUCT ||
2399 typecode == TYPE_CODE_UNION))
c5aa993b 2400 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
c906108c
SS
2401 TARGET_CHAR_BIT);
2402
9ace0497 2403 if (mips_debug)
acdb74a0 2404 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2405 argreg,
2406 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
2407 write_register (argreg, regval);
2408 argreg++;
c5aa993b 2409
c906108c
SS
2410 /* If this is the old ABI, prevent subsequent floating
2411 point arguments from being passed in floating point
2412 registers. */
2413 if (!MIPS_EABI)
2414 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
2415 }
c5aa993b 2416
c906108c
SS
2417 len -= partial_len;
2418 val += partial_len;
2419
566f0f7a
AC
2420 /* Compute the the offset into the stack at which we
2421 will copy the next parameter.
2422
2423 In older ABIs, the caller reserved space for
2424 registers that contained arguments. This was loosely
2425 refered to as their "home". Consequently, space is
2426 always allocated.
c906108c 2427
566f0f7a
AC
2428 In the new EABI (and the NABI32), the stack_offset
2429 only needs to be adjusted when it has been used.. */
c906108c 2430
566f0f7a 2431 if (MIPS_REGS_HAVE_HOME_P || stack_used_p)
d929b26f 2432 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
2433 }
2434 }
9ace0497
AC
2435 if (mips_debug)
2436 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2437 }
2438
0f71a2f6
JM
2439 /* Return adjusted stack pointer. */
2440 return sp;
2441}
2442
2443CORE_ADDR
acdb74a0 2444mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
0f71a2f6 2445{
c906108c
SS
2446 /* Set the return address register to point to the entry
2447 point of the program, where a breakpoint lies in wait. */
c5aa993b 2448 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
c906108c
SS
2449 return sp;
2450}
2451
2452static void
c5aa993b 2453mips_push_register (CORE_ADDR * sp, int regno)
c906108c
SS
2454{
2455 char buffer[MAX_REGISTER_RAW_SIZE];
7a292a7a
SS
2456 int regsize;
2457 int offset;
2458 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
2459 {
2460 regsize = MIPS_SAVED_REGSIZE;
2461 offset = (TARGET_BYTE_ORDER == BIG_ENDIAN
2462 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
2463 : 0);
2464 }
2465 else
2466 {
2467 regsize = REGISTER_RAW_SIZE (regno);
2468 offset = 0;
2469 }
c906108c
SS
2470 *sp -= regsize;
2471 read_register_gen (regno, buffer);
7a292a7a 2472 write_memory (*sp, buffer + offset, regsize);
c906108c
SS
2473}
2474
2475/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
2476#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
2477
2478void
acdb74a0 2479mips_push_dummy_frame (void)
c906108c
SS
2480{
2481 int ireg;
c5aa993b
JM
2482 struct linked_proc_info *link = (struct linked_proc_info *)
2483 xmalloc (sizeof (struct linked_proc_info));
c906108c 2484 mips_extra_func_info_t proc_desc = &link->info;
6c997a34 2485 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
c906108c
SS
2486 CORE_ADDR old_sp = sp;
2487 link->next = linked_proc_desc_table;
2488 linked_proc_desc_table = link;
2489
2490/* FIXME! are these correct ? */
c5aa993b 2491#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
c906108c
SS
2492#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
2493#define FLOAT_REG_SAVE_MASK MASK(0,19)
2494#define FLOAT_SINGLE_REG_SAVE_MASK \
2495 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
2496 /*
2497 * The registers we must save are all those not preserved across
2498 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
2499 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
2500 * and FP Control/Status registers.
2501 *
2502 *
2503 * Dummy frame layout:
2504 * (high memory)
c5aa993b
JM
2505 * Saved PC
2506 * Saved MMHI, MMLO, FPC_CSR
2507 * Saved R31
2508 * Saved R28
2509 * ...
2510 * Saved R1
c906108c
SS
2511 * Saved D18 (i.e. F19, F18)
2512 * ...
2513 * Saved D0 (i.e. F1, F0)
c5aa993b 2514 * Argument build area and stack arguments written via mips_push_arguments
c906108c
SS
2515 * (low memory)
2516 */
2517
2518 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
c5aa993b
JM
2519 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
2520 PROC_FRAME_OFFSET (proc_desc) = 0;
2521 PROC_FRAME_ADJUST (proc_desc) = 0;
c906108c
SS
2522 mips_push_register (&sp, PC_REGNUM);
2523 mips_push_register (&sp, HI_REGNUM);
2524 mips_push_register (&sp, LO_REGNUM);
2525 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
2526
2527 /* Save general CPU registers */
c5aa993b 2528 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
c906108c 2529 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
c5aa993b
JM
2530 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
2531 for (ireg = 32; --ireg >= 0;)
2532 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
2533 mips_push_register (&sp, ireg);
2534
2535 /* Save floating point registers starting with high order word */
c5aa993b 2536 PROC_FREG_MASK (proc_desc) =
c906108c
SS
2537 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
2538 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
2539 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
2540 from FP. */
c5aa993b
JM
2541 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
2542 for (ireg = 32; --ireg >= 0;)
2543 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
2544 mips_push_register (&sp, ireg + FP0_REGNUM);
2545
2546 /* Update the frame pointer for the call dummy and the stack pointer.
2547 Set the procedure's starting and ending addresses to point to the
2548 call dummy address at the entry point. */
2549 write_register (PUSH_FP_REGNUM, old_sp);
2550 write_register (SP_REGNUM, sp);
c5aa993b
JM
2551 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
2552 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
2553 SET_PROC_DESC_IS_DUMMY (proc_desc);
2554 PROC_PC_REG (proc_desc) = RA_REGNUM;
c906108c
SS
2555}
2556
2557void
acdb74a0 2558mips_pop_frame (void)
c906108c
SS
2559{
2560 register int regnum;
2561 struct frame_info *frame = get_current_frame ();
2562 CORE_ADDR new_sp = FRAME_FP (frame);
2563
cce74817 2564 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c 2565
c5aa993b 2566 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
c906108c
SS
2567 if (frame->saved_regs == NULL)
2568 mips_find_saved_regs (frame);
2569 for (regnum = 0; regnum < NUM_REGS; regnum++)
2570 {
2571 if (regnum != SP_REGNUM && regnum != PC_REGNUM
2572 && frame->saved_regs[regnum])
2573 write_register (regnum,
2574 read_memory_integer (frame->saved_regs[regnum],
c5aa993b 2575 MIPS_SAVED_REGSIZE));
c906108c
SS
2576 }
2577 write_register (SP_REGNUM, new_sp);
2578 flush_cached_frames ();
2579
c5aa993b 2580 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
2581 {
2582 struct linked_proc_info *pi_ptr, *prev_ptr;
2583
2584 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
2585 pi_ptr != NULL;
2586 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
2587 {
2588 if (&pi_ptr->info == proc_desc)
2589 break;
2590 }
2591
2592 if (pi_ptr == NULL)
2593 error ("Can't locate dummy extra frame info\n");
2594
2595 if (prev_ptr != NULL)
2596 prev_ptr->next = pi_ptr->next;
2597 else
2598 linked_proc_desc_table = pi_ptr->next;
2599
b8c9b27d 2600 xfree (pi_ptr);
c906108c
SS
2601
2602 write_register (HI_REGNUM,
c5aa993b 2603 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 2604 MIPS_SAVED_REGSIZE));
c906108c 2605 write_register (LO_REGNUM,
c5aa993b 2606 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 2607 MIPS_SAVED_REGSIZE));
c906108c
SS
2608 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
2609 write_register (FCRCS_REGNUM,
c5aa993b 2610 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 2611 MIPS_SAVED_REGSIZE));
c906108c
SS
2612 }
2613}
2614
2615static void
acdb74a0 2616mips_print_register (int regnum, int all)
c906108c
SS
2617{
2618 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2619
2620 /* Get the data in raw format. */
2621 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2622 {
2623 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
2624 return;
2625 }
2626
2627 /* If an even floating point register, also print as double. */
2628 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
c5aa993b
JM
2629 && !((regnum - FP0_REGNUM) & 1))
2630 if (REGISTER_RAW_SIZE (regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */
c906108c 2631 {
c5aa993b 2632 char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
c906108c
SS
2633
2634 read_relative_register_raw_bytes (regnum, dbuffer);
c5aa993b 2635 read_relative_register_raw_bytes (regnum + 1, dbuffer + MIPS_REGSIZE);
c906108c
SS
2636 REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
2637
c5aa993b 2638 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
c906108c
SS
2639 val_print (builtin_type_double, dbuffer, 0, 0,
2640 gdb_stdout, 0, 1, 0, Val_pretty_default);
2641 printf_filtered ("); ");
2642 }
2643 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
2644
2645 /* The problem with printing numeric register names (r26, etc.) is that
2646 the user can't use them on input. Probably the best solution is to
2647 fix it so that either the numeric or the funky (a2, etc.) names
2648 are accepted on input. */
2649 if (regnum < MIPS_NUMREGS)
2650 printf_filtered ("(r%d): ", regnum);
2651 else
2652 printf_filtered (": ");
2653
2654 /* If virtual format is floating, print it that way. */
2655 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2656 if (FP_REGISTER_DOUBLE)
c5aa993b 2657 { /* show 8-byte floats as float AND double: */
c906108c
SS
2658 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2659
2660 printf_filtered (" (float) ");
2661 val_print (builtin_type_float, raw_buffer + offset, 0, 0,
2662 gdb_stdout, 0, 1, 0, Val_pretty_default);
2663 printf_filtered (", (double) ");
2664 val_print (builtin_type_double, raw_buffer, 0, 0,
2665 gdb_stdout, 0, 1, 0, Val_pretty_default);
2666 }
2667 else
2668 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
2669 gdb_stdout, 0, 1, 0, Val_pretty_default);
2670 /* Else print as integer in hex. */
2671 else
ed9a39eb
JM
2672 {
2673 int offset;
2674
2675 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2676 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2677 else
2678 offset = 0;
2679
2680 print_scalar_formatted (raw_buffer + offset,
2681 REGISTER_VIRTUAL_TYPE (regnum),
2682 'x', 0, gdb_stdout);
2683 }
c906108c
SS
2684}
2685
2686/* Replacement for generic do_registers_info.
