Commit | Line | Data |
---|---|---|
342ee437 MS |
1 | /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger. |
2 | ||
42a4f53d | 3 | Copyright (C) 1996-2019 Free Software Foundation, Inc. |
342ee437 MS |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
342ee437 MS |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
342ee437 | 19 | |
342ee437 MS |
20 | #include "defs.h" |
21 | #include "arch-utils.h" | |
22 | #include "dis-asm.h" | |
23 | #include "gdbtypes.h" | |
24 | #include "regcache.h" | |
025bb325 | 25 | #include "gdbcore.h" /* For write_memory_unsigned_integer. */ |
342ee437 | 26 | #include "value.h" |
342ee437 MS |
27 | #include "frame.h" |
28 | #include "frame-unwind.h" | |
29 | #include "frame-base.h" | |
342ee437 MS |
30 | #include "symtab.h" |
31 | #include "dwarf2-frame.h" | |
697e3bc9 | 32 | #include "osabi.h" |
ee3a2f01 | 33 | #include "infcall.h" |
6c02c64c | 34 | #include "prologue-value.h" |
effa26a9 | 35 | #include "target.h" |
342ee437 MS |
36 | |
37 | #include "mn10300-tdep.h" | |
38 | ||
6c02c64c KB |
39 | |
40 | /* The am33-2 has 64 registers. */ | |
41 | #define MN10300_MAX_NUM_REGS 64 | |
42 | ||
b8b6e72f AH |
43 | /* Big enough to hold the size of the largest register in bytes. */ |
44 | #define MN10300_MAX_REGISTER_SIZE 64 | |
45 | ||
6c02c64c KB |
46 | /* This structure holds the results of a prologue analysis. */ |
47 | struct mn10300_prologue | |
48 | { | |
d80b854b UW |
49 | /* The architecture for which we generated this prologue info. */ |
50 | struct gdbarch *gdbarch; | |
51 | ||
6c02c64c KB |
52 | /* The offset from the frame base to the stack pointer --- always |
53 | zero or negative. | |
54 | ||
55 | Calling this a "size" is a bit misleading, but given that the | |
56 | stack grows downwards, using offsets for everything keeps one | |
57 | from going completely sign-crazy: you never change anything's | |
58 | sign for an ADD instruction; always change the second operand's | |
59 | sign for a SUB instruction; and everything takes care of | |
60 | itself. */ | |
61 | int frame_size; | |
62 | ||
63 | /* Non-zero if this function has initialized the frame pointer from | |
64 | the stack pointer, zero otherwise. */ | |
65 | int has_frame_ptr; | |
66 | ||
67 | /* If has_frame_ptr is non-zero, this is the offset from the frame | |
68 | base to where the frame pointer points. This is always zero or | |
69 | negative. */ | |
70 | int frame_ptr_offset; | |
71 | ||
72 | /* The address of the first instruction at which the frame has been | |
73 | set up and the arguments are where the debug info says they are | |
74 | --- as best as we can tell. */ | |
75 | CORE_ADDR prologue_end; | |
76 | ||
77 | /* reg_offset[R] is the offset from the CFA at which register R is | |
78 | saved, or 1 if register R has not been saved. (Real values are | |
79 | always zero or negative.) */ | |
80 | int reg_offset[MN10300_MAX_NUM_REGS]; | |
81 | }; | |
82 | ||
342ee437 MS |
83 | |
84 | /* Compute the alignment required by a type. */ | |
85 | ||
86 | static int | |
87 | mn10300_type_align (struct type *type) | |
88 | { | |
89 | int i, align = 1; | |
90 | ||
91 | switch (TYPE_CODE (type)) | |
92 | { | |
93 | case TYPE_CODE_INT: | |
94 | case TYPE_CODE_ENUM: | |
95 | case TYPE_CODE_SET: | |
96 | case TYPE_CODE_RANGE: | |
97 | case TYPE_CODE_CHAR: | |
98 | case TYPE_CODE_BOOL: | |
99 | case TYPE_CODE_FLT: | |
100 | case TYPE_CODE_PTR: | |
101 | case TYPE_CODE_REF: | |
aa006118 | 102 | case TYPE_CODE_RVALUE_REF: |
342ee437 MS |
103 | return TYPE_LENGTH (type); |
104 | ||
105 | case TYPE_CODE_COMPLEX: | |
106 | return TYPE_LENGTH (type) / 2; | |
107 | ||
108 | case TYPE_CODE_STRUCT: | |
109 | case TYPE_CODE_UNION: | |
110 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
111 | { | |
112 | int falign = mn10300_type_align (TYPE_FIELD_TYPE (type, i)); | |
113 | while (align < falign) | |
114 | align <<= 1; | |
115 | } | |
116 | return align; | |
117 | ||
118 | case TYPE_CODE_ARRAY: | |
119 | /* HACK! Structures containing arrays, even small ones, are not | |
85102364 | 120 | eligible for returning in registers. */ |
342ee437 MS |
121 | return 256; |
122 | ||
123 | case TYPE_CODE_TYPEDEF: | |
124 | return mn10300_type_align (check_typedef (type)); | |
125 | ||
126 | default: | |
127 | internal_error (__FILE__, __LINE__, _("bad switch")); | |
128 | } | |
129 | } | |
130 | ||
342ee437 | 131 | /* Should call_function allocate stack space for a struct return? */ |
342ee437 | 132 | static int |
99fe5f9d | 133 | mn10300_use_struct_convention (struct type *type) |
342ee437 MS |
134 | { |
135 | /* Structures bigger than a pair of words can't be returned in | |
136 | registers. */ | |
137 | if (TYPE_LENGTH (type) > 8) | |
138 | return 1; | |
139 | ||
140 | switch (TYPE_CODE (type)) | |
141 | { | |
142 | case TYPE_CODE_STRUCT: | |
143 | case TYPE_CODE_UNION: | |
144 | /* Structures with a single field are handled as the field | |
145 | itself. */ | |
146 | if (TYPE_NFIELDS (type) == 1) | |
99fe5f9d | 147 | return mn10300_use_struct_convention (TYPE_FIELD_TYPE (type, 0)); |
342ee437 MS |
148 | |
149 | /* Structures with word or double-word size are passed in memory, as | |
150 | long as they require at least word alignment. */ | |
151 | if (mn10300_type_align (type) >= 4) | |
152 | return 0; | |
153 | ||
154 | return 1; | |
155 | ||
156 | /* Arrays are addressable, so they're never returned in | |
157 | registers. This condition can only hold when the array is | |
158 | the only field of a struct or union. */ | |
159 | case TYPE_CODE_ARRAY: | |
160 | return 1; | |
161 | ||
162 | case TYPE_CODE_TYPEDEF: | |
99fe5f9d | 163 | return mn10300_use_struct_convention (check_typedef (type)); |
342ee437 MS |
164 | |
165 | default: | |
166 | return 0; | |
167 | } | |
168 | } | |
169 | ||
342ee437 | 170 | static void |
99fe5f9d | 171 | mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type, |
948f8e3d | 172 | struct regcache *regcache, const gdb_byte *valbuf) |
342ee437 | 173 | { |
342ee437 MS |
174 | int len = TYPE_LENGTH (type); |
175 | int reg, regsz; | |
176 | ||
177 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
178 | reg = 4; | |
179 | else | |
180 | reg = 0; | |
181 | ||
182 | regsz = register_size (gdbarch, reg); | |
183 | ||
184 | if (len <= regsz) | |
4f0420fd | 185 | regcache->raw_write_part (reg, 0, len, valbuf); |
342ee437 MS |
186 | else if (len <= 2 * regsz) |
187 | { | |
10eaee5f | 188 | regcache->raw_write (reg, valbuf); |
342ee437 | 189 | gdb_assert (regsz == register_size (gdbarch, reg + 1)); |
4f0420fd | 190 | regcache->raw_write_part (reg + 1, 0, len - regsz, valbuf + regsz); |
342ee437 MS |
191 | } |
192 | else | |
193 | internal_error (__FILE__, __LINE__, | |
194 | _("Cannot store return value %d bytes long."), len); | |
195 | } | |
196 | ||
