2002-11-18 Klee Dienes <kdienes@apple.com>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a
AC
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
bf64bfd6 5
c906108c
SS
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "value.h"
32#include "gdbcmd.h"
33#include "language.h"
34#include "gdbcore.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "gdbtypes.h"
38#include "target.h"
28d069e6 39#include "arch-utils.h"
4e052eda 40#include "regcache.h"
70f80edf 41#include "osabi.h"
c906108c
SS
42
43#include "opcode/mips.h"
c2d11a7d
JM
44#include "elf/mips.h"
45#include "elf-bfd.h"
2475bac3 46#include "symcat.h"
c906108c 47
dd824b04
DJ
48/* A useful bit in the CP0 status register (PS_REGNUM). */
49/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
50#define ST0_FR (1 << 26)
51
b0069a17
AC
52/* The sizes of floating point registers. */
53
54enum
55{
56 MIPS_FPU_SINGLE_REGSIZE = 4,
57 MIPS_FPU_DOUBLE_REGSIZE = 8
58};
59
0dadbba0
AC
60/* All the possible MIPS ABIs. */
61
62enum mips_abi
63 {
2e4ebe70 64 MIPS_ABI_UNKNOWN = 0,
0dadbba0
AC
65 MIPS_ABI_N32,
66 MIPS_ABI_O32,
28d169de 67 MIPS_ABI_N64,
0dadbba0
AC
68 MIPS_ABI_O64,
69 MIPS_ABI_EABI32,
2e4ebe70
DJ
70 MIPS_ABI_EABI64,
71 MIPS_ABI_LAST
0dadbba0
AC
72 };
73
2e4ebe70
DJ
74static const char *mips_abi_string;
75
76static const char *mips_abi_strings[] = {
77 "auto",
78 "n32",
79 "o32",
28d169de 80 "n64",
2e4ebe70
DJ
81 "o64",
82 "eabi32",
83 "eabi64",
84 NULL
85};
86
cce74817 87struct frame_extra_info
c5aa993b
JM
88 {
89 mips_extra_func_info_t proc_desc;
90 int num_args;
91 };
cce74817 92
d929b26f
AC
93/* Various MIPS ISA options (related to stack analysis) can be
94 overridden dynamically. Establish an enum/array for managing
95 them. */
96
53904c9e
AC
97static const char size_auto[] = "auto";
98static const char size_32[] = "32";
99static const char size_64[] = "64";
d929b26f 100
53904c9e 101static const char *size_enums[] = {
d929b26f
AC
102 size_auto,
103 size_32,
104 size_64,
a5ea2558
AC
105 0
106};
107
7a292a7a
SS
108/* Some MIPS boards don't support floating point while others only
109 support single-precision floating-point operations. See also
110 FP_REGISTER_DOUBLE. */
c906108c
SS
111
112enum mips_fpu_type
c5aa993b
JM
113 {
114 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
115 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
116 MIPS_FPU_NONE /* No floating point. */
117 };
c906108c
SS
118
119#ifndef MIPS_DEFAULT_FPU_TYPE
120#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
121#endif
122static int mips_fpu_type_auto = 1;
123static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 124
9ace0497 125static int mips_debug = 0;
7a292a7a 126
c2d11a7d
JM
127/* MIPS specific per-architecture information */
128struct gdbarch_tdep
129 {
130 /* from the elf header */
131 int elf_flags;
70f80edf 132
c2d11a7d 133 /* mips options */
0dadbba0 134 enum mips_abi mips_abi;
2e4ebe70 135 enum mips_abi found_abi;
c2d11a7d
JM
136 enum mips_fpu_type mips_fpu_type;
137 int mips_last_arg_regnum;
138 int mips_last_fp_arg_regnum;
a5ea2558 139 int mips_default_saved_regsize;
c2d11a7d 140 int mips_fp_register_double;
d929b26f 141 int mips_default_stack_argsize;
5213ab06 142 int gdb_target_is_mips64;
4014092b 143 int default_mask_address_p;
70f80edf
JT
144
145 enum gdb_osabi osabi;
c2d11a7d
JM
146 };
147
0dadbba0 148#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 149 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 150
c2d11a7d 151#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 152
c2d11a7d 153#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 154
c2d11a7d 155#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 156
d929b26f
AC
157/* Return the currently configured (or set) saved register size. */
158
a5ea2558 159#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
c2d11a7d 160
53904c9e 161static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
162
163#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
164
165static unsigned int
acdb74a0 166mips_saved_regsize (void)
d929b26f
AC
167{
168 if (mips_saved_regsize_string == size_auto)
169 return MIPS_DEFAULT_SAVED_REGSIZE;
170 else if (mips_saved_regsize_string == size_64)
171 return 8;
172 else /* if (mips_saved_regsize_string == size_32) */
173 return 4;
174}
175
71b8ef93 176/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa
MS
177 marks it as 16-bit function. The MSB of the minimal symbol's
178 "info" field is used for this purpose. This field is already
179 being used to store the symbol size, so the assumption is
180 that the symbol size cannot exceed 2^31.
181
182 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
183 i.e. refers to a 16-bit function, and sets a "special" bit in a
184 minimal symbol to mark it as a 16-bit function
185
186 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
187 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
188 the "info" field with the "special" bit masked out */
189
5a89d8aa
MS
190static void
191mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
192{
193 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
194 {
195 MSYMBOL_INFO (msym) = (char *)
196 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
197 SYMBOL_VALUE_ADDRESS (msym) |= 1;
198 }
199}
200
71b8ef93
MS
201static int
202msymbol_is_special (struct minimal_symbol *msym)
203{
204 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
205}
206
207static long
208msymbol_size (struct minimal_symbol *msym)
209{
210 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
211}
212
88658117
AC
213/* XFER a value from the big/little/left end of the register.
214 Depending on the size of the value it might occupy the entire
215 register or just part of it. Make an allowance for this, aligning
216 things accordingly. */
217
218static void
219mips_xfer_register (struct regcache *regcache, int reg_num, int length,
220 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
221 int buf_offset)
222{
223 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
224 int reg_offset = 0;
cb1d2653
AC
225 /* Need to transfer the left or right part of the register, based on
226 the targets byte order. */
88658117
AC
227 switch (endian)
228 {
229 case BFD_ENDIAN_BIG:
230 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
231 break;
232 case BFD_ENDIAN_LITTLE:
233 reg_offset = 0;
234 break;
235 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
236 reg_offset = 0;
237 break;
238 default:
239 internal_error (__FILE__, __LINE__, "bad switch");
240 }
241 if (mips_debug)
cb1d2653
AC
242 fprintf_unfiltered (gdb_stderr,
243 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
244 reg_num, reg_offset, buf_offset, length);
88658117
AC
245 if (mips_debug && out != NULL)
246 {
247 int i;
cb1d2653 248 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 249 for (i = 0; i < length; i++)
cb1d2653 250 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
251 }
252 if (in != NULL)
253 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
254 if (out != NULL)
255 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
256 if (mips_debug && in != NULL)
257 {
258 int i;
cb1d2653 259 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 260 for (i = 0; i < length; i++)
cb1d2653 261 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
262 }
263 if (mips_debug)
264 fprintf_unfiltered (gdb_stdlog, "\n");
265}
266
dd824b04
DJ
267/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
268 compatiblity mode. A return value of 1 means that we have
269 physical 64-bit registers, but should treat them as 32-bit registers. */
270
271static int
272mips2_fp_compat (void)
273{
274 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
275 meaningful. */
276 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
277 return 0;
278
279#if 0
280 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
281 in all the places we deal with FP registers. PR gdb/413. */
282 /* Otherwise check the FR bit in the status register - it controls
283 the FP compatiblity mode. If it is clear we are in compatibility
284 mode. */
285 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
286 return 1;
287#endif
361d1df0 288
dd824b04
DJ
289 return 0;
290}
291
c2d11a7d
JM
292/* Indicate that the ABI makes use of double-precision registers
293 provided by the FPU (rather than combining pairs of registers to
294 form double-precision values). Do not use "TARGET_IS_MIPS64" to
295 determine if the ABI is using double-precision registers. See also
296 MIPS_FPU_TYPE. */
c2d11a7d 297#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
c2d11a7d 298
d929b26f
AC
299/* The amount of space reserved on the stack for registers. This is
300 different to MIPS_SAVED_REGSIZE as it determines the alignment of
301 data allocated after the registers have run out. */
302
0dadbba0 303#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
304
305#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
306
53904c9e 307static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
308
309static unsigned int
310mips_stack_argsize (void)
311{
312 if (mips_stack_argsize_string == size_auto)
313 return MIPS_DEFAULT_STACK_ARGSIZE;
314 else if (mips_stack_argsize_string == size_64)
315 return 8;
316 else /* if (mips_stack_argsize_string == size_32) */
317 return 4;
318}
319
5213ab06 320#define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
c2d11a7d 321
92e1c15c 322#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
92e1c15c 323
7a292a7a 324#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 325
a14ed312 326int gdb_print_insn_mips (bfd_vma, disassemble_info *);
c906108c 327
a14ed312 328static void mips_print_register (int, int);
c906108c
SS
329
330static mips_extra_func_info_t
479412cd 331heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *, int);
c906108c 332
a14ed312 333static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 334
a14ed312 335static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 336
5a89d8aa 337static int mips_set_processor_type (char *);
c906108c 338
a14ed312 339static void mips_show_processor_type_command (char *, int);
c906108c 340
a14ed312 341static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c
SS
342
343static mips_extra_func_info_t
479412cd 344find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame);
c906108c 345
a14ed312
KB
346static CORE_ADDR after_prologue (CORE_ADDR pc,
347 mips_extra_func_info_t proc_desc);
c906108c 348
dd824b04
DJ
349static void mips_read_fp_register_single (int regno, char *rare_buffer);
350static void mips_read_fp_register_double (int regno, char *rare_buffer);
351
67b2c998
DJ
352static struct type *mips_float_register_type (void);
353static struct type *mips_double_register_type (void);
354
c906108c
SS
355/* This value is the model of MIPS in use. It is derived from the value
356 of the PrID register. */
357
358char *mips_processor_type;
359
360char *tmp_mips_processor_type;
361
acdb74a0
AC
362/* The list of available "set mips " and "show mips " commands */
363
364static struct cmd_list_element *setmipscmdlist = NULL;
365static struct cmd_list_element *showmipscmdlist = NULL;
366
c906108c
SS
367/* A set of original names, to be used when restoring back to generic
368 registers from a specific set. */
369
cce74817
JM
370char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
371char **mips_processor_reg_names = mips_generic_reg_names;
372
5a89d8aa 373static const char *
fba45db2 374mips_register_name (int i)
cce74817
JM
375{
376 return mips_processor_reg_names[i];
377}
9846de1b 378/* *INDENT-OFF* */
c906108c
SS
379/* Names of IDT R3041 registers. */
380
381char *mips_r3041_reg_names[] = {
382 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
383 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
384 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
385 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
386 "sr", "lo", "hi", "bad", "cause","pc",
387 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
388 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
389 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
390 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 391 "fsr", "fir", "",/*"fp"*/ "",
c906108c
SS
392 "", "", "bus", "ccfg", "", "", "", "",
393 "", "", "port", "cmp", "", "", "epc", "prid",
394};
395
396/* Names of IDT R3051 registers. */
397
398char *mips_r3051_reg_names[] = {
399 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
400 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
401 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
402 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
403 "sr", "lo", "hi", "bad", "cause","pc",
404 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
405 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
406 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
407 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 408 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
409 "inx", "rand", "elo", "", "ctxt", "", "", "",
410 "", "", "ehi", "", "", "", "epc", "prid",
411};
412
413/* Names of IDT R3081 registers. */
414
415char *mips_r3081_reg_names[] = {
416 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
417 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
418 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
419 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
420 "sr", "lo", "hi", "bad", "cause","pc",
421 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
422 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
423 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
424 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 425 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
426 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
427 "", "", "ehi", "", "", "", "epc", "prid",
428};
429
430/* Names of LSI 33k registers. */
431
432char *mips_lsi33k_reg_names[] = {
433 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
434 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
435 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
436 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
437 "epc", "hi", "lo", "sr", "cause","badvaddr",
438 "dcic", "bpc", "bda", "", "", "", "", "",
439 "", "", "", "", "", "", "", "",
440 "", "", "", "", "", "", "", "",
441 "", "", "", "", "", "", "", "",
442 "", "", "", "",
443 "", "", "", "", "", "", "", "",
444 "", "", "", "", "", "", "", "",
445};
446
447struct {
448 char *name;
449 char **regnames;
450} mips_processor_type_table[] = {
451 { "generic", mips_generic_reg_names },
452 { "r3041", mips_r3041_reg_names },
453 { "r3051", mips_r3051_reg_names },
454 { "r3071", mips_r3081_reg_names },
455 { "r3081", mips_r3081_reg_names },
456 { "lsi33k", mips_lsi33k_reg_names },
457 { NULL, NULL }
458};
9846de1b 459/* *INDENT-ON* */
c906108c 460
c5aa993b
JM
461
462
463
c906108c 464/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
465static int mips16_to_32_reg[8] =
466{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
467
468/* Heuristic_proc_start may hunt through the text section for a long
469 time across a 2400 baud serial line. Allows the user to limit this
470 search. */
471
472static unsigned int heuristic_fence_post = 0;
473
c5aa993b
JM
474#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
475#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
476#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
477#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
478#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
479#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
480#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
481#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
482#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
483#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
6c0d6680
DJ
484/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
485 this will corrupt pdr.iline. Fortunately we don't use it. */
c906108c
SS
486#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
487#define _PROC_MAGIC_ 0x0F0F0F0F
488#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
489#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
490
491struct linked_proc_info
c5aa993b
JM
492 {
493 struct mips_extra_func_info info;
494 struct linked_proc_info *next;
495 }
496 *linked_proc_desc_table = NULL;
c906108c 497
cce74817 498void
acdb74a0 499mips_print_extra_frame_info (struct frame_info *fi)
cce74817
JM
500{
501 if (fi
502 && fi->extra_info
503 && fi->extra_info->proc_desc
504 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
d4f3574e 505 printf_filtered (" frame pointer is at %s+%s\n",
cce74817 506 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
d4f3574e 507 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
cce74817 508}
c906108c 509
46cd78fb
AC
510/* Number of bytes of storage in the actual machine representation for
511 register N. NOTE: This indirectly defines the register size
512 transfered by the GDB protocol. */
43e526b9
JM
513
514static int mips64_transfers_32bit_regs_p = 0;
515
f7ab6ec6 516static int
acdb74a0 517mips_register_raw_size (int reg_nr)
43e526b9
JM
518{
519 if (mips64_transfers_32bit_regs_p)
520 return REGISTER_VIRTUAL_SIZE (reg_nr);
d02ee681
AC
521 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
522 && FP_REGISTER_DOUBLE)
523 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
524 registers. */
525 return 8;
43e526b9
JM
526 else
527 return MIPS_REGSIZE;
528}
529
46cd78fb
AC
530/* Convert between RAW and VIRTUAL registers. The RAW register size
531 defines the remote-gdb packet. */
532
d05285fa 533static int
acdb74a0 534mips_register_convertible (int reg_nr)
43e526b9
JM
535{
536 if (mips64_transfers_32bit_regs_p)
537 return 0;
538 else
539 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
540}
541
d05285fa 542static void
acdb74a0
AC
543mips_register_convert_to_virtual (int n, struct type *virtual_type,
544 char *raw_buf, char *virt_buf)
43e526b9 545{
d7449b42 546 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
547 memcpy (virt_buf,
548 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
549 TYPE_LENGTH (virtual_type));
550 else
551 memcpy (virt_buf,
552 raw_buf,
553 TYPE_LENGTH (virtual_type));
554}
555
d05285fa 556static void
acdb74a0
AC
557mips_register_convert_to_raw (struct type *virtual_type, int n,
558 char *virt_buf, char *raw_buf)
43e526b9
JM
559{
560 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
d7449b42 561 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
562 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
563 virt_buf,
564 TYPE_LENGTH (virtual_type));
565 else
566 memcpy (raw_buf,
567 virt_buf,
568 TYPE_LENGTH (virtual_type));
569}
570
102182a9
MS
571void
572mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
573{
574 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
575 && REGISTER_RAW_SIZE (regnum) == 4
576 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
577 && TYPE_CODE(type) == TYPE_CODE_FLT
578 && TYPE_LENGTH(type) == 8)
579 {
580 char temp[4];
581 memcpy (temp, ((char *)(buffer))+4, 4);
582 memcpy (((char *)(buffer))+4, (buffer), 4);
583 memcpy (((char *)(buffer)), temp, 4);
584 }
585}
586
587void
588mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
589{
590if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
591 && REGISTER_RAW_SIZE (regnum) == 4
592 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
593 && TYPE_CODE(type) == TYPE_CODE_FLT
594 && TYPE_LENGTH(type) == 8)
595 {
596 char temp[4];
597 memcpy (temp, ((char *)(buffer))+4, 4);
598 memcpy (((char *)(buffer))+4, (buffer), 4);
599 memcpy (((char *)(buffer)), temp, 4);
600 }
601}
602
78fde5f8
KB
603/* Return the GDB type object for the "standard" data type
604 of data in register REG.
605
606 Note: kevinb/2002-08-01: The definition below should faithfully
607 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
608 definitions found in config/mips/tm-*.h. I'm concerned about
609 the ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause
610 though. In some cases FP_REGNUM is in this range, and I doubt
611 that this code is correct for the 64-bit case. */
612
613static struct type *
614mips_register_virtual_type (int reg)
615{
616 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
a6425924
KB
617 {
618 /* Floating point registers... */
619 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
620 return builtin_type_ieee_double_big;
621 else
622 return builtin_type_ieee_double_little;
623 }
78fde5f8
KB
624 else if (reg == PS_REGNUM /* CR */)
625 return builtin_type_uint32;
626 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
627 return builtin_type_uint32;
628 else
629 {
a6425924
KB
630 /* Everything else...
631 Return type appropriate for width of register. */
632 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
633 return builtin_type_uint64;
78fde5f8 634 else
a6425924 635 return builtin_type_uint32;
78fde5f8
KB
636 }
637}
638
bcb0cc15
MS
639/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
640
641static CORE_ADDR
642mips_read_sp (void)
643{
644 return ADDR_BITS_REMOVE (read_register (SP_REGNUM));
645}
646
c906108c 647/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 648enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
649
650static int
651mips_mask_address_p (void)
652{
653 switch (mask_address_var)
654 {
7f19b9a2 655 case AUTO_BOOLEAN_TRUE:
4014092b 656 return 1;
7f19b9a2 657 case AUTO_BOOLEAN_FALSE:
4014092b
AC
658 return 0;
659 break;
7f19b9a2 660 case AUTO_BOOLEAN_AUTO:
92e1c15c 661 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b 662 default:
8e65ff28
AC
663 internal_error (__FILE__, __LINE__,
664 "mips_mask_address_p: bad switch");
4014092b 665 return -1;
361d1df0 666 }
4014092b
AC
667}
668
669static void
e9e68a56 670show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
4014092b
AC
671{
672 switch (mask_address_var)
673 {
7f19b9a2 674 case AUTO_BOOLEAN_TRUE:
4014092b
AC
675 printf_filtered ("The 32 bit mips address mask is enabled\n");
676 break;
7f19b9a2 677 case AUTO_BOOLEAN_FALSE:
4014092b
AC
678 printf_filtered ("The 32 bit mips address mask is disabled\n");
679 break;
7f19b9a2 680 case AUTO_BOOLEAN_AUTO:
4014092b
AC
681 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
682 mips_mask_address_p () ? "enabled" : "disabled");
683 break;
684 default:
8e65ff28
AC
685 internal_error (__FILE__, __LINE__,
686 "show_mask_address: bad switch");
4014092b 687 break;
361d1df0 688 }
4014092b 689}
c906108c
SS
690
691/* Should call_function allocate stack space for a struct return? */
cb811fe7 692
f7ab6ec6 693static int
cb811fe7 694mips_eabi_use_struct_convention (int gcc_p, struct type *type)
c906108c 695{
cb811fe7
MS
696 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
697}
698
f7ab6ec6 699static int
cb811fe7
MS
700mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
701{
b78bcb18 702 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
cb811fe7
MS
703}
704
f7ab6ec6 705static int
cb811fe7
MS
706mips_o32_use_struct_convention (int gcc_p, struct type *type)
707{
708 return 1; /* Structures are returned by ref in extra arg0. */
c906108c
SS
709}
710
8b389c40
MS
711/* Should call_function pass struct by reference?
712 For each architecture, structs are passed either by
713 value or by reference, depending on their size. */
714
715static int
716mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
717{
718 enum type_code typecode = TYPE_CODE (check_typedef (type));
719 int len = TYPE_LENGTH (check_typedef (type));
720
721 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
722 return (len > MIPS_SAVED_REGSIZE);
723
724 return 0;
725}
726
727static int
728mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
729{
730 return 0; /* Assumption: N32/N64 never passes struct by ref. */
731}
732
f7ab6ec6 733static int
8b389c40
MS
734mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
735{
736 return 0; /* Assumption: O32/O64 never passes struct by ref. */
737}
738
c906108c
SS
739/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
740
741static int
742pc_is_mips16 (bfd_vma memaddr)
743{
744 struct minimal_symbol *sym;
745
746 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
747 if (IS_MIPS16_ADDR (memaddr))
748 return 1;
749
750 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
751 the high bit of the info field. Use this to decide if the function is
752 MIPS16 or normal MIPS. */
753 sym = lookup_minimal_symbol_by_pc (memaddr);
754 if (sym)
71b8ef93 755 return msymbol_is_special (sym);
c906108c
SS
756 else
757 return 0;
758}
759
6c997a34
AC
760/* MIPS believes that the PC has a sign extended value. Perhaphs the
761 all registers should be sign extended for simplicity? */
762
763static CORE_ADDR
39f77062 764mips_read_pc (ptid_t ptid)
6c997a34 765{
39f77062 766 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 767}
c906108c
SS
768
769/* This returns the PC of the first inst after the prologue. If we can't
770 find the prologue, then return 0. */
771
772static CORE_ADDR
acdb74a0
AC
773after_prologue (CORE_ADDR pc,
774 mips_extra_func_info_t proc_desc)
c906108c
SS
775{
776 struct symtab_and_line sal;
777 CORE_ADDR func_addr, func_end;
778
479412cd
DJ
779 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
780 to read the stack pointer from the current machine state, because
781 the current machine state has nothing to do with the information
782 we need from the proc_desc; and the process may or may not exist
783 right now. */
c906108c 784 if (!proc_desc)
479412cd 785 proc_desc = find_proc_desc (pc, NULL, 0);
c906108c
SS
786
787 if (proc_desc)
788 {
789 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 790 strongly suspect that frameless always means prologueless... */
c906108c
SS
791 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
792 && PROC_FRAME_OFFSET (proc_desc) == 0)
793 return 0;
794 }
795
796 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
797 return 0; /* Unknown */
798
799 sal = find_pc_line (func_addr, 0);
800
801 if (sal.end < func_end)
802 return sal.end;
803
804 /* The line after the prologue is after the end of the function. In this
805 case, tell the caller to find the prologue the hard way. */
806
807 return 0;
808}
809
810/* Decode a MIPS32 instruction that saves a register in the stack, and
811 set the appropriate bit in the general register mask or float register mask
812 to indicate which register is saved. This is a helper function
813 for mips_find_saved_regs. */
814
815static void
acdb74a0
AC
816mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
817 unsigned long *float_mask)
c906108c
SS
818{
819 int reg;
820
821 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
822 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
823 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
824 {
825 /* It might be possible to use the instruction to
c5aa993b
JM
826 find the offset, rather than the code below which
827 is based on things being in a certain order in the
828 frame, but figuring out what the instruction's offset
829 is relative to might be a little tricky. */
c906108c
SS
830 reg = (inst & 0x001f0000) >> 16;
831 *gen_mask |= (1 << reg);
832 }
833 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
834 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
835 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
836
837 {
838 reg = ((inst & 0x001f0000) >> 16);
839 *float_mask |= (1 << reg);
840 }
841}
842
843/* Decode a MIPS16 instruction that saves a register in the stack, and
844 set the appropriate bit in the general register or float register mask
845 to indicate which register is saved. This is a helper function
846 for mips_find_saved_regs. */
847
848static void
acdb74a0 849mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 850{
c5aa993b 851 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
852 {
853 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
854 *gen_mask |= (1 << reg);
855 }
c5aa993b 856 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
857 {
858 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
859 *gen_mask |= (1 << reg);
860 }
c5aa993b 861 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
862 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
863 *gen_mask |= (1 << RA_REGNUM);
864}
865
866
867/* Fetch and return instruction from the specified location. If the PC
868 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
869
870static t_inst
acdb74a0 871mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
872{
873 char buf[MIPS_INSTLEN];
874 int instlen;
875 int status;
876
877 if (pc_is_mips16 (addr))
878 {
879 instlen = MIPS16_INSTLEN;
880 addr = UNMAKE_MIPS16_ADDR (addr);
881 }
882 else
c5aa993b 883 instlen = MIPS_INSTLEN;
c906108c
SS
884 status = read_memory_nobpt (addr, buf, instlen);
885 if (status)
886 memory_error (status, addr);
887 return extract_unsigned_integer (buf, instlen);
888}
889
890
891/* These the fields of 32 bit mips instructions */
e135b889
DJ
892#define mips32_op(x) (x >> 26)
893#define itype_op(x) (x >> 26)
894#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 895#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 896#define itype_immediate(x) (x & 0xffff)
c906108c 897
e135b889
DJ
898#define jtype_op(x) (x >> 26)
899#define jtype_target(x) (x & 0x03ffffff)
c906108c 900
e135b889
DJ
901#define rtype_op(x) (x >> 26)
902#define rtype_rs(x) ((x >> 21) & 0x1f)
903#define rtype_rt(x) ((x >> 16) & 0x1f)
904#define rtype_rd(x) ((x >> 11) & 0x1f)
905#define rtype_shamt(x) ((x >> 6) & 0x1f)
906#define rtype_funct(x) (x & 0x3f)
c906108c
SS
907
908static CORE_ADDR
c5aa993b
JM
909mips32_relative_offset (unsigned long inst)
910{
911 long x;
912 x = itype_immediate (inst);
913 if (x & 0x8000) /* sign bit set */
c906108c 914 {
c5aa993b 915 x |= 0xffff0000; /* sign extension */
c906108c 916 }
c5aa993b
JM
917 x = x << 2;
918 return x;
c906108c
SS
919}
920
921/* Determine whate to set a single step breakpoint while considering
922 branch prediction */
5a89d8aa 923static CORE_ADDR
c5aa993b
JM
924mips32_next_pc (CORE_ADDR pc)
925{
926 unsigned long inst;
927 int op;
928 inst = mips_fetch_instruction (pc);
e135b889 929 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 930 {
e135b889
DJ
931 if (itype_op (inst) >> 2 == 5)
932 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 933 {
e135b889 934 op = (itype_op (inst) & 0x03);
c906108c
SS
935 switch (op)
936 {
e135b889
DJ
937 case 0: /* BEQL */
938 goto equal_branch;
939 case 1: /* BNEL */
940 goto neq_branch;
941 case 2: /* BLEZL */
942 goto less_branch;
943 case 3: /* BGTZ */
944 goto greater_branch;
c5aa993b
JM
945 default:
946 pc += 4;
c906108c
SS
947 }
948 }
e135b889
DJ
949 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
950 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
951 {
952 int tf = itype_rt (inst) & 0x01;
953 int cnum = itype_rt (inst) >> 2;
954 int fcrcs = read_signed_register (FCRCS_REGNUM);
955 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
956
957 if (((cond >> cnum) & 0x01) == tf)
958 pc += mips32_relative_offset (inst) + 4;
959 else
960 pc += 8;
961 }
c5aa993b
JM
962 else
963 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
964 }
965 else
c5aa993b
JM
966 { /* This gets way messy */
967
c906108c 968 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 969 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 970 {
c5aa993b
JM
971 case 0: /* SPECIAL */
972 op = rtype_funct (inst);
973 switch (op)
974 {
975 case 8: /* JR */
976 case 9: /* JALR */
6c997a34
AC
977 /* Set PC to that address */
978 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
979 break;
980 default:
981 pc += 4;
982 }
983
e135b889 984 break; /* end SPECIAL */
c5aa993b 985 case 1: /* REGIMM */
c906108c 986 {
e135b889
DJ
987 op = itype_rt (inst); /* branch condition */
988 switch (op)
c906108c 989 {
c5aa993b 990 case 0: /* BLTZ */
e135b889
DJ
991 case 2: /* BLTZL */
992 case 16: /* BLTZAL */
c5aa993b 993 case 18: /* BLTZALL */
c906108c 994 less_branch:
6c997a34 995 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
996 pc += mips32_relative_offset (inst) + 4;
997 else
998 pc += 8; /* after the delay slot */
999 break;
e135b889 1000 case 1: /* BGEZ */
c5aa993b
JM
1001 case 3: /* BGEZL */
1002 case 17: /* BGEZAL */
1003 case 19: /* BGEZALL */
c906108c 1004 greater_equal_branch:
6c997a34 1005 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
1006 pc += mips32_relative_offset (inst) + 4;
1007 else
1008 pc += 8; /* after the delay slot */
1009 break;
e135b889 1010 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1011 default:
1012 pc += 4;
c906108c
SS
1013 }
1014 }
e135b889 1015 break; /* end REGIMM */
c5aa993b
JM
1016 case 2: /* J */
1017 case 3: /* JAL */
1018 {
1019 unsigned long reg;
1020 reg = jtype_target (inst) << 2;
e135b889 1021 /* Upper four bits get never changed... */
c5aa993b 1022 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 1023 }
c5aa993b
JM
1024 break;
1025 /* FIXME case JALX : */
1026 {
1027 unsigned long reg;
1028 reg = jtype_target (inst) << 2;
1029 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
1030 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1031 }
c5aa993b 1032 break; /* The new PC will be alternate mode */
e135b889 1033 case 4: /* BEQ, BEQL */
c5aa993b 1034 equal_branch:
6c997a34
AC
1035 if (read_signed_register (itype_rs (inst)) ==
1036 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1037 pc += mips32_relative_offset (inst) + 4;
1038 else
1039 pc += 8;
1040 break;
e135b889 1041 case 5: /* BNE, BNEL */
c5aa993b 1042 neq_branch:
6c997a34 1043 if (read_signed_register (itype_rs (inst)) !=
e135b889 1044 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1045 pc += mips32_relative_offset (inst) + 4;
1046 else
1047 pc += 8;
1048 break;
e135b889 1049 case 6: /* BLEZ, BLEZL */
c906108c 1050 less_zero_branch:
6c997a34 1051 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
1052 pc += mips32_relative_offset (inst) + 4;
1053 else
1054 pc += 8;
1055 break;
1056 case 7:
e135b889
DJ
1057 default:
1058 greater_branch: /* BGTZ, BGTZL */
6c997a34 1059 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
1060 pc += mips32_relative_offset (inst) + 4;
1061 else
1062 pc += 8;
1063 break;
c5aa993b
JM
1064 } /* switch */
1065 } /* else */
1066 return pc;
1067} /* mips32_next_pc */
c906108c
SS
1068
1069/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1070 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1071 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1072 We dont want to set a single step instruction on the extend instruction
1073 either.