2687 Print regs in pretty columns. */
2688
2689static int
acdb74a0 2690do_fp_register_row (int regnum)
c5aa993b 2691{ /* do values for FP (float) regs */
c906108c
SS
2692 char *raw_buffer[2];
2693 char *dbl_buffer;
2694 /* use HI and LO to control the order of combining two flt regs */
2695 int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN);
2696 int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN);
2697 double doub, flt1, flt2; /* doubles extracted from raw hex data */
2698 int inv1, inv2, inv3;
c5aa993b 2699
c906108c
SS
2700 raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2701 raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2702 dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2703
2704 /* Get the data in raw format. */
2705 if (read_relative_register_raw_bytes (regnum, raw_buffer[HI]))
2706 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
c5aa993b 2707 if (REGISTER_RAW_SIZE (regnum) == 4)
c906108c
SS
2708 {
2709 /* 4-byte registers: we can fit two registers per row. */
2710 /* Also print every pair of 4-byte regs as an 8-byte double. */
2711 if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO]))
c5aa993b 2712 error ("can't read register %d (%s)",
c906108c
SS
2713 regnum + 1, REGISTER_NAME (regnum + 1));
2714
2715 /* copy the two floats into one double, and unpack both */
65edb64b 2716 memcpy (dbl_buffer, raw_buffer, 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c5aa993b
JM
2717 flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1);
2718 flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2);
2719 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
2720
1adad886
AC
2721 printf_filtered (" %-5s", REGISTER_NAME (regnum));
2722 if (inv1)
2723 printf_filtered (": <invalid float>");
2724 else
2725 printf_filtered ("%-17.9g", flt1);
2726
2727 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
2728 if (inv2)
2729 printf_filtered (": <invalid float>");
2730 else
2731 printf_filtered ("%-17.9g", flt2);
2732
2733 printf_filtered (" dbl: ");
2734 if (inv3)
2735 printf_filtered ("<invalid double>");
2736 else
2737 printf_filtered ("%-24.17g", doub);
2738 printf_filtered ("\n");
2739
c906108c 2740 /* may want to do hex display here (future enhancement) */
c5aa993b 2741 regnum += 2;
c906108c
SS
2742 }
2743 else
c5aa993b 2744 { /* eight byte registers: print each one as float AND as double. */
c906108c
SS
2745 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2746
65edb64b 2747 memcpy (dbl_buffer, raw_buffer[HI], 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c5aa993b 2748 flt1 = unpack_double (builtin_type_float,
c906108c 2749 &raw_buffer[HI][offset], &inv1);
c5aa993b 2750 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
c906108c 2751
1adad886
AC
2752 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
2753 if (inv1)
2754 printf_filtered ("<invalid float>");
2755 else
2756 printf_filtered ("flt: %-17.9g", flt1);
2757
2758 printf_filtered (" dbl: ");
2759 if (inv3)
2760 printf_filtered ("<invalid double>");
2761 else
2762 printf_filtered ("%-24.17g", doub);
2763
2764 printf_filtered ("\n");
c906108c
SS
2765 /* may want to do hex display here (future enhancement) */
2766 regnum++;
2767 }
2768 return regnum;
2769}
2770
2771/* Print a row's worth of GP (int) registers, with name labels above */
2772
2773static int
acdb74a0 2774do_gp_register_row (int regnum)
c906108c
SS
2775{
2776 /* do values for GP (int) regs */
2777 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2778 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
2779 int col, byte;
2780 int start_regnum = regnum;
2781 int numregs = NUM_REGS;
2782
2783
2784 /* For GP registers, we print a separate row of names above the vals */
2785 printf_filtered (" ");
2786 for (col = 0; col < ncols && regnum < numregs; regnum++)
2787 {
2788 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 2789 continue; /* unused register */
c906108c 2790 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b
JM
2791 break; /* end the row: reached FP register */
2792 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
c906108c
SS
2793 REGISTER_NAME (regnum));
2794 col++;
2795 }
c5aa993b 2796 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
c906108c
SS
2797 start_regnum); /* print the R0 to R31 names */
2798
2799 regnum = start_regnum; /* go back to start of row */
2800 /* now print the values in hex, 4 or 8 to the row */
2801 for (col = 0; col < ncols && regnum < numregs; regnum++)
2802 {
2803 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 2804 continue; /* unused register */
c906108c 2805 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 2806 break; /* end row: reached FP register */
c906108c
SS
2807 /* OK: get the data in raw format. */
2808 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2809 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2810 /* pad small registers */
43e526b9 2811 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
c906108c
SS
2812 printf_filtered (" ");
2813 /* Now print the register value in hex, endian order. */
2814 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
43e526b9
JM
2815 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2816 byte < REGISTER_RAW_SIZE (regnum);
2817 byte++)
c906108c
SS
2818 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2819 else
43e526b9
JM
2820 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
2821 byte >= 0;
2822 byte--)
c906108c
SS
2823 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2824 printf_filtered (" ");
2825 col++;
2826 }
c5aa993b 2827 if (col > 0) /* ie. if we actually printed anything... */
c906108c
SS
2828 printf_filtered ("\n");
2829
2830 return regnum;
2831}
2832
2833/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
2834
2835void
acdb74a0 2836mips_do_registers_info (int regnum, int fpregs)
c906108c 2837{
c5aa993b 2838 if (regnum != -1) /* do one specified register */
c906108c
SS
2839 {
2840 if (*(REGISTER_NAME (regnum)) == '\0')
2841 error ("Not a valid register for the current processor type");
2842
2843 mips_print_register (regnum, 0);
2844 printf_filtered ("\n");
2845 }
c5aa993b
JM
2846 else
2847 /* do all (or most) registers */
c906108c
SS
2848 {
2849 regnum = 0;
2850 while (regnum < NUM_REGS)
2851 {
c5aa993b
JM
2852 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2853 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
c906108c
SS
2854 regnum = do_fp_register_row (regnum); /* FP regs */
2855 else
2856 regnum += MIPS_NUMREGS; /* skip floating point regs */
2857 else
2858 regnum = do_gp_register_row (regnum); /* GP (int) regs */
2859 }
2860 }
2861}
2862
2863/* Return number of args passed to a frame. described by FIP.
2864 Can return -1, meaning no way to tell. */
2865
2866int
acdb74a0 2867mips_frame_num_args (struct frame_info *frame)
c906108c 2868{
c906108c
SS
2869 return -1;
2870}
2871
2872/* Is this a branch with a delay slot? */
2873
a14ed312 2874static int is_delayed (unsigned long);
c906108c
SS
2875
2876static int
acdb74a0 2877is_delayed (unsigned long insn)
c906108c
SS
2878{
2879 int i;
2880 for (i = 0; i < NUMOPCODES; ++i)
2881 if (mips_opcodes[i].pinfo != INSN_MACRO
2882 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
2883 break;
2884 return (i < NUMOPCODES
2885 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
2886 | INSN_COND_BRANCH_DELAY
2887 | INSN_COND_BRANCH_LIKELY)));
2888}
2889
2890int
acdb74a0 2891mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
2892{
2893 char buf[MIPS_INSTLEN];
2894
2895 /* There is no branch delay slot on MIPS16. */
2896 if (pc_is_mips16 (pc))
2897 return 0;
2898
2899 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
2900 /* If error reading memory, guess that it is not a delayed branch. */
2901 return 0;
c5aa993b 2902 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
2903}
2904
2905
2906/* Skip the PC past function prologue instructions (32-bit version).
2907 This is a helper function for mips_skip_prologue. */
2908
2909static CORE_ADDR
f7b9e9fc 2910mips32_skip_prologue (CORE_ADDR pc)
c906108c 2911{
c5aa993b
JM
2912 t_inst inst;
2913 CORE_ADDR end_pc;
2914 int seen_sp_adjust = 0;
2915 int load_immediate_bytes = 0;
2916
2917 /* Skip the typical prologue instructions. These are the stack adjustment
2918 instruction and the instructions that save registers on the stack
2919 or in the gcc frame. */
2920 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
2921 {
2922 unsigned long high_word;
c906108c 2923
c5aa993b
JM
2924 inst = mips_fetch_instruction (pc);
2925 high_word = (inst >> 16) & 0xffff;
c906108c 2926
c5aa993b
JM
2927 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
2928 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
2929 seen_sp_adjust = 1;
2930 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
2931 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
2932 seen_sp_adjust = 1;
2933 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
2934 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
2935 && (inst & 0x001F0000)) /* reg != $zero */
2936 continue;
2937
2938 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
2939 continue;
2940 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
2941 /* sx reg,n($s8) */
2942 continue; /* reg != $zero */
2943
2944 /* move $s8,$sp. With different versions of gas this will be either
2945 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
2946 Accept any one of these. */
2947 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2948 continue;
2949
2950 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
2951 continue;
2952 else if (high_word == 0x3c1c) /* lui $gp,n */
2953 continue;
2954 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
2955 continue;
2956 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
2957 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
2958 continue;
2959 /* The following instructions load $at or $t0 with an immediate
2960 value in preparation for a stack adjustment via
2961 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
2962 a local variable, so we accept them only before a stack adjustment
2963 instruction was seen. */
2964 else if (!seen_sp_adjust)
2965 {
2966 if (high_word == 0x3c01 || /* lui $at,n */
2967 high_word == 0x3c08) /* lui $t0,n */
2968 {
2969 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
2970 continue;
2971 }
2972 else if (high_word == 0x3421 || /* ori $at,$at,n */
2973 high_word == 0x3508 || /* ori $t0,$t0,n */
2974 high_word == 0x3401 || /* ori $at,$zero,n */
2975 high_word == 0x3408) /* ori $t0,$zero,n */
2976 {
2977 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
2978 continue;
2979 }
2980 else
2981 break;
2982 }
2983 else
2984 break;
c906108c
SS
2985 }
2986
c5aa993b
JM
2987 /* In a frameless function, we might have incorrectly
2988 skipped some load immediate instructions. Undo the skipping
2989 if the load immediate was not followed by a stack adjustment. */
2990 if (load_immediate_bytes && !seen_sp_adjust)
2991 pc -= load_immediate_bytes;
2992 return pc;
c906108c
SS
2993}
2994
2995/* Skip the PC past function prologue instructions (16-bit version).