342ee437 | 197 | static void |
99fe5f9d | 198 | mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type, |
342ee437 MS |
199 | struct regcache *regcache, void *valbuf) |
200 | { | |
b8b6e72f | 201 | gdb_byte buf[MN10300_MAX_REGISTER_SIZE]; |
342ee437 MS |
202 | int len = TYPE_LENGTH (type); |
203 | int reg, regsz; | |
204 | ||
205 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
206 | reg = 4; | |
207 | else | |
208 | reg = 0; | |
209 | ||
210 | regsz = register_size (gdbarch, reg); | |
b8b6e72f | 211 | gdb_assert (regsz <= MN10300_MAX_REGISTER_SIZE); |
342ee437 MS |
212 | if (len <= regsz) |
213 | { | |
0b883586 | 214 | regcache->raw_read (reg, buf); |
342ee437 MS |
215 | memcpy (valbuf, buf, len); |
216 | } | |
217 | else if (len <= 2 * regsz) | |
218 | { | |
0b883586 | 219 | regcache->raw_read (reg, buf); |
342ee437 MS |
220 | memcpy (valbuf, buf, regsz); |
221 | gdb_assert (regsz == register_size (gdbarch, reg + 1)); | |
0b883586 | 222 | regcache->raw_read (reg + 1, buf); |
342ee437 MS |
223 | memcpy ((char *) valbuf + regsz, buf, len - regsz); |
224 | } | |
225 | else | |
226 | internal_error (__FILE__, __LINE__, | |
227 | _("Cannot extract return value %d bytes long."), len); | |
228 | } | |
229 | ||
99fe5f9d KB |
230 | /* Determine, for architecture GDBARCH, how a return value of TYPE |
231 | should be returned. If it is supposed to be returned in registers, | |
232 | and READBUF is non-zero, read the appropriate value from REGCACHE, | |
233 | and copy it into READBUF. If WRITEBUF is non-zero, write the value | |
234 | from WRITEBUF into REGCACHE. */ | |
235 | ||
236 | static enum return_value_convention | |
6a3a010b | 237 | mn10300_return_value (struct gdbarch *gdbarch, struct value *function, |
c055b101 CV |
238 | struct type *type, struct regcache *regcache, |
239 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
99fe5f9d KB |
240 | { |
241 | if (mn10300_use_struct_convention (type)) | |
242 | return RETURN_VALUE_STRUCT_CONVENTION; | |
243 | ||
244 | if (readbuf) | |
245 | mn10300_extract_return_value (gdbarch, type, regcache, readbuf); | |
246 | if (writebuf) | |
247 | mn10300_store_return_value (gdbarch, type, regcache, writebuf); | |
248 | ||
249 | return RETURN_VALUE_REGISTER_CONVENTION; | |
250 | } | |
251 | ||
a121b7c1 PA |
252 | static const char * |
253 | register_name (int reg, const char **regs, long sizeof_regs) | |
342ee437 MS |
254 | { |
255 | if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0])) | |
256 | return NULL; | |
257 | else | |
258 | return regs[reg]; | |
259 | } | |
260 | ||
261 | static const char * | |
d93859e2 | 262 | mn10300_generic_register_name (struct gdbarch *gdbarch, int reg) |
342ee437 | 263 | { |
a121b7c1 | 264 | static const char *regs[] = |
342ee437 MS |
265 | { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", |
266 | "sp", "pc", "mdr", "psw", "lir", "lar", "", "", | |
267 | "", "", "", "", "", "", "", "", | |
268 | "", "", "", "", "", "", "", "fp" | |
269 | }; | |
270 | return register_name (reg, regs, sizeof regs); | |
271 | } | |
272 | ||
273 | ||
274 | static const char * | |
d93859e2 | 275 | am33_register_name (struct gdbarch *gdbarch, int reg) |
342ee437 | 276 | { |
a121b7c1 | 277 | static const char *regs[] = |
342ee437 MS |
278 | { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", |
279 | "sp", "pc", "mdr", "psw", "lir", "lar", "", | |
280 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
281 | "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", "" | |
282 | }; | |
283 | return register_name (reg, regs, sizeof regs); | |
284 | } | |
285 | ||
4640dd91 | 286 | static const char * |
d93859e2 | 287 | am33_2_register_name (struct gdbarch *gdbarch, int reg) |
4640dd91 | 288 | { |
a121b7c1 | 289 | static const char *regs[] = |
4640dd91 KB |
290 | { |
291 | "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", | |
292 | "sp", "pc", "mdr", "psw", "lir", "lar", "mdrq", "r0", | |
293 | "r1", "r2", "r3", "r4", "r5", "r6", "r7", "ssp", | |
294 | "msp", "usp", "mcrh", "mcrl", "mcvf", "fpcr", "", "", | |
295 | "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", | |
296 | "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15", | |
297 | "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23", | |
298 | "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" | |
299 | }; | |
300 | return register_name (reg, regs, sizeof regs); | |
301 | } | |
342ee437 MS |
302 | |
303 | static struct type * | |
304 | mn10300_register_type (struct gdbarch *gdbarch, int reg) | |
305 | { | |
0dfff4cb | 306 | return builtin_type (gdbarch)->builtin_int; |
342ee437 MS |
307 | } |
308 | ||
342ee437 MS |
309 | /* The breakpoint instruction must be the same size as the smallest |
310 | instruction in the instruction set. | |
311 | ||
312 | The Matsushita mn10x00 processors have single byte instructions | |
313 | so we need a single byte breakpoint. Matsushita hasn't defined | |
314 | one, so we defined it ourselves. */ | |
04180708 | 315 | constexpr gdb_byte mn10300_break_insn[] = {0xff}; |
342ee437 | 316 | |
04180708 | 317 | typedef BP_MANIPULATION (mn10300_break_insn) mn10300_breakpoint; |
342ee437 | 318 | |
6c02c64c KB |
319 | /* Model the semantics of pushing a register onto the stack. This |
320 | is a helper function for mn10300_analyze_prologue, below. */ | |
321 | static void | |
322 | push_reg (pv_t *regs, struct pv_area *stack, int regnum) | |
323 | { | |
324 | regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4); | |
f7b7ed97 | 325 | stack->store (regs[E_SP_REGNUM], 4, regs[regnum]); |
6c02c64c KB |
326 | } |
327 | ||
328 | /* Translate an "r" register number extracted from an instruction encoding | |
329 | into a GDB register number. Adapted from a simulator function | |
330 | of the same name; see am33.igen. */ | |
331 | static int | |
332 | translate_rreg (int rreg) | |
333 | { | |
334 | /* The higher register numbers actually correspond to the | |
335 | basic machine's address and data registers. */ | |
336 | if (rreg > 7 && rreg < 12) | |
337 | return E_A0_REGNUM + rreg - 8; | |
338 | else if (rreg > 11 && rreg < 16) | |
339 | return E_D0_REGNUM + rreg - 12; | |
340 | else | |
341 | return E_E0_REGNUM + rreg; | |
342 | } | |
343 | ||
f7b7ed97 | 344 | /* Find saved registers in a 'struct pv_area'; we pass this to pv_area::scan. |
9cacebf5 | 345 | |
6c02c64c KB |
346 | If VALUE is a saved register, ADDR says it was saved at a constant |
347 | offset from the frame base, and SIZE indicates that the whole | |
348 | register was saved, record its offset in RESULT_UNTYPED. */ | |
9cacebf5 | 349 | static void |
6c02c64c | 350 | check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value) |
9cacebf5 | 351 | { |
6c02c64c | 352 | struct mn10300_prologue *result = (struct mn10300_prologue *) result_untyped; |