c5aa993b 1074 */
c906108c
SS
1075
1076/* Lots of mips16 instruction formats */
1077/* Predicting jumps requires itype,ritype,i8type
1078 and their extensions extItype,extritype,extI8type
c5aa993b 1079 */
c906108c
SS
1080enum mips16_inst_fmts
1081{
c5aa993b
JM
1082 itype, /* 0 immediate 5,10 */
1083 ritype, /* 1 5,3,8 */
1084 rrtype, /* 2 5,3,3,5 */
1085 rritype, /* 3 5,3,3,5 */
1086 rrrtype, /* 4 5,3,3,3,2 */
1087 rriatype, /* 5 5,3,3,1,4 */
1088 shifttype, /* 6 5,3,3,3,2 */
1089 i8type, /* 7 5,3,8 */
1090 i8movtype, /* 8 5,3,3,5 */
1091 i8mov32rtype, /* 9 5,3,5,3 */
1092 i64type, /* 10 5,3,8 */
1093 ri64type, /* 11 5,3,3,5 */
1094 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1095 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1096 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1097 extRRItype, /* 15 5,5,5,5,3,3,5 */
1098 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1099 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1100 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1101 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1102 extRi64type, /* 20 5,6,5,5,3,3,5 */
1103 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1104};
12f02c2a
AC
1105/* I am heaping all the fields of the formats into one structure and
1106 then, only the fields which are involved in instruction extension */
c906108c 1107struct upk_mips16
c5aa993b 1108 {
12f02c2a 1109 CORE_ADDR offset;
c5aa993b
JM
1110 unsigned int regx; /* Function in i8 type */
1111 unsigned int regy;
1112 };
c906108c
SS
1113
1114
12f02c2a
AC
1115/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1116 for the bits which make up the immediatate extension. */
c906108c 1117
12f02c2a
AC
1118static CORE_ADDR
1119extended_offset (unsigned int extension)
c906108c 1120{
12f02c2a 1121 CORE_ADDR value;
c5aa993b
JM
1122 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1123 value = value << 6;
1124 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1125 value = value << 5;
1126 value |= extension & 0x01f; /* extract 4:0 */
1127 return value;
c906108c
SS
1128}
1129
1130/* Only call this function if you know that this is an extendable
1131 instruction, It wont malfunction, but why make excess remote memory references?
1132 If the immediate operands get sign extended or somthing, do it after
1133 the extension is performed.
c5aa993b 1134 */
c906108c
SS
1135/* FIXME: Every one of these cases needs to worry about sign extension
1136 when the offset is to be used in relative addressing */
1137
1138
12f02c2a 1139static unsigned int
c5aa993b 1140fetch_mips_16 (CORE_ADDR pc)
c906108c 1141{
c5aa993b
JM
1142 char buf[8];
1143 pc &= 0xfffffffe; /* clear the low order bit */
1144 target_read_memory (pc, buf, 2);
1145 return extract_unsigned_integer (buf, 2);
c906108c
SS
1146}
1147
1148static void
c5aa993b 1149unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1150 unsigned int extension,
1151 unsigned int inst,
1152 enum mips16_inst_fmts insn_format,
c5aa993b 1153 struct upk_mips16 *upk)
c906108c 1154{
12f02c2a
AC
1155 CORE_ADDR offset;
1156 int regx;
1157 int regy;
1158 switch (insn_format)
c906108c 1159 {
c5aa993b 1160 case itype:
c906108c 1161 {
12f02c2a
AC
1162 CORE_ADDR value;
1163 if (extension)
c5aa993b
JM
1164 {
1165 value = extended_offset (extension);
1166 value = value << 11; /* rom for the original value */
12f02c2a 1167 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1168 }
1169 else
c5aa993b 1170 {
12f02c2a 1171 value = inst & 0x7ff;
c5aa993b 1172 /* FIXME : Consider sign extension */
c906108c 1173 }
12f02c2a
AC
1174 offset = value;
1175 regx = -1;
1176 regy = -1;
c906108c 1177 }
c5aa993b
JM
1178 break;
1179 case ritype:
1180 case i8type:
1181 { /* A register identifier and an offset */
c906108c
SS
1182 /* Most of the fields are the same as I type but the
1183 immediate value is of a different length */
12f02c2a
AC
1184 CORE_ADDR value;
1185 if (extension)
c906108c 1186 {
c5aa993b
JM
1187 value = extended_offset (extension);
1188 value = value << 8; /* from the original instruction */
12f02c2a
AC
1189 value |= inst & 0xff; /* eleven bits from instruction */
1190 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1191 if (value & 0x4000) /* test the sign bit , bit 26 */
1192 {
1193 value &= ~0x3fff; /* remove the sign bit */
1194 value = -value;
c906108c
SS
1195 }
1196 }
c5aa993b
JM
1197 else
1198 {
12f02c2a
AC
1199 value = inst & 0xff; /* 8 bits */
1200 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1201 /* FIXME: Do sign extension , this format needs it */
1202 if (value & 0x80) /* THIS CONFUSES ME */
1203 {
1204 value &= 0xef; /* remove the sign bit */
1205 value = -value;
1206 }
c5aa993b 1207 }
12f02c2a
AC
1208 offset = value;
1209 regy = -1;
c5aa993b 1210 break;
c906108c 1211 }
c5aa993b 1212 case jalxtype:
c906108c 1213 {
c5aa993b 1214 unsigned long value;
12f02c2a
AC
1215 unsigned int nexthalf;
1216 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1217 value = value << 16;
1218 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1219 value |= nexthalf;
12f02c2a
AC
1220 offset = value;
1221 regx = -1;
1222 regy = -1;
c5aa993b 1223 break;
c906108c
SS
1224 }
1225 default:
8e65ff28
AC
1226 internal_error (__FILE__, __LINE__,
1227 "bad switch");
c906108c 1228 }
12f02c2a
AC
1229 upk->offset = offset;
1230 upk->regx = regx;
1231 upk->regy = regy;
c906108c
SS
1232}
1233
1234
c5aa993b
JM
1235static CORE_ADDR
1236add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1237{
c5aa993b 1238 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
c906108c
SS
1239}
1240
12f02c2a
AC
1241static CORE_ADDR
1242extended_mips16_next_pc (CORE_ADDR pc,
1243 unsigned int extension,
1244 unsigned int insn)
c906108c 1245{
12f02c2a
AC
1246 int op = (insn >> 11);
1247 switch (op)
c906108c 1248 {
12f02c2a
AC
1249 case 2: /* Branch */
1250 {
1251 CORE_ADDR offset;
1252 struct upk_mips16 upk;
1253 unpack_mips16 (pc, extension, insn, itype, &upk);
1254 offset = upk.offset;
1255 if (offset & 0x800)
1256 {
1257 offset &= 0xeff;
1258 offset = -offset;
1259 }
1260 pc += (offset << 1) + 2;
1261 break;
1262 }
1263 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1264 {
1265 struct upk_mips16 upk;
1266 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1267 pc = add_offset_16 (pc, upk.offset);
1268 if ((insn >> 10) & 0x01) /* Exchange mode */
1269 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1270 else
1271 pc |= 0x01;
1272 break;
1273 }
1274 case 4: /* beqz */
1275 {
1276 struct upk_mips16 upk;
1277 int reg;
1278 unpack_mips16 (pc, extension, insn, ritype, &upk);
1279 reg = read_signed_register (upk.regx);
1280 if (reg == 0)
1281 pc += (upk.offset << 1) + 2;
1282 else
1283 pc += 2;
1284 break;
1285 }
1286 case 5: /* bnez */
1287 {
1288 struct upk_mips16 upk;
1289 int reg;
1290 unpack_mips16 (pc, extension, insn, ritype, &upk);
1291 reg = read_signed_register (upk.regx);
1292 if (reg != 0)
1293 pc += (upk.offset << 1) + 2;
1294 else
1295 pc += 2;
1296 break;
1297 }
1298 case 12: /* I8 Formats btez btnez */
1299 {
1300 struct upk_mips16 upk;
1301 int reg;
1302 unpack_mips16 (pc, extension, insn, i8type, &upk);
1303 /* upk.regx contains the opcode */
1304 reg = read_signed_register (24); /* Test register is 24 */
1305 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1306 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1307 /* pc = add_offset_16(pc,upk.offset) ; */
1308 pc += (upk.offset << 1) + 2;
1309 else
1310 pc += 2;
1311 break;
1312 }
1313 case 29: /* RR Formats JR, JALR, JALR-RA */
1314 {
1315 struct upk_mips16 upk;
1316 /* upk.fmt = rrtype; */
1317 op = insn & 0x1f;
1318 if (op == 0)
c5aa993b 1319 {
12f02c2a
AC
1320 int reg;
1321 upk.regx = (insn >> 8) & 0x07;
1322 upk.regy = (insn >> 5) & 0x07;
1323 switch (upk.regy)
c5aa993b 1324 {
12f02c2a
AC
1325 case 0:
1326 reg = upk.regx;
1327 break;
1328 case 1:
1329 reg = 31;
1330 break; /* Function return instruction */
1331 case 2:
1332 reg = upk.regx;
1333 break;
1334 default:
1335 reg = 31;
1336 break; /* BOGUS Guess */
c906108c 1337 }
12f02c2a 1338 pc = read_signed_register (reg);
c906108c 1339 }
12f02c2a 1340 else
c5aa993b 1341 pc += 2;
12f02c2a
AC
1342 break;
1343 }
1344 case 30:
1345 /* This is an instruction extension. Fetch the real instruction
1346 (which follows the extension) and decode things based on
1347 that. */
1348 {
1349 pc += 2;
1350 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1351 break;
1352 }
1353 default:
1354 {
1355 pc += 2;
1356 break;
1357 }
c906108c 1358 }
c5aa993b 1359 return pc;
12f02c2a 1360}
c906108c 1361
5a89d8aa 1362static CORE_ADDR
12f02c2a
AC
1363mips16_next_pc (CORE_ADDR pc)
1364{
1365 unsigned int insn = fetch_mips_16 (pc);
1366 return extended_mips16_next_pc (pc, 0, insn);
1367}
1368
1369/* The mips_next_pc function supports single_step when the remote
7e73cedf 1370 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1371 It works by decoding the current instruction and predicting where a
1372 branch will go. This isnt hard because all the data is available.
1373 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1374CORE_ADDR
1375mips_next_pc (CORE_ADDR pc)
c906108c 1376{
c5aa993b
JM
1377 if (pc & 0x01)
1378 return mips16_next_pc (pc);
1379 else
1380 return mips32_next_pc (pc);
12f02c2a 1381}
c906108c
SS
1382
1383/* Guaranteed to set fci->saved_regs to some values (it never leaves it
ffabd70d
KB
1384 NULL).
1385
1386 Note: kevinb/2002-08-09: The only caller of this function is (and
1387 should remain) mips_frame_init_saved_regs(). In fact,
1388 aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
1389 does nothing more than set frame->saved_regs[SP_REGNUM]. These two
1390 functions should really be combined and now that there is only one
1391 caller, it should be straightforward. (Watch out for multiple returns
c4ac3e63 1392 though.) */
c906108c 1393
d28e01f4 1394static void
acdb74a0 1395mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1396{
1397 int ireg;
1398 CORE_ADDR reg_position;
1399 /* r0 bit means kernel trap */
1400 int kernel_trap;
1401 /* What registers have been saved? Bitmasks. */
1402 unsigned long gen_mask, float_mask;
1403 mips_extra_func_info_t proc_desc;
1404 t_inst inst;
1405
1406 frame_saved_regs_zalloc (fci);
1407
1408 /* If it is the frame for sigtramp, the saved registers are located
1409 in a sigcontext structure somewhere on the stack.
1410 If the stack layout for sigtramp changes we might have to change these
1411 constants and the companion fixup_sigtramp in mdebugread.c */
1412#ifndef SIGFRAME_BASE
1413/* To satisfy alignment restrictions, sigcontext is located 4 bytes
1414 above the sigtramp frame. */
1415#define SIGFRAME_BASE MIPS_REGSIZE
1416/* FIXME! Are these correct?? */
1417#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1418#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1419#define SIGFRAME_FPREGSAVE_OFF \
1420 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1421#endif
1422#ifndef SIGFRAME_REG_SIZE
1423/* FIXME! Is this correct?? */
1424#define SIGFRAME_REG_SIZE MIPS_REGSIZE
1425#endif
1426 if (fci->signal_handler_caller)
1427 {
1428 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1429 {
c5aa993b
JM
1430 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1431 + ireg * SIGFRAME_REG_SIZE;
1432 fci->saved_regs[ireg] = reg_position;
c906108c
SS
1433 }
1434 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1435 {
c5aa993b
JM
1436 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1437 + ireg * SIGFRAME_REG_SIZE;
1438 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
c906108c
SS
1439 }
1440 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1441 return;
1442 }
1443
cce74817 1444 proc_desc = fci->extra_info->proc_desc;
c906108c
SS
1445 if (proc_desc == NULL)
1446 /* I'm not sure how/whether this can happen. Normally when we can't
1447 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1448 and set the saved_regs right away. */
1449 return;
1450
c5aa993b
JM
1451 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1452 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1453 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1454
c5aa993b
JM
1455 if ( /* In any frame other than the innermost or a frame interrupted by
1456 a signal, we assume that all registers have been saved.
1457 This assumes that all register saves in a function happen before
1458 the first function call. */
1459 (fci->next == NULL || fci->next->signal_handler_caller)
c906108c 1460
c5aa993b
JM
1461 /* In a dummy frame we know exactly where things are saved. */
1462 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1463
c5aa993b
JM
1464 /* Don't bother unless we are inside a function prologue. Outside the
1465 prologue, we know where everything is. */
c906108c 1466
c5aa993b 1467 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
c906108c 1468
c5aa993b
JM
1469 /* Not sure exactly what kernel_trap means, but if it means
1470 the kernel saves the registers without a prologue doing it,
1471 we better not examine the prologue to see whether registers
1472 have been saved yet. */
1473 && !kernel_trap)
c906108c
SS
1474 {
1475 /* We need to figure out whether the registers that the proc_desc
c5aa993b 1476 claims are saved have been saved yet. */
c906108c
SS
1477
1478 CORE_ADDR addr;
1479
1480 /* Bitmasks; set if we have found a save for the register. */
1481 unsigned long gen_save_found = 0;
1482 unsigned long float_save_found = 0;
1483 int instlen;
1484
1485 /* If the address is odd, assume this is MIPS16 code. */
1486 addr = PROC_LOW_ADDR (proc_desc);
1487 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1488
1489 /* Scan through this function's instructions preceding the current
1490 PC, and look for those that save registers. */
1491 while (addr < fci->pc)
1492 {
1493 inst = mips_fetch_instruction (addr);
1494 if (pc_is_mips16 (addr))
1495 mips16_decode_reg_save (inst, &gen_save_found);
1496 else
1497 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1498 addr += instlen;
1499 }
1500 gen_mask = gen_save_found;
1501 float_mask = float_save_found;
1502 }
1503
1504 /* Fill in the offsets for the registers which gen_mask says
1505 were saved. */
1506 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
c5aa993b 1507 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
c906108c
SS
1508 if (gen_mask & 0x80000000)
1509 {
1510 fci->saved_regs[ireg] = reg_position;
7a292a7a 1511 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1512 }
1513
1514 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1515 of that normally used by gcc. Therefore, we have to fetch the first
1516 instruction of the function, and if it's an entry instruction that
1517 saves $s0 or $s1, correct their saved addresses. */
1518 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1519 {
1520 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
c5aa993b 1521 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
c906108c
SS
1522 {
1523 int reg;
1524 int sreg_count = (inst >> 6) & 3;
c5aa993b 1525
c906108c
SS
1526 /* Check if the ra register was pushed on the stack. */
1527 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1528 if (inst & 0x20)
7a292a7a 1529 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1530
1531 /* Check if the s0 and s1 registers were pushed on the stack. */
c5aa993b 1532 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c
SS
1533 {
1534 fci->saved_regs[reg] = reg_position;
7a292a7a 1535 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1536 }
1537 }
1538 }
1539
1540 /* Fill in the offsets for the registers which float_mask says
1541 were saved. */
1542 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1543
6acdf5c7
MS
1544 /* Apparently, the freg_offset gives the offset to the first 64 bit
1545 saved.
1546
1547 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1548 designates the first saved 64 bit register.
1549
1550 When the ABI specifies 32 bit saved registers, the ``64 bit saved
1551 DOUBLE'' consists of two adjacent 32 bit registers, Hence
1552 FREG_OFFSET, designates the address of the lower register of the
1553 register pair. Adjust the offset so that it designates the upper
1554 register of the pair -- i.e., the address of the first saved 32
1555 bit register. */
1556
1557 if (MIPS_SAVED_REGSIZE == 4)
7a292a7a 1558 reg_position += MIPS_SAVED_REGSIZE;
c906108c
SS
1559
1560 /* Fill in the offsets for the float registers which float_mask says
1561 were saved. */
c5aa993b 1562 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
c906108c
SS
1563 if (float_mask & 0x80000000)
1564 {
c5aa993b 1565 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
7a292a7a 1566 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1567 }
1568
1569 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1570}
1571
d28e01f4
KB
1572/* Set up the 'saved_regs' array. This is a data structure containing
1573 the addresses on the stack where each register has been saved, for
1574 each stack frame. Registers that have not been saved will have
1575 zero here. The stack pointer register is special: rather than the
1576 address where the stack register has been saved, saved_regs[SP_REGNUM]
1577 will have the actual value of the previous frame's stack register. */
1578
1579static void
1580mips_frame_init_saved_regs (struct frame_info *frame)
1581{
1582 if (frame->saved_regs == NULL)
1583 {
1584 mips_find_saved_regs (frame);
1585 }
1586 frame->saved_regs[SP_REGNUM] = frame->frame;
1587}
1588
c906108c 1589static CORE_ADDR
acdb74a0 1590read_next_frame_reg (struct frame_info *fi, int regno)
c906108c 1591{
64159455
AC
1592 int optimized;
1593 CORE_ADDR addr;
1594 int realnum;
1595 enum lval_type lval;
1596 void *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
1597 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1598 raw_buffer);
1599 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1600 should have a pseudo register range that correspons to the ABI's,
1601 rather than the ISA's, view of registers. These registers would
1602 then implicitly describe their size and hence could be used
1603 without the below munging. */
1604 if (lval == lval_memory)
c906108c 1605 {
64159455 1606 if (regno < 32)
c906108c 1607 {
64159455
AC
1608 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1609 saved. */
1610 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
c906108c
SS
1611 }
1612 }
64159455
AC
1613
1614 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
c906108c
SS
1615}
1616
1617/* mips_addr_bits_remove - remove useless address bits */
1618
875e1767 1619static CORE_ADDR
acdb74a0 1620mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1621{
5213ab06
AC
1622 if (GDB_TARGET_IS_MIPS64)
1623 {
4014092b 1624 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
5213ab06
AC
1625 {
1626 /* This hack is a work-around for existing boards using
1627 PMON, the simulator, and any other 64-bit targets that
1628 doesn't have true 64-bit addressing. On these targets,
1629 the upper 32 bits of addresses are ignored by the
1630 hardware. Thus, the PC or SP are likely to have been
1631 sign extended to all 1s by instruction sequences that
1632 load 32-bit addresses. For example, a typical piece of
4014092b
AC
1633 code that loads an address is this:
1634 lui $r2, <upper 16 bits>
1635 ori $r2, <lower 16 bits>
1636 But the lui sign-extends the value such that the upper 32
1637 bits may be all 1s. The workaround is simply to mask off
1638 these bits. In the future, gcc may be changed to support
1639 true 64-bit addressing, and this masking will have to be
1640 disabled. */
5213ab06
AC
1641 addr &= (CORE_ADDR) 0xffffffff;
1642 }
1643 }
4014092b 1644 else if (mips_mask_address_p ())
5213ab06 1645 {
4014092b
AC
1646 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1647 masking off bits, instead, the actual target should be asking
1648 for the address to be converted to a valid pointer. */
5213ab06
AC
1649 /* Even when GDB is configured for some 32-bit targets
1650 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1651 so CORE_ADDR is 64 bits. So we still have to mask off
1652 useless bits from addresses. */
c5aa993b 1653 addr &= (CORE_ADDR) 0xffffffff;
c906108c 1654 }
c906108c
SS
1655 return addr;
1656}
1657
9022177c
DJ
1658/* mips_software_single_step() is called just before we want to resume
1659 the inferior, if we want to single-step it but there is no hardware
75c9abc6 1660 or kernel single-step support (MIPS on GNU/Linux for example). We find
9022177c
DJ
1661 the target of the coming instruction and breakpoint it.
1662
1663 single_step is also called just after the inferior stops. If we had
1664 set up a simulated single-step, we undo our damage. */
1665
1666void
1667mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1668{
1669 static CORE_ADDR next_pc;
1670 typedef char binsn_quantum[BREAKPOINT_MAX];
1671 static binsn_quantum break_mem;
1672 CORE_ADDR pc;
1673
1674 if (insert_breakpoints_p)
1675 {
1676 pc = read_register (PC_REGNUM);
1677 next_pc = mips_next_pc (pc);
1678
1679 target_insert_breakpoint (next_pc, break_mem);
1680 }
1681 else
1682 target_remove_breakpoint (next_pc, break_mem);
1683}
1684
10312cc4 1685static void
acdb74a0 1686mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1687{
1688 CORE_ADDR pc, tmp;
1689
1690 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
c5aa993b 1691 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
5a89d8aa 1692 tmp = SKIP_TRAMPOLINE_CODE (pc);
c5aa993b 1693 prev->pc = tmp ? tmp : pc;
c906108c
SS
1694}
1695
1696
f7ab6ec6 1697static CORE_ADDR
acdb74a0 1698mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1699{
1700 CORE_ADDR saved_pc;
cce74817 1701 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c
SS
1702 /* We have to get the saved pc from the sigcontext
1703 if it is a signal handler frame. */
1704 int pcreg = frame->signal_handler_caller ? PC_REGNUM
c5aa993b 1705 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
c906108c 1706
cedea778
AC
1707 if (USE_GENERIC_DUMMY_FRAMES
1708 && PC_IN_CALL_DUMMY (frame->pc, 0, 0))
1709 {
1710 LONGEST tmp;
1711 frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
1712 saved_pc = tmp;
1713 }
1714 else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
7a292a7a 1715 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
c906108c 1716 else
7a292a7a 1717 saved_pc = read_next_frame_reg (frame, pcreg);
c906108c
SS
1718
1719 return ADDR_BITS_REMOVE (saved_pc);
1720}
1721
1722static struct mips_extra_func_info temp_proc_desc;
cce74817 1723static CORE_ADDR temp_saved_regs[NUM_REGS];
c906108c
SS
1724
1725/* Set a register's saved stack address in temp_saved_regs. If an address
1726 has already been set for this register, do nothing; this way we will
1727 only recognize the first save of a given register in a function prologue.