2996 This is a helper function for mips_skip_prologue. */
2997
2998static CORE_ADDR
f7b9e9fc 2999mips16_skip_prologue (CORE_ADDR pc)
c906108c 3000{
c5aa993b
JM
3001 CORE_ADDR end_pc;
3002 int extend_bytes = 0;
3003 int prev_extend_bytes;
c906108c 3004
c5aa993b
JM
3005 /* Table of instructions likely to be found in a function prologue. */
3006 static struct
c906108c
SS
3007 {
3008 unsigned short inst;
3009 unsigned short mask;
c5aa993b
JM
3010 }
3011 table[] =
3012 {
c906108c 3013 {
c5aa993b
JM
3014 0x6300, 0xff00
3015 }
3016 , /* addiu $sp,offset */
3017 {
3018 0xfb00, 0xff00
3019 }
3020 , /* daddiu $sp,offset */
3021 {
3022 0xd000, 0xf800
3023 }
3024 , /* sw reg,n($sp) */
3025 {
3026 0xf900, 0xff00
3027 }
3028 , /* sd reg,n($sp) */
3029 {
3030 0x6200, 0xff00
3031 }
3032 , /* sw $ra,n($sp) */
3033 {
3034 0xfa00, 0xff00
3035 }
3036 , /* sd $ra,n($sp) */
3037 {
3038 0x673d, 0xffff
3039 }
3040 , /* move $s1,sp */
3041 {
3042 0xd980, 0xff80
3043 }
3044 , /* sw $a0-$a3,n($s1) */
3045 {
3046 0x6704, 0xff1c
3047 }
3048 , /* move reg,$a0-$a3 */
3049 {
3050 0xe809, 0xf81f
3051 }
3052 , /* entry pseudo-op */
3053 {
3054 0x0100, 0xff00
3055 }
3056 , /* addiu $s1,$sp,n */
3057 {
3058 0, 0
3059 } /* end of table marker */
3060 };
3061
3062 /* Skip the typical prologue instructions. These are the stack adjustment
3063 instruction and the instructions that save registers on the stack
3064 or in the gcc frame. */
3065 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
3066 {
3067 unsigned short inst;
3068 int i;
c906108c 3069
c5aa993b 3070 inst = mips_fetch_instruction (pc);
c906108c 3071
c5aa993b
JM
3072 /* Normally we ignore an extend instruction. However, if it is
3073 not followed by a valid prologue instruction, we must adjust
3074 the pc back over the extend so that it won't be considered
3075 part of the prologue. */
3076 if ((inst & 0xf800) == 0xf000) /* extend */
3077 {
3078 extend_bytes = MIPS16_INSTLEN;
3079 continue;
3080 }
3081 prev_extend_bytes = extend_bytes;
3082 extend_bytes = 0;
c906108c 3083
c5aa993b
JM
3084 /* Check for other valid prologue instructions besides extend. */
3085 for (i = 0; table[i].mask != 0; i++)
3086 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
3087 break;
3088 if (table[i].mask != 0) /* it was in table? */
3089 continue; /* ignore it */
3090 else
3091 /* non-prologue */
3092 {
3093 /* Return the current pc, adjusted backwards by 2 if
3094 the previous instruction was an extend. */
3095 return pc - prev_extend_bytes;
3096 }
c906108c
SS
3097 }
3098 return pc;
3099}
3100
3101/* To skip prologues, I use this predicate. Returns either PC itself
3102 if the code at PC does not look like a function prologue; otherwise
3103 returns an address that (if we're lucky) follows the prologue. If
3104 LENIENT, then we must skip everything which is involved in setting
3105 up the frame (it's OK to skip more, just so long as we don't skip
3106 anything which might clobber the registers which are being saved.
3107 We must skip more in the case where part of the prologue is in the
3108 delay slot of a non-prologue instruction). */
3109
3110CORE_ADDR
f7b9e9fc 3111mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
3112{
3113 /* See if we can determine the end of the prologue via the symbol table.
3114 If so, then return either PC, or the PC after the prologue, whichever
3115 is greater. */
3116
3117 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
3118
3119 if (post_prologue_pc != 0)
3120 return max (pc, post_prologue_pc);
3121
3122 /* Can't determine prologue from the symbol table, need to examine
3123 instructions. */
3124
3125 if (pc_is_mips16 (pc))
f7b9e9fc 3126 return mips16_skip_prologue (pc);
c906108c 3127 else
f7b9e9fc 3128 return mips32_skip_prologue (pc);
c906108c 3129}
c906108c 3130
7a292a7a
SS
3131/* Determine how a return value is stored within the MIPS register
3132 file, given the return type `valtype'. */
3133
3134struct return_value_word
3135{
3136 int len;
3137 int reg;
3138 int reg_offset;
3139 int buf_offset;
3140};
3141
7a292a7a 3142static void
acdb74a0
AC
3143return_value_location (struct type *valtype,
3144 struct return_value_word *hi,
3145 struct return_value_word *lo)
7a292a7a
SS
3146{
3147 int len = TYPE_LENGTH (valtype);
c5aa993b 3148
7a292a7a
SS
3149 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3150 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
3151 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
3152 {
3153 if (!FP_REGISTER_DOUBLE && len == 8)
3154 {
3155 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 3156 spread them across a floating-point register pair. */
7a292a7a
SS
3157 lo->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
3158 hi->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 0 : 4;
3159 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3160 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
3161 ? 4 : 0);
3162 hi->reg_offset = lo->reg_offset;
3163 lo->reg = FP0_REGNUM + 0;
3164 hi->reg = FP0_REGNUM + 1;
3165 lo->len = 4;
3166 hi->len = 4;
3167 }
3168 else
3169 {
3170 /* The floating point value fits in a single floating-point
c5aa993b 3171 register. */
7a292a7a
SS
3172 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3173 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
3174 && len == 4)
3175 ? 4 : 0);
3176 lo->reg = FP0_REGNUM;
3177 lo->len = len;
3178 lo->buf_offset = 0;
3179 hi->len = 0;
3180 hi->reg_offset = 0;
3181 hi->buf_offset = 0;
3182 hi->reg = 0;
3183 }
3184 }
3185 else
3186 {
3187 /* Locate a result possibly spread across two registers. */
3188 int regnum = 2;
3189 lo->reg = regnum + 0;
3190 hi->reg = regnum + 1;
3191 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3192 && len < MIPS_SAVED_REGSIZE)
3193 {
3194 /* "un-left-justify" the value in the low register */
3195 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
3196 lo->len = len;
3197 hi->reg_offset = 0;
3198 hi->len = 0;
3199 }
3200 else if (TARGET_BYTE_ORDER == BIG_ENDIAN
3201 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
3202 && len < MIPS_SAVED_REGSIZE * 2
3203 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3204 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3205 {
3206 /* "un-left-justify" the value spread across two registers. */
3207 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
3208 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
3209 hi->reg_offset = 0;
3210 hi->len = len - lo->len;
3211 }
3212 else
3213 {
3214 /* Only perform a partial copy of the second register. */
3215 lo->reg_offset = 0;
3216 hi->reg_offset = 0;
3217 if (len > MIPS_SAVED_REGSIZE)
3218 {
3219 lo->len = MIPS_SAVED_REGSIZE;
3220 hi->len = len - MIPS_SAVED_REGSIZE;
3221 }
3222 else
3223 {
3224 lo->len = len;
3225 hi->len = 0;
3226 }
3227 }
3228 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3229 && REGISTER_RAW_SIZE (regnum) == 8
3230 && MIPS_SAVED_REGSIZE == 4)
3231 {
3232 /* Account for the fact that only the least-signficant part
c5aa993b 3233 of the register is being used */
7a292a7a
SS
3234 lo->reg_offset += 4;
3235 hi->reg_offset += 4;
3236 }
3237 lo->buf_offset = 0;
3238 hi->buf_offset = lo->len;
3239 }
3240}
3241
3242/* Given a return value in `regbuf' with a type `valtype', extract and
3243 copy its value into `valbuf'. */
3244
c906108c 3245void
acdb74a0
AC
3246mips_extract_return_value (struct type *valtype,
3247 char regbuf[REGISTER_BYTES],
3248 char *valbuf)
c906108c 3249{
7a292a7a
SS
3250 struct return_value_word lo;
3251 struct return_value_word hi;
99567b1b 3252 return_value_location (valtype, &hi, &lo);
7a292a7a
SS
3253
3254 memcpy (valbuf + lo.buf_offset,
3255 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
3256 lo.len);
3257
3258 if (hi.len > 0)
3259 memcpy (valbuf + hi.buf_offset,
3260 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
3261 hi.len);
c906108c
SS
3262}
3263
7a292a7a
SS
3264/* Given a return value in `valbuf' with a type `valtype', write it's
3265 value into the appropriate register. */
3266
c906108c 3267void
acdb74a0 3268mips_store_return_value (struct type *valtype, char *valbuf)
c906108c 3269{
7a292a7a
SS
3270 char raw_buffer[MAX_REGISTER_RAW_SIZE];
3271 struct return_value_word lo;
3272 struct return_value_word hi;
99567b1b 3273 return_value_location (valtype, &hi, &lo);
7a292a7a
SS
3274
3275 memset (raw_buffer, 0, sizeof (raw_buffer));
3276 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
3277 write_register_bytes (REGISTER_BYTE (lo.reg),
3278 raw_buffer,
3279 REGISTER_RAW_SIZE (lo.reg));
c5aa993b 3280
7a292a7a
SS
3281 if (hi.len > 0)
3282 {
3283 memset (raw_buffer, 0, sizeof (raw_buffer));
3284 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
3285 write_register_bytes (REGISTER_BYTE (hi.reg),
3286 raw_buffer,
3287 REGISTER_RAW_SIZE (hi.reg));
3288 }
c906108c
SS
3289}
3290
3291/* Exported procedure: Is PC in the signal trampoline code */
3292
3293int
acdb74a0 3294in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
3295{
3296 if (sigtramp_address == 0)
3297 fixup_sigtramp ();
3298 return (pc >= sigtramp_address && pc < sigtramp_end);
3299}
3300
a5ea2558
AC
3301/* Root of all "set mips "/"show mips " commands. This will eventually be
3302 used for all MIPS-specific commands. */
3303
a5ea2558 3304static void
acdb74a0 3305show_mips_command (char *args, int from_tty)
a5ea2558
AC
3306{
3307 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
3308}
3309
a5ea2558 3310static void
acdb74a0 3311set_mips_command (char *args, int from_tty)
a5ea2558
AC
3312{
3313 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