9cacebf5 | 353 | |
6c02c64c KB |
354 | if (value.kind == pvk_register |
355 | && value.k == 0 | |
356 | && pv_is_register (addr, E_SP_REGNUM) | |
d80b854b | 357 | && size == register_size (result->gdbarch, value.reg)) |
6c02c64c KB |
358 | result->reg_offset[value.reg] = addr.k; |
359 | } | |
9cacebf5 | 360 | |
6c02c64c KB |
361 | /* Analyze the prologue to determine where registers are saved, |
362 | the end of the prologue, etc. The result of this analysis is | |
363 | returned in RESULT. See struct mn10300_prologue above for more | |
364 | information. */ | |
365 | static void | |
366 | mn10300_analyze_prologue (struct gdbarch *gdbarch, | |
367 | CORE_ADDR start_pc, CORE_ADDR limit_pc, | |
368 | struct mn10300_prologue *result) | |
369 | { | |
e17a4113 | 370 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
22e048c9 | 371 | CORE_ADDR pc; |
6c02c64c KB |
372 | int rn; |
373 | pv_t regs[MN10300_MAX_NUM_REGS]; | |
6c02c64c KB |
374 | CORE_ADDR after_last_frame_setup_insn = start_pc; |
375 | int am33_mode = AM33_MODE (gdbarch); | |
376 | ||
377 | memset (result, 0, sizeof (*result)); | |
d80b854b | 378 | result->gdbarch = gdbarch; |
9cacebf5 | 379 | |
6c02c64c | 380 | for (rn = 0; rn < MN10300_MAX_NUM_REGS; rn++) |
4640dd91 | 381 | { |
6c02c64c KB |
382 | regs[rn] = pv_register (rn, 0); |
383 | result->reg_offset[rn] = 1; | |
4640dd91 | 384 | } |
f7b7ed97 | 385 | pv_area stack (E_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
6c02c64c | 386 | |
f7b7ed97 TT |
387 | /* The typical call instruction will have saved the return address on the |
388 | stack. Space for the return address has already been preallocated in | |
389 | the caller's frame. It's possible, such as when using -mrelax with gcc | |
390 | that other registers were saved as well. If this happens, we really | |
391 | have no chance of deciphering the frame. DWARF info can save the day | |
392 | when this happens. */ | |
393 | stack.store (regs[E_SP_REGNUM], 4, regs[E_PC_REGNUM]); | |
6c02c64c KB |
394 | |
395 | pc = start_pc; | |
396 | while (pc < limit_pc) | |
4640dd91 | 397 | { |
6c02c64c KB |
398 | int status; |
399 | gdb_byte instr[2]; | |
4640dd91 | 400 | |
6c02c64c KB |
401 | /* Instructions can be as small as one byte; however, we usually |
402 | need at least two bytes to do the decoding, so fetch that many | |
403 | to begin with. */ | |
404 | status = target_read_memory (pc, instr, 2); | |
405 | if (status != 0) | |
406 | break; | |
4640dd91 | 407 | |
6c02c64c KB |
408 | /* movm [regs], sp */ |
409 | if (instr[0] == 0xcf) | |
4640dd91 | 410 | { |
6c02c64c KB |
411 | gdb_byte save_mask; |
412 | ||
413 | save_mask = instr[1]; | |
414 | ||
415 | if ((save_mask & movm_exreg0_bit) && am33_mode) | |
416 | { | |
f7b7ed97 TT |
417 | push_reg (regs, &stack, E_E2_REGNUM); |
418 | push_reg (regs, &stack, E_E3_REGNUM); | |
6c02c64c KB |
419 | } |
420 | if ((save_mask & movm_exreg1_bit) && am33_mode) | |
4640dd91 | 421 | { |
f7b7ed97 TT |
422 | push_reg (regs, &stack, E_E4_REGNUM); |
423 | push_reg (regs, &stack, E_E5_REGNUM); | |
424 | push_reg (regs, &stack, E_E6_REGNUM); | |
425 | push_reg (regs, &stack, E_E7_REGNUM); | |
4640dd91 | 426 | } |
6c02c64c KB |
427 | if ((save_mask & movm_exother_bit) && am33_mode) |
428 | { | |
f7b7ed97 TT |
429 | push_reg (regs, &stack, E_E0_REGNUM); |
430 | push_reg (regs, &stack, E_E1_REGNUM); | |
431 | push_reg (regs, &stack, E_MDRQ_REGNUM); | |
432 | push_reg (regs, &stack, E_MCRH_REGNUM); | |
433 | push_reg (regs, &stack, E_MCRL_REGNUM); | |
434 | push_reg (regs, &stack, E_MCVF_REGNUM); | |
6c02c64c KB |
435 | } |
436 | if (save_mask & movm_d2_bit) | |
f7b7ed97 | 437 | push_reg (regs, &stack, E_D2_REGNUM); |
6c02c64c | 438 | if (save_mask & movm_d3_bit) |
f7b7ed97 | 439 | push_reg (regs, &stack, E_D3_REGNUM); |
6c02c64c | 440 | if (save_mask & movm_a2_bit) |
f7b7ed97 | 441 | push_reg (regs, &stack, E_A2_REGNUM); |
6c02c64c | 442 | if (save_mask & movm_a3_bit) |
f7b7ed97 | 443 | push_reg (regs, &stack, E_A3_REGNUM); |
6c02c64c KB |
444 | if (save_mask & movm_other_bit) |
445 | { | |
f7b7ed97 TT |
446 | push_reg (regs, &stack, E_D0_REGNUM); |
447 | push_reg (regs, &stack, E_D1_REGNUM); | |
448 | push_reg (regs, &stack, E_A0_REGNUM); | |
449 | push_reg (regs, &stack, E_A1_REGNUM); | |
450 | push_reg (regs, &stack, E_MDR_REGNUM); | |
451 | push_reg (regs, &stack, E_LIR_REGNUM); | |
452 | push_reg (regs, &stack, E_LAR_REGNUM); | |
6c02c64c KB |
453 | /* The `other' bit leaves a blank area of four bytes at |
454 | the beginning of its block of saved registers, making | |
455 | it 32 bytes long in total. */ | |
456 | regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4); | |
457 | } | |
458 | ||
459 | pc += 2; | |
460 | after_last_frame_setup_insn = pc; | |
4640dd91 | 461 | } |
6c02c64c KB |
462 | /* mov sp, aN */ |
463 | else if ((instr[0] & 0xfc) == 0x3c) | |
464 | { | |
465 | int aN = instr[0] & 0x03; | |
4640dd91 | 466 | |
6c02c64c | 467 | regs[E_A0_REGNUM + aN] = regs[E_SP_REGNUM]; |
4640dd91 | 468 | |
6c02c64c KB |
469 | pc += 1; |
470 | if (aN == 3) | |
471 | after_last_frame_setup_insn = pc; | |
472 | } | |
473 | /* mov aM, aN */ | |
474 | else if ((instr[0] & 0xf0) == 0x90 | |
475 | && (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2)) | |
476 | { | |
477 | int aN = instr[0] & 0x03; | |
478 | int aM = (instr[0] & 0x0c) >> 2; | |
9cacebf5 | 479 | |
6c02c64c | 480 | regs[E_A0_REGNUM + aN] = regs[E_A0_REGNUM + aM]; |
9cacebf5 | 481 | |
6c02c64c KB |
482 | pc += 1; |
483 | } | |
484 | /* mov dM, dN */ | |
485 | else if ((instr[0] & 0xf0) == 0x80 | |
486 | && (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2)) | |
487 | { | |
488 | int dN = instr[0] & 0x03; | |
489 | int dM = (instr[0] & 0x0c) >> 2; | |
9cacebf5 | 490 | |
6c02c64c | 491 | regs[E_D0_REGNUM + dN] = regs[E_D0_REGNUM + dM]; |
9cacebf5 | 492 | |
6c02c64c KB |
493 | pc += 1; |
494 | } | |
495 | /* mov aM, dN */ | |
496 | else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xd0) | |
497 | { | |
498 | int dN = instr[1] & 0x03; | |
499 | int aM = (instr[1] & 0x0c) >> 2; | |
9cacebf5 | 500 | |
6c02c64c | 501 | regs[E_D0_REGNUM + dN] = regs[E_A0_REGNUM + aM]; |
9cacebf5 | 502 | |
6c02c64c KB |
503 | pc += 2; |
504 | } | |
505 | /* mov dM, aN */ | |
506 | else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xe0) | |
507 | { | |
508 | int aN = instr[1] & 0x03; | |
509 | int dM = (instr[1] & 0x0c) >> 2; | |
9cacebf5 | 510 | |
6c02c64c | 511 | regs[E_A0_REGNUM + aN] = regs[E_D0_REGNUM + dM]; |
9cacebf5 | 512 | |
6c02c64c KB |
513 | pc += 2; |
514 | } | |
515 | /* add imm8, SP */ | |
516 | else if (instr[0] == 0xf8 && instr[1] == 0xfe) | |
517 | { | |
518 | gdb_byte buf[1]; | |
519 | LONGEST imm8; | |
9cacebf5 | 520 | |
9cacebf5 | 521 | |
6c02c64c KB |