1728 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1729
1730static void
acdb74a0 1731set_reg_offset (int regno, CORE_ADDR offset)
c906108c 1732{
cce74817
JM
1733 if (temp_saved_regs[regno] == 0)
1734 temp_saved_regs[regno] = offset;
c906108c
SS
1735}
1736
1737
1738/* Test whether the PC points to the return instruction at the
1739 end of a function. */
1740
c5aa993b 1741static int
acdb74a0 1742mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1743{
1744 if (pc_is_mips16 (pc))
1745 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1746 generates a "jr $ra"; other times it generates code to load
1747 the return address from the stack to an accessible register (such
1748 as $a3), then a "jr" using that register. This second case
1749 is almost impossible to distinguish from an indirect jump
1750 used for switch statements, so we don't even try. */
1751 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1752 else
1753 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1754}
1755
1756
1757/* This fencepost looks highly suspicious to me. Removing it also
1758 seems suspicious as it could affect remote debugging across serial
1759 lines. */
1760
1761static CORE_ADDR
acdb74a0 1762heuristic_proc_start (CORE_ADDR pc)
c906108c 1763{
c5aa993b
JM
1764 CORE_ADDR start_pc;
1765 CORE_ADDR fence;
1766 int instlen;
1767 int seen_adjsp = 0;
c906108c 1768
c5aa993b
JM
1769 pc = ADDR_BITS_REMOVE (pc);
1770 start_pc = pc;
1771 fence = start_pc - heuristic_fence_post;
1772 if (start_pc == 0)
1773 return 0;
c906108c 1774
c5aa993b
JM
1775 if (heuristic_fence_post == UINT_MAX
1776 || fence < VM_MIN_ADDRESS)
1777 fence = VM_MIN_ADDRESS;
c906108c 1778
c5aa993b 1779 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1780
c5aa993b
JM
1781 /* search back for previous return */
1782 for (start_pc -= instlen;; start_pc -= instlen)
1783 if (start_pc < fence)
1784 {
1785 /* It's not clear to me why we reach this point when
1786 stop_soon_quietly, but with this test, at least we
1787 don't print out warnings for every child forked (eg, on
1788 decstation). 22apr93 rich@cygnus.com. */
1789 if (!stop_soon_quietly)
c906108c 1790 {
c5aa993b
JM
1791 static int blurb_printed = 0;
1792
1793 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1794 paddr_nz (pc));
1795
1796 if (!blurb_printed)
c906108c 1797 {
c5aa993b
JM
1798 /* This actually happens frequently in embedded
1799 development, when you first connect to a board
1800 and your stack pointer and pc are nowhere in
1801 particular. This message needs to give people
1802 in that situation enough information to
1803 determine that it's no big deal. */
1804 printf_filtered ("\n\
cd0fc7c3
SS
1805 GDB is unable to find the start of the function at 0x%s\n\
1806and thus can't determine the size of that function's stack frame.\n\
1807This means that GDB may be unable to access that stack frame, or\n\
1808the frames below it.\n\
1809 This problem is most likely caused by an invalid program counter or\n\
1810stack pointer.\n\
1811 However, if you think GDB should simply search farther back\n\
1812from 0x%s for code which looks like the beginning of a\n\
1813function, you can increase the range of the search using the `set\n\
1814heuristic-fence-post' command.\n",
c5aa993b
JM
1815 paddr_nz (pc), paddr_nz (pc));
1816 blurb_printed = 1;
c906108c 1817 }
c906108c
SS
1818 }
1819
c5aa993b
JM
1820 return 0;
1821 }
1822 else if (pc_is_mips16 (start_pc))
1823 {
1824 unsigned short inst;
1825
1826 /* On MIPS16, any one of the following is likely to be the
1827 start of a function:
1828 entry
1829 addiu sp,-n
1830 daddiu sp,-n
1831 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1832 inst = mips_fetch_instruction (start_pc);
1833 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1834 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1835 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1836 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1837 break;
1838 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1839 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1840 seen_adjsp = 1;
1841 else
1842 seen_adjsp = 0;
1843 }
1844 else if (mips_about_to_return (start_pc))
1845 {
1846 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1847 break;
1848 }
1849
c5aa993b 1850 return start_pc;
c906108c
SS
1851}
1852
1853/* Fetch the immediate value from a MIPS16 instruction.
1854 If the previous instruction was an EXTEND, use it to extend
1855 the upper bits of the immediate value. This is a helper function
1856 for mips16_heuristic_proc_desc. */
1857
1858static int
acdb74a0
AC
1859mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1860 unsigned short inst, /* current instruction */
1861 int nbits, /* number of bits in imm field */
1862 int scale, /* scale factor to be applied to imm */
1863 int is_signed) /* is the imm field signed? */
c906108c
SS
1864{
1865 int offset;
1866
1867 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1868 {
1869 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1870 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1871 offset = 0 - (0x10000 - (offset & 0xffff));
1872 return offset | (inst & 0x1f);
1873 }
1874 else
1875 {
1876 int max_imm = 1 << nbits;
1877 int mask = max_imm - 1;
1878 int sign_bit = max_imm >> 1;
1879
1880 offset = inst & mask;
1881 if (is_signed && (offset & sign_bit))
1882 offset = 0 - (max_imm - offset);
1883 return offset * scale;
1884 }
1885}
1886
1887
1888/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1889 stream from start_pc to limit_pc. */
1890
1891static void
acdb74a0
AC
1892mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1893 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1894{
1895 CORE_ADDR cur_pc;
1896 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1897 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1898 unsigned inst = 0; /* current instruction */
1899 unsigned entry_inst = 0; /* the entry instruction */
1900 int reg, offset;
1901
c5aa993b
JM
1902 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1903 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1904
1905 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1906 {
1907 /* Save the previous instruction. If it's an EXTEND, we'll extract
1908 the immediate offset extension from it in mips16_get_imm. */
1909 prev_inst = inst;
1910
1911 /* Fetch and decode the instruction. */
1912 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 1913 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
1914 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1915 {
1916 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
1917 if (offset < 0) /* negative stack adjustment? */
1918 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
1919 else
1920 /* Exit loop if a positive stack adjustment is found, which
1921 usually means that the stack cleanup code in the function
1922 epilogue is reached. */
1923 break;
1924 }
1925 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1926 {
1927 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1928 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 1929 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1930 set_reg_offset (reg, sp + offset);
1931 }
1932 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1933 {
1934 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1935 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1936 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1937 set_reg_offset (reg, sp + offset);
1938 }
1939 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1940 {
1941 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 1942 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1943 set_reg_offset (RA_REGNUM, sp + offset);
1944 }
1945 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1946 {
1947 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 1948 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1949 set_reg_offset (RA_REGNUM, sp + offset);
1950 }
c5aa993b 1951 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
1952 {
1953 frame_addr = sp;
1954 PROC_FRAME_REG (&temp_proc_desc) = 17;
1955 }
1956 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1957 {
1958 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1959 frame_addr = sp + offset;
1960 PROC_FRAME_REG (&temp_proc_desc) = 17;
1961 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1962 }
1963 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1964 {
1965 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1966 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1967 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1968 set_reg_offset (reg, frame_addr + offset);
1969 }
1970 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1971 {
1972 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1973 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1974 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1975 set_reg_offset (reg, frame_addr + offset);
1976 }
c5aa993b
JM
1977 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1978 entry_inst = inst; /* save for later processing */
c906108c 1979 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 1980 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
1981 }
1982
c5aa993b
JM
1983 /* The entry instruction is typically the first instruction in a function,
1984 and it stores registers at offsets relative to the value of the old SP
1985 (before the prologue). But the value of the sp parameter to this
1986 function is the new SP (after the prologue has been executed). So we
1987 can't calculate those offsets until we've seen the entire prologue,
1988 and can calculate what the old SP must have been. */
1989 if (entry_inst != 0)
1990 {
1991 int areg_count = (entry_inst >> 8) & 7;
1992 int sreg_count = (entry_inst >> 6) & 3;
c906108c 1993
c5aa993b
JM
1994 /* The entry instruction always subtracts 32 from the SP. */
1995 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 1996
c5aa993b
JM
1997 /* Now we can calculate what the SP must have been at the
1998 start of the function prologue. */
1999 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 2000
c5aa993b
JM
2001 /* Check if a0-a3 were saved in the caller's argument save area. */
2002 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2003 {
2004 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2005 set_reg_offset (reg, sp + offset);
2006 offset += MIPS_SAVED_REGSIZE;
2007 }
c906108c 2008
c5aa993b
JM
2009 /* Check if the ra register was pushed on the stack. */
2010 offset = -4;
2011 if (entry_inst & 0x20)
2012 {
2013 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2014 set_reg_offset (RA_REGNUM, sp + offset);
2015 offset -= MIPS_SAVED_REGSIZE;
2016 }
c906108c 2017
c5aa993b
JM
2018 /* Check if the s0 and s1 registers were pushed on the stack. */
2019 for (reg = 16; reg < sreg_count + 16; reg++)
2020 {
2021 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2022 set_reg_offset (reg, sp + offset);
2023 offset -= MIPS_SAVED_REGSIZE;
2024 }
2025 }
c906108c
SS
2026}
2027
2028static void
fba45db2
KB
2029mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2030 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
2031{
2032 CORE_ADDR cur_pc;
c5aa993b 2033 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 2034restart:
cce74817 2035 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 2036 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
2037 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2038 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2039 {
2040 unsigned long inst, high_word, low_word;
2041 int reg;
2042
2043 /* Fetch the instruction. */
2044 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2045
2046 /* Save some code by pre-extracting some useful fields. */
2047 high_word = (inst >> 16) & 0xffff;
2048 low_word = inst & 0xffff;
2049 reg = high_word & 0x1f;
2050
c5aa993b 2051 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
2052 || high_word == 0x23bd /* addi $sp,$sp,-i */
2053 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2054 {
2055 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 2056 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
2057 else
2058 /* Exit loop if a positive stack adjustment is found, which
2059 usually means that the stack cleanup code in the function
2060 epilogue is reached. */
2061 break;
2062 }
2063 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2064 {
c5aa993b 2065 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2066 set_reg_offset (reg, sp + low_word);
2067 }
2068 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2069 {
2070 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2071 but the register size used is only 32 bits. Make the address
2072 for the saved register point to the lower 32 bits. */
c5aa993b 2073 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2074 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
2075 }
c5aa993b 2076 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
2077 {
2078 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
2079 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2080 frame_addr = sp + low_word;
c906108c
SS
2081 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2082 {
2083 unsigned alloca_adjust;
2084 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2085 frame_addr = read_next_frame_reg (next_frame, 30);
2086 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
2087 if (alloca_adjust > 0)
2088 {
2089 /* FP > SP + frame_size. This may be because
2090 * of an alloca or somethings similar.
2091 * Fix sp to "pre-alloca" value, and try again.
2092 */
2093 sp += alloca_adjust;
2094 goto restart;
2095 }
2096 }
2097 }
c5aa993b
JM
2098 /* move $30,$sp. With different versions of gas this will be either
2099 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2100 Accept any one of these. */
c906108c
SS
2101 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2102 {
2103 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2104 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2105 {
2106 unsigned alloca_adjust;
2107 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2108 frame_addr = read_next_frame_reg (next_frame, 30);
2109 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
2110 if (alloca_adjust > 0)
2111 {
2112 /* FP > SP + frame_size. This may be because
2113 * of an alloca or somethings similar.
2114 * Fix sp to "pre-alloca" value, and try again.
2115 */
2116 sp += alloca_adjust;
2117 goto restart;
2118 }
2119 }
2120 }
c5aa993b 2121 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 2122 {
c5aa993b 2123 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2124 set_reg_offset (reg, frame_addr + low_word);
2125 }
2126 }
2127}
2128
2129static mips_extra_func_info_t
acdb74a0 2130heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
479412cd 2131 struct frame_info *next_frame, int cur_frame)
c906108c 2132{
479412cd
DJ
2133 CORE_ADDR sp;
2134
2135 if (cur_frame)
2136 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2137 else
2138 sp = 0;
c906108c 2139
c5aa993b
JM
2140 if (start_pc == 0)
2141 return NULL;
2142 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
cce74817 2143 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2144 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2145 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2146 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2147
2148 if (start_pc + 200 < limit_pc)
2149 limit_pc = start_pc + 200;
2150 if (pc_is_mips16 (start_pc))
2151 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2152 else
2153 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2154 return &temp_proc_desc;
2155}
2156
6c0d6680
DJ
2157struct mips_objfile_private
2158{
2159 bfd_size_type size;
2160 char *contents;
2161};
2162
2163/* Global used to communicate between non_heuristic_proc_desc and
2164 compare_pdr_entries within qsort (). */
2165static bfd *the_bfd;
2166
2167static int
2168compare_pdr_entries (const void *a, const void *b)
2169{
2170 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2171 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2172
2173 if (lhs < rhs)
2174 return -1;
2175 else if (lhs == rhs)
2176 return 0;
2177 else
2178 return 1;
2179}
2180
c906108c 2181static mips_extra_func_info_t
acdb74a0 2182non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
2183{
2184 CORE_ADDR startaddr;
2185 mips_extra_func_info_t proc_desc;
c5aa993b 2186 struct block *b = block_for_pc (pc);
c906108c 2187 struct symbol *sym;
6c0d6680
DJ
2188 struct obj_section *sec;
2189 struct mips_objfile_private *priv;
2190
2191 if (PC_IN_CALL_DUMMY (pc, 0, 0))
2192 return NULL;
c906108c
SS
2193
2194 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2195 if (addrptr)
2196 *addrptr = startaddr;
6c0d6680
DJ
2197
2198 priv = NULL;
2199
2200 sec = find_pc_section (pc);
2201 if (sec != NULL)
c906108c 2202 {
6c0d6680
DJ
2203 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2204
2205 /* Search the ".pdr" section generated by GAS. This includes most of
2206 the information normally found in ECOFF PDRs. */
2207
2208 the_bfd = sec->objfile->obfd;
2209 if (priv == NULL
2210 && (the_bfd->format == bfd_object
2211 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2212 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2213 {
2214 /* Right now GAS only outputs the address as a four-byte sequence.
2215 This means that we should not bother with this method on 64-bit
2216 targets (until that is fixed). */
2217
2218 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2219 sizeof (struct mips_objfile_private));
2220 priv->size = 0;
2221 sec->objfile->obj_private = priv;
2222 }
2223 else if (priv == NULL)
2224 {
2225 asection *bfdsec;
2226
2227 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2228 sizeof (struct mips_objfile_private));
2229
2230 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2231 if (bfdsec != NULL)
2232 {
2233 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2234 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2235 priv->size);
2236 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2237 priv->contents, 0, priv->size);
2238
2239 /* In general, the .pdr section is sorted. However, in the
2240 presence of multiple code sections (and other corner cases)
2241 it can become unsorted. Sort it so that we can use a faster
2242 binary search. */
2243 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2244 }
2245 else
2246 priv->size = 0;
2247
2248 sec->objfile->obj_private = priv;
2249 }
2250 the_bfd = NULL;
2251
2252 if (priv->size != 0)
2253 {
2254 int low, mid, high;
2255 char *ptr;
2256
2257 low = 0;
2258 high = priv->size / 32;
2259
2260 do
2261 {
2262 CORE_ADDR pdr_pc;
2263
2264 mid = (low + high) / 2;
2265
2266 ptr = priv->contents + mid * 32;
2267 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2268 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2269 SECT_OFF_TEXT (sec->objfile));
2270 if (pdr_pc == startaddr)
2271 break;
2272 if (pdr_pc > startaddr)
2273 high = mid;
2274 else
2275 low = mid + 1;
2276 }
2277 while (low != high);
2278
2279 if (low != high)
2280 {
2281 struct symbol *sym = find_pc_function (pc);
2282
2283 /* Fill in what we need of the proc_desc. */
2284 proc_desc = (mips_extra_func_info_t)
2285 obstack_alloc (&sec->objfile->psymbol_obstack,
2286 sizeof (struct mips_extra_func_info));
2287 PROC_LOW_ADDR (proc_desc) = startaddr;
2288
2289 /* Only used for dummy frames. */
2290 PROC_HIGH_ADDR (proc_desc) = 0;
2291
2292 PROC_FRAME_OFFSET (proc_desc)
2293 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2294 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2295 ptr + 24);
2296 PROC_FRAME_ADJUST (proc_desc) = 0;
2297 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2298 ptr + 4);
2299 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2300 ptr + 12);
2301 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2302 ptr + 8);
2303 PROC_FREG_OFFSET (proc_desc)
2304 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2305 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2306 ptr + 28);
2307 proc_desc->pdr.isym = (long) sym;
2308
2309 return proc_desc;
2310 }
2311 }
c906108c
SS
2312 }
2313
6c0d6680
DJ
2314 if (b == NULL)
2315 return NULL;
2316
2317 if (startaddr > BLOCK_START (b))
2318 {
2319 /* This is the "pathological" case referred to in a comment in
2320 print_frame_info. It might be better to move this check into
2321 symbol reading. */
2322 return NULL;
2323 }
2324
2325 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2326
c906108c
SS
2327 /* If we never found a PDR for this function in symbol reading, then
2328 examine prologues to find the information. */
2329 if (sym)
2330 {
2331 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2332 if (PROC_FRAME_REG (proc_desc) == -1)
2333 return NULL;
2334 else
2335 return proc_desc;
2336 }
2337 else
2338 return NULL;
2339}
2340
2341
2342static mips_extra_func_info_t
479412cd 2343find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
c906108c
SS
2344{
2345 mips_extra_func_info_t proc_desc;
4e0df2df 2346 CORE_ADDR startaddr = 0;
c906108c
SS
2347
2348 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2349
2350 if (proc_desc)
2351 {
2352 /* IF this is the topmost frame AND
2353 * (this proc does not have debugging information OR
2354 * the PC is in the procedure prologue)
2355 * THEN create a "heuristic" proc_desc (by analyzing
2356 * the actual code) to replace the "official" proc_desc.
2357 */
2358 if (next_frame == NULL)
2359 {
2360 struct symtab_and_line val;
2361 struct symbol *proc_symbol =
c86b5b38 2362 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
2363
2364 if (proc_symbol)
2365 {
2366 val = find_pc_line (BLOCK_START
c5aa993b 2367 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
2368 0);
2369 val.pc = val.end ? val.end : pc;
2370 }
2371 if (!proc_symbol || pc < val.pc)
2372 {
2373 mips_extra_func_info_t found_heuristic =
c86b5b38
MS
2374 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2375 pc, next_frame, cur_frame);
c906108c
SS
2376 if (found_heuristic)
2377 proc_desc = found_heuristic;
2378 }
2379 }
2380 }
2381 else
2382 {
2383 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
2384 by procedure call dummys. However, the procedures being called ought
2385 to have their own proc_descs, and even if they don't,
2386 heuristic_proc_desc knows how to create them! */
c906108c
SS
2387
2388 register struct linked_proc_info *link;
2389
2390 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
2391 if (PROC_LOW_ADDR (&link->info) <= pc
2392 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
2393 return &link->info;
2394
2395 if (startaddr == 0)
2396 startaddr = heuristic_proc_start (pc);
2397
2398 proc_desc =
479412cd 2399 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
c906108c
SS
2400 }
2401 return proc_desc;
2402}
2403
2404static CORE_ADDR
acdb74a0
AC
2405get_frame_pointer (struct frame_info *frame,
2406 mips_extra_func_info_t proc_desc)
c906108c 2407{
c86b5b38
MS
2408 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
2409 PROC_FRAME_REG (proc_desc)) +
2410 PROC_FRAME_OFFSET (proc_desc) -
2411 PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
2412}
2413
5a89d8aa 2414static mips_extra_func_info_t cached_proc_desc;
c906108c 2415
f7ab6ec6 2416static CORE_ADDR
acdb74a0 2417mips_frame_chain (struct frame_info *frame)
c906108c
SS
2418{
2419 mips_extra_func_info_t proc_desc;
2420 CORE_ADDR tmp;
c5aa993b 2421 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
c906108c
SS
2422
2423 if (saved_pc == 0 || inside_entry_file (saved_pc))
2424 return 0;
2425
2426 /* Check if the PC is inside a call stub. If it is, fetch the
2427 PC of the caller of that stub. */
5a89d8aa 2428 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
c906108c
SS
2429 saved_pc = tmp;
2430
cedea778
AC
2431 if (USE_GENERIC_DUMMY_FRAMES
2432 && PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2433 {
2434 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2435 is well, frame->frame the bottom of the current frame will
2436 contain that value. */
2437 return frame->frame;
2438 }
2439
c906108c 2440 /* Look up the procedure descriptor for this PC. */
479412cd 2441 proc_desc = find_proc_desc (saved_pc, frame, 1);
c906108c
SS
2442 if (!proc_desc)
2443 return 0;
2444
2445 cached_proc_desc = proc_desc;
2446
2447 /* If no frame pointer and frame size is zero, we must be at end
2448 of stack (or otherwise hosed). If we don't check frame size,
2449 we loop forever if we see a zero size frame. */
2450 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2451 && PROC_FRAME_OFFSET (proc_desc) == 0
7807aa61
MS
2452 /* The previous frame from a sigtramp frame might be frameless
2453 and have frame size zero. */
2454 && !frame->signal_handler_caller
cedea778
AC
2455 /* For a generic dummy frame, let get_frame_pointer() unwind a
2456 register value saved as part of the dummy frame call. */
2457 && !(USE_GENERIC_DUMMY_FRAMES
2458 && PC_IN_CALL_DUMMY (frame->pc, 0, 0)))
c906108c
SS
2459 return 0;
2460 else
2461 return get_frame_pointer (frame, proc_desc);
2462}
2463
f7ab6ec6 2464static void
acdb74a0 2465mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2466{
2467 int regnum;
2468
2469 /* Use proc_desc calculated in frame_chain */
2470 mips_extra_func_info_t proc_desc =
c86b5b38 2471 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next, 1);
c906108c 2472
cce74817
JM
2473 fci->extra_info = (struct frame_extra_info *)
2474 frame_obstack_alloc (sizeof (struct frame_extra_info));
2475
c906108c 2476 fci->saved_regs = NULL;
cce74817 2477 fci->extra_info->proc_desc =
c906108c
SS
2478 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2479 if (proc_desc)
2480 {
2481 /* Fixup frame-pointer - only needed for top frame */
2482 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2483 Get the value of the frame relative sp, procedure might have been
2484 interrupted by a signal at it's very start. */
c906108c
SS
2485 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2486 && !PROC_DESC_IS_DUMMY (proc_desc))
2487 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
cedea778
AC
2488 else if (USE_GENERIC_DUMMY_FRAMES
2489 && PC_IN_CALL_DUMMY (fci->pc, 0, 0))
2490 /* Do not ``fix'' fci->frame. It will have the value of the
2491 generic dummy frame's top-of-stack (since the draft
2492 fci->frame is obtained by returning the unwound stack
2493 pointer) and that is what we want. That way the fci->frame
2494 value will match the top-of-stack value that was saved as
2495 part of the dummy frames data. */
2496 /* Do nothing. */;
c906108c
SS
2497 else
2498 fci->frame = get_frame_pointer (fci->next, proc_desc);
2499
2500 if (proc_desc == &temp_proc_desc)
2501 {
2502 char *name;
2503
2504 /* Do not set the saved registers for a sigtramp frame,
2505 mips_find_saved_registers will do that for us.
2506 We can't use fci->signal_handler_caller, it is not yet set. */
2507 find_pc_partial_function (fci->pc, &name,
c5aa993b 2508 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
d7bd68ca 2509 if (!PC_IN_SIGTRAMP (fci->pc, name))
c906108c 2510 {
c5aa993b 2511 frame_saved_regs_zalloc (fci);
cce74817 2512 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2513 fci->saved_regs[PC_REGNUM]
2514 = fci->saved_regs[RA_REGNUM];
ffabd70d
KB
2515 /* Set value of previous frame's stack pointer. Remember that
2516 saved_regs[SP_REGNUM] is special in that it contains the
2517 value of the stack pointer register. The other saved_regs
2518 values are addresses (in the inferior) at which a given
2519 register's value may be found. */
2520 fci->saved_regs[SP_REGNUM] = fci->frame;
c906108c
SS
2521 }
2522 }
2523
2524 /* hack: if argument regs are saved, guess these contain args */
cce74817
JM
2525 /* assume we can't tell how many args for now */
2526 fci->extra_info->num_args = -1;
c906108c
SS
2527 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2528 {
c5aa993b 2529 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2530 {
cce74817 2531 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2532 break;
2533 }
c5aa993b 2534 }
c906108c
SS
2535 }
2536}
2537
2538/* MIPS stack frames are almost impenetrable. When execution stops,
2539 we basically have to look at symbol information for the function
2540 that we stopped in, which tells us *which* register (if any) is
2541 the base of the frame pointer, and what offset from that register
361d1df0 2542 the frame itself is at.
c906108c
SS
2543
2544 This presents a problem when trying to examine a stack in memory
2545 (that isn't executing at the moment), using the "frame" command. We
2546 don't have a PC, nor do we have any registers except SP.
