* arm-tdep.c (arm_frame_chain_valid): Remove unnecessary test.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a 3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
1e698235 4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
bf64bfd6 5
c906108c
SS
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "value.h"
32#include "gdbcmd.h"
33#include "language.h"
34#include "gdbcore.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "gdbtypes.h"
38#include "target.h"
28d069e6 39#include "arch-utils.h"
4e052eda 40#include "regcache.h"
70f80edf 41#include "osabi.h"
d1973055 42#include "mips-tdep.h"
c906108c
SS
43
44#include "opcode/mips.h"
c2d11a7d
JM
45#include "elf/mips.h"
46#include "elf-bfd.h"
2475bac3 47#include "symcat.h"
c906108c 48
dd824b04
DJ
49/* A useful bit in the CP0 status register (PS_REGNUM). */
50/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
51#define ST0_FR (1 << 26)
52
b0069a17
AC
53/* The sizes of floating point registers. */
54
55enum
56{
57 MIPS_FPU_SINGLE_REGSIZE = 4,
58 MIPS_FPU_DOUBLE_REGSIZE = 8
59};
60
0dadbba0 61
2e4ebe70
DJ
62static const char *mips_abi_string;
63
64static const char *mips_abi_strings[] = {
65 "auto",
66 "n32",
67 "o32",
28d169de 68 "n64",
2e4ebe70
DJ
69 "o64",
70 "eabi32",
71 "eabi64",
72 NULL
73};
74
cce74817 75struct frame_extra_info
c5aa993b
JM
76 {
77 mips_extra_func_info_t proc_desc;
78 int num_args;
79 };
cce74817 80
d929b26f
AC
81/* Various MIPS ISA options (related to stack analysis) can be
82 overridden dynamically. Establish an enum/array for managing
83 them. */
84
53904c9e
AC
85static const char size_auto[] = "auto";
86static const char size_32[] = "32";
87static const char size_64[] = "64";
d929b26f 88
53904c9e 89static const char *size_enums[] = {
d929b26f
AC
90 size_auto,
91 size_32,
92 size_64,
a5ea2558
AC
93 0
94};
95
7a292a7a
SS
96/* Some MIPS boards don't support floating point while others only
97 support single-precision floating-point operations. See also
98 FP_REGISTER_DOUBLE. */
c906108c
SS
99
100enum mips_fpu_type
c5aa993b
JM
101 {
102 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
103 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
104 MIPS_FPU_NONE /* No floating point. */
105 };
c906108c
SS
106
107#ifndef MIPS_DEFAULT_FPU_TYPE
108#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
109#endif
110static int mips_fpu_type_auto = 1;
111static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 112
9ace0497 113static int mips_debug = 0;
7a292a7a 114
c2d11a7d
JM
115/* MIPS specific per-architecture information */
116struct gdbarch_tdep
117 {
118 /* from the elf header */
119 int elf_flags;
70f80edf 120
c2d11a7d 121 /* mips options */
0dadbba0 122 enum mips_abi mips_abi;
2e4ebe70 123 enum mips_abi found_abi;
c2d11a7d
JM
124 enum mips_fpu_type mips_fpu_type;
125 int mips_last_arg_regnum;
126 int mips_last_fp_arg_regnum;
a5ea2558 127 int mips_default_saved_regsize;
c2d11a7d 128 int mips_fp_register_double;
d929b26f 129 int mips_default_stack_argsize;
5213ab06 130 int gdb_target_is_mips64;
4014092b 131 int default_mask_address_p;
c2d11a7d
JM
132 };
133
0dadbba0 134#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 135 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 136
c2d11a7d 137#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 138
c2d11a7d 139#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 140
c2d11a7d 141#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 142
d929b26f
AC
143/* Return the currently configured (or set) saved register size. */
144
a5ea2558 145#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
c2d11a7d 146
53904c9e 147static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
148
149#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
150
d1973055
KB
151/* Return the MIPS ABI associated with GDBARCH. */
152enum mips_abi
153mips_abi (struct gdbarch *gdbarch)
154{
155 return gdbarch_tdep (gdbarch)->mips_abi;
156}
157
d929b26f 158static unsigned int
acdb74a0 159mips_saved_regsize (void)
d929b26f
AC
160{
161 if (mips_saved_regsize_string == size_auto)
162 return MIPS_DEFAULT_SAVED_REGSIZE;
163 else if (mips_saved_regsize_string == size_64)
164 return 8;
165 else /* if (mips_saved_regsize_string == size_32) */
166 return 4;
167}
168
71b8ef93 169/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa
MS
170 marks it as 16-bit function. The MSB of the minimal symbol's
171 "info" field is used for this purpose. This field is already
172 being used to store the symbol size, so the assumption is
173 that the symbol size cannot exceed 2^31.
174
175 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
176 i.e. refers to a 16-bit function, and sets a "special" bit in a
177 minimal symbol to mark it as a 16-bit function
178
179 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
180 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
181 the "info" field with the "special" bit masked out */
182
5a89d8aa
MS
183static void
184mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
185{
186 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
187 {
188 MSYMBOL_INFO (msym) = (char *)
189 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
190 SYMBOL_VALUE_ADDRESS (msym) |= 1;
191 }
192}
193
71b8ef93
MS
194static int
195msymbol_is_special (struct minimal_symbol *msym)
196{
197 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
198}
199
200static long
201msymbol_size (struct minimal_symbol *msym)
202{
203 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
204}
205
88658117
AC
206/* XFER a value from the big/little/left end of the register.
207 Depending on the size of the value it might occupy the entire
208 register or just part of it. Make an allowance for this, aligning
209 things accordingly. */
210
211static void
212mips_xfer_register (struct regcache *regcache, int reg_num, int length,
213 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
214 int buf_offset)
215{
216 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
217 int reg_offset = 0;
cb1d2653
AC
218 /* Need to transfer the left or right part of the register, based on
219 the targets byte order. */
88658117
AC
220 switch (endian)
221 {
222 case BFD_ENDIAN_BIG:
223 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
224 break;
225 case BFD_ENDIAN_LITTLE:
226 reg_offset = 0;
227 break;
228 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
229 reg_offset = 0;
230 break;
231 default:
232 internal_error (__FILE__, __LINE__, "bad switch");
233 }
234 if (mips_debug)
cb1d2653
AC
235 fprintf_unfiltered (gdb_stderr,
236 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
237 reg_num, reg_offset, buf_offset, length);
88658117
AC
238 if (mips_debug && out != NULL)
239 {
240 int i;
cb1d2653 241 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 242 for (i = 0; i < length; i++)
cb1d2653 243 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
244 }
245 if (in != NULL)
246 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
247 if (out != NULL)
248 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
249 if (mips_debug && in != NULL)
250 {
251 int i;
cb1d2653 252 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 253 for (i = 0; i < length; i++)
cb1d2653 254 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
255 }
256 if (mips_debug)
257 fprintf_unfiltered (gdb_stdlog, "\n");
258}
259
dd824b04
DJ
260/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
261 compatiblity mode. A return value of 1 means that we have
262 physical 64-bit registers, but should treat them as 32-bit registers. */
263
264static int
265mips2_fp_compat (void)
266{
267 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
268 meaningful. */
269 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
270 return 0;
271
272#if 0
273 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
274 in all the places we deal with FP registers. PR gdb/413. */
275 /* Otherwise check the FR bit in the status register - it controls
276 the FP compatiblity mode. If it is clear we are in compatibility
277 mode. */
278 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
279 return 1;
280#endif
361d1df0 281
dd824b04
DJ
282 return 0;
283}
284
c2d11a7d
JM
285/* Indicate that the ABI makes use of double-precision registers
286 provided by the FPU (rather than combining pairs of registers to
287 form double-precision values). Do not use "TARGET_IS_MIPS64" to
288 determine if the ABI is using double-precision registers. See also
289 MIPS_FPU_TYPE. */
c2d11a7d 290#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
c2d11a7d 291
d929b26f
AC
292/* The amount of space reserved on the stack for registers. This is
293 different to MIPS_SAVED_REGSIZE as it determines the alignment of
294 data allocated after the registers have run out. */
295
0dadbba0 296#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
297
298#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
299
53904c9e 300static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
301
302static unsigned int
303mips_stack_argsize (void)
304{
305 if (mips_stack_argsize_string == size_auto)
306 return MIPS_DEFAULT_STACK_ARGSIZE;
307 else if (mips_stack_argsize_string == size_64)
308 return 8;
309 else /* if (mips_stack_argsize_string == size_32) */
310 return 4;
311}
312
5213ab06 313#define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
c2d11a7d 314
92e1c15c 315#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
92e1c15c 316
7a292a7a 317#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 318
a14ed312 319int gdb_print_insn_mips (bfd_vma, disassemble_info *);
c906108c 320
a14ed312 321static void mips_print_register (int, int);
c906108c
SS
322
323static mips_extra_func_info_t
479412cd 324heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *, int);
c906108c 325
a14ed312 326static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 327
a14ed312 328static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 329
5a89d8aa 330static int mips_set_processor_type (char *);
c906108c 331
a14ed312 332static void mips_show_processor_type_command (char *, int);
c906108c 333
a14ed312 334static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c
SS
335
336static mips_extra_func_info_t
479412cd 337find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame);
c906108c 338
a14ed312
KB
339static CORE_ADDR after_prologue (CORE_ADDR pc,
340 mips_extra_func_info_t proc_desc);
c906108c 341
dd824b04
DJ
342static void mips_read_fp_register_single (int regno, char *rare_buffer);
343static void mips_read_fp_register_double (int regno, char *rare_buffer);
344
67b2c998
DJ
345static struct type *mips_float_register_type (void);
346static struct type *mips_double_register_type (void);
347
c906108c
SS
348/* This value is the model of MIPS in use. It is derived from the value
349 of the PrID register. */
350
351char *mips_processor_type;
352
353char *tmp_mips_processor_type;
354
acdb74a0
AC
355/* The list of available "set mips " and "show mips " commands */
356
357static struct cmd_list_element *setmipscmdlist = NULL;
358static struct cmd_list_element *showmipscmdlist = NULL;
359
c906108c
SS
360/* A set of original names, to be used when restoring back to generic
361 registers from a specific set. */
362
cce74817
JM
363char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
364char **mips_processor_reg_names = mips_generic_reg_names;
365
5a89d8aa 366static const char *
fba45db2 367mips_register_name (int i)
cce74817
JM
368{
369 return mips_processor_reg_names[i];
370}
9846de1b 371/* *INDENT-OFF* */
c906108c
SS
372/* Names of IDT R3041 registers. */
373
374char *mips_r3041_reg_names[] = {
375 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
376 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
377 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
378 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
379 "sr", "lo", "hi", "bad", "cause","pc",
380 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
381 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
382 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
383 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 384 "fsr", "fir", "",/*"fp"*/ "",
c906108c
SS
385 "", "", "bus", "ccfg", "", "", "", "",
386 "", "", "port", "cmp", "", "", "epc", "prid",
387};
388
389/* Names of IDT R3051 registers. */
390
391char *mips_r3051_reg_names[] = {
392 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
393 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
394 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
395 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
396 "sr", "lo", "hi", "bad", "cause","pc",
397 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
398 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
399 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
400 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 401 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
402 "inx", "rand", "elo", "", "ctxt", "", "", "",
403 "", "", "ehi", "", "", "", "epc", "prid",
404};
405
406/* Names of IDT R3081 registers. */
407
408char *mips_r3081_reg_names[] = {
409 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
410 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
411 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
412 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
413 "sr", "lo", "hi", "bad", "cause","pc",
414 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
415 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
416 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
417 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 418 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
419 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
420 "", "", "ehi", "", "", "", "epc", "prid",
421};
422
423/* Names of LSI 33k registers. */
424
425char *mips_lsi33k_reg_names[] = {
426 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
427 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
428 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
429 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
430 "epc", "hi", "lo", "sr", "cause","badvaddr",
431 "dcic", "bpc", "bda", "", "", "", "", "",
432 "", "", "", "", "", "", "", "",
433 "", "", "", "", "", "", "", "",
434 "", "", "", "", "", "", "", "",
435 "", "", "", "",
436 "", "", "", "", "", "", "", "",
437 "", "", "", "", "", "", "", "",
438};
439
440struct {
441 char *name;
442 char **regnames;
443} mips_processor_type_table[] = {
444 { "generic", mips_generic_reg_names },
445 { "r3041", mips_r3041_reg_names },
446 { "r3051", mips_r3051_reg_names },
447 { "r3071", mips_r3081_reg_names },
448 { "r3081", mips_r3081_reg_names },
449 { "lsi33k", mips_lsi33k_reg_names },
450 { NULL, NULL }
451};
9846de1b 452/* *INDENT-ON* */
c906108c 453
c5aa993b
JM
454
455
456
c906108c 457/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
458static int mips16_to_32_reg[8] =
459{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
460
461/* Heuristic_proc_start may hunt through the text section for a long
462 time across a 2400 baud serial line. Allows the user to limit this
463 search. */
464
465static unsigned int heuristic_fence_post = 0;
466
c5aa993b
JM
467#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
468#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
469#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
470#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
471#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
472#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
473#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
474#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
475#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
476#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
6c0d6680
DJ
477/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
478 this will corrupt pdr.iline. Fortunately we don't use it. */
c906108c
SS
479#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
480#define _PROC_MAGIC_ 0x0F0F0F0F
481#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
482#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
483
484struct linked_proc_info
c5aa993b
JM
485 {
486 struct mips_extra_func_info info;
487 struct linked_proc_info *next;
488 }
489 *linked_proc_desc_table = NULL;
c906108c 490
cce74817 491void
acdb74a0 492mips_print_extra_frame_info (struct frame_info *fi)
cce74817
JM
493{
494 if (fi
495 && fi->extra_info
496 && fi->extra_info->proc_desc
497 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
d4f3574e 498 printf_filtered (" frame pointer is at %s+%s\n",
cce74817 499 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
d4f3574e 500 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
cce74817 501}
c906108c 502
46cd78fb
AC
503/* Number of bytes of storage in the actual machine representation for
504 register N. NOTE: This indirectly defines the register size
505 transfered by the GDB protocol. */
43e526b9
JM
506
507static int mips64_transfers_32bit_regs_p = 0;
508
f7ab6ec6 509static int
acdb74a0 510mips_register_raw_size (int reg_nr)
43e526b9
JM
511{
512 if (mips64_transfers_32bit_regs_p)
513 return REGISTER_VIRTUAL_SIZE (reg_nr);
d02ee681
AC
514 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
515 && FP_REGISTER_DOUBLE)
516 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
517 registers. */
518 return 8;
43e526b9
JM
519 else
520 return MIPS_REGSIZE;
521}
522
46cd78fb
AC
523/* Convert between RAW and VIRTUAL registers. The RAW register size
524 defines the remote-gdb packet. */
525
d05285fa 526static int
acdb74a0 527mips_register_convertible (int reg_nr)
43e526b9
JM
528{
529 if (mips64_transfers_32bit_regs_p)
530 return 0;
531 else
532 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
533}
534
d05285fa 535static void
acdb74a0
AC
536mips_register_convert_to_virtual (int n, struct type *virtual_type,
537 char *raw_buf, char *virt_buf)
43e526b9 538{
d7449b42 539 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
540 memcpy (virt_buf,
541 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
542 TYPE_LENGTH (virtual_type));
543 else
544 memcpy (virt_buf,
545 raw_buf,
546 TYPE_LENGTH (virtual_type));
547}
548
d05285fa 549static void
acdb74a0
AC
550mips_register_convert_to_raw (struct type *virtual_type, int n,
551 char *virt_buf, char *raw_buf)
43e526b9
JM
552{
553 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
d7449b42 554 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
555 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
556 virt_buf,
557 TYPE_LENGTH (virtual_type));
558 else
559 memcpy (raw_buf,
560 virt_buf,
561 TYPE_LENGTH (virtual_type));
562}
563
102182a9
MS
564void
565mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
566{
567 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
568 && REGISTER_RAW_SIZE (regnum) == 4
569 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
570 && TYPE_CODE(type) == TYPE_CODE_FLT
571 && TYPE_LENGTH(type) == 8)
572 {
573 char temp[4];
574 memcpy (temp, ((char *)(buffer))+4, 4);
575 memcpy (((char *)(buffer))+4, (buffer), 4);
576 memcpy (((char *)(buffer)), temp, 4);
577 }
578}
579
580void
581mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
582{
583if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
584 && REGISTER_RAW_SIZE (regnum) == 4
585 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
586 && TYPE_CODE(type) == TYPE_CODE_FLT
587 && TYPE_LENGTH(type) == 8)
588 {
589 char temp[4];
590 memcpy (temp, ((char *)(buffer))+4, 4);
591 memcpy (((char *)(buffer))+4, (buffer), 4);
592 memcpy (((char *)(buffer)), temp, 4);
593 }
594}
595
78fde5f8
KB
596/* Return the GDB type object for the "standard" data type
597 of data in register REG.
598
599 Note: kevinb/2002-08-01: The definition below should faithfully
600 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
601 definitions found in config/mips/tm-*.h. I'm concerned about
602 the ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause
603 though. In some cases FP_REGNUM is in this range, and I doubt
604 that this code is correct for the 64-bit case. */
605
606static struct type *
607mips_register_virtual_type (int reg)
608{
609 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
a6425924
KB
610 {
611 /* Floating point registers... */
612 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
613 return builtin_type_ieee_double_big;
614 else
615 return builtin_type_ieee_double_little;
616 }
78fde5f8
KB
617 else if (reg == PS_REGNUM /* CR */)
618 return builtin_type_uint32;
619 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
620 return builtin_type_uint32;
621 else
622 {
a6425924
KB
623 /* Everything else...
624 Return type appropriate for width of register. */
625 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
626 return builtin_type_uint64;
78fde5f8 627 else
a6425924 628 return builtin_type_uint32;
78fde5f8
KB
629 }
630}
631
bcb0cc15
MS
632/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
633
634static CORE_ADDR
635mips_read_sp (void)
636{
637 return ADDR_BITS_REMOVE (read_register (SP_REGNUM));
638}
639
c906108c 640/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 641enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
642
643static int
644mips_mask_address_p (void)
645{
646 switch (mask_address_var)
647 {
7f19b9a2 648 case AUTO_BOOLEAN_TRUE:
4014092b 649 return 1;
7f19b9a2 650 case AUTO_BOOLEAN_FALSE:
4014092b
AC
651 return 0;
652 break;
7f19b9a2 653 case AUTO_BOOLEAN_AUTO:
92e1c15c 654 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b 655 default:
8e65ff28
AC
656 internal_error (__FILE__, __LINE__,
657 "mips_mask_address_p: bad switch");
4014092b 658 return -1;
361d1df0 659 }
4014092b
AC
660}
661
662static void
e9e68a56 663show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
4014092b
AC
664{
665 switch (mask_address_var)
666 {
7f19b9a2 667 case AUTO_BOOLEAN_TRUE:
4014092b
AC
668 printf_filtered ("The 32 bit mips address mask is enabled\n");
669 break;
7f19b9a2 670 case AUTO_BOOLEAN_FALSE:
4014092b
AC
671 printf_filtered ("The 32 bit mips address mask is disabled\n");
672 break;
7f19b9a2 673 case AUTO_BOOLEAN_AUTO:
4014092b
AC
674 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
675 mips_mask_address_p () ? "enabled" : "disabled");
676 break;
677 default:
8e65ff28
AC
678 internal_error (__FILE__, __LINE__,
679 "show_mask_address: bad switch");
4014092b 680 break;
361d1df0 681 }
4014092b 682}
c906108c
SS
683
684/* Should call_function allocate stack space for a struct return? */
cb811fe7 685
f7ab6ec6 686static int
cb811fe7 687mips_eabi_use_struct_convention (int gcc_p, struct type *type)
c906108c 688{
cb811fe7
MS
689 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
690}
691
f7ab6ec6 692static int
cb811fe7
MS
693mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
694{
b78bcb18 695 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
cb811fe7
MS
696}
697
f7ab6ec6 698static int
cb811fe7
MS
699mips_o32_use_struct_convention (int gcc_p, struct type *type)
700{
701 return 1; /* Structures are returned by ref in extra arg0. */
c906108c
SS
702}
703
8b389c40
MS
704/* Should call_function pass struct by reference?
705 For each architecture, structs are passed either by
706 value or by reference, depending on their size. */
707
708static int
709mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
710{
711 enum type_code typecode = TYPE_CODE (check_typedef (type));
712 int len = TYPE_LENGTH (check_typedef (type));
713
714 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
715 return (len > MIPS_SAVED_REGSIZE);
716
717 return 0;
718}
719
720static int
721mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
722{
723 return 0; /* Assumption: N32/N64 never passes struct by ref. */
724}
725
f7ab6ec6 726static int
8b389c40
MS
727mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
728{
729 return 0; /* Assumption: O32/O64 never passes struct by ref. */
730}
731
c906108c
SS
732/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
733
734static int
735pc_is_mips16 (bfd_vma memaddr)
736{
737 struct minimal_symbol *sym;
738
739 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
740 if (IS_MIPS16_ADDR (memaddr))
741 return 1;
742
743 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
744 the high bit of the info field. Use this to decide if the function is
745 MIPS16 or normal MIPS. */
746 sym = lookup_minimal_symbol_by_pc (memaddr);
747 if (sym)
71b8ef93 748 return msymbol_is_special (sym);
c906108c
SS
749 else
750 return 0;
751}
752
6c997a34
AC
753/* MIPS believes that the PC has a sign extended value. Perhaphs the
754 all registers should be sign extended for simplicity? */
755
756static CORE_ADDR
39f77062 757mips_read_pc (ptid_t ptid)
6c997a34 758{
39f77062 759 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 760}
c906108c
SS
761
762/* This returns the PC of the first inst after the prologue. If we can't
763 find the prologue, then return 0. */
764
765static CORE_ADDR
acdb74a0
AC
766after_prologue (CORE_ADDR pc,
767 mips_extra_func_info_t proc_desc)
c906108c
SS
768{
769 struct symtab_and_line sal;
770 CORE_ADDR func_addr, func_end;
771
479412cd
DJ
772 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
773 to read the stack pointer from the current machine state, because
774 the current machine state has nothing to do with the information
775 we need from the proc_desc; and the process may or may not exist
776 right now. */
c906108c 777 if (!proc_desc)
479412cd 778 proc_desc = find_proc_desc (pc, NULL, 0);
c906108c
SS
779
780 if (proc_desc)
781 {
782 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 783 strongly suspect that frameless always means prologueless... */
c906108c
SS
784 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
785 && PROC_FRAME_OFFSET (proc_desc) == 0)
786 return 0;
787 }
788
789 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
790 return 0; /* Unknown */
791
792 sal = find_pc_line (func_addr, 0);
793
794 if (sal.end < func_end)
795 return sal.end;
796
797 /* The line after the prologue is after the end of the function. In this
798 case, tell the caller to find the prologue the hard way. */
799
800 return 0;
801}
802
803/* Decode a MIPS32 instruction that saves a register in the stack, and
804 set the appropriate bit in the general register mask or float register mask
805 to indicate which register is saved. This is a helper function
806 for mips_find_saved_regs. */
807
808static void
acdb74a0
AC
809mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
810 unsigned long *float_mask)
c906108c
SS
811{
812 int reg;
813
814 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
815 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
816 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
817 {
818 /* It might be possible to use the instruction to
c5aa993b
JM
819 find the offset, rather than the code below which
820 is based on things being in a certain order in the
821 frame, but figuring out what the instruction's offset
822 is relative to might be a little tricky. */
c906108c
SS
823 reg = (inst & 0x001f0000) >> 16;
824 *gen_mask |= (1 << reg);
825 }
826 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
827 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
828 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
829
830 {
831 reg = ((inst & 0x001f0000) >> 16);
832 *float_mask |= (1 << reg);
833 }
834}
835
836/* Decode a MIPS16 instruction that saves a register in the stack, and
837 set the appropriate bit in the general register or float register mask
838 to indicate which register is saved. This is a helper function
839 for mips_find_saved_regs. */
840
841static void
acdb74a0 842mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 843{
c5aa993b 844 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
845 {
846 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
847 *gen_mask |= (1 << reg);
848 }
c5aa993b 849 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
850 {
851 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
852 *gen_mask |= (1 << reg);
853 }
c5aa993b 854 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
855 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
856 *gen_mask |= (1 << RA_REGNUM);
857}
858
859
860/* Fetch and return instruction from the specified location. If the PC
861 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
862
863static t_inst
acdb74a0 864mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
865{
866 char buf[MIPS_INSTLEN];
867 int instlen;
868 int status;
869
870 if (pc_is_mips16 (addr))
871 {
872 instlen = MIPS16_INSTLEN;
873 addr = UNMAKE_MIPS16_ADDR (addr);
874 }
875 else
c5aa993b 876 instlen = MIPS_INSTLEN;
c906108c
SS
877 status = read_memory_nobpt (addr, buf, instlen);
878 if (status)
879 memory_error (status, addr);
880 return extract_unsigned_integer (buf, instlen);
881}
882
883
884/* These the fields of 32 bit mips instructions */
e135b889
DJ
885#define mips32_op(x) (x >> 26)
886#define itype_op(x) (x >> 26)
887#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 888#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 889#define itype_immediate(x) (x & 0xffff)
c906108c 890
e135b889
DJ
891#define jtype_op(x) (x >> 26)
892#define jtype_target(x) (x & 0x03ffffff)
c906108c 893
e135b889
DJ
894#define rtype_op(x) (x >> 26)
895#define rtype_rs(x) ((x >> 21) & 0x1f)
896#define rtype_rt(x) ((x >> 16) & 0x1f)
897#define rtype_rd(x) ((x >> 11) & 0x1f)
898#define rtype_shamt(x) ((x >> 6) & 0x1f)
899#define rtype_funct(x) (x & 0x3f)
c906108c
SS
900
901static CORE_ADDR
c5aa993b
JM
902mips32_relative_offset (unsigned long inst)
903{
904 long x;
905 x = itype_immediate (inst);
906 if (x & 0x8000) /* sign bit set */
c906108c 907 {
c5aa993b 908 x |= 0xffff0000; /* sign extension */
c906108c 909 }
c5aa993b
JM
910 x = x << 2;
911 return x;
c906108c
SS
912}
913
914/* Determine whate to set a single step breakpoint while considering
915 branch prediction */
5a89d8aa 916static CORE_ADDR
c5aa993b
JM
917mips32_next_pc (CORE_ADDR pc)
918{
919 unsigned long inst;
920 int op;
921 inst = mips_fetch_instruction (pc);
e135b889 922 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 923 {
e135b889
DJ
924 if (itype_op (inst) >> 2 == 5)
925 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 926 {
e135b889 927 op = (itype_op (inst) & 0x03);
c906108c
SS
928 switch (op)
929 {
e135b889
DJ
930 case 0: /* BEQL */
931 goto equal_branch;
932 case 1: /* BNEL */
933 goto neq_branch;
934 case 2: /* BLEZL */
935 goto less_branch;
936 case 3: /* BGTZ */
937 goto greater_branch;
c5aa993b
JM
938 default:
939 pc += 4;
c906108c
SS
940 }
941 }
e135b889
DJ
942 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
943 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
944 {
945 int tf = itype_rt (inst) & 0x01;
946 int cnum = itype_rt (inst) >> 2;
947 int fcrcs = read_signed_register (FCRCS_REGNUM);
948 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
949
950 if (((cond >> cnum) & 0x01) == tf)
951 pc += mips32_relative_offset (inst) + 4;
952 else
953 pc += 8;
954 }
c5aa993b
JM
955 else
956 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
957 }
958 else
c5aa993b
JM
959 { /* This gets way messy */
960
c906108c 961 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 962 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 963 {
c5aa993b
JM
964 case 0: /* SPECIAL */
965 op = rtype_funct (inst);
966 switch (op)
967 {
968 case 8: /* JR */
969 case 9: /* JALR */
6c997a34
AC
970 /* Set PC to that address */
971 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
972 break;
973 default:
974 pc += 4;
975 }
976
e135b889 977 break; /* end SPECIAL */
c5aa993b 978 case 1: /* REGIMM */
c906108c 979 {
e135b889
DJ
980 op = itype_rt (inst); /* branch condition */
981 switch (op)
c906108c 982 {
c5aa993b 983 case 0: /* BLTZ */
e135b889
DJ
984 case 2: /* BLTZL */
985 case 16: /* BLTZAL */
c5aa993b 986 case 18: /* BLTZALL */
c906108c 987 less_branch:
6c997a34 988 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
989 pc += mips32_relative_offset (inst) + 4;
990 else
991 pc += 8; /* after the delay slot */
992 break;
e135b889 993 case 1: /* BGEZ */
c5aa993b
JM
994 case 3: /* BGEZL */
995 case 17: /* BGEZAL */
996 case 19: /* BGEZALL */
c906108c 997 greater_equal_branch:
6c997a34 998 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
999 pc += mips32_relative_offset (inst) + 4;
1000 else
1001 pc += 8; /* after the delay slot */
1002 break;
e135b889 1003 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1004 default:
1005 pc += 4;
c906108c
SS
1006 }
1007 }
e135b889 1008 break; /* end REGIMM */
c5aa993b
JM
1009 case 2: /* J */
1010 case 3: /* JAL */
1011 {
1012 unsigned long reg;
1013 reg = jtype_target (inst) << 2;
e135b889 1014 /* Upper four bits get never changed... */
c5aa993b 1015 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 1016 }
c5aa993b
JM
1017 break;
1018 /* FIXME case JALX : */
1019 {
1020 unsigned long reg;
1021 reg = jtype_target (inst) << 2;
1022 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
1023 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1024 }
c5aa993b 1025 break; /* The new PC will be alternate mode */
e135b889 1026 case 4: /* BEQ, BEQL */
c5aa993b 1027 equal_branch:
6c997a34
AC
1028 if (read_signed_register (itype_rs (inst)) ==
1029 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1030 pc += mips32_relative_offset (inst) + 4;
1031 else
1032 pc += 8;
1033 break;
e135b889 1034 case 5: /* BNE, BNEL */
c5aa993b 1035 neq_branch:
6c997a34 1036 if (read_signed_register (itype_rs (inst)) !=
e135b889 1037 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1038 pc += mips32_relative_offset (inst) + 4;
1039 else
1040 pc += 8;
1041 break;
e135b889 1042 case 6: /* BLEZ, BLEZL */
c906108c 1043 less_zero_branch:
6c997a34 1044 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
1045 pc += mips32_relative_offset (inst) + 4;
1046 else
1047 pc += 8;
1048 break;
1049 case 7:
e135b889
DJ
1050 default:
1051 greater_branch: /* BGTZ, BGTZL */
6c997a34 1052 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
1053 pc += mips32_relative_offset (inst) + 4;
1054 else
1055 pc += 8;
1056 break;
c5aa993b
JM
1057 } /* switch */
1058 } /* else */
1059 return pc;
1060} /* mips32_next_pc */
c906108c
SS
1061
1062/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1063 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1064 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1065 We dont want to set a single step instruction on the extend instruction
1066 either.