3314 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
3315}
3316
c906108c
SS
3317/* Commands to show/set the MIPS FPU type. */
3318
c906108c 3319static void
acdb74a0 3320show_mipsfpu_command (char *args, int from_tty)
c906108c 3321{
c906108c
SS
3322 char *fpu;
3323 switch (MIPS_FPU_TYPE)
3324 {
3325 case MIPS_FPU_SINGLE:
3326 fpu = "single-precision";
3327 break;
3328 case MIPS_FPU_DOUBLE:
3329 fpu = "double-precision";
3330 break;
3331 case MIPS_FPU_NONE:
3332 fpu = "absent (none)";
3333 break;
93d56215
AC
3334 default:
3335 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
3336 }
3337 if (mips_fpu_type_auto)
3338 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
3339 fpu);
3340 else
3341 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
3342 fpu);
3343}
3344
3345
c906108c 3346static void
acdb74a0 3347set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
3348{
3349 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
3350 show_mipsfpu_command (args, from_tty);
3351}
3352
c906108c 3353static void
acdb74a0 3354set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
3355{
3356 mips_fpu_type = MIPS_FPU_SINGLE;
3357 mips_fpu_type_auto = 0;
c2d11a7d
JM
3358 if (GDB_MULTI_ARCH)
3359 {
3360 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
3361 }
c906108c
SS
3362}
3363
c906108c 3364static void
acdb74a0 3365set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
3366{
3367 mips_fpu_type = MIPS_FPU_DOUBLE;
3368 mips_fpu_type_auto = 0;
c2d11a7d
JM
3369 if (GDB_MULTI_ARCH)
3370 {
3371 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
3372 }
c906108c
SS
3373}
3374
c906108c 3375static void
acdb74a0 3376set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
3377{
3378 mips_fpu_type = MIPS_FPU_NONE;
3379 mips_fpu_type_auto = 0;
c2d11a7d
JM
3380 if (GDB_MULTI_ARCH)
3381 {
3382 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
3383 }
c906108c
SS
3384}
3385
c906108c 3386static void
acdb74a0 3387set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
3388{
3389 mips_fpu_type_auto = 1;
3390}
3391
3392/* Command to set the processor type. */
3393
3394void
acdb74a0 3395mips_set_processor_type_command (char *args, int from_tty)
c906108c
SS
3396{
3397 int i;
3398
3399 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
3400 {
3401 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
3402 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3403 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
3404
3405 /* Restore the value. */
4fcf66da 3406 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
3407
3408 return;
3409 }
c5aa993b 3410
c906108c
SS
3411 if (!mips_set_processor_type (tmp_mips_processor_type))
3412 {
3413 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
3414 /* Restore its value. */
4fcf66da 3415 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
3416 }
3417}
3418
3419static void
acdb74a0 3420mips_show_processor_type_command (char *args, int from_tty)
c906108c
SS
3421{
3422}
3423
3424/* Modify the actual processor type. */
3425
3426int
acdb74a0 3427mips_set_processor_type (char *str)
c906108c 3428{
1012bd0e 3429 int i;
c906108c
SS
3430
3431 if (str == NULL)
3432 return 0;
3433
3434 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3435 {
3436 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
3437 {
3438 mips_processor_type = str;
cce74817 3439 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 3440 return 1;
c906108c
SS
3441 /* FIXME tweak fpu flag too */
3442 }
3443 }
3444
3445 return 0;
3446}
3447
3448/* Attempt to identify the particular processor model by reading the
3449 processor id. */
3450
3451char *
acdb74a0 3452mips_read_processor_type (void)
c906108c
SS
3453{
3454 CORE_ADDR prid;
3455
3456 prid = read_register (PRID_REGNUM);
3457
3458 if ((prid & ~0xf) == 0x700)
c5aa993b 3459 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
3460
3461 return NULL;
3462}
3463
3464/* Just like reinit_frame_cache, but with the right arguments to be
3465 callable as an sfunc. */
3466
3467static void
acdb74a0
AC
3468reinit_frame_cache_sfunc (char *args, int from_tty,
3469 struct cmd_list_element *c)
c906108c
SS
3470{
3471 reinit_frame_cache ();
3472}
3473
3474int
acdb74a0 3475gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
3476{
3477 mips_extra_func_info_t proc_desc;
3478
3479 /* Search for the function containing this address. Set the low bit
3480 of the address when searching, in case we were given an even address
3481 that is the start of a 16-bit function. If we didn't do this,
3482 the search would fail because the symbol table says the function
3483 starts at an odd address, i.e. 1 byte past the given address. */
3484 memaddr = ADDR_BITS_REMOVE (memaddr);
3485 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
3486
3487 /* Make an attempt to determine if this is a 16-bit function. If
3488 the procedure descriptor exists and the address therein is odd,
3489 it's definitely a 16-bit function. Otherwise, we have to just
3490 guess that if the address passed in is odd, it's 16-bits. */
3491 if (proc_desc)
65c11066
MS
3492 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
3493 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c 3494 else
65c11066
MS
3495 info->mach = pc_is_mips16 (memaddr) ?
3496 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c
SS
3497
3498 /* Round down the instruction address to the appropriate boundary. */
65c11066 3499 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 3500
c906108c
SS
3501 /* Call the appropriate disassembler based on the target endian-ness. */
3502 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3503 return print_insn_big_mips (memaddr, info);
3504 else
3505 return print_insn_little_mips (memaddr, info);
3506}
3507
3508/* Old-style breakpoint macros.
3509 The IDT board uses an unusual breakpoint value, and sometimes gets
3510 confused when it sees the usual MIPS breakpoint instruction. */
3511
3512#define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
3513#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
3514#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
3515#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
3516#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
3517#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
3518#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
3519#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
3520
3521/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
3522 counter value to determine whether a 16- or 32-bit breakpoint should be
3523 used. It returns a pointer to a string of bytes that encode a breakpoint
3524 instruction, stores the length of the string to *lenptr, and adjusts pc
3525 (if necessary) to point to the actual memory location where the
3526 breakpoint should be inserted. */
3527
c5aa993b 3528unsigned char *
acdb74a0 3529mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c
SS
3530{
3531 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3532 {
3533 if (pc_is_mips16 (*pcptr))
3534 {
1012bd0e
EZ
3535 static unsigned char mips16_big_breakpoint[] =
3536 MIPS16_BIG_BREAKPOINT;
c906108c 3537 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 3538 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
3539 return mips16_big_breakpoint;
3540 }
3541 else
3542 {
1012bd0e
EZ
3543 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
3544 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
3545 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
c906108c 3546
c5aa993b 3547 *lenptr = sizeof (big_breakpoint);
c906108c
SS
3548
3549 if (strcmp (target_shortname, "mips") == 0)
3550 return idt_big_breakpoint;
3551 else if (strcmp (target_shortname, "ddb") == 0
3552 || strcmp (target_shortname, "pmon") == 0
3553 || strcmp (target_shortname, "lsi") == 0)
3554 return pmon_big_breakpoint;
3555 else
3556 return big_breakpoint;
3557 }
3558 }
3559 else
3560 {
3561 if (pc_is_mips16 (*pcptr))
3562 {
1012bd0e
EZ
3563 static unsigned char mips16_little_breakpoint[] =
3564 MIPS16_LITTLE_BREAKPOINT;
c906108c 3565 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 3566 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
3567 return mips16_little_breakpoint;
3568 }
3569 else
3570 {
1012bd0e
EZ
3571 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
3572 static unsigned char pmon_little_breakpoint[] =
3573 PMON_LITTLE_BREAKPOINT;
3574 static unsigned char idt_little_breakpoint[] =
3575 IDT_LITTLE_BREAKPOINT;
c906108c 3576
c5aa993b 3577 *lenptr = sizeof (little_breakpoint);
c906108c
SS
3578
3579 if (strcmp (target_shortname, "mips") == 0)
3580 return idt_little_breakpoint;
3581 else if (strcmp (target_shortname, "ddb") == 0
3582 || strcmp (target_shortname, "pmon") == 0
3583 || strcmp (target_shortname, "lsi") == 0)
3584 return pmon_little_breakpoint;
3585 else
3586 return little_breakpoint;
3587 }
3588 }
3589}
3590
3591/* If PC is in a mips16 call or return stub, return the address of the target
3592 PC, which is either the callee or the caller. There are several
3593 cases which must be handled:
3594
3595 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 3596 target PC is in $31 ($ra).
c906108c 3597 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 3598 and the target PC is in $2.
c906108c 3599 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
3600 before the jal instruction, this is effectively a call stub
3601 and the the target PC is in $2. Otherwise this is effectively
3602 a return stub and the target PC is in $18.
c906108c
SS
3603
3604 See the source code for the stubs in gcc/config/mips/mips16.S for
3605 gory details.