2547
2548 This routine takes two arguments, SP and PC, and tries to make the
2549 cached frames look as if these two arguments defined a frame on the
2550 cache. This allows the rest of info frame to extract the important
2551 arguments without difficulty. */
2552
2553struct frame_info *
acdb74a0 2554setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2555{
2556 if (argc != 2)
2557 error ("MIPS frame specifications require two arguments: sp and pc");
2558
2559 return create_new_frame (argv[0], argv[1]);
2560}
2561
f09ded24
AC
2562/* According to the current ABI, should the type be passed in a
2563 floating-point register (assuming that there is space)? When there
2564 is no FPU, FP are not even considered as possibile candidates for
2565 FP registers and, consequently this returns false - forces FP
2566 arguments into integer registers. */
2567
2568static int
2569fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2570{
2571 return ((typecode == TYPE_CODE_FLT
2572 || (MIPS_EABI
2573 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2574 && TYPE_NFIELDS (arg_type) == 1
2575 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2576 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2577}
2578
49e790b0
DJ
2579/* On o32, argument passing in GPRs depends on the alignment of the type being
2580 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2581
2582static int
2583mips_type_needs_double_align (struct type *type)
2584{
2585 enum type_code typecode = TYPE_CODE (type);
361d1df0 2586
49e790b0
DJ
2587 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2588 return 1;
2589 else if (typecode == TYPE_CODE_STRUCT)
2590 {
2591 if (TYPE_NFIELDS (type) < 1)
2592 return 0;
2593 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2594 }
2595 else if (typecode == TYPE_CODE_UNION)
2596 {
361d1df0 2597 int i, n;
49e790b0
DJ
2598
2599 n = TYPE_NFIELDS (type);
2600 for (i = 0; i < n; i++)
2601 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2602 return 1;
2603 return 0;
2604 }
2605 return 0;
2606}
2607
cb3d25d1
MS
2608/* Macros to round N up or down to the next A boundary;
2609 A must be a power of two. */
2610
2611#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2612#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2613
dc604539
AC
2614/* Adjust the address downward (direction of stack growth) so that it
2615 is correctly aligned for a new stack frame. */
2616static CORE_ADDR
2617mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2618{
2619 return ROUND_DOWN (addr, 16);
2620}
2621
f7ab6ec6 2622static CORE_ADDR
46e0f506
MS
2623mips_eabi_push_arguments (int nargs,
2624 struct value **args,
2625 CORE_ADDR sp,
2626 int struct_return,
2627 CORE_ADDR struct_addr)
c906108c
SS
2628{
2629 int argreg;
2630 int float_argreg;
2631 int argnum;
2632 int len = 0;
2633 int stack_offset = 0;
2634
c906108c 2635 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2636 are properly aligned. The stack has to be at least 64-bit
2637 aligned even on 32-bit machines, because doubles must be 64-bit
2638 aligned. For n32 and n64, stack frames need to be 128-bit
2639 aligned, so we round to this widest known alignment. */
2640
c906108c 2641 sp = ROUND_DOWN (sp, 16);
cce41527 2642 struct_addr = ROUND_DOWN (struct_addr, 16);
c5aa993b 2643
46e0f506 2644 /* Now make space on the stack for the args. We allocate more
c906108c 2645 than necessary for EABI, because the first few arguments are
46e0f506 2646 passed in registers, but that's OK. */
c906108c 2647 for (argnum = 0; argnum < nargs; argnum++)
46e0f506
MS
2648 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2649 MIPS_STACK_ARGSIZE);
c906108c
SS
2650 sp -= ROUND_UP (len, 16);
2651
9ace0497 2652 if (mips_debug)
46e0f506
MS
2653 fprintf_unfiltered (gdb_stdlog,
2654 "mips_eabi_push_arguments: sp=0x%s allocated %d\n",
cb3d25d1 2655 paddr_nz (sp), ROUND_UP (len, 16));
9ace0497 2656
c906108c
SS
2657 /* Initialize the integer and float register pointers. */
2658 argreg = A0_REGNUM;
2659 float_argreg = FPA0_REGNUM;
2660
46e0f506 2661 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2662 if (struct_return)
9ace0497
AC
2663 {
2664 if (mips_debug)
2665 fprintf_unfiltered (gdb_stdlog,
46e0f506 2666 "mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
cb3d25d1 2667 argreg, paddr_nz (struct_addr));
9ace0497
AC
2668 write_register (argreg++, struct_addr);
2669 }
c906108c
SS
2670
2671 /* Now load as many as possible of the first arguments into
2672 registers, and push the rest onto the stack. Loop thru args
2673 from first to last. */
2674 for (argnum = 0; argnum < nargs; argnum++)
2675 {
2676 char *val;
cb3d25d1 2677 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
ea7c478f 2678 struct value *arg = args[argnum];
c906108c
SS
2679 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2680 int len = TYPE_LENGTH (arg_type);
2681 enum type_code typecode = TYPE_CODE (arg_type);
2682
9ace0497
AC
2683 if (mips_debug)
2684 fprintf_unfiltered (gdb_stdlog,
46e0f506 2685 "mips_eabi_push_arguments: %d len=%d type=%d",
acdb74a0 2686 argnum + 1, len, (int) typecode);
9ace0497 2687
c906108c 2688 /* The EABI passes structures that do not fit in a register by
46e0f506
MS
2689 reference. */
2690 if (len > MIPS_SAVED_REGSIZE
9ace0497 2691 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2692 {
7a292a7a 2693 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2694 typecode = TYPE_CODE_PTR;
7a292a7a 2695 len = MIPS_SAVED_REGSIZE;
c906108c 2696 val = valbuf;
9ace0497
AC
2697 if (mips_debug)
2698 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2699 }
2700 else
c5aa993b 2701 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2702
2703 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2704 even-numbered floating point register. Round the FP register
2705 up before the check to see if there are any FP registers
46e0f506
MS
2706 left. Non MIPS_EABI targets also pass the FP in the integer
2707 registers so also round up normal registers. */
acdb74a0
AC
2708 if (!FP_REGISTER_DOUBLE
2709 && fp_register_arg_p (typecode, arg_type))
2710 {
2711 if ((float_argreg & 1))
2712 float_argreg++;
2713 }
c906108c
SS
2714
2715 /* Floating point arguments passed in registers have to be
2716 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2717 are passed in register pairs; the even register gets
2718 the low word, and the odd register gets the high word.
2719 On non-EABI processors, the first two floating point arguments are
2720 also copied to general registers, because MIPS16 functions
2721 don't use float registers for arguments. This duplication of
2722 arguments in general registers can't hurt non-MIPS16 functions
2723 because those registers are normally skipped. */
1012bd0e
EZ
2724 /* MIPS_EABI squeezes a struct that contains a single floating
2725 point value into an FP register instead of pushing it onto the
46e0f506 2726 stack. */
f09ded24
AC
2727 if (fp_register_arg_p (typecode, arg_type)
2728 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2729 {
2730 if (!FP_REGISTER_DOUBLE && len == 8)
2731 {
d7449b42 2732 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2733 unsigned long regval;
2734
2735 /* Write the low word of the double to the even register(s). */
c5aa993b 2736 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2737 if (mips_debug)
acdb74a0 2738 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2739 float_argreg, phex (regval, 4));
c906108c 2740 write_register (float_argreg++, regval);
c906108c
SS
2741
2742 /* Write the high word of the double to the odd register(s). */
c5aa993b 2743 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2744 if (mips_debug)
acdb74a0 2745 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2746 float_argreg, phex (regval, 4));
c906108c 2747 write_register (float_argreg++, regval);
c906108c
SS
2748 }
2749 else
2750 {
2751 /* This is a floating point value that fits entirely
2752 in a single register. */
53a5351d 2753 /* On 32 bit ABI's the float_argreg is further adjusted
46e0f506 2754 above to ensure that it is even register aligned. */
9ace0497
AC
2755 LONGEST regval = extract_unsigned_integer (val, len);
2756 if (mips_debug)
acdb74a0 2757 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2758 float_argreg, phex (regval, len));
c906108c 2759 write_register (float_argreg++, regval);
c906108c
SS
2760 }
2761 }
2762 else
2763 {
2764 /* Copy the argument to general registers or the stack in
2765 register-sized pieces. Large arguments are split between
2766 registers and stack. */
2767 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2768 are treated specially: Irix cc passes them in registers
2769 where gcc sometimes puts them on the stack. For maximum
2770 compatibility, we will put them in both places. */
c5aa993b 2771 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2772 (len % MIPS_SAVED_REGSIZE != 0));
46e0f506 2773
f09ded24 2774 /* Note: Floating-point values that didn't fit into an FP
46e0f506 2775 register are only written to memory. */
c906108c
SS
2776 while (len > 0)
2777 {
ebafbe83 2778 /* Remember if the argument was written to the stack. */
566f0f7a 2779 int stack_used_p = 0;
46e0f506
MS
2780 int partial_len =
2781 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 2782
acdb74a0
AC
2783 if (mips_debug)
2784 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2785 partial_len);
2786
566f0f7a 2787 /* Write this portion of the argument to the stack. */
f09ded24
AC
2788 if (argreg > MIPS_LAST_ARG_REGNUM
2789 || odd_sized_struct
2790 || fp_register_arg_p (typecode, arg_type))
c906108c 2791 {
c906108c
SS
2792 /* Should shorter than int integer values be
2793 promoted to int before being stored? */
c906108c 2794 int longword_offset = 0;
9ace0497 2795 CORE_ADDR addr;
566f0f7a 2796 stack_used_p = 1;
d7449b42 2797 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2798 {
d929b26f 2799 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2800 (typecode == TYPE_CODE_INT ||
2801 typecode == TYPE_CODE_PTR ||
2802 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2803 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2804 else if ((typecode == TYPE_CODE_STRUCT ||
2805 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2806 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2807 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2808 }
c5aa993b 2809
9ace0497
AC
2810 if (mips_debug)
2811 {
cb3d25d1
MS
2812 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2813 paddr_nz (stack_offset));
2814 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2815 paddr_nz (longword_offset));
9ace0497 2816 }
361d1df0 2817
9ace0497
AC
2818 addr = sp + stack_offset + longword_offset;
2819
2820 if (mips_debug)
2821 {
2822 int i;
cb3d25d1
MS
2823 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2824 paddr_nz (addr));
9ace0497
AC
2825 for (i = 0; i < partial_len; i++)
2826 {
cb3d25d1
MS
2827 fprintf_unfiltered (gdb_stdlog, "%02x",
2828 val[i] & 0xff);
9ace0497
AC
2829 }
2830 }
2831 write_memory (addr, val, partial_len);
c906108c
SS
2832 }
2833
f09ded24
AC
2834 /* Note!!! This is NOT an else clause. Odd sized
2835 structs may go thru BOTH paths. Floating point
46e0f506 2836 arguments will not. */
566f0f7a 2837 /* Write this portion of the argument to a general
46e0f506 2838 purpose register. */
f09ded24
AC
2839 if (argreg <= MIPS_LAST_ARG_REGNUM
2840 && !fp_register_arg_p (typecode, arg_type))
c906108c 2841 {
9ace0497 2842 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c 2843
9ace0497 2844 if (mips_debug)
acdb74a0 2845 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2846 argreg,
2847 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
2848 write_register (argreg, regval);
2849 argreg++;
c906108c 2850 }
c5aa993b 2851
c906108c
SS
2852 len -= partial_len;
2853 val += partial_len;
2854
566f0f7a
AC
2855 /* Compute the the offset into the stack at which we
2856 will copy the next parameter.
2857
566f0f7a 2858 In the new EABI (and the NABI32), the stack_offset
46e0f506 2859 only needs to be adjusted when it has been used. */
c906108c 2860
46e0f506 2861 if (stack_used_p)
d929b26f 2862 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
2863 }
2864 }
9ace0497
AC
2865 if (mips_debug)
2866 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2867 }
2868
0f71a2f6
JM
2869 /* Return adjusted stack pointer. */
2870 return sp;
2871}
2872
ebafbe83
MS
2873/* N32/N64 version of push_arguments. */
2874
f7ab6ec6 2875static CORE_ADDR
cb3d25d1
MS
2876mips_n32n64_push_arguments (int nargs,
2877 struct value **args,
2878 CORE_ADDR sp,
2879 int struct_return,
2880 CORE_ADDR struct_addr)
2881{
2882 int argreg;
2883 int float_argreg;
2884 int argnum;
2885 int len = 0;
2886 int stack_offset = 0;
2887
2888 /* First ensure that the stack and structure return address (if any)
2889 are properly aligned. The stack has to be at least 64-bit
2890 aligned even on 32-bit machines, because doubles must be 64-bit
2891 aligned. For n32 and n64, stack frames need to be 128-bit
2892 aligned, so we round to this widest known alignment. */
2893
2894 sp = ROUND_DOWN (sp, 16);
2895 struct_addr = ROUND_DOWN (struct_addr, 16);
2896
2897 /* Now make space on the stack for the args. */
2898 for (argnum = 0; argnum < nargs; argnum++)
2899 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2900 MIPS_STACK_ARGSIZE);
2901 sp -= ROUND_UP (len, 16);
2902
2903 if (mips_debug)
2904 fprintf_unfiltered (gdb_stdlog,
2905 "mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
2906 paddr_nz (sp), ROUND_UP (len, 16));
2907
2908 /* Initialize the integer and float register pointers. */
2909 argreg = A0_REGNUM;
2910 float_argreg = FPA0_REGNUM;
2911
46e0f506 2912 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
2913 if (struct_return)
2914 {
2915 if (mips_debug)
2916 fprintf_unfiltered (gdb_stdlog,
2917 "mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
2918 argreg, paddr_nz (struct_addr));
2919 write_register (argreg++, struct_addr);
2920 }
2921
2922 /* Now load as many as possible of the first arguments into
2923 registers, and push the rest onto the stack. Loop thru args
2924 from first to last. */
2925 for (argnum = 0; argnum < nargs; argnum++)
2926 {
2927 char *val;
2928 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2929 struct value *arg = args[argnum];
2930 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2931 int len = TYPE_LENGTH (arg_type);
2932 enum type_code typecode = TYPE_CODE (arg_type);
2933
2934 if (mips_debug)
2935 fprintf_unfiltered (gdb_stdlog,
2936 "mips_n32n64_push_arguments: %d len=%d type=%d",
2937 argnum + 1, len, (int) typecode);
2938
2939 val = (char *) VALUE_CONTENTS (arg);
2940
2941 if (fp_register_arg_p (typecode, arg_type)
2942 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2943 {
2944 /* This is a floating point value that fits entirely
2945 in a single register. */
2946 /* On 32 bit ABI's the float_argreg is further adjusted
2947 above to ensure that it is even register aligned. */
2948 LONGEST regval = extract_unsigned_integer (val, len);
2949 if (mips_debug)
2950 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2951 float_argreg, phex (regval, len));
2952 write_register (float_argreg++, regval);
2953
2954 if (mips_debug)
2955 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2956 argreg, phex (regval, len));
2957 write_register (argreg, regval);
2958 argreg += 1;
2959 }
2960 else
2961 {
2962 /* Copy the argument to general registers or the stack in
2963 register-sized pieces. Large arguments are split between
2964 registers and stack. */
2965 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2966 are treated specially: Irix cc passes them in registers
2967 where gcc sometimes puts them on the stack. For maximum
2968 compatibility, we will put them in both places. */
2969 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2970 (len % MIPS_SAVED_REGSIZE != 0));
2971 /* Note: Floating-point values that didn't fit into an FP
2972 register are only written to memory. */
2973 while (len > 0)
2974 {
2975 /* Rememer if the argument was written to the stack. */
2976 int stack_used_p = 0;
2977 int partial_len = len < MIPS_SAVED_REGSIZE ?
2978 len : MIPS_SAVED_REGSIZE;
2979
2980 if (mips_debug)
2981 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2982 partial_len);
2983
2984 /* Write this portion of the argument to the stack. */
2985 if (argreg > MIPS_LAST_ARG_REGNUM
2986 || odd_sized_struct
2987 || fp_register_arg_p (typecode, arg_type))
2988 {
2989 /* Should shorter than int integer values be
2990 promoted to int before being stored? */
2991 int longword_offset = 0;
2992 CORE_ADDR addr;
2993 stack_used_p = 1;
2994 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2995 {
2996 if (MIPS_STACK_ARGSIZE == 8 &&
2997 (typecode == TYPE_CODE_INT ||
2998 typecode == TYPE_CODE_PTR ||
2999 typecode == TYPE_CODE_FLT) && len <= 4)
3000 longword_offset = MIPS_STACK_ARGSIZE - len;
cb3d25d1
MS
3001 }
3002
3003 if (mips_debug)
3004 {
3005 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3006 paddr_nz (stack_offset));
3007 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3008 paddr_nz (longword_offset));
3009 }
3010
3011 addr = sp + stack_offset + longword_offset;
3012
3013 if (mips_debug)
3014 {
3015 int i;
3016 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3017 paddr_nz (addr));
3018 for (i = 0; i < partial_len; i++)
3019 {
3020 fprintf_unfiltered (gdb_stdlog, "%02x",
3021 val[i] & 0xff);
3022 }
3023 }
3024 write_memory (addr, val, partial_len);
3025 }
3026
3027 /* Note!!! This is NOT an else clause. Odd sized
3028 structs may go thru BOTH paths. Floating point
3029 arguments will not. */
3030 /* Write this portion of the argument to a general
3031 purpose register. */
3032 if (argreg <= MIPS_LAST_ARG_REGNUM
3033 && !fp_register_arg_p (typecode, arg_type))
3034 {
3035 LONGEST regval = extract_unsigned_integer (val, partial_len);
3036
3037 /* A non-floating-point argument being passed in a
3038 general register. If a struct or union, and if
3039 the remaining length is smaller than the register
3040 size, we have to adjust the register value on
3041 big endian targets.
3042
3043 It does not seem to be necessary to do the
3044 same for integral types.
3045
3046 cagney/2001-07-23: gdb/179: Also, GCC, when
3047 outputting LE O32 with sizeof (struct) <
3048 MIPS_SAVED_REGSIZE, generates a left shift as
3049 part of storing the argument in a register a
3050 register (the left shift isn't generated when
3051 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3052 is quite possible that this is GCC contradicting
3053 the LE/O32 ABI, GDB has not been adjusted to
3054 accommodate this. Either someone needs to
3055 demonstrate that the LE/O32 ABI specifies such a
3056 left shift OR this new ABI gets identified as
3057 such and GDB gets tweaked accordingly. */
3058
3059 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3060 && partial_len < MIPS_SAVED_REGSIZE
3061 && (typecode == TYPE_CODE_STRUCT ||
3062 typecode == TYPE_CODE_UNION))
3063 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3064 TARGET_CHAR_BIT);
3065
3066 if (mips_debug)
3067 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3068 argreg,
3069 phex (regval, MIPS_SAVED_REGSIZE));
3070 write_register (argreg, regval);
3071 argreg++;
3072 }
3073
3074 len -= partial_len;
3075 val += partial_len;
3076
3077 /* Compute the the offset into the stack at which we
3078 will copy the next parameter.
3079
3080 In N32 (N64?), the stack_offset only needs to be
3081 adjusted when it has been used. */
3082
3083 if (stack_used_p)
3084 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3085 }
3086 }
3087 if (mips_debug)
3088 fprintf_unfiltered (gdb_stdlog, "\n");
3089 }
3090
3091 /* Return adjusted stack pointer. */
3092 return sp;
3093}
3094
46cac009 3095/* O32 version of push_arguments. */
ebafbe83 3096
46cac009
AC
3097static CORE_ADDR
3098mips_o32_push_arguments (int nargs,
3099 struct value **args,
3100 CORE_ADDR sp,
3101 int struct_return,
3102 CORE_ADDR struct_addr)
ebafbe83
MS
3103{
3104 int argreg;
3105 int float_argreg;
3106 int argnum;
3107 int len = 0;
3108 int stack_offset = 0;
ebafbe83
MS
3109
3110 /* First ensure that the stack and structure return address (if any)
3111 are properly aligned. The stack has to be at least 64-bit
3112 aligned even on 32-bit machines, because doubles must be 64-bit
3113 aligned. For n32 and n64, stack frames need to be 128-bit
3114 aligned, so we round to this widest known alignment. */
3115
3116 sp = ROUND_DOWN (sp, 16);
3117 struct_addr = ROUND_DOWN (struct_addr, 16);
3118
3119 /* Now make space on the stack for the args. */
3120 for (argnum = 0; argnum < nargs; argnum++)
3121 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3122 MIPS_STACK_ARGSIZE);
3123 sp -= ROUND_UP (len, 16);
3124
3125 if (mips_debug)
3126 fprintf_unfiltered (gdb_stdlog,
46cac009 3127 "mips_o32_push_arguments: sp=0x%s allocated %d\n",
ebafbe83
MS
3128 paddr_nz (sp), ROUND_UP (len, 16));
3129
3130 /* Initialize the integer and float register pointers. */
3131 argreg = A0_REGNUM;
3132 float_argreg = FPA0_REGNUM;
3133
bcb0cc15 3134 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3135 if (struct_return)
3136 {
3137 if (mips_debug)
3138 fprintf_unfiltered (gdb_stdlog,
46cac009 3139 "mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3140 argreg, paddr_nz (struct_addr));
3141 write_register (argreg++, struct_addr);
3142 stack_offset += MIPS_STACK_ARGSIZE;
3143 }
3144
3145 /* Now load as many as possible of the first arguments into
3146 registers, and push the rest onto the stack. Loop thru args
3147 from first to last. */
3148 for (argnum = 0; argnum < nargs; argnum++)
3149 {
3150 char *val;
3151 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3152 struct value *arg = args[argnum];
3153 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3154 int len = TYPE_LENGTH (arg_type);
3155 enum type_code typecode = TYPE_CODE (arg_type);
3156
3157 if (mips_debug)
3158 fprintf_unfiltered (gdb_stdlog,
46cac009
AC
3159 "mips_o32_push_arguments: %d len=%d type=%d",
3160 argnum + 1, len, (int) typecode);
3161
3162 val = (char *) VALUE_CONTENTS (arg);
3163
3164 /* 32-bit ABIs always start floating point arguments in an
3165 even-numbered floating point register. Round the FP register
3166 up before the check to see if there are any FP registers
3167 left. O32/O64 targets also pass the FP in the integer
3168 registers so also round up normal registers. */
3169 if (!FP_REGISTER_DOUBLE
3170 && fp_register_arg_p (typecode, arg_type))
3171 {
3172 if ((float_argreg & 1))
3173 float_argreg++;
3174 }
3175
3176 /* Floating point arguments passed in registers have to be
3177 treated specially. On 32-bit architectures, doubles
3178 are passed in register pairs; the even register gets
3179 the low word, and the odd register gets the high word.
3180 On O32/O64, the first two floating point arguments are
3181 also copied to general registers, because MIPS16 functions
3182 don't use float registers for arguments. This duplication of
3183 arguments in general registers can't hurt non-MIPS16 functions
3184 because those registers are normally skipped. */
3185
3186 if (fp_register_arg_p (typecode, arg_type)
3187 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3188 {
3189 if (!FP_REGISTER_DOUBLE && len == 8)
3190 {
3191 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3192 unsigned long regval;
3193
3194 /* Write the low word of the double to the even register(s). */
3195 regval = extract_unsigned_integer (val + low_offset, 4);
3196 if (mips_debug)
3197 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3198 float_argreg, phex (regval, 4));
3199 write_register (float_argreg++, regval);
3200 if (mips_debug)
3201 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3202 argreg, phex (regval, 4));
3203 write_register (argreg++, regval);
3204
3205 /* Write the high word of the double to the odd register(s). */
3206 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3207 if (mips_debug)
3208 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3209 float_argreg, phex (regval, 4));
3210 write_register (float_argreg++, regval);
3211
3212 if (mips_debug)
3213 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3214 argreg, phex (regval, 4));
3215 write_register (argreg++, regval);
3216 }
3217 else
3218 {
3219 /* This is a floating point value that fits entirely
3220 in a single register. */
3221 /* On 32 bit ABI's the float_argreg is further adjusted
3222 above to ensure that it is even register aligned. */
3223 LONGEST regval = extract_unsigned_integer (val, len);
3224 if (mips_debug)
3225 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3226 float_argreg, phex (regval, len));
3227 write_register (float_argreg++, regval);
3228 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3229 registers for each argument. The below is (my
3230 guess) to ensure that the corresponding integer
3231 register has reserved the same space. */
3232 if (mips_debug)
3233 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3234 argreg, phex (regval, len));
3235 write_register (argreg, regval);
3236 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3237 }
3238 /* Reserve space for the FP register. */
3239 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3240 }
3241 else
3242 {
3243 /* Copy the argument to general registers or the stack in
3244 register-sized pieces. Large arguments are split between
3245 registers and stack. */
3246 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3247 are treated specially: Irix cc passes them in registers
3248 where gcc sometimes puts them on the stack. For maximum
3249 compatibility, we will put them in both places. */
3250 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3251 (len % MIPS_SAVED_REGSIZE != 0));
3252 /* Structures should be aligned to eight bytes (even arg registers)
3253 on MIPS_ABI_O32, if their first member has double precision. */
3254 if (MIPS_SAVED_REGSIZE < 8
3255 && mips_type_needs_double_align (arg_type))
3256 {
3257 if ((argreg & 1))
3258 argreg++;
3259 }
3260 /* Note: Floating-point values that didn't fit into an FP
3261 register are only written to memory. */
3262 while (len > 0)
3263 {
3264 /* Remember if the argument was written to the stack. */
3265 int stack_used_p = 0;
3266 int partial_len =
3267 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3268
3269 if (mips_debug)
3270 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3271 partial_len);
3272
3273 /* Write this portion of the argument to the stack. */
3274 if (argreg > MIPS_LAST_ARG_REGNUM
3275 || odd_sized_struct
3276 || fp_register_arg_p (typecode, arg_type))
3277 {
3278 /* Should shorter than int integer values be
3279 promoted to int before being stored? */
3280 int longword_offset = 0;
3281 CORE_ADDR addr;
3282 stack_used_p = 1;
3283 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3284 {
3285 if (MIPS_STACK_ARGSIZE == 8 &&
3286 (typecode == TYPE_CODE_INT ||
3287 typecode == TYPE_CODE_PTR ||
3288 typecode == TYPE_CODE_FLT) && len <= 4)
3289 longword_offset = MIPS_STACK_ARGSIZE - len;
3290 }
3291
3292 if (mips_debug)
3293 {
3294 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3295 paddr_nz (stack_offset));
3296 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3297 paddr_nz (longword_offset));
3298 }
3299
3300 addr = sp + stack_offset + longword_offset;
3301
3302 if (mips_debug)
3303 {
3304 int i;
3305 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3306 paddr_nz (addr));
3307 for (i = 0; i < partial_len; i++)
3308 {
3309 fprintf_unfiltered (gdb_stdlog, "%02x",
3310 val[i] & 0xff);
3311 }
3312 }
3313 write_memory (addr, val, partial_len);
3314 }
3315
3316 /* Note!!! This is NOT an else clause. Odd sized
3317 structs may go thru BOTH paths. Floating point
3318 arguments will not. */
3319 /* Write this portion of the argument to a general
3320 purpose register. */
3321 if (argreg <= MIPS_LAST_ARG_REGNUM
3322 && !fp_register_arg_p (typecode, arg_type))
3323 {
3324 LONGEST regval = extract_signed_integer (val, partial_len);
3325 /* Value may need to be sign extended, because
3326 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3327
3328 /* A non-floating-point argument being passed in a
3329 general register. If a struct or union, and if
3330 the remaining length is smaller than the register
3331 size, we have to adjust the register value on
3332 big endian targets.
3333
3334 It does not seem to be necessary to do the
3335 same for integral types.
3336
3337 Also don't do this adjustment on O64 binaries.
3338
3339 cagney/2001-07-23: gdb/179: Also, GCC, when
3340 outputting LE O32 with sizeof (struct) <
3341 MIPS_SAVED_REGSIZE, generates a left shift as
3342 part of storing the argument in a register a
3343 register (the left shift isn't generated when
3344 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3345 is quite possible that this is GCC contradicting
3346 the LE/O32 ABI, GDB has not been adjusted to
3347 accommodate this. Either someone needs to
3348 demonstrate that the LE/O32 ABI specifies such a
3349 left shift OR this new ABI gets identified as
3350 such and GDB gets tweaked accordingly. */
3351
3352 if (MIPS_SAVED_REGSIZE < 8
3353 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3354 && partial_len < MIPS_SAVED_REGSIZE
3355 && (typecode == TYPE_CODE_STRUCT ||
3356 typecode == TYPE_CODE_UNION))
3357 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3358 TARGET_CHAR_BIT);
3359
3360 if (mips_debug)
3361 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3362 argreg,
3363 phex (regval, MIPS_SAVED_REGSIZE));
3364 write_register (argreg, regval);
3365 argreg++;
3366
3367 /* Prevent subsequent floating point arguments from
3368 being passed in floating point registers. */
3369 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3370 }
3371
3372 len -= partial_len;
3373 val += partial_len;
3374
3375 /* Compute the the offset into the stack at which we
3376 will copy the next parameter.