522 | status = target_read_memory (pc + 2, buf, 1); |
523 | if (status != 0) | |
524 | break; | |
9cacebf5 | 525 | |
e17a4113 | 526 | imm8 = extract_signed_integer (buf, 1, byte_order); |
6c02c64c | 527 | regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm8); |
9cacebf5 | 528 | |
6c02c64c KB |
529 | pc += 3; |
530 | /* Stack pointer adjustments are frame related. */ | |
531 | after_last_frame_setup_insn = pc; | |
532 | } | |
533 | /* add imm16, SP */ | |
534 | else if (instr[0] == 0xfa && instr[1] == 0xfe) | |
535 | { | |
536 | gdb_byte buf[2]; | |
537 | LONGEST imm16; | |
9cacebf5 | 538 | |
6c02c64c KB |
539 | status = target_read_memory (pc + 2, buf, 2); |
540 | if (status != 0) | |
541 | break; | |
9cacebf5 | 542 | |
e17a4113 | 543 | imm16 = extract_signed_integer (buf, 2, byte_order); |
6c02c64c | 544 | regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm16); |
9cacebf5 | 545 | |
6c02c64c KB |
546 | pc += 4; |
547 | /* Stack pointer adjustments are frame related. */ | |
548 | after_last_frame_setup_insn = pc; | |
549 | } | |
550 | /* add imm32, SP */ | |
551 | else if (instr[0] == 0xfc && instr[1] == 0xfe) | |
552 | { | |
553 | gdb_byte buf[4]; | |
554 | LONGEST imm32; | |
9cacebf5 | 555 | |
6c02c64c KB |
556 | status = target_read_memory (pc + 2, buf, 4); |
557 | if (status != 0) | |
558 | break; | |
9cacebf5 | 559 | |
9cacebf5 | 560 | |
e17a4113 | 561 | imm32 = extract_signed_integer (buf, 4, byte_order); |
6c02c64c | 562 | regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm32); |
9cacebf5 | 563 | |
6c02c64c KB |
564 | pc += 6; |
565 | /* Stack pointer adjustments are frame related. */ | |
566 | after_last_frame_setup_insn = pc; | |
567 | } | |
568 | /* add imm8, aN */ | |
569 | else if ((instr[0] & 0xfc) == 0x20) | |
570 | { | |
571 | int aN; | |
572 | LONGEST imm8; | |
9cacebf5 | 573 | |
6c02c64c | 574 | aN = instr[0] & 0x03; |
e17a4113 | 575 | imm8 = extract_signed_integer (&instr[1], 1, byte_order); |
9cacebf5 | 576 | |
6c02c64c KB |
577 | regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN], |
578 | imm8); | |
9cacebf5 | 579 | |
6c02c64c KB |
580 | pc += 2; |
581 | } | |
582 | /* add imm16, aN */ | |
583 | else if (instr[0] == 0xfa && (instr[1] & 0xfc) == 0xd0) | |
584 | { | |
585 | int aN; | |
586 | LONGEST imm16; | |
587 | gdb_byte buf[2]; | |
9cacebf5 | 588 | |
6c02c64c | 589 | aN = instr[1] & 0x03; |
9cacebf5 | 590 | |
6c02c64c KB |
591 | status = target_read_memory (pc + 2, buf, 2); |
592 | if (status != 0) | |
593 | break; | |
9cacebf5 | 594 | |
9cacebf5 | 595 | |
e17a4113 | 596 | imm16 = extract_signed_integer (buf, 2, byte_order); |
9cacebf5 | 597 | |
6c02c64c KB |
598 | regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN], |
599 | imm16); | |
9cacebf5 | 600 | |
6c02c64c KB |
601 | pc += 4; |
602 | } | |
603 | /* add imm32, aN */ | |
604 | else if (instr[0] == 0xfc && (instr[1] & 0xfc) == 0xd0) | |
605 | { | |
606 | int aN; | |
607 | LONGEST imm32; | |
608 | gdb_byte buf[4]; | |
9cacebf5 | 609 | |
6c02c64c | 610 | aN = instr[1] & 0x03; |
9cacebf5 | 611 | |
6c02c64c KB |
612 | status = target_read_memory (pc + 2, buf, 4); |
613 | if (status != 0) | |
614 | break; | |
9cacebf5 | 615 | |
e17a4113 | 616 | imm32 = extract_signed_integer (buf, 2, byte_order); |
9cacebf5 | 617 | |
6c02c64c KB |
618 | regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN], |
619 | imm32); | |
620 | pc += 6; | |
621 | } | |
622 | /* fmov fsM, (rN) */ | |
623 | else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x30) | |
624 | { | |
625 | int fsM, sM, Y, rN; | |
626 | gdb_byte buf[1]; | |
9cacebf5 | 627 | |
6c02c64c | 628 | Y = (instr[1] & 0x02) >> 1; |
9cacebf5 | 629 | |
6c02c64c KB |
630 | status = target_read_memory (pc + 2, buf, 1); |
631 | if (status != 0) | |
632 | break; | |
9cacebf5 | 633 | |
6c02c64c KB |
634 | sM = (buf[0] & 0xf0) >> 4; |
635 | rN = buf[0] & 0x0f; | |
636 | fsM = (Y << 4) | sM; | |
9cacebf5 | 637 | |
f7b7ed97 TT |
638 | stack.store (regs[translate_rreg (rN)], 4, |
639 | regs[E_FS0_REGNUM + fsM]); | |
9cacebf5 | 640 | |
6c02c64c KB |
641 | pc += 3; |
642 | } | |
643 | /* fmov fsM, (sp) */ | |
644 | else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x34) | |
645 | { | |
646 | int fsM, sM, Y; | |
647 | gdb_byte buf[1]; | |
9cacebf5 | 648 | |
6c02c64c | 649 | Y = (instr[1] & 0x02) >> 1; |
9cacebf5 | 650 | |
6c02c64c KB |
651 | status = target_read_memory (pc + 2, buf, 1); |
652 | if (status != 0) | |
653 | break; | |
9cacebf5 | 654 | |
6c02c64c KB |
655 | sM = (buf[0] & 0xf0) >> 4; |
656 | fsM = (Y << 4) | sM; | |
9cacebf5 | 657 | |
f7b7ed97 TT |
658 | stack.store (regs[E_SP_REGNUM], 4, |
659 | regs[E_FS0_REGNUM + fsM]); | |
9cacebf5 | 660 | |
6c02c64c KB |
661 | pc += 3; |
662 | } | |
663 | /* fmov fsM, (rN, rI) */ | |
664 | else if (instr[0] == 0xfb && instr[1] == 0x37) | |
665 | { | |
666 | int fsM, sM, Z, rN, rI; | |
667 | gdb_byte buf[2]; | |
9cacebf5 | 668 | |
9cacebf5 | 669 | |
6c02c64c KB |
670 | status = target_read_memory (pc + 2, buf, 2); |
671 | if (status != 0) | |
672 | break; | |
83845630 | 673 | |
6c02c64c KB |
674 | rI = (buf[0] & 0xf0) >> 4; |
675 | rN = buf[0] & 0x0f; | |
676 | sM = (buf[1] & 0xf0) >> 4; | |
677 | Z = (buf[1] & 0x02) >> 1; | |
678 | fsM = (Z << 4) | sM; | |
83845630 | 679 | |
f7b7ed97 TT |
680 | stack.store (pv_add (regs[translate_rreg (rN)], |
681 | regs[translate_rreg (rI)]), | |
682 | 4, regs[E_FS0_REGNUM + fsM]); | |
83845630 | 683 | |
6c02c64c KB |
684 | pc += 4; |
685 | } | |
686 | /* fmov fsM, (d8, rN) */ | |
687 | else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x30) | |
4640dd91 | 688 | { |
6c02c64c KB |
689 | int fsM, sM, Y, rN; |
690 | LONGEST d8; | |
691 | gdb_byte buf[2]; | |
692 | ||
693 | Y = (instr[1] & 0x02) >> 1; | |
694 | ||
695 | status = target_read_memory (pc + 2, buf, 2); | |
696 | if (status != 0) | |
697 | break; | |
698 | ||
699 | sM = (buf[0] & 0xf0) >> 4; | |
700 | rN = buf[0] & 0x0f; | |
701 | fsM = (Y << 4) | sM; | |
e17a4113 | 702 | d8 = extract_signed_integer (&buf[1], 1, byte_order); |
6c02c64c | 703 | |
f7b7ed97 TT |
704 | stack.store (pv_add_constant (regs[translate_rreg (rN)], d8), |
705 | 4, regs[E_FS0_REGNUM + fsM]); | |
6c02c64c KB |
706 | |
707 | pc += 4; | |
4640dd91 | 708 | } |
6c02c64c KB |
709 | /* fmov fsM, (d24, rN) */ |
710 | else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x30) | |
83845630 | 711 | { |
6c02c64c KB |
712 | int fsM, sM, Y, rN; |
713 | LONGEST d24; | |
714 | gdb_byte buf[4]; | |
715 | ||
716 | Y = (instr[1] & 0x02) >> 1; | |
717 | ||
718 | status = target_read_memory (pc + 2, buf, 4); | |
83845630 | 719 | if (status != 0) |
6c02c64c KB |
720 | break; |
721 | ||
722 | sM = (buf[0] & 0xf0) >> 4; | |
723 | rN = buf[0] & 0x0f; | |
724 | fsM = (Y << 4) | sM; | |
e17a4113 | 725 | d24 = extract_signed_integer (&buf[1], 3, byte_order); |