c5aa993b 1067 */
c906108c
SS
1068
1069/* Lots of mips16 instruction formats */
1070/* Predicting jumps requires itype,ritype,i8type
1071 and their extensions extItype,extritype,extI8type
c5aa993b 1072 */
c906108c
SS
1073enum mips16_inst_fmts
1074{
c5aa993b
JM
1075 itype, /* 0 immediate 5,10 */
1076 ritype, /* 1 5,3,8 */
1077 rrtype, /* 2 5,3,3,5 */
1078 rritype, /* 3 5,3,3,5 */
1079 rrrtype, /* 4 5,3,3,3,2 */
1080 rriatype, /* 5 5,3,3,1,4 */
1081 shifttype, /* 6 5,3,3,3,2 */
1082 i8type, /* 7 5,3,8 */
1083 i8movtype, /* 8 5,3,3,5 */
1084 i8mov32rtype, /* 9 5,3,5,3 */
1085 i64type, /* 10 5,3,8 */
1086 ri64type, /* 11 5,3,3,5 */
1087 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1088 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1089 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1090 extRRItype, /* 15 5,5,5,5,3,3,5 */
1091 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1092 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1093 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1094 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1095 extRi64type, /* 20 5,6,5,5,3,3,5 */
1096 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1097};
12f02c2a
AC
1098/* I am heaping all the fields of the formats into one structure and
1099 then, only the fields which are involved in instruction extension */
c906108c 1100struct upk_mips16
c5aa993b 1101 {
12f02c2a 1102 CORE_ADDR offset;
c5aa993b
JM
1103 unsigned int regx; /* Function in i8 type */
1104 unsigned int regy;
1105 };
c906108c
SS
1106
1107
12f02c2a
AC
1108/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1109 for the bits which make up the immediatate extension. */
c906108c 1110
12f02c2a
AC
1111static CORE_ADDR
1112extended_offset (unsigned int extension)
c906108c 1113{
12f02c2a 1114 CORE_ADDR value;
c5aa993b
JM
1115 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1116 value = value << 6;
1117 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1118 value = value << 5;
1119 value |= extension & 0x01f; /* extract 4:0 */
1120 return value;
c906108c
SS
1121}
1122
1123/* Only call this function if you know that this is an extendable
1124 instruction, It wont malfunction, but why make excess remote memory references?
1125 If the immediate operands get sign extended or somthing, do it after
1126 the extension is performed.
c5aa993b 1127 */
c906108c
SS
1128/* FIXME: Every one of these cases needs to worry about sign extension
1129 when the offset is to be used in relative addressing */
1130
1131
12f02c2a 1132static unsigned int
c5aa993b 1133fetch_mips_16 (CORE_ADDR pc)
c906108c 1134{
c5aa993b
JM
1135 char buf[8];
1136 pc &= 0xfffffffe; /* clear the low order bit */
1137 target_read_memory (pc, buf, 2);
1138 return extract_unsigned_integer (buf, 2);
c906108c
SS
1139}
1140
1141static void
c5aa993b 1142unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1143 unsigned int extension,
1144 unsigned int inst,
1145 enum mips16_inst_fmts insn_format,
c5aa993b 1146 struct upk_mips16 *upk)
c906108c 1147{
12f02c2a
AC
1148 CORE_ADDR offset;
1149 int regx;
1150 int regy;
1151 switch (insn_format)
c906108c 1152 {
c5aa993b 1153 case itype:
c906108c 1154 {
12f02c2a
AC
1155 CORE_ADDR value;
1156 if (extension)
c5aa993b
JM
1157 {
1158 value = extended_offset (extension);
1159 value = value << 11; /* rom for the original value */
12f02c2a 1160 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1161 }
1162 else
c5aa993b 1163 {
12f02c2a 1164 value = inst & 0x7ff;
c5aa993b 1165 /* FIXME : Consider sign extension */
c906108c 1166 }
12f02c2a
AC
1167 offset = value;
1168 regx = -1;
1169 regy = -1;
c906108c 1170 }
c5aa993b
JM
1171 break;
1172 case ritype:
1173 case i8type:
1174 { /* A register identifier and an offset */
c906108c
SS
1175 /* Most of the fields are the same as I type but the
1176 immediate value is of a different length */
12f02c2a
AC
1177 CORE_ADDR value;
1178 if (extension)
c906108c 1179 {
c5aa993b
JM
1180 value = extended_offset (extension);
1181 value = value << 8; /* from the original instruction */
12f02c2a
AC
1182 value |= inst & 0xff; /* eleven bits from instruction */
1183 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1184 if (value & 0x4000) /* test the sign bit , bit 26 */
1185 {
1186 value &= ~0x3fff; /* remove the sign bit */
1187 value = -value;
c906108c
SS
1188 }
1189 }
c5aa993b
JM
1190 else
1191 {
12f02c2a
AC
1192 value = inst & 0xff; /* 8 bits */
1193 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1194 /* FIXME: Do sign extension , this format needs it */
1195 if (value & 0x80) /* THIS CONFUSES ME */
1196 {
1197 value &= 0xef; /* remove the sign bit */
1198 value = -value;
1199 }
c5aa993b 1200 }
12f02c2a
AC
1201 offset = value;
1202 regy = -1;
c5aa993b 1203 break;
c906108c 1204 }
c5aa993b 1205 case jalxtype:
c906108c 1206 {
c5aa993b 1207 unsigned long value;
12f02c2a
AC
1208 unsigned int nexthalf;
1209 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1210 value = value << 16;
1211 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1212 value |= nexthalf;
12f02c2a
AC
1213 offset = value;
1214 regx = -1;
1215 regy = -1;
c5aa993b 1216 break;
c906108c
SS
1217 }
1218 default:
8e65ff28
AC
1219 internal_error (__FILE__, __LINE__,
1220 "bad switch");
c906108c 1221 }
12f02c2a
AC
1222 upk->offset = offset;
1223 upk->regx = regx;
1224 upk->regy = regy;
c906108c
SS
1225}
1226
1227
c5aa993b
JM
1228static CORE_ADDR
1229add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1230{
c5aa993b 1231 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
c906108c
SS
1232}
1233
12f02c2a
AC
1234static CORE_ADDR
1235extended_mips16_next_pc (CORE_ADDR pc,
1236 unsigned int extension,
1237 unsigned int insn)
c906108c 1238{
12f02c2a
AC
1239 int op = (insn >> 11);
1240 switch (op)
c906108c 1241 {
12f02c2a
AC
1242 case 2: /* Branch */
1243 {
1244 CORE_ADDR offset;
1245 struct upk_mips16 upk;
1246 unpack_mips16 (pc, extension, insn, itype, &upk);
1247 offset = upk.offset;
1248 if (offset & 0x800)
1249 {
1250 offset &= 0xeff;
1251 offset = -offset;
1252 }
1253 pc += (offset << 1) + 2;
1254 break;
1255 }
1256 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1257 {
1258 struct upk_mips16 upk;
1259 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1260 pc = add_offset_16 (pc, upk.offset);
1261 if ((insn >> 10) & 0x01) /* Exchange mode */
1262 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1263 else
1264 pc |= 0x01;
1265 break;
1266 }
1267 case 4: /* beqz */
1268 {
1269 struct upk_mips16 upk;
1270 int reg;
1271 unpack_mips16 (pc, extension, insn, ritype, &upk);
1272 reg = read_signed_register (upk.regx);
1273 if (reg == 0)
1274 pc += (upk.offset << 1) + 2;
1275 else
1276 pc += 2;
1277 break;
1278 }
1279 case 5: /* bnez */
1280 {
1281 struct upk_mips16 upk;
1282 int reg;
1283 unpack_mips16 (pc, extension, insn, ritype, &upk);
1284 reg = read_signed_register (upk.regx);
1285 if (reg != 0)
1286 pc += (upk.offset << 1) + 2;
1287 else
1288 pc += 2;
1289 break;
1290 }
1291 case 12: /* I8 Formats btez btnez */
1292 {
1293 struct upk_mips16 upk;
1294 int reg;
1295 unpack_mips16 (pc, extension, insn, i8type, &upk);
1296 /* upk.regx contains the opcode */
1297 reg = read_signed_register (24); /* Test register is 24 */
1298 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1299 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1300 /* pc = add_offset_16(pc,upk.offset) ; */
1301 pc += (upk.offset << 1) + 2;
1302 else
1303 pc += 2;
1304 break;
1305 }
1306 case 29: /* RR Formats JR, JALR, JALR-RA */
1307 {
1308 struct upk_mips16 upk;
1309 /* upk.fmt = rrtype; */
1310 op = insn & 0x1f;
1311 if (op == 0)
c5aa993b 1312 {
12f02c2a
AC
1313 int reg;
1314 upk.regx = (insn >> 8) & 0x07;
1315 upk.regy = (insn >> 5) & 0x07;
1316 switch (upk.regy)
c5aa993b 1317 {
12f02c2a
AC
1318 case 0:
1319 reg = upk.regx;
1320 break;
1321 case 1:
1322 reg = 31;
1323 break; /* Function return instruction */
1324 case 2:
1325 reg = upk.regx;
1326 break;
1327 default:
1328 reg = 31;
1329 break; /* BOGUS Guess */
c906108c 1330 }
12f02c2a 1331 pc = read_signed_register (reg);
c906108c 1332 }
12f02c2a 1333 else
c5aa993b 1334 pc += 2;
12f02c2a
AC
1335 break;
1336 }
1337 case 30:
1338 /* This is an instruction extension. Fetch the real instruction
1339 (which follows the extension) and decode things based on
1340 that. */
1341 {
1342 pc += 2;
1343 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1344 break;
1345 }
1346 default:
1347 {
1348 pc += 2;
1349 break;
1350 }
c906108c 1351 }
c5aa993b 1352 return pc;
12f02c2a 1353}
c906108c 1354
5a89d8aa 1355static CORE_ADDR
12f02c2a
AC
1356mips16_next_pc (CORE_ADDR pc)
1357{
1358 unsigned int insn = fetch_mips_16 (pc);
1359 return extended_mips16_next_pc (pc, 0, insn);
1360}
1361
1362/* The mips_next_pc function supports single_step when the remote
7e73cedf 1363 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1364 It works by decoding the current instruction and predicting where a
1365 branch will go. This isnt hard because all the data is available.
1366 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1367CORE_ADDR
1368mips_next_pc (CORE_ADDR pc)
c906108c 1369{
c5aa993b
JM
1370 if (pc & 0x01)
1371 return mips16_next_pc (pc);
1372 else
1373 return mips32_next_pc (pc);
12f02c2a 1374}
c906108c
SS
1375
1376/* Guaranteed to set fci->saved_regs to some values (it never leaves it
ffabd70d
KB
1377 NULL).
1378
1379 Note: kevinb/2002-08-09: The only caller of this function is (and
1380 should remain) mips_frame_init_saved_regs(). In fact,
1381 aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
1382 does nothing more than set frame->saved_regs[SP_REGNUM]. These two
1383 functions should really be combined and now that there is only one
1384 caller, it should be straightforward. (Watch out for multiple returns
c4ac3e63 1385 though.) */
c906108c 1386
d28e01f4 1387static void
acdb74a0 1388mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1389{
1390 int ireg;
1391 CORE_ADDR reg_position;
1392 /* r0 bit means kernel trap */
1393 int kernel_trap;
1394 /* What registers have been saved? Bitmasks. */
1395 unsigned long gen_mask, float_mask;
1396 mips_extra_func_info_t proc_desc;
1397 t_inst inst;
1398
1399 frame_saved_regs_zalloc (fci);
1400
1401 /* If it is the frame for sigtramp, the saved registers are located
1402 in a sigcontext structure somewhere on the stack.
1403 If the stack layout for sigtramp changes we might have to change these
1404 constants and the companion fixup_sigtramp in mdebugread.c */
1405#ifndef SIGFRAME_BASE
1406/* To satisfy alignment restrictions, sigcontext is located 4 bytes
1407 above the sigtramp frame. */
1408#define SIGFRAME_BASE MIPS_REGSIZE
1409/* FIXME! Are these correct?? */
1410#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1411#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1412#define SIGFRAME_FPREGSAVE_OFF \
1413 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1414#endif
1415#ifndef SIGFRAME_REG_SIZE
1416/* FIXME! Is this correct?? */
1417#define SIGFRAME_REG_SIZE MIPS_REGSIZE
1418#endif
5a203e44 1419 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
c906108c
SS
1420 {
1421 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1422 {
c5aa993b
JM
1423 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1424 + ireg * SIGFRAME_REG_SIZE;
b2fb4676 1425 get_frame_saved_regs (fci)[ireg] = reg_position;
c906108c
SS
1426 }
1427 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1428 {
c5aa993b
JM
1429 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1430 + ireg * SIGFRAME_REG_SIZE;
b2fb4676 1431 get_frame_saved_regs (fci)[FP0_REGNUM + ireg] = reg_position;
c906108c 1432 }
b2fb4676 1433 get_frame_saved_regs (fci)[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
c906108c
SS
1434 return;
1435 }
1436
cce74817 1437 proc_desc = fci->extra_info->proc_desc;
c906108c
SS
1438 if (proc_desc == NULL)
1439 /* I'm not sure how/whether this can happen. Normally when we can't
1440 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1441 and set the saved_regs right away. */
1442 return;
1443
c5aa993b
JM
1444 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1445 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1446 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1447
c5aa993b
JM
1448 if ( /* In any frame other than the innermost or a frame interrupted by
1449 a signal, we assume that all registers have been saved.
1450 This assumes that all register saves in a function happen before
1451 the first function call. */
5a203e44 1452 (fci->next == NULL || (get_frame_type (fci->next) == SIGTRAMP_FRAME))
c906108c 1453
c5aa993b
JM
1454 /* In a dummy frame we know exactly where things are saved. */
1455 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1456
c5aa993b
JM
1457 /* Don't bother unless we are inside a function prologue. Outside the
1458 prologue, we know where everything is. */
c906108c 1459
50abf9e5 1460 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
c906108c 1461
c5aa993b
JM
1462 /* Not sure exactly what kernel_trap means, but if it means
1463 the kernel saves the registers without a prologue doing it,
1464 we better not examine the prologue to see whether registers
1465 have been saved yet. */
1466 && !kernel_trap)
c906108c
SS
1467 {
1468 /* We need to figure out whether the registers that the proc_desc
c5aa993b 1469 claims are saved have been saved yet. */
c906108c
SS
1470
1471 CORE_ADDR addr;
1472
1473 /* Bitmasks; set if we have found a save for the register. */
1474 unsigned long gen_save_found = 0;
1475 unsigned long float_save_found = 0;
1476 int instlen;
1477
1478 /* If the address is odd, assume this is MIPS16 code. */
1479 addr = PROC_LOW_ADDR (proc_desc);
1480 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1481
1482 /* Scan through this function's instructions preceding the current
1483 PC, and look for those that save registers. */
50abf9e5 1484 while (addr < get_frame_pc (fci))
c906108c
SS
1485 {
1486 inst = mips_fetch_instruction (addr);
1487 if (pc_is_mips16 (addr))
1488 mips16_decode_reg_save (inst, &gen_save_found);
1489 else
1490 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1491 addr += instlen;
1492 }
1493 gen_mask = gen_save_found;
1494 float_mask = float_save_found;
1495 }
1496
1497 /* Fill in the offsets for the registers which gen_mask says
1498 were saved. */
1499 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
c5aa993b 1500 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
c906108c
SS
1501 if (gen_mask & 0x80000000)
1502 {
b2fb4676 1503 get_frame_saved_regs (fci)[ireg] = reg_position;
7a292a7a 1504 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1505 }
1506
1507 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1508 of that normally used by gcc. Therefore, we have to fetch the first
1509 instruction of the function, and if it's an entry instruction that
1510 saves $s0 or $s1, correct their saved addresses. */
1511 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1512 {
1513 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
c5aa993b 1514 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
c906108c
SS
1515 {
1516 int reg;
1517 int sreg_count = (inst >> 6) & 3;
c5aa993b 1518
c906108c
SS
1519 /* Check if the ra register was pushed on the stack. */
1520 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1521 if (inst & 0x20)
7a292a7a 1522 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1523
1524 /* Check if the s0 and s1 registers were pushed on the stack. */
c5aa993b 1525 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c 1526 {
b2fb4676 1527 get_frame_saved_regs (fci)[reg] = reg_position;
7a292a7a 1528 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1529 }
1530 }
1531 }
1532
1533 /* Fill in the offsets for the registers which float_mask says
1534 were saved. */
1535 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1536
6acdf5c7
MS
1537 /* Apparently, the freg_offset gives the offset to the first 64 bit
1538 saved.
1539
1540 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1541 designates the first saved 64 bit register.
1542
1543 When the ABI specifies 32 bit saved registers, the ``64 bit saved
1544 DOUBLE'' consists of two adjacent 32 bit registers, Hence
1545 FREG_OFFSET, designates the address of the lower register of the
1546 register pair. Adjust the offset so that it designates the upper
1547 register of the pair -- i.e., the address of the first saved 32
1548 bit register. */
1549
1550 if (MIPS_SAVED_REGSIZE == 4)
7a292a7a 1551 reg_position += MIPS_SAVED_REGSIZE;
c906108c
SS
1552
1553 /* Fill in the offsets for the float registers which float_mask says
1554 were saved. */
c5aa993b 1555 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
c906108c
SS
1556 if (float_mask & 0x80000000)
1557 {
b2fb4676 1558 get_frame_saved_regs (fci)[FP0_REGNUM + ireg] = reg_position;
7a292a7a 1559 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1560 }
1561
b2fb4676 1562 get_frame_saved_regs (fci)[PC_REGNUM] = get_frame_saved_regs (fci)[RA_REGNUM];
c906108c
SS
1563}
1564
d28e01f4
KB
1565/* Set up the 'saved_regs' array. This is a data structure containing
1566 the addresses on the stack where each register has been saved, for
1567 each stack frame. Registers that have not been saved will have
1568 zero here. The stack pointer register is special: rather than the
1569 address where the stack register has been saved, saved_regs[SP_REGNUM]
1570 will have the actual value of the previous frame's stack register. */
1571
1572static void
1573mips_frame_init_saved_regs (struct frame_info *frame)
1574{
b2fb4676 1575 if (get_frame_saved_regs (frame) == NULL)
d28e01f4
KB
1576 {
1577 mips_find_saved_regs (frame);
1578 }
b2fb4676 1579 get_frame_saved_regs (frame)[SP_REGNUM] = frame->frame;
d28e01f4
KB
1580}
1581
c906108c 1582static CORE_ADDR
acdb74a0 1583read_next_frame_reg (struct frame_info *fi, int regno)
c906108c 1584{
64159455
AC
1585 int optimized;
1586 CORE_ADDR addr;
1587 int realnum;
1588 enum lval_type lval;
1589 void *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
1590 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1591 raw_buffer);
1592 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1593 should have a pseudo register range that correspons to the ABI's,
1594 rather than the ISA's, view of registers. These registers would
1595 then implicitly describe their size and hence could be used
1596 without the below munging. */
1597 if (lval == lval_memory)
c906108c 1598 {
64159455 1599 if (regno < 32)
c906108c 1600 {
64159455
AC
1601 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1602 saved. */
1603 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
c906108c
SS
1604 }
1605 }
64159455
AC
1606
1607 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
c906108c
SS
1608}
1609
1610/* mips_addr_bits_remove - remove useless address bits */
1611
875e1767 1612static CORE_ADDR
acdb74a0 1613mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1614{
5213ab06
AC
1615 if (GDB_TARGET_IS_MIPS64)
1616 {
4014092b 1617 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
5213ab06
AC
1618 {
1619 /* This hack is a work-around for existing boards using
1620 PMON, the simulator, and any other 64-bit targets that
1621 doesn't have true 64-bit addressing. On these targets,
1622 the upper 32 bits of addresses are ignored by the
1623 hardware. Thus, the PC or SP are likely to have been
1624 sign extended to all 1s by instruction sequences that
1625 load 32-bit addresses. For example, a typical piece of
4014092b
AC
1626 code that loads an address is this:
1627 lui $r2, <upper 16 bits>
1628 ori $r2, <lower 16 bits>
1629 But the lui sign-extends the value such that the upper 32
1630 bits may be all 1s. The workaround is simply to mask off
1631 these bits. In the future, gcc may be changed to support
1632 true 64-bit addressing, and this masking will have to be
1633 disabled. */
5213ab06
AC
1634 addr &= (CORE_ADDR) 0xffffffff;
1635 }
1636 }
4014092b 1637 else if (mips_mask_address_p ())
5213ab06 1638 {
4014092b
AC
1639 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1640 masking off bits, instead, the actual target should be asking
1641 for the address to be converted to a valid pointer. */
5213ab06
AC
1642 /* Even when GDB is configured for some 32-bit targets
1643 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1644 so CORE_ADDR is 64 bits. So we still have to mask off
1645 useless bits from addresses. */
c5aa993b 1646 addr &= (CORE_ADDR) 0xffffffff;
c906108c 1647 }
c906108c
SS
1648 return addr;
1649}
1650
9022177c
DJ
1651/* mips_software_single_step() is called just before we want to resume
1652 the inferior, if we want to single-step it but there is no hardware
75c9abc6 1653 or kernel single-step support (MIPS on GNU/Linux for example). We find
9022177c
DJ
1654 the target of the coming instruction and breakpoint it.
1655
1656 single_step is also called just after the inferior stops. If we had
1657 set up a simulated single-step, we undo our damage. */
1658
1659void
1660mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1661{
1662 static CORE_ADDR next_pc;
1663 typedef char binsn_quantum[BREAKPOINT_MAX];
1664 static binsn_quantum break_mem;
1665 CORE_ADDR pc;
1666
1667 if (insert_breakpoints_p)
1668 {
1669 pc = read_register (PC_REGNUM);
1670 next_pc = mips_next_pc (pc);
1671
1672 target_insert_breakpoint (next_pc, break_mem);
1673 }
1674 else
1675 target_remove_breakpoint (next_pc, break_mem);
1676}
1677
97f46953 1678static CORE_ADDR
acdb74a0 1679mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1680{
1681 CORE_ADDR pc, tmp;
1682
1683 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
c5aa993b 1684 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
5a89d8aa 1685 tmp = SKIP_TRAMPOLINE_CODE (pc);
97f46953 1686 return tmp ? tmp : pc;
c906108c
SS
1687}
1688
1689
f7ab6ec6 1690static CORE_ADDR
acdb74a0 1691mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1692{
1693 CORE_ADDR saved_pc;
cce74817 1694 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c
SS
1695 /* We have to get the saved pc from the sigcontext
1696 if it is a signal handler frame. */
5a203e44 1697 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM
c5aa993b 1698 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
c906108c 1699
50abf9e5 1700 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
1701 {
1702 LONGEST tmp;
1703 frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
1704 saved_pc = tmp;
1705 }
1706 else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
7a292a7a 1707 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
c906108c 1708 else
7a292a7a 1709 saved_pc = read_next_frame_reg (frame, pcreg);
c906108c
SS
1710
1711 return ADDR_BITS_REMOVE (saved_pc);
1712}
1713
1714static struct mips_extra_func_info temp_proc_desc;
fe29b929
KB
1715
1716/* This hack will go away once the get_prev_frame() code has been
1717 modified to set the frame's type first. That is BEFORE init extra
1718 frame info et.al. is called. This is because it will become
1719 possible to skip the init extra info call for sigtramp and dummy
1720 frames. */
1721static CORE_ADDR *temp_saved_regs;
c906108c
SS
1722
1723/* Set a register's saved stack address in temp_saved_regs. If an address
1724 has already been set for this register, do nothing; this way we will
1725 only recognize the first save of a given register in a function prologue.