3377
3378 In older ABIs, the caller reserved space for
3379 registers that contained arguments. This was loosely
3380 refered to as their "home". Consequently, space is
3381 always allocated. */
3382
3383 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3384 }
3385 }
3386 if (mips_debug)
3387 fprintf_unfiltered (gdb_stdlog, "\n");
3388 }
3389
3390 /* Return adjusted stack pointer. */
3391 return sp;
3392}
3393
3394/* O64 version of push_arguments. */
3395
3396static CORE_ADDR
3397mips_o64_push_arguments (int nargs,
3398 struct value **args,
3399 CORE_ADDR sp,
3400 int struct_return,
3401 CORE_ADDR struct_addr)
3402{
3403 int argreg;
3404 int float_argreg;
3405 int argnum;
3406 int len = 0;
3407 int stack_offset = 0;
3408
3409 /* First ensure that the stack and structure return address (if any)
3410 are properly aligned. The stack has to be at least 64-bit
3411 aligned even on 32-bit machines, because doubles must be 64-bit
3412 aligned. For n32 and n64, stack frames need to be 128-bit
3413 aligned, so we round to this widest known alignment. */
3414
3415 sp = ROUND_DOWN (sp, 16);
3416 struct_addr = ROUND_DOWN (struct_addr, 16);
3417
3418 /* Now make space on the stack for the args. */
3419 for (argnum = 0; argnum < nargs; argnum++)
3420 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3421 MIPS_STACK_ARGSIZE);
3422 sp -= ROUND_UP (len, 16);
3423
3424 if (mips_debug)
3425 fprintf_unfiltered (gdb_stdlog,
3426 "mips_o64_push_arguments: sp=0x%s allocated %d\n",
3427 paddr_nz (sp), ROUND_UP (len, 16));
3428
3429 /* Initialize the integer and float register pointers. */
3430 argreg = A0_REGNUM;
3431 float_argreg = FPA0_REGNUM;
3432
3433 /* The struct_return pointer occupies the first parameter-passing reg. */
3434 if (struct_return)
3435 {
3436 if (mips_debug)
3437 fprintf_unfiltered (gdb_stdlog,
3438 "mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
3439 argreg, paddr_nz (struct_addr));
3440 write_register (argreg++, struct_addr);
3441 stack_offset += MIPS_STACK_ARGSIZE;
3442 }
3443
3444 /* Now load as many as possible of the first arguments into
3445 registers, and push the rest onto the stack. Loop thru args
3446 from first to last. */
3447 for (argnum = 0; argnum < nargs; argnum++)
3448 {
3449 char *val;
3450 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3451 struct value *arg = args[argnum];
3452 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3453 int len = TYPE_LENGTH (arg_type);
3454 enum type_code typecode = TYPE_CODE (arg_type);
3455
3456 if (mips_debug)
3457 fprintf_unfiltered (gdb_stdlog,
3458 "mips_o64_push_arguments: %d len=%d type=%d",
ebafbe83
MS
3459 argnum + 1, len, (int) typecode);
3460
3461 val = (char *) VALUE_CONTENTS (arg);
3462
3463 /* 32-bit ABIs always start floating point arguments in an
3464 even-numbered floating point register. Round the FP register
3465 up before the check to see if there are any FP registers
3466 left. O32/O64 targets also pass the FP in the integer
3467 registers so also round up normal registers. */
3468 if (!FP_REGISTER_DOUBLE
3469 && fp_register_arg_p (typecode, arg_type))
3470 {
3471 if ((float_argreg & 1))
3472 float_argreg++;
3473 }
3474
3475 /* Floating point arguments passed in registers have to be
3476 treated specially. On 32-bit architectures, doubles
3477 are passed in register pairs; the even register gets
3478 the low word, and the odd register gets the high word.
3479 On O32/O64, the first two floating point arguments are
3480 also copied to general registers, because MIPS16 functions
3481 don't use float registers for arguments. This duplication of
3482 arguments in general registers can't hurt non-MIPS16 functions
3483 because those registers are normally skipped. */
3484
3485 if (fp_register_arg_p (typecode, arg_type)
3486 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3487 {
3488 if (!FP_REGISTER_DOUBLE && len == 8)
3489 {
3490 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3491 unsigned long regval;
3492
3493 /* Write the low word of the double to the even register(s). */
3494 regval = extract_unsigned_integer (val + low_offset, 4);
3495 if (mips_debug)
3496 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3497 float_argreg, phex (regval, 4));
3498 write_register (float_argreg++, regval);
3499 if (mips_debug)
3500 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3501 argreg, phex (regval, 4));
3502 write_register (argreg++, regval);
3503
3504 /* Write the high word of the double to the odd register(s). */
3505 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3506 if (mips_debug)
3507 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3508 float_argreg, phex (regval, 4));
3509 write_register (float_argreg++, regval);
3510
3511 if (mips_debug)
3512 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3513 argreg, phex (regval, 4));
3514 write_register (argreg++, regval);
3515 }
3516 else
3517 {
3518 /* This is a floating point value that fits entirely
3519 in a single register. */
3520 /* On 32 bit ABI's the float_argreg is further adjusted
3521 above to ensure that it is even register aligned. */
3522 LONGEST regval = extract_unsigned_integer (val, len);
3523 if (mips_debug)
3524 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3525 float_argreg, phex (regval, len));
3526 write_register (float_argreg++, regval);
3527 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3528 registers for each argument. The below is (my
3529 guess) to ensure that the corresponding integer
3530 register has reserved the same space. */
3531 if (mips_debug)
3532 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3533 argreg, phex (regval, len));
3534 write_register (argreg, regval);
3535 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3536 }
3537 /* Reserve space for the FP register. */
3538 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3539 }
3540 else
3541 {
3542 /* Copy the argument to general registers or the stack in
3543 register-sized pieces. Large arguments are split between
3544 registers and stack. */
3545 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3546 are treated specially: Irix cc passes them in registers
3547 where gcc sometimes puts them on the stack. For maximum
3548 compatibility, we will put them in both places. */
3549 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3550 (len % MIPS_SAVED_REGSIZE != 0));
3551 /* Structures should be aligned to eight bytes (even arg registers)
3552 on MIPS_ABI_O32, if their first member has double precision. */
3553 if (MIPS_SAVED_REGSIZE < 8
3554 && mips_type_needs_double_align (arg_type))
3555 {
3556 if ((argreg & 1))
3557 argreg++;
3558 }
3559 /* Note: Floating-point values that didn't fit into an FP
3560 register are only written to memory. */
3561 while (len > 0)
3562 {
3563 /* Remember if the argument was written to the stack. */
3564 int stack_used_p = 0;
3565 int partial_len =
3566 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3567
3568 if (mips_debug)
3569 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3570 partial_len);
3571
3572 /* Write this portion of the argument to the stack. */
3573 if (argreg > MIPS_LAST_ARG_REGNUM
3574 || odd_sized_struct
3575 || fp_register_arg_p (typecode, arg_type))
3576 {
3577 /* Should shorter than int integer values be
3578 promoted to int before being stored? */
3579 int longword_offset = 0;
3580 CORE_ADDR addr;
3581 stack_used_p = 1;
3582 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3583 {
3584 if (MIPS_STACK_ARGSIZE == 8 &&
3585 (typecode == TYPE_CODE_INT ||
3586 typecode == TYPE_CODE_PTR ||
3587 typecode == TYPE_CODE_FLT) && len <= 4)
3588 longword_offset = MIPS_STACK_ARGSIZE - len;
3589 }
3590
3591 if (mips_debug)
3592 {
3593 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3594 paddr_nz (stack_offset));
3595 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3596 paddr_nz (longword_offset));
3597 }
3598
3599 addr = sp + stack_offset + longword_offset;
3600
3601 if (mips_debug)
3602 {
3603 int i;
3604 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3605 paddr_nz (addr));
3606 for (i = 0; i < partial_len; i++)
3607 {
3608 fprintf_unfiltered (gdb_stdlog, "%02x",
3609 val[i] & 0xff);
3610 }
3611 }
3612 write_memory (addr, val, partial_len);
3613 }
3614
3615 /* Note!!! This is NOT an else clause. Odd sized
3616 structs may go thru BOTH paths. Floating point
3617 arguments will not. */
3618 /* Write this portion of the argument to a general
3619 purpose register. */
3620 if (argreg <= MIPS_LAST_ARG_REGNUM
3621 && !fp_register_arg_p (typecode, arg_type))
3622 {
3623 LONGEST regval = extract_signed_integer (val, partial_len);
3624 /* Value may need to be sign extended, because
3625 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3626
3627 /* A non-floating-point argument being passed in a
3628 general register. If a struct or union, and if
3629 the remaining length is smaller than the register
3630 size, we have to adjust the register value on
3631 big endian targets.
3632
3633 It does not seem to be necessary to do the
3634 same for integral types.
3635
3636 Also don't do this adjustment on O64 binaries.
3637
3638 cagney/2001-07-23: gdb/179: Also, GCC, when
3639 outputting LE O32 with sizeof (struct) <
3640 MIPS_SAVED_REGSIZE, generates a left shift as
3641 part of storing the argument in a register a
3642 register (the left shift isn't generated when
3643 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3644 is quite possible that this is GCC contradicting
3645 the LE/O32 ABI, GDB has not been adjusted to
3646 accommodate this. Either someone needs to
3647 demonstrate that the LE/O32 ABI specifies such a
3648 left shift OR this new ABI gets identified as
3649 such and GDB gets tweaked accordingly. */
3650
3651 if (MIPS_SAVED_REGSIZE < 8
3652 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3653 && partial_len < MIPS_SAVED_REGSIZE
3654 && (typecode == TYPE_CODE_STRUCT ||
3655 typecode == TYPE_CODE_UNION))
3656 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3657 TARGET_CHAR_BIT);
3658
3659 if (mips_debug)
3660 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3661 argreg,
3662 phex (regval, MIPS_SAVED_REGSIZE));
3663 write_register (argreg, regval);
3664 argreg++;
3665
3666 /* Prevent subsequent floating point arguments from
3667 being passed in floating point registers. */
3668 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3669 }
3670
3671 len -= partial_len;
3672 val += partial_len;
3673
3674 /* Compute the the offset into the stack at which we
3675 will copy the next parameter.
3676
3677 In older ABIs, the caller reserved space for
3678 registers that contained arguments. This was loosely
3679 refered to as their "home". Consequently, space is
3680 always allocated. */
3681
3682 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3683 }
3684 }
3685 if (mips_debug)
3686 fprintf_unfiltered (gdb_stdlog, "\n");
3687 }
3688
3689 /* Return adjusted stack pointer. */
3690 return sp;
3691}
3692
f7ab6ec6 3693static CORE_ADDR
acdb74a0 3694mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
0f71a2f6 3695{
c906108c
SS
3696 /* Set the return address register to point to the entry
3697 point of the program, where a breakpoint lies in wait. */
c5aa993b 3698 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
c906108c
SS
3699 return sp;
3700}
3701
3702static void
c5aa993b 3703mips_push_register (CORE_ADDR * sp, int regno)
c906108c 3704{
cb3d25d1 3705 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
7a292a7a
SS
3706 int regsize;
3707 int offset;
3708 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
3709 {
3710 regsize = MIPS_SAVED_REGSIZE;
d7449b42 3711 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
3712 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
3713 : 0);
3714 }
3715 else
3716 {
3717 regsize = REGISTER_RAW_SIZE (regno);
3718 offset = 0;
3719 }
c906108c 3720 *sp -= regsize;
4caf0990 3721 deprecated_read_register_gen (regno, buffer);
7a292a7a 3722 write_memory (*sp, buffer + offset, regsize);
c906108c
SS
3723}
3724
3725/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
3726#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
3727
f7ab6ec6 3728static void
acdb74a0 3729mips_push_dummy_frame (void)
c906108c
SS
3730{
3731 int ireg;
c5aa993b
JM
3732 struct linked_proc_info *link = (struct linked_proc_info *)
3733 xmalloc (sizeof (struct linked_proc_info));
c906108c 3734 mips_extra_func_info_t proc_desc = &link->info;
6c997a34 3735 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
c906108c
SS
3736 CORE_ADDR old_sp = sp;
3737 link->next = linked_proc_desc_table;
3738 linked_proc_desc_table = link;
3739
3740/* FIXME! are these correct ? */
c5aa993b 3741#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
c906108c
SS
3742#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
3743#define FLOAT_REG_SAVE_MASK MASK(0,19)
3744#define FLOAT_SINGLE_REG_SAVE_MASK \
3745 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
3746 /*
3747 * The registers we must save are all those not preserved across
3748 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
3749 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
3750 * and FP Control/Status registers.
361d1df0 3751 *
c906108c
SS
3752 *
3753 * Dummy frame layout:
3754 * (high memory)
c5aa993b
JM
3755 * Saved PC
3756 * Saved MMHI, MMLO, FPC_CSR
3757 * Saved R31
3758 * Saved R28
3759 * ...
3760 * Saved R1
c906108c
SS
3761 * Saved D18 (i.e. F19, F18)
3762 * ...
3763 * Saved D0 (i.e. F1, F0)
c5aa993b 3764 * Argument build area and stack arguments written via mips_push_arguments
c906108c
SS
3765 * (low memory)
3766 */
3767
3768 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
c5aa993b
JM
3769 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
3770 PROC_FRAME_OFFSET (proc_desc) = 0;
3771 PROC_FRAME_ADJUST (proc_desc) = 0;
c906108c
SS
3772 mips_push_register (&sp, PC_REGNUM);
3773 mips_push_register (&sp, HI_REGNUM);
3774 mips_push_register (&sp, LO_REGNUM);
3775 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
3776
3777 /* Save general CPU registers */
c5aa993b 3778 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
c906108c 3779 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
c5aa993b
JM
3780 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
3781 for (ireg = 32; --ireg >= 0;)
3782 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
3783 mips_push_register (&sp, ireg);
3784
3785 /* Save floating point registers starting with high order word */
c5aa993b 3786 PROC_FREG_MASK (proc_desc) =
c906108c
SS
3787 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
3788 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
3789 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
3790 from FP. */
c5aa993b
JM
3791 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
3792 for (ireg = 32; --ireg >= 0;)
3793 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
3794 mips_push_register (&sp, ireg + FP0_REGNUM);
3795
3796 /* Update the frame pointer for the call dummy and the stack pointer.
3797 Set the procedure's starting and ending addresses to point to the
3798 call dummy address at the entry point. */
3799 write_register (PUSH_FP_REGNUM, old_sp);
3800 write_register (SP_REGNUM, sp);
c5aa993b
JM
3801 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
3802 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
3803 SET_PROC_DESC_IS_DUMMY (proc_desc);
3804 PROC_PC_REG (proc_desc) = RA_REGNUM;
c906108c
SS
3805}
3806
f7ab6ec6 3807static void
acdb74a0 3808mips_pop_frame (void)
c906108c
SS
3809{
3810 register int regnum;
3811 struct frame_info *frame = get_current_frame ();
3812 CORE_ADDR new_sp = FRAME_FP (frame);
cce74817 3813 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c 3814
cedea778
AC
3815 if (USE_GENERIC_DUMMY_FRAMES
3816 && PC_IN_CALL_DUMMY (frame->pc, 0, 0))
3817 {
3818 generic_pop_dummy_frame ();
3819 flush_cached_frames ();
3820 return;
3821 }
3822
c5aa993b 3823 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
c906108c 3824 if (frame->saved_regs == NULL)
ffabd70d 3825 FRAME_INIT_SAVED_REGS (frame);
c906108c 3826 for (regnum = 0; regnum < NUM_REGS; regnum++)
21f87145
MS
3827 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3828 && frame->saved_regs[regnum])
3829 {
3830 /* Floating point registers must not be sign extended,
3831 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3832
3833 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3834 write_register (regnum,
3835 read_memory_unsigned_integer (frame->saved_regs[regnum],
3836 MIPS_SAVED_REGSIZE));
3837 else
3838 write_register (regnum,
3839 read_memory_integer (frame->saved_regs[regnum],
3840 MIPS_SAVED_REGSIZE));
3841 }
757a7cc6 3842
c906108c
SS
3843 write_register (SP_REGNUM, new_sp);
3844 flush_cached_frames ();
3845
c5aa993b 3846 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
3847 {
3848 struct linked_proc_info *pi_ptr, *prev_ptr;
3849
3850 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3851 pi_ptr != NULL;
3852 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3853 {
3854 if (&pi_ptr->info == proc_desc)
3855 break;
3856 }
3857
3858 if (pi_ptr == NULL)
3859 error ("Can't locate dummy extra frame info\n");
3860
3861 if (prev_ptr != NULL)
3862 prev_ptr->next = pi_ptr->next;
3863 else
3864 linked_proc_desc_table = pi_ptr->next;
3865
b8c9b27d 3866 xfree (pi_ptr);
c906108c
SS
3867
3868 write_register (HI_REGNUM,
c5aa993b 3869 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 3870 MIPS_SAVED_REGSIZE));
c906108c 3871 write_register (LO_REGNUM,
c5aa993b 3872 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 3873 MIPS_SAVED_REGSIZE));
c906108c
SS
3874 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3875 write_register (FCRCS_REGNUM,
c5aa993b 3876 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 3877 MIPS_SAVED_REGSIZE));
c906108c
SS
3878 }
3879}
3880
f7ab6ec6
MS
3881static void
3882mips_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
3883 struct value **args, struct type *type, int gcc_p)
3884{
3885 write_register(T9_REGNUM, fun);
3886}
3887
dd824b04
DJ
3888/* Floating point register management.
3889
3890 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3891 64bit operations, these early MIPS cpus treat fp register pairs
3892 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3893 registers and offer a compatibility mode that emulates the MIPS2 fp
3894 model. When operating in MIPS2 fp compat mode, later cpu's split
3895 double precision floats into two 32-bit chunks and store them in
3896 consecutive fp regs. To display 64-bit floats stored in this
3897 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3898 Throw in user-configurable endianness and you have a real mess.
3899
3900 The way this works is:
3901 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3902 double-precision value will be split across two logical registers.
3903 The lower-numbered logical register will hold the low-order bits,
3904 regardless of the processor's endianness.
3905 - If we are on a 64-bit processor, and we are looking for a
3906 single-precision value, it will be in the low ordered bits
3907 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3908 save slot in memory.
3909 - If we are in 64-bit mode, everything is straightforward.
3910
3911 Note that this code only deals with "live" registers at the top of the
3912 stack. We will attempt to deal with saved registers later, when
3913 the raw/cooked register interface is in place. (We need a general
3914 interface that can deal with dynamic saved register sizes -- fp
3915 regs could be 32 bits wide in one frame and 64 on the frame above
3916 and below). */
3917
67b2c998
DJ
3918static struct type *
3919mips_float_register_type (void)
3920{
361d1df0 3921 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3922 return builtin_type_ieee_single_big;
3923 else
3924 return builtin_type_ieee_single_little;
3925}
3926
3927static struct type *
3928mips_double_register_type (void)
3929{
361d1df0 3930 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3931 return builtin_type_ieee_double_big;
3932 else
3933 return builtin_type_ieee_double_little;
3934}
3935
dd824b04
DJ
3936/* Copy a 32-bit single-precision value from the current frame
3937 into rare_buffer. */
3938
3939static void
3940mips_read_fp_register_single (int regno, char *rare_buffer)
3941{
3942 int raw_size = REGISTER_RAW_SIZE (regno);
3943 char *raw_buffer = alloca (raw_size);
3944
cda5a58a 3945 if (!frame_register_read (selected_frame, regno, raw_buffer))
dd824b04
DJ
3946 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3947 if (raw_size == 8)
3948 {
3949 /* We have a 64-bit value for this register. Find the low-order
3950 32 bits. */
3951 int offset;
3952
3953 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3954 offset = 4;
3955 else
3956 offset = 0;
3957
3958 memcpy (rare_buffer, raw_buffer + offset, 4);
3959 }
3960 else
3961 {
3962 memcpy (rare_buffer, raw_buffer, 4);
3963 }
3964}
3965
3966/* Copy a 64-bit double-precision value from the current frame into
3967 rare_buffer. This may include getting half of it from the next
3968 register. */
3969
3970static void
3971mips_read_fp_register_double (int regno, char *rare_buffer)
3972{
3973 int raw_size = REGISTER_RAW_SIZE (regno);
3974
3975 if (raw_size == 8 && !mips2_fp_compat ())
3976 {
3977 /* We have a 64-bit value for this register, and we should use
3978 all 64 bits. */
cda5a58a 3979 if (!frame_register_read (selected_frame, regno, rare_buffer))
dd824b04
DJ
3980 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3981 }
3982 else
3983 {
3984 if ((regno - FP0_REGNUM) & 1)
3985 internal_error (__FILE__, __LINE__,
3986 "mips_read_fp_register_double: bad access to "
3987 "odd-numbered FP register");
3988
3989 /* mips_read_fp_register_single will find the correct 32 bits from
3990 each register. */
3991 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3992 {
3993 mips_read_fp_register_single (regno, rare_buffer + 4);
3994 mips_read_fp_register_single (regno + 1, rare_buffer);
3995 }
361d1df0 3996 else
dd824b04
DJ
3997 {
3998 mips_read_fp_register_single (regno, rare_buffer);
3999 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
4000 }
4001 }
4002}
4003
c906108c 4004static void
acdb74a0 4005mips_print_register (int regnum, int all)
c906108c 4006{
119d55d8 4007 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
4008
4009 /* Get the data in raw format. */
cda5a58a 4010 if (!frame_register_read (selected_frame, regnum, raw_buffer))
c906108c
SS
4011 {
4012 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
4013 return;
4014 }
4015
dd824b04
DJ
4016 /* If we have a actual 32-bit floating point register (or we are in
4017 32-bit compatibility mode), and the register is even-numbered,
4018 also print it as a double (spanning two registers). */
c906108c 4019 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
dd824b04
DJ
4020 && (REGISTER_RAW_SIZE (regnum) == 4
4021 || mips2_fp_compat ())
c5aa993b 4022 && !((regnum - FP0_REGNUM) & 1))
dd824b04 4023 {
cb3d25d1 4024 char *dbuffer = alloca (2 * MAX_REGISTER_RAW_SIZE);
c906108c 4025
dd824b04 4026 mips_read_fp_register_double (regnum, dbuffer);
c906108c 4027
dd824b04 4028 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
67b2c998 4029 val_print (mips_double_register_type (), dbuffer, 0, 0,
dd824b04
DJ
4030 gdb_stdout, 0, 1, 0, Val_pretty_default);
4031 printf_filtered ("); ");
4032 }
c906108c
SS
4033 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
4034
4035 /* The problem with printing numeric register names (r26, etc.) is that
4036 the user can't use them on input. Probably the best solution is to
4037 fix it so that either the numeric or the funky (a2, etc.) names
4038 are accepted on input. */
4039 if (regnum < MIPS_NUMREGS)
4040 printf_filtered ("(r%d): ", regnum);
4041 else
4042 printf_filtered (": ");
4043
4044 /* If virtual format is floating, print it that way. */
4045 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
dd824b04
DJ
4046 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
4047 {
4048 /* We have a meaningful 64-bit value in this register. Show
4049 it as a 32-bit float and a 64-bit double. */
d7449b42 4050 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
c906108c
SS
4051
4052 printf_filtered (" (float) ");
67b2c998 4053 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
c906108c
SS
4054 gdb_stdout, 0, 1, 0, Val_pretty_default);
4055 printf_filtered (", (double) ");
67b2c998 4056 val_print (mips_double_register_type (), raw_buffer, 0, 0,
c906108c
SS
4057 gdb_stdout, 0, 1, 0, Val_pretty_default);
4058 }
4059 else
4060 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
4061 gdb_stdout, 0, 1, 0, Val_pretty_default);
4062 /* Else print as integer in hex. */
4063 else
ed9a39eb
JM
4064 {
4065 int offset;
4066
d7449b42 4067 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
ed9a39eb
JM
4068 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4069 else
4070 offset = 0;
361d1df0 4071
ed9a39eb
JM
4072 print_scalar_formatted (raw_buffer + offset,
4073 REGISTER_VIRTUAL_TYPE (regnum),
4074 'x', 0, gdb_stdout);
4075 }
c906108c
SS
4076}
4077
361d1df0 4078/* Replacement for generic do_registers_info.
c906108c
SS
4079 Print regs in pretty columns. */
4080
4081static int
acdb74a0 4082do_fp_register_row (int regnum)
c5aa993b 4083{ /* do values for FP (float) regs */
dd824b04 4084 char *raw_buffer;
c906108c
SS
4085 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4086 int inv1, inv2, inv3;
c5aa993b 4087
dd824b04 4088 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c906108c 4089
dd824b04 4090 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
c906108c 4091 {
dd824b04
DJ
4092 /* 4-byte registers: we can fit two registers per row. */
4093 /* Also print every pair of 4-byte regs as an 8-byte double. */
4094 mips_read_fp_register_single (regnum, raw_buffer);
67b2c998 4095 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4096
dd824b04 4097 mips_read_fp_register_single (regnum + 1, raw_buffer);
67b2c998 4098 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
dd824b04
DJ
4099
4100 mips_read_fp_register_double (regnum, raw_buffer);
67b2c998 4101 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
361d1df0 4102
1adad886
AC
4103 printf_filtered (" %-5s", REGISTER_NAME (regnum));
4104 if (inv1)
4105 printf_filtered (": <invalid float>");
4106 else
4107 printf_filtered ("%-17.9g", flt1);
4108
4109 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
4110 if (inv2)
4111 printf_filtered (": <invalid float>");
4112 else
4113 printf_filtered ("%-17.9g", flt2);
4114
4115 printf_filtered (" dbl: ");
4116 if (inv3)
4117 printf_filtered ("<invalid double>");
4118 else
4119 printf_filtered ("%-24.17g", doub);
4120 printf_filtered ("\n");
4121
c906108c 4122 /* may want to do hex display here (future enhancement) */
c5aa993b 4123 regnum += 2;
c906108c
SS
4124 }
4125 else
dd824b04
DJ
4126 {
4127 /* Eight byte registers: print each one as float AND as double. */
4128 mips_read_fp_register_single (regnum, raw_buffer);
67b2c998 4129 flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
c906108c 4130
dd824b04 4131 mips_read_fp_register_double (regnum, raw_buffer);
67b2c998 4132 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
361d1df0 4133
1adad886
AC
4134 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
4135 if (inv1)
4136 printf_filtered ("<invalid float>");
4137 else
4138 printf_filtered ("flt: %-17.9g", flt1);
4139
4140 printf_filtered (" dbl: ");
4141 if (inv3)
4142 printf_filtered ("<invalid double>");
4143 else
4144 printf_filtered ("%-24.17g", doub);
4145
4146 printf_filtered ("\n");
c906108c
SS
4147 /* may want to do hex display here (future enhancement) */
4148 regnum++;
4149 }
4150 return regnum;
4151}
4152
4153/* Print a row's worth of GP (int) registers, with name labels above */
4154
4155static int
acdb74a0 4156do_gp_register_row (int regnum)
c906108c
SS
4157{
4158 /* do values for GP (int) regs */
cb3d25d1 4159 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
4160 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4161 int col, byte;
4162 int start_regnum = regnum;
4163 int numregs = NUM_REGS;
4164
4165
4166 /* For GP registers, we print a separate row of names above the vals */
4167 printf_filtered (" ");
4168 for (col = 0; col < ncols && regnum < numregs; regnum++)
4169 {
4170 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4171 continue; /* unused register */
c906108c 4172 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b
JM
4173 break; /* end the row: reached FP register */
4174 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
c906108c
SS
4175 REGISTER_NAME (regnum));
4176 col++;
4177 }
c5aa993b 4178 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
c906108c
SS
4179 start_regnum); /* print the R0 to R31 names */
4180
4181 regnum = start_regnum; /* go back to start of row */
4182 /* now print the values in hex, 4 or 8 to the row */
4183 for (col = 0; col < ncols && regnum < numregs; regnum++)
4184 {
4185 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4186 continue; /* unused register */
c906108c 4187 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 4188 break; /* end row: reached FP register */
c906108c 4189 /* OK: get the data in raw format. */
cda5a58a 4190 if (!frame_register_read (selected_frame, regnum, raw_buffer))
c906108c
SS
4191 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4192 /* pad small registers */
43e526b9 4193 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
c906108c
SS
4194 printf_filtered (" ");
4195 /* Now print the register value in hex, endian order. */
d7449b42 4196 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
4197 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4198 byte < REGISTER_RAW_SIZE (regnum);
4199 byte++)
c906108c
SS
4200 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4201 else
43e526b9
JM
4202 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4203 byte >= 0;
4204 byte--)
c906108c
SS
4205 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4206 printf_filtered (" ");
4207 col++;
4208 }
c5aa993b 4209 if (col > 0) /* ie. if we actually printed anything... */
c906108c
SS
4210 printf_filtered ("\n");
4211
4212 return regnum;
4213}
4214
4215/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4216
bf1f5b4c 4217static void
acdb74a0 4218mips_do_registers_info (int regnum, int fpregs)
c906108c 4219{
c5aa993b 4220 if (regnum != -1) /* do one specified register */
c906108c
SS
4221 {
4222 if (*(REGISTER_NAME (regnum)) == '\0')
4223 error ("Not a valid register for the current processor type");
4224
4225 mips_print_register (regnum, 0);
4226 printf_filtered ("\n");
4227 }
c5aa993b
JM
4228 else
4229 /* do all (or most) registers */
c906108c
SS
4230 {
4231 regnum = 0;
4232 while (regnum < NUM_REGS)
4233 {
c5aa993b
JM
4234 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4235 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
c906108c
SS
4236 regnum = do_fp_register_row (regnum); /* FP regs */
4237 else
4238 regnum += MIPS_NUMREGS; /* skip floating point regs */
4239 else
4240 regnum = do_gp_register_row (regnum); /* GP (int) regs */
4241 }
4242 }
4243}
4244
c906108c
SS
4245/* Is this a branch with a delay slot? */
4246
a14ed312 4247static int is_delayed (unsigned long);
c906108c
SS
4248
4249static int
acdb74a0 4250is_delayed (unsigned long insn)
c906108c
SS
4251{
4252 int i;
4253 for (i = 0; i < NUMOPCODES; ++i)
4254 if (mips_opcodes[i].pinfo != INSN_MACRO
4255 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4256 break;
4257 return (i < NUMOPCODES
4258 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4259 | INSN_COND_BRANCH_DELAY
4260 | INSN_COND_BRANCH_LIKELY)));
4261}
4262
4263int
acdb74a0 4264mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
4265{
4266 char buf[MIPS_INSTLEN];
4267
4268 /* There is no branch delay slot on MIPS16. */
4269 if (pc_is_mips16 (pc))
4270 return 0;
4271
4272 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4273 /* If error reading memory, guess that it is not a delayed branch. */
4274 return 0;
c5aa993b 4275 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
4276}
4277
4278
4279/* Skip the PC past function prologue instructions (32-bit version).