3606
3607 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 3608 */
c906108c
SS
3609
3610CORE_ADDR
acdb74a0 3611mips_skip_stub (CORE_ADDR pc)
c906108c
SS
3612{
3613 char *name;
3614 CORE_ADDR start_addr;
3615
3616 /* Find the starting address and name of the function containing the PC. */
3617 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
3618 return 0;
3619
3620 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3621 target PC is in $31 ($ra). */
3622 if (strcmp (name, "__mips16_ret_sf") == 0
3623 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 3624 return read_signed_register (RA_REGNUM);
c906108c
SS
3625
3626 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3627 {
3628 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3629 and the target PC is in $2. */
3630 if (name[19] >= '0' && name[19] <= '9')
6c997a34 3631 return read_signed_register (2);
c906108c
SS
3632
3633 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
3634 before the jal instruction, this is effectively a call stub
3635 and the the target PC is in $2. Otherwise this is effectively
3636 a return stub and the target PC is in $18. */
c906108c
SS
3637 else if (name[19] == 's' || name[19] == 'd')
3638 {
3639 if (pc == start_addr)
3640 {
3641 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
3642 stub. Such a stub for a function bar might have a name
3643 like __fn_stub_bar, and might look like this:
3644 mfc1 $4,$f13
3645 mfc1 $5,$f12
3646 mfc1 $6,$f15
3647 mfc1 $7,$f14
3648 la $1,bar (becomes a lui/addiu pair)
3649 jr $1
3650 So scan down to the lui/addi and extract the target
3651 address from those two instructions. */
c906108c 3652
6c997a34 3653 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
3654 t_inst inst;
3655 int i;
3656
3657 /* See if the name of the target function is __fn_stub_*. */
3658 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
3659 return target_pc;
3660 if (strncmp (name, "__fn_stub_", 10) != 0
3661 && strcmp (name, "etext") != 0
3662 && strcmp (name, "_etext") != 0)
3663 return target_pc;
3664
3665 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
3666 The limit on the search is arbitrarily set to 20
3667 instructions. FIXME. */
c906108c
SS
3668 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
3669 {
c5aa993b
JM
3670 inst = mips_fetch_instruction (target_pc);
3671 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
3672 pc = (inst << 16) & 0xffff0000; /* high word */
3673 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
3674 return pc | (inst & 0xffff); /* low word */
c906108c
SS
3675 }
3676
3677 /* Couldn't find the lui/addui pair, so return stub address. */
3678 return target_pc;
3679 }
3680 else
3681 /* This is the 'return' part of a call stub. The return
3682 address is in $r18. */
6c997a34 3683 return read_signed_register (18);
c906108c
SS
3684 }
3685 }
c5aa993b 3686 return 0; /* not a stub */
c906108c
SS
3687}
3688
3689
3690/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
3691 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
3692
3693int
acdb74a0 3694mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
3695{
3696 CORE_ADDR start_addr;
3697
3698 /* Find the starting address of the function containing the PC. If the
3699 caller didn't give us a name, look it up at the same time. */
3700 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
3701 return 0;
3702
3703 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3704 {
3705 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
3706 if (name[19] >= '0' && name[19] <= '9')
3707 return 1;
3708 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 3709 before the jal instruction, this is effectively a call stub. */
c906108c
SS
3710 else if (name[19] == 's' || name[19] == 'd')
3711 return pc == start_addr;
3712 }
3713
c5aa993b 3714 return 0; /* not a stub */
c906108c
SS
3715}
3716
3717
3718/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
3719 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
3720
3721int
acdb74a0 3722mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
3723{
3724 CORE_ADDR start_addr;
3725
3726 /* Find the starting address of the function containing the PC. */
3727 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
3728 return 0;
3729
3730 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
3731 if (strcmp (name, "__mips16_ret_sf") == 0
3732 || strcmp (name, "__mips16_ret_df") == 0)
3733 return 1;
3734
3735 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 3736 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
3737 if (strncmp (name, "__mips16_call_stub_", 19) == 0
3738 && (name[19] == 's' || name[19] == 'd')
3739 && pc != start_addr)
3740 return 1;
3741
c5aa993b 3742 return 0; /* not a stub */
c906108c
SS
3743}
3744
3745
3746/* Return non-zero if the PC is in a library helper function that should
3747 be ignored. This implements the IGNORE_HELPER_CALL macro. */
3748
3749int
acdb74a0 3750mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
3751{
3752 char *name;
3753
3754 /* Find the starting address and name of the function containing the PC. */
3755 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
3756 return 0;
3757
3758 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
3759 that we want to ignore. */
3760 return (strcmp (name, "__mips16_ret_sf") == 0
3761 || strcmp (name, "__mips16_ret_df") == 0);
3762}
3763
3764
3765/* Return a location where we can set a breakpoint that will be hit
3766 when an inferior function call returns. This is normally the
3767 program's entry point. Executables that don't have an entry
3768 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
3769 whose address is the location where the breakpoint should be placed. */
3770
3771CORE_ADDR
acdb74a0 3772mips_call_dummy_address (void)
c906108c
SS
3773{
3774 struct minimal_symbol *sym;
3775
3776 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
3777 if (sym)
3778 return SYMBOL_VALUE_ADDRESS (sym);
3779 else
3780 return entry_point_address ();
3781}
3782
3783
9dcb560c 3784/* If the current gcc for this target does not produce correct debugging
b9a8e3bf
JB
3785 information for float parameters, both prototyped and unprototyped, then
3786 define this macro. This forces gdb to always assume that floats are
3787 passed as doubles and then converted in the callee.
3788
3789 For the mips chip, it appears that the debug info marks the parameters as
3790 floats regardless of whether the function is prototyped, but the actual
3791 values are passed as doubles for the non-prototyped case and floats for
3792 the prototyped case. Thus we choose to make the non-prototyped case work
3793 for C and break the prototyped case, since the non-prototyped case is
3794 probably much more common. (FIXME). */
3795
3796static int
3797mips_coerce_float_to_double (struct type *formal, struct type *actual)
3798{
3799 return current_language->la_language == language_c;
3800}
3801
47a8d4ba
AC
3802/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
3803 the register stored on the stack (32) is different to its real raw
3804 size (64). The below ensures that registers are fetched from the
3805 stack using their ABI size and then stored into the RAW_BUFFER
3806 using their raw size.
3807
3808 The alternative to adding this function would be to add an ABI
3809 macro - REGISTER_STACK_SIZE(). */
3810
3811static void
acdb74a0
AC
3812mips_get_saved_register (char *raw_buffer,
3813 int *optimized,
3814 CORE_ADDR *addrp,
3815 struct frame_info *frame,
3816 int regnum,
3817 enum lval_type *lval)
47a8d4ba
AC
3818{
3819 CORE_ADDR addr;
3820
3821 if (!target_has_registers)
3822 error ("No registers.");
3823
3824 /* Normal systems don't optimize out things with register numbers. */
3825 if (optimized != NULL)
3826 *optimized = 0;
3827 addr = find_saved_register (frame, regnum);
3828 if (addr != 0)
3829 {
3830 if (lval != NULL)
3831 *lval = lval_memory;
3832 if (regnum == SP_REGNUM)
3833 {
3834 if (raw_buffer != NULL)
3835 {
3836 /* Put it back in target format. */
3837 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
3838 (LONGEST) addr);
3839 }
3840 if (addrp != NULL)
3841 *addrp = 0;
3842 return;
3843 }
3844 if (raw_buffer != NULL)
3845 {
3846 LONGEST val;
3847 if (regnum < 32)
3848 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
3849 saved. */
3850 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
3851 else
3852 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
3853 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
3854 }
3855 }
3856 else
3857 {
3858 if (lval != NULL)
3859 *lval = lval_register;
3860 addr = REGISTER_BYTE (regnum);
3861 if (raw_buffer != NULL)
3862 read_register_gen (regnum, raw_buffer);
3863 }
3864 if (addrp != NULL)
3865 *addrp = addr;
3866}
2acceee2 3867
f7b9e9fc
AC
3868/* Immediately after a function call, return the saved pc.
3869 Can't always go through the frames for this because on some machines
3870 the new frame is not set up until the new function executes
3871 some instructions. */
3872
3873static CORE_ADDR
3874mips_saved_pc_after_call (struct frame_info *frame)
3875{
6c997a34 3876 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
3877}
3878
3879
88c72b7d
AC
3880/* Convert a dbx stab register number (from `r' declaration) to a gdb
3881 REGNUM */
3882
3883static int
3884mips_stab_reg_to_regnum (int num)
3885{
3886 if (num < 32)
3887 return num;
3888 else
3889 return num + FP0_REGNUM - 38;
3890}
3891
3892/* Convert a ecoff register number to a gdb REGNUM */
3893
3894static int
3895mips_ecoff_reg_to_regnum (int num)
3896{
3897 if (num < 32)
3898 return num;
3899 else
3900 return num + FP0_REGNUM - 32;
3901}
3902
c2d11a7d 3903static struct gdbarch *
acdb74a0
AC
3904mips_gdbarch_init (struct gdbarch_info info,
3905 struct gdbarch_list *arches)
c2d11a7d
JM
3906{
3907 static LONGEST mips_call_dummy_words[] =
3908 {0};
3909 struct gdbarch *gdbarch;
3910 struct gdbarch_tdep *tdep;
3911 int elf_flags;
0dadbba0 3912 enum mips_abi mips_abi;
c2d11a7d 3913
1d06468c
EZ
3914 /* Reset the disassembly info, in case it was set to something
3915 non-default. */
3916 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
3917 tm_print_insn_info.arch = bfd_arch_unknown;
3918 tm_print_insn_info.mach = 0;
3919
c2d11a7d
JM
3920 /* Extract the elf_flags if available */
3921 if (info.abfd != NULL
3922 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
3923 elf_flags = elf_elfheader (info.abfd)->e_flags;
3924 else
3925 elf_flags = 0;
3926
0dadbba0
AC
3927 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
3928 switch ((elf_flags & EF_MIPS_ABI))
3929 {
3930 case E_MIPS_ABI_O32:
3931 mips_abi = MIPS_ABI_O32;
3932 break;
3933 case E_MIPS_ABI_O64:
3934 mips_abi = MIPS_ABI_O64;
3935 break;
3936 case E_MIPS_ABI_EABI32:
3937 mips_abi = MIPS_ABI_EABI32;
3938 break;
3939 case E_MIPS_ABI_EABI64:
4a7f7ba8 3940 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
3941 break;
3942 default:
acdb74a0
AC
3943 if ((elf_flags & EF_MIPS_ABI2))
3944 mips_abi = MIPS_ABI_N32;
3945 else
3946 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
3947 break;
3948 }
acdb74a0 3949