1726 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1727
1728static void
acdb74a0 1729set_reg_offset (int regno, CORE_ADDR offset)
c906108c 1730{
cce74817
JM
1731 if (temp_saved_regs[regno] == 0)
1732 temp_saved_regs[regno] = offset;
c906108c
SS
1733}
1734
1735
1736/* Test whether the PC points to the return instruction at the
1737 end of a function. */
1738
c5aa993b 1739static int
acdb74a0 1740mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1741{
1742 if (pc_is_mips16 (pc))
1743 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1744 generates a "jr $ra"; other times it generates code to load
1745 the return address from the stack to an accessible register (such
1746 as $a3), then a "jr" using that register. This second case
1747 is almost impossible to distinguish from an indirect jump
1748 used for switch statements, so we don't even try. */
1749 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1750 else
1751 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1752}
1753
1754
1755/* This fencepost looks highly suspicious to me. Removing it also
1756 seems suspicious as it could affect remote debugging across serial
1757 lines. */
1758
1759static CORE_ADDR
acdb74a0 1760heuristic_proc_start (CORE_ADDR pc)
c906108c 1761{
c5aa993b
JM
1762 CORE_ADDR start_pc;
1763 CORE_ADDR fence;
1764 int instlen;
1765 int seen_adjsp = 0;
c906108c 1766
c5aa993b
JM
1767 pc = ADDR_BITS_REMOVE (pc);
1768 start_pc = pc;
1769 fence = start_pc - heuristic_fence_post;
1770 if (start_pc == 0)
1771 return 0;
c906108c 1772
c5aa993b
JM
1773 if (heuristic_fence_post == UINT_MAX
1774 || fence < VM_MIN_ADDRESS)
1775 fence = VM_MIN_ADDRESS;
c906108c 1776
c5aa993b 1777 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1778
c5aa993b
JM
1779 /* search back for previous return */
1780 for (start_pc -= instlen;; start_pc -= instlen)
1781 if (start_pc < fence)
1782 {
1783 /* It's not clear to me why we reach this point when
1784 stop_soon_quietly, but with this test, at least we
1785 don't print out warnings for every child forked (eg, on
1786 decstation). 22apr93 rich@cygnus.com. */
1787 if (!stop_soon_quietly)
c906108c 1788 {
c5aa993b
JM
1789 static int blurb_printed = 0;
1790
1791 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1792 paddr_nz (pc));
1793
1794 if (!blurb_printed)
c906108c 1795 {
c5aa993b
JM
1796 /* This actually happens frequently in embedded
1797 development, when you first connect to a board
1798 and your stack pointer and pc are nowhere in
1799 particular. This message needs to give people
1800 in that situation enough information to
1801 determine that it's no big deal. */
1802 printf_filtered ("\n\
cd0fc7c3
SS
1803 GDB is unable to find the start of the function at 0x%s\n\
1804and thus can't determine the size of that function's stack frame.\n\
1805This means that GDB may be unable to access that stack frame, or\n\
1806the frames below it.\n\
1807 This problem is most likely caused by an invalid program counter or\n\
1808stack pointer.\n\
1809 However, if you think GDB should simply search farther back\n\
1810from 0x%s for code which looks like the beginning of a\n\
1811function, you can increase the range of the search using the `set\n\
1812heuristic-fence-post' command.\n",
c5aa993b
JM
1813 paddr_nz (pc), paddr_nz (pc));
1814 blurb_printed = 1;
c906108c 1815 }
c906108c
SS
1816 }
1817
c5aa993b
JM
1818 return 0;
1819 }
1820 else if (pc_is_mips16 (start_pc))
1821 {
1822 unsigned short inst;
1823
1824 /* On MIPS16, any one of the following is likely to be the
1825 start of a function:
1826 entry
1827 addiu sp,-n
1828 daddiu sp,-n
1829 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1830 inst = mips_fetch_instruction (start_pc);
1831 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1832 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1833 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1834 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1835 break;
1836 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1837 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1838 seen_adjsp = 1;
1839 else
1840 seen_adjsp = 0;
1841 }
1842 else if (mips_about_to_return (start_pc))
1843 {
1844 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1845 break;
1846 }
1847
c5aa993b 1848 return start_pc;
c906108c
SS
1849}
1850
1851/* Fetch the immediate value from a MIPS16 instruction.
1852 If the previous instruction was an EXTEND, use it to extend
1853 the upper bits of the immediate value. This is a helper function
1854 for mips16_heuristic_proc_desc. */
1855
1856static int
acdb74a0
AC
1857mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1858 unsigned short inst, /* current instruction */
1859 int nbits, /* number of bits in imm field */
1860 int scale, /* scale factor to be applied to imm */
1861 int is_signed) /* is the imm field signed? */
c906108c
SS
1862{
1863 int offset;
1864
1865 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1866 {
1867 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1868 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1869 offset = 0 - (0x10000 - (offset & 0xffff));
1870 return offset | (inst & 0x1f);
1871 }
1872 else
1873 {
1874 int max_imm = 1 << nbits;
1875 int mask = max_imm - 1;
1876 int sign_bit = max_imm >> 1;
1877
1878 offset = inst & mask;
1879 if (is_signed && (offset & sign_bit))
1880 offset = 0 - (max_imm - offset);
1881 return offset * scale;
1882 }
1883}
1884
1885
1886/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1887 stream from start_pc to limit_pc. */
1888
1889static void
acdb74a0
AC
1890mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1891 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1892{
1893 CORE_ADDR cur_pc;
1894 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1895 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1896 unsigned inst = 0; /* current instruction */
1897 unsigned entry_inst = 0; /* the entry instruction */
1898 int reg, offset;
1899
c5aa993b
JM
1900 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1901 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1902
1903 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1904 {
1905 /* Save the previous instruction. If it's an EXTEND, we'll extract
1906 the immediate offset extension from it in mips16_get_imm. */
1907 prev_inst = inst;
1908
1909 /* Fetch and decode the instruction. */
1910 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 1911 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
1912 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1913 {
1914 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
1915 if (offset < 0) /* negative stack adjustment? */
1916 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
1917 else
1918 /* Exit loop if a positive stack adjustment is found, which
1919 usually means that the stack cleanup code in the function
1920 epilogue is reached. */
1921 break;
1922 }
1923 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1924 {
1925 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1926 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 1927 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1928 set_reg_offset (reg, sp + offset);
1929 }
1930 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1931 {
1932 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1933 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1934 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1935 set_reg_offset (reg, sp + offset);
1936 }
1937 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1938 {
1939 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 1940 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1941 set_reg_offset (RA_REGNUM, sp + offset);
1942 }
1943 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1944 {
1945 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 1946 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1947 set_reg_offset (RA_REGNUM, sp + offset);
1948 }
c5aa993b 1949 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
1950 {
1951 frame_addr = sp;
1952 PROC_FRAME_REG (&temp_proc_desc) = 17;
1953 }
1954 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1955 {
1956 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1957 frame_addr = sp + offset;
1958 PROC_FRAME_REG (&temp_proc_desc) = 17;
1959 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1960 }
1961 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1962 {
1963 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1964 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1965 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1966 set_reg_offset (reg, frame_addr + offset);
1967 }
1968 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1969 {
1970 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1971 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1972 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1973 set_reg_offset (reg, frame_addr + offset);
1974 }
c5aa993b
JM
1975 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1976 entry_inst = inst; /* save for later processing */
c906108c 1977 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 1978 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
1979 }
1980
c5aa993b
JM
1981 /* The entry instruction is typically the first instruction in a function,
1982 and it stores registers at offsets relative to the value of the old SP
1983 (before the prologue). But the value of the sp parameter to this
1984 function is the new SP (after the prologue has been executed). So we
1985 can't calculate those offsets until we've seen the entire prologue,
1986 and can calculate what the old SP must have been. */
1987 if (entry_inst != 0)
1988 {
1989 int areg_count = (entry_inst >> 8) & 7;
1990 int sreg_count = (entry_inst >> 6) & 3;
c906108c 1991
c5aa993b
JM
1992 /* The entry instruction always subtracts 32 from the SP. */
1993 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 1994
c5aa993b
JM
1995 /* Now we can calculate what the SP must have been at the
1996 start of the function prologue. */
1997 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 1998
c5aa993b
JM
1999 /* Check if a0-a3 were saved in the caller's argument save area. */
2000 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2001 {
2002 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2003 set_reg_offset (reg, sp + offset);
2004 offset += MIPS_SAVED_REGSIZE;
2005 }
c906108c 2006
c5aa993b
JM
2007 /* Check if the ra register was pushed on the stack. */
2008 offset = -4;
2009 if (entry_inst & 0x20)
2010 {
2011 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2012 set_reg_offset (RA_REGNUM, sp + offset);
2013 offset -= MIPS_SAVED_REGSIZE;
2014 }
c906108c 2015
c5aa993b
JM
2016 /* Check if the s0 and s1 registers were pushed on the stack. */
2017 for (reg = 16; reg < sreg_count + 16; reg++)
2018 {
2019 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2020 set_reg_offset (reg, sp + offset);
2021 offset -= MIPS_SAVED_REGSIZE;
2022 }
2023 }
c906108c
SS
2024}
2025
2026static void
fba45db2
KB
2027mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2028 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
2029{
2030 CORE_ADDR cur_pc;
c5aa993b 2031 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 2032restart:
fe29b929 2033 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
cce74817 2034 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 2035 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
2036 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2037 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2038 {
2039 unsigned long inst, high_word, low_word;
2040 int reg;
2041
2042 /* Fetch the instruction. */
2043 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2044
2045 /* Save some code by pre-extracting some useful fields. */
2046 high_word = (inst >> 16) & 0xffff;
2047 low_word = inst & 0xffff;
2048 reg = high_word & 0x1f;
2049
c5aa993b 2050 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
2051 || high_word == 0x23bd /* addi $sp,$sp,-i */
2052 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2053 {
2054 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 2055 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
2056 else
2057 /* Exit loop if a positive stack adjustment is found, which
2058 usually means that the stack cleanup code in the function
2059 epilogue is reached. */
2060 break;
2061 }
2062 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2063 {
c5aa993b 2064 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2065 set_reg_offset (reg, sp + low_word);
2066 }
2067 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2068 {
2069 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2070 but the register size used is only 32 bits. Make the address
2071 for the saved register point to the lower 32 bits. */
c5aa993b 2072 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2073 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
2074 }
c5aa993b 2075 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
2076 {
2077 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
2078 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2079 frame_addr = sp + low_word;
c906108c
SS
2080 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2081 {
2082 unsigned alloca_adjust;
2083 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2084 frame_addr = read_next_frame_reg (next_frame, 30);
2085 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
2086 if (alloca_adjust > 0)
2087 {
2088 /* FP > SP + frame_size. This may be because
2089 * of an alloca or somethings similar.
2090 * Fix sp to "pre-alloca" value, and try again.
2091 */
2092 sp += alloca_adjust;
2093 goto restart;
2094 }
2095 }
2096 }
c5aa993b
JM
2097 /* move $30,$sp. With different versions of gas this will be either
2098 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2099 Accept any one of these. */
c906108c
SS
2100 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2101 {
2102 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2103 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2104 {
2105 unsigned alloca_adjust;
2106 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2107 frame_addr = read_next_frame_reg (next_frame, 30);
2108 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
2109 if (alloca_adjust > 0)
2110 {
2111 /* FP > SP + frame_size. This may be because
2112 * of an alloca or somethings similar.
2113 * Fix sp to "pre-alloca" value, and try again.
2114 */
2115 sp += alloca_adjust;
2116 goto restart;
2117 }
2118 }
2119 }
c5aa993b 2120 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 2121 {
c5aa993b 2122 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2123 set_reg_offset (reg, frame_addr + low_word);
2124 }
2125 }
2126}
2127
2128static mips_extra_func_info_t
acdb74a0 2129heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
479412cd 2130 struct frame_info *next_frame, int cur_frame)
c906108c 2131{
479412cd
DJ
2132 CORE_ADDR sp;
2133
2134 if (cur_frame)
2135 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2136 else
2137 sp = 0;
c906108c 2138
c5aa993b
JM
2139 if (start_pc == 0)
2140 return NULL;
2141 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
fe29b929 2142 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
3758ac48 2143 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2144 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2145 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2146 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2147
2148 if (start_pc + 200 < limit_pc)
2149 limit_pc = start_pc + 200;
2150 if (pc_is_mips16 (start_pc))
2151 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2152 else
2153 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2154 return &temp_proc_desc;
2155}
2156
6c0d6680
DJ
2157struct mips_objfile_private
2158{
2159 bfd_size_type size;
2160 char *contents;
2161};
2162
2163/* Global used to communicate between non_heuristic_proc_desc and
2164 compare_pdr_entries within qsort (). */
2165static bfd *the_bfd;
2166
2167static int
2168compare_pdr_entries (const void *a, const void *b)
2169{
2170 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2171 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2172
2173 if (lhs < rhs)
2174 return -1;
2175 else if (lhs == rhs)
2176 return 0;
2177 else
2178 return 1;
2179}
2180
c906108c 2181static mips_extra_func_info_t
acdb74a0 2182non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
2183{
2184 CORE_ADDR startaddr;
2185 mips_extra_func_info_t proc_desc;
c5aa993b 2186 struct block *b = block_for_pc (pc);
c906108c 2187 struct symbol *sym;
6c0d6680
DJ
2188 struct obj_section *sec;
2189 struct mips_objfile_private *priv;
2190
ae45cd16 2191 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
6c0d6680 2192 return NULL;
c906108c
SS
2193
2194 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2195 if (addrptr)
2196 *addrptr = startaddr;
6c0d6680
DJ
2197
2198 priv = NULL;
2199
2200 sec = find_pc_section (pc);
2201 if (sec != NULL)
c906108c 2202 {
6c0d6680
DJ
2203 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2204
2205 /* Search the ".pdr" section generated by GAS. This includes most of
2206 the information normally found in ECOFF PDRs. */
2207
2208 the_bfd = sec->objfile->obfd;
2209 if (priv == NULL
2210 && (the_bfd->format == bfd_object
2211 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2212 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2213 {
2214 /* Right now GAS only outputs the address as a four-byte sequence.
2215 This means that we should not bother with this method on 64-bit
2216 targets (until that is fixed). */
2217
2218 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2219 sizeof (struct mips_objfile_private));
2220 priv->size = 0;
2221 sec->objfile->obj_private = priv;
2222 }
2223 else if (priv == NULL)
2224 {
2225 asection *bfdsec;
2226
2227 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2228 sizeof (struct mips_objfile_private));
2229
2230 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2231 if (bfdsec != NULL)
2232 {
2233 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2234 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2235 priv->size);
2236 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2237 priv->contents, 0, priv->size);
2238
2239 /* In general, the .pdr section is sorted. However, in the
2240 presence of multiple code sections (and other corner cases)
2241 it can become unsorted. Sort it so that we can use a faster
2242 binary search. */
2243 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2244 }
2245 else
2246 priv->size = 0;
2247
2248 sec->objfile->obj_private = priv;
2249 }
2250 the_bfd = NULL;
2251
2252 if (priv->size != 0)
2253 {
2254 int low, mid, high;
2255 char *ptr;
2256
2257 low = 0;
2258 high = priv->size / 32;
2259
2260 do
2261 {
2262 CORE_ADDR pdr_pc;
2263
2264 mid = (low + high) / 2;
2265
2266 ptr = priv->contents + mid * 32;
2267 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2268 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2269 SECT_OFF_TEXT (sec->objfile));
2270 if (pdr_pc == startaddr)
2271 break;
2272 if (pdr_pc > startaddr)
2273 high = mid;
2274 else
2275 low = mid + 1;
2276 }
2277 while (low != high);
2278
2279 if (low != high)
2280 {
2281 struct symbol *sym = find_pc_function (pc);
2282
2283 /* Fill in what we need of the proc_desc. */
2284 proc_desc = (mips_extra_func_info_t)
2285 obstack_alloc (&sec->objfile->psymbol_obstack,
2286 sizeof (struct mips_extra_func_info));
2287 PROC_LOW_ADDR (proc_desc) = startaddr;
2288
2289 /* Only used for dummy frames. */
2290 PROC_HIGH_ADDR (proc_desc) = 0;
2291
2292 PROC_FRAME_OFFSET (proc_desc)
2293 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2294 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2295 ptr + 24);
2296 PROC_FRAME_ADJUST (proc_desc) = 0;
2297 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2298 ptr + 4);
2299 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2300 ptr + 12);
2301 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2302 ptr + 8);
2303 PROC_FREG_OFFSET (proc_desc)
2304 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2305 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2306 ptr + 28);
2307 proc_desc->pdr.isym = (long) sym;
2308
2309 return proc_desc;
2310 }
2311 }
c906108c
SS
2312 }
2313
6c0d6680
DJ
2314 if (b == NULL)
2315 return NULL;
2316
2317 if (startaddr > BLOCK_START (b))
2318 {
2319 /* This is the "pathological" case referred to in a comment in
2320 print_frame_info. It might be better to move this check into
2321 symbol reading. */
2322 return NULL;
2323 }
2324
2325 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2326
c906108c
SS
2327 /* If we never found a PDR for this function in symbol reading, then
2328 examine prologues to find the information. */
2329 if (sym)
2330 {
2331 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2332 if (PROC_FRAME_REG (proc_desc) == -1)
2333 return NULL;
2334 else
2335 return proc_desc;
2336 }
2337 else
2338 return NULL;
2339}
2340
2341
2342static mips_extra_func_info_t
479412cd 2343find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
c906108c
SS
2344{
2345 mips_extra_func_info_t proc_desc;
4e0df2df 2346 CORE_ADDR startaddr = 0;
c906108c
SS
2347
2348 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2349
2350 if (proc_desc)
2351 {
2352 /* IF this is the topmost frame AND
2353 * (this proc does not have debugging information OR
2354 * the PC is in the procedure prologue)
2355 * THEN create a "heuristic" proc_desc (by analyzing
2356 * the actual code) to replace the "official" proc_desc.
2357 */
2358 if (next_frame == NULL)
2359 {
2360 struct symtab_and_line val;
2361 struct symbol *proc_symbol =
c86b5b38 2362 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
2363
2364 if (proc_symbol)
2365 {
2366 val = find_pc_line (BLOCK_START
c5aa993b 2367 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
2368 0);
2369 val.pc = val.end ? val.end : pc;
2370 }
2371 if (!proc_symbol || pc < val.pc)
2372 {
2373 mips_extra_func_info_t found_heuristic =
c86b5b38
MS
2374 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2375 pc, next_frame, cur_frame);
c906108c
SS
2376 if (found_heuristic)
2377 proc_desc = found_heuristic;
2378 }
2379 }
2380 }
2381 else
2382 {
2383 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
2384 by procedure call dummys. However, the procedures being called ought
2385 to have their own proc_descs, and even if they don't,
2386 heuristic_proc_desc knows how to create them! */
c906108c
SS
2387
2388 register struct linked_proc_info *link;
2389
2390 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
2391 if (PROC_LOW_ADDR (&link->info) <= pc
2392 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
2393 return &link->info;
2394
2395 if (startaddr == 0)
2396 startaddr = heuristic_proc_start (pc);
2397
2398 proc_desc =
479412cd 2399 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
c906108c
SS
2400 }
2401 return proc_desc;
2402}
2403
2404static CORE_ADDR
acdb74a0
AC
2405get_frame_pointer (struct frame_info *frame,
2406 mips_extra_func_info_t proc_desc)
c906108c 2407{
c86b5b38
MS
2408 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
2409 PROC_FRAME_REG (proc_desc)) +
2410 PROC_FRAME_OFFSET (proc_desc) -
2411 PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
2412}
2413
5a89d8aa 2414static mips_extra_func_info_t cached_proc_desc;
c906108c 2415
f7ab6ec6 2416static CORE_ADDR
acdb74a0 2417mips_frame_chain (struct frame_info *frame)
c906108c
SS
2418{
2419 mips_extra_func_info_t proc_desc;
2420 CORE_ADDR tmp;
c5aa993b 2421 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
c906108c
SS
2422
2423 if (saved_pc == 0 || inside_entry_file (saved_pc))
2424 return 0;
2425
2426 /* Check if the PC is inside a call stub. If it is, fetch the
2427 PC of the caller of that stub. */
5a89d8aa 2428 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
c906108c
SS
2429 saved_pc = tmp;
2430
ae45cd16 2431 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
cedea778
AC
2432 {
2433 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2434 is well, frame->frame the bottom of the current frame will
2435 contain that value. */
2436 return frame->frame;
2437 }
2438
c906108c 2439 /* Look up the procedure descriptor for this PC. */
479412cd 2440 proc_desc = find_proc_desc (saved_pc, frame, 1);
c906108c
SS
2441 if (!proc_desc)
2442 return 0;
2443
2444 cached_proc_desc = proc_desc;
2445
2446 /* If no frame pointer and frame size is zero, we must be at end
2447 of stack (or otherwise hosed). If we don't check frame size,
2448 we loop forever if we see a zero size frame. */
2449 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2450 && PROC_FRAME_OFFSET (proc_desc) == 0
7807aa61
MS
2451 /* The previous frame from a sigtramp frame might be frameless
2452 and have frame size zero. */
5a203e44 2453 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
cedea778
AC
2454 /* For a generic dummy frame, let get_frame_pointer() unwind a
2455 register value saved as part of the dummy frame call. */
50abf9e5 2456 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
c906108c
SS
2457 return 0;
2458 else
2459 return get_frame_pointer (frame, proc_desc);
2460}
2461
f7ab6ec6 2462static void
acdb74a0 2463mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2464{
2465 int regnum;
2466
2467 /* Use proc_desc calculated in frame_chain */
2468 mips_extra_func_info_t proc_desc =
50abf9e5 2469 fci->next ? cached_proc_desc : find_proc_desc (get_frame_pc (fci), fci->next, 1);
c906108c 2470
cce74817
JM
2471 fci->extra_info = (struct frame_extra_info *)
2472 frame_obstack_alloc (sizeof (struct frame_extra_info));
2473
c906108c 2474 fci->saved_regs = NULL;
cce74817 2475 fci->extra_info->proc_desc =
c906108c
SS
2476 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2477 if (proc_desc)
2478 {
2479 /* Fixup frame-pointer - only needed for top frame */
2480 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2481 Get the value of the frame relative sp, procedure might have been
2482 interrupted by a signal at it's very start. */
50abf9e5 2483 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
c906108c 2484 && !PROC_DESC_IS_DUMMY (proc_desc))
8ccd593b 2485 deprecated_update_frame_base_hack (fci, read_next_frame_reg (fci->next, SP_REGNUM));
50abf9e5 2486 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
cedea778
AC
2487 /* Do not ``fix'' fci->frame. It will have the value of the
2488 generic dummy frame's top-of-stack (since the draft
2489 fci->frame is obtained by returning the unwound stack
2490 pointer) and that is what we want. That way the fci->frame
2491 value will match the top-of-stack value that was saved as
2492 part of the dummy frames data. */
2493 /* Do nothing. */;
c906108c 2494 else
8ccd593b 2495 deprecated_update_frame_base_hack (fci, get_frame_pointer (fci->next, proc_desc));
c906108c
SS
2496
2497 if (proc_desc == &temp_proc_desc)
2498 {
2499 char *name;
2500
2501 /* Do not set the saved registers for a sigtramp frame,
5a203e44
AC
2502 mips_find_saved_registers will do that for us. We can't
2503 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2504 yet set. */
2505 /* FIXME: cagney/2002-11-18: This problem will go away once
2506 frame.c:get_prev_frame() is modified to set the frame's
2507 type before calling functions like this. */
50abf9e5 2508 find_pc_partial_function (get_frame_pc (fci), &name,
c5aa993b 2509 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
50abf9e5 2510 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
c906108c 2511 {
c5aa993b 2512 frame_saved_regs_zalloc (fci);
b2fb4676
AC
2513 memcpy (get_frame_saved_regs (fci), temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2514 get_frame_saved_regs (fci)[PC_REGNUM]
2515 = get_frame_saved_regs (fci)[RA_REGNUM];
ffabd70d
KB
2516 /* Set value of previous frame's stack pointer. Remember that
2517 saved_regs[SP_REGNUM] is special in that it contains the
2518 value of the stack pointer register. The other saved_regs
2519 values are addresses (in the inferior) at which a given
2520 register's value may be found. */
b2fb4676 2521 get_frame_saved_regs (fci)[SP_REGNUM] = fci->frame;
c906108c
SS
2522 }
2523 }
2524
2525 /* hack: if argument regs are saved, guess these contain args */
cce74817
JM
2526 /* assume we can't tell how many args for now */
2527 fci->extra_info->num_args = -1;
c906108c
SS
2528 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2529 {
c5aa993b 2530 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2531 {
cce74817 2532 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2533 break;
2534 }
c5aa993b 2535 }
c906108c
SS
2536 }
2537}
2538
2539/* MIPS stack frames are almost impenetrable. When execution stops,
2540 we basically have to look at symbol information for the function
2541 that we stopped in, which tells us *which* register (if any) is
2542 the base of the frame pointer, and what offset from that register
361d1df0 2543 the frame itself is at.
c906108c
SS
2544
2545 This presents a problem when trying to examine a stack in memory
2546 (that isn't executing at the moment), using the "frame" command. We
2547 don't have a PC, nor do we have any registers except SP.