4280 This is a helper function for mips_skip_prologue. */
4281
4282static CORE_ADDR
f7b9e9fc 4283mips32_skip_prologue (CORE_ADDR pc)
c906108c 4284{
c5aa993b
JM
4285 t_inst inst;
4286 CORE_ADDR end_pc;
4287 int seen_sp_adjust = 0;
4288 int load_immediate_bytes = 0;
4289
4290 /* Skip the typical prologue instructions. These are the stack adjustment
4291 instruction and the instructions that save registers on the stack
4292 or in the gcc frame. */
4293 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4294 {
4295 unsigned long high_word;
c906108c 4296
c5aa993b
JM
4297 inst = mips_fetch_instruction (pc);
4298 high_word = (inst >> 16) & 0xffff;
c906108c 4299
c5aa993b
JM
4300 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4301 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4302 seen_sp_adjust = 1;
4303 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4304 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4305 seen_sp_adjust = 1;
4306 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4307 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4308 && (inst & 0x001F0000)) /* reg != $zero */
4309 continue;
4310
4311 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4312 continue;
4313 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4314 /* sx reg,n($s8) */
4315 continue; /* reg != $zero */
4316
4317 /* move $s8,$sp. With different versions of gas this will be either
4318 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4319 Accept any one of these. */
4320 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4321 continue;
4322
4323 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4324 continue;
4325 else if (high_word == 0x3c1c) /* lui $gp,n */
4326 continue;
4327 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4328 continue;
4329 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4330 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4331 continue;
4332 /* The following instructions load $at or $t0 with an immediate
4333 value in preparation for a stack adjustment via
4334 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4335 a local variable, so we accept them only before a stack adjustment
4336 instruction was seen. */
4337 else if (!seen_sp_adjust)
4338 {
4339 if (high_word == 0x3c01 || /* lui $at,n */
4340 high_word == 0x3c08) /* lui $t0,n */
4341 {
4342 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4343 continue;
4344 }
4345 else if (high_word == 0x3421 || /* ori $at,$at,n */
4346 high_word == 0x3508 || /* ori $t0,$t0,n */
4347 high_word == 0x3401 || /* ori $at,$zero,n */
4348 high_word == 0x3408) /* ori $t0,$zero,n */
4349 {
4350 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4351 continue;
4352 }
4353 else
4354 break;
4355 }
4356 else
4357 break;
c906108c
SS
4358 }
4359
c5aa993b
JM
4360 /* In a frameless function, we might have incorrectly
4361 skipped some load immediate instructions. Undo the skipping
4362 if the load immediate was not followed by a stack adjustment. */
4363 if (load_immediate_bytes && !seen_sp_adjust)
4364 pc -= load_immediate_bytes;
4365 return pc;
c906108c
SS
4366}
4367
4368/* Skip the PC past function prologue instructions (16-bit version).
4369 This is a helper function for mips_skip_prologue. */
4370
4371static CORE_ADDR
f7b9e9fc 4372mips16_skip_prologue (CORE_ADDR pc)
c906108c 4373{
c5aa993b
JM
4374 CORE_ADDR end_pc;
4375 int extend_bytes = 0;
4376 int prev_extend_bytes;
c906108c 4377
c5aa993b
JM
4378 /* Table of instructions likely to be found in a function prologue. */
4379 static struct
c906108c
SS
4380 {
4381 unsigned short inst;
4382 unsigned short mask;
c5aa993b
JM
4383 }
4384 table[] =
4385 {
c906108c 4386 {
c5aa993b
JM
4387 0x6300, 0xff00
4388 }
4389 , /* addiu $sp,offset */
4390 {
4391 0xfb00, 0xff00
4392 }
4393 , /* daddiu $sp,offset */
4394 {
4395 0xd000, 0xf800
4396 }
4397 , /* sw reg,n($sp) */
4398 {
4399 0xf900, 0xff00
4400 }
4401 , /* sd reg,n($sp) */
4402 {
4403 0x6200, 0xff00
4404 }
4405 , /* sw $ra,n($sp) */
4406 {
4407 0xfa00, 0xff00
4408 }
4409 , /* sd $ra,n($sp) */
4410 {
4411 0x673d, 0xffff
4412 }
4413 , /* move $s1,sp */
4414 {
4415 0xd980, 0xff80
4416 }
4417 , /* sw $a0-$a3,n($s1) */
4418 {
4419 0x6704, 0xff1c
4420 }
4421 , /* move reg,$a0-$a3 */
4422 {
4423 0xe809, 0xf81f
4424 }
4425 , /* entry pseudo-op */
4426 {
4427 0x0100, 0xff00
4428 }
4429 , /* addiu $s1,$sp,n */
4430 {
4431 0, 0
4432 } /* end of table marker */
4433 };
4434
4435 /* Skip the typical prologue instructions. These are the stack adjustment
4436 instruction and the instructions that save registers on the stack
4437 or in the gcc frame. */
4438 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4439 {
4440 unsigned short inst;
4441 int i;
c906108c 4442
c5aa993b 4443 inst = mips_fetch_instruction (pc);
c906108c 4444
c5aa993b
JM
4445 /* Normally we ignore an extend instruction. However, if it is
4446 not followed by a valid prologue instruction, we must adjust
4447 the pc back over the extend so that it won't be considered
4448 part of the prologue. */
4449 if ((inst & 0xf800) == 0xf000) /* extend */
4450 {
4451 extend_bytes = MIPS16_INSTLEN;
4452 continue;
4453 }
4454 prev_extend_bytes = extend_bytes;
4455 extend_bytes = 0;
c906108c 4456
c5aa993b
JM
4457 /* Check for other valid prologue instructions besides extend. */
4458 for (i = 0; table[i].mask != 0; i++)
4459 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4460 break;
4461 if (table[i].mask != 0) /* it was in table? */
4462 continue; /* ignore it */
4463 else
4464 /* non-prologue */
4465 {
4466 /* Return the current pc, adjusted backwards by 2 if
4467 the previous instruction was an extend. */
4468 return pc - prev_extend_bytes;
4469 }
c906108c
SS
4470 }
4471 return pc;
4472}
4473
4474/* To skip prologues, I use this predicate. Returns either PC itself
4475 if the code at PC does not look like a function prologue; otherwise
4476 returns an address that (if we're lucky) follows the prologue. If
4477 LENIENT, then we must skip everything which is involved in setting
4478 up the frame (it's OK to skip more, just so long as we don't skip
4479 anything which might clobber the registers which are being saved.
4480 We must skip more in the case where part of the prologue is in the
4481 delay slot of a non-prologue instruction). */
4482
f7ab6ec6 4483static CORE_ADDR
f7b9e9fc 4484mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
4485{
4486 /* See if we can determine the end of the prologue via the symbol table.
4487 If so, then return either PC, or the PC after the prologue, whichever
4488 is greater. */
4489
4490 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4491
4492 if (post_prologue_pc != 0)
4493 return max (pc, post_prologue_pc);
4494
4495 /* Can't determine prologue from the symbol table, need to examine
4496 instructions. */
4497
4498 if (pc_is_mips16 (pc))
f7b9e9fc 4499 return mips16_skip_prologue (pc);
c906108c 4500 else
f7b9e9fc 4501 return mips32_skip_prologue (pc);
c906108c 4502}
c906108c 4503
7a292a7a
SS
4504/* Determine how a return value is stored within the MIPS register
4505 file, given the return type `valtype'. */
4506
4507struct return_value_word
4508{
4509 int len;
4510 int reg;
4511 int reg_offset;
4512 int buf_offset;
4513};
4514
7a292a7a 4515static void
acdb74a0
AC
4516return_value_location (struct type *valtype,
4517 struct return_value_word *hi,
4518 struct return_value_word *lo)
7a292a7a
SS
4519{
4520 int len = TYPE_LENGTH (valtype);
c5aa993b 4521
7a292a7a
SS
4522 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4523 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4524 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4525 {
4526 if (!FP_REGISTER_DOUBLE && len == 8)
4527 {
4528 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 4529 spread them across a floating-point register pair. */
d7449b42
AC
4530 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4531 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4532 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4533 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4534 ? 4 : 0);
4535 hi->reg_offset = lo->reg_offset;
4536 lo->reg = FP0_REGNUM + 0;
4537 hi->reg = FP0_REGNUM + 1;
4538 lo->len = 4;
4539 hi->len = 4;
4540 }
4541 else
4542 {
4543 /* The floating point value fits in a single floating-point
c5aa993b 4544 register. */
d7449b42 4545 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4546 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4547 && len == 4)
4548 ? 4 : 0);
4549 lo->reg = FP0_REGNUM;
4550 lo->len = len;
4551 lo->buf_offset = 0;
4552 hi->len = 0;
4553 hi->reg_offset = 0;
4554 hi->buf_offset = 0;
4555 hi->reg = 0;
4556 }
4557 }
4558 else
4559 {
4560 /* Locate a result possibly spread across two registers. */
4561 int regnum = 2;
4562 lo->reg = regnum + 0;
4563 hi->reg = regnum + 1;
d7449b42 4564 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4565 && len < MIPS_SAVED_REGSIZE)
4566 {
bf1f5b4c
MS
4567 /* "un-left-justify" the value in the low register */
4568 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
bcb0cc15 4569 lo->len = len;
bf1f5b4c 4570 hi->reg_offset = 0;
7a292a7a
SS
4571 hi->len = 0;
4572 }
d7449b42 4573 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4574 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4575 && len < MIPS_SAVED_REGSIZE * 2
4576 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4577 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4578 {
4579 /* "un-left-justify" the value spread across two registers. */
4580 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4581 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4582 hi->reg_offset = 0;
4583 hi->len = len - lo->len;
4584 }
4585 else
4586 {
4587 /* Only perform a partial copy of the second register. */
4588 lo->reg_offset = 0;
4589 hi->reg_offset = 0;
4590 if (len > MIPS_SAVED_REGSIZE)
4591 {
4592 lo->len = MIPS_SAVED_REGSIZE;
4593 hi->len = len - MIPS_SAVED_REGSIZE;
4594 }
4595 else
4596 {
4597 lo->len = len;
4598 hi->len = 0;
4599 }
4600 }
d7449b42 4601 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4602 && REGISTER_RAW_SIZE (regnum) == 8
4603 && MIPS_SAVED_REGSIZE == 4)
4604 {
4605 /* Account for the fact that only the least-signficant part
c5aa993b 4606 of the register is being used */
7a292a7a
SS
4607 lo->reg_offset += 4;
4608 hi->reg_offset += 4;
4609 }
4610 lo->buf_offset = 0;
4611 hi->buf_offset = lo->len;
4612 }
4613}
4614
4615/* Given a return value in `regbuf' with a type `valtype', extract and
4616 copy its value into `valbuf'. */
4617
46cac009
AC
4618static void
4619mips_eabi_extract_return_value (struct type *valtype,
4620 char regbuf[REGISTER_BYTES],
4621 char *valbuf)
4622{
4623 struct return_value_word lo;
4624 struct return_value_word hi;
4625 return_value_location (valtype, &hi, &lo);
4626
4627 memcpy (valbuf + lo.buf_offset,
4628 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4629 lo.len);
4630
4631 if (hi.len > 0)
4632 memcpy (valbuf + hi.buf_offset,
4633 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4634 hi.len);
4635}
4636
46cac009
AC
4637static void
4638mips_o64_extract_return_value (struct type *valtype,
4639 char regbuf[REGISTER_BYTES],
4640 char *valbuf)
4641{
4642 struct return_value_word lo;
4643 struct return_value_word hi;
4644 return_value_location (valtype, &hi, &lo);
4645
4646 memcpy (valbuf + lo.buf_offset,
4647 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4648 lo.len);
4649
4650 if (hi.len > 0)
4651 memcpy (valbuf + hi.buf_offset,
4652 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4653 hi.len);
4654}
4655
7a292a7a
SS
4656/* Given a return value in `valbuf' with a type `valtype', write it's
4657 value into the appropriate register. */
4658
46cac009
AC
4659static void
4660mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4661{
4662 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4663 struct return_value_word lo;
4664 struct return_value_word hi;
4665 return_value_location (valtype, &hi, &lo);
4666
4667 memset (raw_buffer, 0, sizeof (raw_buffer));
4668 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
73937e03
AC
4669 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4670 REGISTER_RAW_SIZE (lo.reg));
46cac009
AC
4671
4672 if (hi.len > 0)
4673 {
4674 memset (raw_buffer, 0, sizeof (raw_buffer));
4675 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
73937e03
AC
4676 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4677 REGISTER_RAW_SIZE (hi.reg));
46cac009
AC
4678 }
4679}
4680
4681static void
cb1d2653 4682mips_o64_store_return_value (struct type *valtype, char *valbuf)
46cac009
AC
4683{
4684 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4685 struct return_value_word lo;
4686 struct return_value_word hi;
4687 return_value_location (valtype, &hi, &lo);
4688
4689 memset (raw_buffer, 0, sizeof (raw_buffer));
4690 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
73937e03
AC
4691 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4692 REGISTER_RAW_SIZE (lo.reg));
46cac009
AC
4693
4694 if (hi.len > 0)
4695 {
4696 memset (raw_buffer, 0, sizeof (raw_buffer));
4697 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
73937e03
AC
4698 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4699 REGISTER_RAW_SIZE (hi.reg));
46cac009
AC
4700 }
4701}
4702
cb1d2653
AC
4703/* O32 ABI stuff. */
4704
46cac009 4705static void
cb1d2653
AC
4706mips_o32_xfer_return_value (struct type *type,
4707 struct regcache *regcache,
4708 bfd_byte *in, const bfd_byte *out)
46cac009 4709{
cb1d2653
AC
4710 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4711 if (TYPE_CODE (type) == TYPE_CODE_FLT
4712 && TYPE_LENGTH (type) == 4
4713 && tdep->mips_fpu_type != MIPS_FPU_NONE)
46cac009 4714 {
cb1d2653
AC
4715 /* A single-precision floating-point value. It fits in the
4716 least significant part of FP0. */
4717 if (mips_debug)
4718 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4719 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4720 TARGET_BYTE_ORDER, in, out, 0);
4721 }
4722 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4723 && TYPE_LENGTH (type) == 8
4724 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4725 {
4726 /* A double-precision floating-point value. It fits in the
4727 least significant part of FP0/FP1 but with byte ordering
4728 based on the target (???). */
4729 if (mips_debug)
4730 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4731 switch (TARGET_BYTE_ORDER)
4732 {
4733 case BFD_ENDIAN_LITTLE:
4734 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4735 TARGET_BYTE_ORDER, in, out, 0);
4736 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4737 TARGET_BYTE_ORDER, in, out, 4);
4738 break;
4739 case BFD_ENDIAN_BIG:
4740 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4741 TARGET_BYTE_ORDER, in, out, 0);
4742 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4743 TARGET_BYTE_ORDER, in, out, 4);
4744 break;
4745 default:
4746 internal_error (__FILE__, __LINE__, "bad switch");
4747 }
4748 }
4749#if 0
4750 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4751 && TYPE_NFIELDS (type) <= 2
4752 && TYPE_NFIELDS (type) >= 1
4753 && ((TYPE_NFIELDS (type) == 1
4754 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4755 == TYPE_CODE_FLT))
4756 || (TYPE_NFIELDS (type) == 2
4757 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4758 == TYPE_CODE_FLT)
4759 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4760 == TYPE_CODE_FLT)))
4761 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4762 {
4763 /* A struct that contains one or two floats. Each value is part
4764 in the least significant part of their floating point
4765 register.. */
4766 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4767 int regnum;
4768 int field;
4769 for (field = 0, regnum = FP0_REGNUM;
4770 field < TYPE_NFIELDS (type);
4771 field++, regnum += 2)
4772 {
4773 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4774 / TARGET_CHAR_BIT);
4775 if (mips_debug)
4776 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4777 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4778 TARGET_BYTE_ORDER, in, out, offset);
4779 }
4780 }
4781#endif
4782#if 0
4783 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4784 || TYPE_CODE (type) == TYPE_CODE_UNION)
4785 {
4786 /* A structure or union. Extract the left justified value,
4787 regardless of the byte order. I.e. DO NOT USE
4788 mips_xfer_lower. */
4789 int offset;
4790 int regnum;
4791 for (offset = 0, regnum = V0_REGNUM;
4792 offset < TYPE_LENGTH (type);
4793 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4794 {
4795 int xfer = REGISTER_RAW_SIZE (regnum);
4796 if (offset + xfer > TYPE_LENGTH (type))
4797 xfer = TYPE_LENGTH (type) - offset;
4798 if (mips_debug)
4799 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4800 offset, xfer, regnum);
4801 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4802 in, out, offset);
4803 }
4804 }
4805#endif
4806 else
4807 {
4808 /* A scalar extract each part but least-significant-byte
4809 justified. o32 thinks registers are 4 byte, regardless of
4810 the ISA. mips_stack_argsize controls this. */
4811 int offset;
4812 int regnum;
4813 for (offset = 0, regnum = V0_REGNUM;
4814 offset < TYPE_LENGTH (type);
4815 offset += mips_stack_argsize (), regnum++)
4816 {
4817 int xfer = mips_stack_argsize ();
4818 int pos = 0;
4819 if (offset + xfer > TYPE_LENGTH (type))
4820 xfer = TYPE_LENGTH (type) - offset;
4821 if (mips_debug)
4822 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4823 offset, xfer, regnum);
4824 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4825 in, out, offset);
4826 }
46cac009
AC
4827 }
4828}
4829
cb1d2653
AC
4830static void
4831mips_o32_extract_return_value (struct type *type,
4832 struct regcache *regcache,
ebba8386 4833 void *valbuf)
cb1d2653
AC
4834{
4835 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4836}
4837
4838static void
4839mips_o32_store_return_value (struct type *type, char *valbuf)
4840{
4841 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4842}
4843
4844/* N32/N44 ABI stuff. */
4845
46cac009 4846static void
88658117
AC
4847mips_n32n64_xfer_return_value (struct type *type,
4848 struct regcache *regcache,
4849 bfd_byte *in, const bfd_byte *out)
c906108c 4850{
88658117
AC
4851 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4852 if (TYPE_CODE (type) == TYPE_CODE_FLT
4853 && tdep->mips_fpu_type != MIPS_FPU_NONE)
7a292a7a 4854 {
88658117
AC
4855 /* A floating-point value belongs in the least significant part
4856 of FP0. */
4857 if (mips_debug)
4858 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4859 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4860 TARGET_BYTE_ORDER, in, out, 0);
4861 }
4862 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4863 && TYPE_NFIELDS (type) <= 2
4864 && TYPE_NFIELDS (type) >= 1
4865 && ((TYPE_NFIELDS (type) == 1
4866 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4867 == TYPE_CODE_FLT))
4868 || (TYPE_NFIELDS (type) == 2
4869 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4870 == TYPE_CODE_FLT)
4871 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4872 == TYPE_CODE_FLT)))
4873 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4874 {
4875 /* A struct that contains one or two floats. Each value is part
4876 in the least significant part of their floating point
4877 register.. */
4878 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4879 int regnum;
4880 int field;
4881 for (field = 0, regnum = FP0_REGNUM;
4882 field < TYPE_NFIELDS (type);
4883 field++, regnum += 2)
4884 {
4885 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4886 / TARGET_CHAR_BIT);
4887 if (mips_debug)
4888 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4889 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4890 TARGET_BYTE_ORDER, in, out, offset);
4891 }
7a292a7a 4892 }
88658117
AC
4893 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4894 || TYPE_CODE (type) == TYPE_CODE_UNION)
4895 {
4896 /* A structure or union. Extract the left justified value,
4897 regardless of the byte order. I.e. DO NOT USE
4898 mips_xfer_lower. */
4899 int offset;
4900 int regnum;
4901 for (offset = 0, regnum = V0_REGNUM;
4902 offset < TYPE_LENGTH (type);
4903 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4904 {
4905 int xfer = REGISTER_RAW_SIZE (regnum);
4906 if (offset + xfer > TYPE_LENGTH (type))
4907 xfer = TYPE_LENGTH (type) - offset;
4908 if (mips_debug)
4909 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4910 offset, xfer, regnum);
4911 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4912 in, out, offset);
4913 }
4914 }
4915 else
4916 {
4917 /* A scalar extract each part but least-significant-byte
4918 justified. */
4919 int offset;
4920 int regnum;
4921 for (offset = 0, regnum = V0_REGNUM;
4922 offset < TYPE_LENGTH (type);
4923 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4924 {
4925 int xfer = REGISTER_RAW_SIZE (regnum);
4926 int pos = 0;
4927 if (offset + xfer > TYPE_LENGTH (type))
4928 xfer = TYPE_LENGTH (type) - offset;
4929 if (mips_debug)
4930 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4931 offset, xfer, regnum);
4932 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4933 in, out, offset);
4934 }
4935 }
4936}
4937
4938static void
4939mips_n32n64_extract_return_value (struct type *type,
4940 struct regcache *regcache,
ebba8386 4941 void *valbuf)
88658117
AC
4942{
4943 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4944}
4945
4946static void
4947mips_n32n64_store_return_value (struct type *type, char *valbuf)
4948{
4949 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
c906108c
SS
4950}
4951
2f1488ce
MS
4952static void
4953mips_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4954{
4955 /* Nothing to do -- push_arguments does all the work. */
4956}
4957
4958static CORE_ADDR
6672060b 4959mips_extract_struct_value_address (struct regcache *regcache)
2f1488ce
MS
4960{
4961 /* FIXME: This will only work at random. The caller passes the
4962 struct_return address in V0, but it is not preserved. It may
4963 still be there, or this may be a random value. */
77d8f2b4
MS
4964 LONGEST val;
4965
4966 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
6672060b 4967 return val;
2f1488ce
MS
4968}
4969
c906108c
SS
4970/* Exported procedure: Is PC in the signal trampoline code */
4971
102182a9
MS
4972static int
4973mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
4974{
4975 if (sigtramp_address == 0)
4976 fixup_sigtramp ();
4977 return (pc >= sigtramp_address && pc < sigtramp_end);
4978}
4979
a5ea2558
AC
4980/* Root of all "set mips "/"show mips " commands. This will eventually be
4981 used for all MIPS-specific commands. */
4982
a5ea2558 4983static void
acdb74a0 4984show_mips_command (char *args, int from_tty)
a5ea2558
AC
4985{
4986 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4987}
4988
a5ea2558 4989static void
acdb74a0 4990set_mips_command (char *args, int from_tty)
a5ea2558
AC
4991{
4992 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4993 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4994}
4995
c906108c
SS
4996/* Commands to show/set the MIPS FPU type. */
4997
c906108c 4998static void
acdb74a0 4999show_mipsfpu_command (char *args, int from_tty)
c906108c 5000{
c906108c
SS
5001 char *fpu;
5002 switch (MIPS_FPU_TYPE)
5003 {
5004 case MIPS_FPU_SINGLE:
5005 fpu = "single-precision";
5006 break;
5007 case MIPS_FPU_DOUBLE:
5008 fpu = "double-precision";
5009 break;
5010 case MIPS_FPU_NONE:
5011 fpu = "absent (none)";
5012 break;
93d56215
AC
5013 default:
5014 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
5015 }
5016 if (mips_fpu_type_auto)
5017 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5018 fpu);
5019 else
5020 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5021 fpu);
5022}
5023
5024
c906108c 5025static void
acdb74a0 5026set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
5027{
5028 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5029 show_mipsfpu_command (args, from_tty);
5030}
5031
c906108c 5032static void
acdb74a0 5033set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
5034{
5035 mips_fpu_type = MIPS_FPU_SINGLE;
5036 mips_fpu_type_auto = 0;
9e364162 5037 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
c906108c
SS
5038}
5039
c906108c 5040static void
acdb74a0 5041set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
5042{
5043 mips_fpu_type = MIPS_FPU_DOUBLE;
5044 mips_fpu_type_auto = 0;
9e364162 5045 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
c906108c
SS
5046}
5047
c906108c 5048static void
acdb74a0 5049set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
5050{
5051 mips_fpu_type = MIPS_FPU_NONE;
5052 mips_fpu_type_auto = 0;
9e364162 5053 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
c906108c
SS
5054}
5055
c906108c 5056static void
acdb74a0 5057set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
5058{
5059 mips_fpu_type_auto = 1;
5060}
5061
5062/* Command to set the processor type. */
5063
5064void
acdb74a0 5065mips_set_processor_type_command (char *args, int from_tty)
c906108c
SS
5066{
5067 int i;
5068
5069 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5070 {
5071 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5072 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5073 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5074
5075 /* Restore the value. */
4fcf66da 5076 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5077
5078 return;
5079 }
c5aa993b 5080
c906108c
SS
5081 if (!mips_set_processor_type (tmp_mips_processor_type))
5082 {
5083 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5084 /* Restore its value. */
4fcf66da 5085 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5086 }
5087}
5088
5089static void
acdb74a0 5090mips_show_processor_type_command (char *args, int from_tty)
c906108c
SS
5091{
5092}
5093
5094/* Modify the actual processor type. */
5095
5a89d8aa 5096static int
acdb74a0 5097mips_set_processor_type (char *str)
c906108c 5098{
1012bd0e 5099 int i;
c906108c
SS
5100
5101 if (str == NULL)
5102 return 0;
5103
5104 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5105 {
5106 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5107 {
5108 mips_processor_type = str;
cce74817 5109 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 5110 return 1;
c906108c
SS
5111 /* FIXME tweak fpu flag too */
5112 }
5113 }
5114
5115 return 0;
5116}
5117
5118/* Attempt to identify the particular processor model by reading the
5119 processor id. */
5120
5121char *
acdb74a0 5122mips_read_processor_type (void)
c906108c
SS
5123{
5124 CORE_ADDR prid;
5125
5126 prid = read_register (PRID_REGNUM);
5127
5128 if ((prid & ~0xf) == 0x700)
c5aa993b 5129 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
5130
5131 return NULL;
5132}
5133
5134/* Just like reinit_frame_cache, but with the right arguments to be
5135 callable as an sfunc. */
5136
5137static void
acdb74a0
AC
5138reinit_frame_cache_sfunc (char *args, int from_tty,
5139 struct cmd_list_element *c)
c906108c
SS
5140{
5141 reinit_frame_cache ();
5142}
5143
5144int
acdb74a0 5145gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
5146{
5147 mips_extra_func_info_t proc_desc;
5148
5149 /* Search for the function containing this address. Set the low bit
5150 of the address when searching, in case we were given an even address
5151 that is the start of a 16-bit function. If we didn't do this,
5152 the search would fail because the symbol table says the function
5153 starts at an odd address, i.e. 1 byte past the given address. */
5154 memaddr = ADDR_BITS_REMOVE (memaddr);
5155 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5156
5157 /* Make an attempt to determine if this is a 16-bit function. If
5158 the procedure descriptor exists and the address therein is odd,
5159 it's definitely a 16-bit function. Otherwise, we have to just
5160 guess that if the address passed in is odd, it's 16-bits. */
5161 if (proc_desc)
361d1df0 5162 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
65c11066 5163 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c 5164 else
361d1df0 5165 info->mach = pc_is_mips16 (memaddr) ?