6c02c64c | 726 | |
f7b7ed97 TT |
727 | stack.store (pv_add_constant (regs[translate_rreg (rN)], d24), |
728 | 4, regs[E_FS0_REGNUM + fsM]); | |
6c02c64c KB |
729 | |
730 | pc += 6; | |
83845630 | 731 | } |
6c02c64c KB |
732 | /* fmov fsM, (d32, rN) */ |
733 | else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x30) | |
734 | { | |
735 | int fsM, sM, Y, rN; | |
736 | LONGEST d32; | |
737 | gdb_byte buf[5]; | |
4640dd91 | 738 | |
6c02c64c KB |
739 | Y = (instr[1] & 0x02) >> 1; |
740 | ||
741 | status = target_read_memory (pc + 2, buf, 5); | |
742 | if (status != 0) | |
743 | break; | |
744 | ||
745 | sM = (buf[0] & 0xf0) >> 4; | |
746 | rN = buf[0] & 0x0f; | |
747 | fsM = (Y << 4) | sM; | |
e17a4113 | 748 | d32 = extract_signed_integer (&buf[1], 4, byte_order); |
9cacebf5 | 749 | |
f7b7ed97 TT |
750 | stack.store (pv_add_constant (regs[translate_rreg (rN)], d32), |
751 | 4, regs[E_FS0_REGNUM + fsM]); | |
6c02c64c KB |
752 | |
753 | pc += 7; | |
754 | } | |
755 | /* fmov fsM, (d8, SP) */ | |
756 | else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x34) | |
9cacebf5 | 757 | { |
6c02c64c KB |
758 | int fsM, sM, Y; |
759 | LONGEST d8; | |
760 | gdb_byte buf[2]; | |
761 | ||
762 | Y = (instr[1] & 0x02) >> 1; | |
763 | ||
764 | status = target_read_memory (pc + 2, buf, 2); | |
765 | if (status != 0) | |
766 | break; | |
767 | ||
768 | sM = (buf[0] & 0xf0) >> 4; | |
769 | fsM = (Y << 4) | sM; | |
e17a4113 | 770 | d8 = extract_signed_integer (&buf[1], 1, byte_order); |
6c02c64c | 771 | |
f7b7ed97 TT |
772 | stack.store (pv_add_constant (regs[E_SP_REGNUM], d8), |
773 | 4, regs[E_FS0_REGNUM + fsM]); | |
6c02c64c KB |
774 | |
775 | pc += 4; | |
9cacebf5 | 776 | } |
6c02c64c KB |
777 | /* fmov fsM, (d24, SP) */ |
778 | else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x34) | |
779 | { | |
780 | int fsM, sM, Y; | |
781 | LONGEST d24; | |
782 | gdb_byte buf[4]; | |
9cacebf5 | 783 | |
6c02c64c | 784 | Y = (instr[1] & 0x02) >> 1; |
9cacebf5 | 785 | |
6c02c64c KB |
786 | status = target_read_memory (pc + 2, buf, 4); |
787 | if (status != 0) | |
788 | break; | |
9cacebf5 | 789 | |
6c02c64c KB |
790 | sM = (buf[0] & 0xf0) >> 4; |
791 | fsM = (Y << 4) | sM; | |
e17a4113 | 792 | d24 = extract_signed_integer (&buf[1], 3, byte_order); |
9cacebf5 | 793 | |
f7b7ed97 TT |
794 | stack.store (pv_add_constant (regs[E_SP_REGNUM], d24), |
795 | 4, regs[E_FS0_REGNUM + fsM]); | |
9cacebf5 | 796 | |
6c02c64c KB |
797 | pc += 6; |
798 | } | |
799 | /* fmov fsM, (d32, SP) */ | |
800 | else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x34) | |
801 | { | |
802 | int fsM, sM, Y; | |
803 | LONGEST d32; | |
804 | gdb_byte buf[5]; | |
9cacebf5 | 805 | |
6c02c64c | 806 | Y = (instr[1] & 0x02) >> 1; |
9cacebf5 | 807 | |
6c02c64c KB |
808 | status = target_read_memory (pc + 2, buf, 5); |
809 | if (status != 0) | |
810 | break; | |
811 | ||
812 | sM = (buf[0] & 0xf0) >> 4; | |
813 | fsM = (Y << 4) | sM; | |
e17a4113 | 814 | d32 = extract_signed_integer (&buf[1], 4, byte_order); |
6c02c64c | 815 | |
f7b7ed97 TT |
816 | stack.store (pv_add_constant (regs[E_SP_REGNUM], d32), |
817 | 4, regs[E_FS0_REGNUM + fsM]); | |
6c02c64c KB |
818 | |
819 | pc += 7; | |
820 | } | |
821 | /* fmov fsM, (rN+) */ | |
822 | else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x31) | |
823 | { | |
824 | int fsM, sM, Y, rN, rN_regnum; | |
825 | gdb_byte buf[1]; | |
826 | ||
827 | Y = (instr[1] & 0x02) >> 1; | |
828 | ||
829 | status = target_read_memory (pc + 2, buf, 1); | |
830 | if (status != 0) | |
831 | break; | |
832 | ||
833 | sM = (buf[0] & 0xf0) >> 4; | |
834 | rN = buf[0] & 0x0f; | |
835 | fsM = (Y << 4) | sM; | |
836 | ||
837 | rN_regnum = translate_rreg (rN); | |
838 | ||
f7b7ed97 TT |
839 | stack.store (regs[rN_regnum], 4, |
840 | regs[E_FS0_REGNUM + fsM]); | |
6c02c64c KB |
841 | regs[rN_regnum] = pv_add_constant (regs[rN_regnum], 4); |
842 | ||
843 | pc += 3; | |
844 | } | |
845 | /* fmov fsM, (rN+, imm8) */ | |
846 | else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x31) | |
847 | { | |
848 | int fsM, sM, Y, rN, rN_regnum; | |
849 | LONGEST imm8; | |
850 | gdb_byte buf[2]; | |
851 | ||
852 | Y = (instr[1] & 0x02) >> 1; | |
853 | ||
854 | status = target_read_memory (pc + 2, buf, 2); | |
855 | if (status != 0) | |
856 | break; | |
857 | ||
858 | sM = (buf[0] & 0xf0) >> 4; | |
859 | rN = buf[0] & 0x0f; | |
860 | fsM = (Y << 4) | sM; | |
e17a4113 | 861 | imm8 = extract_signed_integer (&buf[1], 1, byte_order); |
6c02c64c KB |
862 | |
863 | rN_regnum = translate_rreg (rN); | |
864 | ||
f7b7ed97 | 865 | stack.store (regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]); |
6c02c64c KB |
866 | regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm8); |
867 | ||
868 | pc += 4; | |
869 | } | |
870 | /* fmov fsM, (rN+, imm24) */ | |
871 | else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x31) | |
872 | { | |
873 | int fsM, sM, Y, rN, rN_regnum; | |
874 | LONGEST imm24; | |
875 | gdb_byte buf[4]; | |
876 | ||
877 | Y = (instr[1] & 0x02) >> 1; | |
878 | ||
879 | status = target_read_memory (pc + 2, buf, 4); | |
880 | if (status != 0) | |
881 | break; | |
882 | ||
883 | sM = (buf[0] & 0xf0) >> 4; | |
884 | rN = buf[0] & 0x0f; | |
885 | fsM = (Y << 4) | sM; | |
e17a4113 | 886 | imm24 = extract_signed_integer (&buf[1], 3, byte_order); |
6c02c64c KB |
887 | |
888 | rN_regnum = translate_rreg (rN); | |
889 | ||
f7b7ed97 | 890 | stack.store (regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]); |
6c02c64c KB |
891 | regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm24); |
892 | ||
893 | pc += 6; | |
894 | } | |
895 | /* fmov fsM, (rN+, imm32) */ | |
896 | else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x31) | |
897 | { | |
898 | int fsM, sM, Y, rN, rN_regnum; | |
899 | LONGEST imm32; | |
900 | gdb_byte buf[5]; | |
901 | ||
902 | Y = (instr[1] & 0x02) >> 1; | |
903 | ||
904 | status = target_read_memory (pc + 2, buf, 5); | |
905 | if (status != 0) | |
906 | break; | |
907 | ||
908 | sM = (buf[0] & 0xf0) >> 4; | |
909 | rN = buf[0] & 0x0f; | |
910 | fsM = (Y << 4) | sM; | |
e17a4113 | 911 | imm32 = extract_signed_integer (&buf[1], 4, byte_order); |
6c02c64c KB |
912 | |
913 | rN_regnum = translate_rreg (rN); | |
914 | ||
f7b7ed97 | 915 | stack.store (regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]); |
6c02c64c KB |
916 | regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm32); |
917 | ||
918 | pc += 7; | |
919 | } | |
920 | /* mov imm8, aN */ | |
921 | else if ((instr[0] & 0xf0) == 0x90) | |
922 | { | |
923 | int aN = instr[0] & 0x03; | |
924 | LONGEST imm8; | |
9cacebf5 | 925 | |
e17a4113 | 926 | imm8 = extract_signed_integer (&instr[1], 1, byte_order); |
9cacebf5 | 927 | |
6c02c64c KB |
928 | regs[E_A0_REGNUM + aN] = pv_constant (imm8); |