2548
2549 This routine takes two arguments, SP and PC, and tries to make the
2550 cached frames look as if these two arguments defined a frame on the
2551 cache. This allows the rest of info frame to extract the important
2552 arguments without difficulty. */
2553
2554struct frame_info *
acdb74a0 2555setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2556{
2557 if (argc != 2)
2558 error ("MIPS frame specifications require two arguments: sp and pc");
2559
2560 return create_new_frame (argv[0], argv[1]);
2561}
2562
f09ded24
AC
2563/* According to the current ABI, should the type be passed in a
2564 floating-point register (assuming that there is space)? When there
2565 is no FPU, FP are not even considered as possibile candidates for
2566 FP registers and, consequently this returns false - forces FP
2567 arguments into integer registers. */
2568
2569static int
2570fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2571{
2572 return ((typecode == TYPE_CODE_FLT
2573 || (MIPS_EABI
2574 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2575 && TYPE_NFIELDS (arg_type) == 1
2576 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2577 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2578}
2579
49e790b0
DJ
2580/* On o32, argument passing in GPRs depends on the alignment of the type being
2581 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2582
2583static int
2584mips_type_needs_double_align (struct type *type)
2585{
2586 enum type_code typecode = TYPE_CODE (type);
361d1df0 2587
49e790b0
DJ
2588 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2589 return 1;
2590 else if (typecode == TYPE_CODE_STRUCT)
2591 {
2592 if (TYPE_NFIELDS (type) < 1)
2593 return 0;
2594 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2595 }
2596 else if (typecode == TYPE_CODE_UNION)
2597 {
361d1df0 2598 int i, n;
49e790b0
DJ
2599
2600 n = TYPE_NFIELDS (type);
2601 for (i = 0; i < n; i++)
2602 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2603 return 1;
2604 return 0;
2605 }
2606 return 0;
2607}
2608
cb3d25d1
MS
2609/* Macros to round N up or down to the next A boundary;
2610 A must be a power of two. */
2611
2612#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2613#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2614
dc604539
AC
2615/* Adjust the address downward (direction of stack growth) so that it
2616 is correctly aligned for a new stack frame. */
2617static CORE_ADDR
2618mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2619{
2620 return ROUND_DOWN (addr, 16);
2621}
2622
f7ab6ec6 2623static CORE_ADDR
46e0f506
MS
2624mips_eabi_push_arguments (int nargs,
2625 struct value **args,
2626 CORE_ADDR sp,
2627 int struct_return,
2628 CORE_ADDR struct_addr)
c906108c
SS
2629{
2630 int argreg;
2631 int float_argreg;
2632 int argnum;
2633 int len = 0;
2634 int stack_offset = 0;
2635
c906108c 2636 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2637 are properly aligned. The stack has to be at least 64-bit
2638 aligned even on 32-bit machines, because doubles must be 64-bit
2639 aligned. For n32 and n64, stack frames need to be 128-bit
2640 aligned, so we round to this widest known alignment. */
2641
c906108c 2642 sp = ROUND_DOWN (sp, 16);
cce41527 2643 struct_addr = ROUND_DOWN (struct_addr, 16);
c5aa993b 2644
46e0f506 2645 /* Now make space on the stack for the args. We allocate more
c906108c 2646 than necessary for EABI, because the first few arguments are
46e0f506 2647 passed in registers, but that's OK. */
c906108c 2648 for (argnum = 0; argnum < nargs; argnum++)
46e0f506
MS
2649 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2650 MIPS_STACK_ARGSIZE);
c906108c
SS
2651 sp -= ROUND_UP (len, 16);
2652
9ace0497 2653 if (mips_debug)
46e0f506
MS
2654 fprintf_unfiltered (gdb_stdlog,
2655 "mips_eabi_push_arguments: sp=0x%s allocated %d\n",
cb3d25d1 2656 paddr_nz (sp), ROUND_UP (len, 16));
9ace0497 2657
c906108c
SS
2658 /* Initialize the integer and float register pointers. */
2659 argreg = A0_REGNUM;
2660 float_argreg = FPA0_REGNUM;
2661
46e0f506 2662 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2663 if (struct_return)
9ace0497
AC
2664 {
2665 if (mips_debug)
2666 fprintf_unfiltered (gdb_stdlog,
46e0f506 2667 "mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
cb3d25d1 2668 argreg, paddr_nz (struct_addr));
9ace0497
AC
2669 write_register (argreg++, struct_addr);
2670 }
c906108c
SS
2671
2672 /* Now load as many as possible of the first arguments into
2673 registers, and push the rest onto the stack. Loop thru args
2674 from first to last. */
2675 for (argnum = 0; argnum < nargs; argnum++)
2676 {
2677 char *val;
cb3d25d1 2678 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
ea7c478f 2679 struct value *arg = args[argnum];
c906108c
SS
2680 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2681 int len = TYPE_LENGTH (arg_type);
2682 enum type_code typecode = TYPE_CODE (arg_type);
2683
9ace0497
AC
2684 if (mips_debug)
2685 fprintf_unfiltered (gdb_stdlog,
46e0f506 2686 "mips_eabi_push_arguments: %d len=%d type=%d",
acdb74a0 2687 argnum + 1, len, (int) typecode);
9ace0497 2688
c906108c 2689 /* The EABI passes structures that do not fit in a register by
46e0f506
MS
2690 reference. */
2691 if (len > MIPS_SAVED_REGSIZE
9ace0497 2692 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2693 {
7a292a7a 2694 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2695 typecode = TYPE_CODE_PTR;
7a292a7a 2696 len = MIPS_SAVED_REGSIZE;
c906108c 2697 val = valbuf;
9ace0497
AC
2698 if (mips_debug)
2699 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2700 }
2701 else
c5aa993b 2702 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2703
2704 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2705 even-numbered floating point register. Round the FP register
2706 up before the check to see if there are any FP registers
46e0f506
MS
2707 left. Non MIPS_EABI targets also pass the FP in the integer
2708 registers so also round up normal registers. */
acdb74a0
AC
2709 if (!FP_REGISTER_DOUBLE
2710 && fp_register_arg_p (typecode, arg_type))
2711 {
2712 if ((float_argreg & 1))
2713 float_argreg++;
2714 }
c906108c
SS
2715
2716 /* Floating point arguments passed in registers have to be
2717 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2718 are passed in register pairs; the even register gets
2719 the low word, and the odd register gets the high word.
2720 On non-EABI processors, the first two floating point arguments are
2721 also copied to general registers, because MIPS16 functions
2722 don't use float registers for arguments. This duplication of
2723 arguments in general registers can't hurt non-MIPS16 functions
2724 because those registers are normally skipped. */
1012bd0e
EZ
2725 /* MIPS_EABI squeezes a struct that contains a single floating
2726 point value into an FP register instead of pushing it onto the
46e0f506 2727 stack. */
f09ded24
AC
2728 if (fp_register_arg_p (typecode, arg_type)
2729 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2730 {
2731 if (!FP_REGISTER_DOUBLE && len == 8)
2732 {
d7449b42 2733 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2734 unsigned long regval;
2735
2736 /* Write the low word of the double to the even register(s). */
c5aa993b 2737 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2738 if (mips_debug)
acdb74a0 2739 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2740 float_argreg, phex (regval, 4));
c906108c 2741 write_register (float_argreg++, regval);
c906108c
SS
2742
2743 /* Write the high word of the double to the odd register(s). */
c5aa993b 2744 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2745 if (mips_debug)
acdb74a0 2746 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2747 float_argreg, phex (regval, 4));
c906108c 2748 write_register (float_argreg++, regval);
c906108c
SS
2749 }
2750 else
2751 {
2752 /* This is a floating point value that fits entirely
2753 in a single register. */
53a5351d 2754 /* On 32 bit ABI's the float_argreg is further adjusted
46e0f506 2755 above to ensure that it is even register aligned. */
9ace0497
AC
2756 LONGEST regval = extract_unsigned_integer (val, len);
2757 if (mips_debug)
acdb74a0 2758 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2759 float_argreg, phex (regval, len));
c906108c 2760 write_register (float_argreg++, regval);
c906108c
SS
2761 }
2762 }
2763 else
2764 {
2765 /* Copy the argument to general registers or the stack in
2766 register-sized pieces. Large arguments are split between
2767 registers and stack. */
2768 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2769 are treated specially: Irix cc passes them in registers
2770 where gcc sometimes puts them on the stack. For maximum
2771 compatibility, we will put them in both places. */
c5aa993b 2772 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2773 (len % MIPS_SAVED_REGSIZE != 0));
46e0f506 2774
f09ded24 2775 /* Note: Floating-point values that didn't fit into an FP
46e0f506 2776 register are only written to memory. */
c906108c
SS
2777 while (len > 0)
2778 {
ebafbe83 2779 /* Remember if the argument was written to the stack. */
566f0f7a 2780 int stack_used_p = 0;
46e0f506
MS
2781 int partial_len =
2782 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 2783
acdb74a0
AC
2784 if (mips_debug)
2785 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2786 partial_len);
2787
566f0f7a 2788 /* Write this portion of the argument to the stack. */
f09ded24
AC
2789 if (argreg > MIPS_LAST_ARG_REGNUM
2790 || odd_sized_struct
2791 || fp_register_arg_p (typecode, arg_type))
c906108c 2792 {
c906108c
SS
2793 /* Should shorter than int integer values be
2794 promoted to int before being stored? */
c906108c 2795 int longword_offset = 0;
9ace0497 2796 CORE_ADDR addr;
566f0f7a 2797 stack_used_p = 1;
d7449b42 2798 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2799 {
d929b26f 2800 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2801 (typecode == TYPE_CODE_INT ||
2802 typecode == TYPE_CODE_PTR ||
2803 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2804 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2805 else if ((typecode == TYPE_CODE_STRUCT ||
2806 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2807 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2808 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2809 }
c5aa993b 2810
9ace0497
AC
2811 if (mips_debug)
2812 {
cb3d25d1
MS
2813 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2814 paddr_nz (stack_offset));
2815 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2816 paddr_nz (longword_offset));
9ace0497 2817 }
361d1df0 2818
9ace0497
AC
2819 addr = sp + stack_offset + longword_offset;
2820
2821 if (mips_debug)
2822 {
2823 int i;
cb3d25d1
MS
2824 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2825 paddr_nz (addr));
9ace0497
AC
2826 for (i = 0; i < partial_len; i++)
2827 {
cb3d25d1
MS
2828 fprintf_unfiltered (gdb_stdlog, "%02x",
2829 val[i] & 0xff);
9ace0497
AC
2830 }
2831 }
2832 write_memory (addr, val, partial_len);
c906108c
SS
2833 }
2834
f09ded24
AC
2835 /* Note!!! This is NOT an else clause. Odd sized
2836 structs may go thru BOTH paths. Floating point
46e0f506 2837 arguments will not. */
566f0f7a 2838 /* Write this portion of the argument to a general
46e0f506 2839 purpose register. */
f09ded24
AC
2840 if (argreg <= MIPS_LAST_ARG_REGNUM
2841 && !fp_register_arg_p (typecode, arg_type))
c906108c 2842 {
9ace0497 2843 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c 2844
9ace0497 2845 if (mips_debug)
acdb74a0 2846 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2847 argreg,
2848 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
2849 write_register (argreg, regval);
2850 argreg++;
c906108c 2851 }
c5aa993b 2852
c906108c
SS
2853 len -= partial_len;
2854 val += partial_len;
2855
566f0f7a
AC
2856 /* Compute the the offset into the stack at which we
2857 will copy the next parameter.
2858
566f0f7a 2859 In the new EABI (and the NABI32), the stack_offset
46e0f506 2860 only needs to be adjusted when it has been used. */
c906108c 2861
46e0f506 2862 if (stack_used_p)
d929b26f 2863 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
2864 }
2865 }
9ace0497
AC
2866 if (mips_debug)
2867 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2868 }
2869
0f71a2f6
JM
2870 /* Return adjusted stack pointer. */
2871 return sp;
2872}
2873
ebafbe83
MS
2874/* N32/N64 version of push_arguments. */
2875
f7ab6ec6 2876static CORE_ADDR
cb3d25d1
MS
2877mips_n32n64_push_arguments (int nargs,
2878 struct value **args,
2879 CORE_ADDR sp,
2880 int struct_return,
2881 CORE_ADDR struct_addr)
2882{
2883 int argreg;
2884 int float_argreg;
2885 int argnum;
2886 int len = 0;
2887 int stack_offset = 0;
2888
2889 /* First ensure that the stack and structure return address (if any)
2890 are properly aligned. The stack has to be at least 64-bit
2891 aligned even on 32-bit machines, because doubles must be 64-bit
2892 aligned. For n32 and n64, stack frames need to be 128-bit
2893 aligned, so we round to this widest known alignment. */
2894
2895 sp = ROUND_DOWN (sp, 16);
2896 struct_addr = ROUND_DOWN (struct_addr, 16);
2897
2898 /* Now make space on the stack for the args. */
2899 for (argnum = 0; argnum < nargs; argnum++)
2900 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2901 MIPS_STACK_ARGSIZE);
2902 sp -= ROUND_UP (len, 16);
2903
2904 if (mips_debug)
2905 fprintf_unfiltered (gdb_stdlog,
2906 "mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
2907 paddr_nz (sp), ROUND_UP (len, 16));
2908
2909 /* Initialize the integer and float register pointers. */
2910 argreg = A0_REGNUM;
2911 float_argreg = FPA0_REGNUM;
2912
46e0f506 2913 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
2914 if (struct_return)
2915 {
2916 if (mips_debug)
2917 fprintf_unfiltered (gdb_stdlog,
2918 "mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
2919 argreg, paddr_nz (struct_addr));
2920 write_register (argreg++, struct_addr);
2921 }
2922
2923 /* Now load as many as possible of the first arguments into
2924 registers, and push the rest onto the stack. Loop thru args
2925 from first to last. */
2926 for (argnum = 0; argnum < nargs; argnum++)
2927 {
2928 char *val;
2929 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2930 struct value *arg = args[argnum];
2931 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2932 int len = TYPE_LENGTH (arg_type);
2933 enum type_code typecode = TYPE_CODE (arg_type);
2934
2935 if (mips_debug)
2936 fprintf_unfiltered (gdb_stdlog,
2937 "mips_n32n64_push_arguments: %d len=%d type=%d",
2938 argnum + 1, len, (int) typecode);
2939
2940 val = (char *) VALUE_CONTENTS (arg);
2941
2942 if (fp_register_arg_p (typecode, arg_type)
2943 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2944 {
2945 /* This is a floating point value that fits entirely
2946 in a single register. */
2947 /* On 32 bit ABI's the float_argreg is further adjusted
2948 above to ensure that it is even register aligned. */
2949 LONGEST regval = extract_unsigned_integer (val, len);
2950 if (mips_debug)
2951 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2952 float_argreg, phex (regval, len));
2953 write_register (float_argreg++, regval);
2954
2955 if (mips_debug)
2956 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2957 argreg, phex (regval, len));
2958 write_register (argreg, regval);
2959 argreg += 1;
2960 }
2961 else
2962 {
2963 /* Copy the argument to general registers or the stack in
2964 register-sized pieces. Large arguments are split between
2965 registers and stack. */
2966 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2967 are treated specially: Irix cc passes them in registers
2968 where gcc sometimes puts them on the stack. For maximum
2969 compatibility, we will put them in both places. */
2970 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2971 (len % MIPS_SAVED_REGSIZE != 0));
2972 /* Note: Floating-point values that didn't fit into an FP
2973 register are only written to memory. */
2974 while (len > 0)
2975 {
2976 /* Rememer if the argument was written to the stack. */
2977 int stack_used_p = 0;
2978 int partial_len = len < MIPS_SAVED_REGSIZE ?
2979 len : MIPS_SAVED_REGSIZE;
2980
2981 if (mips_debug)
2982 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2983 partial_len);
2984
2985 /* Write this portion of the argument to the stack. */
2986 if (argreg > MIPS_LAST_ARG_REGNUM
2987 || odd_sized_struct
2988 || fp_register_arg_p (typecode, arg_type))
2989 {
2990 /* Should shorter than int integer values be
2991 promoted to int before being stored? */
2992 int longword_offset = 0;
2993 CORE_ADDR addr;
2994 stack_used_p = 1;
2995 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2996 {
2997 if (MIPS_STACK_ARGSIZE == 8 &&
2998 (typecode == TYPE_CODE_INT ||
2999 typecode == TYPE_CODE_PTR ||
3000 typecode == TYPE_CODE_FLT) && len <= 4)
3001 longword_offset = MIPS_STACK_ARGSIZE - len;
cb3d25d1
MS
3002 }
3003
3004 if (mips_debug)
3005 {
3006 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3007 paddr_nz (stack_offset));
3008 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3009 paddr_nz (longword_offset));
3010 }
3011
3012 addr = sp + stack_offset + longword_offset;
3013
3014 if (mips_debug)
3015 {
3016 int i;
3017 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3018 paddr_nz (addr));
3019 for (i = 0; i < partial_len; i++)
3020 {
3021 fprintf_unfiltered (gdb_stdlog, "%02x",
3022 val[i] & 0xff);
3023 }
3024 }
3025 write_memory (addr, val, partial_len);
3026 }
3027
3028 /* Note!!! This is NOT an else clause. Odd sized
3029 structs may go thru BOTH paths. Floating point
3030 arguments will not. */
3031 /* Write this portion of the argument to a general
3032 purpose register. */
3033 if (argreg <= MIPS_LAST_ARG_REGNUM
3034 && !fp_register_arg_p (typecode, arg_type))
3035 {
3036 LONGEST regval = extract_unsigned_integer (val, partial_len);
3037
3038 /* A non-floating-point argument being passed in a
3039 general register. If a struct or union, and if
3040 the remaining length is smaller than the register
3041 size, we have to adjust the register value on
3042 big endian targets.
3043
3044 It does not seem to be necessary to do the
3045 same for integral types.
3046
3047 cagney/2001-07-23: gdb/179: Also, GCC, when
3048 outputting LE O32 with sizeof (struct) <
3049 MIPS_SAVED_REGSIZE, generates a left shift as
3050 part of storing the argument in a register a
3051 register (the left shift isn't generated when
3052 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3053 is quite possible that this is GCC contradicting
3054 the LE/O32 ABI, GDB has not been adjusted to
3055 accommodate this. Either someone needs to
3056 demonstrate that the LE/O32 ABI specifies such a
3057 left shift OR this new ABI gets identified as
3058 such and GDB gets tweaked accordingly. */
3059
3060 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3061 && partial_len < MIPS_SAVED_REGSIZE
3062 && (typecode == TYPE_CODE_STRUCT ||
3063 typecode == TYPE_CODE_UNION))
3064 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3065 TARGET_CHAR_BIT);
3066
3067 if (mips_debug)
3068 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3069 argreg,
3070 phex (regval, MIPS_SAVED_REGSIZE));
3071 write_register (argreg, regval);
3072 argreg++;
3073 }
3074
3075 len -= partial_len;
3076 val += partial_len;
3077
3078 /* Compute the the offset into the stack at which we
3079 will copy the next parameter.
3080
3081 In N32 (N64?), the stack_offset only needs to be
3082 adjusted when it has been used. */
3083
3084 if (stack_used_p)
3085 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3086 }
3087 }
3088 if (mips_debug)
3089 fprintf_unfiltered (gdb_stdlog, "\n");
3090 }
3091
3092 /* Return adjusted stack pointer. */
3093 return sp;
3094}
3095
46cac009 3096/* O32 version of push_arguments. */
ebafbe83 3097
46cac009
AC
3098static CORE_ADDR
3099mips_o32_push_arguments (int nargs,
3100 struct value **args,
3101 CORE_ADDR sp,
3102 int struct_return,
3103 CORE_ADDR struct_addr)
ebafbe83
MS
3104{
3105 int argreg;
3106 int float_argreg;
3107 int argnum;
3108 int len = 0;
3109 int stack_offset = 0;
ebafbe83
MS
3110
3111 /* First ensure that the stack and structure return address (if any)
3112 are properly aligned. The stack has to be at least 64-bit
3113 aligned even on 32-bit machines, because doubles must be 64-bit
3114 aligned. For n32 and n64, stack frames need to be 128-bit
3115 aligned, so we round to this widest known alignment. */
3116
3117 sp = ROUND_DOWN (sp, 16);
3118 struct_addr = ROUND_DOWN (struct_addr, 16);
3119
3120 /* Now make space on the stack for the args. */
3121 for (argnum = 0; argnum < nargs; argnum++)
3122 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3123 MIPS_STACK_ARGSIZE);
3124 sp -= ROUND_UP (len, 16);
3125
3126 if (mips_debug)
3127 fprintf_unfiltered (gdb_stdlog,
46cac009 3128 "mips_o32_push_arguments: sp=0x%s allocated %d\n",
ebafbe83
MS
3129 paddr_nz (sp), ROUND_UP (len, 16));
3130
3131 /* Initialize the integer and float register pointers. */
3132 argreg = A0_REGNUM;
3133 float_argreg = FPA0_REGNUM;
3134
bcb0cc15 3135 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3136 if (struct_return)
3137 {
3138 if (mips_debug)
3139 fprintf_unfiltered (gdb_stdlog,
46cac009 3140 "mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3141 argreg, paddr_nz (struct_addr));
3142 write_register (argreg++, struct_addr);
3143 stack_offset += MIPS_STACK_ARGSIZE;
3144 }
3145
3146 /* Now load as many as possible of the first arguments into
3147 registers, and push the rest onto the stack. Loop thru args
3148 from first to last. */
3149 for (argnum = 0; argnum < nargs; argnum++)
3150 {
3151 char *val;
3152 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3153 struct value *arg = args[argnum];
3154 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3155 int len = TYPE_LENGTH (arg_type);
3156 enum type_code typecode = TYPE_CODE (arg_type);
3157
3158 if (mips_debug)
3159 fprintf_unfiltered (gdb_stdlog,
46cac009
AC
3160 "mips_o32_push_arguments: %d len=%d type=%d",
3161 argnum + 1, len, (int) typecode);
3162
3163 val = (char *) VALUE_CONTENTS (arg);
3164
3165 /* 32-bit ABIs always start floating point arguments in an
3166 even-numbered floating point register. Round the FP register
3167 up before the check to see if there are any FP registers
3168 left. O32/O64 targets also pass the FP in the integer
3169 registers so also round up normal registers. */
3170 if (!FP_REGISTER_DOUBLE
3171 && fp_register_arg_p (typecode, arg_type))
3172 {
3173 if ((float_argreg & 1))
3174 float_argreg++;
3175 }
3176
3177 /* Floating point arguments passed in registers have to be
3178 treated specially. On 32-bit architectures, doubles
3179 are passed in register pairs; the even register gets
3180 the low word, and the odd register gets the high word.
3181 On O32/O64, the first two floating point arguments are
3182 also copied to general registers, because MIPS16 functions
3183 don't use float registers for arguments. This duplication of
3184 arguments in general registers can't hurt non-MIPS16 functions
3185 because those registers are normally skipped. */
3186
3187 if (fp_register_arg_p (typecode, arg_type)
3188 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3189 {
3190 if (!FP_REGISTER_DOUBLE && len == 8)
3191 {
3192 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3193 unsigned long regval;
3194
3195 /* Write the low word of the double to the even register(s). */
3196 regval = extract_unsigned_integer (val + low_offset, 4);
3197 if (mips_debug)
3198 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3199 float_argreg, phex (regval, 4));
3200 write_register (float_argreg++, regval);
3201 if (mips_debug)
3202 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3203 argreg, phex (regval, 4));
3204 write_register (argreg++, regval);
3205
3206 /* Write the high word of the double to the odd register(s). */
3207 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3208 if (mips_debug)
3209 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3210 float_argreg, phex (regval, 4));
3211 write_register (float_argreg++, regval);
3212
3213 if (mips_debug)
3214 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3215 argreg, phex (regval, 4));
3216 write_register (argreg++, regval);
3217 }
3218 else
3219 {
3220 /* This is a floating point value that fits entirely
3221 in a single register. */
3222 /* On 32 bit ABI's the float_argreg is further adjusted
3223 above to ensure that it is even register aligned. */
3224 LONGEST regval = extract_unsigned_integer (val, len);
3225 if (mips_debug)
3226 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3227 float_argreg, phex (regval, len));
3228 write_register (float_argreg++, regval);
3229 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3230 registers for each argument. The below is (my
3231 guess) to ensure that the corresponding integer
3232 register has reserved the same space. */
3233 if (mips_debug)
3234 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3235 argreg, phex (regval, len));
3236 write_register (argreg, regval);
3237 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3238 }
3239 /* Reserve space for the FP register. */
3240 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3241 }
3242 else
3243 {
3244 /* Copy the argument to general registers or the stack in
3245 register-sized pieces. Large arguments are split between
3246 registers and stack. */
3247 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3248 are treated specially: Irix cc passes them in registers
3249 where gcc sometimes puts them on the stack. For maximum
3250 compatibility, we will put them in both places. */
3251 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3252 (len % MIPS_SAVED_REGSIZE != 0));
3253 /* Structures should be aligned to eight bytes (even arg registers)
3254 on MIPS_ABI_O32, if their first member has double precision. */
3255 if (MIPS_SAVED_REGSIZE < 8
3256 && mips_type_needs_double_align (arg_type))
3257 {
3258 if ((argreg & 1))
3259 argreg++;
3260 }
3261 /* Note: Floating-point values that didn't fit into an FP
3262 register are only written to memory. */
3263 while (len > 0)
3264 {
3265 /* Remember if the argument was written to the stack. */
3266 int stack_used_p = 0;
3267 int partial_len =
3268 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3269
3270 if (mips_debug)
3271 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3272 partial_len);
3273
3274 /* Write this portion of the argument to the stack. */
3275 if (argreg > MIPS_LAST_ARG_REGNUM
3276 || odd_sized_struct
3277 || fp_register_arg_p (typecode, arg_type))
3278 {
3279 /* Should shorter than int integer values be
3280 promoted to int before being stored? */
3281 int longword_offset = 0;
3282 CORE_ADDR addr;
3283 stack_used_p = 1;
3284 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3285 {
3286 if (MIPS_STACK_ARGSIZE == 8 &&
3287 (typecode == TYPE_CODE_INT ||
3288 typecode == TYPE_CODE_PTR ||
3289 typecode == TYPE_CODE_FLT) && len <= 4)
3290 longword_offset = MIPS_STACK_ARGSIZE - len;
3291 }
3292
3293 if (mips_debug)
3294 {
3295 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3296 paddr_nz (stack_offset));
3297 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3298 paddr_nz (longword_offset));
3299 }
3300
3301 addr = sp + stack_offset + longword_offset;
3302
3303 if (mips_debug)
3304 {
3305 int i;
3306 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3307 paddr_nz (addr));
3308 for (i = 0; i < partial_len; i++)
3309 {
3310 fprintf_unfiltered (gdb_stdlog, "%02x",
3311 val[i] & 0xff);
3312 }
3313 }
3314 write_memory (addr, val, partial_len);
3315 }
3316
3317 /* Note!!! This is NOT an else clause. Odd sized
3318 structs may go thru BOTH paths. Floating point
3319 arguments will not. */
3320 /* Write this portion of the argument to a general
3321 purpose register. */
3322 if (argreg <= MIPS_LAST_ARG_REGNUM
3323 && !fp_register_arg_p (typecode, arg_type))
3324 {
3325 LONGEST regval = extract_signed_integer (val, partial_len);
3326 /* Value may need to be sign extended, because
3327 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3328
3329 /* A non-floating-point argument being passed in a
3330 general register. If a struct or union, and if
3331 the remaining length is smaller than the register
3332 size, we have to adjust the register value on
3333 big endian targets.
3334
3335 It does not seem to be necessary to do the
3336 same for integral types.