bf64bfd6
AC
3950 /* Try the architecture for any hint of the corect ABI */
3951 if (mips_abi == MIPS_ABI_UNKNOWN
3952 && info.bfd_arch_info != NULL
3953 && info.bfd_arch_info->arch == bfd_arch_mips)
3954 {
3955 switch (info.bfd_arch_info->mach)
3956 {
3957 case bfd_mach_mips3900:
3958 mips_abi = MIPS_ABI_EABI32;
3959 break;
3960 case bfd_mach_mips4100:
3961 case bfd_mach_mips5000:
3962 mips_abi = MIPS_ABI_EABI64;
3963 break;
1d06468c
EZ
3964 case bfd_mach_mips8000:
3965 case bfd_mach_mips10000:
3966 mips_abi = MIPS_ABI_N32;
3967 break;
bf64bfd6
AC
3968 }
3969 }
0dadbba0
AC
3970#ifdef MIPS_DEFAULT_ABI
3971 if (mips_abi == MIPS_ABI_UNKNOWN)
3972 mips_abi = MIPS_DEFAULT_ABI;
3973#endif
4b9b3959
AC
3974
3975 if (gdbarch_debug)
3976 {
3977 fprintf_unfiltered (gdb_stdlog,
9ace0497 3978 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 3979 elf_flags);
4b9b3959
AC
3980 fprintf_unfiltered (gdb_stdlog,
3981 "mips_gdbarch_init: mips_abi = %d\n",
3982 mips_abi);
3983 }
0dadbba0 3984
c2d11a7d
JM
3985 /* try to find a pre-existing architecture */
3986 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3987 arches != NULL;
3988 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3989 {
3990 /* MIPS needs to be pedantic about which ABI the object is
3991 using. */
9103eae0 3992 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 3993 continue;
9103eae0 3994 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 3995 continue;
c2d11a7d
JM
3996 return arches->gdbarch;
3997 }
3998
3999 /* Need a new architecture. Fill in a target specific vector. */
4000 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4001 gdbarch = gdbarch_alloc (&info, tdep);
4002 tdep->elf_flags = elf_flags;
4003
4004 /* Initially set everything according to the ABI. */
4005 set_gdbarch_short_bit (gdbarch, 16);
4006 set_gdbarch_int_bit (gdbarch, 32);
4007 set_gdbarch_float_bit (gdbarch, 32);
4008 set_gdbarch_double_bit (gdbarch, 64);
4009 set_gdbarch_long_double_bit (gdbarch, 64);
0dadbba0 4010 tdep->mips_abi = mips_abi;
1d06468c 4011
0dadbba0 4012 switch (mips_abi)
c2d11a7d 4013 {
0dadbba0 4014 case MIPS_ABI_O32:
acdb74a0 4015 tdep->mips_abi_string = "o32";
a5ea2558 4016 tdep->mips_default_saved_regsize = 4;
0dadbba0 4017 tdep->mips_default_stack_argsize = 4;
c2d11a7d 4018 tdep->mips_fp_register_double = 0;
acdb74a0
AC
4019 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
4020 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
0dadbba0 4021 tdep->mips_regs_have_home_p = 1;
5213ab06 4022 tdep->gdb_target_is_mips64 = 0;
4014092b 4023 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4024 set_gdbarch_long_bit (gdbarch, 32);
4025 set_gdbarch_ptr_bit (gdbarch, 32);
4026 set_gdbarch_long_long_bit (gdbarch, 64);
4027 break;
0dadbba0 4028 case MIPS_ABI_O64:
acdb74a0 4029 tdep->mips_abi_string = "o64";
a5ea2558 4030 tdep->mips_default_saved_regsize = 8;
0dadbba0 4031 tdep->mips_default_stack_argsize = 8;
c2d11a7d 4032 tdep->mips_fp_register_double = 1;
acdb74a0
AC
4033 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
4034 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
0dadbba0 4035 tdep->mips_regs_have_home_p = 1;
5213ab06 4036 tdep->gdb_target_is_mips64 = 1;
4014092b 4037 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4038 set_gdbarch_long_bit (gdbarch, 32);
4039 set_gdbarch_ptr_bit (gdbarch, 32);
4040 set_gdbarch_long_long_bit (gdbarch, 64);
4041 break;
0dadbba0 4042 case MIPS_ABI_EABI32:
acdb74a0 4043 tdep->mips_abi_string = "eabi32";
a5ea2558 4044 tdep->mips_default_saved_regsize = 4;
0dadbba0 4045 tdep->mips_default_stack_argsize = 4;
c2d11a7d 4046 tdep->mips_fp_register_double = 0;
acdb74a0
AC
4047 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4048 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
0dadbba0 4049 tdep->mips_regs_have_home_p = 0;
5213ab06 4050 tdep->gdb_target_is_mips64 = 0;
4014092b 4051 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4052 set_gdbarch_long_bit (gdbarch, 32);
4053 set_gdbarch_ptr_bit (gdbarch, 32);
4054 set_gdbarch_long_long_bit (gdbarch, 64);
4055 break;
0dadbba0 4056 case MIPS_ABI_EABI64:
3259a172 4057 tdep->mips_abi_string = "eabi64";
a5ea2558 4058 tdep->mips_default_saved_regsize = 8;
0dadbba0 4059 tdep->mips_default_stack_argsize = 8;
c2d11a7d 4060 tdep->mips_fp_register_double = 1;
acdb74a0
AC
4061 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4062 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
0dadbba0 4063 tdep->mips_regs_have_home_p = 0;
5213ab06 4064 tdep->gdb_target_is_mips64 = 1;
4014092b 4065 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4066 set_gdbarch_long_bit (gdbarch, 64);
4067 set_gdbarch_ptr_bit (gdbarch, 64);
4068 set_gdbarch_long_long_bit (gdbarch, 64);
4069 break;
0dadbba0 4070 case MIPS_ABI_N32:
acdb74a0 4071 tdep->mips_abi_string = "n32";
0dadbba0
AC
4072 tdep->mips_default_saved_regsize = 4;
4073 tdep->mips_default_stack_argsize = 8;
4074 tdep->mips_fp_register_double = 1;
acdb74a0
AC
4075 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4076 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
0dadbba0 4077 tdep->mips_regs_have_home_p = 0;
5213ab06 4078 tdep->gdb_target_is_mips64 = 0;
4014092b 4079 tdep->default_mask_address_p = 0;
0dadbba0
AC
4080 set_gdbarch_long_bit (gdbarch, 32);
4081 set_gdbarch_ptr_bit (gdbarch, 32);
4082 set_gdbarch_long_long_bit (gdbarch, 64);
1d06468c
EZ
4083
4084 /* Set up the disassembler info, so that we get the right
4085 register names from libopcodes. */
4086 tm_print_insn_info.flavour = bfd_target_elf_flavour;
4087 tm_print_insn_info.arch = bfd_arch_mips;
4088 if (info.bfd_arch_info != NULL
4089 && info.bfd_arch_info->arch == bfd_arch_mips
4090 && info.bfd_arch_info->mach)
4091 tm_print_insn_info.mach = info.bfd_arch_info->mach;
4092 else
4093 tm_print_insn_info.mach = bfd_mach_mips8000;
0dadbba0 4094 break;
c2d11a7d 4095 default:
acdb74a0 4096 tdep->mips_abi_string = "default";
a5ea2558 4097 tdep->mips_default_saved_regsize = MIPS_REGSIZE;
0dadbba0 4098 tdep->mips_default_stack_argsize = MIPS_REGSIZE;
c2d11a7d 4099 tdep->mips_fp_register_double = (REGISTER_VIRTUAL_SIZE (FP0_REGNUM) == 8);
acdb74a0
AC
4100 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4101 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
0dadbba0 4102 tdep->mips_regs_have_home_p = 1;
5213ab06 4103 tdep->gdb_target_is_mips64 = 0;
4014092b 4104 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4105 set_gdbarch_long_bit (gdbarch, 32);
4106 set_gdbarch_ptr_bit (gdbarch, 32);
4107 set_gdbarch_long_long_bit (gdbarch, 64);
4108 break;
4109 }
4110
a5ea2558
AC
4111 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4112 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4113 comment:
4114
4115 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4116 flag in object files because to do so would make it impossible to
4117 link with libraries compiled without "-gp32". This is
4118 unnecessarily restrictive.
4119
4120 We could solve this problem by adding "-gp32" multilibs to gcc,
4121 but to set this flag before gcc is built with such multilibs will
4122 break too many systems.''
4123
4124 But even more unhelpfully, the default linker output target for
4125 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
4126 for 64-bit programs - you need to change the ABI to change this,
4127 and not all gcc targets support that currently. Therefore using
4128 this flag to detect 32-bit mode would do the wrong thing given
4129 the current gcc - it would make GDB treat these 64-bit programs
4130 as 32-bit programs by default. */
4131
c2d11a7d
JM
4132 /* enable/disable the MIPS FPU */
4133 if (!mips_fpu_type_auto)
4134 tdep->mips_fpu_type = mips_fpu_type;
4135 else if (info.bfd_arch_info != NULL
4136 && info.bfd_arch_info->arch == bfd_arch_mips)
4137 switch (info.bfd_arch_info->mach)
4138 {
b0069a17 4139 case bfd_mach_mips3900:
c2d11a7d 4140 case bfd_mach_mips4100:
ed9a39eb 4141 case bfd_mach_mips4111:
c2d11a7d
JM
4142 tdep->mips_fpu_type = MIPS_FPU_NONE;
4143 break;
bf64bfd6
AC
4144 case bfd_mach_mips4650:
4145 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
4146 break;
c2d11a7d
JM
4147 default:
4148 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4149 break;
4150 }
4151 else
4152 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4153
4154 /* MIPS version of register names. NOTE: At present the MIPS
4155 register name management is part way between the old -
4156 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
4157 Further work on it is required. */
4158 set_gdbarch_register_name (gdbarch, mips_register_name);
6c997a34 4159 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d
JM
4160 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
4161 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
4162 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
4163 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
4164 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
4165
875e1767
AC
4166 /* Add/remove bits from an address. The MIPS needs be careful to
4167 ensure that all 32 bit addresses are sign extended to 64 bits. */
4168 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
4169
10312cc4
AC
4170 /* There's a mess in stack frame creation. See comments in
4171 blockframe.c near reference to INIT_FRAME_PC_FIRST. */
4172 set_gdbarch_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
7824d2f2 4173 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
10312cc4 4174
88c72b7d
AC
4175 /* Map debug register numbers onto internal register numbers. */
4176 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
4177 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
4178
c2d11a7d
JM
4179 /* Initialize a frame */
4180 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
4181
4182 /* MIPS version of CALL_DUMMY */
4183
4184 set_gdbarch_call_dummy_p (gdbarch, 1);
4185 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
4186 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
4187 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
4188 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
4189 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
4190 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
4191 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
4192 set_gdbarch_call_dummy_length (gdbarch, 0);
4193 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
4194 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
4195 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
4196 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
4197 set_gdbarch_push_arguments (gdbarch, mips_push_arguments);
4198 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
b9a8e3bf 4199 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
c2d11a7d 4200
c4093a6a 4201 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
47a8d4ba 4202 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 4203
f7b9e9fc
AC
4204 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4205 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
4206 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4207 set_gdbarch_ieee_float (gdbarch, 1);