929 | pc += 2; | |
930 | } | |
931 | /* mov imm16, aN */ | |
932 | else if ((instr[0] & 0xfc) == 0x24) | |
933 | { | |
934 | int aN = instr[0] & 0x03; | |
935 | gdb_byte buf[2]; | |
936 | LONGEST imm16; | |
937 | ||
938 | status = target_read_memory (pc + 1, buf, 2); | |
939 | if (status != 0) | |
940 | break; | |
941 | ||
e17a4113 | 942 | imm16 = extract_signed_integer (buf, 2, byte_order); |
6c02c64c KB |
943 | regs[E_A0_REGNUM + aN] = pv_constant (imm16); |
944 | pc += 3; | |
945 | } | |
946 | /* mov imm32, aN */ | |
947 | else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xdc)) | |
948 | { | |
949 | int aN = instr[1] & 0x03; | |
950 | gdb_byte buf[4]; | |
951 | LONGEST imm32; | |
952 | ||
953 | status = target_read_memory (pc + 2, buf, 4); | |
954 | if (status != 0) | |
955 | break; | |
956 | ||
e17a4113 | 957 | imm32 = extract_signed_integer (buf, 4, byte_order); |
6c02c64c KB |
958 | regs[E_A0_REGNUM + aN] = pv_constant (imm32); |
959 | pc += 6; | |
960 | } | |
961 | /* mov imm8, dN */ | |
962 | else if ((instr[0] & 0xf0) == 0x80) | |
963 | { | |
964 | int dN = instr[0] & 0x03; | |
965 | LONGEST imm8; | |
966 | ||
e17a4113 | 967 | imm8 = extract_signed_integer (&instr[1], 1, byte_order); |
6c02c64c KB |
968 | |
969 | regs[E_D0_REGNUM + dN] = pv_constant (imm8); | |
970 | pc += 2; | |
971 | } | |
972 | /* mov imm16, dN */ | |
973 | else if ((instr[0] & 0xfc) == 0x2c) | |
974 | { | |
975 | int dN = instr[0] & 0x03; | |
976 | gdb_byte buf[2]; | |
977 | LONGEST imm16; | |
978 | ||
979 | status = target_read_memory (pc + 1, buf, 2); | |
980 | if (status != 0) | |
981 | break; | |
982 | ||
e17a4113 | 983 | imm16 = extract_signed_integer (buf, 2, byte_order); |
6c02c64c KB |
984 | regs[E_D0_REGNUM + dN] = pv_constant (imm16); |
985 | pc += 3; | |
986 | } | |
987 | /* mov imm32, dN */ | |
988 | else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xcc)) | |
989 | { | |
990 | int dN = instr[1] & 0x03; | |
991 | gdb_byte buf[4]; | |
992 | LONGEST imm32; | |
993 | ||
994 | status = target_read_memory (pc + 2, buf, 4); | |
995 | if (status != 0) | |
996 | break; | |
997 | ||
e17a4113 | 998 | imm32 = extract_signed_integer (buf, 4, byte_order); |
6c02c64c KB |
999 | regs[E_D0_REGNUM + dN] = pv_constant (imm32); |
1000 | pc += 6; | |
1001 | } | |
1002 | else | |
1003 | { | |
1004 | /* We've hit some instruction that we don't recognize. Hopefully, | |
1005 | we have enough to do prologue analysis. */ | |
1006 | break; | |
1007 | } | |
1008 | } | |
1009 | ||
1010 | /* Is the frame size (offset, really) a known constant? */ | |
1011 | if (pv_is_register (regs[E_SP_REGNUM], E_SP_REGNUM)) | |
1012 | result->frame_size = regs[E_SP_REGNUM].k; | |
9cacebf5 | 1013 | |
6c02c64c KB |
1014 | /* Was the frame pointer initialized? */ |
1015 | if (pv_is_register (regs[E_A3_REGNUM], E_SP_REGNUM)) | |
1016 | { | |
1017 | result->has_frame_ptr = 1; | |
1018 | result->frame_ptr_offset = regs[E_A3_REGNUM].k; | |
9cacebf5 | 1019 | } |
6c02c64c KB |
1020 | |
1021 | /* Record where all the registers were saved. */ | |
f7b7ed97 | 1022 | stack.scan (check_for_saved, (void *) result); |
6c02c64c KB |
1023 | |
1024 | result->prologue_end = after_last_frame_setup_insn; | |
9cacebf5 MS |
1025 | } |
1026 | ||
342ee437 MS |
1027 | /* Function: skip_prologue |
1028 | Return the address of the first inst past the prologue of the function. */ | |
1029 | ||
1030 | static CORE_ADDR | |
6093d2eb | 1031 | mn10300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
342ee437 | 1032 | { |
2c02bd72 | 1033 | const char *name; |
6c02c64c KB |
1034 | CORE_ADDR func_addr, func_end; |
1035 | struct mn10300_prologue p; | |
1036 | ||
1037 | /* Try to find the extent of the function that contains PC. */ | |
1038 | if (!find_pc_partial_function (pc, &name, &func_addr, &func_end)) | |
1039 | return pc; | |
1040 | ||
1041 | mn10300_analyze_prologue (gdbarch, pc, func_end, &p); | |
1042 | return p.prologue_end; | |
342ee437 MS |
1043 | } |
1044 | ||
6c02c64c KB |
1045 | /* Wrapper for mn10300_analyze_prologue: find the function start; |
1046 | use the current frame PC as the limit, then | |
1047 | invoke mn10300_analyze_prologue and return its result. */ | |
1048 | static struct mn10300_prologue * | |
1049 | mn10300_analyze_frame_prologue (struct frame_info *this_frame, | |
1050 | void **this_prologue_cache) | |
342ee437 | 1051 | { |
6c02c64c | 1052 | if (!*this_prologue_cache) |
93d42b30 | 1053 | { |
6c02c64c KB |
1054 | CORE_ADDR func_start, stop_addr; |
1055 | ||
1056 | *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct mn10300_prologue); | |
1057 | ||
1058 | func_start = get_frame_func (this_frame); | |
1059 | stop_addr = get_frame_pc (this_frame); | |
1060 | ||
1061 | /* If we couldn't find any function containing the PC, then | |
1062 | just initialize the prologue cache, but don't do anything. */ | |
1063 | if (!func_start) | |
1064 | stop_addr = func_start; | |
1065 | ||
1066 | mn10300_analyze_prologue (get_frame_arch (this_frame), | |
19ba03f4 SM |
1067 | func_start, stop_addr, |
1068 | ((struct mn10300_prologue *) | |
1069 | *this_prologue_cache)); | |
93d42b30 | 1070 | } |
342ee437 | 1071 | |
19ba03f4 | 1072 | return (struct mn10300_prologue *) *this_prologue_cache; |
6c02c64c KB |
1073 | } |
1074 | ||
1075 | /* Given the next frame and a prologue cache, return this frame's | |
1076 | base. */ | |
1077 | static CORE_ADDR | |
1078 | mn10300_frame_base (struct frame_info *this_frame, void **this_prologue_cache) | |
1079 | { | |
1080 | struct mn10300_prologue *p | |
1081 | = mn10300_analyze_frame_prologue (this_frame, this_prologue_cache); | |
1082 | ||
1083 | /* In functions that use alloca, the distance between the stack | |
1084 | pointer and the frame base varies dynamically, so we can't use | |
1085 | the SP plus static information like prologue analysis to find the | |
1086 | frame base. However, such functions must have a frame pointer, | |
1087 | to be able to restore the SP on exit. So whenever we do have a | |
1088 | frame pointer, use that to find the base. */ | |
1089 | if (p->has_frame_ptr) | |
1090 | { | |
1091 | CORE_ADDR fp = get_frame_register_unsigned (this_frame, E_A3_REGNUM); | |
1092 | return fp - p->frame_ptr_offset; | |
1093 | } | |
1094 | else | |
1095 | { | |
1096 | CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM); | |
1097 | return sp - p->frame_size; | |
1098 | } | |
342ee437 MS |
1099 | } |
1100 | ||
342ee437 | 1101 | static void |
94afd7a6 | 1102 | mn10300_frame_this_id (struct frame_info *this_frame, |
342ee437 MS |
1103 | void **this_prologue_cache, |
1104 | struct frame_id *this_id) | |
1105 | { | |
025bb325 MS |
1106 | *this_id = frame_id_build (mn10300_frame_base (this_frame, |
1107 | this_prologue_cache), | |
6c02c64c | 1108 | get_frame_func (this_frame)); |