3337
3338 Also don't do this adjustment on O64 binaries.
3339
3340 cagney/2001-07-23: gdb/179: Also, GCC, when
3341 outputting LE O32 with sizeof (struct) <
3342 MIPS_SAVED_REGSIZE, generates a left shift as
3343 part of storing the argument in a register a
3344 register (the left shift isn't generated when
3345 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3346 is quite possible that this is GCC contradicting
3347 the LE/O32 ABI, GDB has not been adjusted to
3348 accommodate this. Either someone needs to
3349 demonstrate that the LE/O32 ABI specifies such a
3350 left shift OR this new ABI gets identified as
3351 such and GDB gets tweaked accordingly. */
3352
3353 if (MIPS_SAVED_REGSIZE < 8
3354 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3355 && partial_len < MIPS_SAVED_REGSIZE
3356 && (typecode == TYPE_CODE_STRUCT ||
3357 typecode == TYPE_CODE_UNION))
3358 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3359 TARGET_CHAR_BIT);
3360
3361 if (mips_debug)
3362 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3363 argreg,
3364 phex (regval, MIPS_SAVED_REGSIZE));
3365 write_register (argreg, regval);
3366 argreg++;
3367
3368 /* Prevent subsequent floating point arguments from
3369 being passed in floating point registers. */
3370 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3371 }
3372
3373 len -= partial_len;
3374 val += partial_len;
3375
3376 /* Compute the the offset into the stack at which we
3377 will copy the next parameter.
3378
3379 In older ABIs, the caller reserved space for
3380 registers that contained arguments. This was loosely
3381 refered to as their "home". Consequently, space is
3382 always allocated. */
3383
3384 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3385 }
3386 }
3387 if (mips_debug)
3388 fprintf_unfiltered (gdb_stdlog, "\n");
3389 }
3390
3391 /* Return adjusted stack pointer. */
3392 return sp;
3393}
3394
3395/* O64 version of push_arguments. */
3396
3397static CORE_ADDR
3398mips_o64_push_arguments (int nargs,
3399 struct value **args,
3400 CORE_ADDR sp,
3401 int struct_return,
3402 CORE_ADDR struct_addr)
3403{
3404 int argreg;
3405 int float_argreg;
3406 int argnum;
3407 int len = 0;
3408 int stack_offset = 0;
3409
3410 /* First ensure that the stack and structure return address (if any)
3411 are properly aligned. The stack has to be at least 64-bit
3412 aligned even on 32-bit machines, because doubles must be 64-bit
3413 aligned. For n32 and n64, stack frames need to be 128-bit
3414 aligned, so we round to this widest known alignment. */
3415
3416 sp = ROUND_DOWN (sp, 16);
3417 struct_addr = ROUND_DOWN (struct_addr, 16);
3418
3419 /* Now make space on the stack for the args. */
3420 for (argnum = 0; argnum < nargs; argnum++)
3421 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3422 MIPS_STACK_ARGSIZE);
3423 sp -= ROUND_UP (len, 16);
3424
3425 if (mips_debug)
3426 fprintf_unfiltered (gdb_stdlog,
3427 "mips_o64_push_arguments: sp=0x%s allocated %d\n",
3428 paddr_nz (sp), ROUND_UP (len, 16));
3429
3430 /* Initialize the integer and float register pointers. */
3431 argreg = A0_REGNUM;
3432 float_argreg = FPA0_REGNUM;
3433
3434 /* The struct_return pointer occupies the first parameter-passing reg. */
3435 if (struct_return)
3436 {
3437 if (mips_debug)
3438 fprintf_unfiltered (gdb_stdlog,
3439 "mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
3440 argreg, paddr_nz (struct_addr));
3441 write_register (argreg++, struct_addr);
3442 stack_offset += MIPS_STACK_ARGSIZE;
3443 }
3444
3445 /* Now load as many as possible of the first arguments into
3446 registers, and push the rest onto the stack. Loop thru args
3447 from first to last. */
3448 for (argnum = 0; argnum < nargs; argnum++)
3449 {
3450 char *val;
3451 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3452 struct value *arg = args[argnum];
3453 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3454 int len = TYPE_LENGTH (arg_type);
3455 enum type_code typecode = TYPE_CODE (arg_type);
3456
3457 if (mips_debug)
3458 fprintf_unfiltered (gdb_stdlog,
3459 "mips_o64_push_arguments: %d len=%d type=%d",
ebafbe83
MS
3460 argnum + 1, len, (int) typecode);
3461
3462 val = (char *) VALUE_CONTENTS (arg);
3463
3464 /* 32-bit ABIs always start floating point arguments in an
3465 even-numbered floating point register. Round the FP register
3466 up before the check to see if there are any FP registers
3467 left. O32/O64 targets also pass the FP in the integer
3468 registers so also round up normal registers. */
3469 if (!FP_REGISTER_DOUBLE
3470 && fp_register_arg_p (typecode, arg_type))
3471 {
3472 if ((float_argreg & 1))
3473 float_argreg++;
3474 }
3475
3476 /* Floating point arguments passed in registers have to be
3477 treated specially. On 32-bit architectures, doubles
3478 are passed in register pairs; the even register gets
3479 the low word, and the odd register gets the high word.
3480 On O32/O64, the first two floating point arguments are
3481 also copied to general registers, because MIPS16 functions
3482 don't use float registers for arguments. This duplication of
3483 arguments in general registers can't hurt non-MIPS16 functions
3484 because those registers are normally skipped. */
3485
3486 if (fp_register_arg_p (typecode, arg_type)
3487 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3488 {
3489 if (!FP_REGISTER_DOUBLE && len == 8)
3490 {
3491 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3492 unsigned long regval;
3493
3494 /* Write the low word of the double to the even register(s). */
3495 regval = extract_unsigned_integer (val + low_offset, 4);
3496 if (mips_debug)
3497 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3498 float_argreg, phex (regval, 4));
3499 write_register (float_argreg++, regval);
3500 if (mips_debug)
3501 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3502 argreg, phex (regval, 4));
3503 write_register (argreg++, regval);
3504
3505 /* Write the high word of the double to the odd register(s). */
3506 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3507 if (mips_debug)
3508 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3509 float_argreg, phex (regval, 4));
3510 write_register (float_argreg++, regval);
3511
3512 if (mips_debug)
3513 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3514 argreg, phex (regval, 4));
3515 write_register (argreg++, regval);
3516 }
3517 else
3518 {
3519 /* This is a floating point value that fits entirely
3520 in a single register. */
3521 /* On 32 bit ABI's the float_argreg is further adjusted
3522 above to ensure that it is even register aligned. */
3523 LONGEST regval = extract_unsigned_integer (val, len);
3524 if (mips_debug)
3525 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3526 float_argreg, phex (regval, len));
3527 write_register (float_argreg++, regval);
3528 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3529 registers for each argument. The below is (my
3530 guess) to ensure that the corresponding integer
3531 register has reserved the same space. */
3532 if (mips_debug)
3533 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3534 argreg, phex (regval, len));
3535 write_register (argreg, regval);
3536 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3537 }
3538 /* Reserve space for the FP register. */
3539 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3540 }
3541 else
3542 {
3543 /* Copy the argument to general registers or the stack in
3544 register-sized pieces. Large arguments are split between
3545 registers and stack. */
3546 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3547 are treated specially: Irix cc passes them in registers
3548 where gcc sometimes puts them on the stack. For maximum
3549 compatibility, we will put them in both places. */
3550 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3551 (len % MIPS_SAVED_REGSIZE != 0));
3552 /* Structures should be aligned to eight bytes (even arg registers)
3553 on MIPS_ABI_O32, if their first member has double precision. */
3554 if (MIPS_SAVED_REGSIZE < 8
3555 && mips_type_needs_double_align (arg_type))
3556 {
3557 if ((argreg & 1))
3558 argreg++;
3559 }
3560 /* Note: Floating-point values that didn't fit into an FP
3561 register are only written to memory. */
3562 while (len > 0)
3563 {
3564 /* Remember if the argument was written to the stack. */
3565 int stack_used_p = 0;
3566 int partial_len =
3567 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3568
3569 if (mips_debug)
3570 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3571 partial_len);
3572
3573 /* Write this portion of the argument to the stack. */
3574 if (argreg > MIPS_LAST_ARG_REGNUM
3575 || odd_sized_struct
3576 || fp_register_arg_p (typecode, arg_type))
3577 {
3578 /* Should shorter than int integer values be
3579 promoted to int before being stored? */
3580 int longword_offset = 0;
3581 CORE_ADDR addr;
3582 stack_used_p = 1;
3583 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3584 {
3585 if (MIPS_STACK_ARGSIZE == 8 &&
3586 (typecode == TYPE_CODE_INT ||
3587 typecode == TYPE_CODE_PTR ||
3588 typecode == TYPE_CODE_FLT) && len <= 4)
3589 longword_offset = MIPS_STACK_ARGSIZE - len;
3590 }
3591
3592 if (mips_debug)
3593 {
3594 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3595 paddr_nz (stack_offset));
3596 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3597 paddr_nz (longword_offset));
3598 }
3599
3600 addr = sp + stack_offset + longword_offset;
3601
3602 if (mips_debug)
3603 {
3604 int i;
3605 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3606 paddr_nz (addr));
3607 for (i = 0; i < partial_len; i++)
3608 {
3609 fprintf_unfiltered (gdb_stdlog, "%02x",
3610 val[i] & 0xff);
3611 }
3612 }
3613 write_memory (addr, val, partial_len);
3614 }
3615
3616 /* Note!!! This is NOT an else clause. Odd sized
3617 structs may go thru BOTH paths. Floating point
3618 arguments will not. */
3619 /* Write this portion of the argument to a general
3620 purpose register. */
3621 if (argreg <= MIPS_LAST_ARG_REGNUM
3622 && !fp_register_arg_p (typecode, arg_type))
3623 {
3624 LONGEST regval = extract_signed_integer (val, partial_len);
3625 /* Value may need to be sign extended, because
3626 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3627
3628 /* A non-floating-point argument being passed in a
3629 general register. If a struct or union, and if
3630 the remaining length is smaller than the register
3631 size, we have to adjust the register value on
3632 big endian targets.
3633
3634 It does not seem to be necessary to do the
3635 same for integral types.
3636
3637 Also don't do this adjustment on O64 binaries.
3638
3639 cagney/2001-07-23: gdb/179: Also, GCC, when
3640 outputting LE O32 with sizeof (struct) <
3641 MIPS_SAVED_REGSIZE, generates a left shift as
3642 part of storing the argument in a register a
3643 register (the left shift isn't generated when
3644 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3645 is quite possible that this is GCC contradicting
3646 the LE/O32 ABI, GDB has not been adjusted to
3647 accommodate this. Either someone needs to
3648 demonstrate that the LE/O32 ABI specifies such a
3649 left shift OR this new ABI gets identified as
3650 such and GDB gets tweaked accordingly. */
3651
3652 if (MIPS_SAVED_REGSIZE < 8
3653 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3654 && partial_len < MIPS_SAVED_REGSIZE
3655 && (typecode == TYPE_CODE_STRUCT ||
3656 typecode == TYPE_CODE_UNION))
3657 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3658 TARGET_CHAR_BIT);
3659
3660 if (mips_debug)
3661 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3662 argreg,
3663 phex (regval, MIPS_SAVED_REGSIZE));
3664 write_register (argreg, regval);
3665 argreg++;
3666
3667 /* Prevent subsequent floating point arguments from
3668 being passed in floating point registers. */
3669 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3670 }
3671
3672 len -= partial_len;
3673 val += partial_len;
3674
3675 /* Compute the the offset into the stack at which we
3676 will copy the next parameter.
3677
3678 In older ABIs, the caller reserved space for
3679 registers that contained arguments. This was loosely
3680 refered to as their "home". Consequently, space is
3681 always allocated. */
3682
3683 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3684 }
3685 }
3686 if (mips_debug)
3687 fprintf_unfiltered (gdb_stdlog, "\n");
3688 }
3689
3690 /* Return adjusted stack pointer. */
3691 return sp;
3692}
3693
f7ab6ec6 3694static CORE_ADDR
acdb74a0 3695mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
0f71a2f6 3696{
c906108c
SS
3697 /* Set the return address register to point to the entry
3698 point of the program, where a breakpoint lies in wait. */
c5aa993b 3699 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
c906108c
SS
3700 return sp;
3701}
3702
3703static void
c5aa993b 3704mips_push_register (CORE_ADDR * sp, int regno)
c906108c 3705{
cb3d25d1 3706 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
7a292a7a
SS
3707 int regsize;
3708 int offset;
3709 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
3710 {
3711 regsize = MIPS_SAVED_REGSIZE;
d7449b42 3712 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
3713 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
3714 : 0);
3715 }
3716 else
3717 {
3718 regsize = REGISTER_RAW_SIZE (regno);
3719 offset = 0;
3720 }
c906108c 3721 *sp -= regsize;
4caf0990 3722 deprecated_read_register_gen (regno, buffer);
7a292a7a 3723 write_memory (*sp, buffer + offset, regsize);
c906108c
SS
3724}
3725
3726/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
3727#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
3728
f7ab6ec6 3729static void
acdb74a0 3730mips_push_dummy_frame (void)
c906108c
SS
3731{
3732 int ireg;
c5aa993b
JM
3733 struct linked_proc_info *link = (struct linked_proc_info *)
3734 xmalloc (sizeof (struct linked_proc_info));
c906108c 3735 mips_extra_func_info_t proc_desc = &link->info;
6c997a34 3736 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
c906108c
SS
3737 CORE_ADDR old_sp = sp;
3738 link->next = linked_proc_desc_table;
3739 linked_proc_desc_table = link;
3740
3741/* FIXME! are these correct ? */
c5aa993b 3742#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
c906108c
SS
3743#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
3744#define FLOAT_REG_SAVE_MASK MASK(0,19)
3745#define FLOAT_SINGLE_REG_SAVE_MASK \
3746 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
3747 /*
3748 * The registers we must save are all those not preserved across
3749 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
3750 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
3751 * and FP Control/Status registers.
361d1df0 3752 *
c906108c
SS
3753 *
3754 * Dummy frame layout:
3755 * (high memory)
c5aa993b
JM
3756 * Saved PC
3757 * Saved MMHI, MMLO, FPC_CSR
3758 * Saved R31
3759 * Saved R28
3760 * ...
3761 * Saved R1
c906108c
SS
3762 * Saved D18 (i.e. F19, F18)
3763 * ...
3764 * Saved D0 (i.e. F1, F0)
c5aa993b 3765 * Argument build area and stack arguments written via mips_push_arguments
c906108c
SS
3766 * (low memory)
3767 */
3768
3769 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
c5aa993b
JM
3770 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
3771 PROC_FRAME_OFFSET (proc_desc) = 0;
3772 PROC_FRAME_ADJUST (proc_desc) = 0;
c906108c
SS
3773 mips_push_register (&sp, PC_REGNUM);
3774 mips_push_register (&sp, HI_REGNUM);
3775 mips_push_register (&sp, LO_REGNUM);
3776 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
3777
3778 /* Save general CPU registers */
c5aa993b 3779 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
c906108c 3780 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
c5aa993b
JM
3781 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
3782 for (ireg = 32; --ireg >= 0;)
3783 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
3784 mips_push_register (&sp, ireg);
3785
3786 /* Save floating point registers starting with high order word */
c5aa993b 3787 PROC_FREG_MASK (proc_desc) =
c906108c
SS
3788 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
3789 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
3790 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
3791 from FP. */
c5aa993b
JM
3792 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
3793 for (ireg = 32; --ireg >= 0;)
3794 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
3795 mips_push_register (&sp, ireg + FP0_REGNUM);
3796
3797 /* Update the frame pointer for the call dummy and the stack pointer.
3798 Set the procedure's starting and ending addresses to point to the
3799 call dummy address at the entry point. */
3800 write_register (PUSH_FP_REGNUM, old_sp);
3801 write_register (SP_REGNUM, sp);
c5aa993b
JM
3802 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
3803 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
3804 SET_PROC_DESC_IS_DUMMY (proc_desc);
3805 PROC_PC_REG (proc_desc) = RA_REGNUM;
c906108c
SS
3806}
3807
f7ab6ec6 3808static void
acdb74a0 3809mips_pop_frame (void)
c906108c
SS
3810{
3811 register int regnum;
3812 struct frame_info *frame = get_current_frame ();
c193f6ac 3813 CORE_ADDR new_sp = get_frame_base (frame);
cce74817 3814 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c 3815
50abf9e5 3816 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
3817 {
3818 generic_pop_dummy_frame ();
3819 flush_cached_frames ();
3820 return;
3821 }
3822
c5aa993b 3823 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
b2fb4676 3824 if (get_frame_saved_regs (frame) == NULL)
ffabd70d 3825 FRAME_INIT_SAVED_REGS (frame);
c906108c 3826 for (regnum = 0; regnum < NUM_REGS; regnum++)
21f87145 3827 if (regnum != SP_REGNUM && regnum != PC_REGNUM
b2fb4676 3828 && get_frame_saved_regs (frame)[regnum])
21f87145
MS
3829 {
3830 /* Floating point registers must not be sign extended,
3831 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3832
3833 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3834 write_register (regnum,
b2fb4676 3835 read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
21f87145
MS
3836 MIPS_SAVED_REGSIZE));
3837 else
3838 write_register (regnum,
b2fb4676 3839 read_memory_integer (get_frame_saved_regs (frame)[regnum],
21f87145
MS
3840 MIPS_SAVED_REGSIZE));
3841 }
757a7cc6 3842
c906108c
SS
3843 write_register (SP_REGNUM, new_sp);
3844 flush_cached_frames ();
3845
c5aa993b 3846 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
3847 {
3848 struct linked_proc_info *pi_ptr, *prev_ptr;
3849
3850 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3851 pi_ptr != NULL;
3852 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3853 {
3854 if (&pi_ptr->info == proc_desc)
3855 break;
3856 }
3857
3858 if (pi_ptr == NULL)
3859 error ("Can't locate dummy extra frame info\n");
3860
3861 if (prev_ptr != NULL)
3862 prev_ptr->next = pi_ptr->next;
3863 else
3864 linked_proc_desc_table = pi_ptr->next;
3865
b8c9b27d 3866 xfree (pi_ptr);
c906108c
SS
3867
3868 write_register (HI_REGNUM,
c5aa993b 3869 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 3870 MIPS_SAVED_REGSIZE));
c906108c 3871 write_register (LO_REGNUM,
c5aa993b 3872 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 3873 MIPS_SAVED_REGSIZE));
c906108c
SS
3874 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3875 write_register (FCRCS_REGNUM,
c5aa993b 3876 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 3877 MIPS_SAVED_REGSIZE));
c906108c
SS
3878 }
3879}
3880
f7ab6ec6
MS
3881static void
3882mips_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
3883 struct value **args, struct type *type, int gcc_p)
3884{
3885 write_register(T9_REGNUM, fun);
3886}
3887
dd824b04
DJ
3888/* Floating point register management.
3889
3890 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3891 64bit operations, these early MIPS cpus treat fp register pairs
3892 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3893 registers and offer a compatibility mode that emulates the MIPS2 fp
3894 model. When operating in MIPS2 fp compat mode, later cpu's split
3895 double precision floats into two 32-bit chunks and store them in
3896 consecutive fp regs. To display 64-bit floats stored in this
3897 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3898 Throw in user-configurable endianness and you have a real mess.
3899
3900 The way this works is:
3901 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3902 double-precision value will be split across two logical registers.
3903 The lower-numbered logical register will hold the low-order bits,
3904 regardless of the processor's endianness.
3905 - If we are on a 64-bit processor, and we are looking for a
3906 single-precision value, it will be in the low ordered bits
3907 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3908 save slot in memory.
3909 - If we are in 64-bit mode, everything is straightforward.
3910
3911 Note that this code only deals with "live" registers at the top of the
3912 stack. We will attempt to deal with saved registers later, when
3913 the raw/cooked register interface is in place. (We need a general
3914 interface that can deal with dynamic saved register sizes -- fp
3915 regs could be 32 bits wide in one frame and 64 on the frame above
3916 and below). */
3917
67b2c998
DJ
3918static struct type *
3919mips_float_register_type (void)
3920{
361d1df0 3921 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3922 return builtin_type_ieee_single_big;
3923 else
3924 return builtin_type_ieee_single_little;
3925}
3926
3927static struct type *
3928mips_double_register_type (void)
3929{
361d1df0 3930 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3931 return builtin_type_ieee_double_big;
3932 else
3933 return builtin_type_ieee_double_little;
3934}
3935
dd824b04
DJ
3936/* Copy a 32-bit single-precision value from the current frame
3937 into rare_buffer. */
3938
3939static void
3940mips_read_fp_register_single (int regno, char *rare_buffer)
3941{
3942 int raw_size = REGISTER_RAW_SIZE (regno);
3943 char *raw_buffer = alloca (raw_size);
3944
6e7f8b9c 3945 if (!frame_register_read (deprecated_selected_frame, regno, raw_buffer))
dd824b04
DJ
3946 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3947 if (raw_size == 8)
3948 {
3949 /* We have a 64-bit value for this register. Find the low-order
3950 32 bits. */
3951 int offset;
3952
3953 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3954 offset = 4;
3955 else
3956 offset = 0;
3957
3958 memcpy (rare_buffer, raw_buffer + offset, 4);
3959 }
3960 else
3961 {
3962 memcpy (rare_buffer, raw_buffer, 4);
3963 }
3964}
3965
3966/* Copy a 64-bit double-precision value from the current frame into
3967 rare_buffer. This may include getting half of it from the next
3968 register. */
3969
3970static void
3971mips_read_fp_register_double (int regno, char *rare_buffer)
3972{
3973 int raw_size = REGISTER_RAW_SIZE (regno);
3974
3975 if (raw_size == 8 && !mips2_fp_compat ())
3976 {
3977 /* We have a 64-bit value for this register, and we should use
3978 all 64 bits. */
6e7f8b9c 3979 if (!frame_register_read (deprecated_selected_frame, regno, rare_buffer))
dd824b04
DJ
3980 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3981 }
3982 else
3983 {
3984 if ((regno - FP0_REGNUM) & 1)
3985 internal_error (__FILE__, __LINE__,
3986 "mips_read_fp_register_double: bad access to "
3987 "odd-numbered FP register");
3988
3989 /* mips_read_fp_register_single will find the correct 32 bits from
3990 each register. */
3991 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3992 {
3993 mips_read_fp_register_single (regno, rare_buffer + 4);
3994 mips_read_fp_register_single (regno + 1, rare_buffer);
3995 }
361d1df0 3996 else
dd824b04
DJ
3997 {
3998 mips_read_fp_register_single (regno, rare_buffer);
3999 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
4000 }
4001 }
4002}
4003
c906108c 4004static void
acdb74a0 4005mips_print_register (int regnum, int all)
c906108c 4006{
119d55d8 4007 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
4008
4009 /* Get the data in raw format. */
6e7f8b9c 4010 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
c906108c
SS
4011 {
4012 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
4013 return;
4014 }
4015
dd824b04
DJ
4016 /* If we have a actual 32-bit floating point register (or we are in
4017 32-bit compatibility mode), and the register is even-numbered,
4018 also print it as a double (spanning two registers). */
c906108c 4019 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
dd824b04
DJ
4020 && (REGISTER_RAW_SIZE (regnum) == 4
4021 || mips2_fp_compat ())
c5aa993b 4022 && !((regnum - FP0_REGNUM) & 1))
dd824b04 4023 {
cb3d25d1 4024 char *dbuffer = alloca (2 * MAX_REGISTER_RAW_SIZE);
c906108c 4025
dd824b04 4026 mips_read_fp_register_double (regnum, dbuffer);
c906108c 4027
dd824b04 4028 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
67b2c998 4029 val_print (mips_double_register_type (), dbuffer, 0, 0,
dd824b04
DJ
4030 gdb_stdout, 0, 1, 0, Val_pretty_default);
4031 printf_filtered ("); ");
4032 }
c906108c
SS
4033 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
4034
4035 /* The problem with printing numeric register names (r26, etc.) is that
4036 the user can't use them on input. Probably the best solution is to
4037 fix it so that either the numeric or the funky (a2, etc.) names
4038 are accepted on input. */
4039 if (regnum < MIPS_NUMREGS)
4040 printf_filtered ("(r%d): ", regnum);
4041 else
4042 printf_filtered (": ");
4043
4044 /* If virtual format is floating, print it that way. */
4045 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
dd824b04
DJ
4046 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
4047 {
4048 /* We have a meaningful 64-bit value in this register. Show
4049 it as a 32-bit float and a 64-bit double. */
d7449b42 4050 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
c906108c
SS
4051
4052 printf_filtered (" (float) ");
67b2c998 4053 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
c906108c
SS
4054 gdb_stdout, 0, 1, 0, Val_pretty_default);
4055 printf_filtered (", (double) ");
67b2c998 4056 val_print (mips_double_register_type (), raw_buffer, 0, 0,
c906108c
SS
4057 gdb_stdout, 0, 1, 0, Val_pretty_default);
4058 }
4059 else
4060 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
4061 gdb_stdout, 0, 1, 0, Val_pretty_default);
4062 /* Else print as integer in hex. */
4063 else
ed9a39eb
JM
4064 {
4065 int offset;
4066
d7449b42 4067 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
ed9a39eb
JM
4068 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4069 else
4070 offset = 0;
361d1df0 4071
ed9a39eb
JM
4072 print_scalar_formatted (raw_buffer + offset,
4073 REGISTER_VIRTUAL_TYPE (regnum),
4074 'x', 0, gdb_stdout);
4075 }
c906108c
SS
4076}
4077
361d1df0 4078/* Replacement for generic do_registers_info.