4208
4209 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
4210 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
4211
4b9b3959
AC
4212 return gdbarch;
4213}
4214
4215static void
4216mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
4217{
4218 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4219 if (tdep != NULL)
c2d11a7d 4220 {
acdb74a0
AC
4221 int ef_mips_arch;
4222 int ef_mips_32bitmode;
4223 /* determine the ISA */
4224 switch (tdep->elf_flags & EF_MIPS_ARCH)
4225 {
4226 case E_MIPS_ARCH_1:
4227 ef_mips_arch = 1;
4228 break;
4229 case E_MIPS_ARCH_2:
4230 ef_mips_arch = 2;
4231 break;
4232 case E_MIPS_ARCH_3:
4233 ef_mips_arch = 3;
4234 break;
4235 case E_MIPS_ARCH_4:
93d56215 4236 ef_mips_arch = 4;
acdb74a0
AC
4237 break;
4238 default:
93d56215 4239 ef_mips_arch = 0;
acdb74a0
AC
4240 break;
4241 }
4242 /* determine the size of a pointer */
4243 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
4244 fprintf_unfiltered (file,
4245 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 4246 tdep->elf_flags);
4b9b3959 4247 fprintf_unfiltered (file,
acdb74a0
AC
4248 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
4249 ef_mips_32bitmode);
4250 fprintf_unfiltered (file,
4251 "mips_dump_tdep: ef_mips_arch = %d\n",
4252 ef_mips_arch);
4253 fprintf_unfiltered (file,
4254 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
4255 tdep->mips_abi,
4256 tdep->mips_abi_string);
4014092b
AC
4257 fprintf_unfiltered (file,
4258 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
4259 mips_mask_address_p (),
4260 tdep->default_mask_address_p);
c2d11a7d 4261 }
4b9b3959
AC
4262 fprintf_unfiltered (file,
4263 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4264 FP_REGISTER_DOUBLE);
4265 fprintf_unfiltered (file,
4266 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
4267 MIPS_DEFAULT_FPU_TYPE,
4268 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
4269 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4270 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4271 : "???"));
4272 fprintf_unfiltered (file,
4273 "mips_dump_tdep: MIPS_EABI = %d\n",
4274 MIPS_EABI);
4275 fprintf_unfiltered (file,
acdb74a0
AC
4276 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
4277 MIPS_LAST_FP_ARG_REGNUM,
4278 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4b9b3959
AC
4279 fprintf_unfiltered (file,
4280 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
4281 MIPS_FPU_TYPE,
4282 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
4283 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4284 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4285 : "???"));
4286 fprintf_unfiltered (file,
4287 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
4288 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
4289 fprintf_unfiltered (file,
4290 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4291 FP_REGISTER_DOUBLE);
4292 fprintf_unfiltered (file,
4293 "mips_dump_tdep: MIPS_REGS_HAVE_HOME_P = %d\n",
4294 MIPS_REGS_HAVE_HOME_P);
4295 fprintf_unfiltered (file,
4296 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
4297 MIPS_DEFAULT_STACK_ARGSIZE);
4298 fprintf_unfiltered (file,
4299 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
4300 MIPS_STACK_ARGSIZE);
4301 fprintf_unfiltered (file,
4302 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
4303 MIPS_REGSIZE);
2475bac3
AC
4304 fprintf_unfiltered (file,
4305 "mips_dump_tdep: A0_REGNUM = %d\n",
4306 A0_REGNUM);
4307 fprintf_unfiltered (file,
4308 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
4309 XSTRING (ADDR_BITS_REMOVE(ADDR)));
4310 fprintf_unfiltered (file,
4311 "mips_dump_tdep: ATTACH_DETACH # %s\n",
4312 XSTRING (ATTACH_DETACH));
4313 fprintf_unfiltered (file,
4314 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
4315 BADVADDR_REGNUM);
4316 fprintf_unfiltered (file,
4317 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
4318 fprintf_unfiltered (file,
4319 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
4320 CAUSE_REGNUM);
4321 fprintf_unfiltered (file,
4322 "mips_dump_tdep: CPLUS_MARKER = %c\n",
4323 CPLUS_MARKER);
4324 fprintf_unfiltered (file,
4325 "mips_dump_tdep: DEFAULT_MIPS_TYPE = %s\n",
4326 DEFAULT_MIPS_TYPE);
4327 fprintf_unfiltered (file,
4328 "mips_dump_tdep: DO_REGISTERS_INFO # %s\n",
4329 XSTRING (DO_REGISTERS_INFO));
4330 fprintf_unfiltered (file,
4331 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
4332 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
4333 fprintf_unfiltered (file,
4334 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
4335 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
4336 fprintf_unfiltered (file,
4337 "mips_dump_tdep: ELF_MAKE_MSYMBOL_SPECIAL # %s\n",
4338 XSTRING (ELF_MAKE_MSYMBOL_SPECIAL (SYM, MSYM)));
4339 fprintf_unfiltered (file,
4340 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
4341 FCRCS_REGNUM);
4342 fprintf_unfiltered (file,
4343 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
4344 FCRIR_REGNUM);
4345 fprintf_unfiltered (file,
4346 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
4347 FIRST_EMBED_REGNUM);
4348 fprintf_unfiltered (file,
4349 "mips_dump_tdep: FPA0_REGNUM = %d\n",
4350 FPA0_REGNUM);
4351 fprintf_unfiltered (file,
4352 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
4353 GDB_TARGET_IS_MIPS64);
4354 fprintf_unfiltered (file,
4355 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
4356 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
4357 fprintf_unfiltered (file,
4358 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
4359 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
4360 fprintf_unfiltered (file,
4361 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
4362 GEN_REG_SAVE_MASK);
4363 fprintf_unfiltered (file,
4364 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
4365 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
4366 fprintf_unfiltered (file,
4367 "mips_dump_tdep: HI_REGNUM = %d\n",
4368 HI_REGNUM);
4369 fprintf_unfiltered (file,
4370 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
4371 fprintf_unfiltered (file,
4372 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
4373 fprintf_unfiltered (file,
4374 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
4375 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
4376 fprintf_unfiltered (file,
4377 "mips_dump_tdep: IN_SIGTRAMP # %s\n",
4378 XSTRING (IN_SIGTRAMP (PC, NAME)));
4379 fprintf_unfiltered (file,
4380 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
4381 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
4382 fprintf_unfiltered (file,
4383 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
4384 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
4385 fprintf_unfiltered (file,
4386 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
4387 fprintf_unfiltered (file,
4388 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
4389 LAST_EMBED_REGNUM);
4390 fprintf_unfiltered (file,
4391 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
4392 fprintf_unfiltered (file,
4393 "mips_dump_tdep: LO_REGNUM = %d\n",
4394 LO_REGNUM);
4395#ifdef MACHINE_CPROC_FP_OFFSET
4396 fprintf_unfiltered (file,
4397 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
4398 MACHINE_CPROC_FP_OFFSET);
4399#endif
4400#ifdef MACHINE_CPROC_PC_OFFSET
4401 fprintf_unfiltered (file,
4402 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
4403 MACHINE_CPROC_PC_OFFSET);
4404#endif
4405#ifdef MACHINE_CPROC_SP_OFFSET
4406 fprintf_unfiltered (file,
4407 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
4408 MACHINE_CPROC_SP_OFFSET);
4409#endif
4410 fprintf_unfiltered (file,
4411 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
4412 fprintf_unfiltered (file,
4413 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
4414 fprintf_unfiltered (file,
4415 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
4416 MIPS16_INSTLEN);
4417 fprintf_unfiltered (file,
4418 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
4419 fprintf_unfiltered (file,
4420 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
4421 fprintf_unfiltered (file,
4422 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
4423 fprintf_unfiltered (file,
4424 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
4425 MIPS_INSTLEN);
4426 fprintf_unfiltered (file,
acdb74a0
AC
4427 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
4428 MIPS_LAST_ARG_REGNUM,
4429 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
4430 fprintf_unfiltered (file,
4431 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
4432 MIPS_NUMREGS);
4433 fprintf_unfiltered (file,
4434 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
4435 fprintf_unfiltered (file,
4436 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
4437 MIPS_SAVED_REGSIZE);
4438 fprintf_unfiltered (file,
4439 "mips_dump_tdep: MSYMBOL_IS_SPECIAL = function?\n");
4440 fprintf_unfiltered (file,
4441 "mips_dump_tdep: MSYMBOL_SIZE # %s\n",
4442 XSTRING (MSYMBOL_SIZE (MSYM)));
4443 fprintf_unfiltered (file,
4444 "mips_dump_tdep: OP_LDFPR = used?\n");
4445 fprintf_unfiltered (file,
4446 "mips_dump_tdep: OP_LDGPR = used?\n");
4447 fprintf_unfiltered (file,
4448 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
4449 fprintf_unfiltered (file,
4450 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
4451 fprintf_unfiltered (file,
4452 "mips_dump_tdep: PRID_REGNUM = %d\n",
4453 PRID_REGNUM);
4454 fprintf_unfiltered (file,
4455 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
4456 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
4457 fprintf_unfiltered (file,
4458 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
4459 fprintf_unfiltered (file,
4460 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
4461 fprintf_unfiltered (file,
4462 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
4463 fprintf_unfiltered (file,
4464 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
4465 fprintf_unfiltered (file,
4466 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
4467 fprintf_unfiltered (file,
4468 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
4469 fprintf_unfiltered (file,
4470 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
4471 fprintf_unfiltered (file,
4472 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
4473 fprintf_unfiltered (file,
4474 "mips_dump_tdep: PROC_PC_REG = function?\n");
4475 fprintf_unfiltered (file,
4476 "mips_dump_tdep: PROC_REG_MASK = function?\n");
4477 fprintf_unfiltered (file,
4478 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
4479 fprintf_unfiltered (file,
4480 "mips_dump_tdep: PROC_SYMBOL = function?\n");
4481 fprintf_unfiltered (file,
4482 "mips_dump_tdep: PS_REGNUM = %d\n",
4483 PS_REGNUM);
4484 fprintf_unfiltered (file,
4485 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
4486 PUSH_FP_REGNUM);
4487 fprintf_unfiltered (file,
4488 "mips_dump_tdep: RA_REGNUM = %d\n",
4489 RA_REGNUM);
4490 fprintf_unfiltered (file,
4491 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
4492 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4493 fprintf_unfiltered (file,