342ee437 | 1109 | |
342ee437 MS |
1110 | } |
1111 | ||
94afd7a6 UW |
1112 | static struct value * |
1113 | mn10300_frame_prev_register (struct frame_info *this_frame, | |
6c02c64c | 1114 | void **this_prologue_cache, int regnum) |
342ee437 | 1115 | { |
6c02c64c KB |
1116 | struct mn10300_prologue *p |
1117 | = mn10300_analyze_frame_prologue (this_frame, this_prologue_cache); | |
1118 | CORE_ADDR frame_base = mn10300_frame_base (this_frame, this_prologue_cache); | |
6c02c64c KB |
1119 | |
1120 | if (regnum == E_SP_REGNUM) | |
1121 | return frame_unwind_got_constant (this_frame, regnum, frame_base); | |
1122 | ||
1123 | /* If prologue analysis says we saved this register somewhere, | |
1124 | return a description of the stack slot holding it. */ | |
1125 | if (p->reg_offset[regnum] != 1) | |
1126 | return frame_unwind_got_memory (this_frame, regnum, | |
1127 | frame_base + p->reg_offset[regnum]); | |
1128 | ||
1129 | /* Otherwise, presume we haven't changed the value of this | |
1130 | register, and get it from the next frame. */ | |
1131 | return frame_unwind_got_register (this_frame, regnum, regnum); | |
342ee437 MS |
1132 | } |
1133 | ||
1134 | static const struct frame_unwind mn10300_frame_unwind = { | |
1135 | NORMAL_FRAME, | |
8fbca658 | 1136 | default_frame_unwind_stop_reason, |
342ee437 | 1137 | mn10300_frame_this_id, |
94afd7a6 UW |
1138 | mn10300_frame_prev_register, |
1139 | NULL, | |
1140 | default_frame_sniffer | |
342ee437 MS |
1141 | }; |
1142 | ||
342ee437 MS |
1143 | static void |
1144 | mn10300_frame_unwind_init (struct gdbarch *gdbarch) | |
1145 | { | |
94afd7a6 UW |
1146 | dwarf2_append_unwinders (gdbarch); |
1147 | frame_unwind_append_unwinder (gdbarch, &mn10300_frame_unwind); | |
342ee437 MS |
1148 | } |
1149 | ||
1150 | /* Function: push_dummy_call | |
1151 | * | |
1152 | * Set up machine state for a target call, including | |
1153 | * function arguments, stack, return address, etc. | |
1154 | * | |
1155 | */ | |
1156 | ||
1157 | static CORE_ADDR | |
1158 | mn10300_push_dummy_call (struct gdbarch *gdbarch, | |
1159 | struct value *target_func, | |
1160 | struct regcache *regcache, | |
1161 | CORE_ADDR bp_addr, | |
1162 | int nargs, struct value **args, | |
1163 | CORE_ADDR sp, | |
cf84fa6b | 1164 | function_call_return_method return_method, |
342ee437 MS |
1165 | CORE_ADDR struct_addr) |
1166 | { | |
e17a4113 | 1167 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
342ee437 | 1168 | const int push_size = register_size (gdbarch, E_PC_REGNUM); |
1fb1ca27 | 1169 | int regs_used; |
342ee437 MS |
1170 | int len, arg_len; |
1171 | int stack_offset = 0; | |
1172 | int argnum; | |
948f8e3d | 1173 | const gdb_byte *val; |
b8b6e72f | 1174 | gdb_byte valbuf[MN10300_MAX_REGISTER_SIZE]; |
342ee437 | 1175 | |
342ee437 MS |
1176 | /* This should be a nop, but align the stack just in case something |
1177 | went wrong. Stacks are four byte aligned on the mn10300. */ | |
1178 | sp &= ~3; | |
1179 | ||
1180 | /* Now make space on the stack for the args. | |
1181 | ||
1182 | XXX This doesn't appear to handle pass-by-invisible reference | |
1183 | arguments. */ | |
cf84fa6b | 1184 | regs_used = (return_method == return_method_struct) ? 1 : 0; |
342ee437 MS |
1185 | for (len = 0, argnum = 0; argnum < nargs; argnum++) |
1186 | { | |
1187 | arg_len = (TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3; | |
342ee437 MS |
1188 | while (regs_used < 2 && arg_len > 0) |
1189 | { | |
1190 | regs_used++; | |
1191 | arg_len -= push_size; | |
1192 | } | |
1193 | len += arg_len; | |
1194 | } | |
1195 | ||
1196 | /* Allocate stack space. */ | |
1197 | sp -= len; | |
1198 | ||
cf84fa6b | 1199 | if (return_method == return_method_struct) |
1fb1ca27 MS |
1200 | { |
1201 | regs_used = 1; | |
9c9acae0 | 1202 | regcache_cooked_write_unsigned (regcache, E_D0_REGNUM, struct_addr); |
1fb1ca27 MS |
1203 | } |
1204 | else | |
1205 | regs_used = 0; | |
1206 | ||
025bb325 | 1207 | /* Push all arguments onto the stack. */ |
342ee437 MS |
1208 | for (argnum = 0; argnum < nargs; argnum++) |
1209 | { | |
1fb1ca27 MS |
1210 | /* FIXME what about structs? Unions? */ |
1211 | if (TYPE_CODE (value_type (*args)) == TYPE_CODE_STRUCT | |
1212 | && TYPE_LENGTH (value_type (*args)) > 8) | |
1213 | { | |
1214 | /* Change to pointer-to-type. */ | |
1215 | arg_len = push_size; | |
b8b6e72f | 1216 | gdb_assert (push_size <= MN10300_MAX_REGISTER_SIZE); |
e17a4113 | 1217 | store_unsigned_integer (valbuf, push_size, byte_order, |
42ae5230 | 1218 | value_address (*args)); |
1fb1ca27 MS |
1219 | val = &valbuf[0]; |
1220 | } | |
1221 | else | |
1222 | { | |
1223 | arg_len = TYPE_LENGTH (value_type (*args)); | |
948f8e3d | 1224 | val = value_contents (*args); |
1fb1ca27 | 1225 | } |
342ee437 MS |
1226 | |
1227 | while (regs_used < 2 && arg_len > 0) | |
1228 | { | |
9c9acae0 | 1229 | regcache_cooked_write_unsigned (regcache, regs_used, |
e17a4113 | 1230 | extract_unsigned_integer (val, push_size, byte_order)); |
342ee437 MS |
1231 | val += push_size; |
1232 | arg_len -= push_size; | |
1233 | regs_used++; | |
1234 | } | |
1235 | ||
1236 | while (arg_len > 0) | |
1237 | { | |
1238 | write_memory (sp + stack_offset, val, push_size); | |
1239 | arg_len -= push_size; | |
1240 | val += push_size; | |
1241 | stack_offset += push_size; | |
1242 | } | |
1243 | ||
1244 | args++; | |
1245 | } | |
1246 | ||
1247 | /* Make space for the flushback area. */ | |
1248 | sp -= 8; | |
1249 | ||
1250 | /* Push the return address that contains the magic breakpoint. */ | |
1251 | sp -= 4; | |
e17a4113 | 1252 | write_memory_unsigned_integer (sp, push_size, byte_order, bp_addr); |
a64ae7e0 CV |
1253 | |
1254 | /* The CPU also writes the return address always into the | |
1255 | MDR register on "call". */ | |
1256 | regcache_cooked_write_unsigned (regcache, E_MDR_REGNUM, bp_addr); | |
1257 | ||
342ee437 MS |
1258 | /* Update $sp. */ |
1259 | regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp); | |
ee3a2f01 KB |
1260 | |
1261 | /* On the mn10300, it's possible to move some of the stack adjustment | |
1262 | and saving of the caller-save registers out of the prologue and | |
1263 | into the call sites. (When using gcc, this optimization can | |
1264 | occur when using the -mrelax switch.) If this occurs, the dwarf2 | |
1265 | info will reflect this fact. We can test to see if this is the | |
1266 | case by creating a new frame using the current stack pointer and | |
1267 | the address of the function that we're about to call. We then | |
1268 | unwind SP and see if it's different than the SP of our newly | |
1269 | created frame. If the SP values are the same, the caller is not | |
1270 | expected to allocate any additional stack. On the other hand, if | |
1271 | the SP values are different, the difference determines the | |