c906108c
SS
4079 Print regs in pretty columns. */
4080
4081static int
acdb74a0 4082do_fp_register_row (int regnum)
c5aa993b 4083{ /* do values for FP (float) regs */
dd824b04 4084 char *raw_buffer;
c906108c
SS
4085 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4086 int inv1, inv2, inv3;
c5aa993b 4087
dd824b04 4088 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c906108c 4089
dd824b04 4090 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
c906108c 4091 {
dd824b04
DJ
4092 /* 4-byte registers: we can fit two registers per row. */
4093 /* Also print every pair of 4-byte regs as an 8-byte double. */
4094 mips_read_fp_register_single (regnum, raw_buffer);
67b2c998 4095 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4096
dd824b04 4097 mips_read_fp_register_single (regnum + 1, raw_buffer);
67b2c998 4098 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
dd824b04
DJ
4099
4100 mips_read_fp_register_double (regnum, raw_buffer);
67b2c998 4101 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
361d1df0 4102
1adad886
AC
4103 printf_filtered (" %-5s", REGISTER_NAME (regnum));
4104 if (inv1)
4105 printf_filtered (": <invalid float>");
4106 else
4107 printf_filtered ("%-17.9g", flt1);
4108
4109 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
4110 if (inv2)
4111 printf_filtered (": <invalid float>");
4112 else
4113 printf_filtered ("%-17.9g", flt2);
4114
4115 printf_filtered (" dbl: ");
4116 if (inv3)
4117 printf_filtered ("<invalid double>");
4118 else
4119 printf_filtered ("%-24.17g", doub);
4120 printf_filtered ("\n");
4121
c906108c 4122 /* may want to do hex display here (future enhancement) */
c5aa993b 4123 regnum += 2;
c906108c
SS
4124 }
4125 else
dd824b04
DJ
4126 {
4127 /* Eight byte registers: print each one as float AND as double. */
4128 mips_read_fp_register_single (regnum, raw_buffer);
67b2c998 4129 flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
c906108c 4130
dd824b04 4131 mips_read_fp_register_double (regnum, raw_buffer);
67b2c998 4132 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
361d1df0 4133
1adad886
AC
4134 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
4135 if (inv1)
4136 printf_filtered ("<invalid float>");
4137 else
4138 printf_filtered ("flt: %-17.9g", flt1);
4139
4140 printf_filtered (" dbl: ");
4141 if (inv3)
4142 printf_filtered ("<invalid double>");
4143 else
4144 printf_filtered ("%-24.17g", doub);
4145
4146 printf_filtered ("\n");
c906108c
SS
4147 /* may want to do hex display here (future enhancement) */
4148 regnum++;
4149 }
4150 return regnum;
4151}
4152
4153/* Print a row's worth of GP (int) registers, with name labels above */
4154
4155static int
acdb74a0 4156do_gp_register_row (int regnum)
c906108c
SS
4157{
4158 /* do values for GP (int) regs */
cb3d25d1 4159 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
4160 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4161 int col, byte;
4162 int start_regnum = regnum;
4163 int numregs = NUM_REGS;
4164
4165
4166 /* For GP registers, we print a separate row of names above the vals */
4167 printf_filtered (" ");
4168 for (col = 0; col < ncols && regnum < numregs; regnum++)
4169 {
4170 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4171 continue; /* unused register */
c906108c 4172 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b
JM
4173 break; /* end the row: reached FP register */
4174 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
c906108c
SS
4175 REGISTER_NAME (regnum));
4176 col++;
4177 }
c5aa993b 4178 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
c906108c
SS
4179 start_regnum); /* print the R0 to R31 names */
4180
4181 regnum = start_regnum; /* go back to start of row */
4182 /* now print the values in hex, 4 or 8 to the row */
4183 for (col = 0; col < ncols && regnum < numregs; regnum++)
4184 {
4185 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4186 continue; /* unused register */
c906108c 4187 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 4188 break; /* end row: reached FP register */
c906108c 4189 /* OK: get the data in raw format. */
6e7f8b9c 4190 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
c906108c
SS
4191 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4192 /* pad small registers */
43e526b9 4193 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
c906108c
SS
4194 printf_filtered (" ");
4195 /* Now print the register value in hex, endian order. */
d7449b42 4196 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
4197 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4198 byte < REGISTER_RAW_SIZE (regnum);
4199 byte++)
c906108c
SS
4200 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4201 else
43e526b9
JM
4202 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4203 byte >= 0;
4204 byte--)
c906108c
SS
4205 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4206 printf_filtered (" ");
4207 col++;
4208 }
c5aa993b 4209 if (col > 0) /* ie. if we actually printed anything... */
c906108c
SS
4210 printf_filtered ("\n");
4211
4212 return regnum;
4213}
4214
4215/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4216
bf1f5b4c 4217static void
acdb74a0 4218mips_do_registers_info (int regnum, int fpregs)
c906108c 4219{
c5aa993b 4220 if (regnum != -1) /* do one specified register */
c906108c
SS
4221 {
4222 if (*(REGISTER_NAME (regnum)) == '\0')
4223 error ("Not a valid register for the current processor type");
4224
4225 mips_print_register (regnum, 0);
4226 printf_filtered ("\n");
4227 }
c5aa993b
JM
4228 else
4229 /* do all (or most) registers */
c906108c
SS
4230 {
4231 regnum = 0;
4232 while (regnum < NUM_REGS)
4233 {
c5aa993b
JM
4234 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4235 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
c906108c
SS
4236 regnum = do_fp_register_row (regnum); /* FP regs */
4237 else
4238 regnum += MIPS_NUMREGS; /* skip floating point regs */
4239 else
4240 regnum = do_gp_register_row (regnum); /* GP (int) regs */
4241 }
4242 }
4243}
4244
c906108c
SS
4245/* Is this a branch with a delay slot? */
4246
a14ed312 4247static int is_delayed (unsigned long);
c906108c
SS
4248
4249static int
acdb74a0 4250is_delayed (unsigned long insn)
c906108c
SS
4251{
4252 int i;
4253 for (i = 0; i < NUMOPCODES; ++i)
4254 if (mips_opcodes[i].pinfo != INSN_MACRO
4255 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4256 break;
4257 return (i < NUMOPCODES
4258 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4259 | INSN_COND_BRANCH_DELAY
4260 | INSN_COND_BRANCH_LIKELY)));
4261}
4262
4263int
acdb74a0 4264mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
4265{
4266 char buf[MIPS_INSTLEN];
4267
4268 /* There is no branch delay slot on MIPS16. */
4269 if (pc_is_mips16 (pc))
4270 return 0;
4271
4272 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4273 /* If error reading memory, guess that it is not a delayed branch. */
4274 return 0;
c5aa993b 4275 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
4276}
4277
4278
4279/* Skip the PC past function prologue instructions (32-bit version).
4280 This is a helper function for mips_skip_prologue. */
4281
4282static CORE_ADDR
f7b9e9fc 4283mips32_skip_prologue (CORE_ADDR pc)
c906108c 4284{
c5aa993b
JM
4285 t_inst inst;
4286 CORE_ADDR end_pc;
4287 int seen_sp_adjust = 0;
4288 int load_immediate_bytes = 0;
4289
4290 /* Skip the typical prologue instructions. These are the stack adjustment
4291 instruction and the instructions that save registers on the stack
4292 or in the gcc frame. */
4293 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4294 {
4295 unsigned long high_word;
c906108c 4296
c5aa993b
JM
4297 inst = mips_fetch_instruction (pc);
4298 high_word = (inst >> 16) & 0xffff;
c906108c 4299
c5aa993b
JM
4300 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4301 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4302 seen_sp_adjust = 1;
4303 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4304 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4305 seen_sp_adjust = 1;
4306 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4307 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4308 && (inst & 0x001F0000)) /* reg != $zero */
4309 continue;
4310
4311 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4312 continue;
4313 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4314 /* sx reg,n($s8) */
4315 continue; /* reg != $zero */
4316
4317 /* move $s8,$sp. With different versions of gas this will be either
4318 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4319 Accept any one of these. */
4320 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4321 continue;
4322
4323 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4324 continue;
4325 else if (high_word == 0x3c1c) /* lui $gp,n */
4326 continue;
4327 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4328 continue;
4329 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4330 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4331 continue;
4332 /* The following instructions load $at or $t0 with an immediate
4333 value in preparation for a stack adjustment via
4334 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4335 a local variable, so we accept them only before a stack adjustment
4336 instruction was seen. */
4337 else if (!seen_sp_adjust)
4338 {
4339 if (high_word == 0x3c01 || /* lui $at,n */
4340 high_word == 0x3c08) /* lui $t0,n */
4341 {
4342 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4343 continue;
4344 }
4345 else if (high_word == 0x3421 || /* ori $at,$at,n */
4346 high_word == 0x3508 || /* ori $t0,$t0,n */
4347 high_word == 0x3401 || /* ori $at,$zero,n */
4348 high_word == 0x3408) /* ori $t0,$zero,n */
4349 {
4350 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4351 continue;
4352 }
4353 else
4354 break;
4355 }
4356 else
4357 break;
c906108c
SS
4358 }
4359
c5aa993b
JM
4360 /* In a frameless function, we might have incorrectly
4361 skipped some load immediate instructions. Undo the skipping
4362 if the load immediate was not followed by a stack adjustment. */
4363 if (load_immediate_bytes && !seen_sp_adjust)
4364 pc -= load_immediate_bytes;
4365 return pc;
c906108c
SS
4366}
4367
4368/* Skip the PC past function prologue instructions (16-bit version).
4369 This is a helper function for mips_skip_prologue. */
4370
4371static CORE_ADDR
f7b9e9fc 4372mips16_skip_prologue (CORE_ADDR pc)
c906108c 4373{
c5aa993b
JM
4374 CORE_ADDR end_pc;
4375 int extend_bytes = 0;
4376 int prev_extend_bytes;
c906108c 4377
c5aa993b
JM
4378 /* Table of instructions likely to be found in a function prologue. */
4379 static struct
c906108c
SS
4380 {
4381 unsigned short inst;
4382 unsigned short mask;
c5aa993b
JM
4383 }
4384 table[] =
4385 {
c906108c 4386 {
c5aa993b
JM
4387 0x6300, 0xff00
4388 }
4389 , /* addiu $sp,offset */
4390 {
4391 0xfb00, 0xff00
4392 }
4393 , /* daddiu $sp,offset */
4394 {
4395 0xd000, 0xf800
4396 }
4397 , /* sw reg,n($sp) */
4398 {
4399 0xf900, 0xff00
4400 }
4401 , /* sd reg,n($sp) */
4402 {
4403 0x6200, 0xff00
4404 }
4405 , /* sw $ra,n($sp) */
4406 {
4407 0xfa00, 0xff00
4408 }
4409 , /* sd $ra,n($sp) */
4410 {
4411 0x673d, 0xffff
4412 }
4413 , /* move $s1,sp */
4414 {
4415 0xd980, 0xff80
4416 }
4417 , /* sw $a0-$a3,n($s1) */
4418 {
4419 0x6704, 0xff1c
4420 }
4421 , /* move reg,$a0-$a3 */
4422 {
4423 0xe809, 0xf81f
4424 }
4425 , /* entry pseudo-op */
4426 {
4427 0x0100, 0xff00
4428 }
4429 , /* addiu $s1,$sp,n */
4430 {
4431 0, 0
4432 } /* end of table marker */
4433 };
4434
4435 /* Skip the typical prologue instructions. These are the stack adjustment
4436 instruction and the instructions that save registers on the stack
4437 or in the gcc frame. */
4438 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4439 {
4440 unsigned short inst;
4441 int i;
c906108c 4442
c5aa993b 4443 inst = mips_fetch_instruction (pc);
c906108c 4444
c5aa993b
JM
4445 /* Normally we ignore an extend instruction. However, if it is
4446 not followed by a valid prologue instruction, we must adjust
4447 the pc back over the extend so that it won't be considered
4448 part of the prologue. */
4449 if ((inst & 0xf800) == 0xf000) /* extend */
4450 {
4451 extend_bytes = MIPS16_INSTLEN;
4452 continue;
4453 }
4454 prev_extend_bytes = extend_bytes;
4455 extend_bytes = 0;
c906108c 4456
c5aa993b
JM
4457 /* Check for other valid prologue instructions besides extend. */
4458 for (i = 0; table[i].mask != 0; i++)
4459 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4460 break;
4461 if (table[i].mask != 0) /* it was in table? */
4462 continue; /* ignore it */
4463 else
4464 /* non-prologue */
4465 {
4466 /* Return the current pc, adjusted backwards by 2 if
4467 the previous instruction was an extend. */
4468 return pc - prev_extend_bytes;
4469 }
c906108c
SS
4470 }
4471 return pc;
4472}
4473
4474/* To skip prologues, I use this predicate. Returns either PC itself
4475 if the code at PC does not look like a function prologue; otherwise
4476 returns an address that (if we're lucky) follows the prologue. If
4477 LENIENT, then we must skip everything which is involved in setting
4478 up the frame (it's OK to skip more, just so long as we don't skip
4479 anything which might clobber the registers which are being saved.
4480 We must skip more in the case where part of the prologue is in the
4481 delay slot of a non-prologue instruction). */
4482
f7ab6ec6 4483static CORE_ADDR
f7b9e9fc 4484mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
4485{
4486 /* See if we can determine the end of the prologue via the symbol table.
4487 If so, then return either PC, or the PC after the prologue, whichever
4488 is greater. */
4489
4490 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4491
4492 if (post_prologue_pc != 0)
4493 return max (pc, post_prologue_pc);
4494
4495 /* Can't determine prologue from the symbol table, need to examine
4496 instructions. */
4497
4498 if (pc_is_mips16 (pc))
f7b9e9fc 4499 return mips16_skip_prologue (pc);
c906108c 4500 else
f7b9e9fc 4501 return mips32_skip_prologue (pc);
c906108c 4502}
c906108c 4503
7a292a7a
SS
4504/* Determine how a return value is stored within the MIPS register
4505 file, given the return type `valtype'. */
4506
4507struct return_value_word
4508{
4509 int len;
4510 int reg;
4511 int reg_offset;
4512 int buf_offset;
4513};
4514
7a292a7a 4515static void
acdb74a0
AC
4516return_value_location (struct type *valtype,
4517 struct return_value_word *hi,
4518 struct return_value_word *lo)
7a292a7a
SS
4519{
4520 int len = TYPE_LENGTH (valtype);
c5aa993b 4521
7a292a7a
SS
4522 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4523 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4524 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4525 {
4526 if (!FP_REGISTER_DOUBLE && len == 8)
4527 {
4528 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 4529 spread them across a floating-point register pair. */
d7449b42
AC
4530 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4531 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4532 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4533 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4534 ? 4 : 0);
4535 hi->reg_offset = lo->reg_offset;
4536 lo->reg = FP0_REGNUM + 0;
4537 hi->reg = FP0_REGNUM + 1;
4538 lo->len = 4;
4539 hi->len = 4;
4540 }
4541 else
4542 {
4543 /* The floating point value fits in a single floating-point
c5aa993b 4544 register. */
d7449b42 4545 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4546 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4547 && len == 4)
4548 ? 4 : 0);
4549 lo->reg = FP0_REGNUM;
4550 lo->len = len;
4551 lo->buf_offset = 0;
4552 hi->len = 0;
4553 hi->reg_offset = 0;
4554 hi->buf_offset = 0;
4555 hi->reg = 0;
4556 }
4557 }
4558 else
4559 {
4560 /* Locate a result possibly spread across two registers. */
4561 int regnum = 2;
4562 lo->reg = regnum + 0;
4563 hi->reg = regnum + 1;
d7449b42 4564 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4565 && len < MIPS_SAVED_REGSIZE)
4566 {
bf1f5b4c
MS
4567 /* "un-left-justify" the value in the low register */
4568 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
bcb0cc15 4569 lo->len = len;
bf1f5b4c 4570 hi->reg_offset = 0;
7a292a7a
SS
4571 hi->len = 0;
4572 }
d7449b42 4573 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4574 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4575 && len < MIPS_SAVED_REGSIZE * 2
4576 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4577 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4578 {
4579 /* "un-left-justify" the value spread across two registers. */
4580 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4581 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4582 hi->reg_offset = 0;
4583 hi->len = len - lo->len;
4584 }
4585 else
4586 {
4587 /* Only perform a partial copy of the second register. */
4588 lo->reg_offset = 0;
4589 hi->reg_offset = 0;
4590 if (len > MIPS_SAVED_REGSIZE)
4591 {
4592 lo->len = MIPS_SAVED_REGSIZE;
4593 hi->len = len - MIPS_SAVED_REGSIZE;
4594 }
4595 else
4596 {
4597 lo->len = len;
4598 hi->len = 0;
4599 }
4600 }
d7449b42 4601 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4602 && REGISTER_RAW_SIZE (regnum) == 8
4603 && MIPS_SAVED_REGSIZE == 4)
4604 {
4605 /* Account for the fact that only the least-signficant part
c5aa993b 4606 of the register is being used */
7a292a7a
SS
4607 lo->reg_offset += 4;
4608 hi->reg_offset += 4;
4609 }
4610 lo->buf_offset = 0;
4611 hi->buf_offset = lo->len;
4612 }
4613}
4614
4615/* Given a return value in `regbuf' with a type `valtype', extract and
4616 copy its value into `valbuf'. */
4617
46cac009
AC
4618static void
4619mips_eabi_extract_return_value (struct type *valtype,
4620 char regbuf[REGISTER_BYTES],
4621 char *valbuf)
4622{
4623 struct return_value_word lo;
4624 struct return_value_word hi;
4625 return_value_location (valtype, &hi, &lo);
4626
4627 memcpy (valbuf + lo.buf_offset,
4628 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4629 lo.len);
4630
4631 if (hi.len > 0)
4632 memcpy (valbuf + hi.buf_offset,
4633 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4634 hi.len);
4635}
4636
46cac009
AC
4637static void
4638mips_o64_extract_return_value (struct type *valtype,
4639 char regbuf[REGISTER_BYTES],
4640 char *valbuf)
4641{
4642 struct return_value_word lo;
4643 struct return_value_word hi;
4644 return_value_location (valtype, &hi, &lo);
4645
4646 memcpy (valbuf + lo.buf_offset,
4647 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4648 lo.len);
4649
4650 if (hi.len > 0)
4651 memcpy (valbuf + hi.buf_offset,
4652 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4653 hi.len);
4654}
4655
7a292a7a
SS
4656/* Given a return value in `valbuf' with a type `valtype', write it's
4657 value into the appropriate register. */
4658
46cac009
AC
4659static void
4660mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4661{
4662 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4663 struct return_value_word lo;
4664 struct return_value_word hi;
4665 return_value_location (valtype, &hi, &lo);
4666
4667 memset (raw_buffer, 0, sizeof (raw_buffer));
4668 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
73937e03
AC
4669 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4670 REGISTER_RAW_SIZE (lo.reg));
46cac009
AC
4671
4672 if (hi.len > 0)
4673 {
4674 memset (raw_buffer, 0, sizeof (raw_buffer));
4675 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
73937e03
AC
4676 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4677 REGISTER_RAW_SIZE (hi.reg));
46cac009
AC
4678 }
4679}
4680
4681static void
cb1d2653 4682mips_o64_store_return_value (struct type *valtype, char *valbuf)
46cac009
AC
4683{
4684 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4685 struct return_value_word lo;
4686 struct return_value_word hi;
4687 return_value_location (valtype, &hi, &lo);
4688
4689 memset (raw_buffer, 0, sizeof (raw_buffer));
4690 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
73937e03
AC
4691 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4692 REGISTER_RAW_SIZE (lo.reg));
46cac009
AC
4693
4694 if (hi.len > 0)
4695 {
4696 memset (raw_buffer, 0, sizeof (raw_buffer));
4697 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
73937e03
AC
4698 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4699 REGISTER_RAW_SIZE (hi.reg));
46cac009
AC
4700 }
4701}
4702
cb1d2653
AC
4703/* O32 ABI stuff. */
4704
46cac009 4705static void
cb1d2653
AC
4706mips_o32_xfer_return_value (struct type *type,
4707 struct regcache *regcache,
4708 bfd_byte *in, const bfd_byte *out)
46cac009 4709{
cb1d2653
AC
4710 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4711 if (TYPE_CODE (type) == TYPE_CODE_FLT
4712 && TYPE_LENGTH (type) == 4
4713 && tdep->mips_fpu_type != MIPS_FPU_NONE)
46cac009 4714 {
cb1d2653
AC
4715 /* A single-precision floating-point value. It fits in the
4716 least significant part of FP0. */
4717 if (mips_debug)
4718 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4719 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4720 TARGET_BYTE_ORDER, in, out, 0);
4721 }
4722 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4723 && TYPE_LENGTH (type) == 8
4724 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4725 {
4726 /* A double-precision floating-point value. It fits in the
4727 least significant part of FP0/FP1 but with byte ordering
4728 based on the target (???). */
4729 if (mips_debug)
4730 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4731 switch (TARGET_BYTE_ORDER)
4732 {
4733 case BFD_ENDIAN_LITTLE:
4734 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4735 TARGET_BYTE_ORDER, in, out, 0);
4736 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4737 TARGET_BYTE_ORDER, in, out, 4);
4738 break;
4739 case BFD_ENDIAN_BIG:
4740 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4741 TARGET_BYTE_ORDER, in, out, 0);
4742 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4743 TARGET_BYTE_ORDER, in, out, 4);
4744 break;
4745 default:
4746 internal_error (__FILE__, __LINE__, "bad switch");
4747 }
4748 }
4749#if 0
4750 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4751 && TYPE_NFIELDS (type) <= 2
4752 && TYPE_NFIELDS (type) >= 1
4753 && ((TYPE_NFIELDS (type) == 1
4754 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4755 == TYPE_CODE_FLT))
4756 || (TYPE_NFIELDS (type) == 2
4757 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4758 == TYPE_CODE_FLT)
4759 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4760 == TYPE_CODE_FLT)))
4761 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4762 {
4763 /* A struct that contains one or two floats. Each value is part
4764 in the least significant part of their floating point
4765 register.. */
4766 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4767 int regnum;
4768 int field;
4769 for (field = 0, regnum = FP0_REGNUM;
4770 field < TYPE_NFIELDS (type);
4771 field++, regnum += 2)
4772 {
4773 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4774 / TARGET_CHAR_BIT);
4775 if (mips_debug)
4776 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4777 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4778 TARGET_BYTE_ORDER, in, out, offset);
4779 }
4780 }
4781#endif
4782#if 0
4783 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4784 || TYPE_CODE (type) == TYPE_CODE_UNION)
4785 {
4786 /* A structure or union. Extract the left justified value,
4787 regardless of the byte order. I.e. DO NOT USE
4788 mips_xfer_lower. */
4789 int offset;
4790 int regnum;
4791 for (offset = 0, regnum = V0_REGNUM;
4792 offset < TYPE_LENGTH (type);
4793 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4794 {
4795 int xfer = REGISTER_RAW_SIZE (regnum);
4796 if (offset + xfer > TYPE_LENGTH (type))
4797 xfer = TYPE_LENGTH (type) - offset;
4798 if (mips_debug)
4799 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4800 offset, xfer, regnum);
4801 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4802 in, out, offset);
4803 }
4804 }
4805#endif
4806 else
4807 {
4808 /* A scalar extract each part but least-significant-byte
4809 justified. o32 thinks registers are 4 byte, regardless of
4810 the ISA. mips_stack_argsize controls this. */
4811 int offset;
4812 int regnum;
4813 for (offset = 0, regnum = V0_REGNUM;
4814 offset < TYPE_LENGTH (type);
4815 offset += mips_stack_argsize (), regnum++)
4816 {
4817 int xfer = mips_stack_argsize ();
4818 int pos = 0;
4819 if (offset + xfer > TYPE_LENGTH (type))
4820 xfer = TYPE_LENGTH (type) - offset;
4821 if (mips_debug)
4822 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4823 offset, xfer, regnum);
4824 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4825 in, out, offset);
4826 }
46cac009
AC
4827 }
4828}
4829
cb1d2653
AC
4830static void
4831mips_o32_extract_return_value (struct type *type,
4832 struct regcache *regcache,
ebba8386 4833 void *valbuf)
cb1d2653
AC
4834{
4835 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4836}
4837
4838static void
4839mips_o32_store_return_value (struct type *type, char *valbuf)
4840{
4841 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4842}
4843
4844/* N32/N44 ABI stuff. */
4845
46cac009 4846static void
88658117
AC
4847mips_n32n64_xfer_return_value (struct type *type,
4848 struct regcache *regcache,
4849 bfd_byte *in, const bfd_byte *out)
c906108c 4850{
88658117
AC
4851 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4852 if (TYPE_CODE (type) == TYPE_CODE_FLT
4853 && tdep->mips_fpu_type != MIPS_FPU_NONE)
7a292a7a 4854 {
88658117
AC
4855 /* A floating-point value belongs in the least significant part
4856 of FP0. */
4857 if (mips_debug)
4858 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4859 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4860 TARGET_BYTE_ORDER, in, out, 0);
4861 }
4862 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4863 && TYPE_NFIELDS (type) <= 2
4864 && TYPE_NFIELDS (type) >= 1
4865 && ((TYPE_NFIELDS (type) == 1
4866 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4867 == TYPE_CODE_FLT))
4868 || (TYPE_NFIELDS (type) == 2
4869 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4870 == TYPE_CODE_FLT)
4871 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4872 == TYPE_CODE_FLT)))
4873 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4874 {
4875 /* A struct that contains one or two floats. Each value is part
4876 in the least significant part of their floating point
4877 register.. */
4878 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4879 int regnum;
4880 int field;
4881 for (field = 0, regnum = FP0_REGNUM;
4882 field < TYPE_NFIELDS (type);
4883 field++, regnum += 2)
4884 {
4885 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4886 / TARGET_CHAR_BIT);
4887 if (mips_debug)
4888 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4889 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4890 TARGET_BYTE_ORDER, in, out, offset);
4891 }
7a292a7a 4892 }
88658117
AC
4893 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4894 || TYPE_CODE (type) == TYPE_CODE_UNION)
4895 {
4896 /* A structure or union. Extract the left justified value,
4897 regardless of the byte order. I.e. DO NOT USE
4898 mips_xfer_lower. */
4899 int offset;
4900 int regnum;
4901 for (offset = 0, regnum = V0_REGNUM;
4902 offset < TYPE_LENGTH (type);
4903 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4904 {
4905 int xfer = REGISTER_RAW_SIZE (regnum);
4906 if (offset + xfer > TYPE_LENGTH (type))
4907 xfer = TYPE_LENGTH (type) - offset;
4908 if (mips_debug)
4909 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4910 offset, xfer, regnum);
4911 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4912 in, out, offset);
4913 }
4914 }
4915 else
4916 {
4917 /* A scalar extract each part but least-significant-byte
4918 justified. */
4919 int offset;
4920 int regnum;
4921 for (offset = 0, regnum = V0_REGNUM;
4922 offset < TYPE_LENGTH (type);
4923 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4924 {
4925 int xfer = REGISTER_RAW_SIZE (regnum);
4926 int pos = 0;
4927 if (offset + xfer > TYPE_LENGTH (type))
4928 xfer = TYPE_LENGTH (type) - offset;
4929 if (mips_debug)
4930 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4931 offset, xfer, regnum);
4932 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4933 in, out, offset);
4934 }
4935 }
4936}
4937
4938static void
4939mips_n32n64_extract_return_value (struct type *type,
4940 struct regcache *regcache,
ebba8386 4941 void *valbuf)
88658117
AC
4942{
4943 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4944}
4945
4946static void
4947mips_n32n64_store_return_value (struct type *type, char *valbuf)
4948{
4949 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
c906108c
SS
4950}
4951
2f1488ce
MS
4952static void
4953mips_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4954{
4955 /* Nothing to do -- push_arguments does all the work. */
4956}
4957
4958static CORE_ADDR
6672060b 4959mips_extract_struct_value_address (struct regcache *regcache)
2f1488ce
MS
4960{
4961 /* FIXME: This will only work at random. The caller passes the
4962 struct_return address in V0, but it is not preserved. It may
4963 still be there, or this may be a random value. */
77d8f2b4
MS
4964 LONGEST val;
4965
4966 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
6672060b 4967 return val;
2f1488ce
MS
4968}
4969
c906108c
SS
4970/* Exported procedure: Is PC in the signal trampoline code */
4971
102182a9
MS
4972static int
4973mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
4974{
4975 if (sigtramp_address == 0)
4976 fixup_sigtramp ();
4977 return (pc >= sigtramp_address && pc < sigtramp_end);
4978}
4979
a5ea2558
AC
4980/* Root of all "set mips "/"show mips " commands. This will eventually be
4981 used for all MIPS-specific commands. */
4982
a5ea2558 4983static void
acdb74a0 4984show_mips_command (char *args, int from_tty)
a5ea2558
AC
4985{
4986 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4987}
4988
a5ea2558 4989static void
acdb74a0 4990set_mips_command (char *args, int from_tty)
a5ea2558
AC
4991{
4992 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4993 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4994}
4995
c906108c
SS
4996/* Commands to show/set the MIPS FPU type. */
4997
c906108c 4998static void
acdb74a0 4999show_mipsfpu_command (char *args, int from_tty)
c906108c 5000{
c906108c
SS
5001 char *fpu;
5002 switch (MIPS_FPU_TYPE)
5003 {
5004 case MIPS_FPU_SINGLE:
5005 fpu = "single-precision";
5006 break;
5007 case MIPS_FPU_DOUBLE:
5008 fpu = "double-precision";
5009 break;
5010 case MIPS_FPU_NONE:
5011 fpu = "absent (none)";
5012 break;
93d56215
AC
5013 default:
5014 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
5015 }
5016 if (mips_fpu_type_auto)
5017 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5018 fpu);
5019 else
5020 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5021 fpu);
5022}
5023
5024
c906108c 5025static void
acdb74a0 5026set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
5027{
5028 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5029 show_mipsfpu_command (args, from_tty);
5030}
5031
c906108c 5032static void
acdb74a0 5033set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
5034{
5035 mips_fpu_type = MIPS_FPU_SINGLE;
5036 mips_fpu_type_auto = 0;
9e364162 5037 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
c906108c
SS
5038}
5039
c906108c 5040static void
acdb74a0 5041set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
5042{
5043 mips_fpu_type = MIPS_FPU_DOUBLE;
5044 mips_fpu_type_auto = 0;
9e364162 5045 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
c906108c
SS
5046}
5047
c906108c 5048static void
acdb74a0 5049set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
5050{
5051 mips_fpu_type = MIPS_FPU_NONE;
5052 mips_fpu_type_auto = 0;
9e364162 5053 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
c906108c
SS
5054}
5055
c906108c 5056static void
acdb74a0 5057set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
5058{
5059 mips_fpu_type_auto = 1;
5060}
5061
5062/* Command to set the processor type. */
5063
5064void
acdb74a0 5065mips_set_processor_type_command (char *args, int from_tty)
c906108c
SS
5066{
5067 int i;
5068
5069 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5070 {
5071 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5072 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5073 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5074
5075 /* Restore the value. */
4fcf66da 5076 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5077
5078 return;
5079 }
c5aa993b 5080
c906108c
SS
5081 if (!mips_set_processor_type (tmp_mips_processor_type))
5082 {
5083 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5084 /* Restore its value. */
4fcf66da 5085 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5086 }
5087}
5088
5089static void
acdb74a0 5090mips_show_processor_type_command (char *args, int from_tty)
c906108c
SS
5091{
5092}
5093
5094/* Modify the actual processor type. */
5095
5a89d8aa 5096static int
acdb74a0 5097mips_set_processor_type (char *str)
c906108c 5098{
1012bd0e 5099 int i;
c906108c
SS
5100
5101 if (str == NULL)
5102 return 0;
5103
5104 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5105 {
5106 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5107 {
5108 mips_processor_type = str;
cce74817 5109 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 5110 return 1;
c906108c
SS
5111 /* FIXME tweak fpu flag too */
5112 }
5113 }
5114
5115 return 0;
5116}
5117
5118/* Attempt to identify the particular processor model by reading the
5119 processor id. */
5120
5121char *
acdb74a0 5122mips_read_processor_type (void)
c906108c
SS
5123{
5124 CORE_ADDR prid;
5125
5126 prid = read_register (PRID_REGNUM);
5127
5128 if ((prid & ~0xf) == 0x700)
c5aa993b 5129 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
5130
5131 return NULL;
5132}
5133
5134/* Just like reinit_frame_cache, but with the right arguments to be
5135 callable as an sfunc. */
5136
5137static void
acdb74a0
AC
5138reinit_frame_cache_sfunc (char *args, int from_tty,
5139 struct cmd_list_element *c)
c906108c
SS
5140{
5141 reinit_frame_cache ();
5142}
5143
5144int
acdb74a0 5145gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
5146{
5147 mips_extra_func_info_t proc_desc;
5148
5149 /* Search for the function containing this address. Set the low bit
5150 of the address when searching, in case we were given an even address
5151 that is the start of a 16-bit function. If we didn't do this,
5152 the search would fail because the symbol table says the function
5153 starts at an odd address, i.e. 1 byte past the given address. */
5154 memaddr = ADDR_BITS_REMOVE (memaddr);
5155 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5156
5157 /* Make an attempt to determine if this is a 16-bit function. If
5158 the procedure descriptor exists and the address therein is odd,
5159 it's definitely a 16-bit function. Otherwise, we have to just
5160 guess that if the address passed in is odd, it's 16-bits. */
5161 if (proc_desc)
361d1df0 5162 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
65c11066 5163 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c 5164 else
361d1df0 5165 info->mach = pc_is_mips16 (memaddr) ?