4494 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
4495 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4496 fprintf_unfiltered (file,
4497 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
4498 fprintf_unfiltered (file,
4499 "mips_dump_tdep: ROUND_DOWN = function?\n");
4500 fprintf_unfiltered (file,
4501 "mips_dump_tdep: ROUND_UP = function?\n");
4502#ifdef SAVED_BYTES
4503 fprintf_unfiltered (file,
4504 "mips_dump_tdep: SAVED_BYTES = %d\n",
4505 SAVED_BYTES);
4506#endif
4507#ifdef SAVED_FP
4508 fprintf_unfiltered (file,
4509 "mips_dump_tdep: SAVED_FP = %d\n",
4510 SAVED_FP);
4511#endif
4512#ifdef SAVED_PC
4513 fprintf_unfiltered (file,
4514 "mips_dump_tdep: SAVED_PC = %d\n",
4515 SAVED_PC);
4516#endif
4517 fprintf_unfiltered (file,
4518 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
4519 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
4520 fprintf_unfiltered (file,
4521 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
4522 fprintf_unfiltered (file,
4523 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
4524 SIGFRAME_BASE);
4525 fprintf_unfiltered (file,
4526 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
4527 SIGFRAME_FPREGSAVE_OFF);
4528 fprintf_unfiltered (file,
4529 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
4530 SIGFRAME_PC_OFF);
4531 fprintf_unfiltered (file,
4532 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
4533 SIGFRAME_REGSAVE_OFF);
4534 fprintf_unfiltered (file,
4535 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
4536 SIGFRAME_REG_SIZE);
4537 fprintf_unfiltered (file,
4538 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
4539 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
4540 fprintf_unfiltered (file,
4541 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
4542 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
4543 fprintf_unfiltered (file,
b0ed3589
AC
4544 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
4545 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
4546 fprintf_unfiltered (file,
4547 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
4548 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
4549#ifdef STACK_END_ADDR
4550 fprintf_unfiltered (file,
4551 "mips_dump_tdep: STACK_END_ADDR = %d\n",
4552 STACK_END_ADDR);
4553#endif
4554 fprintf_unfiltered (file,
4555 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
4556 XSTRING (STEP_SKIPS_DELAY (PC)));
4557 fprintf_unfiltered (file,
4558 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
4559 STEP_SKIPS_DELAY_P);
4560 fprintf_unfiltered (file,
4561 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
4562 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
4563 fprintf_unfiltered (file,
4564 "mips_dump_tdep: T9_REGNUM = %d\n",
4565 T9_REGNUM);
4566 fprintf_unfiltered (file,
4567 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
4568 fprintf_unfiltered (file,
4569 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
4570 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
4571 fprintf_unfiltered (file,
4572 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
4573 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
4574 fprintf_unfiltered (file,
4575 "mips_dump_tdep: TARGET_MIPS = used?\n");
4576 fprintf_unfiltered (file,
4577 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
4578 XSTRING (TM_PRINT_INSN_MACH));
4579#ifdef TRACE_CLEAR
4580 fprintf_unfiltered (file,
4581 "mips_dump_tdep: TRACE_CLEAR # %s\n",
4582 XSTRING (TRACE_CLEAR (THREAD, STATE)));
4583#endif
4584#ifdef TRACE_FLAVOR
4585 fprintf_unfiltered (file,
4586 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
4587 TRACE_FLAVOR);
4588#endif
4589#ifdef TRACE_FLAVOR_SIZE
4590 fprintf_unfiltered (file,
4591 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
4592 TRACE_FLAVOR_SIZE);
4593#endif
4594#ifdef TRACE_SET
4595 fprintf_unfiltered (file,
4596 "mips_dump_tdep: TRACE_SET # %s\n",
4597 XSTRING (TRACE_SET (X,STATE)));
4598#endif
4599 fprintf_unfiltered (file,
4600 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
4601#ifdef UNUSED_REGNUM
4602 fprintf_unfiltered (file,
4603 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
4604 UNUSED_REGNUM);
4605#endif
4606 fprintf_unfiltered (file,
4607 "mips_dump_tdep: V0_REGNUM = %d\n",
4608 V0_REGNUM);
4609 fprintf_unfiltered (file,
4610 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
4611 (long) VM_MIN_ADDRESS);
4612#ifdef VX_NUM_REGS
4613 fprintf_unfiltered (file,
4614 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
4615 VX_NUM_REGS);
4616#endif
4617 fprintf_unfiltered (file,
4618 "mips_dump_tdep: ZERO_REGNUM = %d\n",
4619 ZERO_REGNUM);
4620 fprintf_unfiltered (file,
4621 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
4622 _PROC_MAGIC_);
c2d11a7d
JM
4623}
4624
c906108c 4625void
acdb74a0 4626_initialize_mips_tdep (void)
c906108c
SS
4627{
4628 static struct cmd_list_element *mipsfpulist = NULL;
4629 struct cmd_list_element *c;
4630
4b9b3959 4631 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c5aa993b 4632 if (!tm_print_insn) /* Someone may have already set it */
c906108c
SS
4633 tm_print_insn = gdb_print_insn_mips;
4634
a5ea2558
AC
4635 /* Add root prefix command for all "set mips"/"show mips" commands */
4636 add_prefix_cmd ("mips", no_class, set_mips_command,
4637 "Various MIPS specific commands.",
4638 &setmipscmdlist, "set mips ", 0, &setlist);
4639
4640 add_prefix_cmd ("mips", no_class, show_mips_command,
4641 "Various MIPS specific commands.",
4642 &showmipscmdlist, "show mips ", 0, &showlist);
4643
4644 /* Allow the user to override the saved register size. */
4645 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
4646 class_obscure,
4647 size_enums,
4648 &mips_saved_regsize_string, "\
a5ea2558
AC
4649Set size of general purpose registers saved on the stack.\n\
4650This option can be set to one of:\n\
4651 32 - Force GDB to treat saved GP registers as 32-bit\n\
4652 64 - Force GDB to treat saved GP registers as 64-bit\n\
4653 auto - Allow GDB to use the target's default setting or autodetect the\n\
4654 saved GP register size from information contained in the executable.\n\
4655 (default: auto)",
1ed2a135 4656 &setmipscmdlist),
a5ea2558
AC
4657 &showmipscmdlist);
4658
d929b26f
AC
4659 /* Allow the user to override the argument stack size. */
4660 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
4661 class_obscure,
4662 size_enums,
1ed2a135 4663 &mips_stack_argsize_string, "\
d929b26f
AC
4664Set the amount of stack space reserved for each argument.\n\
4665This option can be set to one of:\n\
4666 32 - Force GDB to allocate 32-bit chunks per argument\n\
4667 64 - Force GDB to allocate 64-bit chunks per argument\n\
4668 auto - Allow GDB to determine the correct setting from the current\n\
4669 target and executable (default)",
4670 &setmipscmdlist),
4671 &showmipscmdlist);
4672
c906108c
SS
4673 /* Let the user turn off floating point and set the fence post for
4674 heuristic_proc_start. */
4675
4676 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
4677 "Set use of MIPS floating-point coprocessor.",
4678 &mipsfpulist, "set mipsfpu ", 0, &setlist);
4679 add_cmd ("single", class_support, set_mipsfpu_single_command,
4680 "Select single-precision MIPS floating-point coprocessor.",
4681 &mipsfpulist);
4682 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 4683 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
4684 &mipsfpulist);
4685 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
4686 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
4687 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
4688 add_cmd ("none", class_support, set_mipsfpu_none_command,
4689 "Select no MIPS floating-point coprocessor.",
4690 &mipsfpulist);
4691 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
4692 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
4693 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
4694 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
4695 "Select MIPS floating-point coprocessor automatically.",
4696 &mipsfpulist);
4697 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
4698 "Show current use of MIPS floating-point coprocessor target.",
4699 &showlist);
4700
c2d11a7d 4701#if !GDB_MULTI_ARCH
c906108c
SS
4702 c = add_set_cmd ("processor", class_support, var_string_noescape,
4703 (char *) &tmp_mips_processor_type,
4704 "Set the type of MIPS processor in use.\n\
4705Set this to be able to access processor-type-specific registers.\n\
4706",
4707 &setlist);
4708 c->function.cfunc = mips_set_processor_type_command;
4709 c = add_show_from_set (c, &showlist);
4710 c->function.cfunc = mips_show_processor_type_command;
4711
4fcf66da
AC
4712 tmp_mips_processor_type = xstrdup (DEFAULT_MIPS_TYPE);
4713 mips_set_processor_type_command (xstrdup (DEFAULT_MIPS_TYPE), 0);
c2d11a7d 4714#endif
c906108c
SS
4715
4716 /* We really would like to have both "0" and "unlimited" work, but
4717 command.c doesn't deal with that. So make it a var_zinteger
4718 because the user can always use "999999" or some such for unlimited. */
4719 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
4720 (char *) &heuristic_fence_post,
4721 "\
4722Set the distance searched for the start of a function.\n\
4723If you are debugging a stripped executable, GDB needs to search through the\n\
4724program for the start of a function. This command sets the distance of the\n\
4725search. The only need to set it is when debugging a stripped executable.",
4726 &setlist);
4727 /* We need to throw away the frame cache when we set this, since it
4728 might change our ability to get backtraces. */
4729 c->function.sfunc = reinit_frame_cache_sfunc;
4730 add_show_from_set (c, &showlist);
4731
4732 /* Allow the user to control whether the upper bits of 64-bit
4733 addresses should be zeroed. */
4014092b
AC
4734 c = add_set_auto_boolean_cmd ("mask-address", no_class, &mask_address_var,
4735 "Set zeroing of upper 32 bits of 64-bit addresses.\n\
4736Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to allow GDB to determine\n\
4737the correct value.\n",
4738 &setmipscmdlist);
4739 add_cmd ("mask-address", no_class, show_mask_address,
4740 "Show current mask-address value", &showmipscmdlist);
43e526b9
JM
4741
4742 /* Allow the user to control the size of 32 bit registers within the
4743 raw remote packet. */
4744 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
4745 class_obscure,
4746 var_boolean,
4747 (char *)&mips64_transfers_32bit_regs_p, "\
4748Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
4749Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
4750that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
475164 bits for others. Use \"off\" to disable compatibility mode",
4752 &setlist),
4753 &showlist);
9ace0497
AC
4754
4755 /* Debug this files internals. */
4756 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
4757 &mips_debug, "Set mips debugging.\n\
4758When non-zero, mips specific debugging is enabled.", &setdebuglist),
4759 &showdebuglist);
c906108c 4760}
9ace0497 4761
This page took 0.347423 seconds and 4 git commands to generate.