65c11066 5166 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c
SS
5167
5168 /* Round down the instruction address to the appropriate boundary. */
65c11066 5169 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 5170
c906108c 5171 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 5172 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5173 return print_insn_big_mips (memaddr, info);
5174 else
5175 return print_insn_little_mips (memaddr, info);
5176}
5177
5178/* Old-style breakpoint macros.
5179 The IDT board uses an unusual breakpoint value, and sometimes gets
5180 confused when it sees the usual MIPS breakpoint instruction. */
5181
5182#define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
5183#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
5184#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
5185#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
5186#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
5187#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
5188#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
5189#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
5190
5191/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5192 counter value to determine whether a 16- or 32-bit breakpoint should be
5193 used. It returns a pointer to a string of bytes that encode a breakpoint
5194 instruction, stores the length of the string to *lenptr, and adjusts pc
5195 (if necessary) to point to the actual memory location where the
5196 breakpoint should be inserted. */
5197
f7ab6ec6 5198static const unsigned char *
acdb74a0 5199mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c 5200{
d7449b42 5201 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5202 {
5203 if (pc_is_mips16 (*pcptr))
5204 {
1012bd0e
EZ
5205 static unsigned char mips16_big_breakpoint[] =
5206 MIPS16_BIG_BREAKPOINT;
c906108c 5207 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 5208 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
5209 return mips16_big_breakpoint;
5210 }
5211 else
5212 {
1012bd0e
EZ
5213 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
5214 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
5215 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
c906108c 5216
c5aa993b 5217 *lenptr = sizeof (big_breakpoint);
c906108c
SS
5218
5219 if (strcmp (target_shortname, "mips") == 0)
5220 return idt_big_breakpoint;
5221 else if (strcmp (target_shortname, "ddb") == 0
5222 || strcmp (target_shortname, "pmon") == 0
5223 || strcmp (target_shortname, "lsi") == 0)
5224 return pmon_big_breakpoint;
5225 else
5226 return big_breakpoint;
5227 }
5228 }
5229 else
5230 {
5231 if (pc_is_mips16 (*pcptr))
5232 {
1012bd0e
EZ
5233 static unsigned char mips16_little_breakpoint[] =
5234 MIPS16_LITTLE_BREAKPOINT;
c906108c 5235 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 5236 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
5237 return mips16_little_breakpoint;
5238 }
5239 else
5240 {
1012bd0e
EZ
5241 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
5242 static unsigned char pmon_little_breakpoint[] =
5243 PMON_LITTLE_BREAKPOINT;
5244 static unsigned char idt_little_breakpoint[] =
5245 IDT_LITTLE_BREAKPOINT;
c906108c 5246
c5aa993b 5247 *lenptr = sizeof (little_breakpoint);
c906108c
SS
5248
5249 if (strcmp (target_shortname, "mips") == 0)
5250 return idt_little_breakpoint;
5251 else if (strcmp (target_shortname, "ddb") == 0
5252 || strcmp (target_shortname, "pmon") == 0
5253 || strcmp (target_shortname, "lsi") == 0)
5254 return pmon_little_breakpoint;
5255 else
5256 return little_breakpoint;
5257 }
5258 }
5259}
5260
5261/* If PC is in a mips16 call or return stub, return the address of the target
5262 PC, which is either the callee or the caller. There are several
5263 cases which must be handled:
5264
5265 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 5266 target PC is in $31 ($ra).
c906108c 5267 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 5268 and the target PC is in $2.
c906108c 5269 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5270 before the jal instruction, this is effectively a call stub
5271 and the the target PC is in $2. Otherwise this is effectively
5272 a return stub and the target PC is in $18.
c906108c
SS
5273
5274 See the source code for the stubs in gcc/config/mips/mips16.S for
5275 gory details.
5276
5277 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 5278 */
c906108c 5279
757a7cc6 5280static CORE_ADDR
acdb74a0 5281mips_skip_stub (CORE_ADDR pc)
c906108c
SS
5282{
5283 char *name;
5284 CORE_ADDR start_addr;
5285
5286 /* Find the starting address and name of the function containing the PC. */
5287 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5288 return 0;
5289
5290 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5291 target PC is in $31 ($ra). */
5292 if (strcmp (name, "__mips16_ret_sf") == 0
5293 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 5294 return read_signed_register (RA_REGNUM);
c906108c
SS
5295
5296 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5297 {
5298 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5299 and the target PC is in $2. */
5300 if (name[19] >= '0' && name[19] <= '9')
6c997a34 5301 return read_signed_register (2);
c906108c
SS
5302
5303 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5304 before the jal instruction, this is effectively a call stub
5305 and the the target PC is in $2. Otherwise this is effectively
5306 a return stub and the target PC is in $18. */
c906108c
SS
5307 else if (name[19] == 's' || name[19] == 'd')
5308 {
5309 if (pc == start_addr)
5310 {
5311 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
5312 stub. Such a stub for a function bar might have a name
5313 like __fn_stub_bar, and might look like this:
5314 mfc1 $4,$f13
5315 mfc1 $5,$f12
5316 mfc1 $6,$f15
5317 mfc1 $7,$f14
5318 la $1,bar (becomes a lui/addiu pair)
5319 jr $1
5320 So scan down to the lui/addi and extract the target
5321 address from those two instructions. */
c906108c 5322
6c997a34 5323 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
5324 t_inst inst;
5325 int i;
5326
5327 /* See if the name of the target function is __fn_stub_*. */
5328 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5329 return target_pc;
5330 if (strncmp (name, "__fn_stub_", 10) != 0
5331 && strcmp (name, "etext") != 0
5332 && strcmp (name, "_etext") != 0)
5333 return target_pc;
5334
5335 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
5336 The limit on the search is arbitrarily set to 20
5337 instructions. FIXME. */
c906108c
SS
5338 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5339 {
c5aa993b
JM
5340 inst = mips_fetch_instruction (target_pc);
5341 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5342 pc = (inst << 16) & 0xffff0000; /* high word */
5343 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5344 return pc | (inst & 0xffff); /* low word */
c906108c
SS
5345 }
5346
5347 /* Couldn't find the lui/addui pair, so return stub address. */
5348 return target_pc;
5349 }
5350 else
5351 /* This is the 'return' part of a call stub. The return
5352 address is in $r18. */
6c997a34 5353 return read_signed_register (18);
c906108c
SS
5354 }
5355 }
c5aa993b 5356 return 0; /* not a stub */
c906108c
SS
5357}
5358
5359
5360/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5361 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5362
757a7cc6 5363static int
acdb74a0 5364mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
5365{
5366 CORE_ADDR start_addr;
5367
5368 /* Find the starting address of the function containing the PC. If the
5369 caller didn't give us a name, look it up at the same time. */
5370 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5371 return 0;
5372
5373 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5374 {
5375 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5376 if (name[19] >= '0' && name[19] <= '9')
5377 return 1;
5378 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 5379 before the jal instruction, this is effectively a call stub. */
c906108c
SS
5380 else if (name[19] == 's' || name[19] == 'd')
5381 return pc == start_addr;
5382 }
5383
c5aa993b 5384 return 0; /* not a stub */
c906108c
SS
5385}
5386
5387
5388/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5389 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5390
e41b17f0 5391static int
acdb74a0 5392mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
5393{
5394 CORE_ADDR start_addr;
5395
5396 /* Find the starting address of the function containing the PC. */
5397 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5398 return 0;
5399
5400 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5401 if (strcmp (name, "__mips16_ret_sf") == 0
5402 || strcmp (name, "__mips16_ret_df") == 0)
5403 return 1;
5404
5405 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 5406 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
5407 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5408 && (name[19] == 's' || name[19] == 'd')
5409 && pc != start_addr)
5410 return 1;
5411
c5aa993b 5412 return 0; /* not a stub */
c906108c
SS
5413}
5414
5415
5416/* Return non-zero if the PC is in a library helper function that should
5417 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5418
5419int
acdb74a0 5420mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
5421{
5422 char *name;
5423
5424 /* Find the starting address and name of the function containing the PC. */
5425 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5426 return 0;
5427
5428 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5429 that we want to ignore. */
5430 return (strcmp (name, "__mips16_ret_sf") == 0
5431 || strcmp (name, "__mips16_ret_df") == 0);
5432}
5433
5434
5435/* Return a location where we can set a breakpoint that will be hit
5436 when an inferior function call returns. This is normally the
5437 program's entry point. Executables that don't have an entry
5438 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5439 whose address is the location where the breakpoint should be placed. */
5440
f7ab6ec6 5441static CORE_ADDR
acdb74a0 5442mips_call_dummy_address (void)
c906108c
SS
5443{
5444 struct minimal_symbol *sym;
5445
5446 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5447 if (sym)
5448 return SYMBOL_VALUE_ADDRESS (sym);
5449 else
5450 return entry_point_address ();
5451}
5452
5453
9dcb560c 5454/* If the current gcc for this target does not produce correct debugging
b9a8e3bf
JB
5455 information for float parameters, both prototyped and unprototyped, then
5456 define this macro. This forces gdb to always assume that floats are
5457 passed as doubles and then converted in the callee.
5458
5459 For the mips chip, it appears that the debug info marks the parameters as
5460 floats regardless of whether the function is prototyped, but the actual
5461 values are passed as doubles for the non-prototyped case and floats for
5462 the prototyped case. Thus we choose to make the non-prototyped case work
5463 for C and break the prototyped case, since the non-prototyped case is
5464 probably much more common. (FIXME). */
5465
5466static int
5467mips_coerce_float_to_double (struct type *formal, struct type *actual)
5468{
5469 return current_language->la_language == language_c;
5470}
5471
47a8d4ba
AC
5472/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5473 the register stored on the stack (32) is different to its real raw
5474 size (64). The below ensures that registers are fetched from the
5475 stack using their ABI size and then stored into the RAW_BUFFER
5476 using their raw size.
5477
5478 The alternative to adding this function would be to add an ABI
5479 macro - REGISTER_STACK_SIZE(). */
5480
5481static void
acdb74a0 5482mips_get_saved_register (char *raw_buffer,
795e1e11 5483 int *optimizedp,
acdb74a0
AC
5484 CORE_ADDR *addrp,
5485 struct frame_info *frame,
5486 int regnum,
795e1e11 5487 enum lval_type *lvalp)
47a8d4ba 5488{
795e1e11
AC
5489 CORE_ADDR addrx;
5490 enum lval_type lvalx;
5491 int optimizedx;
5492 int realnum;
47a8d4ba
AC
5493
5494 if (!target_has_registers)
5495 error ("No registers.");
5496
795e1e11
AC
5497 /* Make certain that all needed parameters are present. */
5498 if (addrp == NULL)
5499 addrp = &addrx;
5500 if (lvalp == NULL)
5501 lvalp = &lvalx;
5502 if (optimizedp == NULL)
5503 optimizedp = &optimizedx;
5504 frame_register_unwind (get_next_frame (frame), regnum, optimizedp, lvalp,
5505 addrp, &realnum, raw_buffer);
5506 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5507 have a pseudo register range that correspons to the ABI's, rather
5508 than the ISA's, view of registers. These registers would then
5509 implicitly describe their size and hence could be used without
5510 the below munging. */
5511 if ((*lvalp) == lval_memory)
47a8d4ba 5512 {
47a8d4ba
AC
5513 if (raw_buffer != NULL)
5514 {
47a8d4ba 5515 if (regnum < 32)
795e1e11
AC
5516 {
5517 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5518 saved. */
5519 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
5520 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5521 }
47a8d4ba
AC
5522 }
5523 }
47a8d4ba 5524}
2acceee2 5525
f7b9e9fc
AC
5526/* Immediately after a function call, return the saved pc.
5527 Can't always go through the frames for this because on some machines
5528 the new frame is not set up until the new function executes
5529 some instructions. */
5530
5531static CORE_ADDR
5532mips_saved_pc_after_call (struct frame_info *frame)
5533{
6c997a34 5534 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
5535}
5536
5537
88c72b7d
AC
5538/* Convert a dbx stab register number (from `r' declaration) to a gdb
5539 REGNUM */
5540
5541static int
5542mips_stab_reg_to_regnum (int num)
5543{
5544 if (num < 32)
5545 return num;
361d1df0 5546 else
88c72b7d
AC
5547 return num + FP0_REGNUM - 38;
5548}
5549
5550/* Convert a ecoff register number to a gdb REGNUM */
5551
5552static int
5553mips_ecoff_reg_to_regnum (int num)
5554{
5555 if (num < 32)
5556 return num;
5557 else
5558 return num + FP0_REGNUM - 32;
5559}
5560
fc0c74b1
AC
5561/* Convert an integer into an address. By first converting the value
5562 into a pointer and then extracting it signed, the address is
5563 guarenteed to be correctly sign extended. */
5564
5565static CORE_ADDR
5566mips_integer_to_address (struct type *type, void *buf)
5567{
5568 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5569 LONGEST val = unpack_long (type, buf);
5570 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5571 return extract_signed_integer (tmp,
5572 TYPE_LENGTH (builtin_type_void_data_ptr));
5573}
5574
caaa3122
DJ
5575static void
5576mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5577{
5578 enum mips_abi *abip = (enum mips_abi *) obj;
5579 const char *name = bfd_get_section_name (abfd, sect);
5580
5581 if (*abip != MIPS_ABI_UNKNOWN)
5582 return;
5583
5584 if (strncmp (name, ".mdebug.", 8) != 0)
5585 return;
5586
5587 if (strcmp (name, ".mdebug.abi32") == 0)
5588 *abip = MIPS_ABI_O32;
5589 else if (strcmp (name, ".mdebug.abiN32") == 0)
5590 *abip = MIPS_ABI_N32;
62a49b2c 5591 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 5592 *abip = MIPS_ABI_N64;
caaa3122
DJ
5593 else if (strcmp (name, ".mdebug.abiO64") == 0)
5594 *abip = MIPS_ABI_O64;
5595 else if (strcmp (name, ".mdebug.eabi32") == 0)
5596 *abip = MIPS_ABI_EABI32;
5597 else if (strcmp (name, ".mdebug.eabi64") == 0)
5598 *abip = MIPS_ABI_EABI64;
5599 else
5600 warning ("unsupported ABI %s.", name + 8);
5601}
5602
2e4ebe70
DJ
5603static enum mips_abi
5604global_mips_abi (void)
5605{
5606 int i;
5607
5608 for (i = 0; mips_abi_strings[i] != NULL; i++)
5609 if (mips_abi_strings[i] == mips_abi_string)
5610 return (enum mips_abi) i;
5611
5612 internal_error (__FILE__, __LINE__,
5613 "unknown ABI string");
5614}
5615
c2d11a7d 5616static struct gdbarch *
acdb74a0
AC
5617mips_gdbarch_init (struct gdbarch_info info,
5618 struct gdbarch_list *arches)
c2d11a7d
JM
5619{
5620 static LONGEST mips_call_dummy_words[] =
5621 {0};
5622 struct gdbarch *gdbarch;
5623 struct gdbarch_tdep *tdep;
5624 int elf_flags;
2e4ebe70 5625 enum mips_abi mips_abi, found_abi, wanted_abi;
70f80edf 5626 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
c2d11a7d 5627
1d06468c
EZ
5628 /* Reset the disassembly info, in case it was set to something
5629 non-default. */
5630 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5631 tm_print_insn_info.arch = bfd_arch_unknown;
5632 tm_print_insn_info.mach = 0;
5633
70f80edf
JT
5634 elf_flags = 0;
5635
5636 if (info.abfd)
5637 {
5638 /* First of all, extract the elf_flags, if available. */
5639 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5640 elf_flags = elf_elfheader (info.abfd)->e_flags;
5641
5642 /* Try to determine the OS ABI of the object we are loading. If
5643 we end up with `unknown', just leave it that way. */
5644 osabi = gdbarch_lookup_osabi (info.abfd);
5645 }
c2d11a7d 5646
102182a9 5647 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5648 switch ((elf_flags & EF_MIPS_ABI))
5649 {
5650 case E_MIPS_ABI_O32:
5651 mips_abi = MIPS_ABI_O32;
5652 break;
5653 case E_MIPS_ABI_O64:
5654 mips_abi = MIPS_ABI_O64;
5655 break;
5656 case E_MIPS_ABI_EABI32:
5657 mips_abi = MIPS_ABI_EABI32;
5658 break;
5659 case E_MIPS_ABI_EABI64:
4a7f7ba8 5660 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5661 break;
5662 default:
acdb74a0
AC
5663 if ((elf_flags & EF_MIPS_ABI2))
5664 mips_abi = MIPS_ABI_N32;
5665 else
5666 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5667 break;
5668 }
acdb74a0 5669
caaa3122
DJ
5670 /* GCC creates a pseudo-section whose name describes the ABI. */
5671 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5672 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5673
2e4ebe70
DJ
5674 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5675 Use the ABI from the last architecture if there is one. */
5676 if (info.abfd == NULL && arches != NULL)
5677 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5678
32a6503c 5679 /* Try the architecture for any hint of the correct ABI. */
bf64bfd6
AC
5680 if (mips_abi == MIPS_ABI_UNKNOWN
5681 && info.bfd_arch_info != NULL
5682 && info.bfd_arch_info->arch == bfd_arch_mips)
5683 {
5684 switch (info.bfd_arch_info->mach)
5685 {
5686 case bfd_mach_mips3900:
5687 mips_abi = MIPS_ABI_EABI32;
5688 break;
5689 case bfd_mach_mips4100:
5690 case bfd_mach_mips5000:
5691 mips_abi = MIPS_ABI_EABI64;
5692 break;
1d06468c
EZ
5693 case bfd_mach_mips8000:
5694 case bfd_mach_mips10000:
32a6503c
KB
5695 /* On Irix, ELF64 executables use the N64 ABI. The
5696 pseudo-sections which describe the ABI aren't present
5697 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5698 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5699 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5700 mips_abi = MIPS_ABI_N64;
5701 else
5702 mips_abi = MIPS_ABI_N32;
1d06468c 5703 break;
bf64bfd6
AC
5704 }
5705 }
2e4ebe70 5706
2e4ebe70
DJ
5707 if (mips_abi == MIPS_ABI_UNKNOWN)
5708 mips_abi = MIPS_ABI_O32;
5709
5710 /* Now that we have found what the ABI for this binary would be,
5711 check whether the user is overriding it. */
5712 found_abi = mips_abi;
5713 wanted_abi = global_mips_abi ();
5714 if (wanted_abi != MIPS_ABI_UNKNOWN)
5715 mips_abi = wanted_abi;
5716
4b9b3959
AC
5717 if (gdbarch_debug)
5718 {
5719 fprintf_unfiltered (gdb_stdlog,
9ace0497 5720 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 5721 elf_flags);
4b9b3959
AC
5722 fprintf_unfiltered (gdb_stdlog,
5723 "mips_gdbarch_init: mips_abi = %d\n",
5724 mips_abi);
2e4ebe70
DJ
5725 fprintf_unfiltered (gdb_stdlog,
5726 "mips_gdbarch_init: found_mips_abi = %d\n",
5727 found_abi);
4b9b3959 5728 }
0dadbba0 5729
c2d11a7d
JM
5730 /* try to find a pre-existing architecture */
5731 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5732 arches != NULL;
5733 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5734 {
5735 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5736 using. */
9103eae0 5737 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5738 continue;
9103eae0 5739 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5740 continue;
70f80edf
JT
5741 if (gdbarch_tdep (arches->gdbarch)->osabi == osabi)
5742 return arches->gdbarch;
c2d11a7d
JM
5743 }
5744
102182a9 5745 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5746 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5747 gdbarch = gdbarch_alloc (&info, tdep);
5748 tdep->elf_flags = elf_flags;
70f80edf 5749 tdep->osabi = osabi;
c2d11a7d 5750
102182a9 5751 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5752 set_gdbarch_short_bit (gdbarch, 16);
5753 set_gdbarch_int_bit (gdbarch, 32);
5754 set_gdbarch_float_bit (gdbarch, 32);
5755 set_gdbarch_double_bit (gdbarch, 64);
5756 set_gdbarch_long_double_bit (gdbarch, 64);
46cd78fb 5757 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
d05285fa
MS
5758 set_gdbarch_max_register_raw_size (gdbarch, 8);
5759 set_gdbarch_max_register_virtual_size (gdbarch, 8);
2e4ebe70 5760 tdep->found_abi = found_abi;
0dadbba0 5761 tdep->mips_abi = mips_abi;
1d06468c 5762
f7ab6ec6
MS
5763 set_gdbarch_elf_make_msymbol_special (gdbarch,
5764 mips_elf_make_msymbol_special);
5765
0dadbba0 5766 switch (mips_abi)
c2d11a7d 5767 {
0dadbba0 5768 case MIPS_ABI_O32:
46cac009 5769 set_gdbarch_push_arguments (gdbarch, mips_o32_push_arguments);
ebba8386 5770 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
cb1d2653 5771 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
a5ea2558 5772 tdep->mips_default_saved_regsize = 4;
0dadbba0 5773 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5774 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5775 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5776 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5777 tdep->gdb_target_is_mips64 = 0;
4014092b 5778 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5779 set_gdbarch_long_bit (gdbarch, 32);
5780 set_gdbarch_ptr_bit (gdbarch, 32);
5781 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5782 set_gdbarch_reg_struct_has_addr (gdbarch,
5783 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5784 set_gdbarch_use_struct_convention (gdbarch,
5785 mips_o32_use_struct_convention);
c2d11a7d 5786 break;
0dadbba0 5787 case MIPS_ABI_O64:
46cac009 5788 set_gdbarch_push_arguments (gdbarch, mips_o64_push_arguments);
ebba8386 5789 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
46cac009 5790 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
a5ea2558 5791 tdep->mips_default_saved_regsize = 8;
0dadbba0 5792 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5793 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5794 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5795 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5796 tdep->gdb_target_is_mips64 = 1;
361d1df0 5797 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5798 set_gdbarch_long_bit (gdbarch, 32);
5799 set_gdbarch_ptr_bit (gdbarch, 32);
5800 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5801 set_gdbarch_reg_struct_has_addr (gdbarch,
5802 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5803 set_gdbarch_use_struct_convention (gdbarch,
5804 mips_o32_use_struct_convention);
c2d11a7d 5805 break;
0dadbba0 5806 case MIPS_ABI_EABI32:
46e0f506 5807 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
ebba8386 5808 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5809 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5810 tdep->mips_default_saved_regsize = 4;
0dadbba0 5811 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5812 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5813 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5814 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5815 tdep->gdb_target_is_mips64 = 0;
4014092b 5816 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5817 set_gdbarch_long_bit (gdbarch, 32);
5818 set_gdbarch_ptr_bit (gdbarch, 32);
5819 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5820 set_gdbarch_reg_struct_has_addr (gdbarch,
5821 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5822 set_gdbarch_use_struct_convention (gdbarch,
5823 mips_eabi_use_struct_convention);
c2d11a7d 5824 break;
0dadbba0 5825 case MIPS_ABI_EABI64:
46e0f506 5826 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
ebba8386 5827 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5828 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5829 tdep->mips_default_saved_regsize = 8;
0dadbba0 5830 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5831 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5832 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5833 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5834 tdep->gdb_target_is_mips64 = 1;
4014092b 5835 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5836 set_gdbarch_long_bit (gdbarch, 64);
5837 set_gdbarch_ptr_bit (gdbarch, 64);
5838 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5839 set_gdbarch_reg_struct_has_addr (gdbarch,
5840 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5841 set_gdbarch_use_struct_convention (gdbarch,
5842 mips_eabi_use_struct_convention);
c2d11a7d 5843 break;
0dadbba0 5844 case MIPS_ABI_N32:
cb3d25d1 5845 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
ebba8386 5846 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5847 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
63db5580 5848 tdep->mips_default_saved_regsize = 8;
0dadbba0
AC
5849 tdep->mips_default_stack_argsize = 8;
5850 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5851 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5852 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
6acdf5c7 5853 tdep->gdb_target_is_mips64 = 1;
4014092b 5854 tdep->default_mask_address_p = 0;
0dadbba0
AC
5855 set_gdbarch_long_bit (gdbarch, 32);
5856 set_gdbarch_ptr_bit (gdbarch, 32);
5857 set_gdbarch_long_long_bit (gdbarch, 64);
1d06468c
EZ
5858
5859 /* Set up the disassembler info, so that we get the right
28d169de
KB
5860 register names from libopcodes. */
5861 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5862 tm_print_insn_info.arch = bfd_arch_mips;
5863 if (info.bfd_arch_info != NULL
5864 && info.bfd_arch_info->arch == bfd_arch_mips
5865 && info.bfd_arch_info->mach)
5866 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5867 else
5868 tm_print_insn_info.mach = bfd_mach_mips8000;
cb811fe7
MS
5869
5870 set_gdbarch_use_struct_convention (gdbarch,
5871 mips_n32n64_use_struct_convention);
8b389c40
MS
5872 set_gdbarch_reg_struct_has_addr (gdbarch,
5873 mips_n32n64_reg_struct_has_addr);
28d169de
KB
5874 break;
5875 case MIPS_ABI_N64:
cb3d25d1 5876 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
ebba8386 5877 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5878 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
28d169de
KB
5879 tdep->mips_default_saved_regsize = 8;
5880 tdep->mips_default_stack_argsize = 8;
5881 tdep->mips_fp_register_double = 1;
5882 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5883 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
28d169de
KB
5884 tdep->gdb_target_is_mips64 = 1;
5885 tdep->default_mask_address_p = 0;
5886 set_gdbarch_long_bit (gdbarch, 64);
5887 set_gdbarch_ptr_bit (gdbarch, 64);
5888 set_gdbarch_long_long_bit (gdbarch, 64);
5889
5890 /* Set up the disassembler info, so that we get the right
1d06468c
EZ
5891 register names from libopcodes. */
5892 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5893 tm_print_insn_info.arch = bfd_arch_mips;
5894 if (info.bfd_arch_info != NULL
5895 && info.bfd_arch_info->arch == bfd_arch_mips
5896 && info.bfd_arch_info->mach)
5897 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5898 else
5899 tm_print_insn_info.mach = bfd_mach_mips8000;
cb811fe7
MS
5900
5901 set_gdbarch_use_struct_convention (gdbarch,
5902 mips_n32n64_use_struct_convention);
8b389c40
MS
5903 set_gdbarch_reg_struct_has_addr (gdbarch,
5904 mips_n32n64_reg_struct_has_addr);
0dadbba0 5905 break;
c2d11a7d 5906 default:
2e4ebe70
DJ
5907 internal_error (__FILE__, __LINE__,
5908 "unknown ABI in switch");
c2d11a7d
JM
5909 }
5910
a5ea2558
AC
5911 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5912 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5913 comment:
5914
5915 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5916 flag in object files because to do so would make it impossible to
102182a9 5917 link with libraries compiled without "-gp32". This is
a5ea2558 5918 unnecessarily restrictive.