65c11066 5166 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c
SS
5167
5168 /* Round down the instruction address to the appropriate boundary. */
65c11066 5169 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 5170
c906108c 5171 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 5172 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5173 return print_insn_big_mips (memaddr, info);
5174 else
5175 return print_insn_little_mips (memaddr, info);
5176}
5177
5178/* Old-style breakpoint macros.
5179 The IDT board uses an unusual breakpoint value, and sometimes gets
5180 confused when it sees the usual MIPS breakpoint instruction. */
5181
5182#define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
5183#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
5184#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
5185#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
5186#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
5187#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
5188#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
5189#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
5190
5191/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5192 counter value to determine whether a 16- or 32-bit breakpoint should be
5193 used. It returns a pointer to a string of bytes that encode a breakpoint
5194 instruction, stores the length of the string to *lenptr, and adjusts pc
5195 (if necessary) to point to the actual memory location where the
5196 breakpoint should be inserted. */
5197
f7ab6ec6 5198static const unsigned char *
acdb74a0 5199mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c 5200{
d7449b42 5201 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5202 {
5203 if (pc_is_mips16 (*pcptr))
5204 {
1012bd0e
EZ
5205 static unsigned char mips16_big_breakpoint[] =
5206 MIPS16_BIG_BREAKPOINT;
c906108c 5207 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 5208 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
5209 return mips16_big_breakpoint;
5210 }
5211 else
5212 {
1012bd0e
EZ
5213 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
5214 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
5215 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
c906108c 5216
c5aa993b 5217 *lenptr = sizeof (big_breakpoint);
c906108c
SS
5218
5219 if (strcmp (target_shortname, "mips") == 0)
5220 return idt_big_breakpoint;
5221 else if (strcmp (target_shortname, "ddb") == 0
5222 || strcmp (target_shortname, "pmon") == 0
5223 || strcmp (target_shortname, "lsi") == 0)
5224 return pmon_big_breakpoint;
5225 else
5226 return big_breakpoint;
5227 }
5228 }
5229 else
5230 {
5231 if (pc_is_mips16 (*pcptr))
5232 {
1012bd0e
EZ
5233 static unsigned char mips16_little_breakpoint[] =
5234 MIPS16_LITTLE_BREAKPOINT;
c906108c 5235 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 5236 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
5237 return mips16_little_breakpoint;
5238 }
5239 else
5240 {
1012bd0e
EZ
5241 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
5242 static unsigned char pmon_little_breakpoint[] =
5243 PMON_LITTLE_BREAKPOINT;
5244 static unsigned char idt_little_breakpoint[] =
5245 IDT_LITTLE_BREAKPOINT;
c906108c 5246
c5aa993b 5247 *lenptr = sizeof (little_breakpoint);
c906108c
SS
5248
5249 if (strcmp (target_shortname, "mips") == 0)
5250 return idt_little_breakpoint;
5251 else if (strcmp (target_shortname, "ddb") == 0
5252 || strcmp (target_shortname, "pmon") == 0
5253 || strcmp (target_shortname, "lsi") == 0)
5254 return pmon_little_breakpoint;
5255 else
5256 return little_breakpoint;
5257 }
5258 }
5259}
5260
5261/* If PC is in a mips16 call or return stub, return the address of the target
5262 PC, which is either the callee or the caller. There are several
5263 cases which must be handled:
5264
5265 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 5266 target PC is in $31 ($ra).
c906108c 5267 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 5268 and the target PC is in $2.
c906108c 5269 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5270 before the jal instruction, this is effectively a call stub
5271 and the the target PC is in $2. Otherwise this is effectively
5272 a return stub and the target PC is in $18.
c906108c
SS
5273
5274 See the source code for the stubs in gcc/config/mips/mips16.S for
5275 gory details.
5276
5277 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 5278 */
c906108c 5279
757a7cc6 5280static CORE_ADDR
acdb74a0 5281mips_skip_stub (CORE_ADDR pc)
c906108c
SS
5282{
5283 char *name;
5284 CORE_ADDR start_addr;
5285
5286 /* Find the starting address and name of the function containing the PC. */
5287 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5288 return 0;
5289
5290 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5291 target PC is in $31 ($ra). */
5292 if (strcmp (name, "__mips16_ret_sf") == 0
5293 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 5294 return read_signed_register (RA_REGNUM);
c906108c
SS
5295
5296 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5297 {
5298 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5299 and the target PC is in $2. */
5300 if (name[19] >= '0' && name[19] <= '9')
6c997a34 5301 return read_signed_register (2);
c906108c
SS
5302
5303 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5304 before the jal instruction, this is effectively a call stub
5305 and the the target PC is in $2. Otherwise this is effectively
5306 a return stub and the target PC is in $18. */
c906108c
SS
5307 else if (name[19] == 's' || name[19] == 'd')
5308 {
5309 if (pc == start_addr)
5310 {
5311 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
5312 stub. Such a stub for a function bar might have a name
5313 like __fn_stub_bar, and might look like this:
5314 mfc1 $4,$f13
5315 mfc1 $5,$f12
5316 mfc1 $6,$f15
5317 mfc1 $7,$f14
5318 la $1,bar (becomes a lui/addiu pair)
5319 jr $1
5320 So scan down to the lui/addi and extract the target
5321 address from those two instructions. */
c906108c 5322
6c997a34 5323 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
5324 t_inst inst;
5325 int i;
5326
5327 /* See if the name of the target function is __fn_stub_*. */
5328 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5329 return target_pc;
5330 if (strncmp (name, "__fn_stub_", 10) != 0
5331 && strcmp (name, "etext") != 0
5332 && strcmp (name, "_etext") != 0)
5333 return target_pc;
5334
5335 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
5336 The limit on the search is arbitrarily set to 20
5337 instructions. FIXME. */
c906108c
SS
5338 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5339 {
c5aa993b
JM
5340 inst = mips_fetch_instruction (target_pc);
5341 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5342 pc = (inst << 16) & 0xffff0000; /* high word */
5343 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5344 return pc | (inst & 0xffff); /* low word */
c906108c
SS
5345 }
5346
5347 /* Couldn't find the lui/addui pair, so return stub address. */
5348 return target_pc;
5349 }
5350 else
5351 /* This is the 'return' part of a call stub. The return
5352 address is in $r18. */
6c997a34 5353 return read_signed_register (18);
c906108c
SS
5354 }
5355 }
c5aa993b 5356 return 0; /* not a stub */
c906108c
SS
5357}
5358
5359
5360/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5361 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5362
757a7cc6 5363static int
acdb74a0 5364mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
5365{
5366 CORE_ADDR start_addr;
5367
5368 /* Find the starting address of the function containing the PC. If the
5369 caller didn't give us a name, look it up at the same time. */
5370 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5371 return 0;
5372
5373 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5374 {
5375 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5376 if (name[19] >= '0' && name[19] <= '9')
5377 return 1;
5378 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 5379 before the jal instruction, this is effectively a call stub. */
c906108c
SS
5380 else if (name[19] == 's' || name[19] == 'd')
5381 return pc == start_addr;
5382 }
5383
c5aa993b 5384 return 0; /* not a stub */
c906108c
SS
5385}
5386
5387
5388/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5389 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5390
e41b17f0 5391static int
acdb74a0 5392mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
5393{
5394 CORE_ADDR start_addr;
5395
5396 /* Find the starting address of the function containing the PC. */
5397 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5398 return 0;
5399
5400 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5401 if (strcmp (name, "__mips16_ret_sf") == 0
5402 || strcmp (name, "__mips16_ret_df") == 0)
5403 return 1;
5404
5405 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 5406 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
5407 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5408 && (name[19] == 's' || name[19] == 'd')
5409 && pc != start_addr)
5410 return 1;
5411
c5aa993b 5412 return 0; /* not a stub */
c906108c
SS
5413}
5414
5415
5416/* Return non-zero if the PC is in a library helper function that should
5417 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5418
5419int
acdb74a0 5420mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
5421{
5422 char *name;
5423
5424 /* Find the starting address and name of the function containing the PC. */
5425 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5426 return 0;
5427
5428 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5429 that we want to ignore. */
5430 return (strcmp (name, "__mips16_ret_sf") == 0
5431 || strcmp (name, "__mips16_ret_df") == 0);
5432}
5433
5434
5435/* Return a location where we can set a breakpoint that will be hit
5436 when an inferior function call returns. This is normally the
5437 program's entry point. Executables that don't have an entry
5438 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5439 whose address is the location where the breakpoint should be placed. */
5440
f7ab6ec6 5441static CORE_ADDR
acdb74a0 5442mips_call_dummy_address (void)
c906108c
SS
5443{
5444 struct minimal_symbol *sym;
5445
5446 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5447 if (sym)
5448 return SYMBOL_VALUE_ADDRESS (sym);
5449 else
5450 return entry_point_address ();
5451}
5452
5453
47a8d4ba
AC
5454/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5455 the register stored on the stack (32) is different to its real raw
5456 size (64). The below ensures that registers are fetched from the
5457 stack using their ABI size and then stored into the RAW_BUFFER
5458 using their raw size.
5459
5460 The alternative to adding this function would be to add an ABI
5461 macro - REGISTER_STACK_SIZE(). */
5462
5463static void
acdb74a0 5464mips_get_saved_register (char *raw_buffer,
795e1e11 5465 int *optimizedp,
acdb74a0
AC
5466 CORE_ADDR *addrp,
5467 struct frame_info *frame,
5468 int regnum,
795e1e11 5469 enum lval_type *lvalp)
47a8d4ba 5470{
795e1e11
AC
5471 CORE_ADDR addrx;
5472 enum lval_type lvalx;
5473 int optimizedx;
5474 int realnum;
47a8d4ba
AC
5475
5476 if (!target_has_registers)
5477 error ("No registers.");
5478
795e1e11
AC
5479 /* Make certain that all needed parameters are present. */
5480 if (addrp == NULL)
5481 addrp = &addrx;
5482 if (lvalp == NULL)
5483 lvalp = &lvalx;
5484 if (optimizedp == NULL)
5485 optimizedp = &optimizedx;
5486 frame_register_unwind (get_next_frame (frame), regnum, optimizedp, lvalp,
5487 addrp, &realnum, raw_buffer);
5488 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5489 have a pseudo register range that correspons to the ABI's, rather
5490 than the ISA's, view of registers. These registers would then
5491 implicitly describe their size and hence could be used without
5492 the below munging. */
5493 if ((*lvalp) == lval_memory)
47a8d4ba 5494 {
47a8d4ba
AC
5495 if (raw_buffer != NULL)
5496 {
47a8d4ba 5497 if (regnum < 32)
795e1e11
AC
5498 {
5499 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5500 saved. */
5501 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
5502 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5503 }
47a8d4ba
AC
5504 }
5505 }
47a8d4ba 5506}
2acceee2 5507
f7b9e9fc
AC
5508/* Immediately after a function call, return the saved pc.
5509 Can't always go through the frames for this because on some machines
5510 the new frame is not set up until the new function executes
5511 some instructions. */
5512
5513static CORE_ADDR
5514mips_saved_pc_after_call (struct frame_info *frame)
5515{
6c997a34 5516 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
5517}
5518
5519
88c72b7d
AC
5520/* Convert a dbx stab register number (from `r' declaration) to a gdb
5521 REGNUM */
5522
5523static int
5524mips_stab_reg_to_regnum (int num)
5525{
5526 if (num < 32)
5527 return num;
361d1df0 5528 else
88c72b7d
AC
5529 return num + FP0_REGNUM - 38;
5530}
5531
5532/* Convert a ecoff register number to a gdb REGNUM */
5533
5534static int
5535mips_ecoff_reg_to_regnum (int num)
5536{
5537 if (num < 32)
5538 return num;
5539 else
5540 return num + FP0_REGNUM - 32;
5541}
5542
fc0c74b1
AC
5543/* Convert an integer into an address. By first converting the value
5544 into a pointer and then extracting it signed, the address is
5545 guarenteed to be correctly sign extended. */
5546
5547static CORE_ADDR
5548mips_integer_to_address (struct type *type, void *buf)
5549{
5550 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5551 LONGEST val = unpack_long (type, buf);
5552 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5553 return extract_signed_integer (tmp,
5554 TYPE_LENGTH (builtin_type_void_data_ptr));
5555}
5556
caaa3122
DJ
5557static void
5558mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5559{
5560 enum mips_abi *abip = (enum mips_abi *) obj;
5561 const char *name = bfd_get_section_name (abfd, sect);
5562
5563 if (*abip != MIPS_ABI_UNKNOWN)
5564 return;
5565
5566 if (strncmp (name, ".mdebug.", 8) != 0)
5567 return;
5568
5569 if (strcmp (name, ".mdebug.abi32") == 0)
5570 *abip = MIPS_ABI_O32;
5571 else if (strcmp (name, ".mdebug.abiN32") == 0)
5572 *abip = MIPS_ABI_N32;
62a49b2c 5573 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 5574 *abip = MIPS_ABI_N64;
caaa3122
DJ
5575 else if (strcmp (name, ".mdebug.abiO64") == 0)
5576 *abip = MIPS_ABI_O64;
5577 else if (strcmp (name, ".mdebug.eabi32") == 0)
5578 *abip = MIPS_ABI_EABI32;
5579 else if (strcmp (name, ".mdebug.eabi64") == 0)
5580 *abip = MIPS_ABI_EABI64;
5581 else
5582 warning ("unsupported ABI %s.", name + 8);
5583}
5584
2e4ebe70
DJ
5585static enum mips_abi
5586global_mips_abi (void)
5587{
5588 int i;
5589
5590 for (i = 0; mips_abi_strings[i] != NULL; i++)
5591 if (mips_abi_strings[i] == mips_abi_string)
5592 return (enum mips_abi) i;
5593
5594 internal_error (__FILE__, __LINE__,
5595 "unknown ABI string");
5596}
5597
c2d11a7d 5598static struct gdbarch *
acdb74a0
AC
5599mips_gdbarch_init (struct gdbarch_info info,
5600 struct gdbarch_list *arches)
c2d11a7d
JM
5601{
5602 static LONGEST mips_call_dummy_words[] =
5603 {0};
5604 struct gdbarch *gdbarch;
5605 struct gdbarch_tdep *tdep;
5606 int elf_flags;
2e4ebe70 5607 enum mips_abi mips_abi, found_abi, wanted_abi;
c2d11a7d 5608
1d06468c
EZ
5609 /* Reset the disassembly info, in case it was set to something
5610 non-default. */
5611 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5612 tm_print_insn_info.arch = bfd_arch_unknown;
5613 tm_print_insn_info.mach = 0;
5614
70f80edf
JT
5615 elf_flags = 0;
5616
5617 if (info.abfd)
5618 {
5619 /* First of all, extract the elf_flags, if available. */
5620 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5621 elf_flags = elf_elfheader (info.abfd)->e_flags;
70f80edf 5622 }
c2d11a7d 5623
102182a9 5624 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5625 switch ((elf_flags & EF_MIPS_ABI))
5626 {
5627 case E_MIPS_ABI_O32:
5628 mips_abi = MIPS_ABI_O32;
5629 break;
5630 case E_MIPS_ABI_O64:
5631 mips_abi = MIPS_ABI_O64;
5632 break;
5633 case E_MIPS_ABI_EABI32:
5634 mips_abi = MIPS_ABI_EABI32;
5635 break;
5636 case E_MIPS_ABI_EABI64:
4a7f7ba8 5637 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5638 break;
5639 default:
acdb74a0
AC
5640 if ((elf_flags & EF_MIPS_ABI2))
5641 mips_abi = MIPS_ABI_N32;
5642 else
5643 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5644 break;
5645 }
acdb74a0 5646
caaa3122
DJ
5647 /* GCC creates a pseudo-section whose name describes the ABI. */
5648 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5649 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5650
2e4ebe70
DJ
5651 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5652 Use the ABI from the last architecture if there is one. */
5653 if (info.abfd == NULL && arches != NULL)
5654 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5655
32a6503c 5656 /* Try the architecture for any hint of the correct ABI. */
bf64bfd6
AC
5657 if (mips_abi == MIPS_ABI_UNKNOWN
5658 && info.bfd_arch_info != NULL
5659 && info.bfd_arch_info->arch == bfd_arch_mips)
5660 {
5661 switch (info.bfd_arch_info->mach)
5662 {
5663 case bfd_mach_mips3900:
5664 mips_abi = MIPS_ABI_EABI32;
5665 break;
5666 case bfd_mach_mips4100:
5667 case bfd_mach_mips5000:
5668 mips_abi = MIPS_ABI_EABI64;
5669 break;
1d06468c
EZ
5670 case bfd_mach_mips8000:
5671 case bfd_mach_mips10000:
32a6503c
KB
5672 /* On Irix, ELF64 executables use the N64 ABI. The
5673 pseudo-sections which describe the ABI aren't present
5674 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5675 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5676 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5677 mips_abi = MIPS_ABI_N64;
5678 else
5679 mips_abi = MIPS_ABI_N32;
1d06468c 5680 break;
bf64bfd6
AC
5681 }
5682 }
2e4ebe70 5683
2e4ebe70
DJ
5684 if (mips_abi == MIPS_ABI_UNKNOWN)
5685 mips_abi = MIPS_ABI_O32;
5686
5687 /* Now that we have found what the ABI for this binary would be,
5688 check whether the user is overriding it. */
5689 found_abi = mips_abi;
5690 wanted_abi = global_mips_abi ();
5691 if (wanted_abi != MIPS_ABI_UNKNOWN)
5692 mips_abi = wanted_abi;
5693
4b9b3959
AC
5694 if (gdbarch_debug)
5695 {
5696 fprintf_unfiltered (gdb_stdlog,
9ace0497 5697 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 5698 elf_flags);
4b9b3959
AC
5699 fprintf_unfiltered (gdb_stdlog,
5700 "mips_gdbarch_init: mips_abi = %d\n",
5701 mips_abi);
2e4ebe70
DJ
5702 fprintf_unfiltered (gdb_stdlog,
5703 "mips_gdbarch_init: found_mips_abi = %d\n",
5704 found_abi);
4b9b3959 5705 }
0dadbba0 5706
c2d11a7d
JM
5707 /* try to find a pre-existing architecture */
5708 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5709 arches != NULL;
5710 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5711 {
5712 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5713 using. */
9103eae0 5714 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5715 continue;
9103eae0 5716 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5717 continue;
4be87837 5718 return arches->gdbarch;
c2d11a7d
JM
5719 }
5720
102182a9 5721 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5722 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5723 gdbarch = gdbarch_alloc (&info, tdep);
5724 tdep->elf_flags = elf_flags;
5725
102182a9 5726 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5727 set_gdbarch_short_bit (gdbarch, 16);
5728 set_gdbarch_int_bit (gdbarch, 32);
5729 set_gdbarch_float_bit (gdbarch, 32);
5730 set_gdbarch_double_bit (gdbarch, 64);
5731 set_gdbarch_long_double_bit (gdbarch, 64);
46cd78fb 5732 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
d05285fa
MS
5733 set_gdbarch_max_register_raw_size (gdbarch, 8);
5734 set_gdbarch_max_register_virtual_size (gdbarch, 8);
2e4ebe70 5735 tdep->found_abi = found_abi;
0dadbba0 5736 tdep->mips_abi = mips_abi;
1d06468c 5737
f7ab6ec6
MS
5738 set_gdbarch_elf_make_msymbol_special (gdbarch,
5739 mips_elf_make_msymbol_special);
5740
4be87837 5741 if (info.osabi == GDB_OSABI_IRIX)
fe29b929
KB
5742 set_gdbarch_num_regs (gdbarch, 71);
5743 else
5744 set_gdbarch_num_regs (gdbarch, 90);
5745
0dadbba0 5746 switch (mips_abi)
c2d11a7d 5747 {
0dadbba0 5748 case MIPS_ABI_O32:
46cac009 5749 set_gdbarch_push_arguments (gdbarch, mips_o32_push_arguments);
ebba8386 5750 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
cb1d2653 5751 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
a5ea2558 5752 tdep->mips_default_saved_regsize = 4;
0dadbba0 5753 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5754 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5755 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5756 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5757 tdep->gdb_target_is_mips64 = 0;
4014092b 5758 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5759 set_gdbarch_long_bit (gdbarch, 32);
5760 set_gdbarch_ptr_bit (gdbarch, 32);
5761 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5762 set_gdbarch_reg_struct_has_addr (gdbarch,
5763 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5764 set_gdbarch_use_struct_convention (gdbarch,
5765 mips_o32_use_struct_convention);
c2d11a7d 5766 break;
0dadbba0 5767 case MIPS_ABI_O64:
46cac009 5768 set_gdbarch_push_arguments (gdbarch, mips_o64_push_arguments);
ebba8386 5769 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
46cac009 5770 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
a5ea2558 5771 tdep->mips_default_saved_regsize = 8;
0dadbba0 5772 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5773 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5774 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5775 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5776 tdep->gdb_target_is_mips64 = 1;
361d1df0 5777 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5778 set_gdbarch_long_bit (gdbarch, 32);
5779 set_gdbarch_ptr_bit (gdbarch, 32);
5780 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5781 set_gdbarch_reg_struct_has_addr (gdbarch,
5782 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5783 set_gdbarch_use_struct_convention (gdbarch,
5784 mips_o32_use_struct_convention);
c2d11a7d 5785 break;
0dadbba0 5786 case MIPS_ABI_EABI32:
46e0f506 5787 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
ebba8386 5788 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5789 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5790 tdep->mips_default_saved_regsize = 4;
0dadbba0 5791 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5792 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5793 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5794 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5795 tdep->gdb_target_is_mips64 = 0;
4014092b 5796 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5797 set_gdbarch_long_bit (gdbarch, 32);
5798 set_gdbarch_ptr_bit (gdbarch, 32);
5799 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5800 set_gdbarch_reg_struct_has_addr (gdbarch,
5801 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5802 set_gdbarch_use_struct_convention (gdbarch,
5803 mips_eabi_use_struct_convention);
c2d11a7d 5804 break;
0dadbba0 5805 case MIPS_ABI_EABI64:
46e0f506 5806 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
ebba8386 5807 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5808 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5809 tdep->mips_default_saved_regsize = 8;
0dadbba0 5810 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5811 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5812 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5813 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5814 tdep->gdb_target_is_mips64 = 1;
4014092b 5815 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5816 set_gdbarch_long_bit (gdbarch, 64);
5817 set_gdbarch_ptr_bit (gdbarch, 64);
5818 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5819 set_gdbarch_reg_struct_has_addr (gdbarch,
5820 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5821 set_gdbarch_use_struct_convention (gdbarch,
5822 mips_eabi_use_struct_convention);
c2d11a7d 5823 break;
0dadbba0 5824 case MIPS_ABI_N32:
cb3d25d1 5825 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
ebba8386 5826 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5827 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
63db5580 5828 tdep->mips_default_saved_regsize = 8;
0dadbba0
AC
5829 tdep->mips_default_stack_argsize = 8;
5830 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5831 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5832 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
6acdf5c7 5833 tdep->gdb_target_is_mips64 = 1;
4014092b 5834 tdep->default_mask_address_p = 0;
0dadbba0
AC
5835 set_gdbarch_long_bit (gdbarch, 32);
5836 set_gdbarch_ptr_bit (gdbarch, 32);
5837 set_gdbarch_long_long_bit (gdbarch, 64);
1d06468c
EZ
5838
5839 /* Set up the disassembler info, so that we get the right
28d169de
KB
5840 register names from libopcodes. */
5841 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5842 tm_print_insn_info.arch = bfd_arch_mips;
5843 if (info.bfd_arch_info != NULL
5844 && info.bfd_arch_info->arch == bfd_arch_mips
5845 && info.bfd_arch_info->mach)
5846 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5847 else
5848 tm_print_insn_info.mach = bfd_mach_mips8000;
cb811fe7
MS
5849
5850 set_gdbarch_use_struct_convention (gdbarch,
5851 mips_n32n64_use_struct_convention);
8b389c40
MS
5852 set_gdbarch_reg_struct_has_addr (gdbarch,
5853 mips_n32n64_reg_struct_has_addr);
28d169de
KB
5854 break;
5855 case MIPS_ABI_N64:
cb3d25d1 5856 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
ebba8386 5857 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5858 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
28d169de
KB
5859 tdep->mips_default_saved_regsize = 8;
5860 tdep->mips_default_stack_argsize = 8;
5861 tdep->mips_fp_register_double = 1;
5862 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5863 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
28d169de
KB
5864 tdep->gdb_target_is_mips64 = 1;
5865 tdep->default_mask_address_p = 0;
5866 set_gdbarch_long_bit (gdbarch, 64);
5867 set_gdbarch_ptr_bit (gdbarch, 64);
5868 set_gdbarch_long_long_bit (gdbarch, 64);
5869
5870 /* Set up the disassembler info, so that we get the right
1d06468c
EZ
5871 register names from libopcodes. */
5872 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5873 tm_print_insn_info.arch = bfd_arch_mips;
5874 if (info.bfd_arch_info != NULL
5875 && info.bfd_arch_info->arch == bfd_arch_mips
5876 && info.bfd_arch_info->mach)
5877 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5878 else
5879 tm_print_insn_info.mach = bfd_mach_mips8000;
cb811fe7
MS
5880
5881 set_gdbarch_use_struct_convention (gdbarch,
5882 mips_n32n64_use_struct_convention);
8b389c40
MS
5883 set_gdbarch_reg_struct_has_addr (gdbarch,
5884 mips_n32n64_reg_struct_has_addr);
0dadbba0 5885 break;
c2d11a7d 5886 default:
2e4ebe70
DJ
5887 internal_error (__FILE__, __LINE__,
5888 "unknown ABI in switch");
c2d11a7d
JM
5889 }
5890
a5ea2558
AC
5891 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5892 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5893 comment:
5894
5895 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5896 flag in object files because to do so would make it impossible to
102182a9 5897 link with libraries compiled without "-gp32". This is
a5ea2558 5898 unnecessarily restrictive.