1272 | additional stack that must be allocated. | |
1273 | ||
1274 | Note that we don't update the return value though because that's | |
1275 | the value of the stack just after pushing the arguments, but prior | |
1276 | to performing the call. This value is needed in order to | |
025bb325 | 1277 | construct the frame ID of the dummy call. */ |
ee3a2f01 KB |
1278 | { |
1279 | CORE_ADDR func_addr = find_function_addr (target_func, NULL); | |
1280 | CORE_ADDR unwound_sp | |
aee6c3cd | 1281 | = gdbarch_unwind_sp (gdbarch, create_new_frame (sp, func_addr)); |
ee3a2f01 KB |
1282 | if (sp != unwound_sp) |
1283 | regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, | |
1284 | sp - (unwound_sp - sp)); | |
1285 | } | |
1286 | ||
342ee437 MS |
1287 | return sp; |
1288 | } | |
1289 | ||
336c28c5 KB |
1290 | /* If DWARF2 is a register number appearing in Dwarf2 debug info, then |
1291 | mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB | |
1292 | register number. Why don't Dwarf2 and GDB use the same numbering? | |
1293 | Who knows? But since people have object files lying around with | |
1294 | the existing Dwarf2 numbering, and other people have written stubs | |
1295 | to work with the existing GDB, neither of them can change. So we | |
1296 | just have to cope. */ | |
1297 | static int | |
be8626e0 | 1298 | mn10300_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int dwarf2) |
336c28c5 | 1299 | { |
c9f4d572 | 1300 | /* This table is supposed to be shaped like the gdbarch_register_name |
336c28c5 KB |
1301 | initializer in gcc/config/mn10300/mn10300.h. Registers which |
1302 | appear in GCC's numbering, but have no counterpart in GDB's | |
1303 | world, are marked with a -1. */ | |
1304 | static int dwarf2_to_gdb[] = { | |
c5bb7362 KB |
1305 | E_D0_REGNUM, E_D1_REGNUM, E_D2_REGNUM, E_D3_REGNUM, |
1306 | E_A0_REGNUM, E_A1_REGNUM, E_A2_REGNUM, E_A3_REGNUM, | |
1307 | -1, E_SP_REGNUM, | |
1308 | ||
1309 | E_E0_REGNUM, E_E1_REGNUM, E_E2_REGNUM, E_E3_REGNUM, | |
1310 | E_E4_REGNUM, E_E5_REGNUM, E_E6_REGNUM, E_E7_REGNUM, | |
1311 | ||
1312 | E_FS0_REGNUM + 0, E_FS0_REGNUM + 1, E_FS0_REGNUM + 2, E_FS0_REGNUM + 3, | |
1313 | E_FS0_REGNUM + 4, E_FS0_REGNUM + 5, E_FS0_REGNUM + 6, E_FS0_REGNUM + 7, | |
1314 | ||
1315 | E_FS0_REGNUM + 8, E_FS0_REGNUM + 9, E_FS0_REGNUM + 10, E_FS0_REGNUM + 11, | |
1316 | E_FS0_REGNUM + 12, E_FS0_REGNUM + 13, E_FS0_REGNUM + 14, E_FS0_REGNUM + 15, | |
1317 | ||
1318 | E_FS0_REGNUM + 16, E_FS0_REGNUM + 17, E_FS0_REGNUM + 18, E_FS0_REGNUM + 19, | |
1319 | E_FS0_REGNUM + 20, E_FS0_REGNUM + 21, E_FS0_REGNUM + 22, E_FS0_REGNUM + 23, | |
1320 | ||
1321 | E_FS0_REGNUM + 24, E_FS0_REGNUM + 25, E_FS0_REGNUM + 26, E_FS0_REGNUM + 27, | |
1322 | E_FS0_REGNUM + 28, E_FS0_REGNUM + 29, E_FS0_REGNUM + 30, E_FS0_REGNUM + 31, | |
1323 | ||
1324 | E_MDR_REGNUM, E_PSW_REGNUM, E_PC_REGNUM | |
336c28c5 KB |
1325 | }; |
1326 | ||
1327 | if (dwarf2 < 0 | |
bbc1a784 | 1328 | || dwarf2 >= ARRAY_SIZE (dwarf2_to_gdb)) |
0fde2c53 | 1329 | return -1; |
336c28c5 KB |
1330 | |
1331 | return dwarf2_to_gdb[dwarf2]; | |
1332 | } | |
342ee437 MS |
1333 | |
1334 | static struct gdbarch * | |
1335 | mn10300_gdbarch_init (struct gdbarch_info info, | |
1336 | struct gdbarch_list *arches) | |
1337 | { | |
1338 | struct gdbarch *gdbarch; | |
1339 | struct gdbarch_tdep *tdep; | |
4640dd91 | 1340 | int num_regs; |
342ee437 MS |
1341 | |
1342 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1343 | if (arches != NULL) | |
1344 | return arches->gdbarch; | |
1345 | ||
cdd238da | 1346 | tdep = XCNEW (struct gdbarch_tdep); |
342ee437 MS |
1347 | gdbarch = gdbarch_alloc (&info, tdep); |
1348 | ||
1349 | switch (info.bfd_arch_info->mach) | |
1350 | { | |
1351 | case 0: | |
1352 | case bfd_mach_mn10300: | |
1353 | set_gdbarch_register_name (gdbarch, mn10300_generic_register_name); | |
1354 | tdep->am33_mode = 0; | |
4640dd91 | 1355 | num_regs = 32; |
342ee437 MS |
1356 | break; |
1357 | case bfd_mach_am33: | |
1358 | set_gdbarch_register_name (gdbarch, am33_register_name); | |
1359 | tdep->am33_mode = 1; | |
4640dd91 KB |
1360 | num_regs = 32; |
1361 | break; | |
1362 | case bfd_mach_am33_2: | |
1363 | set_gdbarch_register_name (gdbarch, am33_2_register_name); | |
1364 | tdep->am33_mode = 2; | |
1365 | num_regs = 64; | |
1366 | set_gdbarch_fp0_regnum (gdbarch, 32); | |
342ee437 MS |
1367 | break; |
1368 | default: | |
1369 | internal_error (__FILE__, __LINE__, | |
1370 | _("mn10300_gdbarch_init: Unknown mn10300 variant")); | |
1371 | break; | |
1372 | } | |
1373 | ||
1b31f75d KB |
1374 | /* By default, chars are unsigned. */ |
1375 | set_gdbarch_char_signed (gdbarch, 0); | |
1376 | ||
342ee437 | 1377 | /* Registers. */ |
4640dd91 | 1378 | set_gdbarch_num_regs (gdbarch, num_regs); |
342ee437 MS |
1379 | set_gdbarch_register_type (gdbarch, mn10300_register_type); |
1380 | set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue); | |
342ee437 MS |
1381 | set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM); |
1382 | set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM); | |
336c28c5 | 1383 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum); |
342ee437 MS |
1384 | |
1385 | /* Stack unwinding. */ | |
1386 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
1387 | /* Breakpoints. */ | |
04180708 YQ |
1388 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, |
1389 | mn10300_breakpoint::kind_from_pc); | |
1390 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, | |
1391 | mn10300_breakpoint::bp_from_kind); | |
025bb325 | 1392 | /* decr_pc_after_break? */ |
342ee437 MS |
1393 | |
1394 | /* Stage 2 */ | |
99fe5f9d | 1395 | set_gdbarch_return_value (gdbarch, mn10300_return_value); |
342ee437 MS |
1396 | |
1397 | /* Stage 3 -- get target calls working. */ | |
1398 | set_gdbarch_push_dummy_call (gdbarch, mn10300_push_dummy_call); | |
1399 | /* set_gdbarch_return_value (store, extract) */ | |
1400 | ||
1401 | ||
1402 | mn10300_frame_unwind_init (gdbarch); | |
1403 | ||
697e3bc9 KB |
1404 | /* Hook in ABI-specific overrides, if they have been registered. */ |
1405 | gdbarch_init_osabi (info, gdbarch); | |
1406 | ||
342ee437 MS |
1407 | return gdbarch; |
1408 | } | |
1409 | ||
025bb325 | 1410 | /* Dump out the mn10300 specific architecture information. */ |
342ee437 MS |
1411 | |
1412 | static void | |
d93859e2 | 1413 | mn10300_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
342ee437 | 1414 | { |
d93859e2 | 1415 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
342ee437 MS |
1416 | fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n", |
1417 | tdep->am33_mode); | |
1418 | } | |
1419 | ||
1420 | void | |
1421 | _initialize_mn10300_tdep (void) | |
1422 | { | |
1423 | gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep); | |
1424 | } | |
1425 |