361d1df0 5919
a5ea2558
AC
5920 We could solve this problem by adding "-gp32" multilibs to gcc,
5921 but to set this flag before gcc is built with such multilibs will
5922 break too many systems.''
5923
5924 But even more unhelpfully, the default linker output target for
5925 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5926 for 64-bit programs - you need to change the ABI to change this,
102182a9 5927 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5928 this flag to detect 32-bit mode would do the wrong thing given
5929 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5930 as 32-bit programs by default. */
a5ea2558 5931
c2d11a7d
JM
5932 /* enable/disable the MIPS FPU */
5933 if (!mips_fpu_type_auto)
5934 tdep->mips_fpu_type = mips_fpu_type;
5935 else if (info.bfd_arch_info != NULL
5936 && info.bfd_arch_info->arch == bfd_arch_mips)
5937 switch (info.bfd_arch_info->mach)
5938 {
b0069a17 5939 case bfd_mach_mips3900:
c2d11a7d 5940 case bfd_mach_mips4100:
ed9a39eb 5941 case bfd_mach_mips4111:
c2d11a7d
JM
5942 tdep->mips_fpu_type = MIPS_FPU_NONE;
5943 break;
bf64bfd6
AC
5944 case bfd_mach_mips4650:
5945 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5946 break;
c2d11a7d
JM
5947 default:
5948 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5949 break;
5950 }
5951 else
5952 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5953
5954 /* MIPS version of register names. NOTE: At present the MIPS
5955 register name management is part way between the old -
5956 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
102182a9 5957 Further work on it is required. */
18f81521
MS
5958 /* NOTE: many targets (esp. embedded) do not go thru the
5959 gdbarch_register_name vector at all, instead bypassing it
5960 by defining REGISTER_NAMES. */
c2d11a7d 5961 set_gdbarch_register_name (gdbarch, mips_register_name);
6c997a34 5962 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d 5963 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
a094c6fb 5964 set_gdbarch_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
bcb0cc15 5965 set_gdbarch_read_sp (gdbarch, mips_read_sp);
c2d11a7d
JM
5966 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
5967
102182a9
MS
5968 /* Add/remove bits from an address. The MIPS needs be careful to
5969 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5970 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5971
10312cc4
AC
5972 /* There's a mess in stack frame creation. See comments in
5973 blockframe.c near reference to INIT_FRAME_PC_FIRST. */
5974 set_gdbarch_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
7824d2f2 5975 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
10312cc4 5976
102182a9 5977 /* Map debug register numbers onto internal register numbers. */
88c72b7d
AC
5978 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5979 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
5980
c2d11a7d
JM
5981 /* Initialize a frame */
5982 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
d28e01f4 5983 set_gdbarch_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
c2d11a7d
JM
5984
5985 /* MIPS version of CALL_DUMMY */
5986
5987 set_gdbarch_call_dummy_p (gdbarch, 1);
5988 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
cedea778 5989#if OLD_STYLE_MIPS_DUMMY_FRAMES
c2d11a7d 5990 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
cedea778
AC
5991#else
5992 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
5993#endif
c2d11a7d
JM
5994 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
5995 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
f7ab6ec6 5996 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
cedea778 5997#if OLD_STYLE_MIPS_DUMMY_FRAMES
f7ab6ec6 5998 set_gdbarch_push_dummy_frame (gdbarch, mips_push_dummy_frame);
cedea778
AC
5999#else
6000 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
6001#endif
f7ab6ec6 6002 set_gdbarch_pop_frame (gdbarch, mips_pop_frame);
c2d11a7d
JM
6003 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
6004 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
6005 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
6006 set_gdbarch_call_dummy_length (gdbarch, 0);
f7ab6ec6 6007 set_gdbarch_fix_call_dummy (gdbarch, mips_fix_call_dummy);
cedea778 6008#if OLD_STYLE_MIPS_DUMMY_FRAMES
c2d11a7d 6009 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
cedea778
AC
6010#else
6011 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
6012#endif
c2d11a7d
JM
6013 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
6014 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
6015 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
dc604539 6016 set_gdbarch_frame_align (gdbarch, mips_frame_align);
cedea778
AC
6017#if OLD_STYLE_MIPS_DUMMY_FRAMES
6018#else
6019 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
6020#endif
bf1f5b4c 6021 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
d05285fa
MS
6022 set_gdbarch_register_convert_to_virtual (gdbarch,
6023 mips_register_convert_to_virtual);
6024 set_gdbarch_register_convert_to_raw (gdbarch,
6025 mips_register_convert_to_raw);
6026
b9a8e3bf 6027 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
c2d11a7d 6028
b5d1566e 6029 set_gdbarch_frame_chain (gdbarch, mips_frame_chain);
c4093a6a 6030 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
b5d1566e
MS
6031 set_gdbarch_frameless_function_invocation (gdbarch,
6032 generic_frameless_function_invocation_not);
6033 set_gdbarch_frame_saved_pc (gdbarch, mips_frame_saved_pc);
6034 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
6035 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
6036 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
6037 set_gdbarch_frame_args_skip (gdbarch, 0);
6038
47a8d4ba 6039 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 6040
f7b9e9fc
AC
6041 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6042 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6043 set_gdbarch_decr_pc_after_break (gdbarch, 0);
f7b9e9fc
AC
6044
6045 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6046 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
6047
fc0c74b1
AC
6048 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6049 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6050 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 6051
102182a9
MS
6052 set_gdbarch_function_start_offset (gdbarch, 0);
6053
32a6503c
KB
6054 /* There are MIPS targets which do not yet use this since they still
6055 define REGISTER_VIRTUAL_TYPE. */
78fde5f8 6056 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
102182a9 6057 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
78fde5f8 6058
903ad3a6 6059 set_gdbarch_deprecated_do_registers_info (gdbarch, mips_do_registers_info);
102182a9 6060 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
bf1f5b4c 6061
70f80edf
JT
6062 /* Hook in OS ABI-specific overrides, if they have been registered. */
6063 gdbarch_init_osabi (info, gdbarch, osabi);
6064
2f1488ce
MS
6065 set_gdbarch_store_struct_return (gdbarch, mips_store_struct_return);
6066 set_gdbarch_extract_struct_value_address (gdbarch,
6067 mips_extract_struct_value_address);
757a7cc6
MS
6068
6069 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6070
6071 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
e41b17f0 6072 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
757a7cc6 6073
4b9b3959
AC
6074 return gdbarch;
6075}
6076
2e4ebe70
DJ
6077static void
6078mips_abi_update (char *ignore_args, int from_tty,
6079 struct cmd_list_element *c)
6080{
6081 struct gdbarch_info info;
6082
6083 /* Force the architecture to update, and (if it's a MIPS architecture)
6084 mips_gdbarch_init will take care of the rest. */
6085 gdbarch_info_init (&info);
6086 gdbarch_update_p (info);
6087}
6088
4b9b3959
AC
6089static void
6090mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6091{
6092 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6093 if (tdep != NULL)
c2d11a7d 6094 {
acdb74a0
AC
6095 int ef_mips_arch;
6096 int ef_mips_32bitmode;
6097 /* determine the ISA */
6098 switch (tdep->elf_flags & EF_MIPS_ARCH)
6099 {
6100 case E_MIPS_ARCH_1:
6101 ef_mips_arch = 1;
6102 break;
6103 case E_MIPS_ARCH_2:
6104 ef_mips_arch = 2;
6105 break;
6106 case E_MIPS_ARCH_3:
6107 ef_mips_arch = 3;
6108 break;
6109 case E_MIPS_ARCH_4:
93d56215 6110 ef_mips_arch = 4;
acdb74a0
AC
6111 break;
6112 default:
93d56215 6113 ef_mips_arch = 0;
acdb74a0
AC
6114 break;
6115 }
6116 /* determine the size of a pointer */
6117 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
6118 fprintf_unfiltered (file,
6119 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 6120 tdep->elf_flags);
4b9b3959 6121 fprintf_unfiltered (file,
acdb74a0
AC
6122 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6123 ef_mips_32bitmode);
6124 fprintf_unfiltered (file,
6125 "mips_dump_tdep: ef_mips_arch = %d\n",
6126 ef_mips_arch);
6127 fprintf_unfiltered (file,
6128 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6129 tdep->mips_abi,
2e4ebe70 6130 mips_abi_strings[tdep->mips_abi]);
4014092b
AC
6131 fprintf_unfiltered (file,
6132 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6133 mips_mask_address_p (),
6134 tdep->default_mask_address_p);
c2d11a7d 6135 }
4b9b3959
AC
6136 fprintf_unfiltered (file,
6137 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6138 FP_REGISTER_DOUBLE);
6139 fprintf_unfiltered (file,
6140 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6141 MIPS_DEFAULT_FPU_TYPE,
6142 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6143 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6144 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6145 : "???"));
6146 fprintf_unfiltered (file,
6147 "mips_dump_tdep: MIPS_EABI = %d\n",
6148 MIPS_EABI);
6149 fprintf_unfiltered (file,
acdb74a0
AC
6150 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6151 MIPS_LAST_FP_ARG_REGNUM,
6152 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4b9b3959
AC
6153 fprintf_unfiltered (file,
6154 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6155 MIPS_FPU_TYPE,
6156 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6157 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6158 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6159 : "???"));
6160 fprintf_unfiltered (file,
6161 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6162 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
6163 fprintf_unfiltered (file,
6164 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6165 FP_REGISTER_DOUBLE);
4b9b3959
AC
6166 fprintf_unfiltered (file,
6167 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6168 MIPS_DEFAULT_STACK_ARGSIZE);
6169 fprintf_unfiltered (file,
6170 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6171 MIPS_STACK_ARGSIZE);
6172 fprintf_unfiltered (file,
6173 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6174 MIPS_REGSIZE);
2475bac3
AC
6175 fprintf_unfiltered (file,
6176 "mips_dump_tdep: A0_REGNUM = %d\n",
6177 A0_REGNUM);
6178 fprintf_unfiltered (file,
6179 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6180 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6181 fprintf_unfiltered (file,
6182 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6183 XSTRING (ATTACH_DETACH));
6184 fprintf_unfiltered (file,
6185 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6186 BADVADDR_REGNUM);
6187 fprintf_unfiltered (file,
6188 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
6189 fprintf_unfiltered (file,
6190 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6191 CAUSE_REGNUM);
2475bac3
AC
6192 fprintf_unfiltered (file,
6193 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6194 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6195 fprintf_unfiltered (file,
6196 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6197 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
2475bac3
AC
6198 fprintf_unfiltered (file,
6199 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6200 FCRCS_REGNUM);
6201 fprintf_unfiltered (file,
6202 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6203 FCRIR_REGNUM);
6204 fprintf_unfiltered (file,
6205 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6206 FIRST_EMBED_REGNUM);
6207 fprintf_unfiltered (file,
6208 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6209 FPA0_REGNUM);
6210 fprintf_unfiltered (file,
6211 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6212 GDB_TARGET_IS_MIPS64);
6213 fprintf_unfiltered (file,
6214 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
6215 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
6218 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
6219 fprintf_unfiltered (file,
6220 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
6221 GEN_REG_SAVE_MASK);
6222 fprintf_unfiltered (file,
6223 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6224 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: HI_REGNUM = %d\n",
6227 HI_REGNUM);
6228 fprintf_unfiltered (file,
6229 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
6230 fprintf_unfiltered (file,
6231 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
6232 fprintf_unfiltered (file,
6233 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6234 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6237 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6238 fprintf_unfiltered (file,
6239 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6240 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6241 fprintf_unfiltered (file,
6242 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6243 fprintf_unfiltered (file,
6244 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6245 LAST_EMBED_REGNUM);
6246 fprintf_unfiltered (file,
6247 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
6248 fprintf_unfiltered (file,
6249 "mips_dump_tdep: LO_REGNUM = %d\n",
6250 LO_REGNUM);
6251#ifdef MACHINE_CPROC_FP_OFFSET
6252 fprintf_unfiltered (file,
6253 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6254 MACHINE_CPROC_FP_OFFSET);
6255#endif
6256#ifdef MACHINE_CPROC_PC_OFFSET
6257 fprintf_unfiltered (file,
6258 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6259 MACHINE_CPROC_PC_OFFSET);
6260#endif
6261#ifdef MACHINE_CPROC_SP_OFFSET
6262 fprintf_unfiltered (file,
6263 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6264 MACHINE_CPROC_SP_OFFSET);
6265#endif
6266 fprintf_unfiltered (file,
6267 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
6268 fprintf_unfiltered (file,
6269 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
6270 fprintf_unfiltered (file,
6271 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6272 MIPS16_INSTLEN);
6273 fprintf_unfiltered (file,
6274 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
6275 fprintf_unfiltered (file,
6276 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6277 fprintf_unfiltered (file,
6278 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6279 fprintf_unfiltered (file,
6280 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6281 MIPS_INSTLEN);
6282 fprintf_unfiltered (file,
acdb74a0
AC
6283 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6284 MIPS_LAST_ARG_REGNUM,
6285 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
6286 fprintf_unfiltered (file,
6287 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6288 MIPS_NUMREGS);
6289 fprintf_unfiltered (file,
6290 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6291 fprintf_unfiltered (file,
6292 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6293 MIPS_SAVED_REGSIZE);
2475bac3
AC
6294 fprintf_unfiltered (file,
6295 "mips_dump_tdep: OP_LDFPR = used?\n");
6296 fprintf_unfiltered (file,
6297 "mips_dump_tdep: OP_LDGPR = used?\n");
6298 fprintf_unfiltered (file,
6299 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
6300 fprintf_unfiltered (file,
6301 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
6302 fprintf_unfiltered (file,
6303 "mips_dump_tdep: PRID_REGNUM = %d\n",
6304 PRID_REGNUM);
6305 fprintf_unfiltered (file,
6306 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6307 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6308 fprintf_unfiltered (file,
6309 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6310 fprintf_unfiltered (file,
6311 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6312 fprintf_unfiltered (file,
6313 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6314 fprintf_unfiltered (file,
6315 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6316 fprintf_unfiltered (file,
6317 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6318 fprintf_unfiltered (file,
6319 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6320 fprintf_unfiltered (file,
6321 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6322 fprintf_unfiltered (file,
6323 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6324 fprintf_unfiltered (file,
6325 "mips_dump_tdep: PROC_PC_REG = function?\n");
6326 fprintf_unfiltered (file,
6327 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6328 fprintf_unfiltered (file,
6329 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6330 fprintf_unfiltered (file,
6331 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6332 fprintf_unfiltered (file,
6333 "mips_dump_tdep: PS_REGNUM = %d\n",
6334 PS_REGNUM);
6335 fprintf_unfiltered (file,
6336 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
6337 PUSH_FP_REGNUM);
6338 fprintf_unfiltered (file,
6339 "mips_dump_tdep: RA_REGNUM = %d\n",
6340 RA_REGNUM);
6341 fprintf_unfiltered (file,
6342 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6343 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6344 fprintf_unfiltered (file,
6345 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6346 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6347 fprintf_unfiltered (file,
6348 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6349 fprintf_unfiltered (file,
6350 "mips_dump_tdep: ROUND_DOWN = function?\n");
6351 fprintf_unfiltered (file,
6352 "mips_dump_tdep: ROUND_UP = function?\n");
6353#ifdef SAVED_BYTES
6354 fprintf_unfiltered (file,
6355 "mips_dump_tdep: SAVED_BYTES = %d\n",
6356 SAVED_BYTES);
6357#endif
6358#ifdef SAVED_FP
6359 fprintf_unfiltered (file,
6360 "mips_dump_tdep: SAVED_FP = %d\n",
6361 SAVED_FP);
6362#endif
6363#ifdef SAVED_PC
6364 fprintf_unfiltered (file,
6365 "mips_dump_tdep: SAVED_PC = %d\n",
6366 SAVED_PC);
6367#endif
6368 fprintf_unfiltered (file,
6369 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6370 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6371 fprintf_unfiltered (file,
6372 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6373 fprintf_unfiltered (file,
6374 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6375 SIGFRAME_BASE);
6376 fprintf_unfiltered (file,
6377 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6378 SIGFRAME_FPREGSAVE_OFF);
6379 fprintf_unfiltered (file,
6380 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6381 SIGFRAME_PC_OFF);
6382 fprintf_unfiltered (file,
6383 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6384 SIGFRAME_REGSAVE_OFF);
6385 fprintf_unfiltered (file,
6386 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6387 SIGFRAME_REG_SIZE);
6388 fprintf_unfiltered (file,
6389 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6390 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6391 fprintf_unfiltered (file,
6392 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6393 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6394 fprintf_unfiltered (file,
b0ed3589
AC
6395 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6396 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
6397 fprintf_unfiltered (file,
6398 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6399 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6400#ifdef STACK_END_ADDR
6401 fprintf_unfiltered (file,
6402 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6403 STACK_END_ADDR);
6404#endif
6405 fprintf_unfiltered (file,
6406 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6407 XSTRING (STEP_SKIPS_DELAY (PC)));
6408 fprintf_unfiltered (file,
6409 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6410 STEP_SKIPS_DELAY_P);
6411 fprintf_unfiltered (file,
6412 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6413 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6414 fprintf_unfiltered (file,
6415 "mips_dump_tdep: T9_REGNUM = %d\n",
6416 T9_REGNUM);
6417 fprintf_unfiltered (file,
6418 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6419 fprintf_unfiltered (file,
6420 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6421 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6422 fprintf_unfiltered (file,
6423 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6424 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6425 fprintf_unfiltered (file,
6426 "mips_dump_tdep: TARGET_MIPS = used?\n");
6427 fprintf_unfiltered (file,
6428 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6429 XSTRING (TM_PRINT_INSN_MACH));
6430#ifdef TRACE_CLEAR
6431 fprintf_unfiltered (file,
6432 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6433 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6434#endif
6435#ifdef TRACE_FLAVOR
6436 fprintf_unfiltered (file,
6437 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6438 TRACE_FLAVOR);
6439#endif
6440#ifdef TRACE_FLAVOR_SIZE
6441 fprintf_unfiltered (file,
6442 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6443 TRACE_FLAVOR_SIZE);
6444#endif
6445#ifdef TRACE_SET
6446 fprintf_unfiltered (file,
6447 "mips_dump_tdep: TRACE_SET # %s\n",
6448 XSTRING (TRACE_SET (X,STATE)));
6449#endif
6450 fprintf_unfiltered (file,
6451 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6452#ifdef UNUSED_REGNUM
6453 fprintf_unfiltered (file,
6454 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6455 UNUSED_REGNUM);
6456#endif
6457 fprintf_unfiltered (file,
6458 "mips_dump_tdep: V0_REGNUM = %d\n",
6459 V0_REGNUM);
6460 fprintf_unfiltered (file,
6461 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6462 (long) VM_MIN_ADDRESS);
6463#ifdef VX_NUM_REGS
6464 fprintf_unfiltered (file,
6465 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6466 VX_NUM_REGS);
6467#endif
6468 fprintf_unfiltered (file,
6469 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6470 ZERO_REGNUM);
6471 fprintf_unfiltered (file,
6472 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6473 _PROC_MAGIC_);
70f80edf
JT
6474
6475 fprintf_unfiltered (file,
6476 "mips_dump_tdep: OS ABI = %s\n",
6477 gdbarch_osabi_name (tdep->osabi));
c2d11a7d
JM
6478}
6479
c906108c 6480void
acdb74a0 6481_initialize_mips_tdep (void)
c906108c
SS
6482{
6483 static struct cmd_list_element *mipsfpulist = NULL;
6484 struct cmd_list_element *c;
6485
2e4ebe70
DJ
6486 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6487 if (MIPS_ABI_LAST + 1
6488 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6489 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6490
4b9b3959 6491 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c5aa993b 6492 if (!tm_print_insn) /* Someone may have already set it */
c906108c
SS
6493 tm_print_insn = gdb_print_insn_mips;
6494
a5ea2558
AC
6495 /* Add root prefix command for all "set mips"/"show mips" commands */
6496 add_prefix_cmd ("mips", no_class, set_mips_command,
6497 "Various MIPS specific commands.",
6498 &setmipscmdlist, "set mips ", 0, &setlist);
6499
6500 add_prefix_cmd ("mips", no_class, show_mips_command,
6501 "Various MIPS specific commands.",
6502 &showmipscmdlist, "show mips ", 0, &showlist);
6503
6504 /* Allow the user to override the saved register size. */
6505 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
6506 class_obscure,
6507 size_enums,
6508 &mips_saved_regsize_string, "\
a5ea2558
AC
6509Set size of general purpose registers saved on the stack.\n\
6510This option can be set to one of:\n\
6511 32 - Force GDB to treat saved GP registers as 32-bit\n\
6512 64 - Force GDB to treat saved GP registers as 64-bit\n\
6513 auto - Allow GDB to use the target's default setting or autodetect the\n\
6514 saved GP register size from information contained in the executable.\n\
6515 (default: auto)",
1ed2a135 6516 &setmipscmdlist),
a5ea2558
AC
6517 &showmipscmdlist);
6518
d929b26f
AC
6519 /* Allow the user to override the argument stack size. */
6520 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6521 class_obscure,
6522 size_enums,
1ed2a135 6523 &mips_stack_argsize_string, "\
d929b26f
AC
6524Set the amount of stack space reserved for each argument.\n\
6525This option can be set to one of:\n\
6526 32 - Force GDB to allocate 32-bit chunks per argument\n\
6527 64 - Force GDB to allocate 64-bit chunks per argument\n\
6528 auto - Allow GDB to determine the correct setting from the current\n\
6529 target and executable (default)",
6530 &setmipscmdlist),
6531 &showmipscmdlist);
6532
2e4ebe70
DJ
6533 /* Allow the user to override the ABI. */
6534 c = add_set_enum_cmd
6535 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6536 "Set the ABI used by this program.\n"
6537 "This option can be set to one of:\n"
6538 " auto - the default ABI associated with the current binary\n"
6539 " o32\n"
6540 " o64\n"
6541 " n32\n"
f3a7b3a5 6542 " n64\n"
2e4ebe70
DJ
6543 " eabi32\n"
6544 " eabi64",
6545 &setmipscmdlist);
6546 add_show_from_set (c, &showmipscmdlist);
6547 set_cmd_sfunc (c, mips_abi_update);
6548
c906108c
SS
6549 /* Let the user turn off floating point and set the fence post for
6550 heuristic_proc_start. */
6551
6552 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6553 "Set use of MIPS floating-point coprocessor.",
6554 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6555 add_cmd ("single", class_support, set_mipsfpu_single_command,
6556 "Select single-precision MIPS floating-point coprocessor.",
6557 &mipsfpulist);
6558 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 6559 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
6560 &mipsfpulist);
6561 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6562 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6563 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6564 add_cmd ("none", class_support, set_mipsfpu_none_command,
6565 "Select no MIPS floating-point coprocessor.",
6566 &mipsfpulist);
6567 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6568 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6569 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6570 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6571 "Select MIPS floating-point coprocessor automatically.",
6572 &mipsfpulist);
6573 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6574 "Show current use of MIPS floating-point coprocessor target.",
6575 &showlist);
6576
c906108c
SS
6577 /* We really would like to have both "0" and "unlimited" work, but
6578 command.c doesn't deal with that. So make it a var_zinteger
6579 because the user can always use "999999" or some such for unlimited. */
6580 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6581 (char *) &heuristic_fence_post,
6582 "\
6583Set the distance searched for the start of a function.\n\
6584If you are debugging a stripped executable, GDB needs to search through the\n\
6585program for the start of a function. This command sets the distance of the\n\
6586search. The only need to set it is when debugging a stripped executable.",
6587 &setlist);
6588 /* We need to throw away the frame cache when we set this, since it
6589 might change our ability to get backtraces. */
9f60d481 6590 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
6591 add_show_from_set (c, &showlist);
6592
6593 /* Allow the user to control whether the upper bits of 64-bit
6594 addresses should be zeroed. */
e9e68a56
AC
6595 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6596Set zeroing of upper 32 bits of 64-bit addresses.\n\
6597Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6598allow GDB to determine the correct value.\n", "\
6599Show zeroing of upper 32 bits of 64-bit addresses.",
6600 NULL, show_mask_address,
6601 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
6602
6603 /* Allow the user to control the size of 32 bit registers within the
6604 raw remote packet. */
6605 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6606 class_obscure,
6607 var_boolean,
6608 (char *)&mips64_transfers_32bit_regs_p, "\
6609Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6610Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6611that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
661264 bits for others. Use \"off\" to disable compatibility mode",
6613 &setlist),
6614 &showlist);
9ace0497
AC
6615
6616 /* Debug this files internals. */
6617 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6618 &mips_debug, "Set mips debugging.\n\
6619When non-zero, mips specific debugging is enabled.", &setdebuglist),
6620 &showdebuglist);
c906108c 6621}
This page took 0.655581 seconds and 4 git commands to generate.