361d1df0 5899
a5ea2558
AC
5900 We could solve this problem by adding "-gp32" multilibs to gcc,
5901 but to set this flag before gcc is built with such multilibs will
5902 break too many systems.''
5903
5904 But even more unhelpfully, the default linker output target for
5905 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5906 for 64-bit programs - you need to change the ABI to change this,
102182a9 5907 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5908 this flag to detect 32-bit mode would do the wrong thing given
5909 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5910 as 32-bit programs by default. */
a5ea2558 5911
c2d11a7d
JM
5912 /* enable/disable the MIPS FPU */
5913 if (!mips_fpu_type_auto)
5914 tdep->mips_fpu_type = mips_fpu_type;
5915 else if (info.bfd_arch_info != NULL
5916 && info.bfd_arch_info->arch == bfd_arch_mips)
5917 switch (info.bfd_arch_info->mach)
5918 {
b0069a17 5919 case bfd_mach_mips3900:
c2d11a7d 5920 case bfd_mach_mips4100:
ed9a39eb 5921 case bfd_mach_mips4111:
c2d11a7d
JM
5922 tdep->mips_fpu_type = MIPS_FPU_NONE;
5923 break;
bf64bfd6
AC
5924 case bfd_mach_mips4650:
5925 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5926 break;
c2d11a7d
JM
5927 default:
5928 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5929 break;
5930 }
5931 else
5932 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5933
5934 /* MIPS version of register names. NOTE: At present the MIPS
5935 register name management is part way between the old -
5936 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
102182a9 5937 Further work on it is required. */
18f81521
MS
5938 /* NOTE: many targets (esp. embedded) do not go thru the
5939 gdbarch_register_name vector at all, instead bypassing it
5940 by defining REGISTER_NAMES. */
c2d11a7d 5941 set_gdbarch_register_name (gdbarch, mips_register_name);
6c997a34 5942 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d 5943 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
a094c6fb 5944 set_gdbarch_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
bcb0cc15 5945 set_gdbarch_read_sp (gdbarch, mips_read_sp);
c2d11a7d
JM
5946 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
5947
102182a9
MS
5948 /* Add/remove bits from an address. The MIPS needs be careful to
5949 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5950 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5951
10312cc4 5952 /* There's a mess in stack frame creation. See comments in
2ca6c561
AC
5953 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
5954 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
a5afb99f 5955 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
10312cc4 5956
102182a9 5957 /* Map debug register numbers onto internal register numbers. */
88c72b7d
AC
5958 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5959 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
5960
c2d11a7d
JM
5961 /* Initialize a frame */
5962 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
d28e01f4 5963 set_gdbarch_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
c2d11a7d
JM
5964
5965 /* MIPS version of CALL_DUMMY */
5966
5967 set_gdbarch_call_dummy_p (gdbarch, 1);
5968 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
c2d11a7d 5969 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
f7ab6ec6 5970 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
cedea778 5971 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
f7ab6ec6 5972 set_gdbarch_pop_frame (gdbarch, mips_pop_frame);
c2d11a7d
JM
5973 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
5974 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
5975 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
5976 set_gdbarch_call_dummy_length (gdbarch, 0);
f7ab6ec6 5977 set_gdbarch_fix_call_dummy (gdbarch, mips_fix_call_dummy);
c2d11a7d
JM
5978 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
5979 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
5980 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
dc604539 5981 set_gdbarch_frame_align (gdbarch, mips_frame_align);
cedea778 5982 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
bf1f5b4c 5983 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
d05285fa
MS
5984 set_gdbarch_register_convert_to_virtual (gdbarch,
5985 mips_register_convert_to_virtual);
5986 set_gdbarch_register_convert_to_raw (gdbarch,
5987 mips_register_convert_to_raw);
5988
b5d1566e 5989 set_gdbarch_frame_chain (gdbarch, mips_frame_chain);
b5d1566e
MS
5990 set_gdbarch_frameless_function_invocation (gdbarch,
5991 generic_frameless_function_invocation_not);
5992 set_gdbarch_frame_saved_pc (gdbarch, mips_frame_saved_pc);
b5d1566e
MS
5993 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
5994 set_gdbarch_frame_args_skip (gdbarch, 0);
5995
47a8d4ba 5996 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 5997
f7b9e9fc
AC
5998 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5999 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6000 set_gdbarch_decr_pc_after_break (gdbarch, 0);
f7b9e9fc
AC
6001
6002 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6003 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
6004
fc0c74b1
AC
6005 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6006 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6007 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 6008
102182a9
MS
6009 set_gdbarch_function_start_offset (gdbarch, 0);
6010
32a6503c
KB
6011 /* There are MIPS targets which do not yet use this since they still
6012 define REGISTER_VIRTUAL_TYPE. */
78fde5f8 6013 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
102182a9 6014 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
78fde5f8 6015
903ad3a6 6016 set_gdbarch_deprecated_do_registers_info (gdbarch, mips_do_registers_info);
102182a9 6017 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
bf1f5b4c 6018
70f80edf 6019 /* Hook in OS ABI-specific overrides, if they have been registered. */
4be87837 6020 gdbarch_init_osabi (info, gdbarch);
70f80edf 6021
2f1488ce
MS
6022 set_gdbarch_store_struct_return (gdbarch, mips_store_struct_return);
6023 set_gdbarch_extract_struct_value_address (gdbarch,
6024 mips_extract_struct_value_address);
757a7cc6
MS
6025
6026 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6027
6028 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
e41b17f0 6029 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
757a7cc6 6030
4b9b3959
AC
6031 return gdbarch;
6032}
6033
2e4ebe70
DJ
6034static void
6035mips_abi_update (char *ignore_args, int from_tty,
6036 struct cmd_list_element *c)
6037{
6038 struct gdbarch_info info;
6039
6040 /* Force the architecture to update, and (if it's a MIPS architecture)
6041 mips_gdbarch_init will take care of the rest. */
6042 gdbarch_info_init (&info);
6043 gdbarch_update_p (info);
6044}
6045
4b9b3959
AC
6046static void
6047mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6048{
6049 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6050 if (tdep != NULL)
c2d11a7d 6051 {
acdb74a0
AC
6052 int ef_mips_arch;
6053 int ef_mips_32bitmode;
6054 /* determine the ISA */
6055 switch (tdep->elf_flags & EF_MIPS_ARCH)
6056 {
6057 case E_MIPS_ARCH_1:
6058 ef_mips_arch = 1;
6059 break;
6060 case E_MIPS_ARCH_2:
6061 ef_mips_arch = 2;
6062 break;
6063 case E_MIPS_ARCH_3:
6064 ef_mips_arch = 3;
6065 break;
6066 case E_MIPS_ARCH_4:
93d56215 6067 ef_mips_arch = 4;
acdb74a0
AC
6068 break;
6069 default:
93d56215 6070 ef_mips_arch = 0;
acdb74a0
AC
6071 break;
6072 }
6073 /* determine the size of a pointer */
6074 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
6075 fprintf_unfiltered (file,
6076 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 6077 tdep->elf_flags);
4b9b3959 6078 fprintf_unfiltered (file,
acdb74a0
AC
6079 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6080 ef_mips_32bitmode);
6081 fprintf_unfiltered (file,
6082 "mips_dump_tdep: ef_mips_arch = %d\n",
6083 ef_mips_arch);
6084 fprintf_unfiltered (file,
6085 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6086 tdep->mips_abi,
2e4ebe70 6087 mips_abi_strings[tdep->mips_abi]);
4014092b
AC
6088 fprintf_unfiltered (file,
6089 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6090 mips_mask_address_p (),
6091 tdep->default_mask_address_p);
c2d11a7d 6092 }
4b9b3959
AC
6093 fprintf_unfiltered (file,
6094 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6095 FP_REGISTER_DOUBLE);
6096 fprintf_unfiltered (file,
6097 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6098 MIPS_DEFAULT_FPU_TYPE,
6099 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6100 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6101 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6102 : "???"));
6103 fprintf_unfiltered (file,
6104 "mips_dump_tdep: MIPS_EABI = %d\n",
6105 MIPS_EABI);
6106 fprintf_unfiltered (file,
acdb74a0
AC
6107 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6108 MIPS_LAST_FP_ARG_REGNUM,
6109 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4b9b3959
AC
6110 fprintf_unfiltered (file,
6111 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6112 MIPS_FPU_TYPE,
6113 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6114 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6115 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6116 : "???"));
6117 fprintf_unfiltered (file,
6118 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6119 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
6120 fprintf_unfiltered (file,
6121 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6122 FP_REGISTER_DOUBLE);
4b9b3959
AC
6123 fprintf_unfiltered (file,
6124 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6125 MIPS_DEFAULT_STACK_ARGSIZE);
6126 fprintf_unfiltered (file,
6127 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6128 MIPS_STACK_ARGSIZE);
6129 fprintf_unfiltered (file,
6130 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6131 MIPS_REGSIZE);
2475bac3
AC
6132 fprintf_unfiltered (file,
6133 "mips_dump_tdep: A0_REGNUM = %d\n",
6134 A0_REGNUM);
6135 fprintf_unfiltered (file,
6136 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6137 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6138 fprintf_unfiltered (file,
6139 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6140 XSTRING (ATTACH_DETACH));
6141 fprintf_unfiltered (file,
6142 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6143 BADVADDR_REGNUM);
6144 fprintf_unfiltered (file,
6145 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
6146 fprintf_unfiltered (file,
6147 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6148 CAUSE_REGNUM);
2475bac3
AC
6149 fprintf_unfiltered (file,
6150 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6151 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6152 fprintf_unfiltered (file,
6153 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6154 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
2475bac3
AC
6155 fprintf_unfiltered (file,
6156 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6157 FCRCS_REGNUM);
6158 fprintf_unfiltered (file,
6159 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6160 FCRIR_REGNUM);
6161 fprintf_unfiltered (file,
6162 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6163 FIRST_EMBED_REGNUM);
6164 fprintf_unfiltered (file,
6165 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6166 FPA0_REGNUM);
6167 fprintf_unfiltered (file,
6168 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6169 GDB_TARGET_IS_MIPS64);
2475bac3
AC
6170 fprintf_unfiltered (file,
6171 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
6172 GEN_REG_SAVE_MASK);
6173 fprintf_unfiltered (file,
6174 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6175 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6176 fprintf_unfiltered (file,
6177 "mips_dump_tdep: HI_REGNUM = %d\n",
6178 HI_REGNUM);
6179 fprintf_unfiltered (file,
6180 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
6181 fprintf_unfiltered (file,
6182 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
6183 fprintf_unfiltered (file,
6184 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6185 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
6186 fprintf_unfiltered (file,
6187 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6188 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6189 fprintf_unfiltered (file,
6190 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6191 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6192 fprintf_unfiltered (file,
6193 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6194 fprintf_unfiltered (file,
6195 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6196 LAST_EMBED_REGNUM);
6197 fprintf_unfiltered (file,
6198 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
6199 fprintf_unfiltered (file,
6200 "mips_dump_tdep: LO_REGNUM = %d\n",
6201 LO_REGNUM);
6202#ifdef MACHINE_CPROC_FP_OFFSET
6203 fprintf_unfiltered (file,
6204 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6205 MACHINE_CPROC_FP_OFFSET);
6206#endif
6207#ifdef MACHINE_CPROC_PC_OFFSET
6208 fprintf_unfiltered (file,
6209 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6210 MACHINE_CPROC_PC_OFFSET);
6211#endif
6212#ifdef MACHINE_CPROC_SP_OFFSET
6213 fprintf_unfiltered (file,
6214 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6215 MACHINE_CPROC_SP_OFFSET);
6216#endif
6217 fprintf_unfiltered (file,
6218 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
6219 fprintf_unfiltered (file,
6220 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
6221 fprintf_unfiltered (file,
6222 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6223 MIPS16_INSTLEN);
6224 fprintf_unfiltered (file,
6225 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
6226 fprintf_unfiltered (file,
6227 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6228 fprintf_unfiltered (file,
6229 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6230 fprintf_unfiltered (file,
6231 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6232 MIPS_INSTLEN);
6233 fprintf_unfiltered (file,
acdb74a0
AC
6234 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6235 MIPS_LAST_ARG_REGNUM,
6236 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
6237 fprintf_unfiltered (file,
6238 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6239 MIPS_NUMREGS);
6240 fprintf_unfiltered (file,
6241 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6242 fprintf_unfiltered (file,
6243 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6244 MIPS_SAVED_REGSIZE);
2475bac3
AC
6245 fprintf_unfiltered (file,
6246 "mips_dump_tdep: OP_LDFPR = used?\n");
6247 fprintf_unfiltered (file,
6248 "mips_dump_tdep: OP_LDGPR = used?\n");
6249 fprintf_unfiltered (file,
6250 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
6251 fprintf_unfiltered (file,
6252 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
6253 fprintf_unfiltered (file,
6254 "mips_dump_tdep: PRID_REGNUM = %d\n",
6255 PRID_REGNUM);
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6258 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6259 fprintf_unfiltered (file,
6260 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6261 fprintf_unfiltered (file,
6262 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6263 fprintf_unfiltered (file,
6264 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6265 fprintf_unfiltered (file,
6266 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6267 fprintf_unfiltered (file,
6268 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6269 fprintf_unfiltered (file,
6270 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6271 fprintf_unfiltered (file,
6272 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6273 fprintf_unfiltered (file,
6274 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6275 fprintf_unfiltered (file,
6276 "mips_dump_tdep: PROC_PC_REG = function?\n");
6277 fprintf_unfiltered (file,
6278 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6279 fprintf_unfiltered (file,
6280 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6281 fprintf_unfiltered (file,
6282 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6283 fprintf_unfiltered (file,
6284 "mips_dump_tdep: PS_REGNUM = %d\n",
6285 PS_REGNUM);
6286 fprintf_unfiltered (file,
6287 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
6288 PUSH_FP_REGNUM);
6289 fprintf_unfiltered (file,
6290 "mips_dump_tdep: RA_REGNUM = %d\n",
6291 RA_REGNUM);
6292 fprintf_unfiltered (file,
6293 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6294 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6295 fprintf_unfiltered (file,
6296 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6297 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6298 fprintf_unfiltered (file,
6299 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6300 fprintf_unfiltered (file,
6301 "mips_dump_tdep: ROUND_DOWN = function?\n");
6302 fprintf_unfiltered (file,
6303 "mips_dump_tdep: ROUND_UP = function?\n");
6304#ifdef SAVED_BYTES
6305 fprintf_unfiltered (file,
6306 "mips_dump_tdep: SAVED_BYTES = %d\n",
6307 SAVED_BYTES);
6308#endif
6309#ifdef SAVED_FP
6310 fprintf_unfiltered (file,
6311 "mips_dump_tdep: SAVED_FP = %d\n",
6312 SAVED_FP);
6313#endif
6314#ifdef SAVED_PC
6315 fprintf_unfiltered (file,
6316 "mips_dump_tdep: SAVED_PC = %d\n",
6317 SAVED_PC);
6318#endif
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6321 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6322 fprintf_unfiltered (file,
6323 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6324 fprintf_unfiltered (file,
6325 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6326 SIGFRAME_BASE);
6327 fprintf_unfiltered (file,
6328 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6329 SIGFRAME_FPREGSAVE_OFF);
6330 fprintf_unfiltered (file,
6331 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6332 SIGFRAME_PC_OFF);
6333 fprintf_unfiltered (file,
6334 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6335 SIGFRAME_REGSAVE_OFF);
6336 fprintf_unfiltered (file,
6337 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6338 SIGFRAME_REG_SIZE);
6339 fprintf_unfiltered (file,
6340 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6341 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6342 fprintf_unfiltered (file,
6343 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6344 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6345 fprintf_unfiltered (file,
b0ed3589
AC
6346 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6347 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
6348 fprintf_unfiltered (file,
6349 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6350 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6351#ifdef STACK_END_ADDR
6352 fprintf_unfiltered (file,
6353 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6354 STACK_END_ADDR);
6355#endif
6356 fprintf_unfiltered (file,
6357 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6358 XSTRING (STEP_SKIPS_DELAY (PC)));
6359 fprintf_unfiltered (file,
6360 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6361 STEP_SKIPS_DELAY_P);
6362 fprintf_unfiltered (file,
6363 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6364 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6365 fprintf_unfiltered (file,
6366 "mips_dump_tdep: T9_REGNUM = %d\n",
6367 T9_REGNUM);
6368 fprintf_unfiltered (file,
6369 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6370 fprintf_unfiltered (file,
6371 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6372 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6373 fprintf_unfiltered (file,
6374 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6375 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6376 fprintf_unfiltered (file,
6377 "mips_dump_tdep: TARGET_MIPS = used?\n");
6378 fprintf_unfiltered (file,
6379 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6380 XSTRING (TM_PRINT_INSN_MACH));
6381#ifdef TRACE_CLEAR
6382 fprintf_unfiltered (file,
6383 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6384 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6385#endif
6386#ifdef TRACE_FLAVOR
6387 fprintf_unfiltered (file,
6388 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6389 TRACE_FLAVOR);
6390#endif
6391#ifdef TRACE_FLAVOR_SIZE
6392 fprintf_unfiltered (file,
6393 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6394 TRACE_FLAVOR_SIZE);
6395#endif
6396#ifdef TRACE_SET
6397 fprintf_unfiltered (file,
6398 "mips_dump_tdep: TRACE_SET # %s\n",
6399 XSTRING (TRACE_SET (X,STATE)));
6400#endif
6401 fprintf_unfiltered (file,
6402 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6403#ifdef UNUSED_REGNUM
6404 fprintf_unfiltered (file,
6405 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6406 UNUSED_REGNUM);
6407#endif
6408 fprintf_unfiltered (file,
6409 "mips_dump_tdep: V0_REGNUM = %d\n",
6410 V0_REGNUM);
6411 fprintf_unfiltered (file,
6412 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6413 (long) VM_MIN_ADDRESS);
6414#ifdef VX_NUM_REGS
6415 fprintf_unfiltered (file,
6416 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6417 VX_NUM_REGS);
6418#endif
6419 fprintf_unfiltered (file,
6420 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6421 ZERO_REGNUM);
6422 fprintf_unfiltered (file,
6423 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6424 _PROC_MAGIC_);
c2d11a7d
JM
6425}
6426
c906108c 6427void
acdb74a0 6428_initialize_mips_tdep (void)
c906108c
SS
6429{
6430 static struct cmd_list_element *mipsfpulist = NULL;
6431 struct cmd_list_element *c;
6432
2e4ebe70
DJ
6433 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6434 if (MIPS_ABI_LAST + 1
6435 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6436 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6437
4b9b3959 6438 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c5aa993b 6439 if (!tm_print_insn) /* Someone may have already set it */
c906108c
SS
6440 tm_print_insn = gdb_print_insn_mips;
6441
a5ea2558
AC
6442 /* Add root prefix command for all "set mips"/"show mips" commands */
6443 add_prefix_cmd ("mips", no_class, set_mips_command,
6444 "Various MIPS specific commands.",
6445 &setmipscmdlist, "set mips ", 0, &setlist);
6446
6447 add_prefix_cmd ("mips", no_class, show_mips_command,
6448 "Various MIPS specific commands.",
6449 &showmipscmdlist, "show mips ", 0, &showlist);
6450
6451 /* Allow the user to override the saved register size. */
6452 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
6453 class_obscure,
6454 size_enums,
6455 &mips_saved_regsize_string, "\
a5ea2558
AC
6456Set size of general purpose registers saved on the stack.\n\
6457This option can be set to one of:\n\
6458 32 - Force GDB to treat saved GP registers as 32-bit\n\
6459 64 - Force GDB to treat saved GP registers as 64-bit\n\
6460 auto - Allow GDB to use the target's default setting or autodetect the\n\
6461 saved GP register size from information contained in the executable.\n\
6462 (default: auto)",
1ed2a135 6463 &setmipscmdlist),
a5ea2558
AC
6464 &showmipscmdlist);
6465
d929b26f
AC
6466 /* Allow the user to override the argument stack size. */
6467 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6468 class_obscure,
6469 size_enums,
1ed2a135 6470 &mips_stack_argsize_string, "\
d929b26f
AC
6471Set the amount of stack space reserved for each argument.\n\
6472This option can be set to one of:\n\
6473 32 - Force GDB to allocate 32-bit chunks per argument\n\
6474 64 - Force GDB to allocate 64-bit chunks per argument\n\
6475 auto - Allow GDB to determine the correct setting from the current\n\
6476 target and executable (default)",
6477 &setmipscmdlist),
6478 &showmipscmdlist);
6479
2e4ebe70
DJ
6480 /* Allow the user to override the ABI. */
6481 c = add_set_enum_cmd
6482 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6483 "Set the ABI used by this program.\n"
6484 "This option can be set to one of:\n"
6485 " auto - the default ABI associated with the current binary\n"
6486 " o32\n"
6487 " o64\n"
6488 " n32\n"
f3a7b3a5 6489 " n64\n"
2e4ebe70
DJ
6490 " eabi32\n"
6491 " eabi64",
6492 &setmipscmdlist);
6493 add_show_from_set (c, &showmipscmdlist);
6494 set_cmd_sfunc (c, mips_abi_update);
6495
c906108c
SS
6496 /* Let the user turn off floating point and set the fence post for
6497 heuristic_proc_start. */
6498
6499 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6500 "Set use of MIPS floating-point coprocessor.",
6501 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6502 add_cmd ("single", class_support, set_mipsfpu_single_command,
6503 "Select single-precision MIPS floating-point coprocessor.",
6504 &mipsfpulist);
6505 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 6506 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
6507 &mipsfpulist);
6508 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6509 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6510 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6511 add_cmd ("none", class_support, set_mipsfpu_none_command,
6512 "Select no MIPS floating-point coprocessor.",
6513 &mipsfpulist);
6514 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6515 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6516 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6517 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6518 "Select MIPS floating-point coprocessor automatically.",
6519 &mipsfpulist);
6520 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6521 "Show current use of MIPS floating-point coprocessor target.",
6522 &showlist);
6523
c906108c
SS
6524 /* We really would like to have both "0" and "unlimited" work, but
6525 command.c doesn't deal with that. So make it a var_zinteger
6526 because the user can always use "999999" or some such for unlimited. */
6527 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6528 (char *) &heuristic_fence_post,
6529 "\
6530Set the distance searched for the start of a function.\n\
6531If you are debugging a stripped executable, GDB needs to search through the\n\
6532program for the start of a function. This command sets the distance of the\n\
6533search. The only need to set it is when debugging a stripped executable.",
6534 &setlist);
6535 /* We need to throw away the frame cache when we set this, since it
6536 might change our ability to get backtraces. */
9f60d481 6537 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
6538 add_show_from_set (c, &showlist);
6539
6540 /* Allow the user to control whether the upper bits of 64-bit
6541 addresses should be zeroed. */
e9e68a56
AC
6542 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6543Set zeroing of upper 32 bits of 64-bit addresses.\n\
6544Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6545allow GDB to determine the correct value.\n", "\
6546Show zeroing of upper 32 bits of 64-bit addresses.",
6547 NULL, show_mask_address,
6548 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
6549
6550 /* Allow the user to control the size of 32 bit registers within the
6551 raw remote packet. */
6552 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6553 class_obscure,
6554 var_boolean,
6555 (char *)&mips64_transfers_32bit_regs_p, "\
6556Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6557Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6558that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
655964 bits for others. Use \"off\" to disable compatibility mode",
6560 &setlist),
6561 &showlist);
9ace0497
AC
6562
6563 /* Debug this files internals. */
6564 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6565 &mips_debug, "Set mips debugging.\n\
6566When non-zero, mips specific debugging is enabled.", &setdebuglist),
6567 &showdebuglist);
c906108c 6568}
This page took 1.003141 seconds and 4 git commands to generate.